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ABSTRACT
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ON SOME ASPECTS OF THE AERODYNAMIC PERFORMANCE OF GROUND-EFFECT WINGS

by Patrick Ralph Ashill

With the advent of the hovercraft and hydrofoil, high-speed, overwater
travel has become a practical proposition. Nevertheless, there would
appear to be an upper limit to the speed of these craft imposed by, on
the one hand, the intake momentum drag of the hovercraft and,on the
other, the drag of the submerged foils of the hydrofoil . One
method proposed for reducing these drags employs aerodynamic lifting
surfaces to off-load the cushion or hydrodynamiec lifting systems.
These surfaces, which are referred to as ‘ground-effect wings', fall
into two main categories, namely ‘open' and 'closed’. The latter
type is defined as that which may, in theory, be designed for zero
induced drag; the former type is that which may not.

By employing the linearized lifting-surface theory the minimum
induced drag of an open configuration, consisting of a planar wing
with end plates, is determined. The results of this theory are in
agreement with experiment in predicting that the effect of end plates
is to reduce the induced drag. However, the indications of the
experiments are that the reduction in induced drag is somewhat
greater than the theoretical prediction. There is evidence that
this is due to the tendency of the end plates to suppress harmful
non-linear effects such as edge separations at the tips of the wing
and the sidewash at the wing.

A theoretical and experimental study of the lift and induced drag
of a closed configuration, comprised of a substantially planar wing

with end plates and not designed ab initio for zero induced drag, is



described. The need to represent certain non-linear effects in

the theory in order to obtain accurate values of 1lift is demonstrated.
Further, it is shown that with the type of closed configuration
examined, namely that with chordwise camber, thickness and incidence
which wvary slowly round the configuration, the induced drag is
small. In some cases, however, it is evident that the end plates

are expected to provide a large thrust to offset a large drag
contributed by the wing component. Thus, in these circumstances,

it is important to ensure that the end plates are designed to

sustain the requisite thrust.

The image method was used in wind-tunnel experiments to simulate
the effect of the presence of a water surface on the air flow about
a wing. This technique has been criticized by various authors for
a number of reasons. Nevertheless, experiments performed on
representative configurations have indicated that the method is

suitable for assessing the accuracy of many features of the theories.
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REFERENCE SYSTEM

In this thesis, chapters are distinguished by roman numerals,
Within each chapter, sections and equations are numbered
consecutively in arabic numerals. References to sections or
equations inside the same chapter are not prefixed by the chapter
number; the remainder are.

References to original papers are listed near the end of the

thesis with the names of the authors in alphabetical order.
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INTRODUCTION

1. General

Interest in the possibility of high-speed, ecconomic, overwater
travel has been encouraged in recent years by rapid advances in the
technolegy of hovercraft and hydrofoils. Unfortunately, at present,
both types of craft would seem to be econcmically inferior to conven-
tional subsonic airvecraft at speeds in excess of 100 knots. This is
due, on the one hand, to the large womentum drag of the hovercraft
and on the oither to the hydrodynamic drag of the hydrofoil.

One method which has been proposed for reducing the inherent
large drag of these craft relies on acrodynamic surfaces to off-load
the cushion or hydrodynamic lifting systems. Provided the design
of the aercdynamic surfaces is not greatly compromised by consider=-
ations cother than aerodynamic the result could be a reduction in
overall drag. However, there are indications from various authors,
including Ando, Miyashita and Terai (1964) and Strand, Royce and
Fujita (1562), that structural requirements will favour wings of
low aspect ratio. In turn, this implies that the induced drag
of the wing could be prohibitively large. On the other hand, this
component of drag is reduced scmewhat by the proximity of the water
surface. When smooth this acts in a similar manner to a solid,
impermeehlie ground plane and thus provides what is known as ‘ground
effect'. This phenomenon, in its various forms, has been discussed
in numerous papers including those of Wieselsberger (1921) and de
Haller (1936). Using the linearized lifting-surface theory they
showed that the induced drag of a planar wing flying at a given
lift decreases monotonically to zerc as the ground is approached.

In practice, however, the minimum operating height of the wing will
be limited by the need to minimize wave impact. Consequently,
there will exist an upper bound to the amount of favourable ground

effect obtainable by a planar wing.



In the next section, two practical methods of overcoming this

apparent limitaticn will be described.,

2. The ground-effecct wing as a maritime craft.

In recent years, a number of maritime craft, which are supported
during the cruise almost wholely by aerodynamic lifting surfaces,
have been built. Ando (1966) refers to these craft as 'ground-
cffect wings' (G.E.Ws.). This title would seem to be preferable
to the popular name ‘ram wings' and will be used hereafter not only
to describe such craft but also lifting surfaces which are close to
the ground.

The Kawasaki KAG-3 represents a Japanese approach to the design
of a G.E.W. This is a small protot&pe craft consisting basically
of separate wing and fuselage structures and with planing hulls
situated at the wing tips. These hulls act as aercdynamic end
plates during the cruise as well as providing the craft with
hydrodynamic form and support at low airspeed. This is one
solution to the problem of reducing the induced drag of a planar
G.E.W., the hulls tending to reduce the effective height of the
trailing vortices above the ground. However, in the case of the
KAG-3, the gap between the water surface and the planing hulls is
aconsiderable proportion of the height of the wing above the water.

Flight tests have revealed that the cruise lift/drag ratio of
the KAG-3 is 1l1.4. This low figure is partly attributable to the
low aspect ratic of the wing (0.75) and the apparent failure of the
planing hulls to prevent the formation of a powerful trailing -
vortex sheet.

Vehicle Research Corporation's prototype of the projected
'Columbia’ G.E.W. is an example of a design which embodies the
fequirement of low induced drag during the cruise. The craft is
supported at zero and low airspeed by a peripheral-jet sustained

cushion of air. During the cruise, the front and rear jets are



shut dowa, allowing the integrated wing-body layout to generate
aerodynamic lift. The side jets remain on, effectively sealing
the gaps between the spanwise extremities cof the craft and the
water surface.

The 'Columbiz® prototype and the KAG-3 fall respectively into
classes of G.E.W. which will be called 'closed’' and ‘open'. The
former class typifies those G.E.Ws. which may, in theory, be
designed for zerc induced drag whilst giving a non-zero 1ift. All
G.E.Ws, which do not come under this definition are referred to as

opei.
That the KAG-3 is an open G.E.W. follows from the fact that the

lower extremities of its end plates are above the water surface.
According to the fundamental theorem of Helmholtz, vortices cannot
end in space in a frictionless fluid. Thus, trailing vorticity and
hence induced drag are necessary features of the flow around,and the
drag forces on, the KAG-3. The "Columbia’ prototype, on the other
hand, is ostensibly clesed by virtue of the jet sheets at its span-—
wise extremities. In other words, the trailing vorticity of this
craft is virtually eliminated by utilizing the jet sheets to continue

the 'bound' vortices to the water surface.

3. The aerodynamic performance of ground-cffect wings:

possible area for study.

3.1 Open ground-cffect wings.

Over a considerable period, theoretical and experimental research
has been conducted into the aerodynamic properties of wings flying
near the ground. Until recently, however, the empha~is of this work
has been on the determination of the effect of the ground on the
take~off and landing performance of conventional aircraft. Conscquently,
the ratios of wing height to chord comsidered have invariably been
larger than those cf current G.E.W. designs.  Furthermore, in the
past, the theoretical analyses and experimental studies have been

largely concerned with planar wings of large aspect ratio.



Recently, investigations with more relevance to G.E.W. design
have been described. In particular, mention should be made of
the experiments of Fink and Lastinger (1961) and Carter (1961).

The first-named authors used the image method to determine the

forces and moments on planar wings of various aspect ratios and
rectangular planform in ground proximity. Carter, on the other hand,
confined his attention to the forces and momentson planar, rectangular
wings of aspect ratio unity and employed a towing carriage to convey
the modelsabove a water surface.

Both investigations gave results for the inducad drag of planar
wings which seem to be in rcasonable accord with Wieselsberger's
(1921) theory. However, Carter found that the agreement between
this theory and experiment was far from adequate when end plates
were attached to the wing. As the indications are that G.E.Ws.
will require non-planar tip extensions to limit the induced drag to
reasonable values, there would seem to be a need for a more suitable
theory. For this reason, therefore, a theoretical method for
calculating the winimum induced drag of planar wings with end plates
in ground effect will be described in Chapter I. Subsequently, the
results of this theory will be compared with experiment in Chapter
III.

Within the limitations of the linearized lifting-surface theory,
Saunders (1963) has obtained computer solutions for the lift and
pitching moment of planar and non-planar wings in ground effect.

His calculations of the iift/incidence slope of planar wings at zero
incidence compare reasonably well with the experimental results of
Carter and Fink. Unfortunately, linear theories such as Saunders'
are necessarily restricted, in their predictions of the 1ift, to
small wing incidence and camber. This limitation rather restricts
their usefulness and there is certainly scope for improvement.

Regrettably, in the case of open configurations, a consistent non-



linear theory would seem, at present, beyond our resources. The
main reason for this is that there is no a priori knowledge of

the shape of the trailing-vortex sheet.

3.2 Closed ground-effect wings
[

The prospects for theoretical work are better for closed
configurations which would seem, in the cases of interest, to
possess either weak or zero trailing vorticity. Consequently the
non~linear effects associated with the trailing vortices may
probably be neglected. An approximate theory, based on this
appreach, is applied to the determination of the 1lift of a closed
wing/end-plate configuration in Chapter II.

Most of the available information on the design and performance
cf closed G.E.Ws. has come from the Vehicle Research Corporation.
Among the papers released by this firm are those of Strand (1960)
and Strand, Royce and Fujita (1962). 1In these reports a simple
method, which has been used in the design of the 'Columbia', is
described. Tais technique employs the assumption that the flow
underneath the craft is one-dimensional whilst over the outer
surface it is considered to be like that over 2 mound. On the
basis of these simple concepts, Strand concluded that the induced
drag of the craft is essen%ially zero. It is possible, hovever,
that this conclusion would be modified by a more detailed
theoretical method.  The non-linear approach mentioned above is
an attempt to provide such a method. This wiil be employed in
Chapter II to obtain the induced drag of a closed wing/end-plate
configuration. In Chapter IIT the induced drag and 1lift predicted

by this method will be compared with experiment.



CHAPTER T

ON THE MINIMUM INDUCED DRAG OF OPEN GROUND~EFFECT WINGS

1. Basic considerations

1.1 Assumptions of the theory

In the analysis of the induced drag of two types of open ground-
effect wing to be described in this chapter the following assumptions
will be made:

(i) The flow around the wing is inviscid and incompressible.

(ii) The linearized lifting-~surface theory, as formulated
for example by Thwaites (1960), is applicable.

(iii) The water surface over which the wing flies behaves
like a solid, impermeable ground plane.

Assumption (i) should lead to & reasonable approximation for the
flow far in the rear cf the wing provided (a) the Reynolds number
based on a typical wing chord is sufficiently large and (b) the Mach
number is small compared with unity.

One of the assumptions of the linearized lifting-surface theory
is that the wing and its trailing-vortex sheet lie on a cylindrical
surface with generatcors parallel to the direction of the motion of the
wing. As there is no force on the trailing vortices it follows that
the trailing-vortex vector is everywhere in the direction of the flow
relative to, and infinitely far forward of, the wing. Thus, if the
wing consists of a single surface, the spanwise cross-section of the

vortex sheet is the same as that at the maximum span of the wing.

1.2 Conditions for minimum induced drag

Within the limitations imposed by assumptions (i) and (ii)
Munk (1921) has given an elaborate proof of thé condition for the
induced drag of a lifting system to be a minimum subject to the

lift being given. This condition, which is necessary and sufficient,



may be stated as follows:

"The induced drag of an arbitrary lifting system is a minimum,
for a given 1lift, provided that the normal component of velocity at
the vortex sheet infinitely far in the rear of the lifting system, is
everywhere proportional to the cosine of the local angle of lateral
inclination of the sheet'.

In mathematical terms this may be written as

Vo = W, €OS 5 . | (1.1)

Here v and 6 are the local component of normal velocity and angle
of lateral inclination at the vortex sheet infinitely far behind the
lifting system and w_ 1s a constant having the dimensions of velocity.
The direction of positive Voo is illustrated in the sketch below
which shows a spanwise cross—section of & typical vortex sheet (the
vortex trace) viewed in the direction of the motion of the lifting

system.
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The plane infinitely far behind, and perpendicular to the
direction of motion of, the lifting system is known as the Trefftz
plane. As a consequence of assumptions (i) and (ii) the flow in
this plane is two—dimensional and characterized by a velocity

potential, ¢, which is a solution of the equation



32¢/9y2 + 32¢/022 = 0. (1.2)

This is the well-known Laplace equation in two dimensions, y and z
being the cartesian coordinates shown in the sketch above.

Thus,in order to determine the distribution of velocity potential
in the Trefftz plane accompanying minimum induced drag, it is necessary
to solve equation (1.2) subject to equation (1.1) being satisfied.
Additional conditions, the nature of which depends on whether the vortex
trace is adjacent to or isolated from boundaries, will also need to be

satisfied.

1.3 Flow —superposition methods.

/

The linearity of Laplace's equation permits the superposition of
its solutions to obtain other, perhaps more complex solutions. This
fact prompted Munk (1921) to suggest a simple method of obtaining the
velocity potential in the Trefftz plane of iéolated lifting systems
having an induced drag which is a minimum for e given 1lift. This
consists of superposing on the Trefftz-plane flow a flow which destroys
the normal component of velocity at the vortex trace without disturbing
the discontinuity in ¢ there. Munk found that a flow having the

desired property is the uniform stream described by

$ = - z (1.3)

The addition of this flow to the Trefftz-plane flow reduces the problem
to that of finding the velocity potential of a uniform flow past an
obstacle shaped like the trace. This may be considered solved when
the appropriate conformal transformation between the Trefftz plane and
the upper half-plane has been discovered. The velocity potential of
the Trefftz-plaﬁe flow is then determined by subtracting the super-
position veleocity potential (1.3) from the velocity potential of the

combined flow.



For isolated lifting systems Munk's method represents a
considerable improvement over methods relying on singularity
distributions. TUnfortunately, it is usually not as suitable when
the vortex trace is in the vicinity of additional boundaries. The
reason for this is that, in general, a uniform stream does not
satisfy the additional boundary conditions. Consequently the
velocity potential of the combined flow may be as difficult to
determine as that of the Trefftz-plane flow. As an illustration,
suppose that the same lifting system is near an infinite ground
plane. As with the isolated lifting system the boundary condition
for the normal velocity of the combined flow at the vortex trace is
of the obstacle flow type. At the trace of the ground, on the octher
hand, the normal valocity is non~zero. Therefore a suitable source
distribution will be required in the upper half-plane. 1In con-
sequence, the determination of the velocity potential of the combined
flow will entail an integration.

The advantages of Munk's method may be recovered for lifting=—
systems near additional solid boundaries by employing a potential
flow which when added tc the Trefftz-plane flow:

(i) destroys the normal component c¢f velocity at the vortex

trace’
(ii) does not alter the discontinuity in the velocity potential
at the vortex trace;
(iii) satisfies the additional boundary conditions in the finite
part of the Trefftz-plane.

The velocity potential of the resulting combined flow is essen-—
tially determined once the conformal transformation becween the
physical plane and the upper half-plane has been found.

This method may be considered a generalization of Munk's method

to include the presence of golid boundaries.
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2, The planar ground-effect wing of minimum induced drag.

In this section the determination of the minimum induced drag of
a planar wing in ground effect will be described., This problem was
considered by de Haller (1936). However, the expression he derived
for the velocity potential of the Trefftz-plane flow is somewhat
cumbersome and his results for the induced drag would seem to have
been obtained either by numerical or graphical integration.

The method to be presented here, which is based on the combined -
flow method discussed previously, permits the derivation of the
minimum induced drag in analytical form. In consequence, it is more
suitable than de Haller's method for checking the accuracy of a
perturbation technique which will be used to determine the influence

of end plates in Secticmn 3.

2.1 The flow problem.

Fig. 1 shows the Trefftz plane of a planar ground-effect wing.
It will be scen that the vortex trace is of span b and height h above
the ground. Alsc evident in the figure is the barrier AB, which
renders the Trefftz plane singly conmected, and the bounding contour
IABCEGHI. This comsists of 'the point at infinity’ I, the trace of
the ground, the vortex trace and the barrier,

Equation (1.1) indicates that the induced drag of a planar wing
is a minimum for a given 1ift if Vo~ Ve Thus, by reference to the

coordinate system of Fig. 1, the boundary conditions for the normal

velocity at the bounding contour may be written as follows:

- weoy |y| s b/2, z =+ h+; ~

+ Vo3 || <Db/2, z =+ h;

(1) 28¢/omn
(ii) 3¢/om
(iii) 8¢/sm
(iv) 23¢/om = 0O; y=0,
(v) |awjae| ~o; |a] » = . J

it

(2.1)

N

03 lyl <=, z=0;

<z < +h ;

(@)

In the above expressions 3/9n denotes normal differentiation
. . . + -
outward from the domain D (shown in Fig. 1) and +h and +h are to be
interpreted as Lim (+h+€) and Lim (+h-¢). = ¢ + iyP 1
P eio;( ) and Lim (+h-¢). Also, W= ¢ + iy is the
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complex potential, ¢ being the strecam function, and Q = y + iz is the
complex variable of the Trefftz plane.

It should be remarked that condition (2.1) (iii) follows from
considerations of the symmetry of the Trefftz-plane flow.

The domain D is mapped onto the upper half-plane t (Fig. 2) by
means of the Schwarz-Christoffel formula. This has been given in general
terms by Thwaites (1960) and in the present case may be written in the

form
-k -1
de/dt = C(B2-t2) (1~t2) 2(1-k?t2) ?; pglgl/k, 2.2)

where € is the feal)transformaticn constant whilst B and k are
parameters of the transformation,
Equation (2.2) may be integrated with the aid of the trans-

formation
t = sn{2K{k)s, k}. (2.3)

Here K(k) is the complete elliptic integral of the first kind and
sn{2K(k)s, k} is a Jacobian elliptic function, each of these
quantities being defined by Byrd and Friedman (1954). Hereafter,
unless otherwise stated, it is to be understood that the elliptic
functicns and integrals are functions of k.

By differentiating equation (2.3) with respect to 2Ks there is
obtained, after refersonce to egquations (121.00) and (713.01) of Byrd
and Friedman,

dt/d2Ks = (l-snzsz)%(lwkzanZKs)%. (2.4)

Thercfore, if equations (2.2), (2.3) and (2.4) are combined thore

results
d/d2Ks = C(82 - sn?2Ks) . (2.5)

which may be integrated with the aid of equation (310.02) of Byrd and
Friedman to yield the result
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2 =C [28%Ks - {2Ks - E(2Ks)}/k?] + C;.

In this expression E(2Ks) is the incomplete elliptic integral of the
second kind, as defined by Byrd and Friedman,and C; is the integration
constant,

The s plane, which is illustrated in Fig. 3, will be seen to
consist of the interior of a rectangle having corners A,B,G and H.
The complex ccordinates of these corners may be found by employing
the properties of the transformation (2.3) given by Byrd and Friedman
(p-17). Thus it is found that, at A,B,G and H 2Ks is -K +iK*, =K,
+K and +K + iK', where K' = K(k') and k' = (1 - kz)%.

The requirement of correspondence between the 2 and ¢ planes at

point G demands that
ih = ¢ [82& ~ {K - E(K)}/k% ]+ ;. (2.6)
Similarly, the requirement of correspondence at B leads to the result
ih = - [ 8%K -~ {K ~ E(K)}/k? ]+ C;. (2.7)
Therefore, by comparing equations (2.6) and (2.7),it is found that

B2 = {K - E(X)}/k%K. (2.9)
Correspondence of the @ and s planes at point H is assured if

0=¢ [82(K + ik') - {K + iK' ~ B(K + iK")}/ k2] + ¢;.
(2.10)

This result may be reduced somewhat by smploying equations (122.02),

(140.01) and (141.01) of Byrd and Friedman tc derive the relationship

E(K + iK') = E(R) + i(ZE(K)R' -~ 7)/2K . (2.11)

This may be combined with equaticns (2.8), (2.9) and (210) to give

*In obtaining this expression use is made of the fact that
E{~2Ks) = -E(2Ks).
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0= {(K—E(KIXK+1K') _ {K+iK’—E(K)—i(ZE(K)K'—w)/ZK%}+ ih
k2K 12

which after rearrangement gives the result

h = 7C/2k2K. . (2.12)

The @ and s planes correspond at point E if
sy 2 "1 r -']. - -1 2-]
b/2 + ih = C [6 sn B - {sn "B-E(sn "B)}/k%]'e (;.

Consequently, by combining this result with equations (2.8) and (2.9),

one finds that

b = 2C {E(sn—ls)K - E(K)sn_ls}/sz. C(2.13)
Equations (2.12) and (2.13) may be combined to yield the result

2k/b = w/Z{E(sn—ls)K - E(K)sn_ls}. (2.14)

So far,the present method has differed little from that of de
Haller. The difference between the methods is in their treatment
of the flow problem. The present technique employs the flow -
superposition method proposed in Section 1.3 whilst de Haller's
approach involves the integration of singularity distributions. As
will be seen, the present technique is relatively simple, leading to
a closed~form sclution for the induced drag.

A class of complex potentials which is regular in the finite
part of the § plane and satisfies boundary conditions (2.1)(iii) and
(iv) is given by

0= 807 mo=1,2,3, eennn,

where Ap are real constants.

The z velocity components at the vortex trace asscciated with

Wy, namely wy, «re given by
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n=m
215" ()" CnmD) ! (h/y) 2

¥ = 20 Ay y L {2@a-n) }! (2n-1)7 °
n=1

For m=l1 this becomes

wy = - ZAlh.

which, it will be seen, is equal and opposite to the z component of

velocity of the Trefftz-plane flow at the vortex trace if

Al = W&/Zh.

It follows, therefore, that,with this value of A}, w; may be used as
a superposicion flow in view of the fact that it satisfies require-
ments (i), (ii) and (iii) given in Section 1.3.

An examination of the resulting combined flow indicates that
d¢c/on = 0 at all segments of the bounding contour: in the finite
part of the Q plane, the subscript c denoting combined-flow

conditions. Therefore in the t plane
9¢./n = 0; |Re(t)| < =, Im(t) = 0. (2.15)

The only remaining boundary condition to be satisfied by the
combined flow in the t plane is a2n asymptotic one near the point at

infinity. This may be determined by ncting that

W, /dQ ~ w_9/h; Q] » «. (2.16)

e

In order to determine the corresponding condition in the t plane it
is necessary to comsider the behaviour of dR/dt and @ for large |t|.
Thus, by cxpanding the right-hand side of equation (2.2) in powers of

1/t2,it is found that

de/dt = (~C/k) + 0(i/t2); |t| » =. (2.17)
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In turn. this expression may be integrated to yield
Q = (-Ct/k) + C, + O(L/t); [t]| + =, (2.18)

where U, 1s the integration constant. Therefore, by combining

equations (2.106}, (2.17) and (2.18),it is found that

A /dt v weC2t/kPh 5 [t] » e, (2.19)

There is no unique complex potential satisfying equations (2.15)
and (2.19). There are, however, two additional conditions to be
imposed on the combined~flow solution. Firstly, only Trefftz-plane
flows with regular complex potentials within the domain D are
physically acceptable. Thercfore, as W; is regular in the finite
part of the Q plane, it is necessary for W, to be regular in the
finite part of domain D. Secondly, the Trefftz-plane flow andthe super-
position flow are symmetrical with respect to the z axis. Hence the
combined flow is required to be symmetrical about this axis and, in
consequence, also about the imaginary axis of the t plane.

A complex potential which satisfies equations (2.15), (2.19) and

the two additional conditions mentioned sbove is given by
W, = (WoC2t2/2k%n) + Cy, (2.20)

where C., is an arbitrary constant.

The complex potential of the Trefftz-plane flow, W, may be found
by subtrecting Wy (with the appropriate value of 4;) from V. Thus ,
as H{yis single-valued at the vortex trace, it follows from
equaticn (2.20) that the jump in velocity potential there, T(y), is

given by

I{y) = ¢, (y) = ¢;(y) = w,C? (e2()-t2(y) H/2k?h.  (2.21)
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Here the subscripts u and 1 imply that the functions concerned sre to
be evaluated at adjacent points on the upper and lower segments of the

vortex trace, respectively.
Tt will he observed that I'(y) does not depend on the arbitrary

constant Gz,
Equation (2.3) may be employed to rewrite equation (2.21) as

I'(y) = w.C2{sn?2ks {(y) - sn?2Rs; (y)}/2k?h.

This shculd be compared with the result obtained by de Haller which, in

the present notatiom, is given by

= m 2m
270 § 1+
I'(y) = ;2? q 22 2) {cos 2mm s, (y) - cos 2mm s1. (¥)},
v LI (1 -q )

where
q = 2xp(~mK"/K).

2.2 Determination of the induced drag,

Rebinson and Laurmaan (1956) show that, to the order of approxd-
mation of the linearized theory, the overall induced drag of a wing,

, may be written as
D, = %prcj;(Brp/Bn)dE. (2.22)

In this expression,p is the density of the medium surrounding the
wing and the subscript T denotes that the line integration is to be
performed in 2 clockwise fashion about the vortex trace in the
plane. The term ds is an element of length arcund the vortex trace.

Por a planar wing of minimum induced drag it is possible to
rewrite equation (2.22) in the form

Di = m}_,pwwf,r $dQ. (2.23)
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Thus, by noting that ¢=¢c—¢1 and cmploying equations (2.20), it is
found that
ﬁi = ~lpwe| {(WeC2t2/2k%h) + Re(C3) ~ ¢, Q. (2.24)
T

The last two terms under the integral sign of equation (2.24) do
not contribute to 5i as they are single-valued at the vortex trace.
Therefore, by employing equations (2.3) and (2.5), it is permissible
to rewrite equation (2.24) in the form

+K
D, = ~pwéC’[ sn?2Ks (82-sn?2Ks) d2Xs/4k?h, (2.25)
K

the subscript T being dropped in favour of the limits of the inte-
gration.

The integral of equation (2.25) may be evaluated explicitly
with the aid of Byrd and Friedman's ecquations (310.02) and (310.04)

to give the result

D, = -pwgc3[{2f32(1<~acz<))/1c2} - 2{R(2+k2) - 2E(K) (1+k2)}/3k*] /4k2h.
| (2.26)

The term C may be eliminated from equation (2.26) with the aid

of equation (2.12) to give the expression

B, = -20udk BP{{28XK-E (K)) /k2}-2{K (2+k?) -2E(K)(1+1;2)}/31c“}/ 3.
(2.27)

It is convenient at this point to define a non-dimensional

quantity I as
) ='Bi/%pw§b2. (2.28)

Thus, by combining this equation with equatioms (2.14) and (2.27), it

is found that



—kMRE[{282(K~E(R)) /k2} ~ 2{K(2+k?) - zz\x)(1+k2)}/3L“J
2= 4TiE{sn~tR)K ~ E(X)sn™*B}*

(2.29)

Robinscn and Laurmann show that the linearized thecry yields the

following expression for the overall lift of a wing:

1, = ] . 2
L pbOfT ¢ dy, (2.30)

where L is the overall 1lift and U, is the forward speed of the wing.

Thus for the present configuration,the overall 1ift may be written as

L=oU [ ¢ a0 (2.31)

Hence,by comparing equations (2.23), (2.28) and (2.31), it is evident

that

L = —pWe Uo b2%. (2.32)

~

De lialler defines the induced-drag factor ¢ according to the
&

relationship
o = mpU2 b2 D, /212, (2.33)

Therefore, upon combining equations (2.28), (2.32) and (2.33),it is

found that
g = Tr/42- (2o34)

Cousequently, substituting equation (2.29) into equation (2.34).one

has, after rearrangement,

32 {E¢sn P‘K'E(()sn -1

812,
° ”’1{3{K(2+I\5) = 214( )(14‘1\_&) - 3,’221\ (Y("‘E(K))} ¢ (2.35)

The induced-drag factor may be determined as a function of 2h/b
by emploving equations (2.9), (2.14), (2.35) and the tables of K
and E{2Ks) given by Byrd and Triedman for various k. The graph of

o agzinst 2h/b thus obtained is shown in Fig. 4 where it is compared
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with curves given by Wieselsberger (1921) and de Haller. It will
be secen that de Haller's results for o are consistently lower than
the present values in the range 0.5 € 2h/b g 1.2. In particular,
for 2h/b = 0.7,de Haller's value of o is approximately 95% of the
value given by the present method.

Wieselsberger's theory, which is based on the assumption that
I'(y) is elliptic, is seen to give results which lie close to the

results of the present theory.

3. The influence of end plates.

Thissection deals, in the main, with the determination of the
minimum induced drag of planar wings with end plates in ground effect.

The vortex trace of the particular end-plate configuration to be
examined is illustrated in Fig. 5. It will be inferred from this
that the end plates project vertically downwards from the wing tips.

As before, the domain D of the Trefftz plane @ (Fig. 5) is
rendered singly connected by the barrier AB and is transformed to

the upper half-plane t by the Sciwvarz — Cahristoffel traansformation

]
Tlon2at+2 242
gtg:z = C(al e t%) 1l s a s 1/k £ /2 £ 1/6.
(1- 222 )% (1-62¢2) 2 (1-k2¢2) -

(3.1)

In this expression C is the @eal) transformation constant and a,k,A
and § are parameters of the transformation. The k defined here
should not be confused with the k employed previously. The reason
for its retention as a quite different parameter arises from the need
to comply with the convention of elliptic functioms.

In principle, the transformation between the  and t planes may
be established by direct integration of equation (3.1). Unfortunately,
the integral which occurs is of the hyperelliptic type (Byrd and

Friedman p. 252) and seems not to be amenable to explicit evaluation.
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It is necessary, therefore, to devise an alternative method of

solving equation (3.1) analytically.

3.1 Description of the propesed method.

The method to be employed may be summarized as follows:

(i) The right-~hand side of equation (3.1) is expanded in
powers of a parameter which is considered to be small for the Trefftz-
plane configurations of interest.

(ii) The first term of the resulting expansion is intecgrated to
give either an approximate transformation between the Q plane and
the uppar half-plane or an exact transformation between the Q planc
and a perturbed upper half-plane. Interpreted in the former sense,
the transformation fails to be uniformly valid in a restricted area
cf the Q plane, usually in the region of interest. For this reason,
therefore, the method to be employed here utilizes the second inter-
pretation. |

iii) An additional cconformal transformation is needed to map the
perturbed upper half-plane onto an exact upper half-plane.

A suitable small parameter for the expansion may be fcound by

xamining the ‘exact' solution for the plenar wing given previously.
This suggests that,as X + §, h/b » 0. Therefore, as current G.E.V.
designs are intended for cperation at small h/b, an appropriate small
parameter would seem to be &' = (AZ-Gz)%. Thus the right-hand side
of aquation (3.1) is expanded in powers of &' and all but the first

term are neglected to give the result
— 1
de/dt = C(a?~£2) (1-t2) 4/ (1-12t2) (1-k2t2) %. (3.2)

Here, for convenience, t is also used to denote the perturbed upper
half-plane which is illustrated in Fig. 6. This figure shows that
the perturbations consist of the indentations AR and GH surrouading
the poiats t = + 1/A.

In general, the shape of either indentation is not simple.
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Consequently it may be difficult to transform the perturbed plane into
an exact upper half-plane. It is possible, however, that a simplifi-
cation may be achieved by emploving various approximations to the shape
of the indentations which are known to be asymptotically correct as
h/b>0. Therefore, ir order to examine the accuracy of such an approach,
it will be applied to the planar-wing problem in Section 3.2. The
success of the methsd will be gauged by comparing the results obtained

for ¢ with those given by the ‘exact' solutiom.

3.2 Application to the planar-wing problem.

For the planar wing,k=1. Therefore, as 1gogl/k, equation (3.2)
reduces to the following form:
do/dt = C(1-t2)/(1-2%t2).
This expression may be integrated to yield the result

(1 x 2 ) P+ Cy, (3.3)

Q =

[
VAL In ()\t+1

vherc Cy is the integration consiant.
The t plane corresponding to the planar wing is similar to that
shown in Fig. & except that the points C and €' coincide with D at
t =~1and, at t = +1, E and E' coincide with F. Hereafter, these
coincident points will be called C and E, respectively.
Point~to-point correspondence betwecn the Q and t planes at C

and § demands that

b . _C (1 A 2) 1medthy L Am(1-A%) a4y "
5 + 1h = '5\—2{ -1 + ( ) 5 } + C (3-4)
. b, C . (1-A2), 1~ im(1-12) *
nd —_ h = < e A = Banblh LA R
and 5+ ih =57l + =-ln ‘1+x) + 53 } o+ Cy. (3.5)

By comparing equations (3.4) and (3.5) it is found that
Re(Cy) = O, (3.6)

& {1+ 125

- 2\

ol o

1n(1+x)} (3.7)

>

.'.

That the principal values of the logarithms are taken in these
equations fcllows from the fact that only the physical part of the

Bicmann cheet is being considered.
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and h = — —= + Im(Cy). (3.8)

On the segments of the real axis of the t plane where lt|>l/x
the variable 2 is purely real, as is the bracketed term of equation
(3.3). Thus it may be inferred from the same equation that Im(C,)=C.
Therefore this result may be combined with equations (3.7) and (3.8)

to give the expression

2h/b = w(1-a2)/{2x + (2-3)1n{(1-A)/(1+x)}].  (3.9)

The curve of indentation AB may be defined by the equation

£ = (~1+e(0)e D)/, (3.10)

where, with the origin at t = ~1/), (8) is the radial coordinate of
the curve and 6 is the angle between the radial generator and the
real axis as shown in Fig. 6.

On the indentation AD, Re(Q) = 0. Therecfore, by substituting
equations (3.6) and (3.10) into equation (3.3) and equating real

parts, one finds that

n{e(e)} = § Inlé4~4c(0)cosd+e 2(0)1~2(L~e(8)cos0)/(1-A2).

(3.11)

Thus, in order to find e(8), it is necessary to solve tiis equation.
Unfortunately, it would scem to be rather difficult to obtain a

sclution in closeé form.

1
L3

Fle

Inspection of equation (3.9) shows that h/bVv0Oas A»l. As B iies
batween t = ~1/A and ~1 this suggests the possibility that e(8) v O
as h/b=+0. Therefere zquation (3.11) will be solved by an iteration

scheme which employs the assumption that e(8)<<l, namely

1n f4-te @1 (0) 41 @D (6)12] -2 (1~ @7 (8) cos0) / (1-12),

Ry
o]
—
m
~
=}
S
~
@
v
gt
it
[SIE
foad

(3.12)
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with E(O)(e) = 0. Thus the first iterate for e(8) is given by

e (o) = 2expl2/02-1) ] (3.13)

This iterate is evidently invariant with 6 and, consistent with the
previous postulation, approaches zero asymptotically as h/b »> O.

