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SINGULARITY THEORY AND GEOMETRY IN THE MOTION OF A TOP

by Jonathan Peregrine Britt.

The aim of this thesis is to examine the spinning top from the point
of view of the Smale programme for studying mechanical systems with
symmetry. This programme consists of finding the global topological
structure of the map E x J : TM >~ R X€3* where E 1s the total
energy of the system, J 1its momentum mapping, which in our case is
just its angular momentum, TM 1is the phase space and %* is the
dual of the Lie algebra of the Lie group G which acts on the

configuration space M producing the symmetry.

We are here concerned with examining the nature and
configuration of the singularities of this and related maps using
the machinery of Y and xq equivalence and of finite determinacy.
We are able to interpret various types of motion of the top in terms
of singularities and their unfoldings. Of particular importance is
the subset of TM corresponding to steady precession whose corresponding

geometry in the cotangent bundle we exhibit explicitly.
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to Oz and 0OY' to O0Y" (nutation) and r, is the rotation of

angle V¥ around Oz (proper rotation). Two sets (61, ¢ wl) and
(ez, ¢y wz) are called equivalent if R(el, ¢1, wl) = R(ez, ¢2, wz)
which,if we restrict 6 to [b, ﬁj, ¢ and ¥ to [p, 2m) , occurs only

when 8, =86, , ¢; =¢, and by =1, .

The Kinetic energy of the top is :-

K = %-A(éz + éz sin?6) + %—C(& + é cosf)?

where C 1is the moment of inertia of the body about the symmetry axis

and A the moment of inertia of the body about any inertia axis

perpendicular to the symmetry axis.

The potential energy is

V = mga cosf

where m 1is the mass of the body and a 1is the distance of the centre

of gravity from the vertex.

We will also need the expressions for the angular momentum

about the axes 0Z and 0Oz . The angular momentum Py about the

axis 0Z 1is

Py = A$ sin2e + C(é cosd + {)cosb

and the angular momentum Py, about the axis Oz is

P, = C(¢ cosd + )

These can all be found on pages 150 and 151 of [15].



In order to simplify the algebra we choose units to make both

A and mga equal to one.

When the top spins, with its axis in either the upward or
downward vertical position, the Euler angle time derivatives $ and
) are no longer well-defined and so a description of the motion in
terms of the Euler angles is difficult. This point is studiously
ignored in the classical treatments! However when we come to study
the motion of the top with its axis vertically upwards (called the

sleeping top) we will introduce a new coordinate chart and recalculate

K, V and the angular momenta in terms of this new chart.

Our aim is to examine the spinning top from the point of view
of the Smale programme for studying mechanical systems with symmetry.
This is described in Smale [17] and also in Abraham and Marsden [1]| in
full, so we will give only a brief summary here. The description in
Smale's paper uses the tangent bundle formulation whilst that in
Abraham and Marsden uses the cotangent bundle. We will in fact use
both formulations in this thesis but our initial description will

follow Smale.

Suppose then we have a classical mechanical system with
configuration space a smooth manifold M and tangent bundle TM
as the phase space, {in the case of the spinning top, M is S0(3)
or equivalently the u;;t circle tangent bundle of S%} . The kinetic
energy can be thought of as defined by a Riemannian metric on M ,
so it will be a function K: TM + R defined by K(V) = Kx(v, ¥)

where v € TX M and KX is an inner product in TX M, smooth in x.



The potential energy is a function V : M + R , normally smooth.

The total emergy E 1is the function E : TM -+ R given by E =K + V o m,

where 1w is the canonical projection from TM onto M .

If we have a Lie Group @ acting on M with action Y preserving

K and V we define a momentum mapping

J:T™ +€i*,

(gf denotes the dual of the Lie algebra '6} of G) by J= JI o (2K)*

where (2K)* -2 TM - T*M is the bundle isomorphism defined by 2K,
(twice the Riemannian metric) on M , and Jit T*M'+%* is the map
which, restricted to each fibre, is the dual of uX:‘%~+ TXM . Here
aX(X) 1s the value of o(X) at x ¢ M where a(X) 1is the vector
field on M generated by the l-parameter transformation group
corresponding to X efa_that ig:—

ax(X) = %? W(exp(tX§x)
t=0

So if n ¢ T; M and X ¢ ﬁi then J1 is given by :-
I ()X = nfe &)
In our case G is the torus T2 = s! x gl,
with action ¥ defined by :-—
YorGxM Mo (v, vy3 8, 05 W) > (8, 6+ v, U+ oy,
(with addition defined modulo 2m).

-

We shall show later that in this case the momentum mapping J

defined above is just the.angular momentum as classically given, that is



J(v) = (p¢, pw) ¢ R2 , the Lie algebra of T2,

where

V=(9,¢,¢§é,<f;,‘l3)eTM.

The Smale programme consists of the problem of finding the

global topological structure of the map E x J : TM > R Xfi*

This involves at least knowing :-

(i) the topological type of the integral manifélds
I = ExD 7 (e, w)
e, ?
(ii) the bifurcation set ZExJ of ExJ . This is the set of

points of R X{i* over which ExJ fails to be locally

trivial, in the differentiable sense.

In order to gain information about these,Smale introduces the

amended potential, as follows.

Let N
A = {XEM:JX=J}TXM : TXMievﬁf is not surjective}
Then A 1is closed and G-invariant. For xe MN A and pe fi%
we define au(x) € TXM by the conditions

(@) o (x)e J;l ()

and (b) K(au(x)) = inf K(a)
o €J;l (1)

and then define the amended potential VU: M\A > R by

VU(X) = V(x) + K(uu(x))



. . . y
A particularly important subset of ZExJ 1s the set ZExJ
of singular values of ExJ . This is the image of the set of singular

points of ExJ. The reason for the importance of this subset is given

in the following two theorems taken from [ﬂ]:

Theorem 1.1

. -1 ,
Singular points of ExJ on J (u) correspond to singular

points of Vuu
Theorem 1.2

Singular points of Vu are in one to one correspondence,

using the diffeomorphism induced by o ,with relative equilibria. ll
g 1 q

The relative equilibria are defined by considering the
reduced phase space J—l(u)/GU , where Gu is the isotropy subgroup
of G at u for the adjoint action of G on @l* . On this reduced
phase space the energy mapping canonically induces a flow with a
corresponding '"reduced" energy mapping. A relative equilibrium is
a singular point for this reduced mapping. (This definition is given
on page 306 of [l]), Intuitively a relative equilibrium is a point
where the system could be considered to be at rest except for the

motion due to the action of the symmetry group.

We can also construct the reduced amended potential:

Vo :M/G + R
u U
and them make use of :

Theorem 1.3

Y
The nondegenerate maxima or minima of Vu give stable

relative equilibria. .



The three theorems quoted can be found on pages 348, 354

and 360 of [1].

In terms of the top, the relative equilibria give the points
at which the motion of steady precession takes place and so using
Theorem 1.3 the stability of steady precession can be immediately

deduced (see Corollary 4.13).

Although the Smale programme concentrates on determiming
the topological type of the level sets of ExJ we shall rather, be
concerned with examining the nature of the singularities of this map.

Since fi* = R%* 2 R”? we write J = (J;, T,) and look at ExJ: TM - R3,

2
For this we will mainly consider the S! action on M that gives
rotation about the vertical axis as we can trivially factor out by the

other part of the action that gives rotation about the axis of the

top-

We shall first examine this map in full generality, for
which we will need a different coordinate chart on M from the Fuler
angles. We shall show that locally in a neighbourhood of the position
corresponding to a sleeping top the mapping ExJ 1is equivalent, with
respect to the action of the symmetry group, to a polynomial mapping
and in fact J can, in a certain sense, be made equivalent to a

quadratic mapping. (see Theorem 2.12).

Next in the context of steady precession we shall investigate

the singularities of ¢ = Ele and @e which is ¢ restricted
§=0 ©

to a constant value of g . The reason for investigating & 1is that

the gingularities of Ele occur when 6 = 0 . We shall find that

the singularities of & all correspond to the motion of steady



precession (see the remark preceeding Proposition 3.3) and that all

the singularities of ¢ are fold points (see Proposition 3.2)

8
0

while for ® we have fold points and one standard Whitney cusp point
if the moments of inertia satisfy a particular condition (Theorem 3.6).
A description of the inverse image of the singular set for the
standard Whitney cusp map from R3 to R2 1is given and the position
of the tangent space to the steady precession manifold at the cusp

point is determined for this standard picture.

We then turn our attention to the amended potential., Following
the Smale programme we analyse the general motion of the axis of the
top. We do this by examining the path the axis would trnace out on
the surface of a sphere. We shall find (Theorems 4.7 and 4,8) that
the stable motion of the axis, that is the axis oscillating between
two circles and meeting the upper circle in loops or waves, can be
expressed as a universal unfolding of the unstable case where the axis
of the top meets the upper bounding circle in cusps, this unfolding

being parametrised by the initial conditions.

Then using the amended potential, we investigate steady precession
showing that for fixed values of J; and J, there is only one
possible angle of inclination of the axis of the top from the vertical
at which steady precession can: take place, and that this motion is
a stable relative equilibrium. This is illustrated by a certain
mapping of €i* = R? into the parameter space of a section of a

swallowtail catastrophe and generalises the local version of Arnol'd [}].

Finally, we analyse the case of the sleeping top by seeing
what happens to the steady precession surface near the points corresponding

to sleeping. We find (Theorem 4.17) that as we approach the sleeping



position the steady precession surface is bounded by the line corresponding
to the stable sleeping top. By adding in the line that corresponds

to the unstable sleeping top we are able to construct a global picture

of the steady precession surface in the cotangent bundle, a picture

that is reminiscent of a motorway bridge:
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CHAPTER 1

SUMMARY OF SINGULARITY THEORY. USED

We take the following definition from page 37 of [5] .

Definition 1.1

The jet-space Jk(n,p) is the set of all mappings
£ : R* > RP each of whose components is a polynomial of degree less
n

than or equal to k in the standard coordinates XypeeosX, in R .

Elements of Jk(n,p) are called k-jets.

Suppose that f : R > RP is a smooth map. Then we can
expand f around some point a in R" by constructing the Taylor
series in terms of the standard bases for R" and RP . If we then
delete all terms with degree greater than k we obtain a k-jet which

we denote jkf(a) and call the k—jet of f at a . This defines the

mapping jkf : R™ +—Jk(n,p) called the k—jet extension of f

Although the definition given here is couched in terms of
local coordinates, a coordinate free definition is easy to give

as for instance in [ﬁ] where Jk(n,p) is defined as

*m,p) = B® x Hom(R®,RP) x HO%(RH,RP)X....XHorlgx(Rn,Rp)

j .
where Hog(Rn,Rp) is the space of symmetric j-multilinear mappings

from j copies of R to RP .
The next definition and theorems are taken from [d].

Definition 1.2

Given a »oint a in R™ , and a mapping  f : R” > RP



_.1_1....

then Df(a) 1is a unique linear mapping of Ta R" > Tf(a) RP .

Define the rank of f as the rank of Df(a) and the corank of f as

min(n,p) - rank f,
Let Sr = {f ¢ J'(n,p) ; corank f = r}

Theorem 1.4

The set Sr is a submanifold of J!'(n,p) of codimension

r(‘n—p] + 1), .

-1
We let Sr(f) = (jlf) (Sr) . The sets Sr<f) are not
necesgsarily submanifolds of R"  but using the Thom Transversality

Theorem one can prove:-
Theorem 1.5
I U T ST FEYFRTETECTaTe e W IO HAVETIOTSS

The set of f for which jlf is transverse to Sr for
all r 1is a residual set with respect to the Whitney topology. For
such an f the set Sr(f) is a submanifold of R with codimension

equal to the codimension of Sr . .
Such maps are called l-generic.

Now suppose f : R" > P is l-generic., Denote by Sr s(f)

b

the set of points where the map f : Sr(f) -~ RP drops rank by s .

We will now show how to construct Sr < in J2(n,p) such that
2

.2
S(f) <= "f(x) ¢ Sr .

