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ABSTRACT
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Doctor of Philosophy

SINGULARITY THEORY AND GEOMETRY IN THE MOTION OF A TOP 

by Jonathan Peregrine Britt.

The aim of this thesis is to examine the spinning top from the point 

of view of the Smale programme for studying mechanical systems with 

symmetry. This programme consists of finding the global topological 

structure of the map E x J : TM R ><6* where E is the total 

energy of the system, J its momentum mapping, which in our case is 

just its angular momentum^ TM is the phase space and A* is the 

dual of the Lie algebra of the Lie group G which acts on the 

configuration space M producing the symmetry.

We are here concerned with examining the nature and 

configuration of the singularities of this and related maps using 

the machinery of ^C and ^ equivalence and of finite determinacy. 

We are able to interpret various types of motion of the top in terms 

of singularities and their unfoldings. Of particular importance is 

the subset of TM corresponding to steady precession whose corresponding 

geometry in the cotangent bundle we exhibit explicitly. 
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CHAPTER 0

INTRODUCTION

This thesis is devoted to the subject of the spinning top 

which for our purposes means a rigid body with a point on one of its 

inertia axes fixed in space and the other two moments of inertia 

equal. The axis singled out is called the symmetry axis of the top.

The dynamical behaviour of such a system moving under the influence 

of gravity is well understood and is.described, in classical mechanical 

terms, in such books as Whittaker [2oJ and Meirovitch [^isj and Gray [^9]. 

These descriptions are given in terms of the Euler angles (6, (f),ip) 

and their time derivatives which can be briefly described as follows:-

Figure 1.

Let R(e, (j), ,jj) denote the rotation of the right handed or orthogonal 

frame OXYZ into the frame Oxyz (see Fig. 1) such that

R(6, (f), ^) = tg 0 r2 o r^ where r^^ is a rotation about OZ of angle 

(() that transforms OX into OX* and OY into OY* (precession), 

r2 is a rotation of angle 6 around OX* that transforms OZ 
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to Oz and OY' to OY" (nutation) and r^ is the rotation of 

angle ')> around Oz (proper rotation). Two sets (6^, (|) ^, ip^) and 

(B): *2' 4'2^ ^^^ called equivalent if R(6^, (|)^, ip^^) = R(82, ^2' ^2^ 

which,if we restrict 8 to [o, ir] , (p and ip to {o, 2it) , occurs only 

when 8^ = 8^ , (pi = 1I12 ^^"^ ^1 " ^^2 '

^^^ Kinetic energy of the top is :-

K = y A(6^ + ip2 sin^G) + i C(ip + (p cosQ)^

where C is the moment of inertia of the body about the symmetry axis 

and A the moment of inertia of the body about any inertia axis 

perpendicular to the symmetry axis.

The potential energy is

V = mga cos6

where m is the mass of the body and a is the distance of the centre 

of gravity from the vertex.

We will also need the expressions for the angular momentum 

about the axes OZ and Oz . The angular momentum p, about the 

axis OZ is

D = A* sin^8 + C(6 cos8 + ^)cos8

and the angular momentum p^ about the axis Oz is

p = C($ cos8 + Ip)

These can all be found on pages 150 and 151 of [1^. 
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In order to simplify the algebra we choose units to make both

A and mga equal to one.

When the top spins, with its axis in either the upward or 

downward vertical position, the Euler angle time derivatives (J and 

Ip are no longer well-defined and so a description of the motion in 

terms of the Euler angles is difficult. This point is studiously 

ignored in the classical treatments.' However when we come to study 

the motion of the top with its axis vertically upwards (called the 

sleeping top) we will introduce a new coordinate chart and recalculate 

K, V and the angular momenta in terms of this new chart.

Our aim is to examine the spinning top from the point of view 

of the Smale programme for studying mechanical systems with symmetry, 

This is described in Smale [17] and also in Abraham and Marsden [^1] in 

full, so we will give only a brief summary here. The description in 

Smale's paper uses the tangent bundle formulation whilst that in 

Abraham and Marsden uses the cotangent bundle. We will in fact use 

both formulations in this thesis but our initial description will 

follow Smale.

Suppose then we have a classical mechanical system with

configuration space a smooth manifold M and tangent bundle TM

as the phase space. In the case of the spinning top M is S0(3)

or equivalently the unit circle tangent bundle of The kineticS^

energy can be thought of as defined by a Riemannian metric on M ,

so it will be a function K: TM R defined by K(v) = K^(v, v) 

where v e T M and K is an inner product in T M, smooth in x.X X X
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The potential energy is a function V

The total energy E is the function 

where ir is the canonical projection

: M -> R , normally smooth.

E : TM R given by E = K + V o tt 

from TM onto M .

If we have a Lie Group 6 acting on M with action T preserving

K and V we define a momentum mapping

J:TM

(^' denotes the dual of the Lie algebra of G) by J = J^ o (2K)* 

where (2K)* TM ->- T*M is the bundle isomorphism defined by 2K, 

(twice the Riemannian metric) on M , and J^ = T*M "^^^ is the map 

which, restricted to each fibre, is the dual of a^• '^ T^M . Here 

“^(X) is the value of a(X) at x e M where a(X) is the vector 

field on M generated by the 1-parameter transformation group 

corresponding to X ethat is:-

t=0

So if n E T* M and X E C then J^ is given by :-

J^(n)(x) = n(a^(x))

In our case G is the torus 1^=3^ x S^.

with action Y defined by :-

Y : Gx M M : (y^, Y2» 8, *, i(,) (8, * + y^, ip + y^)

(with addition defined modulo 277) .

We shall show later that in this case the momentum mapping J 

defined above is just the/angular momentum as classically given, that is 
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J(v) = (p|^, p^) e R2 , the Lie algebra of T2, 

where

v= (8, *, ip; 8, <p, ^) eTM .

The Smale programme consists of the problem of finding the 

global topological structure of the map E x J : TM ->- R x"^* •

This involves at least knowing :-

(i) the topological type of the integral manifblds

I^^ = (E X J) (e, p) .

(ii) the bifurcation set ^g^j °^ ^^"^ " This is the set of 

points of R ^■^’' over which ExJ fails to be locally 

trivial, in the differentiable sense.

In order to gain information about these,Smale introduces the 

amended potential, as follows.

Let
xeM:J =J X is not surjective

Then A is closed and G-invariant. and p e

T M = ^x^

For X e M \ A

we define a (x) eTM by the conditions

(a) a (x)e J_/(h)

and (b) K(a (x)) = inf K(a) 

aej (p)

and then define the amended potential V : M\A ^ R by

V^(x) = V(x) + K(a^(x)j .
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A particularly important subset of ^g^j ^® ^^^ ®®^ ^ExJ 

of singular values of ExJ . This is the image of the set of singular 

points of ExJ. The reason for the importance of this subset is given 

in the following two theorems taken from [ij :

Theorem 1.1

Singular points of Exj on J (w) correspond to singular

points of V^.

Theorem 1.2

Singular points of V 
y

are in one to one correspondence,

using the diffeomorphism induced by a^^with relative equilibria.

The relative equilibria are defined by considering the 

-1
reduced phase space J (p)/G^ , where G^ is the isotropy subgroup

of G at y for the adjoint action of G on . On this reduced 

phase space the energy mapping canonically induces a flow with a 

corresponding "reduced" energy mapping. A relative equilibrium is 

a singular point for this reduced mapping. (This definition is given 

on page 306 of [_1] ). Intuitively a relative equilibrium is a point 

where the system could be considered to be at rest except for the 

motion due to the action of the symmetry group.

We can also construct the reduced amended potential:

: M/G R 
y y

and them make use of :

Theorem 1.3

The nondegenerate maxima or minima of V^ give stable

relative equilibria
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The three theorems quoted can be found on pages 348, 354

and 360 of J^l] .

In terms of the top, the relative equilibria give the points 

at which the motion of steady precession takes place and so using 

Theorem 1.3 the stability of steady precession can be immediately 

deduced (see Corollary 4.13).

Although the Smale programme concentrates on determining 

the topological type of the level sets of ExJ we shall,rather,be 

concerned with examining the nature of the singularities of this map. 

Since ■^* = R^* s p2 ^g write J - (J^, J^) and look at ExJ; TM , 

For this we will mainly consider the S^ action on M that gives 

rotation about the vertical axis as we can trivially factor out by the 

other part of the action that gives rotation about the axis of the 

top.

We shall first examine this map in full generality, for 

which we will need a different coordinate chart on M from the Euler 

angles. We shall show that locally in a neighbourhood of the position 

corresponding to a sleeping top the mapping Exj is equivalent, with 

respect to the action of the symmetry group, to a polynomial mapping 

and in fact J can, in a certain sense, be made equivalent to a 

quadratic mapping. (see Theorem 2.12).

Next in the context of steady precession we shall investigate 

the singularities of ExJ and which is $ restricted

to a constant value of 6

g=0

The reason for investigating $ is that

the singularities of ExJ^ occur when 9=0 We shall find that

the singularities of all correspond to the motion of steady

$

$
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precession (see the remark proceeding Proposition 3.3) and that all 

the singularities of $g are fold points (see Proposition 3.2) 
0

while for $ we have fold points and one standard Whitney cusp point 

if the moments of inertia satisfy a particular condition (Theorem 3,6).

A description of the inverse image of the singular set for the 

standard Whitney cusp map from R^ to R^ is given and the position 

of the tangent space to the steady precession manifold at the cusp 

point is determined for this standard picture.

We then turn our attention to the amended potential. Following 

the Smale programme we analyse the general motion of the axis of the 

top. We do this by examining the path the axis would trace out on 

the surface of a sphere. We shall find (Theorems 4.7 and 4,8) that 

the stable motion of the axis, that is the axis oscillating between 

two circles and meeting the upper circle in loops or waves, can be 

expressed as a universal unfolding of the unstable case where the axis 

of the top meets the upper bounding circle in cusps, this unfolding 

being parametrised by the initial conditions.

Then using the amended potential, we investigate steady precession 

showing that for fixed values of J^ and J2 there is only one 

possible angle of inclination of the axis of the top from the vertical 

at which steady precession can take place, and that this motion is 

a stable relative equilibrium. This is illustrated by a certain 

mapping of ^* = R^ into the parameter space of a section of a 

swallowtail catastrophe and generalises the local version of Arnol'd [sj.

Finally, we analyse the case of the sleeping top by seeing 

what happens to the steady precession surface near the points corresponding 

to sleeping. We find (Theorem 4.17) that as we approach the sleeping
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position the steady precession surface is bounded by the line corresponding 

to the stable sleeping top. By adding in the line that corresponds 

to the unstable sleeping top we are able to construct a global picture 

of the steady precession surface in the cotangent bundle, a picture 

that is reminiscent of a motorway bridge'
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CHAPTER 1

SUMMARY OF SINGULARITY THEORY USED

We take the following definition from page 37 of [sj ,

Definition 1.1

The jet-space J^(n,p) is the set of all mappings 

f : r’^ ->■ RP each of whose components is a polynomial of degree less 

than or equal to k in the standard coordinates x^,..,,x^ in R^ . 

Elements of J^(n,p) are called k-jets.

Suppose that f : r’^ -> R^ is a smooth map. Then we can 

expand f around some point a in r’^ by constructing the Taylor 

series in terms of the standard bases for r’^ and R^ . If we then 

delete all terms with degree greater than k we obtain a k-jet which 

we denote j^f(a) and call the k-jet of f at a . This defines the 

mapping j^f : r’^ J^(n,p) called the k-jet extension of f .

Although the definition given here is couched in terms of 

local coordinates, a coordinate free definition is easy to give 

as for instance in |^4^ where J^(n,p) is defined as

j^(n,p) = RP X Hom(R'^,R^) x Hom(R^,Rhx....xHom(R^,RP)

Where Hom(R^,R^) is the space of symmetric j-multilinear mappings 

from j copies of R^ to R^ .

The next definition and theorems are taken from Q,

Definition 1.2

Given a point a in R*^ , and a mapping f : r’^ ->■ R^ 
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then Df(a) is a unique linear mapping of T^ r’^ T^^^^ R^ . 

Define the rank of f as the rank of Df(a) and the corank of f as 

min(n,p) - rank f.

Let S^ = {f e J^(n,p) ; corank f = r}

Theorem 1,4

The set S^ is a submanifold of J^(n,p) of codimension 

r(In-pI + r). 81

We let S^(f) = (j^f) (5^) • The sets S^(f) are not 

necessarily submanifolds of R^ but using the Thom Transversality 

Theorem one can prove:-

Theorem 1.5

The set of f for which j^f is transverse to S for 
r

all r is a residual set with respect to the Whitney topology. For 

such an f the set S^(f) is a submanifold of r’^ with codimension 

equal to the codimension of S^ . ®

Such maps are called 1-generic,

Now suppose f : R^ RP is 1-generic Denote by S (f) r, s

the set of points where the map f S^(f) RP drops rank by s .

We will now show how to construct S r,s in J^(n,p) such that

X e S (f) <=» j^f(x) e S .

The method is that given on pages 149-155 of [b]. We first 

of all construct the intrinsic derivative of a smooth map f : r’^ R^ . 
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Given an f : R^ R^ we have Df : r’^ Hom(R’^,RP) . For x e S^(f) 

we calculate D(Df)^ e Hom^R'^, Hom(R^,R^)) . We then restrict to the 

kernel K of Df and project to the cokernel L^ of Df^ to 

get the intrinsic derivative

(d Df) E Hom[R^, Hom(K^,L^))

This will be determined by the 2-jet of f at x , By 

restricting the intrinsic derivative on R^ to K we induce a 

symmetric mapping

g^ f E Hom(K, HomfK ,L )) = Hom^K ,L ) 
X x' x' X'' S x' X

Now if we let be the preimage in J^(n,p) of S^ 

under the projection J^(n,p) J^(n,p) , we can summarise the above 

by saying:-

Let X belong to S (f) and o E S^ . . There exists an 

f : R^ RP such that j^f(x) = o and j^f(x) E S . Then we calculate 

a symmetric mapping ^ Hom^K^, Hom(K^,L^)) depending only on o . 