The second iterate for €(8) is derived by placing n=2 in
equation (3.12). Thus, by expanding the logarithmic term on the
right-hand side of this equatixnxﬁmpowersofe(l)(ﬂ),it is possible
to write

(2)(6) = eexplecost (== ~ 1)+0(c2)}. (3.14)

1~ A2

Here, for convenience, s(l)(e) has been replaced by e.
The term A may be eliminated from equation (3.14) by employing

equation (3.13) to give the result

(?>(O) = gex ﬂ[ccosﬂtln(Q/e)— 11 + 0(82)]

which,after expanding the exponential for small ¢,becomes

2)
e (08) = E{l—elnecose+e(1n2~1/2)cose+0[(slne)z]}.

On the assumption that e(8) = L1m{a( )(6) it is possible to
conclude that the iteration scheme y1e1ds an asymptotic expansion

for £(6) in powers of ¢, that is

e(0) = e{l-elnscose+€(1n2—1/2)cose+0[(elne)2]}9 g0, (3.15)

Although nc formal proof of convergence will be given, the
following table of values of ¢ and l(e(z)(0)~e)/e! is included to
illustrate the apparent rapidity of convergence of the scheme for
small h/b.
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X 2h/b € I(éz)(O)—e),ﬁl
-87 “8s
0.995  0.016 2.7€ x 10 0(1078%)
0.960  0.153 1.67 x 1071 010719
0.900  0.481 5.36 x 10~ 0(10™%
0.800  1.398 0.77 x 1072 0(10™%)

The main indications of the above znalysis are that for small
h/b the indentation AB is extremely small and nearly semi~circular
in shape. That this also applies to indentation GH follows from
the fact that it is the mirror image of indentation AB in the
imaginary axis. Therefore a suitable series of approximations to

an exact upper half-plane would seem to be

meEn
1

(n) -
£ = At o+ 5: B {(At 5t (At+1)m}’ 1=0,1,2,3, ceenes (3.16)

where t(n) are approximations to an exact upper half-plane and B
are real comstants.
are found by requiring that om the identation boundaries

Im(t(n?) is of lower mathematical order than €. This is intended
to emsure that ,with each successive approximation:t(n) becomes
closer in form to an exact upper half-plane.

In order to determine B and B, it is necessary to write
Im(t( )),on the indentation AB as a function of €(8) and 8. This

is achieved by combining equations (3.10) and (3.16) to give the

result
e (1) ~1+s(e)eie _ . sind 1 )
Imit C‘"‘“j;-“-)} = ¢(8)sin® + B} {~ o " Im(~2+g(e)ei6)}'

(3.17)
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Therefore, by replacing €(€) in equation (3.17) with its asymptotic
form (equation 3.15) and expanding the resulting expression for small

€, it is found that

i6 .
Im{t(l)C:l:ES;lg-)} = e¢sinB{l + O(elne)} + By [~ szne{l + 0(elne) }-
- £sind f1+ O(aine)}] e *> 0. (3.18)

4

Thus the above-mentioned requirement on the mathematical order of
Dn[t(l){(—1+e(e)eie)/lﬂ is satisfied if B = e€2. The constant
Bo, on the other hand, does not influence the mathematical order
of this expression; therefore it is arbitrarily placed equal to
zero.  Conscquently the zeroth and first approximationst® an exact

upper half-plane are given by

(o) _ (1) _ 1 1 3
t° % = ae; £ = At o+ 82{()\12"1) * et (3.19)

It isworth while to enquire into the status of these approxi-

(o)

mations. Thus it is apparent that the use of t is equivalent

to the assumption that the indentations may be ignored altogether
whereas the approximation t(l) is evidently similar in status to

the first, semi-circular, approkimation for the indentation shape.
This is demonstrated in Fig. 7 which illustrates the form of the
tcl) plane. It will be seen that Im(t<1)) on the indentations is
0(e?lne) which is the same order as the terms neglected in employing
the first approximation .for e(8).

It is necessary to determine the points at which the two
approximate transformations given above cease to be conformal. Thus
it is evident that the zeroth approximation is conformal everywhere
whilet the first approximation ceases to be conformal at t = + 1/

and
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t=2*{1 e+ 0}, (¢ +0).

The first two of these points arc outside the domain D and are
therefore cf no consequence. The remaining four points, on the
other hand, coincide with the right~angle corners of the indentations
in the t plane to the order of accuracy of the tql) approximation.
By being there they effect the removal of the corners of the indenta-
tions in the t(l) plane and, as such, may be considered acceptable
singular points. It is anticipated that higher approximations to
an exact upper half-plane will also yield transformations with
singular points at the indentations' corners.

I? istablishing the solution to the flow problem it is assumed
n

that t are exact upper half-planes. Therefore the boundary

conditions for the normal velocity of the combined flow in the t

(n)

planes are as follows:

3¢,/0n = 0; IRt ™) | < =, (&™) =0
(3.20)

dwc/dt(n) v Wco-ézt(n)/)\sh; !t(n)l > o,

By following the argument leading to equations (2.20) it is
found that regular complex potentials which satisfy equations (3.20)

and the symmetry condition are given by

wé“) = w362<t(n))2/216h. (3.21)

Here it should be noted that the arbitrary constant which should

appear on the right~hand side of cquation (3.21) has been ignored

for the reason that it does not influence the value cf o.
Folleowing the reasoning employed in deriving equation (2.29)

. : . . n
one may write an nth approximation for I corresponding to wé ) as



() — +(1-e(0)) /A
o= -(Cd/ZAGth) J
={1-e(0)) /2

’t<n>)2{(l~t2)/(l—lzt2)}dt.

For the particular case n=l this becomes, after combinztion with
equation (3.19) and rearrangement,

. v + -
- (1) cs (1-e(0))/2 o . LrPe2e2 4r2e2eh

R TV i t .2
A I(I"E(O))/A{A ©TaEET Y ozezry2 oy ae. 322

(1)

The errors implicit in the use of I may be found by

1
determining the order of magnitude of L(Z( 2)_ ( ))/Z(l)} In fact, it
is found that this latter quantity is 0(e?lne). This implies that no

(1)

extra accuracy can be cexpected from I by retaining terms of this
order. Consequently equation (3.22) is integrated and the resultant
expression is cxpanded in powers of e, terms of 0(e?Ine)being neglected.

hus there is obtained

(1 __ ¢ o~ A%) 2(1-22) (1-¢
PR Zkbhbzi {116")+€1n6‘)} B x°(1 36y - & ””12( )
2.
A similar analysis applied to Z(O)yields the result
(o) _ T [(HZ) 2. 2 (1 i) .
U T e v ve ! (3.24)

terms 0(e) inside the square brackets having been neglected as by
themselves they cannot improve the accuracy of Z(O}.

4 cursory inspection of cquations (3.23) and (3.24) would seem
to suggest that Z<l) gives a higher ovder of accuracy than Z((».
However, if ¢ eliminated from both these equations by employing

eguatiocn (3.13) (with 6(6)(1)= £), it is found that
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Z(C)= 2(1)= '53/3}\911132) (3)\2,.1) . (3.25) |

This result was quite unexpected and must be due to the fortuitous
cancellation of the first-order correction terms in Z(l).
Equation (3.25) may be combined with equations (2.34), (3.7)

and (3.9) to give the result

RN 31;2(1—A2)[2)\ + (1»-A2)1n{(1-—A)/(1+A}}]2/8<3>\2~1)9 (3.26)

L

induced-drag factor. TFig. 4 shows them plotted against 2h/b and it

vhere G(O) and ¢ are zeroth and first approximations to the

will be seen that they compare well with the ‘exact' result (equation
2.35) in the range 0.45 g 2h/b < 1.6, Comparison has not been
possible below the lower value owing to the limited amount of data

on the elliptic integrals available from Byrd and Friedman's tables.
Mevertheless, the asymptotic behaviour of ¢ for small h/b may be
found by reference to asymptotic expansions of the elliptic integrals
given by these authors. Thus, without giving details, it is found
that equations (2.14) and (2.35) may be replaced by the following

asymptotic forms:

2h/b v n(l“ﬁz)/[?5+(1“82)1n{(1*6)/(1+B){)s B+ 1 -1
7 (3.27)

o v 3w2(1-82) '[.7:6-!-(1"’82)111{(1*8)/(%8)}]:2/6(362“1)9 B > 1. )

By compering equations (3.27) with aquations (3.9) and (3.26)
it is evident that 0(O> and 0(1) as functions of 2h/b are identical
with the asymptotic form of 0.

The relative error of o(o) and 0(1) is 0(e2lne) which for
2h /b= 0.48 is 0(1Ow8). It is not surprising, therefore, that the
agreement between the approximate and ‘exact' values of ¢ is good

in the range of 2h/b considered.



3.3 Application of the techmique to the end-plate problem.

The accuracy of the zeroth approximation for the casec of the
planar wing having becn established it is intendod to apnly the samc
approach to the problem of the plarar wing with end plates. Actually,

a glightly different intorpretation of the approximation is necessary

but, essentially, the basic approach remains the same.

3.3.1 Relationship between the f plane and the transformed planes.

The integration of cquation (3.2), which is the differential
relationship between @ and t, is facilitated by using transformation
(2.3) and equation (2.4). Thus. after rearrangement, there is

obtzined instead of equation (3.2)

dQ/d2ks = Cl{a? ~ sn22%ks/R + (A2-1) (02~1/22)sn225:8/(1-12sn22Ks) }.

(3.28)
In turn, this may be integrated with the aid of cquation (310.02) of
Byrd and Friedman (which is used to integratc the second term in the

brackets) to yicld the expression

‘ 1
_{2s-E(2¢3)}_ (0%-1/22) (1-)2)®

-1y oy -
. . . -1 o (3.29)
lare Cg is the integration comstamt, sy = sn ~ (A/k)/2% and
2Ks 2 " 20§ .t
8 L{. A 4 .3 ,,."\ ! q" o
T(%s,2Ks1) = f k<sn2pgy en2fs; dn2Ks; m“2Ks’ d2¥s',

o 1 - k?sn?2Ks; sn?2Ks’

where cn2iks; and dn2Ks; are Jacobian elliptic functions as defined
by Byrd and Fricdman.

Woods (1961) has shown that T(2¥s,2Ks;) may be replaced by an
expression containing Jacobian theta and zeta functions.  Thus, by
employing his equaticn (78)(p. 125), it is possible to write instead

of equation (3.29)
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1
By 3id ? e 2 2 2 2

= T ln20 B iZL\S-h(ZL\S)} - (Ol "1/>\ )(1"& ) 1 9 en(’ITS""ITSlyCL)

& C7@ ZKs kZ2A? X@zazyi o e 8, (ms+ms1,q)

+ 2Ks Z(ZKslgk)%] + Cg, (3.30)

wvhere, with Byrd and Fricedman's notation, ev(,q) (v =0,1,2 and 3)
arc Jacobian theta functions and Z(,%) is the Jacobian zcta function’
Hereafter, unless otherwise shown, it is to be understoed that ev( )
are functions of q = exp(~mk’'/R) and Z( ) is a function of k.

The s plane, which is illustrated in Fig. 8, consists of a
rectangular domain which is indented at AB and CH.

By referring to the coordinate systems and notation of Figs.
5 and & it may be concluded that,on C'E',Q = b/2 + ih and the term
in equation (2.39) multiplied by C is purely real. Therefore
Cs= ih, 2 result which will be used implicitly ‘- when point-to-point
correspondence between the € and s plancs is considered.

Correspondcence between the two planes at point E is established

provided that

1
_ {RHK-EER+ID} (a2—1/A2)(1¢A2)2{

.b. 3 =M. 2 ¢ R
; * ik C[% (K I N EZoAZ)

s

(oo (n/2+inR" /2K~-7s1)] . X .
o 3 (n/2+imK [2%Fms 1)) (#ik')2(2Ks1)}y + b (3.31)
o}

The logarithmic term in equation (3.31) may be reduced by using
properties of the theta functions given by Woods (p. 117), namely

wd i
eo(ns + /2 + i7K'/2R) = ¢ “ejﬂ”ez(ws)

and
8y (-ms) = 65(ms).

* It should be noted that~60( ) and Z( ) are written as 04( ) and

Zy( ) by Voods.
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Thus,by employing these two results in conjunction with equation (2.11),
which is usoed to expand the term E(K + iK'), it is possible to rewrite

equation (3.31) in a form having the real and imaginary parts

- i 2_42y%
b/2 = Tlo?K - (K-E(KD/L2A2 - (e2-1/A2) (1~22)2 KZ(2Ks1) /2 (k2-29) %}

; ) N (3.32)

L+ K'(E~E(K) T (a®-1/2%) (1-22)* _

and 0 = LZI TTRRAZ T IWEET T T gyt it KiZ(2Ks))
(3.33)

respectively.

Equation (3.33) may be rearranged to give the result

i
o2 = KK~ EQOR' + /2 -Kt2(1- AZ\Z{nsl + K'Z(2Ks1) }/A (k2-22) 2,
Kk2)2[K*(1-A2)2{ns; + K'Z(2k sl)}/x(k2~A2) 2]

(3.34)
Fig 9 shows o plotted against X = sn-l(k/k)(90/K)for various

o = gin L (the modular angle).

The curve of the indentation AB may be defined by the relationship
.y

. Y
s = -5 + iK'/2K - E(e)eles (3.35)
. . . . - hy
vhere, with the origin at s = —s, + iK'/2K, € and © are polar
coordinates as shown in Fig. 8. Thus, by employing equations (3.30)
and (3.35) and the properties of the theta functions given by Woods
(p. 117), namely
. .t Jar , =% —ims
eo(ﬂs + 17K /2K) = iq ‘e 0, (rs)

and 81 (~ms) = -0, (ns), (3.36)

it is apparent that correspondence between the Q and s planes on AB

demands that

v .
. = ; L VRS 1) 1 . S, i¥
iz = [ (~2Ks, + 1K’ ~ 2Ke(8)e™ ")~ 53V {~2Ks; + iK' ~2RE(E)e” -

(a2=1/22) (1-22) 2
A(k2-22) 2

"
~E(~2Ks; + iK' ~2KE(8)e*")} - { imsy +
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o -

' — i
F ) 1n<gl(2”31 + 7e(8) 2

| SN .
ey )g - (2rs; ~ iK' + 2Ke(§)ele)Z(ZKsl){§ + ih.
i Yel : (
L 0y(me(9)e®) - (3.37)

" = . . . \

Therefore, if the values appropriate to point A, z =0 and 6 = 7,

are substituted into equation (3.37) and use is made of equation (3.36),
it is found that the imaginary part of the resulting expression yields

the result

1
=1 i - R 2.1/32) (1-22)2
0= C;aZK’~ Eéig {K'ﬂlm{E(MZKsl + 2Ke(m) + 1K)} - (QA(&éflgfé ) {
[ . .. - =

(s - §) + K'Z(ZKsl)}] + h. (3.32)
In turn, this may be simplified with the aid of a result which
may be deduced from equations (122.00), (140.01) and (141.01) of
Byrd and Friedman, narmely
en2Ks dn2Ks _ im _ E(K) (2Ks - iK').(3.39)

T(-2¥s + iK") = -7Z(2K - et -
( s iK' (2Ks) sn2ks 2R jid

Thus, by eliminating F(~-2Ks; + 2Ke(m) + iK') from equation (3.38)
with the aid of equation (3.39) and comparing the modified
expression with equation (3.33), it is found that

h = nC(1/32 ~ a2) (L - Az)%/ZA(kZ -k, (3.40)

Equations (3.32) and (3.49) may he combined to give a relation-
ship between 2h/b and o, k and A. The term o may he eliminated
from this expression by means of equation (3.34). Thus it is
possible to calculatz 2h/b as a function of x for various ¢ and the
results of such calculations are shown in Fig. 10.

In principle, the real part of equation (3.37) permits the
determination of ¢ in the form € = e(8,A,k). Unfortunately, as
vith equation (3.11), it would seem difficult to obtain a closed~
form solution. Thercfore, by analogy with the planar-wing case,

an iteration solution is sought as follows:
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- @) v i8] o T ~(n-1) v, 18
Re |In{6y (e " (6)c” ) }= Re |ln{0o; 275 +7¢E (8)e" )M ~ 4R(sy+

—{n~1 s KA (k2-72)2 —(n~1
+ g\n )(8)0053)2(2L31)+( 2”1§;2)?7)A2)2l 2(31+ g(p )(g)cosa) -

v
.- —(n~1) v, i8
L1 L o(o1) ve 4 Re[E(~2Ks) + iK' - 2KE (®)e )]
Tz {Slr € (6)cost + T }
(o)

g) = 0, Thus, by employing equation (3.39) to climinate
ple

2tz elliptie integral, there is obtained the result

Re [ 161(75(1)(6)b )%] = 1n{61(2ﬂsl)} =~ 4Ks17Z(2Ks;1) +

1

4 (1 ) 2 z 1
KA (> -2 <) ;)%!.{CL 'frT,Z'_Z'(“ Lr(1))}al + 2K {/.:(2:.(81)‘5'

(a“=1/A%) (1-A7

cn2Xs; dn2Ks)
T T enots; }:l ’ (3.41)

However, even with this simplification it would not appear possible to
obtain an explicit solution. Nuvertheless, a solution which possesses
the apparent asymptotic form of the first iterate may be derived by

noting that

i
8;{ms) ~ (2K'KK/w)*2Ks, 2Xs + O, (3.42)

a result which may be deduced from Byrd and Friedman's equations
(105.01), (105.02) and (907.01). Thus zquation (3.42) may be used
aft-hand side of equation {3.41) by its asymptotic
form for small ), that iz In{(8k'k K3/ﬂ)5E(l)(5)}. Consaquently,

. . — v .
upcn noting from equation {3.41) that e(l)(e) v 0 as A+ k, it may be

to replace tus

concluded that

—(1) T IR 4K (k2-22) 3
€ (9)’\/(81{9'1?—1'{—3') 91(2'"'81)(:3_.3} "41(81A(2K81) + ( Z—l/ll)(”_ )\Z)E{

o 2m - (1 _ 1 . cn2Ks; dn2Ksy
( Qﬁr“ﬁ\bQJﬂsl‘*2ﬁyxg@(ﬁ61) sndks, )ﬂ Ak,

(3.43)



Th= coordinatcs of the indentation AB in the t and s plancs are

related by the expression
-1+ €(8)2 %)/ = sn(-2¢s; + iK' - 2wE(®)el?), (3.44)

vherc, as for the planar wing, €(0) and 6 arz the polar coordinates
(with origin at t = =1/}1) of theindentation AB in the t planc.
Byrd and Friedmen's cquations (122.07) and (123.01) may be

utilized to yiecld the asymptotic relationship
N e ,
e(8)2"" ~ 2Ke(6)e " cn2Ks; dn2Ks)/sn2Ks;, €(0)-0, {A>k). (3.45)
Thus, by equating the moduli of cquation (3.45), it is found that
I Nyl v ’d Fon D7 ‘e =Y
e{8) ~ 2Ke(6)cn2Ks) dn2Ksp/sn2Ksy, €(€)-0, (A~k). (3.46)

Thercfore it is possible to infer from equations (3.43) and (3.46)

that a first approximation to €(8), e, way be written as

N

_ cn2Ks,; dn2Ks; . , LRA (e2-22)2

e= sn2ks] (,., ”I’) 61(21’(81)(‘.{7}{'41\31 b(AI.Sl) + ( 1/;\2)(1 A2 )?
(‘ o (R-E(K)) )81+ sy (2(2Ksp) + SRERSLARIRSIY (3 47y
¢ 712)2 B )81 + sz (2(2Ks1) sn/KSI >" )

a result which would scem to represent the asymptotic form of e(9) as
Ak,

Although details will not be given. it may be shown that with
k=1, which corresponds to end plates of zero height, equation (3.47)
is identical with equation (3.13) if e(l>(0) is replaced by e. Hence

(e present approximation for €(8) is equivalent to the first itecate

Iy

of the rlanar wing. Therefore, in view of the apparent accuracy of

of the latter approximation for small 2h/b, it is assumed that e is

sufficiently accurate for wings with end plates near the ground.
Curves of ln {(e/A) against ¥ for various ¢ are shown in Fig. 11.

This indicatcs that, for the range of % and & cxamined e is extremely
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small, a fact which is consistent with the assumption that
'"(O>(e) = 0 ig a good approximation for e(g)

The vertical dimension of the end-plate traces, }, may be written
in terms of the transformation constant and parameters by insisting on
corresnondence between the Q and s planes at point F. This require-

ment gives the rasult

+ i(h-) = C[az(K + 12Ksy)- 1212 {K + i2Ks, - E(K+ i2Ksjy)} -~

ot

_ (a2~1/k2)(1—,kﬁé ‘y !SO(W/Z + irs, - Ts3) s o .
XSS {4 1nleo("/2 e eS| (K+12Ks,)Z(2Ka) }] + ih,

(3.48)
where Sg = dnml(l/a,k')/ZK.

By employing the properties of the elliptic functions given by
Byrd and Friedman (p.20) and their equations (140.01) and (143.01)
it is possible to derive the result

: fo% = i T ms;_ k'2en(2Ks, k' )Sn(?"‘slvl‘ )1
E(K + i2Ksy) i{Z(2Ks, k') + A QH(ZI\" k) *

» ER)(K + 12&52)
% (3.49)

This result will be used in the simplification of equation (3.48) as

will the property given by Woods (p.117)

03(ms) = eo(n/z + TS, (3.50)

Therefore, by using equations (3.49) and (3.50) to rewrite
E(K + i2Ks,;) and the theta functions in ecuation (3.48), it is found,
after rearrangement, that

b - —-' f,VZ — + 4 L3 - i— 1 3 TYSZ —
5 il = C[Lw =T 2)\..(7 E{R)) (K + i2Ks,) W{Z(Z.&Sg,,l». ) + il

1
_ k'2cn(?Kssz')sn(2K523k')} (0%~ 1/A2)(1~A2)2{ 1n | 880 8a(insy-ms) )
dn(28s, k") A(ké-r%)z 2 85 (1nsz+ﬂsl)
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+ (X + iszz}z(zz-{sl)}].
Hence,comparing this expression with equation (3.32), ome is able to

obtain the result

r
2%

”n ;l- . r
_ k"cn(ZKszgk')sp(ZKszﬁk?)} . (a2-1/A2)(1~A2)Z{}_1n 03(imso~m57) | .
dn(2Kso, k') A(ké~14)2 2171 683(inso+msy)

- AT 1 2T TN ey 2 T . 1 7917 It ms R
1=7¢ EEZE“T}\T(L L {K)) OL.} 21\824' ]——2-5\-2{2-\2&\52# )+ -IE% -

+ s, 2(2Ks1) }J. (3.51)

This may be put into a form more suitable for computation by using
Jacohi's imaginery transformation of the 63 function given by Toods

(p.118), that is

,l
83(ms,q) = (K/K")%exp(-mKs2/K') 84 (~iKns/K',q ), (3.52)
where q'=q(k'). Therefore equation (3.52) makes it possible to
rewrite equation (3.51) in the following form:

1=T¢ L{@%—A—Z(K - E(K)) - o2}2Ks, + T{T;? {Z(2Ksp,k') + 27

N

k'2cn{2Ksy, k") sn(2Kso,k*) (a2-1/22) (1~12)% [ 2ms78,K
- 7 7 P+ 1= { 7 +
dn(ZL\SZ Lk') A(k2-)2) ¢ K
1 re3{ﬂK(Sz+ is1)/K',q'}
el - = 2K { . .
+ 57 ln! eg{ﬁK(Sz“ lsl)/KQ,qy}  + 2Ks»p Z(ZI\SI)} (3.53)
L

Finally, equation (3.53) may be simplified by comparison with
equation (3.33),and the 63 functions may be replaced by the series

form o
83(ns) = 1 + 2 Z d“zcos(Zmﬁs)

m=1
given by Byrd and Friedman (equation 1050.01). Thus, after
performing some routine operations on the logarithmic term of the

modified expression, there is obtained the expression



[¥S]
~J

k'2en(2Ks,, k' )sn(zKSbk y
L- E7>\2 {2(2Ksz,k") - dn(2Ks, k') }
s 22
1 S/ g4 : - ) t oty (O {V
_ (a2-1/22) (1~ xz)z £ 2 k.q" sin(2mKws, /KT )sinh (2mKrsy /K') \
A (kZ~22) % tan - .

\
\1+2m§1q'm2cos(2mKﬂsle')cosh(ZmKﬂsl/K?)//
(3.54)
The ratio 1/h may be written as & function of o, A and k by
combining equations (3.40) and (3.54). Thus it is possible, by
eliminating o from the resulting expressicn, to calculate 1/h as
a function of yx for various ¢ and the results obtained are
illustrated in Fig. 12. It should be remarked, in passing, that
the series expansions of equation (3.54) appear to converge very
rapidly in the range of x and ¢ considered. Therefore, only 4
terms were retained in the calculations, the error involved being

ronsidered negligible.

3.3.2 The flow problem.

By referring to equation (1l.1) it is found that the boundary
conditions for normal velocity in the Q plane are identical to those
of equation (2.1) at the corresponding segments of the bounding
contour. Furthermore, at the end-plate traces 3¢/o9n = 0.

In accordance with the method proposed in Section 1l.3,a
suitable superposition flow is sought. Unfortunately, it has not
been possible to find such a flow which has a complex potential in
closed form. On the other hand, by combining a number of simple
flows, it is conceivable that the conditions could be satisfied
with reasonable accuracy. However, it is difficult to state with
certainty how many of these flows would be required to ensure an
adequate approximation (except in the degenerate case of the planar
wing). This is an undesirable feature and would seem to outweigh

the advantagesof the superposition method. Weverthecless, it is
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instructive to discover the extent to which the boundary conditions
at the vortex trace are affected by the addition of a simple flow,
An obvious choice is the superposition flow employed for the planar
wing. Thus, if this is added to the Trefftz-plane flow, it is |
found that 3¢./on = O everywhere at the finite part of the bounding
contour except the traces of the end plates. Consequently the
solution of the combined flow in the t plane entails the integration
of the flow field cof source distributions. The integrals involved
are complicated and appear to be difficult to evaluate explicitly,
Suppose, however, that a source distribution of strength =w.b/h is
placed on the imaginary axis of the Q plane in the interval

-~o<z<+o, Firstly, it is found that the normal velocity at the end
plates is nullified whilst, othe» than at AB and GH, the remaining
beundary conditions are undisturbed. Secondly, except at the imagin-—
ary axis,the complex potential of the source flow is regular every-
where and, in consequence, does not alter the jump in velocity
potential at the vortex trace.

The adoption of the modified combined flow stems from the fact
that as h/b + O the flow induced near the end—-plate traces by the
sources of the imaginary axis becomes more like the flow of a
uniform stream parallel to the y direction. Furthermore, for the
purpose of calculating the influence of the end plates, the vortex
trace may be considered semi-infinite in span. Thus,in this
limiting case, which is of particular interest, it is possible to
identify a combination of simple superposition flows which, together,
satisfy the requirements.

If h/b is not very small it is necessary to solve the full
problem of the modified combined flow about an obstacle shaped like
the vortex trace. Unfortunately, the solution for this flow field
contains a complicated integral which is attributable to the

imaginary-axis sources. However, it will be shown that this may
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be simplified by expanding the integrand in such a form that the
first term is recognizable as part of the semi-infinite~wing
approximation.

The boundary conditions for the modified combined flow in the

negative half of the t plane may be written as follows:

(i) 3¢ /om = 0: (-1 + €(0))/A < Re(t) < 0, Im (t) = 0; )

O)\ ~o < Re(t) < ("1 - E(TT))/AD Im(t) = Oq

(ii) 3¢C/3n

e:y 9¢c _ Wb € a{&2~t2 1-t2, § . _ - -
Q1) 5 = Ton RelToire GEE? | 3 Re(t) = 0, 0 < Im(t) <= s (3.55)

Wob C |o2-r2 1-t2

2h 1‘_)\£t£(1_k4tg) ; t = ("1 + E(e)ere)/A,C' < e <7 5

i) Sde o
(iv) an

(v) W /dt v w.C2t/k?x%h; [t| > =, )

Conditions (iii) and (iv) are determined by noting that the
obstacle flow is symmetrical with respect to the z axis.

The fourth condition may be rewritten in terms of the polar
cocrdinates €(0) and 6. Thus,if, in this expression,e(e)is replaced

by € and the resultant expression is expanded for small e,it is found

that
T q2-1/22 1-32 5 16 2 1 9.0242
ey . ¥abC [o2-1/2 AT e T, doady2anla? |
dn AR 2h | 2 k%% ¢ k<A 42
252 "2 ’
$ Qe DEE b e etel] (3.56)

2(1-24) (k2=-29)
where subscripts AB denote conditions at the boundary of indentation
AB.
Before any approximations of equation (3.56) are made it is
relevant to remark that € = e(i,k). Therefore, in general, the
second term of the above expansion is not 0(l). However, an

examination of the relative magnitude of the first two terms of the
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expancion indicates that the modulus of the second term is negligible
compared with that of the first for 2h/b < 1. On this basis, there-
fore, all terms but the first are neglected to give a result which,

when combined with equation (3.40), yields the expression

(3¢ _/n) 5 = w bA/2me. (3.57)

Thus, to the order of accuracy of the first, semi-circular, approxi-
mation for €(8), the mormal velocity induced at the boundary of
indentation AB is identical with that induced at the same place by

a sink of strength w_b situated at t = 1/A.

One interpretation of the zeroth approximation to an exact
upper half-plane is that the boundary conditions of the indentations
are ignored in determining the flow field. In the present case,
however, such an interpretation will lead to large errors in ¢ owing
to the fact that (Bd)c/an)AB increases monotonically as € ~ 0. A
preferable interpretation is that the zecroth approximation satisfies
the boundary conditions of the indentstions in the mean around their
boundaries.

Upon placing the above-mentioned sink at t = -1/) it is apparent
that not only is the approximate boundary condition (3.57) satisfied
but also the exact boundary condition (3.55) (iv) in the mean. This
may be verified by examining the change in stream function from A to
B, ¢A—¢B; in each case, Therefore, in order to satisfy the second
interpretation of the zercth approximation, it is a comndition that
additional flows, which are needed to satisfy the remaining boundary
conditions, must not alter wAwwE.

A flow which satisfies the asymptotic comndition (3.55) (v) has

a complex potential given by

W = w_C?t2/2k2)\"h (3.58)
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This also satisfies conditions (3.55) (i) and (ii) and induces zero
normal velocity at Re(t) = O. Further, as its complex potential

is regular in the finite part of the t plane, this flow does not
affect the value of wA—wB. Therefore, to the order of accuracy

of the zeroth approximation, it does not disturb the boundary
condition of indentation AB.

Condition (3.55)(iii) is satisfied by a distribution of sinks
of strength wwb C Re{(az-tz)(1—t2)%/(1-A2t2)(1~k2t2)%}/h and
situated on the imaginary axis in the interval 0 g Im(t) ¢ . 1In
general, these sinks do not satisfy conditions (3.55) (i) and (ii).
This may be remedied, however, by an image distribution of sinks
beneath Im(t) = O which, it will be observed, does not disturb
condition (3.55)(iii). Thus, by integrating the contributions
of all the elementary sinks on the imaginary axis, it is found

that their complex velocity 1s given by

qI(t) _ web T 1% £(a?+e?) (1etd) 24¢
de 27h ‘;[ (ef+t%) (1+2%tY) (1+l}c‘tf)%' (3.59)

This expression is seen to be regular for Re(t) < 0. Therefore,
according to the zeroth approximation, the imaginary-axis sinks do not
invalidate the boundary condition of the indentatien AB.

Finally, it is observel that whilst the sink at t = -1/)
satisfies conditions (3.5)(i) and (ii) it does not satisfy condition
(3.5)(iii). However, this mav be corrected by the introduction: at
t = +1/) of an image of the sink at t = -1/A. This image has a
regular complex potential except at t = +1/A. Therefore, within
the limitations of the zeroth approximation, it does not disturb the
boundary conditicn of indentation AB.

Thus the zeroth approximation for the modified combined flow,

W (o)
C

s may be written as follows:
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~~C0

©)ey = - Wb C -
We (£) 2h £ at, (tf+t5) (L+A%gy %) (L+ke) 2 27
s 242
N Veliot (3.60)

Here the first term on the right—-hand side is the complex potential
of the sink distribution on the imaginary axis. This term is
obtained by replacing t by t; in equation (3.59) and integrating
with respect to tp. The second term is due to the sink at t= -1/X
and ite image whilst the last term is the complex potential of
equation (3.58).

Strictly, equation (3.80) should contain an arbitrary constant
but, as was evident in the planar-wing case, such ccnstants do not
influence o and thus thae constant is neglected.

The integral of equation (3.60) may be evaluated by empleying

the expansion

1 k'2 kY

!
.2 - - 16)}.
(14‘1{ t ) k {1 2(]<+kétf) 8(1+k2t%) + 0(1 )}

This expansion is uniformly valid if |1+k%tf| > k'2, a condition
which is satisfied within the limits of the inner integration if
&’ < 1, Furthermore, it should convergze rapidly for small h/b as,
in this case,k' is small,

Thus the term {(1+tf)Kl+k2tf)}% may be replaced in equation
(3.60) by the expanded form and the inner integration performed
term-by-term. This is achieved most conveniently by contour
integration of the inner integrand in the complex t; plane. Here
the contour consists of a semi~circle situated in the upper half
of the plane with its centre at the origin and that part of the
real axis directly underneath the semi-cirecle.

For Re(ty) < O the contour surrounds simple poles at
t1= ~it, and tj;= i/) and poles of various order at t;= i/k. There

are, however, no branch points within the contour; therefore it

1
tpfofred) Qrefy ey web g 202y
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is pessible to use Cauchy's residuc theorem.
The integral to be evaluated consists of the contribution
of the real axis part of the contour to the contour integral in
the limit as the radius of the scmi-circle tends to infinity.
Upcn narforming this limit it is found that the contribution of
the semi-circle vanishes. Consequently the imner integral of
cquation (3.60) is simply 27i times the residues within the contour.

Therefore, after determining these residuves, it is found that

0 !
} tpfofeed) eDfary | _w|_ 1 (2142 | k'2, (3%a2-1)
= (tfﬂ:g)(1+,\Zt§)(1+k2tf)? k 22 (1-rt) 2 T (AF=k2)(1-At)
(Po2-1) K" 200 202-1) _ (3k2e232-kMa2-x2k2)
(A4~k4) (1-kt) 16 (A %=kH?(1-1t) (A\Z-k%)2(1-kt)
w22,
(ko 1) T+ 0(k'S) s, Re(ty) < C. (3.61)

(AZ-k2) (1-kt)?