X e S
r , S

*

The method is that given on pages 149-155 of [6]. We first

of all construct the jntrinsic derivative of a smooth map f : R” > RP
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Given an f : R® > R® we have Df : R - Hom(R",RP) . For x ¢ 5_(£)
n n _p .

we calculate D(Df)X S Hom(R , Hom(R",R )) . We then restrict to the

kernel Kx of DfX and project to the cokernel LX of DfX to

get the intrinsic derivative
n
(d Df)X € Hom[R R Hom(KX,LX))

This will be determined by the 2~jet of £ at x . By
. . . . . n .
restricting the intrinsic derivative on R to Kx we 1induce a
symmetric mapping

2 - _ 2
1) fx € Hom(KX, Hom(KX,LX)) = HO%I(KX,LX)

Now if we let Séz) be the preimage in J%2(n,p) of S

r
under the projection J%{m,p) - J'(n,p) , we can summarise the above

by saying:-

2 .
£ Sé ). There exists an

Let x Dbelong to Sr(f) and o©
£ : R™ > RP such that j2£(x) = o and j f(x) ¢ Sr . Then we calculate
a symmetric mapping dzfx £ Hom[KX, Hom(KX,LX)} depending only on o .

So we have a mapping

W siz) +  Hom(R, Hom(K,L))

where K=U K and L=T L . (Since fixing a o0 in S. fixes a
OESr oeSr

KX and LX in TX R™  and Ty rP respectively). Consider the set of
maps in Hom(K, Hom(K, L)) of corank s . The pullback of this set by
W in Séz) is the set we will denote by Sr s - Then it can be proved,

3

see [ﬁ], that
Theorem 1.6

(1) S is a submanifold of S(z)
r,s T

of codimension
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S k(D) = % (kms) (k=s+1) = s(k-s)

where k = r + max(n-p, 0) and £ =p - n + k .

= 42
(2) X € Sr,s(f) <=> Jf(x) ¢ Sr,s -

We can extend all the above definitions to smooth mappings
f :X~>Y where X and Y are smooth manifolds of n , respectively p ,
dimensions in the obvious manner by choosing local coordinates in X

and Y .

In fact in this paper we will be mainly concerned with the case
when n =3 and p=2 or n=p=2 ., In both these cases the

codimension calculations show that only Sl and S type singularities

11
can occur for l-generic maps. Complete classifications of these

singularities in terms of local coordinates exist, see [19] from

whence comes :
Theorem 1.7 (Whitney).

Let X and Y be 2-dimensional manifolds and

let £ : XY be l-generic, Then if a ¢ S.(f) and b = f(a) either

(a) Tasl(f) ® Ker Df(a) = TaX
in which case a 1is called a fold Eoinp and one can choose
a system of coordinates (xl, XZ) centred at a and (yl, y2)

N 2
centred at b such that f : (xl, x2)r+ (Xl’ xz)
or

(b) T, Sl(f) = Ker Df(a)

in which case the situation is more complex. l'
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In order to explain this last case it is easier to take the more general
form of the above theorem due to B. Morin [14].
aQ : —_ - -
Let 51k stand for Sl if k=1 and 81,1 if k=2,

Theorem 1.8 (Morin)

If f : X>Y withdim X 2 dim Y satisfies the condition

that jkf is transverse to Slk and if a 1is in Slk(f) , then
there exists a coordinate system Xy X centred at a and
"QD’
a coordinate system 1 v centred at f(a) such that f has
’OQQ’
the form
k-1
k+1
: H :'-: 2+ LI ) i_ 2 + J
£ (Xl,...,xn) Xl,...,xp—l’ Xp - X1 " *n * jzl XJ X l.

This theorem gives the equal dimensional case by putting =n =p ,

and is a specific example of the more general result proved in [}4].

Letting (o, p) = (3, 2) or (4, 2) and k = 2 will give us
the standard Whitney cusp maps from R® to R? or R* to R?

respectively, that is

= 2 3
f(xl, Xy x3) (xl, 5 + X3 + X1X3

or

+ x.X,)

%4 1%4

f(xl, Xyy %q, x4) = (Xl’ X5+ X

We are going to look at the local behaviour of maps and define
a notion of local equivalence of mappings. In order to do this we

need to use germs of mappings. From [5] page 33 we take :

Definition 1.3

Consider the set of smooth maps from X - Y , where X and
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Y are smooth manifolds. Given a point x ¢ X we look at the set

of all such maps whose domain U is a neighbourhood of x in X . If
f1 : Ul +~ Y and f2 ' U2 + Y are two such maps we say fl v f2 1f
there exists a neighbourhood U of x in X depending on £, and

f2 such that

This defines an equivalence relation on these maps. The equivalence

classes are called germs of maps at x . If f and f

1 ) represent

the same germ then fl(x) = fz(x) y so we use the notation

f: (X, x) > (¥, y) for the germ

Now suppose that T 1is a compact group acting orthogonally

on R® and RP . wWe say that a germ f : (Rn, 0) - (Rp, 0) is

I'-equivariant if £(yx) = yf(x) for all y in T . A function germ

h : (Rn, 0) » R is called I'-invariant if h(yx) = h(x) for all

y in T,

Let E.F(n) be the ring of TI~invariant function germs on R
and E;P(p) the ring of I'-invariant function germs on ®F . Now define
T T . .

the free E: (n)-module € (n, p) as the set of TI'-equivariant map

germs from R" to RP .

We will now give definitions of equivalence of germs taking into
account the action of T . Putting T equal to the trivial group
consisting of the identity only enables the more common definitions

to be seen,

Definition 1.4

n
(a) Two map germs f and g : (R, 0) - (Rp, 0) are
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I'-right-left equivalent or T:/Qequivalent if there exist diffeomorphism

germs h : (Rp, 0) ~ (Rn, 0) and k : (Rp, 0) ~ (Rp, 0) such that

g[h(x)) for all x in R%

It

(1) k(f®)

(ii) h(yx) vh(x) for all x in R® and for all vy in T

(iii) k(yy) vk (y) for all y in RP  and for all Yy in T

(b) Two maps germs f and g : (R', 0)* (RP, 0) are

I'-contact equivalent or T—}{ equivalent if there exist a diffeomorphism

erm h: (R", 0) > R%, 0) and L e C (R®, ¢ L(RP)) such that
g ’ 5

L(x) g(x) for all =x in R®

]

(1) f(hx))
(1i1) hyx))

vh(x) for all x in R" and for all Y in

L(x) for all x in R™ and for all Yy in

(iii) v Lm0y

The definition of T-H equivalence can be found on page 1-1 of
[8] and that of r-4 equivalence is closely modelled on it. T -4 equivalence
would seem the most natural form of equivalence to use and we shall
try to work with it as much as possible. Contact equivalence arises more
naturally in considering algebraic varieties defined as zero sets in
algebraic geometry but its importance for us lies in the fact that it
yields algebraic conditions for equivalence that are easy to check,
unlikezﬂ -equivalence. Of course FﬁA equivalence implies T-{ equivalence
but the converse is false, We will use the notation F—ag‘equivalence
when we do not need to specify whether it is contact or right-left

equivalence under discussion.

We will use the notation Yn;(n) to represent the maximal ideal

of the ring Er(n) and also let

VTli(n) = {g ¢ Er(n); the (k-1) jet of g 1is zero}
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and
MU (n,p) = (£ ¢€ (n,p); the (k=1) jet of £ is zero)

Consider now all map germs f : (R x Rn, 0) ~ (Rp, 0) such that
f(t, x) 1is F~%:~equivalent to f£(0, x) where the equivalence varies
smoothly with t ., If we denote f£(t, x) by ft(x) then we
can say that we have a curve t - ft where ft is T Jjgequivalent

to fO with the equivalence varying smoothly with t . Using this

idea we make the following definition :-—

Definition 1.5

The TQ?:tangent space ;%f of a germ f : (Rn, 0) ~ (Rp, 0)

of
is the totality of derivatives - of all curves t - ft ., Where
t=0
ft is as given above and fo is £ .
We can now prove:

Proposition 1.9

Let f : (Rn, 0) » (Rp, 0) be a map germ,

a) if ? = ,4 then T £ 1is given by
T f = {Df(x) a(x) + b(f(x))}
or all a €} I,(n, n) and b ean(p, )
£ 1
b) If iF =M then Tyt is given by

T

Hﬁ = {Df(x) a(x) + L(x) f(x)}

for all a e}ﬁr(n n) and L(x) being a (possibly singular) p x p
1 (o, 8 8

matrix satisfying the condition :

Y—l L(yx)y = L(x) for all vy e T
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Proof

(a) We assumed that the equivalence varies smoothly with t .

So if ft is T-Aequivalent to f then there exists an ht
(R", 0) > (R", 0) and k, (RP, 0) » (RP, 0) both diffeomorphisms
such that

ft = kt o fo ht

where 1if fo = £ Dboth ko and ho are the identity mappings.

By the Chain Rule :

aft Bkt Bht
5T 3T (Fh) * Dk (Eh) DE(h) g

Putting t = 0 gives

3f . ok 5h
i AR =L
t=0 1 t=0 £=0
So
Bf,
e e {b(f(x)) + DE(x) a(x)
ot =0

i.e. ny{Df(X) a(x) + b(f(X))}

To prove the inclusion the other way we need to be able to express

Bh’
an arbitrary T-equivariant map H : R* > R™  as ?ﬁgil where
=0

ht is a TI'=-equivariant diffeomorphism and ho is the identity on Rn,

and similarly an arbitrary TI=-equivariant map K : RP > RP  as

ok

C . . . . . . s
T with kt a I'-equivariant diffeomorphism and ko the identity
' t=0

on Rp .
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To do this let ht = 1d + tH and kt = id + tK ,

This completes the proof,

(b) This is proved similarly and the proof can be found in

[}] for I the identity and sketched in [8] for the more general case. ll

We now use these ideas to make the following definitions

(adapted from [8])

Definition 1.6

A germ f : (Rn, 0) ~ (Rp, 0) 1is said to be F—jg— k determined

if whenever g in.Eﬂ?(n, p) has the same k=jet as f then f 1is

Fijfequivalent to g .

By an argument similar to that used in the proof of part (a)
of Proposition 1.9 it is easy to see that if, for all positive integer

values of k ,
r

then f is not T —f% finitely determined.

Both necessary and sufficient conditions for contact k-determinary
are given by Golubitsky and Schaeffer in [i]. However when looking at
[~ contact k determinacy the situation is made slightly more

complicated because in general,

W (@) Yy (a,p) A (n,p)

In order to prove that £ dis T -H - k determined we want
) _ r
to show that if f_=f + th where h eYﬂk+1(n, p) then h ¢ Tﬂ.ft"

We need the following lemma :
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Lemma 1.10

1 (1) hemin) Ty
and (2) Dh(x) a(x) e}g(n) T“ f

e T .
then T% £ M.ft

Proof

Each component of an element of TH ft (that is a p-vector)

is of the form

) P
L..(x) £, (%) + a, (x)
j=1 1] tj k=1 Bxk k
I'e
g E Bfi Bhi
= .. (%) {f.(x) + th.(x)} + + t a, (x)
j=1 H ] J k=1 5xk 0%, k
oh,; r '

But each Qij hj and each EEZ'ak belong to¥¥yL (n) %H.f . Hence

Nakayama's lemma (see page 102 of [5]) implies that
LEST £ . |

Since if h belongs toYTL£+1 (n, p) then so does Dh(x) a(x) we

deduce :

Corollary 1,11

A sufficient condition for f : (Rn 0) + (Rp 0) to be
? ?

I =¥ - k determined is

~ r
YNy, (0, p) €Y (n) Ty £ - e

Note that a generalisation of the condition given by Golubitsky
and Schaeffer as Theorem 2,8 in [7] to the case of T - determinacy

would give a stronger condition than that in Corollary 1.11 and hence
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one that is harder to verify. In fact in the particular example we
will be examining in Chapter 2 the generalisation of Golubitsky and
Schaeffer's condition will not hold whereas Corollary 1.11 will be

satisfied.

