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ABSTRACT 

FACULTY OF ENGINEERING 

AERONAUTICS AND ASTRONAUTICS 

Doctor of Philosophy 

ON SOME ASPECTS OF THE AERODYNAMIC PERFORiMANCE OF GROUND-EFFECT WINGS 

by Patrick Ralph Ashill 

With the advent of the hovercraft and hydrofoil, high-speed, overwater 

travel has become a practical proposition. Nevertheless, there would 

appear to be an upper limit to the speed of these craft imposed by, on 

the one hand, the intake momentum drag of the hovercraft and, on the 

other, the drag of the submerged foils of the hydrofoil- One 

method proposed for reducing these drags employs aerodynamic lifting 

surfaces to off-load the cushion or hydrodynamic lifting systems. 

These surfaces, which are referred to as 'ground-effect wings', fall 

into two main categories, namely 'open' and 'closed'. The latter 

type is defined as that which mays in theory, be designed for zero 

induced drag; the former type is that which may not. 

By employing the linearized lifting-surface theory the minimum 

induced drag of an open configuration, consisting of a planar wing 

with end plates, is determined. The results of this theory are in 

agreement with experiment in predicting that the effect of end plates 

is to reduce the induced drag. However, the indications of the 

experiments are that the reduction in induced drag is somewhat 

greater than the theoretical prediction. There is evidence that 

this is due to the tendency of the end plates to suppress harmful 

non-linear effects such as edge separations at the tips of the wing 

and the sidewash at the wing. 

A theoretical and experimental study of the lift and induced drag 

of a closed configuration, comprised of a substantially planar wing 

with end plates and not designed ab initio for zero induced drag, is 



described. The need to represent certain non-linear effects in 

the theory in order to obtain accurate values of lift is demonstrated. 

Further, it is shorn that with the type of closed configuration 

examined, namely that with chordwise camber, thickness and incidence 

which vary slowly round the configuration, the induced drag is 

small. In some cases, however, it is evident that the end plates 

are expected to provide a large thrust to offset a large drag 

contributed by the wing component. Thus, in these circumstances, 

it is important to ensure that the end plates are designed to 

sustain the requisite thrust. 

The image method was used in wind-tunnel experiments to simulate 

the effect of the presence of a water surface on the air flow about 

a wing. This technique has been criticized by various authors for 

a number of reasons. Nevertheless, experiments performed on 

representative configurations have indicated that the method is 

suitable for assessing the accuracy of many features of the theories. 
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REFERENCE SYSTEM 

In this thesis, chapters are distinguished by roman numerals. 

Within each chapter, sections and equations are numbered 

consecutively in arabic numerals. References to sections or 

equations inside the same chapter are not prefixed by the chapter 

number; the remainder are. 

References to original papers are listed near the end of the 

thesis with the names of the authors in alphabetical order. 



LIST OF PRINCIPAL SYrfflOLS 

at 
,(w) 
;(E) 

.(e) ^(o) 

Wing aspect ratio = b/c 
(w) 

a 

Lift derivative 3C^/9a 

Lift derivative 9Cĵ /3a 
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1. 

INTRODUCTION 

1• General 

Interest in the possibility of high-speed, economic^ overwater 

travel has been encouraged in recent years by rapid advances in the 

technology of hovercraft and hydrofoils. Unfortunately, at present, 

both types of craft would seem to be economically inferior to conven-

tional subsonic aircraft at speeds in excess of 100 knots. Hiis is 

due, on the one hand, to the large momentum drag of the hovercraft 

and on the other to the hydrodynamic drag of the hydrofoil. 

One method which has been proposed for reducing the inherent 

large drag of these craft relies on aerodynamic surfaces to off-load 

the cushion or hydrodynamic lifting systems. Provided the design 

of the aerodynamic surfaces is not greatly compromised by consider-

ations other than aerodynamic the result could be a reduction in 

overall drag. However, there are indications from various authors, 

including Ando, Miyashita and Terai (1964) and Strand, Royce and 

Fujita (1062), that structural requirements will favour wings of 

low aspect ratio. In turn, this implies that the induced drag 

of the wing could be prohibitively large. On the other hand, this 

component of drag is reduced somewhat by the proximity of the water 

surface. tJhen smooth this acts in a similar manner to a solid, 

impermeable ground plane and thus provides what is knoxm as 'ground 

effect'. This phenomenon, in its various forms, has been discussed 

in numerous papers including those of Wieselsbcrger (1921) and de 

Haller (1936). Using the linearized lifting-surface theory they 

showed that the induced drag of a planar wing flying at a given 

lift decreases monotonically to zero as the ground is approached. 

In practice, however, the minimum operating height of the wing will 

be limited by the need to minimize wave impact. Consequently, 

there will exist an upper bound to the amount of favourable ground 

effect obtainable by a planar wing. 



In the next section, two practical methods of overcoming this 

apparent limitation will be described, 

2. Tlie ground-effect wing as a maritime craft. 

In recent years, a nun4>er of maritime craft, which are supported 

during the cruise almost wholely by aerodynamic lifting surfaces, 

have been built. Ando (1966) refers to these craft as 'ground-

effect wings' (G.E.Ws.). This title would seem to be preferable 

to the popular name 'ram wings' and will be used hereafter not only 

to describe such craft but also lifting surfaces which are close to 

the ground. 

The Kawasafei KAG-3 represents a Japanese approach to the design 

of a G.E.vJ. Hiis is a small prototype craft consisting basically 

of separate wing and fuselage structures and with planing hulls 

situated at the wing tips. These hulls act as aerodynamic end 

plates during the cruise as well as providing the craft with 

hydrodynamic form and support at low airspeed. This is one 

solution to the problem of reducing the induced drag of a planar 

G.E.W., the hulls tending to reduce the effective height of the 

trailing vortices above the ground. However, in the case of the 

KAG-3, the gap between the water surface and the planing hulls is 

a considerable proportion of the height of the wing above the water. 

Flight tests have revealed that the cruise lift/drag ratio of 

the KAG-3 is 11.4. This low figure is partly attributable to the 

low aspect ratio of the wing (0.75) and the apparent failure of the 

planing hulls to prevent the formation of a powerful trailing -

vortex sheet. 

Vehicle Research Corporation's prototype of the projected 

'Columbia' G.E.W. is an example of a design which embodies the 

requirement of low induced drag during the cruise. The craft is 

supported at zero and low airspeed by a peripheral-jet sustained 

cushion of air. During the cruise, the front and rear jets are 



3. 

shut dô fn, allowing the integrated wing-body layout to generate 

aerodynamic lift. The side jets remain on, effectively sealing 

the gaps between the spanwise extremities of the craft and the 

water surface. 

The 'Columbia' prototype and the KA.G-3 fall respectively into 

classes of G.E.W. which will be called 'closed' and 'open'. The 

former class typifies those G.E.Ws. which may, in theory, be 

designed for zero induced drag whilst giving a non-zero lift. All 

G.E.Ws. which do not come under this definition are referred to as 

open. 

That the KAG-3 is an open G.E.W. follows from the fact that the 

lower extremities of its end plates are above the water surface. 

According to the fundamental theorem of Helmholtz, vortices cannot 

end in space in a frictionlcss fluid. Thus, trailing vorticity and 

hence induced drag are necessary features of the flow around,and the 

drag forces on, the KAG-3. The 'Columbia' prototype, on the other 

hand, is ostensibly closed by virtue of the jet sheets at its span-

wise extremities. In other wordsj the trailing vorticity of this 

craft is virtually eliminated by utilizing the jet sheets to continue 

the 'bound' vortices to the water surface. 

3. The aerodynamic performance of ground-effect wings: 

possible area for study. 

3.1 Open ground-effect wings. 

Over a considerable period, theoretical and experimental research 

has been conducted into the aerodynamic properties of wings flying 

near the ground. Until recently, however, the empha-is of this work 

has been on the determination of the effect of the ground on the 

take-off and landing performance of conventional aircraft. Consequently, 

the ratios of wing height to chord considered have invariably been 

larger than those of current G.E.W. designs. Furthernwre, in the 

past, the theoretical analyses and experimental studies have been 

largely concerned with planar wings of large aspect ratio. 
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Recently, investigations with more relevance to G.E.W. design 

have been described. In particular, mention should be made of 

the experiments of Fink and Lastinger (1961) and Carter (1961). 

The first-named authors used the image method to determine the 

forces and moments on planar wings of various aspect ratios and 

rectangular planform in ground proximity. Carter, on the other hand, 

confined his attention to the forces and moments on planar j. rectangular 

wings of aspect ratio unity and employed a towing carriage to convey 

the modelsabove a water surface. 

Both investigations gave results for the induced drag of planar 

wings which seem to be in reasonable accord with Wieselsberger's 

(1921) theory. However, Carter found that the agreement between 

this theory and experiment was far from adequate when end plates 

were attached to the wing. As the indications are that G.E.Ws. 

will require non-planar tip extensions to limit the induced drag to 

reasonable values, there would seem to be a need for a more suitable 

theory. For this reason, therefore, a theoretical method for 

calculating the minimum induced drag of planar wings with end plates 

in ground effect will be described in Chapter I. Subsequently, the 

results of this theory will be compared with experiment in Chapter 

III. 

Within the limitations of the linearized lifting-surface theory, 

Saunders (1963) has obtained computer solutions for the lift and 

pitching moment of planar and non-planar wings in ground effect. 

His calculations of the lift/incidence slope of planar wings at zero 

incidence compare reasonably well rith the experimental results of 

Carter and Fink. Unfortunately, linear theories such as Saunders' 

are necessarily restricted, in their predictions of the lift, to 

small wing incidence and camber. This limitation rather restricts 

their usefulness and there is certainly scope for inprovement. 

Regrettably, in the case of open configurations, a consistent non-
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linear theory would seem, at present, beyond our resources. The 

main reason for this is that there is no £ priori knowledge of 

the shape of the trailing-vortex sheet. 

3.2 Closed ground-effect wings 

The prospects for theoretical work are better for closed 

configurations which would seem, in the cases of interest, to 

possess either weak or zero trailing vorticity. Consequently the 

non-linear effects associated with the trailing vortices may 

probably be neglected. An approximate theory, based on this 

approach, is applied to the determination of the lift of a closed 

wing/eiid-plate configuration in Chapter II. 

Most of the available information on the design and performance 

of closed G.E.Ws. has come from the Vehicle Research Corporation. 

Among the papers released by this firm are those of Strand (1960) 

and Strand, Royce and Fujita (1952). In these reports a simple 

method, which has been used in the design of the 'Columbia', is 

described. This technique employs the assumption that the flow 

underneath the craft is one-dimensional whilst over the outer 

surface it is considered to be like that over a mound. On the 

basis of these simple concepts. Strand concluded that the induced 

drag of the craft is essentially zero. It is possible, however, 

that this conclusion would be modified by a more detailed 

theoretical method. The non-linear approach mentioned above is 

an attempt to provide such a method. This will be employed in 

Chapter II to obtain the induced drag of a closed wing/end-plate 

configuration. In Chapter III the induced drag and lift predicted 

by this method will be compared with experiment. 



CHAPTER I 

ON THE MINIMUM INDUCED DRAG OF OPEN GROUND-EFFECT WINGS 

1. Basic considerations 

1.1 ^ssumptions of the theory 

In the analysis of the induced drag of two types of open ground-

effect wing to be described in this chapter the following assumptions 

will be made: 

(i) The flow around the wing is inviscid and incompressible, 

(ii) The linearized lifting-surface theory, as formulated 

for example by Thwaites (1960), is applicable. 

(iii) The water surface over which the wing flies behaves 

like a solid, impermeable ground plane. 

Assumption (i) should lead to a reasonable approximation for the 

flow far in the rear of the wing provided (a) the Reynolds number 

based on a typical wing chord is sufficiently large and (b) the Mach 

number is small compared with unity. 

One of the assumptions of the linearized lifting-surface theory 

is that the wing and its trailing-vortex sheet lie on a cylindrical 

surface with generators parallel to the direction of the motion of the 

wing. As there is no force on the trailing vortices it follows that 

the trailing-vortex vector is everycdiere in the direction of the flow 

relative tô  and infinitely far fon^ard of, the wing. Thus, if the 

wing consists of a single surface, the spanwise cross-section of the 

vortex sheet is the same as that at the maximum span of the wing. 

1.2 Conditions for minimum induced drag 

Within the limitations imposed by assumptions (i) and (ii) 

Munk (1921) has given an elaborate proof of the condition for the 

induced drag of a lifting system to be a minimum subject to the 

lift being given. Tliis condition, which is necessary and sufficient. 
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may be stated as follows; 

'The induced drag of an arbitrary lifting system is a minimum, 

for a given lift, provided that the normal component of velocity at 

the vortex sheet infinitely far in the rear of the lifting system, is 

everyxjhere proportional to the cosine of the local angle of lateral 

inclination of the sheet'. 

In mathematical terms this may be written as 

V = w cos 9 . (1.1) 

Here v^^ and 6 are the local component of normal velocity and angle 

of lateral inclination at the vortex sheet infinitely far behind the 

lifting system and is a constant having the dimensions of velocity. 

The direction of positive v^^ is illustrated in the sketch below 

which shows a spanwise cross-section of a typical vortex sheet (the 

vortex trace) viewed in the direction of the motion of the lifting 

system. 

i kZ 

s; ^ ^ K T 
GROUND 

^ ^ ^ ^ 

The plane infinitely far behind, and perpendicular to the 

direction of motion of,, the lifting system is known as the Trefftz 

plane. As a consequence of assumptions (i) and (ii) the flow in 

this plane is two-dimensional and characterized by a velocity 

potential5 which is a solution of the equation 
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+ 9^^/92^ = 0. (1.2) 

This is the well-known Laplace equation in two dimensions, y and z 

being the cartesian coordinates shown in the sketch above. 

Thus,in order to determine the distribution of velocity potential 

in the Trefftz plane accompanying minimum induced drag,it is necessary 

to solve equation (1.2) subject to equation (l.l) being satisfied. 

Additional conditions, the nature of which depends on whether the vortex 

trace is adjacent to or isolated from boundaries, will also need to be 

satisfied. 

1.3 Flow — superposition methods. 

The linearity of Laplace's equation permits the superposition of 

its solutions to obtain other, perhaps more compleŝ  solutions. .This 

fact prompted Munk (l92l) to suggest a simple method of obtaining the 

velocity potential in the Trefftz plane of isolated lifting systems 

having an induced drag which is a minimum for a given lift. This 

consists of superposing on the Trefftz-plane flow a flow which destroys 

the normal component of velocity at the vortex trace without disturbing 

the discontinuity in ^ there. Munk found that a flow having the 

desired property is the uniform stream described by 

ip = -w^z (1.3) 

The addition of this flow to the Trefftz-plane flow reduces the problem 

to that of finding the velocity potential of a uniform flow past an 

obstacle shaped like the trace. This may be considered solved when 

the appropriate conformal transformation between the Trefftz- plane and 

the upper half-plane has been discovered. The velocity potential of 

the Trefftz-plane flow is then determined by subtracting the super-

position velocity potential (1.3) from the velocity potential of the 

combined flow. 
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For isolated lifting systems Hunk's method represents a 

considerable improvement over methods relying on singularity 

distributions. Unfortunately, it is usually not as suitable when 

the vortex trace is in the vicinity of additional boundaries. The 

reason for this is that, in general, a uniform stream does not 

satisfy the additional boundary conditions. Consequently the 

velocity potential of the combined flow may be as difficult to 

determine as that of the Treffts-plane flow. As an illustration, 

suppose that the same lifting system is near an infinite ground 

plane. As with the isolated lifting system the boundary condition 

for the normal velocity of the combined flow at the vortex trace is 

of the obstacle flow type. At the trace of the ground, on the other 

hand, the normal velocity is non-zero. Therefore a suitable source 

distribution will be required in the upper half-plane. In con-

sequence, the determination of the velocity potential of the combined 

flow will entail an integration. 

The advantages of Munk's method may be recovered for lifting-

systems near additional solid boundaries by employing a potential 

flow which when added to the Trefftz-plane flow: 

(i) destroys the normal component cf velocity at the vortex 

trace; 

(ii) does not alter the discontinuity in the velocity potential 

at the vortex trace; 

(iii) satisfies the additional boundary conditions in the finite 

part of the Trefftz-plane. 

The velocity potential of the resulting combined flow is essen-

tially determined once the conformal transformation beeween the 

physical plane and the upper half-plane has been found. 

This method may be considered a generalization of Munk's method 

to include the presence of solid boundaries. 
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2. The planar ground-effect wing of minimum induced drag. 

In this section,the determination of the minimum induced drag of 

a planar wing in ground effect will be described. This problem was 

considered by de Haller (1936). However, the expression he derived 

for the velocity potential of the Trefftz-plane flow is somewhat 

cumbersome and his results for the induced drag would seem to have 

been obtained either by numerical or graphical integration. 

The method to be presented here, which is based on the combined -

flow method discussed previously, permits the derivation of the 

minimum induced drag in analytical form. In consequence, it is more 

suitable than de Haller's method for checking the accuracy of a 

perturbation technique which will be used to determine the influence 

of end plates in Section 3. 

2.1 The flow problem. 

Fig. 1 shows the Trefftz plane of a planar ground-effect wing. 

It will be seen that the vortex trace is of span b and height h above 

the ground. Also evident in the figure is the barrier AB, which 

renders the Trefftz plane singly connected, and the bounding contour 

lABCEGHI. This consists of 'the point at infinity' I, the trace of 

the ground, the vortex trace and the barrier. 

Equation (1.1) indicates that the induced drag of a planar wing 

is a minimum for a given lift if = wm. Thus, by reference to the 

coordinate system of Fig. 1, the boundary conditions for the normal 

velocity at the bounding contour may be written as follows; 

. + 
(i) dtp/drt - - WcoJ |y| $ b/2. z 

(ii) d^/dn = + Wo,; |y| < b/2. z 

(iii) 8(j)/9n = 0 3 |y| < z 

(iv) 9^/3n = 0; y = 0 3 0 

(v) |dw/dn| 0 ; |Qi <» . 

+ h ; 

> (2.1) 

In the above expressions 3/3n denotes normal differentiation 

outward from the domain D (shoi-m in Fig. 1) and +h and +h are tc 

interpreted as L^m (+h+e) and Lim (+h-e). Also, W = ^ + i^ is the 
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complex potential, ^ being the stream function, and 0 = y + iz is the 

complex variable of the Trefftz plane. 

It should be remarked that condition (2.1) (iii) follows from 

considerations of the symmetry of the Trefftz-plane flow. 

The domain D is mapped onto the upper half-plane t (Fig. 2) by 

means of the Schwarz-Christoffel formula. This has been given In general 

terms by Thwaites (1960) and in the present case may be written in the 

form 

dn/dt - C(62-t2)(l-t2)"*(l-k2t2)"*; 6gl$l/k, (2.2) 

where C is the teal)transformation constant whilst 3 and k are 

parameters of the transformation. 

Equation (2.2) may be integrated with the aid of the trans-

formation 

t = sn{2K(k)s, k}. (2.3) 

Here K(k) is the complete elliptic integral of the first kind and 

sn{2K(k)s, k} is a Jacobian elliptic function, each of these 

quantities being defined by Byrd and Friedman (1954). Hereafter, 

unless otherwise stated, it is to be understood that the elliptic 

functions and integrals are functions of k. 

By differentiating equation (2.3) with respect to 2Ks there is 

obtained, after reference to equations (121.00) and (713.01) of Byrd 

and Friedman, 

dt/d2Ks = (i-sn^2Ks)^(l-k^sn22Ks)^. (2.4) 

Therefore, if equations (2.2), (2.3) and (2.4) are combined,th.cre 

results 

dfi/d2Ks = 0(6^ - sn^ZKs). (2.5) 

which may be integrated with the aid of equation (310.02) of Byrd and 

Friedman to yield the result 
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n - C [2g2Ks - {2K8 - E(2K8)}/k2] + Ci. 

In this expression E(2Ks) is the incomplete elliptic integral of the 

second kind,as defined by Byrd and Friedman,and Ci is the integration 

constant. 

The s plane,which is illustrated in Fig. 3, will be seen to 

consist of the interior of a rectangle having corners A;B,G and H. 

Tlie complex coordinates of these corners may be found by employing 

the properties of the transformation (2.3) given by Byrd and Friedman 

(p. 17). Thus it is found that, at A,B,G and 2Ks is -K +iK', -K, 

+K and +K + iic', where K' = K(k') and k' = (1 - k^)^. 

The requirement of correspondence between the n and s planes at 

point G demands that 

ih = C [e^K - {K - E(K)}/k?].+ Ci. (2.6) 

Similarly, the requirement of correspondence at B leads to the result 

ih = -C [efK - {K - E(K)}/k2]+ C^. (2.7)* 

Therefore,by comparing equations (2.6) and (2.7),it is found that 

Ci = ih (2.8) 

and 

6̂  = {K - E(K)}/k2K. (2.9) 

Correspondence of the J? and s planes at point E is assured if 

0 = C [ g2(K + iK') - .{K + iK' - E(K + iK')}/ k2]+ Cj . 

(2.10) 

This result may be reduced somewhat by employing equations (122.02), 

(140.01) and (141.01) of Byrd and Friedman to derive the relationship 

E(K + iK') = E(K) + i(2E(K)K' - n)/2K. (2.11) 

This may be combined with equations (2.8), (2.9) and (2J.0 ) to give 

*In obtaining this expression use is made of the fact that 

E(-2Ks) = -E(2Ks). 



13. 

0 = C 
(K-E(K))(K+iK') _ {K+iK' -E (K) -i (2E (K) K'-TT) /2K}" 

k^K kZ 
+ ih 

which after rearrangement gives the result 

h = nC/Zk^K. (2.12) 

The 0 and s planes correspond at point E if 

b/2 + ih = C [|3̂ sn - {sn ^3-E(sn ^g)}/k^] * . 

Consequently,by combining this result with equations (2.8) and (2.9) 

one finds that 

b = 2C {E(sn~^g)K - E(K)sii~̂ e}/k̂ l<;. (2.13) 

Equations (2.12) and (2.13) may be combined to yield the result 

2h/b = I T / 2 { E ( s n ~ ^ e ) K - E(K)sn~^8}. (2.14) 

So far,the present method has differed little from that of de 

Haller. The difference between the methods is in their treatment 

of the flow problem. The present technique employs the floif-

superposition method proposed in Section 1.3 whilst de Haller's 

approach involves the integration of singularity distributions. As 

will be seen, the present technique is relatively simple, leading to 

a closed-form solution for the induced drag. 

A class of complex potentials which is regular in the finite 

part of the 0 plane and satisfies boundary conditions (2.1)(iii) and 

(iv) is given by 

" y m ~ ^92g3. ...... 

where Am are real constants. 

The z velocity components at the vortex trace associated with 

Wjjj, namely are given by 
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n=m „ . 

n=l 

For m=l this becomes 

= - ZA^h. 

which, it will be seen; is equal and opposite to the z component of 

velocity of the Trefftz-plane flow at the vortex trace if 

Ai . w*/2h. 

It follows3 therefore, thatswith this value of Â , w^ may be used as 

a superposition flow in view of the fact that it satisfies require-

ments (i), (ii) and (iii) given in Section 1.3. 

An examination of the resulting combined flow indicates that 

3^c/9n = 0 at all segments of the bounding contour' in the finite 

part of the Q plane, the subscript c denoting combined-flow 

conditions. Therefore in the t plane 

3*g/3n = 0; |Re(t)| < » , Im(t) = 0. (2.15) 

The only remaining boundary condition to be satisfied by the 

combined flow in the t plane is an asymptotic one near the point at 

infinity. This may be determined by noting that 

dW /dO ~ w*n/h; |n| + «. (2.16) 

In order to determine the corresponding condition in the t plane it 

is necessary to consider the behaviour of dQ/dt and for large |tj. 

Thussby expanding the right-hand side of equation (2.2) in powers of 

1/t^.it is found that 

dO/dt = (-C/k) + 0(l/t2): Itj + ». (2.17) 
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In turn, this expression may be integrated to yield 

n = (-Ct/k) + Cg + 0(l/t); |t| + 00, (2.18) 

where Cg is the integration constant. Therefore,by combining 

equations (2.16), (2.17) and (2.18),it is found that 

dW^/dt WocĈ t/k̂ h ; jtj (2.19) 

There is no unique complex potential satisfying equations (2.15) 

and (2.19). There are^ however, two additional conditions to be 

imposed on the combined-flow solution. Firstly, only Trsfftz-plane 

flows with regular complex potentials within the domain D are 

physically acceptable. Therefore, as is regular in the finite 

part of the plane, it is necessary for Wj, to be regular in the 

finite part of domain D. Secondly, the Trefftz~plane flav arsitha sup.er-

position flow are sjTnmetrical with respect to the z axis. Hence the 

combined flow is required to be symmetrical about this axis and, in 

consequence5 also about the imaginary axis of the t plane. 

A complex potential which satisfies equations (2.15), (2.19) and 

the two additional conditions mentioned above is given by 

= (w«c2t2/2k2h) + C3, (2.20) 

where C ̂  is an arbitrary constant. 

The complex potential of the Trefftz-plane flow. W, may be found 

by subtracting Wi (with the appropriate value of A^) from Thus, 

as V!i is single-valued at the vortex trace, it follows from 

equation (2.20) that the jump in velocity potential there, r(y), is 

given by 

r(y) = - 4y^y) = {t2(y)-.t2(y) j/ak^h. <2.21) 
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Here the subscripts u and 1 imply that the functions concerned ere to 

be evaluated at adjacent points on the upper and lower segments of the 

vortex trace, respectively. 

It will be observed that r(y) does not depend on the arbitrary 

constant C3. 

Equation (2.3) may ba employed to rewrite equation (2.21) as 

r(y) = w^c2{sn22KSg (y) - sn^ZKs^ (y)}/2k2h. 

This should be compared with the result obtained by de Haller which;in 

the present notation,is given by 

CO ^ 2 

rCy) = ^ {cos 2n!Tr s Cy) - cos Zmir S t (y)}, 
^ (1-q ) 

where 

q = exp (-TTK'/K) • 

2,2 Determination of the induced drag. 

Robinson and Laurmann (1956) show that, to the order of approxi-

mation of the linearized theory, the overall induced drag of a wing, 

may be written as 

D. = 5pj^^(a^/3n)ds. (2.22) 
1 T 

In this expression,p is the density of the medium surrounding the 

wing and the subscript T denotes that the lino integration is to be 

performed in a clockwise fashion about the vortex trace in the 

plane. The term ds is an element of length around the vortex trace. 

For a planar wing of minimum induced drag it is possible to 

rewrite equation (2.22) in the form 

X = -"2PWoo/j (2.2.3) 
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Thus5 by noting that and employing equations (2.20), it is 

found that 

D. = -4pwm/ {(Wa,c2t2/2k2h) + Re(C3) - *i}dn. (2.24) 
T 

The last two terms under the integral sign of equation (2.24) do 

not contribute to as they are single-valued at the vortex trace. 

Therefore, by employing equations (2.3) and (2.5), it is permissible 

to rewrite equation (2.24) in the form 

_ +K 
D. = -pwic^f sn22Ks (gZ-snZZKs) d2iCs/4k2h, (2.25) 
^ -K 

the subscript T being dropped in favour of the limits of the inte-

gration. 

The integral of equation (2.25) may be evaluated explicitly 

with the aid of Byrd and Friedman's equations (310.02) and (310.04) 

to give the result 

= -P*&C3 [{26^(K-t(K))/k^} - 2{K(2+k2) - 2E(K)(l+k^)}/3k'{] 

(2.26) 

The term C may be eliminated from equation (2.26) with the aid 

of equation (2.12) to give the expression 

= -2pwik'^K3h2{{23^K-E(K))/k2>-2{K(2+k2) -2E(K) (l+k^) 3. 

(2.27) 

It is convenient at this point to define a non-dimensional 

quantity E as 

E = D^/|pw^b^. (2.28) 

Thus, by combining this equation with equations (2.14) and (2.27), it 

is found that 
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_ -Ic^K^[{2.8^(K"B(K))/k2} - 2{K(2+k^) - 2E QQ (1+k^) }/3k^3 
^ " ~ 4TTiE(sn-^)K - E(K)sn"^3}'^ 

(2.29) 

Robinson and Laurmami show that the linearized theory yields the 

following expression for the overall lift of a wing: 

L = P̂ 'o-̂ T (2,30) 

where L is the overall lift and Uq is the forxrard speed of the wing. 

ThuSjfor the present configuration, the overall lift may be written as 

L - * an. (2.31) 

Hence,by comparing equations (2.23), (2.28) and (2.31), it is evident 

that 

L = -pwoo b^S. (2.32) 

De Ilaller defines the induced-drag factor a according to the 

relationship 

a = 7rpU2 b2 D^/2L2. (2.33) 

Therefore,upon combining equations (2.28), (2.32) and (2.33),it is 

found that 

a = n/4Z. (2.34) 

Consequently,substituting equation (2.29) into equation (2.34),one 

has, after rearrangement, 

CT = 3Ti ̂ {E(sn~^6)K'E(K)sn'^S>^ • 
2i^K(2+k^) - 2E(K)(l+k?) - 3pZkZ(K-E(K))} ' 

The induced-drag factor may be determined as a function of 2h/b 

by employing equations (2.9), (2.14), (2.35) and the tables of K 

and E(2Ks) given by Byrd and Friedman for various k. The graph of 

o against 2h/b thus obtained is shoim in Fig. 4 where it is compared 
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with curves given by Wieselsberger (1921) and de Haller. It will 

be seen that de Haller's results for a are consistently lower than 

the present values in the range 0.5 $ 2h/b $ 1.2. In particular, 

for 2h/b = 0.7,de Haller's value of a is approximately 95% of the 

value given by the present method. 

Wieselsberger's theory, which is based on the assumption that 

r(y) is elliptic5 is seen to give results which lie close to the 

results of the present theory. 

3. The influence of end plates. 

This section deals, in the main, with the determination of the 

minimum induced drag of planar wings with end plates in ground effect. 

The vortex trace of the particular end-plate configuration to be 

examined is illustrated in Fig. 5. It will be inferred from this 

that the end plates project vertically downwards from the wing tips. 

As before, the domain D of the Trefftz plane (Fig. 5) is 

rendered singly connected by the barrier AB and is transformed to 

the upper half-plane t by the Scuwarz - Christoffcl transformation 

(3.1) 

In this expression C is the (jreal) transformation constant and a;k,X 

and 6 are parameters of the transformation. The k defined here 

should not be confused with the k employed previously. The reason 

for its retention as a quite different parameter arises from the need 

to comply with the convention of elliptic functions. 

In principle, the transformation between the 0 and t planes may 

be established by direct integration of equation (3.1). Unfortunately; 

the integral which occurs is of the hyperelliptic type (Byrd and 

Friedman p. 252) and seems not to be amenable to explicit evaluation. 
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It is necessary, therefore, to devise an alternative method of 

solving equation (3.1) analytically. 

3.1 Description of the proposed method. 

The method to be employed may be summarized as follows; 

(i) The right-hand side of equation (3.1) is expanded in 

powers of a parameter which is considered to be small for the Trefftz-

plane configurations of interest. 

(ii) The first term of the resulting expansion is integrated to 

give either an approximate transformation between the [I plane and 

the upper half-plane or an exact transformation between the 0 piano 

and a perturbed upper half-plane. Interpreted in the former sense, 

the transformation fails to be uniformly valid in a restricted area 

of the Q plane, usually in the region of interest. For this reason, 

therefore, the method to be employed hero utilizes the second inter-

pretation. 

(iii) An additional conformal transformation is needed to map the 

perturbed upper half-plane onto an exact upper half-plane. 

A suitable small parameter for the expansion may be found by 

examining the ^exact' solution for the planar wing given previously. 

This suggests that,as X + 6, h/b ^ 0. Therefore, as current G.E.XJ. 

designs are intended for operation at small h/b, an appropriate small 

parameter /jould seem to be 6 ' = (A^-6^)^. Thus the right-hand side 

of equation (3.1) is expanded in powers of 6' and all but the first 

term are neglected to give the result 

dQ/dt = C(a^-t^)(1-t^)(l-A^t^) ( l " k ^ t ^ ) ( 3 . 2 ) 

Here, for convenience, t is also used to denote the perturbed upper 

half-plane which is illustrated in Fig. 6. This figure shows that 

the perturbations consist of the indentations AB and GH surrounding 

thB points t = + 1/&. 

In general3 the shape of either indentation is not simple. 
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Consequently it may be difficult to transform the perturbed plane into 

an exact upper half-plane. It is possible, however; that a simplifi-

cation may be achieved by employing various approximations to the shape 

of the indentations which are known to be asymptotically correct as 

h/b-»0. Therefore, in order to examine the accuracy of such an approach, 

it will be applied to the planar-wing problem in Section 3.2. The 

success of the method will be gauged by comparing the results obtained 

for 0 with those given by the 'exact' solution. 

3.2 Application to the planar-wing problem. 

For the planar wing;k=l. Therefore, as l^agl/k, equation (3.2) 

reduces to the following form: 

dQ/dt = C(l-t2)/(l-A2t2). 

This expression may be integrated to yield the result 

0 " + C4, (3.3) 

where C4 is the integration constant. 

The t plane corresponding to the planar wing is similar to that 

shown in Fig. 6 except that the points C and €' coincide with D at 

t = -1 and; at t = +1^ E and E' coincide with F. Hereafter5 these 

coincident points will be called C and E, respectively. 

Point-to-point correspondence between the 9, and t planes at C 

and E demands that 

- I + ih . ̂ (-1 + + c» (3.4) 

and I + ih = 1^(1 . * 1 1 ( 1 ^ , , c,. (3.5)" 

By comparing equations (3.4) and (3.5) it is found that 

Re(Gij,) = Op (3.6) 

That the principal values of the logarithms are taken in these 

equations follows from the fact that only the physical part of the 

Eiemann chaet is being considered. 
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and h = + Im(Cî ). (3,8) 

On the segments of the real axis of the t plane where |t|>l/X 

the variable U is piirely real, as is the bracketed term of eiiuation 

(3.3). Thus it may be inferred from the same equation that Im(C^)=0. 

Therefore this result may be combined with equations (3.7) and (3.8) 

to give the expression 

2h/b = n(l-x2)/[2x + (l-"X2)ln{ (l-A)/(l+A) }]. (3.9) 

The curve of indentation AB may be defined by the equation 

t = (-l+e(B)e^^)/X, (3.10) 

where, with the origin at t - -l/X, e(e) is the radial coordinate of 

the curve and 0 is the angle between the radial generator and the 

real axis as shown in Fig. 6. 

