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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF SOCIAL SCIENCES 

SOCIAL STATISTICS 

Doctor of Philosophy 

MULTIVARIATE ANALYSIS OF SAMPLE SURVEY DATA 

by Christopher John Skinner 

Multivariate methods are used widely with sample survey data, yet the 

assumption of independently and identically distributed observations 

underlying many of these methods may be invalid for surveys of complex 
design. This thesis attempts to outline a formal statistical approach 

to this problem. 

A distinction is drawn between a disaggregated approach, where the aim 
is to model the data in relation to the structure of the population used 
in the sample design, andan aggregate approach where the target of 
inference is a population characteristic. Only the latter approach is 

considered. Most attention is given to the choice and properties of 

point estimators of a covariance matrix. In addition the estimation of 

correlation coefficients, regression coefficients, principal components 

and parampters. in factor analysis is considered. 

Inference is mainly based on stochastic superpopulation models rather 
than on the classical randomisation distribution induced by a probability 

sampling design. The thesis divided into two parts. In the first part, 

a very general sample selection scheme depending on a set of design 

variables is'combined'With a 'rather restrictive classical superpopulation 

model in which units are independent with values distributed multivariate- 

normally. ' In the second part, a conventional two-stage sampling scheme 
is combined with a general superpopulation model for a clustered 

population. - 
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CHAPTER ONE - INTRODUCTION 

1.1 The Use of Multivariate Analysis in Social Survey Research 

Multivariate methods are now widely used in the social sciences 

for the analysis of social survey data. Recent books on the use of 

such methods for the analysis of surveys are Ferber (1980) and 

O'Muircheartaigh and Payne (1977a, b). The contents of a haphazard 

sample of four recent social science journals are analysed in Table 

1.1. In three of these journals over 60% of the papers contain some 

multivariate analysis (usually correlation analysis, regression 

analysis or factor analysis) and of these'the majority are based on 

social survey data. 

Table 1.1. Contents of Four Recent Social Science Journals. 

Paper includes 
Human 

Relations 
33 1980 

J. of 
Marriage& 

The Family 
41 1979 

Social 
Forces 

58 1979/80 

Sociology 
& Social 
Research 
64 1979/80 

no-empirical work 15 13 13 4 

empirical workl but 
no multivariate 14 16 10 5 
analysis 

multivariate 23. 45 45' 18 
analysis based on 

(a) social survey (16) (38) (28) (11) 
data 

(b) not social 
data2 surve 

(7) (7) (17) (7) 
y 

Total number of 
I 

52 
I 

74 
I 

68 
I 

27 
papers 

Notes: 1 Includes comparisons of subclass means, simple cross-tabulations, 

standardised rates. 

Includes studies where the units of analysis are countries, 

U. S. states etc. and small experimental studies. 

One might offer two related reasons why multivariate methods are 

important for the analysis of social survey data. 
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(1) Measurement: Many 'concepts' in the social sciences do'not 

possess unique operational definitions and instead several indicators 

are often measured which-are subsequently analysed simultaneously using, 

for example, factor analysis. 

(2) Explanation: 'Social research is frequently concerned with 

analysing relationships between variables using multivariate methods, 

such as regression, analysis. These methods are particularly important 

for social surveys because they can provide 'statistical control' in 

place of experimental control. 

In this thesis we shall view multivariate analysis as a branch 

of statistical'inference; observations are assumed to be generated 

by a stochastic modeZ. The mechanism by which a given model generates 

the observations may have a theoretical justification or it may just 

be a mathematical simplification (Bartholomew, 1973 pp. 1-9). The 

usual aim of multivariate analysis is to make inference about certain 

parameters of the model. 

Conventional models in multivariate'analysis (e. g. Morrison, 

1976) are either unstructured, where observations y1... yn are realisations 

of independently and identically distributed (IID) random variables, 

Y1 ... Yn , with probability densities f(y, 10) (i=l... n), 'or-structured, 

where yl ... yn are realisations of random variables Y, ... Yn which are 

independent conditionalon known values -xl ... xn with densities f(y 
i1xi, 

0) 

(i=1 ... n). In each case 0 is the object of interest. 

Models for observations, from sample surveys will be discussed 

in Section'l. 2 but are broadly of two types: 

(1) Observations are generated by what Cassel et al (1977 Ch. 2) 

call the Fixed Population Model in which the only stochastic 

element enters via a probability sampling design and the 

parameters of the model'are the finite population values. 
(2) The finite population values are themselves generated by a 

stochastic model, the superpoputation model. In this case 

the model generating the sample observations might be taken 

as'either (a) the combination of the superpopulation model 
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and the sampling design or (b) if the design is non-informative, 

just the superpopulation model restricted to the sampled units 

(e. g. Royall, 1971). ý, ; 

For the Fixed Population Model-(l), the sample observations 

will only obey the unstructured model if the design is srswr and 

only obey the structured model if the design is stratified srswr and 

stratum membership is denoted by xi. Similarly for model (2)(a) 

the sample observations will only obey the unstructured model if the 

superpopulation model is unstructured and the design is non-informative and 

only obey the structured model if the superpopulatipn model is 

structured with respect to xi and the design is non-informative given the 

xV In other cases the conventional models of multivariate analysis 

will not apply. - Even in these cases, it is by no-means obvious that 

conventional methods are applicable because the target for inference 

may no longer be the 'conventional parameter of interest' for the 

sample model. We discuss possible targets for inference in Section 

1.3. but we do now give two examples. 

(i) Suppose in the, superpopulation model that Y, ... yn are IID, 

N(p, a2) where 11 is the target for inference. Suppose the 

(informative), sampling design selects only, those units in 

the population for whichýy i<K. 
Then the sample model is, 

IID (truncated normal) with a mean which is no longer the 

target of inference. 

(ii) In some circumstances we may be interested in the specific 

finite population, (see 1.3.1) rather than the superpopulation 

model. In this case under approach (2) above, conventional 

parametric inference would be inappropriate since the object 

of inference would be realisation of a random variable rather 
than a parameter. t, - 

- Formally, there seem to be three possible approaches to the 

multivariate analysis of sample survey data. 

(a) We could treat the multivariate anlysis as an exercise in 

data analysis/descriptive statistics eschewing sample/population 

distinctions. This is an approach that has attracted increasing 

interest (e. g. Gnanadesikan, 1977) due mainly to the unrealistic 



-4- 

multivariate normality assumptions of classical multivariate 

analysis. - 

(b) We might define finite population parameters of interest e. g. 

correlation matrices, -covariance matrices, linear regression 

coefficients and consider inference about these parameters 

under the Fixed Population Model (1) above. 

(c) We might adopt the superpopulation model approach (2) above 

and make inference either about the finite population 

'parameters' as in (b) or about the parameters in the super- 

population model. 

The choice of approach depends to a-large extent on the context 

of the analysis. When analysing a pilot survey or when 'searching 

for structure' at an early stage of analysis approach (a) might be - 

sensible. We are, however, specifically interested in the sampling 

mechanism and so shall reject approach (a). 

We now argue why we prefer approach (c) to approach (b). 

Firstly, there are compelling reasons (e. g. Royall, 1971), which we 

shall not pursue, why approach (c) is more desirable than (b) even 

for the classical survey sampling problem of estimating finite 

population means and totals. More importantly, we consider that there 

is usually a qualitative difference between multivariate analysis and 

this classical problem. In studying relationships between variables 

and the effects of measurement error etc. it is almost necessary to 

have a model. Even a simple statistic such as a product-moment 

correlation coefficient lacks meaning if there is no underlying linear 

relationship. Hansen et al (1978) as well as Sgrndal and Kempthorne, 

in discussion of their paper, refer to the necessity of a model in 

causal analysis. Sirndal adds that 'it seems clear to me that the 

model-based framework, being of wider scope, will prove superior In 

the development of this area' (data analysis for sample surveys). 
Several discussants of Kish and Frankel (1974) also question the use 

of approach (b) for regression analysis on the same grounds. Finally, 

although the use of approach (b) might be reasonable for certain 
descriptive multivariate analysis, our consistent use of approach (c) 

will provide a more uniform theoretical perspective. 
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In this thesis we shall be addressing two broad questions 

(discussed in a more restricted form in Section 1.2.2): 

(A) To what extent are conventional multivariate methods, 

specifically those based on unstructured'111) models, 

applicable to sample survey data? 

(B) What alternative methods might be adopted which are more 

appropriate for sample survey data? 

In particular we shall be concerned with (i) the implications 

of non-independence in the superpopulation model due to clustering 

and (ii) the effect of selection with respect to variables correlated 

with variables of interest in an II. D model. 

We might compare questions (A) and (B) with the more 'traditional' 

questions posed, for example, by Kish and Frankel (1974). They note 

that most statistical methods are based on the assumption of srs and 

ask what is the impact of complex survey designs. We suggest that often 

their questions are included in ours since complex designs will only usually 

be adopted if an IID model is inappropriate. Our questions are, 

however, more general because as Kempthorne (1978) notes, for example: 

'That one should pay attention to clustering or covariance in attempted 

causal modelling eVen if one has a srs, seems obvious'. 

In the classical problem of estimating a finite population mean 

question (A), i. e. what are the properties of the (unweighted) sample 

mean as an estimator of the finite population mean, is fairly trivial 

and much of survey sampling theory (e. g. Cochran, 1977) is devoted to 

question (B), i. e. how should we best estimate the finite population 

mean for given designs and/or models. In this thesis we shall give 

considerable attention to question (A). Three reasons for-this are: 

(i) Question (A)'is not so trivial for multivariate analysis. 

(ii) Whereas most practicising survey samplers take account 

of complex survey designs when estimating population means 

and totals, many social scientists still use (and are likely 

to continue to use) IID based methods. This is sometimes 

for practical simplicity or due to the availability of 

computer packages and is sometimes forced on secondary users 
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of survey, data who do not have access to the design 

information, perhaps for confidentiality reasons (see 

also discussion by Rao and Scott, 1981). 

(iii) There are conjectures that multivariate methods are 

more robust to departures from the IID assumption. For 

example, Morgan and Sonquist (1963) wrote that 'there is 

some reason to believe that the clustering and stratification 

of the sample becomes less and less important the more 

complex and more-multivariate the analysis being undertaken'. 

We end this opening section with Smith's (1976) indication of 

the importance of this subject: .I 

'The vast majority of surveys are multivariate and multipurpose. 

The design and analysis of multivariate surveys must be one of the 

next major areas for research and if theoretical statisticians fail 

to rise to the challenge the rift betwein them and practical statisticians 

will grow wider. ' 

1.2 Formal Framework for Sample Surveys 
''I 

The foundations of sample survey theory have been extensively 

investigated (reviews are given by Cassel et al., 1977, and Smith, 

1976) and so our discussion is brief and restricted to selected topics. 

1.2.1 Sampling Designs 

We consider a finite popuZation of N identifiable units denoted 

by U= 11 
... NI. A sampZe is def iaed as a subset of U (hence our definition 

ignores the order of selection or multiplicity of units). Let Cr- 
be the'set of all subsets of U. A sampZing design, p(s), is a real- 
valued function on 

I 
such that: 

p(s) >, 0 for all scP 

Zp(s) 

The design defines a probability distribution for a random 

variable S taking values ac I- ; P(S=s) = P(S). 
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th 
We suppose that, associated with the i unit of U, there is a 

pair of vectors (y il xi ) of dimensions (p, q) (i=l ... N). 
' 

The y 

variables are variables of interest (inference variables., Smith, 

1978) and are observed for members of the sample but are unobserved 

for other units in U. The x variables are auxiliary variables 
(design variables, Smith, 1978). Let x= (x 

11... xN I)' and 

Z= (ylI... Y N 1)'. We assume that p(s) is a (deterministic) function 

of x and does not depend on I and write p(s) = p(six). The 

identification of the units may be used in the design by letting the 
first component of x be the label, i (i=l... N). We distinguish 

between two cases: 

(1) Known selection scheme:. x, N and p(. slx) are all known before 

the sample is selected. In this case the design is said to be 

non-informative given x and N. 

(2) Unknown selection scheme: Not all of x, N and p(sIx) are 

known before the sample is selected. 

Examples of Known Selection Schemes 

1. All the usual probability sampling designs discussed in standard 

sampling textbooks (e. g. Cochran, 1977) have known selection schemes. 

We give two examples: 

(a) Example 1.1 - Stratified random sampling without replacement 

Let e1 be the (H-1) vector of zeros and let. ýh be the (H-1) 

vector with unity as its (h-1) 
th 

element and zeros elsewhere (h=2 H). 

Suppose that. 1 i 
is known and may only take one of the values 

21----tH ('=' ... N). Then U may be partitioned into H strata 

Sh=S 
h(-x) 

(h=1 ... H) such that: 

icS ýý! i 'o 2b 

Let Nh be the number of units in Sh (EN 
h= 

N) and let n, ... nH be given 

integers such that 1<n<N (h=1 ... H). Let ; be the set of all hhh 
subsets of Sh of size nh and let 

S '- 
; 

ST( = {s U ... Us :se 
Ph 

, h=l... H) 
S' 

'T 'ý 
-X) 1Hh 

Then a stratified random sampling without replacement design is defined 

by 
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H Nh) -1 
P(Sla) = 111(n 

hs rl' 
; 

ST 
h= 

SST 

(b) Example 1.2 - Two-stage Sampling 

Let the 2E, and Sh be defined as in (a). Let P be the set of 

all subsets of {1 
... HI. Let pl(slix) be a sampling design on ý'. 

Let ý, (now) be the set of all subsets of S For each s'c ý' write, h h' 
without loss of generality, s' = {1 

... nSI and let 

f(sl) 
{s 

1 
U.. oUs n 

Sh C 
ýhl' 

Let 
ITS 

=Us 

Let ph (s 
hIx' s') be a given sampling 

I 
design on 

ý(s'). 
Then a 

two stage sampling design is defined by 

P(sl.! ) ph (s 
hI-! 's'))p'(s'Ix) sE TS 

hes' 

0sý kTS 

(Note that, as defined above, 
I-TS is in fact the set of all subsets 

of U' ITS is usually restricted by constraints on 
11 

and the 
Ph 

). 

2. Lord and Novick (1968 p. 140) describe the selection of samples 

on the basis of test scores (or vectors of test scores) xi. Usually 

s, consists of those units in U such that xi>, K where K is a specified 

number. 

3. Royall (1970) describes an 'optimal' sampling plan in which 

the n units in U with largest (univariate) xi values are selected 

with probability one, and other units are selected with probability 

zero. 

Examples of Unknown Selection Schemes 

4. Scott (1977) describes a situation where x is unknown, e. g. 

secondary users may know that a stratified sample was selected but 

not be able to identify which strata individual members of the sample 

belong to. 
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0 5. The mechanism by which non-response occurs. in, sample surveys 

is generally unknown. We might ý suppose that the probability of response: 

depends only on a specific set of variables xi, but where p(six) and x 

are unknown (c. f. Rubin, 1977). 

1.2.2 Models and Targets for Inference 

As noted in Section 1.1 we shall adopt a superpopulation model 

approach., Most conventional superpopulation models are casesof 

what we shall call a conditionaZ superpopulation modeZ., Recall 

I Y= (Y 
i ... YN' )1 and x= (xl'... xN')'. Then in a conditional,, -,..,, -,.. 

superpopulation model y is assumed to be a realisation ofýthe, random 

vector Y= (Y' ... Y with probability density function, (p. d. f) 1N 
p(Ylx) conditional on x. We shall, however, find that a more, convenient 

framework is offered by an unconditionaZ superpopuZation modeZ where 

Q' x')' is a joint realisation of (YIXI)l with joint p. d. f. 

p(YIX)p(X) where X= (X 
1 ... 

XN ')'. This enables us also to consider 

the marginal distribution of Y with p. d. f. p(IL). In this section- 

we assume that p(YJ2ý), p(X) and p(Y) are members of known classes of 

distributions indexed by unknown (usually vector) parameters 

6e0, ýe0 and *eT respectively. We write p(Yjj, e), p(Xjý), and 

p(Ylo- * is, of course, a function of 6 and ý. For most of this 

thesis we shall, in fact, relax the assumption that the p. d. f. 's 

are members of given parametric families and only assume certain - 
moment properties of the distributions. In Chapter 5 we shall also 

relax the assumption, made implicitly above, that, N is, fixed and allow 

it, as well, to be a realisation-of a random variable. 

The choice of targets for inference will be discussed in Section 

1.3. The target will be either a function of I (a finite population. 

'parameter') or a function of * (a superpopulation parameter). In 

fact, for all the models that we shall consider, Yl.. *Y N will possess 

an exchangeable distribution (unconditional on x) and hence share a 

common marginal distribution, p(Yl*o) say, indexed by a parameter 

*0 ,a function of *. The only superpopulation parameters of interest 

that we shall consider will be function of *0. 
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In this thesis we shall only be concerned with point estimation 

(see Section 1.4). For this restricted problem we may rephrase questions 

(A) and (B) of Section 1.1 as: 

(A) What are the properties of the standard estimators of multivariate 

analysis in the survey context? 

(B) What alternative estimators might we adopt? 

Question (A) is essentially a robustness question. What happens 

when the standard assumptions of multivariate analysis do not hold? 

Our use of the term robustness here is broader than, say, the restricted 

definition of Huber (1972), who is still concerned with IID observations, 

and we would include studies such as that-of Praetz (1981) who considers 

the effect of serially correlated residuals on F-tests in multiple 

regression. To answer question (A) we compare the properties of 

'classical' (standard) estimators under a hypothetical 'true' model, 

MOdeZ I, with the properties under a corresponding IID model, Modez II, 

in which the Yi (i=l... N) are assumed to be IID and independent of x 

with common distribution p(Yl* 
0) 

(defined above). A difference between 

the properties of the estimator under the two models will be inter- 

preted as a misspecification effect, i. e. an effect of misspecifying 

the model as Model II when, in fact, the true model is Model I. This 

is the model-based analogy of the more usual concept of a design effect 

(e. g. Kish, 1965), the effect of using a complex sampling design instead 

of srs. Question (A) is not formally a problem of statistical inference. 

We might, for example, consider the sampling distribution of a given 

estimator conditional on any statistics of our choice, if this helps 

us to understand the properties of the estimator. We do not even 

need to 'know' the sample selection scheme which might, for example, 

be a combination of a probability design and non-response. We proceed 

as if hypothetical sampling schemes and models were correct. This 

kind of investigation is an example of the traditional use of super- 

population models (Smith, 1976). 

Question (B) essentially implies an optimality question. What 

is the best estimator of a given quantity? This is a classical problem 

of statistical inference and involves the more recent use of super- 
population models (Smith, 1976). It assumes the model to be correct 
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and if it is not we should ideally investigate the effect of departures 

from the model on the optimal estimators. 

1.2.3 Inference 

Likelihood Approach 

Without loss of generality let a= fl... n) 

Let - (yl'***Yn') ZIT = (yn+ 1 YP 

P(Y. IAI, S, O) fpQ 12E, 6) dZ.. 
g 

Assuming a known selection scheme'the data is 

d (7-9 S, X) 

Hence the likelihood (for the unconditional superpopulation model) is 

L(B, e) cz p(4 IZ, s, 6) p(siý) p(xlý) 

cc p(Y-3 la, s, 0) p(xjý), since p(sj2E) is known. 

Hence from'the Likelihood Principle (e. g. Cox and Hinkley,, 1974, p. 39) 

inference about 0 and ý, and hence ý, should not depend on the sampling 

design, p(sIx). (See Smith, -1978). 

The Likelihood Approach to the prediction of y is more problematic. 

Hinkley (1979) (also Lauritzen, 1974) would define the predictive likeli- 

hood as 

p(djT) cc p(41T, x, s) p(sla) p(xlT) 

ý' cc p(yIT, x, s) p(xlT) 

wher eT T(Z'p ý) is a minimal sufficient statistic for (e, ý)'were 

to be observed. Royall (1976a)would define the predictive likelihood 

of a function, hQ), of Z of interest as 

P(y, lh(y), S, x, O)pýx1hQ), 0) 

this being the ratio of the 'posterior distribution' of h(, Y), 
_ 

p(h(, y)ld), and the 'prior distribution' p(h(, y)). An advantage of 

Hinkley's definition is that the likelihood does not depend on the 

parameters-(6,0), whereas Royall's likelihood will in general. A 

disadvantage of Hinkley's definition is that his likelihood may often 
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be degenerate. In each case, ''-however, inference about Z or h(j) 

does not depend on the sampling design. 

Bayesian Approach 

Let T(e,, ý) be a prior distribution for The posterior 

distribution' of (0,0) is 

p(6, eid) - pQSJA, S, 0) p(SI2E) P(XIý) TO, ý) 

- P(Y-SLE, S"e) P(-XIo. T(e, o 

The posterior distribution of a function h(, X) of y is 

(h Q) 1 d) -p (XS 1h Q) , X, s) p (9 12ý)' p (h Q) 12E) p (x) 

p(Zslh(Z), A, s, 0) p(h(1)1. E, e) p(Xle) 

T(O, ý) d0 de 

Note that if 0 and 0 are prior independent so that T(e, 0) = U(e)n(o) 
then 

p(h(j)1d) -f p(yslh(Z), A, s, 6) p(hQ)jj, O)U(O) d6 

i. e. inference from the unconditional superpopulation model is the 

same as from the conditional superpopulation model. As for the 

Likelihood Approach, inference about or y does not depend on the 

sampling design. 

Sampling Theory Approach 

We might evaluate the sampling distribution of an estimator, 

e(d), with respect to repeated realisations (Z,. I) from the model (ý) 

distribution and/or with respect to the randomisation (p) distribution 

induced by repeatedly selecting samples using p(six). Various 

combinations of the E and p-distributions have been used, e. g. Cassel 

et al (1976) consider minimising the Ep-MSE subject to p-unbiasedness, 

on the basis of essentially ad hoc grounds. Formally, however, it 

would only seem appropriate not to consider the joint Ep-distribution 

if we can 'separate' the inferýnce procedure by margining to 'a 
sufficient 

statistic or conditioning on an ancillary statistic. 
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Def inition 1.1 :, Suppose a parameter, A, , taking values in A, may be , 

partitioned into. X = (e, ý) where e takes values in 0 and 0 takes value 

in 0.6 and 0 are said to be Cartesian independent if A is the 

Cartesian product of 0 and 0, i. e. -i 

eA = ', UO, , e) :6E0, eZ (DI 

D46f inition 1.2 : For a model indexed by X= (0,, ý) , where 0 and 0 

are Cartesian independent, suppose_S = (T, C) is a sufficient statistic 

for X. If 
(a) the p. d. f. of C depends on 0 but not on 6, 

(b) the conditional p. d. f. of T given C=c depends on 0 

but not on ý for all values of c, then C is called anciUary for 

0. 

Definition 1.2 is the definition of 'extended ancillarityl 

given by Cox and Hinkley (1974, p. 35) and is the same as the definition 

of S-ancillarity given by Barndorff-Nielsen (1978, p. 50). The 

ConditionaZity PrincipZe (Cox and Hinkley, 1974 p. 38) then states that 

if C is ancillary for 0 then inference about 0 should be made conditional 

on C taking its observed value. This principle is not entirely well- 

defined since C may not be unique but we shall not consider this 

problem. As an example, let C= (s, x), T= Is and 6, and ý (supposed 

Cartesian independent) be as defined in the unconditional superpopulation 

model then C is ancillary for 0 and so, according to the Conditionality 

Principle we should make inference about e conditional on s, the 

actual sample obtained, and on x. 