Although we will not need this, it is straightforward to prove
that a necessary and sufficient condition for f to be I - - k

determined is given by :

MW, @, p) © Ty (f + b) +M0 . (n, p)

for every h €¥ﬂ£+l(n, p) and
(2) £ 1is T -}{ - (k + 1) determined.

Definition 1.7

Let f : (Rn, 0) - (Rp, 0) be a map germ. The Fﬂﬁs— codimension of

f 1is the dimension of gy(n,p)/Tyf over R. 1If the T 7F-codimension of f

is zero then f is said to be I “PF infinitesimally stable,

We also wish to consider unfoldings for germs in £(n, p)

without the group action.

The following definitions and results are taken from Martinet's

paper [1{].

Definition 1.8

Let fO : (Rn, 0) ~» (Rp, 0) be a map germ. All germs of
the form
F: ®RYxR", 0) » &Y x P, 0)

(u, x) H‘(u, f(u, x)]
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where
£(0, x) = fo(x)

are called g-parameter unfoldings of f

Qe

Definition 1.9

Two q-parameter unfoldings of the same germ fO’ F1 and

F, are isomorphic if there exist local diffeomorphisms

H: RYx®%, 0) » ®T x R™, 0) and K : Y x ®P, 0) » Y x ®P, 0)

which are g-parameter unfoldings of the identity of R" , respectively

Rp, such that :
F,=KoPF, oH

More generally Fl and F, are said to be equivalent if

there exists a local diffeomorphism g : (Rq, 0) - (Rq, 0) such that

F2 is isomorphic to g*F where g*F the pull back of Fl by g

1 1

is defined by :
g*Fl(u, x) = |u, fl(g(u), x) .

t

The pull back of an unfolding can be defined for any map g : (R, 0) - (Rq, 0)

in a similar way.

Definition 1.10

An unfolding of fO is trivial if it is isomorphic to

the constant unfolding (u, x) H‘(u, fo(x)]
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An unfolding F of fO is called versal if any other unfolding

F' of fO is isomorphic to the pull back of F by a suitable map of

the parameter space of F' into that of F .

A germ is called stable if all its unfoldings are trivial.

From these definitions Martinet proves the following theorems:

Theorem 1.12

A g-parameter unfolding F of a germ fO : (Rn, 0) ~ (Rp, 0)
is versal if and only if the initial speeds éi £ E(n, p) with
i=1,...,9 span a real vector sub-space R{ﬁl,...,%q} of Z(n, p)
such that |

Corollary 1,13

A germ that is 4 infinitesimally stable is stable. -

Corollary 1.14

All c-parameter versal unfoldings of a germ fo with jl-codimension

c are equivalent; they are called universal unfoldings of fo . II

Corollary 1.15

All g-parameter versal unfoldings of fo » where q > ¢ ,
are equivalent to a constant unfolding of g - c parameters of a

universal unfolding of fO . -

All the definitions and theorems in this section stem from the

work of Mather [}2].
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CHAPTER 2

NEW COORDINATES FOR THE CONFIGURATION SPACE

Although it is traditional and convenient to use the Euler
angles @, ¢ and Y as a coordinate chart for the configuration
space of a spinning top, yet when 6 = 0 , that is when the axis of
symmetry of the top coincides with the vertical, ¢ and ¢ become
indistingﬁishable from each other, hence these angles no longer form

a valid coordinate chart for the configuration space.

Thus in order to study the behaviour of a top near this position,
as for instance in examining the phenomenon of the sleeping top (when
it spins with its axis of symmetry vertical), it is necessary to use
a different set of coordinates. The following system, is well defined,
at least while the angle between the vertical and the top's symmetry
axis is no greater than %- , and so is an adequate coordinate chart

for the configuration space in a neighbourhood of 6 = O

Starting from an orthogonal set of axes O0XYZ; fixed in space,

a rotation 61 is mdde about the axis O0X . bringing the system into

the position 0f£'n'g' . Then a second rotation 62 is made about

On' giving the position 0fng and finally a third rotation 63
is made about O moving the axis into coincidence with a set of
axes = Oxyz fixed in the top and thus moving in space. This construction

gives a coordinate chart around the identity element in the Lie group

S0(3), with which we can identify our configuration space.

Thus the coordinates (61, 62, 93) specify the position of

the top relative to the axes OXYZ fixed in space. By writing down

the three rotation matrices and multiplying them, we can calculate
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The system of axes O0fnt has angular velocity components

@

6 cose2 about 0, 6

1 about On and 8. sinb about 0z .

2 1 2

The top is moving relative to the system Ofnz with an
angular velocity é3 about Or so we can express the angular velocity
of the top in terms of components (wa, o mc) along system O&ng

by wg = 91 cose2 ’ wn = 62 and wc = 61 51n62 + 93 .

Using the units mentioned in Chapter 1, we can express the

rotational kinetic energy as :

=L 1,2 2 v L2
K 5 {wg + wn] + 5 C wc

Using the XY plane as reference the potential energy is

V = cosb

1 cose2 N

so the energy is given by :

82 cos?e, + 82| + 3~c 8. sin6, + 0 2 + cosB, cosb, ,
2 1 2 3 1 2

We can also calculate the angular momentum of the top about

the axis O0Z. The angular momentum about the axis O0f 1is él cose2 .

that about the axis On 1is éz and about the axis 0r 1is C(é1 sinez + é3) .
Now the angle between the axis OZ and Of has cosine equal to
~cosel sine2 » that between 0Z and On has cosine equal to sin@l ,

and that between OZ and Oz has cosine equal to cosf cose2 » thus

1

the angular momentum Jl about O0Z 1is given by

Jl = "el cosel 51n62 c0582‘+ 62 slnel + C(G1 31n62 + 63) cosel cos@2 .

These calculations are similar to those done for an artillery

shell on page 255 of [}3].
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The Effect of Rotational Symmetry

Here we prove that the top forms a mechanical system with symmetry
as defined in Chapter 0. Intuitively this is so because the values
of the angles ¢ and ¥ do not affect the energy or the angular

momentum .

Let M be the unit circle tangent bundle of $S2 with the

Riemmanian metric K : TM x TM > R given by

2 + £ 2 ;
. { cos 62 Csin 62 0 Csme2 w1
K(v, w) = »2~~(V1 v, v3) 0 1 0 W,
C31n62 0 C w3
or in the Euler coordinate chart,
1 0 0 Wy
1 . 2 2
K(v, w) = 5 (vl v, v3) 0 sin“9 + Ccos46 Ccosh W,
0 Ccosb C w3

The symmetry group action is that of the torus T2 acting on
Mas st x s! , that is rotation about the vertical axis and rotation

about the symmetry axis of the top, referred to as ¥ in Chapter 1.
So we have the action Yy : T2 x M » M defined by
\chl’ YZ; 65 ¢ d}) = (e: ¢ + Yl:v p ot 'Y2)

In a neighbourhood of @ = 0 , where we must use (61’ 6,5 63) to
coordinatise M the T2 action has a more complicated expression

which we shall need later.

Proposition 2.1

The action of T2 on M for (61 62, 63) in a toral neighbourhood
b
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given by Gl and 62 each belonging to a neighbourhood of 0O and
63 being any point in 1, is a smooth mapping ¥ : T2 x M > M
defined by

. - v ' 1 ' .
Y(vys vy5 8y, 0,5 05) = (8], 65, 03) where the 6i are given

27
by :~

tan@i = tan@1 cosy, - tand, sece1 sinyl

sineé = sine2 cosy, + sin@1 cose2 sin’y1
et - cos@l sim(1 cos(93+Y2) + sin(63+Y2)(c0562 cosYl—sinel sin@zsinyl)

3 cos@zcosylcos(63+yz)~31nylc059181n(63+y2)—51ny181n6131n62cos(63+y2)

Proof
In order to see this we use the matrix (1) constructed above
which transforms coordinates relative to the fixed axes into coordinates

relative to the rotating axes, in terms of the angles 61, 62, 83

Of course i1f we performed the rotations corresponding to the
Euler angles we would obtain another matrix which performs exactly the
same function, but gives the transformations in terms of 0, ¢ and V.

This matrix is -

cd e ~ s cBb sy s cP + cB cd su s6 sy
~c¢ s ~ s¢ cb cy ~sd sP + cO cd cy s0 cv (2)
s¢ s6 - cd sb ch

where ¢6 = cosb, céd = cosd, cp = cosy etc.

Because both matrices take the triple (X, Y, Z) to the same

triple (x, y, z) corresponding entries must be equal.
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In particular

sin62 = ging sinb (3)

and, combining expressions for sin@l and cose1 .

tane1

cosd tanb (4)
and similarly

tany + tand cosB (5)
3 1 ~ tand tany cosb

tanb

Now, in terms of the Euler angles, the T2 action just increases
¢ and Y and leaves 6 unchanged. Using this together with equations
3, 4 and 5 gives the expressions for the T2 action in terms of Gi,

62 and 93 that appear above. .

Next we check that we do have a mechanical system with symmetry

in the case of the spinning top.

Proposition 2.2
M, K, V and G as given above do form a mechanical system with

symmetry in the sense of Smale.

Proof

S—————————

We need to show that K and V are invariant under the TZ2-action
given in Proposition 2.1. 1In order to facilitate the calculations we

will use the Euler angle coordinate chart.

For V this means that V © WY = V where WY : M>M is

given by :

WY(@, ¢, ) = ¥(y3 8, ¢, V)

for vy in T2,
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Going back to Chapter O we can say that
V(6, ¢, ¥) = cosb

As ¥ leaves 6 wunchanged, cosf also is unchanged so V

is invariant under the T2 action.
For K we have to prove that
K(TY v, TY w) = K(v, w)
Y Y

Since the T2 action takes (é, é, ¥,) at xe M to

6, ¢, J)) at \PY x this follows immediately. .

We now carry out the construction given in Smale's paper [}7]
and outlined in Chapter O to calculate the angular momentum mapping
J , showing that the final result agrees with the angular momentum

as calculated by classical mechanical methods.

In this particular case where G = T2, €:= R?2 and §3* = Hom(R?, R)

we can write:

i

I ) = 3 (Q0*@ )] )

[er* v )] )

ZKX(QX(X), vx) e R .

where v, € TX M and ax(X) is the instantaneous velocity vector
at x € M corresponding to the choice of X & R® and can be thought

of as the angular speed of the rotational actions.

Proposition 2.3

Choosing X first as (1, 0) and then as (0, 1) to correspond

to the infinitessimal speeds of the group action we have that J(VX)(X)
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agrees with the classical calculations for the angular momentum about

the vertical axis and the symmetry axis respectively, namely:-—

(1) In terms of the Euler coordinate chart x = (8, ¢, {) we have

J(VX)(l,O) ¢ sin?e + C(é cosd +‘@)cos@

and J(Vx)(o,l) = C(é cosb + i)

(2) In terms of the (81, 62, 63) coordinate chart
x = (61, 62, 63) we have

J(VX)(I,O) = ~91coselcosezsm62+62sme1 + C(6151n92+63)

coselcose2
and J(vx)(O,l) = C(61 sin 62 + 63)

Proof

(1) The instantaneous velocity vector ax(l, 0) 1is given by
(0, 1, 0) and that for ax(O, 1) by (0, 0, 1) and for v, we take
any vector in T, M i.e. (8, ¢, D where these form the natural

coordinate chart on T M induced by the Euler chart on M . We obtain:

1 0 0 0
3G, b, 45 8,0, ¥) (1,00 = (010) | 0 sin®6 + Ceos® Ceosd| | ¢
0 Ccosb C &

= ¢ sin?e + C(écos@ + @)cos@
1 0 0 9
36,0, ¥ 8,6, ) (1= (00 1) | 0 sin + Ceos?s Ceosd| | ¢
0 Ccosh C @l

= C(¢ cosh + @)

as obtained in Chapter O.
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(2) In the case of the (6 62, 63)~ chart to calculate

1°
ax(l, 0) we differentiate equations 3, 4 and 5 with respect to ¢

as that gives the direction of rotation for the first factor of T2,
and then substitute from the equality of the two coordinate trans-
formation matrices to express everything in terms of 61, 62 and 93 .