So we have a mapping

Vl : Hom(K, Hom(K,L))

where K = U K and L = U L . (Since fixing a a in S fixes a 
oeS OES r r

K and L in T R^ and T R^ respectively). Consider the set of 
XXX y 

maps in Hom^K, Hom(K, L)) of corank s . The pullback of this set by 

in s/^^ is the set we will denote by S . Then it can be proved, 
r r,s 

see 1%], that

Theorem 1,6

(1) S is a submanifold of S r,s r
of codimension
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~ k(k+l) - .^ (k-s) (k-s+1) - s(k-s)

where k = r + max(n-p, 0) and £, = p - n + k .

We can extend all the above definitions to smooth mappings 

f : X 4- Y where X and Y are smooth manifolds of n , respectively p 

dimensions in the obvious manner by choosing local coordinates in X 

and Y .

In fact in this paper we will be mainly concerned with the case 

when n = 3 and p = 2 or n = p = 2 . In both these cases the 

codimension calculations show that only S^^ and S^^ type singularities 

can occur for 1-generic maps. Complete classifications of these 

singularities in terms of local coordinates exist, see [19] from 

whence comes :

Theorem 1.7 (Whitney).

Let X and Y be 2-dimensional manifolds and

let f : X -* Y be 1-generic. Then if a e S.(f) and b = f(a) either

(a) T^S^(f) 0 Ker Df(a) = T X

in which case a is called a fold point and one can choose

a system of coordinates (x^, x^) centred at a and (y., y2) 

centred at b such that f : (x^, Xg) t^ (x^, Xg) .

or

(b) T^ S^(f) = Ker Df(a)

in which case the situation is more complex.
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In order to explain this last case it is easier to take the more general 

form of the above theorem due to B. Morin L14j.

Let stand for S-, if k = 1 and S^ , if k = 2 . Ik 1

Theorem 1.8 (Morin)

If f : X -)- Y with dim X ^ dim Y satisfies the condition 

that j^'f is transverse to S^^ and if a is in S^^(f) , then 

there exists a coordinate system x^ x centred at a and 

a coordinate system y^ y centred at f(a) such that f has 

the form

f k+1f : (x, X ) v^ X. X ± x^ ± ... ± x^ . ± X + y X. x^ 
p-1 p n-1 n J

This theorem gives the equal dimensional case by putting n = p 

and is a specific example of the more general result proved in [14].

Letting (n, p) = (3, 2) or (4, 2) and k = 2 will give us 

the standard Whitney cusp maps from R^ to R^ or R^ to R^ 

respectively, that is :

f(x^, x^, Xg) = (x^, x^ + x^ +

or

f(x., X., X., X,) = (x., x^ + + x^ + x^x.)

We are going to look at the local behaviour of maps and define 

a notion of local equivalence of mappings. In order to do this we 

need to use germs of mappings. From [s] page 33 we take :

Consider the set of smooth maps from X -^ Y , where X and

Definition 1.3
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Y are smooth manifolds. Given a point x e X we look at the set 

of all such maps whose domain U is a neighbourhood of x in X , If 

f^ ; U^ Y and f2 : U2 Y are two such maps we say f^ t^, if 

there exists a neighbourhood U of x in X depending on f^ and 

f2 such that

fl|U= '

This defines an equivalence relation on these maps. The equivalence 

classes are called germs of maps at x . If f^ and f2 represent 

the same germ then f^(x) = f2(x) = Y so we use the notation

f : (X, x) (Y, y) for the germ

Now suppose that I is a compact group acting orthogonally 

on r’^ and R^ , We say that a germ f : (R*^, 0) (R^, 0) is 

r-equivariant if fCyx) = yfC^) for all y in I . A function germ 

h : (r’^, 0) R is called r-invariant if hCyx) = h(x) fbr all 

Y in r.

Let E^('^) i*^ fh® ring of I-invariant function germs on R^ 

and £,^(p) the ring of I-invariant function germs on rf . Now define 

the free ^ (n)-module ^ (n, p) as the set of I-equivariant map 

germs from R^ to R^ .

We will now give definitions of equivalence of germs taking into 

account the action of I . Putting I equal to the trivial group 

consisting of the identity only enables the more common definitions 

to be seen.

Definition 1.4

(a) Two map germs f and g : (r’^, 0) (R^, 0) are
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r-right-left equivalent or F-g/^equivalent if there exist diffeomorphism

germs h : (R^, 0) (R'^, 0) and 'k : (RP, 0) V- (R^, 0) such that

(1) k(f(x)) = g^h(x)) for all X in

(ii) h(Yx) = Yh(x) for all X in R^ and for all Y in

(iii) k(Yy) = Yk(y) for all y in R^ and for all y iu

(b) Two maps germs f and g ; (R^, 0) (RP, 0) are

r-contact equivalent or T- K equivalent if there exist a diffeomorphism

germ h : (R°, 0) (R^, 0) and L e C^fR^^, G L(R^)) such that

(i) f^h(x)) = L(x) g(x) for all X in

(ii) h(Y(x)) = Yh(x) for all X in R^ and for all y in T

(iii)
-1

Y L(Yx)Y = L(x) for all X in R^ and for all y in r

The definition of r-R equivalence can be found on page 1-1 of 

[s] and that of r-/^equivalence is closely modelled on it. r -^equivalence 

would seem the most natural form of equivalence to use and we shall 

try to work with it as much as possible. Contact equivalence arises more 

naturally in considering algebraic varieties defined as zero sets in 

algebraic geometry but its importance for us lies in the fact that it 

yields algebraic conditions for equivalence that are easy to check, 

unlike/^ -equivalence. Of course f-X equivalence implies r-Mequivalence 

but the converse is false. We will use the notation r-9^-equivalence 

when we do not need to specify whether it is contact or right-left 

equivalence under discussion.

p
We will use the notation y^(n) to represent the maximal ideal 

p
of the ring (n) and also let

Yy\^(n) = {g e E^(u); the (k-1) jet of g is zero}
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and

'y^^^/n^p) = fS G^ (n,p); Che (k-1) jet of S is zero}

Consider now all map germs f : (R x r^, o) -> (rP, o) such that 

f(t, x) is r-^^-equivalent to f(0, x) where the equivalence varies 

smoothly with t . If we denote f(t, x) by f (x) then we 

can say that we have a curve t f^ where f^ is r -^equivalent 

to fy with the equivalence varying smoothly with t . Using this 

idea we make the following definition ;-

Definition 1,5

The r-ytangent space ^^f of a germ f : (R^, 0) (R^, 0)

is the totality of derivatives —^ of all curves t -> f , where 
t=0

f^ is as given above and f is f ,

We can now prove:

Proposition 1.9

Let f : (R^^, 0) -x (R^, 0) be a map germ,

a) ify = .^ then ':g^f is given by

T^f = ^Df(x) a(x) + b[f(x))

for all a e$V\^(n, n) and b e'YYl.Cp, p)

If yb) =)tthen Twf is given by

l^f = iDf(x) a(x) + L(x) f(x)

for all a e)tt2('^* ^) ^^(^ D(x) being a (possibly singular) p x p 

matrix satisfying the condition :

Y L(yx)y = L(x) for all Y G i . 
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Proof

(a) We assumed that the equivalence varies smoothly with t . 

So if f^ is r-^equivalent to f then there exists an. h^ : 

(R^^, 0) (R^, 0) and k : (R^, 0) (R^, 0) both diffeomorphisms 

such that

where if f^ = f both k and h are the identity mappings. 

By the Chain Rule :

_ —— (fh ) + Dk (fh ) Df(h ) « .
OL OL L L L L OL

Putting t = 0 gives

So

9t t=0

3kt
9t , 0 f + Df 

t=0 3t t=0

+ Df(x) a(x)

i.e. '^fC-<Df(x) a(x) + b(f(x))

To prove the inclusion the other way we need to be able to express 

3h 
an arbitrary r-equivariant map H : r”^ r’^ as where 

t=0

h^ is a r-equivariant diffeomorphism and h^ is the identity on r’^ 

and similarly an arbitrary r-equivariant map K : R^ R^ as

'k-t

9t with k. a r-equivariant diffeomorphism and k the identity 
t=0 °

on rP
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To do this let h^ = id + tH and k^ = id + tK .

This completes the proof.

(b) This is proved similarly and the proof can be found in 

[j2 for r the identity and sketched in [s] for the more general case.

We now use these ideas to make the following definitions 

(adapted from QsJ ) :

Definition 1.6

A germ f : (r’^, 0) -> (R^, 0) is said to be r-^- k determined 

if whenever g in (n, p) has the same k-jet as f then f is 

r-^^equivalent to g .

By an argument similar to that used in the proof of part (a) 

of Proposition 1.9 it is easy to see that if, for all positive integer 

values of k , 

then f is not T finitely determined.

Both necessary and sufficient conditions for contact k-determinary 

are given by Golubitsky and Schaeffer in [^^l • However when looking at 

r- contact k determinacy the situation is made slightly more 

complicated because in general.

^v^\n)'h\^(n,p) /YO^+^^^'P)

In order to prove that f is T -X- k determined we want 

p 
to show that if f = f + th where h EYVLXn, p) then h e T^ f ,

We need the following lemma :
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Lemma 1.10

If (1)

and (2) Dh(x) a(x) E:)p(\.(n) T\.f

then

Proof

Each component of an element of ^t (*^^^^ is s p-vector)

is of the form

j=l k=l

j=l ij
fj(x) + th.(x) + X

k=l

3h.
1

k
^k(^)

But each &.. h. and 
ij J

Nakayama's lemma (see

9h.
each —«.—

p
a, belong toyVYCTi) Hence

page 102 of [5]) implies that

rsince if h belongs toYML^^^^ (n, p) then so does Dh(x) a(x) we

deduce :

Corollary 1,11

A sufficient condition for f : (R^, 0) (RP, 0) to be

T^ f C T_ f

P

f

n
^t. 

J

'^t 
««l«*=

k

n 3f.
1

k
t

^t •

determined is

r
k+l

Note that a generalisation of the condition given by Golubitsky 

and Schaeffer as Theorem 2.8 in [j] to the case of r -H determinacy 

would give a stronger condition than that in Corollary 1.11 and hence 
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one that is harder to verify. In fact in the particular example we 

will be examining in Chapter 2 the generalisation of Golubitsky and 

Schaeffer's condition will not hold whereas Corollary 1.11 will be 

satisfied.

Although we will not need this, it is straightforward to prove 

that a necessary and sufficient condition for f to be f -14 - k 

determined is given by :

for every h em._^,(n, p) and

(2) f is r "X - (k + 1) determined.

Definition 1.7

Let f : (R^, 0) (RP, 0) be a map germ. The f^v- codimension of 

p 
f is the dimension of ( (n,p)/Tf over R. If the T ^^-codimension of f 

is zero then f is said to be r "¥ infinitesimally stable.

We also wish to consider unfoldings for germs in c(n, p) 

without the group action.

The following definitions and results are taken from Martinet's 

paper [11].

Definition 1.8

Let f : (R^, 0) (pP, 0) be a map germ. All germs of 

the form

F : (R^ X R"^, 0) + (R^ X Rp, 0)

(U, X) H- [u, f(u, X))
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where

f(0, x) = f^Cx)

are called q-parameter unfoldings of f

Definition 1.9

Two q-parameter unfoldings of the same germ f^, F^ and 

^2 ^^® isomorphic if there exist local diffeomorphisms

H : (R^ X R", 0) (R'l X R^, 0) and K : (R^ x Rp, o) (R^ x RP, o) 

which are q-parameter unfoldings of the identity of r’^ , respectively 

Rp, such that :

Fg = K 0 F 0 H

More generally F^ and F. are said to be equivalent if 

there exists a local diffeomorphism g ; (R^, 0) (R^, 0) such that 

F^ is isomorphic to g*F^- where g*F^ the pull back of F^ by g 

is defined by :

g*F (u, x) = u, f.(g(u), x]

The pull bahk of an unfolding can be defined fpr any map g : (R^, 0) -^ (rI^, 0) 

in a similar way.

Definition 1.10

An unfolding of f^ is trivial if it is isomorphic to 

the constant unfolding (u, x) (u, f^Cx)}
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An unfolding F of f^ is called versal if any other unfolding 

F' of Fq is isomorphic to the pull back of F by a suitable map of 

the parameter space of F' into that of F .

A germ is called stable if all its unfoldings are trivial.

From these definitions Martinet proves the following theorems:

Theorem 1.12

A q-parameter unfolding F of a germ f^ : (r’^, 0) (R^, 0) 

is versal if and only if the initial speeds F^ e £(n, p) with 

i = l,...,q span a real vector sub-space r|fj,...jF^j of £(n, p) 

such that 

S(n, p) - + ^{^l*'""'^q} 

where F. = ^ (0, x) g 

i

Corollary 1.13

A germ that is ^ infinitesimally stable is stable. I®

Corollary 1.14

All c-parameter versal unfoldings of a germ f with v^-codimension

Corollary 1,15

All q-parameter versal unfoldings of f , where q > c , 

are equivalent to a constant unfolding of q - c parameters of a 

universal unfolding of f . ]

All the definitions and theorems in this section stem from the 

work of Mather [12].
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CHAPTER 2

NEW COORDINATES FOR THE CONFIGURATION SPACE

Although it is traditional and convenient to use the Euler 

angles 8, 4= and ip as a coordinate chart for the configuration 

space of a spinning top, yet when 6=0 , that is when the axis of 

symmetry of the top coincides with the vertical, <(> and ip become 

indistinguishable from each other, hence these angles no longer form 

a valid coordinate chart for the configuration space.