Upon combining equations (3 60) and (3.61) and performing the

t, integration cne is able to obtain the follewing result

;o (0) .. Feb €t _ (a?-1/22) k2 (k%a2-1) o L
We 27/ (E)= 5o |32 3 In{l-)t) 5 {l-i(l = )1n(1 kt)
22021 kM 20 (A 5021
- —)%TX%:KZ%‘ In(i- )\t)} + ""“ {“‘(—A(é"‘%zj'z—)-ln(l')\t) -
_ (3k202)2=kHa2-12-12) (1113 (k2a2-1)t 116 ] ~
k(A Zk2YZ In -k} + vy oy * 00
WeoD W;Eth
- "'-""“ 11.-(1 )\. tz) + ﬁ:z‘.)\ahﬁ Re(t) < O ° (3562)

The torms
Weold C w_ b )
SRR Z t ~§$— In(l+At)

&L
of equation (3.62), togethcr, represent the flow of a vniform stream
with complex potentizl w, bQ/2h in the Riemann sheet containing the
o

physical region RelQ| < 0. As Tig. 13 shows, this is identical
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with the flow of the same uniform stream around the vortex trace

of a planar wing of semi~infinite span and with an end plate. This
confirms the remark made previocusly that the expanded form of
integral (3.59) yields a first term which is part of the semi-
infinite-wing approximation. Thus it seems likely that for small
h/b a truncated form of the above expansion should yield reasonably
accurate values of ¢ within the limits of accuracy imposed by the

zeroth approximation.

3.3.3 Determination of the induced drag

The velocity potentials of the superposition flows are single-
valued at the vortex trace. Therefore by employing equations (2.22)
and (2.28) it is possible to write the zeroth approximation for I in

the form
() ~1/k 0 (o)
29 =2 + [ Yo U7 (dn/ar)ae fu b2
(-i+e(0)) /2 -1
Therefore this cquation may be combined with equaticns (3.2) and
(3.62) to give the result

(o) _ z§°) (o) Z’_(lo) )

v = + 22 +
Here =2 1l/k s :
g0 | _ €% WECE k) (02-£2) (1-£2) *de
1 Kok RO

(-1+e(0))/x -1
(where £(t,k,\) is the expression inside the square brackets of

equation 3.62)

= -i/k 0 262y (n2og2 2y %
Zgo) =‘E_{ o T }ln(1~A t4) (ot )(th )4de
b (14 (O))/x =1 (1-22t2) (1~k2t2) 2
and ] _ '
(o) _ . T {flfk . B t2e2eety a-e?) far
3 “ZA"b%h (I-22e5y (I-k%c%)

(-1+c(0)) /2 =1
0f the three integral expressions given above it would seem
(o)

that only I3 may be evaluated explicitly. This is made possible
¥y i3 y D y T

by transformation (2.3) and equation {(2.4) which enables one to
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rewrite z§°) in the form
P
(o) _ c3 k41K 9 sn?2Ks (a?~sn22Ks) (1~sn22Ks) d2Ks
eI P Y — vt T~ i%sn72Ks
-2E(s1+(0))+iK' -K
(3.63)
After rearrangement, equation (3.03) may be replaced by
—- -1k’
(o) _ _ ¢l { ik 9 - (1+02-1/22) sn?2Ks sn2Ks
I3 = = et + ) X Tzt

-2K(s1+€(0))+iK’ K

(A%2-1) (022~1/12)sn?2Ks

19K 3.
"2 (1-2Z8n23Ks) }a2Ks

+

Thus, by comparing this expression with equation (3.28) it is evident

that - —Reip! 0
(o) _ c3 (1+a?)sn22Kks sn*2Ks
=t IS Il v ol vl
-2K(s+e(0))+iK" -K
1 dap o . A
* T Tows - 72l 92Ks. (3.64)

The first two terms of the integrand of esquation (3.64) may be
integrated by means of equations (310.02) and (310.04) of Byrd and
Friedman. The third term, on the other hand, does not contribute
to z§°) owing to the requirement of point-to~point correspondence

berween the { and s planes which demands that

QK + iK") = Q(-K);
Q{~2%(sy + €(0)) + iK'} = (0).

Therefore, after performing the integration, equation (3.64) beccmes

-3 1 2 . —
19 - - kz;gbéh[ﬁgjié)(éK(s1+e(0)) - E(~K+iK') + E{-2K(s;+£(0)) + iK'} -

- E(0) + E(_K)> - EE%X? ((2+k2)2K(sl¥E(O)) - 2(1+k2){ﬁ(—K+iK’) -

~E{-2K(s1+€(0)) + iK'} + E(O) - E(—K}] +
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+k2[;n(—K+iK’)cn(—K+iK*)dn(wK+iK')~
[N
- sn{~2%(s1+€(0))+ik " }en{~2K (s +£(0) )+ikK ' }an{~2K(s;+e(0)) + iK'} +

2 —
+ sn(0)en(C)dn(0) -~ sn(wK)cn(mK)dn(mKi]\ —-%7 2K(sl+e(0)2} .
o (3.65)
An examination of the magnitude of e 7 (0)would seem to suggest

that, for 2h/b < 1, €(0) is negligible compared with s; and hence

it is ignored in equation (3.65). The resulting expression is then
simplified by employing equation (3.39) to expand the elliptic
integrals. In turn, this equétion may be further simplified by
employing properties of the elliptic functions and integrals given
by Byrd and Friedman in equatioms (111.00), (113.01), (122.00),
(122.01), (122.02), (i22.07) and (141.01) to yield finally

(@ ___¢ (1+02) - E(K), _ cn2Ks1dn2Ks) ,_
237 = - gy | TRoe (2Re1 (L 50 - 2(2Ksy) - e
1 28 o 2 E(K)2Ksy; ., cn2Ksidn2Ks;
- 4 2 - 1+ 2k -
gzt (2465 2Ky~ 201462 [2(2ks1) F T enoke,

cn2Ksdn2Ksy a?
sn”2Ks; } 7z 2Ks1 ] -

Before z§°) and z§°) may be evaluated it is necessary to replace

e(0) by € in the limits of the integrals which appear in these
expressions. Although the error implicit in this approximation has
nct been determined for arbitrary k it seems likely that it is
extremely small for h/b < 1. This view is gupported by a study
performed for k = L (Wb = 0) which irdicates that the error involved
with this approximation is CG(e2) compared with 2(09.

The only other approximation to be employed is in the expansion
appearing in £(t,k,)\), terms of O(k'®) being neglected. Examinatiown
of the neglected terms indicates that the error so caused in Z(O) ig

negligible for the cases considered.
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As a check on the status of the present interpretation of 2(0)
it is worth whiler to comsider its asymptotic behaviour as 1/b »+ o
(k" ~ o). Thus, without giving details, cne finds that

) ¢ i~A2 2(1-)2
Z(OI N ZAEthJ(lA3 2 1n Cg) - 353 - (;5 ) . O(EZi], k+o, (VW/b+0) .

(o)

It will be seen that this expression is identical with that of I
for the planar wing (equation 3.24) to the order of accuracy of
that epproximation.,

The integrals of Z§O> and Zgo) have been cvaluated numerically
by employing the Gaussian method cf mechanical quadrature This
technique was applied dircctly between the limits of integration
-1 to O, a fifteen-point interpolation scheme having been used.
lowever, between (-1 + €)/ X and -1/k an alternative approach was
necessary owing to the singularities in the integrands within or
very close to these limits. This consisted of replacing each
integrand by the sum of a function which is bounded for (-1 + e)/)
£ tg ~-1/k and a function which may be integrated explicitly. Thus,

-~

. o . .
for example, the integrand of Z§ ) was rewritten in the form

;n(l—xztz)(az---tz)(1~t2)% __AQLK) L BOLIK {In(IeAt)+1n(l+a/k) 3,
(I-XZE D (1-Kk%t2) 3 RN ET5Y. (1+At)

+ C{t,A,k). (3.65)

Here A{X,k) and B(),k) arz terms obtained by expanding the integrand
about the singularities at t = ~1/k and t = =1/X whilst C(t,)\.k) is
a function which is bounded in the interval of integration.

A similar process was applied to the integrand of Z§O) to

give an cxpression of the form

1 .
£0e,k,0) (e2~t2) (1~t2) % AY(A,K) B, k) ,
A2y (TRD)i— ~ (Zee-nt ¥ @azent € (F0,  (3.67)

where AP (A ,k), B'(\,k) and C'(t,\,k) are analogous with A(X,k),
B(A,k) and C(t,A,k).
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The first two terms on the right-hand side of equations (3.6%)
and (3.67) way be integrated amalytically. Thus, in order to

(o) (o)
1

determine % and I3, it is only necessary to integrate C(t,A,k)

and C'(t,)A,k) between the limits (~1 + ¢)/A and -1/k. This was

achieved by using the Gaussian method with a seven-point interpolation.
All the numerical integration described has been programmed for

computation on a Ferranti Pegasus computer.

(o)

The accuracy of the final result obtained for I was checked
for the case U/b = O by comparing this result with the planar-wing
value (equation 3.24). There was found to be excellent agreement
between the two results.

By noting that the end plates do not contribute to the cverall
lift of the configuration it is possible to conclude .that 0(0) is

(o) (o)

been determined and the results cbtained are plotted against 2h/b

related to & in the manner of equation (2.34). Thus o has
for various 21/b and against l/h for various 2h/b in Figs. 14 and

LD

4. Discussion
The results confirm what might be expected on an intuitive
basis, namely that for a given 2h/b an increase in 21/b reduces the
induced~drag factor. What is more important, perhaps, is that they
show that the reduction is greatest in the vicinity of 21/b = 2h/b,

yielding c(o) = 0 for 21/b = 2h/b. The reason for this is that
for 2%/b = 2h/b the only physically acceptable value for w_ is zero.
On the other hand, for quite small 2(h~1)/b, [ww[ and 6(030

appreciable owing to the large mass flow between the ground and the

can be

tips of the end-plate traces caused by the singular velociiies there.
However, this is an unrealistic feature which will not occur in
practice owing to the action of viscosity.

Other features of the theory which may be criticized are,

firstly, that it dces not represent the deformation of the trailing-
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vortex sheet, Secondly, it does not allow for the non-linear
influence of the ground on the relationship between 1lift and
circulation. To represent these effects completely in a theory
is extremely difficult, A more promising approach would seem to
be to compare the linearized theory with experiment in the hope
of achieving the following aims:
(i) To decide on the limits to be placed on the accuracy

of the linearized tieory.

(ii) To identify important effects not included in the theory.
Such a comparison is effected in Chapter III which also deals with

a discussion of the experiments on various open configurations.
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CHAPTER 11

THE LIFT AND INDUCED DRAG OF A CLOSED GROUND--EFFECT WING

1. Iatroduction
Closed G.E.Ws. may, in theory, be designed for zero induced

drag whilst giving non-zero lift. However, in practice, there
are many factors which may prevent this ideal from being achieved.
For example, in the case of a G.E.W. with end plates, structural
requirements will, to a large extent, influence the design of the
end plates. The reason for this is that the end plates will be
exposed to wave impact and, in consequence, will transmit large,
transient loads to the main structure. It is conceivable,
therefore, that the end plates will be required tc have minimum
hydrodynamic drag, a requirement which may conflict with the
requirement of minimum induced drag.

Thus the main aim of this chapter is to describe a method of
determining the lift and induced drag of a closed configuration
which is not designed ab initio for zero induced drag. This method
is based on a study of sectional-drag relationships which will be
described in Part I of this chapter. Subsequently, in Part II,
the technique developed in Part I will be applied to the problem
stated above.

There is evidence from the two-dimensional theory of de Haller
(1936) that unless the non-linear features of the problem are
included in the theory it will be inaccurate. Therefore, although
initially the theory will be developed on the basis of the linearized
theory, it will be modified in Section 7 to allow for the most

significant non-linearities.



PART I
FOUNDATIONS

2. The relationship between sectional drag and induced drag.

This section is concerned with an analysis of the sectional
drag of various lifting systems including those representative
of the G.E.W. configurations to be considerad in Part II.
Throughout the analysis, the discussion will be confined to wings
having chordwise sections of zero thickness and the following
assumptions will be emplcyed:

(i) The flow relative tec the lifting system ig inviscid

and incompressible.

(ii) The approximations of the linearized lifting-surface

theory are applicable.

2.1 Vingz with arbitrary planforms and vorticity distributions

Consider an isolated planar wing of arbitrary planform in
forward flight.  Suppose that the wing, which is showvn in Fig. 16
with the right-hand ccordinate system (x,y,2), is designed to
sustain a y component of vorticity yv(x,v). The linearized form
of the secticnal drag of the wing may be founé by reference to
the analysis of Jones and Cohen (1957, p.p.23-24). This enables
one to derive the result c(y)

Do) = -p [ w(xy)v(x,y)dx - T(y). (2.1)
o

Here Df(y) and wf(x,y) are the sectional drag and upwash at the
wing in forward flight, T(y) is the sectional edge thrust (megative
drag} and c(y) is the local chord.

The metion of the wing is reversed and a new right-handed
coordinate system (x',y',z'), which is defined by

x'=-x, y'=-y, z' =2z, (2.2)
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is introduced. At the same time, the camber distribution of the
winz is modified such that at all stations (x.y) of the wing the
v' component of vorticity is identical with v(x,y).

Robinson and Laurmann (1956, p.p. 172-174) have shown that ,
within the limitations of the lineariz-d thecry, the sectional
edge thrust of a given planform depends only on v(x.,vy). Therefore
the sasctional drag in reverse flight is given by

o
D.(y) =-p [ w.(x'y)vxydz' + 1@, (2.3)
-c(y)
where the subscript r denotes reverse-flight quantities.

Equation (2.2) may be used to rewrite equation (2.3) in the

form {y)

D.¥) = -0 [ w (x',y)(x,y)dx + T(y).
[s)

In turn, this result may be cowbined with equation (2.1) to yield
o 1
the result c(y)
De(¥) +D () = =0 [ {w (xy) + v (x',y") Ir(x,y)dx. (2.4)
) .

As noted in Section I. 1.1, the linearized theory employs the
agsumption that the wing and its trailing-vortex sheet lie on a
cylindrical surface with zenerators parallel to the direction of
motion. It is alsc observed in the same section that the trailing-
vortex vector is everywhere parallel to the flow relative to,and
infinitely far forward of.the wing. Therefore, if the flow fields
of the two motions are superposed, there results an infinite vortex
strip which is in the plane z = 0 and parallel to x. Further, the
span of the strip is the same as that of the wing.

By recalling the fundamental laws of vortex motion, (Thwaites,
1960, p.32) it may be concluded that at all x-wise statioms the
circulation distribution of the vortex strip is the same as that
at the vortex trace in the Trefftz plane of sither motion. Hence,

if w_(y) is the upwash at the vortex trace in the Trefftz plame of



the forward motion, it follows that
we(x,7) + w (x',77) = wa(y), (7.5)

a result originally due to Jones (1551). Therefore equations

(2.4) and (2.5) may be combined to give the result

De(y) + D _(y) = ~p wuly) T(y), {2.6)
c(y)
where I'(y) = f v(x,y)dx
)

is the circulation around the secticn,defined positive in the
iifting sense. That this is the same as the jump in velocity
potentialg¢u(y) - ¢l(yL at the vortex trace in the Trefftz plane
of either motion follows from the laws of vortex motion.

Equation (2.6) may be written in the alternative form

De(y) + D (y) =2 D, (¥), (2.7)

where Di(y) ~-p W, (y) P(y)/z_is referred to as the induced-drag
gradient., This title is suggested from considerations of the

form of the expression for the overall induced drag of the wing
which,by cmploying equation (I. 2.22) may be writtea in the form

D, = 0 [, vu(y) T(y)dy/2.

Here the subscript b denotes integration across the span of the
wing.
Lquations (2.4) and (2.7) may be generalized without difficulty

to include non-planar lifting systems as follows:

- ov_(8) T(s), ‘L
(2.8)
2 D, (s), J

)
Df(S) + Dr(s,

[
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where (s, n) are curvilinear, orthogonal coordinates in planes
normal to the direction of motion such that n is constant on the
trace of the cylindrical surface. Also, vnm(s) is the velocity
in the direction of n at the vortex trace in the Trefftz plane.
The circulation I'(s) is defined positive if the sectional

force in the direction of n is positive.

2.2 Wings with a spanwise plane of symmetry

Equations (2.7) and (2.8) provide no information about the
separate values of the sectional drags for the two motions. However,
some progress in this direction is possible in the case of wings

with a spanwise plane of symmetry.

2.2.1 Symmetrical chordwise distributions of y(x,y)

Consider an isolated planar wing with a spanwise plane of
symmetry and a vortex distribution y(x,y) which is symmetrical
with respect to the mid-chord axis. Thus, if the origin of the
axes is placed on the mid-chord axis of the wing, it may be
concluded from symmetry considerations that

wf(x,y) = wr(x,y') (2.9)
This relationship is illustrated diagramatically in the sketch

below .
A 4

/////'f— /////’;”—
/// v(x,¥)

[oe [
X
\

v(x,y)

5

(x,y) TW (x',y")
- £ /" '\ rAt'

FORWARD _ REVERSE
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Far conv«;nlence9 wf\x,y) and w (x,y; are written in the
following forms:

(a)<X (s )(X

wf(xﬁy) = W zy) + V SY)' j

(2.10)
wr(x'gy') = wr(a)(x'sy') + wr(s)(x'?y’)9 Jr

where the superscripts (a) and (s) imply that the respective
functions are antisymmetric and symmetric with respect to the mid-
chord axis.

The antisymmetric part of wf(x,y) is given by
(X9Y) = i{WF(X9Y) - Wf(“XaY)}a

= w_(oy") - v _(-x,y")} (2.11)

from eguation (2.9). But -
- (a) vty = L LI KN T S
“r (x',y') = 3 Wr(x >y ) Wr( X ¥ ). (2.12)

Hence, by comparing equations (2.2), (2.11) and (2.12), it is
evident that

f(a>(x)y) =~ (a )(x RAR (2.13)

A similar analysis applied to the symmetric parts of

wf(xgy) and wr(x',y') reveuls that

v <S)(x,y} -

; w &y, (2.14)

3y combining equations (2.5) and (2.10) it is possible to

obtain the result

(s) (s)

£ (x'.y") = we(y).

ff(a)(x,y) + wr(a>(X‘ay') e (xy) v

In turn, this expresgion may be combinad with equations (2.13) and

(2.14) to give the result

wf<s)(x9y) = Wol{y)/2. (2.15)
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Thus it is apparent from equations (2.10) and (2.15) that
() = vl (x,9) * v, (y)/2 (2.16)
f 5Y) = E x,7 W \Y ) /40 .

As a consequence of the chordwise symmetry of the planform
and the vortex distribution the sectional edge thrust is zero.

Therefore re(y) /2
Dely)

- we (x,7)y(x,7)dx,
~-c(y)/2

+c(y)/2. (a)
~p f ; {wf (%,¥) + weol¥)/2}v(x,y)dx (2.17)
~c(y)/2

from equation (2.16). Hence, by recalling that y(x,y) is symmetric

about the mid-chord axis and examining the form of the integrand of

equation (2.17). one may conclude that

De(y) = =p Wuly) T(y)/2,

= Di(y). (2.18)

It is not difficult to generalize equation (2.18) to include
wings of non~planar span having the following properties:

(&) a chordwise distribution of the s component of vorticity
which is symmetrical about the mid-chord point at each s-wise
stationg
(b) elements with mid-chord points occupying a single plane
which is normal to the direction of motion.

For non-planar wings with these properties

De(s) = Di(s).
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2.2.2 Arbitrary chordwise distributions of v(x,y)

The preceding analysis may be generalized somcwhat by
considering arbitrary chordwise distributions of v(x,y) which, for

convenience, will be written in the form

( ) (0) (x

y(xz,y) = (x,y) + v sY) e

Here x(o>(A,y} and y(o)(xgy) are even and odd functions of = with
respect to ¥ = O, respectively. Thus, hereafter, any function
which ig superscrirted with (e) or (o) corresponds to the even or
odd components of y(x,vy). However, it need not necessarily be an
aven or o0dd function of x.

The sectional drag in forward motion may be written in the

form
+c(y) /2 ,
LEHY) = -p (f '/ wa\e)(Ysy) + v (o )(X,y)JL(( )(x y) + y( )(YyY/}uX ~ T(y),
~c(y)/2
+e{y) /2 +c(y)/2
= —p f)/ f(‘-l (xny:v(e) (x,y)dx -p 312 ( )(x V) Y(o) (x,y)dx -~
~c{y)/2 ~c(y 7
+c(y)/2 +c(y) /2
~p : (’)(x,ﬁy)w’(e)(xgy)dx -0 wf(e> (xay)v(o)(xpy)dr’f G
~c{y)/2 ~ ~c(y)/2 ,
(2.19)

The first term on the right-hand side of equation (2.19) is the
gsactional drne of the distribution y(e)(x,y). Only this distribution
contributes to T(y) and hence to i(y) owing to the fact that
T(O)(y) = 0., Therefore

{e)
D == D.\ \ .
D, (y) = 2,7 (y)
has h ; : : n e e (@) _ o (e)
It has heen shown in Section 2.2.1 howover, thet Li (y) = De (v).
tience () +c(v;/° (e) (e)
Do {y) =-p | Ve (x,v)y" " (x,y)dx = D, (y) (2.20)

£ ~e(y) /2



)
be T(O’(y) = O, it follows that wm(o)(y) = 0. Thus by
employing equation (2.5), which applies for arbitrary v(x,y), it

may be concluded that

Wf(o)(xgy) + wr(g)(x',y') = 0. (2.21)

It is apparent from an examination of the symmetry of the

induced velocity field of the distribution y(o)(xyy} that
) o)
wf( )(x',y) = —wr( T(x',yh), ’ (2.22)
a relationship which is illustrated in the accompanying sketch

(0)(

X,¥)

- (o)
—~ 0
d

s
Lo
—— Twé )(xyy)

L
——
FORWLRD REVERSE

Therefore (x y) may be eliminated from equations (2.21) and

(2.22) to prov1dc the result

wf(o)(xgy) - W, ©) (xt,y) =
Hence it follcws that, as x' = -X, wf(o)(x,Y) is an even function
of x and consequently
+c{y)/2 '
f wf(c)(x,y)y(ﬁ)(xgy)dx = 0, (2.23)

~c(y) /2



59,

Thus,upon combining equations (2.19), (2.29) and (2.23),it is found

that

+c(y) /2 ,
Df(y) = Di(y) -0 wf(O)(X9y)Y(e)(X9Y)dX -
-c(y)/2
+e(y) /2 A (2.24)
~p wf(“’(xsy)Y(o)(X,y)dx - T(y).
-e(y)/2

It appears not to be possible to reduce equation (2.24) with-
\
A e a)
out explicit knowledge of the form of y( ‘(x,y) and Y( >(X,y).
However, it may be inferred from this equation that, provided that

+c(y)/2
o Wf(c)(X9Y)Y(e)(X:Y>dX +p
-e(y)/2 -e(y)/2 ~

+c(y) /2
wF(e)(xﬁy)y<o)(x,y)dx + T(y) = O,

(2.25)
D.(y) = D.(y).

It is difficult, in general, to determine classes of vorticity
distributions which satisfy cquation {(2.25). On the other hand,
as the overall drag is identical with the overall induced drag, it
follows from equation (2.24) that equaticn (2.25) is satisfied in
the mean across the span of the wing. Thus equation (2.25) is
approximately correct if the quantities in this equation which
vary with y do so slowly. On this basis, therefore, it is antici-
pated that this equation applies approximately for planar wings of
large aspect ratio and with a spanwise plane of symmetry.  Thwaites
(19€0) has shown that, for uncambered wings of this class, v(x,y) is
of the form

v{z,v) = v{2%x/c(y) }£(2y/b), (2.26)

whers, it will be recalled, b is the span of the wing. This type
of distribution has been cmployed in the approximate lifting-surface
theories of Vi~ghardt(1%40) and Kuchemann (1952) to determine the

lift of uncambered plemar wings. The latter author justified its
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use on the basis that in the region of the wing tips, where it is
unrepresentative, the lift is cemparatively small. Therefore he
argued that the error thereby intrcduced into the lift is likely
to be unimportant.

The distribution (2.26) is of particular interest here as it
seems that it approximates well to the vortex distributions of
certain closed G.E.Ws. (see Section 5). It is instructive, there~
fore, to exemine in more detail the sectional drag equation associated

with this class c¢f distribution.

2.2.3 Sectional drag of the distributicny{(2x/c(y)}H2y/b)

In order to obtain a more explicit form for equation (2.24)
it is necessary tc know the relationship between y(x,y) and wf(x,y).
This has been derived by Lawrence (1951) for isolated planar wings

as follows:

1
ol e oy G L L mx) 2+ (v -y) 2}
wf(xl,yl) iy v 3Y1jsf o {l + % dx dy,

(2 027)
where the subescript S dencotes integration over the planform.

Therefore, if the wing has a spanwise plane of symmetry and y(X,y)

is as given by equation (2.26), equation (2.27) becomes

+1 +b/2 B}
, ) . c(y)£(2y/b
Wfkglsyl) == 'é_,; 'é_y'I' _{Y(E)dg _.b:‘/‘z (yilfy ) -1 +

et

{(cy)E~c(ME)2+4(y -y)z}%
* . C%Y1)€1‘C(Y)€ : J dy> (2.28)

whgre £ = 2x/c(y), &1 = 2x1/c(y1).

The right-kand side of equation (2.28) is evaluated subject
to Cauchy principal values (as defined by Thwaites, 1960, p. 118)

being taken where required.
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Thus,by employing equation (2.28) it is possible to replace

the first integral of equation (2.24) by the expression

+c(yy)/2
I epecenmy v, ) ax =
-c(yy)/2
1 +1 +L/2 -
_clyp)£Qy) /b) [* (), \ar B 1 (0) /2 o (y)E(zy/b)dy
16n ilY (g1)dg; 371 11Y (8)ag _i/z pp—— +
oy 5 1 () +b/2
+ f b v}(gl)dgl 3_— ) (£)deg f A(Y»Ylsgagl)dYJ s (2.29)
~1 Y1 4 ~b/2
where
1
c(y)£C2y/D) {(e(y)Ey~e(n) €2 +4(y -y)23% (2.30)

A(Y9Y1sg;£1) = (yl
The & integrand of th
is antisyimetric.  Theref

the expression

-yy (cly1)E) ~c{y)E)

e first muitiple integral of equation (2.29)

ore this term vanishes identically to yield

rely)/2 .
I e ey e, Gy =
~c(y1)/2
£ +b/2
_ v(yli§§2Y1/v f (rl>cr1 f \ (g)ds-%~ ] Aly,yy,8,81)dy,
1-b/2 (2.31)

vheve it has been assumed

tion under the & integral

In a similar fashion
becones
D2 ()
} Y (51)f(2y1/b)wf

~c(y1)/2

permissible to perform the y; differentia-
sign.

the second integral of equation (2.24)

e
( )<31571)dxl =
+1 +b/2 N E 1D
D dEL 5o ! VP oyag [ DIy,
~h/2 IV

/
(£)dg f (¥, Ylsgsgl)dY} .



The first multiple integral of this expression is
identically zero, o fact which may be proved by noting the anti-

symmetric form of the &) integrand of this integral. Hence

+e(y1)/2 R
f Y(O)(El)f(Zyl/b) wf(b)(xlsyl)dxl =
~e(y1)/2
Dty oy /2
S e oL A (O Y Y-
. “"1 "1 yl‘b/Z (2.32)

>

the differentiation with respect to y; being taken under the £ integral
sign as before.

An examination of equations (2.31) and (2.32) suggests that
the two multiple integrals become basically similar if the order
of the ¢ and £; integration is reversed in one of them. Therefore,
before these equations ars used to rewrite equation (2.42), the
order of the £ and &; integration of equation (2.32)will be inter-

changed. This may be parformed according to the following rule

given by Teaslet and Lomax (1955):

. r
fagy Ju(e,g0)dE = [agfu(e.g))de; + R,

S S
where R is the ‘residual’, According to these authors, if the
singularity causing the residual is located at the upper limits of
1

the integration, say £1= +1, & = +1, then

1 1 1 1
R = Lig [ [ agy [ w(E,g1)de- [ ag | w(asapdsl] . (2.33)
i~e l1-¢ 1-e 1l-g
In general, however, the singularity or singularities producing
residuals may occur anywhere within the arca of integration. Thoir
location can be determined by meens of a simple test giver by
Heaslet eand Lomax. This states that a residual results if, at the

the area of integration,

vy
s
I
O
r-lo
)
[
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1 20 ¢ a- e £
Lim ¢ y(a-en, b-en) #= O,
whero en = a~§: eny= b-&;. (2.34)

Heaslet and Lomax have remarked that if this test reveals the prasence
of more than ona residual then the total residual is the sum of the
separate residuals.

The residual corresponding to eguation (2.32) may be found b

. e),. o . . .
replacing ?( )(g) and Y( >(E) in this equation by the rerresentative

forins
e) (e i ]
?(b}(i) = a& )Un/(l"gz)z + even bounded terms; N
(o) (o ) (2.35)
v O(E) =ay E/(]“f‘) + odd bounded terms,
. (&) (o) s . . crs s
whore ao and a0 are non-dimensional cocfficients. These

distributions are representative insofar as they conform to the
. @
Laurmann, 1956) that if v( )(g)

]
[T

roquirement (noted by Robinson o

( )/

-l
and {Z) become singular at the cedges they do so as (1-£2) 2.

Thus the above-mentioned test reveals that therc are two
regsiduals associated with the multiple integral of equation (2.32).

i
th

u
being caused by the cross-product cf the singular terms of
£

T

e
o . .
7Y and y< >(gl). Thereforae,1f the ovder of the £ and &,

integration in equation {(2.32) is interchanged,there is obtained the

rasult
+C(Y1)/4 PR 2)
f '\f‘\O/(El)f(ZYIJ/b}"ﬂF(‘d (Xltf}rl)dxl =
c(y1)/2 )
+1 +b/2
g Iy / o { \ 3
- - _C\yng(u}l.b) j’ (e} /(g)dr f (o <£l)dg1 e f A(Y;Ylsgsgl)dy +
Tem iy . Y1 L)
4 Rl o4 RZ s (2-36)

where Ry and E, are the two residuals. The first of these, which
results from the singularity at £ = +1, £; = +1, may be found with

1d of equation {(2.33) as follows:

&h

the ai

0]



(e} _ (o) 2
. a a U3 c(y1)£(2y1/b .
“1(Y1> = 20 o ?6n 1)£(2y1/b) %i@ [
1, o+l +b/2
= 2 2 ALy.E,Edy -
+1“J.E(1MQ )2+1__€ (1."‘; ) 3}71 "b/Z

1 +1 b/
~ } . dE e agy, 8 T j

+1-g (1-£%) +i 5(1 D" oy ~b/2

A(Y9Y1 9gsgl)d}7] .

By employing transformation (2.34) with a=b=1 it is possible

to rewrite the above equation in the form

a8a{PW eypE@yI) |, [

Rilyn) = 16ﬂ €30

1 +b/2
(1 £n1)dn )
EI TN, - >4 f Z i f A(YaY1,1m€n,1—€n1)dy -
o @m-enf)? | (2n ew ¥y 7,
_E}f ! f(l-enl)dnl; ) f A L-en. 1-ens)d
é (2n~€n‘) (2ny=enf)® B3y _ ) Ys¥1s s 1)dyy} -

(2.37)
The limit of eguation (2.37) is taken in Appendix I which yields

the result

( ) (o)pz (s 1)f2/2y1/b>L L QQEﬁle) } f =y f

Riyp) = - ., m? n*(n ny)

herefore the n integration of this equation may be performed, subject
to a Cauchy principal value being defined at n = nj,to give the
expression

(e)  {e)

P o 0 UZ c(yi1)£2(2y/h d ,m? dn;
R = -2 Tp SOVEOND) g, L delnd)®yd [1a¢ e
: ~N

In turn, this equation may be integrated by employing the transformation
n = u2

and equation (864.12) of Dwight (1961),thus providing the result
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(e)_ (o)
R]_ (y1) - - Tan ap

U%CéYI)fZ(ZYI/b){l 1y de(yy) )}

ay1
(2.38)

The residual R,, which is caused by the singularity at &
g1=~1, may be found by using an analysis which is identical with
that used to obtain R; if the transformations

g =-t g =-g
are used. In fact, it may be concluded from this analysis that
R, = Ry (2.39)

Hence equationz (2.38) and (2.39) may be employed to rewrite equation
{2.36) as follows:

+c{y1)/2

Y(O)(El)f(2Y1/b)Wf(e)(xl,yl)dxl =

-c(y1)/2
o s EE T @) e T ygp 2 P
Tor u{” (£)dg i (£1)4g, ayl_b/zﬂ(YsYIsg ,€1)dy -
(e), ( )2 2
- Tag Use(y)£°Qyy/b) e 4 1 (dC(yl)) 32,
7 A

This expression may be rewritten by interchanging the roles of £ and
£y. Thus, upon combining the modified expression with equations

(2.24), {2.30) end (2.31) one finds that

' /Z
De(yy) =D (y1) + DC(y%éi(Zx1/b) f (e),g ydE, f 0 (gyae =2 - i ccaﬂzwb)[

-1 YI_b/Z yi=y

1
e ey -c () 8)2+4(y -y 2)2 | t’<c<yl)s-c<y>al)2+4<y1~v>2}2}dy +
c{y1)&1—c(yle c(ype - ey
(&) (o)

+ T2o a0 DU§C(Yl)f2(271/b>{1 + 1

p (anﬁzl))z}z -~ T(y).  (2.40)

Finally, it is necessary to give an explicit form to T(y1). This
is achieved by employing a result given by Robinson and Laurmann
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(equation 3.2, 10) for the contribution of one edge to the sectional
edge thrust. Thus, after allowing for the contributions of both
edges, one may use this result to obtain the expression

, (@) (o) .2 2 ; L
T(yy) = o 30 png(yl)f (Zyl/b){l +'i6§§é%Ll)2}2° (2.41)

Therefore equations (2.40) and (2.41) may be combined to give the

result

1 +1 /2
) pe(y )£y /0) 7T (o) (0) v ar 3 HcmIEQyM) [
D.(y1) =D, (y1) + e {w (El)dil_{v (8)dg QY14£Q iy

1 1
{(c(r1)E1-c(y)E) 244 (yy-y) 2 Y2 | {(C(Y1)E”C(Y)E1)2+4(Y1"Y)2}é]~d
c(yE —c(VE c(y1) E-c(ET ye
(2.42)

It has nct been possible to simplify equation (2.42).without making
approximations,except in the case c(y) = c¢(y)) = c corresponding to
the rectangular planform. It may be inferred that for this planform

the integral term is identically zero leaving
D.(y) = D, (),

where y; has been replared by y. This result, which would seem to
be approximately ccrrect for wings of quasi-rectangular planform, may

be written in the alternative forms

+c/2 .
o [ () EQ@y/DIv (x,y)dx + T(¥) = pwa(y)T(¥)/2, ’
me/2 ve/2 \2.433
C/a
= Pl (y) 'fAY(E)f(ZY/b)dX/QJ
-c/2

Thercfore, by employing equation (2.41) with c(y;) replaced by ¢ and
writing +1
6= { [yeyde/mu y2/a (&), (@ (2.44)
| -1 o o o

it is possible to replace equations (2.43) by the expression



+1 +1
I{y) = -mbelf v (g, y)ag/ fr(z)ag ~ W l(y) 72}, (2.45)
-1
Equation (2.43) will be generalized in Section 2.2.4 to include
non~planar lifting systems of the type considered in Section 2.2.1

but witih the added restri n that the chord is constant on all

e}

cti
surfaces. This type of lifting system is representative of the

closed G.E.W. to be considered in Part II of this chapter

2.2.4 HWon-planar, constant-chord distribution of the type v(x}f(s).

o

Consider a mon-planar lifting system having elements with (a)
mid-chord poiuts occupying a single plane normal to the direction of
motion and (b) the same,constant chord. c. The sectional drag of
this type cof system may be written in the same form as equation
(2.24) by using arguments identical with those used to obtain this
equation. Thus it is found that

+e/2 +c/2
Dts) = D, ()-p | v.2 o)y eesin-o [ v Q60 6 e

£ * ~c/2 -c72

(2.46)

3 to be interpreted as the s component of vorticity

o

Here v(x,s8)
and v is the 'n - wash' at the system.
Av examiunation of the velocity field of elementary horseshoe

2

vortices indicates that

qu(X1951> = - ffy(x,s)K(xlﬂxgslgs)dx ds, (2.47)
af 5
where subscript D denotes integration over the develcped area of

he lifting system and K(x;~X,8;,5) is an operator which may be
written as follows:
K{xi=x%,81,8) = K _(21,23/2 + Ri(x1-%,81,8). (2.48)

Here ¥.{s j,8) is an operator which appears in the expression

v {sp) =-“ffg(x,s)Kw(sl,s}éx ds (2.49)
LL00 D



68.

and K;(x1;-x, s1, s) has the property
Ry(x;~x, 83, 8) = ~Kj(x-x;, 81, 8. (2.50)
That K(x;-x, s1, 8) is of the form given by equation (2.48)
may also be verified fairly easily by employing equation (2.8).
If the vortex distribution is of the type y(x)£(s) it is

possible, by using equation (2.48), to rewrite equation (2.47) in

the form +e/2
vnf(xl,sl) = - f y{x)dx f £(s){K_(s1,8)/2 + K;(x;-x,81,8) }ds,
-c/2 3

where B denotes integration over all s of the vortex trace. Thus,

by employing this result and equation (2.50), it is found that

+c/2 +c/2
£ y<o)(xl)f(sl)véi)(xl,sl)dxl = - 5 y(e)(xl)f(sl)vég)(xl,sﬂdxl4-R@1L
-c/2 ~e/2

(2.51)
where R(s;) is the residual resulting from the reversal of the x and

X) integration in the integral

+C/2 (O) +Cl/2 (e)
- [ (xy)dxy [ v ®dx [ £(s)K,(x;~%,51,5)ds
-c/2 -c/2 B

The residual, R = R; + Ry, of the planar wing of rectangular
planform is independent of wing span if y(x,y) is specified. This
is because in the regions contributing to the residual (the edges)

(e) (o)

be attributed to the fact that near the edges these flows depend

the induced flows of vy and v are two-dimensional. This may
only on the local geometry. Evidently, non-planar systems also
possess this property. Therefore the residual may be determined in
the present case by assuming that each section is part of a planar
wing. Consequently it may be inferred from equations (2.38) and

(2.39) that
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R(sy) = —naée) aéo) Ug c £2(sy) /% . (2.52)

The previously-mentioned analysis of Robinson and Laurmann may
be employed to determine the following result for the sectional
edge thrust
T(sy) = ﬂaée) aéo) pUg c £2(sy) /4. (2.53)
Hence it may be concluded from equations (2.46), (2.51), (2.52) and

(2.53) that
Df(s) = Di(s).