Formal conditioning arguments for prediction appear only to be 

available in terms of sufficiency and not ancillarity although the 

Conditionality Principle Is still appealed to (e. g. Royall and Cumberland, 

1981, p. 68). Lauritzen's (1974) definition of predictive sufficiency 

may be expressed as: 

Definition 1.3. Let Y be an observed random vector with distribution 

indexed by 0. - Let S=S(Y) be a sufficient'statistic for 0. Let Z 

be an unobserved random vector such that the joint distribution of 
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(Y, Z) is also indexed by 0. Then S is said to be predictive sufficient 

for Z if Y is conditionally independent of Z given S. 

We now propose a definition of predictive ancillarity in the 

spirit of Definition 1.2 and 1.3. 

Definition 1.4. Let Y, S, Z and e be as in Definition 1.3 (S is 

sufficient for 0 and predictive sufficient for Z). Suppose 6= (X, 0) 

where X and are Cartesian independent and suppose S= (T, C). Then 

C is said to be predictive ancilZary for Z if: 

(a) the p. d. f. of C depends on ý but not on 6, 

(b) the conditional p. d. f. of (T, Z) given C=c depends on 0 

but not on 0 for all values of c. 

The analogy of the Conditionality Principle is then to make 

inference about Z conditional on C taking its observed value, if C 

is predictive ancillary for Z. 

We are interested in making inference about either y or in 

the unconditional superpopulation model. If we let T= ys, Z Z-Sr 

and C= (s, x) and suppose 6 and ý are Cartesian independent then C 

is predictive ancillary for Z and we therefore make inference about Z 

and hence about Z conditional on C. As in the Bayesian approach, where 

the condition that 8 and ý are prior independent is equivalent to the 

condition that 6 and 0 are Cartesian independent in this case, 

inference from the unconditional superpopulation model would be the 
I 

same as for the conditional superpopulation model and it does not depend 

on the sampling design, but only on the actual sample obtained. 

Inference about ý is more problematic. 

Example 1.3: Consider Example 1.1 of Section 1.2.1. Suppose the Yi 

are independent Bernoulli random variables given x with P(Y, =11.1, =e e 
-; --h h 

so that 

nh -m h 
(s) 

p(7.1ä, 
h=l (1.3) 

where 0H) and mh (S) =E Yi 
ics: x i =e h 
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Suppose that p(sla) is a proportionat 

design and the A, are IID with P(x 
i 

fixed. Then p(slj) is given in (1.1) 
HNh 

P(-xlý) 11 Oh 
h=l 

e allocation stratified srswor 

1h) ýh-( E ýh =, l) and N is 

and 

(01 ... OH (1.4) 

Suppose the parameter of interest. is *= E(Y 
i)=1: 

6 
h 

ýh . 

In the example above we should like to, consider the properties 

of a given estimator (say, the. sample mean) of *, conditional on the 

actual sample, s, obtained rather than averaging its properties over 

all possible samples. We should also like to consider the properties 

of an estimator_conditional on x since, for example, if H=2 we 

would expect an estimate based on sample with N, =N2 `ý N/2 to be 

'better' than an estimate based on a sample with N1=N, N20. 

However, x is sufficient for 0 and so if C is a function of x then 

the distribution of the data, d, given C can depend only on 0. Since 

ip is not a known function of 0, C cannot be ancillary for ý by 

condition (b) of Definition 1.2. Hence we cannot appeal to the 

Conditionality Principle to make inference about ý conditional on x. 

Similarly, the marginal distribution of s depends on'a function a(ý) 

of ý whereas the conditional distribution of I-Is and x given a depends 

on a function b(8, of (0,0) which is not Cartesian independent 

of a Hence again from, Definition 1.2 s is not ancillary for 

and we cannot condition, on, s in making inference about 

We might attempt to construct some ad hoc procedures for 

inference about ý which avoid the use of p(sjj). A point estimator 

of * may be obtained by setting 
;= 

*(6, 
;) 

where 
; 

is derived from 

the conditional distribution, p(4 11,6) and ý from p(xlo). In our 

example we might take 6m (s)/n N IN and hence set hh hs 
Oh 

h 
6h ýh- We cannot construct a confidence interval for * of known 

confidence level where the confidence measure is conditional on a. 

However we could for example obtain a confidence interval for 
h% 

which had known confidence level conditional on s and x and we could 

also obtain e such that P(Jý* < c) takes a given value without 

reference to p(sjx). 
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We have argued above that, in general, it is impossible to 

appeal to the Conditionality Principle to condition on s when making 

inference'about In some circumstance it will be possible, for 

example if 61== 6H =e above then ý=0 and (s, x) in ancillary 
for *. That fundamental differences exist between the problems of 

predicting y and, estimating * is not unknown; for example, Royall 
.0 aiid Herson (1973 p. 881) note the, differences between optimal design 

for these*two cases., In a practical sense ' however, these differences 

are annoying. For, by letting N increase we may make finite population 

parameters arbitrarily close to the corresponding superpopulation 

parameters (see 1.3.2), yet formally we should make conditional 
inference about the former and (in general) unconditional inference 

about the latter. For this reason it may be unnecessarily formal not 

to adopt a conditional approach for estimating * (as in Holt et al, 
1980)., As in the example above we might always susbtitute for 

a difference of no practical significance if^N is large. 

Proposed Approach 

We shall, mainly adopt 
_a 

Sampling Theory approach. This choice 

is largely arbitrary and we do not intend here to discuss comparative 

inference. It does, however, have the advantage that we may make fairly 

weak model assumptions in terms of moments without specifying distributional 

forms and we may evaluate the properties of estimators in terms of the 

traditional survey sampler's measures of bias and MSE. It does have 

the disadvantage, discussed above, that conditional inference about 

is problematic. 

We note that our choice of point estimators would'not vary much 

between approaches. We shall especially use maximum likelihood 

estimators which have a natural interpretation in the Likelihood 

Approach, are posterior modes with respect to uniform priors in the 

Bayesian Approach and have optimal asymptotic properties in the Sampling 

Theory Approach. 
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1.3 Object of Inference 

1.3.1 Finite or Superpopulation Parameters 

The task of multivariate analysis is to represent, complex sets 

of data in a simple and 'interpretable' way-In Section 1.1-we noted 

that the approach ofýclassical multivariate analysis to this task 

depends fundamentally on the specification of a model such that (i) 

the model has a simple structure and has 'interpretable' parameters 

and (ii) the data are consistent with. the hypothesis that the data 

is a realisation from the model. The objects of inference are, the 

parameters of the model. 

For our problem, where a sample-is selected from a finite 

population, it, is most natural and analogous to view the super- 

population model as the data generating mechanism of interest and to 

view the probability sampling design-and the realisation of the 

finite population as impositions on top of the model which do not- 

alter our objects of interest. In this case the targets for inference 

will be the superpopulation parameters. 

It may be argued, however, that in certain circumstances finite 

population 'parameters', 
-will 

be of interest. In time series analysis 

it is assumed that a given time series is a single realisation of a 

stochastic process and, although the parameters of this stochastic 

process may beAnteresting per se, when making forecasts one is 

interested in future values for the given reallsation rather. than 

the future behaviour of the model. Similarly one might be interested 

in the actual correlation coefficient for a given finite population 

rather than for the hypothetical superpopulation from which the finite 

population is a 'sample'. Fuller (1973) notes that there is a third 

possibility. We may be interested in the 'parameters' of a finite 

population separated from the finite population studied by time or 

space. We might assume that both these finite populations are independent 

realisations of the same superpopulation model. 

Inferences about finite or superpopulation-parameters are sometimes 
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called descriptive or analytical inferences respectively (e. g. Holt 

and Smith, 1976). On the other hand these terms are also taken to 

refer to non-causal or causal analyses respectively (e. g. Rao, 1975). 

That these two 'definitions' are equivalent is not obvious. It may 

be that for causal inference only superpopulation parameters are 

relevant (e. g. Barnard, 1971; Kalton, 1976; Hansen et al, 1978) but 

superpopulation parameters must also be of interest in non-causal 

analyses such as factor analysis. 

Overall we suspect that superpopulation parameters are of 

most relevance for multivariate analysis and we-take this to be 

also the broad conclusion of Fuller's (19-73) useful discussion of 

regression analysis. This approach, we suggest, is most likely 

to appeal to those users of classical multivariate methods who have 

limited interest in survey sampling. On the other hand the topic of 

this thesis falls very much within the statistical subdiscipline 

of 'Survey Sampling' and so it will be useful to consider the problem 

of estimating finite population parameters in order to provide analogues 

with the classical theory of estimating means and totals. 

The problem of defining a natural 1-1 correspondence between 

superpopulation and'finite population parameters for a given model 

is disýussed in the next section. We might hope that such a 

correspondence would imply that the difference between the two types 

of parameters converged to zero as the finite population size increased 

and for this reason the distinction between finite and Superpopulation 

targets of inference should have limited practical significance. 

1.3.2 Aggregated or Disaggregated Parameters 

Later in this section we argue that in different c ircumstances 

either disaggregated (e. g. within-stratum) parameters or aggregated 

parameters may be of interest. 

We consider initially the problem of definition. An example 

is helpful. 
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Example 1.4_ 

Consider the model in Example 1.3. x partition U into subgroups 

Sh= Sh (x) (h=l ... H) where 

ics 
hxi=eh 

i=l ... N 

For present purposes, these subgroups may be strata or clusters. 

We are not here concerned with sampling. Suppose, as in Example 1.3, 

that the Yi are independent Bernoulli random variables given x with 

NY 
i= 

11X, eh6 h' 
Suppose also that the Xi are IID with 

P(X 
i=eh) h* 

Then the Y 
i' 

(i=l ... N) are unconditionally IID 

Bernoulli random variables with P(Y 
i 

'= l)-= ze 
h 

Oh 

In this example it is natural to define the disaggregated 

superpopuZation parameter's as 0= (61-A 
H) and the aggregated 

superpopuZation parameter as ip. Correspondingly the disaggregated 

finite population paraýneters-may be defined as OQ) = Gy - 
1***YH) 

where yh=SEyi IN h and the aggregated finite population parameter 

-h as *Q) =y= Ey 
i 

IN. Note that as N converges almost surely 

to 0 and ýQ) to ý. 

This example and its corresponding definitions may be extended 

naturally to other situations where the Yi are independent between 

subgroups, given x, and for icS 
h 

the Yi are IID given x with a distri- 

bution indexed by eh , e. g. Yi-NP ("h* Y' ah "ý ("h' Ed , and where 

x is distributed as in this example. 

We now consider how these definitions may be extended to the 

general model p(YIA, 0) p(XIO) of Section 1.2.2. It seems natural 

to define thevector of disaggregated superpopulation parmneters as 

e, but it is not clear how to define corresponding finite population 

parameters. We would like a map-from 0e E) to G(Z) cRk (e = (el ... e k)')' 
One choice would be to define e(y) as the maximum likelihood estimator 

of 6 were Y=Z and X=x to be observed. This, however, confuses the 

definitional question with the problem of inference. In general no 

natural map is available. For example, if YV.. Y 
NI-X 

NID (0,1) then-0 
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is both the mean and median of the superpopulation. In different 

circumstances either the mean or the median of the finite population 

might be targets of inference. For our purposes we shall usually 

be able to define 6 as a function of the moments of p(YIX) and then 

define 0(j) naturally as the same function of 'corresponding' moments 

of X, as in Example 1.4. Even if we can adequately define 'corresponding' 

here we shall still face problems with models which assume that the 

moments are structured as in factor analysis. - It is difficult to 

conceive of a finite population analogue to a factor loading, for 

example, ' without'resorting to a point estimation map. This just adds 

further support to the case for choosing superpopulation rather than 

finite population parameters (see previous section). 

The problem of defining aggregate parameters is, however, to 

some extent reversed, it being easier in some cases to define the 

finite population parameters than the superpopulation parameters. 

if Yl... Y 
N are unconditionally IID with common marginal distribution 

indexed by as in Example 1.4, then it seems natural to view 

as the aggregate superpopulation parameter. However, as noted in 

Section 1.2.2, in the most general models that we shall consider 

Y 1*** YN are unconditionally exchang(ably distributed with common marginal 

distribution indexed by Vo. It is tempting to define the aggregate 

superpopulation parameter as 
0 

but this raises problems as the 

following example shows. 

Example 1.5' 

Let x be defined as in Example 1.4 with the same marginal 

distribution given by (1.4). Given x we may define Y= (Y .. Y 
ý-h il* iN h 

for h=1... H where. S 
hý-X) 2" (il***'N 

h 
)* 

, 

Given x, suppose Y ... Y are independent and that, for h H, 1 z-H 
Yii ... Y iN h 

are the first Nh terms of an infinite exchangeable sequence, 

Eh "ý (Y 
1Y 2- ) of 0-1 random variables whose distribution (given x) 

is indexed by 0h. This defines the distribution p(YIX, 6) where 
6= (01"'Od' 
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Now suppose that P(Y, = 1 Ili ý 'V `0 
ýh 

where ev is a function 
h" 

of 0h. Then as in Example 1.4 

E (Y 
i 

NY, = 1) '= EW 
h 

Oh = 'Po I say. 

Now de Finetts's theorem implies (e. g. Hall and Heyde, 1980, Theorem 

7.2) that there exist rand om variables Z1... Z 
H- concentrated on [0, I] 

such that 
NhkN 

h-k P(N 
hyh= 

kjj, Zh ) =( k)zh 
(I-Z 

h)a. s. 

Hence if N then Nha. s. ' and 

Yhl-! ' 'Zh -* Zha. s 

Hence yl. Ep Z '. '.. Z -* ZN Z IN a. s. 
,1Hhh 

and Yjz 1ZhEýhzha. s. (1.5) 

The Zh may be interpreted as random effects. (1.5) implies that the 

limit of y depends on the H realisations of Z, ... ZH and so y a. s. does 

not converge to *0 = E(Y 
i 

). If *0 is the superpopulation counterpart 

of y this contradicts our desired property, that differences between 

corresponding finite population and superpopulation parameters should 

converge to zero as N--. 

In practice such models have been proposed for clustered populations 

(e. g. Altham, 1976) and the problem occurs because we have held the 

number of clusters fixed and so forced the cluster sizes to increase. 

The problem is removed If we let the number of clusters increase as 

in the following example. 

T, 

Example 1.6 

Let U be partitioned into R clusters S ... S of sizes N N' 
1H 1- H 

respectively. Let N1.. -. N 
H, 

be IID realisations of a random variable 

v and let N =, (N 
1 

'... N 
H 

Define x 1*"xN as in Example 1.4 such that 

ics 
h xi =eh i=1 ... N 

Given N define 
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L (N) 
N-@ el 

NH eH 

i. e. L(N) consists of N1 vectors e1 stacked on top of N2 vectors e2 

etc. We. also, define NI vectors L 
7r 

(N) which are obtained from L(N) 

by permuting the N vectors eh in L(N). Define the conditional 

distribution p(XIN) by 

p(X =L 
7r 

(N)IN) = 11N. 1 

Now as in Example 1.5 suppose Y ... Y are independent given x and N 
W-I -I--H 

and that, for h=1 ... H, Y 
il- 

Y 
iNh are the-first Nh terms of an infinite 

exchangeable sequence Eh= (Y 
1Y 2"', 

) of 0-1 random variables whose 

distribution given x and N depends on eh which is a known function of 

N 
h' 

ehý 6(N 
h) 

(we may restrict E 
h- 

to a finite set if v is bounded). 

Then 

N 
P (Y, =1 12E, =eh, 6(N 

h 
), say 

.,. P (Y, =1I. E) -0 EN 
h. 

W(N 
h 

)/EN 
h 

and as H -* c'o, ipo = P(Y, = 1) - E(vW(v))/E(v) a. s. 

Now y= EN EN 
h Yh/ h 

and the distribution of yh depends only on'Oh = O(N 
h 

)., Hence the 

Nh Yh are IID unconditionally where 

E(Nhjh) = E(Nj(yhlNIL)) 

= E(vW(v)) 

Hence as H -* - 

(note yh is independent 

of X) 

y- E(vW(v))/E(v) a. s. 
Speaking roughly, the reason why (y 

00 
as H in Example 1.6 

is that the marginal distribution of the Yi approaches IID as H -)- - 

which it does not in, Example 1.5, Under this kind of condition it seems 

reasonable to define *0 as the aggregate superpopulation parameter. 

The definition of the aggregate finite population parameter then 

follows as in the discussion of disaggregated parameters. 

We now Ignore the finite/super population distinction and 
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attempt to classify problems for which either I disaggregated or aggregated 
targets may be of interest. To some extent this is a hopeless task 

since the object of inference depends so strongly on the substantive' 

context. However, it is an important subject and so we do try to throw 

a little light on the problem. 

Disaggregated Targets 

Disaggregated targets May be of interest in. 

(a) certain descriptive surveys, 

(b) analytical surveys where the Xi may be viewed as 

'background variables'. 

In more detail: 

(a) 01ý(uircheartaigh (1977) writes: 

'The first and simplest purpose of multivariate analysis may 

be data description or data reduction. 'The aim in this case is 'to 

reduce the volume of data by transforming the full data set into a 

more compact form which preserves its essential characteristics and 

which provides an accurate summary. 

If differences between, say, within-cluster parameters exist, 

then we might view these as essential characterisitcs of the data which 

we wish to preserve by performing a disaggregated analysis. For example, 

Holt et al (1976) consider the correlations between educational tests 

and attitude variables from a survey of schoolchildren, where schools 

are clusters. They find that the correlation structure differs between 

schools and they suggest that it is more illuminating to investigate 

correlations within certain school types, of similar correlation 

structure, than to consider a single aggregate correlation matrix. 

(b) The idea of disaggregating a population into subgroups, 

with their, implied social structure, for the purpose of causal analysis, 

features widely in the social sciences (for example Dogan and Rokkam 

1969 or, with special reference to the survey context, Coleman, 1959). 

Galtung (1967, pp. 37-38) writes: 
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'A unit may be seen, judged and measured not only in absolute 

terms but also relative to other units of the same kind belonging to 

the same set. And it may often be fruitful, to look for the structure 

of the set. Secondly, it often happens that the, set of units itself 

is a unit of analytical interest and this unit itself may again generate 

a set of interest in some context'. 

In the discussion of Kish and Frankel (1974), Kalton, Sampford 

and Brown question the value of regressing across strata when different 

regression relationships hold. in the different strata., The value of 

regressing across clusters may similarly be ques. tioned. The case for 

a disaggregated analysis is particularly -strong when there are prior 

substantive reasons for suspecting, that subgroup membership influences 

the regression relationship, as say when the subgroups are institutions 

or countries. 

For example, consider a survey of perinatal mortality among babies 

born in hospitals where the clusters are hospitals. Suppose the 

dependent variable YI is a mortality rate and the independent variable 

ý2 is the distance from the mother's home to the hospital. We might 

be interested in whether there is a greater mortality amongst, babies 

born of mothers living further from hospitals, and the consequent policy 

implications. for siting of hospitals. Now Y2 will on average be greater 

in rural hospitals than in urban hospitals., In Figure 1.1 we represent 

the situation where a distance effect exists in both types of hospital 

but where the overall regression slope is zero. In Figure 1.2 there 

is no distance effect in either type of hospital but overall a positive 

effect exists. In each case we suggest the relevant policy implications 

are derived from the disaggregated within cluster regressions (the 

different levels_in mortality for urban and rural hospitals would, of 

course, also have other policy implications). 

Hypothetical regression relationships between perinatal mortality, Y 

and distance from hospital, Y2 for rural and urban hospitals. 

Figure 1.1 

. ol 

urban rural, 

--- -Z 
I 

-- 

y 

Figure 1.2 

rural 

urban< 

y2 
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where schools are used as subgroups. Relationships between variables 

typically may depend on the school environment (e. g.. Rutter et al, 

1979) and so it may be appropriate to examine disaggregated relationships 

within schools and then separately to compare relationships between 

schools. 

In the above two institutional examples there are prior reasons 

for expecting the subgroup relationships to be directly influenced 

by subgroup membership. However, in many surveys. strata or-clusters 

form arbitrarily defined geographically continguous, areas which possess 

no well-defined causal interpretation. Yet even in-this case it may be 

sensible to examine disaggregated relationships, since by so doing we 

may be controlling for 'extraneous variation' which-may be desirable 

given the non-experimental design of a survey, (e. g., Fields, 1971; 

Bielby, 1981). For example suppose we wish to regress-Y,, household 

expenditure on a given commodity, on Y2 household income. Suppose one 

stratum is in an area containing predominately pensioner. households 

with low incomes but small household size. Suppose another stratum is 

an area containing mainly young families with higher average-household 

income and with larger household sizes. Then a hypothetical regression 

relationship in each stratum is represented in Figure 1.3. Again for 

analytical purposes it may be sensible to examine within subgroup 

relationships if the effect of increasing income-is of-interest. 

Similar arguments would apply to surveys of schoolchildren, 

Figure 1.3: Hypothetical Relationship between Y 
2' 

income and Y, expenditure 

Yl 

y 

A: stratum containing high 
proportion of pensioners 

B: stratum containing high 
proportion of families 



- 26 - 

To summarise and generalise, suppose'that we mayýsplit Y into 

(Yl Y) where Y are the endogenous variables and - Y` are the exogenous 
- -ý-2 -1 -: 2 

variables. We have argued that if the X variables may be viewed as 

'background variables' then we may write p(Y12E, 0) = p(Y IY-, X, 

P(Y 0) where 6= (0 ,e) and'that e should be the object of 
-ý--2 

1-! 
' 2121 

inference. An argument against this approach is that the competent 

researcher should be able to specify Y correctly such'that Y is 
ý-2 Z-1 

conditionally independent of X given Y2 and hence, for'example, the 

great effort involved in examining within cluster and within stratum 

regressions and intra-cluster correlations is'unnecessary. "According 

to this argument, all we have demonstrated above is an 'omitted 

variables' problem. If we had-included-dUmmy variables for urbaný 

rural differences, for schools and for household'type then 'design 

effects' would disappear. ' The basic argument against this case is 

that it is never possible to correctly specify Y For example, 
-: -2 

Mkai (1981) attempts to specify better and better models for a 

consumption function with an increasing number of independent variables 

using FES data and he shows that''design effects' do not tend to disappear. 

Consider just the problem, of residual intra-cluster correlations 

which one might argue is'due to omitted variables. This is very 

similar to the problem of serially correlated residuals in the 

econometric analysis of time series. Economists do not like such 

serial correlation because it suggests omitted variables (but see 

Hendry and Mizon, 1978, for another explanation) but they are still 

prepared to fit models allowing for it because otherwise they will 

obtain inconsistent estimates of the remaining structural parameters. 