Thus in order to study the behaviour of a top near this position, 

as for instance in examining the phenomenon of the sleeping top (when 

it spins with its axis of symmetry vertical), it is necessary to use 

a different set of coordinates. The following system, is well defined, 

at least while the angle between the vertical and the top's symmetry 

axis is no greater than ~ , and so is an adequate coordinate chart 

for the configuration space in a neighbourhood of 6 = 0 .

Starting from an orthogonal set of axes OXYZ^ fixed in space, 

a rotation 6^ is made about the axis OX bringing the system into 

the position , Then a second rotation 6^ is made about 

On' giving the position 05nC and finally a third rotation 6^ 

is made about Ot; moving the axis into coincidence with a set of 

axes Oxyz fixed in the top and thus moving in space. This construction 

gives a coordinate chart around the identity element in the Lie group 

S0(3), with which we can identify our configuration space.

Thus the coordinates (6^, e^, 6^) specify the position of 

the top relative to the axes OXYZ fixed in space. By writing down 

the three rotation matrices and multiplying them, we can calculate
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Figure 2.

the relationship between the two sets of orthogonal axes OXYZ and

Oxyz as

X

y 

z

c6 c6 c6 s6 + s6 s6 c6

-cQgSe^ c6^c8^ - sQ^se^sG

=^2 - =81^82

^^1^^3 - (^G2sG2^^3 

g^l^^3 "^ cG^sQ^sGg

X

Y

Z

(1)

where the abbreviations s6. = sin6. and c9. = cos6. are used to 

save space. This calculation is carried out in full on page 105 of 

[13]. 

We can now calculate the energy of the top in these new 

coordinates.



- 26 -

The system of axes OGnC has angular velocity components

^^cosOg about OS, Gg about On and 6. sinG. about OS .

The top is moving relative to the system OSnC with an

angular velocity 8g about Os so we can express the angular velocity

of the top in terms of components 

by Wg = 6^ cosGg « = ^2 ^'^

(Wg, m^, m ) along system 

m = e^ slnQg + 6g .

OSn(

Using the units mentioned in Chapter 1, we can express the

rotational kinetic energy as :

Using the XY plane as reference the potential energy is

V = cosG. COS82 ,

so the energy is given by :

C G^ slnG^ '3
2

+ cosG^ CO8G2E = K + V 1 e2
2 2

We can also calculate the angular momentum of the top about 

the axis OZ. The angular momentum about the axis OS is 6. cosGg , 

that about the axis On is Gg and about the axis 0; is C(G^ sinGg + G_) 

Now the angle between the axis OZ and OS has cosine equal to 

-cosG^ sinGg , that between OZ and On has cosine equal to sinG^ , 

and that between OZ and Og has cosine equal to cosG. cosGg , thus 

the angular momentum J. about OZ is given by

J^ " "^2 cosG^ sinGg cosGg.f 8g sinG^ + C(G^ sinGg + G.) cosG. cosGg .

These calculations are similar to those done for an artillery 

shell on page 255 of [133 •
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The Effect of Rotational Symmetry

Here we prove that the top forms a mechanical system with symmetry 

as defined in Chapter 0. Intuitively this is so because the values 

of the angles ^ and do not affect the energy or the angular 

momentum.

Let M be the unit circle tangent bundle of S^ with the

Riemmanian metric K : TM X TM R given by

K(v, w) = ^ (v^ V. v)
cos^G + Csin^82 0

0 1

CsinG^ 0

or in the Euler coordinate chart,

1 0 0

K(v, w) = (v. Vg V ) 0 sin^G + Ccos^G CcosG

0 CcosG C

"1'

^2

^"3 '

The symmetry group action is that of the torus T2 acting on

M as S^ X S^ that is rotation about the vertical axis and rotation

about the symmetry axis of the top referred to as Y in Chapter 1.

So we have the action Y : T2 X M M defined by

^Cy^* Y2' 8, ({), ip) - (G, ({) + Y^, Tp + Y2)

In a neighbourhood of G 0 , where we must use (G^, Gg, G.) to

coordinatise M the T2 action has a more complicated expression 

which we shall need later.

Proposition 2.1

The action of T^ on M for (G^ Gg, 8g) in a toral neighbourhood 
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given by 8. ^^(^ ®2 ®^^^ belonging to a neighbourhood of 0 and 

6^ being any point in S^, is a smooth mapping 'f : T^ x m M 

defined by

Y(Y,, 8., 8_, 8_) = (81, 8', 8') where the 8! are given 

by : -

tan8' = tan8. cosy^ - tan82 sec8 siny^ 

sin82 = sin82 cosy. + sin8^ COS82 siny.

cos8^ siny^ cos(8^+y2) + sin(6^+y2)(00582 cosy.-sin8 sin82siny2)
3 chs87cosy77o7^'87+yZT^sTny77os^77Tn787+y7T-sTny?sTn877Tn87co7r8Z+7n  

z 1 o z j z 1 1 z j z

Proof

In order to see this we use the matrix (1) constructed above 

which transforms coordinates relative to the fixed axes into coordinates 

relative to the rotating axes, in terms of the angles 8^, 82* 6g •

Of course if we performed the rotations corresponding to the

Euler angles we would obtain another matrix which performs exactly the 

same function, but gives the transformations in terms of 6, d) and ip.

This matrix is ;-

c(f) cip - s<p c6 stp s(p ctp +

-C(p sip - S(p cG cip -S(p sip +

sip s8 - cip

where c8 = cos8, cip = coSip, cip = cosip

Because both matrices take the

cG cip sip sG sip

cG cip cip sG cip (2)

s8 cG

etc.

triple (X, Y, Z) to the same

triple (x, y, z) corresponding entries must be equal.
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In particular

sinGg = sin^ sinG (3)

and, combining expressions for sinG^ and cosG^ ,

tanG. = cos(fi tanG (4) 

and similarly

Now, in terms of the Euler angles, the T^ action just increases 

(j) and ip and leaves 6 unchanged. Using this together with equations 

3, 4 and 5 gives the expressions for the T^ action in terms of 6^, 

02 and 0^ that appear above. jQI

Next we check that we do have a mechanical system with symmetry 

in the case of the spinning top.

Proposition 2.2

M, K, V and G as given above do form a mechanical system with 

symmetry in the sense of Sma1e,

Proof

We need to show that K and V are invariant under the T^-action 

given in Proposition 2.1. In order to facilitate the calculations we 

will use the Euler angle coordinate chart.

For V this means that V o Y = V where Y : M ^ M is 
Y Y 

given by :

V(8, *, xP) = T(Y; 8, (|), 4*) 

for Y in T^. 
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Going back to Chapter 0 we can say that

V(8, ^, ^) = cosG

As Y leaves 6 unchanged, cosO also is unchanged so V 

is invariant under the T^ action.

For K we have to prove that

K(T Yv, T Y w) = K(v, w)

Since the T^ action takes (8, (^, ij^J at x e M to 

(8, Ip) at Y X this follows immediately. H

We now carry out the construction given in Smale's paper [17] 

and outlined in Chapter 0 to calculate the angular momentum mapping 

J , showing that the final result agrees with the angular momentum 

as calculated by classical mechanical methods.

In this particular case where G = T^,(^ = R^ and Q* = Hom(R^, R) 

we can write:

J(v^)(X) = J^^(2K)*(v^))(X) 

= [(2K)*(v^)](a^(x))

" ^^^^^x(^^' V '

where v^ E T^ M and "^y^^^ ^^ ^^^ instantaneous velocity vector 

at X e M corresponding to the choice of X e R^ and can be thought 

of as the angular speed of the rotational actions.

Proposition 2.3

Choosing X first as (1, 0) and then as (0, 1) to correspond

to the Infinitessimal speeds of the group action we have that J(v )(X) 
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agrees with the classical calculations for the angular momentum about 

the vertical axis and the symmetry axis respectively, namely:-

(1) In terms of the Euler coordinate chart x = (6, (j), ip) we have 

J(v )(l,0) = $ sin^Q + c(ip cosG + ip)cos8 

and J(v^J(O,l) = C($ cog8 + :p)

(2) In terms of the (8^, Gg, 8_) coordinate chart

X = (8., Gg, 8g) we have

J(v )(l,0) = -9-, cos6-,cos6-sin6^+6„sin6^ + G (6-, sine„+6„) 

cosG.COS82 

and J(v^)(O,l) = C(9^ sin 62 + Gg)

Proof

(1) The instantaneous velocity vector “^(1» 0) is given by 

(0, 1, 0) and that for c(^(0) 1) by (0, 0, 1) and for v^ we take 

any vector in T^ M i.e. (e, ^, ip) where these form the natural 

coordinate chart on T M induced by the Euler chart on M , We obtain:

J (8, (p, ^; 8,* , xp) (1,0) = (0 1 0)

1 0 0 8

0 sin^G + Ccos^G CcosG

0 CcosG C Ip

= i|i sin^G + C(i{)cosG + ;p)cosG

J(8, *, (p; 8, *, ip)

1 0 0

(0,1)- (0 0 1) 0 sin^G + Ccos^G CcosG

0 CcosG C

= C(^ cos8 + ^)

8

as obtained in Chapter 0.
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(2) In the case of the (8^, 8^, 8)r chart to calculate 

^x^^' ^^ ^^ (l^^:^^^^^^:^^te equations 3, 4 and 5 with respect to <}) 

as that gives the direction of rotation for the first factor of T^, 

and then substitute from the equality of the two coordinate trans- 

formation matrices to express everything In terms of 8^, 8^ and 8. 

For the second factor of the T^ actloUgthat is a(0, 1), we juSt 

have (0, 0, 1) as before.

Denoting a^(l, 0) by (8^, 8', 81) we get

From 3 :

So

From 4 :

thus

cosQ^ 62 = sin6 cos(#) = sin6^ COS62 

©2 = sin6^ ;

- o - sin6-sec^S, 8:= Z^lIlL^ = - . ----------  2 ___
1 1 cos8 cos8^cos82 

cos6 sin6 
8«= 

1 COS82

So a (1, 0) =X

From 5 :

sec8' = [(c(|icTj?'-S(()c6sV,) (-sfj)siiJ+ctpcQc^i)-(c^sfp+s(i>cQcip) (-s<})C(p-c<j)c6sip)l 

(c<}) cip - Sl|) c8 STp)2 

cos^ 8g
Thus 8' = ———. C8_c8(c8.c8-s8s8«s8g)-c8gs8_(-c8.s8_-s8.s8gc8_) 

cos^Gcos^S. 2 j

cosG^

cosSg

cos8, sln82 cos8.
--'COS82 ' =^"^1

For we take any vector (81, @2' ^3) andX In T;^ M

we get
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4(8. 8 8 ; 8,8, 8.)(1, 0)
-L ) Z. J) 1 Z U

cosG sin82
sinG^

cosG

COS82 COSG2

cos^Gg + Csin^82 0 CsinG.

0 10

CsinG. 0 C

= - 8 cos9^cos6„sin6„ + 6 sin6 J- J- Z Z Z + C(8^ sin82 + 8g)cos8^ COS82

and
cos^82+Csin^G2 0 Csin82

J(8^,82,8^;8^,82,8^)(O,1) = (0 0 1) ®2

Csin92

= C(8^ sin82 + 8_) 

as obtained earlier in this chapter.

Corollary

The spin defined in terms of the Euler angles by

cos8 + t(j

is given interms of the (8^, Gg, 8_) coordinate chart by

®3

We now go on to analyse the map E x j under this T^ action.

Orthogonal symmetry group action

We have now calculated explicitly the energy-momentum mapping 

E X J : TM R xt^* , which we can regard as a map E x j from TM 

to R X R2 given by

(E X J) (v) = (E(v), J(v)(l, 0), J(v) (0, D) 

= (E(v), J^(v), JgCv))

^3 ^1 ^^"^2

0 1 0

0 c

®1
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where

E(v) ^^^^ cos^Gg + Gg) + ^-c(6^ sinGg + 8^) + cos8^ cosG.

J]^(v) - 8. 0088^ COS82 811182 + @2 sin6^ + c(6^ sin62 + 6g) cos6g ^°®®2

J^Cv) = C(8^ sin82 + 8g)

and V = (8^, Gg, 8g ; G^, Gg, 8g)

From now on we will abuse notation by referring to E x j as

E X J

Notice that as 9g does not occur in E x j (v) we can 

factor TM out by the second part of the S^ x g^ action deriving a 

new domain T^M = TM/g;[ for E x j , This corresponds to the classical 

treatment of ignorable coordinates.

The remaining S^ action which we will denote V on the five 

dimensional space T^M has an invariant manifold I given by 

I ” 6 g ; 6 , 6 _ , 6 ) ; 6 = 6 _ = 0 1 .

In order to apply methods of singularity theory td the analysis of E x j

near I we need to find new coordinates with respect to which the S^ 

action is orthogonal.

Accordingly, define new coordinates for TM by :

x^ = sinG^ cosGg

X2 - sinGg

Xg = cos8^ cosGg 8^ - sin82 sln82 Gg 

x^^ = cosGg Gg 

^5 - ^3 ^1 ^^"^2
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This change of coordinates defines a diffeomorphism near 

(0, 0, 0, 0, 0) since in fact at that point the Jacobian of the 

transformation is the identity.

Note that x^ and x^ are the time derivatives of and 

x., and Xp is the spin.