Consequently, by analogy with equation (2.45),
+1 +1
r(s) = -mBel [v(O)v_ (&,8)de/ [v(B)dE - v (s)/2}. (2.54)
-1 n -1 n

3. Sectional-drag relationships applied to wing theory.

The aim of this section is to employ sectional-drag relationships
derived previously to formulate an approximate method for determining
the overall lift and induced drag of certain types of wings. It
will be shown that this method resembles that given by Kuchemann
(1952) except in one important detail.

In Section 3.1 the analysis will be concerned with wings of zero
chordwise camber whilst in Section 3.2 the influence of chordwise
camber will be considered. The whole of this analysis will be
restricted to wings having chordwise sections of zero thickness and

will be based on the assumptions of Section 2.

3.1 Wings of zero chordwise camber

Consider an isolated planar wing of rectangular planform and
zero chordwise camber in forward flight. According to Thwaites
(1960, p. 304) the linearized boundary condition at the surface of

this wing is given by

Wf(X:Y) = - an(y)s (3.1)
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where a(y), the sectional incidence, is defined as the angle beiween
the vectcrs of the forward chordwise direction and the direction of
motion. Therefore,if it is assumed that vy(x,y) is of the form
y(g)f(Zy/b)’equations (2.45) and (3.1) may be combined to give the
result

I (y) = ﬂBc{UOa(y) + wo(y)/2} . (3.2)

Fcr a given y/b, the quantity ww(y)/UO depends exclusively on
F(y)/Uob. Therefcre, in principle, equation (3.2) may be solved
for F(y)/Uob provided A (=b/c),a(y) and B are known. As may be
inferred from equation (2;44)?the last of these quantities depends
only on v(&). Therefcre, in order to solve equation (3.2), it is
necessary to know the form of y{f). This is dictated, to some extent,
by the conventional assumption of wing theory, namely that the flow
relative to the wing separates smccthly from the trailing edge.
This leads to the requirement that y(+1) < o, a condition which is

satisfied by the distribution
% / = 1 S
\,(6),UO aotane/z + nZlansv:l né, (3.3)

where 2 581, 825 ceeeee are non~dimensicual coefficients and

6 = cosmlg. (3.4)

Glauert (1926) employed essentially the same distribution in his
two—dimensional theory of thin aercfoils. Thus it may be argued
that, strictly, its use is only justified for wings of large /R.
Nevertheless, it has been applied, with apparent success, by Wieghardt
(1940) to the determination of the overall lift of low-aspect-ratio
wings.

By comparing equations (2.35), (3.3) and (3.4) it may be

concluded that
(@ ., (@ _ (3.5)



71.

(e)

Therefore, after eliminating v(&), &, a
(2.44) by using equations (3.3), (3.4) and (3.5), it is possible

to integrate equation (2.44) to obtain the result

and aéo) from equation

B ={(a, + a1/2)/ao}2 (3.6)

Glauert's theory indicates that, for a flat plate at incidence
in a two-dimensional uniform flow, aj; = o. Therefore it may be
concluded from equation (3.6) that the corresponding value of B is
unity. Hence it would seem reasonable to suppose that, for the type
of wing presently being considered,3 » 1 as R+ ». Consequently,

for sufficiently large AR, equation (3.2) may be replaced by the

result
r(y) = wc{an(y) +w _(y)/2}

This expression, which is known as the Prandtl ‘lifting~line' equationm, e
has been examined in detail by Kuchemann {1952) who also derived the
equivalent form
= {2 y )
I(y) = 6 N/C (NI ca (y)/2, (3.7)
liere CL(y) and CT(y) are the sectional lift and edge-thrust coefficients

based on the quantity %pUgC'whilst

ae(y) = a(y) - aio(y), (3.8)

where aio(y) = - (y)/2 Uo

is the incidence induced at the wing by the chordwise and trailing
vortices.

On the eivdence of cxperimental data, Kuchemann concluded that
equation (3.7) alsc applies if Ris not large. However, he
assumed that, in generai, aio(y) is replaced in equation (3.8) by
wuio(y), where w is a factor depending on 4 such that w v 1 as
MR +»=, Consequently, by assuming that v(x,y) = v(£)£(2y/b), he

obtained the result



r'(y) = ﬁBc{an(y) + o Wa(v)/2}. (3.9)

This expression may be compared with equation (3.2) and from this
it is apparent that there is an inconsistency in Zilichemann's
£ t is possiblc to deduce from equation (3.9)

i
that his method vields the result

Dg = @Dy,

where'ﬁf is the overall drag in forward flight. Clearly, unless

w= 1 (which is not the case for AR < =), tais is inadmissible.
Further, it is indicative that the predictions of Kiichemann's method
for the overall forces might be in error. Therefore the comparison
between the methods will be taken a stage further by using both
methods to calculate the overall 1ift and induced drag of a flat,
rectangular wing of small AR . This will be perfommed, initially,
by using a valee of B deduced from the low-aspect-ratio approxi-~
mation of Jonaes (1946). Unfortumately, owing to the fact that this
approximation fails near the leading odge of a rectangular wing it
not to permit a direct evaluation of ag and hence B. However,

' alternative, though indirect,method of deducing 8 from

ot
3
(0]
H
[0}
~
7]
0

Jones' theory which is based on the requirement that Df =D

N

Provided v{(x,y) £ vy(&)Y£(2y/b) this leads to the result

+c/2 +c/2 +c/2
[ T2(y)dy = wBclU o [ T(¥)dy + [ wely)T(y)dy/2} (3.10)
-c/2 °-c/2 T -c/2

for a flat, rectangulur wing at incidence c.  Therefore, if the
results of the low-aspect-ratio approximation for the same wing,
namely |

Vo(y) = LT I'(y) = anb{1~(2y/b)2}§,

arc uscad to climinate wo(y) and T(y) from equation (3.10) and the

integration is performed, it is found that
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B = 16 R /3n2, (3.11)

Consequently, for a flat, rectangular wing of small aspect ratio,
equation (3.11) may be employed to replace equation (3.2) by the
expression
T(y) = (16b/3m) (U o + v, (y)/2}. (3.12)
The overall forces corresponding to the solution of equation
(3.12) may be determined by interpolating results given by Glauert

(1926, p. 147) for the same type of equation. Thus it is found

that
~ - = 2 R - - =
CEi = i,01 CL/nﬁRg CL = 1.57 R q,
where Eﬁi and Ei arc the overzll induced~drag and 1ift coefficients

based on the product of %pUg and the planform area bc. These
results sheuld be compared with the corresponding results of the
low-aspect~ratioc approximation, that is

C = (4 N T = o/
CDi CL/WARJ CL TARc/2.

Lvidently, the agrecement is good.

On the basis of the assumption that T(y)/7fc v o as R+ o
Kuchemann concluded from the low-aspect-ratio approximation that,
for sufficiently small &, v = 2. Therefore, by utilizing equation
(3.11) and this value of w, Kichemann'’s rasult, equation (3.%), may,
for a flat, rectangular wing of small AX , be replaced by the

5
1

Qo

expressi
T(y) = (16bi3ﬂ){an + wau(v) ).

This equation, it is found, yiclds an overall-lift coetficient which

is approximately 307 lower than that of the low-aspect-ratic approxi-

mation. On the other hand, its prediction of the quantity ﬁﬁKEDi/E%

is not as greatly in error.
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That Kuchemann's method, in practice, gives an overall-lift
coefficient which asymptotes to the low-aspect-ratio approximation
is due to his use of a different asymptotic form for B. After
making a number of assumptions, which will not be discussed here,

he obtained the result
1
B v (R/2)2, R -+ o. (3.13)

This relationship is plotted in Fig. 17, together with the curve of
equation (3.11) and some results deduced from the lifting-surface
theory of Wieghardt (1940). These results are calculated by two
methods. The first method relies on a direct evaluation of B

from an examination of v(§) whilst the second is identical with the
method usaed to derive equation (3.11). Also included in Fig. 17
is a curve representing a semi-empirical relationship suggested by
Kuchemann., This has the same asymptotic behaviour as equation (3.13)
and correctly ensures that 8 v 1 as s8R + «, However, the evidence
provided by the results obtained from Wieghardt's theory is that
this relationship overestimates B for R< 2.

The conclusion to be drawn from this comparison is that, of the
two methcds examined, the present approach would seem to be the more
fundamental. On the other hand, the degree of success achieved with
this method must depend largely on the accuracy of the estimate of B.
in genevral, this varies across the span of the wing. Hence the
problem of interpreting a mean value arises. In this respect, a
particularly suitable interpretation is the one based on the require-

ment that D ='§i, By employing equations (2.43) it may be shown

£
that this is satisfied for the type of wing under consideration if
+b/2 +1 +b/2 +1
[ [y eyyaidy = - [ [y(8)£(2y/b)U a(y)dedy
“b/2 -1 ~b/2 -1
+b/2 +b/2
or / f(2y/b)wf(£sy)dy =~ f(2y/b)an(y)dy. (3.14)
-b/2 -b/2



Therefere ,provided £(2y/b) is known, equaticn (3.14) may be solved
for y(£) =nd hence 3. Unfortunately, £(2y/b) is not known until
the solution of aquation (3.2) has been obtained and this depends
on R. Therefore it is necessary to solve equations (3.2) and
(3.14) simultaneously. In practice, this is prohably best
performed by a successive-approximation scheme by which an assumed
£(2y/b) is substituted into equation (3.14). Consequently a
valus of § is found which is substituted into equation (3.2) to
zive a new £{2y/b), and so on.

This methed may be extended to non-plenar vortex distributions
of the type considered in Section 2.2.4. In this case, the linear—

ized form of the surface boundary condition is given by
vop(x,8) = -U o(s). (3.15)

Therefore equations {(2.54) and (3.15) may be combined to give the

result
T'(s) = ﬁBc{an(s) * v (s)/2} (3.16)

whilst by analogy with equation (3.14) the requirement that ﬁf ='5i
leads to the result

JE(s)v__{(E,s)ds = ~ [£(s)U a(s)ds. (3.17)
B n B o

3.2 Wings with rhordwise camber

In this section,a relationship, which allows the determination
of the effect of chordwise camber on the overall 1ift arnd induced
drag of wings with smooth flow at their trailing edgen.will be derived.
Consider an isolated planar wing of rectangular planform in
forward flight with the y component of vorticity y;(£)£(2y/b) and
v1(+1} < = {the condition of smooth flow at the trailing edge).
In the manner of equatioms (2.43), the sectional~drag relationship

of this combination of wing and vortex distribution is written as
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+c/2
p ; Y1(8YEQy/b)wzy (x,7)dx + T1(y) = ove1 (¥)T1(3) /2. (3.18)
~cf2

Here the subscript ! refers to those quantities corresponding to
1 (E)E(2y/b)

Suppose that the same wing in forward flight has, instead, the
y componant of vorticity y,(&)£(2y/b) with y,(+1) < »,  The
corresponding upwash distrvibution at the wing is wfz(x,y). Thus if
the motion of the wing is reversed and the y' component of vorticity
is vy, (E)£{(2y/b) the upwash at the wing becomes wrz(x’,y').
Consequently, it follows from symmetry considerations, that if then
the wing is rotated about the z axis through 7 radians the y
compcnent cf vorticity becomes vo{£')£(2y/b) and the upwash
wrZ(x;y?), Furtiiermore, the motion becomes forward again and the

corresponding sectional-drasg relationship may be written in the form

/
0 ; Y2 (8 EQ2y/b)w_, (x,7")dx = To(y) = oviep (¥)T2(y)/2. (3.19)

If vo(E"YEQ2y/b) and v1(E)£(2y/b) are superposed, the sectional-
drag relationship for fouward £iicht becomes

+c/2
0 ; {v,1(8) + Yz(i’)}{wflix,y) + wr2(x,y')}f(2y/b)dx + Ti(y) = Toly) =
e 2

= pl{wel (¥) + Wea () HT1(y) + To(y)}/2. (3.20)

Here, it will be noted, the edge thrusts are additive owing to the
requirement of smooth flow at & = +1 for y; (&) and £ = -1 for

v (EY) . This ensurcs that the singularities of the two vortex
distributions do not combine.

Thus, by combining equations (3.18), (3.19) and (3.20) it is

found that

+c/2 +e/2
J Yl(E)f(zy/b)wr9(X:F“dX + yz(g')f(Zy/b)wfl(X,y)dx =
-c/2 - ~c/2

= Vel (WIT2(¥)/2 + wep (WIT1 (¥) /2, (3.21)
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It is possible to infer from equation (2.5) that

3 ? = —— !
mrz(xay ) sz(y) sz(x v). (3.22)
Therefore equations (3.21) and {3.22) may be combined to yield the
result
+c/2 +e/2
- [ i EQy/o)v, (x",7)dx + [ v, (E")EQRy/bIw,, (x,y)dx =
~c/2 £2 ~c/2 £

= v, (NT2(9)/2 = v (T1(y)/2. (3.23)
From considerations of the similarity of the flow variables
of the Trefftz plane it may be concluded that
Wml(y)rz(y) = wwz(y)Pl(y) . (3.24)

Therefore, by comparing equations (3.23) and (3.24), one is able to

obtain the expression

+c/2 +c/2
/ Yl(a)wf,(X',y)dx = Yz(E’)wfl(x,y)dx (3.25)
-cf2 “ -c/2

Hence, by emplcying the linearized form of the camber-surface boundary
condition for a wing of arbitrary chordwise shape given by Thwaites
(1960, p. 304), namely

wf(x,y) = U Bzc(x,y)/ax,

equation (3.25) may be rewritten in the form

+c/2 +c/2 -
[ v1€®) ﬁz (x',y)/ax]zdx = Yz(E')zaz (x, y)/ax]ldx. (3.26)
~c/2 L€ ~c/2 L ¢

Here z, is the z ordinate of the camber lines. Therefore, if
-~
4

cm(x'sy)/asz = ~a(y),

equation (3.26) becomes



+c/2 +c/2 .
aly) f v1(E)dx = = f 1o (E") f-azc(x,y)/aledx. (3.27)
~c/2 -c/2 N

Consequently, if y,(E') has been determined by using the method
presented in Section 3.1 and [Szc(x,y)/ax?l is specified, the
right-liand side of egquation (3227) may be evaluated. It will be
seen that this side of the esquation is required to have a y
dependence similar to that of af{y). Therefore,provided thia
requirement is satisfied,equation (3.27) may be used to determine
Py (y). the information on £(2y/b) coming from the sclution
v (8)£(2y/b) for the uncambered wing. In conscquence.the overall
1ift and induced drag appropriate to the slope distribution
@zc(x,y)/ax}1 may be found.

Equation (3.25) may be generalized without difficulty to
include non-planar vortex distributions of tlie type comnsidered in

Section 2.2.4. Thus there is obtained the rosult

+C/_2 +c{2

j k8] <g)v:’f2 (x'g.’i‘.)dx = J' '1'2(@")‘7__,;- (;\:35)67}: (3.22)
—ef? /2 nfl

T - '

provided v; and v, are bounded at § = +1. This rclationship
may be used in a similar way to that shown previously to determine
the effect of chordwise camber on the overall 1ift and induced drag

of non-planar wings of the type described.

PART 1II

TIE DETERNTIATION OF THY LITT AND TIDUCED DRAG

0F A CLOSED GROWID-EFTELT WING.

4, Scope of the investigation

This part of the chapter consists of a descriptior: of a method
for calculating the 1ift and induced drag of a closed G.E.W.

consisting of an essentially rlanar wing fitted with end plates.
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e chordal surface of thz configuration is showm in Fig. 18 which
illustrates the follewing features: |
(i) The lower extremities of the end plates, which are vertical
and nroject from the wing tips. tcuch the ground, thus ensuring that
the configuration is closed.

(ii) The leading and trailing edges each lie in a plane which

is rormal tc the direction of motion.
(iii) The wing and end plates are untwisted.

ification of the analysis may be effccted

[
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c
by emploving the lincarized thecry and neglecting the chordwise
comber and thickness. Thisg, therafore, will be the approach
adopted in S=zction 5.  Subsequently, in Section 6,a method for
calculating the offect of chordwise camber and thickness cn the
1ift ond induced drag,tc o linear approximation,will be described.
Finally, the basic method will be medified to include the most

important non-linearities in Section 7.

5, Zerc chordyise camber ana thickness : o linearized anproach.

5.1 Statement of preblem and method of solution.

As previously, the flov relative to the configuration, which is
in forward motion, iz assumed inviscid and incompressible. Also
in keeping with classical wing theory, the flow is assumed to be
smecth at thoe trailing edge. This ensures a unique soluticn for
the velocity potential of the flow relative to the configuration, b
the boundary conditions of the wing and end plates are satisfied at
a cylindrical surface odjacent to the configuretion. This surface,
which is shown in Fig. 18, may be generated by moving & typical

t

spanwise cross saction of the chordal surface normal to itself between
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the leading and trailing edges. This cross-section is of span b
and height from the ground 1 . Thus, in the absence of chordwise
camber and thickness, the linearized form of the surface boundary

conditions of the configuration is as follows:

v (¥, = Tpals) = —UOQ(W)é || < /2, |y| s b/2;

s - NN ¢:))
\nf(xg—b/z,z) = an(s) = an :

r
X

(w) (&)

Here a is the wing incidence and a is the incidence of the
end plates whilst the coordinate systems (s,n) and (x,y¥,2), which
are fixed relative to the configuration, are as shown in Fig. 18.
There remein two other boundary conditions to be satisfied.
The first is the zero normal-~velocity condition at the ground plane
which, throughout thic remainder of the analysis, will be assumed

solid and impermeable.  The second demands that

xl > o X > -
3p/3x v U, |y| »w; 3¢/dy v 0, 3¢/3z v O, |y| >
o ‘Z > Z > 4w

which constitutes a requirement on the flow infinitely far from the
configuration.

Thus the problem is to determine the lift and induced drag
subject to the above conditions. This requires a knowledge of
the jump in ¢ across the cylindrical surface which information is
obtained by solving the boundary-value problem. 1In fact, this
reduces to the problem of solving an integral equation relating the
vortex distribution v(x,y,z) placed on the eylindrical surface to
the boundary conditions (5.1). Unfortunately, this equation is
extremely complicated and, in general, seems not to be amenable to
analytical methods of solution. It might be possible, however, to
solve it numerically, In this respect, there is available the

method of Hulthopp (1950) which has been developed for isolated
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planar wings. It would seem, however, that his method has not been

d in the same detail to non—-planar wings or wings in ground

rw

Q "3
foad

I

W

proximity. On this basis, therefore. it was considered desirable
to develop an alternative technique based on the assumption that

v(x,8) is cof the form v(x)f(s).

ny

fm

The no-flow condition of the ground plane may be satisfie
an image distribution of vortices obtained by rotating the cylindrical
surface about the x axis through m radians.  Therefore, if it is
that v(x,8) = v(x)£f(s), the resulting combined vortex distribu-

t

tion is of the type considered in Section 2.2.4. Consequently i

isg
rermissible to cembine equations (3.16) and (5.1) to yield the

expregsions

(i) I'(y) = ﬂBc{an(w) +w (y)/2}; ly| s B/2, z=+1; B
} (©.2)
(i) 1) = moelu o™ + v (@)/2}; y=/2, 0czs+l. )

Here v_(z) is the y component of velocity at the trace of the star-

board end plate in the Trefftz plane. That this velocity is equal

in magnitude but oppesite in sign to the v component of velocity at

the trace of the port erd plate follows from symmetry considerations. -
No attempt will be made to justify the assumption that

v{(x)£(s) rigorously. Wevertheless, it is relevant to note

14

v(x,8)
the following remarks:

. - ) . (E) ‘s . . . e ,

(i) TFor o ) , the trailing vorticity is iikely to be
comparatively weak, as I'(s) should not vary noticeably with s.
Consequently the effect of the trailing vorticity on the chordwise
form of y(x,s) should not depend creatly on s.

t

(ii) In

cof semi-circulax spanwise cross—section, the vortex distribution is

he case of a closed G.E.W. with a cylindrical surface

'.‘-
e

of the type v{(x)£(s) provided a(s} = constant.



5.2 Distributicn of circulation arownd the vortex trace

In this section the aim is to discuss a method for solving
equations (5.2) (i) and (ii) simultaneously. In general, this
has to Lz performad approximately but in Section 5.2.1 a2 formally

cxact solution is discussed.

5.2.1 An exact sclution

It is apparent that in the case I'(s) = T (a constant) the
trailing vorticity is zerc everywhere. Hence wo(y) = Ve(z) = 0.
herefore it may be inferred from equations £5.2) that for

@) ®)

T = 7fc an. . (5.3)

In other words, the present theory predicts that the circulation
is inveriant around the trailing edge of the configuration if

k1

(w E) . . .y
o ) . a( “ = @, Furthermore, it predicts that the corresponding

[

overall induced drag is zero.

5.2.2 The flow in the Trefftz plane

Apart from the axact solution discussed previously, it has not
been possible to derive closed-form solutions of equations (5.2).
Instead, an approximate method, which is based omn the nuse of particular
solutions for ¢ in the Trefftz plane, is employed. Thus 2quations
53.2) arc rewritten as follows:
LT (y) = ngely oy )

- m ’ o
n

()
) T (2) nBc{UOa\ SET) Vo (2)/2}5 y = #b/2, 0 5 z £+
m= o a2 Iu=0 (22

YTmm(Y)/2}° lyl < b/zg > = +%;
o]

1
?(5.4)
J

r_, A and Ve 275 respectively, particular circulation
it

utions and the corresponding velocities at the vortex trace

o,
[N
[¢7]
puet
[ad
paln
O
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in the Trefftz plane. These distributions are not entirely
arbitravy, being derived from Trefftz-plane flows which satisfy the
following conditions:
(i) The velocity potential is regular everywhere except at
the wvortox trace.
(i1) 3¢/2z
(iii) 9¢/3y =0 at y

0 at z = 0.

0, a condition which follows from
synmetry considerations.

(iv) 9¢/ey ~ 0, 9¢/9z ~ O; (y2+22)% > 0.

4 convenient method for determining a suitable family of circula-
tion distributions is the combined~flow method described in Section
I.1.3. This, therefore, is the method which will be employved here.

A suitable class of superposition complex potentials correspond-

ing to Fm would seem to be

v_ = ~Ub B_(20/b)%",

where B are rcal, dimensionless constants and, as before, 2 =y + iz
is the complcx variable of the Trefftz planc (Fig. 19). This class
is regular in the finite part of the Q plane and saotisfies conditions
(ii) and (iii) given previously. Therefore the required combined
flows alsoc have these properties and possess gzero normal velecity at

the vortex trace provided that

- 2n~L
] - U dmp (2l DDA/ T
Wmm(y) - LO 1!-1‘[1 -Jm(D r_z--‘ ‘L?(m—rl)} (71_.1)5‘ 9 (1‘;1 * o) 9\
2= )™ Qa1) ! (22/6) 2
%§”=DOManL*{Mmm4H@M1 , (@ # 0) > (5.5)
and w&o(y) = V&O(Z} = 0. B

Thus, provided equations (5.5) are satisfied, the boundary conditions

are as follows:

S

for the combined flcws in the domain Dy, (Fig. 19

(1) 99 /3 =0; b/25 |y| <=, z=0;
(ii) 3¢ /on = 0; y=3/2, 0<zg +1:
(iid) 3¢C/Bﬁ =0: ny < b/2, z =+
(iv) dwc/dﬂ " «UO 4 %‘ (79/')2m 1 ,Qf > o,

1
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This boundary -~ value problem may be simplified by transforming the
domain D, into the upper half-plane t (Fig. 20). This is made

possible by means of the Schwarz—-Christoffel transformation
1
ae/dt = c{(1-t2)/(1-k?t2)}?; 1/k 3 1. (5.6)

Here, as in Section I.2.1, C is the (real) transformation constant
and k is a transformation parameter which is also to be interpreted
as the modulus of the elliptic functions appearing hereafter.

By employing transformation (I.2.3), equation (I.2.4) and
equation (310.02) of Byrd and Friedman (1954), equation (5.6) may

be integrated to yield the expression
@ = C [2Rs* - {2Ks* - E(2Ks*)}/k?] + C;.
Here the s in equations (I.2.3) and (I.2.4) has been replaced by s*

to prevent confusicn with the curvilinear coordinate s whilst C; is

the constant of integration.
Point-to-point correspondence between the Q plane and the s*

plane (Fig. 21) at B and C is c¢btained provided that

b/2 + iV = C[K -~ {K -~ ER)}H/E?] + G

and -b/2 + iV = ~C[K - {K - E(R)}k% + C;.
Therefore, by comparing these two equations, it may be concluded
that =il (5.7)
and B/2 = C{K ~ {K -~ E(K)}/k?],

= C{E(R) -~ k'ZK}/k2. (5.8)

The @ and s* planes correspond at point D provided that
b/2 = C[K + iK' - {K + iK' - E(K + iK")}/k?] + ;.
Thus, by combining this expression with equations (I.2.11), (5.7)

and (5.8), there is obtained

b= =C[R' - {2RK' + 2BE(K)K' - w}/2Kk?],



This may be simplified by means of equation (110.01)of Byrd and
Friedman to give the result
1= c{E"(®) ~ kZK'}/k2, (5.9)
wiere ET(K) = B(K"). Therefore, upon combining equations (5.8)
and (5.9), one finds that
2/ = (B'(R) - k&' IHE® - k'2K},

The boundary conditions for the combined flows in the t plane
are as follows:
(1) 9¢ /on = 0, |Re (t) |

3l o<
(ii) dwc/dt v “Uo 4 Bm(ZQ/b)

o, Im{t) = O;

2lagsdts  |e] > .

(5.10)
Equation (5.10) (ii) may be rewritten in terms of t by employing

the asymptotic forms of Q(t) and dQ(t)/dt for large |t]|. These may

be found by expanding the right~hand side of equation (5.¢) in powers

of 1/¢t. Thus there 1s obtainsd the result

ae  C K'2 (3-2k2-1") 1
G "% Yramm g tOGeh el (5-11)

whick, for sufficiently large ltly may be integrsated term-by—-term

to yield the expression

_ k'2 _ (3-2K%-k™)
k 27t Z4EFES

+ 0(11-5)} + Cp; |t]| > o (5.12)

Here C, is the integration constant which may be shown to be zero
by examining the symmetry of the transformation between 9 and t
plancs. Therefore this fact may be used in conjunction with

equations (5.11) and (5.12) to rewrite equation (5.10)7ii) in the

form
Wen b ooms ESH2p e 0 L GBI 1w
at- o~ “% “n'bk b 2k%t 24153 Vgs/0 o
] k2 (53-2k2-kH) 1
AL+ et S * 0 b e > e (5.13)
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The corresponding family of complexz potentials, wcm’ which (a)
satisfies cquations (5.10)(i) and (5.13), (b) is regular in the

finite part of D, and (c) obeys the symmetry condition 3¢/dy = O

at y = 0 is zs follows for m < &
W =-=UbB;
co o’ 1
W= -Ub Bk t?; ,
cl o 1 ’ L (5.14)

]

¥, = U b Bpk?(*-2k'2£2/x2); |
W ~Ub Byk3{eb=3k"2¢% /2 + £2(3-Tk2+4K%) /K4, ,}

where k = {2C/bk)2.

Provided equations (5.3) are satisfied, the boundary conditions
for the combined flows in the domain D; (see Fig. 19) are given by
i) a¢c/3n = 0; ly| < /2, z = 0;

) 9§ /em=0: y=1/2,0<z5+;

) 8¢c/8n = Qg Iy[ <b/2, z=+1.

~~

pelo
e

(3

(ii

[*H

A solution to this boundary-value problem which is regular and

gives symmetrical flows about the z axis is, regardless of m,

Hence, as the superposition complex potentials are regular in the
finite part of the @ plane, it follows that circulation distributions

with the correct normal velocities at the vortex trace are given by

-t

T
N

T (¢t} = (t); |Re(e)]| £ 1/k, Im(t) = 0. (5.15)

m cu

-

These solutions for the circulation are not unique insofar as an
arbitrary constant may be added to them without altering the
corresponding normal velccities at the vortex trace. However,
hese constants may be considered accounted for by the constant

circulation Fo.

. variational solution

A
A number of methods for solving equations similar to equations

{(5.4) have been reviewed by Robinson and Laurmann (1956, p.p. 183-196).



They conclude that the preference for one or other of thase methods
depends on the nature of the data required. It also appears that
the choice could be influenced by the type of lifting system under
examination. For example, methods based on variational principles
are often suitable for obtaining the overall forces of non-planar
lifting systems. As the configuration under examination is of
this type,a critical examination will be made of three existing
variational methods. As applied to the determination of the -

sclution of equation (3.16) these may be written as follows:

-

(i) Gates {1928)

S[f{F(s) - ch(UCa(s) + vnw(s)/Z)}zds} = O,

(i1} Ziller (1940)

:\{‘} ’} ' . L = .
ﬂm\-}; 4 + whe an(s)vnm(s)}ds] 0

r..
8‘f{~F(s)v (8)/2 + 7mBe v *©
Iy ne
(iii) Flax (1950)

6[f{P2(s)/ch - ZF(S)UOQ(S> - P(s)vnm(s)/Z}ds] = 0O,

B

Here § implies a variation of the inteprands with respect to T'(s).

Thervefore,i1f B is assumed insensitive to changes in T'(s) and the

indicated variations are performed, it is found that the solution

of each of these equations is the solution of equation (3.16).
Evidently, all three variational equatioms require the evaluation

of the incegral fF(s)vnw(s) ds. Unfortunately, in the present case,

L0
this integral seems nct to be amenzhle to explicit evaluation. In

view of this, consideration is given to an alternative variational
equation not containing this integral. Such an equation is derived

by subtracting the eguation of Flex from Ziller's equation, thus

Q

iving the result

a



6[f{n6c vni(s)/é + mBc an(s)vnw(s) - I2(s) /mBc + 2F(s)an(s)}dS] =0

3
(5.16)

That this equation also has the same solution as equation (3.16) may

be proved by performing the variational operation and notiang that

[ v_ (s)ér(s)ds = [ T(s) &v_ (s)ds,

a result which may be inferred from squation (3.5, 11) of Robinson
end Laurmann.

It should be remarked that the derivation of equation (5.16)
was suggestaed by the fact, not previously noticed it seems, that
Cates' equation may be obtained by adding together the equations of
Flax and Ziller.

For the present configuration, equation (5.16) may be rewritten
in the form

ﬁb/Z

6{ f {'HBC WOZO(Y)/Z% + WBC Uou(";lgfw{y> _I"Z(y)/nsc + ZF(Y)UOCX(‘J) }dy +
~b/2

2 : ;
+ 2 f{ﬁBc Vi(z)/é + mhc UOQ(E)Vm(Z) - T2(z) /wBc + ZF(Z)UOQ(E)}dZ] =0
0

(5.17)
This equation, which has the same solution as equations (5.2), may be
solved approximately with the aid of the particular solutions described
praviously and the Rayleigh-Ritz method (see Robinsoinn and Laurmann p.

224). For the application of this technique it is convenient to write

N V]

W =U B w (y)* w z) =U B v (z 5.18

’wm(y) o m om V)3 wm( ) o m wm< ) ( )
and T (¢) =-Ub B k' @G (L), (5.19)

m o m m
, Y ~ . . . .
where w_ and Vo, Dy be found by comparing equations (5.5) and
13 1

(5.18) whilst, for m < 4, G may be deduced from equations (5.14),

(5.15) and (5.19). Thus, by uvtilizing equations (5.18) and (5.19),

equation (5.17) may be replaced, in the manner of the Rayleigh-Ritz
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technique, by the expression

—5%—[%?2{( YB w {y))2 + 407 I8 W (y) - (] B 6 (£))2 -
ml-b/2 m=o * m=o T Bu m=o * ©

4oa(w) n 1 " (&) "
-2 ~ 14 2 -

o Z Bk G (t)Hy + 2 [{( ) BV, (2))? + 4a ) B v, (2)

m=0 o mwW=o m=c
(E)
1 m s _ 4o m

- o - — = © = 1

W(Z“ZOBEK (.:m(t)) Blrl ‘ﬂZOBmK G’m(t)}dz} Oy m O;-sz’a e ey

(5.20)

where W= n/2MR

and R is the aspect ratio of the wing component of the cylindrical
surface.