Aggregate Targets,, 
- 

Aggregate targets of inference may be of interest in: 

(a) certain descriptive surveys, 

(b) analytical surveys where cluster membership may not. be 

viewed as a background variable. 

In more detail: 

(a) Often aggregate characteristics of a population, such as 

the difference in mean income between men and women (which may be 
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viewed, in multivariate terms, as the linear regression coefficient 

of income on a dummy sex variable), will be of interest for descriptive 

purposes without attempting any causal interpretation., Sometimes, 

as in this example, a disaggregated-analysis might also be of interest. 

However, on other occasions a disaggregated analysis might be irrelevant 

or even'misleading. For example, suppose we wish, to identify the 

'components of mathematical ability' in students attending mathematics 

courses in U. K. universities. We take a two stage sample of students 

using universities as first-stage units. Suppose, hypothethically, 

that in pre-university examinations the students' pure mathematics 

ability Y1 and applied mathematics, ability-Y 2- are measured perfectly 

and that the-i 
th 

university accepts a student if Y1+Y2>, k,. If, 

again hypothetically, students choose the university which would 

accept them with the highest ki then the distribution of Y1 and Y2 

within universities might resemble, the blices' in Figure 1.4. 

Iy1+y2 'ý ki, 

r 
-1 Yl 

A within-university analysis might suggest zero or negative correlations 

between Y1 and Y2 and also suggest that the first principal component 

of'ýbility was' in the pure-applied direction rather than in the low 

ability-high ability direction. In this example the aggregate parameter 

might be a more meaningful object for inference. 

(b) Consider a study of the determinants of income based on 

area cluster sample survey data. Cluster membership may itself be 

partly determined by income because of selective migration (e. g. 

Blalock, 1968) and a disaggregated regression analysis might under- 

estimate the effects of independent variables. At the extreme, if" 

income is constant within clusters, we would conclude that no variables 
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have any ef f ect an income, ceteris paribus. Clearly it would be 

inappropriate to condition on cluster membership in this case. 

Goldberger (1981) distinguishes between explicit and incidental 

selection on the dependent variable. In sample surveys7clUster 

membership would generally not be a perfect function of the 

dependent variable (explicit selection) and so we may refer to this 

case as one of incidental selection on the dependent variable. 

Conclusion 

Question (A) Section 1.1 might be rephrased: what are the 

properties of methods whichAgnore P(slx), and x? If the true 

objects of inference are the disaggregated parameters then the 

answer to question (A) is that such-methods are meaningless. ' For 

example, the fact that the aggregate-regression coefficient might 

be zero in Fig ure 1.1 may have no causal relevance. ''Hence question 

(A) is really only Interesting if the object of inference is an 

aggregate parameter. 

Question (B) (what methods should be used) is meaningful 

for both disaggregated and aggregated targets. There are two 

advantages of disaggregated targets for this question. Firstly 

inference using the Sampling Theory Approach may be independent 

of the sample design (see Section 1.2.3). Secondly the problem is 

essentially a case of-the conventional structured model of Section 1.1. 

In general standard methods may be applied, although some new 

considerations do arise in the case of clusters--(e. g. 'Pfefferman 

and Nathan, 1981). The main disadvantage of dissaggregated targets 

is that researchers are unlikely to wish to define their topics of 

interest in terms of. the vagaries of survey design. This is particularly 

so for descriptive, purposes, but even for, analytical purposes in 

regression analysis, say, it seems likely that researchers would rather 

select sufficient interpretable independent variables so that the 

regression function does not depend on x (even though the error 

structure may e. g. Campbell 1977, Sedransk 1966). In this case the 

disaggregated parameter is equivalent to the aggregate parameter ý09 
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defined above, anyway. 

In this thesis we shall be concerned only with aggregate targets 

and the main emphasis will be on description. This is just so as to 

define a manageable area for 'study and not to deny--the importance of 

disaggregated targets. 

1.4 Out 1-ine- o, f The's is' 

In this thesis we shall be concerned with two basiC models/ 

selection schemes: 

1. Pearson-type Model/selection sectiom 

This scheme is described in Section 2.1. A fundamental 

assumption of the model is that different units are independent. 

2. Two-stage Model /selection scheme 

This scheme is described in Section 5.1. The model allows for 

intra-cluster correlation. 

For each of these models we shall define parameters of interest 

in terms of either 

1. First and Second Order Moments 

viz. means, variances and covariances. 

or 
2. Multivariate Methods 

viz. correlation coefficients, regression analysis, principal 

components analysis, factor analysis. 

In each case we shall only be interested in the point estimation 

of parameters and we shall ask two questions (see Sections 1.1 and 

1.2.1). 

(A) What are the properties of the standard (IID model/srs design) 

point estimators under the above model/selection schemes? 

(B) What alternative estimators, whether design-based or model- 

based, might be adopted? 

These three classifications allow us to define a23 layout in which 

we may place Chapters 2-7 of this thesis. 
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Pearson-type Two-stage 

Q. (A) Q. (B) Q. (A) Q. (B) 

lst and 
2nd 
moments 

Imulti- 
variate 
methods 

Ch. 2 Ch. 3 Ch. 5 Ch. 6 

Ch. 4 Ch. 7, 

There is also a fourth classification, finite or, superpopulation 

parameters, which will divide the separate chapters 2-7, and which 

essentially defines-a 24 layout. Chapter 8 provides a, conclusion. 
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1.5 -Review of Literature 

The problem of the multivariate analysis of sample survey data 

as formulated in this Chapter has received almost no direct attention 

in the literature. The only major reference is Bebbington and Smith 

(1977) which investigates question (A) partly theoretically and mainly 

using a simulation study. The most related fields are (i) variance 

estimation of complex statistics (e. g. Kalton, 1977; Shah, 1978) and 

(ii) regression analysis of sample survey data (e. g. Smith, 1982). 

The first field has very limited relevance to this thesis because we 

are only concerned with point estimation. The second field is very 

related but is only a subsection of multivariate analysis. As such, 

it does not seem worthwhile-to attempt an overall review of the 

literature discussing individual work. Instead we prefer to discuss 

individual papers in the separate chapters. 

We have noted in Section 1.4. that this thesis falls into two 

basic parts : Part 1, Chapters 2-4, is based on a Pearson-type model/ 

selection scheme; Part II, Chapters 5-7, is based on a clustered 

model/selectionscheme. Part I has evolved from some very specific 

work. Scott (1977) proposed a simple framework for viewing sample 

selection from a multivariate population. Smith (1978) made extra 

multivariate normality assumptions and derived maximum likelihood 

estimators. This approach is very attractive for our purposes 

because it may be naturally related to classical multivariate analysis. 

Nathan and Holt (1980), Holt et al (1980) and Smith (1982) used this 

framework to investigate regression analysis. In Part I we shall use the 

ame framework to investigate multivariate analysis. Part II has less 

pecific antecedants. The selection scheme is that of classical 

two-stage sampling. The model is a generalisation of the conventional 

random effects model, e. g. Scott and Smith (1969). 

Although this thesis is related to work on sample selection in 

psychometrics, econometrics and biometrics, its main reference points are 

in the literature on the analysis of sample surveys. We therefore 

propose to provide an annotated bibliography of this subject, if only 

in order to give a rough quantitative measure of the importance attached 
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to various aspects of this subject by previous workers in the field. 

A review of some of this literature is given by Rao (1975). 

The following classification is used (c. f. Section 1.4. ): 

Design: MS - multi-stageý 

ST - stratified 

Oth - other 

Question (A) 
(see Section 1.4) 

(B) 

Object of Inference: Sup - superpopulation parameter 

Fin - finite population parameter 

Inference Est - estimation 

HT - hypothesis testing 

We need to make some caveats : (i) it is often very difficult to 

allocate papers to the above categories, for example papers on the 

analysis of categorical data from stratified samples may make no 

distinction between superpopulation and finite population inference, 

(ii) whereas we attempt to be 'largely' comprehensive some minor 

papers, unpublished papers and papers of only marginalýrelevance 

have been excluded. It is difficult to define 'analytical' surveys 

and there is of course a blurring of the edges between 'analytical, 

and 'descriptive'. We have omitted work on the estimation of totals, 

means, proportions, quantiles, domain. means and ratios. We have also 

omitted work on variance estimation of complex statistics. 

Designs Question Object Inference 

MS ST Oth (A) (B) Sup Fin Est HT 

Analysis of 
' Eategorical Data 

Adhikari and Sarma 
(1978) 
Altham (1976) 
Brier (1980) 
Cohen (1976) 
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Designs Question Object Inference 

MS ST Oth (A), (B) Sup Fin, Est HT 

Cowan & Binder (1978) 
Fellegi (1980) 
Freeman and Koch 
(1976) 
Holt et al (1980a) 
Imrey et al (1979) 
Imrey et al (1980) 
Lepkowski and Landis 
(1980) 
Nathan (1969) 
Nathan (1972) 
Nathan (1975) 
Rao and Scott (1981) 
Shuster and Downing 
(1976) 
Tomberlin (1979) 
Tomberlin (1980) 

Estimation of Differences(and linear 
combinations) of Domain Means 

Booth and Sedransk 
(1969) 
Frankel (1971) 
Freeman and Brock 
(1978) 
Freeman et al 
(1976) 
Freeman et al 
(1977) 
Kish (1969) 
Kish and Frankel 
(1970) 
Kish and-Frankel 
(1974) 
Kish et al (1976) 
Koch et al (1975) 
Koch and Lemeshow 
(1972) 
Liao and Sedransk 
(1975) 
Rao (1973) 
Sedransk (1965a) 
Sedransk (1965b) 
Sedransk (1967) 
Yates (1960) 

Regression 

Brewer & Mellor 
(1973) 
Campbell (1977) 
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Designs Question Object Inference 

ý Ms ST Oth (A) (B) Sup Fin Est HT 

Demets and Halperin 
(1977) 
Frankel (1971) 
Fuller (1975) 
Hartley and Silken 
(1975) 
Hill (1980) 
Holt and Scott 
(1981) 
Holt et al (1980b) 
Jonrup and Rennermalm 
(1976) 
Kish and Frankel 
(1970) 
Kish and Frankel 
(1974) 
Konijn(1962) 
Lemeshow (1977) 
Nathan and Holt 
(1980) 
Pfeffermann. and 
Nathan (1981) 
Porter (1973) 
Shah et al (1977) 
Smith (1982) 
Thomsen (1978) 

Estimation of (population) variance 

Chaudhuri (1978) 
Das and Tripathi 
(1978) 
Liu (1974a) 
Liu (1974b) 
Mukhopadhyay (1978) 
Wakimoto, (1971a) M 
Zacks (1981) 
Zacks and Solomon 
(1981) 

Estimation of covariances and correlation coefficients 

Aoyama (1954) M 
Bebbington and 
Smith (1977) 
Frankel (1971) 
Gupta et al 
(1978) 
Gupta et al 
(1979) 
Kish and Frankel 
(1970) 
Kish and Frankel 
(1974) 
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Designs Question , Object' Inference 

MS ST Oth (A) (B) Sup Fin Est HT 

Koop (1'970) 
Wakimoto (1971b) M 
Wakimoto (1971c) 

Principal Components Analysis 

Bebbington and 
Smith (1977) 
Tortora (1980) M M 

/ 

I- IIý 
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CHAPTER TWO - STANDARD ESTIMATORS UNDER PEARSON-TYPE SELECTION SCHEME 

2.1 Framework 

Recall the notation of Section 1.2. U = {1 
... NI is a population 

of N identifiable units. Associated with the i 
th 

unit of U is a 

pair of vectors (x 
li, x 21 

) of dimensions (p 
1, p2) (i=1 ... N). Let 

(x .... t ii XlN) (2.1) 

(xv (2.2) 
-12 21 XLN)' 

We suppose that 2E2 is known and that a sample (subset), s, of U 

is selected according to a sampling design, p(sja2), which depends only 

on. E2. x is observed for ics-and unobserved for iis. 

According to the unconditional superpopulation model approach 

(Section 1.2.2) we assume that (xl,. E 2) are joint realisations of the 

pair of random vectors,. (X X ), where Z-2 

(Xll *** Xl'N)' 

(2.3) 

"Ll X2N)' 
-12 

' 

N is fixed and known. 
/ 

We c"onsider two specifications of the 

joint probability distribution of (X X2 )(c. f. Section 1.2.2). 

Model I (the 'true' model) 

. The pairs (X 
li, X 21 

) (i=l ... N) are mutually independent and 

identically distributed with joint probability density function 

MI Ix 
2 

)g(x 
2) and with partitioned, mean vector and covariance matrix 

and 11 12 respectively (2.4) 

21 22) 
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The distribution, f(X 
lIX2)' 

has the following properties (c. f. 

Pearson, 1912; Lawley, 1943): 

(i) EI (X 
11 

X2) ý- 111.2 + BX2 (2.5) 

where p 1.2 V1- Bp 
2 

(2.6) 

B=E E- 
1 

12 22 (2.7) 

EI is the expectation under Model I 

i. e. the regression of X1 on X2 is linear, 

(ii) VI (X 
lJX 

)ýE1 
2 (2.8) 

. 2 

where EEE E- 1E 
1.2 li 12 22 21 

(2.9) 

i. e. the covariance matrix of X1 given X2 is constant 

Model II (the IID model) 

The same assumptions. are made as in. Model I but also we assume- 

that X 
ii and X 

21 are independent. Hence 

E 
II 

(X 
1 

IX') =V1 (2.10) 

V 
II 

(X 
lIX2) 

1: 
11 

(2.11) 

Notation 

Without loss of generality let S= {1 
... nj. 

Let f : F. n/N (2.12) 

= (X x 
... xX (X ... X- is 11 in is 11 in (2.13) 

x is xl, /n,, x2, x2 i/n (2.14) 
ics ES 
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X, =Ex ii IN x2Ex 21 
IN (2.15) 

icu 
, 

iEU 

IS '22 E (x- ý-x) (x -x ) '/(n-1) (2.16) lls ics ii is ii is 

s 12s E (x 
li 

,',, 
ics 

s 
22s 

E '(x 
21 

ics 

S1,1=, E (x 
ii' 

iEU 

x ls 
)(x 

21 -x 2s 
)1/(n-1) (2.17) 

x 2s) 
(X21 x 2s)/(n-1) (2.18) 

x1) (x 
li 

'- X1) II(N'l) ''', 

sx) (x x PI(N-1), (2.20) 12 
icu 

11 1 21 2 

s 
22 "ý E (x 

21'- x2) (x 
21 -- x2 )'I(N-1) 

-ý- (2.21) 
icu 

We shall'make certain limiting arguments in this and the following 

two chapters. For this purpose we assume that X and X are the first 
1 -172 , N terms of infinite sequences of independent random variables X 

ill 
X 

12*** 
and X 

21' 
X 

22- which follow either Model I or II. There will also be an 

infinite sequence of designs p (sl2E For simplicity we assume, as in N2 
Nathan and, Holt (1980), that pN (s 1-12) 'S'of' fixed size, n = n(N) and that 

n- co as N -* -. In order to distinguish between O(n- 
I) 

and O(N- 
I) 

say, 

we"make'no further assumption about the function n(N), e. g. Fuller (1975) 

assumes n(N)/N =f converges to a limit in which case O(n O(N 

We shall generally assume that sample moments, e. g. x 2s and S 
22s' converge 

in probability as n 

In this and the following chapter we take as twin objectives: 

(i) the estimation of 1i and Z and 

(ii) the prediction of x and S 

In this chapter we consider the properties of the standard IID 

estimators x ls and S 
lis 

for both the above objectives. These estimators 

would be appropriate if Model II were correct. This chapter therefore 

involves an investigation of question (A) of Section 1.2.2., where we 

argued that*differences between the properties of these estimators 
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under Models, I and II may be interpreted as effects of misspecifying 

the model as Model II when in fact the true model is Model I. In 

Chapter 3 we shall address question (B) of Section 1.2.2 and consider 

alternative estimators of V1 and E 
11 an d predictors of x1 and S 

11, 

In Section 1.2.2 we argued that question (A) was not strictly 

a pro6lem of statistical inference, whereas question (B) was. We 

therefore leave a discussion of the problem of 'correct' inference 

until Section 3.1. In the remainder of this chapter we shall evaluate 

the properties of x ls and S 
lls as estimators of V1 and Z 

11 or 

predictors of x1 and S 
11 

in terms of 

(i) 'sampling distributions' conditional on s and 2E2 i. e. in 

terms of the model distribution, f, 

(ii) 'sampling distributions' conditional oni2 i., e. in terms 

of the model distribution, f, and the sampling design 

P(s 142) 
' 

(iii) 'sampling distributions' unconditionally i. e. in terms of the 

model distributions, -f and g, and the sampling design 

P(s 

2.2 Properties of the standard estimators, x ls and S 
lls 

2.2.1 Properties conditional on s and 2ý2 

In Theorem 2.1 we give the first two moments of xls as an 

estimator of V1 under both Models I and II. In Corollary 2.2 we give 

the corresponding results for the prediction of x 

Theorem 2.1 

EI (x 
is s '12) 2'- 111 + B(x 

2s - 112 ) 

E II 
cx 

is 
I S'. 12) 111 

vI (x 
lsIS'-12) 

E1.2 /n 

v 
II 

(i 
lsls'-12)"= 

Ell /n 

(where x is x 2s' BO jilp )1 2' 
E 

1.2' 
z 

11 are defined in (2.14), (2.7), (2.4) 

and (2.9)) 
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21- 
Corollary 6.2 

E 
I(XS -x 11 S'. 12) =B ýx2s 

-X 2) 

E -X 0 
II( xls 11 

1 s'12) 

v (X -X /n 
I ls lls'-12) 

E1.2 

v- cx 
-x 

Is. 12) (1-f) Ell/n 
II Xls 1 

(where f is defined in (2.12)) 

Proof of Theorem 2.1 

EIýxlsJs,. j E EI(XI, /n 
2s 

lx21) 

11 1+ 
B(x 

2s-112 
) from (2.5), (2.6) and (2.14) 

v /n2 since XX independent, 
I Xlsls'12) ES VI(Xlilx2i') 

11' ln' 

E 
1.2 

/n from (2.8) 

The moments--for Model II follow by substituting B=0 into the above 

formulae since Model II is a special case of Model I. 

Proof of Corollary 2.2 

(x wx where w, (1-f)/n i=l ... n (2.22) 
is-xl ui ii 

-11N -i=n+l ... N 

E w, 1-f - (N-n)/N =0 (2.23) 
u 
Ew2(, _f)2/n + (N-n)/N2 = (, _f)/n (2.24) 
ui 

Hence 

EI ý-x 
ls -X lis'-12) =E wi(111.2 +Bx2, ) from (2.5) and (2.22) 

u 

B EW 
ix 21 

from (2.23) 

B(x 
2s-x2) 

v Cx Is 2E 
I ls x1 '12) E wi 1.2 

from (2.8) and (2.22) 

(1-f) E 
1.2 

/n from (2.24) 

Again the'results for Model II follow as a special case. 
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The main conclusion to be drawn from the above results is that 

model misspecification can introduce (conditional) bias. From 

Corollary 2.2 the (prediction) bias of x ls 
is non-zero unless the 

sample is balanced on x 2s 
(e. g. Royall and Herson, 1973, a, b) and in 

general is 'linear' in x 2s* 
There is a misspecification effect on the 

variance as well but this is 0(n- 1) 
whereas the Imisspecification bias' 

P 
is in general 0p (1). 

Similar conclusions apply to Slls as an estimator of Z 
11 or as 

a predictor of S 
ll* 

In order to show this we derive a general result 

which will also be used in-Chapter, 3. 

Lemma 2.3 

Let A be a random nxp matrix with rows which are independently 

distributed with common covariance matrix, E, but with possibly 

different means. Let M be a nxn symmetric matrix of constants and 

let S= AIMA. Then 

E(S) =A 'X'Af- + 

where X= E(A) 

Proof 

Let the spectral decomposition of M be 
n 

M=EXi Yiyi (2.25) 
1 

Then S=Xi yiy 1 (2.26) 

where y, Avy 
1 

(2.27) 

Now E(y 
i 

Aly 
1 

(2.28) 

and cov[(y (y )j] = covjI: A JA (y 
i k' ia ak(yda' at i 

E (y ) (y )E 
cL iaI. a ki 

=E kZ 
(2.29) 

where (y 
i)k 

is the k th 
element of yi etc. 
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From (2.26), (2.28) and (2.29) 

E(S) =EAi (Aly J IX + E) 

= XI MA+ tr(M)Z from (2.25) 

The following theorem and corollary show that the bias of S 
lls 

is in general'non-zero. We shall only give the second moments of S 
lls 

in the special case of normality (in Theorem 2.10) since under weak 

conditions (e. g. if the third and fourth moments of XI given'X 2 are 

constant) the conditional covariance matrix of the elements of S 
lls 

is 

-1- 0p (n ) and hence, as for x is, 
the major effect of misspecification is 

with respect to bias rather than second moments. 

Theorem 2.4 

EI (Sllsjs, 2E2) Ell +B (S22s - E22 )B' 

E ii 
(S 

llsls'-12) 
Ell 

Corollary 2.5 

EI (S 
lls 

Sllls'-12) B(S22s S22 )BI 

E 
ii 

(S 
lls 

s 
111 s '-12) 0 

Proof of Theorem 2.4 

Let A, ' = (xll ... x ld 
(2.30) 

A2 (X 
21 -*x 2n) 

(2.1 31) 

P11 /n (2.32) 

(where In is the nxn identity matrix, 1n is the nxl vector of ones) 

Then (n-I)S 
llsý 

AlIP 
wA1 

(2.33) 

(n-l)S A'P A' (2.34) 
22s 2w2 

The conditions of Lemma 2.3 apply under Model I, Setting S (n-1) S 
lls' 

A= Alt M=PwE=E1.2' Since Pw is idempotent and of rank n-l we 

have 

tr(P n-1 

And using (2.5) and the fact that PW1n=0 we have 
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PwEI (Alls,. 12) = PWA 
2 

B' 

or in the notation of Lemma 2.3 

PwA, =PwA2 B' 

Hence-from Lemma 2.3 

E ((n-I)S Z 'Pw! (n-lj E, 'I 
I llsls'42) =111.2 

= (P 
wA1), 

P 
wA1+ 

(n-1) E 
1.2 since pw is 

idempotent 

= BA 
21PwA2 BI + (n-1) E 

1.2 
from (2.36) 

= (n-1)[BS 
22s BI + El. ý from (2.34) 

Hence EI (S, ',, Is,. 12) = BS22s BI +E1.2 

=E 11 +B (S 
22s -E 22 

)BI as required 

The result for Model II follows as a special case with B=0. 