On the indentation AB, Re(Q) = 0. Therefore, by substituting 

equations (3.6) and (3.10) into equation (3.3) and equating real 

parts 5 one finds that 

ln{E(6)} = ^ ln{4~-A£(0)cos8+£: 2(Q)}~.2(1-E(6)COS0)/(1~X^). 

(3.11) 

Thus, in order to find e(8); it is necessary to solve trJ.s equation. 

Unfortunately, it would seem to be rather difficult to obtain a 

solution in closed form. 

Inspection of equation (3.9) shows that h/b~ Oas ,\->-l. As.B lies 

between t = --I/A and -1 this suggests the possibility that e(E) ~ 0 

as h/b-H). Therefore equation (3.11) will be solved by an iteration 

scheme which employs the assumption that G ( 6 ) < < 1 „ namely 

ln{e(°)(8)}- lln[4-4E(°"l)(8)+{E(""l)(8)}2]-2(l-e(°"l)(8)cos8)/(l-x2), 

(3.12) 
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with e^°\e) = 0. Thus the first iterate for e(0) is given by 

e^^^(e) = 2exp{2/(A^-l)}. (3.13) 

This iterate is evidently invariant with 9 and, consistent with the 

previous postulation, approaches zero asymptotically as h/b 0. 

The second iterate for e(0) is derived by placing n=2 in 

equation (3.12). Thus,by expanding the logarithmic terra on the 

right-hand side of this equation in powers of e (6), it is possible 

to write 

E^^^(e) = eexp{ecose(-Y§j^ ~ |)+0(e^)}. (3.14) 

Here, for convenience, e^^^(6) has been replaced by e. 

The term A may be eliminated from equation (3.14) by employing 

equation (3.13) to give the result 

e^^^(O) = eexp [ecoS'9{ln(2/G)- g} + 0(e^)j 

which,after expanding the exponential for small e,becomes 

(2) 
e (0) = e{l-elnecose+e(ln2~l/2)cos§+0 [(elne)^]}. 

On the assumption that e(0) = Lim{ e } it is possible to 

conclude that the iteration scheme yields an asymptotic expansion 

for c(0) in powers of e. that is 

e(e) = e{l-elnecose+e(ln2-l/2)cos0+O[(elne)2]e-HD. (3.15) 

Although no formal proof of convergence will be given, the 

following table of values of e and | (e (O)--e)/e j is included to 

illustrate the apparent rapidity of convergence of the schema for 

small h/b. 
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A 2h/b E |(&2)(0)-G)/t| 

0.995 0.016 2.78 x 1 0 0 ( 1 0 ~ ® ^ ) 

0.960 0.153 1.67 x 10~^^ 0(10"^^) 

0.900 0.481 5.36 x 10~^ 0(10"*) 

0.800 1.398 0.77 x lo"^ 0(10~^) 

The main indications of the above analysis are that for small 

h/b the indentation AB is extremely small and nearly semi-circular 

in shape. That this also applies to indentation GH follows from 

the fact that it is the mirror image of indentation AB in the 

imaginary axis. Therefore a suitable series of approximations to 

an exact upper half-plane would seem to be 

, (n) m=n . -

= Xt + ^ "(Xt+iy®^' (3.16) 

where t^^^ are approximations to an exact upper half-plane and 

are real constants. 

B are found by requiring that on the identation boundaries 

Im(t^^ ) is of lower mathematical order than e^. This is intended 

to ensure that,with each successive approximation,t^^^ becomes 

closer in fonn to an exact upper half-plane. 

In order to determine B and Ej , it is necessary to write 
(1) ° 

Ira(t ), on the indentation AB.as a function of e(e) and 6. This 

is achieved by combining equations (3.10) and (3.16) to give the 

result 

. c(e)sine * 

(3.17) 
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Therefore, by replacing e(e) in equation (3.17) with its asymptotic 

form (equation 3.15) and expanding the resulting expression for small 

e, it is found that 

Im {t } = esine{l + O(elne)} + Bi f- -^^{1 + O(elne)}-

esinO 
{1 + 0(eln£)}] E ̂  0. (3.18) 

Thus the above-mentioned requirement on the mathematical order of 

Im[t { (~l+e (e)e^^)/X}] is satisfied if Bi = e^. The constant 

Bo, on the other hand, does not influence the mathematical order 

of this expression; therefore it is arbitrarily placed equal to 

zero. Consequently the zeroth and first approximations to an exact 

upper half-plane are given by 

t^ = At; t^ ^ = At + G^{(Yt^) (xFTI)^' (3.19) 

It is worth while to enquire into the status of these approxi-

mations. Thus it is apparent that the use of t^^^ is equivalent 

to the assumption that the indentations may be ignored altogether 

whereas the approximation t^^^ is evidently similar in status to 

the first, semi-circular, approximation for the indentation shape. 

This is demonstrated in Fig. 7 which illustrates the form of the 

t^^^ plane. It will be seen that Im(t^^^) on the indentations is 

O(e^lne) which is the same order as the terms neglected in employing 

the first approximation .for e(9). 

It is necessary to determine the points at which the two 

approximate transformations given above cease to be conformal. Thus 

it is evident that the zeroth approximation is conformal everyt-zhere 

whilst the first approximation ceases to be conformal at t « 1/X 

and 
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t = ± {I ± e + 0(e-)}/Xj (e + 0). 

The first two of these points are outside the domain D and are 

therefore of no consequence. The remaining four points, on the 

other hand, coincide with the right-angle corners of the indentations 

in the t plane to the order of accuracy of the t(^^ approximation. 

By being there they effect the removal of the corners of the indenta-

tions in the t^^^ plane and, as such, may be considered acceptable 

singular points. It is anticipated that higher approximations to 

an exact upper half-plane will also yield transformations with 

singular points at the indentations' corners. 

In establishing the solution to the flow problem it i" assumed 

that t^^^ are exact upper half-planes. Therefore the boundary 

conditions for the normal velocity of the combined flow in the t^°^ 

planes are as follows: 

9(|)̂ /3n = 0; |Re(t̂ "'')| < Im(t̂ '̂̂ ) = 0; 

dw^/dcf") ~ WooĈ t̂ -̂ /̂xGh,: |t(^^| + ». 

(3.20) 

By following the argument leading to equations (2.20) it is 

found that regular complex potentials which satisfy equations(3=20) 

and the symmetry condition are given by 

= wkC2(t(^))2/2X6h. (3.21) 

Here it should be noted that the arbitrary constant which should 

appear on the right-hand side of equation (3.21) has been ignored 

for the reason that it does not influence the value of a. 

Following the reasoning employed in deriving equation (2.29) 

one may write an nth approximation for Z corresponding to as 
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(ri'\ - +(l-e(0))/A , \ 
' = -(Cj/2X6hb2) J (t( ')2{(l_c2)/(l-A2c2)}dc, 

-(l-e(O))/X 

For the particular case n=l this becomes, after combination with 

equation (3.19) and rearrangement, 

^ (3.22) 

-(i-e(0))/A 

(1) 

The errors implicit in the use of Z may be found by 

determining the order of magnitude of 1 }. In fact, it 

is found that this latter quantity is O(e^lne). This implies that no 

extra accuracy can be expected from by retaining terms of this 

order. Consequently equation (3.22) is integrated and the resultant 

expression is expanded in powers of E, terms of 0(e^lne)being neglected. 

Thus there is obtained 

z'') - - 3#T(1-3E) -

+ • (3.23) 

A similar analysis applied to Z^^^yields the result 

terms 0(e) inside the square brackets having been neglected as by 

thanselves they cannot improve the accuracy of 

A cursory inspection of equations (3.23) and (3.24) would seem 

to suggest that gives a higher order of accuracy than 

However, if e eliminated from both these equations by employing 

equation (3.13) (with e(G)^^^= e), it is found that 
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gCo)* %(!)_ (c^/3x9hb2) (3x2-1). (3.25) 

This result was quite unexpected and must be due to the fortuitous 

cancellation of the first-order correction terms in 

Equation (3.25) may be combined with equations (2.34), (3.7) 

and (3.9) to give the result 

= 3?2(1-A2) 1\ + (1-A2)ln{(l-A)/(1+X>}jy8 (3x2-1)^ (3.26) 

where and are zcroth and first approximations to the 

induced-drag factor. Fig. 4 shows them plotted against 2h/b and it 

will be seen t h a t they compare well with the 'exact' result (equation 

2.35) in the range 0.45 ^ 2h/b $ 1.6. Comparison has not been 

possible below the lower value owing to the limited amount of data 

on the elliptic integrals available from Byrd and Friedman's tables. 

Nevertheless5 the asymptotic behaviour of a for small h/b may be 

found by reference to asymptotic expansions of the elliptic integrals 

given by these authors. Thus, without giving details, it is found 

that equations (2.14) and (2.35) may be replaced by the following 

asymptotic forms; 

2 h / b ~ n ( l - ; 2 ) / | 2 6 + ( l - 6 2 ) l n { ( l - g ) / ( l + g ) } 

a 

8 + 1; 

r (3.27) 

3 ^ 2 ( 1 - 6 2 ) j 2 6 + ( l - 6 2 ) i n { ( l - g ) / ( l + 6 ) } y 6 ( 3 6 2 - l ) , g + 1 . J 

By comparing equations (3.27) with equations (3.9) and (3.26) 

it is evident that 0^°^ and as functions of 2h/b are identical 

with the asymptotic form of a. 

The relative error of and is O(e^lnE) w h i c h for 

2h/b= 0.48 is 0(10 ). It is not surprising; therefore, that the 

agreement between the approximate and 'exact' values of a is good 

in the range of 2h/b considered. 



3.3 Application of the technique to the snd-plate nroblam. 

The accuracy of tha zeroth approximation for the case of the 

planar wing having bean established it is intended to apnly the same 

approach to the problem of the planar wing with end plates. Actually, 

a slightly different interpretation of the approximation is necessary 

but, essentially, the basic approach remains the same. 

3.3.1 Relationship between the Q plane and the transformed planes. 

The integration of equation (3.2), which is the differential 

relationship between Q and t, is facilitated by using transformation 

(2.3) and equation (2.4). Thus, after rearrangement* there is 

obtained instead of equation (3.2) 

dn/d2Ks - - 8n22Ks/#+ (A2-l)(a2-l/X2)sn22n3/(l-&2sn22Ks)}. 

(3.28) 

In turn, this may be integrated with the aid of equation (310.02) of 

Byrd and Friedman (which is used to integrate the second term in the 

brackets) to yield the expression 

0 . cjo2ZKs-^2Es:Ei21a)}_ n(2K3,2K8i) 

Here C5 is the integration constant, ŝ  = sn (\/k)/2Tr and 

TT/'oi/ ov \ k̂ sn2j:si cn2Ks 1 dn2Ksi ai^2Ks' d2Ks' „ 
n(21<.,2Ksi) . / r - l w s r . 

where cn2Ksi and dn2Ksi are Jacobian elliptic functions as defined 

by Byrd and Friedman. 

Woods (1961) has shown that JT(2F.s„2Ksi) may be replaced by an 

expression containing Jacobian thcta and zeta functions. Thus,by 

employing his equation (78)(p. 125), it is possible to write instead 

of equation (3.29) 

+ C5. 

(3.29) 
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n " c aZoKs - ^2KS-E(2KS)} ^ ^ , fê CTrs-Trsi ,q) 
k'̂ Â  X(k^-A^)2 ê̂ Cirs+TrSî q) 

+ 2Ks Z(2Ksi,k)} + Cc, (3.30) 

where„ with Byrd and Friedman's notation, 0^(,q) (v = 0,1,2 and 3) 

are Jacobian thata functions and Z(,k) is the Jacobian zeta function* 

Hereafter, unless otherwise shown, it is to be understood that 6^( ) 

are functions of q = exp(—ITK'/K) and Z( ) is a function of k. 

The s plane, which is illustrated in Fig. 8, consists of a 

rectangular domain which is indented at A3 and GH. 

By referring to the coordinate systems and notation of Figs. 

5 and 8 it may be concluded that, on C'E',n = b/2 + ih and the term 

in equation (3.30) multiplied by C is purely real. Therefore 

C 5 = ih; a result which will be used implicitly • when point-to-point 

correspondence between the 0 and s planes is considered. 

Correspondence between the two planes at point E is established 

provided that 

I . ih = C p ( M E ' ) -

i ^ (K+iK')2(2Ks.))] + ih. (3.31) 

The logarithmic term in equation (3.31) may be reduced by using 

properties of the theta functions given by Woods (p. 117)j namely 

ê (Trs + 7t/2 + iwK'/2K) = q (irs) 

and 
02("^s) = 62(7̂ 5) . 

It should be noted that-9^( ) and Z( ) are written as 8î ( ) and 

Z(+( ) by Woods. 
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Thus,by employing these two results in conjunction with equation (2.11), 

which is used to expand the term E(K + iK')^ it is possible to rewrite 

equation (3.31) in a form having the real and imaginary parts 

b/2 = - (I{-E(K3)/k2A2 - (a2_i/x2)(i_;^2)lKZ(2Kgi)/Xk^-^^)^} 

and 0 

, (3.32) 

;.r- q | i f « 2 . .3.. K=z(2K30)t, 

(3.33) 

respectively. 

Equation (3.33) may be rearranged to give the result 

„2 = KK' - E(K)K' + Tr/2 (l-A^) ̂{ttsI + K'Z (2Ksi) }A (k^-A^) ̂  . 
Kk2x2[-K«~(l-x2)̂ {Trsi + K'Z(2ksi) }/X (kf-A2) 

(3.34) 

Fig. 9 shows a plotted against X = sn ^(A/k)(90/K)for various 
- - 1 

$ = sin k (the modular angle). 

The curve of the indentation AB may be defined by the relationship 

8 . -Si + iK'/2K - e(&)ei8, 

where5 with the origin at s = -si + iK'/2K, "e and 6 are polar 

coordinates as shoim in Fig. 8. Thus, by employing equations (3.30) 

and (3.35) and the properties of the theta functions given by Woods 

(p. 117), namely 

6̂ (Trs + iTTK'/2K) = iq ê ^^^8i(ns) 

and 6l(—irs) = -8i(ns), (3.36) 

it is apparent that correspondence between the Q and s planes on AB 

demands that 

iz = C l r ,'Tr; o2(-2Ksi + iK' - 2KE(&)G^")-f"2Ksi + 1%' -2K2Xe)e^"-

-E(-2Kai + iK' -2KE(%)e^G)} _ + 
A(k/-A^) 
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. I ,, iK. . 2KlC0)e^^Z(2Ks.))i . ih. 
L Gi(nG(8)ei8) j 

Therefore, if the values appropriate to point A, z = 0 and 9 = TT, 

are substituted into equation (3.37) and use is made of equation (3.36% 

it is found that the imaginary part of the resulting expression yields 

the result 

^ " E(-2K8i + 2Ke(7r) + iK')l } - { 0 - Cja^K'- {K'-Im 

T T C S I - I) + K'Z(2Ksi)} 

X(k̂ --Â ) 5 

+ h. (3.3C) 

In turn, this may be simplified with the aid of a result which 

may be deduced from equations (122.00), (140.01) and (141.01) of 

Byrd and Friedman, namely 

E(-2Ks + iK') = -Z(2ICs) - _ ITT _ E(K)(2Ks - iK'l.fg.gg) 
snz i*s xiv K 

Thus, by eliminating E(-2Ksi + 2Ke(n) + iK.') from equation (3.38) 

with the aid of equation (3.39) and comparing the modified 

expression with equation (3.33), it is found that 

h = 7tC(1/â  - a^) (1 - Â )̂ /2A(Iĉ  •- X^)*. (3.40) 

Equations (3.32) and (3.40) may be combined to give a relation-

ship between 2h/b and a, k and X, The term a may be eliminated 

from this expression by means of equation (3.34). Thus it is 

possible to calculate 2h/b as a function of % for various $ and the 

results of such calculations are shovm in Fig. 10. 

In principle, the real part of equation (3.37) permits the 

determination of s in the form e = G(6,X,k). Unfortunately, as 

with equation (3.11); it would seem difficult to obtain a closed-

form solution. Therefore, by analogy with the planar-wing case, 

an iteration solution is sought as follows: 
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iie 4K(si+ 

+ e (8^cos8^Z(2K8i)+(^^§Y7^I)%TZ^Z)& a*(8i+ e(°'"l)(%)co8&) -

1 ,- __(n-l) 
E x T '.si+ E 

(e)cosa 4. 2Kefa"i\a)e^°)3 • 

with ê °̂ (e') = 0. Thus,, by employing equation (3.39) to eliminate 

the incomplete elliptic integral, there is obtained the result 

) }j = ln{8i(2ns^)} ~ 4KsiZ(2Ksi) + Re 

rz:Y7IzTfi:rzya[(** " Kk2xZ'(K-B(K))}s (a 

+ cn2Kai dnZEsi, 
sn2KSi 

1 * 

(3.41) 

However, even with this simplification it would not appear possible to 

obtain an explicit solution. Nevertheless, a solution which possesses 

the apparent asymptotic form of the first iterate may be derived by 

noting that 

GiCns) ~ (2k'kK/n)"2Ks, ZKs + 0, (3.42) 

a result which may be deduced from Byrd and Friedman's equations 

(105.01), (105.02) and (907.01). Thtis equation (3.42) may be used 

to replace t'ac left-hand side of equation (3.41) by its asymptotic 

fom for small ( 8 ) 5 that is ln{ (8k'k K ^ / I T ) ( 6 ) }. Consequently^ 

upcn noting from equation (3.41) that Y ( 8 ) ~ 0 cs X + k, it may be 

concluded that 

_Yi\ a. TT i 
e (0)'^(op-;7-^)'01 (2Trsi)exp -4I<s,S(2K3I) + 

(3.43) 
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Tĥ . coordinates of the indentation AB in the t and s planes are 

related by the expression 

(-1+ E(8)2*^)/A = sn(-2K3i + iK' - 2KE<&)eiG), (3.44) 

where J as for the planar wing5 e(8) and 0 are the polar coordinates 

(with origin at t == -1/A) of the indent at ion AB in the t plana. 

Byrd and Friedman's equations (122.07) and (123.01) may be 

utilized to yield the asymptotic relationship 

E(8)a^^ ~ 2KE(8)e^8cn2Ksi dn2Esi/sn2Ksi, 'G(&y*0^(X^k). (3.45) 

Thus, by equating the moduli of equation (3.45). it is found that 

E ( 9 ) ~ 2 K E ( 8 ) c n 2 K s i D N 2 K S I / s n 2 K s i , E ( & ) + 0 , ( X ^ k ) . (3.46) 

Therefore it is possible to infer from equations (3.43) and (3.46) 

that a first approximation to e(9);, e, nay be written as 

* Wx5-(^<2KS,) . (3.47) 
• 1 

a result which would seem to represent the asymptotic form of e(9) as 

A-̂ k. 

Although details will not be given,it nay be shoxm that with 

k=l, which corresponds to end plates of zero height, equation (3.47) 

is identical with equation (3.13) if e^^^(0) is replaced by e. Hence 

the present approximation for E(8) is equivalent to the first iterate 

of the planar wing. Therefore, in view of the apparent accuracy of 

of the latter approximation for small 2h/b, it is assumed that e is 

sufficiently accurate for wings with end plates near the ground. 

Curves of In (s/X) against X for various $ are shorn in Fig. 11. 

This indicates that,for the range cf X and $ examined e is extremely 
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small. a fact which is consistent with the assumption that 

= 0 is a good approximation for e(^). 

The vertical dimension of the end-plate traces, 1, may be written 

in terms of the transformation constant and parameters by insisting on 

correspondence between the H and s planes at point F. This require-

ment gives the result 

~ + i(h-l) = C[a^(K + i2Ks2)- {K + iZKsg " E(K+ iZKsg)} -

(a2-l/A2)(l-.Xi)S r, . 
A(k2-A2yL 5̂ la 

8o(n/2 + iTTŜ  - TTSl) 
d̂ (rr/2 + iTTS2 + TTSl) 

+ (K+i2Ks2)Z(2K%)}] + ih, 

(3.48) 

where Sg = dn ^(l/ctsk')/2K. 

By employing the properties of the elliptic functions given by 

Byrd and Friedman (p.20) and their equations (140.01) and (143.01) 

it is possible to derive the result 

E(K + i2Ks2) = -i{Z(2Ks2,k') + k ^gn(2Ks2,k')sn(2ks2,%')} + 
ix dn \ 2; K / 

4. E<Kl«4_i2K=z). • (3.49) 
K 

This result will be used in the simplification of equation (3.48) as 

will the property given by Woods (p.117) 

83 (ns) = d̂ (ir/2 + ITS). (3.50) 

Therefore, by using equations (3.49) and (3.50) to rewrite 

E(K + i2Ks2) and the theta functions in equation (3.48), it is found, 

after rearrangement, that 

— - il = C [aZ - ̂ g2Y2(K-E(K))}(K + iZKsz)- %ZYZt%(2K82,k') + -IC 

k'^cn(2Ks;.k')sn(2Ks? 5k')^ (a^-l/A^)(l-X^)*;, . [baCinSz-nsi)! . 
-y , - 7 ^— ; TTTTT—TTTl I 5 in A \ + dn(2Es2>kT) X(k%-AZ)4 _83(ins2+nsi)j 
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+ (K + i2Ks,)Z(2 

Hence,comparing this expression with equation (3.32), one is able to 

obtain the result 

I - C ̂ ^&2-(K-C(K))"a2}2Ks2+ :i;Y^{Z(2Ks2 = k')+ Zgf "2 k/X' IC 

k'2cn(2K82,k') 3n(2Ks? ,k') ̂  (g^-l/x^) (i-A yu A V (1-A^)%1 T r83(iws?-wsi)l 
dn(2Ks2,k') A (k̂ -A ̂)"l 2i [63(iws2+nsi)J 

+ 2KS2 Z(2K3 (si) }j (3.51) 

This may be put into a form more suitable for computation by using 

Jacobi's imaginary transformation of the 63 function given by Woods 

(p.118)J that is 

83(ns,q) - (K/K')*exp(-nKs2/K') 83(-iKms/K',q'), (3.52) 

where q'=q(k'). Therefore equation (3.52) makes it possible to 

rewrite equation (3.51) in the following form; 

I T S 2 

F" 
X = c - E(K)) - a2}2Ks2 + iZ(2Ks2,k') + 

k'2cn(2K82,k')8n(2Ks2,k')i (a^-l/A^)(1-A^)^ r2msi8?K 
dn(2Ks2,k') A(k2-A2)|' ^ ir 

+ 2KS2 Z(2Ksi)}J . (3.53) + 2^ In 
)3{ttK(s2+ isi)/K\q'} 
)3{TrK(s2- isi)/K',q'} 

Finally5 equation (3.53) may be simplified by comparison with 

equation (3.33)>and the 83 functions may be replaced by the series 

form 

n=s1 
63(713) = 1 + 2 1 cf^cos (2m'iTs) 

m=i 

given by Byrd and Friedman (equation 1050,01). Thus, after 

performing some routine operations on the logarithmic term of the 

modified expression, there is obtained the expression 



37. 

(Z(2KS2.k') -

(a2-l/l2ui-j2l» -1^2 sin(2nKiiS2/K')sinh(2iiiKiis,/K') \-i 
- ' t a n Y - ^ 4 — ^ Ij-

^ 1 + 2 ^ ^ c o s (2mK7rs 2 /K') cosh (2mKTTs ̂  /K') 

(3.54) 

The ratio l/h may be written as a function of a, A and k by 

combining equations (3.40) and (3.54). Thus it is possible, by 

eliminating a from the resulting expression, to calculate 1/h as 

a function of % for various * and the results obtained are 

illustrated in Fig. 12. It should be remarked, in passing, that 

the series expansions of equation (3.54) appear to converge very 

rapidly in the range of % and 0 considered. Therefore, only 4 

terms were retained in the calculations, the error involved being 

considered negligible. 

3.3.2 The flow problem. 

By referring to equation (1.1) it is found that the boundary 

conditions for normal velocity in the 0 plane are identical to those 

of equation (2.1) at the corresponding segments of the bounding 

contour. Furthermore, at the end-plate traces 84i/3n = 0. 

In accordance with the method proposed in Section 1.3,a 

suitable superposition flow is sought. Unfortunately, it has not 

been possible to find such a flow which has a complex potential in 

closed form. On the other hand, by combining a number of simple 

flows, it is conceivable that the conditions could be satisfied 

with reasonable accuracy. However, it is difficult to state with 

certainty how many of these flows would be required to ensure an 

adequate approximation (except in the degenerate case of the planar 

wing). This is an undesirable feature and would seem to outweigh 

the advantagegof the superposition method. Nevertheless, it is 
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instructive to discover the extent to which the boundary conditions 

at the vortex trace are affected by the addition of a simple flow. 

An obvious choice is the superposition flow employed for the planar 

wing. Thus5 if this is added to the Trefftz-plane flow, it is 

found that 8̂ j,/9n = 0 everywhere at the finite part of the bounding 

contour except the traces of the end plates. Consequently the 

solution of the combined flow in the t plane entails the integration 

of the flow field of source distributions. The integrals involved 

are complicated and appear to be difficult to evaluate explicitly. 

Suppose, however, that a source distribution of strength -Woob/h is 

placed on the imaginary axis of the 0 plane in the interval 

Firstly, it is found that the normal velocity at the end 

plates is nullified whilst, other than at AB and GH, the remaining 

boundary conditions are undisturbed. Secondly, except at the imagin-

ary axis,the complex potential of the source flow is regular every-

where and, in consequence, does not alter the jump in velocity 

potential at the vortex trace. 

The adoption of the modified combined flow stems from the fact 

that as h/b ->• 0 the flow induced near the end-plate traces by the 

sources of the imaginary axis becomes more like the flow of a 

uniform stream parallel to the y direction. Furthermore, for the 

purpose of calculating the influence of the end plates, the vortex 

trace may be considered semi-infinite in span. Thus ,in this 

limiting case, which is of particular interest, it is possible to 

identify a combination of simple superposition flows which, together, 

satisfy the requirements. 

If h/b is not very small, it is necessary to solve the full 

problem of the modified combined flow about an obstacle shaped like 

the vortex trace. Unfortunately, the solution for this flow field 

contains a complicated integral which is attributable to the 

imaginary-axis sources. However, it will be shown that this may 
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be simplified by expanding the integrand in such a form that the 

first term is recognizable as part of the semi-infinite-wing 

approximat ion. 

The boundary conditions for the modified combined flow in the 

negative half of the t plane may be written as follows; 

(i) /3n = 0; (-1 + e(0))/A < Re(t) < 0, Im (t) = 0; 

(ii) 3* /3n = 0; -°= < Ile(t) < (-1 — E(7r))/A, Im (t) = 0: 

%2-t2 .l-t̂  & 
Re ; Re(t) - 0, 0 < Im(t) < » ; (3.55) 

(iv) ilc . C 
I ' an 2h 

2 j irt 
ppr^2(-ppp-) ; c = (-1 + E(8)e )/X,0 < e < 7T I 

(v) dW^/dt ~ WooĈ t/k̂ x'*h| |t| -» 

Conditions (iii) and (iv) are determined by noting that the 

obstacle flow is symmetrical with respect to the z axis. 

The fourth condition may be rewritten in terms of the polar 

coordinates e(e) and 9. ThuSjif, in this expression,E(8)is replaced 

by E and the resultant expression is expanded for small E , i t is found 

that 

^c\ _ w^bC a2~l/A2^1~x2^2 ,1-X2jj3+X2a2 
^9n ^AB 2h 

4. I 
2(1-%%) (%/-&%)* 

(3.56) 

where subscripts AB denote conditions at the boundary ofindentation 

AB. 

Before any approximations of equation (3.56) are made it is 

relevant to remark that E = E ( A , k ) . Therefore, in general, the 

second term of the above expansion is not 0(1). However, an 

examination of the relative magnitude of the first two terms of the 
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expansion indicates that the modulus of the second term is negligible 

compared with that of the first for 2h/b < 1. On this basis, there-

fore, all terms but the first are neglected to give a result which, 

when combined with equation (3.40)» yields the expression 

(9* /9n)^g = ŵ bA/2Tre. (3.57) 

Thus; to the order of accuracy of the first, semi-circular, approxi-

mation for e(8), the normal velocity induced at the boundary of 

indentation A3 is identical with that induced at the same place by 

a sink of strength vjjo situated at t = 1/X. 

One interpretation of the zeroth approximation to an exact 

upper half-plane is that the boundary conditions of the indentations 

are ignored in determining the flow field. In the present case, 

however, sucb. an interpretation will lead to large errors in a owing 

to the fact that (3(|) /Sn)^ increases monotonically as £ ->• 0. A 

preferable interpretation is that the zoroth approximation satisfies 

the boundary conditions of the indentations in the mean around their 

boundaries. 

Upon placing the above-mentioned sink at t = -1/A it is apparent 

that not only is the approximate boundary condition (3.57) satisfied 

but also the exact boundary condition (3.55) (iv) in the mean. Tlais 

may be verified by examining the change in stream function from A to 

B, in each case. Therefore, in order to satisfy the second 

interpretation of the zeroth approximation, it is a condition that 

additional flows, which are needed to satisfy the remaining boundary 

conditionss must not alter . 

A flow which satisfies the asymptotic condition (3.55) (v) has 

a complex potential given by 

W = w CftZ/Zk^X^h (3.58) 
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This also satisfies conditions (3.55) (i) and (ii) and induces zero 

normal velocity at Re(t) = 0. Further, as its complex potential 

is regular in the finite part of the t plane, this flow does not 

affect the value of Therefore, to the order of accuracy 

of the zeroth approximation, it does not disturb the boundary 

condition of indentation AB. 

Condition (3.55)(iii) is satisfied by a distribution of sinks 

of strength Woob C Re{ (a^-t^) (1-t^) ̂ /(l-X^t^) (1-k^t^) ̂  }/h and 

situated on the imaginary axis in the interval 0 $ Im(t) $ In 

general, these sinks do not satisfy conditions (3.55)(i) and (ii). 

This may be remedied, however, by an image distribution of sinks 

beneath Im(t) = 0 which, it will be observed, does not disturb 

condition (3.55)(iii). Thus, by integrating the contributions 

of all the elementary sinks on the imaginary axis, it is found 

that their complex velocity is given by 

_^(t)_ _ Woob C 
dt 2iTh 

This expression is seen to be regular for Re(t) < 0. Therefore, 

according to the zeroth approximation, the imaginary-axis sinks do not 

invalidate the boundary condition of the indentation AB. 

Finally, it is observe] that whilst the sink at t = -1/X 

satisfies conditions (3.5)(i) and (ii) it does not satisfy condition 

(3.5)(iii). However, this mav be corrected by the introduction at 

t = +1/A of an image of the sink at t = -1/X. This ijnage has a 

regular complex potential except at t = +1/A. Therefore, within 

the limitations of the zeroth approximation, it does not disturb the 

boundary condition of indentation AB. 

Thus the zeroth approximation for the modified combined flow, 

may be written as follows: 
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" l i r e - " • « ° ) 

Here the first term on the right-hand side is the complex potential 

of the sink distribution on the imaginary axis. This term is 

obtained by replacing t by t2 in equation (3.59) and integrating 

with respect to t2« The second term is due to the sink at t= -1/A 

and its image whilst the last term is the complex potential of 

equation (3.58). 

StrictlyJ equation (3.60) should contain an arbitrary constant 

but5 as was evident in the planar-wing case, such constants do not 

influence o and thus the constant is neglected. 

The integral of equation (3.60) may be evaluated by employing 

the expansion 

• I 2(tk2tf) ' 8(l+lĉ t{) * 

This expansion is uniformly valid if |l+k^tf| > a condition 

which is satisfied within the limits of the inner integration if 

k' <1. Furthermore, it should converge rapidly for small h/b as, 

in this case,k' is small. 

Thus the term {(l+tf)/(l+k^tf) }' may be replaced in equation 

(3.60) by the expanded form and the inner integration performed 

term-by-term. This is achieved most conveniently by contour 

integration of the inner integrand in the complex ti plane. Here 

the contour consists of a semi-circle situated in the upper half 

of the plane with its centre at the origin and that part of the 

real axis directly underneath the semi-circle. 

For Ro(t2) < 0 the contour surrounds simple poles at 

ti= -it2 and t]= i/X and poles of various order at tj® i/k. There 

are,, however, no branch points within the contour; therefore it 
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is possible to use Cauchy's residue theorem. 

The integral to be evaluated consists of the contribution 

of the real axis part of the contour to the contour integral in 

the limit as the radius of the serai-circle tends to infinity. 

Upon performing this limit it is found that the contribution of 

the semi-circle vanishes. Consequently the inner integral of 

equation (3.60) is simply 27ri times the residues within the contour. 

Therefore.,, after determining these residues, it is found that 

+00 

f t2(a2+tf)(l+tf)"dt) , _ 2 
oo "(tf+tj) (1+X^tp (l+k^tf)2 ~ k 

JL __ ( g ^ - l k ' 2 (A^g^-l) 
a2 "(l-At) 2 (X^-k^)(l-Xt) 

(k^a^-l) 
(A^-k^) (1-kt) * * 16 I (Â -k̂ )̂ (l-At)' " (AMc^)^(l~kt) 

k"̂ |- 2A^(A^a^-l) _ (3k^a,^A^~k^a^-A^-k^) 

ReCtg) < 0. (3.61) 

Upon combining equations (3 60) and (3.51) and performing the 

tg integration one is able to obtain the following result : 

Wc (t)- ̂  
t 
A? 

(g^-l/X^) 
In 

(A-a^-1) K'4 9 ZACAZgZ-l). 

Wcob 
2 I T 

The terms 

Re(t) < 0 . (3.62) 

2hkA' 

of equation (3.62), together, represent the flow of a uniform stream 

with complex potential Wmbn/2h in the Riemann sheet containing the 

physical region Re|n{ <0. As Fig. 13 shows, this is identical 



44. 

with the flow of the same uniform stream around the vortex trace 

of a planar wing of semi-infinite span and with an end plate. This 

confirms the remark made previously that the expanded form of 

integral (3.59) yields a first term which is part of the semi-

infinite-x^ing approximation. Thus it seems likely that for small 

h/b a truncated form of the above expansion should yield reasonably 

accurate values of a within the limits of accuracy imposed by the 

zeroth approximation. 

3.3.3 Determination of the induced drag 

The velocity potentials of the superposition flows are single-

valued at the vortex trace. Therefore by employing equations (2.22) 

and (2.28) it is possible to write the zeroth approximation for 2 in 

the form 
, \ -1/k 0 , . 