Equation (5.20) yields an infinite set of linear, simultanecous
equations for the unkncwn coefficients B . These equations arc
rather unwieldy but may be written in amore concise form by

employing the following definitions:

@) _ .a-b/'Zm 9 () _ 1. r ~
P = wb{gwwm(y)dy/b, P =2 g Vwm(z)dZ/b5
#b /2, - 1
o(‘”’) - ﬁz"’m(y)‘?’mn(”dy"b 3. Q;? =2 ({ 3wm(z)$wn(z)dz/b;
| v/2 . 5(5.21)
(w)_ 0 . . (8) _ .
R.Y= .mbj/‘gcm(h)dy(t)/b) R =2 £ G (t)dz(t)/b;
+b/2 -
5@ =T e way@m; 5O =2 [ o ©6 @b,
ma b2 ® n * Tmn m n p
(o]

The evaluation of the quantities of equation (5.21) for various

m and n is dealt with in Appendix II.

o

n performing the diffcrentiation shown in equation (5.20) and
interchanging the order of the integration and summation one obtains,

after employing cquations (5.21),
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2o (E)y _ mn (), L(E) na2.2 0. ) C1) (E) (E), _
mZoBm{b WG T Q) k(8 e s )Y 4 28212 (a PT+a 'R 20

2

7 ) (
- ZBUKP(Q(“)Ri,’+ a‘E)RéE)) =0; m=0,1,2,3, covecs » (5.22)

This equation represents an infinite number of simultaneous equations.
In practice, only a finite number of these equations are retained om
the assumption that a finite number of coefficients will give
adequate accuracy. Thus, in the present case, it is assumed that
the firet four cocfficients are sufficient. This yields, in place
of equation (5.22), four simultaneous equations in the uanknowns
Bo’ By, B, and Bs. These equations have been programmed for
solution on a Ferranti Pegasus computer.

By employing Robinson snd Laurmann's equation (3.2, 28) it is
found that the expression for the overall lift may be written in the
form +b/2

T=op i | Ty dy. (5.23)
-b/2

Therefore,when rewritten in terms of the solution of equation (5.22),

this exprassion becomes

_ +b/2
L=pu, [ 1 T (t)dy().
~b/2 m=o

bﬁenceﬁ by interchanging the order of integration and summation in
this equation and employing equations (5.19) and (5.21),one finds
that

- m

L = ~p UZ? mgo B « Ré"’). (5.24)
Thus the overall 1lift coefficient based on the plan area of the

wing component of the cylindrical surface is given by

T =-28 J B &™), (5.25)
m m
m=0
It will be shown in Section 5.3 that 8 is independent of

u(w) and a(E). Therefore it may be concluded from equations (5.22)
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and (5.25) that"aL may be written in the form

T o= a0 BB (5.26)
\
where a(w) and a(E’ are "lift derivatives' which are independent of

a(w) and a(E). " Results for these derivativesy calculated according
to the present methcds;are shown in Figs. 22 and 23 which are graphs
of HK/a(W) and ﬁya(E) against R /278 for various 2T/b.

In solving equations (¢.2) it is assumed implicitly that

. For this reason, thercfore, reference will be made

the wing cor end plates. Thus,by integrating the induced drag

gradient across the wing part of the vortex trace,it is found that

the total induced drag of the wings.ﬁi(wz is given by
= (w) +b/2
D. = —p f w_ (y)T{y)dv/2. (5.27)
t ~b/2

(E)

Similerly, the total induced drag of both end plates,.ﬁi , is

found from the result

<& F
v, =~ | v _(2)T(z}dz. (5.28)
)

It has not been possible, with the particular solutions
employed, to evaluate the integrals of equations (5.27) and
(5.28). However, I may be zliminated from these expressions by

means of equations (5.2) to give instead

=(w) +b/2 ) .
DiV" = -prfc Ij; {UOOL W wm(Y) + Wozo(y) /2]'dy/2; )
-b/2 .
Jf (5.29)
ﬁiﬁ) = ~puBc I{an(h)vm<z) + Vi(Z)/Z}dz.

(o}
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Therefere if w_ and v_ are replaced in equations(5.29) by linear
combinations of particular velocities and the order of the
integration and summation is changed, it is found, after employing

equations (5.18) and (5.21), that

'ﬁgw) = -%pUzﬂﬁbc{a(W) ) BP o) 4 }) JBB (W)}
1 (8] m m mn 11
m=0 w=0 n=0
(5.30)
() o 1.2 (E) E (E)
D; 0 = -fpUlngbela B P 4§} ] BB Q. I
m=0 m=0 n=0
The induced-drag factors of the wing and end plates, o(w) and
O(E), are defined as follows:
; ) —(E) , =
o™ = wouzp2 5, W o1z, o) - spu2e2 3 a2, (5.31)

Therefore equations (5.31) may be combined with equationg (5.24)

and (5.30) to give the results

728{a (" § B P +17 1B W)}
Ge) - mw=0 m=0 n=0 n

4« mLJ B iy
E ?
(B J B P( ) 1y B3 Qég)}

(E) _ m=o0 “m=0 n=0
° 7T (W) .
4 R{ ) B "RV )2
n m
n=o
The overall induced-drag factor of the configuration, o, is
. 4 I
found simply by adding G(L) and o(“>.

) (@

Representative results for o, ¢° ° and o' ’are given in Tigs.
24, 25 and 26. These show graphs of ¢ against R /2nf for

a(E)/a(W) (w) (E) . (U)/G(E)

=0 and 0, © and o against a for
MR /278 = 0.25. In particular , Fig. 25 indicates that o = o when

w E . . . .
a( )e a( ), in a2greement with the exact solution of =quations (5.2).
That the variational method yields this result regardless of where
the series of coefficients Bo’ By, By eeccens B is truncated for

m > o may be proved by examining equation (5.22). This study also
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reveals that the circulation, TI'(t), predicted by the variational
method for the case a(w) = a(E) is in agreement with the exact
solution (5.3) for all m 2 o.

Fig. 26 illustrates the essential feature of the distribution
of induced-drag gradient if the circulation varies slowly around
the vortex trace. It shows that if there is an induced drag
acting on the wing the end plates yield an induced thrust and

vice versa. This may be attributed to the fact, which may be proved

by continuity considerations, that a mean downwash at the wing trace

is accompanied by a sidewash in the outward direction at the end-

plate traces. It follows, therefore, from equations (5.27) and (5.28)
=(w) '

that, for slowly-varying, positive I'(s), D;"’ 3 0 and'ﬁi < 0.

5.3 The determination of B

In this section, the method for determining 8, which was
introduced in Section 3.1,will be applied to the present configura-

tion.

5.3.1 The integral equation

In the present case, equation (3.17) may be replaced by the

expression
+b/2 1 +5/2 ()

f f(y)wf(i,y)dy + 2 f f(z)vf(g,z)dz = - f f(y)U o' 'dy -
~b/2 o ~b/2 °

!
-2 f(z)an(E)

(]

dz, (5.32)

where wf(i,y) and vf(E,z) are, respectively, the z-wash at the wing
component and the y~-wash at the starboard end-plate component of
the cylindrical surface.

By adopting the procedure introduced in Section 3.1 a suitable
first approximation is sought for f(Z), Thus, for example, it is

evident from Section 5.2.1 that a good approximation corresponding
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to ca(w) = 05(E) is f(fé) =1, Therefore this is used as a first
approximation and, in consequence., th: vortex distribution is
assumed to ba v(&).

The velocity field associated with this vortex distribution

and its image system is derived in Appendix III where it is shown

that +1 :

4ﬂwf(£3n) = P fV\El)pkas g,n,R;1)dg; NL

+1 (5.33)
and é:-ﬂvf(égi) =P :[7’(51)1"(519 2 AR )dE. )
Here
11 R (1-n) AR (1+n) )
F(g1,£.n,R 1) = [{PPZ(l r)4+ (€,- g)z}z (A2(1+n) 2+ (£~ 75z ]
+ E=E1 ) &2 A-n) 1 R (1+n) ——
(E1-0) 2+ | TRAImY 2+ (8, -0) 2+ AZY2 ¥ [BRAT+m) 2+ (5, -E) 2+ &Y

»=2%e, n=2y/b, 7 =2z/[%
and P denctes that the Cauchy principal value is taken where required.
Therefore, by reealliing that f(.‘.z7) = 1, it is posgible to combine

equations (5.32) and (5.33) to give the result

+1 +1 +1 +1
Jan P [y (EDF(EL,E,n. 2,048, + (4WDb) [dz P [v(8))F(Ey,E,C,0,M5d8; =
-1 -1 -1 -1

= - S’ITUO(OL(W)"' a(E)Z’L/b)

Consequently.by interchanging the order of integration ¢f the integrals
cf this exprossion (an cperation which is permissible in this case)

and porforming the n and ¢ intcgration, one obtains the expressicn

+1 v{Eq) 3
L Y(ED (E2E))
P.~{€"i:'12[{4£ DR - g éncgl * f (1-0% 817 °

FXT

[EééR‘+ LA2 + (g~ g)Z}-_ {432 + (&1~ 5)2} ]dgl + P f.l&éLl

* -1 El“g
+1

..‘-1 ' &

1
2

r 1
.[{4)\2 + (E1~E)2)F - lEr‘El]dEl +
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- {4 R? + (51-5)2}% ]dgl = —41TU°(ARoc(w) + 2™y, (5.34)

This represents an integral equation in the unknown y(&;) which is
solved as follows: Y(€)/U_ is approximated by the first four terms
of the series (3.3) which satisfies the condition y(+1) < = .,
Consequently, equation (5.34) is satisfied at feour isolated points
in the interval -1 ¢ £ € + 1, thus yielding four linear, simultaneous
equations for &0 81y 82 and ayz. These are then solved and a first
approximation for B is feund by using equatiom (3.6). A second
approximation for B may then be determined by means of the method
outlined in Section 3.1. However, as will be shown, this is
unnecessary because the first approximation is 'exact'.

In the case a(E) = u(w)9 £(J) = 1 regardless of the value of

) JE Wy

. Hence the first approximatiou for B{ec' /', a

bxact’. That this also applies to S{u(w) a(E)} may be proved as

follows: by employing equation (30.3) of Heaslet and Lomex (1955)

it is possible to write

+c/2 . +c/2
I i@ (e)v o (xis)dr ds = [ [ yp(E")E2(8)v g (x,8)dx ds
B -c/2 B -c/2
(5.35)
provided y; and Yy, are bounded at £ = +1.
Suppose that
(1) (w) h
v (%,y,4L) = = U a3 v __..(x,2b/2,2) = =~ U « : i
nfl 0 nfl 0 k (5.36)
] - - (w) | ' o~ 1 (B
anZ(x .V, +1) Uo7y an2<x ,tb/2,2) Joa .
According te the present theory the corrasponding circulation
distributions are given by
ry = ﬂB{a(W)3 a(w)}c an(w); h

) (w . J '
To(y) = ﬂg{a(“"pa\“)}cwoa(w} + v, (¥)/2}; ly| s B/2, z = +1; L(5.37)
I'o(z) = ﬁb’a ( )}L1U uk E) + vmz(z)/Z}; lY’ =b/2, 05z +1.
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Therafore, by substituting equations (5.36) into equation (5.35),
one obtains, after perfcrming the integration and comparing the

result with equations (5.37), the expression

N T - nh ’ 3 "
30 @[ @ L 0 @] ) (®) {b&m . 210 ®

gba |
[ 4
+b/2 2 (5.38)
t ] () /ZUO)dy + f(vw?_(z)/UO)dz:' .
~-b/2 o

Considerations of flow continuity in the Trefftz plane indicate

that the integrals of equation (5.38) cauncel. Therefore

() (E)

Bio " ,a ) = B{a(w),u(w)}

7 . (& . .
for all a(“) and a( )except possibly those wvalues corresponding to

m(w) = - (ZI/b)u(E). However, for a given (21/b) and u(E)ﬁthis

Pt

S

an isolated case which will be disregarded. It follows, therefore,
that the first agpproximation for B{a(w),u(E)} is 'exact' and is

independant of a(E). Therefore, in view of the similarity of the
roles of the half-span of the wing plane and the corresponding end

plate, it follows that 8 is also independent of ukw).

5.3.2 Evaluation of the integrals

With the exception of integrals of the type

+1 .
I,(8) =P fv(g)) g - g1l (-€;) tag, (5.39)
-1

the integrals of equation (5.34) are, for the vortex distribution
of equation (3.3}, of the form
+1 -1
I,(8) =P | g(&,8)(8-5y) ~ 4g; , (5.4C)
-1
where z{£;,8) is continuous for -1 < &; < + 1. Weber (1954) has

shown that, subject to certain restrictions being placed on g{(&;,&),
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thisz type of integral may be replaced Ly an expression containing

Gaussianquadratures, namely

P

L‘I"’ 1 N”'
L(e,) = 1 (|1 - ! I, Jamsprave ]+ 2 L R,55,08,)-

(5.41)

Here Eu = cos(un/ii), EV = cos(vr/il), (u,v = 1,2, .... ¥~1.),
-

1
go(a\)) = Lim {g(& €. )1(1*5)/ 1~ }2 .
o] |
i
£ 20=DY Y- 13a-gh)? ,
) J N(ap_g\)) s (u F V)s
“U.\) = %
L Y (n=v)

and ¥ is an integer.

The previously-mentioned restrictions on g{£;,£) are as fol;owsn

{i) It is bounded, continuous and diffarentiable in the interval

1
{(ii) Lim {g(ilsi) - go(i){(l“€1)/(l+€1)}2.} = 0.

4 a1

These conditions are satisfied by the integrals of the type I, in
equation (5.3%) with v(&) replaced by the vortex distribution of

equation (3.3). Hence these integrals are evaluated by using

equation (5.41) with N = 16. The integral I;, on the other hand,
may be evcluated explicitly te give the result

(5.42)
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for the vortex distribution (3.3).  Thus,by using equations (5.41)
and (5.42).it is possible to evaluate the left-hand side of equation
(5.34), with y(E)/UO replaced by the first four terms of the series
(3.3), at four isolated pcints. These were arbitrarily chosen as

8 = nr/8, with n = 1,3,5 and 7. This procedurc and the inversion of
the resultant 4 x 4 matrix has been programmed for calculation on a

Ferranti Pegeasus computer.

5.3.3 Discussion of results

In the case a(w) = a(E) = ¢ the values of B and T, which are
determined freom the exact solution of equation (5.34), are required
to be consistent with the conditicnnﬁf = 0. In this case, however,
Di = 0 everywhere at the vortex trace;hence this requirement may be
replaced by Df = 0. This ig implicit in equation (5.3) which, in
effect, relates the sectiomal edge thrust to the drag component of
the sectional normal force. Consequently the above-mentioned
values of B and T' satisfy this equation. In other words, the

value of B derived from the expression

™ = @ oy, (5.43)

B=T/rneUa
O

is identical with that obtained from the exact solution of equation
(5.34) by using the original definition of B, equation (3.6). Thus
the accuracy of the present apprcximate method of solving equation
(5.34) may be checked by comparing the twe values of B obtained.
Shown in Table 1 ave typical results for B calculated by means
of equations {3.0) and (5.43). It will be scen that the two scts
of resultsz are in reasonable agreement, the differences being in
the region of 1Z.  Therefore, it is assumed that the arithmetic
mean of the two values is a good approximation for B. The results
thus obtained are shown in Fig. 27 plotted against X for various R.
It will be seen that B increases monotonically with either decreasing

o

A or decreasing R . Each of these tendencies may be explained by

{1 E)
. . W E) ., .
examining the case a° ) = a( 7 which according to the present theory

yields cherdwise and trailing vorticity of zero strength.
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Thus it is apparent that, for a given & and u(w)s a reduction in

A produces an increase in the upwash induced at the wing plane by
the images of the wing-plane vortices. In consequence, there
results an increase in I' which, according to equation (5.43), implies
an increase in B. There is also an increase in B due to the
consequent reduction in the 'aspect ratio' of the end plates. This
is similar to the effect of &R on 8. This effect may be identified
with the influence of the span of the wing vortices and their images
as follows: as MRdecreases, the effectiveness of the wing vortices
in producing a downwash at the wing plane is reduced. Also, the
upwash cf the image-wing vortices is there diminished.  However,
the overall effect is a reduction in downwash. ~Therefore an
increased circulation is required to produce the same downwash, thus
resulting in an increase in B.

Another effect associated with a reduction in Ris the increase
in the mutual influence of the end plates. This is analogous with
the effect of the image wing on the wing and vice versa. Therefore,
this also produces an increase in §.

5.4 Lift and iaduced drag

The values for B given previously may be combined with the

results of the variational solution to obtain the 1lift derivatives

a(w) and a(E) and the induced-drag factors. In Section 5.4.1

consideration is given to the results for the 1ift derivatives and
in Section 5.4.2 the results for the induced-drag factors are

described.

5.4.1 Lift

The results derived for a

(w) {E)

and a are plotted against ) for

various & in Tigs. 28 and 29. These figures show that, for constant

W (E) . . .
Ay a(v) and a' ) increase slowly and decrease with AR, respectively.
(w)

Also, they indicate that, with AR constant, a and
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a(E) increase and decrease with A, respectively.

It is difficult to give simple explanations for these trends.
Nevertheless, some progress towards sn understanding of the
mechanisms involved may be made with the aid of the expression

T = 2l 4T /20 ), (5.4
where'%m‘is the mean upwash at the trace of the wing plane in the
Trefftz plane. This equation is obtained simply by integrating
equations (5.2) across the wing vortex trace and using equation
5.23) to obtain the lift.,

(w)

By differentiating equation (5.44) with respect to a it is

found that

3¢, /20 = 2 = 2ws(1 + 2w s2v ) /007

This expression for a(W> has aright-hand side comprised of two
parts which may be identified with two different properties of
the vortex distribution. The first part, 27f, which depends on
the chordwise distribution of vortices normal to the direction of
motion, decreases with increasing & in the range of Rand A
considerad. This is opposite to the trend exhibited by the
remaining part which depends on the strength and distribution of
trailing vortices round th2 vortex trace. The behaviour of
this part may be explained by noting that the term S(E;/ZUO)/Ba(W)
increases towards zero as M-~ owing to the reduction in the
strength of the trailing vortices. Unfortunately, it is not
possible to infer from this the likely trend of a(w) with AR.

For reasons which have been mentioned before, B8 increases
monctonically as ) decreases. Further, the term B(EQ/ZUO)/SG(W}
increases with reducing )X owing to the influence of the image

)

trailing vortices.  Therefore a increases as A decreases,in

accord with the calculations.
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By differentiating equation (5.44) partially with respect to
a(E)\one obtains the result
— ™ v — n
aCL/aa(“) = 2B 2nsa(wm/2U0)/aa(E), (5.45)

. . E e . e 1 .
An increase in a( ) produces additional trailing vortices, the

sign of which is such as to increase the upwash at the wing trace.

This implies that E(EQ/ZUO)/SQ(E) is positive.  Therefore, as B

- . - . E) . .
is positive, it follows from equaticn (5.45) that a( ) is positive,

a fact which also emerges from the calculations.

As noted before, the effect of increasing MRis to reduce the
strength of the trailing vorticity. Consequently BGEw/ZUO)/Ba(E)
decreases monotonically with increasing £ .  Therefore, in view
of the fact that B decrecases monctonically with increasing &, it

(E)

may be inferred from equation (5.45) that a decreases as AR

increases.
It has not been possible to draw any firm conclusions from

{E)

equation (5.45) regarding the influence of A on a7,

5.4.2 1Induced drag

An illustration of the influence of A and Ron the induced-

), _ g,

drag factor o is provided by Fig. 30 for the case ¢
This shows that ¢ is small within the range of AR and X considered
btut that it increases with MRand A. The corresponding results for
c(w) are shown in Fig. 31 which indicates that, for the range of A
and fRccnsidered,thie factor is considerably larger than o.  This
emphasizes the need to ensure that, in practice, the end plates can

sustain the required thrust.

6. Chordwise camber and thickness

In this section, consideration will be given to the influence of
distributions of chordwise camber and thickness on the 1lift and
induced drag. The class of distributicns to be exaumined, which is

considered representative of current trends in G.E.W. design, may
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be described as follows;
(i) For u(E) = 0 the wing section is constant across the
span.

(i1) The end plates' sections are different from that of the
wing, in general, and for a(w)=0 they are independent of z.

(iii) At any z-wise station the sections of the end plates
are the mirror image of each other in the plane y = O.

Throughout the analysis of Section 6 the assumptions of

Section 5 will be employed. Included among these, it will be
recalled, are the assumptions of the linearized theory. Thus
the vorticity distributions associated with incidence, chordwise
camber and thickness may be superposed to yield the vortex
distribution of a configuration with a combination of these
section properties. The linearizations do, however, restrict
the analysis to configurations of ‘small’ incidence, chordwise

camber and thickness.

6.1 Chordvise camber
According to the linearized theory the boundary conditions at

the cylindrical surface are, for the type of camber distribution

under consideration,

an(x,y; +1) = U, dzc(x)/dx; vnf(x,*blz,z) = UO dyc(x)/dx.
(6.1)

Here Ve and z_ are the(y and 2) ordinates of the camber lines of

the starboard end plate and the wing.
As a consequence of the assumptions that the vortex distribution

is of the form y(s)f(g) and the flow is smooth at the trailing edge
in forward flight, equations (3.28) and (6.1) may be combined to

yield
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+c/2 , +c/2 - ™
/ yl(g)fdzc(x')/dx]zdx = Yz(i')[ﬁzc(x)/dxildxy
-c/2 - ~c/2 B
> (6.2)
+c/2 - +c/2 -
/ yl(g)rdyc(x')/dszdx = f Yz(E’)dec(X)/dx}ldK
-c/2 - ' -c/2 - ) -

provided that £;(J) = £2(). Consequently, if iﬁzc(x')/dxfz =
o -
{Eyc(x')/dilz = -a, equations (6.2) become

+c/2 +c/2 _ +c/2
- [ vi®ade= [ Yz(E'ga)fazc(x)/dledX = yZ(g',a)fﬁyc(x)/d§11dx.
~-c/2 -c/2 - ~c/2 - -

(6.3)
Therefore, as fz(Z) = 1, it folilows that fl(Z) = 1, Hence it may
deduced from equation (6.3) that the circulation distribution

(round the vortex trace) corresponding to v; is given by
+c/2 +c/2
rl(Z) = [ yi(8) dx =~ | Yz(i'gu)[ézc(x)/d§11 dx/o. (6.4)
~c/2 -c/2 -

Thus, by combining equations (5.23) and (6.4), it is found that the over-
all—-1ift coefficient associated with this circulation distribution

may be written as

- +c/2 +c/2
CLl =2 f Yl(E)dx/Uoc = -2 f yZ(g',a)[&zc(x)/dg]ldx/Uoca . (6.5)
~cf2 "'C/Z -

Consider the slope distribution

dzc(x)/dx = [?zc(x)/d%]1; dyc(x)/dx = [ﬁyc(x)/dgjl - Aa(E),

(6.6)
E . . .
where Aa( ) represents an increment in end-plate incidence.  These
expressions may be used in conjunction with equation (6.3) to obtain

the result

+c/2 +c/2 (E)
J ¥2(E",0)(dz_(x)/ax)dx = [ v,(8',a)(dy (x)/dx + Ao~ 7/)dx .
-c/2 ¢ ~c/2 ¢ 6.7)
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It will be secn that, for arbitrary Aa(E)g equation (6.7) is satisfied
by arbitrary dzc(x)/dx and dyc(x)/dx provided these slopes are such
that the integrals of this equation exist.

It may be inferred from cquations (5.26) and (6.6) that, within
the limitations of the linearized theory, the overall-lift coefficient
appropriate to the slope distribution (6.6) is given by

T =B (£) , (B
CL - CL], + a Aa °

Therefore, by employing equations (6.5), (6.6) and (6.7), this may
be rewritter in the form

+cf2 <E)\!-c/?_
2 {wfz(ﬁ',a)(dzc(X)/dX)dx a { Yz(E',a)(dzc(X)/dx ~ dy(®/dx)ax
= - ._._-c/2 ~c/2

Cp N + 1o/ 2 - ’
[ (&' ,a)ax
~c/2
(6.8)

Equation (6.8) may be written in a more suitable form by noting

from equation (5.26) that
. +c/2
Co22 [ va(e",daxfuc = @™ 4 2By, (6.9)
-c/2
Where‘aL2 is the overall-lift coefficient corresponding to v,.
Therefore equations (6.8) and (6.9) may be combined to give the result
(W)+c/2 (E)+C/2
-2{a™ [ y5(8',0) (dz (0 /ax)dx + a [ 12(8" ,0) (dy (%) /ax) dx}
=R -c/2 -c/2 .
L e
C.,LUc
Lz "o (6.10)

This expression allows the determination of the overall-lift
coefficient corresponding teo the arbitrary slope distribution
{dzc(x)/dx, dyc(x)/dx}. Unfortunately, it would seem that, in
general, the integrals of this equation will have to be evaluated

numerically, This may be avoided, however, by writing
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+c/2 +c/2

o [y (Bddx =~ [ vp(&",0) (dz (x)/dx)dx -

-c/2 ¥ ~c/2

+c/2 +c/2 (6.11)
and o f YE(E)dX = - f Yz(E',a)(dyc(x)/dx)dx.

-c/2 -c/2

Here YW(S) is identifiable with the slope distribution {dzc(x)/dxD
dzc(x)/dx} and YE(&) with {dyc(x)/dx9 dyc(x)/dx}, facts which may
be proved by comparing equations (6.3) and (6.11). These vortex
distributions are, in fact, solutions of integral equations which
are similar in most respects to equation (5.34). The only
differences occur in the right-hand sides which instead of that

of equation (5.34) are, respectively, 4nUo(A§+ A)dzc(x)/dx and
4WUO(ER+A)dyC(x)/dx.* Therefore, by solving these equations in
the manner indicated in Section 5.3.1, it is possible to determine
YW(E) and YE(E) in simple analytical terms. Thus it is apparent

that the expression found by combining ecquations (6.10) and (6.11),

namely B ’ (w)+c/2 (E)+c/2 .
¢, = 2uia —JZ«{W(g)dx + a sz«,f:(g)dx}/cLz Uc, (6.12)

may be evaluated without difficulty, E&Z being found by the method
of Section 5.

In order to ;btain the induced-drag factors of the slope
distribution (6.6) it is necessary to know the circulation
distribution of the vortex trace. This may be found as follows:
it may be inferred from equation (6.3) that, if Po(g) is the
circulation distribution of a configuration with the slope

distribution {- a(w), —a(E)}, Po(g) = T;(J) = constant, provided that

() (E)

*That these terms are correct may be proved by writing o = q = a
and, correspondingly, v(&;) = v,(£;.0) in equation (5.34). This equation
is then multiplied in turn by ywﬁg') and yE(E') and integrated with
respect to £' between -1 and +1. The order of integration of the left-
hand side of each equation is then interchanged and the resultant
expressions are compared with equations (6.11).
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. +cf2 +c/2
a(“j) = a(ﬁ‘) = g f Yl(g)dx/ f’\‘/z(gvaa)dxa (6013)
~c/2 —c/2

Thus it may be deduced from equatiomns (6.6) that if, instead, Po(z)
is required to be identical with the circulation distribution

corresponding to the slope distribution (6.6) then

+c/2 +C/2 e
a(w) = 0 f Yl(i)dx/ f Y2(g'5u)dX; 1
~c/2 ~c/2 be (6.14)
JE ), (®) J

Therefore the circulation distributicn and hence the induced-drag
actors of the slope distribution (6.6) may be determined by the method

of Section 5. It is unnecessary, however, to perform these calculations

o(w) (E) may be found directly

(®) )

as the required results for o, and ©

from the results of Section 5 if &, )X and o are given.
Therefore, in order to facilitate this, equations (6.14) are used

to derive the result

: sc/2 *e/2 *e/2
P = te [ vi@ax s 0® ] et maife | @
q -c/2 -c/2 ~c/2

Here the subscripts eq have been added to show that the term
concerned applies to an uncambered configuration with equivalent

induced-drag factors. Thus, by employing equations (6.4) and

(E)

. E . . .
(6.7) to eliminate y;(&) and Aca from this expression, there is

obtained the result

+c/2 +c/2
{a(E)/a(w)} = { f Y2(€',a){?z (x)/dxﬂldx - f v (BT a).
€q -c/2 ¢ - ~c/2
- +c/2 i
.(dzp(x)/dx - dyr(x\/dx)dx%/ 5 yZ(g’Sa)[ch(x)/dx 4%,
” - -c/2
+c/2 +c/2
/ Yz(i“su)(dyc(X)/dX)dX/, J v2(&",0) (dz_(x)/dx)dx
~cf2 To~cf2

(6.15)
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from equations (6.6). Alternatively, by employing equations

(6.11), cguation (6.15) may be writter in the form

(), () +c/2 +c/2
{0 /™Y = [y (8)dx/ | v (&) ax. (6.16)
eq -c/2 E -c/2 ¥

6.2 Thickness distributions

Time has not permitted a complete discussion of the effects
of thickness even within the limitations of the linearized theory.
Instead, what will be described here is an approximate linearized
method of determining the lift and induced drag associated with
thickness. This method is considered to be valid for 'thin'
configurations of moderate or large R.

The linearized form of the boundary conditions at the cylindrical
surface of a thickness distribution, which satisfies the conditions

stated at the beginning of Section 6; is as follows:

& £
YV = % - - =% 7 o
vhf(xyy,+ 1) *Uodzt(x)/dxg vnf(x,+b /2,2) Uodyt(x)/dx,

. (6.17)
vhf(xsﬂb_/zsz) = ¥ Uo dyt(x)/dx.

Here z, and y, are the(z and y)ordinates of the outside surfacesof
the thickness distributions of the wing and starboard end plate
when aiE) = a(w) = 0. Also the superscripts * may be defined by
reference te the following examples: + Qﬁ = Eip(+ 1te).

Robinson and Laurmann (1956) have invesZigated fiows which
satisfy boundary conditions such as equations (6.17). Their
results indicate that both these equations and the condition of
zero flow across the ground plane are satisfied by a source distri-
bution of strength q given by
a(x,y,*V) = 20 dz_(0)/dx; x| s e/2, |y| < b/2;

q(x,tb/2,2) = ZU0 dyt(x)/dx; x| < c/2, |z| 1. (6.18)
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The upper half ¢f this distribution may be regarded as the 'physical
source distribution required to satisfy equations (6.17). The lower
half, on the other hand, is the image distribution which ensures that
there is no flow across the ground plane.

The ncrmal velocity induced at the cylindrical surface by the
source distribution may be written in explicit form. However,
instead of employing this expression, which is rather complicated,
the normal velocity at the wing plane will be calculated on the
basis of the following assumptions:

| (i) The flow induced by the sources of the image wing is two-
dimensicnal -in planes parallel to the plane y = 0.

(ii) The flow associated with the end-plate sources and their
images is disregarded.

Therefore the normal velocity induced at the wing plane may be
found by using a result given by Bagley (1960) for a distributicn
of two-dimensional sources aleng a line parallel to_ and height 1

from, the ground. In the present notation this may be written in

the form

1
5 = q(glsy:‘iit) 2\ dgl
an(gsfg'{'\!) —.][: o (5-51)4+ Z;AA . (6‘19)

Thus, by comparing equaticns (6.18) and (6.19), it is found that

== - Z Z°
UO T -1 dx1 (E El) + 42
This equation should yield a satisfactory approximation for

Vg (Ey,+V,if R is sufficiently large, except possibly in the

(6.20)

vicinity of |y| = b/2.

Equation (6.20) implies that the source distribution introduces
an effective incidence and camber into the flow at the wing plane.
Therefore, to prevent the boundary conditions of the camber surface
from being disturbed, the normal velocity induced at the wing plane

by the source distribution must be nullified. This is accomplished
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by a suitable vortex distribution placed on the cylindrical surface
and the image vortex distribution required to satisfy the boundary
condition of the ground plane. As hefore, the former distribution
is assumed to be of the type Yt(E)ft(BZ’)9 where subscript t denotes
that the distribution is associated with thickness. Therefore, in
view of the assumption that yt(l) < o, it is permissible to use

equations (3.28) and (6.20) to obtain the result

+c/2 +c/2 +1
.. 1 ' dze(€1) 2 dg,
:éﬁzyt(i)adx === -c£2Y2(E sa)dx _{ ax, (ESEpZ + &2 (6.21)

Equation (6.21) may be used in conjunction with a knowledge
of ft(g) to determine the overall lift associated with thickness.
However, ft(g) cannot be found without more detailed information
being available on the normal velocity induced by the source
distribution at the cylindrical surface. Thus it will be assumed
that this normal velocity does not vary with s. Consequently it may
be inferred from equations (3.28) and (5.1) that a configuration of
zero thickness and zero chordwise camber with f(Z) = ft(Z) will have
a(s) = constant. This implies, therefore, that ft(g) = 1.

It seems likely that for arbitrary zt(x) the right-hand side
of equation (6.21) will be difficult to evaluate explicitly and
will involve a double numerical integraticn. However, a simpler
method for obtaining yt(E) may be devised by noting that associated
with this vortex distribution there is a camber surface yielding

D, = 0. Therefore, in the manner used to obtain equation (5.34),

it is possible to formulate an integral equation which ensures that
this condition is satisfied. In fact, this equation differs from
equation (5.24) only in the right-hand side which is, instead,
*1odz (2)) 22 dg,
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This will have to be evaluated numerically, in general. There is
available, however, a convenient methcd for achieving this which has
been given by Bagley. This enables one to replace the above term

by the Gaussian sum

- 320U (R+)) Nil {(-1)“'“—1}(1-5%)£(5v - £)A (zt(in) - zdl))
o =1 N{(g, - gu)é + 4)4}% T c

Bagley has suggested that a seven-point interpolation (N = 8)
will probably be adequate, as the thickness-induced lift is usually
a small part of the overall 1lift. Therefore this suggestion will
be adopted here. Hence values of the right-hand side of the
integral equation will be obtained for 6 = nn/8, withn =1,2,3 ...
eeeseess 7. In the manner of Section 5.3.1, this permit: one to
satisfy the integral equation at the points 6 = nn/4 (n = 1,3,5 and
7).

The implicit assumption that ft(g) = 1 is equivalent to the
assumption that the thickness does not affect the overall induced
drag.  FHowever, it may not be concluded from this that the
sectional drag associated with thickness is zero. Nevertheless,
for configurations of sufficiently small thickness/chord ratio, this
drag is likely to be small and probably may be ignored. Therefore the
sectional drag of a configuration with thickness, incidence and camber
is assumed identical with D,.

Finally, it should be remarked that the effects of thickness and

camber may be combined by replacing Y and Yy in equations (6.12) and

(6.16) by Yy * Ve and gt T Thus there is obtained
2 +c/2
- e ) | /=
c = 20fa [ v (&) + v _(B)kk + a flvo (8) + v E}x Uec
L(c.T.) {: —of2 ¥ 't ~c/2 E £ G2%
. ve/2 (6.22)

E ref
and (P - RACE ve@¥s [ G )+ v @,

2 -c/2 6.23)
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where CL(C.T.) is the overall~lift coefficient associated with
camber and thickness.