For the second factor of the T2 action,that is aX(O, 1), we just

have (0, 0, 1) as before.

Denoting ax(l, 0) by (o], eé, Gé) we get
. Voo s I
From 3 : cos@2 62 sind cosd 31n61 cose2
So Gé = sinel ;
. . sin6
From 4 : sec2g. 6'= sinf Sl?¢ = - 2
11 cos6 cosf.cosb
1 2
- cos9181n62
thus g,= -~
1 cose2

From 5 :
sec2g ' = [(cocu-s6c8sy) (~sosy+escBey) - (chsh+socOey) (~sbep—chcdsy)]
33 (cd cb ~ s cb syp)?
cos? 63
L - - —cB - -
Thus 63 > > [gelceg(CSICGB 561562563) c.2363( celse3 361382c63{]
cos“8,.cos“H
3 2
B} cose1
c0362
cose1 sind cose1
So a (1, 0) = |- sinb
X cose2 1 cos@2

For v, e take any vector (61, 82, 63) in T, M, and

we get
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8 0 5
IO 8y 835 91568y, 6300, 0)

2 .2 . :
cos 82 + Csin 82 0 051n82 61

coselsine cose1 .
cosB 1 cosH 2

2 2 .
C51n62 0 C 63

= - elcoseic036251n62 + 62 s:LnG1 + C(@l 51n62 + 63)cosel cose2

and ) ) .
cos 62+Cs1n 62 0 Cs1n62 61

J(61,82,63i61,62,83)(O,l) = (0 0 1 0] 1 0 62
C31n62 0 C 63

= C(@l 31n62 + 63)
as obtained earlier in this chapter. ll
Corollary

The spin defined in terms of the Euler angles by
é cosb + @

is given interms of the (61, 92, 8,) coordinate chart by

3
6, + é i
3 1 51n62 .

We now go on to analyse the map E x J under this T2 action.

Orthogonal symmetry group action

We have now calculated explicitly the energy-momentum mapping

ExJ:T™M > R x%* , Wwhich we ¢an regard as a map E x 3 from TM

to R x R2 given by

ExJ) (v = (EW, I&A, 0), I (O, 1))

B, 3,0, I,)
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where
E(v) = i{éz cos?e, + 62) + 2‘6(5 sing, + 6 )2 + cosf, cosf
2V71 2 2 2 1 2 3 1 2
Jl(v) = - 61 cosel cose2 81n62 + 62 51n61 + C(@l 81n62 + 63) cos@l cosf

J2(v) = C(@1 51n62 + 63)

and v = (el, 8y 85 5 8y, 6, 83)

From now on we will abuse notation by referring to E x J as

Notice that as 63 does not occur in E x J (v) we can
factor TM out by the second part of the $! x S} action deriving a
new domain TlM = TM/81 for E x J . This corresponds to the classical

treatment of ignorable coordinates.

The remaining St action which we will denote ¥' on the five

dimensional space TlM has an invariant manifold I given by

In order to apply methods of singularity theory te the analysis of E x J
near I we need to find new coordinates with respect to which the ¢!

action is orthogonal.

Accordingly, define new coordinates for T.M by :

1
Xl = sxnel cose2
X2 = 51n92
= 6 - - N N .
X3 cos 1 cose2 61 51nel 51n62 62

x4 = cose2 62

- .

X5 = 83 * 0) sing,

2
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This change of coordinates defines a diffeomorphism near
(0, 0, 0, 0, 0) since in fact at that point the Jacobian of the

transformation is the identity.

Note that X3 and x, are the time derivatives of Xy and

%55 and Xg is the spin.

Proposition 2.4

With the new coordinate chart given above, the Sl-action

yroroslox T, M~> T, M is given by

1
.
¥'o(yvs X1 Xys Xy X x5) = | cosy = siny 0 0 0 %
siny cosy 0 0 0 %,
0 0 cosy ~siny 0 x3
0 0 siny cosy O %,
0 0 0 0 1 Xg

i.e. the S' action is orthogonal.

Proof

It is easier to prove this by expressing X15 Ky Ky Xy, Xg

in terms of the Euler angles.

Then
X, = cos¢ sing
X, = sing sinb
Xy = -sin¢ sind é + cosd cosh §
x, = cosd sind $ + sind cosb 6

To evaluate the effect of W; on the first four coordinates,

replace ¢ by ¢ + y and expand. The results are as given.
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To understand the nature of the singularity of E x J at
the origin we examine whether E x J is k-determined, for some k ,
under the S! symmetry. 1In order to do this we first calculate the

tangent space to E X J as given in Proposition 1.9.

The Sl—tangent space to E x J at 0 e R®

From now on whenever we use I we will mean &l

To simplify the calculations we will change coordinates in
the codomain and work with a mapping F which is T -;4 equivalent to

E x J , namely
1 2
Fx) = |E() - 57 [JZ(X)] » 310 =3, (0, I, (x)
and denote the k~jet of F by Fk'
To begin we need some information about the ring of invariant

functions EZF(S)

The ring of polynomials in Eir(S) is generated by the following

invariant polynomials.:

I 2
(71 Xl + X2
= w2 2
02 X3 -+ X4
O3 T X%, T X Xg
g = XX + XX

5 5
It is clear that these polynomials are invariant. under the
$'—action. The fact that they generate the polynomial ring can best

be seen by using complex coordinates to replace the first four

x-coordinates, that is letting



_38_

Then any polynomial in Xpreee,Xg can be written as

) 27 (Z) W (W)

+1b

£(z, 2z, w, w, XS) = E (ajkzmn

Jkimn

where ajklmn and bjkzmn are real.

The action of S$! 1is given by multiplication by ele hence

if f 1is T~ invariant then we can write
i6 -i6 - if -i8

f(e z, e z, e w, e w, X5) = f(z, z, w, G, XS)

as the action on the fifth coordinate 1is trivial. Substituting into

the expression for £ given above we deduce that
j+2=%k+m
Hence f can be written as

) (22) (o™ () <

N

£z, 2, w, w, XS) - Z (ajklmn * Jkkmn 5
if k > 3, or as
= - _ . -k, -2, = j-k n
f(z, z, w, w, XS) Z (ajkﬁmn + 1 bjkﬂmn)(zz) (ww) ~(zw) g
if kg3
and since zz = Op» WW = 0y, 2w =0, - i03, Zw = 0, + io,

and X = 0, the o's generate the polynomial ring.

Note that we have the relatiomnship

which we will use in the determinacy calculations below.
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In order to calculate %FF we need the generators of the
module EP(S, 5) over EF}S) , from which we can deduce the generators
of'hﬂ{(S, 5) over EﬁkS) , as {DF(X) a(x) ; a(x)e:Tﬁ{(S, 5)}
is one summand of 2@? for both ¥ =A and % =X . Since the §!
action is trivial on the last coordinate all we need to calculate are

the generators of ET(4, 4) over EIKA) and then use the following

lemma.
Lemma 2.6

If a compact group T acts orthogonally on R™ x R such that
its action on the last coordinate is trivial, and if the EIkn) - module
ﬁr(n, n) (considering the action of T restricted to Rn) is

generated by Yiseee»Y, then Er(nﬂ, n+l) 1is generated by

r
(ry> 05 (v 5, 0), (0, 1) over & (n+1).
The proof of this lemma is straightforward and we omit it.

Proposition 2.7

The Ear(é)—module ﬁar(4, 4) is generated by (Xl’ Xy5 o, 0) ,

(«Xza '—Xls 0, 0) , (0, 0, X3a X4) and (O, o, X4) "'XB)
Proof

This proof is an extension of that given on page 5-2 of [B]
for proving that €7(2, 2) 1is generated over E{F(Z) by (x, y) and

(-y, x)

We use complex coordinates z = Xy + ix2 and w = Xy + ixa .

Given any polynomial in Eir(g, 4) we write it as

- =y - . Jooyk £ ,=im
g(z, Zy, W, W) }j <ajk2m + lbijm) Z (Z) W (W)
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where ajk%m
by ele , 8o the equivariance of g means that

and bjkﬂm are real. The Sl-action is multiplication

16 i0 -i6 -~ 16 -1 =, _ - -
e g(e zZ, e zZ, e W, € w) = gz, z, w, W)

Using the expression for g given above we have that
j+e =k+m+ 1,
So we can write g as

T R LAk

N

. -k - %
g(z, ajkzm + lbjkﬁm) (z z) (ww)

I

where j-~k=m-2+1 if m-2 320, i.e. k~-jg-1,

or

Z, w, W = ( y 2 o3 R

a9
~
N

-
N

. + ib,
aszm lbjkﬁm

where 2 ~m=5k ~ j+1 1f k -3 2 0 .

In the first case we have g equal to

Z (ajkim.+ ibjklm) (z E)k (w Q)Z (z Q)mwz z

and in the second case

+ ib

jklm) (z ;)j (w Q)m (Z w)k—j wo.

) (@ 1am

Now z z =0 WWw=o0 zw=0, - io and z w = 0o, + 10
1’ 2 4 3 4 3

all of which belong to E:F(4) so iiT(A, 4) 1is the module generated

by =z, iz, w and iw . Translating back into X5 Xys X35 X,

terms and multiplying the second and fourth by -1 completes the proof. ll

We are now able to compute the linear space {DF(X) a(x);az:Yn€(5,5)},

From Proposition 1.9 we know that T,F is made up of this linear space

4

together with the set of maps formed by composing arbitrary maps that
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preserve the origin from R3 to itself with F , since the &

action on R3 is trivial.

Hence we can set about computing T, F to decide if F is
infinitesimally stable. To begin we will calculate the T -4

codimension of F3 as defined in Definition 1.7.

The codimension of the 3-jet of F

We will calculate the generators of 24 F3 . Ignoring constants

we have

= 2 2 G2 G2 - - 242
F3(x) 5 [%3 + X %] xé] > X1X, T X ¥, 5 Xs(xl+x2) , Cx5

and ‘Xl —x2 x3 x4 0
= - — - . _C 2,0
DFB(X) %, CX1X5 N cx2x5 x2 X, 5 (x1+x2)

0 0 0 0 C

It is easier to perform the calculation if the Ui's are used, rather

. T T
than the xi's . Using the generators of E (5, 5) over € (5)
calculated in Proposition 2.7 with Lemma 2.6, and DF3(X) above, we
find that the linear space A = { DF(x) a(x) ; as Yﬂz(S, 5)} is

generated as an E_T(S) ~ module by

§ = (-0 0 - o
17 0% %3709, %, 0
62 = (O’ 04, O)
53 = (02, 935 0)
T
and by W\ (5) 64
where &, = (0, - Lo 1)
4 3 2 13

To find the other generators of @4 F3 we must examine

3
B = {b(FB(x)); b : (R®, 0) » (R3, O)} i.e.
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- Y . L . (R3 3
{b(oz Ops Og 5 0105 > 05) ; b (R°, 0) » (R°, O)} .

Since EP(S, 3) is generated, as an ET(S) module, by triples
of the form (Oi, 0, 0), (o, s 0) and (0, O, ci) for 1,...,5
we have to determine which of these triples belong to ?4 F3 . One of
these triples can only belong to I4 F3 if either it is expressible
as a function of the components of F3 or is one of the §&'s
or a sum or multiple of them. In particular (04, 0, 0) cannot be
an element of T, F, as there are no 04'3 in F, itself at all and

3

no 04 in the first coordinate place of any Si . By a similar

argument it can be shown that (O, o1 0) and (0, 95 0) are not

elements of I4 F3 either (though (0, 6., - 01, 0) is.) However we

2

shall see which triples are elements of @4 F3

(a) Clearly by choosing an appropriate map b we have (65, 0, 0),
(0, Ox s 0) and (0, O, 05) in B .
. r - _1
(b) As A is a module over £ (5) we have 05 64 (o, 791055 05)

in A, thus (O, 0.0 0) belongs to A + B , hence so does

5’
(o, g5 0) by choosing bl(yl’ Yy y3) = (0, Yo» 0).

(¢) Now 61 = (~ S 0q = CGlQS, 0) and 62 = (02, g5 0) both
belong to A hence (01’ 0, 0) and (02, 0, 0) belong to

A + B.