Proposition 2.4

the S^-actionWith the new coordinate chart given above

Y»' : S^ X T^^ M -f T^ M is given by

4" (y; x^, x^, x_, x^, Xg) = cosy - siny 0 0 0 ^1

siny cosy 0 0 0 Xg

0 0 cosy -siny 0

0 0 siny cosy 0 ^4

0 0 0 0 1 ^5

i.e. the S^ action is orthogonal.

Proof

It is easier to prove this by expressing x^, Xg, Xg, x^, x^ 

in terms of the Euler angles.

Then

x^ = coS(^ sine

X2 = sin(() sin6

x^ = -sintj) sin6 $ + cos(f) cos6 9

X, = cos^ sin8 ^ + sin^ cos8 8

To evaluate the effect of Y' on the first four coordinates, 

replace <j) by (}> + y and expand. The results are as given.
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leaves

In terms of the Euler angles Xg = (}) cos6 + and as

unchanged the proposition is proved.

We now need to express E x j in terms of these new coordinates.

8, 6, ^ and

4"

Proposition 2.5

The energy-momentum mapping, in the new coordinates is given 

by : -

E X J(x^, X2, x^, x^, x^) = (e(x), J^(x), J2(x)) where

E(x)

J]^(x)

j-(l-x2-x2)

^1^4 - ^2*3

(*3+^4) - (*i*4-^2*3)^

+ Cx^d-x^-x^) 2

+ (l-x^-x^)^

J2(x) = Cx^

Proof

This follows from the expression for E x j given at the 

beginning of this section by substituting :-

®2

8 1
*1^2*4

^3
l-x2

(1-x^-x^)

^2 ^1 sinQg = x^

cos6^ COS62 = (l-:5^-»xty'^

sin6 = - I

cosQg = (1-x^)^
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To understand the nature of the singularity of E x J at 

the origin we examine whether E x j is k-determined, for some k , 

under the S^ symmetry. In order to do this we first calculate the 

tangent space to E x J as given in Proposition 1.9.

The S^-tangent space to E x j at 0 e R^

From now on whenever we use r we will mean S^ .

To simplify the calculations we will change coordinates in 

the codomain and work with a mapping F which is r ->^ equivalent to 

E X J , namely

F(x) = - J2(x), J2(x) 

and denote the k-jet of F by F^.

To begin we need some information about the ring of invariant 

functions ^^(5) .

The ring of polynomials in ^^(5) is generated by the following 

invariant polynomials.:

= X^ + X/ 
/ j 4

(^3 " ^1^4 " ^2*3

°4 " ^1*3 "^ *2*4

" *5

It is clear that these polynomials are Invariant. under the 

s’-action. The fact that they generate the polynomial ring can best 

be seen by using complex coordinates to replace the first four 

x-coordinateSj that is letting
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Z X^ + 1 Xg and w 3 \

Then any polynomial in x^,...,x^ can be written as

The action of S^ is given by multiplication by e^® hence 

if f is r- invariant then we can write

r(e z, e z, e w, e w, x^) = f(z, z, w, w, x^)

as the action on the fifth coordinate is trivial. Substituting into 

the expression for f given above we deduce that

j + & = k + m

Hence f can be written as

if k > j, or as

f(x, z, w, w, I (a.^j^ + i b.^^)(zz)'"(w;^)\zw):'-^

if k $ j

and since zz ^, ww Og, zw = o^ - iOg, zw = o^ + iOg

^iid x^ - Gp, the o's generate the polynomial ring.

Note that we have the relationship

°1 °2 4 .2
4

which we will use in the determinacy calculations below.
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In order to calculate '^F we need the generators of the 
r r 

module S (5, 5) over £ (5) , from which we can deduce the generators 
r r f 

oflnO.]^(5, 5) over g (5) , as jDF(x) a(x) ; a(x)e'M\^(5, 5)1 

is one summand of ILF for both ^ =^ and ^ =)i . Since the S^ 

action is trivial on the last coordinate all we need to calculate are 

the generators of E^\4, 4) over ^^\4) and then use the following 

lemma.

Lemma 2.6

If a compact group p acts orthogonally on R^ x R such that 

its action on the last coordinate is trivial, and if the E^(n) - module 

g^(n, n) (considering the action of I restricted to R^^ is 

generated by Y2»''',Y then ^ (n+1, h+1) is generated by 

(Vi, 0),''',(Y , 0), (0, 1) over ^ (n+1).

The proof of this lemma is straightforward and we omit it.

Proposition 2.7

The (4)-module ^ (4, 4) is generated by (xc, 0, 0) , 

C^2* ^1^ ^^ ^^ (0, 0, ^g) ^4^ and (0, 0, ^/^^ "^3^ '

Proof

This proof is an extension of that given on page 5-2 of [s] 

for proving that {&^(2, 2) is generated over ^^(2) by (x, y) and

We use complex coordinates z = x. + lx» and w = x. + lx, . 

Given any polynomial in g^ (/^, z^) we write it as 



— 40 ~

where a., . and b., . are real. The S^-action is multiplication jk&m jk&m 
by e^^ , so the equivariance of g means that

—18 / 18 '-18 - 18 -18 e gCe z, e z, e w, e w) = g(z» z, w, w) .

Using the expression for g given above we have that

j+&=k + m+ l,

So we can write g as

gCz, Z, W, w) = X (a» + ib..) (z z)^ (w w)^ z-^ ^(w)™

where j“k = in-£ + l if m - £ 5: 0 , i.e- k - j " 1 , 

or

gCz, Z, w, w) = I (^ '^^^ (^ w)™(z)^ '^w'^"™

where J?.-m = k- j + l if k - j 5 0 .

In the first case we have g equal to

and in the second case

Now z z = o^ , w w = Og , z w = 0^^ - lOg and z w = o, + lo^ , 

all of which belong to E^(4) so ([^(4, 4) is the module generated 

by z, iig, w and iw , Translating back into x^, x., Xg, x, 

terms and multiplying the second and fourth by -1 completes the proof. H

We are now able to compute the linear space )DF(x) a(x);aEyYL(5,5) 

From Proposition 1.9 we know that T.F is made up of this linear space 

together with the set of maps formed by composing arbitrary maps that 
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preserve the origin from R^ to itself with F , since the S^ 

action on R^ is trivial.

Hence we can set about computing "^ F to decide if F is 

infinitesimally stable. To begin we will calculate the F -^ 

codimension of F^ as defined in Definition 1.7.

The codimension of the 3-jet of F

We will calculate the generators of T^ F Ignoring constants

we have

*1*4 *2*3 2 *5(*i+x2^ ' ^*5

and *2 *3 *4 0

DFg(x) = X, -Cx.x
4 15 -^3 - C^:2*5 "^2 *1 - (*^+x^)

0 0 0 0 C

It is easier to perform the calculation if the o^*s are used, rather 
r r 

than the x-s . Using the generators of (5, 5) over (i (5) 

calculated in Proposition 2.7 with Lemma 2.6, and DF^(x) above, we 

find that the linear space A = ^ DF(x) a(x) ; at 111^(5, 5)1 is 

generated as an E^(5) - module by

\ " ^1' ^3 " (^1 "^5 ' °) 

^2 " (°' °4' °)

and by%^(5) 6,

where 5^ = (0, - ^o\, 1)

To find the other generators of T^ F. we must examine 
B = 4b(F^(x)); b : (R3, 0) H. (R3, o)j i.e.
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^^°2'°1' °3 - ? °i^5 » (^5) ; b : (R^, 0) -»- (R^, 0)

Since ^/(5, 3) is generated, as an E^(5) module, by triples

of the form (oj, 0, 0), (0, o\, 0) and (0, 0, o.) for 1,...,5

we have to determine which of these triples belong to One of

these triples can only belong to TjF^ if either it is expressible 

as a function of the components of F^ or is one of the 6's 

or a sum or multiple of them. In particular (0,, 0, 0) cannot be 

an element of T^ F^ as there are no o^'s in F^ itself at all and 

no o^ in the first coordinate place of any 6. . By a similar 

argument it can be shown that (0, o^, 0) and (0, o, 0) are not 

elements of T^ F^ either (though (0, o^ - o^, 0) is.) However we 

shall see which triples are elements of T^ F^ .

map b we have ^, 0, 0)(a) Clearly by choosing an appropriate 

(0, Og, 0) and (0, 0, 0 ) in B

(b) As A is a module over P^(5) we _ _ 1
b 4 ' 21"5' 5

in A , thus (0, (^fCrr, 0) belongs to A + B , hence so does 

CO, Og, 0) by choosing b^(y^, y^, y^) = (0, yg, 0).

(c) Now 6^ = (- 0^, o^ - Coo, 0) and 62 = (Og, Og, 0) both 

belong to A hence (Oj, 0, 0) and (o^, 0, 0) belong to 

A + B.

Cd) Taking multiples of 64 by Op Og (Tg and J, we have

(0

(0

(0 1
?^1^3

7^1* ^1
1

2

3
e A .

(O' - r^A' (^4)
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From 5^ we know that (0, o,, 0)e A and as A is an ^^(5) - 

module (0, o^o^, 0) e A hence (0, 0, o,) e A .

(e) We have o^ d^ = (- OjO^, OjOg- Cg^o^ Q) g ^ ^^^ ^^ letting 

t^Cy^, Yg, y^) = (0, ygYg, O) we obtain (0, 0^0^ - T°1^5' °) ^ 

hence (o^Cg, ""^1^5' "^^ c A + B

^^^ ^5^4 = (0» - T^^i^^y Cg) ^"^d (0, 0, 0^) E B , 

(by choosing bg(y^, y^, y^) = (0, 0, y^) , so (OjOg, 0, 0) c A + B. 

Then letting b^(yj, y^, y^) = (y^, 0, 0) gives (o., 0, 0) e A + B .

(f) None of the three triples (0, 0, Og), (0, 0, Og) or (0, 0, o^) 

can belong to A + B . For instance, if we consider (0, 0, Og) 

the only possible way to try to show that it belongs is to use 

part (d) and x<zrite

(0 , 0, Og) = (0, - — O^Og , Og) + (O, ~ ^^^3 » 0)

and use Nakayama's Lemma (see page 102 of [s]) . However to use 

1 p Nakayama the triple (0, yOiCTg, 0) must belong to1^1(5) A 

and as neither (0, o^, 0) nor (0, o., 0) belong to A this 

is not the case.

As both (0, a2 -a^, 0) and (0, 0, O2 - c^) belong to A + B 

the four triples (n^, 0, 0), (0, o^, 0), (0, 0, o_), and 

(0, 0, 0.) form a basis for (^(5, 3),^ _ , hence the F -v^ 

codimension is 4 .

We have now proved:

Proposition 2,8

The 3-jet of E x j has r-",^ codimension 4 and so in particular 

E X J is not r infinitesimally stable^, 

We will now decide on the r-determinacy of E x j . 
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Right-Left Determinacy of E x j.

Proposition 2.9

The map E x j is not r -^ k determined for any k . 

Proof

T. F. = A + B

p
Using the notation from Chapter 1, in 3) there is a

k-2 
term of the form (n^ Og 

this term cannot belong to

From Chapter 1 

where

A = 4 DF^Xx) C(x) ; e'h%^(5, 5)

and r p
ETnq^^(3, 3)

Generators of A as an E^(5) module are

, 0, 0) and we will show that for any k

A^ = (^ o^ + 0(3) , Og + 0(3), o) 

A^ = (0(3), o^ + 0(3), o) 

^3 - (^2 '"' ^^^) ' ^3 ''' ^(^)» ^)

and Yy\^(5) A, 

where ^4 " ^^' " 7 ^1 ^ 0(3) , 1 + 0(3)j.

None of the terms of order 3 and above given in the first coordinate 

place of A^, A2 or A^ contain any odd power of o^, (even powers are 

possible as 0^ = 0^02 "^g) 

Hence (0,, 0, 0) ^ A 

and (Oc, 0, 0) ^ A 

thus (o. Or, 0, 0) ^ A for any p .
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Now B = n + 0(4) o. + 0(3), n EYn^(3, 3) '

where none of the higher order terms have a a^ in them.

Hence (^4’ 0, 0) ^ B 

thus (o^ o^, 0, 0) j: B for any p

In fact if (r, 0, 0) e B then t cannot involve a^ at all.

As there is no relationship expressing either o^ or a^ , for any p , 

in terms of the other a.'s then o-oP cannot be written as the sum of 

two terms neither of which involves o^ multiplied by a power of o^, 

hence (o^ o^, 0, 0) cannot belong to A + B . This proves the 

proposition*

Although E X J is not r right-left finitely determined

we shall show now that it is in fact r contact 2 determined.

Contact Determinacy of E x j.

We will work with Fg(x)

Lemma 2.10.

(^3 " T^l^S" ^5

Using the notation defined in Chapter 1 we have

YY\g(5, 3)c1^(5) T^ P^ *

Proof

The linear space DFg(x) a(x) ; aGYY\[(5, 5) is generated

as a module over ^^(5) by

6^ - (" Og - Co^Or, 0)

gg ^ (0, (^4' 0)

gg = (Og, Og, 0)
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and by

where

r
YTl (5)'^4

"^4 " *'°’ - 7 "1’ ^^ '

So '^F^ is generated by these together with

L.j Fg(x) (1 $ i, j g 3) 

where L^^^ is a 3 x 3 matrix with 1 in the i-jth position and 

zeros elsewhere.

Now in this case, as the action of S^ on R^ is trivial,

vn^(5, 3) =ynr(5)^r(5, 3)

Denote the natural basis of ^^(5, 3) over €^(5) by ^®1’ ^2' ^3^ '

(b)

(c)

(d)

^5

^3

It

" ^i3 F3 ent (5) Ty^ F^

= ^i2 ^3 * T'^s'^l^i hence by

follows from (a) and (b) that

(a) o^e. EnV^.(5)T^F^ .

o^ e^ EimE(5)T^F^ because

Likewise

p

o^e^ eYn (5) T^ F^ because 5^ = (o^, ^3'
r

0) cYn (5)Ty, F^
p

Hence since VvY (5) T y^F^ is an £_ (5) - module we see that

e.
1

e.