As the vortex distributions due to thickness, camber and
incidence may be superposed,it follows that the same property applies
to the overall-lift coefficients. Therefore, in allowing for the
effects of thickness and camber on the overall-lift coefficient of

@ g ®

a configuration with non-zero o d »it is permissible to

replace equation (5.26) by the expression

Ei = a(w)(a(w) - aéw)) ’ (6.24)

(W) = _{'—' a(E)O(.(E)}/a(W) (6.25)

where N L(C.T.)+

is the incidence of the wing corresponding to zero overall 1lift.

7. The influence of non~linearities

The exact potential-flow theory of de Haller (1936) for the
1ift coefficient of a two-dimensional flat plate in ground effect
shows that, for 'small' plate heights,B varies rapidly with incidence.
It is anticipated, therefore, that the present theory will not be
accurate for small )X unless non~linear affects, such as that
described, are included. This section describes an approximate
method for accomplishing this aim.

Initially, in Section 7.1, consideration is given to
configurations of zero chordwise camber and thickness. The theory
developed for this case is then extended in Section 7.2 to

configurations of 'small'chordwise camber and thickness.

7.1. Uncambered configurations of zero thickness

Consider the wing planz of a configuration having zero chord-

wise camber and thickness. By noting that according to the
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linearized theory CL(y) = ZP(y)/UOc and examining equations (2.44)
and (2.53) one finds that the linearized theory of Section 5 yields

the result
2 =
CL(y)/CT(y) 2w8, (7.1)

vhere B is invariant with y, a(w) and a(E). However, although,
in practice, B may not vary with y, it will depend on a(w) and

23
 possibly u(E’. Therefore equation (7.1) is replaced by

R /ey = 2m8@™, o), (7.2)
The indications of the linearized theory are that for the cases
of interest the trailing vorticity is comparatively weak. t seems
reasonable to suppose, therefore, that the effect on the overall
lift of the departure of the trailing-vortex sheet from the assumed
cylindrical éhape is negligible. Thus the Trefftz-plane concept
is retained and the implicit assumption of the theory of Section 5
that Df(y) = Di(y) is employed. Hence, by resolving the sectional

forces in the drag direction, it is found that

¢ ) = ¢ sin o - ¢ (), (7.3)

where CN(y) is the coefficient of sectional force normal to the chord

5 - 1,02c.
and Cy. (y) D, (y)/2pUZlc
An examination of the sectional forces in the 1lift direction

gives the result

(w)

a(w) + CT(y)tancx

CL(y) = CN(Y)Qos

Therefore, by using this equation to eliminute CN(y) from equation

(7.3), one obtains the expression

2, (W) (w) _

CT(y)sec = CL(y)tan o CDi(y)

which for small a(w) may be replaced by the approximate form

e = ¢ (v ot - Gy, ) - (7.4)
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This is, in fact, the result employed in the linearized theory but,
evidently, for -10° < a(w) < +10° it produces unimportant errors

in CT(y). This range of incidences is considered sufficiently

large to justify the use of equation (7.4). Therefore this equation

is combined with equation (7.2) to give the result

o () = 218, o) - ¢ /e, m?. (7.5)

This should be compared with the corresponding result predicted by

the linearized method of Section 5, namely

C () = 21 /0 e = 208 + w () /20 }

As noted before, the trailing vorticity of configurations of
practical interest is weak. Consequently, in these cases,CDi(y) <<
CL(y)a(w). Therefore it seems reasonable to assume that the error
produced in CL(y) by replacing the term CDi(y)/CL(y) in equation
(7.5) with its linearized form, —wm(y)/ZUo, is insignificant.

Therefore equation (7.5) is rewritten in the form

CL(y) = ZWB(a(W),a(E)){u(W) + ww(y)IZUO}° (7.6)
()

As the non-linear effects associated with changesin o' ~are
largely confined to a limited region adjacent to the end plates
it seems reasonable to suppose that B is not very sensitive to
a(E). Therefore 8 is assumed invariant with Q(E).

That B varies with a(w) would seem to be due in the main to
the non-linear influences of the image spanwise vortices which in
a non-linear theory are located at the mirror image of the wing
chordal plare. These effects are twofold. Firstly, as a(w)
changes, the disposition of the image spanwise vortices relative to
the wing is altered. 1In consequence, y(&) is modified, thus
altering CL and CT. Secondly, if v(&) is positive, the image
spanwise vortices contribute to a reduction in the x component

of veleocity at the wing. This produces, directly, a reduction

in CL and, indirectly, a change in y(£) necessary to satisfy the

boundary conditions of the wing.
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P . . ¥ o
It is convenient to write B = B(u(v)) in the form

8™y = 80) + 18(c™)

k4

where AB(u(W)) is the increment in § due to the non—~linear effects
and B(0) = B(a(w)= 0) is the linearized-theory prediction of 8.

The linearized theory is indicative that, for R> 1, B8(0)
varies slowly with R. This may be attributed largely to the
small effect that changes in & have on the velocities induced at
the wing by the spanwise vortices and their images. It is
anticipated, therefore, that AB(a(W)) also varies slowly with R
for R > 1. Thus it is assumed that AB(a(w), R) = AB(a(w),w).
Consequently

8", ) = 60,R) + 28™ ). (7.7)

This is equivalent to the assumption that AB(a(W)) may be deduced
from the exact two-dimensional theory of de Haller mentioned
previously.

It seems likely that, if either AB(a(W)) is small compared
with 8(0) or R is large, the errors in B resulting from the
use of equation (7.7) should not be important. Therefore,if
B(u(w)su(E)) is replaced in equation (7.6) by the right-hand side

of equation (7.7),it is found that
¢, () = 21(8(0,&) + 88, Ha™ +w /2w 3. (7.8)

If,however, AB(a(w),w) is small compared with B(0,&) the term
ZNAB(a(W),m)wm(y)/ZUo, which is obtained by expanding equation
(7.8), is wery small compared with CL(y). Therefore, on the

(w)

assumption that AL(e »9 << B(C, R}, this term is negiected so that

6 (v) = 2180, &) ("™ + w_)/2u } + 2148 =)0, 7.9

§? ) » .
If w_(y) is assumed to be linearly dependent on a(ﬂ’ it is

found that the term in equation (7.9) multiplied by 8(0,R)
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represents the contribution of the linearized theory to CL(y).
Therefore, by employing this assumption, it is evident from
equations (5.26) and (7.9) that the overall-lift coefficient may

be written as follows:

EL = {a(w) + ZHAB(a(W),W)}a(W) + a(E)a(E). (7.10)
It would seem that the error in Ei resulting from the use of

the previously-mentioned assumption is not likely to be important.

7.2 Chordwise camber and thickness

The extension of the preceding analysis to include the non-linear
effects of thickness and camber is extremely complicated. Consequently,
instead, a result wiil be introduced for Ei which, although tentative,
would seem to be a reasconable approximation for configurations of.
'small' thickness and camber.

According to the linearized theory, for a given R and A, an
uncambered configuration cf zero thickness yielding the same Ei as
a configuration with incidence, thickness and camber (equation 6.24)
has the wing incidence a(w) - aéw)(a(E) = 0) and end-plate incidence
a(E). Also, as may be inferred from equation (5.2)(i), it has a CL

distribution given by

CL(y) = ZwB{r&’(W) + wm(y)/ZUo}, (7.11)

where

RO RN C PR IS
Therefore, on the basis of a comparison between equations (7.6),
(7.10) and (7.11), it is suggested that & reasonable approximation

for the Ei of a configuration of 'small'’ thickness and camber is

€ - 1™ 4 2map 87 Ly, @) (E) (7.12)

In effect, equation (7.12) extends the notion of the equivalent

configuration of zero thickness and camber to include non-linear
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effects. That it is a fair approximation for 'small' thickness and
cember follows from the fact that it agrees with equation (7.10)
when méw)(a(EL=0)=<)s It should also be observed that it is
asymptotically in agreement with equation (6.24) as a(w) and
uéw)(a(E) = 0) simultaneously tend to zero.

Although equation (7.12) makes allowance for the 1lift induced
by the image thickness distribution it does not include the effect
of the change in chordwise velocity induced at the wing by thickness.
Thwaites (1960, p. 298) has shown that for i?o;ated aerofoils in an

W

inviscid flow this produces an increase in a' ‘', However, in

. . w) .
reality, these aerofoils rarely have a value of a( ) in excess of

that calculated on the assumption that the aerofoil is of zero
thickness. The reason for this is that the thickness effect is
counteracted by the displacement effect of the boundary layer.
Indeed, a typical calculation quoted by Kiichemann (1952) for an
isolated R.A.E. 101 (10% thick) aerofoil with a chordal Reynolds
number of approximately 106 indicates that the two effects cancel.
Therefore, in the absence of calculations of these effects for
two-dimensional wings near the ground, this will be assumed to be
the case with the present configuration. In other words, for the
purpcse of comparison with experiment, equation (7.12) will be
employed without modification.

The influence of the variocus non-linearities on the overall
induced drag is difficult to predict. ' Nevertheless, it seems
probable that for configurations of practical interest this
component of the drag will be small compared with the overall boundary-
layer drag. It is suggested, therefore, that the linearized value of
o should be employed for performance prediction.

The results obtained by the present theory will be compared with
experiment in Chapter III. In the same chapter the validity of a
number of the assumptions of this theory will be examined in the

light of experimental evidence.
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CHAPTER 1ITI

EXPERIMENTAL INVESTIGATION

1. Introduction

This chapter is concerned with a discussion of some experiments
which have been performed on various G.E.W. configurations. These
experiments were conducted in a wind tunnel and the image technique
was used to simulate the presence of a water surface. This method,
which replaces the water surface by a plane of symmetry ostensibly
introdnced into the flow by an image of the wing, may be criticized
as follows:

(i) 1In practice, the water surface is not planar, even in
absolutely calm conditions, owing to the pressure field of the wing
which distorts the surface.

(ii) The combined influences of the velocity field of the wing,
the dynamic condition at the water surface aud the viscosities of
the two fluids produce a vocrticity layer in the vicinity of the
water surface. This vorticity layer, which is not present with
the image method, affects the flow round the wing.

Both these criticisms apply to the theories introduced
previously. Therefore the image technique may be regarded as a
method of checking the accuracy of the theories within the limita-
tions of the assumptions leading to the criticisms. Consequently,
if the theoretical results agree reasonably with the results of
the image method, it might be worth while to extend the theories to
include the effects described in (i) and (ii). On the other hand,
if the results are not in agreement the reasons for the discrepancies
may possibly be isolated more =asily.

The image method has also been criticiz:d periodically on the

basis that the vorticity layers comprising the wakes of the models
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interact and, in consequence, disturb the plane of symmetry. On

the evidence of Werlé's(1963) flow-visualization studies, de Sievers
(1965) remarked that this wake interaction does not destroy the
symmetry of the flow. Nevertheless, during the course of the present
experiments;this criticism was considered and the results of the
investigation will be described in Section 2.3.2,

When consideration was first given to devising the experiments
there were few examples of G.E.Ws. in existence. There had;
however, been some experiments performed by Fink and Lastinger (1961)
and Carter (1961). Unfortunately, these experiments were confined
to open configuratinns and the end plates used were made of thin
metal sheet. Therefore it is likely that the flow was not attached
at the end-plate leading edges. This is an undesirable feature,
for a large overall drag may be obtained if the end plates do not
yield a leading-edge thrust. Moreover, agreement between the
(inviscid) theory and experiment can oaly be expected if the flow
is attached at the end plates. Therefore it was decided that,
for the majority of the experiments; end plates of aerofoil
section would be fitted to the basic planar wing.

Both open and closed configurations were examined in the
present series of experiments, the main aim behind them being to
test the accuracy of the theories introduced previously. However,
particular emphasis was placed on the study of the closed configura-
tions. There are two reasons for this. Firstly, the closed
G.E.W. appears to offer the best prospects for future development
by virtue of its low induced drag. Secondly. the theory in Part
ITI of Chapter II is based on a number of assumptions which it was

felt desirable to check by detailed experiments.
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2. Experimental Technique

Hodelg and rigging

]
L]
fr=d

The wing component of the various models tested was rectangular
in planform, with a span, b, of 4 ft. and a chord, ¢, of 2 ft. 1t
was untwisted and possessed an 1137 Clark Y section. Also,it was
made from laminated mzhogany which was finished on the exterior with
'Phenoglaze’ and constructed round a 6 in. x 4 in. x 2 ft. duralumin
bar. Bolted to the top of this bar at each of the mid semi-span
stations and approximately 4} in. and 7} in. from the wing leading-
edge were two lugs to which the support struts were attached.

These struts passed from the lugs vertically upwards to the wind-
tunnel balance.

Continuous incidence adjustment was provided by means of slots
in the support struts through which the bolts securing the struts
to the lugs passed. These slots were arranged so that the wing
pivoted about an axis on the wing lower surface at a chordwise
distance of 6 in. from the wing leading edge.

The support struts each comprised two parts which were bolted
together. This permitted variations in the height of the wing
relative to the 'ground plane' which was horizontal and coincident
with the axis of the tunnel. The heigpt was changed simply by
undoing the nuts and bolts fastening the two parts of the struts
and moving the lower parts of the struts to new positions. A
sufficient number of holes was provided in the struts to ensure a
total vertical movement of & in. at 1/4 in. intervals.

Strut drag was sensibly excluded from the drag measurements by
means of fairings surrounding the struts. These fairings were
constructed from mild-steel plate and had an approximately 207
R.A.E. 101 aerofcil section. Thelr geometry is illustrated in
Fig. 32.

Pressure tappings were located at two spanwise staticns of the

wing, namely centre span and 0.3 in. from the port wing tip. At
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each station there were 45 tappings, one of which was located at

the leading edge and the remainder were divided equally between the
upper and lower surfaces. The chordwise distances of these tappings
from the leading edge as fractions of the chord (%/c) are shown in
Fig. 33.

The static pressures were relayed from the tappings by copper
tubes, which were inlaid in the wing, to the bases of the struts.
There the copper tubes were joined to plastic tubes which passed
up recesses in the sides of the struts to manometers outside the
tunnel.

The image wing (or image) and its rigging were similar to
that described except in the following respects: firstly, the
strut-attachment lugs were situated 3 in. from each wing tip.
Secondly, the tappings were located at 12 in. from the port wing
tip (45 holeg) and centre span (1l holes), the latter tappings
providing a check on the symmetry of the flow about the wings.

The chordwise positions of the former tappings were the same as
those of the wing whilst the latter may be found in Fig. 33. There
it will be seen that 6 of these were at the image position of the
wing upper surface, which is called 'image upper surface’, and 5
were situated at the 'image lower surface’.

Fig. 34 illustrates the geometry of the end plates and the
method of attaching them to the wings. It shows that when each
end plate was attached to the wing tip its base was in a plane
perpendiculaer to the end-plate leading and trailing edges. In turn,
these edges were, respectively, in the same planes as the leading
and trailing edges of the wing. Furthermore, it indicates that
each end plate was faired into the wing with a fairing of semi-
elliptic cross section. This had a major to minor axis ratio
of 2.

Also shown in Fig. 34 is the method by which the incidence of

the end plates was increased, namely by additions to the wing which
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in plan view were wedge shaped.

At the stations of the end plates corresponding to maximum
chord (taken in a direction parailel to the end-plate base) the
aerofoil section was constant and untwisted with ordinates

z; = C.010c + (z; - zz)c'y./Z : 2z, = 0.3 (zz)c.y.'

Here z; and z; are the upper and lower boundary ordinates, the
'upper boundary' being on the cutside of the configuration or
image, and the subscripts c.y. refer to the ordinates of the 11iZ
Clark Y section at the corresponding chordwise position. At
the other stations the ordinates of the sections, whichwere also
untwisted, were the same as those at the corresponding chordwise
positions c¢f the full-chord sections.

A general view of the model and image when fitted with end
plates is provided by Fig. 35. In the particular case illustrated,
the end plates virtually closed the spanwise gaps between the wing
and the 'ground' plae.

Finally, it should be remarked that, when the end plates were

not fitted, half-body fairings were attached to the wing tips.

2.2 Methods of measurement

The experiments were performed in The College of Aeronautics
8 ft. x 6 ft. wind tunnel. This has a closed working section of
octagonal cross section and is equipped with a Warden six-
component balance.

The surface static-pressures of the two wings were measured
by alcohol-filled manometers connected to the tubes from the
tappings. Before beginning the experiments,this system was
checked for blockage and leaks. During the course of this
investigation it was found that the copper tube leading from the
hole on the lower surface cf the wing at centre span and §/c = 0.5

was blocked.  Attempts to remove the blockage failed; therefore

no readings of static pressure were taken from this hole.
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The incidence of the wing and image was measured with a bubble
inclincmeter. In the case of the wing,this was mounted on a
platform which was specially made to fit on the upper surface of
the wing. The incidence of the image, on the other hand, was
measured by placing the inclinometer on the substantially flat
'image lower surface'.

In certein experiments. to be described later,the sectional
boundary-layer drag at the centre span of the wing was measured.
This was achieved with a five-tube yaw/pitch meter which gave the
total head directly and was calibrated in order to give static
pressure. Thic device, which has been described by Alexander
(1961), can ncrmally be traversed vertically and horizontally.
However, to reduce blockage and transverse interference at the

mecdel, the horizontal traverse was not employed.

2.3 Preliminary Experiments

2.3.1 1Initial flow studies

The initial flow studies were designed to ascertain whether
the flow over the wing was acceptable and were conducted without
the image in position or with end plates. Throughout these
studies, and indeed all the experiments to be described in this
chapter, the wind-tunnel speed was a nominal 100 ft/sec. correspond-—
ing to Rc = 1.3 x 106.

For the purpose of investigating the flow,a surface—-flow
indicator and wool/nylon tufts, attached to the wing surface,were
used. The indicator consisted of a mixture of 'Polyfilla’,
water and 'Teepol’,

During these tests the strut fairings terminated 1 in. above
the upper surface of the wing and the unfaired nortions of the
struts were streamlined with 'Plastiscine'. Flow-visualization

tests showed that in this case there were large turbulent wakes
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being shed from the struts. These wakes were considered unaccept-
able. Thus it was decided to extend the fairings as near as

possible to the wing surface. This was achieved by means of
additional fairings made from copper sheet which reduced the

gap between the base of the fairings and the wing to 0.02 in. The
extra fairings were constructed in a mannersac as to permit ready access
te the incidence adjustment of the wing.

Subsequently, it was found that the width of the wakes behind
the fairings was greatly reduced by the presence of the fairing
extensions.

Another fa-:t to emerge from this study is that there was no
obvious boundary-layer scparation near the leading edge of the
wing in the incidence range 0° to 14°. To some extent this is
confirmed by the pressure distributions measured at centre span

and shown in Fig. 36.  On the other hand, in the case a(w) = 11°

’
there is apparently a curious bulge in the pressure distribution
of the upper surface. At first, it was thought that this might
be due to a laminar-separation bubble. However, a similar bulge
is evident in the inviscid distribution of a two-dimensional
Clark Y aerofoil calculated by Karman and Burgers (1935) for the case
u(w) = 9°, It seems likely, therefore, that this bulge is directly
associated with the shape of the Clark Y section.

Balance measurements cof the overall forces on the wing were

made with the purpose of checking the conclusions of the flow

studies. It became apparent from these results that there were

* In this figure the results are plotted in the form CPT =p - po/%pUgT

. " i .
against x/c¢, where p and P, are, respectively, the surface and tunnel
static pressure whilst the subscript T denotes quantities uncorrected

for tunnel interference.
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day~to-day variations in the overall forces on the wing. It was
thought that this might be due to alterations in the position of
the transition region of the boundary layer on the upper surface
of the wing. Therefore it was decided to fix the tramsition
there by placing a trip wire along the span at a chordwise distance
of } in. from the leading edge. The diameter of this wire was
decided by a criterion given by Pankhurst and Holder (1948, p. 463),
namely '
Uod/v > 60,

where d is the diameter of the wirz and v is the kinematic
viscosity. Thls criterion dictates the minimum diameter of wire
needed to 'trip' the boundary layer. Thus with the values
u, = 100 ft./sec. and v = 1.56 x 10—4ft?/sec., which are typical
of the present experiments, this yields d > 0.011 in. Therefore
the diameter 0.012 in. was chosen for the wire.

Wires of the same diameter and chordwise location were also

placed on the 'image upper surface' and on the outside surfaces

of the end plates.

2.3.2 Investigation into the validity of the image method

The aim of the experiments to be described here was to
examine the validity of the image technique as a means of
representing a steady plane of symmetry. In the first part of
these experiments the symmetry of the flow over the wing and the
image was investigated by comparing the pressure distributions
of the two wings at centre span. Throughout this study the
height of the pivotal axis of the wing above the 'ground' plane,
hp’ was kept constant at 3 in. and end plates Y3§e noz figted. .

The pressure distributions obtained for o =2 ,5 and 8
are illustrated in Figs. 37, 38 and 39 which show plots of CPT
against ;/c. It will be seen that in each case the two sets of

. . o v
results are almost indistinguishable except at x = 0.042 ¢ on the
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suction surfaces. Here the image consistently yielded a slightly

larger negative C A possible explanation for this is that the

interference of tﬁz wing strut fairings at the wing centre spanwas
greater than that of the image strut fairings at the centre span
of the image. This is plausible because the wing strut fairings
werenearer centre span than the image strut fairings. Furthermore,
it was found that the difference in pressure between the image
and wing at X = 0.042¢ could be altered by modifying the bases of
the wing strut fairings. However, even if this conjecture is not
correct,the effect of the discrepancy on the overall forces seems
not to be impor‘ant.

The second part of this investigation comprised an
examination of the importance of the wake-interaction effect
mentioned in Section 1. This phenamenon appears to consist of two
effects. Firstly, the vorticity in the wakes of the wing and the
image interacts to produce unsteadiness in the flow behind the
wings. Secondly, the wakes mix owing to the action of turbulent
mixing. Neither of these effects would occur with a wing in
motion over a water surface. However, they may be removed in
the present case by splitting the wakes with a thin plate placed along
the horizontal plane of symmetry. Thus, on the assumpticn that the
plate does not cause any flow interference, it may be argued that
if there is no difference in the overall forces on the wing with
and without the splitter plate, the wake-interaction effect may be
ignored. This, therefore, was the approach adopted.

The splitter plate employed was of 10 gauge aluminium alloy
of 4 ft. chord and 4} ft. span mounted on angles which were
supported by struts from the tunnel floor. Additional stiffness
was given to the plate by meanc of wire braces between the angles

and the sides of the tunnel.



The incidence of the plate was adjusted to a nominal zero
by using an inclinometer, an incidence tolerance of + 3 minutes
being applied to the readings.

During the tests, the splitter plate was placed with its
leading edge in the plane of the trailing edges of the wing and
the image. Furthermore, to avoid some form of interaction
between the trailing vortices of the image and the support struts
of the plate,the configurations chosen possessed comparatively
weak trailing vorticity. One such configuration had hP = 2 in.,
u(w) = 8° and end plates giving a constant gap of 0.025 in.
between the bases of the end plates and the 'ground'. The
results obtained in this case for ELT and EbT (which are based on

the planform area of the wing, 8 ft?) are as follows:

WITH SPLITTER WITHOUT SPLITTER
CLT 1.58 1.58
CDT 0.0274 0.0276

126.

Evidently, there is no significant change in the overall forces

resulting from placing the splitter plate in the tunmel. It is
possible, however, that the wake-interaction effect was masked by

the interference caused by the splitter and its supports.

Nevertheless, calculations of this interference have indicated that

its effect on the overall forces is mesligible.

Another case examined was the configuration with h = 5 in.,
a(w) = 12.5° and end plates with lp = 4" and y = 60, where 1p and
vy are defined in Fig. 34. The results obtained arc as follows:
WITH SPLITTER WITHOUT SPLITTER
Co 1.50 1.50
Cor 0.0972 0.0984

Again no significent differences betwecen the overall forces with and

without the splitter plate are apparent.



Both the cases cited are extreme insofar as the spanwise
componient ¢f vorticity in the wake of sither configuration is
considerad comparatively large and no smaller than that of any

configuration tested. It is anticipated, therafore, that the

127,

wake-interaction effect may be ignored for the present configura-

tions, at least. On this basis, the splitter plate, which made
model rizging difficult, was not emploved in the remainder of the
experiments.

In the course of the investigation inte the wvalidity of the
image method the rigidity of the model and its supports was
examinad. This was done with a Taylor-Hobson microalignment
telescope which was sighted onto a point on the trailing edge of
the wing before and after a run. For this test, which was
performed with hp = 5 in. and no end plates, the wing and the ima
were set at their mawimum incidence (approximately 14°).

No change in the positien of the peint could be detected as
the tunnel speed was increased from O to 100 ft/sec. The same

was found to b: true of a similar point on the image.

2.3.3 Determination of strut-fairing interference

Calculations performed with the aid of information given
by Hoorner (1951, p 113) indicate that the strut-fairing interfer-
ence on the overall forces of the wing may be significant in some
cases. Unfortunately, Loovrer's results, which are taken from
various experiments, are not sufficiently comprehensive. Therefo
it was considercd desirable to determine the strut-fairing
interference experimentally.

It was considered impracticable to establish the fairing-
interference corrections for all combinations of hps a(w) and
tip configurations. Conseaquently hp was kept comstant at 4 in.
and end plates were fitted so that for the three incidences

. w o .o o .
examined, m( ) . 27, 5 and 87, there was a constant chordwise

ge

re
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gap of 0.0l in. between the bases of the end plates and the ground.
At each of these incidences two end-plate wedge angles were tested,
namely 0° and 9°.

The method of determining the strut-fairing interference was
to measure the influence of a dummy fairing on the overall forces
of th:2 winpg. This fairing was situated above the wing at centre
span at the same chordwise position as the other fairingswhich it
resembled in all respects. The gap at its base could be varied
and the results for the overall forces were extrapolated to zero
gap. The corresponding increments in the overall 1lift and drag
cocfficients due to the dummy fairing, ~(AEL)F = “Aff/%DUgTbc
and —( Eb)F = Aﬁf/%pUgT be , are plotted against the sectional-
1lift coefficient at centre span (without the dummy fairing) in
Figs. 40 and 41. This coefficient was obtained by integrating
the pressurc distributions in a manner to be described in Section
2.4.4.

The results for the increments appear to correlate reasonably
with C. . Therefore it is assumed that the curve through these

L
results may be used to correct C, . and CDT for other configurations

provided that (a) Rc is the sameLGd (b) the sectional-lift
coefficients at the spanwise stations of the real strut fairings
are used in reading off Figs. 40 and 41. Further, it is assumed
that the total fairing~interference correction may be found by
doubling the correction of one fairing. This appears to be a
reasonable assumption as the horizental distance between the strut
fairings is larze compared with their chord.

Finglly, mention should be made of the correction applied to
the overall-drag coefficient to allow for the gaps between the
bases of the strut fairings and the wing. Although these gaps
were small compared with ¢, it was thought that the extra drag
involved might be significant owing to the rather bluff shape of

the struts. Tests on the above-mentioned configurations supported
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this view by indicating that as the gaps were reduced the overall
drag of the wing dropped noticeably. The results of these tests
werc used to obtain the correction for the gap on the overall
forces. It was found that the lift correction was insignificant
but as is shown in Fig, 42 the correction to the overall-drag
coefficient (AED)G = AﬁG/QQUgTbc cannot be ignored. In this
figure (AED)G is plotted against ELT and the correlation is seen
to be reasonable. This graph has been employed to correct the

overall-drag coefficients of all che cases examined.

2.4 Reduction of Observations

2.4.1 Blockage corrections
Consider, firstly, the blockage associated with the wing and

the image. This will include contributions arising from the two
wings, their boundary layers andiwakes. However, it would appear
from the discussion of Pankhurst and Holder (1952, p.p. 330-348) that
the boundary-layer blockage is usually neglected. Therefore this
leaves the solid blockage of the wings and their wake blockage.

In general, the distance between the wing and the image is
small compared with the height of the tunnel working section.
Therefore, for the purpose of calculating the solid blockage, it
seems reasonable to replace the two wings by a single wing of
twice the thickness and volume of the wing and mounted at the
tunnel axis. Thus it is possible to use a result given by
Pankhurst and Holder (p. 343) for the increment in axial speed

due to the solid blockage (Aus) of an axially-mounted wing, namely
pu = (n/4) T U_(1+ 1.2 e/e)v/c>2, 2.1)

Here 7 is a dimensionless constant depending on the cross—sectional
shape of the working section and C is the cross—sectional area of

the working section.
The quantities t/c and V are the thickness/chord ratio and the

volume of the equivalent single wing.
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An inspection of a table given by Pankhurst and Holder (p. 341)
suggests that a reasonable value of t for the 8 ft. x 6 ft. tumnel is
0.8. By employing this value together with t/c = 0.24, V = 2.28 ft.3

and C = 46.4 £t in equation (2.1) it is found that
11\u.s = 0.0066 UOT

Pankhurst and Holder give a result for the increment in axial
speed due to the wake hlockage (Adw) of an axially-mounted wing

in a closed rectangular tunncl. This may be written in the form

Au:W = DBT/ZonTC, (2.2)

where D is the boundary-layer drag of the wing.

B
As before, it is assumed that the two wings may be treated as

a single axially-mounted wing. Furthermore, it is assumed that
equation (2.2) also applies to the cross section of the present
working section which is nearly rectangular. Therefore, with
the typical value for the equivalent wing'ﬁBT/QpUgT = 0.192 ft?,

equation (2.2) may be employed to give for the velccity increment
Au = 0.0010U
w oT

The blockage caused by the end plates or the half-body fairings
is ignored on the basis that the extra volume and boundary-layer
drag thereby introduced is comparatively small. On the other hand,
consideration will be given to the blockage caused by the strut
fairings. With regard to the blockage of the wing strut-fairings
this is accounted for by the interference correction discussed in
Section 2.3.3. Therefore it is only necessary to correct for the
blockage of the image strut~fairings. In determining this correction,
use is made of the fact that the flow rounl the image strut-fairings
has a vertical plene of symmetry at the centre span of the wings.
Consequently only the flow in either the port or starboard halves
of the tunnel need be considered. Furthermore, usc may be made of

the fact that the tunnel flocr represents part of a plane of symmetry
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of the flow about the image strut-fairings.

As with the wings it is permissible to employ equation (2.1)
to determine the correction for the image strut-fairings. It
should be noted, however, that this correction applies strictly
to the longitudinal velocity at these fairings. Nevertheless,
the errors obtained by assuming that this is the same as the
correction required at the wing are likely to be insignificant.

It is possible to deduce from results given by Pankhurst and
Holder that for this case v ~ 1.2. Thus, by employing equation
(2.1) with the appropriate values T = 1.2, t/c=0.20, V = 0.376 ft?
and C = 46.4 ft%, it is found that the solid-blockage correction
due to the image strut fairingsis

Aug = 0,0016 UOT

Finally, it should be remarked that the wake blockage of the
image strut fairings is negligible and is thervefore ignored.  Thus
the total increase in axial velocity at the wing due to blockage is
found by adding together the separate contributions given previously.
The corrected tunnel speed is then obtained and the overall-force

coefficients are corrected accordingly.

2.4.2 Lift-effect corrections

In determining the lift-effect corrections it is assumed that
it is permissible to employ the linearized theory. As these
corrections are generally small it is supposed that the errors thus
caused in the overall forces on the wing will not be important.

Suppose that the wing under consideration has zero chordwise
camber and thickness. By making the assumption that

v(x,y) £ v(x) £(2y/b), it is found from Section II.3.1 that

T(y) = w(BF + AB)c[ﬁoa(w)(y) + {Ei”(yﬂ.F + Aww(y)}/Z] (2.3)
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Here the subscript F refers to unconstrained quantities whilst AB
and Aw_(y) are increments in B and w_(y) due to the lift effect.

A qualitative study of the induced-velocity field of the
image system required to satisfy the boundary condition of zero
flow across the tunnel walls indicates that;for the various values
of hp/c examined AB << Bp+  Therefore AB is ignored in equation
(2:3). Consequently the lift effect may be regarded as an increase

in the 'effective incidence' of the wing at any station y by an amount
Aa(w)(y) = Aw'm(y)/ZUo

N
As this is small compared with a(w)(y) it is assumed that Aaﬁw)(y)-may

(w)

be replaced by its mean valuc across the wing span, Aa' » According

to Pankhurst and Holder this may be written in the form
5™ < FoeC, /c, (2.4)

where 8 is a factor depending on the cross-sectional shape of the
working section, the ratio of the wing span to tunnel breadth and
the spanwise lift distribution. Also it should be noted that EL

is corrected for blockage. Thus,for the case of a wing of zero

twist,the'E;/a(w) curve is corrected simply by displacing it an
amount AE(W in the direction of u(w).

Owing to the increase in the effective incidence of the wing
due to the 1lift effect the induced drag is reduced for a given
lift. Thus provided that T'(y) and Aa(w)(y) arc slowly varying
functions the unconstrained induced-drag coefficient may be written
as

= e F ~(w)=
Cpir = Cpir * 40 O
— T =

= CDiT+ GbeL/C
from equation (2.4).

The factor 6 has been determined for planar wings near a
ground plane in a working sectiom of rectan;ular cross section’.

by Brown (1938). In his calculations he assumed a uniform
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spanwise distribution of lift but this assumption should not cause
any significant errors.

On the assumption that the effect of the corner fillets of
the 8 ft. x 6 ft. tunnel may be ignored the following values

have been dcduced from Browm's results:

WP 5 &9 @, - T /T2
0.083 0.0022 0.022 0.00038
0.125 0.0050 0.050 0.00086 -
0.167 0.0086 0.085 0.00148 .
0.208 0.0124 0.123 0.00214
0.250 0.01¢4 0,192 0.00334

Within the limitations of the linearized theory the above
results also apply to configurations with chordwise camber and
thickness. Thus they have been used to correct the overall-force
results for the planar configuratioas.

The corrections for the non-planar configurations have been
obtained by employing the above tabulation with hp replaced by
hp - Tb.

2.4.3 Circulation and sectional-lift measurements

In the course of the experiments on the closed configurations ,
measurements were made of the static pressures &t various statioms.
These results were used to calculate the circulation and sectional-
lift distributions. The method employed in these calculations and
the theory on which the circulation calculations are based are
described in this section.

Consider a chordwise section of the configuration. By
reference to the sketch below and a result given by Goldstein(1938,
p. 119) it is possible to write the component of vorticity normal

to the plane of the section as
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K —  du 1 ow :
T e + wmm " e ez, 2.
n I+xz 47 %52 1 + xz 3% (2.5)
Here n, the vorticity component, is taken positive in the clockwise
sense whilst x and z are distances along and normal to the aerofoil

boundary which is ofcurvature K. Parallel to x and z are the flow

velocity components u and w.

Wt Z ‘.J.'I

The sketch shows a line which is normal to the chord lime at a

chordwise distance ¥ from the leading edge and intersects the
section contcur at A and B. From these points are extended lines
normal to the section contour which cross the edge of the‘boundary
layer at A' and B'. Thus the circulation P(g) ig defined as the
sum of the circulations of all the elementary vortices upstream of
A'ABB',_being taken positive in the clockwise (lifting) sense.