= -2 {J + / ° (df2/dt)dt /w b^. 
(-1+E(0))/A -1 ^ 

Therefore this equation may be combined with equations (3.2) and 

(3.62) to give the result 

z(°) . + z|°) + 

Here i /i o i 
)-(°) = r ̂  y if(t,k,X) (gZ-tZ) (l-t2) 'dt 

1 - - kkh^{_l+c(0))/A ii (l-X%tZ)(l-kZt2)i ' 

(where f(tjkjX) is the expression inside the square brackets of 

equation 3.62) 

-(o) C 9 - In(l-A^t2)(a^-t^)(1-t^)^dt 
^2 - ZTV + J 

and 
^(o) ̂  9I t^(a^-t^)(1-t^)^dt| 

Of the three integral expressions given above it would seem 

that only 13°^ may be evaluated explicitly. This is made possil 

by transformation (2.3) and equation (2.4) which enables one to 
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rewrite ^3°^ in the form 

„(o) K+iK 9 sn^2Ks (a^-sn22Ks) (l-sn22Ks)(i2l<s 
^3 = - r - l ^ K a — 

(3.63) 

After rearrangement, equation (3.63) may be replaced by 

=3 -3&iK' 0 „(o) cf" ^ f-i)- (l+a^-l/A^)sn^2Ks sn^2Ks 
X3 - - P -

, (A^-1)(a2-l/x2)gg22Kg^ 
+ A7(l-A%8n%2Ks) 

Thus, by comparing this expression with equation (3.28)̂  it is evident 

that 
„(o) -r^ '' f (l+a^)sn^2Ks sn^2Ks . 
3̂ " - kZT9hZhlJ /U H ^ pr~ + 

The first txfo terms of the integrand of equation (3.64) may be 

integrated by means of equations (310.02) and (310.04) of Byrd and 

Friedman. The third term, on the other hand5 does not contribute 

to ^3°^ owing to the requirement of point-to-point correspondence 

between the Q and s planes which demands that 

n(-K + iK*) » n ( - K ) ; 

n{-2K(si + 1 (0 ) ) + iK'} = 0 (0 ) . 

Therefore, after performing tne integration^ equation (3.64) becomes 

î 2lC(si+e(0)) - E(-K+iK') + E{-2K(si+e(0)) + iK'} 

- E(0) + E(-K)) - ^(2+k2)2EC(s 1+7(0)) - 2(l+k^) j^E(-K+iK') -

-E{-2K(si+E(0)) + iK'} + E(0) - E(-K)j + 

C3 (l+a^) 
k^A^b^h 
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+k2|sn(-K+iK')cn(-K+iK')dn(-K+iK')-
L 

- sn{"2K(si+e(0))+iK'}cn{-2lC(si+£(0))+iK'}dn{-2K(si+e(0)) + iK'} + 

^ 2K(8i+E(0))j . + sn(0)cn(0)dn(0) - sn(~K)cn(~K)dn(-K) 

(3.65) 

An examination of the magnitude of e (O)would seem to suggest 

that, for 2h/b < 1, £(0) is negligible compared with and hence 

it is ignored in equation (3.65). The resulting expression is then 

simplified by employing equation (3.39) to expand the elliptic 

integrals. In turn, this equation may be further simplified by 

employing properties of the elliptic functions and integrals given 

by Byrd and Friedman in equations (111.00), (113.01), (122.00), 

(122.01), (122.02), (122.07) and (141.01) to yield finally 

r(o) _ _ c3 
3 "* k ^ x W h 

H - M O ) - Z(2KsO - S H Z g i g p i ) -

^^i^?i(2+k2)2Kai - 2(l+k2;[z(2ksi) -

cn2Ksidn2KsiI 1 
2KsiJ 

Before 2̂  ^ and may be evaluated it is necessary to replace 

e(0) by e in the limits of the integrals which appear in these 

expressions. Although the error implicit in this approximation has 

not been determined for arbitrary k it seems likely that it is 

extremely small for h/b < g. This view is supported by a study 

performed for k = 1 (%/h - 0) which indicates that the error involved 

with this approximation is O(e^) compared with 2 

Tlie only other approximation to be employed is in the expansion 

appearing in f(t,k,A), terms of 0(k'®) being neglected. Examination 

of the neglected terms indicates that the error so caused in ig 

negligible for the cases considered. 
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As a check on the status of the present interpretation of 

it is worth wlii-Te' to consider its asymptotic behaviour as 1/b •> o 

(k' o) • Thus 5 without giving details 5 one finds that 

(l/b-̂ o) . 

(o) 
It will be seen that this expression is identical with that of Z 

for the planar wing (equation 3.24) to the order of accuracy of 

that approximation. 

The integrals of and have been evaluated numerically 

by employing the Gaussian method of mechanical quadrature This 

technique was applied directly between the limits of integration 

-1 to 0; a fifteen-point interpolation scheme having been used. 

However5 between (~1 + e)/ X and -1/k an alternative approach was 

necessary owing to the singularities in the integrands within or 

very close to these limits. This consisted of replacing each 

integrand by the sum of a function which is bounded for (-1 + e)/A 

$ t$ -1/k and a function which may be integrated explicitly. Thus, 

for example, the integrand of was rewritten in the form 

In(l-x2t2)(a2-t2)(l-t2)2 _ A(A,k) B(A,k){In(1+At)+In(l+X/k)}, 
(k^t^-1) i (1+Xt) 

+ C(t,X,k) . (3.6 5) 

Here A(X»k) and B(A,k) are terms obtained by expanding the integrand 

about the singularities at t = -1/k and t = ~1/A whilst C(t;A„k) is 

a function which is bounded in the interval of integration. 

A similar process was applied to the integrand of to 

give an expression of the form 

".67) 

where A'(A,k), B'(A,k) and [^(t^A^k) are analogous with A(A,k), 

3(A5k) and C^t^A^k). 
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The first two terms on the right-hand side of equations (3.66) 

and (3.67) may be integrated analytically. Thus, in order to 

determine and , it is only necessary to integrate C(t,Xgk) 

and C'(t;X,k) between the limits (-1 + e)/X and -1/k. This was 

achieved by using the Gaussian method with a seven-point interpolation. 

All the numerical integration described has been programmed for 

computation on a Farranti Pegasus computer. 

The accuracy of the final result obtained for was checked 

for the case V b = 0 by comparing this result with the planar-wing 

value (equation 3.24). There was found to be excellent agreement 

between the two results. 

By noting that the end plates do not contribute to the overall 

lift of the configuration it is possible to conclude that is 

related to in the manner of equation (2.34). Thus has 

been determined and the results obtained are plotted against 2h/b 

for various 21/b and against X/h for various 2h/b in Figs, 14 and 

4. Discussion 

The results confirm what might be expected on an intuitive 

basiss namely that for a given 2h/b an increase in 21/b reduces the 

induced-drag factor. What is more important, perhaps, is that they 

show that the reduction is greatest in the vicinity of 21/b = 2h/b; 

yielding = 0 for 21/b = 2h/b. The reason for this is that 

for 2%/b = 2h/b the only physically acceptable value for w is zero. 

On the other hand, for quite small 2(h-1)/b, |w^| and can be 

appreciable owing to the large mass flow between the ground and the 

tips of the end-plate traces caused by the singular velocities there. 

Howevers this is an unrealistic feature which will not occur in 

practice owing to the action of viscosity. 

Other features of the theory which may be criticized are, 

firstly, that it does not represent the deformation of the trailing-
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vortex sheet. Secondly, it does not allow for the non-linear 

influence of the ground on the relationship between lift and 

circulation. To represent these effects completely in a theory 

is extremely difficult. A more promising approach would seem to 

be to compare the linearized theory with experiment in the hope 

of achieving the following aims; 

(i) To decide on the limits to be placed on the accuracy 

of the linearized theory. 

(ii) To identify important effects not included in the theory. 

Such a comparison is effected in Chapter III which also deals with 

a discussion of the experiments on various open configurations. 
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CHAPTER II 

THE LIFT AND INDUCED DRAG OF A CLOSED GROUND-EFFECT WIHG 

1. Introduction 

Closed G.E.Ws. may, in theory, be designed for zero induced 

drag whilst giving non-zero lift. However„ in practice, there 

are many factors which may prevent this ideal from being achieved. 

For example J in the case of a G.E.W. with end plates; structural 

requirements will, to a large extent, influence the design of the 

end plates. Tlie reason for this is that the end plates will be 

exposed to wave impact and, in consequence, will transmit large, 

transient loads to the main structure. It is conceivable, 

therefore, that the end plates will be required to have minimum 

hydrodynamic drag, a requirement which may conflict with the 

requirement of minimum induced drag. 

Til us the main aim of this chapter is to describe a method of 

determining the lift and induced drag of a closed configuration 

which is not designed ab initio for zero induced drag. This method 

is based on a study of sectional-drag relationships which will be 

described in Part I of this chapter. Subsequently, in Part II, 

the technique developed in Part I will be applied to the problem 

stated above. 

There is evidence from the two-dimensional theory of de Haller 

(1936) that unless the non-linear features of the problem are 

included in the theory it will be inaccurate. Therefore, although 

initially the theory will be developed on the basis of the linearized 

theory, it will be modified in Section 7 to allow for the most 

significant non-linearities. 



51. 

PART I 

FOUNDATIONS 

2. The relationship between sectional drag and induced drag. 

This section is concerned with an analysis of the sectional 

drag of various lifting systems including those representative 

of the G.E.W. configurations to be considered in Part II. 

Throughout the analysis,, the discussion will be confined to wings 

having chordwise sections of zero thickness and the following 

assumptions will be employed; 

(i) The flow relative to the lifting system is inviscid 

and incompressible. 

(ii) The approximations of the linearized lifting-surface 

theory are applicable. 

2c1 Wing^ with arbitrary planforms and vorticity distributions 

Consider an isolated planar wing of arbitrary planform in 

forward flight. Suppose that the wing, which is shox-m in Fig. 16 

with the right-hand coordinate system (x,y,z), is designed to 

sustain a y component of vorticity yCx^y). The linearized form 

of the sectional drag of the wing may be found by reference to 

the analysis of Jones and Cohen (1957, p.p.23-24). This enables 

one to derive the result , . 
c(y) 

D^Cy) = -p j w^(x,y)Y(x5y)dx - T(y). (2.1) 
o 

Here D^(y) and w^(x,y) are the sectional drag and upwash at the 

wing in forward flight, T(y) is the sectional edge thrust (negative 

drag) and c(y) is the local chord. 

The motion of the wing is reversed and a new right-handed 

coordinate system (x';y',z'), which is defined by 

x' = -X, y' = -y, z' = z, (2.2) 
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is introduced. At the same time; the camber distribution of the 

wing is modified such that at all stations (x^y) of the wing the 

y' component of vorticity is identical with y(x.^y). 

Robinson and Laumann (1956, p.p. 172-174) have shoT-m that , 

within the limitations of the linearized theorythe sectional 

edge thrust of a given planform depends only on Y(x;y). Therefore 

the sectional drag in reverse flight is given by 
o 

D (y) = "p / w (x',y')Y(x,y)dx' + T(y), (2.3) 
-c(y) 

where the subscript r denotes reverse-flight quantities. 

Equation (2.2) may be used to rewrite equation (2.3) in the 

form c(y) 

Dp(y) = ~P / w^(x',y')Y(x5y)dx + T(y). 

0 

In turn, this result may be combined with equation (2.1) to yield 

the result > . 
c(y) 

Df(y) + Oj.(y) = "P / + %^(s';y*)}y(x,y)dx. (2.4) 

o 

As noted in Section I. 1.1, the linearised theory employs the 

assumption that the wing and its trailing-vortex sheet lie on a 

cylindrical surface with generators parallel to the direction of 

motion. It is also observed in the same section that the trailing-

vortex vector is everywhere parallel to the flow relative to>and 

infinitely far forward of,the wing. Therefore, if the flow fields 

of the two motions are superposed, there results an infinite vortex 

strip which is in the plane z = 0 and parallel to x. Further, the 

span of the strip is the same as that of the wing. 

By recalling the fundamental laws of vortex motion, (Thwaites, 

1960s p.32) it may be concluded that at all x-wise stations the 

circulation distribution of the vortex strip is the same as that 

at the vortex trace in the Trefftz plane of gither motion. Hence, 

if w (y) is the upwash at the vortex trace in the Trefftz plane of 
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the forward motion, it follows that 

Wg(x,y) + Wp(x',y') = w»(y), (3.5) 

a result originally due to Jones (1951). Therefore equations 

(2.4) and (2.5) may be combined to give the result 

Df(y) + D^(y) = -p w„(y) r(y), (2.6) 

c(y) 
where r(y) = / Y(x,y)dx 

o 

is the circulation around the section.defined positive in the 

lifting sense. That this is the same as the jump in velocity 

potential 5^^(y) - <p̂ (yX at the vortex trace in the Trefftz plane 

of either motion follows from the lax-js of vortex motion. 

Equation (2.6) may be written in the alternative form 

Df(y) + Dp(y) . 2 D.(y), (2.7) 

where EL(y) = -p w^(y) r(y)/2 is referred to as the induced-drag 

gradient. This title is suggested from considerations of the 

form of the expression for the overall induced drag of the wing 

which)by employing equation (I. 2.22)^may be written in the form 

D i = -P /y Woo(y) r(y)dy/2. 

Here the subscript b denotes integration across the span of the 

wing. 

Equations (2.4) and (2.7) may be generalized without difficulty 

to include non-planar lifting systems as follows; 

Dj(s) + D^(s) = -• ov^^(s) r(s)., -V 

> (2.8) 
= 2 CL(s), J 
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where (s, n) are curvilinear, orthogonal coordinates in planes 

normal to the direction of motion such that n is constant on the 

trace of the cylindrical surface. Also, v^^(s) is the velocity 

in the direction of n at the vortex trace in the Trefftz plane. 

The circulation r(s) is defined positive if the sectional 

force in the direction of n is positive. 

2.2 Wings with a spanwise plane of symmetry 

Equations (2.7) and (2.8) provide no information about the 

separate values of the sectional drags for the two motions. However; 

some progress in this direction is possible in the case of wings 

with a spanwise plane of symmetry. 

2.2.1 Symmetrical chordwise distributions of y(X;y) 

Consider an isolated planar wing with a spanwise plane of 

symmetry and a vortex distribution y(x,y) which is symmetrical 

with respect to the mid-chord axis. Thus, if the origin of the 

axes is placed on the mid-chord axis of the wing, it may be 

concluded from symmetry considerations that 

Wf(x,y) = w^(x,y') (2.9) 

Tliis relationship is illustrated diagramatically in the sketch 

below 

Y(x,y) Yix.y) 

Wf(x,y) Wj.(x' ,y') 

FORWARD REVERSE 
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For conveniences w^(X;y) and w^(x,y) are written in the 

following formsi 

f s f S V (2.10) 
np(x',y') = ^ (x'.y') + ^ (x',y'), J 

where the superscripts (a) and (s) imply that the respective 

functions are antisyrometric and syironetric with respect to the mid-

chord axis. 

The antisymmetric part of w^(x,y) is given by 

m^(*)(x,y) " &{Wf(x,y) - w^C-x^y)}, 

= &iWp(x:,y') - WpC-x.y')} (2.11) 
from equation (2.9). But 

Wr^*^(x',y') = i{Wp(x',y') - w^(-x',y')}. (2.12) 

Hence, by comparing equations (2.2), (2.11) and (2.12),it is 

evident that 

w^(^)(x,y) = -Wp(^)(x',y'). (2.13) 

A similar analysis applied to the symmetric parts of 

w^(x,y) and w^(x'py') reveals that 

%f^^^(x,y) " Wp(^)(x',y'). (2.14) 

3y combining equations (2.5) and (2.10) it is possible to 

obtain the result 

Mf^*^(x,y) + Wp(^)(x:,y') + Wf(^)(x,y) + Wp(*)(x',y') =w„(y), 

In turn, this expression may be combined with equations (2.13) and 

(2.14) to give the result 

w^(^)(x,y) = Wco(y)/2. (2.15) 
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Thus it is apparent from equations (2.10) and (2.15) that 

Wf(x,y) = w(*)(x,y) + v7„(y)/2. (2.16) 

As a consequence of the chordwise symmetry of the planform 

and the vortex distribution the sectional edge thrust is zero. 

Therefore 
+c(y)/2 

Df(y) = -p / w«(x,y)Y(x,y)dx, 
-c(y)/2 ^ 

+c(y)/2 , . 
/ {wv (x,y) + Wm(y)/2}Y(x,y)dx (2.17) = -p 

'c(y)/2 

from equation (2.16). Hence, by recalling that Y(x,y) is symmetric 

about the mid-chord axis and examining the form of the integrand of 

equation (2.17)% one may conclude that 

Dg(y) = - P w„(y) r(y ) /2 , 

= Cu(y). (2.18) 

It is not difficult to generalize equation (2.13) to include 

wings of non-planar span having the following properties: 

(a) a chordwise distribution of the s component of vorticity 

which is symmetrical about the mid-chord point at each s-wise 

station; 

(b) elements with mid-chord points occupying a single plane 

which is normal to the direction of motion. 

For non-planar wings with these properties 

Dg(s) » D^(s). 
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2.2.2 Arbitrary chordwise distributions of y(x,y) 

The preceding analysis nay be generalized somewhat by 

considering arbitrary chordwise distributions of yi's. y) which, for 

convenience, will be written in the form 

Y(x,y) = Y^^\x,y) + . 

Hare v^®^(K,y) and y^°^(y.y) are even and odd functions of % with 

respect to x = 0, respectively. Thus, hereafter, any function 

which is superscripted with (e) or (o) corresponds to the even or 

odd caaponents of y(X;y). However, it need not necessarily be an 

aven or odd function of x. 

The sectional drag in forward motion may be written in the 

form 

D.(y) = -p / {w.^^)(x,y) + w.^°\x,y) (x^y) + Y^°^(x,y)}dx - T(y), 
-c(y)/2 * 1 

+c(y)/2 , X +c(y)/2 , . , \ 
= ~p j Wj ^^(x,y)Y (x,y)dx -p / w. " (x,y)y (x,y)dx -

~c(y)/2 ~c(y)/2 

+c(y)/2 , X , . +c(y)/2 , . , ̂  
-P / ° (x,y) Y ̂  (x,y)dx -p / w- (x,y)Y ° (%,y)dx-T(y), 
-c(y)/2 = -c(y)/2 = 

(2.19) 

The first term on the right-hand side of equation (2.19) is the 

sectional drnp of the distribution Y^^^(x,y). Only this distribution 

contributes to r(y) and hence to (y) owing to the fact that 

r^®^(y) = 0. Therefore 

Di(y) = D^(G)fy) . 

It has been shown in Section 2.2.1, ho-r-n-'/er, tlir.t D^^^^(y) = B^^''\y). 

HcncG +c(y)/2 ,. , . 

D.C (y) = "P j w. ^ (x,y)Y ^ (x,y)dx = D. (y). (2.20) 
-c(y)/2 I 1 
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As r^°'(y) = 0; it follows that = 0. Thus,by 

employing equation (2.5), which applies for arbitrary y(x,y), it 

may be concluded that 

w^(°)(x,y) + = 0. (2.21) 

It is apparent from an examination of the symmetry of the 

induced velocity field of the distribution that 

Wf(°)(x',y) = -w^(x'5 y')p (2.22) 
f r 

a relationship which is illustrated in the accompanying sketch 

X 

(%,y) 

FORWARD REVERSE 

Therefore ŵ °̂̂ (x'y!) may be eliminated from equations (2.21) and 

(2.22) to provide the result 

w^(°)(x,y) - Wf^°)(x',y) = 0. 

Hence it follows that, as x' = -x, W£̂ °̂ (x5y") is an even function 

of X and consequently 

-c(y)/2 
y)dx = 0. (2.23) 
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Thus,upon combining equations (2.19). (2,20) and (2.23),it is found 

that 

+c(y)/2 , . ,\ 
Df(y) = D.(y) - p / w (x,y)Y (x,y)dx -
t 1 -c(y ) / 2 t 

+e(y)/2 \ (2.24) 
~ P J w . ( x , y ) Y (x,y)dx - T(y). 

-c(y)/2 

It appears not to be possible to reduce equation (2.24) with-

out explicit knowledge of the form of y(^/(x,y) and (x^y). 

However, it may be inferred from this equation that, provided that 

+c(y)/2 , \ , X +c(y)/2 , . , . 
p / w. (x,y)Y (x,y)dx + p J w. ^ (x,y)Y ° (x,y)dx + T(y) = 0, 
-c(y)/2 -c(y)/2 

(2.25) 

Df(y) = CU(y). 

It is difficult) in general, to determine classes of vorticity 

distributions which satisfy equation (2.25). On the other hand, 

as the overall drag is identical with the overall induced drag, it 

follows from equation (2.24) that equation (2.25) is satisfied in 

the mean across the span of the wing. Thus equation (2.25) is 

approximately correct if the quantities in this equation which 

vary with y do so slowly. On this basis, therefore, it is antici-

pated that this equation applies approximately for planar wings of 

large aspect ratio and with a spanwise plane of symmetry. Thwaites 

(1960) has shoX'Tn that* for uncambered wings of this class^ Y(x»y) is 

of the form 

Y(x,y) H Y{2x/c(y)}f(2y/b), (2.26) 

where, it will be recalled^ b is the span of the wing. This type 

of distribution has been employed in the approximate lifting-surface 

theories of -Ti =£hardt(1940) and Kuchemann (1952) to determine the 

lift of uncambered planar wings* The latter author justified its 
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use on the basis that in the region of the wing tips 5 where it is 

unrepresentative, the lift is comparatively small. Therefore he 

argued that the error thereby introduced into the lift is likely 

to be unimportant. 

The distribution (2.26) is of particular interest here as it 

seems that it approximates well to the vortex distributions of 

certain closed G.E.Ws. (see Section 5). It is instructive, there-

fore, to examine in more detail the sectional drag equation associated 

with this class of distribution. 

2.2.3 Sectional drag of the distributionY{(2x/c(y)}S(2y/b) 

In order to obtain a more explicit form for equation (2.24) 

it is necessary to know the relationship between y(x,y) and Wj(x,y). 

This has been derived by Lawrence (1951) for isolated planar wings 

as follows: 

^ l O s r i h M l i j a. dy. 

(2.27) 

where the subscript S denotes integration over the planform. 

Therefore, if the wing has a spanwise plane of symmetry and y(x,y) 

iu as given by equation (2.26), equation (2.27) becomes 

+1 +b/2 
1 + 

+ {(c(yi)Si-c(y)S)2+4(yi-y)2}*" 
c(yi)5i-c(y)S 

i 
dy, (2.28) 

where g = 2x/c(y), = 2xi/c(yi). 

The right-hand side of equation (2.28) is evaluated subject 

to Cauchy principal values (as defined by Thwaites, 1960, p. 118) 

being taken where required. 
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Thus,by employing equation (2.28)^it is possible to replace 

the first integral of equation (2.24) by the expression 

+c(yi)/2 , v , \ 

J Y ̂  (Ci)f(2yi/b) w- (%!, yi) dxi = 
-c(yi)/2 

+ 1 rj +1 / \ +b/2 -J 

+ / Yl"'(Gl)dSi ^(G)ds / A(y,yi,G,Ei)dy , (2.29) 
-1 -1 ~b/2 J 

where 

(2-30) 

The g integrand of the first multiple integral of equation (2.29) 

is antisymmetric. Therefore this term vanishes identically to yield 

the expression 

+c(yi)/2 ,. ,. 
J Y (Si)f(2yi/b)w (xi,yi)dxi = 

-c(yi)/2 

" ~ / •/°'(5j)a5l / y'°'(5)d? ~ / A(7,yi,5,5i)dy, 

-1 -1 »"-b/2 (2,31) 

where it has been assumed permissible to perform the ŷ  differentia-

tion under the g integral sign. 

In a similar fashion the second integral of equation (2.24) 

be conies 

+c(yi)/2 , . , \ 
J Y ̂  (Si)f(2yi/b)Wf ̂  (%i,yi)dxi = 

-c(yi)/2 

c(yi)f(2yi/b) 
r+l , \ ^ +1 , \ +b/2 
/"T<°>(ei)d{, ̂  / c(y)f Uy/b)^y , 

1 - 1 ' y i - i ' - b / 2 5 '1 -y L 6 I T 

+ 1 / ^ a + 1 , ^ + b / 2 1 

/ Y' '(Ei)dE:i / Y^"'(5)dS j A(y,yi,E,Ei)dy . 
- 1 - 1 - b / 2 J 
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The first multiple integral of this expression is 

identically zero, a fact which may be proved by noting the anti-

syiimietric form of the integrand of thin integral. Hence 

+c(yi)/2 , , , . 
/ Y (Ci)f(2yi/b) w (xi,yi)dxi = 

-c(yi)/2 

/t'°'(5)C>C ""fACy.yi.J.Eijdy , 

-1 -1 "''-b/2 (2.32) 

the differentiation with respect to y^ being taken under the C integral 

sign as before. 

An examination of equations (2.31) and (2=32) suggests that 

the two multiple integrals become basically similar if the order 

of the 5 and integration is reversed in one of them. Therefore, 

before these equations are used to rewrite equation (2.42), the 

order of the g and integration of equation (2.32)will be inter-

changed. This may be performed according to the following rule 

given by Keaslet and Lomax (1955); 

S S 

where R is the 'residual'. According to these authors; if the 

singularity causing the residual is located at the upper limits of 

the integration, say Ci= +1, C = +1, then 

P 1 1 1 1 n 
R = L^m ; dSi ; 4^G,Si)dS- / dg / ̂ (S.S^dCi . (2.33) 

l-l-e l-e 1-e 1-E 

In general3 however. the singularity or singularities producing 

residuals may occur anywhere within the area of integration. Their 

location can be determined by means of a simple test given by 

Heaslet and Lomax. This states that a residual results if, at the 

point E=a, in the area of integration, 
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Lim ê \i)(a-er], b-eni) ̂  0. 

where en = a-%; eni= b-Ci• (2.34) 

lieaslct and Lomax have remarked that if this test reveals the presence 

of inore than one residual then the total residual is the sum of the 

separate residuals. 

The residual corresponding to aquation (2.32) may be found by 

replacing (S) and Y^°^(C) in this equation by the representative 

forms 

^^^^(E) = /(l-%2)2 + even bounded terms; > 

(o) fo) ° n f ^(2.35) 
Y (5) = —^ n^g/(l-p2)% + odd bounded terms» J 

where and a^°^ are non-dimensional coefficients. These 
o o 

distributions are representative insofar as they conform to the 

requirement (noted by Robinson and Laurmann. 1956) that if y ' (O 

and become singular at the edges they do so as (l-g^) ̂ , 

Thus the above-mentioned test reveals that there are two 

residuals associated with the multiple integral of equation (2.32), 

both being caused by the cross-product of the singular terms of 

and y^°^(Si). Therefore,if the order of the 5 and Ej 

integration in equation (2.32) is interchangedsthere is obtained the 

result 

+c(yi)/2 /• s , ̂  
7 y^°^(Cl)f(2yi/b)w. "'(xi,yi)dxi -

c(yi)/2 

= - /Y(c)(s)dS }Y(°)(Si)dSi ; A(y,yi,5,Si)dy + 
-1 -1 -b/2 

+ 11]̂  + R2 5 (2.j6) 

where P-i and R2 are the two residuals. The first of these., which 

results from the singularity at 5 = +1,, = ̂ Ij may be found with 

the aid of equation (2.33) as follows: 
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R (y,) . c(y;)f(2yi/b) I" 

1 IBTT , £->0 

+1 _ +1 jj- ~ +b/2 

^ - J n ~ 

"Je 4 Jj • 
By employing transformation (2,34) with a=b=l it is possible 

to rewrite the above equation in the form 

Ri(y.) = j i ! M ! ^ £ l £ ( Z i ) £ e n / W Lig [ 

I <2n-en^)i sk A(y.y:.l-E%.l-cni)dy -

- ' I ( 2 7 ; S ? ? T ^ { ' ' ( 2 n i ' ' ° ^ ) ^ 371 V / 2 A(y,yi.l-En.l-Eni)dy] . 

(2.37) 

The limit of equation (2.37) is taken in Appendix I which yields 

the result 

Therefore the n integration of this equation may ba performed, subject 

to a Cauchy principal value being defined at n = niito give the 

expression 

R,(y,) . - f , .,1 L ( W ) d n : . 
1 4n 4 dyi 6 ni 

In turn, this equation may be integrated fay employing the transformation 

m = u^ 

and equation (864.12) of Wight (1961),thus providing the result 
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Rl(yi) . _ nao(*)a9(°)u9c(yi)f2(2yi/b)(i + 

(2.38) 

The residual R2, which is caused by the singularity at €=-1, 

Sl=-1; may be found by using an analysis which is identical with 

that used to obtain Ri if the transformations 

E' - -S El - -Si 

are used. In fact, it may be concluded from this analysis that 

R2 = Ri (2.39) 

Hence equations (2.38) and (2.39) may be employed to rewrite equation 

(2.36) as follows; 

+c(yi)/2 , , , X 
/ Y (Si)f(2yi/b)Wr (xi,yi)dxi = 

-c(yi)/2 

" - ^j^A(y,yi,G,Gi)dy-
- 1 - 1 *yi-b/2 

_ Tran^^^ao^°^U^c(yi)f^(2yi /b) r ̂  ̂ 1 d̂c(yT )^2^ 

This expression may be rewritten by interchanging the roles of g and 

. Thus, upon combining the modified expression with equations 

(2.24)5 (2.30) and (2.31)„one finds that 

B((y.) - D.(y,) . 
-1 -1 ^ -b/2 

1 „ i-, 

dy + 
{(c(yi)5i-c(y)»)2+4(yi-y)2}2 { (c(y] )g-c(y)gi )^+4(yi~y)^} 

c(yi)Sl-c(y)S c(yi)C - c(y)Si 

+ "av(=^ao(°)pU3c(yi)f*(2y]/b)(i + 1 
4 4 &yi 

Finally, it is necessary to give an explicit form to T(yi). This 

is achieved by employing a result given by Robinson and Laurmann 
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(equation 3.2, 10) for the contribution of one edge to the sectional 

edge thrust. Thus, after allowing for the contributions of both 

edges, one may use this result to obtain the expression 

Ky,) • (2.41) 
4 4 dyi 

Therefore equations (2.40) and (2.41) may be combined to give the 

result 
,+l , . +1 , . ^ H i 

D.(yi) = B (y.) J 
^ - 1 - 1 

:)El-c(y)E)2+4(yi-y)2}* { (c(yi )g-c(y))^^(y 
c(yi)Ci-c(y)5 c(yi)g-c(y)Si 

c(y)f(gy/b) 

i (c(yi)Ei-c(y)E)2+4(yi-y)2}* ^ { (c(yi )g-c(y)g] )^+4(yi-y)^^ j 

(2.42) 

It has not been possible to simplify equation (2.42),without making 

approxiniationSjexcept in the case c(y) = c(yi) - c corresponding to 

the rectangular planfonn. It may be inferred that for this planform 

the integral term is identically zero leaving 

D^(y) = D^(y), 

where yi has been replaced by y. This result, which would seem to 

be approximately correct for wings of quasi-rectangular planform, may 

be written in the alternative forms 

+C/2 

P J Y(?)f(2y/b)w (x,y)dx + T(y) = pw«(y)r(y)/2, ] 

)^i.43) 

pWoo(y) J Y(S)f(2y/b)dx/2j 
-c/2 

f V 

Therefore; by employing equation (2.41) with c(yi) replaced by c and 

writing 

G = { /Y(S)dS/nDQ}2/aQ(G)a^(o)^ (2.44, 

it is possible to replace equations (2.43) by the expression 



67. 

•i-1 +1 
r(y) = —nUcij /(g)w (g,y)dS/ /Y(?)<3C - w«(y)/2}. (2.45) 

- 1 - 1 

Equation (2.45) will be generalized in Section 2.2.4 to include 

non-planar lifting systems of the type considered in Section 2.2.1 

but with the added restriction that the chord is constant on all 

surfaces. This type of lifting system is representative of the 

closed G.E.W. to be considered in Part II of this chapter. 

2.2.4 Non-planar, constant-chord distribution of the type y(%)f(s). 

Consider a non-planar lifting system having elements with (a) 

mid-chord points occupying a single plane normal to the direction of 

motion and (b) the same.constant chord*c. The sectional drag of 

this type cf system, may be written in the same form as equation 

(2.24) by using arguments identical with those used to obtain this 

equation. Thus it is found that 

+c/2 , . / X +c/2 - V , \ 
D (s) = D.(s)-p / v'° (X„£)Y ̂  (x;S)dK-p / V f (x,s)Y )̂dx-T(s). 
f 1 -c/2 -c/2 

(2.46) 

Here y(x,s) is to be interpreted as the s component of vorticity 

and V is the 'n - wash' at the system. 
n 
An examination of the velocity field of elementary horseshoe 

vortices indicates that 

V (xi,8i) = - //Y(x,s)K(%i-x,Si,s)dx ds. (2.47) 
^ D 

where subscript D denotes integration over the developed area of 

the lifting system and K(xi-x,si,s) is an operator which may be 

written as fellows: 

K(%i-x,si,s) = %m(si,s)/2 + Ki(xi-x,si,8). (2.48) 

Here K^(s i,s) is an operator which appears in the expression 

v^ (si) =-/jy{x,s)E.^^Si,s)dx ds (2.49) 
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and Ki(xi-%, s%, s) has the property 

Kl(xi-x, BIJ, S ) = ~Ki(x~XI, S I , s). (2.50) 

That K(xi-x, Si, s) is of the form given by equation (2.48) 

may also be verified fairly easily by employing equation (2.8). 