<5-5.i

(o2, 0, 0)

(o^o^'O, 0)

(°i^4'0' 0) 

(o^, 0, 0)

(02^4' °' 0)

(f) In a similar way

p
all belong to nrt (5) T^ F_ .

(0, o2, 0)

(0, 0^0^, 0)

(0, OgO^, 0)

r
EYYi(5) T^ F because n. a (0, o^, 0)E Yn (5) T^ F^6

1

(g) Recall that 0^0^ =0^+0^

Hence as (Og, 0, 0) and (ojOg, 0, 0) belong to Yfl (5) T^ F^

so must (o^ , 0, 0) .
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Similarly as (0, a|, 0) and (0, o^, 0) belong so does (0, ^2,^2’ *^^ *

(h) (Cg - 0^)62 = Lg^ F^ 

hence (Og - 02)^2 ^ ^K^3

thus both (0^ - 02^2^^2 ^^^ (o^o^ - 0^)02 belong toWI^CS)!^ F^

we conclude that

0^, 0)

o2, 0)

(0,

(0,

p
=n,(5)l„F3

( i) Let p stand for any element of

C YY\g(5), so pe^^ eYYlg(5, 3) for

9 VG^, G^Gg, 

i = 1, 2, 3 .

Then ^
P5^ = (0, - y o^p, p) E 'm (5) T^F^

Hence

(0, 0, p) EVA (5) T^ F^ +M (5) lrA^(5, 3)

Thus
Yn^CS, 3)cwt(5) T^F^ +lvf(5)YVl^(5, 3)

Hence by Nakayama's Lemma we have

YY\^(5, 3)CYVl^(5) T^ F^ . M

Corollary 2.11

E X J is r -W - 2 determined.

Thus we have proved :

Theorem 2.12

Locally near the origin E x contact equivalent to theJ is r

polynomial mapping :

where

2* *3' ^4' *5 1' P2(*i g), PgCx^,'

Cx2 2 - v21 *2I’d’*! 5
1
2

5

+ X^ + X^ 
j 4

P2<’=1 5

P3(x^ ^^5■5
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We can now make a few remarks about E x j. Firstly, from 

its 2-jet, we can see that E is a Morse function and thus particularly 

simple. Secondly, the 2~jet of J^ x j^ is given by :

*2' ^3' \' ^5) *2*3' ^^5)

and so can be regarded as a family of nondegenerate quadratic forms 

parametrised by x^ hence, by the Morse Lemma, the same is true for 

Jf X J2 itself.

Looking at it in another way, taking J as given in Proposition 

2.5, we see that because:

DJ(O) = f 0 0 0 0 c

000c

the kernel K of DJ(O) is given by

K = i(vj, v^, v^, v^, 0)

and the range R of DJ(O) as

R = 4(x, y) ; X = y

If we define new coordinates in the codomain by

X - X "- y and Y = x + y

we can express

J : K X K"^ .f. R'^ X R

by

J : (x^, Xg, Xg, x^, Xg) (:^i^x^ - XgX^ + h.o.t., 2Cx^ + x^x^ - x_x + h.o.t.) 

If we denote Jl^-^^ R by j then j is the essential "singular part" 

of J and we have :
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^2' ^3' ^4^ - + h.o.t.

A quick calculation shows that the Hessian of j at 0 is 

non singular and hence by the Morse Lemma there exists a non-linear 

change of coordinates which will express j itself as a quadratic 

form,

This ties in with the result given on page 22 of Arms, Marsden 

and Moncrief [2] where they show that in fact there exists a sympletic 

change of coordinates which will perform the above operation.

Note from the proof of Lemma 2.10, that the map germ E x J 

itself has finite F - ^t codimension and a versal F -Yt - 2 deformation 

can easily be written down by adding a multiple of x. x^ + X2 x, to 

E and a multiple of x^ + Xg to . Whether such a deformation 

could have physical significance is not clear.

The zero set of E x j .

As a consequence of Theorem 2.12 E x j has a zero set 

equivalent to that of the polynomial mapping (p^, P21 Pg) given there, 

namely

Z = {(^2* *2' ^3* \* Xg); Xg = 0, x^x^ - XgXg = 0 , x^ + x^ - x^ - Xg = 0

As Xr = 0 , we can regard Z as a subset of R*^ . Note that if x 

belongs to Z then all scalar multiples of x also belong to Z , 

and hence Z is a cone. To determine on what it is a cone we look 

at the intersection of Z with the unit sphere S^C R^ .

Lemma 2.13

The intersection of Z with the unit sphere S^ is the set D 

given by: 



- 50 ~

D = (x^, Xg, X, x)

The proof of this is clear.

The equations x^ + x^ = 1 and x^ + x^ = 1 define a torus 

in S and the third equation — = —» determines two diagonals. 

In order to see this clearly take polar coordinates (t^,^.) i^ the 

^2^ P^^"^ ^'^^^^ (^2'02^ ^^ ^^^ (Xg, x^) plane. Then

— - corresponds to 8^ = 8^ or 8, = 8^ + 
2 4

Thus the intersection of Z with'the unit sphere S^ is the

pair of diagonals D show in Figure 3.

Hence:

Corollary 2.14

The zero set Z of E x J is locally equivalent at 0 e R^ 

to the cone on the pair of diagonals D . Igg

By locally equivalent we mean that the conditions of Definition 1.4(b) 

hold on a neighbourhood of 0 rather than on the whole of R^ . 



- 51 -

CHAPTER 3

STEADY PRECESSION OF THE TOP

In the tangent bundle to the configuration space we can change 

coordinates diffeomorphically from (0, (^, ip) to (6, (f, s) where 

s = $ cos8 + Tp as given above. As J. = Cs is a multiple of one of 

the coordinates in the domain we will restrict attention to Ex 

In the configuration space we reduce the domain of Ex J^ by factoring 

out by the symmetry group action and so regard Ex J^ as being defined 

on the reduced phase space TM , hence as being a map from (0, ir) x 

to .

For steady precession to take place both 6 and 6 must be 

zero, so we look at Ex J^ restricted to 6=0. We will call this 

map $ . It is defined by :

$(8) 4i, s) = (^^^ sin^Q + y Cs^ + cos8, (^ sin^Q + Cs cosG)

Of course as both 6 and 6 are zero we have a constant value of 

8 , We will denote by $ the map $' restricted to 8 = 8 , 

a constant. By considering the rate of growth of angular momentum 

about an axis perpendicular to the symmetry axis we find that

8 = 0 <=> (Cs - ^ cos8)^ = 1 (3.1)

See, for instance, page 56 of [9],

This last equation defines a surface, the steady precession

surface K^ in Che space TN
8^0

Considering as a map from R^ to itself equation 3.1

gives a curve in (*, s) space, in fact a hyperbola as shown in Figure 4
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Figure 4

Clearly then, in order for steady precession to take place we 

, 24 cos8
must nave s $ . we will denote by s the minimum value of s 

2 C 1 
that is s = — (cos8)^ . For any given value of s > s there are two 

o c o 

different possible values of given by :

Cs
2 cos8

s o
s

1

called the slow and fast precession. In practice the fast precession 

is often unobtainable owing to the high energy requirement and of course 

when 8 = y the fast precession speed becomes infinite.

The image under $g of this hyperbola is a curve in the 
o

(E, J^) plane parametrised by as follows :

E - ly <^^(sin^6 + cos^8) + (^ + 1) cos8 + -
z L L 2C

1
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cos6 , ;
J —- ■iinnHiiiiiiKiuaiM -f- m

A rough sketch of this curve is given in Figure 5 below.

We now look at the map $. in general. The first thing to 
o

notice is that not all points in the (E, J^) plane are in the image

of $g . More precisely : 
o

Proposition 3.1 

" 1 ,
The set $.' (E, J ) is empty, consists of two distinct points 

or of one point precisely whenever E is respectively less than, greater 

than or equal to AJ^ + cos6 , 

where q 
X = , 

2[sln^G + Ccos^^

Proof

di " ^g cosG 
Substituting = —,———— in the expression for E given 

sih^G
at the beginning of this chapter gives a quadratic in s

C s^[sin^G + Ccos^G] - 2CJ cosG s + 2[cosG - E]sin^G = 0

Thus there can be at most two distinct values of s , hence at most 

two points ($, s) in $I^(E, J.) . 
o

In order to get real roots for s we need

E - cosG ^ AJ^

and so for $"^(E, J.) to be empty, that is for there to be no real 
o

solutions for s , we have the first condition in the proposition. 

Repeated roots will occur when equality takes place, hence the third 

condition and the proposition is proved.
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If we look at the domain of 4>g we find that 
o

$g^(P) = 

d
(^, s); s = (^ cosS

where

P = UE, J^) ; E = Aj2 + COS0

o
looks like a fold along s = ^cos6 but in order to show that

it is a fold we need to look at the singularity sets of *6

This we do in the next section where we prove that we do have a line

of fold points on s = ^ cos0 .

So we can visualise $g by Figure 5. 
o

Figure 5
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Singularities of $ and $g 
o

Proposition 3.2

For $Q considered as a mapping from R^ 
o

set consists entirely of fold points.

to r2 the singularity

Proof

As *8 (*
0

s) = 1^ ^^ sln^8 + -^ Cs^ + cos8, sin^8 + Cs cos8

we have that

(^ sin^8

D$ ($, s) = 
o sin^8 

Cs

Ccos8

and as we are assuming that 8/0 we conclude that :

(^, s) ; s = cos8 
o

Referring to Theorem 1.7 we see that to prove that the singularity 

set consists entirely of fold points we need to show that $. is 
. o 

iT-generic and that the kernel of D$ (*, s) together with the tangent 
o 

space to S^(Oq ) span the tangent space of R^ at ((J, s). 
o

Firstly 1 genericity.We will use Lemma 4.3 on page 52 of [h] 

which gives a necessary and sufficient condition for transversality 

of a mapping at a point to a submanifold. The condition is to choose 

a submersion into R^ (k is the codimension of the submanifold) such 

that the submanifold is the inverse image of 0 and then check that 

the composition of the mapping with the submersion Is Itself a submersion 

at the point in question.

So we define P : J^(R^, R^) -> R , a submersion such that

P 0 j^ ^0 (^, s) = s ^ cos8 
o
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Thus as

D(P 0 j^ $. ) (*, s) = (cos8 1) 
o 

is surjective at the origin we conclude that j^ 5^ is transverse 
o

to S^

Secondly the condition on the tangent spaces and the kernel

of the derivative. The kernel of 0$- at a point ($, s) in 
o 

^1^*9 ^ ^® given by 
o 

KerDt^ (*, s) = {(u, v); ^= g^^}

and T^ ^l^'^G ^ ^^ generated by the vector (1, cos6) and as this 
o 

vector is never parallel to a vector in the kernel of the derivative,

they span T^ R^ . g

So we have shown that $ from the ((^, 
o 

plane is indeed just a fold, but what happens if

map $ : TM f^?

s) plane to the (E, J^) 

we look at the full

Regarding $ as given by :-

$(6; * s) sin^Q + "t Cs^ + cosG $ sin^G + Cs cosG

where G ii^ 0 , then

D$(8; 1^, s) = ($^ cos8 - l)sin8 sin^8

(2"^ cosG - Cs)sin8 sin^8

Cs

CcosG

and

S^^$) = 4(8; ^, s); s = ^ cosG and

Clearly S^C^) is a subset of K^.

(^^ cosG 1
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Proposition 3.3

The l~jet of $ is transverse to S^

Proof

Again we use Lemma 4.3 on page 52 of QsJ .

Let P J^(S^ X R2 R^) + R^ be a submersion chosen so that

s) cosG 1
c-i

Then

D(P 0 j^ $) (8; $, s)
$ sin8 - cos8 1

~(^2 sin6 2(^ cos6 0

which is surjective unless j) = 0 which cannot happen on S^($)

P o j^ $ : (8; (^ s - (|) cosG

So j ^ $ is transverse to S,

Proposition 3.4

The set gii('^) consists of just one point 

Proof

Restricting $ to S.($) and using 6 as a parameter we get

$ (8) 1 +

sp.)
3|g-]]co8^8

2^-1 cos8
[c-l]cos^6

So

D $ (8) 
S^C*)

- s in6
2 [c~lIcos^O

3^1n8 sine _________  3([^-l]cos8):6in8

2[/C-l)cos^^cos8
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and this has rank 1 except when cos6 = 1 2

(remembering

that 6 ^ 0).

So consists of the point n given by

where

6

s

So we have one non

If we now look at

Q = (6;

arccos

3 
ic-ij

4

*, s)

3M3

1

4

fold point Q

$(S^($)^ we note

2

provided that

that $(S^($))

r 4

and

[Sl<%
o o

)) are tangent at the point on $[S^($)) where the parameter

9 takes the value 8 , as D$(8; *, s) drops rank by 1 on S^($)

and hence the whole tangent plane spanned by the tangent vectors to

S^C^) and S^($g ) is mapped to a line

Recalling the remarks after Theorem 1.8 we have the

standard Whitney cusp map from R^ to R^ given there with the point

(0, 0, 0) called the cusp point. We will now show that fi IS a cusp

point.

Since in Proposition 3.3 we have already shown that ] $ IS

transverse to S^^ , in order to show that Q is a standard cusp point

all that is needed, from Theorem 1.8, is to prove
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Proposition 3.5

The 2-jet of 0 is transverse to S^^ .