Proof of Corollary 2.5 

From Theorem 2.4 setting n=N 

EI (S 
111'92Y ý 1: 

11 + 13(S22-1: 
22)13' 

Hence from Theorep 2.4 

(2.35) 

(2.36) 

EI (Slls-Sllls,. 12) = Ell +B (S22s - 222 )B' Ell -B (S22 - 122 )BI 

B(S -s, )BI as. required 22s 22 

The result for Model II follows as a special case. Hence in general 

the effect of misspecification is to introduce (conditional) bias. The 

prediction bias of S 
lis 

is non-zero unless the sample is ba lanced on 

S 
22s and is in general 'linear' in S 

22s* 

A similar approach has been taken by Pearson (1903) which is the 

reason for the title of this chapter. He considered a multivariate 

no 
I 
rmal population, P, for (X 

l' 
X2 ) and supposed that an infinite sub- 

population, P A' was defined in terms of a set of values, A, of X 
2* 

pA 'ý {acp :x2 ((x)cA) 

(a slightly more general version is given by Birnbaum et al, 1950). 
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He showed that the mean vector and covariance matrix of, X 
1 

in 

PA could be expressed in terms of the, moments'of X2 in PA as in 

Theorems 2.1, and 2.4. Aitkin (1934,1935) expressed Pearson's (1903), 

results in matrix notation and Pearson (1912) and Lawley, (1943) showed 

that the results also held under the less restrictive assumptions of 

Model I. Holt et al (1980b) discuss these results in the context of 

the regression analysis of sample surveys. If we'let n=N then 

p(sl2E2) defines a-set of infinite subpopulations P 
A(s) 

I of P 
A(U) a 

subpopulation of P. Pearson's results then apply in our framework 

conditional' on s and 
-12 * 

Ledermann (1938a)also considered a multivariate normal population, 

P, -for (X 
1" 'X2) and supposed that random samples, s, of size n were 

selected from P subject-to the restriction that S 
22s was fixed. His 

results'are therefore formally'identical to ours and he-also'derived 

Theorem 5.4 but by a rather long route. 

We noted above that the 'misspecification biases' were of 

greater importance than the Imisspecification variances'. To emphasise 

this fact we might distinguish between finite sample effects and 

selection effects. The, finite sample effects-are reflected in the 

variability of the estimators as measured by-their probability distribution 

given s and Letting n=N the finite sample effects disappear 

and we obtain Pearson's (1903) results: 

x+ B(x (2.37) 
1s1 2s 2 

s 
US =E 11 +, B(S 

22s", - E 
22 

), B' 1 1.1 .11 
(2.38) 

The selection effects are then given by the asymptotic misspecification 

biases B(x 
2s - 112 ) and B(S 

22s -E 22 
)BI,. Note that these selection effects 

essentially operate, through the sampling design, p(s 12E2)* 

Geometric Approach 

To aid the understanding of (2.38) we may adopt a geometrical 

construction. (X 
1 

(X 
1) pl 

(X 
2)1... 

(X 
2) p2 

define a basis for a 
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(pl + P2 )- dimensional vector space 
I 

consisting of vectors of the 

form a'X 1+ 
arx 

2M1)i 
is the i th 

component of XI etc. and a and $ 

are p1x1 and p2xI vectors of scalars respectively). The covariance 

inner product (e. g. - Dempster, 1969, p. 269) may be defined on-O as 

< U, v>= cov I 
(u, V) 

Then I vectors in If 
may be considered as Euclidean vectors in Rp1 

+p 2 

with lengths (norms) equal to their standard deviations (in the 

popuZation) and where the cosine of the angle between two vectors is 

the correlation between the corresponding random variables. We assume' 

that the (X 
1)i and (X 

2 are linearly'independent (i. e. the joint 

covariance matrix of (Xl, X2) is of full rank). This geometric 

representation is more familiar at the sample level than at the 

population level where random variables are usually represented by 

orthogonal axes. At the sample level, n observations on p variables can 

be represented as p points in 0 
with inner products about the mean 

being-equal to the sample covariances. These p points are confined 

to a p-dimensional subspace of'R 
n 

and we might think ofTas the 'limit' 

of this subspace as n--. 

Let R(X 
2) be the range space of X 

2' 
i. e. the subspace of 16 

-L spanned by-(X 
2 

)l ... (X 
2) p2 

and let R (X 
2) 

be the orthogonal complement 

of R(X 
2 

). Then the p1 vectors (X 
1)i may be written uniquely as 

X, = (Xl-BX 
2)+ 

BX 
2 

.L where the elements of Xl-BX 
2 

lie in R (X 
2) and the elements of BX 

2 
lie in R(X 

2 
). x 

l-Bx 2 
is the orthogonal projection of X1 on RL (x 

2 
and BX 

2 
is the orthogonal projection of X1 onto R(X 2 

i 

We now consider a construction given for example by Thomson (1951, 

p. 276) to account for selection. 

Case 1: p2 

Define X2=aX2 (2.39) 

where aZ S 
22S 

/E 
22 
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i. e. X2* is a vector in the same direction as X2 but with squared length 

equal to the variance of X2 in the selected sawple. 

Define X1 (Xl-BX 
2)+ aBX 2 2- x 

17-1 
(1-a) BX 

2 
(2.40) 

i. e. X is the vector X1 projected orthogonally towards R (X 
2)a 

proportion (1-a). 

A geometrical construction of the vectors (X is indicated 

in Figure 2.1 by erecting the hyperplanes H1 and H2 through X2 and X2 

respectively orthogonal to R(X 
2 

). 
, 
The inner products of. the variables 

x1* and X2* in the populatlion are now equal to the covariances between 

the corresponding random variables X1 and X2 in the selected s=ple, 

for 

Figure 2.1 

x2H1 

JA 
I 

iA x 

. (x (X oe 1 21 (x 
* ... 

., 

P"f, 
11 

oe 

xl)l 

1)3 
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vI (X 
1 11 

(1-a) BE 
21 

(1-a) Z 
12 

B' + (1-a)2BE 
22 

B' 

2(1-a)'E Z- Z+ (1-a)2 Z Z- 1Z 
11 12 22 21 12 22 21 

- (1-a2) E s-1 Z 
11 12 22 21 

Z 
11 + B(S 

22s -E 22 
B' 

S 
lls from (2.38) 

cov I 
(X 

1 
*, X2 *) =B a2 E 

22 =BS 2-Is 

v (X a2 r=s 
12,22 22s 

Hence the effect of selection on the covariance matrix is the same as 

it would be if we reduced (or increased)-each individuals' X scores 

by a proportion of their X2 score as in (2.40ý. Note that the selection 

effect on (X 
1)i 

is zero if either a=1 or (X 
1 

)1 is orthogonal to X 
2*" 

Case 2p2> 

Our approach is similar to that of Ahmavaara (1954). Let A be 

ap2xp2 matrix such that 

s 
22s =AE 22 

At 

(e. g. if the spectral decompositions of S 
22s and E 

22 are S 
22s ý- raAa rs, 

ErAr, then let A=r Ai 
Or, 

) 22 ss 

Let XAX 
.22 

(2.41) 

X1*=XI- BX 
2+ 

BAX 
2 `2 x1- B(I - A) X2 (2.42) 

Then V (X E-r E_ 1 (I-A)E -Z (I-A)' E_ 1E 
ll 12 22 21 12 22 21 

+E E-1 (I-A)E (I-A)' E 
12 22 22 22 21 

=E 11 
B (AZ 

22 
A' -Z 22 

)B' 

S 
US 

Note that we may also make the mean of X* equal to the mean of the 

selected sample in (2.27) if we let 

B (I-A) (X 
2- 11 2)+ 

B(X 
2s 2 
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For the remainder of this section we obtain some distributional 

results under the assumption of normality. 

Theorem 2.6 

if x1 has a multivariate normal distribution given X2 then: 

under Model I. x lsls,. E 2 1, N 
P1 

01 
1+ 

B(x 
2s -U21.2 /n) 

under Model II xl, ls,. 12 Ilu N 
Pi 

(Pip E 
11 

/n) 

Corollary_2.7 

if XI has a multiva 

under Model Ix 
ls 

under Model II x ls 

riate normal distribution given X2 then: 

x1 js,. j 2 1%, N 
P, 

(B(x 
2s - x2 ), (1-f) E 

1.2 
/n) 

x (0, (1-f)Z /n) N 1 '-12 PI 

Proof of Theorem 2.6 and Corollary 2.7 

Both results follow from Theorem 2.1 and Corollary 2.2 because 

both x Is and x1 are, linear, combinations of xll... x lN* 
Note that the 

distribution of x ls 
depends on the design, p(sI. K 2 

), only via x2s' 

In Theorem 2.8 we give the distribution of S 
lls* 

The distribution 

of S 
lls _- S 

11 
is complicated, being a weighted combination of non-central 

Wishart distributions, and is thus omitted. % 

Definition 2.1 : If Z1... Zn are independent random p-vectors and 

z1 1%, NP(JIVE) (i=1 ... n) then ZZ 
iziI 

has a non-centraL Wishart distribution, 

denoted by WP (n, Z, T), where T=ZUi Pil is the non-centrality parmneter 

(c. f. Johnson and Kotz, 1972). 

Theorem 2.8 

it x1 has a multivariate normal idstribution given X2 then : 

under Model I (n-I)S 
llsIs'2E2 

W 
P, 

(n-1, E 
1.2' 

(n-l)BS22 
sB') 

under Model II (n-l)S 
11SIS '2E2 W 

P, 
(n-1, Ell, 0) (i. e. a central 

Wishart distribution) 
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Proof 

Let the spectral decomposition of Pw (defined in (2.32)) be 

n-1 
PZy iyi 

(2.43) 
i=1 

(P 
w 

is idempotent and of rank n-l and so has (n-1) unit eigenvalues 

and one zero eigenvalue). 

Then from (2.33) we may write, as in (2.26), 
n-1 

t (n-1) S 
lls 

Zy 
iy i 

where y, = All Yi- (A 
1 

is d efined in (2.30)) 

As in (2.29) 

cov I 
ý(Ydk' (y 

i 
)Ijs, 2Sý cov, [EA 

lak(yi 
)a# ZA 

lat 
(y Os 

laý 
a 

E (y ) (y 
aiajB1.2ki 

ij 
E 

1.2kt 
(2.44) 

where 6 
ij 

is the Kronecker 

The yi are linear combinations of x 1l* .. x In and so are jointly 

normally distributed (given s and. 12) and hence from (2.44) are 

independent, (given s and 2E 2 
). Let-us-write 

y, is, 12 IV N 
Pi 

(p V 1: 
1.2) 

Then from Definition 2.1. 

(n-l)S 
lls 

'IV W 
Pi 

(n-1, E 
1.2 , T) 

where TV1 11 

n-1 
E E(A 

1 
11s,. H2) y, y, ' E(All S'ý2 

E(A E(Alls, 2E. 9) 
from (2.43) 

l'Is'-12) 
Pw 

BA 
2' 

PA2 BI from (2.35) 

(n-1) BS 
22s, 

BI from (2.34) 
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The distribution of S 
lis under Model II follows as a special case. 

Note that the distribution of S 
lls 

depends on the design only via S 
22s' 

Note that even if SE (i. e. balanced sampling) the distribution 22s 22 
of S 

US 
is not the same under models I and II. 

We now derive a general result which will also be used in 

Chapter 3. 

Lemma 2.9 1 

Under the conditions and notation of Lemma 2.3, if the rows of 

A have a multivariate normal distribution then 

cov(Sijp S 
kI 

tr(M2)(E 
ik 

E 
jtl: jk 

)+E 
J2, 

ýik +E it 
*jk 

+E +z E 
jk it + ik jz 

where M2 

Proof 

From (2.26) 

ý I- cov(s ii ,s kk 
)= cov[E X-(y ) (y 

a)JPZ 
X'(Ya ) k' 

(y $)j 
faaa ýli 

aa 

.-I- 
Since the rows of A have a multivariate normal distribution it follows 

by the argument in theproof of Th 
. 
eorem 2.8 that the ya are independent. 

Hence 

cov(s sr 
VE kZ ,Xa2 co (y 

ol 
(y 

aY 
(y 

a)k 
(y 

a a 

COV aQ+Q) Old 
i+Q 

(v 
aaaiaiaiajaV 

(ka)k Qa)l +QA (1101 )1 +Q a)z 
(11a)k] 

where Ua = E(y 
a) 

Yct = y(I - pa 

The y 
a_ 

(and hence ka) are normally distributed and so (e. g. 
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Anderson, 1958) 

COVEQ QYQQ 
J9 + 

a Ct ak a)J 
Eik I 

it jk 

and cov 
[o QYQ0 

Hence 

cov(SiJOS )=E X2 (E Eil +rEr 11 p+Iý, kl a ik it jk + JZ ai ak I 

jk p 
CA 

11 
at- 

11 it llaj llak + ik 11 
aj 

11 
at 

but' lia E(Aly 
ay cc 

EX2 11 Ilai = (E ), 2 It yy A) 
a ai aaMa ij 

= ýA M2 A) 
ij 

= *ij 

and E ?La 2= tr (M2 

Hence 

COV(Siips kk tr(, j2)(E 
ik 

E 
it , 'it E 

jk 
)+E 

ji 
ýik +z jk 

ýil 

+Z it 
Ojk +z ik 

ýJ, as required 

We now use Lemma 2.9 to obtain the covariances between the elements 

of S 
Ils 

(which were omitted in Theorem 2 4) in the special case 
I 

of 

normality. 

Theorem 2.10 

if X has a multivariate normal distribution given X2 then: 

cov (S S (F 
I llsij' llskils'-12) 'l. 21k 

1: 
1.2JI + 1: 

1.21t 
1: 

1.2jk - 

+ 1.2JI 
ýsik + 1.2jk 

ýsil +E1.210sjk +E1.21k ýs'jl )/(n-1) 

where BS 22s BI 

cov II 
(S 

llsij, 
S 

llsktls', 12) ý "llik Zlljt + T'llit Elljk)/ (n-1) 

Proof 

Setting S= (n-1) S 
lis, 

A=Al, M=P 
w, 

z=z 
1.2 as in the proof of 
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Theorem 2.4 we obtain 

tr(M2) = tr(IJ) = 

All p2 -A = BA ,PA BI from (2.36) 
w12w2- 

= (n-1) BS 
22s 

B' from (2.34) 

= 

The result then follows by substituting into Theorem 2.9 (and 

noting that Model II is a special case of Model I with ýs OP 

1.2 11 

Corollary 2.11 

(2.45) 

Under the conditions of Theorem 2.10 we may write alternatively 

cov I 
(S 

llsij" 
SllskkIs'V 7, (Etik Ij*Z + Eitl E* 

k- 
ýsik ýsjl- 

i 

sit sjk 

where E* = 11 + B(S 
22s 22 

)13t 

= L(S s I lls 

Proof 

This follows by substituting E 
1.2 ý- E* -0s into Theorem 2.10. 

2.2.2 Propbrties conditional on 2ý2 

We now evaluate the properties of x ls and Sll, over both the 

conditional model distribution of X1 given X2 and the randomisation 

distribution induced by the. sampling design, p(sj. K2). Moments with 

respect to the latter distribution will be denoted by a subscript p. 

We assume that, under p(sjý 2 
), s is of fixed size n. In Section 2.2.1 

we noted that the distributions of x ls and S 
lls given s and 

-12 
under 

Model II did not depend on s. Hence the distributions are the same -- 
conditional on justa 

2 and we omit expressions for distributions under 

Model II in this section. 
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The following results are direct consequences of Theorem 2.1 and 

Corollary 2.2. 

Theorim 2.12 

E Ip 
- 12ý 

2) 
(x 

ls = li, + B(E 
p 

- (X2s1-2ý2) -'p2) 

v Ip (x ls 
1-ý2) = 1: 

1 . 2/n + B VP(x2, 7 1Z2)B' 

Corollary 2.13 

E 
Ip 

(x 
ls - x11. E 2)= 

B(E 
p(X2s'2ý2) -x 2) 

VIP (Xls - xl'2ý2) = (l-: f) 1: 
1.2/n +BVp (X 

2s Z2) B' 

For most practical-des igns Vp (-x 
2s 

12E2) =0P (n-l) (Nathan and Holt, 1980). 

Hence, as in Section 2.2.1, the main effect, of misspecification is the 

possible introduction of bias. If the design is epsem then from 

Corollary 2.13 the prediction bias of x is 
is zero i. e. the average of 

the model biases of x is over all samples a (given. 1 2) 
is zero. 

The following results are direct consequences of Theorem 2.3 and 

Corollary 2.4. 

Theorem 2.14 

E 
Ip 

(S 
llsI42) 11 + B(E 

p 
(S 

22si-E2) - E22 )B' 

Corollary 2.15 

E 
Ip 

(S 
US - S1,12E2) = B(E 

p 
(S 

22J42) - S22 )Bl 

Hence if the first and second order selection probabilities are 

the same as srswor then the prediction bias of S lls is zero. Again we may 

expect in general that the main effect of misspecification is in terms - 
of bias. 

We now consider two special cases. 
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Case 1: srswor II 

As-noted above the prediction biases, disappear in this case 

x 12E2 
Ip 

(x 
ls 1 

v (1-f) (Ell +B-Z )B')/n 
Ip 

(x 
ls -x1 (S22 

22 :i 12Y = 

E Ip (S US -s 111-12) 
0 

Note that even if we assume normality as in Theorem 2.10 the expression 

for, V (S- Ix )-would be very complicated because of the term 
Ip 11 s -; -; 2 

Vp (S 
22sl]12) (e. g. Hansen et al, 1953, p. lpl). 

Case 2: stratified srswor 

Using. the notation of Example 1.1, we let 

ics to xe i=l ... N 
h 21 h 

Model-'I now implies that the X ire iid within strata'with means 

11 1.2 +Bh and connon covariance matrix Z 
1.2 where'B (B 2- BHB, 0. 

Let _w, _n In WN IN (2.46) 
hhhh 

W, (W 
2 ... wH WI. - (W 

2'** 
WH (2.47) 

Lemma 2.16 

Ip (x 
ls x1 E 12E2) = B(W-W) 

v 
Ip 

(x 
ls x 11-32) = (1-1) E1.2 /n 

E Ip (S 118 S111.12) = Bln(diag (wh) ivwv)/(n-1) - 

N(diag (W 
h 

WWI)/(N-1)]BI 

Proof 

x 2s nh'x 21 
/n =w (2.48) 

ics 
h 
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Similarly X- =W (2.49) 
2' 

(a-l)(S 
22s 

) 
hk =Z (x 

2a 
)h (x 

2a 
)k-n (x 

2s 
)h (x2, )k 

a 

hk 
E1- nw hwk 

acS h 

nh hk - n%w k 

n (w h 
6hk %wk) 

(n-1) S 22s = n(diag(wh) ww') (2.50) 

Similarly (N-1)S 
22 

N(diag (Wh) - ww') (2.51) 

The results then follow by noting that w is fixed under p(sla2) and 

substituting into Corollaries 2.13 and 2.15. 

Hence x Is 
is an unbiased predictor of x1 under proportional 

allocation but not in general. Under proportional allocation the prediction 

bias of S 
lls 

is O(n- 1 ). This result might be compared with that of 

Bebbington and Smith (1977) who consider the p-expectation of S 
lls under 

this design. We may write 

E (S 1-k' 
ýý2) = 

ES(n 
-1) s11h + En x1 p lls h h( h- 

*) (X1h - 

Z(I-f 
h 

M-W. ) Sll, ]/(n-1) 

where S 
llh (x 

ii -x ln 
Xx 

ii -x lh 
)11(N 

h- 
1) 

Sh 

x IN lh s ii 

n. /N 
h 

Bebbington and Smith (1977) make several approximations, one of which 

is to set the first coefficient of S 
llh equal to nh. This leads to the 

rather misleading conclusion that the bias of S 
Ils 

depends fundamentally 
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on H,, the number of strata. They consider the case of proportional allocation 

when w=W. In this case the exact result is that 

Ep (S 
Ils 

1.11,2S2) = Sll + (N-n) (Sll --IWh Sllh) /N(n-1) 

We may thenobtain 

E 
IP 

(S 
lls - S1,12E 

2)= 
(N-n) [B(diag(W 

h)- 
WW')B']/N(n-1) 

i. e. the same as Lemma 2.16 in the case of proportional allocation. 

2.2.3 Unconditional Properties 

We now consider the properties of x ls and Sl,, evaluated over 

both the joint model distribution of (Xl, X2) and the sampling design, 

p(SI-E2)- . Again we assume the sample size-n is fixed and note that 

results for Model II are obtainable from Section 2.2.1. 

Thefollowing results are direct consequences of Theorem 2.12 

and Corollary 2.13. 

Theorem 2.17 

E 
Ip 

(x 
ls 

)=p1+ B(E 
Ip 

(x 
2s) - 112 ) 

Ip (x 
ls 

)=E1.2 /n +BV Ip 
(x 29 

) BI 

Corollary 2.18 

Ip 
(x 

19 -x1)= B[E 
Ip 

cx 
29) - p21 

Iv Ip 
(x 

ls -x1)= (1-f) E1.2/n +B VIp(x2s - X2 )B' 

Again for most practical sampling designs we may expect the variances 

to be of O(n -1 ) and the misspecification bias to be of central importance. 

Note that x is 
is unconditionally unbiased for V1 or x2 under Model I 

if the first order inclusion probabilities w (x ) do not depend, on 1 -; 7-2 32 

e. g. in., epsem designs of fixed size. 

The following results are direct consequences of Theorem 2.14 and 

Corollary 2.15. 
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Theorem 2.19 

E 
Ip 

(S 
lls 11 + B(E 

Ip 
(S 

22s 
E 

22 
) B'- 

Corollary 2.20 

E 
Ip 

(S 
lls -S 11 

B(E 
Ip 

(S 
22s 

E 
22 

) B' 

Again S 
lls 

is unconditionally unbiased for E 
22 or S 

22 
if the 

first and second order inclusion probabilities, wi (i2) and w, j(i2) 
do not depend on 

-12* 

We now consider the two special designs of Section 2.2.2. 

Case 1: srswor 

If the sample size n does not depend on a2 then x 21- x 2n are 

III) with mean U2 and covariance matrix Z 
22' 

Hence from Theorem 2.1. 

Ip 
(x 

ls 
) il 1 

Ip (x ls 
)Z 

11 
/n 

and from Corollary 2.2. 

Ip (x Is - X1 

Ip (x 
0 

These are identical with the distributions under Model II as we would 

expect. Similarly, the same results will apply to S 
lls' 

Case 2: stratified srswor 

From Lemma 2.16 the moments of xl, and S 
lls 

depend on 12 Via 

w and W. If a2 is distributed as in Example 1.3 then N, ... NH are 

multinomially distributed. For given designs, e. g. proportionate 

allocation, we could derive the joint distributio of (w, W) and hence 

obtain the unconditional moments of x ls and S 
118' 

There seems little 

point in examining specific designs. Note that strata may also be 

defined by partitioning the sample space of X2 into A, ... AH when 
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ics h 
6ý x 21 cAh 

The unconditional moments of x ls and S 
lls would be especially 

complicated in this case if the Ah depend on 12 e. g. Holt et al (1980) 

define the Ah in terms of quantiles of the realised values x 21- x 2N* 

2.3 Conclusions 

If Model II were true then x ls and S 
Us would be natural 

estimators of V1 and ji 2 
(or predictors of x1 and S 

11 
) respectively. 

In this chapter we have investigated what the properties of these 

estimators would be if in fact Model I were true rather than Model II. 