If the vortex distribution is of the type Y(x)f(s) it is 

possible, by using equation (2.48)„ to rewrite equation (2.47) in 

the form +,^2 

V .(xi,Si) = - / Y(x)dx / f(s){K (si,s)/2 + Kj(xj-x^si,s)}ds, 
-c/2 3 

where B denotes integration over all s of the vortex trace. Thus, 

by employing this result and equation (2.50), it is found that 

/ 7^°\xi)f(si)v^®^(xi,si)dxi = - / Y^'^\xi)f(si)v^°^(xi,si)dxi+ Rfel), 
-c/2 -c/2 

(2.51) 

where R(si) is the residual resulting from the reversal of the x and 

xi integration in the integral 

+c/2 , \ +c/2 , . 
- / Y (xi)dxi / Y (x)dx / f(s)Ki(xj-XjSi,s)ds 
-c/2 -c/2 B 

The residual, R = Rj + R2s of the planar wing of rectangular 

planform is independent of wing span if Y(x,y) is specified. This 

is because in the regions contributing to the residual (the edges) 

the induced flows of Y^^^ and y^°^ are two-dimensional. This may 

be attributed to the fact that near the edgfes these flows depend 

only on the local geometry. Evidently, non-planar systems also 

possess this property. Therefore the residual may be determined in 

the present case by assuming that each section is part of a planar 

wing. Consequently it may be inferred from equations (2.38) and 

(2.39) that 
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R(si) = c f2(si)/4 . (2.52) 

The previously-mentioned analysis of Robinson and Laurmann may 

be employed to determine the following result for the sectional 

edge thrust 

T(si) = na^^) pU^ c f^(si)/4. (2.53) 
o o o 

Hence it may be concluded from equations (2.46), (2.51)s (2.52) and 

(2.53) that 
Dg(s) = D^(s). 

Consequently; by analogy with equation (2.45), 
+1 +1 

r(s) = -7r3c{ /Y(S)v^^(C,s)d5/ - v̂ ^̂ (s)/2}. (2.54) 
-1 -1 

3. Sectional-drag relationships applied to wing theory. 

The aim of this section is to employ sectional-drag relationships 

derived previously to formulate an approximate method for determining 

the overall lift and induced drag of certain types of wings. It 

will be shown that this method resembles that given by Kuchemann 

(1952) except in one important detail. 

In Section 3.1 the analysis will be concerned with wings of zero 

chordwise camber whilst in Section 3.2 the influence of chordwise 

camber will be considered. The whole of this analysis will be 

restricted to wings having chordwise sections of zero thickness and 

will be based on the assumptions of Section 2. 

3.1 Wings of zero chordwise camber 

Consider an isolated planar wing of rectangular planform and 

zero chordwise camber in forvjard flight. According to Thwaites 

(19605 p. 304) the linearized boundary condition at the surface of 

this wing is given by 

Wg(x,y) = - U^a(y), (3.1) 
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where a(y) s the sectional incidence, is defined as the angle bê cween 

the vectors of the forward chordwise direction and the direction of 

motion. Therefore,if it is assumed that Y(x,y) is of the form 

Y(C)f(2y/b)^equations (2.45) and (3.1) may be combined to give the 

result 

r(y) - Trgc{U^a(y) + w«(y)/2} . (3.2) 

For a given y/b, the quantity Woo(y)/Û  depends exclusively on 

r(y)/U^b. Therefore, in principle, equation (3.2) may be solved 

for r(y)/U^b provided (=b/c) , a(y) and g are known. As may be 

inferred from equation (2.44), the last of these quantities depends 

only on y(g). Therefore, in order to solve equation (3.2), it is 

necessary to know the form of y(g). This is dictated, to some extent, 

by the conventional assumption of wing theory, namely that the flow 

relative to the wing separates smoothly from the trailing edge. 

This leads to the requirement that T ( + 1 ) < a condition which is 

satisfied by the distribution 

Y(8)/U = a tan0/2 + J a sin no. (3.3) 
o o nAl n 

where a^,ai, 82, are non-dimensional coefficients and 

8 = cos (3.4) 

Glauert (1926) employed essentially the same distribution in his 

two-dimensional theory of thin aerofoils. Thus it may be argued 

that, strictly, its use is only justified for wings of large 

Nevertheless, it has been applied, with apparent success, byWie^hardt 

(1940) to the determination of the overall lift of low-aspect-ratio 

wings. 

By Comparing equations (2.35), (3.3) and (3.4) it may be 

concluded that 

. a^(o) . (3.5) 
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Therefore, after eliminating y(g), g, a^^^ and a^°^ from equation 

(2.44) by using equations (3.3)5 (3.4) and (3.5), it is possible 

to integrate equation (2.44) to obtain the result 

3 = {(a^ + ai/2)/a^}^ (3.6) 

Glauert's theory indicates that, for a flat plate at incidence 

in a two-dimensional uniform flow, aj = o. Therefore it may be 

concluded from equation (3.6) that the corresponding value of S is 

unity. Hence it would seem reasonable to suppose that,for the type 

of wing presently being considered,[3 ~ 1 as «>. Consequently, 

for sufficiently large M equation (3.2) may be replaced by the 

result 
r(y) = TTc{Û a(y) + w^(y)/2} 

This expression^ which is known as the Prandtl 'lifting-line' equation, 

has been examined in detail by Kuchemann (1952) who also derived the 

equivalent form 

r(y) = {C2(y)/C^(y)}U^ c «g(y)/2. (3.7) 

Here C^(y) and C^(y) are the sectional lift and edge-thrust coefficients 

based on the quantity |pU^c whilst 

a^(y) = a(y) - Qj^Cy), (3.8) 

where a. (y) = -w (y)/2 U 

xo o 

is the incidence induced at the wing by the chordwise and trailing 

vortices. 

On the eivdence of experimental data, Kuchemann concluded that 

equation (3.7) also applies if iRis not large. However, he 

assumed that, in general, a^^(y) is replaced in equation (3.3) by 

a)â (̂y), where to is a factor depending on ifl such that w ~ 1 as 

J®.Consequently, by assuming that y(x,y) = Y(C)f(2y/b), he 

obtained the result 
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r(y) = ngc{U a(y) + cu Wm(y)/2}. (3.9) 

This expression, may be compared with equation (3.2) and from this 

it is apparent that there is an inconsistency in Kiichemann's 

method. In fact> it is possible to deduce from equation (3.9) 

that his method yields the result 

where D_ is the overall drag in forward flight. Clearly, unless 

w = 1 (which is not the case for Al < •») „ tnis is inadmissible. 

Furthers it is indicative that the predictions of Kuchemann's method 

for the overall forces might be in error. Therefore the comparison 

between the methods will be taken a stage further by using both 

methods to calculate the overall lift and induced drag of a flat, 

rectangular wing of small M . This will be performed, initially, 

by using a value of 6 deduced from the low-aspect-ratio approxi-

mation of Jones ( 1 9 4 6 ) . Unfortunately, owing to the fact that this 

approximation fails near the leading edge of a rectangular wing it 

seeHs -i-t to permit a direct evaluation of a^ and hence g. However, 

there is an alternative^ though indiracts method of deducing |3 from 

Jones' theory which is based on the requirement that = D_.. 

Provided yix^y) = Y(g)f(2y/b) this leads to the result 

+c/2 +c/2 +c/2 
/ R 2 ( y ) d y = I T 6 C { U a / r(y)dy + / W O O ( y ) r ( y ) d y / 2 } (3.10) 

-c/2 ° -c/2 -c/2 

for a flat,rectangular wing at incidence a. Therefore, if the 

results of the low^-aspect-ratio approximation for the same wing, 

namely 

Woo(y) = -UgB: r(y) = U^ab{l-(2y/b)^}-, 

are used to eliminate Woo(y) and r(y) from equation (3.10) and the 

integration is performed,it is found that 
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P = 1 6 A I / 3 T T 2 . ( 3 . 1 1 ) 

Consequently,for a flat, rectangular wing of small aspect ratio, 

equation (3.11) may be employed to replace equation (3.2) by the 

expression 

r(y) . (16b/3n){UQa.+ u^(y)/2}. (3.12) 

The overall forces corresponding to the solution of equation 

(3.12) may be determined by interpolating results given by Glauert 

(1926, p. 147) for the same type of equation. Thus it is found 

that 

= 1.01 = 1.57/9 a, 

where C^. and arc the overall induced-drag and lift coefficients 
Di L " 

based on the product of ipU^ and the planform area be. These r ^ o 

results should be compared with the corresponding results of the 

low-aspect-ratio approximation, that is 

= n/Ra/2. 

Evidently, the agreement is good. 

On the basis of the assumption that r(y)/ir3c ~ o o 

Kiichemann concluded from the low-aspect-ratio approximation that, 

for sufficiently small o = 2. Therefore, by utilizing equation 

(3.11) and this value of w, Kiichemann's result, equation (3.9), may, 

for a flat, rectangular wing of small , be replaced by the 

expression 

r(y) = (16b/3n)[U a i- w«,(y) }. 

This equation, it is found; yields an overall lift coefficient which 

is approximately 30% lower than that of the low-aspect-ratio approxi-

mation. On the other hand, its prediction of the quantity 

is not as greatly in error. 
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That KucheKann's method, in practice, gives an overall-lift 

coefficient which asymptotes to the low-aspect-ratio approximation 

is due to his use of a different asymptotic form for 3. After 

making a number of assumptions, which will not be discussed here, 

he obtained the result 

e ~ 0^/2)% m ^ 0. (3.13) 

This relationship is plotted in Fig. 17, together with the curve of 

equation (3.11) and some results deduced from the lifting-surface 

theory of Wieghardt (1940). These results are calculated by two 

methods. The first method relies on a direct evaluation of 8 

from an examination of Y(C) whilst the second is identical with the 

method used to derive equation (3.11). Also included in Fig. 17 

is a curve representing a semi-empirical relationship suggested by 

ICuchemann. This has the same asymptotic behaviour as equation (3.13) 

and correctly ensures that 0 ̂  1 as AR However, the evidence 

provided by the results obtained from Wieghardt's theory is that 

this relationship overestimates S for 2. 

The conclusion to be dravm from this comparison is that, of the 

two methods examined, the present approach would seem to be the more 

fundamental. On the other hand^ the degree of success achieved with 

this method must depend largely on the accuracy of the estimate of 3. 

In general, this varies across the span of the wing. Hence the 

problem of interpreting a mean value arises. In this respect, a 

particularly suitable interpretation is the one based on the require-

ment that Dg = D^. By employing equations (2.43) it may be shotm 

that this is satisfied for the type of wing under consideration if 

+b/2 +1 +b/2 +1 
/ / Y ( g ) f ( 2 y / b ) W R ( 5 , y ) d s d y - ~ J JY(C)f(2y/b)U a(y)dSdy 

-b/2 -1 ^ -b/2 -1 ° 

+b/2 +b/2 
or / f(2y/b)w.p(Csy)dy = - / f(2y/b)U a(y)dy. (3.14) 

-b/2 ^ -b/2 ° 
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Therefore ,provided f(2y/b) is knox-m. equation (3.14) may be solved 

for y(C) and hence |3. Unfortunately^ f(2y/b) is not known until 

the solution of equation (3.2) has been obtained and this depends 

on 0. Therefore it is necessary to solve equations (3.2) and 

(3.14) simultaneously. In practice, this is probably best 

performed by a successive-approximation scheme by which an assumed 

f(2y/b) is substituted into equation (3.14). Consequently a 

value of 3 is found which is substituted into equation (3.2) to 

give a new f(2y/b);and so on. 

This method may be extended to non-planar vortex distributions 

of the type considered in Section 2.2.4. In this case, the linear-

ized form of the surface boundary condition is given by 

v^^(Xi,s) = -U^a(s). (3.15) 

Therefore equations (2.54) and (3.15) may be combined to give the 

result 

r(s) = Tr3c{U a(s) + v (s)/2} (3.16) 
o nco 

whilst by analogy with equation (3.14) the requirement that 

leads to the result 

jf(s)v „(5,s)ds = - /f(s)U a(s)ds. (3.17) 
B B ° 

3.2 Wings with rhordwise camber 

In this section,a relationship, which allows the determination 

of the effect of chnrdwise camber on the overall lift and induced 

drag of wings with smooth flow at their trailing edge^jwill be derived. 

Consider an isolated planar wing of rectangular planform. in 

forward flight with the y component of vorticity Yi(C)f(2y/b) and 

Yi(+1) < ™ (the condition of smooth flow at the trailing edge). 

In the manner of equations (2.43). the sectional-drag relationship 

of this combination of wing and vortex distribution is written as 
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+c/2 
P J Yi(C)f (2y/b)x<r-. (x,y)dx + Ii(y) = pŵ oi (y) (y)/2, (3.18) 

- c / 2 

Here the subscript 1 refers to those quantities corresponding to 

Yi(5)f(2y/b). 

Suppose that the same wing in forward flight has , instead., the 

y component of vorticity Y2(5)f(2y/b) with YzC+l) < 

corresponding upwash distribution at the wing is w^gCx^y)* Thus if 

the motion of the wing is reversed and the y' component of vorticity 

is Y2(S)f(2y/b) the upwash at the wing becomes ̂  gCx'iY')' 

Consequently) it follows from symmetry considerations, that if then 

the wing is rotated about the z axis through TT radians the y 

compcaent of vorticity becomes Y2(g')f(2y/b) and the upwash 

w ^(x/y')' Furthermore J the motion becomes forward again and the 

corresponding sectional-drag relationship may be written in the forra 

+c/2 
P J Y2(5')f(2y/b)w _(x,y')d% -- l^Cy) = pw*2(y)r2(y)/2. (3.19) 

- c / 2 

If Y2(E')f(2y/b) and Yi(G)f(2y/b) are superposed, the sectional -

drag relationship foi fo",;vjard flight becomes 

+c/2 
P / {yi(S) + Y2(G')}(Wf_(x,y) + w (x,y')}f(2y/b)dx + Ti(y) - Igfy) 

- c / 2 

= p{w«,i(y) + w^2(y)}tri(y) + r2(y)}/2. (3.20) 

Here, it will be noted, the edge thrusts are additive owing to the 

requirement of smooth flow at g = +1 for YI(5) and C = ~1 for 

JziV)' This ensures that the singularities of the two vortex 

distributions do not combine. 

Til us. by combining equations (3.18), (3.19) and (3.20)̂  it is 

found that 

+c/2 +c/2 
/ Yi(s)f(2y/b)w _(x,y^dx + f Y2(?')f(2y/b)w.,(x,y)dx = 

- c / 2 - c / 2 

= %^i(y)r2(y) /2 + Wm2(y)r i (y ) /2 . (3 .21) 
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It is possible to infer from equation (2.5) that 

Wj.2(x,y') = - WfgCx'y). (3.22) 

(3.21) and (3.22) may be combined to yield the Therefore equations 

result 

+c/2 +c/2 
/ Yi(C)f(2y/b)w-„(x',y)dx + / Y2(G')f:(2y/b)w,,(x,y)dx = 

-c/2 -c/2 

= w=^(y)r2(y)/2 - w^2Cy)ri(y)/2. (3.23) 

From considerations of the similarity of the flow variables 

of the Trefftz plane it may be concluded that 

w„j^(y)r2(y) = w«^(y)ri(y) • (3.24) 

Therefore, by comparing equations (3.23) and (3.24), one is able to 

obtain the expression 

+c/2 +c/2 
/ Yi(g)w ^(x',y)dx = / Y2(C')w-,(x,y)dx 

-c/2 -c/2 
(3.25) 

Hence, by employing the linearized form of the camber-surface boundary 

condition for a wing of arbitrary chordwise shape given by Thwaites 

(1960, p. 304), namely 

Wg(x,y) = 3z^(x,y)/3x, 

equation (3.25) may be rewritten in the form 

+c/2 
/ Yl(S) 

-c/2 
9z (x',y)/9x 

+c/2 
2ds = / Y2(5') 

-c/2 
9z^(x , y)/3x idx. (3.26) 

Here z is the z ordinate of the camber lines. Therefore, if 
c 

-i 
3z (x'sy)/9xj2 = -o(y), 
. ^ J 

equation (3.26) becomes 
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+c/2 +c/2 
o(y) / yi(G)dx = - / Y2(S') 9z (x,y)/9xjidx. (3.27) 

-c/2 -c/2 I c j 

Consequently, if ygCS') has been determined by using the method 

presented in Section 3.1 and |^z^(%,y)/9x|i is specified, the 

right-hand side of equation (3.27) may be evaluated. It will be 

seen that this side of the equation is required to have a y 

dependence similar to that of a(y). Therefore,provided thia 

requirement is satisfied,equation (3.27) may be used to determine 

r'l(y)j the information on f(2y/b) coming from the solution 

Yp(S)f(2y/b) for the uncambered wing. In consequence,the overall 

lift and induced drag appropriate to the slope distribution 

|3z^(x»y)/9xjl may be found. 

Equation (3.25) may be generalized without difficulty to 

include non-planar vortex distributions of the type considered in 

Section 2.2.4. Tims there is obtained the result 

+c/2 +C./2 
j ^l(5)v (x',G)dx = j Y2(5')v^fi(x,s)dx (3.28) 

-c/2 -c/2 

provided Yi and Y2 are bounded at g = +1. This relationship 

may be used in a similar way to that shoim previously to determine 

the effect of chordwise camber on the overall lift and induced drag 

of non-planar wings of the type described. 

PART II 

THE DETESXIUATIOU OF THE LIFT AND luDUCED DRAG 

OF A CLOSED GROUHD-EFFEUT WIHG. 

4. Scope of the investigation 

This part of the chapter consists of a description of a method 

for calculating the lift and induced drag of a closed G.E.W. 

consisting of an essentially planar wing fitted with end plates. 
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The chordal surface of tha configuration is shovm in Fig. 18 which 

illustrates the following features; 

(i) The lower extremities of the end plates, which are vertical 

and project from the wing tips,, touch the ground,, thus ensuring that 

the configuration is closed. 

(ii) The leading and trailing edges each lie in a plane which 

is normal to the direction of motion. 

(iii) The wing and end plates are untwisted. 

A considerable simplification of the analysis may be affected 

by smployinp; the linearized theory and neglecting the chordwise 

camber and thickness. This, therefore, will be the approach 

adopted in Section 5. Subsequently, in Section 6,a method for 

calculating the effect of chordwisc camber and thickness on the 

lift and induced drag,to a linear approximation,will be described. 

Finally; the basic method will be modified to include the most 

important non-linearities in Section 7. 

5. Zero chordwise camber ana thickness : a linearized approach. 

5.1 Statement of problem and method of solution. 

As previously^ the flox? relative to the configuration, which is 

in fon-7ard motion, is assumed inviscid and incompressible. Also, 

in keeping with classical wing theory^ the flow is assumed to be 

smooth at the trailing edge. This ensures a unique solution for 

the velocity potential of the flow relative to the configuration* ^. 

In accordance with the assumptions of the linearized theory, 

the boundary conditions of the wing and end plates are satisfied at 

a cylindrical surface adjacent to the configuration. This surface, 

which is shoim in Fig. 18, may be generated by moving a typical 

spanwise cross section of the chordal surface normal to itself between 
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the leading and trailing edges. Tliis cross-section is of span b 

and height from the ground 1 . Thus, in the absence of chordwise 

camber and thickness, the linearized form of the surface boundary 

conditions of the configuration is as follows: 

v^^CXsy^ + l) = ~U^a(s) = |x| $ c/2, |y| $ b/2| 

v^^(x,±b/2,z) = ~U^a(s) = |s| g c/2, 0 ^ z $ + 

(5.1) 

Here is the wing incidence and is the incidence of the 

end plates whilst the coordinate systems (s,.n) and (x,y,z), which 

are fixed relative to the configuration, are as shovm in Fig. 18. 

There remain two other boundary conditions to be satisfied. 

Tlie first is the zero normal-velocity condition at the ground plane 

which, throughout the remainder of the analysis^ will be assumed 

solid and impermeable. The second demands that 

j j ->• CO X -00 

d(j>/dx U 5 jyj -*-<»; B<j)/dy 0, d(j)/dz 0, jyj •> «= 

which constitutes a requirement on the flow infinitely far from the 

configuration. 

Thus the problem is to determine the lift and induced drag 

subject to the above conditions. This requires a knowledge of 

the jump in ^ across the cylindrical surface which information is 

obtained by solving the boundary-value problem. In fact, this 

reduces to the problem of solving an integral equation relating the 

vortex distribution y(x,y,z) placed on the cylindrical surface to 

the boundary conditions (5.1). Unfortunately, this equation is 

extremely complicated and. in general, seems not to be amenable to 

analytical methods of solution. It might be possible^however., to 

solve it numerically. In this respect, there is available the 

method of Multhopp (1950) which has been developed for isolated 
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planar wings. It would seem, however^ that his method has not been 

applied in the same detail to non-planar wings or wings in ground 

proximity. On this basis, therefore, it was considered desirable 

to develop an alternative technique based on the assumption that 

y(x,s) is of the form y(x)f(s). 

The no-flow condition of the ground plane ma]' be satisfied by 

an image distribution of vortices obtained by rotating the cylindrical 

surface about the x axis through it radians. Therefore, if it is 

assumed that y(x,s) = Y(%)f(s). the resulting combined vortex distribu-

tion is of the type considered in Section 2.2.4. Consequently it is 

permissible to combine equations (3.16) and (5.1) to yield the 

expressions 

(i) r(y) = 7Ti3c{Û ot̂ '̂ ^ + w^(y)/2}; |y| g b/2, z = +1 ; 

(ii) r(z) = + v^(z)/2}^ y = ±b/2, 0 $ z g + 

> ( - .2) 

Here v^(z) is the y component of velocity at the trace of the star-

board end plate in the Trefftz plane. That this velocity is equal 

in magnitude but opposite in sign to the y component of velocity at 

the trace of the port end plate follows fron symm.efry considerations i -

Ho attempt will be made to justify the assumption that 

y(x,s) = y(x)f(s) rigorously. Nevertheless^ it is relevant to note 

the following remarks: 

(i) For the trailing vorticity is likely to be 

comparatively weak, as r(s) should not vary noticeably with s. 

Consequently the effect of the trailing vorticity on the chordwise 

form of y(x,s) should not depend greatly on s. 

(ii) In the case of a closed G.E.W. with a cylindrical surface 

of semi-circulai spanwiss cross-section, the vortex distribution is 

of the type Y(x)f(s) provided 0(3) = constant. 
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5.2 Distribution of circulation around the vortex trace 

In this section the aim is to discuss a method for solving 

equations (5,2)(i) and (ii) simultaneously. In general, this 

has to La performed approximately but in Section 5.2.1 a formally 

exact solution is discussed. 

5.2.1 An exact solution 

It is apparent that in the case r(s) = T (a constant) the 

trailing vorticity is zero everywhere. Hence Wco(y) = v^Cz) = 0. 

Therefore it may be inferred from equations (5.2) that for 
. .(E) , ^ 

R = T:|3C U^a. (5.3) 

In other words, the present theory predicts that the circulation 

is invariant around the trailing edge of the configuration if 

= a. Furthermore, it predicts that the corresponding 

overall induced drag is zero. 

5.2.2 The flow in the Trefftz plane 

Apart from the exact solution discussed previously, it has not 

been possible to derive closed-form solutions of equations (5.2). 

Instead, an approximate method, which is based on the use of particular 

solutions for cj) in the Trefftz plane, is employed. Thus equations 

(5.2) are rewritten as follows; 

Z r^^y) = npctu^af^) + % |y| ( t / Z , r = + t ; ^ 
m=o " m=o I 

J r (z) = Trgci'u 0^"^ + I V (z)/2}; y = *b/2, 0 $ z $ + lJ 

^<5.4) 

o =°ni 
m=o in=o 

Here F w ana v are. respectively, particular circulation 

distributions and the corresponding velocities at the vortex trace 
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in the Trefftz plane. These distributions are not entirely 

arbitrary, being derived from Trefftz-plane flows which satisfy the 

following conditions: 

(i) The velocity potential is regular cveryifhere except at 

the vertax trace, 

(ii) 3(})/8z = 0 at z = 0. 

(iii) 9(j)/8y - 0 at y = 0, a condition which follows from 

symmetry considerations. 

(iv) 3(})/9y 0, 9(j)/3z 0* (y^+z^)^ ̂  0. 

A convenient method for determining a suitable family of circula-

tion distributions is the combined-flow method described in Section 

1.1.3. Tliis, therefore, is the method which will be employed here. 

A suitable class of superposition complex potentials correspond-
ing to r would seem to be 
° m 

W = -U b B (20/b)2m, 
m o m ' 

where 3 are real, dimensionless constants and, as before, ̂  = y + iz 
m 

is the complex variable of the Trefftz plane (Fig. 19). This class 

is regular in the. finite part of the 0 plane and satisfies conditions 

(ii) and (iii) given previously. Therefore the required combined 

flows also have these properties and possess zero normal velocity at 

the vortex trace provided that 

'..(y) - « 4. B (m # 0)n 
•-m"' - "a J , i2 (m-n) )! (2n--l) f 

• "o \ . ( - ^ 0 ) 

and w (y) = v (z) = 0. 
<=°0 COQ ' 

> (5.5) 

Thus, provided equations (5. 5) are satisfied, the boundary conditions 

for the combined flows in the domain D2 (Fig. 19) are as follows: 

(i) 3* /3n = 0- b/2 3 |y| < z = 0; 

(ii) 94 /9n = 0: y = -h/2, Q < z $ +1; 

(iii) a* /3n = 0; |y| < b/2, z = + Xi 
^_ . . 9m—1 I 1 

0 ->00. (iv) dW /dn ~ -U 4m B (ZO/b)^™ % 
c o m 
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This boundary - value problem may be simplified by transforming the 

domain D2 into the upper half-plane t (Fig. 20). This is made 

possible by means of the Schwarz-Ghristoffel transformation 

dO/dt = C{(1-t^)/(1-k^t^)}^I 1/k 5 1. (5.6) 

Here, as in Section 1.2.1, C is the (real) transformation constant 

and k is a transformation parameter which is also to be interpreted 

as the modulus of the elliptic functions appearing hereafter. 

By employing transformation (1.2.3), equation (1.2.4) and 

equation (310.02) of Byrd and Friedman (1954), equation (5.6) may 

be integrated to yield the expression 

n = C [2Ks* - {2Ks* - E(2Ks*)}/k2j + Ci. 

Here the s in equations (1.2.3) and (1.2.4) has been replaced by s* 

to prevent confusion with the curvilinear coordinate s whilst Cj is 

the constant of integration. 

Point-to-point correspondence between the fi plane and the s* 

plane (Fig. 21) at B and C is obtained provided that 

b/2 + il = C [ K - { K - E(K)>/k2] + CJ 

and -b/2 + i t * -C[K - {K - E(K)}/k^] + Ci . 

Therefore, by comparing these two equations, it may be concluded 

Ci = i1> (5.7) 

and b/2 = C [ K - {K - E(K)}/k2] , 

= C{E(K) - k'^K}/k^. (5.8) 

The Q and s* planes correspond at point D provided that 

b/2 = C [ K + ilC - i'K + iK' - E ( K + iK')}/KZJ + C J . 

Thus; by combining this expression with equations (1.2.11), (5.7) 

and (5.8), there is obtained 

= -cfjC - {2KK' + 2E(K)K' - Tr}/2Kk2] 



This may bo simplified by means of equation (110.01 )of Byrd and 

Friedman to give the result 

% = C{E'(K) - k2K'}/k2, (5.9) 

where E'(K) = E(K'). Therefore, upon combining equations (5.8) 

and (5.9); one finds that 

2l/b = {E'(K) - k2K'}/{E(K) - k'^K}. 

Tlie boundary conditions for the combined flows in the t plane 

are as follows; 

(i) 3(p̂ /3n = 0:- |Re(t)| < Im(t) = 0; ) 

(ii) dW /dt ~ -U 4m 3 (2n/b)2™"ldn/dt; It I + | (5.10) 

Equation (5.10)(ii) may be rewritten in terms of t by employing 

the asymptotic forms of fi(t) and dQ(t)/dt for large |tj. These may 

be found by expanding the right-hand side of equation (5,6) in powers 

of 1/t. Thus there is obtained the result 

f - 1 " ^ ^ kl - ( 5 - m 

which, for sufficiently large |t|, may be integrated term-by-term 

to yield the expression 

« " % -IBESF " " S M " ' + (5.12) 

Here Cg is the integration constant which may be shoim to be zero 

by examining the synmetry of the transformation between 0 and t 

planes. Therefore this fact may bm used in conjunction with 

equations (5.11) and (5.12) to rewrite equation (5.10)(ii) in the 

form 

It I " " (5.13) 
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The corresponding family of complex potentials, which (a) 

satisfies equations (5.lO)(i) and (5.13), (b) is regular in the 

finite part of D2 and (c) obeys the symmetry condition 9^/9y = 0 

t y = 0 is cs fellow: for zi < 4: a 

W = -U b B ; 
CO C O 

' - V "1" I (5.14) 
y = -U b B2K2(t4-2k'2t2/k2); | 
C2 o ^ ^ 

= -U^b B3K^{t®-3k'2t'+/k2 + t2(3-7k2+4k4)/k4}, J 

where K = (2C/bk)^. 

Provided equations (5.5) are satisfied,the boundary conditions 

for the combined flows in the domain (see Fig. 19) are given by 

(i) 94)̂ /3n = 0; |y| $ b/2, z = 0 

(ii) 9(j;̂ /3n = 0; y = ±b/2, 0 < z g + 1; 

(iii) 3(j)̂ /9n = 0; jy| < b/2, z = +1. 

A solution to this boundary-value problem which is regular and 

gives symmetrical flows about the z axis is, regardless, of m, 

17 = 0 . 

c 

Hence, as the superposition complex potentials are regular in the 

finite part of the fi plane, it follows that circulation distributions 

with the correct normal velocities at the vortex trace are given by 

Tg^t) - |Ke(c)| * 1/%, Im(c) = 0. (5.15) 

These solutions for the circulation are not unique insofar as an 

arbitrary constant may be added to them without altering the 

corresponding normal velocities at the vortex trace. However% 

these constants may be considered accounted for by the constant 

circulation r . 
o 

5.2.3 A variational solution 

A number of methods for solving equations similar to equations 

(5.4) have been reviewed by Robinson and Laurmami (1956, p.p. 183-195). 
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They conclude that the preference for one or other of these methods 

depends on the nature of the data required. It also appears that 

the choice could be influenced by the type of lifting system under 

examination. For example, methods based on variational principles 

are often suitable for obtaining the overall forces of non-planar 

lifting systems. As the configuration under examination is of 

this type,a critical examination will be made of three existing 

variational methods. As applied to the determination of the 

solution of equation (3.16) these may be written as follows: 

(i) Gates (1928) 

= 0. 5j/{r(s) •" TTgc(U n(s) + V (s)/2)}^ds 

Lg o a" 

(ii) Ziller (1940) 
6 /{~r(s)v (s)/2 + TTgc V - (r.) / 4 + Trgc U a(s)v (s) }ds = 0. 
P n<» n™ o n=° J B 

(iii) Flax (1950) 

J {r̂ (s)/iTiSc - 2r(s)U a(s) - r(s)v ̂ (s)/2}dsl = 0. 
Lb ° J 

Here S implies a variation of the integrands with respect to r(s). 

Therefore,if 0 is assumed insensitive to changes in r(s) and the 

indicated variations are performed,it is found that the solution 

of each of these equations is the solution of equation (3.16). 

Evidently, all three variational equations require the evaluation 

of the incegral jr(s)v (s) ds. Unfortunately, in the present case, 

this integral seems not to be amenable to explicit evaluation. In 

view of this, consideration is given to an alternative variational 

equation not containing this integral. Such an equation is derived 

by subtracting the equation of Flax from Ziller's equation, thus 

giving the result 



6 / { T T P C V 2 ( S ) / 4 + T I G C U G ( S ) V ( S " ) - r̂ (s)/ir3c + 2r(s)U a(s)}ds 
g n̂ " o n,°° o 

= 0 

(5.16) 

That this equation also has the same solution as equation (3.16) may 

be proved by performing the variational operation and noting that 

/ v (s)6r(s)ds = j r(s) 6v (s)ds, 
g nGo B n= ' 

a result which may be inferred from equation (3.5j 11) of Robinson 

and Laurmann. 

It should be remarked that the derivation of equation (5.16) 

was suggested by the fact, not previously noticed it seems, that 

Gates' equation may be obtained by adding together the equations of 

Flax and Ziller. 

For the present configuration,equation (5.16) may be rewritten 

in the form 

+b/2 , . , . 
/ lirgc w^(y)/4 + Trgc U a -r^(y)/Tr6c + 2r(y)U a }dy + 

-b/2 

+ 2 / { T T B C v^(z)/4 + T T 3 C U A ^ ^ ^ v ^ ( z ) - R 2 ( z ) / N 8 C + 2 r ( z ) U A ^ ^ ^ D Z 

o 
= 0 

(5.17) 

This equation, which has the same solution as equations (5.2). may be 

solved approximately with the aid of the particular solutions described 

previously and the Rayleigh-Ritz method (see Robinson and Laurmann p. 

224). For the application of this technique it is convenient to write 

and R (t) = -U b B K ™ G (t), (5.19) 
m o m m 

where and v ^ may be found by comparing equations (5.5) and 

(5.18) whilst; for m < 4, G^ may be deduced from equations (5.14), 

(5.15) and (5.19). Tiius; by utilizing equations (5.18) and (5.19), 

equation (5.17) may be replaced, in the manner of the Rayleigh-Ritz 
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technique5 by the expression 

SB 
m 

-+b/2 

^ z - mZrrC I -
b/z m=o 

(w) 

m=o 
B w . 
m 

m:o * * 

I G,(t)}dy * 2 fu I \ + 4c/:) J _ 
8P m=o 

6P m=o 

o m=o 

.(E) 
I Gni(t)}dzl = 0; 

ra=o -J 

m=o 

ifl — 0̂ 1.c2.##**# 

(5.20) 

where y = it/2AR 

and Ml is the aspect ratio of the wing component of the cylindrical 

surface. 

Equation (5.20) yields an infinite set of linear, simultaneous 

equations for the unknown coefficients These equations arc 

rather unwieldy but may be written in anore concise form by 

employing the following definitions: 

I ,(w) _ ""'A 
/ wLm(y)dy/b; = 2 / v:^(z)dz/b; 

m ) /2 m «rii 

- 2 ; 3*^^z)v,^(z)dz/b; 
~b/ / o 

j^GQ^t)dy(t)/b; R(G) = 2 / G^(t)dz(t)/b; 

X5.21) 

-b/2 
r 1 +b/2 % 

C - 4 . - 2 / G„(t)=„(t)d.(t)/1>. 
-D/^ O 

The evaluation of the quantities of equation (5.21) for various 

m and n is dealt with in Appendix II. 

On performing the differentiation shown in equation (5.20) and 

interchanging the order of the integration and summation one obtains 

after employing equations (5.21), 
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y B (gZ 2(Q(^)+ qCE)) _ + 2B2w2(a(*)p(")+a(G)p(B)) 
^ R Tan lan lan n n m=o 

- 2$wK*(a(*^R(^^+ n(E)R(E)) = g. .̂, = 0,1,2,3, (5.22) 

This equation represents an infinite number of simultaneous equations. 