Proof

Using the construction of S^^ given in Chapter 1 we can see 

that j2 $(x) will belong to S^^ if and only if the symmetric 

mapping 6^$, has corank 1, and transver sal ity can then be proved 

by a method similar to that used in Proposition 3.3. So first of all 

we construct 6^® 
X

Now

Cs
D $(s, 8, *) =

Ccos8

($2 cos6 - 1) sin6 (j)sin^6

(24> cos6 - Cs)sin6 sin^e

We have changed the order of the coordinates from that used in Proposition

3.3 for computational convenience.

Also

S^($) = (s, 9, (^); s = (^ cos6 and n 1<p^ cosG =

On S.($) we have

K = CcosG u + X
(2-C)sinG(cos6)^

----- ----- :------- T---------
(C-1):

+ sin^e w = 0

R3We trivialise T by choosing the new coordinate system :-

Ccos6 (2-C) sinG(cosQ) sin^Q

w'

and trivialise

(C-1)'
1 (3.2)

(3.3)

u

T R2

u

0 0

0 0 1 w

by :

U 1 U

V 1 V
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In terms of these coordinates D $ has the formX

a g

6 e
where :

s 
cos6

g = (-(|)2 cos6 + Cs(i) - 1) sinG + ,12_&2—^i2;^| (s-(|) cosG) 
[(C-l)cO8^'

cosG

E = 1^ [j)^ cosG - l]sinG + (2^ cosG - Cs) sinG (C-2)sin8
[(C-l)cosG]

(i^s + cosG)

5 = j; - A sin^G 
cosG

and for x e S^($)

0

, l+*2

0 0

0 0

and K = {(u', v', w') ; u' = 0} ,

L^ = {(U\ V) ; V = 0} .

We can now calculate D(D $)^ , together with (d D $)^ and 

6^ $^ but first we must change coordinates in the base space R^ 

exactly as we have already done in the fibre R^ .

If we regard D $^ =
a g Y

6 e 5

then

6^ $ = ag
TrT* ""

(2-C)sin8
C((C-l)cos8]

sin^G ag
X 38 3s 3* CcosG 9 s

C2-C)sinG Sy ill - sin^G ay
do C((C-l)cosG]^ 9s

3* Ccos6 9s
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Thus

= sin^e

3C-4
CcosQ

2(IC) sinG

G(C-1) ^ (cosG)

det(6^ $ ) =

2(K]) sinG
—------"1------- :---- T
C (C -1) (cos6)^

sin^G

Ccos^G

3C-4 sin^G
#N^M****** #*gMmmmmMMNgpg»

CcosQ Ccos^G

As sinG / 0, i.e. G = 0 or ir

det(6^ $ 0

sin'^G

are excluded, we have

tanZg = 3C - 4

9 = arctan(3C-4)^ = arceos 1
3(C-1)

2

Hence j2 Mx) e S^i E Sii(»)

As codim(S^.) = 3, we project down onto R^ by Tr and check

whether 0 j^ $ is a submersion when 6 = arctan(3C -4) Now

TT 0 s - (^ cosG, ^2 cosG 1 3C-4
C-1' GcogG

sin^G

Ceos"' G

so

1 (^ sinG - cosG

D(Tr 0 j^ $) = 0 - ^^ sinG 2^ cosG

0 sinG

Ccos^G

9
(3c-4) - —

3tan26 
C 0

On we see

1 (3G^):

D(, 0 j^ $) = 0

3^(C-1)*
_ (30^-4)^

C-l

1____
3(C-1)

2 .

3^(c;-i)^

2

0
C2

0
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which is surjective.

Hence j^ $ is transverse to S^^ .

So we have shown that :-

Theorem 3.6

The point Q is a standard Whitney cusp point.

Figure 6

Structure of the Standard Whitney Cusp Map from R^ to R^

Since we have established that 0 in a neighbourhood of S^^($) ,

can be converted by a local diffeomorphism (local coordinate change)
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into the standard Whitney cusp map from R^ to R^ , it is of interest 

to see exactly how that standard cusp map behaves.

The standard Whitney cusp map is given by :-

f : (X]^, x^, x^) H- (x^, x^x^ - x^ - x|)

and has singularity sets,

S^(f) = {(x^, X2, 0); X]^ = 3xp 

S^^(f) = {(0, 0, 0)}

The image of S^(f) under f is the cusp curve

Ky^, y2); 4y3 - 27y^ = 0}

and the image of S^^(f) is the origin {(0, 0)}.

Restricted to the plane x^ = 0 the map f behaves exactly like 

the standard R^ -> R^ cusp map so in this plane a second parabola viz

f )

is also mapped onto the cusp curve.

Figure 7.
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If we look for f (0, 0), we get :

{(x^, x^, x^) ; x^ = 0, x^ = xp

a cusp curve lying in the (x^, x_) plane. For the full inverse 

image of the cusp curve we have the equation :

2
4x^ - 27(x^X2 - x^ - x2) = 0 (3.4)

Taking a few x^^ = constant slices leads us to suspect that this 

is the equation of a swallowtail, see Figure 8.

A double isolated Inverse image has 
point exists J equation 

4x5 _ 27xg = 0

Figure 8.

So we prove:

Proposition 3.7

There is an origin preserving diffeomorphism from r5 to itself 

which maps the surface given by Equation 3.4 to the canonical swallowtail 

surface.

Proof

The canonical swallowtail surface is defined as the set of points
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in (a, b, c) space for which the quartic equation

ax^ + bx -f c = 0

has repeated roots. This is given algebraically by the vanishing

of the discriminant, see for example page 120 of Jj-S]

A= S^ -27 t2

where S = a^A2 + c

4

ac b^
6 16 21?

We now define the diffeomorphism by: -

= A I euiewe. (-12

This map has non-vanishing Jacobian and as A corresponds to

Equation 3.4 the proposition is proved.

1

2

3

- 4V^
6

4

We can now draw the swallowtail surface and see which parts of

that surface map to which parts of the cusp curve . (See Figure 9)

If we look at the inverse image of points on the cusp curve we

get the pictures shown in Figure 10.



Figure 9.



So now we turn our attention to the inverse images of points 

inside and outside the cusp curve. As seen above, the inverse image 

of the line y^ = k is the plane x^ = k and the inverse images of 

points on the line y^ = k are curves in the plane of the form illustrated 

in Figure 11.

Figure 11.

So points outside the cusp have one curve as their inverse 

image while points inside the cusp have two curves as their inverse 

images, one a closed curve round the whisker, the other an open curve 

in the "tail portion" of the space enclosed by the swallowtail surface.
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We have analysed E x j^ restricted to the subspace given by 

0=0 as it is on this subspace that steady precession takes place 

and therefore we would expect to see all the most important features 

of the map displayed there. We now examine E x j^ defined on the whole 

of the reduced phase space which we can do without having to do a great 

deal of extra work as all the essentials have been worked out.

We start by showing that E x j^ as a mapping from R^ to R^ 

is also a standard Whitney cusp map. Again returning to Theorem 1.8 

put p = 2 and this time n = 4. The map given is the standard Whitney 

cusp map from R^^ to R^. Then

Corollary 3.8 

E X J TM -»- R^ can be converted by a local coordinate change 

around Q to the standard Whitney cusp map given by :-

(x^, x^, x^, x^) h> (x^, x^x^ - x3 - x2 ± x2) 

Proof

If we regard $ as given as :

$ =(5>^, $2^

then

E X j^ '2j

We have to prove that j^(E x j) is transverse to S^ and that 

j^(E X J) is transverse to S^^. The proof of these results follows 

those of Propositions 3.3 and 3.5- For instance in the case of 

Proposition 3.^, letting F stand for E x J^, then
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and S^(F) = ^(8, 8, s); 8 = 0 and the conditions for S^($) holdj .

Hence K is the same as before and to trivialise T R^ we use the matrix 

/ (2-C)sin8(cos8)^ _ 
CcosB i sin/8 0 

(C-1)' 
0 1 0 0 

0 0 1 0 

0 0 0 1 , 

After the change of coordinates in R'* and R^ we can write 

where D$ is now in the form given after the coordinate changes in 

Proposition 3.6. The rest of the proof follows exactly as before.

From the proof of that corollary we can see that :

Corollary 3.9

Si(E X jp = s^($) . g
If we now restrict $ to the steady precession surface K^ 

and ask about the singularities of ‘^’|^2 ^^7 •

Proposition 3.10

sp^l^z) = S^($)

Proof

Restricting to K^ we can express $ by :

"^ 1^ ^ g ^^^ G 2^$ I g2 ' (8 , (j)) H- (^ cos6 + ~ j + cos6 , (^ + ^^^^
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Then

det D($ )
k2

= (C“l) cos6
,^^- Tc-ncose] ^*''" ^ (:°=^ *^ + :^)

which equals zero when ^2 1
(] -1) cosG which is Che equation

defining S_($).

So the singularity

is Che same as ChaC for E

set for E X j^ defined on the phase space

X J^ resCricCed Co Che sCeady precession 

surface.

We would like Co find Che image of Che sCeady precession surface 

k2 under Che change of coordinaCes ChaC converCs $ Co Che sCandard 

WhiCney cusp map so ChaC we could see where ic lies in Che swallowCail 

buC Chis would be exCremely difficulC Co do. So we will aC leasC 

invesCigaCe whaC happens Co Che CangenC space Co k2 aC Che poinC Q 

under Che change of coordinaCes.

Proposicion 3.11

Under Che local diffeomorphism ChaC gives Che change of 

coordinaCes from (s, 6, j>) Co (x^, x^, x ) converCing $ inCo Che 

sCandard WhiCney cusp map, Che CangenC space Co k2 becomes Che 

plane n given by :-

n = X2, Xg); Ax^ + p Xg = 0

where

and

p = (3)^ (3C-4) + 4|c-]]^ .
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Proof

The steady precession surface is given by

Hence

K^ " ^(s, 8, i)

3^ 

(C-1)^

(Cs - ^ cosO)^ = 1 y

(3c-4)^ C-2

' 3*(cl)*,
TK^ = -

The derivative of the coordinate change diffeomorphism is given 

in two parts, the first by Equations 3^2 and 3.3 in the proof of Proposition 

3.5, that is the change of coordinates in R^ and R^ used to simplify 

K^ and L respectively. $ can then be expressed in the form

$ : (u', v', w') 4- u' + higher order terms, ^^^^^^

where *.(u', v', w') is of degree greater than or equal to 2.

The second part of the derivative of the coordinate change 

diffeomorphism is defined in Morin [14] as the change to a "system of 

quadratically adapted coordinates", by taking the quadratic form given 

by the terms of degree 2 in *.(0, v', w') and diagonalising it.

In this case the quadratic form is given by :

3C -4
Ccos8

2(1-C).3^ih@r

C[(C-l)cos6]^cos6

2(1-C)sin8
c[\c-l)cos8]^cos8

Ccos^G

and the diagonalising change of coordinates by
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2(C-1)’ -3^(3C-4)^ V*

1___________

^(3c-4) + 4(C-1)^ 1 1 1
3*(3C-4)2 2(C-1)*

Applying these changes of coordinates to gives the

result.

The plane IT contains the X2-axis that is the line which is 

tangent to S^(f) at 0 and corresponds to the line that is tangent 

to S^($) at fi under the change of coordinates. This is as we would 

expect because S^($) is contained in K^.
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CHAPTER 4

THE AMENDED POTENTIAL

We will now carry out that part of the Smale programme outlined 

in Chapter 0 consisting of calculating and analysing the amended 

potential. In this Chapter we will use the cotangent bundle formulation 

as described in [ij, in order to use the Hamiltonian.

The configuration space M is S0(3), which we will examine 

away from the region where 6=0 or ■r, and the symmetry group action 

V is given by

: (y^, Y2: 8, *, Ip) H- (8, * + 'P + Y2)

while the induced action of the symmetry group T^ on the cotangent 

bundle is :-

: (Yj, Yg ; 8, 4), V,, Pg, p^, P^) (8, $ f Yp ip + Yg, Pg, P^, P^)

The potential energy V : M R and the kinetic energy K : T*M R 

defined by :

V(8, ^s^) = cos8 2

^^^' *' P8' P^' P^^ " 7i^8 "" Z-P^p ^ 2" — -r ------  -

are both clearly invariant under this induced action.

The momentum mapping J : T* M + R^ calculated in Chapter 1 

T* is also invariant under Y .

Following the calculations referred to in Chapter 1 and detailed 

in [1] Section 4.5 we look for the set A where J • T* M -* R^ 

is not surjective. A quick calculation shows that A consists of the 

subset defined by putting 6 = 0 or tt .
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Proposition 4.1

The amended potential Vy is defined on the whole of M - A

and is given by :”

V(8, (|), Ip) = cosQ
]1 

2C

^^1 - ^2 ^°g^)^

2 sin^0

where y = (y., y2) e R^ .

Proof

For a point X e M , V
y

IS defined by

where IS a

y
inf
-1 

nej

y

l-form in -1
X

(y) satisfying the condition that

K(a)

(y)

Now letting y - (y^, we have that

So for a e

and clearly

So

and hence

J^^(y) =

-1
J (y) we

K(a) =

(8,

can calculate

2 2TPe "' "50'^2

the infimum of K(a)

a(x) = (8

V(8, *, ^) = cose

is

y^, y2) ; pQ E R

1 ^^1 " ^2 ^°g®)^

sin^6

obtained

0 9 y 9

by letting pg be zero.

2

^2
2G

^2 cos6)^

2sin26
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We can how factor out by the symmetry group T^ and let z = cos6

to express the reduced amended potential, V : (-1, 1) R as

^(z) = z + 4 "ST
(p^ - Pg z)^ 

2(1 - z^)

This has graph as illustrated in Figure 12.

Figure 12.