(d) Taking multiples of 64 by 01> 095 Oy and o, we have
_ 12 )
(O’ 5015 Ol)
1
(O, - 70102, O—2)
1 roe A,
(O’ - ‘2’0103, 63)
1
(o, ’2’01045 54)
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From 64 we know that (O, Tps 0)e A and as A is an E:F(S) -

module (0, o 0) ¢ A hence (0, O, 04) e A,

1%

(e) We have o 81 = (- 01055 0505~ Cdlog, 0) € A and by letting
B a1 —-g 2
bz(yl, Yy y3) (o, Yy 935 0) we ottain (O, 0405 = 5 0,0%, 0) ¢ B
hence (0105, %-olcg, 0) e A+ B
But 0%64 = (0, - %-olog, c%) e A and (0, O, o%) e B,

oy = 2
(by choosing b3(yl, Yoo y3) (o, 0, y3) s SO (0105, 0, 0) ¢ A + B,

Then letting b4(y1’ Yy y3) = (yz, 0, 0) gives (03, 0, 0) ¢ A+ B .

(£) None of the three triples (0, O, 03), (0, 0, 02) or (0, 0, 01)
can belong to A + B . For instance, if we consider (0, O, 03)
the only possible way to try to show that it belongs is to use

part (d) and write
0 0, o,) = (0, - i—c o] G,y + (0 2*0 o] 0)
> T3 ’ 2 7173 73 >2 71°3°

and use Nakayama's Lemma (see page 102 of [5]). However to use
Nakayama the triple (0O, %-0103, 0) must belong toYVXF(S) A

and as neither (0, oy 0) nor (0, o,, 0) belong to A this

3’

is not the case,

As both (0, o.

5 01 0) and (0, 0, ©

9 7 01) belong to A + B

the four triples (04, 0, 0), (o, P 0), (0, 0, ol), and

(0, 0, 0,) form a basis for SIXS, 3) , hence the 7T i4
3 /?A F

3
codimension is 4 .

We have now proved:

Proposition 2.8

The 3-jet of E x J has TI'~A4 codimension 4 and so in particular
E x J is not I infinitesimally stable.

We will now decide on the TI'-determinacy of E X J .
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Right-Left Determinacy of E x J.

Proposition 2.9

The map E x J 1is not I' -4 k determined for any k .

Proof
Using the notation from Chapter 1, in h&i(S, 3) there is a
term of the form (o4 G§—2 , 0, 0) and we will show that for any k

this term cannot belong to T4 Foo-

-t

From Chapter

k
where
A= { DF, (x) £(x) 5 ¢ em (5, 5>}
and r
B = {n (Fk(x)) 3 noem, (3, 3)}
Generators of A as an EFKS) module are
by = (=0 ¥ 0B3) , oy +003), 0
8, = (003), o, +0(3), 0
by = (02 +0@3) , gq * 0(3), O)
and mis) s,
where A4 = (O, - %-ol +0(3) , 1+ 0(3)).

None of the terms of order 3 and above given in the first coordinate

place of Al’ A2 or A3 contain any odd power of Gy (even powers are

. 2 - 2
possible as o, = 919, + 63)
Hence (04, 0, 0) ¢ A
and (05: Os O) &A

thus (04 Gg, 0, 0) ¢ A for any p
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0,0
Now B = n —£—~L +00), o

T
> + 0(3), O] 3 M EY“1(3, 3)

3

where none of the higher order terms have a 9, in them.

Hence (64, 0, 0) £ B
thus (04 og, 0, 0) $ B for any p
In fact if (1, 0, 0) € B then T cannot involve ¢, at all.

4

As there is no relationship expressing either g, or og , for any »p ,

in terms of the other Oi'S then 0402 cannot be written as the sum of
two terms neither of which involves 9, multiplied by a power of Og»
hence (04 cg, 0, 0) cannot belong to A + B , This proves the
proposition. .

Although E x J 1is not I right-left finitely determined

we shall show now that it is in fact T contact 2 determined.

Contact Determinacy of E x J,

. i _ _c
We will work with F3(x) = , O 5 61059 O
Lemma 2.10.

Using the notation defined in Chapter 1, we have

r r
YV\:B(S, 3e Y (5) Ty Fy

Proof

The linear space { DFB(X) a(x) ; a.&YY\{(S, 5)} is gemerated

as a module over éiF(S) by

61 = (— Ol; 03 - 00165, O)
= (Oa 045 0)

85 = (02, g5 0)
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Similarly as (O, o%, 0) and (O, 02, 0) belong so does (O, 01055 Q)
(h) (02 - ol)e2 = L21 F3
hence (02 - ol)e2 € Tn.F3

2 _ _ 2 r :
thus both (o olgz)e2 and (0201 ol)e2 belong to YT!(S)TW FB

2

we conclude that

(0, 05, 0)

(0, of, 0)

ehrl; (S)TM F3

\

. 2 2 2
(i) Let p stand for any element of {ol, O5s 0,0gs Ops 010, 0204}
a M55, so pe, emg(s, 3) for i=1,2, 3 .

Then

1 r
ps, = (0, - b3 6195 p) € vy (5) TH— F3

4

2 9 K 3 3 3 L

Thus r r r T
m3(5, 3)ewm(5) Ty Fy +Mm (5>[m3(5, 3)]

Hence by Nakayama's Lemma we have

T T, -
m s, Hemis) 1, F, . B

Corollary 2.11

ExJ is T -H - 2 determined. [ |

Thus we have proved

Theorem 2.12

Locally near the origin E x J is T contact equivalent to the

polynomial mapping :

(xl, Xy Xys X5 XS) H~(pl(xl,...,x5), pZ(Xl""’XS)’ p3(x1,...,x5))

where -1 2 - W2 G2 2 2
Pp(Epseeen¥s) = 5 [st X] T X X3t xg
pz(xl,.,.,xs) = Cx5 XX, T XX,

Cx ]

Py (Xys.eesxg)
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We can now make a few remarks about FE x J. Firstly, from
its 2-jet, we can see that E is a Morse function and thus particularly

simple. Secondly, the 2-jet of Jl X JZ is given by :
(x1s %55 %35 %5 %) H-(CX5 t X, - XXy, Cx)

and so can be regarded as a family of nondegenerate quadratic forms
parametrised by Xg hence, by the Morse Lemma, the same is true for

Jl X J2 itself.

Looking at it in another way, taking J as given in Proposition

2.5, we see that because:

pj) =[0 0o o0 o ¢

the kernel K of DJ(0) is given by
K = {(Vl, Vos V35 Yy, O)}
and the range R of DJ(0) as
R = {(x, y) 3 x = y}
If we define new coordinates in the codomain by
X=x-y and Y=x+y
We can express
J:iKxK > R* X R
by
J (Xl, Xy Xg5 %, XS) > (XIX4 - XX, h.o.t., 2Cx5 e SR XXy h.o.t.)

If we denote J K~»-R by j then j 1is the essential "singular part"

of J and we have :
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j(Xlg XZ’ X3s X4) = X1X4 - x2x3 + h.o.t.

A quick calculation shows that the Hessian of j at O 1is
non singular and hence by the Morse Lemma there exists a non-linear
change of coordinates which will express j itself as a quadratic

form.

This ties in with the result given on page 22 of Arms, Marsden
and Moncrief {}] where they show that in fact there exists a sympletic

change of coordinates which will perform the above operation.

Note from the proof of Lemma 2.10, that the map germ E x J
itself has finite T - H codimension and a versal T -¥l - 2 deformation

can easily be written down by adding a multiple of X Xy * X, X, to

E and a multiple of x% + x% to Jl . Whether such a deformation

could have physical significance is not clear.

The zero set of E x J .

As a consequence of Theorem 2.12 E x J has a zero set
equivalent to that of the polynomial mapping (Pl’ Pys p3) given there,

namely

= . = - - 2 2 .2 .2
Z {(Xl’ Xys g5 Xy XS), Xg 0, X X, T ¥y¥, 0, X3 v X T X T x O}

As x5

belongs to Z then all scalar multiples of x also belong to 2Z ,

=0 , we can regard Z as a subset of R" . Note that if x

and hence Z 1is a cone. To determine on what it is a cone we look

at the intersection of Z with the unit sphere §3& R"

Lemma 2.13

The intersection of Z with the unit sphere S3 is the set D

given by:



- s ox2 + x2 = x2 4 g2 =L 1L _73
D= Gy 3y X0 %) 5 %) 3 = xf v xp =g, , %,
The proof of this is clear. .
The equations x2 + x2 = = and x2 + x2 = = define a torus
1 2 2 3 4 2
1
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be X
in $% and the third equation = = - determines two diagonals.
2 4

In order to see this clearly take polar coordinates (rl’el) in the
(xl, XZ) plane and (12,92) in the (x3, x4) plane. Then
X, X
il corresponds to 61 = 82 or 61 = 62 + 7.
2 4
Thus the intersection of Z with'the unit sphere S3 is the
pair of diagonals D shown in Figure 3.
Figure 3.
Hence:
Corollary 2.14
The zero set Z of E x J is locally equivalent at 0 ¢ R®

to the cone on the pair of diagonals D

By locally equivalent we mean that the conditions of Definition 1.4(b)

hold on a neighbourhood of O rather than on the whole of R" .
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CHAPTER 3

STEADY PRECESSION OF THE TOP

In the tangent bundle to the configuration space we can change

@ [ @

coordinates diffeomorphically from (6, ¢, §) to (6, é, s) where

° .

s = ¢ cosO + Y as given above. As J2 = Cs 1is a multiple of one of

the coordinates in the domain we will restrict attention to Ex Jl'

In the configuration space we reduce the domain of Ex J1 by factoring

out by the symmetry group action and so regard Ex Jl as being defined
"

on the reduced phase space TM , hence as being a map from (0, T) X R°

to R2 .

For steady precession to take place both © and © must be
zero, so we look at Ex Jl restricted to 6 = 0 . We will call this

map ¢ . It is defined by :

p

(63 &, s) = §~$2 sinZ0 + %'Cs2 + cosB, é sin26 + Cs cosh)

-

Of course as both 8 and 6 are zero we have a constant value of

B . We will denote by @6 the map ¢ vrestricted to 8 =8 ,
0
O

a constant. By considering the rate of growth of angular momentum

about an axis perpendicular to the symmetry axis we find that
é = (0 <> (Cs - é cos@)é =1 (3.1)
See, for instance, page 56 of [Q].

This last equation defines a surface, the steady precession

"
surface K2 , in the space TM )
8=0

Considering @e as a map from R? to itself equation 3.1

0
gives a curve in (¢, s) space, in fact a hyperbola as shown in Figure 4.
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A rough sketch of this curve is given in Figure 5 below.

We now lock at the map @ in general. The first thing to

0
o

notice is that not all points in the (E, Jl) plane are in the image

of @e . More precisely
o

Proposition 3.1

-1 . . . .
The set © (E, Jl) is empty, consists of two distinct points

%

or of one point precisely whenever E 1s respectively less than, greater
than or equal to AJ% + cosf ,

where 1

ZE;inze + Ccoszé]

Proof

J1 - Cs cosB

Substituting é = in the expression for E given

sin?e
at the beginning of this chapter gives a quadratic in s :-

C sZEéinze + Ccoszd] - 2CJ, cosb s + 2[@056 -~ E]sinze = 0

1

Thus there can be at most two distinct values of s , hence at most

two points (é, s) in @51(E, Jl) .
o

In order to get real roots for s we need

E - cost 3 XJ%

and so for @51(E, Jl) to be empty, that is for there to be no real
o

solutions for s , we have the first condition in the proposition.

Repeated roots will occur when equality takes place, hence the third

condition and the proposition is proved. II
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Singularities of ® and ¢

8~
O
Proposition 3.2
For @e considered as a mapping from R?> to R? the singularity
0

set consists entirely of fold points.