In practice, only a finite number of these equations are retained on 

the assumption that a finite number of coefficients will give 

adequate accuracy. Tlius. in the present case, it is assumed that 

the first four coefficients are sufficient. This yields, in place 

of equation (5.22), four simultaneous equations in the unknowns 

Bj, B2 and B3. These equations have been programmed for 

solution on a Ferranti Pegasus computer. 

By employing Robinson and Laurmann's equation (3.2, 28) it is 

found that the expression for the overall lift may be written in the 

form ^ +b/2 
L = p U / r(y) dy. (5.23) 

° -b /2 

Therefore,when rewritten in terms of the solution of equation (5.22), 

this expression becomes 
+b/2 

L = P / I r (t)dy(t). 

-b/2 m«o 

Hence, by interchanging the order of integration and summation in 

this equation and employing equations (5.19) and (5.21),one finds 

that 
L = -p U2b2 [ B (5.24) 

o amo * * 

Thus the overall lift coefficient based on the plan area of the 

wing component of the cylindrical surface is given by 

CL - -2 A [ B K® (5.25) 
m-o * * 

It will be shown in Section 5.3 that 6 is independent of 

and Therefore it may be concluded from equations (5.22) 
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and (5.25) that may be written in the form 

+ a(G)a(G), (5.26) 

where a^^^ and are 'lift derivatives' which are independent of 

and Results for these derivatives* calculated according 

to the present methods are shoxvn in Figs. 22 and 23 which are graphs 

of and against A/2w6 for various 2Vb. 

In solving equations (5.2) it is assumed implicitly that 

= 0.. For this reason, therefore, reference will be made 
f 1 

hereafter in Section 5 to the induced drag' rather than the drag of 

the wing or end plates. Thus^by integrating the induced drag 

gradient across the wing part of the vortex trace,it is found that 

the total induced drag of the wing, is given by 

_ , . +b/2 
D. = -p / w^(y)r(y)dy/2. (5.27) 

-b/2 
— Cv ^ 

similarly., the total induced drag of both end plates, . is 
found from the result 

™ P / v^(z)r(z)d2. (5.28) 
o 

It has not been possible„ with the particular solutions 

employed, to evaluate the integrals of equations (5.27) and 

(5.28). However, T may be eliminated from these expressions by 

means of equations (5.2) to give instead 

\ +b/2 , . 
D = -pTTgc / {U a w^(y) + w^(y)/2}dy/2| 

-b/2 

= -pir3c /{U a^^^v (z) + v2(z)/2}dz. 
O 

(5.29) 
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Therefore J if w and v are replaced in equations(5.29) by linear 

combinations of particular velocities and the order of the 

integration and suiranation is changed, it is found, after employing 

equations (5.18) and (5.21)s that 

B®' - -!puj,ebc(„«> I M I I 
m=o in=o n=o 

(5.30) 

The induced-drag factors of the wing and end plates, and 

0^^^, are defined as follows: 

- TvpÛ bZ . TrpÛ bZ (5.31) 

Therefore equations (5.31) may be combined with equations (5.24) 

and (5.30) to give the results 

I B + I J I B B oj*)} / \ m m ^ ^ m n ^ n (w) m=o m=o n=o ^ 

I E^pf) . S I Z V . C ) 
(E) m=o in=o n=o cr = — '• 

4 Al{ % B }2 
W m m m-0 - "" 

The overall induced-drag factor of the configuration, a, is 

found simply by adding and 

Representative results for a,̂  and a^^^are given in Figs. 

24, 25 and 26. These show graphs of a against M. /2irg for 

= 0 and o, and against for 

M/2Tt8 = 0.25. In particular , Fig. 25 indicates that a = o when 

in agreement with the exact solution of equations (5.2) 

That the variational method yields this result regardless of where 

the series of coefficients B , Bi, Bo ....... B is truncated for 
o ^ ^ m 

m > o may be proved by examining equation (5.22). This study also 
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reveals that the circulation, r(t); predicted by the variational 

method for the case is in agreement with the exact 

solution (5.3) for all m ) o. 

Fig. 26 illustrates the essential feature of the distribution 

of induced-drag gradient if the circulation varies slowly around 

the vortex trace. It shows that if there is an induced drag 

acting on the wing the end plates yield an induced thrust and 

vice versa. This may be attributed to the fact, which may be proved 

by continuity considerations, that a mean dovmwash at the wing trace 

is accompanied by a sidewash in the outward direction at the end-

plate traces. It follows, therefore, from equations (5.27) and (5.28) 

that, for slowly-varying, positive r(s), ) 0 and $ 0. 

5.3 The determination of 3 

In this section, the method for determining 3, which was 

introduced in Section 3.1,will be applied to the present configura-

tion. 

5.3.1 The integral equation 

In the present case, equation (3.17) may be replaced by the 

expression 

+b/2 I +b/2 , X 
/ f(y)w (S,y)dy + 2 / f(z)v-(5,z)dz = - / f(y)U a dy -

-b/2 ^ o ^ -b/2 ° 

- 2 / f(z)U^a^^^dz, (5.32) 
0 

where w^^S/y) and v^(5,z) are, respectively, the z-wash at the wing 

component and the y-wash at the starboard end-plate component of 

the cylindrical surface. 

By adopting the procedure introduced in Section 3.1 a suitable 

first approximation is sought for f(^). Thus, for exanple, it is 

evident from Section 5.2.1 that a good approximation corresponding 
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to is = 1. Therefore this is used as a first 

approximation and, in consequence, th?. vortex distribution is 

assumed to bo y (O > 

The velocity field associated with this vortex distribution 

and its image system is derived in Appendix III where it is sho\m 

that 

and 

Here 

+1 

= P /Y(Ei)F(%,g,n,at,X)dgi 
- 1 

+1 
4itv̂ (5,?) = P /Y(Ei)F(Gi,S,;,A,Al)dgi. 

(5.33) 

j 

,x) = 
Si-5 

jR( l -n ) /R (1+n) 
{m2(i-np+ (Cr-cFT' {^(i+n)^+(ei-lF} 

+ S-gi f- q-n) , . A (l+n) ,1 

A = 2Vc., n = 2y/b, ? = z/ 

and P denotes that the Cauchy principal value is taken where required. 

Therefore, by recalling that f(p = 1, it is possible to combine 

equations (5.32) and (5.33) to give the result 

+1 +1 +1 +1 

;dnpjY(Ei)F(Si,E,n:ai,X)dEi + (Al/b) fd; ? /Y(Ei)F(Ei,E,;,X,a)d5i = 
"1 -1 —1 —1 

8nU (o(^^+ o/^^ZTVb). 

Consequently,by interchanging the order of integration cf the integrals 

cf this expression (an operation which is permissible in this case) 

and performing the n and ? integration, one obtains the expression 

.["(43{'+ 4*2 + (Ej_5)2}S- {4X2 + (5j-£)2)' 

+ 1 

, |̂ {4X̂  + (?i-5)^}" •" I Si "SI AC + fY(C])(S-Si) 
1 _i(5i-G)^+4a? 

{4X2 + ^ 
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- {4 (5i-G)2}2 d5i = -4wU (5.34) 

Tliis represents an integral equation in the unknovra y(5i) which is 

solved as followsS Y ( S ) / U ^ is approximated by the first four terms 

of the series (3.3) which satisfies the condition Y(+1) < °° • 

Consequently5 equation (5.34) is satisfied at four isolated points 

in the interval -1 $ S 3 + 1, thus yielding four linear, simultaneous 

equations for a^, a^^ ag and aj. These are then solved and a first 

approximation for g is found by using equation (3.6). A second 

approximation for 3 may then be determined by means of the method 

outlined in Section 3.1. However, as will be shoi-/n. this is 

unnecessary because the first approximation is 'exact'. 

In the case f(%) = 1 regardless of the value of 

3. Hence the first approximation for is 

fexact'. That this also applies to may be proved as 

follows: by employing equation (30.3) of Heajlet and Lomax (1955) 

it is possible to write 

+c/2 +c/2 
/ / Yi (C)fi(s)v (x',s)dx ds = j / Y2(S')f2(s)v fX%s)dx ds 
B -c/2 B -c/2 

(5.35) 

provided Y I ^nd Y 2 are bounded at g = +1. 

Suppose that 

(w) v^^^(xs±b/2,z) = - U^a 
(w) . 1 

(w) (E) 
(5.36) 

J 

According to the present theory the corresponding circulation 

distributions are given by 

r2(y) = (?)/%}; I?! * t/2, = " +'L; |<5'37) 

T2(z) - f v^^(z)/2}: |y | = b/2, 0 ( z g +1. 
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Therefore3 by substituting equations (5.36) into equation (5.35) 

one obtains 5 after performing the integration and comparing the 

result with equations (5.37), the expression 

+b/2 % 
J ( % m 2 ( y ) / 2 U o ) d y + J/\J^)dz 

-b/2 o 

(5.38) 

Considerations of flow continuity in the Trefftz plane indicate 

that the integrals of equation (5.38) cancel. Therefore 

for all anc a/^^except possibly those values corresponding to 

= - (2l/b)a^^^. However, for a given (2l/b) and a . t h i s is 

an isolated case which wi]. 1 be disregarded. It follows, therefore, 

that the first approximation for is 'exact' and is 

independent of Therefore, in view of the similarity of the 

roles of the half-span of the wing plane and the corresponding end 

plate, it follows that 6 is also independent of 

5.3.2 Evaluation of the integrals 

With the exception of integrals of the type 

+1 

Il(E) = P /Y(Si)|S - Eil(E-Gi)"'^^i (5.39) 

- 1 

the integrals of equation (5.34) are,, for the vortex distribution 

of equation (3.3), of the form 
+1 -1 

l2(S) - P J g(Si,S)(5-5i) dSi , (5.40) 
- 1 

where g(5i,E) is continuous for -1 < < + 1. Weber (1954) has 

shown that subject to certain restrictions being placed on g(Si,S), 
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this type of integral may be replaced by an expression containing 

Gaussian quadratures 5 namely 

N-1 N-1 

y = i ]i=l 

(5.41) 

Here g = cos (yTr/il) ̂  g = cos(vn/H), (p,v = 1,2 .... N-1.) 

S-+-1 
g(g,S_){(l+S)/(l-S)}: 

R 

r 2{(-i)^'v- i}(i-d)'" 

yv 

and N is an integer. 

I 

(y r v). 

(y = v) 

The previously—mentioned restrictions on g(gi,g) are as follows; 

(i) It is boundedJ continuous and differentiable in the interval 

-1 < < + I. 

( i i ) L i m [ g ( C i , E ) - g ( C ) i ( l " C i ) / ( 1 + C i ) 1 = 0 . 

gi+-lL ° J 

(iii) g(l,E) = 0. 

These conditions are satisfied by the integrals of the type Ig in 

equation (5.34) with y(g) replaced by the vortex distribution of 

equation (3.3). Hence these integrals are evaluated by using 

equation (5.41) with N = 16. The integral , on the other hand, 

may be evaluated explicitly to give the result 

I l ( 8 ) = U ^ ^ 2 a ^ { • f r /2 - 9 + s i n 9 } + a ^ I r / 2 - G + s i n 2 6 / 2 } -

^ a Lsin(n"l)6/(n-l) - sin(n+l)6/(n+1)} 
n=2 " J 

(5.42) 
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for the vortex distribution (3.3). Thus.by using equations (5.41) 

and (5.42).it is possible to evaluate the left-hand side of equation 

(5.34), with Y(g)/U replaced by the first four terms of the series 

(3.3)5 at four isolated points. These were arbitrarily chosen as 

9 = nn/8, with n = 1.3,5 and 7. This procedure and the inversion of 

the resultant 4 x 4 matrix has been programmed for calculation on a 

Ferranti Pegasus computer. 

5.3.3 Discussion of results 

In the case = a the values of 3 and F, which are 

determined from the exact solution of equation (5.34), are required 

to be consistent with the condition = 0. In this case, however, 

Cu = 0 everywhere at the vortex trace; hence this requirement may be 

replaced by = 0. This is implicit in equation (5.3) which, in 

effect, relates the sectional edge thrust to the drag component of 

the sectional normal force. Consequently the above-mentioned 

values of B and T satisfy this equation. In other words, the 

value of 3 derived from the expression 

|3 = r/iT c U^a . = a), (5.43) 

is identical with that obtained from the exact solution of equation 

(5.34) by using the original definition of g, equation (3.6). Thus 

the accuracy of the present approximate method of solving equation 

(5.34) may be checked by comparing the two values of 3 obtained. 

Shown in Table 1 are typical results for 8 calculated by means 

of equations (3,6) and (5.43). It will be seen that the two sets 

of results are in reasonable agreement, the differences being in 

the region of IZ. Therefore, it is assumed that the arithmetic 

mean of the two values is a good approximation for 3. The results 

thus obtained are shown in Fig. 27 plotted against A for various M . 

It will be seen that 6 increases monotonically with either decreasing 

a or decreasing M . Each of these tendencies may be explained by 

examining the case which according to the present theory 

yields chordwise and trailing vorticity of zero strength. 
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Thus it is apparent that5 for a given M and a reduction in 

A produces an increase in the upwash induced at the wing plane by 

the images of the wing-plane vortices. In consequence, there 

results an increase in r which, according to equation (5.43), implies 

an increase in g. There is also an increase in g due to the 

consequent reduction in the 'aspect ratio' of the end plates. This 

is similar to the effect of /R on g. This effect may be identified 

with the influence of the span of the wing vortices and their images 

as follows; as decreases, the effectiveness of the wing vortices 

in producing a doimwash at the wing plane is reduced. Also,the 

upwash of the image-wing vortices is there diminished. However, 

the overall effect is a reduction in downwash. Therefore an 

increased circulation is required to produce the same domwash, thus 

resulting in an increase in 6. 

Another effect associated with a reduction in iR is the increase 

in the mutual influence of the end plates. This is analogous with 

the effect of the image wing on the wing and vice versa. Therefore, 

this also produces an increase in g. 

5.4 Lift and induced drag 

The values for g given previously may be combined with the 

results of the variational solution to obtain the lift derivatives 

and a^^^ and the induced-drag factors. In Section 5.4.1 

consideration is given to the results for the lift derivatives and 

in Section 5.4.2 the results for the induced-drag factors are 

described. 

5.4.1 Lift 

The results derived for a^^^ and a^^^ are plotted against A for 

various IB. in Figs. 28 and 29. These figures show that, for constant 

Aj a^^^ and a^^^ increase slowly and decrease with AR,respectively. 

Also, they indicate that, with AR constant, and 
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CE) • • o 
a increase and decrease with X, respectively. 

It is difficult to give simple explanations for these trends. 

Nevertheless5 some progress towards an understanding of the 

uiechanisms involved may be made with the aid of the expression 

CL = + w /2U } , (5.44) 
Jj 00 o I 

where w is the mean upwash at the trace of the wing plane in the 

Trefftz plane. This equation is obtained simply by integrating 

equations (5.2) across the wing vortex trace and using equation 

(5.23) to obtain the lift. 

By differentiating equation (5.44) with respect to it is 

found that 

E = 2n6{l + 3(w^/2UQ)/9a(*)} . 

Tills expression for has a right-hand side comprised of two 

parts which may be identified with two different properties of 

the vortex distribution. The first part, 2^g, which depends on 

the chordwise distribution of vortices normal to the direction of 

motion,, decreases with increasing ̂  in the range of iR and A 

considered. This is opposite to the trend exhibited by the 

remaining part which depends on the strength and distribution of 

trailing vortices round tha vortex trace. The behaviour of 

this part may be explained by noting that the term 3(iv̂ /2Û ) 

increases towards zero as AR-*-™ owing to the reduction in the 

strength of the trailing vortices. Unfortunately, it is not 

possible to infer from this the likely trend of with AR. 

For reasons which have been mentioned before, |3 increases 

monotonically as A decreases. Further, the term 8 (ŵ /̂2Û ) 

increases with reducing A owing to the influence of the image 

trailing vortices. Therefore a^^^ increases as A decreases,in 

accord with the calculations. 
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By differentiating equation (5.44) partially with respect to 

one obtains the result 

aC_/9a(B) = a(B) = 2w83(w /2U (5.45) 
Jj CO O 

An increase in produces additional trailing vortices, the 

sign of which is such as to increase the upwash at the wing trace. 

This implies that S ( w ^ / 2 U ^ ) i s positive. Therefore, as g 

is positiveJ it follows from equation (5.45) that is positive^ 

a fact which also emerges from the calculations. 

As noted before, the effect of increasing ̂  is to reduce the 

strength of the trailing vorticity. Consequently 9(w^/2U^) 

decreases monotonically with increasing . Therefore, in view 

of the fact that 3 decreases monctonically with increasing A),it 

may be inferred from equation (5.4 5) that a^^^ decreases as 

increases. 

It has not been possible to draw any firm conclusions from 

equation (5.45) regarding the influence of X on a^^\ 

5.4.2 Induced drag 

Imi illustration of the influence of A and -®on the induced-

drag factor a is provided by Fig. 30 for the case = 0. 

This shows that a is small within the range of M and A considered 

but that it increases with #and A. The corresponding results for 

are shown in Fig. 31 which indicates that, for the range of A 

and reconsidered,this factor is considerably larger than o. This 

emphasizes the need to ensure that, in practice, the end plates can 

sustain the required thrust. 

6. Chordwise camber and thickness 

In this section,consideration will be given to the influence of 

distributions of chordwise camber and thickness on the lift and 

induced drag. The class of distributions to be examined, which is 

considered representative of current trends in G.E.W. design, may 
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be described as follows; 

(i) For = 0 the wing section is constant across the 

span. 

(ii) The end plates' sections are different from that of the 

wing, in general5 and for â "'̂ =0 they are independent of z. 

(iii) At any z-wise station the sections of the end plates 

are the mirror image of each other in the plane y = 0. 

Throughout the analysis of Section 6 the assumptions of 

Section 5 will be employed. Included among these, it will be 

recalled, are the assumptions of the linearised theory. Thus 

the vorticity distributions associated with incidence, chordwise 

camber and thickness may be superposed to yield the vortex 

distribution of a configuration with a combination of these 

section properties. The linearizations do, however, restrict 

the analysis to configurations of "small' incidence, chordwise 

camber and thickness. 

5.1 Chordwise camber 

According to the linearized theory the boundary conditions at 

the cylindrical surface are. for the type of camber distribution 

under consideration, 

v^f(x,y; + 1 d Z g ( x ) / d x ; v^^(x,±b/2,z) = dy^(x)/dx. 

(6.1) 

Here y^ and z are the (y and ^ ordinates of the camber lines of 

the starboard end plate and the wing. 

As a consequence of the assumptions that the vortex distribution 

is of the form y(S)f(^) and the flow is smooth at the trailing edge 

in fonjard flighty equations (3.28) and (6.1) may be combined to 

yield 
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+c/2 +c/2 
/ Ti(g)rdz (x')/dx]2dx = / Y2(5')|dz (x)/dx idx, 

-c/2 - c -c/2 L c j 

)» (6.2) 
+c/2 +c/2 

/ Yl(C) dy (x')/dxj2dx = / Y2(g')|dy (x)/dx idx 
-c/2 - c ^ -c/2 L c J ^ 

provided that fi(^) = f2(p. Consequently, if |dz^(x')/dxj 2 = 

|dy^(x')/dxj 2 = -ct, equations (6.2) become 

+c/2 +c/2 +c/2 
- / Yi(C)a dx = / Y2(5'sO,)rdz (x)/dxjidx = / Y2(E',a)[dy (x)/dx]idx. 
-c/2 -c/2 " c J -c/2 " c 

(6.3) 

Therefore, as £2(2) = 1, it follows that £1(2) = 1. Hence it may 

deduced from equation (6.3) that the circulation distribution 

(round the vortex trace) corresponding to YI is given by 
+c/2 +c/2 

^1(2) = / Yi(C) dx = - / Y2(5',a)fdz (x)/dxli dx/a. (6.4) 
-c/2 -c/2 c J 

Thus, by combining equations (5.23) and (6.4), it is found that the over-

all-lift coefficient associated with this circulation distribution 

may be written as 

_ +c/2 +c/2 
C, = 2 / Yi(5)dx/U c = - 2 / Y2(5'sOi)rdz (x)/dxlidx/U ca .(6.5) 

-c/2 ° -c/2 - ^ -J ° 

Consider the slope distribution 

dz^(x)/dx = ^dz^(x)/dxji ̂  dy^(x)/dx = niy^(x) /dx^i -

(6.6) 

where represents an increment in end-plate incidence. These 

expressions may be used in conjunction with equation (6.3) to obtain 

the result 

+c/2 +c/2 .V 

/ Y2(S',a)(dz (x)/dx)dx = / Y2(S',a)(dy (x)/dx + Aa ' )dx • 
-c/2 -c/2 (6.7) 
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It will be seen that, for arbitrary equation (6.7) is satisfied 

by arbitrary dz^(x)/dx and dy^(x)/dx provided these slopes are such 

that the integrals of this equation exist. 

It may be inferred from equations (5.26) and (6.6) that, within 

the limitations of the linearized theory, the overall-lift coefficient 

appropriate to the slope distribution (6.6) is. given by 

\ ' \i * 

Therefore., by employing equations (6.5),. (6.6) and (6.7), this may 

be rewritter in the form 

+c/2 /_\+c/2 
2 / Y2(5',o)(dz (x)/dx)dx a / yzCC'>0) (^z (x)/dx ~ dy(:0/dx)dx 

c . - -25/2 : + :s/2 ^ 2 
L U c a +c/2 

° / Y2(G',a)dx 

-c/2 

(6.8) 
Equation (6.8) may be written in a more suitable form by noting 

from equation (5.26) that 

cLo E 2 / Y2(C'.a)dx/U c = (a^^^ + a(%))%, (6.9) 
-c/2 ° 

where is the overall-lift coefficient corresponding to y2» 

Therefore equations (6.8) and (6.9) may be cor^ined to give the result 
\+c/2 

-2{a ./ Y2(5',a)(dz (x)/dx)dx + ar / Y2(E',a)(dy_(x)/dx)dx} 
P = -c/2 ^ ! . 
T — 

C U C 

^ ° (6.10) 

This expression allows the determination of the overall-lift 

coefficient corresponding to the arbitrary slope distribution 

{dz^(x)/dx, dy^(x)/dx}. Unfortunately, it would seem that, in 

general, the integrals, of this equation will have to be evaluated 

numerically. This may bo avoided, however, by writing 
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+c/2 +c/2 
/ Y„(5)dx = " / Y2(?'3®)(dz^(x)/dx)dx 

(6.11) 
-c/2 " -c/2 

+c/2 +c/2 
and a / y (g)dx = ~ J Y2(5',o)(dy (x)/dx)dx. 

-c/2 ^ -c/2 c 

Here Ŷ (̂C) is identifiable with the slope distribution {dz^(x)/dx) 

dz^(x)/dx} and Yj,(?) with {dy^/x)/d%, dy^/x)/dx}; facts which may 

be proved by comparing equations (6.3) and (6.11). These vortex 

distributions are* in fact, solutions of integral equations which 

are similar in most respects to equation (5.34). The only 

differences occur in the right-hand sides which instead of that 

of equation (5.34) are, respectively, 4ITU^(^+ X)dz^(x)/dx and 

4TTÛ (î .+X)dŷ (x)/dx.* Therefore, by solving these equations in 

the manner indicated in Section 5.3.1; it is possible to determine 

and Yg(C) in simple analytical terms. Thus it is apparent 

that the expression found by combining equations (6.10) and (6.11), 

namely _ 
— /_A+c/2 . ,+c/2 
C . 2a + a^*' j Y*(E)dxyc_, U c, (6.12) 
L _c/2 * -c/2 k o 

may be evaluated without difficulty, being found by the method 

of Section 5. 

In order to obtain the induced-drag factors of the slope 

distribution (6.6) it is necessary to know the circulation 

distribution of the vortex trace. This may be found as follows: 

it may be inferred from equation (6.3) that, if r^(^) is the 

circulation distribution of a configuration with the slope 

distribution {- r̂ (̂ J = ri(^) = constant, provided that 

*That these terms are correct may be proved by writing = a 

andjcorrespondingly5 y(Si) = Y2(€iia) in equation (5.34). This equation 

is then multiplied in turn by (g ') and yp(C') and integrated with 

respect to g' between 1 and +1. The order of integration of the left-

hand side of each equation is then interchanged and the resultant 

expressions are compared with equations (6.11). 
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, V +c/2 +c/2 
a " = a ^ = a / Y^COdx/ / Y2(S',a)dx. (6.13) 

-c/2 -c/2 

Til us it may be deduced from equations (6.6) that if, instead, jf'pCz) 

is required to be identical with the circulation distribution 

corresponding to the slope distribution (6.6) then 
\ +c/2 +c/2 —s 
= a I y^(Odx/ I Y2(G',G)dx; I 

-c/2 -c/2 (6.14) 

a 

+ Aa<®'. J a = a + Aoi 

Therefore the circulation distribution and hence the induced-drag 

factors of the slope distribution (6.6) may be determined by the method 

of Section 5. It is unnecessary, however, to perform these calculations 

as the required results for o, and may be found directly 

from the results of Section 5 if Al, X and are given. 

Therefore^ in order to facilitate this, equations (6.14) are used 

to derive the result 
/-p-v +c/2 . .+c/2 . +c/2 

{a /a } = ia J y^COdx + Act / Y2(E',a)dx}/a / yj(?)dx. 
G4 -c/2 -c/2 ' -c/2 

Here the subscripts eq have been added to show that the term 

concerned applies to an uncambered configuration with equivalent 

induced-drag factors. Thus, by employing equations (6.4) and 
(E) 

(6.7) to eliminate Yi(C) and Act from this expression, there is 

obtained the result 

\ +c/2 +c/2 
{a /a ̂  { / Y2(S',G)rdz (x)/dxlidx - J Y2(E'»G). 

-c/2 L c J 

.(dz^(x)/dx - dy_(x)/dx)dx}/^ j Y2(C'.a) |dz^(x)/dxj jdx 

+c/2 j +c/2 
/ Y2(5',a)(dy (x)/dx)dx/ / Y2(€'.a)(dz (x)/dx)dx 

-c/2 c ' -c/2 c 

(6.15) 
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from equations (6.6). Alternatively, by employing equations 

(6.11)., equation (6.15) may be written in the form 
. . c \ +c/2 +c/2 

{a /a } = / y (Odx/ J y (g) dx. (6.16) 
eq _c/2 G _c/2 * 

6.2 Thickness distributions 

Time has not permitted a conplete discussion of the effects 

of thickness even within the limitations of the linearized theory. 

Instead, what will be described here is an approximate linearized 

method of determining the lift and induced drag associated with 

thickness. This method is considered to be valid for 'thin' 

configurations of moderate or large iR . 

The linearized form of the boundary conditions at the cylindrical 

surface of a thickness distribution, which satisfies the conditions 

stated at the beginning of Section 6, is as follows: 

v^^(x,y,+ X ) = ±U^dz^(x)/dx; v^^(x5+b /2,z) =±U^dy^(x)/dx; 

! (6.17) 
v^^(x,-b /2,z) = + dy^(x)/dx. 

Here and y^ are the(z and y)ordinates of the outside surfaces of 

the thickness distributions of the wing and starboard end plate 

when = 0. Also the superscripts ^ may be defined by 

reference to the following example; + \ = Lim(+ I ± e). 
e-»o 

Robinson and Laurmann (1956) have investigated flows which 

satisfy boundary conditions such as equations (6,17). Their 

results indicate that both these equations and the condition of 

zero flow across the ground plane are satisfied by a source distri-

bution of strength q given by 

q(x,y;il) = 2U^ dz (x)/dx; |x| ̂  c/2, |y| g b/2j 

q(x,*b/2,z) = 2U^ dy^(x)/dx; jx| f c/2, |z| ? 1. 
(6 .18) 
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Tlie upper half cf this distribution may be regarded as the 'physical' 

source distribution required to satisfy equations (6.17). The lower 

half; on the other hand, is the image distribution which ensures that 

there is no flow across the ground plane. 

The normal velocity induced at the cylindrical surface by the 

source distribution may be written in explicit form. However, 

instead of employing this expression, which is rather complicated, 

the normal velocity at the wing plane will be calculated on the 

basis of the following assumptions: 

(i) The flow induced by the sources of the image wing is two-

dimensicnal in planes parallel to the plane y = 0. 

(ii) The flow associated with the end-plate sources and their 

images is disregarded. 

Therefore the normal velocity induced at the wing plane may be 

found by using a result given by Bagley (1960) for a distribution 

of two-dimensional sources along a line parallel to^and height 1 

from, the ground. In the present notation this may be written in 

the form 

v„j(5,y.n) = _/ g i • (6.19) 

Thus, by comparing equations (6.18) and (6.19), it is found that 

This equation should yield a satisfactory approximation for 

v^^ (?sy, + 1/), if M is sufficiently large, except possibly in the 

vicinity of |y| = b/2. 

Equation (6.20) implies that the source distribution introduces 

an effective incidence and camber into the flow at the wing plane. 

Therefore, to prevent the boundary conditions of the camber surface 

from being disturbed, the normal velocity induced at the wing plane 

by the source distribution must be nullified. This is accomplished 
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by a suitable vortex distribution placed on the cylindrical surface 

and the image vortex distribution required to satisfy the boundary 

condition of the ground plane. As before, the former distribution 

is assumed to be of the type y . w h e r e subscript t denotes 

that the distribution is associated with thickness. Therefore, in 

view of the assumption that y^(l) < it is permissible to use 

equations (3.28) and (6.20) to obtain the result 

-J^Y^(5)adK . - 1 ^ j^T2(5',a)dK 

Equation (6.21) may be used in conjunction with a knowledge 

of to determine the overall lift associated with thickness. 

However, f^Xg) cannot be found without more detailed information 

being available on the normal velocity induced by the source 

distribution at the cylindrical surface. Thus it will be assumed 

that this normal velocity does not vary with s. Consequently it may 

be inferred from equations (3.28) and (5.1) that a configuration of 

zero thickness and zero chordw'.se camber with f(^) = f^(^) will have 

a(s) = constant. This ing)lieS; therefore, that = 1. 

It seems likely that for arbitrary z^(x) the right-hand side 

of equation (6.21) will be difficult to evaluate explicitly and 

will involve a double numerical integration. However, a simpler 

method for obtaining Y^(C) may be devised by noting that associated 

with this vortex distribution there is a camber surface yielding 

= 0. Therefore, in the manner used to obtain equation (5.34), 

it is possible to formulate an integral equation which ensures that 

this condition is satisfied. In fact, this equation differs from 

equation (5.34) only in the right-hand side which is, instead, 
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This will have to be evaluated numerically, in general. There is 

available, however, a convenient method for achieving this which has 

been given by Bagley. This enables one to replace the above term 

by the Gaussian sum 

- 32,n^«-x) ) 

Bagley has suggested that a seven-point interpolation (N = 8) 

will probably be adequate, as the thickness-induced lift is usually 

a small part of the overall lift. Therefore this suggestion will 

be adopted here. Hence values of the right-hand side of the 

integral equation will be obtained for 8 ;= nw/8, with n = 1,2,3 ... 

7. In the manner of Section 5.3.1, this permits one to 

satisfy the integral equation at the points 6 = mr/4 (n = 1,3,5 and 

7). 

The implicit assumption that f^(^) = 1 is equivalent to the 

assumption that the thickness does not affect the overall induced 

drag. However, it may not be concluded from this that the 

sectional drag associated with thickness is zero. Neverthelesss 

for configurations of sufficiently small thickness/chord ratio,this 

drag is likely to be small and probably may be ignored. Therefore the 

sectional drag of a configuration with thickness, incidence and camber 

is assumed identical with D^. ' 

Finally, it should be remarked that the effects of thickness and 

camber may be combined by replacing and in equations (6.12) and 

(6.16) by and Thus there is obtained 

U c ^L(C,T.)" 2a 

k+c/2 ,p\+c/2 
/ {ŷ (̂C) + Y^(E)kk + a " + Y^O}dx 

-c/2 " L -c/2 

/n ^ (6-22) 
/pN +c/2 +c/2 

and {a /a } - j {y (C) + y (g)}d3/ / {y (E) + y (E)}dx, 
' -/2 /-=/2 ' (6.23) 



Ill, 

where ^ ^ is the overall-lift coefficient associated with 

camber and thickness. 

As the vortex distributions due to thickness, camber and 

incidence may be superposed,it follows that the same property applies 

to the overall-lift coefficients. Therefore, in allowing for the 

effects of thickness and camber on the overall-lift coefficient of 

a configuration with non-zero and a^^\it is permissible to 

replace equation (5.26) by the expression 

C, = a - «'">) . (6.24) 
L O 

where ^ (6.25) 

is the incidence of the wing corresponding to zero overall lift. 

7. The influence of non-linearities 

The exact potential-flow theory of de Haller (1936) for the 

lift coefficient of a two-dimensional flat plate in ground effect 

shows that,for 'small' plate heights,6 varies rapidly with incidence. 

It is anticipated, therefore, that the present theory will not be 

accurate for small A unless non-linear effects, such as that 

described, are included. This section describes an approximate 

method for accomplishing this aim. 

Initially, in Section 7.1, consideration is given to 

configurations of zero chordwise camber and thickness. The theory 

developed for this case is then extended in Section 7.2 to 

configurations of 'small'chordwise camber and thickness. 

7.1. Uncambered configurations of zero thickness 

Consider the wing plans of a configuration having zero chord-

wise camber and thickness. By noting that according to the 
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linearized theory C^(y) = 2r(y)/U^c and examining equations (2.44) 

and (2.53) one finds that the linearized theory of Section 5 yields 

the result 

c2(y)/C^(y) = 2n6, (7.1) 

where g is invariant with y, and Hoizever, although, 

in practice, g may not vary with y, it will depend on and 

possibly a '. Therefore equation (7.1) is replaced by 

C^(y)/C^(y) = 2ng(a(*), (7.2) 

The indications of the linearized theory are that for the cases 

of interest the trailing vorticity is comparatively weak. It seems 

reasonable to suppose, therefore, that the effect on the overall 

lift of the departure of the trailing-vortex sheet from the assumed 

cylindrical shape is negligible. Thus the Trefftz-plane concept 

is retained and the implicit assumption of the theory of Secticn 5 

that D^(y) = D^(y) is employed. Hence, by resolving the sectional 

forces in the drag direction, it is found that 

C^(y) = C.̂ (y) sin o/*') - Cg^(y), (7.3) 

where C^^y) is the coefficient of sectional force normal to the chord 

and C^^(y) = CL(y)/|pu2c. 

An examination of the sectional forces in the lift direction 

gives the result 

C^(y) = C^(y)cosa^^^ + Ĉ (y)tanâ '̂'̂ . 