(In general we would have to factor out by the isotropy subgroup 

of the co-adjoint action of the symmetry group to calculate V but in 

this case, where the group is abelian, this reduces to factoring out 

by the group itself).

The proof that it is impossible for V to have more than one 
P 

minimum and hence that the graph looks like that drawn above will be 

given below.

We can now calculate the condition for steady precession to take 

place. As this motion is a relative equilibrium we know from Theorem 1.2 

that it will occur at the critical point or points of V 
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Proposition 4.2

The motion of steady precession will take place if and only 

if the condition

(p, - p, cos8) (p^ - p, cos8) = sin'^Q 

holds.

Proof

We find the critical points of V by setting ^--~ = o .

Now ?-^= 1 + — - ------  - ----------  - ---------  —
- z2)2

which equals zero precisely when

z'^ - + 2)z^ + (p? + p«)z - + 1 = 0

Replacing ^1 ^y p* and Pg by P,p gives the condition*

On the graph we have denoted the critical point by z

The condition of proposition 4.2 defines a sub-manifold in the 

cotangent bundle which is the analogue of the steady precession surface 

K^ in the reduced tangent bundle as defined in Chapter 3. We will 

call this manifold the dual steady precession manifold and denote it 

by K* . K* has codimension one and is thus not a surface, but we can 

regard K* as the cartesian product of a surface K* with R x S^ x s^ 

where this last space has coordinate chart (Pq ? <{>» 'P) » The surface 

I^ will be called the dual steady precession surface.

The General Motion of the Top.

In general the top is moving with a fixed value of the energy E 

~ 1 0 which is made up of two components namely E = V y Pg ' When pg is 
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zero E is equal to V^ and assuming that V^ is greater than its 

minimum value there are two possible values of z which correspond 

to this. The axis of the top must stay between the two values of 0, 

given by the two values of z , because if 6 were to be outside of 

that range then V^ would exceed E .

In addition to the critical point there is another interesting 

point on the graph of V^ , That is the point at which the rational 

(hl -Pg Z)^ 
expression —

Lemma

When

highest point

Proof

We know that (z ) = 1 and (z ) = 0 so z / z , az c az 0 c o

Assume that z < z , Since - co as z -^ - 1 there co dz 

dV
must be a z in (- 1, z ) with ,~bL = O . However -~ii. = 0 at 

o dz dz 

only one point in (- 1, 1) namely z^ . This is proved in corollary

4.11 below, (The proof is totally independent of this lemma!).

——— vanishes. We will call this point z , so 
2(1-2^) (:

We will now analyse what happens when E equals V^(z^)

E = V (z^) the value of 8 given by cos8 = z^ gives the 

of the motion of the axis of the ton, that is z > z .

Proposition 4,3

At z = z^ we have the following :-

(1) 6 = (^) = 0

(2) 8 / 0,^r= 0

(3) * = 0 , 1^ ?( 0 ,
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Proof

(1) As E = V(z^), at 

we know from the construction of

z = z we have =C G

carried out above

8 = 0 . Now

in Chapter 1 that

COS0 + sin^Q

and we have let (p ,

z^ = W]^/P2 ) that is 

sinG / 0 hence (^ = 0

Furthermore at

As G ^ 0 or IT

(2) As

on taking time

we get

at z c

1 "9 ^^1 - Pg cosG)^ 

2sin^G

derivatives, remembering that E , p^

0=8^ sinG +

zc

we

and

we have

know that

Pg are constant

^^1 - ^2 ^^^®)^2 ^^1 - ^2 ^°g^)^ cosG

sin6 sin^Q

(This result can also be obtained from the Euler equation : see [1] or

[13],) Zg is given by p. - Pg cosG = 0 so this equation reduces to

G = sinG / 0

However, if we differentiate the equation for 6 again we get :-

0 = G - cosG G "I
3pgCosG(p^-pgCOsG) 

sin^G

(p^-p„cos6)2(sin^G+Scos^G)
------------------------------------------------ 8

sin^G

and as at z c we have 6 = 0 we must also have G 0 .

(3) We have p 1 ^2 cosG + (jjsin^G so taking the time derivatives

we get

0 Pg sinG 8 + <(i sin^G + 2<jiG sinG cosG

that is

4) sinG + (2(^ cosG - ^2^® ~ (^
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(as sinQ / 0). (Again this result could be obtained from the Euler 

equations.) Hence as 0 = 0 at z^ we must have tfi = 0 .

Differentiating again we obtain

(|) sin8 + (2 (ji cosG - Pg)^ + 8(3 ({i cos8 - 2<|) 8 sin8) = 0

At z where 8 = <^ = 0 this equation becomes

<j) sin0 = U2 6

and as 8 ^ 0 we know that ^ ^ 0 . M

If we regard the axis of the top as tracing out a curve 

parametrised by t on a sphere whilst the top is moving, then by 

choosing t = 0 to correspond to the axis being at the upper bounding 

circle 8 =8^ , we can say from the above :

Corollary 4.4

While the top is near the upper bounding circle, (6, <})) are 

given by a curve

t + P^t2 + 0(4), Q^tS + 0(4)) g

' i 
In fact we see that 2P = 6(0) = sin6 = (1 - 22)^ and o c c 

6Qg = *(0) = Pg '

Hence :

Corollary 4.5

There exist smooth invertible changes of coordinates t n- s and 

(6, *) H- (y, p) such that (%, p) are given by the map 

s »+ (s^, s^) .
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Proof

A translation r = 8 - G removes the constant term from the c 

first coordinate, if we then prove that the map g : s h- (s^, s^) 

is 3-determined under right-left equivalence it follows immediately 

that the smooth changes of coordinates exist. Using the notation 

from Chapter 1 it suffices to prove that'yfy(l, 2)CW\(1) mg 

where T^g is given in Proposition 1.9(a) (We can consider T to be 

the identity here as we have already factored out by the action of T^). 

We will suppress the subscript ^ as we are only considering right-left 

equivalence from now on.

So we need to show that any map from R to r2 of the form

f 3as +...

bs^ +.. .

at 0 , i.e.

can be written as the product of a function that vanishes

at least s , and a map of the form :

G(s) 2s '

3s^

+ H(s^, s^)

where G : R R and H : R^ -»- R^ .

This is clearly true hence the corollary is proved.

By considering V. we have factored out by the precessional 

motion so this pattern will be repeated all round the bounding circle 

given by z^ . Thus the axis of the top will meet that circle in cusps 

though the cusps on the circle belong to infinitely many different 

trajectories of the top's axis.

At this juncture we will look at the previous result in a 

slightly different way. We can regard the motion of the top as given 

by a path in the phase space T* M, that is a map C : R T* M 
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with 5(0) giving the initial conditions with which the top is 

set in motion. As we are here only Interested in the axis of the top 

we can compose 5 with the canonical projection tt : T* M S^

IT : (6, *, ^ ; Pg, p, p) H- (8, *) 

and then 7r 0 g : t F+ ^8(t), ())(t)] gives the curve on S^ traced 

out by the axis of the top.

This map has singularities precisely when 6 = (^ = 0 , that is 

6=0 and y^ " y2 cos0 = 0 . These two equations define a codimension 

two sheet E in T*M .

We know from the calculations carried out above leading to 

Corollary 4.5 that a choice of a point in E to be g(0) will result 

in the top executing the motion described above with cusps at the 

upper bounding circle given by 6 = 6(0) .

However what will happen if we choose a point near to but not

on E to be g(0)? More precisely, let (e, 0, 0; 0, p., u^) be 

a point in E and (e + a, 5, ip; w, p^ + g, p + y) be a typical 

point of T* M , where a, 8, Y, & and m are small. (Note that 

E is invariant under the T^-action, so we can always choose ip = (p = 0 

for a point in E . The value of ip does not enter into the calculations 

at all as we are only concerned with the axis of the top.)

Taking the typical point in T* M as ?(0) we can calculate :-

Proposition 4.6

The first few terms of the Taylor series for r 0 C at ;(o)

are given by 

r 0 ^: t H- (8(t), *(t)) 
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where

6(t) = e + a+ (Alt + Pt^ + higher order terms

4’ (t) = 5 + At + Bt^ + Qt5+ higher order terms 

where
, p. + g - (w + y) cos(G + a) 

A = *(0) = —   -".' '''   ̂  
sin^(e + a)

1 "
B = ^ ^(0)

[^2 + Y - 2A cos(e + a)](jj 

2 sin(E + a)

P
1 "
^r^Co) sin(e+a) _

2 sln^(e + a)

1
Q = g *(0)

[n2'*'Y-2Acos(E+d)]2P - m[6Bcos(e+a)-2Amsin(e+a)]

6 sin(e + oj

In R^ we change coordinates by letting p(t) = 8(t) - e and

consider :

TTOg : t H- [p(t), *(t)J

which is TTPS expressed in the new coordinates.

We will define a map germ ( : (R^ x R, o) 1+ (R^ , o) by 

S(a, 6, Y, 6, w; t) = 'iroS(t)

Now we define 2 : (R^ x R, O) t^ (R^ x r2, q) by

5 : (a, g, Y, 6, w; t) w- (a, g, y, g, cj ; g(a, g, y, g, m; t))

We will denote g(0, 0, 0, 0, 0; t) by g(t)

Now we will show

Theorem 4.7

2 is a 5-parameter versal unfolding of g 
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Proof

If we denote the values of P and Q (as calculated in Proposition 

4.6) when a=8=Y=w=0 by P^ and Q^ then this agrees with

P(^ and Q^ as given in Corollary 4.4 so we can write

s ; ti+ (p^t^ + 0(4), Qt^ + 0(4)]

and

5(a, 6, Y, &, (^; t) = (p, *)

where

p = a + Dt + P(a, 6, Y, w)t^ + 0(3)

(|) = 6 + A(a, g, Yi f^)*: + B(a, g, y, w)t^ + Q(a, g, Y, w)t^ + 0(4)

We first compute Tg^ In fact let

go : (Pg^^' Qo^^)

then we will show that TE = Tg o o

Now

Tg(^ = iK eE(l, 2); K(t) = G(t)
2P t o

3Q t2 
o

+ H(Pt2, Qt^)

where G : R R and H : R^ R^ are arbitrary smooth germs.

Also

T^o = p eEd, 2); K(t) = G(t)
2Ptt + 0(3)

3Q t^+ 0(3)
+ H(p^t2 + 0(4), Q t3 + 0(4))

So

K eE(l, 2); K(t) = G(t)
2P t o

3Q t^ 
o

+ 0(3) + H(Pt2, Q t^) + 0(4)

go
" ^o +^(1, 2)
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However we know from the proof of corollary 4.5 that

vn^d, 2)c vnd) Tg^ cTg^ so

^^o ^ Tg^

We could have said that

Tg^ c T s^ +m^d, 2)

then using the fact that"V*X^(l, 2)C **1(1) Tg^ we would have

Tg„C I6„ +im(l) ig_^

Then by Nakayama's Lemma (see e.g. page 102 of [sj) we have

’■So = T5„

Hence Tg^ = T?^ , as claimed.

Now ^(1, 2)/^ is spanned by (1, 0), (0, 1) and (0, t), 

thus both g^ and 5^^ have codimension 3 , so,providing that at least 

, 3A 3A 3A 3A . 
’^’^^ "d^ ’ "3^ ’ ^ °^ ^® non-zero when a=8 = Y = to = 0 we 

will have, using the notation given in Theorem 1.1'^:

£d, 2) = T^^ + R{F^, F2, F^, F^}

From Proposition 4.6 we see that :

3A
36

a=6=Y=ci)=0

1

sin^By

Hence we conclude that is a versal unfolding of g

)^ 0

From corollary 4.5 we know that there exist smooth invertible

changes of coordinates in R 

these new coordinates by ^^

and

we

r2 such that, denoting 5^^ in

can write g' : s H- (s^, s^) .
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If we express the map 5 as E’ in terms of these new 

coordinates we will have a mapping that will be a 5-parameter versal 

unfolding of 5^ , because it will be isomorphic (in the sense of 

Martinet [jLlJ) to the original versal unfolding E . Hence, by the 

remarks following the versal unfolding theorem of Martinet in [llj this 

5-parameter versal unfolding of 5^ will be equivalent to a constant 

2-parameter unfolding of a 3-parameter universal unfolding of ^^ , 

since g' has codimension 3. Thus we have proved :

Theorem 4.8

There exist local diffeomorphisms H : (R^ x R, o) (R^ x R, 0) 

and X : (R^ x R^, o) 4- (R^ x R2, 0) given by

H(a, 6, Y, 6, m; t) = (a, g, y, 6, w; n(a, g, y, ^, <J^; b) 

X(a, g, y, 5, m; 8, *) = (a, g, y, 6, m; Xi(a, g, y, 6, m; 8, (|i), 

X2(™' G, y, 6, m; 8, *)] 

which are 5-parameter unfoldings of the identity of R , respectively R^ 

and a local diffeomorphism h :(R^, 0) H- (R^, 0) which we write as

h : (a, g, y, 6,w) H- (u^, U2, Ug, u^^, u^)

such that we get a map 1 : Rtf R^ defined by :-

X : s If (u^^ + s^ , u. + U.S f s^)

which we can regard as expressing ir 0 C ^" "canonical form" in the 

sense that :-

(h X 1^2) 0 X 0 (id^ X [^ 0 c]) = (idr x X) 0 (h x id^) o H 

where id. means the identity map from R^ to itself.

From this we can immediately verify that the axis of the top 

will perform one of the two motions shown in Figure 13 near the upper 
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bounding circle.

Figure 13.

Of course this description of the motion of the axis of the top 

is well known (see e.g. Figure 4.10 on page 153 in [^13j). Our contribution 

here however, is to show that the motion can be put into canonical 

form by suitable smooth coordinate changes. Moreover, we will now 

use the above analysis to draw conclusions about the stability of 

the mathematical model, closely related to the phenomenon that a real 

top with all its attendant imperfections but with negligible friction 

actually appears to behave locally like the perfect top described above.