The main effect of such misspecification'is that of possible (asymptotic) 

bias. This may be in the sense of conditional bias given the actual 

sample s obtained and the finite population values 2E2 where the bias 

of x ls 
is linear in x 2s and is zero only when x 2s ý- x2 (balanced on 

the mean) or Z 
12 2- 0 and the bias of S 

lls 
is linear in S 

22, and is 

zero only when S 
22s ýS 22 

(balanced on the covariance matrix) or 

Z 
12 ý- 0. The averaged conditional bias of x ls over all samples 

generated by p(sj2E 2) will be zero if the design is epsem in which 

case the averaged conditional bias of S 
lls 

is approximately zero (in 

general of O(n- 1 
). This suggests that for non-epsem designs there is 

a great need for considering alternative estimators, as in the next 

chapter, and even for unbalanced epsem designs there appears to be scope 

for alternative estimators which reduce or remove the conditional bias. 
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CHAPTER THREE - ALTERNATIVE ESTIMATORS UNDER PEARSON-TYPE SELECTION SCHEME 

3.1 Introduction 

In this chapter we consider alternative estimators of v1 and 
E and predictors of x1 and S 11 to those discussed in Chapter 2. 

In Section 3.2 we consider estimators of v1 and E 11 based on Model I 

of Sectioa'2.1. In Section 3.3 we consider predictors of _x 
1 and S 11 

based on Model I. In Section 3.4 we consider design-based predictors 

of, x1 and S 11 

In Chapter 2 we addressed question. (A) of Section 1.2.2 which we 

noted is not strictly a question of statistical inference. In this chapter 

we address question (B) of Section 1.2.2 which is a question of 

statistical inference. We shall adopt the Sampling Theory Approach to 
inference described in Section 1.2.3. This approach raises the 'problem 

of conditioning'. Are there ancillary statistics upon which we may 
condition when making inference about parameters of interest? In Chapter 2 

we considered the sampling distribution of estimators condition on 
. 
12 

or on (s, 2E2) . We might specifically ask therefore whether either of 
these statistics is ancillary for p1 and Z 11 or is predictive ancillary 
for xI and 'S 

11 0 In order to answer these questions we need to make 
distributional assumptions. In Example 1.3 (which was not strictly an 
instance of Model I since the variance of X1 depended on X2) both 

and (s, would be predictive ancillary for x and S but 
-12 21 11 
neither would be ancillary for U1 or 1: It is clear also from the 

arguments of Section 1.2.3 that if (X 
1' X2 were jointly multivariate 

normal then again both K2 and (s, 2Y would be predictive ancillary 
for x1 and S 11 (provided (v 

1.2 , B, Zlod were Cartesian independent 

of (V 21 1: 22)) , but neither would be ancillary for U1 or Z 11 0 The fact 
that we cannot strictly appeal to the Conditionality Principle for making 
inference about U1 or E 

11 
is annoying, for example because we cannot 

relate the quality of an estimator to the quality of the selected sample, 
s Since we can make U1 and Z 11 arbitrarily close to and 
S respectively by increasing N it does seem unnecessarily formal 

not to condition on (s,. K 2) and therefore, as noted in Section 1.2.3, 
we shall generally adopt a conditional approach in this chapter as in 
Holt et al (1980 b). This does, of course, make the mathematics neater. 
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3.2 Model-Based Estimation 

. In this section we assume that Model I of Section 2.1 is true. 

Maximum likelihood estimators (MLE's) of v1 and E 11 are given 
in the following theorem (Smith, 1978; Smith, 1982) under the 

additional assumption of joint normality of (X 
11 X2)' 

Theorem 3.1 

If Model I holds and the joint distribution of (X 
11 X2 ) is 

multivariate normal then the MLE's of V, and Ell are: 

+ (3.1) P1 m P1.2 x2 ý xls + B(x 2-x 2s) 

11 ýE1.2 +BS 22 B' -S US + B(S 22 s 22s 
)B' (3.2) 

where 

plý92-m x ls -Bx 2s 
(3.3) 

B-S 12s s 22s 
(3.4) 

1.2 US 22s 
(3.5) 

(n-l)S US /n,, 9 
22s w (n-l)S 22s/n (3.6) 

s 22 (N-1) S 22 
IN 

Proof 

The likelihood may be expressed as in (1.2) as 

P(X B) p(61 x z--lsI42' s' 111.2', 1: 1.2 -12) 
p(-2lp2' E22) 

Eliminating p(sI. K2) which does not depend on the parameters, the 
likelihood reduces to that considered by Anderson (1957) who showed 
that 11 1 and Z 11 were as given in (3.1) and (3.2). 

(3.7) 
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Note that P1 is the classical regression estimator of x1 

It takes the naive estimator x and adjusts it for the difference Is 
between the sample and population means of X2 thus reducing the 

bias (see Theorems 2.1 and 3.3). Similarly, Ell may be viewed as a 

generalised regression estimator which adjusts S lls for the difference 

between the sample and population covariances of X, thus reducing 
&+ 2 

the bias (see Theorems 2.2 and 3.4). Note that if n-N 

'is + B(Ij 2-x 2s) 

s US + B(E 22 -s 22s 
)B' 

which are the solutions of equations (2.27) and (2,28) for V1 and 

Ell given by Pearson (1903). -- 

Another representation of Z 11 
(and v1) may be obtained by the 

geometrical approach discussed in Section 2.2.1. There we noted that, 

in Pearson's (1903) framework with n-N the covariance matrix 

of X1 in the seZected popuZation was, the same as that of 

B (I-ý-A) X 11 

(see 2.42) in the superpopulation. We now seek a'random vector Xj 

(3.8) 

which has the same covariance matrix in the selected population as that 

of X in the superpopulation, i. e. E 11 * Now the covariance matrix 

of X in the selected population is the same as the covariance matrix of 

xxB (I-A)X (3.9) 

(where B is the regression coefficient matrix of X1 on X2) in the 

superpopulation. The natural choice for X+ is obtained by setting 
+* + X1=X1 in (3.9) and solving for X1 

xxI+ B+(I-A)X 2 

so that 
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B+B (I-A) 

or B+ BA-1 assuming Aý is n, on-singular which it 
is if Z22 and S 22s are positive 

definite 

and so 
+ X, =x1+ BA (I-A)X 

2 

We may represent X, geometrically as in Figure 2.1. 

(X 
+) 

(XV i\\%. 

x2 

1#4 /1 11 
1 

ý: 2 

i. I. / .# 

I Y92 
X)ýXtl ) 2' 

Figure 3.1 

The obvious geometrical construction of X+ is indicated in 

Figure 3.1. Whereas X is projected onto X* under selection, X+ 

is projected onto Xx +* 

As in, Section 2.2.1, we may by adding a constant term, define 

X+ instead as 1 

x+ mX+ BA -1 (I-A) (X -1J2 )- BA -1 (x -ii ) (3.10) 
2s 2 
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in which case in the selected population not only is the covariance 

matrix of ýK + 
equal to E but also the mean vector of X+ is 

equal to V 

We now extend this approach to the case of finite n- and N 

Recalling that A is defined by 

s 22s = AE 22 A' 

we propose to estimate A by A which is a (pxp) matrix such that 

s As (3.11) 22s 22 

Now define, following (3.10), 

x ii "x li + BA (I-A) (x 
21. -x 2)- BA (X 2s-x2) (3.12) 

Let xx /n ls 
les 

E(x x )(x+, -x )/n lis 
s 

li is li ls 

Now, according to the argument above, we would expect and S-+ to is US 
be good estimators of ji 1 and E 11 respectively under seZection. 
This is, confirmed by the following result: 

Leimma 3.2 

x is 11 

S lis, E 11 

Proof From (3.12) 

x is , xis , BA (I-A) (x 
2s-X2 

)- BA (X 
2, -x2 ) 

A. 
x 

Is-- B(x 2s-x2) 
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-+ . ^-j A-^ J% _J^ 
s 

lis 
Ws US +BA (I-A)S 

21s +s 12s 
(I-A)'A' B' 

^-IA- -JA 

BA (I-A)S 22s 
(I-A)'A' B. ' 

where Slls= (n-1) /. n S12s 21s 

+^E. -l A'- 1-; +^ 
- li I -l S llsý lls +BAS 22s 22s +; 22s A 22s A 22s 

A-'; A -l + 22s 22s 22 S]B' 

(since S 12s ýBS 22s-' S 21s S 22s B' 

=S Us + B[A -1 S 22s 
91 

22s] B' 

=S Us + B(S 22 -S 22SIB' from (3.11) 

a 

1]. 

One application of this result might be in the use of standard 
IIID-based' computer packages such as SPSS. The observations may be 

initially transformed by (3.12).. Then the standard computed moments 

x ls and Slis Would be the MLE's and the observations would be 

asymptotically independent with common mean p1 and covariance matrix 

Zll . However, as we shall see the higher moments would not be the 

same as for an srs. from the superpopulation. In a sense the x1i are 

model a4justed observations as compared with conventional ir-weighted 

observations. Unlike 7r-weighted observations thq x+ are in general 

functions not just of the x li but also the x 13 
for j0i 

We now obtain the properties of and Z 11 analogous to the 

results for x ls and S lls 
in Theorems 2.1 and 2.3. The distributions 

under Model II are of course no longer of interest. 

Theorem 3.3 

EI (tills, x2) - V, +B (X2 - 112) 

vGx /n 
I Pl Is 

l3id m (1 + (; 2s - -2)' ý22s(; 
2s -.; 2))El. 2 

Is *--l (z 
11 42)"2 En"- P2 + tr(i 22 s 22a)11: 1.2 

/n + B9 22s B' 
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x 
s 

w xs (x i (x2i - 2s 
ý22s 

2s - ý2 

Ej (11,1 s1x2Zw. + Bx 1.2 2i 

= ýI 1.2 + Bx 2s - BnS 22s s 22s (x 2s -x2 )/n 

11 1.2 + Bx 2s - B(x 2s -x 2) 

(3.13) 

(3.14) 

11 1+ B(x 2s - P2) as required 

Similarly from (2.8) and (3.13) 

11 s '42) ««2 SE Wi 1.2 

= Ei +Z (-x 2s - -x 
2 ), 

-s 
22s (x 2i -x 2s) (X2i -x 2s)tS22s(x2 -X2 )/n]E /n 

s 1.2 

+ xxs (x - -x jr /n as required 2s 2 22s 2s 2) 1.2 

From (3.2) 

E 

1.2 +BS 22 B' (3.15) 

We may write 

nE1.2 wA1M1A1 (3.16) 

BS 22 BI - A, ' M2A, (3.17) 

where mp (A' ) -1 A2PW 
ý0.18) W PWA2 2PWA2 

mn (A' S (A'PWA2)' A2PW (3.19) 2 PWA2 2PWA2) 22 2 

and A,, A2 and PW are defined in (2.30) - (2.32). 
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Now 

'tr(M, ) - tr(%) tr (PWA2 (A2' PWA2) -lA2lP7) 
w 

n-1 - tr(A21 PWA2 (A21 PWA2) 

I -- n- P2 -1 (3.20) 

and tr(M 2 tr (nA2' p WA2 
(A 2'PWA2)-l 

ý22 (A 
21PWA2) 

tr (S (3.21) 
22 22s 

since S 22 ý A2PWA 2 
/n 

Hence from Lemna 2.3 and (2.36) 

E(n Z 1.21s'12) - E(AIMAll sv. K2) 

= 'MjA (3.22) BA2 2 B' + (n-p2-l) E1.2 

and E(nBS 22 B'js,. K2) = E(A, 'M2A, ls, 2E2) 

- BAIM A B' + tr(i 
; -i ), E (3.23) 

222 22 22s 1.2 

Now m1A2ý0 (3.24) 

and A'M AMn (3.25) 
222 22 

Hence from (3.15) and (3.23) (3.25) 

E (1 
111 s '. 12) w (n + tr(; S ; -1 )]z In +B; BI P2_1 22 22s 1.2 22 

as required 

Hence 1,11 has a bias of O(N-1) compared with the bias of in 
1 ls 

Theorem 2.1 which was--of 0(l). In order to consider the bias of E 11 
we may alternatively write:, 

EI (E, lls 2E2) - Ell +B (S22 - E22)B' + Utr(S 
22 22s) - P2 - 11E 1.2 

/n (3.26) 
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Provided tr(S 22 S 22s) 
is of 0(l), which would seem reasonable for 

most practic al sampling designs, the bias of E 11 
is 0(n-1), 

as we might expect given the usual bias of the MLE of the variance 

for an IID sample. The bias may be reduced by an ad hoc adjustment. 

For example, let 

1.2 +BS 22 B' (3.1 27) 

where A= n[n - tr(S S -1 )- 1]/ (n (n-1) 
22 22s -P2-1) 

Then from (3.22) - (3.25) 

E(E /n +N [B BI + tr(9 9-1 )E /n] / (N-1) 
11 s lZ2) 'ý x (n-P2-1)1: 

1.2 
ý22 

22 22s 1.2 

Cn - tr(S S-1 )-1+ tr(S S-1 (n-1) + BS BI 22 22s 22 22s)11: 1.21 22 

=E1.2 + BS 22 B' 

=E 11 +I B(S 22 -E 22 
)B' 

1 
(3.28) 

Hence the bias of Z 11 
is of O(N 

The variance of V1 is of O(n as was that of x 2s 
in Theorem 

2.1. However, the variance of v now dominates its bias in its MSE. 

The variance of E 11 will also be of O(n under weak conditions 

and it will be given in the case of normality in Theorem 3.5. 

We now consider the distributions'of jýjj' and E 11 under normality 

assumptions. 

Theorem 3.4 

if X1 has a multivariate normal distribution given X2 then 

under Model I 

411 S, x 2%N( it, + B(; 2-112)' 
11 + (X2s-; 2) 22s 

(; 
2s -; 2 

)]E 
1.2 

/n] 

Proof 

From (3.13) u1 is a linear combination of independent normal random 
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variables and hence is normally distributed. The result follows from 

Theorem 3.3. 

From (3.15) - (3.17) we may write 

nE ll , AlMAj (3.29) 

where M=M1+m2 (3.30) 

If the distribution,, of X, given X2 is multivariate normal 

then the distribution of Ell given s and 2E2 will only be non-central 

Wishart if M is proportional to an idempotent matrix. But M1 is 

idempotent and 

m1m2ý MA ý0 '' 
(3.31) 

Hence M2 .M+ M2 (3.32) 
12 

And io in general M is only idempotent if M2 is idempotent. But M2 

is in general idempotent with probability zero, e. g. if P2 '-- 1 then 

/S Mý, ý M2 S22 22s 

and M2 is idempotent only if 
22s m; 22 or if i 

22 -0. Hence in 

general the distribution of Z is more complicated than a non-central 

Wishart distribution, in fact it is a linear combination of independent 

non-central Wisharts. We can, however, give the covariances between 

the elements of E 11 
in the case of normality. 

Theorem 3.5 

if X, has a multivariate normal distribution given X2 then 

cov I 
(Z 

iiii, Z llktis'2E2) m (n-P2-1 + tr (S22S22sS22S22s) 

(E 
1.2ik Z 1.2j£ «l» 1: 1.2. it Z 1.2jk)/n 

(z 
1.2jt*ik+El. 2jkýieý. 2itýjk+EI. 2ik*jt 

- --l - 
where BS 22 S 22s s 22 BI 
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Proof 

From (3.29) 

nZ AIMA 

We wish to apply Lemma 2.9 with S- nEii ,A-A,, M-M, 1ý E1.2 

Now M2 . Ml + Mý from (3.32) 
2 

Hence tr (M2) = tr (M + tr (M2 
2 

+ tr( -2) 
P2 - Mi 

P2 1+ tr(S 22 s 22s 22 s 22s) 

Also XIM2XJ = RipWM2pWXI 
11 

BA2vp w M2 PWA2 B' 

BA21M2A 2 B' 

BA'M A B' + BA'M2A B' 212222 

- BA, M2A B' 222 

= n2BS (A 'p BI 22 2 WA2) 
S22 

--l - 
= nBS 22 s 22s s 22 B' 0 

from (3.20) 

c. f. (3.21) (3.33i 

from (2.36) 

from (3.32) 

from (3.24) 

from (3.19) 

(3.34) 

I 
Substituting (3.33) and (3.34) into Lemma 2.9 and dividing by n2 

the required result. ' 

We might now obtain the moments of ill and Ell conditional 
I 
just 

on K2 and unconditionally as in Chapter 2. However, this does not 

offer much intuitive clarification and we do not propose to do so. 
Having approximately removed the bias conditional on s and 2E2 the 

bias conditional on 2E2 or unconditionally will also be approximately 

zero. We note that thh unconditional moments of 
;l 

and Ell under 

srs are given by Morrison (1971) for the case p, -1. Birnbaum et al (1950) 

gives the unconditional variance of for the case p, w P2 - 1, N 
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3.3 Model-Based Prediction 

We now consider the optimal prediction of x1 and S 11 under 

Model I conditional on s and K2. By 'optimal' we shall mean 

minimum variance unbiased within a given class of predictors. 

Definition 3.1 : If X and Y are px1 random vectors then we 

write V(X) < V(U) iff V(U) - V(X) is non-negative definite. 

Definition 3.2.: Let U(T) be the class of unbiased predictors of 

T -T(x i. e. 

U (T) = IT(. K I S) : EI(T(xb) - T(xl)la2, s) - 01 

T- T(xls) is said to be a minimurn Variance unbiased predictor of T 

within a subclass U*(T) of U(T) if 

(i) Tc U* (T) 

and 
VI(T-TI. K2, s) < VI(i-TI. 12, s) for all 

ic 
U*(T) 

Two possible approaches to obtaining mirximum variance unbiased 

predictors of x1 and S lls would be: 

obtain a minimum variance predictor from a restricted class of 

unbiased predictors e. g. linear predictors for x1 or quadratic 

predictors for S 11 
by standard Lagrange multiplier techniques; 

(2) obtain a minimum variance predictor from the while class of 

unbiased predictors by making restrictions on the distributional 

forms in Model I and by using a Lehmann -Schefffi type argument. 

Approach (1) is applied to the prediction of x, , by a straightforward 

extension of linear prediction theory for univariate means, in Theorem 

3.6. This approach would, however, be extremely laborious for the prediction 

of S lls * Even for the simple case of p, -1 with no mean structure 
for X IIX2 , Mukhopadhyay (1978) resorts to making normal distributional 

assumptions. Having given Theorem 3.6 we shall therefore adopt Approach (2). 
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Theorem 3.6 

III has minimum variance amongst the class of linear unbiased predictors 

of xi * 

Proof 

Let a be an arbitrary p, x1 vector of constants. Then a'xl 
is the (univariate) mean of the variate alxli * Hence from e. g. 

Royall (1976, Theorem 2.1) the minimum variance linear unbiased 

predictor of a'x 1 
is 

N 
fa'ýxjs +I (alli 

1.2 +a1 fix 
21 

)IN 
n+l 

where 1.2 and B are given in (3.3) and (3.4) and f= n/N. 

1- a [fx + (1-f)(ý -ßx )+ B^(; -f- ls ls 2s 2 x2s)2 

a ls-B(x 2s-x2 

= avil I 

Let x1 be any linear unbiased predictor of x, . Then ai is a linear 

unbiased predictor of aIx 1 and so 

I (alxl-aix 1s '12) >ý VI (allil-aix 1s '12) 

0a1V (x x, 1s 2E2) a ); a1 VI (li -x, 1s)a 
1 x2 

But a is arbitrary and 1^1 is a linear unbiased predictor of x, 1A 
Hence from Definitions 3.1 and 3.2 U1 is a minimum variance linear 

unbiased predictor of x, 

We now adopt approach (2). We shall make the assumption that , 
X IIX2 is normal in Model I and then apply the following result which 
is an extension of the Lehman Scheffd Theorem (e. g. Mood et al., 1974, p. 326). 
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Lemma 3.7 

Let Y be an observed random vector with distribution indexed 

by 0. Let S= SM be a complete sufficient statistic, for a. 

Let Z be an unobserved random vector such that the joint distribution 

of (Y, Z), is also indexed by 0. Suppose S is predictive sufficient 
for Z( see definition 1.3). Then if T- T(S) is an unbiased 

predictor of T T(S, Z), T is the unique minimum variance unbiased 

predictor of T 

Proof 

Let T= T(Y) be any unbiased predictor of-T. Then 

V(T-T) = V[E(f-TIS, Z)j + E[V(i-TIS, Z)l 

= VLE(ilS) - Tj + E[V(i-TIS, Z)l 

since S is predictive sufficient for Z and T is a given 
function of S' 'and Z. 

Now E[V(T-TIS,, Z)j is non-negative definite since V(T-TIS, Z) is 

non-negative definite. Hence 

V (T-T) ;: V [E (T I S) - T] (3.35) 

But E[E(ilS)l - E(i) - E(T) 

and E (T) 

Hence E CE (i I S) - ýj - 

But E(flS) and TA are both functions of S, a complete sufficient 
A 

statistic for 0 and so T E(flS) . The result follows from (3.35). 

Note that Lemma 3.7 only applies to statistics, T, which are 
functions of S and Z. If we substitute T(Y, Z) for T(S, Z) 

the lemma would be invalid. 
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Counter example: Let Y- (Yl*e*Y 
n 

)I where Y NID(p, 1) then 

S is a complete sufficient statistic for but Y, . the minimum 

variance unbiased predictor of T(Y) = Y, , is not a function of S. 

Lemma 3.7 is sufficient for our purposes but we note that if 

we did wish to predict a statistic, T(Y, z), which was not a function 

of S and z, we would attempt to write 

A T(Y, z) - U(Y) + V(S, Z) (3.36) 

and then set T(Y, z) = U(Y) + V(S, z). Sometimes this is not possible. 

Example, (1-lukhopadhyay, 1978) 

where Y NID(O, a2) . Thei 

N 
statistic for a2 but T 

Let 
ny 

(Y, Oooyn) Izm (yn+l"*YN) 

aS Yý is a complete sufficient 3. 

(yi-j)2/N cannot be written as (3.3.6). 

We suggest that such an example is very contrived. If we were 

confident in setting E(Y i0 in the model then we would presumably 

be more interested in predicting E Y4/N than in taking the sum of 

square d deviations about Y 

We now apply Lemma 3.7 to-the prediction of x1 and S 

Theorem 3.8 

if X1 has a multivariate, normal distribution given X2 in Model I 

then the minimum variance unbiased predictors of x1 and S 11 are: 

Xi Ul (defined in 3.3) 

Proof 

(defined in 3.27) 

if X 1IX2 is normal then the distribution of x ls given s and 
2E2 is indexed by 6- (u 

1.2 B, E, 
. 2)* From standard theory for the I 

multivariate linear model (e. g. Arnold, 1981, Ch. 19) a complete sufficient 

statistic for 0 is given by ; In Lemma 3.7 m (111.2 , B, E1.2)' 

set Y- 2sis ,Zm 2EI; ,S=0. S is trivially predictive sufficient 
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for Z because x and x- are independent. Hence the conditions ls Is 
of the Lemma apply. 