Therefore, by using this equation to eliminate C^^y) from equation 

(7.3), one obtains the expression 

C^(y)sGc2a^^^ = C^(y)tan - CQ^(y) 

which for small may be replaced by the approximate form 

[^(y) - [^(y) - Cg.Cy) . (7.4) 
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This is, in fact, the result employed in the linearized theory but, 

evidently, for -10° < < +10° it produces unimportant errors 

in C^{y). This range of incidences is considered sufficiently 

large to justify the use of equation (7.4). Therefore this equation 

is combined with equation (7.2) to give the result 

C^(y) = - C^^(y)/Cj^(y)} , (7.5) 

This should be compared with the corresponding result predicted by 

the linearized method of Section 5 ̂  namely 

CL(y) H 2r(y)/U c = 27r3{â '̂ ^ + w (y)/2U } . 
LI C 00 O 

As noted before, the trailing vorticity of configurations of 

practical interest is weak. Consequently, in these cases, C .(y) << 
(w) 

C^(y)a . Therefore it seems reasonable to assume that the error 

produced in C (y) by replacing the term C . (y)/C (y) in equation 
li Dl L 

(7.5) with its linearized form, -&7^(y)/2U^5 is insignificant. 

Therefore equation (7.5) is rewritten in the form 

C^Cy) - 2n6(a(") + w^(y)/2UQ}. (7.6) 

As the non-linear effects associated with changes in a^^^are 

largely confined to a limited region adjacent to the end plates 

it seems reasonable to suppose that B is not very sensitive to 

Therefore 6 is assumed invariant with 

Tliat 3 varies with would seem to be due in the main to 

the non-linear influences of the image spanwise vortices which in 

a non-linear theory are located at the mirror image of the wing 

chordal plane. These effects are twofold. Firstly, as 

changes, the disposition of the image spanwise vortices relative to 

the wing is altered. In consequence, Y ( C ) is modified, thus 

altering and C^. Secondly, if Y ( ? ) is positive, the image 

spanwise vortices contribute to a reduction in the x component 

of velocity at the wing. This produces, directly, a reduction 

in and, indirectly, a change in Y(5) necessary to satisfy the 

boundary conditions of the wing. 
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It is convenient to write g = in the form 

= 6(0) + &g(a^"^), 

where A3(a^^^) is the increment in g due to the non-linear effects 

and 6(0) = 6(a^^^= 0) is the linearized-theory prediction of g. 

The linearized theory is indicative that, for Al> 1, 8(0) 

varies slowly with M . This may be attributed largely to the 

small effect that changes in M. have on the velocities induced at 

the wing by the spanwise vortices and their images. It is 

anticipated, therefore, that Ag(â '̂ )̂ also varies slowly with iR 

for AR > 1. Thus it is assumed that Ag(a^^^\ = A6(a/^^,«). 

Consequently 

g(a("),AR) = 6(0,iR) + Ag(a^"\»). (7.7) 

This is equivalent to the assumption that A6(a^^^) may be deduced 

from the exact two-dimensional theory of de Haller mentioned 

previously. 

It seems likely that, if either Ag(a^^^) is small compared 

with g(0) or is large, the errors in g resulting from the 

use of equation (7.7) should not be important. Therefore,if 

g(a^^\a^^^) is replaced in equation (7.6) by the right-hand side 

of equation (7.7)5 it is found that 

" 2n{g(0,ai) + AB(o(*),")}{o(*) + w*/y)/2nQ}. (7.8) 

Ifjhowever, Ag(a^^'\<») is small compared with 6(0,) the term 

2iTAg(â ^̂  ,<»)ŵ (y)/2Û , which is obtained by expanding equation 

(7.8), is very small compared with C^(y). Therefore, on the 

assumption that Ag(a(*),^« 6(0,41), this term is neglected so that 

C^(y) = 2ng(0,at){a^^^ + w^(y)/2U^} + 2nAg(a^^^,«0a^^^. (7.9) 

If w^(y) is assumed to be linearly dependent on it is 

found that the term in equation (7.9) multiplied by 6(0,iR) 
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represents the contribution of the linearized theory to C^(y). 

Therefore, by employing this assumption, it is evident from 

equations (5.25) and (7.9) that the overall-lift coefficient may 

be written as follows: 

C, = (7.10) 

Ju 

It would seem that the error in resulting from the use of 

the previously-mentioned assumption is not likely to be important. 

7.2 Chordwise camber and thickness 

The extension of the preceding analysis to include the non-linear 

effects of thickness and camber is extremely complicated. Consequently, 

instead; a result will be introduced for which, although tentative, 

would seem to be a reasonable approximation for configurations of 

'small' thickness and camber. 

According to the linearized theory, for a given M. and A, an 

uncambered configuration of zero thickness yielding the same as 

a configuration with incidence, thickness and camber (equation 6.24) 

has the wing incidence = 0) and end-plate incidence 
(E) ° 

a . AlsOj as may be inferred from equation (5.2) (i), it has a 
distribution given by 

where 

C^(y) = 2ng{a^^) + w^(y)/2U^}, (7.11) 

.. c f ( a ® = 0). 

Therefore, on the basis of a comparison between equations (7.6), 

(7.10) and (7.11), it is suggested that a reasonable approximation 

for the of a configuration of 'small' thickness and camber is 

- {a(") + + a(G)a(G). (7.12) 

In effect, equation (7.12) extends the notion of the equivalent 

configuration of zero thickness and camber to include non-linear 
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effects. That it is a fair approximation for 'small' thickness and 

camber follows from the fact that it agrees with equation (7.10) 

when It should also be observed that it is 

asymptotically in agreement with equation (6.24) as and 

= 0) simultaneously tend to zero. 

Although equation (7.12) makes allowance for the lift induced 

by the image thickness distribution it does not include the effect 

of the change in chordwise velocity induced at the wing by thickness. 

Thwaites (1960, p. 298) has shown that for isolated aerofoils in an 

inviscid flow this produces an increase in a^^\ However, in 

reality, these aerofoils rarely have a value of a^^^ in excess of 

that calculated on the assumption that the aerofoil is of zero 

thickness. The reason for this is that the thickness effect is 

counteracted by the displacement effect of the boundary layer. 

Indeed, a typical calculation quoted by Kiichemann (1952) for an 

isolated R.A.E. 101 (10% thick) aerofoil with a chordal Reynolds 

number of approximately 10^ indicates that the two effects cancel. 

Therefore, in the absence of calculations of these effects for 

two-dimensional wings near the ground, this will be assumed to be 

the case with the present configuration. In other words, for the 

purpose of comparison with experiment, equation (7.12) will be 

employed without modification. 

The influence of the various non-linearities on the overall 

induced drag is difficult to predict. Nevertheless, it seems 

probable that for configurations of practical interest this 

component of the drag will be small compared with the overall boundary-

layer drag. It is suggested, therefore, that the linearized value of 

a should be employed for performance prediction. 

The results obtained by thj present theory will be compared with 

experiment in Chapter III. In the same chapter the validity of a 

number of the assumptions of this theory will be examined in the 

Tight of experimental evidence. 
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CHAPTER III 

BXPERiaEHTAL INVESTIGATION 

1. Introduction 

This chapter is concerned with a discussion of some experiments 

which have been performed on various G.E.W. configurations. These 

experiments were conducted in a wind tunnel and the image technique 

was used to simulate the presence of a water surface. This method, 

which replaces the water surface by a plane of symmetry ostensibly 

introduced into the flow by an image of the wing, may be criticized 

as follows: 

(i) In practice, the water surface is not planar, even in 

absolutely calm conditions, owing to the pressure field of the wing 

which distorts the surface. 

(ii) The combined influences of the velocity field of the wing, 

the dynamic condition at the water surface and the viscosities of 

the two fluids produce a vcrticity layer in the vicinity of the 

water surface. This vorticity layer, which is not present with 

the image method, affects the flow round the wing. 

Both these criticisms apply to the theories introduced 

previously. Therefore the image technique may be regarded as a 

method of checking the accuracy of the theories within the limita-

tions of the assumptions leading to the criticisms. Consequently, 

if the theoretical results agree reasonably with the results of 

the image method,it might be worth while to extend the theories to 

include the effects described in (i) and (ii). On the other hand, 

if the results are not in agreement the reasons for the discrepancies 

may possibly be isolated more easily. 

The image method has also been criticised periodically on the 

basis that the vorticity layers comprising the wakes of the models 
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interact and, in consequence, disturb the plane of symmetry. On 

the evidence of Werld's(1963) flow-visualization studies, de Sievers 

(1965) remarked that this wake interaction does not destroy the 

symmetry of the flow. Nevertheless, during the course of the present 

experiments3 this criticism was considered and the results of the 

investigation will be described in Section 2.3.2. 

When consideration was first given to devising the experiments 

there were few examples of G.E.Ws. in existence. There had, 

however, been some experiments performed by Fink and Lastinger (1961) 

and Carter (1961). Unfortunately, these experiments were confined 

to open configurations and the end plates used were made of thin 

metal sheet. Therefore it is likely that the flow was not attached 

at the end-plate leading edges. This is an undesirable feature, 

for a large overall drag may be obtained if the end plates do not 

yield a leading-edge thrust. Moreover, agreement between the 

(inviscid) theory and experiment can only be expected if the flow 

is attached at the end plates. Therefore it was decided that, 

for the majority of the experiments, end plates of aerofoil 

section would be fitted to the basic planar wing. 

Both open and closed configurations were examined in the 

present series of experiments, the main aim behind them being to 

test the accuracy of the theories introduced previously. However, 

particular emphasis was placed on the study of the closed configura-

tions. There are two reasons for this. Firstly, the closed 

G.E.W. appears to offer the best prospects for future development 

by virtue of its low induced drag. Secondly, the theory in Part 

II of Chapter II is based on a number of assumptions which it was 

felt desirable to check by detailed experiments. 
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2. Experimental Technique 

2.1 Models and rigging 

The wing component of the various models tested was rectangular 

in planform, with a spa^ b, of 4 ft. and a chord, c, of 2 ft. It 

was untwisted and possessed an ll|% Clark Y section. Also;it was 

made from laminated mahogany which was finished on the exterior with 

'Phenoglaze' and constructed round a 6 in. x 4 in. x 2 ft. duralumin 

bar. Bolted to the top of this bar at each of the mid semi-span 

stations and approximately 4| in. and 1\ in. from the wing leading-

edge were two lugs to which the support struts were attached. 

These struts passed from the lugs vertically upwards to the wind-

tunnel balance. 

Continuous incidence adjustment was provided by means of slots 

in the support struts through which the bolts securing the struts 

to the lugs passed. These slots were arranged so that the wing 

pivoted about an axis on the wing lower surface at a chordwise 

distance of 6 in. from the wing leading edge. 

The support struts each comprised two parts which were bolted 

together. This permitted variations in the height of the wing 

relative to the 'ground plane' which was horizontal and coincident 

with the axis of the tunnel. The height was changed simply by 

undoing the nuts and bolts fastening the two parts of the struts 

and moving the lower parts of the struts to new positions. A 

sufficient number of holes was provided in the struts to ensure a 

total vertical movement of 6 in. at 1/4 in. intervals. 

Strut drag was sensibly excluded from the drag measurements by 

means of fairings surrounding the struts. These fairings were 

constructed from mild-steel plate and had an approximately 20% 

R.A.E. 101 aerofoil section. Their geometry is illustrated in 

Fig. 32. 

Pressure tappings were located at two spanwise stations of the 

wing, namely centre span and 0.3 in. from the port wing tip. At 
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each station there were 45 tappings, one of which was located at 

the leading edge and the remainder were divided equally between the 

upper and lower surfaces. The chordwise distances of these tappings 

from the leading edge as fractions of the chord (x/c) are shown in 

Fig. 33. 

The static pressures were relayed from the tappings by copper 

tubess which were inlaid in the wing, to the bases of the struts. 

There the copper tubes were joined to plastic tubes which passed 

up recesses in the sides of the struts to manometers outside the 

tunnel. 

The image wing (or image) and its rigging were similar to 

that described except in the following respects; firstly, the 

strut-attachment lugs were situated 3 in. from each wing tip. 

Secondly, the tappings were located at 12 in. from the port wing 

tip (45 holes) and centre span (11 holes), the latter tappings 

providing a check on the synmetry of the flow about the wings. 

The chordwise positions of the former tappings were the same as 

those of the wing whilst the latter may be found in Fig. 33. There 

it will be seen that 6 of these were at the image position of the 

wing upper surface, which is called 'image upper surface', and 5 

were situated at the 'image lower surface'. 

Fig. 34 illustrates the geometry of the end plates and the 

method of attaching them to the wings. It shows that when each 

end plate was attached to the wing tip its base was in a plane 

perpendicular to the end-plate leading and trailing edges. In turn, 

these edges were, respectively, in the same planes as the leading 

and trailing edges of the wing. Furthermore, it indicates that 

each end plate was faired into the wing with a fairing of semi-

elliptic cross section. This had a major to minor axis ratio 

of 2. 

Also shô fzn in Fig. 34 is the method by which the incidence of 

the end plates was increased, namely by additions to the wing which 
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in plan view were wedge shaped. 

At the stations of the end plates corresponding to maximum 

chord (taken in a direction parallel to the end-plate base) the 

aerofoil section was constant and untwisted with ordinates 

zi = C.OlOc + (zi - zo) /2 ; Z2 - 0.3 (z?) i i ^ c.y. ^ c.y. 

Here zj and zg are the upper and lower boundary ordinates, the 

'upper boundary' being on the outside of the configuration or 

image, and the subscripts c.y. refer to the ordinates of the 11|% 

Clark Y section at the corresponding chordwise position. At 

the other stations the ordinates of the sections, which were also 

untwisted;tjera the same as those at the corresponding chordwise 

positions of the full-chord sections. 

A general view of the model and image when fitted with end 

plates is provided by Fig. 35. In the particular case illustrated, 

the end plates virtually closed the spanwise gaps between the wing 

and the 'ground' plane. 

Finally, it should be remarked that,when the end plates were 

not fitted, half-body fairings were attached to the wing tips. 

2.2 Methods of measurement 

The experiments were performed in The College of Aeronautics 

8 ft. X 6 ft. wind tunnel. This has a closed working section of 

octagonal cross section and is equipped with a Warden six-

component balance. 

The surface static-pressures of the two wings were measured 

by alcohol-filled mancmeters connected to the tubes from the 

tappings. Before beginning the experiments,this system was 

checked for blockage and leaks. During the course of this 

investigation it was found that the copper tube leading from the 

hole on the lower surface cf the wing at centre span and x/c = 0.5 

was blocked. Attempts to remove the blockage failed; therefore 

no readings of static pressure were taken from this hole. 
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The incidence of the wing and image was measured with a bubble 

inclinometer. In the case of the wing^this was mounted on a 

platform which was specially made to fit on the upper surface of 

the wing. The incidence of the imagCjon the other hand, was 

measured by placing the inclinometer on the substantially flat 

'image lower surface'. 

In certain experiments, to be described later,the sectional 

boundary-layer drag at the centre span of the wing was measured. 

Tliis was achieved with a five tube yaw/pitch meter which gave the 

total head directly and was calibrated in order to give static 

pressure. Thi? device, which has been described by Alexander 

(1961), can normally be traversed vertically and horizontally. 

However; to reduce blockage and transverse interference at the 

model, the horizontal traverse was not employed. 

2.3 Preliminary Experiments 

2.3.1 Initial flow studies 

The initial flow studies were designed to ascertain whether 

the flow over the wing was acceptable and were conducted without 

the image in position or with end plates. Throughout these 

studies, and indeed all the experiments to be described in this 

chapter, the wind-tunnel speed was a nominal 100 ft/sec. correspond-

ing to = 1.3 X 10^. 

For the purpose of investigating the flow,a surface-flow 

indicator and wool/nylon tufts, attached to the wing surface, were 

used. The indicator consisted of a mixture of 'Polyfilla', 

water and'Teepol'. 

During these tests the strut fairings terminated 1 in. above 

the upper surface of the wing and the unfaired portions of the 

struts were streamlined with 'Plastiscine'. Flow-visualization 

tests showed that in this case there were large turbulent wakes 
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being shed from the struts. These wakes were considered unaccept-

able. Thus it was decided to extend the fairings as near as 

possible to the wing surface. This was achieved by means of 

additional fairings made from copper sheet which reduced the 

gap between the base of the fairings and the wing to 0.02 in. The 

extra fairings were constructed in a manner so as to permit ready access 

to the incidence adjustment of the wing. 

Subsequently, it was found that the width of the wakes behind 

the fairings was greatly reduced by the presence of the fairing 

extensions. 

Another fa:t to emerge from this study is that there was no 

obvious boundary-layer separation near the leading edge of the 

wing in the incidence range 0° to 14°. To some extent this is 

confirmed by the pressure distributions measured at centre span 

and shown in Fig. 36". On the other hand, in the case = 11°, 

there is apparently a curious bulge in the pressure distribution 

of the upper surface. At first, it was thought that this might 

be due to a laminar-separation bubble. However, a similar bulge 

is evident in the inviscid distribution of a two-dimensional 

Clark Y aerofoil calculated by Karman and Burgers (1935) for the case 

= 9°. It seems likely, therefore, that this bulge is directly 

associated with the shape of the Clark Y section. 

Balance measurements of the overall forces on the wing were 

made with the purpose of checking the conclusions of the flow 

studies. It became apparent from these results that there were 

* In this figure the results are plotted in the form C^^ = p - p^/^pU^^, 

against x/c, where p and p^ are, respectively, the surface and tunnel 

static pressure whilst the subscript T denotes quantities uncorrected 

for tunnel interference. 
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day-to-day variations in the overall forces on the wing. It was 

thought that this might be due to alterations in the position of 

the transition region of the boundary layer on the upper surface 

of the wing. Therefore it was decided to fix the transition 

there by placing a trip wire along the span at a chordwise distance 

of I in. from the leading edge. The diameter of this wire was 

decided by a criterion given by Pankhurst and Holder (1948, p. 463), 

namely 
U^d/v > 60, 

where d is the diameter of the wire and v is the kinematic 

viscosity. This criterion dictates the minimum diameter of wire 

needed to 'trip' the boundary layer. Thus with the values 

= 100 ft./sec. and v = 1.56 x 10 ̂ ft?/sec., which are typical 

of the present experiments, this yields d > 0.011 in. Therefore 

the diameter 0.012 in. was chosen for the wire. 

Wires of the same diameter and chordwise location were also 

placed on the 'image upper surface' and on the outside surfaces 

of the end plates. 

2.3.2 Investigation into the validity of the image method 

The aim of the experiments to be described here was to 

examine the validity of the image technique as a means of 

representing a steady plane of symmetry. In the first part of 

these experiments the symmetry of the flow over the wing and the 

image was investigated by comparing the pressure distributions 

of the two wings at centre span. Throughout this study the 

height of the pivotal axis of the wing above the 'ground' plane, 

hp, was kept constant at 3 in. and end plates were not fitted. 

The pressure distributions obtained for = 2°, 5° and 8° 

are illustrated in Figs. 37, 38 and 39 which show plots of Cp^ 

against x/c. It will be seen that in each case the two sets of 

results are almost indistinguishable except at x = 0.042 c on the 
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suction surfaces. Here the image consistently yielded a slightly 

larger negative Cp^. A possible explanation for this is that the 

interference of the wing strut fairings at the wing centre span was 

greater than that of the image strut fairings at the centre span 

of the image. This is plausible because the wing strut fairings 

werenearer centre span than the image strut fairings. Furthermore, 

it was found that the difference in pressure between the image 

and wing at x = 0.042c could be altered by modifying the bases of 

the wing strut fairings. However, even if this conjecture is not 

correct,the effect of the discrepancy on the overall forces seems 

not to be important. 

The second part of this investigation comprised an 

examination of the importance of the wake-interaction effect 

mentioned in Section 1. This phenomenon appears to consist of two 

effects. Firstly, the vorticity in the wakes of the wing and the 

image interacts to produce unsteadiness in the flow behind the 

wings. Secondly, the wakes mix owing to the action of turbulent 

mixing. Neither of these effects would occur with a wing in 

motion over a water surface. However, they may be removed in 

the present case by splitting the wakes with a thin plate placed along 

the horizontal plane of symmetry. Thus, on the assumption that the 

plate does not cause any flow interference, it may be argued that ̂  

if there is no difference in the overall forces on the wing with 

and without the splitter plate, the wake-interaction effect may be 

ignored. Tliis, therefore, was the approach adopted. 

The splitter plate employed was of 10 gauge aluminium alloy 

of 4 ft. chord and 4| ft. span mounted on angles which were 

supported by struts from the tunnel floor. Additional stiffness 

was given to the plate by means of wire braces between the angles 

and the sides of the tunnel. 
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The incidence of the plate was adjusted to a nominal zero 

by using an inclinometer, an incidence tolerance of + 3 minutes 

being applied to the readings. 

During the tests, the splitter plate was placed with its 

leading edge in the plane of the trailing edges of the wing and 

the image. Furthermore, to avoid some form of interaction 

between the trailing vortices of the image and the support struts 

of the plate,the configurations chosen possessed comparatively 

weak trailing vorticity. One such configuration had hp = 2 in., 

= 8° and end plates giving a constant gap of 0.025 in. 

between the bases of the end plates and the 'ground*. The 

results obtained in this case for and (which are based on 

the planform area of the wing, 8 ft?) are as follows: 

WITH SPLITTER WITHOUT SPLITTER 

\t, 1.58 1.58 

0.0274 0.0276 

Evidently, there is no significant change in the overall forces 

resulting frran placing the splitter plate in the tunnel. It is 

possible, however, that the wake-interaction effect was masked by 

the interference caused by the splitter and its supports. 

Nevertheless, calculations of this interference have indicated that 

its effect on the overall forces is negligible. 

Another case examined was the configuration with h = 5 in., 

= 12.5° and end plates with = 4" and y = 6°, where X and 

Y are defined in Fig. 34. The results obtained are as follows: 

WITH SPLITTER WITHOUT SPLITTER 

1.50 1.50 

Cjjj 0.0972 0.0984 

Again no significant differences between the overall forces with and 

without the splitter plate are apparent. 
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Both the cases cited are extreme insofar as the spanwise 

component of vorticity in the wake of either configuration is 

considered comparatively large and no smaller than that of any 

configuration tested. It is anticipated, therefore; that the 

wake-interaction effect may be ignored for the present configura-

tions 3 at least. On this basiss the splitter plate, which made 

model rigging difficult, was not employed in the remainder of the 

experiments. 

In the course of the investigation into the validity of the 

image method the rigidity of the model and its supports was 

examined. This was done with a Taylor-Hobson microalignment 

telescope which was sighted onto a point on the trailing edge of 

the wing before and after a run. For this test; which was 

performed with h^ = 5 in. and no end plates, the wing and the image 

were set at their maximum incidence (approximately 14°). 

No change in the position of the point could be detected as 

the tunnel speed was increased from 0 to 100 ft/sec. The same 

was found to be true of a similar point on the image. 

2.3.3 Determination of strut-fairing interference 

Calculations performed with the aid of information given 

by Hcorner (1951; p 113) indicate that the strut-fairing interfer-

ence on the overall forces of the wing may be significant in some 

cases. Unfortunately, Eoerr.er's results, which arc taken from 

various experiments, are not sufficiently comprehensive. Therefore 

it was considered desirable to determine the strut-fairing 

interference experimentally. 

It was considered impracticable to establish the fairing-

interference corrections for all combinations of h . and 
P 

tip configurations. Consequently h^ was kept constant at 4 in. 

and end plates were fitted so that for the three incidences 

examined, = 2°, 5° and 8°, there was a constant chordwise 
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gap of 0.01 in. between the bases of the end plates and the ground. 

At each of these incidences txro end-plate wedge angles were tested, 

namely 0° and 9°. 

The method of determining the strut-fairing interference was 

to measure the influence of a dummy fairing on the overall forces 

of the wing. This fairing was situated above the wing at centre 

span at the name chordwise position as the other fairingswhich it 

resembled in all respects. The gap at its base could be varied 

and the results for the overall forces were extrapolated to zero 

gap. The corresponding increments in the overall lift and drag 

coefficients due to the dummy fairing, -(AC^X^ = -ALp/|pU^^bc 

and -( = ADp/^pU^^ be , are plotted against the sectional-

lift coefficient at centre span (without the dummy fairing) in 

Figs. 40 and 41. This coefficient was obtained by integrating 

the pressure distributions in a manner to be described in Section 

2.4.4. 

The results for the increments appear to correlate reasonably 

with C^. Therefore it is assumed that the curve through these 

results may be used to correct and for other configurations 

provided that (a) is the same and (b) the sectional-lift 

coefficients at the spanwise stations of the real strut fairings 

are used in reading off Figs. 40 and 41. Further, it is assumed 

that the total fairing-interference correction may be found by 

doubling the correction of one fairing. This appears to be a 

reasonable assumption as the horizontal distance between the strut 

fairings is large compared with their chord. 

Finally, mention should be made of the correction applied to 

the overall-drag coefficient to allow for the gaps between the 

bases of the strut fairings and the wing. Although these gaps 

were small compared with Cj it was thou^t that the extra drag 

involved might be significant owing to the rather bluff shape of 

the struts. Tests on the above-mentioned configurations supported 
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this view by indicating that as the gaps were reduced the overall 

drag of the wing dropped noticeably. The results of these tests 

were used to obtain the correction for the gap on the overall 

forces. It was found that the lift correction was insignificant 

but as is shown in Fig, 42 the correction to the overall-drag 

coefficient (AC^)^ = ADg/|pU^^bc cannot be ignored. In this 

figure (AC„) is plotted against C^_ and the correlation is seen 
U Q iiX 

to be reasonable. This graph has been employed to correct the 

overall-drag coefficients of all che cases examined. 

2.4 Reduction of Observations 

2.4.1 Blockage corrections 

Consider, firstly, the blockage associated with the wing and 

the image. This will include contributions arising from the two 

wings J their boundary layers and'wakes. However, it would appear 

from the discussion of Pankhurst and Holder (1952, p.p. 330-348) that 

the boundary-layer blockage is usually neglected. Therefore this 

leaves the solid blockage of the wings and their wake blockage. 

In general, the distance between the wing and the image is 

small compared with the height of the tunnel working section. 

Therefore, for the purpose of calculating the solid blockage, it 

seems reasonable to replace the two wings by a single wing of 

twice the thickness and volume of the wing and mounted at the 

tunnel axis. Thus it is possible to use a result given by 

Fankhurst and Holder (p. 343) for the increment in axial speed 

due to the solid blockage (Au^) of an axially-mounted wing, namely 

AUg = (TTM) t + 1.2 t/c)V/c3/2. (2.1) 

Here T is a dimensionless constant depending on the cross-sectional 

shape of the working section and C is the cross-sectional area of 

the working section. 

The quantities t/c and V are the thickness/chord ratio and the 

volume of the equivalent single wing. 
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An inspection of a table given by Pankhurst and Holder (p. 341) 

suggests that a reasonable value of T for the 8 ft. x 6 ft. tunnel is 

0.8. By employing this value together with t/c = 0.24, V = 2.28 ft.^ 

and C = 46.4 ft? in equation (2.1) it is found that 

Au = 0.0066 U „ 

S OT 

Pankhurst and Holder give a result for the increment in axial 

speed due to the wake blockage (Aiî ) of an axially-mounted wing 

in a closed rectangular tunnel. This may be written in the form 

(2-2) 

where Dg is the boundary-layer drag of the wing. 

As before, it is assumed that the two wings may be treated as 

a single axially-mounted wing. Furthermore, it is assumed that 

equation (2.2) also applies to the cross section of the present 

working section which is nearly rectangular. Therefore,with 

the typical value for the equivalent wing Dg^/^pU^g, = 0.192 ft?, 

equation (2.2) may be employed to give for the velocity increment 

AU = 0.0010 U ̂  

w oT 

The blockage caused by the end plates or the half-body fairings 

is ignored on the basis that the extra volume and boundary-layer 

drag thereby introduced is comparatively small. On the other hand, 

consideration will be given to the blockage caused by the strut 

fairings. With regard to the blockage of the wing strut-fairings 

this is accounted for by the interference correction discussed in 

Section 2.3.3. Therefore it is only necessary to correct for the 

blockage of the image strut-fairings. In determining this correction, 

use is made of the fact that the flow rouni the image strut-fairings 

has a vertical plane of symmetry at the centre span of the wings. 

Consequently only the flow in either the port or starboard halves 

of the tunnel need be considered. Furthermore, use may be made of 

the fact that the tunnel floor represents part of a plane of symmetry 
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of the flow about the image strut—fairings. 

As with the wings it is permissible to employ equation (2.1) 

to determine the correction for the image strut-fairings. It 

should be noted, however, that this correction applies strictly 

to the longitudinal velocity at these fairings. Nevertheless, 

the errors obtained by assuming that this is the same as the 

correction required at the wing are likely to be insignificant. 

It is possible to deduce from results given by Pankhurst and 

Holder that for this case T = 1.2. Thus, by employing equation 

(2.1) with the appropriate values T = 1.2, t/c«=0.20, V = 0.376 ft. 
2 

and C = 46.4 ft., it is found that the solid-blockage correction 

due to the image strut fairings is 

Au^ = 0.0016 U 

Finally, it should be remarked that the wake blockage of the 

image strut fairings is negligible and is therefore ignored. Thus 

the total increase in axial velocity at the wing due to blockage is 

found by adding together the separate contributions given previously. 

Tlie corrected tunnel speed is then obtained and the overall-force 

coefficients are corrected accordingly. 

2.4.2 Lift-effect corrections 

In determining the lift-effect corrections it is assumed that 

it is permissible to employ the linearized theory. As these 

corrections are generally small it is supposed that the errors thus 

caused in the overall forces on the wing will not be important. 

Suppose that the wing under consideration has zero chordwise 

camber and thickness. By making the assumption that 

Y(x,y) 5 Y(X) f(2y/b), it is found from Section II.3.1 that 

r(y) = 7T(3p + A6)c|u^a^^^(y) + { |w^(y)] p + Aw^(y)}/2j (2.3) 
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Here the subscript F refers to unconstrained quantities whilst A3 

and Aw^(y) are increments in S and w^(y) due to the lift effect. 

A qualitative study of the induced-velocity field of the 

image system required to satisfy the boundary condition of zero 

flow across the tunnel walls indicates thatsfor the various values 

of hp/c examined, Ag << Therefore A8 is ignored in equation 

( 2 i 3 ) . Consequently the lift effect may be regarded as an increase 

in the 'effective incidence' of the wing at any station y by an amount 

= Aw^(y)/2U^ 

As this is small compared with a^^^(y) it is assumed that (y)-may 

be replaced by its mean value across the wing span, Aa^^^ According 

to Pankhurst and Holder this may be written in the form 

^ /c, (2.4) 

where 6 is a factor depending on the cross-sectional shape of the 

working section, the ratio of the wing span to tunnel breadth and 

the spanwise lift distribution. Also it should be noted that C, 

is corrected for blockage. Thus,for the case of a wing of zero 

twistpthe C /«(*) curve is corrected simply by displacing it an 

amount Aa^ in the direction of 

Owing to the increase in the effective incidence of the wing 

due to the lift effect the induced drag is reduced for a given 

lift. Thus provided that r(y) and Aa^"^(y) arc slowly varying 

functions the unconstrained induced-drag coefficient may be written 

as _ _ \ 

Sir " S I T * S ' 

. Cp.SbccJ / c 

from equation (2.4). 

The factor 6 has been determined for planar wings near a 

ground plane in a working section of rectanrular cross section•• 

by Brown ( 1 9 3 8 ) . In his calculations he assumed a uniform 
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spanwise distribution of lift bnt this assumption should not cause 

any significant errors. 

On the assumption that the effect of the corner fillets of 

the 8 ft. X & ft. tunnel may be ignored the following values 

have been deduced froti Brown's results: 

2h^/b 6 (Cgi, - S i P / Y 

0.083 0.0022 0.022 0.00038 

0.125 0.0050 0.050 0.00086 ' 

0.167 0.0086 0.085 0.00148 . 

0.208 0.0124 0.123 0.00214 

0.250 0.01S4 0,192 0.00334 

Within the limitations of the linearized theory the above 

results also apply to configurations with chordwise camber and 

thickness. Thus they have been used to correct the overall-force 

results for the planar configurations. 

The corrections for the nonrplanar configurations have been 

obtained by employing the above tabulation with h replaced by 

h - t . 
P P 

2.4.3 Circulation and sectional-lift measurements 

In the course of the experiments on the closed configurations 

measurements were made of the static pressures fit various stations. 

These results were used to calculate the circulation and sectional-

lift distributions. The method employed in these calculations and 

the theory on which the circulation calculations are based are 

described in this section. 

Consider a chordwise section of the configuration. By 

reference to the sketch below and a result given by Goldstein (1938, 

p. 119) it is possible to write the component of vorticity normal 

to the plane of the section as 
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K — 3u 
'I " T T c F " + 3z 

9w 
1 + KZ 3x 

(2.5) 

Here n, the vorticity component, is taken positive in the clockwise 

sense whilst x and z are distances along and normal to the aerofoil 

boundary which is of curvature K . Parallel to x and z are the flow 

velocity components u and v. 

4 A — — 

I z _u_^ w 

U 

The sketch shows a line which is normal to the chord line at a 

chordwise distance x from the leading edge and intersects the 

section contour at A and B. From these points are extended lines 

normal to the section contour which cross the edge of the boundary 

layer at A' and E*. Thus the circulation r(x) is defined as the 

sum of the circulations of all the elementary vortices upstream of 

A'MB', being taken positive in the clockwise (lifting) sense. 

Hence, by employing equation (2.5), it is found that 

A 5 

R ( % ) - / 

B o 

1 3w 
1 + Kz 9 X 

}(1 + Kz)dx dZj (2.6) 

where 6 is the thickness of the boundary layer along the direction of 

2. Therefore, by noting the condition of no slip at the section 

boundary, equation (2.6) may be rewritten as follows; 
A 5 

r(x) = / (1 + KiS)Udx - / /(8w/3x)dx dz, 
B B o 

(2.7) 

where 

U = u(z = 6). 
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An examination of the order of magnitude of the last term of 

equation (2.7) indicates that it is 0 {(5/c)^} compared with r(x). 