Hence, by employing equation (2.5), it is found that

A -— —
I (%) =Lf_7'——5——“—§+-’3-‘i————1-——-—3-“i}(1+ «z)dx dz (2.6)
B 011 + Kz 3z 1 + Kz 9% : :

‘where § is the thickness of the boundary layer along the direction of
z. Therefore, by noting the condition of no slip at the section

boundary, equation (2.6) may be rewritten as follows:

A As
P(g) = [ (1 + «d®)Udx ~ [ [(sw/ox)dx dz, (2.7)
B B o

whera
U=u(z =3).
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An examination of the order of magnitude of the last term of
equation (2.7) indicates that it is O {(8/c)?} compared with P(Q).
This may be considered insignificant for Rc = 10% provided that
the boundary layer is attached.  Therefore this term is ignored

to give the result

A
r(¥) = [ (1 + «8)T dx (2.8)
B

At the stations of the configuration where static-pressure
measurenents were made, the curvature at the section boundary was
confined to the chordwise direction. Therefore, according to the
boundary-layer approximation, the pressure gradient across the

layer at these stations is given by
ap/dz = kpu? (2.9)

(Rosenhead, 1963, p. 203). Thus the rise in static pressure across

the layer, Ap, may be obtained by integrating equation (2.9) as

)
follows: Ap = o sz &z,
o
= «pU%{8 ~ &; - 68,1}, (2.10)

where 6; and 8, are the displacement and momentum thicknesses of
the boundary layer.
By application of Bernoulli's theorem to the inviscid flow

external to the boundary layer it is found that
1
T/ = - ~ 2 LG22y 2 .
U/u, = (1 ¢, 20p/pU% - v2/U2)%, (2.11)

where v is the velocity of the flow,normal to the plane of the
section, at the edge of th: boundary layer whilst Cp is the surface
static-pressure coefficient. The choice of root taken in this
expression depends on the position of station x in relation to O, at
which point U = O. Thus if'§5 is the x-wise station of O the
positive root is taken if x - E& > Q0 whilst if x - §; < O the

negative root is employed.
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If [ZAp/pUé +'§2/U§[ <1~ Cp] the right~hand side of equation
(2.11) may be expanded and the resultant expression combined with
equations (2.8) and (2.10) to yield the result

A
ré = [0+ cloysan) = T2 4 0628 + tﬁ(ﬁ”/ﬁ“)}(i)uo(kcp)%dx
(2.12)

Calculations have indicated that for Rc = 106 and for the closed
configurations examined «(81+8,) is negligible.  Furthermore, yaw
surveys with the five-tube meter have shown that v2/202 is

extremely small. Thercfore equation (2.12) is replaced by
A 1
r®) = [GW (1 -c )iz
B ° P

This was evaluated numerically according to Simpson's one-third
rule, the number of interpolation points depending on ¥. Thus for
aexample, 59 points were used in the determination of TI'(c).

At each station,there was a point where ©_ was between 0,99
and 1. It is evident from equation (2.11) that at these points
T must have Leen very close to zero. Therefore thesz were
regarded as being coincident with the point O at each staticn.

The sectional 1ift was found by integrating the liftwise
component of the pressure forces round each section. As before,
Simpson's rule was employed with a 5% - point interpolation.

In all casaes the static pressures were corrected for blockage

by using the results of Section 2.4.1.

2.4.4 iieasurements of boundary-layer drag

_ For the purpose of an analysis of the drag of closed
configurations to be described in Section 4.3, boundary-layer—drag
surveys were madc in the rear of the wing centre span. This was
done on the assumption that the flow in the streamwise plane of

this station was two-dimensional.
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Total head and static-pressure readings were taken at
intervals of 1/8 in. through the wake by means of the five-tube
yaw/pitch meter situated O.7c downstream of the wing. These
results were used in conjunction with the method of Young (1948)
to determine the sectional boundary-layer drag at the wing centre
span. This technique is based on the method proposed by Jones
{1936) .

The required integration of the total-head deficit across
the wake was performed by using Simpson's rule, the interpolating

points corresponding to the points where the readings were taken.

2.4,5. Accuracy of the results

Throughout this chapter all overall-force coefficients will
be based on the planform area of the basic wing, bc = 8 ft2. Thus,
with UoT = 100 ft./sec., it is found that the r.m.s. scatter of the
coefficients of overall lift, drag and side force C_, CD and CS
is as follows:

T, = 0.002; C, = *0.0003; Cg = *0.002.

The estimated scatter of the circulation, sectional-lift
coefficient and sectional coefficient of boundary-layer drag
@DB) ise

.
= %, ° = 0, a = (], .
F(X)/Uoc 0.005:; CL 0.003; CDB 0.0002

Incidence was measured with an accuracy of * 3 minutes,

3. Lift and drag of open configurations : comparison with theory

In this section the results obtained for the overall forces on
various open configurations are discussed. In Section 3.1 the
configurations considered are substantially planar, that is wings
without end plates, whilst in Section 3.2 the effect of non-planar

additions in the form of end plates 1s discussed.
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3.1 Planar configurations

3.1.1 Overall 1lift
(w)

Curves of Ei against « for various hp/c are shown in
Fig. 43 for the planar configuration. It will be seen that for

()

the two lowecst values of hp/c the gradient BC /30 increases
with increasing a( w) This is opposite to the trend exhibited
by a number of two-dimensional theories including that of de
Haller (1936). It scems likely, therefore, that the present
behaviour of the lift curve is associated with the three-
dimensional nature of the flow about the wing. Support for this
belief comes from the fact that similar trends have been found
with the 1lift curves of isolated planar wings of small aspect
ratio. Kichemann (1952) has shown that this is due to non-
planar vortex sheets leaving the side edges of the wings. Such

vortex sheets were also observed in the present case by means of

a tuft grid placed behind the two wings. However, this is not
the only significant non-linearity, for with the three largest
w . . ]
(w) with u(w) is opposite to

values of hp/c the trend of SEL/QG
that mentioned.

The slope [éc /aa(w{‘ v) 0 is plotted against h (a(w) 0)/c
(where h (a<”)) is the height of the wing trailing edge above the
ground') in Fig. 44. Also plotted in this figure for comparison is
the theorcrical curve given by Saunders (1963) who computed his
results on the basis of the linearized, inviscid theory.

Evidently, the agreement between theory and experiment is good.
Saunders’ results for [?EL/Ba(W{}a(w)= 0 have also exhibited good
agreement with the experimental results of Fink and Lastinger

(1961) and Carter (1961). This may seem surprising considering that
Saunders did not correct his results for acrofoil thickness and
boundary—-layer displacenent. Cn the other hand, it is known that

for a numbcr of comventional aerofoils out of ground effect these
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effects almost cancel. Whether this is the case for wings near
the ground has yet to be demonstrated but it seems to be the most
plausible reascn for the good agreement between Saunders'theory and
experiment.

Unfortunately, a simple theoretical method for calculating
the zero-lift incidence of open configurations secemsnot to be
available. However, the present cxperimental results suggest that
this incidence increases positively as hp/c decreases.
3.1.2 Overall drag

Experimental results for the overall-drag coefficient, CD’

of the planar configuration are plotted against Ei in Figs. 45,
46, 47 and 48 for hP/C = 0.250, 0.167, 0.125 and 0.083. Also
shown in each of these figures are two curves representing two
interpretations of the linearized theory for minimum induced drag
introduced in Section I1.2. The first interpretation, which will
be referred to as theory A, employs the assumption that the bound
and trailing vortices occupy & plane which is everywhere at the
same height,ht(a(w) = 0), above the ground. The second interprete-
tion or theoéry B, on the other hand, is based on the suppositiomn
that the trailing vortices are in a plane parallel to, and height
ht(a(w)) above, the ground. Both interpretations use the
assumption that the span of the vortex trace is everywhere the
same as the span of the wing.

Theory A may be regarded as a consistent linearized theory
whilst thecry B represents an attempt to include the non-linearity
associated with the reduction in the haight of the trailing
vortices with increasing a(w). The latter interpretation is
plotted on the same basis as the experimental results by using

(w)

C, and hp. It may be thought that this introduces an empirical

the experimental EL/Q curves to determine ht(a(w)) for a given

L
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element into the theory. However, the results could equally be
compared with ht fixed. In this case it would be necessaryonly to
correct the experimental results.

Comparison between the theory and experiment is facilitated

by the assumption that

= == 72

‘CDB( L) CDB(O) + PCL, (3.1)
where EﬁB is the coefficient of the overall boundary-layer drag and
A is indcpendent of C_. That this is a reasonable assumption is

L
supported by the results of wake surveys which were made at the

centre span of the wing when end plates were fitted. Thesc surveys,
which will be described in Section 4.3, indicate that for hp/c = 0.167
a reasonable value of A is 0.0027. This value, it will be assumed,
applies for all the values cf hp/c considered.

The overall-drag cocfficient is given by

Cp = Cpp *+ Cpy

|

(3

This expression may be rewritten, by reference to equations (I.2.33)

and (3.1).as follows:
= = = —
CD(CL) CDB(O) + () + U/WAR)CL (3.2)

The quantity EbB(O) is obtained by noting from equation (3.2)
that CDB(O) = CD(O). Therefore by plotting the experimentzl
results for'Eb against'E€ and extrapolating the curves to'EL = 05
it iz found that EbB(O) = 0.01 regardless of hp/c. Hence equation

(3.2) is rewritten as

¢ (C

= R) C. 2
D L) 0.01 + (0.0027 + o/nR) CL (3.3)

Thus, by substituting the theoretical values of o into this equation
and comparing the results with the experimental results, it is
possible to assess the accuracy of the induced drag predicted by

theories 4 and B,
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Inspection of Figs. 45, 46, 47 and 43 shows that theory A is
in better agreement with experiment than theory B, the latter
theory generally underestimating Eﬁi' This is somewhat surprising
as it is not unreazsonable to suppose that B gives a better
approximation for the height of the wing trailing vortices above
the ground than A. However, tuft-grid surveys revealed that
this is not thc case owing to nom-planar vortex sheets which were
being shed from the side edges of the wing. These evidently
increase the mean height of the trailing vortices above the ground
and, in comsequence, imncrease the overall induced drag. In
particular, for the case ht = 0, theory B agrees with the exact
potential - flow solution, based on the assumption that the flow
at the side edges is attached, in predicting that Ebi = 0. However,
as a direct result of the vortex sheets shed from the side edges,

Cp; is quite large in practice, a fact which is in evidence in

48 may be inferred from Figs. 45, 46, 47 and 48 the slopes
ac 1/35?}5 - o predicted by theories A and B ave in good
: experiment. In fact, to an accuracy of two
significant ficurce they are identical, 7This would seem to
suppcrt the assertion that the induced drag of the wing is near the
at least for sufficiently small € . This was expected,

L
however, because (a) the low-aspect-ratio approximatica of the

minimum,
lincerized lifting-surface theory predicts that ¢ is 2 minimim and

(b) the aspect ratio ¢f the wing is fairly small. ¥evertheless,

the relatively good agreement between thecory A and experiment for
large Ei mmust be regarded as fortuitous. On the other hand, it

iz worth wihile to record that the height of the trailing-vortex

sheet employed in this theory, ht(o), is in good agreement with the
height of the rolled-up trailing vortices observed in the experiments.
Gf course, this cannot be offered as a complete explanation as there
are non-linear effects, not accounted for in theory 4, which must

surely be important for large EL. For example, the sidewash
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induced at the wing by the image chordwise and trailing vortices
affects the overall forces.

Finally, it is evident that with hp/c constant the
experimental results do not obey the proportionality'abcxfai.
This may be verified by noting that the experimental results do
not lie exactly on the curves of theory A which pradicts that
C G It seems, however, that in the cases for which
acL/ da ) )
these curves whilst if éﬁi/aa

the experimental results lie above

() ()

decreases with o
increases with o “they lie
below, It is conceivable, therefore, that this non-linearity
in the experimental C f_2 curve is associated with the non-
linearity in the C /cclz )curve. Thus, in order to check this,
the experimental rusults have been replotted on the basis of
Eb against a(w). The graph obtained for the case hp/c = (5,083
is shown in Fig. 4% which alsc contains a curve deduced from
theory A. This is obtained by replacing C in equation (3.3)

with the consistent linearized form
= (W)] ) _ W)
l?CL/aa a(w)=0(a o ) (3.4)

Here, as before, a(') is the incidence of the wing for zero lift.
The terms [éC /3a (w?] (v) and a( w) may be obtained
theoretically. However, in order to 1nc1ude the effects of
viscosity and aerofoil thickness the experimental values have been
employed. The result of calculating'ED by using these values in
conjuncticn with theory A is shown in Fig. 49 for hp/c = 0,083,
In this figure it will be seen that the agreement between the
‘theory’ and experiment is good ~ even better, in fact, than on
the basis of.Eb against‘E%. This is also found to be the case
with the other values of b /c° Thus it would scem that the non-
linecarity in the ezperlmcntal( ?/52 curve may be attributed to

the non-linearity in the CL/U curve.



3.2 The effect of end plates

In all the experiments concerned with open configurations the
end plates were fitted to the wing without the wedges. Consequently
the inside surfaces of the end plates were parallel to the axis of

the tunnel.

3.2.1 Overall lift

The influence of end plates on the overall 1lift is

illustrated in Figs. 50, 51 and 52 which show experimental results

forQEL plotted against a(w) for various combinations of hp/c = 0.250,
0.208 and 0.167, ’Lp/c =0, 0.083 and 0.167 and vy = 0. It will be
seen that with hp/c and a(W) constant an increase in lp/c produces

an increase in EL' That this must be so may be justified on

gualitative grounds by noting that the end plates tend to reduce
the height of the trailing vortices above the ground. Thus the
downwash induced at the wing by these vortices and their images is

reduced and, in consequence, the 1lift is increased.

\?
() curves for the case
(w)

1p/c = 0.167 is that their slopes. increase noticeably with o 7.

An interesting feature of the Ei/a

Initially, it was thought that this might be due to separated-vortex
sheets at the junctions of the wing and the end plates. However,
the indication of tuft-grid surveys is that the vorticity in these
sheets is relatively weak, the majority of the trailing vorticity
being concentrated near the bases of the end plates.

fnother possible explanation is that an increase in a(w)
causes the trailing vortices to be depressed nearer the 'ground',
thus achieving a similar effect to an increase in end-plate length.

Figs. 53 and 54 shows plots:of experimental results for EL
agairst o () for L /c = 0.083 and 0.167 and h_/c = 0.250 obtained
with v = 3° and 60? As with v = 0 a marked ion—linearity is

evident in the curves for Qp/c = 0.167.
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3.2.2 Qverall drag

As before, two interpretations of the linearized theory for

minimum induced drag are compared with experiment. The first of
these, theory A, employs the assumption that the vortex trace is
the proiection of the trailing edge of the configuration onto a
(w)

planc normal to the direction of motion when a = 0 and has

h = ht(a(w) = 0). The second interpretation, theory B, differs
from this only insofar as no stipulation is placed on a(w).
Consequently, this theory represents, in some measure, the effect

of the depression of the trailing-vortex sheet as a(w) increasges.

In commen with the planar configuration the comparison between
theory and experiment is effected on the basis of overall drag and
equation (3.2) is used to calculate Eﬁ for each interpretation of
the theory. Alsgo the same value of A is cmployed, namely 0.0027,
and'EDB(O) is established in the way indicated for the planar case.

Theoretical and experimental results for CD plotted against
Ei are shown in Figs. 55, 56 and 57 for ﬁb/c = 0.083, hn/c = 0.250;
1L/c = 0,083, hp/c = 0.187 and Qb/c = 0.167, hp/c = 0.250 with
vy = 0 in all cases. In the first of these figures the experimental
results will be secen to lie between theories A and B, being nearer A
than B. However, the agrecement between thecry A and experiment is
not as good as for the planar configuration. This is even more
noticeable for hp/c = 0.167, theory A agreeing quite well with

experiment for the planar configuration but not for 1E/C = 0.083.
Indeed, as is apparent in Fig. 56, in the latter case,theory B is
in better agreement with experiment than theory A. This is also

0.250 (Fig. 57).

evident for the case l/c = 0.167, h /¢
D ™
T

Pogsible reasons for the improvement in agreement between

o

I

theory B and experiment as 1b increases in comparison with h in
S

\? < hp may be given as follows:
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(i) Tuft-grid surveys have indicated that as 1 ~» hp the
non~planar vortex sheets shed from the junctions of the wing and
end plates become weaker. Consequently the assumption of theory B
that the trailing vortices of the wing are at the same height as

the trailing edge of the wing becomes increasingly acecurate as

The linearized thecry suggests that the effect of adding
the end plates to the wing is to reduce the sidewash induced there
by the image chordwise and trailing vortices. This sidewash
causes a reduction in the overall lift without influencing the
strength of the trailing vortices and hence the overzll induced
drag. Thus one possible cause for the poor agreement between
theory B and experiment in the planar case is partially removed by
the addition of end plates
An examination of Figs. 55, 56 and 57 shows that both thecries

are in good agreement with experiment in their prediction of

OC /BC2 < for the variocus cases. This is tc be ciapected
bccause c&lculgticns on closed configurations of similar
geometries have yielded values of ¢ very close to the minimum.

Thus it may be concluded that for a given h_/c the end plates
not only reduce the constant tewm in the expressionAEbi(aL)/ai but
also decrease the variable terms arising from the above-mentioned

non-linear effects.

It is evident from Figs. 56.and 57 that for the cases l,/c =
.083, hp/c = 0,167 and l /c = 0.167, h /c = 0.250 theory B and
experiment are not in sucn good &gy eument for "i > 0.8. This
would seem to be due, in part at least, to two contributory
factors. Firstly, the linear theory does not include the
influence of thec image bound vortices om the streamwise flow at the
wing. This causes a reduction in the overall 1lift without altering
the overall iaduced drag (2 fact which may be proved by momentum

S

congiderations). Sccondly, there is reason to doubt whether the



overall induced dragz is & minimum when the trailing edges at the
boses of the end plates touch the ground. This may be expressad

arly with the aid of the sketch below
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In this case,theory B predicts that the overall induced drag is
zerc.  However, it is clear that in order to achieve the
constant circulation required at all points of the trailing edge,
the streamwisc sections between AA and the 'ground' would require
& large amount of twist. In the zbsence of twist, trailing
vorticity would be generated, a fact which has been established
for the present end plates by tuft-grid surveys.

For the largest experimental values of.EL recorded in Figs.
56 and 57 the gaps between the 'ground’ and the rearward
extremities of the end-plate bases ar- small compared with hp.
Thus it is concluded, on the basis of the above reasoning, that
the overall induced drag is underestimated by theory B in these
cases. This is supported by the experimental data shown in
Figs. 56 and 57.

As will become evident in Section 4.3, when AA corresponds
with the "ground' the overall induced drag is very close to the
minimum for this case, that is zero. It is worth while,
therefore, te cnquire into the agreement between theory B and
experiment for configurations with the bases of their end plates
paraliel to the 'ground’. Results for the overall-drag

cocfficients of such configurations are illustrated in Fig. 58



which shows Eb plotted against CL for Q%/c = (0,083 and 0.167 and

h /c = 0.250. These configurations are obtained by altering y

n
P o o
w) . . o % e e
an a( ) in such a way that vy = a( )°. 2 . This ensurog that

() and

[N

the end-plate bages remain parallel with the ground as «
hencelﬁi are altered.

Evidently, the agrecement between theory B and experiment is
good for lb/c = 0.167 whilst for q%/c = 0.083 the theory under-

estimates CD . The recason for this would seem to be that in

Fie

the latter case the end plates are not completely effective in
reducing the strength of the non-planar vortex sheets shed from
the junctions of the wing and end plates. Consequently the mean
height of the trailing vortices is rather higher than that
predicted by theory B. In the case 7§/c = 0.167, on the other
hand, these non~planar vortex sheets are largely eliminated.
Lccording te theory A:'Ebi(]:E% for v, Eb/c and hp/c given.
Thus it mey be inferred from Figs. 55, 56 and 57 that the
experimental results do not obey this propeorticnality. As with
the planar configuration it is possible that this non-linearity
in the cxperimental curves might be associated with the non-
linearity in thec Ei/a(w) curve, Therefore, to check this
hypothesis, thc results for Eb obtained with 1%/c = 0.083 and

(w)

0.167, v = 0 and hD/c = 0.250 have been plotted against o .

=

The graph obtained is shown in Fig. 5% where it will be seen that
these results are compared with the Eﬁ deduced from theory A. In

common with the planer case, this coefficient is rewritten as a

functicn of a(w) b

()

X . . r- w7,
° y employing equation (3.4)9L?CL/aa ju(d) -0
and o ’being inferred from the exporimental results.

(o]

Apparently, the agreement between 'theory' and experiment

nd considerably better than that found with the

=~
0
e}
[¢]
[

(a1
)

corresponding CD/CL curves. It would seem rveasonable to

conclude, therefore, that the non~linearity in either of the

5
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experimental curves is largely identifiable with the non-linearity

2 +

. W
in the associated L/a< ) CUrvaes.

Fig. 60 shows CD plotted against Ei for the counfiguration

v =3% 1 /c=0.167 and hp/c = 0.250. It indicates that theory

} v P

“

i
B is in rcascnable agreement with experiment in the interval
0« CL < 1,

The effect of a gap between the bases of the end plates and
the 'ground' on C_ is shewn in Fig. 61 for three configurations
with v° = a@@6~20and i_/c=0.250. Also included for comparison
is theory B and it wili be observed that the agreement between
the theory and experiment is particularly poor in the vicinity
of (hr—'%)/c = 0. This would seem to be due,in the main to
the inflaence of viscosity on the flow between the end-plate
bases and the ‘ground’. It shculd be remarked, however, that
neither the theory nor the experiment properly accountsfor this
effecet for small (hrn}§)/c' In practice, the flow of air in
the spanwise direction will be influenced by the presence of the
water surface.

4, Clesed configurations : an examination of the sectional

(o7

and overall forces

In this section,a study of the overall and sectional-force
characteristics cf closed configurations will be described.
These configuraticns were obtained by arranging the end plates
to close completely the gaps between the wing tips and the
tercund’, In so deoing,it was assumed that these configurations
could, in theory, be designed for zero induced drag,thus making
them, according to the definition, "closedf.

In Section 4.1 the experimental results for the overall
forces will be discussed and thosc for the overall 1lift will be

compared with theory. Comparisor between the overall induced
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drag of the wing and end rlates predicted by theory and experiment

will not, however, be made in this section. This will be considered

in Section 4.3 where a detailed drag analysis will be described.
Section 4.2 will be concerned with an investigation into the

sectional~1lift and circulation characteristics. Part of the aim

of this study has been to check the validity of a number of the

agsumptions of the theory formulated in Part II of Chapter II.

4.1 Overall forces

Owing to the problem of balance comstraint it was not possible
to measure the overall forces of the closed configurations with the
balance directly. This difficulty was overcome by permitting a
small gap. g, in esach end plate, g being invariant along the length
of the gap. Thus it was assumed that by extrapolating the curve
of cverall force agalnst gap to zero gap the overall force of the

onfiguration would be obtained. If this assumption is

[
[N
el

lose

correct, the limiting valwe of the overall force should not depend

on gap position. In order to check this (and for another reason

<

o

which will become clear later) various gap positions have been

rtested. These are illusitrated in Fig. 62 and are labelled A, B

and C. It will be observed that in cases A and C each end plate

of the wing is attached to the corresponding end plate of the image,

the jeint between them being sealed with 'Sellotape’.
Figs. €3 and 64 show the effect of gap on the overall-lift

fficients for the case hp/c = 0,167 with aéE) =0,

ie of the wadges,between the wing and the

qQ
2]

E) . .
where o 1s the an

]

B
¢

end plates,in the planes of the wing chordal surface. In the

first of thase figures, the resulte for Ei are plotted for all
three gap positions. The second figurc, on the other hand, only
includes results for gap nositions B and € as only these positions
ensvre that the end-plate drag is propcerly included in the overall-

(1)

drzg measurements. In both figures, results are shown for o =

o L0 A0 . . . e
27, 5 and 87, Evidently. for all cases, the limiting values of
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C, and C_ as g » O are independent of gap position. On the
evidence of thess results, therefore, the limiting method has
been employed to determine the overall forces of the closed

coufigurations.,

4.,1.1 Oversll 1ift : comparison between theory and experiment

Results obtained for Ei by the limiting process are
illustrated in Figs. 65, 66 and 67. These show graphs of
= W nzn oot
G against o ) for 1 /¢ = q /€= 0,083, 0,167 and 0.250 with

(E)

a. ‘= 0. Also 7vc1acca for comparison are curves representing
the linear and ‘non~linear' versions of the theory described in
Part II of Chapter II. The linear version employs the

1e cylindrical surface, on which the vortices

P

assumption that t¢
and sources are placed, is best represented by the chordal surface
of the test configuration corresponding to a(h> = aéE) = 0. Thus:
to a very good approximation: R= 2 and conscquently the following
a(w) and a(E)

values of are cbtained:

1%/c 0.083 0.167 0.250
A 0.219 0.386 0.552
Go) .

a 14,57 10.10 8.35

o () 1.43 1.63 1.30

The thickness—induced upwash at the wing plane and yf(g)
determined in the manner described in Section I1I1.6.2, the-integral~
equation method being usaed to obtain e ). In the next stage of
the calculation the vortex dlstrlbLtlops corresponding to the
camber distributions of the wing and end plates, YW(E) and yE(g),
are calculated. This is achieved by using the integral-equation
method cutlined in Section IT.6.l.  Actually, there is some

difficulty in defining the camber of the end plates owing to the

<

*

fact that their trailing edges are of non-zero thickness (0.25 in.).

The definition adopted, however, is that their camber slope is the
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mean of the streamwise slopes of their inside and outside surfaces
wihen aéE)= = 0. This avoids the difficulty of not being able to
define the chord line of each section of the end plates. In the
case of the wing the defirnition of camber slope is more conventional,

being the streamwise slope of the camber surface corresponding to
a(w) = aéE) = 0.

Thus the results obtained for Yt(i), YW(E) and yE(E) may be
combined according to equation (II.6.22) to yield the value of
L c.T)”

As a consequence of the above definition of end-plate camber
equation (II.6.25) is rewritten as follows:

8 = - gyt 2 PP, (4.1)

Thus, by employing the results calculated for'EL(C.TJ,eﬁw and a(E)in
conjunction with equation (4.1), there ar obtained the following

results for - qgw)(aéE) = 0):

%p/c 0.083 0.167 0.250
-a(W)(aéE)=0)° 0.868 2.26 2.92
(s}

Another implication of the definition of end-plate camber
employed above is that the non-linear form of the overall-lift
coefficient, equation (II.7.12), is rewritten in the form

LB _®

b 4.2)

ﬁi = {a(w) + 2wA6(z(w),m)}a(W) +

where

v _ ) _ @) «® = 0.
o b
Thus,in order to determine‘EL by means of equation (4.2),it is

necessary to have a knowledge of AB(Q(W),m). This is provided

by de Haller's (1936) exact potential-flow theory and the results
~(w)

obtained from this theory for 2mAB{a" ’,») are summarized below.



MU W 3.6 7.2 10.8
1 /e
.
0.063 [-0.04  ~0.18 ~-Q.64
0.167  |-0.02  =0.09 -0.31  -0.67
~0.250  =0.02  -0.05 ~0.19  ~0.44

The conclusions to be drawn from the comparison between the
twe theories and experiment shown in Figs. 65, 66 and 67 are as
follows:

(i) The iacidence of the wing for zero overall lift,

p o
aéw)(aén) = §), would seem to bLe overestimated negatively by the

. . . ~ .
theories, the discrepancy becoming more apparent as iL/C increases.

1Y

It seems possible that this is due to the assumptions made regarding
the thickaness—induced normal velocity at the ceanfiguration. For

- ﬂ.'!/- " . },I,,'*.:g . 11
exanple, as 7, [/ cC increases, the upwash induced at the wing by the
sources simulating end-plate thickness increases. Thus the
assumption that this upwash may be disregarded becomes increasingly

suspect as 1%/<Zincreases.
3

(ii) The linearized theory grossly overestimates the overall
- . W . P .
1ift even for quite small a( ) whilst the "non~linear' theory is

in comparative good agreement with experiment for €, < 1.
i ed
(iii) In the case @ﬂ/t:= 0.083 the ‘non—-linear' theory yields
ll

= 7 o .
values of C. only up to a(‘) = 7.6, This corresponds to the

trailing edge touching the ground in the case of the two-

dimensional flat plate. In other words, it is not possible to

v (wr)

obtain values of AR(a" 7 ,») beyend this incidence.  However, it

should be noted that,in the case cited, the experimental results
are limited, by the wing trailing edge touching the ground, to a
. .. . o ’
maximum incidence of approximately 8.5 .
Fig. 68 shows experimental results for the overall-lift
(8) (w) o _o
b =255

Q

o .
for o and 8 with

=t

cocfficient plotted against o .

A
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1

L - - 3
\ /o = 0,167, Also included are curves representing the 'nen-

P
linear’ theory. Evidently, although this thecry is not in
absolute agreement with experiment, the trends exhibited are both

linear with approximately the same slope as shown below.

a(w)G QEL/BaéE)/G
THEORY EXPERIMENT

2 0.028 0.026

5 0.028 ¢.026

3 0.028 0.025

This would 2lso scem to support the assumption, implicit in

equation (4.2), that“C‘L is linearly dependent on aéE) with a slope,
= B . . . w
SCL/Baé )9wh1ch is independent of a( ).

4.1.2 Overall drag

Experimental results for the overall-drag coefficient of

various closed confipguration are shown in Figs. 6% and 70. In

s = . . - £ o}
the former Ilgure,CD is plotted against C, for aé ) - Cc, 305
6° and 9° with 1 /c = 0.167. It will be seen that,as aéE)

.
increases,the CD/CL curve iz depressed. The reason for this is

sought in the drag analysis to be described in Section 4.3.

Fig. 70 shows C_ plotted against EL for % /e = 0.083, 0.167

and 0.250 with afb) = 0. It shows that, as might be expected,
=

Eb decreases with decreasing 1P/G if Ei is constant. Nevertheless,

the reducticn in Eb resulting from a decrease in ’%/d from 0.167

to 0.083 is greater than was anticipated.

4.2 Sectional characteristics

This section is concerned with a discussion of the results of an
investigation into the sectional characteristics of closed configura-
tions with 1§ﬁ:’= 0.167. Firstly, in Section 4.2.1, the results
for circulation will be described. Seccondly, in Section 4.2.2,

results obtained for the sectional-lift coefficient of the wing
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will be discussed.

4.2.1 Circulation
The method employed for deducing the circulation from

results for the surface statie-pressures has been described in
Section 2.4.3. Hormally, the static—pressure information
required was obtainable from two spanwise stations of the wing
and one spanwise station of the image (see Fig. 33). However,
in view of the apparent symmetry of the flow, this is equivalent
to static-pressure distributions at three wing stations.
Furthermore, in some cases, these were supplemented by static-
pressure measurcments at the 'ground' station of the port end
plate. These were obtained with a static~pressure probe
attached to the surface of the end plate. The whole of this
information permitted, in certain cases, chordwise distributions
of circulation at four stations.

Results obtained for F(c)/Uoc are plotted against 2s/b in
Figs. 71 and 72 for u(w) = 2° and 50, s being defined as the
distance along the outside surface of the configuration, normal
to the wind direction, from the wing centre span to the measuring

station. In each case, results are presented for aéE) = OO, 30
(E)
b

6° and 9° and it will be seen that I'(c) increases with « particularly

in the vicinity of the end plates. This results in the sign of the
trailing vorticity, dI'(c)/ds, being altered from negative for

aéE) = 0 to positive for uéE) = 9°. Further, for each value of
a(w) there corresponds a value of aéE) which seems to give
substantially zero dI'{c)/ds for all s. The respective values of

aéb) are approximately 3° ana 5°. Clearly, the overall induced

(w)

. . . E
drags corresponding to these twe combinations of o and aé ) are

either extremely small or zevo. It is interesting, therefors, to

compare the above values of aéE) with those calculated to give

zero overall induced drag by the linearized theory discussed in
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Sections II.5 and il.6. These are 2.6° and 5.70? respectively,
which are seen to be in moderate agreement with the experimental
values.

Figures 73 and 74 show experimentally-deduced lines of constant
circulation on developments of the outside surfaces of
configurations with a(w) = 5% and uéE) = 0° and 9°. These figures
demonstrate the unique feature of closed configurations, namely
that some lines of constant circulation end at the spanwise
extremities. It should be remarked, however, that in practice
this property will not be realized owing to the dynamic condition
at the water surface combining with the effect of viscosity to
prevent the vortices ending there. On the other hand, there is
reason to suppose that for sufficiently large Rc (say > 108) the
essential conclusions of this investigation will not be altered.

In Figs. 75, 76 and 77 are shown experimentally-derived plots
of r(%)/r(c) against g/c for a(w) = 20s aéE) = 00, 9° and a(w) = 50,
uéE) = 0°. In all cases, results are shown for the four s - wise
stations. The object of presenting the chordwise circulation
distributions in this form is to compare the type of distribution
assumed in the theory of Sections II.5 and II1.6 with experiment.
If this- assumed form is correct, r(&)/r(c) will be invariant with
S. This is evidently the case over the majority of the wing for
all three combinations of a(W) and aéE). On the other hand, for
a(w) = 20, aéE) = 99 the assumed distribution seems not to be
represaentative at the end plates. It appears that for this case
the comparative strength of the s-wise vortices near the leading
edge is greater at the end plates than at the wing. This
suggests the possibility that for a(w) = 20, aéE) = 9° the theory
of Section II.5 and II.6 overestimates the inviscid drag (that is
the drag minus the boundary-layer drag) of the end plates.

Consequently, if as seems likely, the corresponding overall induced



drag is small, the theory ccould conceivably underestimate the inviscid
drag of the wing. This matter will be considered again in Section

4.2.,2 Sectional Lift

Fig. 78 is a graph of the experimentally-derived values of
(E) (w) .o .0 "0
CL against o for « =2, 5 and & aad the three spanwise
stations of the wing. It shows that these curves are linear with

slopes which decreass towards the wing centre span. This would

seem to give further support for the use of equation (4.2) to

©

calculate the effect of oy L'

In Fig. 79 &= shown pLOtS of experimental wvalues of CL against
for three spanwise stations of the wing and with a(E) 0°.
This indicates that the non-linear part of the - /a(w) curve does
not vary greatly across the span. As the flow in the vertical
plane of symmetry of the wing is almost two-dimensional irn the
cases examined this would, to some extent. seem to justify the

use cf non-iinear corrcciion to C, obtained from two-dimensional

L
theory.
4.3 Drag Analysig
This section deals with a description of a drag analysis

performed on closad configurations with '%fc = 0.167. The

chjectives of this analysis were, firstly, to provide informati

@

n the overall induced drag of the configurations and the separat

invisecid drag of the wing and end plates. By so doing, it was

intended that the accuracy of the theoretical predictions of thesc

N
et
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drag components should be checked. Secon
desirable to have an independent check on the information provided
by the circulation distributions.

he method emploved in this analysis consisted of d& ducing

from experiment the boundary-layer drags of the wing and the end



plates. This information was then combined with balance measurements
of the separatce drag of the wing and end-plate components to provide
the inviscid drag of each component.