Firstly let T=x, . Then 

fx ls + Js x ii 
IN 

n(p, 
.2+ 

Bx 2s + xli/N 

Hence T is a function of S and Z (since E2 is considered fixed 

and known). Further 11, is a function of S since 

111.2 + Bx 2 

and from Theorem 3.3 

E I(ýJs'xd = ul + B(x 2- 112) 

Setting n=N in Theorem 2.1 we obtain 

EI(xlls, 2E2) = p, + B(-x 2- 112) 

Hence 11 1 is an unbiased predictor of x and from Lemma 3.7. V, is 

the minimum variance unbiased predictor of x, 

Now let T= S11 

N 
(N-1)SI, xlixl'i - N-xl; j 

nN 
+i =Z (X 

li-x ls)(xli-x ls 
)' +nx ls ls x lixii - Nx 1x, 

n+l 
N 

n(E +BS B') +nxx xli -NX, 1.2 22s is xis + li 1 
n+l 

We have already noted that x ls and x1 are functions of S-0. and 

Z 2il- . Hence S is also. a function of S and Z. Also S 
s 11 

is a function of S since 
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AE 

1.2 +BS 22 B' 

where A is a known constant 

From (3.28) 

Ej(Sllls, 2E2) = Z1, +B (S22 - E22 )B' 

Setting n=N in Theorem 2.3 we obtain 

EI (S, ljs,. Q = Ell +B (S22 - E22 )B' 

Hence S is an unbiased predictor of, S 11 and, from Lemma 3.7, 

S 11 
is the minimum variance unbiased predictor of S11. 

Note that if the desigrX is balanced on x 2s , i. e., x 2s ý x2 

then 

x Il, , xis 

and if the design is balanced, on S 22s , i. e. S22s ý S22 then 

tr(S S-1 'ý P2 'X= n/(n-1) and 22 22s) ' 

nE 11 
/(n-1) -s US 

Hence the'naivel predictors, x ls and S US , considered in Chapter 2 are 

optimal in these special cases. 

A It is desirable, for purposes-of subsequent analysis, that Z 

and S 11 be non-negative definite. 

Lemma 3.9 

is non-negative definite 

_1 is non-negative definite provided tr(S 22 S 22s n7 

Proof 

E 1.2 and BS 22 B' 
^ 

are always non-negative definite and hence so 
is z 11 * From (3.27) S 11 is non-negative definite if X >, 0 i. e. 
if tr(S S-1 n-1. 22 22s 
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The condition tr(S S-1 n-1 should hold except for very 22 22s 
small or extreme samples. If this condition did not hold it would seem 

dangerous to attempt to predict S 11 at all. 

We now obtain the first and second moments of x, and S 11 as 

predictors of xI and S 

Theorem 3.10 

A 

s 

Ps (x 1-x 11 s 42) El -f+ (x2, '-x2 
i 
22 (x 2, -x2)11: 1.2 

/n 

Proof 

We have already shown that x1 is prediction unbiased for x1 
in Theorem 3.8. To obtain the prediction variance we write as in (3.13). 

4N 
xx, I 

ixl i 

where wiý 11 - (x2i-x2s)' s 22Sx2s-x2 
)] /n n 

=- 11N 

A- 
vI (x 

i-x lis, -12) 
' EWIE1.2 

i- n+l 

[n(l-f)2/n2 
+Z U(x2i-x 

2s)' s -221s(x2s-x 
2)]2 /nZ 

s 

+ (N-n) /N2 
IE1.2 

Ei-f+(X 
2s-; 2) S22s(X2s-X2 )]s 

1.2 
/n 

as required 

Comparing this result with Corollary 2.2 we see that the prediction 
bias of x Is has been reduced to zero in xl. The variance has been 

increased due to the estimation of B. The amount of increase depends 

on both x 2s x2 (which is related to the difference between x1 and 

and S the usual'factor in the OLS estimate of B x1s) 22s 
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Theorem 3.11 

EI (S U-S llls'2Y ý0 

If XIIX2 is multivariate nomal then 

cov SS /(n-1) (ý11- 
11 kils. 12) ý YIE1.2ik E1.2jk +El. 2iJl-2jkl 

+[E 1.2jl*ik +E1.2i9, *jk + E1.2jk'ýik + 11.2ik*Jl ]/(n-1) 

where 

y (n- --I)(n-l)X2/'2 + tr -1 i S-1 )/(nl) P2 n (S22S22s 
22 22s 

BS S -1 S B' - (n-l)BS B/(N-1) 22 22s 22 22 

Proof 

We have already shown that S 11 
is prediction-unbiased for S 

in Theorem 3.8. By analogy with (2.30)-(2.32) let 

At " (Xll***XlN) 
1N 

p 'IN 
NN m IN - YN 

Then (N-1)Sll , At PNNA, (3.37) IN N 

From (3.27) 
sE 

ll ,xE1.2 + BS 22 B' 

-X AIM, Al/n + NA, 'M 
2 A, /(N-l)n 

from (3.16) and (3.17) 

- AIHA, say (3.38) 

where H= aM, + OM2 (3.39) 

a- X/n NZ(N-l)n 
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Let H* be the NxN matrix which has H at the top left nxn 

corner and zeros elsewhere 

H0) 
00 

Then from (3.37) and (3.38) 

ss All N 
(H* -T NN 

/(N-1))A 
1N 

A, say lNQAlN 

We now apply Lemma 2.9 with S-S 11 Sl-1, A=A 1N' M= Q' E= E1.2 

Now 

QZ = (H*)2 - H* P NN 
I(N-1) - PNNH*/(N-1) + PNN/(N-1)2 (3.40) 

since P NN 
is idempotent 

In obvious notation 

(H*)2 = (H2)* (3.41) 

Partition P 
NN 

into 

pp-I 
p1m nn rm 

p- P-- 
nn nn 

where P is nxn, P- is nx (N-n) etc. nn nn 

HP HP Then 
H*P NN 0 

nn 
0 

nn (3.42) 

But from (3.18) and (3.19) 

Miln =M 21n = 

Hence from (3.39) 

Hl 
a=0 

(3.43) 



- 79 - 

and so 
HP -=0 nn 

Also p 
nn -In1n 1n'/N 

=P+1 ll(N-n)/Nn wnn 

where PW is defined in (2.32) 

Hence from (3.43) 

HP HP 
nn 

but from (3.18) and (3.19) 

M1 Pw =M1' M2pW ý M2 

Hence from (3.39) 

HP 
nn = HPW H 

Hence from (3.42), (3.44) and (3.45) 

H*P NN = H* 

Similarly 

p NN 
H* H* 

Substituting (3.41), (3.46) and (3.47) into (3.40) gives 

Q2 .I H2 - 2H/(N-nj* +p NN 
/(N-1)2 

Hence 

tr(QZ) - tr(H2) - 2tr(H)/(N-1) + 11(N-1) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 
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Now tr(H) = atr(M 1)+ Otr(M 2) from (3.39) 

= cL(n-p2-l) + atr (s 
22 s 22s ) from (3.20) and (3.21) - --l 

=1- tr 
is 1 )/n + tr(S S -1 )/n (S22 2-2s 22ý22s 

=1 (3.50) 

tr(H2) = a2tr(M + ý2tr(M2) 'from (3.31) 
2 

--j) + $2 = a2(n-p 2 tr(S 22 s2- 2s s 22 s 22d 
'from (3.20) and (3.33) 

2+ tr(S 2 (n-p2-l) X2/n 
22 s 22s 

s 
22 

s 
22s 

)/n 

(n- -1) X2/n2 + tr -1 s S-1 )/(n-1)2 (3.51) P2 (S22S22s 
22 22s 

Combining (3.49) - (3.51) 

tr(Q2) . (n X2/n2 + tr -1 s S-1 )/(n-1)2 -P2-1) (S22S22s 
22 22s 

= (3.52) 

Let A 1N EI (A 
1NIs'. 12) 

'[H2 Then AIN Q2A 1N - A, -2H/(N-. -! l)]ý 1+ 
11NPNNýMl 

from (3.48), where, is defined in (2. '36)-. 

Now A IN P NN A IN n (N-1)BS 
22 B' as in'the proof of Theorem 2.4 

Aj'HA 1= aA, 'M, Al + OA 1M2A, from (3.39) 

='aBA MA B' + aBA2M2A B' from (2.36), (3.18) and (3.19) 2122 

- nOBS 22 B' from (3.24) and (3.25) 

ýIH2RJ . a2RIMJýj + a2ýtM21 from'(3.32) 121 

= na2BS 22 S 22 sS 22 B' from (3.34) 
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Q2 = no2BS 
1 Hence ý! 

N 
ýW 

22 S 2-2s S 22 B' - 2naBS 22 B'/(N-1) 

BS 22 B'/(N-1) 

BS S-1 S B'/(n-1) - BS Bl/(N-1) 22 22s 22 22 

(3.53) 

The result then follows by substituting (3.52) and (3.53) into Lemma 2.9. 

Comparing this result with Corollary 2.5 we see that the prediction 
bias of S lls has been reduced to zero ýn S lls , 

-1 
From Theorem 2.10 

the variances of both S lls and S 11 are of O(n 
.) 

and so the MSE 

of S lls 
is of 0(l) compared with the M. SE of S, l xfhich is of 

O(n -1 ). 

Note f inally that if X IIX2 is normal then x1-X1, will be 

normally distributed given s and K2 with mean vector and covariance 

matrix given in Theorem 3.10. As for Z 11 the distribution of S 11 
will be complicated. 

3.4 Design-based Estimation 

In this section we consider some-of the estimators of x1 and S 

suggested in the literature on the basis of their properties with respect 

to the-randomisation distribution induced by p(sl2S 2 ), We begin with 

a general sampling design, p(sj2S2), and then consider the special cases 

of srs and stratified srswor. We shall not consider estimators based 

on a combination of model-based and randomisation-based arguments 
(e. g. Liu, 1974a; Chaudhuri, 1978; Zacks and Solomon, 1981; Zacks, 1981). 

The most common design-unbiased estimator of -x 
1 

is (Horvitz 

and Thompson, 1952):. 

e (x )-Ex /N7r 11 

where Tr 7r xE iý 2) ý s*i P(SI-12) 

assuming Ir 
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The choice of a corresponding estimator of S 11 - 
is not obvious. 

Liu(1974a, b) proposes the design-unbiased estimator: 

e (S )=xx! /7r N(N-1) 2 11 
is 

li 
s 

ij 

where 7r 
Ij 

Mn ij 
(-x 

2) p (s 

s. oi, j 

assuming 7r 
ij 

>0 ij N 

Chaudhuri (1978) notes that e2 (S 
11 

) may be, negative (in the univariate 

case) and following Murthy (1963), proposes: 

e3 (S 
11) (Xll-x 

ii 
)(Xli-x 

ii 
Ph ij N(N-1) 

I jes 

which is non-negative definite unbiased 

(ii) Alternative design-unbiased estimators are also given by Chaudhuri 
(1978): 

Let Let hi (S) =1 if 'i es 

= if 

Let Eh (s) tZh (s)h (s) 
si ij =sii 

then unbiased estimators of x 1. and S 11 are 

e (x )mx /Nt 41. s li ip (S 12E2) 

e (S )- i (X --x )(x -x )/N(N-1)t 5 11 
1 jcs 

li ij ii ij 
- 

ij P (S 12E2) 

assuming tis, t ii >0 (note ti>, 7ri 0t ij >, 7r ii Special cases 

of these estimators are also given by Murthy (1963). 

(iii) If the sampling design is with repZacement, say we make n independent 

selections where the i th 
element of the population is chosen with 

probability pi at each selection, then unbiased estimators of x1 and 
S 11 are: 
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e6 (x 1Ex ii /nNpi (Hansen and Hurvitz, 1943) 
S 

e7 (S 11)- 
[Es 

xiixli/Pi -, x lixii/Pipj, (n-1 )] /n(N-1) 

(Das and Tripathi, 1977) 

or 
e (S =[El/pi E xlixl'i/pi xli/pi Z xl'i/pi /n(n-1) N(N-1) 

s 8 11 sssLI 
(Rao, 1975) 

(iv) If N is large we may approximate Tr i by npi and e 6(xi 
becomes equal to e1 (X 

1 
), e7 (S 

11 
) becomes equal to e2 (S 

11 
) (if n(n-l)pipj 

is also replaced by 7r ij 
) and e8 (S 

11 
)becomes 

I 
e (S n 1/7r Ex 7T 7F .Ex 7r 9 11 

ISE 
is lixi'i/'i - SE 

xlilýl 
S, li il 

(v)' Some asymptotically design-unbiased estimators may be preferable 

to exactly unbiased estimators. For example, Sarndal (1980) argues that 

the 'consistent ratios estimator' of Brewer (1963) and HAjek (1971): 

.e (X )- (E x /Irj)/(z l/ITi) 10 1S li S 

is preferable to e1 (x 
I Similarly, by analogy with' e9 (S 

11 
) we might 

consider 

e (S Zx xl'i/Nni - 
(Z x /N7r E xl'i/N? ri)/(E l/Nir 11 s ii s ii iss j) 

(Nathan and Holt, 1980,3.2). 

or by analogy with e3 (S 
11) 

e 12(Sid 
- 

[iýjes 
(Xli-xlj)(Xli-xlj ) /, ff ijl/[i, 

E-i,,. 1/7rii] 

(vi) When auxiliary information 
. 
12 is available and P2 -1 Das and 

Tripathi (1978) propose multiplicative adjustments to given estimators, 

e, of the form 
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e* e- G-a 
2/x2s) 

e** - e-(S 22 
/S 22s) 

a 

e*** = es(S 12 IS 1) a 
22 2s 22s 2 

where a is a chosen constant. Similarly Nathan and Holt (1980) suggest 

using probability weights in the MLE's of Section 3.2. 

e(x ý(e(x 
2 

e(S 1, I B(e(S 22 s 22)ý' 

B may also be a probability-weighted estimator of B 

Example 1: srswor 

In this case 

e1 (x 1)-e 4(X1) - el()(xl) - x, s 

2 (S e3 (S 11 )= e5 (S 11 e9 (s 11 ne 11 (S 11 )/(n-1) -e 12 (S 11 s US 

We might use srswor if we believed Model I to be 

(X 
iii x 2i) 33 pvI (X 

lilX2i) m 1: 

In this case X2 is just a scalar constant and so x 2s - x2 ý 0, 
S 22s ýS 22 m 01 X- n/(n-1) and the optimal model-based predictors of 
Theorem 3.8 are just x ls and Slls as above. 

Example 2: Stratified srswor 

With the same-notation as in Section 2.2.2. 

e 1(X 1e4e 10(X 1) m EWh x lh m X, . say 

where 

/n Ih iesn% x1i h 
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This is the-usual design-unbiased estimator of- X1 for stratified 

sampling. 

e2 (S11) e3 (S 
11 

)=e 5 (S 11 e 12 
(S 

11) 

NjEa s 
:L I(N-1) (3.54) hh+ EWh(xlh - xl)(xlh -'Xl)'l 

where 

S, =Ex) (x -; )8 
it se%S h li lh ii lh 

ah=Wh+Wh (N 
h-n h) 

IN (nh - 1) 

This estimator has also been proposed specifically for the case of 

stratified srswor by Koop (1970) and Gupta et al (1979). 

(n-1) e9 (S 
11 

)/n =e 11 
(S 

11 ZWhsh + EWh(xlh - xl)(xlh-- x1 

Wakimoto (1971 a, b) has proposed a similar estimator for stratified 

srsw r 

': (Wh + Wh2/(n xxx h h-1))sh + 'Wh(xlh - 1)( lh 1 

This estimator was also proposed by Aoyama (1954) for the case of 

proportional allocation with H-2. 

In the case of a stratified population we might adopt the model 
described in Section 2.2.2. If we make the additional assumption of 

normality we might write this model as: 

x 1IX2 -eh,,, N 
Pi 

(Pl. 2 +B hl 11.2) 

Substituting into (2.14), (2.16), (3.27) and (3.4) we obtain 

x Is ' Ewhxlh 

Bhx lh x 11 

s lis ,n 
[ZwhSh 

+ Ewh(xlh -x ls 
)(x 

lh - ýls)'] /(n-1) 

X- n[n(N-1) - NEWh(1-Wh)/w h] 
/(n-1)(N-1)(N-H-2) 
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Hence from Theorem 3.8 optimal predictors of x1 and S 11 under this 

model are 

x1= EW hx lh 

A 
s 11 ý (n-1) 'Ew hsh 

/n + NEW h 
(x 

lh -x1 )(x 
lh -x1P 

Now xxi but S 11 differs from the design-based predictors of S 

above by applying a weight wh to sh * If, however, we modify the 

model to 

x 11 X2 -ehm, Npi (111.2 +B h' Eh) 

to allow for different within stratum covariance matrices, which would 

usually be more acceptable to most survey samplers, we may again obtain 

optimal predictors of x1 and S 11 using Lenna 3.7. For this model 

a complete sufficient statistic for (P 
1.2 ,B 2** B H' 

El*"EH ) is 

(X 
ll- X IH s 1***sH ) and applying Lemma 3.7, minimum variance unbiased 

predictors of x1 and S 11 are given by xI and (3.54) respectively. 

This is another example of the 'duality' between finite population 

prediction theory and without replacement random sampling theory. 

Returning to the general case, we do not wish to dwell on a 

comparison of the above estimators, but we do note the implications of 

a Zocation shift LS(K): X X1+K. We might expect that for estimators 

e(x 1) of x1 and e(S of S 

LS(K) : e(x 1) -> e(x 1)+K (3.55) 

I LS (K) :e (S 
11 

) -+ e (S 11) (3.56) 

In fact only e 10 
(x 

1) obeys (3.55) in general (whereas el, e4 and e6 

only do so in special cases) and only e3 (S 
11 

), e5 (S 11 e8 (S 11 ), e9 (S 11), 
e 11 (S 11 ) and e 12 (S 11 ) obey (3.5.6) (whereas e2 (S 11 and e7 (S 11 ) do 

not in general). 

Recalling the definition of A1 in (2.30) we may write any of 
the above estimators of x1 as 
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e- (A A'h 

where h is anx1 vector of constants possibly depending on s, 

and any of the estimators of S 11 as 

eSll(Al) = AIMA, 

where M is a -n xn symmetric matrix of constants. Conditions (3.55) 

and (3.56) are then equivalent to 

h'l I 

MI 
n 

If (1) holds 
i 

E (e -(A x ii +B (e- (A )-v) 
Ix1 -2 1x122 

where A2 is defined in (2.31). 

This is a simple extension of the result for e- (A x 
in Theorem 2.1. 

x1 ls 

If (2) holds 

EI (eS 
11 

(A 
1 )Is, 2E 2)- BeS 

11 
(A 

2 )BI + tr(M)E 1.2 

This would correspond to Theorem 2.4 for e Sil 
(A 

1). S lls 
if tr(M) 

The only estimator of S 11 obeying (2) for which tr(M) -1 is 

e 12 (S 11 ). We shall use this estimator in Chapter 4 and so give it special 

notation 

S* me (S (3.57) US 12 11 

Note that, although this is essentially an arbitrary choice, St is 
lls 

equal to most of the other design-based estimators in the above 

examples and is likely to be approximately equal to the other estimators 
for most designs. We record the moments of S*11s "der Model I for 

use in Chapter 4. 
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Theorem 3.12 

E (S* (3.58) 
I ilsis +B (S* E )B' 

. 
12) - Ell 

22s - 22 

where S* -x2, )(x2i 1/7T 22s m 
[iýjrzs(x2i 

-x2j) '17ij] 1 
[iEoj 

es 

if XI Ix 
2 is multivariate nomal then 

cov (S* S* 142E2) '= tr(M2) E. I llsij' llskZ (El. 
2ikl: 1.2jl + 1.2itl: 1.2jk 

1.2jkýik + El-. 2itýjk +E1.2jk*ik + Z1.2i0jk) 

(3.59)- 

where 

Proof 

1/7r 

B S** B' 22s 

S** (x . )(x --x )'/hij]/[il: j, 2s 
1/hi] 22. m 

[il<: 

jds 2CX2J 21 2j j 

h ij = 1/(Ml)ij 

S* (x x lis , 
lJj 

(Xii-Xij 
li- ij 

/7r 
ii] 

/ 
I. 

E0 7r. 
d 

z 
- 

ýi 
xiixii ao, i 

'/Ilia - ioj xlixljl7rij] 

- A, 'MA, 

(3.58), then follows from Lemma 2.3_since Ml -0, tr(M) -1 and 
n 

, 
A2' MA2 - S*22s 

(3.59) follows from Lemma 2.9 with 

BAM2A Bl/tr(M2) 22 
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Now 

mlil =0 -> M2 ]h =0 --> 

vM2A =-. 7- X (M2) 
< 

(X X XX Aý 21i 2i- 2j 2i- 2i ij 

S** E- (M2) 
22s iOi ij 

Also M21 -0 n 

J (M2) ý (M2)ii tr(M2) j ij =-I 

Hence B S* B' as required. 22s 

The conditional bias of S* given s and x is therefore ils =2 
non-zero in general (as for S US although averaged over'all possible 

samples s the bias, E(S* 9 is approximately zero (unlike 
llsl2Y Ell 

S lls 
in general). 

3.5 Conclusion 

In Chapter 2 we showed that the standard estimators x and ls 
S Us could be asymptotically biased for VI and E 11 

(or x1 and S 11). 
In this chapter we have considered both design-based and model-based 

alternative estimators. We have seen in Theorem 3.12 that the design-based 

estimators can also be asymptotically biased, conditional on s and 

. 
K2 , although they will be approximately unbiased averaged over all 

possible samples s. The model-based estimators (predictors) on the 

other hand are asymptotically conditional unbiased provided the model 

is true. 

We have also noted that in one important special case, stratified 

sampling, the desiga-based estimators are equal to the optimal model-based 

predictors under a simple model. Holt et al (1980b) gives an example 

where strata are determined by quantiles of a continuous univariate x2 
They find that, although the design-based estimator is not as good as the 

estimator based on the true model, it is surprisingly efficient. We would 
argue that this is because the design-based estimator is an optimal 

estimator for a model which is not very far from the true model. 
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CHAPTER FOUR - MULTIVARIATE METHODS UNDER PEARSON-TYPE SELECTION SCHEME 

In Chapters 2 and 3 we considered the estimation of v1 and 
E 11 and the prediction of x1 and Sll . In this chapter we consider 
the estimation of functions of Ell , viz correlation coefficients 
(Section 4.1), regression coefficients (Section 4.2) and principal 

components (Section 4.3) and the estimation of parameters in a factor 

analysis model for E 11 
(in Section 4.4). We no longer consider the 

prediction problem, 

4.1 Correlation Coefficients 

In this section we consider the-estimation of 

Pl, , 
[Ellij/aliaij] 

, the correlation matrix of Xl, (4.1) 

where 

a2 = (4.2) li 

and Ell is defined in (2.4). 

We consider three estimators of P 11 : 

(1) the standard estimator: 

(4.3) 
[-S'iisijl(sllsii 

slisjA 

where S US isdefined in (2.16) 

(2) the MLE under joint normality of (X V X2) 

pil = 
[Ellijl(21iii 211jj) 11 (4.4) 

where Z 11 is defined in (3.2) 

(3) a design-based estimator 

Rt (4.5) 11 - 
["S*llsijl(s*llsii 

S*llsjj) 

where S* is defined in (3.57). lls 
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We shall only consider the asymptotic bias of these estimators, 

which we referred to in Chapter 2 as the 'selection effect'. 