This may be considered insignificant for - 10^ provided that 

the boundary layer is attached. Therefore this term is ignored 

to give the result 

A 
r(x) = / ( 1 + K 6 ) U dx ( 2 . 8 ) 

B 

At the stations of the configuration where static-pressure 

Keasurenents were made, the curvature at the section boundary was 

confined to the chordwise direction. Therefore, according to the 

boundary-layer approximation, the pressure gradient across the 

layer at these stations is given by 

8p/3z = Kpu^ (2.9) 

(Rosenhead, 1963, p. 203). Thus the rise in static pressure across 

the layer, Ap^ may be obtained by integrating equation (2.9) as 

follows: 4p . Kp / ? iS, 

o 

= KpU^{6 - 6̂  - 62)5 (2.10) 

where and dg are the displacement and momentum thicknesses of 

the boundary layer. 

By application of Bernoulli's theorem to the inviscid flow 

external to the boundary layer it is found that 

U/U^ = +(1 - Cp~ 2Ap/pU2 - v2/u2)2, (2.11) 

where v is the velocity of the flow,normal to the plane of the 

section, at the edge of thi bouni'ary Layer whilst is the surface 

static-pressure coefficient. The choice of root taken in this 

expression depends on the position of station x in relation to 0, at 

which point U = 0. TJius if x is the x-wise station of 0 the 
_ £ __ 

positive root is taken if x - x > 0 whilst if x - x < 0 the 
o o 

negative root is employed. 
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If j2Ap/pu^ + v^/U^j < jl - Cpl the right-hand side of equation 

(2.11) may be expanded and the resultant expression combined with 

equations (2.8) and (2.10) to yield the result 

A I 
r(%) - /{I + K(6i+62) - ̂ 2/202 + 0(K262) + 0(v*VU^)}(±JU (1-C ):dx 

3 o p 

(2 .12) 
6 

Calculations have indicated that for R = 10 and for the closed 
c 

configurations examined <(61+62) is negligible. Furthermore, yaw 

surveys with the five-tube meter have shoxm that v^/2U^ is 

extremely small. Therefore equation (2.12) is replaced by 
A J 

r(x) = /(i)u^(i - Cp)Mx 

This was evaluated numerically according to Simpson's one-third 

rulCj the number of interpolation points depending on x. Thus for 

example, 59 points were used in the determination of r(c). 

At each station,there was a point where C was between 0.99 
' P 

and 1. It is evident from equation (2.11) that at these points 

17 must have been very close to zero. Therefore these were 

regarded as being coincident with the point 0 at each station. 

The sectional lift was found by integrating the liftwise 

component of the pressure forces round each section. As before, 

Simpson's rule was employed with a 59 - point interpolation. 

In all cases the static pressures were corrected for blockage 

by using the results of Section 2.4.1. 

2.4.4 Measurements of boundary-layer drag 

For the purpose of an analysis of the drag of closed 

configurations to be described in Section 4.3, boundary-layer-drag 

surveys were made in the rear of the wing centre span. This was 

done on the assumption that the flow in the streamwise plane of 

this station was two-dimensional. 
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Total head and static-pressure readings were taken at 

intervals of 1/8 in. through the wake by means of the five-tube 

yaw/pitch meter situated 0.7c downstream of the wing. These 

results were used in conjunction with the method of Young (1948) 

to determine the sectional boundary-layer drag at the wing centre 

span. Tliis technique is based on the method proposed by Jones 

(1936). 

The required integration of the total-head deficit across 

the wake was performed by using Simpson's rule, the interpolating 

points corresponding to the points where the readings were taken. 

2.4.5. Accuracy of the results 

Throughout this chapter all overall-force coefficients will 

be based on the planform area of the basic wing, be = 8 ft^. Thus, 

with « 100 ft./sec.5 it is found that the r.m.s. scatter of the 

coefficients of overall lift, drag and side force and Cg 

is as follows: 

= ±0.002; Cp = ±0.0003; C = ±0.002. 

The estimated scatter of the circulation^ sectional-lift 

coefficient and sectional coefficient of boundary-layer drag 

Gog) is: 

r(x ) / U c = ±0.005; = ±0.003; = ±0.0002. 

Incidence was measured with an accuracy of ± 3 minutes. 

3. Lift and drag of open configurations ; comparison with theory 

In this section the results obtained for the overall forces on 

various open configurations are discussed. In Section 3.1 the 

configurations considered are substantially planar, that is wings 

without end plates, whilst in Section 3.2 the effect of non-planar 

additions in the form of end plates is discussed. 
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3.1 Planar configurations 

3.1.1 Overall lift 

Curves of against for various h /c are shown in 
L P 

Fig. 43 for the planar configuration. It will be seen that for 

the two lowest values of h /c the gradient 9C increases 
/ V P 

with increasing ct ' . This is opposite to the trend exhibited 

by a number of two-dimensional theories including that of de 

Hallar (1936). It seems likely, therefore, that the present 

behaviour of the lift curve is associated with the three-

dimensional nature of the flow about the wing. Support for this 

belief comes from the fact that similar trends have been found 

with the lift curves of isolated planar wings of small aspect 

ratio. KCchemann (1952) has shotim. that this is due to non-

planar vortex sheets leaving the side edges of the wings. Such 

vortex sheets were also observed in the present case by means of 

a tuft grid placed behind the two wings. However, this is not 

the only significant non-linearity, for with the three largest 
values of h /c I 

P 
that mentioned. 

values of h /c the trend of 8 C . w i t h is opposite to 
P L 

The slope 3C,/3a I (w)_ is plotted against h (a = 0)/c 
(w) , Jc ^ 

(where h^(a ) is the height of the wing trailing edge above the 

'ground') in Fig. 44. Also plotted in this figure for comparison ;Ls 

the theoretical curve given by Saunders (1963) who computed his 

results on the basis of the lineari&ed, inviscid theory. 

Evidently, the agreement between theory and experiment is good. 

^(w)_ p have also exhibited good Saunders' results for fsc 

agreement with the experimental results of Fink and Lastinger 

(1961) and Carter (1961). This may seem surprising considering that 

Saunders did not correct his results for aerofoil thickness and 

boundary-layer displacenent. On the other hand, it is known that 

for a number of conventional aerofoils out of ground effect these 
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effects almost cancel. Whether this is the case for wings near 

the ground has yet to be demonstrated but it seems to be the most 

plausible reason for the good agreement between Saunders' theory and 

experiment. 

Unfortunately5 a simple theoretical method for calculating 

the zero-lift incidence of open configurations seemsnot to be 

available. However,the present experimental results suggest that 

this incidence increases positively as h^/c decreases. 

3.1.2 Overall drag 

Experimental results for the overall-drag coefficient, 

of the planar configuration are plotted against in Figs. 45, 

46a 47 and 48 for h^/c = 0.250, 0.167, 0.125 and 0.083. Also 

shoxTO in each of these figures are two curves representing two 

interpretations of the linearized theory for minimum induced drag 

introduced in Section 1.2. The first interpretation, which will 

be referred to as theory A. employs the assumption that the bound 

and trailing vortices occupy a plane which is everyvzhere at the 

same height, h ^ ( a = 0), above the ground. The second interpreta-

tion or theory B, on the other hand, is based on the supposition 

that the trailing vortices are in a plane parallel to,and height 

above,the ground. Both interpretations use the 

assumption that the span of the vortex trace is everywhere the 

same as the span of the wing. 

Theory A may be regarded as a consistent linearized theory 

whilst theory B represents an attempt to include the non-linearity 

associated with the reduction in the height of the trailing 

vortices with increasing The latter interpretation is 

plotted on the same basis as the experimental results by using 

the experimental Cy/a^^^curves to determine h for a given 
L C 

and h^. It may be thought that this introduces an empirical 
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element into the theory. However; the results could equally be 

compared with h^ fixed. In this case it would be necessary only to 

correct the experimental results. 

Comparison between the theory and experiment is facilitated 

by the assumption that 

ComfCL) - (3-1) 

where is the coefficient of the overall boundary-layer drag and 

A is independent of C . That this is a reasonable assumption is 

supported by the results of wake surveys which were made at the 

centre span of the wing when end plates were fitted. These surveys, 

which will be described in Section 4.3, indicate that for h^/c = 0.167 

a reasonable value of A is 0.0027. This value, it will be assumed^ 

applies for all the values cf h^/c considered. 

The overall-drag coefficient is given by 

S - S a " S i 

This expression may be rewritten, by reference to equations (1.2.33) 

and (3.1),as followss 

C P C C ^ ) = C G G ( O ) + ( A + A / I R M C L ( 3 . 2 ) 

The quantity Cjjg(O) is obtained by noting from equation (3.2) 

that Cg(0) = Cp(0). Therefore^by plotting the experimental 

results for against and extrapolating the curves to = 0, 

it is found that ^^^(0) = 0.01 regardless of h^/c. Hence equation 

(3.2) is rewritten as 

Cg(C^) = 0.01 + (0.0027 + a/fiPR) (3.3) 

Thus J by substituting the theoretical values of a into this equation 

and comparing the results with the experimental results, it is 

possible to assess the accuracy of the induced drag predicted by 

theories A and B, 
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Inspection of Figs. 45, 46, 47 and 48 shows that theory A is 

in better agreement with experiment than theory D, the latter 

theory generally underestimating This is somewhat surprising 

as it is not unreasonable to suppose that B gives a better 

approKiiaation for the height of the wing trailing vortices above 

the ground than A. However, tuft-grid surveys revealed that 

this is not the case owing to non-planar \ortax sheets which were 

being shad from the side edges of the wing. These evidently 

increase the mean height of the trailing vortices above the ground 

and5 in consequence, increase the overall induced drag. In 

particular, for the case h^ = 0, theory B agrees with the exact • 

potential - flow solution, based on the assumption that the flow 

at the side edges is attached , in predicting that = 0. However., 

as a direct result of the vortex sheets shed from the side edges, 

is quite large in practice, a fact which is in evidence in 

Fig. 47. 

As may ba inferred from Figs. 45, 46, 47 and 48 the slopes 

predicted by theories A and B are in good 

agreement with experiment. In fact, to an accuracy of two 

significant fictures they are identical. This would seem to 

support the assertion that the induced drag of the wing is near the 

minimum; at least for sufficiently small This was expected, 

however, because (a) the low-aspect-ratio approximation of the 

linearized lifting-surface theory predicts that a is a minimum and 

(b) tho aspect ratio of the wing is fairly small. nevertheless, 

the relatively good agreesient between theory A and experiment for 

large C must be regarded as fortuitous. On the other hand, it 

is worth while to record that the height of the trailing-vortex 

sheet employed in this theory, h^(0); is in good agreement with the 

height of the rolled-up trailing vortices observed in the experiments. 

Of course, this cannot be offered as a complete explanation as there 

are non-linear effects, not accounted for in theory A, which must 

surely be important for large C^. For example, the sidewash 
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induced at the wing by the image chordwise and trailing vortices 

affects the overall forces. 

Finally, it is evident that with h^/c constant the 

experimental results do not obey the proportionality QC 

Hiis may be verified by noting that the experimental results do 

not lie exactly on the curves of theory A which predicts that 

Cjj OCC^. It seemss however, that in the cases for which 

3Cĵ /9a decreases with the experimental results lie above 

these Curves whilst if increases with a^^^they lie 

below. It is conceivable, therefore, that this non-linearity 

ia the experimental C_/C^ curve is associated with the non-

linearity in the ' curve. Thus, in order to check this, 

the experimental results have been replotted on the basis of 

Cjj against The graph obtained for the case h^/c = 0.083 

is shown in Fig. 49 which also contains a curve deduced from 

theory A. This is obtained by replacing in equation (3.3) 

with the consistent linearized form 

C, . (3.4) 

Here, as before, is the incidence of the wing for zero lift. 

The terms C^/3a ^ (w) and may be obtained 

theoretically. However, in order to include the effects of 

viscosity and aerofoil thickness the experimental values have been 

employed. The result of calculating by using these values in 

conjunction with theory A is shown in Fig. 49 for h^/c = 0.083. 

In this figure it will be seen that the agreement between the 

'theory' and experiment is good - even better, in fact, than on 

the basis of C against C^. This is also found to be the case 

with the other values of h /c. Thus it would seem that the non-
p _ _ 

linearity in the experimental C_/C^ curve may be attributed to 
/ Y L 

the non-linearity in the CL/a curve. 
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3.2 The effect of end plates 

In all the experiments concerned with open configurations the 

end plates were fitted to the wing without the wedges. Consequently 

the inside surfaces of the end plates were parallel to the axis of 

the tunnel. 

3.2.1 Overall lift 

The influence of end plates on the overall lift is 

illustrated in Figs. 50, 51 and 52 which show experimental results 

for plotted against for various combinations of hp/c = 0.250, 

0.208 and 0.167, 1^/c = 0, 0.033 and 0.157 and y - 0. It will be 

seen that with hg/c and constant an increase in l^/c produces 

an increase in C^. That this must be so may be justified on 

qualitative grounds by noting that the end plates tend to reduce 

the height of the trailing vortices above the ground. Thus the 

doxTOwash induced at the wing by these vortices and their images is 

reduced and, in consequence, the lift is increased. 

An interesting feature of the curves for the case 

1,̂ /0 = 0.167 is that their slopes, increase noticeably with 

Initially, it was thought that this might be due to separated-vortex 

sheets at the junctions of the wing and the end plates. However, 

the indication of tuft-grid surveys is that the vorticity in these 

sheets is relatively weak, the majority of the trailing vorticity 

being concentrated near the bases of the end plates. 

Another possible explanation is that an increase in 
I ? 

3 causes the trailing vortices to be depressed nearer the 'ground' 

thus achieving a similar effect to an increase in end-plate length. 

Figs. 53 and 54 shows plots of experimental results for 

against for 1^/c = 0.083 and 0.167 and h^/c = 0.250 obtained 

with V = 3° and 6°. As with y = 0 a marked non-linearity is 

evident in the curves for 1 /c = 0.167. 
P 



144. 

3.2.2 Overall drag 

As before., two interpretations of the linearized theory for 

minimum induced drag are compared with experiment. The first of 

these, theory A, employs the assumption that the vortex trace is 

the projection of the trailing edge of the configuration onto a 

plane normal to the direction of motion when = 0 and has 

h = = 0). The second interpretation, theory B, differs 

from this only insofar as no stipulation is placed on 

Consequently, this theory represents, in some measure, the effect 

of the depression of the trailing-vortex sheet as increases. 

In common with the planar configuration the comparison between 

theory and experiment is effected on the basis of overall drag and 

equation (3.2) is used to calculate for each interpretation of 

the theory. Also the same value of A is employed, namely 0.0027. 

and Cĵ g(O) is established in the way indicated for the planar case. 

Theoretical and experimental results for plotted against 

Cĵ  are shoî n in Figs. 55. 56 and 57 for 'ip/c = 0.083, h^/c = 0.250; 

X /c = 0.083; h /c = 0.157 and 't /c = 0.167, h /c = 0.250 with 
P P P • P 
Y = 0 in all cases. In the first of these figures the experimental 

results will be seen to lie between theories A and B, being nearer A 

than B. However, the agreement between theory A and experiment is 

not as good as for the planar configuration. This is even more 

noticeable for h^/c = 0.167, theory A agreeing quite well with 

experiment for the planar configuration but not for /c = 0.083. 

Indeed, as is apparent in Fig. 56, in the latter case,theory B is 

in better agreement with experiment than theory A. This is also 

evident for the case T^/c = 0.167, h^/c = 0.250 (Fig. 57). 

Possible reasons for the improvement in agreement between 

theory B and experiment as 1 increases in comparison with h in 
,, . p p 
tne interval 0 $ X < h may be given as follows: 

P p 
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(i) Tuft-grid surveys have indicated that as 1^ h^ the 

non-planar vortex sheets shed from the junctions of the wing and 

end plates become weaker. Consequently the assumption of theory B 

that the trailing vortices of the wing are at the same height as 

the trailing edge of the wing becomes increasingly accurate as 

(ii) The linearized theory suggests that the effect of adding 

the end plates to the wing is to reduce the sidewash induced there 

by the image chordwise and trailing vortices. This sidewash 

causes a reduction in the overall lift without influencing the 

strength of the trailing vortices and hence the overall induced 

drag. Thus one possible cause for the poor agreement between 

theory B and experiment in the planar case is partially removed by 

the addition of end plates. 

An examination of Figs. 55, 56 and 57 shows that both theories 

are in good agreement with experiment in their prediction of 

|3Ĉ .̂ /9Ĉ J— _ Q for the various cases. This is tc be cxpacted 

because calculations on closed configurations of similar 

geometries have yielded values of a very close to the minimum. 

Thus it may be concluded that for a given h^/c the end plates 

not only reduce the constant term in the expression Cg^(c^)/c2 but 

also decrease the variable terms arising from the above-mentioned 

non-linear effects. 

It is evident from Figs. 36. and 57 that for the cases 1^/c = 

C.083, h /c = 0.167 and X /c = 0.167, h /c = 0.250 theory B and 
• P P ' P _ 

experiment are not in such good agreement for C > 0.8. This 

would seem to be due, in part at least, to two contributory 

factors. Firstly, the linear theory does not include the 

influence of the image bound vortices on the streamwise flow at the 

wing. This causes a reduction in the overall lift without altering 

the overall induced drag (a fact which may be proved by momentum 

considerations). Secondly, there is reason to doubt whether the 



overall induced dra^ is a minimum when the trailing edges at the 

bases of the end plates touch the ground. This may be expressed 

more clearly with the aid of the sketch below 

OING 
PLATE 

WIND 

'GROUND 
T ^ \ ^ ^ \ \ ^ — V — ^ ^ — \ — \ 

In this case,theory B predicts that the overall induced drag is 

zero. However; it is clear that in order to achieve the 

constant circulation required at all points of the trailing edge, 

the streairwise sections between AA and the 'ground' would require 

a large amount of twist. In the absence of twist, trailing 

vorticity would be generated, a fact which has been established 

for the present end plates by tuft-grid surveys. 

For the largest experimental values of recorded in Figs. 

56 and 57 the gaps between the 'ground' and the rearward 

extremities of the end-plate bases ars small compared with h^. 

Thus it is concluded; on the basis of the above reasoning; that 

the overall induced drag is underestimated by theory B in these 

cases. Th?;s is supported by the experimental data shown in 

Figs. 56 and 57. 

As will become evident in Section 4.3, when AA corresponds 

with the 'ground' the overall induced drag is very close to the 

minimum for this case, that is zero. It is worth while; 

therefore, to enquire into the agreement between theory B and 

experiment for configurations with the bases of their end plates 

parallel to the 'ground'. Results for the overall-drag 

coefficients of such configurations are illustrated in Fig. 58 
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which shows C plotted against C for % /c = 0.083 and 0.167 and 
U b p 

h^/c = 0.250. These configurations are obtained by altering y 

and in such a way that ~ 2 . This ensures that 

the end-plate bases remain parallel with the ground as and 

hence are altered. 

Evidently, the agreement between theory B and experiment is 

good for 1^/c = 0.167 whilst for = 0.083 the theory under-

estimates Cg.. The reason for this would seem to be that in 

the latter case the end plates are not completely effective in 

reducing the strength of the non-planar vortex sheets shed from 

the junctions of the wing and end plates. Consequently the mean 

height of the trailing vortices is rather higher than that 

predicted by theory B. In the case 1^/c = 0.167, on the other 

hands these non-planar vortex sheets are largely eliminated. 

According to theory A,. C . OCC^ for 1 /c and h /c given. 
1)1. Li p p 

Thus it may be inferred from Figs. 55, 56 and 57 that the 

experimental results do not obey this proportionality. As with 

the planar configuration it is possible that this non-linearity 

in the experimental curves might be associated with the non-

linearity in the curve. Therefore^ to check this 

hypothesis, the results for obtained with = 0.083 and 

0.167, Y = 0 and h^/c = 0.250 have been plotted against 

The graph obtained is shoxim in Fig. 59 where it will be seen that 

these results are compared with the deduced from theory A. In 

common with the planar case;, this coefficient is rewritten as a 

function of by employing equation (3.4) , (w) ^ 
A-,) L ^ = u 

and a being inferred from the experimental results. 

Apparently, the agreement between 'theory' and experiment 

is good and considerably better than that found with the 

corresponding curves. It would seem reasonable to 

concludes therefore, that the non-linearity in either of the 
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experiments! curves is largely identifiable with the non-linearity 

in the associated curves. 

Pig. 60 shows plotted against for the configuration 

Y = 3°, I /c = 0.167 and h /c = 0.250. It indicates that theory 
P P 

B is in reasonable agreement with experiment in the interval 

0 g 3 1. 

The effect of a gap between the bases of the end plates and 

b 
the 'ground' on is shown in Fig. 61 for three configurations 

O ^ ^ C 

with y - d' ' ~2 and h /c = 0.250. Also included for comparison 
P 

is theory B and it will be observed that the agreement between 

the theory and experiment is particularly poor in the vicinity 
of (h -l)/c = 0. Tliis would seem to be due,in the main,to p p 

the influence of viscosity on the flow between the end-plate 

bases and the 'ground'. It should be remarked, however, that 

neither the theory nor the experiment properly accounts for this 

effect fcr small (h^-l^)/c. In practice, the flow of air in 

the spanwise direction will be influenced by the presence of the 

water surface. 

4. Closed configurations : an examination of the sectional 

and overall forces 

In this section,a study of the overall and sectional-force 

characteristics of closed configurations will be described. 

These configurations were obtained by arranging the end plates 

to close completely the gaps between the wing tips and the 

'ground'. In so doing,it was assumed that these configurations 

could, in theory, be designed for zero induced drag,thus making 

them., according to the definitionj 'closed'. 

In Section 4.1 the experimental results for the overall 

forces will be discussed and those for the overall lift will be 

compared with theory. Comparison between the overall induced 
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drag of the wing and end plates predicted by theory and experiment 

will not; however, be sade in this section. This will be considered 

in Section 4.3 where a detailed drag analysis will be described. 

Section 4.2 will be concerned with an investigation into the 

sectional-lift and circulation characteristics. Part of the aim 

of this study has been to check the validity of a number of the 

assumptions of the theory formulated in Part II of Chapter II. 

4.1 Overall forces 

Owing to the problem, of balance constraint it was not possible 

to measure the overall forces of the closed configurations with the 

balance directly. This difficulty was overcome by permitting a 

small gap, g., in each end plate, g being invariant along the length 

of the gap. Thus it was assumed that by extrapolating the curve 

of overall force against gap to zero gap the overall force of the 

closed configuration would be obtained. If this assumption is 

correct; the limiting value of the overall force should not depend 

on gap position. In order to check this (and for another reason 

which will become clear later) various gap positions have been 

tested. These are illustrated in Fig. 62 and are labelled A, B 

and C. It will be observed that in cases A and C each end plate 

of the wing is attached to the corresponding end plate of the image^ 

the joint between them being sealed with 'Sellotape'. 

Figs. 63 and 64 show the effect of gap on the overall-lift 

and drag coefficients for the case h /c = 0,167 with = 0 
(E) . ^ . 

where ' is the angle of the wedges,between the wing and the 

end plates5in the plane of the wing chordal surface. In the 

first of those figures, the results for C. are plotted for all 

three gap positions. The second figure, on the other hand, only 

includes results for gap positions B and C as only these positions 

ensure that the end-plate drag is properly included in the overall-
drag measurements. In both figures, results are shoxm for a 

(w) 

2°, 5° and 8°. Evidentlyj for all cases, the limiting values of 
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and C_ as g ->• 0 are independent of gap position. On the 

evidence of these resultsj therefore, the limiting method has 

been employed to determine the overall forces of the closed 

configurations. 

4.1.1 Overall lift ; comparison between theory and experiment 

Results obtained for by the limiting process are 

illustrated in Figs. 65, 66 and 67. These show graphs of 

C against for t /c = h /c = 0.083, 0.167 and 0.250 with 
*tE) P P 

= 0. Also included for comparison are curves representing 

the linear and 'non-linear' versions of the theory described in 

Part II of Chapter II. The linear version employs the 

assumption that the cylindrical surface, on which the vortices 

and sources are placed, is best represented by the chordal surface 

of the test configuration corresponding to = 0. Thus, 

to a very good approximation,A&= 2 and consequently the following . (E) 
ana a are obtained; 

1 /t 
T) 

0.083 0.167 0. 250 

A 0.219 0.386 0. 552 

a'"' 14.57 • 10,10 8. 35 

1.43 1.63 1. 00 

The thickness-induced upwash at the wing plane and y (g) are 
t 

determined in the manner described in Section 11.6.2. the integral-

equation method being used to obtain y (g). In the next stage of 

the calculation the vortex distributions corresponding to the 

camber distributions of the wing and end plates, and , 

are calculated. Tliis is achieved by using the integral-equation 

method outlined in Section II.6.1. Actually, there is some 

difficulty in defining the camber of the end plates owing to the 

fact that their trailing edges are of non-zero thickness (0.25 in.). 

The definition adopted, however, is that their camber slope is the 
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mean of the streamwise slopes of their inside and outside surfaces 

when. y = 0. This avoids the difficulty of not being able to 

define the chord line of each section of the end plates. In the 

case of the wing the definition of camber slope is more conventional, 

being the streamwise slope of the camber surface corresponding to 

.(«) . . 0. 

Thus the results obtained for y.iO, Y (5) and y„(0 may be 
C W a 

combined according to equation (11.6.22) to yield the value of 

(C.T.)' 

As a consequence of the above definition of end-plate camber 

equation (II.6.25) is rewritten as follows; 
(4.1) 

Thus, by employing the results calculated for C _ „ v, and a^^^in 
<i/ 

conjunction with equation (4.1), there are obtained the following 

results for - (a^^^ = 0): 

Xp/c 0.083 0.167 0.250 

0.868 2.26 2.92 

Another implication of the definition of end-plate camber 

employed above is that the non-linear form of the overall-lift 

coefficient; equation (11.7.12), is rewritten in the form 

Cj_ - 4. 2 , r a e ( % ( " ) ^ (4.2) 

where 
~(w) 

= " - r. 
o b 

„ • • = - 0). 

Thus,in order to determine by means of equation (4.2),it is 

necessary to have a knowledge of A3(a^^\a>). This is provided 

by de Haller's (1936) exact potential-flow theory and the results 

obtained from this theory for 2%A$(a^^^,«) are summarized below. 
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2(w)° 
1.8 3.6 7.2 10.8 

t /c 
p 

0 . 0 0 3 1 - 0 . 0 4 

0 . 1 6 7 -0.02 -0.09 -0.31 - 0 . 6 7 

-0.250 j-0.02 "0.05 - 0 . 1 9 - 0 . 4 4 

The conclusions to be drax-m from the comparison between the 

two theories and experiment shown in Figs. 65, 66 and 67 are as 

follows: 

(i) The incidence of the wing for zero overall lift 

= 0) s would seem to be overestimated negatively by the 

theories, the discrepancy becoming more apparent as 1^/c increases. 

It seems possible that this is due to the assumptions made regarding 

the thickness-induced normal velocity at the configuration. For 

example^ as %^/c increases„ the upwash induced at the wing by the 

sources simulating end-plate thickness increases. Thus the 

assumption that this upwash may be disregarded becomes increasingly 

suspect as X /c increases. 
P 

(ii) The linearized theory grossly overestimates the overall 

lift even for quite small whilst the 'non-linear' theory is 

in comparative good agreement with experiment for < 1. 

(iii) In the case X^/t= 0.083 the 'non-linear' theory yields 

values of C_ only up to = 7.6°. Tliis corresponds to the 

trailing edge touching the ground in the case of the two-

dimensional flat plate. In other words, it is not possible to 

obtain values of beyond this incidence. However, it 

should be noted that,in the case cited,the experimental results 

are limited, by the wing trailing edge touching the ground^ to a 

maximum incidence of approximately 8 . 5 ° . 

Fig. 68 shows experimental results for the overall-lift 
coefficient plotted against for = 2°, 5° and 8° with 

b 
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W C = 0 . 1 6 7 . Also included arc curves representing the 'ncn-

linaar' theory. Evidently5 although this theory is not in 

absolute agreement with experiment,, the trends exhibited are both 

linear with approximately the same slope as shown below. 

THEORY EXPERIMENT 
2 0.028 0.026 

5 0.028 0.026 

8 0.028 0.025 

This would also seem to support the assumption, implicit in 

equation (4.2)., that is linearly dependent on with a slope, 

9C /8a. " ,which is independent of a 

4 . 1 . 2 Overall drag 

Experimental results for the overall-drag coefficient of 

various closed configuration are shovm in Figs. 69 and 70. In 
— tE) o c 

the former figure,C is plotted against C for = 0 , 3 , 
" D L b 

6 and 9*̂  with \ /c = O.lb/. It will be seen that, as a_ 
_ F_ b 

increases,the C^/C^ curve is depressed. The reason for this is 

sought in the drag analysis to be described in Section 4.3. 

Fig. 70 shows C plotted against C for t /c = 0.083, 0.167 
(E) ? 

and 0.250 with = 0. It shows that, as might be expected. 

Cjj decreases with decreasing if is constant. Nevertheless, 

the reduction in resulting from a decrease in ^/c from 0.167 

to 0.083 is greater than was anticipated. 

4.2 Sectional characteristics 

This section is concerned with a discussion of the results of an 

investigation into the sectional characteristics of closed configura-

tions with 1̂ /c = 0.167. Firstly, in Section 4.2.1, the results 

for circulation will be described. Secondly, in Section 4.2.2, 

results obtained for the sectional-lift coefficient of the wing 
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will be discussed. 

4.2.1 Circulation 

The method employed for deducing the circulation from 

results for the surface static-pressures has been described in 

Section 2.4.3, Normally, the static-pressure information 

required was obtainable from two spanwise stations of the wing 

and one spanwise station of the image (see Fig. 33). However; 

in view of the apparent syiimetry of the flow, this is equivalent 

to static-pressure distributions at three wing stations. 

Furthermore, in some cases, these were supplemented by static-

pressure measurements at the 'ground' station of the port end 

plate. These were obtained with a static-pressure probe 

attached to the surface of the end plate. The whole of this 

information permitted, in certain cases, chordwise distributions 

of circulation at four stations. 

Results obtained for r(c)/U^c are plotted against 2s/b in 

Figs. 71 and 72 for = 2° and 5°, s being defined as the 

distance along the outside surface of the configuration, normal 

to the wind direction, from the wing centre span to the measuring 

station. In each case, results are presented for = 0°, 3° 

6° and 9° and it will be seen that r(c) increases with particularly 

in the vicinity of the end plates. Tliis results in the sign of the 

trailing vorticity, dr(c)/ds, being altered from negative for 

= 0 to positive for = 9°. Further, for each value of 

a ^ there corresponds a value of which seems to give 

substantially zero dr(c)/ds for all s. Tlie respective values of 

are approximately 3° and 5^. Clearly, the overall induced 

drags corresponding to these two combinations of and are 

either extremely small or zero. It is interesting, therefore, to 

compare the above values of with those calculated to give 

zero overall induced drag by the linearized theory discussed in 
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Sections II.5 aiid 11,6. These are 2.6° and 5.7°, respectively, 

which are seen to be in moderate agreement with the experimental 

values o 

Figures 73 and 74 show experimentally-deduced lines of constant 

circulation on developments of the outside surfaces of 

configurations with = 5° and = 0° and 9°. These figures 

demonstrate the unique feature of closed configurations, namely 

that some lines of constant circulation end at the spanwise 

extremities. It should be remarked, however, that in practice 

this property will not be realized owing to the dynamic condition 

at the water surface combining with the effect of viscosity to 

prevent the vortices ending there. On the other hand, there is 

reason to suppose that for sufficiently large (say > 10^) the 

essential conclusions of this investigation will not be altered. 

In Figs. 75, 76 and 77 are shown experimentally-derived plots 

of r(x)/r(c) against x/c for = 2°, = 0°, 9° and = 5°, 

= 0°. In all cases, results are shox-m for the four s - wise 

stations. The object of presenting the chordwise circulation 

distributions in this form is to compare the type of distribution 

assumed in the theory of Sections II.5 and II.6 with experiment. 

If this-assumed form is correct, r(x)/r(c) will be invariant with 

s. This is evidently the case over the majority of the wing for 

all three combinations of and . On the other hand, for 

^(w) _ 2° - 9° the assumed distribution seems not to be 
b 

representative at the end plates. It appears that for this case 

the comparative strength of the s-wise vortices near the leading 

edge is greater at the end plates than at the wing. This 

suggests the possibility that for - 2°, = 9° the theory 

of Section II.5 and II.6 overestimates the inviscid drag (that is 

the drag minus the boundary-layer drag) of the end plates. 

Consequently, if as seems likely, the corresponding overall induced 
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drag is small,the theory could conceivably underestimate the inviscid 

drag of the wing. This matter will be considered again in Section. 

4.3. 

4.2.2 Sectional Lift 

Fig. 78 is a graph of the experimentally-derived values of 

against for a^ ' = 2°, 5° and C° and the three spanwise 

stations of the wing. It shows that these curves are linear with 

slopes which decrease towards the wing centre span. This would 

sees to give further support for the use of equation (4.2) to 
(E) — 

calculate the effect of a, on C_. 
b L 

In Fig. 79 arc; shown plots of experimental values of against 

for three spanwise stations of the wing and with = 0°. 

This indicates that the non-linear part of the curve does 

not vary greatly across the span. As the flow in the vertical 

plane of symmetry of the wing is almost two-dimensional in the 

cases examined this would, to some extent, seem to justify the 

use of non-linear correction to obtained from two-dimensional 

theory. 

4.3 Drag Analysis 

This section deals with a description of a drag analysis 

performed on closed configurations with /c = 0.167. The 

objectives of this analysis were, firstly, to provide information 

on the overall induced drag of the configurations and the separate 

inviscid drag of the wing and end plates. By so doing, it was 

intended that the accuracy of the theoretical predictions of these 

drag components should be checked. Secondly, it was considered 

desirable to have an independent check on the information provided 

by the circulation distributions. 

The method employed in this analysis consisted of deducing 

from experiment the boundary-layer drags of the wing and the end 
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plates. This information was then combined with balance measurements 

of the separata drag of the wing and end-plate components to provide 

the inviscid drag of each component. 

The results of the boundary-layer-drag measurements will be 

described in Section 4.3.1 x-hilst a discussion of the results for 

the drag of the wing and end plates and the subsequent determination 

of their inviscid drag will appear in Section 4.3.2. 

4.3.1 Boundary-layer drag 

In general, the wake-survey method, as described by Jones 

(1936),may net be used to determine the sectional boundary-layer 

drag at all spanwise stations of a finite wing. This is because 

Jones' method is based on the assumption that the flow round each 

section is two-dimensional which is certainly not the case near 

the tips of a finite wing. However, the indications of the theory 

of Section II.5 are that for closed configurations of nearly zero 

induced drag the flow at centra span is almost two-dimensional. 