The results of the boundary-layer-drag measurements will be
described in Section 4.3.1 whilst a discussion of the results for
the drag of the wing and end plates and the subsequent determination

of their inviscid drag will appear in Ssction 4.3.2.

4.3.1 Boundary-layer drag

In gencral, the wake-survey method as described by Jones
(1936) may nct be used to determine the sectional boundary-layer
drag at all spanwise stations of & finite wing. This is because
Jones' method is based on the assumption that the flow round each
section ie two~dimensional which is certainly not the case near
the tips of a finite wing. However, the indications of the theory
of Scetion II.5 arc that for closed configurations of nearly zero
induced drag the flow st centre span is almost two-dimensional.
Therefore it is cssumed that Jones® technique may be employed to
obtain the sectional boundary-~layer drag at this station.
ig. 8C shows the results for the coefficient of the sectional

bouwmndary~laver drag (C..) of the wing centre span plotted against

oB
CL for various aéE), It will be seen that the points appozy teo fall
neariy on the same curve regardless of the value of aéE). The
relationship governing this curve may be approximated reasonably
well in the interval O ¢ Ci < 1 by the expression
G = 0.0081 + 0.0027 CZ. : (4.3)

In determining the total boundary-layer dragz of the wing,

consisting of the basic wing plus wedges and fairings, it will be

essumed that, at all spanwise stations,CDB is given by equaticn

(4.3). herefore the ccefficient of the overall boundary-layer
)

.., mav be written as
DB “

drag of the wing,
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Eég) = {0.0081 + 0.0027(EL bc/S(w))z}S(W)/bc. (4.4)

. V) . e ; . . .
Here S( ) is the planform area of the wing plus wedges and fairinga.
Similarly, the coefficient of the overall boundary-layer drag of

onec end plate and its image beneaththe ground is assumed to be given

by

‘Eéi) = {0.0081 + 0.0027("6S bc/S(E))Z}S(E)/bc. (4.5)

In this expression Eq is the coefficient of overall side force of
one end plate plus its image beneath the 'ground'!, being defined
(®)

positive in the outward direction,whilst § is the combined

planform area of the end plate and image.

No attempt will be made to justify the use of equations (4.4)
and (4.5) rigorously. Nevertheless, as a consequence of the near
two-dimensional nature of the flow over the wing, equation (4.4)
sihould yield reasonably accurate values of Eég). The use of equation
(4.5), on the other hand, is more questionable. It seems likely,
however, that in the cases of interest the errors caused in the
inviscid drag of the end plates should be small compared with the
overall drag of the eonfiguration. The justification for this is that

=(B)
B

in these cases C..’<<C_.
es DI D

4.3.2 1Inviscid Drag
The overall drag of the wing was obtained by utilizing the

balance and testing the configuration with gap position A (Fig. 62).

As previously, the limiting method was employed and the results thus

= (w)

found are summarized in Fig.. 31. This shows CD ; the coefficient

of the overall drag of the wing, plotted against a(w) for
aéE) = 0°, 3%, 6° and 9°.
Evidently, the result of increasing aéE) with a(w) fixed is
—=(w) G7)

éE) is kept constant and o

whilst,if o is increased,

to reduce C
D
E(W) .
D increases.
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= (w) =(E)

from C_ one obtains C , the coefficient

D
of the overall drag of one end plate and its image, or, alternatively,

Upon subtracting C

both end plates of the wing. The last coefficient is plotted against

a(w) for aéE) = 00, 30, 6% and 9° in Fig. 82. This shows that, for
) ng o2 TE)

‘i)

is actually negative

(w) (8)

and o, " are opposite

certain combinations of a

and indicates that the trends of C v1th

sl

to those described for C

The overall 1nv1sc1d drag coefficient of the wing is found by
=(w

DB)’ (") rhe
results obtained by this process are shown in Fig. 83 where they

are plotted against aéE) for a(w) = 20, 5° and 8°. Alsc shown in

subtracting C as deduced from equacion (4.4), from C

this figure are curves calculated according to the following
theoretical method:

(i) The vortex and source distributions are placed on the
cylindrical surface used in the determination of the overall lift

in Section 4.1.1.

“

(iiy The incidence ratio of the equivalent uncambered
configuration of zero thickness, {a(E)/a(w)}
using equation (II1.6.23). Actually, if the definitions of camber

given in Section 4.1.1. are employed, it is found that this cquatlon

, is calculated by
eq

applies to configurations with a( V) éE> = 0 but it is easily
modified for configurations of non-zero aé ) and a(w) to give the
result +c/2 (E)
(8 | tvp (&) + v (D) + m8U o

a ~c/2

(""( )) = +CT° .

o W e 4

q ) 1 o CB)
-cﬁz{vw(i) + Nt(i)}dx + 78U a e

(iii) U(W) is then determined from the results of Section II.5.
Hence, if, as was suggested in Section II.6:2, it is assumed that
the sectional inviscid drag associated with thickness is zero, the
overall inviscid drag of the wing is identical with D(w) Th:
coefficient of this component of drag is determined from the

result
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=) _ = ) = (W) =
Cp;” =Gy Chg = O CL/n R. (4.6)
(iv) In order to plot Eé?) as a function of &(w) and aéb>, EL

is climinated from equation (4.6) by esploying equation (4.2).

Fiz. 83 shows that the agreement between theory and experiment
23 £ v P

=) _ ({f))/ Sa. (1J) and

. . 7
is not gooa although the slopes B(Cl

v W ; ¥
a(EéW) ( ))/Bn(”> predicted by theory in the V1c111ty of u(q)
£ .
aud aﬁ ) . OO are similar to the correspcnding experimental slopes.

One possible reason for the pcor agreement is the neglect in the

theery of the inviscid drag due to thickness. This could be

I3

vortex distribution 18 incorrect, It will be recalled that the

indications of the circulation distributions were that for
l....‘) rs
{07) o) E o . . . el .
@ o= 27, ag ) < 9° 4 circulation distribution of the type
’.U - - . ? . » - -
T(x) f(s) would possibly underestimate the inviscid drag of the wing.
P 7

This is evidently in agreement with the drag analysis, the theory
undercstimating the inviscid drag of the wing in this case.

Generally, howcver, theory overasstimates the inviscid drag, the

(w)

discrepancy becoming more apparent as a increases.

“

Finally, there are the non-linear effects not inciuded in the.

U‘t
o

theory. the two most obvious examples bein;

(a) the departure of the trailing-vortex sheet from th
assumed cylindrical shape;

(b) the 1ift is not related to the circulation by the
linearized theory form L = pUOF

Lffect (b) may be allowed for by replacing equation (4.56) by

—={(w) G9) o=y 5 A
C..' =g¢ 2T/U0 c)</m R . 4.7
N 2T/y )2/ (4.7)
where I is the mean circulation across the span of the wing. This
S (W)

result enables one to employ the values of « deduced from



Section II.5 without making any assumptions about the relationship
betwezn L and T,
A method possessing some of the fcatures of effect (2) is

based on the assumption that the eylindrical trailing-vortex shest

v

ccincides with the trailing cdge of the configuration. Therefore

)

values of ¢ for the wodificd Treftz-plane shapes may be

determined and used in conjunction with equation (4.7) to obtain

Eéz). Unfortunately, the theory of Secction II.7 dozs not yield
(w) (£)

T as a function of o and Gy Thus, in order to check the

mprovement obtained with this method in the case

o
Q
0
n
[S.XY
T
et
[19]
,-l-

S

a(w) = 59 @éE> = Ocﬁthe value of ZF/UOC deduced from the experimental
circulation distributions will be employed. Hence it is found that
the new method yields an inviscid-drag coefficient of 0.0084 compared
with the valuc 0.0072 deduced from experiment and that of the previous

.

theory $.006956. Evidently, the improvement in agreement is only

slight.
Furhaps the most important fact te emerge from this analysis is

that the inviscid drag of the wing can be large. In fact, in the

(w) g© (E)

o .. . ;
case o = s O = 07, it is almost as large as the overall

dragc. But, as may ve inferred from Figs. 69 and 80, the overall

boundary~-layer drag is almost the same size as the overall draz.

=

This suggests, therefore, that in the case mentioned the end plates

provide a large negative inviscid drag. The coefficient of this

. =(E) _ =(E)

force ccmponent 1is CD - CDB9

from equation (4.5). However, before this aquation can be used to
. ~{B

find '< )

thercfore, mcasurements were made of the overall side force on the

the latter coefficient being deduced
it is necessary to aanf"g For this particular purpose,

port end plate and ite image by using the balance and gap position
C (Fig. 62) As with the other overall-~force measursments, the
limiting method was used and the results cbtained for C. are

(E)

illustrated in Fig. 4 wvhere they are plotted against Oy, for

t.
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0 o . .
a(W) =2, 5% ana 8°. By using thesc results and equation (4.5)

(@) . . () _ =(B)
c 158 been ca a ena ng re 3 -
pp has been calculated, thus cnabling results for CD CDB

to be calculated. These are shown in Fig. 85 plotted against
E w o o] 0 . .
aé ) for a( ) =2, 57, and 8", Also included are theoreticsal
curves calculated by using the game method as that uvsad te obtain the

(w) ()

theoretical curves of Fig. 83 except with o replaced by o777,
Again the agreement between theory and experiment is not good
presumably for similar reasons to those advanced for the wing
inviscid drag. On the other hand, theory and experiment do agree
in a large number of cases in indicating that when there is an
inviscid drag acting on the wing the end plates give an inviscid
thrust of almosc the same magnitude. Similarly, when there is an
inviscid drag acting on the end plates the wing yields an inviscid
thrust of nearly the same sizea. The reason for this is that if
there is a mean dowvnwash induced at the wing by the chordwise and
trailing vortices an 'outwash' will be caused at thc end plates.
Thus ,as the circulation varies slowly round the configuratiom in
the cases comsidered, there results an inviscid drag at the wing
and an inviscid thrust at the end plates. This situation is

(w) (E)
b

reversed if o and o are such as to give a mean upwash at

the wing.
It will be seen in Fig. 85 that in accord with observations
based on an cxamination of the circulation distributions the

theory overestimates the inviscid drag of the end plates in the
case a(w> = 20“ a(E) = 90.

L . () - =(E)
Takie 2 shows the various values of CDB and CDB

by employing equations (4.4) and (4.5). This table, which is

calculated

included in order to show the relative iwmportance of the constitu~

ents of the overall drag, also contains theoretical estimatesof
1.

by using the method employed in the

(w)

]

e e

Di° Thesze are calecvlatoed

determination of the thcoretical curves of Fig. 83 except that o
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and C( 7) are replaced by o and Chi in equation (4.6).

The coefficients C(L) and C,S £ have been added to the

theoretical C..
D1

sixth column of the table. This may be compared with the value

to prov1de an estimate of CD which is shown in the

of'ED obtained from balance measurements which appears in the last
column. Thus it will be scen that, in seven of the twelve cases
shown, the two values of Eﬁ differ by less than 77 of the measured
value. In three other cases, for which the agreement between the
two values is not as good, bracketed figures are included by the
side of the measured'E . These represent values interpolated
from carpet plots of tne measured C_ against C for various Lp/c

D
and a(E) It will be seen that they are in better agreement with

the estlmated values.

The most obvious discrepancy between the measured and estimated
Eb occurs for a(w) Zo, aéE) = 9°. In this case, the estimated'Eb
is larger than the measured Eb by approximately 16% of tlie measured
value. The reason for this is not known although it is suspected
that it is duve in some measure to the vortex distribution assumed

in the theory being incorrect at the end plates.

w
For 0° S ué“) s 6° the estimated and measured C are relatively
insensitive to changes in a( £) if a( w) is kept constant. Thus,
(B)

as a result of €. increasing with o ", the Eb/ﬁL curve is depressed

- L
as aéb) increases (see Fig. 69). The reason for this appears to be
that, in this interval of aé ), C. %U) (T) and C vary
slowly with a< ) Furthermore, from % B . 0 t aéE) , the

cha are ite i L
hanges in CDB re opposite in sign to those of C Di

Although C is nct an insignificapt part of'Eb in the range

(E)

of a, """ end a( ) examined it is generally small compared with the

overall-drag coefficient . ~2 previously noted, however, the
invizcid~drag coafficient of the wing can, in certain cases, be

comparadble with CD . Thus in these cases it is important to ensure

that the end plate

(6] t.;i

car sustein the reguired thrust. As an
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illustration, consider thc case a<w) = SO,aéE) = 0%  This yielded
an overall 1ift to drag ratio of nearly 71, However, if the end

plates were uneble to sustain the inviscid thrust they gave &
the test,this ratic wculd drop to 51 provided the overall-lift

coafficient remained the same.



CHLPTER IV

CONCLUDING REMARKS

A theoretical and experimental discussion concerned with the
lift and induced drag of open and closed G.E.¥s. has been presented.
In this final chapter, the salient conclusions of this study will be

outlined and suggestions for possible future work will be mentioned.

1. Open configuratious

A generalization of the combined-flow method of Munk (1921) has
been employed to determine, to a linear approximation, the minimum
induced drag of a planar G.E.W. The 'exaet' solution thus
obtained for ¢ was compared with de Haller's (1936) calculations

ch were shown to be in error.

ks

wh
In the case of a2 planar wing with end plates in ground effect,
the Schwarz-Christoffel transfeormation was found not to be amenable
to explicit imtcogration.  Therefore a perturbation technique, valid
for small 2h/b, was devised. The accuracy of this method was
determined by comparing the result obtained for the minimum induced-
drag factor of the planar G.E.W. with the 'exact'solution. It was
found that the zeroth approximation for ¢ was in excellent agreement
with the ‘exact' value in the interval 0 < 2h/b < 1.6. Indeed, for
2h/b = 0.48, the error in 0(0) was shown to be 0(10~3) compared with
o. On this basis, therefore, the zeroth approximation was employed
to determine the minimum induced drag of a wing with end plates in
ground proximity.
Two interpretations of the linearized theory for minimum
induced drag, theories A and B (see Secticn III.3), were compared with
experiment on the basis of Eﬁ against Ei. It was found that for the

planar configuration the experimental results were in better agreement
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with A than B, the latter theory generally underestimating CDi'
This was attributed, in part, to the presence of non-planar
vortex sheets shed from the side edges of the wing. These vortex
sheets effectively increase the mean height of the trailing-vortex
sheet. Thus, as a result, Eﬁi # 0 when ht = 0,

The agreement between theory A and experiment was found to be
not as good when end plates were fitted to the wing. Furthermore,
it was evident that as 1% increases in comparison with ho the
experimental results approach the curve of theory B. Tﬂe reasons
put forward for this were, firstly, that the end plates tend to
suppress the non-planar vortex sheets shed from the tips of the
wing. Secondly, the end plates reduce the sidewash induced at
the wing by the image chordwise and trailing vortices.

In Loth planar and non~planar cases the slopes ‘?CD /SCi]

* C =0

predicted by both theories were found te bhe in good

&
¢

agreement with experiment. Thus it was inferred that for a given

/c the end rniates not only reduce the constant in the expression
Ebi(aﬁféé but aleo decrease the variable terms arising from the
sbove~described non~linear effects.

The derivatives %C /3 a( ﬂ (w) d“ duced from the experiments
on the planar configuration were foule1 to compare well with those
of the linearized, inviscid theory of Saunders (1963). This theory
does nct include the effect of wing thickness and boundary-layer
displacement on FEL/Sa(W)Ia(w)=O. It was supposed, therefore,
that these two effeets cancel, Nevertheless, there is a nced for
a fundamental study of the effect of the boundary layer on the

lifting characteristics of wings in ground proximity.

o
O
- .. . - . . {(w)
he indicatious of the experiments were that for a given o
and hr/c an increasc in the end-plate length, ng produces an
increase in CL. Furtheymore, it was f0Lnd that, for small (h ‘L),c9
= .. (w W
aC /Sa( ) increases with increasing o ).



A theory has been presented for determining the overall lift

and induced drag of a closed configuration consisting of a

p

substantially planar wing with end plates. This theory, which
was deduced from a study of the scctional-drag characteristics of
wings, is based on the linearized theory and the assumption that
the vortex distribution v(x,s) is of the form v (x)£(s).

.8 a check on validity of the theory it was applied to the
cage of an isolated planar wing of rectangular planform, zero
cherdwise camber and zewo thickness. For this type of wing it
was found to be gimilar to a theory given by Kichemann (1952)
gxcept in one important detail. It was shown that this
discrzpancy ezplains an inconsistent feature of Kiichemann's method.
4is the present thecry dees not exhibit this inconsistency it was
concluded that it is the more fundamental of the two theories.

In common with Kiichemann's method.the present theory involves

the solution of an equation similar to the 'lifting-line'

cquation.
This was solved by employing particular solutions for the flow in
the Trefftz plane and a variational principle which was specifically
devised for the present problem.

The calculations performed for the above-mentioned closed
G7)

configuration have indicated that the lift derivative a increases

slowly with MRand decreases with A.  On the other hand, it was

(£)

found that a decreases with /R and increases with A, Furthermore,

it was ascertzined that, in the absence of chordwise camber and

(B _ ), (0 _ o

thickness, ¢ = 0 for o g

whilst, for a

increases with AR but decreases with A, However, even for

E {w . . ,
a( )fa\“) = 0, 0 is very small in the range of AR and A of interest

(w) .

to G.E.W. designers and is much smalier than ¢
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Calculations of EL for closed confipgurations tested in the
8 ft. x § ft, wind twnel were made by using the theory, suitably
modified te include chordwise camber, thickness and non-linear
effects. The results thereby obtainzd were found to be in
substantially better agreement with experiment than the linecarized
vergion of the theory. It was evident, however, that both
theories overestimate negatively the incidence of the wing for
zero lift. It was suggested that this could be due to the
approximations made regarding the thickness~induced normal velocity
st the configuration.  Future work should be aimed at improving this
feature of the theory.

The prediction of the theory that Ei iz linearliy dependent on
end-plate incidence was adequately confirmed by experiment. Also
()

b
were found te be in reasonable accord with experiment in the cases

the results cbtained from the "nen-linear' theory for 36L/Ba

examined.

The lincarized theory was found to be in reascnable agreement
with experimentally-deducaed circulation distributions in its
predictions of combinaticns of wing and end plate incidences
vielding sensibly zero overall induced dragz.

Chordwise circulaticn distributions obtained from experiment
indicate that the vortex distribution employed in the linearized
theory is represcntative over the mzjority of the wing part of
the configuration.  However, in one case (Qb/c = 0.167, a(w) = 20?
uéb) = 90) this type of distribution was found to be unsuitable in
the repion of the end plates.

An experimental drag analysis and the linearized theory were
found to agree insofar as they both predict that when there is a
larze inviscid drag acting on the wing the end plates give an almost

equal inviscid thrust and vicc versa. On the cther hand, the

quantitative agreement between the analysis and the theory is not

particularly good and suggestions have been made for the possible
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‘reasons for this.

Of particular significance is the conclusion of the drag
anclvsis that in certain cases it is important to ensure that the
end platos can sustain the required inviscid thrust. Failure to
do this could result in a significant increase in the overall drag.

—

3. Experimmntal technique

The image technique was employed to simulate the presenmce of
a water surface on the flow round a G.E.W. This techmique is not
completely representative but the justification for its use was
bascd on the argument that provided that it gave & steady plane
of symmetry it could be uvsed to check the accuracy of wmany features
of the theories. It has been held by some authors, however, that
the wmethod fails to represent a steady planc of symmatry. Never-
tiielegs, the indications of this investigation were that for the
configurations examined the flow round the wing and image was
symmetrical.

It remains a task for tiue future to cxamine the importance of
such effects as the deformation of the water surface and the
interaction butween the dymzmﬂc' condition. at the water surface
and the viscosity of the fluids. A particularly suitable device
for achieving this is the whirling arm, curreantly being developed
at The College of Acronauvtics by Kumar (1967). It is also
hoped tc use this apparatus in the near future to examine the

non—steady behaviour of ground-effect wings.
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APPENDIX I : Evaluation of the limit of the residual

An examination of equations (II.2.30} and (II.2.37) shows that
the first multiple integral inside the limit sign of equation

(I1.2.37) may be written as

1 1
- of Yrenpony ¢ 2 P eneym)
. (ni=enf)? -sn‘)‘ W1 72 1Y)

(o}

Hc(yl)(1~en1) - c(y) (1-en) }? + 4(y1-y)3}§dy
{e(y1) (1~eny) = e(y) (1-em)}

Therefore

; ; + / \y) (Zv/b)

9
I. o E [ dn
! £ nlt o nz aYl b/2 (Y1 -y)

1
{(c(yy) - c(¥))? + 4(y;-y)2}ay e+ o
tc(yy) (I=eny) = c(y) (I-en)} 7 ’

It is apparent that as € + o an increasingly large contribution

to I; comes from the y integrand in the near vicinity of y = y;. This
suggests the possibility of simplifying the integrand by expanding

the term c(y) in powers of (y-y)) to yield the result

1 +b/2 _
I, ve fdnpdn 2 c(m)f}(}z}/))a)ln i
on? Y1 p/2 1 '
({1 + 7ey) /ay)?3? + 0(y1-y)) dy

{c(yy) (1~eny) ~ e(y)(1-en)} > €0

An examination of the term O(y;~y) in the above expression
indicates that it contributes a term O(e) (at most) compared with I,
except possibly for isclated values of y;. Therefore this term is
neglected, leaving the first term of the erxpansion to be integrated.

This is best performed with the aid of the result



81‘ (usYs 9n9n1) f(zy/b)
B " {e(yy) (1~eny) ~ ely) (T-en) }? (AI.1)

where U=y =y

By employing this information, the necessary y integration may be

performed to ¥1e1d the expression

y Rt e +-<d°“’1))2} (= F(0/23 ,b/2,,n,m) +
0 2

+ 2F(0,y1,€,n,n1) - F(-b/2-y1,b/2,€,nsn1)}] . (AI.2)

An inspection of the form of F(u,y,e,n,n;) indicates chat the

contribution to I; multiplied by the quantity
2 FCCY ) {1 +'l(§9<YI))2}%J is at most O(e 1n e) except possibly
oy ¢ 1 4 dy, -

for isolated values of y;. Also, the terms multiplied by
dF(b/2~y;,b/2,e,n,n1)/3y; and 3F(~b/2-y,,b/2,e,n,n;)/dy;contribute
at most 0(e) to I;, again except perhaps for certain discrete values
of y;. Therefore, by noting from equation (AI.1l) that

3..15. (O’YIseansnl) - f(z}’1/b)
Iy e c(y;){(n-ny)

it is possible to deduce from equation (AI.2) the result

?

v 2f(2Y1/b){1+ L (-gggy-l—)z}i f dqf f » € * 0.
o n1f o (n-nl)

A similar analysis applied to the second multiple-integral term

inside the limit sign of equation (II.2.37),

- gf f (1=enpdny, 3 P12 c(y)£Q2y/m)
12 (2n~eni)2 (2n;=enf)* ayl -b/2 (y1-y)

He(yy) (I-eng) = e(y) (1-en) }2 + 4(Y1‘Y)2}%dy
c(y1) (T-eny) - e(y) (1-en) ’




yields the result

(y) dn dn
I’b—2f(2y/b){1+(c ) } —%'“L" e + o,
2 ! f fnl (a-ny) °

onzo

Hence, by replacing I; and I, in equation (II.2.37) with the above

asymptotic forms and taking the limit,is is found that

a{®)a{2y2 o(y))£2(2y, /0

R = 2 e

11 1
1 de(yp)y2,? rdn dn
+g C c{ £



APPENDIX II : Evaluation of integrals for the variational equation

. . . s E
Consider, first, the quantities Péw) and Pé ).

equations (II.5.5), (I1.5.18) and (II.5.21) it is possible to

By combining

obtain the results

2m-1 +b/2 n=m n,2n-1 2(m-n)
(w) = 2 IREX, -1 y dy .-
N 1)'_b{2 L GeEarenre
(m > o)
(E) _ e P P a
By @l I ey - DTG

Therefore,on the assumption that it is permissible to interchange
the order of the integration and summation in these expressions; it

is found that

W) _ , I3 1" eyt )
By @D} L eI GeD T 2 v ‘
| >@> 0"
(E) _ e L pypytt
By T m@D! ) G- Ten T GeD
By a similar process,the quantities Qé:) and (E) are found to
be given by
() ‘ i=m j=n
Q, =16m (2m-1) ! (2n-1) ! )
n i=1 j=1

(—l)i + j(zt/b)z(i+j_1) —
@D~ 2@ -1 2@m+n-i-3) + 1] °

i=m~1 j=n-1

(E) _ 16 mn (2m-1) ! (2n~1) ! Z ) >‘(m,n > o)*
i=o  j=o
D Iypy2@r) 41
{2@-1)-11C2DI{2(n-3)~ 131 (23}{2(i+3) + 1} ° o,
* v' ,4 4 N
It is also evident that P(‘> = P\E) = Q(L) = Q(E) =0 foron=20,1,2...
) o “on ‘on



By combining equations (II.5.14), (II.5.19) and (II.5.21) it

is found that R;w) and RéE) may, for m < 4, be written as follows:
; BN
+b/2 1
R = 1 agm s R 2 2 f dages
0 . o
-b/2 o
+h /2 ' 1 '
R§W) = [ t2 dy/b: R§E) =2 [ t2 az/v;
~-b/2 o

(w) +b /2 (E) t
Ry = [ {t%-2K"2¢2/Kk2}dy/b; Ry 0 = 2 [ {£*-2k*2t2/Kk2}dz/b; >>(A11.1)

-b/2 0
) +b/2
R3" = [ {t5-3k"2t%/Kk%+t2(3-7k2+4k%) /K4 My /b;
-b/2
(%) 1
Ry = 2f{t0-31"2e4/k2+£2 (3-Tk2+4K") /K" Yz /b.
o _/

The first two integrals of equation (AII.1) are easily
evaluated to give the results
RéW) =1; RéE) = 21/b.
The remaining integrals, on the other hand, are not simple. However,
they may be evaluated by employing transformation (I.2.3) and the

result, which may be deduced from equation (II.5.6) by using

transformation (I.2.3) and equation (I.2.4),
d2/d2Ks = C(1 - sn?2Ks). (AII.2)

Thus, by noting that on the wing part of the vortex trace

dy/d2Ks = dQ/d2Ks one ohtains

F.](W) = (C/b){Az - Aq,} M

B o (C/b)ia, - Ag - 26'2(hy - Ay)/K2}



3k'? 3 - 7k? *
RE) = flag - ho - 25 (- ag) + LTI LI () Ly,
+K o
where A = f sn 2Ks d2Ks, m =0, 1, 2, 3, ...
S ¢

This type of integral is considered by Byrd and Friedman (1954)
whose results (p.p. 191 - 192) enable one to derive the expressions
A = 2K; Ay =2{K- E(K) }/k? ;

A, .o = (2n(+k®)A, + (1-20)A, o}/ (20+1)k2

2n+
n=1, 2, 3, «.. .

Thus ,by employing this information in combination with equations
(I1.5.8) and (II.5.9),it is possible to evaluate R;W) for a given
2}/b.

By observing that dz/d2Ks = Im(d/d2Ks) it may be concluded
from equations (AII.1l), (AII.2) and transformation (I.2.3) that

r{E) = (e/p) @, - Byl

R$® = (c/b)(Es - &, - 2'2(E, - 82}

E) C~ —  3k'2.~ - - 7k2 + 4KY) ~ -
r{®) =5lAg - Ag 37 (A6 - Ay) + 3 7&” 2 @, - Eb
fere K+ik'

A =Im{ [ sn2Ks d2Ks} , m =0, 1, 2, 3, eeer .
b K

Again it is possible to employ results given by Byrd and Friedman

on pages 191 and 192 to obtain the expressions
Zg =K' : A = E'(K)/k? :

A = 2y -2n)A 2 =
Ay 4o {2n(1+k )A2n + (1 2n)A2n"2}/(2n+1)k , n=1,2,3, ... &



Therefore RéE) may be evaluated for a given 2%/b by using these

expressionsin conjunction with equations (I1.5.8) and (II.5.9).

() g 5(E)

The method used to determine Sm is essentially

the same as that employed to determine R(“) and R(E). Therefore
only the results will be quoted (m,n < 4) These are as follows:
o P el
o P
é‘g) = ng):; él::‘) = R§E) ;
](_Y) = CTy/b; ﬁ) = CTu/b ;

(W) = (C/b){Tg-2k"2T , }; fg) (C/bX T «~2k'2T };

sg) = (C/b){Tg - 3k"2Tg/k? + (3~TkZ+4k™) Ty /K"};

53 = (/b {Tg - 3" BT /k2 + (3~Tk244k™) T /%)

ség) = (C/b){Tg ~4k"2T/k? + 4k'*T,/k"};

S5 = (C/D - 6T/ + 4! T, 1)

12 - 2 L
s§§> =-§{T10 - %% Tg + <2 19kk11°k Dy, - Zk £5 (3-7k2+4K") Ty} ;
E) _ C= 5k' 2 (9-19K2+10k")= 2Kk"2 . _ 5 = 4.
523 = TJ-{T].O 1—(2- T8 + kq T6 E-g (3 7k<+4); )TL,,},
w) _ ¢ _ 6k'? (15-32k2+17k") 61’2 2.l
S35 = 3Ty " %2 Tyt o Tg = 35 (3-7TkZ+4k")Tg +

(3-7k2+4k*)2 }e
o Teds



(B) _ C . 6k'Zg (15-32k2417k")= _ 6k'2,. _ , 4=
S33 B b{TIZ kZ T10 * 7 Tg e (3-7k“+4k )T6+

T 24 a4y 2
4 (3-Tk%+4k*) 7,)

k
Here
L L P T
Also,it should be noted that
g _ (0 ; (B _ (B
mn nm mn nm



APPENDIX III : The flow velocity field of a closed, rectangular

vortex distribution

The vortex distribution y(x;) placed on the cylindrical surface
of Fig. 18 may, when combined with the image distribution, be considered
to be a chordwise distribution of elementary rectangular vortices of
strength y(x;)dx;. An example of such a vortex is shown in the figure
at the end of this appendix. This figure also illustrates the
notation and coordinate system required for the following analysis.

According to Robinson and Laurmann, (1956) the vectorial velocity
dV induced at the point P(x,y,z) by a vortex element of strength
y(x;)dx; is given by

dv = y(x))dx; ds A r/4r £ .

Here ds is the length of the element which has a vortex vector in

the direction of the unit vector dg/ds. Also

r =i(x~x;) + j(y-y)) + k(z-zy),

vhere i, j, k are unit vectors in the direction of the x,y,z axes
and X, y1, 2; are the coordinates of the element.

Thus, by integrating the contributions of all the elements of
the rectangular vortex, one finds that only the vortex segments AB

and CD contribute to the upwash at P which is given by

b/2 -
oG g | T dyi
dw(x,y,2) = i /2 LGS+ (1Y) © + ()l

3/2

+b/2 dy,
_b£2 ((x1-x)% + (y1-y)¢ + (l+Z)‘?3/2 )

+

Therefore, by performing the integration indicated in this expression
and integrating the contributions of all the elementary vortices of
the cylindrical surface,(-c/2 € x; £ ¢/2) it is found that the z-wash

at the wing plane of the cylindrical surface is given by



+1 s .
e e _ P v 1 o R (1-n) '
wel8on) = wiey,1) = 4 _{ (€1) B e TRI(TZ + (5,025 ¢
Y. R (1+n) L £-23 r
(RZ(T) 7 + (-0 28 " E-02 + 437
1:\:\ (l ﬂ) flR (1+n) ‘E\ d
{RE(1-n)% + (£,-0)° + M‘}Z {R2(1+n)% + (g1-E)% + 4A%}2 ) f1e

(ATII.1)

Here
= 2x/c, n = 2y/b, A= 2%c, R =b/c

and P denotes that the integral is to be interpreted according to the
Cauchy principal value.

By symmetry considerations it may be deduced from equation
(AIII.1) that the y-wash at the starboard end plate of the cyllvdrlcal

surface is written as

+1 / -
N = 1 [ A(1-z) ' A(1+2)
ve (6,0 f‘( 1"\g IO ¥ GrD2F ¥ T2 7 (6= 5)4}5} +
. £-5) ) AQL-) .
(&1~ E)F+ 2y YA e YA (E1-8y% + LR Z)2
A(L+E) 1Y .. .
HEPYIG T LA (£1~8)% + 4;;{1}2_;)“%19 (AI11.2)

where z =z/%.

It is a routine matter to write equations (AIII.1) and (AIII.2)

in the form shown in Section II.5.3, that is equations (II.5.33).

P (x.y.z}
(qul'll')_\ 3
.f \.‘w
L
U(:T;"- -4“ 2
4
/" 1
x y
21 ( L/ 720 (CORRESPONDING
vz TO GROUND PLANE)
Y
|
| c
et b k————

FIGURE FOR APPENDIX II. COORDINATE SYSTEM AND

NOTATION USED IN THE DETERMINATION OF THE

VELOCITY FIELD OF AN ELEMENTARY RECTANGULAR
VORTEX .




AR A A
EQUM (. 36)| EQU"(1.543)
1000 o101 4-698 4-680
I-000 o191 2-87I 2905
1-000 0-253 2:437 2.474
2:000 o119 3.952 3900
2-000 0-20! 2:666 2:683
2.000 0-3I3 2:062 2-08l
3-000 0179 2-850 2-852
3:000 | 0302 2-059 2.074
3-000 0-573 1-540 1-549
4-000 0-283 2-339 2:350
4-000 0-402 1759 1-768
4-000 0-626 I-468 1-474

TABLE |. THE PARAMETER B OF A CLOSED
WING / END-PLATE CONFIGURATION,

oEF° cw ETS,’B THEORETICAL | ESTIMATED MEAEURED
b || eq(m.44)| eq(ma-s) Coi Co Co

00093 00007 0-0003 00103 00110

0-0107 0-0008 0-:00I2 0-0127 0-0I34

O-0I136 O-0009 0-0022 O-0167 O-0I51 (0-0164)
0:0097 0- 0008 00000 O-0IO5 0-0I09

oOoiu3 0-0008 | O0-0004 00125 0-0136

0-0143 0-00I0 0:0006 00159 O-0I51 (0-0160)
0-0102 0-0008 00006 O-0ll6 oons
00122 0-0009% 0-0000 O-O13l 0-0I136

00152 0-00Il | 00003 0O-0166 0-0149 (0-0160)
0-0105 0-0008 0-0021 0:0134 0.0l

00125 0-0009 | 00004 | 0-0138 |0O-0I39
0-0163 0-00II 00000 | 00174 |0-0164

O n oOuv N O v, 85

VO Voo wwwO0Ooo

TABLE 2. A COMPARISON BETWEEN THE ESTIMATED AND
MEASURED OVERALL-DRAG COEFFICIENT OF THE
CONFIGURATION;; 1,/c = h,/c = 0167 ; R =1-26 x 10
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