From Martinet [^11] we know that any universal unfolding of a 

map germ is itself a stable germ, hence the expression given for A 

in Theorem 4.8 above defines a stable germ. What we would like to be 

able to say is that this stability means that if we were to take a 

small perturbation of the system leading to a small perturbation of the 

unfolding 5 then, with respect to some physically meaningful equivalence 

relation, the perturbed unfolding will be in the same equivalence class 

as the original unfolding. However, if F is an unfolding of a map 
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germ at the origin and we perturb F slightly then F will not usually 

be equivalent to the new unfolding at th^^or ig^, so equivalence 

of unfoldings as defined in Chapter 1 is not a suitable relation to use.

Firstly we need a definition of F. at (u, x) in r'^ x r*^ 

being equivalent to F^ at another point (v, y) in R^ x R^^ . Such 

a definition can easily be framed by shifting the origin. Secondly, 

following Wassermann [^IS] , we can say :

Definition

Let fy : (R 5 0) (RP, 0) be a map germ and let 

F : (R^ X r’^, 0) (R^ X Rp, 0) be an unfolding of f^^ , as given in 

Definition 1,8. We say F is stable if for every open neighbourhood 

U of 0 in R*^ X R^ and every representative F' of F defined 

on U, there is a neighbourhood V of F' in C"(U, R*^ x R?) (with 

the weak C™ -topology) such that for every G’ e V there is a point 

(u, x) e u such that C at (u, x) is equivalent to F' at 0.

We can now conjecture :

Proposition

The unfolding 5 given in Theorem 4.7 is stable in the above 

sense.

We do not prove this claim. It ought to be possible to prove 

it by an analagous argument to that given by Wassermann for Theorem 4.11 

on page 98 of [1^, as we already known that 5 is a versal unfolding. 

Assuming this proposition it follows that the motion sketched above 

will be locally stable under small perturbations of the equations of 

motion, Such perturbations could be brought about for instance by 

making the top slightly asymmetrical or alternatively spinning a 
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magnetically sensitive top in a weak magnetic field. In such cases 

we would find that :

Theorem

Locally near the upper bounding curve of the motion of the axis 

of the top, the axis traces out either loops or waves as before.

We now turn our attention to the motion of steady precession.

Steady Precession

We are going to examine the geometry of the dual steady precession 

surface K* and will begin by showing that the reduced amended potential 

V^ has only one critical point in the rapge -l<z<+l,i.e. 

the quartic equation

has only one root in the indicated range.

To investigate the roots of z^ + az^ + bz + c = 0 we need 

only to look at the swallowtail catastrophe, as given on pages 176 - 178 

of [16]. The bifurcation set, in (a, b, c) space, which gives bhe 

regions for different numbers of roots is parametrised by

(a, b, c) = (3q - 6t^, - 6rq + 8r^, 3qr^ - 3r^)

(There are a couple of small errors on page 177 of [16] itself).

In our case we are taking a plane slice through the bifurcation 

set, given by a = c - 3.

Proposition 4.9

The bifurcation set, in the plane a = c - 3, is given by 
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b = ±(2 - 2c) and (b, c) = (2r^ + 6r, - 3r^), r^ ^ 1 .

Proof

The parametrization of the bifurcation surface above, together 

with the equation a = c - 3 , yields

3q =     —1-^ = 3(r2 - 1) providing r^ + 1 •

Then

b = Sr^ - 6rq = 2r5 + 6r 

and

c = Sqr^ - 3r^ = - 3r2

If r^ = 1 then

c = Sqr^ - 3r^ = 3(q - 1)

and

b = Sr^ - 6rq = 2r(4r2 - 3q) = ± 2(4 - 3q) .

So b ±(2 ~ 2c) , taking the plus sign if r = 1 and the minus

when r = - 1 .

The bifurcation set looks as in Figure 14. 

Figure 14.
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The curve given by (b, c) = (2r3 + 6r, - Sr^) intersects! the lines 

b = ±(2 - 2c) at the points (± 8,-3) with cubic tangency.

In order to decide about the number of roots of our equation, 

we need to pull back this picture to (p^, v^^ space. As b = p^ + ^2 

and c - 1 = - P|P2 the line b - 2c = - 2 corresponds to (p^ + p^)^ = 0 

and the line b + 2c = 2 to (p^ - P2)2 ” 0 . Therefore the only 

part of Figure 14 which has any significance in this case is that shown in 

Figure 15 which corresponds to the shaded region in Figure 14.

Figure 15.

In order to see where the roots lie we need to look at the 

catastrophe manifold over the bifurcation set. This will look very 

similar to the sketch given on page 178 of |^16j with the addition of 

two extra "cusps" one on the upper sheet and one on the lower. Note 

that here we are not using "cusp" in the usual catastrophe theory sense, 
2 

that of a y power, but simply to mean "sharp point". Referring back 

to [jL6j , page 177, we see that the parameter r , used above, can be 

identified with z , hence the additional cusp we are interested in is 

the one on the upper surface.
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So the catastrophe manifold looks like Figure 16.

Figure 16.

We can see that over the "two root" section of the control 

plane one root of the quartic will be less than -1 and the other 

between - 1 and + 1 , whilst over the "four root" region, one root 

is less than - 1 , the next between - 1 and + 1 and the other 

two greater or equal to + 1 .

So we have proved :- 
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Proposition 4*10

The quartic z'* - (p^p^ + 2)z2 + (p^ + p^)z + 1 - p^p^ ' 0 

has only one root between - 1 and + 1 for all values of p^ and 

Pg such that (p^ - pg)2 > 0 and (p^ + p)2 > o . g||[

As we know from elementary consideration of V (z) (see 

immediately prior to Proposition 4.2) that there must be at least one 

minimum for - 1 < z < + 1 , we conclude;

Corollary 4.11

V (z) has only one critical point for z between - 1 and 

+ 1 and that critical point is a minimum, NN
Thus :-

Cqrollary 4,12

Given values of p^^ and pg there is only one possible angle

to the vertical at which steady precession can take place.

From page 360 of [1] we know that nondegenerate maxima or minima 

of the reduced amended potential give stable relative equilibria and 

so we can conclude that :

Corollary 4.13

Steady precession is a stable relative equilibrium. M 

This contrasts with sleeping which is stable provided that the angular 

velocity of the top about its axis is greater than a certain critical 

value. When the angular velocity is less than that value sleeping can

still take place but it is an unstable motion, 

discussion on page 156 of [^13j .

See, for example the
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The relevant portion of the catastrophe manifold which we will 

denote Q^ can now be pulled back to lie over (p^, ^2) space where it 

will be the steady precession surface K* given in Proposition 4.2,

We need also to examine the behaviour of K* near the region 

corresponding to 6 = 0 or r , The analysis above excluded these 

values so we will need to investigate the situation using the 

(6^, 62, 6g) coordinate chart. However, we can look at the behaviour 

of the catastrophe manifold over the bifurcation set to see the kind 

of behaviour we would expect.

Over the line (y^ + ^2)^ “ 0 the only possibility is a repeated 

root of z = - 1 and this must correspond to the top hanging vertically 

downwards, the ultimate in stable motion! Now we turn our attention 

to the portion of the catastrophe manifold over the line (y^ - Vg^^ = ’^

We distinguish three cases:

Firstly, if (y^ + Ug)^ > 16 then we have a repeated root of 

z = + 1 and no other admissable root.

Secondly, if (y^ + < 16 we have a repeated root at 

2 = + 1 and another root between + 1 and - 1 .

Thirdly at (y^ + ^2')^ ” 16 we have a threefold repeated root 

at z = + 1 .

At this stage we turn our attention more fully to the sleeping 

top and tie together the steady precession surface, investigated above 

using the Euler coordinate chart, with the sleeping conditions, investigated 

using the (9^, 62,6g) - coordinate chart.



The Sleeping Top,

We now wish to examine the behaviour of the sleeping top in 

a similar way to that which we used for steady precession. However, 

as remarked earlier, we need to use the (6^, O^, 6g) ~ chart on M 

rather than the Euler angle chart.

In this chart we have the potential energy M R .V

given by

V(8^, Gg, Gg) = cosGg COS82

and the kinetic energy K : T* M by :-

2.3

K(8^

The

by

^2* ^3* Pf^ p2^ Ps^

momentum mapping

^^I' ^2^ ^3’ Pl’ P2’ P3

1 2
7^2

cosG g

is

Pf COSGg

(p^^ - pg sinGg)^ 

cos^Gg

given,

sinG^
P2

see Proposition

sinGg + Pg
cosG. 

cosG^ P3

^ 2 
% P3

1
2

J :

J : T* M -^ R2

Proposition 4.14

The set of points X in M such that
T*M

R2: T* M -)-

is not surjective consists of all points

^2' Gg) with ^1 ®2 = 0

Proof

DJ
JAM

- cosGg sinGg

COSQ. sinG.
cosG.

0 0 1
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which has rank 1 if and only if 0 i. e.sin6^ = 0 and sinO^

61 = 02 = 0 .

Hence we cannot carry out the construction of an amended 

potential to include the case of a sleeping top, as A corresponds to 

the sleeping position, and must be examined separately. (See remarks 

following Lemma 4.5.4 on page 343 of Ll]). However, we can determine 

what happens to the steady precession surface K* as we approach the 

sleeping condition.

In order to see this behaviour clearly we look at the situation 

in the tangent bundle rather than the cotangent bundle and then pull 

back the picture to the cotangent bundle.

Proposition 4.15

Proof

given

The steady precession manifold K is a submanifold of TM 

by K = {(e^, Gg, Gg; 8^, Gg, G.)} where

and

^^^ ^1 COS62 ®2 sin62 = 0

Using the relationships worked out in Chapter 2 between the new

coordinates for the configuration space and the Euler angle coordinate^ 

(a) corresponds to 8 = 0 and (b) to (Cs - * cosG)* = 1 which are 

the defining equations for K given in Chapter 3. g

The steady precession surface gZ fg obtained from the steady

precession manifdld K by factoring out by the group action.

The question we must now answer is : What does K and hence K^ look 

like close to 8^ = 82 = 0?
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As G ^ and G2 approach 0 the time derivatives G^ and

62 also approach 0 for points ^®1’ ®2’ ^3’ ^1’ ^2’ ^3^ in K

Proof

The defining equations of K are

and

L.e

(a)

(b)
®2 

sinG],

®2

Replacing G^ by

(82)2
r cos6

cos6^=°=^®

So

G2 = sinG^(cosG2)^

thus

3

(: '3

sinG^ COS62

+ 6^ sin62]

sinG^

2

^2

cosG^ sinG2 = 0

cosG^ COSG2 

sinG^ 1

sinG^ sinG2 - G2 cosG^ cosG. sin^e^

cosG^ sinG^ 

sinG^ COS62

2 + C sin2G2)

®3 ± c^ez

^2 we get

[c G_ sinG^] §2 + sin^G^ = 0

COSG2 - 4 cosG^[cos262 + C sin2G2] 

2 cosG fcos^G^ + C sin^G^l

6^.=-sin62 (COSG2) ^
'3 C^G^ COSG2 - 4 cosG^[cos2g2 

2[cos2g2 + C sin2G2J

from which the Proposition follows.
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So we have shown that as 8^ and Q^ approach zero the 

manifold K tends to the set j(e., 8, 8; 8 , 8., 8.) = (0, 0, 8.; 0, 0, 6_:

or over our "factored out" set of coordinates, just the 8. axis, 
cps8.

subject to the condition that C^ 8_^ ^4 u' ' '',, ,. rcos^8_ + C sin^8«n . 
j COSo^

Theorem 4,17

The frontier of the surface K^ of steady precession points 

(regarded as a subset of the reduced tangent space) is the line segment

This line L' is exactly the set of points giving the motion of a 

stable sleeping top see, for example, page 156 of [13],

We now pull batk Q^ to lie over the (p., Pg) plane in 

T* M. As Q^ lies over the quadrant given by (p. + Pg)^ ) 0 and 

(P1 - P2)^ ^ 0 the surface K* in (pu, P2, z) space lies over all 

the (p^, P2) plane but is symmetric around the planes

^1 = yCu^* 1-'2' ^1 ^2 ^2 l(^^, ^2* ^)' ^1 - ^2 °|

The surface K* intersects the plane P^ in the line {(p., p^ z) ; 

Pj^ + P2 = 0 , z = - 1} and intersects the plane P. in two segments 

of the line {(p^, Pg, z); P^ " ^2 '^ ^' ^ '^ ^^ ' ^^ rest of K* 

lies between these two levels of z . From the remarks at the end df 

the last section we see that the plane z = + 1 intersects Q^ and 

hence K* only if |p^ + Pgl > 4 , the other part of the line 

{(p., P2, z); p. - p^ = 0, z = +1} (giving the unstable sleeping top) 

being isolated.
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Furthermore we know that Q^ meets the lines corresponding 

to z = - 1 and z = + 1 quadratically so when pulled back to lie 

over the (p., ^2) plane Kt must meet the inverse images of those 

lines linearly at an acute angle. Putting all this information together 

we can make a sketch of Kt as in Figure 17.

From the sketch we can see that the case when p. = Pg and 

|P1 + P2I > 4. corresponds to the stably sleeping top. However 

when [p^ + P2I < 4 we have the unstable sleeping top when a small 

perturbation will cause it to "wake-up". As we see, there is a possible 

steady precession that can take place with the given values of p^ and 

P2 . The in-between point is the critical point between sleeping and 

wakefulness given as we see by p. = P2 = 2 .
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Figure 17
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