Proof

2 sin?e + %—Cs2 + cosf, $ sin20 + Cs cosH

-2

we have that
¢ sinZe Cs
o sin6  Ccos®
and as we are assuming that 6 # O we conclude that
Sl(tDe ) = { (é, 8) ; 8 = é cosf }
0

Referring to Theorem 1.7 we see that to prove that the singularity

set consists entirely of fold points we need to show that @e is
0

l-generic and that the kernel of D@e (é, s) together with the tangent
(o]

space to Sl(® span the tangent space of R? at (5, s).

5 )
o

Firstly 1 genericity.We will use Lemma 4.3 on page 52 of [d]
which gives a necessary and sufficient condition for transversality
of a mapping at a point to a submanifold. The condition is to choose
a submersion into Rk (k is the codimension of the submanifold) such
that the submanifold is the inverse image of O and then check that
the composition of the mapping with the submersion is itself a submersion

at the point in question.

So we define P : JI(R?, R?) > R , & submersion such that

jav]
o]
-
s
(=]
~
©-e
-
923
~—r
i
.

s = ¢ cosb
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Thus as
D(P o it 05 ) (b, s) = (cosd 1)
o
is surjective at the origin we conclude that j1 @e is transverse
o
to S1

Secondly the condition on the tangent spaces and the kernel

of the derivative. The kernel of D@e at a point (é, s) in
o
Sl(®e ) is given by
o
KerDd ($ s) = A (u, v); == ~sin?0
§] ? ? > u Ccosf

o]

and TX Sl(cbe ) is generated by the vector (1, cosf) and as this
o

vector is never parallel to a vector in the kernel of the derivative,

they span Tx RZ . .

So we have shown that ®e from the (@, s) plane to the (E, Jl)
o

plane is indeed just a fold, but what happens if we look at the full
Y
map ¢ : IM > B9
Regarding ¢ as given by :-
; = Lo s Lse2 )
o(6; ¢, s) = §'¢ sin“f + E'CS + cosB , ¢ sin4d + Cs cosH|
where 6 # 0 , then

(éz cosd = 1)sinbd $ sin%e Cs

(2& cog® — Cs)sind sin%6 Ccosh

Do(8; ¢, s)

and

5, () {(e; $, s); s = ¢ cosg and §2 cosp = E%ﬁf}

Clearly Sl(©) is a subset of K2.
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Proposition 3.3

The 1-jet of & 1s transverse to §
Proof

Again we use Lemma 4.3 on page 52 of [ﬁj.

Let P : JI(Sl X Rz, R2) > R? be a submersion chosen so that

P o j1 ® : (6 $, s) = |8 - é cos0, $2 cost - E%T-

Then

5 sinb - cosB 1

.1 e
D(P o j~ @) (85 ¢, s) = | | )
~$2 sind 2¢ cosh 0

which is surjective unless ¢ = 0 which cannot happen on Sl(®)
So jl & 1is transverse to § .

1

Proposition 3.4

The set Sll(®} consists of just one point

Proof
Restricting ¢ to Sl(Q) and using 9 as a parameter we get
@P ) = 1 + 3[c-1]cos?e J 1 @-JJCOTZG
s, (@) 2[C~1]cosd ([c-1]cos6) ?
So
1
sinb 3sind sinb _ 3(&3*1}0039}?Sin9

2

D @f (8) = | = - 5

s, (2) | 7[¢-1]cos?8 2[(c-1)¢os@%cqse
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and this has rank 1 except when cos® = {3 F-l]} (remembering

that 6 # 0).

So Sll(®) consists of the point Q given by

@

Q= (65 ¢, s)

where

N

6 = arccos -L"*
3[c-1)
5
i I
-}
s = {3[c—1]3) | |

So we have one non fold point g , provided that C >

3"‘ »
If we now look at ®(81<®)) we note that @(Sl(®)) and
@e (Sl(@e )) are tangent at the point on ®(Sl(®)) where the parameter
o o
8 takes the value 8, » as NIGH é, s) drops rank by 1 on Sl(@)
and hence the whole tangent plane spanned by the tangent vectors to

Sl(Q) and Sl(@e ) is mapped to a line.
)

Recalling the remarks after Theorem 1.8 we have the

standard Whitney cusp map from RS to R? given there with the point

(0, 0, 0) called the cusp point. We will now show that Q 1is a cusp

point.

Since in Proposition 3,3 we have already shown that Fo is

transverse to Sl » in order to show that  1is a standard cusp point

all that is needed, from Theorem 1.8, is to prove
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Proposition 3.5

The 2-jet of & is transverse to S

11 7
Proof
Using the construction of S11 given in Chapter 1 we can see
that j2 ®(x) will belong to S11 if and only if the symmetric
mapping GZQ_ has corank 1, and transversality can then be proved

~

by a method similar to that used in Proposition 3.3. So first of all

we construct &%%
x

Now

Cs (éz cosf -~ 1) sind $sin26

>0
et
I

D o(s, 6,
Ccosh (2$ cosf = Cs)sinbd sin?6

We have changed the order of the coordinates from that used in Proposition

3.3 for computational convenience.

Also
S, (0) = 4(s, 6, é); 5 = é cosf and éz cosh = L .
1 c-1

On Sl(®) we have

1
(2~C)sin6(cosh)?

T v + sin?6 w = 0
(c-1)?

K = Ccosf u +
X

We trivialise TX R3 by choosing the new coordinate system :-

1
(2-C) sinB{(cosh)*?

u' Ccosh T sin26 u
(C-1)?*
v | o= 0 1 0 v (3.2)
w' 0 0 1 w
and trivialise TX RZ by
. .
b (3.3)
1 d) 1
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In terms of these coordinates D @X has the form

(C-2) sin6l (s=¢ cosb)

B = (-2 cosd + Csd - 1) sind +
[(C~1)cos©]2

L
v } s1n<H

v lé-

_ _9s
§ = YT 1

(C~2)sinb ‘ (&s + cosd)

£ = é[[§2 cosf - I]Sine} + (2$ cosf — Cs) sinf + T
[(C-1)cos6]?

and for x ¢ Sl(©)

0 0 O
Do = _
1+¢2 0 0
and Kx = {(u', v', w') ; u' =0},
L = {@", v ; v' = 0}

We can now calculate D(D @)X , together with (d D @)X and
82 o but first we must change coordinates in the base space R3

exactly as we have already done in the fibre R3 .

a By
If we regard D ¢ =
X
§ e ¢
then
52 ¢ = | B, _(2-C)sin8 38 38 _ sin26 0p
X 96 3 3s Ccosh )

c{(c-1)cos8)

IS
Qo
w

3y _ __(2-C)sind 3y 3y _ sin6 3y
c((c-1)coss) 3¢
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3C-4 2(1-C) sin®
CcosO I 7
C({~-1)?(cos8d)
= 5inZ9
2(1-C) sind 1+ sin20
T 3 —
C(C=~1)?*(cosh)* Ccos2o
Thus
2 - 3C‘4 - Sinze . L
det($ ®x) Ccosp Ccosdp | > 0

As $in6 # 0, i.e. 8 = 0 or 7 are excluded, we have

It
O

det (82 @X) <=> tamlpg = 3C - 4

1

1 2
= &ICCOS[ 3?61331

N

<=> 8§ = arctan(3C-4)

-

Hence j2 d(x) ¢ S11 <=> X £ Sll(®)

As codim(Sll) = 3, we project down onto R3 by w and check

1
whether w o j2 @X is a submersion when 0 = arctan(3€-4)2?. Now

. - - - s 2
T 0 j2 d : (s, 6,0 )‘%-[ s - ¢ cosH, $2 cosh - 1 -4 sind }

-] 2 . -
C-1° Ccosb Ccosge
50
1 é s$ind -~ cosB
_ .2 . L]
D(r o j2 ) = 0 ¢“ sinb 2¢ cosB
s 2
0 sind (3c=4) - é__ 3t§n 0 0
Ccos?0
On 815@) we see
1 1
1 (3C—4) 2 1 2
T 7 R EEIGESY)
34(~1)* ’
i
, ) (3¢ ~4)? 2
D'\TT 0 J2 @) - O - -—-é—:-l-——-—w M
, 34(C~-1)*
o Leew c-3)-2) ([3c-4) [3(c-1)]) 2
C2
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in (a, b, ¢) space for which the quartic equation
x* + ax? + bx + ¢ =0

has repeated roots. This is given algebraically by the vanishing

of the discriminant, see for example page 120 of [}i]

A =83 =27 12

where S = a2/i2 + ¢
2 3
T:o?-gu--—b a

6 16 216
We now define the diffeomorphism by:~

f -t e

1 12
X, = éy@a
2
X =_.b..
3 4

This map has non~vanishing Jacobian and as A corresponds to

Equation 3.4 the proposition is proved. l‘

We can now draw the swallowtail surface and see which parts of

that surface map to which parts of the cusp curve . (See Figure 9)

If we look at the inverse image of points on the cusp curve we

get the pictures shown in Figure 10.












. B
x X:o}

0 and the conditions for Sl(®) hold} .

. » .

and Sl(F) = {(e, 6, ¢, s); 6

ll}

Hence K is the same as before and to trivialise TY R* we use the matrix :
X 3

1
(2-C) sind (cosp)?

Ccosb T sin?@ 0 )
(C-1)?
0 1 0 0
0 0 1 0
t 0 0 0 1

After the change of coordinates in RY and R? we can write

Ds

» 2

-0
D

where D@X is now in the form given after the coordinate changes in

Proposition 3.6. The rest of the proof follows exactly as before. Il
From the proof of that corollary we can see that :

Corollary 3.9

S;E x J)) =5,(2) . B
If we now restrict & to the steady precession surface K2

and ask about the singularities of @}Kz we can say :

Proposition 3.10

5)(0]2) = 5,(®)

Proof

Restricting to K? we can express @ by :

. 1., . 1 . 2 .
el ¢ (8 ¢) » | 7 ¢2 sin2o + EE'{ ¢ cosh + J + cos, o + =258

s i
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Proof
The steady precession surface is given by
K? = {(s, 6, &) 5 (Cs - § cos8)$ = 1 }
Hence N
: }
2 3¢ (3¢c-4) c-2
(c-1)* 34 (-1 ¢

The derivative of the coordinate change diffeomorphism is given
in two parts, the first by Equations 3.2 and 3.3 in the proof of Proposition
3.5, that is the change of coordinates in R® and R? used to simplify

KX and Lx respectively. ¢ can then be expressed in the form
¢ : (u', v', w') » {u' + higher order terms, ¢1(u', v', w')
where ¢l(u', v', w') 1s of degree greater than or equal to 2.

The second part of the derivative of the coordinate change
diffeomorphism is defined in Morin [}4] as the change to a "system of
quadratically adapted coordinates', by taking the quadratic form given

by the terms of degree 2 in ¢1(O, v', w') and diagonalising it.

In this case the quadratic form is given by :

( X -4 2(1-C)sind )
Ceoss C[Kc—l)cosejécose
2 (1-C)sing 1 + —SinZe
C[ﬂC—l)cosQ]%cose Ccos?6

and the diagonalising change of coordinates by
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CHAPTER 4

THE AMENDED POTENTIAL

We will now carry out that part of the Smale programme outlined
in Chapter O consisting of calculating and analysing the amended
potential. In this Chapter we will use the cotangent bundle formulation

as described in [l}, in order to use the Hamiltonian.

The configuration space M 1is S0(3), which we will examine
away from the region where 8 = 0 or .7, and the symmetry group action

Y is given by
¥ (Y1> Yo3 8, &5 ) 0 (8, ¢+Yl,¢+vz)

while the induced action of the symmetry group T2 on the cotangent

bundle 1s :~

T :
l{l : (Yls Yz ; 6’ d)s 1[/, P6>P¢9Pd))§* (6} ®+Y1!W+Y22 Peapq); plp)

The potential energy V : M » R and the kinetic emergy K : T*M > R
defined by :

V(6, ¢,p) = cos® )
{(p, - p,cosd)
L o 1o o, 1 T vy
K(ex P, U, pe: p’(;b’ pw) Zpe + C pll) +"2"

sin?e
are both clearly invariant under this induced action.

The momentum mapping J : T* M > R’ calculated in Chapter 1

. R . T*
is also invariant under VY~ .