The Standard Estimator 

Theorem 4.1 

If Model I holds and VI (Sllsls,. E2) = 0(n-1) then 

E (R -I (1+PIAPJ)- I+ 
0(n-1) I llijls'2E2) - (Pllij+pi'Apj)('+PilApi) 

where 

P (P il .... Pip 

I 
Pij = corr I[ (X dig (X 2)j] 

-E 12ij /Cr li a 2j 

A'= P-1 (D- 1s D-1 -p )p -1 
22 2 22s 2 22 22 

D2ý diag(a 2i) 

a2 =Z 2i 22ii 

p D-1 Z D-lý the correlation matrix of X 22 2 22 22 

Proof 

From Theorem 2.4 

I/ 
EI (Slls S, 2R2) - Ell +B (S22s - E22 )B' 

Let c! be the i th 
row of E Then 1 12 * 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

E (S -1 -1 (4.13) I llsii1s'2Y 23 1: 11ii + Cl'22(S22s - E22)E22 cj 

From (4.2), (4.7) and (4.10) 

Yali (4.14) 
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From (4.13) and (4.14) 

(S 
11 sij s 112) Ellij + 3, ialjo,! D 21: 22(S22s-1: 22)E22 D 2i 

cr cr (P D (S E)Dp) 
li lj llij+p3lp22 2 22s- 22 2 22pj 

from (4.1) and (4.12) 

cr a (Pllij+p! Apj) from (4.9) (4.15) ii ij 3. 

-1 Hence, since VI (S 
11SIS'x 2 O(n .), 

from (4.3) and (4.15) 

EI (R 
llijISI. K2) aliaij(pllij+P'Apj)lcyl* 

. 
('+P'Api)ia . (l+P! APj)l + 0(n-1) 

(Pllij+PiApj)/(l+p!, &P. ) 
1(1+p! 

Apj)i + 0(n-') 
L 3. j 

as required. 

The asymptotic expectation of R ilij 
is the cosine between 

(Xt). and W) in Figure 2.1. Thomson (1951, Ch. 18) notes that: 111i 

(1 + p! Api)i 

is the ratio of the standard deviations of (X di in the selected sample 

and in the original superpopulation. For the case P2 '-- 1 (when 

A= (S 
22S -E 22)/Z22 ) and A<0 he sets bi- pi(-A)i , which he 

terms a 'shrinkage factor', and writes 

E (R 
Plllj-b ib 

1 11 ii s '2E2) 'I aiai 

He notes that if S 22s "0 then A--1 and 

E (R is, 
p pipj 

I iiij Ad 

the usual formula for the partial correlation coefficient between (X 
1)i 

and (X 
1 

)j given X2. This is also, of course, true for the general 

case Of-P2 :" 1* At the other extreme for the case P2 w1 we may let 

S 22s -0.0* * In this case A -+ - and 



- 93 - 

E (R -pj72 
I llij 

I S'. K2) -ý- "ipjl API YA 02 1 

i. e. R 11 approaches the p, x p, matrix of ones. For the general 

case P2 >1 Rll will approach a matrix of rank P2 as we shall 

see in Section 4.3. 

In general it is clear from the example above and from inspection 

of Figure 2.1, that the effect of selection may be to increase or 
decrease the P llij- 

Expression (4.6) is still not an easy formula to interpret. 

Therefore, in the following theorem we assume A is small and obtain 

an approximation. The results of some numerical work (not included) 

suggest that this approximation is still good for values of A as far 

away from 0 as 
1r for a wide range of'parameter values. 2- l(P2 ý 1) 

Theorem 4.2 

If Model I holds and VI (Sllsls,. E2) = O(n then 

E (Rllijls,. K2)'- Pl"'j + p! Apj p .. (p! Ap. +p! Apj) + O(A2+n-') (4.16) 
I ii 1ý llij IIj 

Proof 

Taking a Binomial expansion of (4.6) 

E (R 1 
Ap, )(1 1 lAp-) + O(A2+n-i I llij 

I s'. K2) "-- (Pllij+pl! Apj)(1 2-pi --2'3j j 

P+P! Apj - 
1ý 

.. (p! Ap. +p! Apj) + O(A2+n-i iiij 1. 
flllj 

I13 
/ 

-as required. __ 

We may-compare (4.16) with the results for covariances in terms of 
'relative bias'. From (4.15). 

E S, plapi/pilij (4.17) i[(Sllsij-,: llij)/Illij, -121 
mI 

and from (4.16) 
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E, 
[(Rl' 

-Plli3y. /Pllj 
j= 

31so P! Apj/p ! (P! Api+P! AP3) (4.18) 2E2 I llij 211 

Both expressions are 'linear' in A. For simplicity, consider the case 

P2 1 when A (S 
22s -E 22 )/Z 22 and the coefficients of A in (4.17) 

and (4.18) are: 

RB(E llij) Pipj/'llij (4.19) 

RB( P 
. PiPj/P (4.20) llij iiii ! (P? 

L+pj? 
) 

If, as might often be expected to be thecase in practice, the sign of 

pip in the same as the sign of P llij-1 then the quantities p ip i /P 
llij 

and y(pi+pj) will tend to cancel each other out, especially if P 
is near unity and pi and pj are not greatly different in magnitude. 
if P llij is near zero then both effects will be similar. We give two 

examples. 

Example 4.1: Holt et al (1980b) consider four sets*of data with 

PI -2' P2 -1 

Data set 01 P2 p 1112 RB(E 1112 RB(P 1112) 

1 . 62 . 63 . 75 . 52 -. 07 

2 . 38 . 57 . 38 . 57 . 34- 

3 -. 23 . 02 . 38 -. 01 -. o4 

--4 
1 

. 02, 1-. 16 . 22 1 
-. 01 -. o3 

Example 4.2: Gosnell and Schmidt (1936) construct a correlation-matrix 
for voting percentages'in a number of areas of Chicago. 
F 

p 11 

(X 1)2 (X 1)3 (X1)4 (X1)5 (X1)6 x2 

(X 1)1 . 78 . 94 -91 . 47 . 64 -. 62 
(X 1)2 . 84 . 81 . 17 . 62 -. 53 
(X ) 13 . 96 . 4o . 62 -. 68 
(X 1)4 . 44 . 57 -. 64 
(X 1)5 . 50 -. 12 

1 (X1) 
6 -. 34 1 
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(where (X di ... (X 
1)6 are the percentage voting for (1) Smith, 

(2) Lewis, (3) Roosevelt, (4) Igoe, (5) the Bond Issue, (6) the Wet Vote 

and X2 is the median rental value). 

We obtain 

RB(E 11) 
RB (P 

11) 

(X 1)1 (X 1)2 (X 1)3 (X1) 4 (x 1)5 (x 1)6 (x 01 (X 1)2 (x 1)3 (X 1)4 (x 1)5 (X 1)6 

(X 01 38 . 42 
' . 45 . 44 . 16 

. . 33 0 . 09 o3 o4 -. 04 
ý, 

OEf 
(X 1)2 . 28 . 43 . 42 . 37 . 29 0 . 06 o7 . 02 . 09 
(X 1)3 46 . 45 . 2o . 37 0 . 01 -. 04 . 08 
(X 04 . 41 . 17 . 38 0 -. 04 . 12 
(X 1)5 . 01 . 08 0 . 02 
(X 1) 6 . 12 0 

Recalling that for P2 "' 1A= (S 
22-E22)/E22 we may interpret the RB 

numbers above as follows. If the variance of the design variable is 

reduced (increased) by A% in selection then Z ilij 
is reduced (increased) 

by RB(E l1ij )x A% and Pllij by RB(Pl, ij) x A%. 

In Example 2, the Pllij are fairly high and the pi are 

similar and hence, as suggested above, the misspecification effect for 

the correlation is much smaller than for the covariances. This is also 
true in Example 1 for data set 1 and to a lesser extent for data set 2. 

In data sets 3 and 4 one of the pi is near zero. In such cases the 

effect of selection on the covariances is very small, whereas the effect 

of selection on the correlations may be greater, since from (4.19) 

and (4.20) 

if pi -o RB (Z ilij ). 

RB (P )-- -1 P4 iiij 2J 

Even so, in our example both effects are minor. 
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The Maximum Likelihood Estimator 

Note that Pl, , defined in (4.4), is the MLE of P, if 

(XlI, X 2) are jointly normally distributed by the usual invariance 

property of MLE's. 
- 

Note also that P may be expressed, as in 

Lemma 3.2, as the sample product moment correlation matrix of the 

variables xii defined in, (3.12). 

From (3.26), provided tr(S S ), 7 0(l) and V (E - --l 
22 22S ,I llls'x2) w O(l) 

the conditional asymptotic bias of as an estimator of P is 

zero. 

Design-Based Estimator 

Rt is the natural extension of' 'S* for estimating P 

The same extension was taken by Koop (1970), Wakimoto (1971c) and 
Gupta et al. (1978) who, having established S*ls as a design-unbiased 1 
estimator of S 11 1 argued that R*, 1 was consistent for the finite 

population analogue of P 11, 

By comparing Theorems 2.4 and 3.12 we conclude that the expressions 
for the asymptotic conditional 

corresponding expressions for 

with Theorem 4.1. 

E I( lijIs'. K2) 1 (Pllij+1 

where 

bias of S* will be analogous to the lls 
S lls* For large n we have by analogy 

D! A*P. )(l+P! A*p (1+P! Ip 

P-1 (D-ls* D- 
l-P )p -1 

22 2 22s 2 22 22 

and for small A* by analogy with Theorem 4.2 

1ý EI (Rtlij Is'12) '6 pllij + pi'A*pj (P! A*P. +P! A*P. ) 

Note that if P2 

E «s* 
- . -Z )/Z Z RB(Elli )A* I llsij ilij llii 

1 s'-2E2) i 

Ej((R*llij-Pl, ij)/Pl, ij 
Is 

'12) 
) -6 RB(Pl, ij)A* 
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where RB(E llij 
) and RB(P llij 

), ýare given in (4.19) and (4.20). 

These are the same results as for S Us and R 11 except that A* 

replaces A. This suggests the following intuitive generalisation. 

The form of the misspecification. effect for E 11 or P 11 
(as measured 

by the-asymptotic relative conditional bias) is largely determined by 

the model correlation structure of X1 and X2 and is the same for 

S (R ) as for S* (Rt: ), whereas the degree of the effect is 
lls 11 lls 11 

largely determined by the degree of selection as measured by A or A*. 

Note that for a given design A* will on average be zero over 

repeated samples whereas A will in general not be. 

4.2 Regression Coefficients. 

We now partition X1 into two components which, without loss of 

generality, we write 

ly xl = Iz 

where Y is a p, l xI vector, Z is a P12 x 1' vector and p ll+Pl2 ý P1 

E Slls, ill 
and S*ls , defined in (2.4), (2.16), (3.2) and (3. 

111 1 . 57). 

respectively are then partitioned conformably as 

yy yz s 
yzs L, m 

zy 

19s 

lis , YYS 
1 

E 
zz zys zzs 

i S* S* 
yy YZ yys YZS 

S* lis S* S* 
zy ZZI 

zys ZZSI 
In this section we consider the estimation of 

B-EE -1 
yz yz zz 

the marginal regression coefficient matrix of Y on Z. We consider 

three estimators. 



- 98 - 

(1) the standared (OLS) estimator: 

S S-1 
yzs yzs zzs 

(2) the MLE under joint normality of (Xl, X2 ): 

B-i Z-' ' 
yz yz zz 

(3) a design-based estimator 

B* = S* S* -1 
yzs yzs zzs 

For the case Pli ý P12 ý P2 ý1 the MLE was given by Demets and Halperin 

(1977) and a full discussion of the properties of the three estimators 

under linear model assumptions was given by Nathan and Holt (1980). 

Further-discussion and empirical study are given by Smith (1982) and 

Holt et al., (1980b) who also give the MLE in the general multivariate 

case. The purpose of this section is to extend the basic results of 

Nathan and Holt (1980) to the general multivariate case. We propose to 

evaluate the properties of the estimators conditional not only on s 

and 2i, but also on zs= (zl"'zn) . Further unconditional results may 

then be obtained straightforwardly as in Nathan and Holt (1980). 

Throughout this section we shall assume that (X 
11 X2 ) are jointly 

normally distributed. We now define some notation. Let 

zyzj zz 
B 20 E Z-1 ,BE 

-1 
,BE, 

-1 
y2 - Y2 22 z2 z2 22 2z z2Ezz 

1.2 
yy. 2 yz. 2 

zy. 2 zz. 2, 

y2. z y2 yz zz z2 

22. z 22 z2 zz z2 
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B=E E-1 
y2. z y2. z 22. z 

yz. 2 yz. 2 zz. 2 

E 
y. z2 =Z- (Z 

yz 
Z 

y2) 

E 
zz 

Z 
z2 

E 
zy 

yy E 2z Z 
zz 

E2y 

B 
y(z2) 

(E 
yz 

Ey ") E 
zz 

E 
z2 

2z E 
zz 

We shall use the following identitites 

Lemma 4.3 

(1) B 
y(z2) ý (B 

yz. 2 B 
y2. z) 

(2) B 
7z 

B 
3rz. 2 +B 

y2. z 
B 2z 

B 
y2 

B 
y2. z 

+B 
yz. 2 B 

z2 

Proof : 

We initially consider the, geometrical approach of Section 2.1.1. 

Recall that y, Z and X2 define P111 P12 and P2 vectors respectively 
in RP1*P2 . Let R(Y) be the subspace spanned by the pil vectors of 

J. Y etc., and let R (Y) be the orthogonal-complement of R(Y). The 

conditional expectation of Y given (Z, X2 is 

y(22) X 
I Z21 

(taking deviations about means) which is represented by the projection of 
Y onto R(Z, X2). Now let YIX 2 be the projection of Y onto' RI (X 

2) 
etc. Then the projection of YIX 

2 onto R(ZIX 2) is B 
yz. 2 ZIX 2 afid 

the projection of YJZ onto R(X is BXý. These are depicted 21Z) y2. z 21 
in Figure 4.1 where the plane of the paper represents R(Z, X 2)' 
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R (Z) 

R7 

ZIX 2 

B 
yz. 2 ZIX 2 

R(X 

R A. Z 

Now if P12 ý P2 m1 it is clear from a congruent triangles argument 

that the points U and V in Figure 4.1 are given by UmB 
yz. 2 z 

V-B 
y2. z 

x2 and so 

B 
y(z2) 

B 
yz. 2 Z+B 

y2. z 
x2 

1x 21 

and result (1) follows. 

For the general case the result also follows because U must be 

expressible in the form B 
yz. 2 ZIX 2+ AX 2ýB yz. 2 (Z-BX 

2)+ AX 2 which is on 
RM and hence U-B 

yz. 2 Z etc. 

To obtain (2) and (3) we note that we may split the projection of 
Y onto R(Z), say, into two parts: (a) a projection onto R(Z, X 2) 
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and (b) a projection onto R(Z). The projection onto ROý., X 2) is given 
by (1) as B 

yz. 2 Z+B 
y2. z 

x 2- and the projection of this onto R(ZI 

is B 
yz. 2 Z+B 

y2. z 
B 2z Z which equals B 

yz 
Z as required. (3) follows 

analogously. 

(2) and (3) might also, of course, be obtained by conditional 

expectation arguments. Finally, we given an algebraic derivation. 

(1) B (Z Z)Z zz 
Z 

z2 
y(z2) yz y2 E 2z r zzi 

s-i - E-1 E s-i 

yz 
Z 

YZ) 

zz. 2 zz 2 z2 22 

- Z- 
1Z+E -1 E -1 Z s-i 

, z2 2z zz. 2,22 22 2z zz. 2 z2 22, 

(e. g. Morrison, 1976, Ch. 2) 

= (E C1ZE -1 -ZE -1 Z -i ) 
yz. 2 zz. 2 y2 22 yz. 2 zz .2 z2 22 

mB (S E 
yz. 2 y2 - yz. 2 zz .2 z2 22( 22, - E2zEzz 

z2 22 . Z) 

B -11: 
2z +lyz. 2 Z 

zz .2 
(Z 

zz -Z z2 
Z 22 Z 2z) Ezz E 

z2 ýti 
( 

yz. 2[1: y2 - 
fEy2E22 1 

22 
] 

1: 

=BZ E- 1Z+, ZZE -1 Z z-i E E- 
1 ( 

yz. 2[1: y2 -ý y2 22 2z yz - y2 22 2z1 zz z2] 22. Z) 

m z-i Z r-i 
yz. 2[1: y2 - yz zz z2] 22 . Z) 

(B -1 ) 
yz. 2ýy2. J22 

.z 

- (B 
yz. 2ýy2. z 

) as required 
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*-l -1 -1 (2) B+BBE+EEEE 
yz. 2 y2. z 2z yz. 2 zz .2 y2. z 22 .z 2z zz 

mZ' E-1 Z s-i (E -Z z-i E Z- 1 [': 

yz. 2 + y2. z 22 .z 2z zz zz z2 22 2z)1 zz. 2 

mEE -1 (E -Z z-i Ex -1 Z z-i 
[': 

yz. 2 + 
y2. z 22 .z 22 2z ZZ z2 22 2z] zz. 2 

E E-1 E E-1 
[': 

yz. 2 + 
y2. z 22 2z] zz. 2 

yz yz 
E 22 E 2z + 

yz 
E 22 E 2z yz 

E 
zz 

E 
z2 

E 22 E 2z] E 
zz,. 2 

zz z2 22 2z yz ZZI E zz. 2 

-B yz as required 

(3) follows similarly. 

Now let, as in (2.30), 

= 

= (z1... z) 

Then we may write the three estimators as 

B- A'H 
yzs y 

- A'H 
yz y2 

B* - A'H 
yzs y3 

where 

H-PA S-1 /(n-1) 
1wz zzs 

and Pw is defined in (2.32) 

H MA Fl/n 
2z zz 

where MMI+ M2 , as defined in (3.18) and (3.19) 

H M*A S*-l 3z zzs 

(4.21) 

(4.22) 

(4.23) 
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where M* is defined (as M) in Theorem 3.12. 

Conditional on z, s and K2 these estimators-are linear 

combinations of normal random variables and hence their associated 
distribution theory is rather easier than that previously concerned 

with quadratic forms. For this reason we derive both the first and second 

moments of the estimators, although as before the biases of the 

estimators will be our main concern in respect of misspecification effects. 

The Standard (OLS) Estimator 

For the case n-N we may adopt the geometric approach 

of Section 2.2.1. Under selection 

Xt - AX from (2.41) 222 

Y- Y* =Y-B Y2 
(I-A)X 

2 

Z -)- Z* =Z-B z2 
(I-A)X 

2 from (2.42) 

Using Lemma 4.3 (3) we may write 

Y* Y (B 
y2. z 

+B 
yz. 2 B 

z2 
)(I-A)X 

2 

(Y-B Z-Bx)+B Z* +B x* (4.24) 
yz. 2 y2. z 2 yz. 2 y2. z 2 

As in the proof of Lemma 4.3, the projection of Y* onto R(Z*) is 

given by B 
yzs 

Z*. This may be taken in two steps. The projections of Y* 
onto R(Z*, X*) is from (4.24) 2 

yz. 2 

This is because Y-B 
yz. 2 Z-B 

y2. z 
x2 

4.3(l)) and hence is orthogonal to 
R(Z, X 2) - Now the projection of ( 

+B X* 
y2. z2 (4.25) 

is orthogonal to R(Z, X 2 (from Lemma 
R(Z*, X*) which is a subspace of 2 

4.25) onto R'(Z*) is 

where 
B 

yz. 2Z* +B 
y2. z 

B 2zs Z* 

B S-1 
Hence 

2zs ý S2zs 
zzs 

B 
yzs 

B 
yz. 2 +B 

y2. z 
B 2zs 

=B yz 
+B 

y2. z 
(B 2zs -B 2z ) from Le-a 4.3(2) 
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This is a generalisation of equation (6.1) of Holt et. al. (1980b). 

As 
' 
in the univariate case, B 

yzS =B yz 
if Y and X2 are conditionally 

independent given Z. The corresponding finite sample results are now 

given. 

Theorem 4.4 

If Model I holds and (X,, X2) are jointly multivariate normal 
then 

E (Byzsjjqsp. E2) B+B (B -B yz y2. z 2 zs 2z) 

cov (B B s- /(n-1) I yzslj' yzskil-Es' s' 2Y Ey. 
z2ik zzsjt 

Proof 

if (X 
l' X2 ) are jointly multivariate normal 

where 

EI (Ylz, x2)=py+B 
yz. 2(Z-ljz) +B 

y2. z 
(X 

2-P2) 

(v ll; ) -p ;z1 
Hence 

E (A'J. ýs ,+B A' +BA (4.26) 
where 

Iy s' 'n'opy. 
z2 yz. 2z y2. z 2' 

lly. z2 ý lly -B yz. 2pz -B y2. zp2 

Hence 

E (Byzsj. ES, S, 2j2) - Ej(A'j. Es, s, 2E2)Hj Iy 

B A'H +B A'H yz. 2 z1 y2. z 21 

since VP 
nw 

B+Bs s- 1 
yz. 2 y2. z 2zs zzs 

B 
yz. 2 +B 

y2. z 
B 2zs 

-B yz +B y2. z 
(B 2zs-B 2z ) from Lemma 4.3 (2) 
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Now -, B 
yzsij 'W (lyl3i****Iynl. i)"lj 

where 1ya3i is the i th 
element of ya and H li 

is the J 
th 

, column 

of H1 

cov I(ly,, 
Ii' NIO-zs"S'2ý2) =6 aa 

E 
y. z2ik 

Hence 

ý cov I 
(B 

yzsij' 
B 

yzsktlzs S, X 2) = H! jHlt'y. z2ik 

I- 

[H, 'Hl]j9, 'y. 
z2ik 

[S-1 
A'P A S-1 /(n-1) 2]. E 

zzs zwz zzs J1 y. zzjk 

S-1 z/ 
zzsjt y. z2ik 

The appr oximate conditional expectation of By* 
zs gives s and 

2E 2 may be obtained by taking a Taylor-series expansion 

E (S 
SBI I 2zsIs'. K2)"ý S22 

Z2 

EI (S 
sis, x )-E+B (S -Z )B' 

zz 2 zz z2 22s 22 z2 

as in Theorem 2.4. 

-1 
EI (Byzsls, 2ý2) AB+B B' 1: +B (S -Z )B 'B 

2z] yz y2. z[S22s z2ý zz z2 22s 22 z21 - 

a generalisation of equation (2.5) of Nathan and Holt (1980). 

The Maximum Likelihood Estimator 

Note that B is MLE of B under joint normality by the 
yz yz 

principle of invariance of MLE's. Also B 
yz may be expressed as an 

OLS estimator in terms of the varibles x+ defined in (3.12). ii 
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Theorem 4.5 

If Model I holds and (X 
1x2) are jointly multivariate normal 

then 

EI (B 
YZI Zss, 2E2) Byz +B 

y2. z 
(B 2Z-B 2z) 

where 
BSB 2z 22 z2sZzz 

is the MLE of B 2z 

and 

s S-1 
z2s z2s 22s 

cov (B Bs ;z+B 
2'z(s 22s-S 22 

)B 
2z] j. 