Therefore it is assumed that Jones' technique may be employed to 

obtain the sectional boundary-layer drag at this station. 

Fig. 80 shows the results for the coefficient of the sectional 

boundary-layer drag (C ) of the wing centre span plotted against 
(E) 

C for various a, . It will be seen that the points appear to fail 
(E) 

nearly on the same curve regardless of the value of ' . The 

relationship governing this curve may be approximated reasonably 

well in the interval 0 < C_ $ 1 by the expression 
= 0.0081 + 0.0027 C2. (4.3) 

In determining the total boundary-layer drag of the wing, 

consisting of the basic wing plus wedges and fairings„ it will be 

assumed that, at all spanwise stations. C ̂  is given by equation 

(4.3). Therefore the coefficient of the overall boundary-layer 

drag of the wing, ,, may be written as 
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= {0.0081 + 0.0027(C^ bc/S^^'^^)2}s^"Vbc. (4.4) 

Here is the planform area of the wing plus wedges and fairings. 

Similarly, the coefficient of the overall boundary-layer drag of 

one end plate and its image beneath the ground is assumed to be given 

by 

= {0.0081 + 0.0027(C, bc/S^'^^)2}S^^Vbc. (4.5) 

In this expression is the coefficient of overall side force of 

one end plate plus its image beneath the 'ground', being defined 

positive in the outward direction/Mhilst is the combined 

planform area of the end plate and image. 

No attempt will be made to justify the use of equations (4.4) 

and (4.5) rigorously. Nevertheless, as a consequence of the near 

two-dimensional nature of the flow over the wing, equation (4.4) 

should yield reasonably accurate values of . The use of equation 

(4.5); on the other hand; is more questionable. It seems likely, 

however, that in the cases of interest the errors caused in the 

inviscid drag of the end plates should be small compared with the 

overall drag of the ccnfiguration. The justification for this is that 

in these cases c3'̂ <<c,.. 
Dis D 

4.3.2 Inviscid Drag 

The overall drag of the wing was obtained by utilizing the 

balance and testing the configuration with gap position A (Fig. 62). 

As previously, the limiting method was employed and the results thus 

found are summarized in Fig.. 31. This shows the coefficient 

of the overall drag of the wing, plotted against for 

. 0°, 3°, 6° and 9°. 

Evidently, the result of increasing with fixed is 

to reduce 0^*^ whilst, if is kept constant and is increased, 

Cp increases. 
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Upon subtracting from one obtains , the coefficient 

of the overall drag of one end plate and its image, or, alternatively, 

both end plates of the wing. The last coefficient is plotted against 

for = 0°, 3°, 6° and 9° in Fig. 82. Tliis shows that, for 

certain combinations of and is actually negative 

and indicates that the trends of with and are opposite 

to those described for . 

The overall inviscid-drag coefficient of the wing is found by 

subtracting as deduced from equa-uion (4.4), from The 

results obtained by this process are shown in Fig. 83 where they 

are plotted against for = 2°, 5° and 8°. Also shown in 

this figure are curves calculated according to the following 

theoretical method; 

(i) The vortex and source distributions are placed on the 

cylindrical surface used in the determination of the overall lift 

in Section 4.1.1. 

(ii) The incidence ratio of the equivalent uncambered 

configuration of zero thickness, is calculated by 

using equation (II.6.23). Actually, if the definitions of camber 

given in Section 4.1.1. are employed, it is found that this equation 

applies to configurations with = 0 but it is easily 

modified for configurations of non-zero and to give the 

+C/2 

„(E) + " ^ V b c 

^aCw)^ ~ +c/2 
/ W„(C) + Y (g)}dx + wgu a, " c 

-c/2 * c o D 

(iii) is then determined from the results of Section II.5. 

Hence, if, as was suggested in Section 11.6:2, it is assumed that 

the sectional inviscid drag associated with thickness is zero, the 

overall inviscid drag of the wing is identical with Tha 

coefficient of this component of drag is determined from the 

result 
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(iv) In order to plot as a function of and 

is eliminated from equation (4.6) by enploying equation (4.2). 

Fig. 83 shows that the agreement between theory and experiment 

is not good although the slopes and 

dCĉ "̂ ^ - predicted by theory in the vicinity of = 2° 

and = 0° are similar to the corresponding experimental slopes. 

One possible reason for the poor agreement is the neglect in the 

theory of the inviscid drag due to thickness. This could be 

checked in future experiments by varying the thickness of the end 

plates. Another possible cause is that the assumed form of the 

vortex distribution is incorrect. It will be recalled that the 

indications of the circulation distributions were that for 

= 2°, = 9° a circulation distribution of the type 

r(x)f(s) would possibly underestimate the inviscid drag of the wing. 

This is evidently in agreement with the drag analysis, the theory 

underestimating the inviscid drag of the wing in this case. 

Generally; however, theory overestimates the inviscid drag, the 
1 • , . (w) . 
discrepancy becorrang more apparent as a increases. 

Finally, there are the non-linear effects not included in the 

theory, the two raost obvious examples beingi 

(a) the departure of the trailing-vortex sheet from the 

assumed cylindrical shape, 

(b) the lift is not related to the circulation by the 

linearized theory form L = pU T. 

Effect (b) may be allowed for by replacing equation (4.6) by 

= o^^^(2r/U c)^/n A . (4.7) 7r(w) (w) 
"Dl 

where F is the mean circulation, across the span of the wing. This 

result enables one to employ the values of deduced from 
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Section II.5 without making any assumptions about the relationship 

between L and r. 

A method possessing some of the foatures of effect (a) is 

based on the assumption that the cylindrical trailiiig-vortex sheet 

coincides with the trailing edge of the configuration. Therefore 

values of for the modified Trefftz-plane shapes may be 

determined and used in conjunction with equation (4.7) to obtain 

Unfortunately, the theory of Section II.7 does not yield 

r as a function of and Thus,in order to check the 

possible improvement obtained with this method in the case 

= 0°.the value of 2r/U^c deduced from the experimental 

circulation distributions xjill be employed. Hence it is found that 

the new method yields an inviscid-drag coefficient of 0.0084 compared 

with the value 0.0072 deduced from experiment and that of the previous 

theory 0.0096. Evidently, the improvement in agreement is only 

slight• 

Perhaps the most important fact to emerge from this analysis is 

that the inviscid drag of the wing can be large. In fact, in the 

case = 8°, = 0^^ it is almost as large as the overall 

drag. But; as may be inferred from Figs. 69 and 80, the overall 

boundary-layer drag is almost the same size as the overall drag. 

This suggests3 therefore, that in the case mentioned the end plates 

provide a large negative inviscid drag. The coefficient of this 

force component is - C^gs the latter coefficient being deduced 

from equation (4.5). However, before this equation can be used to 

find it is necessary to know C g. For this particular purpose, 

therefore, measurements were made of the overall side force on the 

port end plate and its image by using the balance and gap position 

C (Fig, 62). As with the other overall-force measurementsj the 

limiting method was used and the results obtained for are 
" (E) 

illustrated in Fig. C4 where they are plotted against for 
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^(w) ̂  2°) 5° and 8°. By using these results and equation (4.5) 

has been calculated, thus enabling results for - 0̂ 5̂  
Dii D Dd 

to be calculated. These are shovm in Fig. 85 plotted against 

for = 2°3 5°, and S°. Also included are theoretical 

curves calculated by using the same method as that used to obtain the 

theoretical curves of Fig. 83 except with replaced by 

Again the agreement between theory and experiment is not good 

presumably for similar reasons to those advanced for the wing 

inviscid drag. On the other hand, theory and experiment do agree 

in a large number of cases in indicating that when there is an 

inviscid drag acting on the wing the end plates give an inviscid 

thrust of almost the same magnitude. Similarly, when there is an 

inviscid drag acting on the end plates the wing yields an inviscid 

thrust of nearly the same size. The reason for this is that if 

there is a mean dovTnwash induced at the wing by the chordwise and 

trailing vortices an 'outwash' will be caused at the end plates. 

Thus ̂as the circulation varies slowly round the configuration in 

the cases considered^there results an inviscid drag at the wing 

and an inviscid thrust at the end plates. This situation is 

reversed if and are such as to give a mean upwash at 

the wing. 

It will be seen in Fig. 35 that in accord with observations 

based on an examination of the circulation distributions the 

theory overestimates the inviscid drag of the end plates in the 

case . 1°, .(G) . 9°. 

Table 2 shews the various values of and calculated 

by employing equations (4.4) and (4.5). This table, which is 

included in order to show the relative importance of the constitu-

ents of the overall drag, also contains theoretical estimatesof 

These are calculated by using the method employed in the 

determination of the theoretical curves of Fig. 83 except that 
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and are replaced by a and C . in equation (4.6). 

The coefficients and have been added to the 

theoretical to provide an estimate of Cĵ  which is shown in the 

sixth column of the table. This may be compared with the value 

of Cg obtained from balance measurements which appears in the last 

column. Thus it will be seen that, in seven of the twelve cases 

shoxm, the two values of differ by less than 7% of the measured 

value. In three other cases, for which the agreement between the 

two values is not as good, bracketed figures are included by the 

side of the measured These represent values interpolated 

from carpet plots of the measured 75 against C for various % /c 
(E) V L p 

and . It will be seen that they are in better agreement with 

the estimated values. 

The most obvious discrepancy between the measured and estimated 

^ occurs for = 2°, =9°, In this case, the estimated 

is larger than the measured by approximately 16% of the measured 

value. Tlie reason for this is not known although it is suspected 

that it is due in some msasure to the vertex distribution assumed 

in the theory being incorrect at the end plates. 

For 0° $ $ 6° the estimated and measured C are relatively 

insensitive to changes in a, ^ if a is kept constant. Thus, 
/ T7 ̂ 

as a result of increasing with a. ^ the C /C curve is depressed 
(e) d d l 

as increases (see Fig. 69). The reason for this appears to be 
that, in this interval of and C_. vary 

/p\ t) UlJ Yv\ /"TTN ̂  
slowly with . Furthermore, from = 0° to = 3°, the 
changes in are opposite in sign to those of 

Although ~C . is net an insignificant part of C in the range 
/T7\ / \ ' D 

of and a examined it is generally small compared with the 

overall-drag coefficient . previously noted, however, the 

inviscic-tirag ccsfficient of the wing can, in certain cases, be 

comparable with . Tb-us in these cases if is important to ensure 

that the end plates car sustain the required thrust. As an 



illustration, consider the case = 5°5a^^^ = 0°. This yielcted 

an overall lift to drag ratio of nearly 71. However, if the end 

plates were unable to sustain the inviscid thrust they gave during 

the test J this ratio vculd drop to 51 provided the overall lift 

coefficient remained the same. 
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CH/JTER IV 

CONCLUDING REIIARKS 

A theoretical and experimental discussion concerned with the 

lift and induced drag of open and closed G.E.Ws. has been presented. 

In this final chapter, the salient conclusions of this study will be 

outlined and suggestions for possible future work will be mentioned. 

1. Open configurations 

A generalization of the corabined-flow method of Munk (1921) has 

been employed to determine^ to a linear approximation, the minimum 

induced drag of a planar G.E.W. The 'exact' solution thus 

obtained for c was compared with de Mailer's (1936) calculations 

which were shov̂ m to be in error. 

In the case of a planar wing with end plates in ground effect, 

the Schwarz-Christoffel transformation was found not to be amenable 

to explicit integration. Therefore a perturbation technique^ valid 

for small 2h/b. was devised. The accuracy of this method was 

determined by comparing the result obtained for the minimum induced-

drag factor of the planar G.E.W. with the 'exact'solution. It was 

found that the zeroth approximation for o was in excellent agreement 

with the 'exact' value in the interval 0 $ 2h/b $ 1.6. Indeed, for 

2h/b = 0.48.. the error in was shoxTO to be 0(10 '"') compared with 

a. On this basis, therefore, the zeroth approximation was employed 

to determine the minimum induced drag of a wing with end plates in 

ground proximity. 

Two interpretations of the linearized theory for minimum 

induced drag, theories A and B (see Section III.3)- were compared with 

experiment on the basis of against C^. It was found that for the 

planar configuration the experimental results were in better agreement 
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witii A than B, the latter theory generally underestimating 

This was attributed, in parr, to the presence of non-planar 

vortex sheets shed from the side edges of the wing. These vortex 

sheets effectively increase the mean height of the trailing-vortex 

sheet. Thus, as a result, 4 0 when h^ = 0. 

The agreement between theory A and experiment was found to be 

not as good when end plates were fitted to the wing. Furthermore, 

it was evident that as \ increases in comoarison with h the 
P P 

experimenta,l results approach the curve of theory B. The reasons 

put forsjard for this were., firstly^ that the end plates tend to 

suppress the non-planar vortex sheets shed from the tips of the 

wing. Secondly, the end plates reduce the sidewash induced at 

the wing by the image chordwise and trailing vortices. 

In both planar and non-planar cases the slopes fsĉ ./BĈ l 
L Di LJc =0 

predicted by both theories were found to be in good L 

agreement with experiment. Thus it was inferred that for a given 

h^/c the end plates not only reduce the constant in the expression 

but also decrease the variable terms arising from the 

above-described non-linear effects. 

The derivatives ̂ C^/8a^^^^(w)__deduced from the experiments 

on the planar configuration were found to compare well with those 

of the linearized; inviscid theory of Saunders (1963). This theory 

does not include the effect of wing thickness and boundary-layer 

displacement on It was supposed, therefore, 

that these two effects cancel. Nevertheless, there is a need for 

a fundamental study of the effect of the boundary layer on the 

lifting characteristics of wings in ground proximity. 

The indications of the experiments were that for a given 
and h /c an increase in the end-plate length. 1 , produces an p _ - ° ' p -

increase in C . Furthermore; it was found that, for small (h -%)/c; 
— (w) , . , . . (w) ^ P 
9C^/9o increases with increasing a 
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2. Closed configurations 

A theory has been presented for determining the overall lift 

and induced drag of a closed configuration consisting of a 

substantially planar wing with end plates. This theory„ which 

was deduced frora a study of the sectional-drag characteristics of 

wings J is based on the linearized theory and the assumption that 

the vortex distribution y(x^s) is of the form y(x)f(s). 

Ls a check on validity of the theory it was applied to the 

case of an isolated planar wing of rectangular planform, zero 

chcrdwise camber and zero thickness» For this type of wing it 

was found to be similar to a theory given by Kiichemann (1952) 

except in one important detail. It was shown that this 

discrepancy explains an inconsistent feature of Klichemann's method. 

As the present theory does not exhibit this inconsistency it was 

concluded that it is the mora fundamental of the two theories. 

In common with KUchemann's method,the present theory involves 

the solution of an equation similar to the 'lifting-line' equation. 

This was solved by employing particular solutions for the flow in 

the Trefftz plane and a variational principle which was specifically 

devised for the present problem. 

The calculations performed for the above-mentioned closed 
(w) 

configuration have indicated that the lift derivative a increases 

with /Rand decreases with A. On the other hand, it was 
/p\ 

found that a decreases with M and increases with Furthermore. 

it was ascertained that; in the absence of chordwise camber and 

thickness, a = 0 for whilst, for = 0. a 

increases with AR but decreases with A. Howevers even for 

= 0, cr is very small in the range of M and ^ of interest 
(w) 

to G.E.W. designers and is much smaller than c " . 
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Calculations of for closed confipurations tested in the 

8 ft. X 6 ft. wiad tunnel r-rere made by using the theory, suitably 

modified to include chordwise camber, thickness and non-linear 

effects. The results thereby obtained were found to be in 

substantially better agreement with experiment than the linearized 

version of the theory. It was evident, however, that both 

theories overestimate negatively the incidence of the wing for 

zero lift. It was suggested that this could be due to the 

approximations made regarding the thickness-induced normal velocity 

at the configuration. Future work should be aimed at improving this 

feature of the theory. 

The prediction of the theory that is linearly dependent on 

end-plate incidence was adequately confirmed by experiment. Also 

the results obtained from the 'non-linear' theory for 

were found to be in reasonable accord with experiment in the cases 

examined. 

The linearized theory was found to be in reasonable agreement 

with experimentally-deduced circulation distributions in its 

predictions of combinations of wing and end plate incidences 

yielding sensibly zero overall induced drag. 

Chordwise circulation distributions obtained from experiment 

indicate that the vortex distribution employed in the linearized 

theory is representative over the majority of the wing part of 

the configuration. Howeverj in one case (% /c = 0.167, = 2°. 
(E) o P 

ot̂  =» 9 ) this type of distribution was found to be unsuitable in 

the region of the end plates. 

An experimental drag analysis and the linearized theory were 

found to agree insofar as they both predict that when there is a 

lar^e inviscid drag acting on the wing the end plates give an almost 

equal inviscid thrust and vicc versa. On the other hand, the 

quantitative agreement betiveen the analysis and the theory is not 

particularly good and suggestions have been made for the possible 
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reasons for this. 

Of particular significance is the conclusion of the drag 

analysis that in certain cases it is important to ensure that the 

end platas can sustain the required inviscid thrust. Failure to 

do this could result in a significant increase in the overall drag. 

3. Experimental technique 

Tiie image technique was employed to simulate the presence of 

a water surface on the flow round a G.E.W. This technique is not 

completely representative but the justification for its use was 

based on the argument that provided that it gave a steady plane 

of syranetry it could be used to check the accuracy of many features 

of the theories. It has been held by some authors, however5 that 

the method fails to represent a steady plane of sjonmetry. Never-

theless* the indications of this investigation wore that for the 

configurations examined the flow round the wing and image was 

symmetrical. 

It remains a task for the future to examine the importance of 

such effects as the deformation of the water surface and the 

interaction between the dynmic condition, at the water surface 

and the viscosity of the fluids. A particularly suitable device 

for achieving this is the whirling arm. currently being developed 

at The College of Aeronautics by Kumar (1967). It is also 

hoped to use this apparatus in the near future to examine the 

non-steady behaviour of ground-effect wings. 
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APPENDIX I ; Evaluation of the limit of the residual 

An examination of equations (II.2.30) and (11,2.37) shows that 

the first multiple integral inside the limit sign of equation 

(II.2.37) may be written as 

T = p f ( l - g r n ) d r h , r d n , d c ( y ) f ( 2 y / b ) 

1 ^ ( 2 n i - e n f ) ^ ^ ( 2 n - E n * ) * 9 y i 

[ { c ( y ] ) ( I ' - e r i i ) - c ( y ) ( l - £ n ) > ^ + 4 ( y , - y ) 4 ] ' d y 

{ c ( y i ) ( l ~ e n i ) - c ( y ) ( l ~ e r i ) } " 

Therefore 

1 1 +.T, /<! 
T 'V ^ f f dn 3 f c(y)f (2y/b) 

' ^ 17J i 7 . W 2 
( ( c ( y i ) - c ( y ) ) 2 + 4 ( y i - y ) ^ } ^ d y 

{ c ( y i ) ( l - e m ) - c ( y ) ( l - E n ) } ' 

It is apparent that as e -»• o an increasingly large contribution 

to Ii comes from the y integrand in the near vicinity of y = y^. This 

suggests the possibility of simplifying the integrand by expanding 

the term c(y) in powers of (y-yi) to yield the result 

I, 1, E f iHl f c(yi)f(2y/b) |yi-y| 

i o _b/2 

[ { 1 + - ^ < d c ( y i ) / d y i ) 2 } ' + O ( y i - y ) ] d y 

{ c ( y i ) ( l - e m ) - c ( y ) ( l - e n ) } ' ^ 

An examination of the term O(yi-y) in the above expression 

indicates that it contributes a term 0(e) (at most) compared with 1% 

except possibly for isolated values of yj. Therefore this term is 

neglected; leaving the first term of the expansion to be integrated. 

This is best performed with the aid of the result 



JF (u,y,e,n,ni) f(2y/b) 
9y ~ {c(yi) (l-em) - c(y)(l-en)r' 

where u = y - yj . 

By employing this information, the necessary y integration may be 

performed to yield the expression 

II ~ E / ^ c(yi){l + - F(b/2-% ,b/2,e,n,ni) 4 

+ 2F(0,yi,e,n,ni) - F(-b/2-yi,b/2,E;n,ni)}j . (AI.2) 

An inspection of the form of F(u;y;E,n,ni) indicates that the 

contribution to 1% multiplied by the quantity 

fcCyi) {1 + J is at most 0(e In e) except possibly 

for isolated values of y^. Also, the terms multiplied by 

9F(b/2-yi,b/2,e,n,ni)/9yi and 9F(-b/2-y^5b/2,e,nsHi)/3yicontribute 

at most 0(e) to Ij, again except perhaps for certain discrete values 

of yi. Therefore, by noting from equation (AI.l) that 

9F (0,yi;e,n,ni) f(2yi/b) 
9yi e c(yi)(n-ni) ' 

it is possible to deduce from equation (AI.2) the result 

II 2£(2yi/b){U i / ̂ "4 / •./" • , e - o. 

^ 0 ni' 0 n2(n-ni) 

A similar analysis applied to the second multiple-integral term 

inside the limit sign of equation (II.2.37), 

- 2 

0 
(2n-Gn*)*J ' (2ni-erifr 

Uc(yT)(l-eni) - c(y)(1-en)+ 4(yi-y)2]^dy 
c(yi) (1-erii) - c(y)(l-en) 



yields the result 

2 ^ 
l 2 ~ - 2 « 2 y i / b ) { l + } J - ^ / I , ' ' " ' _ £ ^ O . 

ayi 0 n* o ni*(n-ni) 

Hence,by replacing and I2 in equation (II.2.37) with the above 

asymptotic forms and taking the limit,is is found that 

c(yi)f2(2yi/b) 1 1 1 
dn 

4 dyi ; nkn-m) 



APPENDIX II : Evaluation of integrals for the variational equation 

Consider,first, the quantities and P^^^, 
' m m 

By combining 

equations (11.5.5), (II.5.18) and (II.5.21) it is possible to 

obtain the results 

— \ 2m-1 
p f . 4.(1,""^'(2.-1, r f 7 

n . 2 n - l 2 ( m - n ) 

X (m > o) 

o n=o y 

Therefore,on the assumption that it is permissible to interchange 

the order of the integration and summation in these expressions, it 

is found that 

n=m , _.n v2n-l 

p W = 4 . ( 2 . - 1 , ! I , 2 ( m - . , t ! ' ( L l ) ' 1 \ 2 ( . - . , . 1,; 
n=i 

n = m - l , v n , . 2 n + l 

P ^ - ' = 4 m ( 2 m - l ) I { 2 ( m - n ) - l } I ( 2 n ) I ( 2 n + l ) ' 

/•(m > o) 

.(E) 

By a similar process,the quantities and are found to 

be given by 

/ \ i = m j = n 

(T"' ' = 16 mn ( 2 m - l ) I ( 2 n - l ) I I J 
^ i = l j = l 

(-1)^ * j(2l/b)2(i*j"l) 

{ 2 ( m - i ) } I ( 2 i - l ) I { 2 ( n - j ) } I ( 2 j - l ) I { 2 ( m + n ~ i - j ) + 1 } ' 

/ p \ i = m - l j = n - l 

= 16 mn ( 2 m - l ) I ( 2 n - l ) I [ J 
i = o j = o 

(-l)i * i(2t/b)2(i+j) * ^ 

{ 2 ( m - i ) - l } ! ( 2 i ) : f 2 ( n - j ) - 1 } . ' ( 2 j ) : { 2 ( i + j ) + 1 } ' 

V 
X ( m , n > o ) 

It is also evident that P = P^^^ = o = = o for n = 0,1,2 
on on 



By combining equations (11.5.14), (II.5.19) and (II.5.21) it 

is found that and may, for m < 4, be written as follows; 

R 
(w) 

+b/2 
/ dy/b ; = 2 / dz/b; 

o 

R (w) 

-b/2 

+b/2 
/ t^ dy/b; Rp^ = 2 / t^ dz/b; 

-b/2 o 

Rg^^ = / {t4-2k'2t2/k2}dy/b; R^^ = 2 / (t4-2k'2t2/k2}dz/b; 
-b/2 6 f 

fr,\ +b/2 
R-j = f {t®-3k'^t^/k^+t^(S-yk^+Ak'^)/k'^Jdy/bJ 

-b/2 

(E) I 
Rg = 2/{t®-3k.'̂ t'*/k̂ +t̂ (3-7k̂ +4k'*)/k̂ }dz/b. 

o y 

The first two integrals of equation (AII,1) are easily 

evaluated to give the results 

R^*^ = 1 ; = 2l/b. 

o o 

The remaining integrals, on the other hand, are not simple. However, 

they may be evaluated by employing transformation (1.2.3) and the 

result, which may be deduced from equation (II.5.6) by using 

transformation (1.2.3) and equation (1.2.4), 
dil/d2Ks = C(1 - sn22Ks). 

Thus, by noting that on the wing part of the vortex trace 

dy/d2Ks = dJ2/d2KSj one obtains 

aj*) . (C/b){A2 - A^} ; 

(All.2) 

aj*) = (C/b){A4 - Ag - 2k'2(A2 - A4)/k2} 



aj*) . - A* - - As) + (3 - + Ak^) ^ 

+K 
where A = / sn 2Ks d2Ks, m = 0, 1, 2, 3, ... 

™ -K 

This type of integral is considered by Byrd and Friedman (1954) 

whose results (p.p. 191 - 192) enable one to derive the expressions 

A = 2K : Az = 2{K - E(K)}/k2 ; 

^2n+2 {2n(l+k2)A2^ + (l-2n)A2^_2}/(2n+l)k2 , 

n — 1g 2^ 3g . . . . 

Thus^by employing this information in combination with equations 

(II.5 

2l/b. 

(II.5.8) and (II.5.9), it is possible to evaluate for a given 

By observing that dz/d2Ks s Im(df2/d2Ks) it may be concluded 

from equations (AII.l), (All.2) and transformation (1.2.3) that 

Rp^ = (C/b){A4 - Az) ; 

= (C/b){A6 - A^ - 2k'^(A4 - Aa)} ; 

R(B) . - Ae - ^S'^CAs - At) + (3 ' + 4k") _ %,)} . 

^ K+iK' 
A = Im{ / sn™2Ks d2Ks} , m = 0, 1, 2, 3, 

K 

Again it is possible to employ results given by Byrd and Friedman 

on pages 191 and 192 to obtain the expressions 

A^ = K' ; A2 = E'(K)/k^ .• 

^2n+2 ~ {2n(l+k2)A2^ + (l-2n)A2Q_2}/(2*+l)k2, n = 1, 2, 3; 



Therefore may be evaluated for a given 2%/b by using these 

expressionsin conjunction with equations (II.5.8) and (II.5.9). 

The method used to determine and is essentially 
/g\ 

the same as that employed to determine R and R . Therefore 
m m 

only the results will be quoted (m,n < 4). These are as follows; 

s'f = 4 " ) ; -(E) 
®01 

. 4"'i 
q(E) 
02 

- R|"' : 
q(E) 
03 

sj"' . CT^/h; 

(C/b){T6-2k'2T^}; sjf 

= R2 ; 

- R p ) : 

= CT^/b ; 

^1? " (C/b){l8 - Sk'^Tg/k^ + (3-7k2+4k4)T4/k4}; 

= (C/b){Tg - 3k'2^6/k^ + (3-7k2+4k4)T4/k4}; 

^22^ " (C/b){T8 -4k'2T6/k2 + 4k'%/k'»}; 

- (C/k){% - 4k'2Te/k2 + 4k'%/k'+}; 

^2? = I^^IO " + (9-19k2+10k4),^ _ ̂ '(3-7k2+4k'*)IJ 5 

4 : ' - K o - + (9-19k;+10k4)^^ _ 

=33' - i-is-32k2+17kk),^ _ g"(3-7k2+4k")T6 + 



+ (15-32k^+17k4)p^ _ ̂ '\3_7k2+4k'^)T + 

"W 

' 3 3 = h ' ' l 2 ' W " l O * ^ " 8 - g 

. (3-7k2+4k4)%^ 
+ lit) . 

Here 

2 • & - \ + 2 -

Also,it should be noted that 

mn nm mn nm 



APPEI-TDIX III : The flow velocity field of a closed, rectangular 

vortex distribution 

The vortex d i s tr ibut ion Y C X J ) placed on the cy l indr ica l surface 

of Fig . 10 may, when combined with the image d i s t r i b u t i o n , be considered 

to be a chordwise d i s t r ibut ion of elementary rectangular vort ices of 

strength Y(x i )dx i . An example of such a vortex i s shoxm in the f i g u r e 

at the end of t h i s appendix. This f igure a l s o i l l u s t r a t e s the 

notat ion and coordinate system required for the fol lowing analys i s . 

According to Robinson and Laurmann, (1956) the vec tor ia l v e l o c i t y 

dV induced at the point P ( x , y , z ) by a vortex element of strength 

Y(xi)dxi i s given by 

dV = Y(xi)dxi ds A r/4w r^ . 

Here ds i s the length of the element which has a vortex vector in 

the d irec t ion of the unit vector d s / d s . Also 

r = i ( x - x i ) + j ( y - y i ) + k ( z - z i ) , 

where i , j , k are unit vectors in the d i rec t ion of the x , y , z axes 

and Xis y i , z j are the coordinates of the element. 

Thus, by integrat ing the contributions of a l l the elements of 

the rectangular vortex, one f inds that only the vortex segments ^ 

and CD contribute to the upwash at P which i s given by 

"+b/2 • 
f 1 . o /n 

{(xj-x)^ + (yi-y)^ + 

+b/2 

b/2 

I + (y"Ŷ y)̂  + 

Therefore, by performing the integration indicated in this expression 

and integrating the contributions of all the elementary vortices of 

the cylindrical surface,(-c/2 $ xj ^ c/2) it is found that the z-wash 

at the wing plane of the cylindrical surface is given by 



+1 
Wf(5,n) = w ( x , y , l ) = 

4it 
f _fr \ /R( l -n ) , . 
{ I Ci-5 (Si-0"n:' 

a i ( l + n ) li . c~?j r 
lai^i+np"+ + 4x2'[ 

AR ( 1 - n ) 
______ I iE (1+n) 1 j \ J 
t J R ( l - n ) < + (Si-irys'";' 4A:fTS * tARZ(l+n)' + (5 i -g )^ + 4A%}:j / ^Gi' 

(AIII.I) 

Here 

£ = 2x / c , n = 2y/b, A = 2 l / c , M = b/c 

and P denotes that the integral is to be interpreted according to the 

Cauchy principal value. 

By symmetry considerations it may be deduced from equation 

(AIII.l) that the y-wash at the starboard end plate of the cylindrical 

surface is written as 

Vf(S,G) = + 

+ S-Gl j ^(1-C) . 
(Sl-%)Z+47R? LlA^(l-C)z + (Gi-g)^ + 

A(l+c) , I , - J. 
{A2(l+S)z + (€i-G)^ + 4jRZ}2j (AIII .2) 

where = z/ 1. . 

It is a routine matter to write equations (AIII.l) and (AIII.2) 

in the form shown in Section 11.5.3, that is equations (II.5.33). 

Pl*.y.i| 
I*,.y, 

k ) 

»|x,|dx, 

e 

Z " 0 (CORRESPONDING 
" T O GROUND PLANE) 

FIGURE FOR APPENDIX HI . COORDINATE SYSTEM AND 

NOTATION USED IN THE DETERMINATION OF THE 

VELOCITY FIELD OF AN ELEMENTARY RECTANGULAR 

VORTEX. 



\ 
A 

\ 

E0U"(n.3-6) EQU"(n.5-43) 

lOOO O lOl 4-698 4-680 

1 OOO O 191 2 871 2 905 

lOOO 0-253 2 437 2 474 

2 OOO O 119 3-952 3 9 0 0 

2 OOO O 20I 2666 2 683 

2-OOO 0-3I3 2-062 2(381 

3 OOO OI79 2-850 2-852 

3 OOO 0-302 2 059 2-074 

3 OOO 0 573 I -540 1-549 

4 OOO O 283 2-339 2-350 

4 OOO 0-402 1759 1-768 

4 OOO 0-626 1-468 1-474 

TABLE I. THE PARAMETER ^ OF A CLOSED 

WING/END-PLATE CONFIGURATION. 

oc(W)° o c g r 
D 

rlW) 
*-DB 

EQ.(NI.4-4) 

r(El 
*-DB 

EQ.(IN.4-5) 

THEORETICAL 

^DL 

ESTIMATED 

Co 

MEASURED 

CD 

2 O 0 -0093 0 0 0 0 7 0 0 0 0 3 0 0 I 0 3 O-OIIO 

5 o 0 0 I 0 7 0 - 0 0 0 8 OOOI2 O OI27 OOI34 
a o OOI36 0 0 0 0 9 0 0 0 2 2 O OI67 OOI5I (OOI64) 

2 3 0 - 0 0 9 7 O 0 0 0 8 o - o o o o O 0 I05 0 0 I 0 9 

5 3 OOII3 O 0 0 0 8 O 0 0 0 4 O OI25 OOI36 

8 3 OOI43 O OOlO 0 - 0 0 0 6 0 -0 I59 0-0I5I (0-0I60) 

2 6 0 0 I 0 2 0 - 0 0 0 8 0 0 0 0 6 OOII6 OOII3 

5 6 OOI22 O 0 0 0 9 OOOOO O OI3I O OI36 

8 6 OOI52 O-OOII 0 - 0 0 0 3 0-0166 O OI49 (0 0I60) 

2 9 0-0I05 0 - 0 0 0 8 0 0 0 2 I O OI34 OOII5 

5 9 OOI25 0 0 0 0 9 0 0 0 0 4 0 -0 I38 OOI39 
8 9 00163 O OOll OOOOO O OI74 O OI64 

TABLE 2. A COMPARISON BETWEEN THE ESTIMATED AND 

MEASURED OVERALL-DRAG COEFFICIENT OF THE 

CONFIGURATION ; l . / c = \njc = O I67 ; R^= I 26 x lO^ 
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FIG. S. THE TREFFTZ PLANE OF A PLANAR GROUND-EFFECT WING 

WITH LOWER VERTICAL END PLATES. 



- ' / x - ' / k - « - t •< • « +'/k +'/x 
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ŴtNG 

PLATE 

FIG. 18. NOTATION AND COORDINATE SYSTEM OF THE CHORDAL SURFACE OF 

A CLOSED PLANAR-WING / END-PLATE CONFIGURATION. 
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END-PLATE CONFIGURATION. 
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FIG. 3 5. A GENERAL VIEW OF THE WING AND 
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ISOLATED WING : HALF-BODY TIP FAIRINGS FITTED. 
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