Following the calculations referred to in Chapter 1 and detailed
in [1] Section 4.5 we look for the set A where It T; M + R2
is not surjective. A quick calculation shows that A consists of the

subset defined by putting 6 = 0 or 7
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Proposition 4.1

The amended potential V, is defined on the whole of M - A

and is given by :-

2 - 2
vV (6, ¢ ) = cos6 + i& + (ul Uz cos®)
phe e [ 5C

2 sin®6
where y = (ul, uz) e R?
For a point x ¢ M , Vp(x) is defined by

VG = VG 4 K(ap(x))

. ~1 . . ..
where au(x) is a l-form in JX (u) satisfying the condition that

K(au(x)) = inf K(a) .
OLEJ;I(U)

Now letting u = (ul, uz) we have that
I ORRIC ) R
x u) = s s U, pe: Ula U2 5 Pe £ .

-1
So for o ¢ JX (y) we can calculate

- 2
(ul Hy cosd)

T R S R |
K@ =gpg * 51y * 7 e

and clearly the infimum of K(o) 1is obtained by letting Py be zero.

So aU(X) = (e’ ¢9 w: O: Ulr Uz)
and hence
usg o Gy~ cosg)?

2 ‘
V (8, ¢, ) = cosg + w=+ ‘E
M 2C 25in26
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We can now factor out by the symmetry group T? and let z = cosf

Y
to express the reduced amended potential, VU : (-1, 1) -~ R as

- 2
w5 (“1 Hy 2)

2(1 - z2)

This has graph as illustrated in Figure 12.

Figure 12.

(In general we would have to factor out by the isotropy subgroup
.. B o .
of the co-adjoint action of the symmetry group to calculate VU but in
this case, where the group is abelian, this reduces to factoring out

by the group itself).

The proof that it is impossible for V  to have more than one
u
minimum and hence that the graph looks like that drawn above will be

given below.

We can now calculate the condition for steady precession to take

place, As this motion is a relative equilibrium we know from Theorem 1.2

. . . . . s
that 1t will occur at the critical point or points of Vp .
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Proposition 4.2

The motion of steady precession will take place if and only

if the condition

- cosB - p cosf) = sin*@
(pw Py ) (p¢ Py co )
holds.
Proof
ny
. N v,
We find the critical points of VU by setting ol 0 .
dv ( ) ( )
Hy =™ WU, Z) U2 — U
Now EEH = 1 + 1 2 1 Z

(1 - z2)2

which equals zero precisely when
Lo 2 2 2 - =
z (ujuy + 2)2% + (uf + updz =, +1=0

Replacing My by Py and My by Py gives the condition,

On the graph we have denoted the critical point by z -

The condition of proposition 4.2 defines a sub~manifold in the
cotangent bundle which is the analogue of the steady precession surface
K2 in the reduced tangent bundle as defined in Chapter 3. We will
call this manifold the dual steady precession manifold and denote it
by K% . K* has codimension one and is thus not a surface, but we can
regard K* as the cartesian product of a surface K% with R x g} x gl

2

where this last space has coordinate chart (PO’ ¢, ¥) . The surface

K; will be called the dual steady precession surface.

The General Motion of the Top.

In general the top is moving with a fixed value of the energy E

v
which is made up of two components namely E = VU + %~p§ . When Py is
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zero E 1is equal to %U and assuming that %p is greater than its
minimum value there are two possible values of z which correspond

to this. The axis of the top must stay between the two values of 8,
given by the two values of 2z , because if 6 were to be outside of

that range then %u would exceed E .

In addition to the critical point there is another interesting

. Y . ) . .

point on the graph of Vu . That is the point at which the rational
(uy = u, 2)2
expression vanishes. We will call this point 2z , so
2 c
2(1 - z4)

zc = ul/u2 . We will now analyse what happens when E equals %U(zc)
Lemma

When E = %u(zc) the value of © given by cosf = z, gives the

highest point of the motion of the axis of the top, that is 2, >z,

Proof
d%u d%u
We know that e (zc) =1 and P (zo) =0 so z, # z -
av
Assume that =z < z . Since e > = as z > - 1 there
c o) dz
av av
must be a z in (-1, z ) with b = 0. HOWEVET ey = 0 at
0 dz dz
only one point in (- 1, 1) namely z . This is proved in corollary

4.11 below. (The proef is totally independent of this lemma!).

Hence 2z > z . -
c o

Proposition 4,3

At z = z, we have the following :-

(1) 6=4=0

(2) 9#0,8=0

i
(o]
-
-9
~H
&}

(3)
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Proof

Y °
(1) As E = Vu(zc)’ at z = z, we have Py = 6 =0 . Now

we know from the construction of J carried out above in Chapter 1 that

.

= cosd + 51in?6
Py = Py ¢

and we have let (pl, uz) = (p¢, pw). Furthermore at z, we have

z, = ul/u2 , that is cos® = P¢/p¢ . As 0 #£0 or 7 we know that

i}

sin® # O hence ¢ = 0 at z

.

_ 2
(ul Hy cosf)

[

(2) As E = 62 + cosh +

25in?0
on taking time derivatives, remembering that E , W, and u, are constant,

we get

2
- - cosB - cosb cosb
' Gy -, IH, <“1 M, cos6)
0 =0 - ginb + - .
s1n8 . 3
sin o

(This result can also be obtained from the Euler equation : see [1] or

DB]_) z, is given by Hp T, cosb = 0 so this equation reduces to

6 = sin® # 0O

However, if we differentiate the equation for 6 again we get :-

. . 3u2cose(ul—uzcose) (u1~u2cose)2(sin26+3cosze) )
0 =16 - cosd 6 + u% - + 6
sin?6 sin™0

L)

and as at zC we have é = 0 we must alse have 86 = 0 .

(3) We have Hp = My cosf + ésinze so taking the time derivatives

we get

0 = - sind 6 + 5 sinZ6 + 2$é sind cosb

My

that is

¢ sind + (2$ cosfd -~ uz)é =0
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(as sin6 # 0). (Again this result could be obtained from the Euler
equations.) Hence as é = 0 at zC we must have @ =0 .

Differentiating again we obtain

¢.sine + (2 $ cosf - u2)6 + é(3 $ cosd - 2$ 8 sin®) = 0O

At z, where § = $ = 0 this equation becomes
¢ sinb = UZ $)
and as 6 # O we know that ¢ # O . -

If we regard the axis of the top as tracing out a curve
parametrised by t on a sphere whilst the top is moving, then by
choosing t = O to correspond to the axis being at the upper bounding

circle 8 =6c , we can say from the above

Corollary 4.4

While the top is near the upper bounding circle, (8, ¢) are

given by a curve

t »-[ec + POtZ + 0@, Q0t3 +04)) B

e J-
In fact we see that ZPO = 6(0) sineC = (1 - 2(2:)2 and

ee

6Q, = ¢(0) = Wy oo

Hence :

Corollary 4.5

There exist smooth invertible changes of coordinates t » s and

(6, ¢) » (x, p) such that (yx, p) are given by the map

s » (82, s§39)
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Proof

A translation T = 0 - ec removes the constant term from the
first coordinate, if we then prove that the map g : s » (s2, s3)
is 3~determined under right-left equivalence it follows immediately
that the smooth changes of coordinates exist. Using the notation
from Chapter 1 it suffices to prove thatWTﬁB(l, 2) e M(1) Ty8
where Ty 8 is given in Proposition 1.9(a) (We can consider ‘T to be
the identity here as we have already factored out by the action of T2).
We will suppress the subscript /4 as we are only considering right-left

equivalence from now on.

So we need to show that any map from R to R? of the form

asd +...

bs3 +...

can be written as the product of a function that vanishes

at O, i.e. at least s , and a map of the form :

G(s) [ 2s + H(s2, s3)
352

where G : R+~ R and H : RZ » R? ,
This is clearly true, hence the corollary is proved. l.

. . Y s
By comsidering VU we have factored out by the precessional
motion so this pattern will be repeated all round the bounding circle
given by 2, . Thus the axis of the top will meet that circle in cusps

though the cusps on the circle belong to infinitely many different

trajectories of the top's axis.

At this juncture we will look at the previous result in a
slightly different way. We can regard the motion of the top as given

by a path in the phase space T* M, that is amap ¢ : R > T*% M
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with ¢(0) giving the initial conditions with which the top is
set in motion. As we are here only interested in the axis of the top

we can compose ¢ with the canonical projection m: T* M > §2

n:(9,¢,w;Pe,p,Pw)H(9,¢)

¢

and then mo ¢ : t (e(t), ¢(t)) gives the curve on $? traced

out by the axis of the top.

This map has singularities precisely when 6 = $ = 0 , that is

6 =0 and My T cosh = 0 . These two equations define a codimension

Ho

two sheet [ in T*M .
We know from the calculations carried out above leading to
Corollary 4.5 that a choice of a point in I to be (0) will result

in the top executing the motion described above with cusps at the

upper bounding circle given by 6 = 6(0) .

However what will happen if we choose a point near to but not
on I to be (0)? More precisely, let (g, 0, 0; O, His u2) be
a point in ¢ and (¢ + a, §, ¥; w, Hy ot B, Hy * Y) be a typical
point of T* M , where o, B, ¥, § and ® are small. (Note that
L is invariant under the T2~action, so we can always choose ¢ = ¢ = 0

for a point in ¥ . The value of ¢ does not enter into the calculations

at all as we are only concerned with the axis of the top.)
Taking the typical point in T* M as z(0) we can calculate :-—

Proposition 4.6

The first few terms of the Taylor series for 7 o ¢ at z(0)
are given by :-

mo g tr (8(t), 6(r))
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where
6(t) = ¢ + a+ wt + Pt? + higher order terms
¢(t) = & + At + Bt? + Qt3+ higher order terms
where
. Hy ¥ B - (uy +y) cos(e + a)
A= ¢(0) =
sinz(e 4 oa)
1 - [}2 + vy = 2A cos(e + u)]w
B = §-¢(O> - 2 sin(e + o)
o1 S0y - sin(e+a) _ [(u1+83 - (u2+Y)COS(€+oc)J f(uzﬂ) = (u;+B)cos(e+a)]
2 2 2 sind(e + o)
1 - [u2+y~2Acos(€+a)]2P - w[}Bcos(s+a)-2Amsin(e+a)]
Q=g 0 = I G L
In R2 we change coordinates by letting p(t) = 8(t) - ¢ and
consider :

ror + te (plt), ¢(t))
which is mof  expressed in the new coordinates.
We will define a map germ & : (R®> x R, 0) » (R2 , 0) by
E(x, B, v, §, w3 £) =Tor(e)
Now we define £ : (R® x R, 0) » (RS x R2, 0) by
Er (o, By v, 8, 03 ) (o, B, v, 8, 0 5 E(a, By v, 8, w; t))
We will demote &(0, 0, O, 0, 0; t) by Eo(t)
Now we will show
Theorem 4.7

E 1is a 5S-parameter versal unfolding of Eo .
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Proof

If we denote the values of P and Q (as calculated in Proposition

4.6) when o =8 =v =0 =0 by PO and Qo then this agrees with

PO and QO as given in Corollary 4.4 so we can write

. 2 3
E i tw (Pot +0(4), o t° + 0(4))

and
F,(OL, Bs Y, S, w; t) = (D, ¢)
where
p=a + wt + P(OU B’ Y w)tz + 0(3)
b = & + Ao, B, Y, w)t + Bla, B, v, w)tz + Qa, B, v, w>t3 + 0(4)
We first compute TEO . In fact let

. 2 3
g, *tr (Pot ) Qot )
then we will show that TEO = Tgo

Now

2P t
o

3Q0t2

Te, =,{K e & (1, 2); K(t) = G(t) + H(Potz, Qots)}

where G : R> R and H : RZ » R2 are arbitrary smooth germs.

Also

-

ZPOt + 0(3)

1l
i

Tg

o}

{K e €1, 2); K(t)
L 3Qot2+ 0(3)

o]

3Q0t2

So T Eo C.Tgo +Wﬂ3(1, 2)

G(t) + 0P t? + 0(4), Q&% + o(A))}

2P t
{K e£(1, 2); K(t) = 6(¢) +0(3) + H(P_t2, Qt3) + 0(4) }
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' in terms of these new

If we express the map I as =z
coordinates we will have a mapping that will be a 5-parameter versal
unfolding of &é , because it will be isomorphic (in the sense of
Martinet[}l]) to the original versal unfolding Z . Hence, by the
remarks following the versal unfolding theorem of Martinet in [}1] this
S5-parameter versal unfolding of Eé will be equivalent to a constant

2-parameter unfolding of a 3-parameter universal unfolding of Eé ,

since Eé has codimension 3. Thus we have proved
Theorem 4.8

There exist local diffeomorphisms H : (RS x R, 0) »= (R® x R, 0)

and X : (R® x RZ, 0) » (R x R?, 0) given by

H(a, B, v, 6, w3 t) = {0, B, v, &, ws nla, B, v, 8, w; t)
X(a, B, v, 8, w3 6, ¢) = (o, B, v, &, w; xy (@, B, v, &, w; 6, ¢),
Xola, B, v, 6, w; 6, $))
which are 5-parameter unfoldings of the identity of R , respectively R? ,

and a local diffeomorphism h : (RS, 0) » (R®, 0) which we write as
h: (a, B, v, §,w) (Uls Uza uga U4a U«S)

such that we get a map A : R+ RZ defined by :-

A i 8 H~(ul + g2 u, + uys + s3)

which we can regard as expressing ¢ o ¢ in 'canonical form" in the

sense that :-

(h x id)) o X o (idg x [m 0 g]) = (idg x 1) o (h x id)) o H

where idi means the identity map from R' to itself. Il

From this we can immediately verify that the axis of the top

will perform one of the two motions shown in Figure 13 near the upper
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germ at the origin and we perturb F slightly then F will not usually

be equivalent to the new unfolding at the origin, so equivalence

of unfoldings as defined in Chapter 1 is not a suitable relation to use.

Firstly we need a definition of Fl at (u, x) in rRY x R"
being equivalent to FZ at another point (v, y) in R? x R”™ . Such
a definition can easily be framed by shifting the origin. Secondly,

following Wassermann [}8], we can say :

Definition
AT TR

Let fO : (Rn, 0) ~ (RP, 0) be a map germ and let
F: RYxR", 0) » 8Y x 8P, 0) be an unfolding of £, as given in
Definition 1.8. We say F 1is stable if for every open neighbourhood
U of 0 in R?* «x R" and every representative F' of F defined
on U, there is a neighbourhood V of F' in ¢7(U, rRY « RP) (with

the weak C” -topology) such that for every G' e V there is a point

(u, x) € U such that G' at (u, x) 1is equivalent to F' at O.

We can now conjecture

ProEosition

The unfolding £ given in Theorem 4.7 is stable in the above

sense.

We do not prove this claim. It ought to be possible to prove
it by an analagous argument to that given by Wassermann for Theorem 4.11
on page 98 of [lg], as we already known that £ 1is a versal unfolding.
Assuming this proposition it follows that the motion sketched above
will be locally stable under small perturbations of the equations of
motion. Such perturbations could be brought about for instance by

making the top slightly asymmetrical or alternatively spinning a
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magnetically sensitive top in a weak magnetic field. 1In such cases
we would find that
Theorem

Locally near the upper bounding curve of the motion of the axis

of the top, the axis traces out either loops or waves as before.

We now turn our attention to the motion of steady precession.

Steady Precession

We are going to examine the geometry of the dual steady precession
surface K% and will begin by showing that the reduced amended potential
,\) 3 3 - > °
VU has only one critical point in the range -1 <z <+ 1, i.e.

the quartic equation
b 2 2 2 _ -
z Gigry + 22 + (up +udz + 1 -, =0

has only one root in the indicated range.

To investigate the roots of z% + az?2 + bz + ¢ = 0 we need

only to look at the swallowtail catastrophe, as given on pages 176 - 178
of [1@]. The bifurcation set, in (a, b, ¢) space, which gives the

regions for different numbers of roots is parametrised by
(a, b, ¢) = (3q - 6r2, - 6rq + 8r3, 3qr2 - 3r*)
(There are a couple of small errors on page 177 of [}6] itself).

In our case we are taking a plane slice through the bifurcation

set, given by a = c¢ - 3.

Proposition 4.9

The bifurcation set, in the plane a = ¢ - 3, is given by
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b=+(2 - 2¢) and (b, ¢) = (2r3 + 6r, - 3r?), r? # 1 .
Proof
The parametrization of the bifurcation surface above, together

with the equation a =c¢ = 3 , yields

bo_ o2
3q = 3r br= + 3 _ 3(x2 - 1) providing r2 # 1 .

ré -1

Then
b = 8r3 - 6rq = 2r3 + 6r
and
c = 3qr? - 3¢t = - 3¢2
If r2 =1 then
c = 3qr2 - 3c" = 3(q -~ 1)
and

b = 8r3 - 6rq = 2r(4r2 - 3q) = + 2(4 - 3q)

So b= #(2 - 2¢) , taking the plus sign if r =1 and the minus

i

Figure 14,
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Proposition 4.10

: Lo 2 2 2 - =
The quartic =z (uluz + 2)z4 + (ul + uz)z + 1 HiHy 0
has only one root between - 1 and + 1 for all values of Hy and

- 2 2
u, such that (ul “2) > 0 and (ul + uz) >0 . l.

B . Y]
As we know from elementary consideration of VU(Z) (see
immediately prior to Proposition 4.2) that there must be at least one

minimum for - 1 < z < + 1 , we conclude:

Corollary 4.11

ny .. .
VU(Z) has only one critical point for 2z between - 1 and
+ 1 and that critical point 1s a minimum. ll

Thus :~

Corollary 4.12

Given values of uy and Uy there is only one possible angle

to the vertical at which steady precession can take place. ll

From page 360 of [}] we know that nondegenerate maxima or minima
of the reduced amended potential give stable relative equilibria and

so we can conclude that

Corollary 4.13

Steady precession is a stable relative equilibrium. 'l
This contrasts with sleeping which is stable provided that the angular
velocity of the top about its axis is greater than a certain critical
value. When the angular velocity is less than that value sleeping can
still take place but it is an unstable motion. See, for example the

discussion on page 156 of Eﬂﬂ.
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The relevant portion of the catastrophe manifold which we will
denote Q2 can now be pulled back to lie over (ul, uz) space where it

will be the steady precession surface K§ given in Proposition 4.2.

We need also to examine the behaviour of K; near the region
corresponding to 6 = O or 7 . The analysis above excluded these
values so we will need to investigate the situation using the
(61, 62, 63) coordinate chart. However, we can look at the behaviour

of the catastrophe manifold over the bifurcation set to see the kind

of behaviour we would expect.

Over the line (ul + uz)z = 0 the only possibility is a repeated
root of z = -~ 1 and this must correspond to the top hanging vertically
downwards, the ultimate in stable motion! Now we turn our attention

to the portion of the catastrophe manifold over the line (ul - uz)z =0
We distinguish three cases:

Firstly, if (ul + uz)z > 16 then we have a repeated root of

z = + 1 and no other admissable root.

Secondly, if (ul + u2)2 < 16 we have a repeated root at

z = + 1 and another root between + 1 and - 1 .

Thirdly at (ul + pz)z = 16 we have a threefold repeated root

at z =+ 1 .

At this stage we turn our attention more fully to the sleeping
top and tie together the steady precession surface, investigated above
using the Euler coordinate chart, with the sleeping conditions, investigated

using the (61, 62,63) ~ coordinate chart.
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The Sleeping Top.

We now wish to examine the behaviour of the sleeping top in
a similar way to that which we used for steady precession. However,
as remarked earlier, we need to use the (61, 62, 63) ~ chart on M

rather than the Euler angle chart.

In this chart we have the potential energy V : M >R .

given by

cosf, cosb

VO, 8y, 04) = 1 2

and the kinetic energy K : T* M > R by :-

2 4

1 1, 1
K(ela 625 63’ P1’ pza P3) - 5 pz §E'P3 +'7

The momentum mapping , J : T* M » R? is given, see Proposition

2.3 by
cosf sinez cosf
T8 O 00 835 Pys Py Pg) ) T Py T Py SInh) Py oo
Proposition 4.14
The set A of points x in M such that J : T M » R?
hy ¥
is not surjective consists of all points ®
x = (61, 62, 63) with 61 = 92 =0 .
Proof
T cose1 sine2 ' cos6,
T*M C0582 1 cosh
= 2

0 0 1
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which has rank 1 if and only if sine1 = 0 and sine2 =0 i.e.
6 =06 =0 .
1=8,=0 e

Hence we cannot carry out the construction of an amended
potential to include the case of a sleeping top, as A corresponds to
the sleeping position, and must be examined separately. (See remarks
following Lemma 4.5.4 on page 343 of [1]). However, we can determine
what happens to the steady precession surface K§ as we approach the

sleeping condition.

In order to see this behaviour clearly we look at the situation
in the tangent bundle rather than the cotangent bundle and then pull

back the picture to the cotangent bundle.

Proposition 4.15

The steady precession manifold K 1is a submanifold of TM
given by K = {(81, 62, 63; 61, ez, 93)} where

[ [

(a) el 51ne1 cose2 + 62 00591 51n62 = 0
and éZ . . . cos@1 cos@2
(b) ST, 0[93 + 6, sm92] -6, "”"’“"""""""‘"smel =1

Proof

Using the relationships worked out in Chapter 2 between the new
coordinates for the configuration space and the Euler angle coordinates,
(a) corresponds to 6 =0 and (b) to (Cs ~ é cose)é = 1 which are

the defining equations for K given in Chapter 3. II

The steady precession surface K2 is obtained from the steady
precession manifold K by factoring ~ out by the group action.
The question we must now answer is : What does K and hence K2 look

like close to el = 92 = 07
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So we have shown that as 61 and 62 approach zero the

manifold K tends to the set {(61, 62, 83; 9

or over our "factored out" set of coordinates, just the ©
cosb
2 34 e [c0s26

3 cose2

3 axis,

subject to the condition that C2 & + C sinzezj

2

Theorem 4.17

The frontier of the surface K? of steady precession points

(regarded as a subset of the reduced tangent space) is the line segment

L' = {(91, 92; 61, 62, 63) = (0, 0; 0, O, 83); e% > ._.}
This line L' 1is exactly the set of points giving the motion of a

stable sleeping top see, for example, page 156 of [ii]. ll

We now pull back Q2 to lie over the (ul, uz) plane in
T* M, As Q? lies over the quadrant given by (ul + uz)z > 0 and

(ul - uz)z 2 0 the surface K§ in (ul, oo z) space lies over all

the (u,, u,) plane but is symmetric around the planes
1 2
P, = {(“1’ Hos 2)3 My *tu, =0 } and P, = {(ul, Hos z); Hy = Wy = O}-

The surface K% intersects the plane P

5 in the line {(ul, My z)

1

Byt = 0, z =~ 1} and intersects the plane P2 in two segments

: . - = = %
of the line {(ul, Moo z); My "M, =0, z =+ 1} . The rest of K%
lies between these two levels of 2z ., From the remarks at the end of

the last section we see that the plane z = + 1 intersects Q% and
hence K§ only if [ul + “2! > 4 , the other part of the line
{(ul, oo z); My "My =0, z = +1} (giving the unstable sleeping top)

being isolated.
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Furthermore we know that Q% meets the lines corresponding
to z=-1 and 2z =+ 1 quadratically so when pulled back to lie
over the (ul, uz) plane K§ must meet the inverse images of those
lines linearly at an acute angle. Putting all this information together

we can make a sketch of K§ as in Figure 17,

From the sketch we can see that the case when Ul = and

H2
lul + u2[ > 4, corresponds to the stably sleeping top. However
when [ul + uzl < 4 we have the unstable sleeping top when a small
perturbation will cause it to "wake-up'". As we see, there is a possible
steady precession that can take place with the given values of oy and
My . The in-between point is the critical point between sleeping and

wakefulness given as we see by My = =2 .

Ho
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