/n 
I yzij! yzktlz tst-12) ýa 1: 

y. z2ik[zz 

Proof 

From (4.26)and (4.22) 

E (i S, X 1,0 11 +B Az' +BA2H2 I yzl-Es' --2) 
m[ny. z2 yz. 2 y2. z 

'] 

B A'H +B A2H (4.27) 
yz. 2 z2 y2. z 2 

since 
11-M 
n 

Now 

. -i A'H - AlMA E (4.28) 
z2zz zz/n P12 

-'In A21H 2m A2' MAz2zz 

and 
AV m AýMj +A 2M 22IM2 

A'M from (3.24) 22 

n 
iS (AýP A )-'A'P 22 w22w 
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A2H nS (A2P A A2P AZ /n 2 22 w 2) wz zz 

S 22 s 22s s 2zs E 
zz 

Now 

2z 2z zz 

=E (E E- 
1)VE-1 

22 z2 22 zz 

ZB, E-1 22 z2 zz 

Hence from Theorem 3.1 (or see Smith, 1982) the MLE of B 2z is 

B 2z s 22 s 22s s 2zs E 
zz 

as given in the Theorem. Hence from (4.29) 

A2' H2 -a B 2z 

and substituting into (4.27) using (4.28) 

Ej(BYZj. iýqs. p2E2) =B yz. 2 +B 
y2. z 

B 2z 

(4.29) 

B 
yz 

+B 
y2. z 

(B 2 Z-B 2z ) from Lemina 4.3(2) 

As in Theorem 4.4 

and 

cov I 
(Byzjj, Byzkll-ýs's'-x2) ý [H2'H21il'y. 

z2ik 

H2'H E-1 AIM2A E-1/n2 2 zz zz zz 
Now 

A'M2A AIMA + A'(M2-M )A from (3.32) 
zzzzz22z 

--I-- + 
+B (S ss -S )B 

zz z2s 22 22s 22 22 z2sl 

H, H "' 
lz 

+E1B (S s-sS )B /n 22 zz zz z2s 22 22s 22- 22 z2s] 

S S-1 )B /n 
[2: 

zlz 
+ 

ý2'z( 
s 22 2z] 

and the result follows. 
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It follows that i 
yz 

is asymptotically unbiased. For Bz2s 

is asymptotically unbiased for B 
z2 under selection as in conventional 

-1 regression and hence B 2z 
is asymptotically unbiased_for E 22 B2E 

zz WB 2z 

The Design-based Estimator 

Theorem 4.6 

If Model I holds and (X,, X 2) are jointly multivariate normal then 

E (B* 
zs1. ýs ,sB+B (B* -B Iy yz y2. z 2zs 2z 

cov (B* 
.., B* z tr(M*2) S*-lS**-S* -lsljt 

I yzsij yzsktl-zs's'-x2 y. z21k 

I 

zzs zzs zz 

where S** is defined as in Theorem 3.12 
zzs 

Proof 

From (4.23) and (4.26) 

E (B* Iz s, #@ Py. zl +B 
yz. 2 Az' +B A2' H I yzs -S 

12) '-- 
fl. 

y2. z 

13 

B A'H +B AH 
yz. 2z3 y2. z23 

since 
1'M* =0 

n 

Now 

A'H - AM*A S*-' -I z3zz zzs p 12 

A2'H m A2M*A S*-l 3z zzs 

S* S*-i -B 2ZS zzs 2zs 

where II 
S* ý 

lJj 
(x -x2j) (zi-z ) '/Trij 

a 2zs 2i i 
I/ 

a] 
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Hence 

E (B*Zslzs, s, a2) =B+B B* Iy yz. 2 y2. z 2zs 

B+B (B* -B ) from Lemma 4.3(2) 
yz y2. z 2zs 2z 

The second order result follows as in Theorems 4.4 and 4.5 by noting that 

H; H ý S* -1 A'M*M*A S*-' 3 zzs zz zzs 

tr(m* 
2 )S* -is** S*-i 

zzS zzS zzS 

from the proof of Theorem 3.12. 

4.3 Principal Components Analysis 

In this section we consider a principal components analysis of 

the aggregate covariance matrix, E 11 
(and to a limited extent the 

correlation matrix, Pll , defined in (4.1)). Note that a disaggregated 

within-gr9up principal components analysis might proceed as in 

Krzanowski (1979), and that Tortora (1980) suggests an alternative 

within - strata approach using dummy variables. 

Let yj ... yP be normalised eigenvectors of Z 11 corresponding 

to eigenvalues X1>,... >, x 
P. 

i. e. 

Ei i'(i ,A iyi p (4.30) 

yilyj , 6ij p the Kronecker 6 (4.31) 

Th e i. 
th 

principal component of E is yi - y! Xl . In principal 11 1 
components analysis we might be interested in various aspects of the yi 

and Xi (e. g. Mardia et al., 1979, Ch. 8). Here we only consider the 

point estimation of the yi and X As in Sections 4.1 and 4.2, we 

consider three estimators: 

(1) Standard estimators - the eigenvalues and eigenvectors of S lls 
(or R1, defined in (4.3), 
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(2) MLE's - the eigenvalues and eigenvectors of Z 11 
(or P 11 defined 

in (4.4)), 

(3) design-based estimators - the eigenvalues and eigenvectors of S* lls 
(or R# defined in (4.5)). 

11 

We shall need. to approximate eigenvalues and eigenvectors as 

functions of Z 11 etc. The following result is due to Girschick (1939) 

(who used the alternative normalisation y! y. - X. )'. Higher order terms 

in the expansion are given by Lawley (1956), Mallows (1961), Waternaux 

(1976) and Sugiura (1976). (See also Sibson, 1979, for a non-stochastic 

approach). The'proof' follows the intuitive approach of Girschick. 

Lemma 4.7: 

Let E be apxp non-negative definite matrix with simple 

eigenvalues X1>... >A 
p and corresponding eigenvectors yl ... yP 

Let S=E+ dE be a random covariance matrix with eigenvalues 

X1>... >1 P 
(a. s) and corresponding eigenvectors g, ... gp such that 

dE -0 (n-I). Then 

A+ yidEyi +0p (n (4.32) 

gi , Yi + jýlwijyj +0p (n-l) (4.33) 

where 

ij m Yj I: yi 

'Proof I 

'Yi , ý, iyi (4.34) 

y iyj =6 (4.35) 
I ij 

Let 

dX. - t. - X. 
111 

dyi -, gi - yj 
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Then differentiating (4.34) gives 

dZyj + Edyi = dXiyi + Xidyi (4.36) 

Multiply (4.36) by y! I 

y! dEyi + y! Edyi dXiy! yi + )Liy! dyi 
I 

From (4.34) and (4.35) 

y! dEyi + Xiy! dyi dXi + Xiy! dy. 
2. 

and (4.32) follows 

Now multiply (4.36) by y! where jýi and use (4.34) and (4.35) 
j 

y! dEyi +X ! dyi = Xiy! dyi jyj j 

y! dyi - y! dZyi/(Xi-X jýi (4.37) 

Differentiating (4.35) gives 

y! dyi =0 (4.38) 

The spectral decomposition of E is 

xjyjyl (4.39) 

Combining (4.37) - (4.39) 

Zdyi -j Xjyjy! dEyi/(Xi-X. ) 

But 

. Ex i yjyj 

Hence 

dyi -Z X-1 y yýXjyjy! dEyj/(Xj-X. ) k j4 kki 

Z Yjy! dZyi/(Xi-Xj) from (4.35) i0i i 
as required 

(4 tl^jw ^ 4 

., 
o 

4 61[DqAIIY T; 00 A)4 
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Corollary 4.8 

To a first-order approximation 

1. 
(E (S) E (t + y! 

cov(saß's--) 
aßau yiayißyj(Xyj aß 

E(gi) - yi + Ei y! 
[E(S) 

- E]Yiyj/(X' -X ) 
jý iij 

cov(gio9j) cov(w W. )y YO 
aýi 

4j 
ia' J$ a 

where 

cov (w w)=Ey -x ) 
ia, ja klmn iOatyjmyýn cov(Skt'Smdl(ýi-Aa)(ýj a 

Proof : 

This follows directly from Lemma 4.7. 

Corollary 4.9 

If E(S) = E, cov(S ij'Skd = (Eik E it +E it E ik)/n (as in the 

standard IID normal case) then to a first-order approximation 

E(z x V(X 2X? /n cov(li't 0 

E(gi) 0 V(9d Xi jiýayayal(xi-xa )2n 

cov(gj X Xjyjy! /(X A )2n i0j 
99j iI i- 

Proof: 

From Corollary 4.8 

E(I X+y! (E-E)yi - X. as required iII 
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V(i ), = Z- 
a yju(Eaa EßU + Z. ý%; )/n 

i aßauyiayiß-yj 

2(y! l:, (, )2/n = 2X? /n, as required 
II 

Similarly 

cov(z., Z. ) = 2(y! Eyj)2/n =0 
1jI 

E(gi) = Yi as required 

cov(wi-, w +. ZknElm)/(Xj-Xcl)(Xj-, Xa)n 
CL iý kjtmn IiOaZyimy0n(EkmZln 

Eya + Y'EyaydEYi)/(Xi-Xa)(Xj-Xa)n (Yll ': Yiya I 

= (X x6+Ä? 6 6 MX -X )(X X ia aß 1 ai ßi i OL iß 

.; k ) 2n 
,,, V(gi) 

,,; i xi Xayaya/("i- 
a 

Similarly 

cov (w ict wi ß) = (Xi x 
CL 

6 ij soLß + xi x38 
iß 

6 
ja 

)/(X i. x 
ct) 

(X i-x ß 
)n -, 

If iýj cov(gj, g Y! /(Äj-Äj)(x -X )n 
1ii 

Corollary 4.9 gives the standard first-order asymptotic results 

for IID normal samples (e. g. Girschick, 1939; Anderson, 1963). 

Corresponding results for IID non-normal samples (e. g. Davis, 1977) 

would also follow from Corollary 4.8. Finite sample theory for the 

standard IIDcase is very intractable e. g. James, (1960,1964), 

Johnson and Kotz (1972, ch., 39) and no exact expressions for moments 

appear to be available except for some symmetric functions of the 

eigenvalues e. g. tr(E) - EX i 
(Krishnaiah and Chattopadhyay, 1975; 

Mathai , 1980). Even the extension of the first-order approximation 

theory to the case of multiple eigenvalues is complicated (e. g. Anderson, 

1963) and no simple expressions for moments are available., The quality 

of the first-order approximations in IID sampling is not obviously very 

good from the limited finite sample investigations that have been - 
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carried out (e. g. Bebbington and Smith, 1977; Waternaux, 1976). 

Anderson (1963) notes, for example, that 11 will always be upwardly 
biased for A1 in finite samples. Also, for example, the asymptotic 

normality of the- Zi (which we do not use) seems unlikely to be a good 

approximation in small samples since the Zi perform like sample 

variances. Some further work on asymptotic theory is in Muirhead (1978), 

Fujikoshi (1980), Krishnaiah and Lee (1979) and Tyler (1981). 

The Standard Estimators 

The first rather obvious comment is that if rank (E 
11 

)=M<P, 

then rank(S lls 
)*m. (in fact rank (S 

lls 
)=m. a. s) i. e. selection 

cannot increase the number of principal components (unlike factor analysis., 

see Section 4.4). Let us consider the case n -N and the geometrical 

approach of Section 2.2.1. The principal components of E 11 can be 

taken as a natural orthogonal basis for the subspace of RP1+P2 

spanned by X1* For let E 11 , rAr' be the spectral decomposit ion 

of E 11 and let M- Air, . Then the columns of M augmented by P2 

zeros may be taken as the co-ordinates of (X ),... (X )pl in Rpl + P2 
11 1 

for the inner-product of these p, vectors is m1m = rArl = Ell as 

required. The i th 
p incipal component of Z 11 is Yi =X lyi which 
M th is represente&by yi which is a'vector with in the i (0 1 position and zeros elýewhere, i. e. the principal components lie along 

the axes of the co-ordinate system. 

In general, the effect of selection will be to map the yi 

onto non-orthogonal vectors and hence to change the principal component 

structure. 

Lemma 4.10 

If n-N-- then the principal components of S Us are the 

same as the principal components of Z 11 
(with possibly different 

variances) iff 

b' (S - ý22 )b 
1 -'0 iýj 

i 22s 

where -b. = y! B is the (row) vector of coefficients of the linear 3.1 

regression of yi on X2 

e. g. if (a) bi-0i0i0 for some i0 

or (b) S 22s ýE 22 
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Proof: Necessity: 

if S US has the same principal components as E 11 then 

r's Ils r is diagonal where r= (Y,... y Ps 
). But from (2.38) 

s lis Ell + B(S 22s-E22 )B' 

Hence r'B (S 22s-E22 )BIr must be diagonal. The ij th 
element of this 

matrix is b! (S -Z )b. and so the result follows: 
i 22s 22 J 

Sufficiency: 

If b! (S )b 0i0j 'then rs r is diagonal, say 
i 22s 22 j lls 

r's Ils r= diag(Z i) 

f s US r= rdiag(k 

s 
llsyiý i fy i 

and the Yl ... Ypl are the eigenvectors of S lls and hence S US and 
E 11 have the same principal components. 

Case (b) above, where only one of the bI is non-zero, is of 

most interest. This might occur, for example, if X1 was a vector of 

expenditure variables and X2 was an income variable which was related 

to the first principal component but not to the others. Note that 

the eigenvalues of a diagonal matrix are equal to the elements on the 

diagonal-'and so if (b) holds the eigenvalues of S lls are 

Z. =X+b (S -Z )b! i-i 
1 i- i 22s 22 1 000 

=XIi0i 

Hence the only effect of selection is to increase or reduce a single 

eigenvalue. - This might of course be misleading to the Model II researcher 

since the eigenvalues are usually taken to measure the relative 
importance of the different components. 
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In general we shall need to use Lemma 4.7 to approximate the 

eigenvalues and eigenvectors of S Ils' However, one other example 

where an exact result (for n=N= -) is available is: 

Example 4.3 

Here 

X- a2 i-1 

are any orthonormal basis of R 
P1 

. 

From (2.38) we may write: 

s lis , aZ(I - BB' . /B'B) + (S 22s-Z22 )B'B + a2lBB'/B'B 

But I- BB'/B'B and BB'/B'B are orthogonal projection matrices and 

so the eigenvalues of Sll, are 

I a2 + (S -E )BB (assuming S 22s 22 22s 22) 

a2 

and the eigenvectors are 

g B/ rBB 

g2 ... g P, are any orthonormal basis of the (pl-l)-dimensional subspace of 

R P1 
spanned by the columns of I- BB'/B'B. 

This is an example of the discontinuity problems that can occur 
in the 'eigenvector function' when the eigenvalues of E 11 are equal 

or nearly equal, in which case a small perturbation in Z 11 can 
drastically affect the eigenvectors. 

Before considering approximation results we consider the most 

extreme possible effects of selection (when n-N Recall from 
(2.38) 

s lis ,E 11 + B(S 22s-E22 
)B' 
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At one extreme S 22s ý0 and S lis ,E1.2 ýE 11 - BE 22 B1 p 
the partial covariance matrix of X1 given X2* Hence if we know 

S 22s 
is 'smaller' than E 22 then we might in practice compute the 

principal component structure of the partial covariance matrix of X 

given X2 and, if, it is not very different from that of S lis , no t 

worry too much about the effect of selection (assuming 'continuity'). 

Note that the same remarks hold for the principal components of the 

correlation matrix. 

At the other extreme as S 22s -" co' S US -" BS 22 B1 which is a 

matrix of rank P2 . This is likely to have a very different principal 

component structure to that of E 11' Note that R 11 
(defined in 4.3) 

[P,,. 
Apj(piApi)-, (P! Ap. )- as. S If, say 

322s 
"0 * P2 

11 -* [pip 
i /pipj] = [11 i. e. the matrix of ones. 

Theorem 4.11 

Suppose that the eigenvalues XI>... >x 
R of E 11 are simple. 

Let kIA... at 
P, 

be the eigenvalues of S lls d g, ... gA be the 

corresponding eigenvectors. Then providing S lls -E 11 is 'small' 

Xi + bi )b! (S22s-'22 
1 

II il s'2ý2) * Xi 

yi + I(F'ils'2E2) 
1' j4 'jiyj 

where 

Proof 

w.. =b (S -Z )b! /(X -x ) 
j1j 22s 22 1. ii 

E II(gils'2id 7i 

From Theorem 2.4: 

Ej(sllsjs, 2i2) -A Ell +B (S22s-'22 )B' 

Hence from Corollary 4.8: 
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E (lils,. K )A Xi + y! B )B'yi 
123. 

(S22s- '22 

- X. + b. (S -Z )b! 
11 22s 22 1 

and 
E I(gils'-Ed yi + jýi 'jiyj 

where 

wji = y'X'B (S22s-'22 )Byi/(Xi-X i) 

=b (S -Z )b! /(X -x ) j 22s 22 1ii 

The results for Model II follow as special cases. The result 
for ZI is a natural extension of Theorem 2.4 viewing Ii as a sample 

variance of a linear combination of thý X1 variables. The result for 

gi is less easy to interpret but note that the absence of yi in 

the 'misspecification effect' is due to the normalisation y! yi =1 

which means that yi lies on the surface of a hypersphere and forces 

dyi to be orthogonal to yi(y! dyi = 0). Note also that the term 

0 i-X means that gi is very unstable if XI is close to any of 

the other eigenvalues (c. f. the standard IID case). 

Sti. t. 1 G. K4 'A 

S+, Ui results for the case P2 ý1 suggest that the 

approximations in Theorem 4.11 are very good for large samples, especially 
for Zi 9, for wide ranges of values of S 22s (say ME 22 <S 22 S<2E 22)' 
Note that bounds on Ii and gi in the case n-N-- may be 

obtained from Wilkinson (1965 p. 104) without using limiting arguments. 

For the case P2 0' 1 let rI= corr, (yi 'X2) 

Then IE i 12 

YX. E-- 22 
/ 

riv rX 7/-E7ý- Y31.11211: 22 1 22 

Let A- (S 
22s-E22)/E22 as in (4.9) 

Then 

sx2)IX3. +b PE22 

- X. r? X. A 
111 

i (l+rjA) (4.40) 
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Hence the selection effect on zi depends on r and on A. Note 

that 

E (Z /Zkijs, 2ý2) 

Hence the proportion of variance explained by the i. 
th 

principal 

component is approximately unaffected by selection if rr 
Pi 

We now consider the principal components of the correlation 

matrix. Let XI be the standardised vector XIi. e. 

DI 1 ýc 

where D1 diag(a 

is defined in (4.2) 

Let Xp>, ... >, Ap be the eigenvalues of P (defined in 4.1) 1 Pi 11 
with corresponding eigenvectors ypl ... yp Let A be the 

p 
regression coefficient matrix of X1 on X2 

i. Aý DI 
1B 

and let b? be the (row) vector of coefficients of the regression 

Of YN on X 
3.1 2 

i. e. b? - 
1. 

Theorem 4.12 

i 

Suppose the eigenvalues of P are simple i. e. Xp>... >XP 11 1 Pi 
Let XP4 ... : ýIp be the eigenvalues of R (defined in 4.3) 1P Pi 11 
and gP ... 9 be the corresponding eigenvectors. Then providing 1 pl, 
S lls-E 11 is small' 

E (9-? 1 S, 2ý2) 1- X? + b? -1: )b? ' - X? E (y? )2(i(S E )B' 111 i(S22s 22 11 OL 1 OL 22s- 22 

E II(Z? lls'2ý2) '4 
4 

E W. iy? I(P>? lls'-ý2) 
l' Y? i + jýI: i j3 
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where 

w.. = b? (S E )b? 
'- 

E(Y? ) (Y? ) 
ji 

[J 
22s- 22 121JaiaJ alB 

(S22s-': 
22) B '3aa 

I 

Proof : 

From Theorem 4.2, if S 
22s-E22 

is small 

E (R 1 .1p I llij 
1 s'. K2) 'I pllij + P3 (P! Apj + P! Apj) '. APi 2 llij 

Hence from Corollary 4.8 

I 
E (XpIs x, ) - X? +E a(Y? 

)a(y? )O[P""'O - 
1- 

Pllaa(p 'Ap 
.+p 

'Ap ,) (4.41) Ii '-"2 1. a 3.3. a2aa 
Now 

Y? 'B 

p, DB 

P, D -1 EE -1 
i1 12 22 

yp'D-'Z D -1 P-1 D- 1 
i1 12 2 22 2 

where P 22 is defined in (4.12) 

p 
:1 P-1 D -1 

L- 22 2 
pI Pi 

E(yp) P, P-1 D -1 
a1aa 22 2 

Hence 

b? (S -Z )b? ' - E(y? ) -1 (D-ls DI 1-P )p -' l: (yp) 1 22s 22 1ai Jap22 2 22s 22 22 ß1ßß 

=E(. Yp) (. Y? ) P, ',, AP f rom (4.9) 
as 3. a 1. a8 

Similarly 

(i(s 
22s-E22)ý')as ý Pa' APB 
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Hence from (4.41) 

(£? ls, x )-X? + b? (S -Z )b? ' - -! -(? ) (P ly? )ap, äp(% 
1 1.2 11 22s 22 1 2[aE( 1a11 CL 

(P p VAP 

= X? + b? (S -Z )b? ' - X? E(Y? )2 p! äp 
11 22s 22 11 CL 1aa CL 

s inc e 

pjjyý 

= X? + b? (S -E )b? ' - X? E(y? )2 (B(S -Z )B')CLCL 
11 22s 22 11a1 CL 22s 22 

as required. 

Similarly from Corollary 4.8 

E 1 
(4 s '42) + 

where w= yp'(R -P ji i 11 11 L 

a 3. B[OaA06 - '21 Pllaý(OaAoa 

+p Ap 

bý (S -E )b? '- -1 E(-y? ) X? ('Y? ) PAp i 22s 22 12 

[ci 

JaIiaaa 

E(yp) xp(-(P) 

- b? (S -Z )b ?'- E(Y? ) (-y? ) 
i 22s 22 1.2 1Jaiaja 

It(s 
22s-Z22 

)BI 
L 

The results for Model II follow as special cases. 

Note that the first two terms in the expectations of Z? and g? 1.1 
correspond to the expectations of II and gi in Theorem 4.11. 

In order to compare the two results consider the case P2 m 1: 
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Let 
pp- 

rL= corr I(yi X19 x 2) 

bp/E--/XP i 22 ; 

corr I 
((x 

1) V X2) 

22 

A- (S 22s- E 22)/E22 

Then the relative biases of 1. and I? (c. f. Section 4.1) are II 

E S, I[ 
(ýIi-'Id I' iI!, 

] 
t. "2iA f rom (4.40) 

E, s1 (r? 2 - Z(yý)2 ; 2)A 
'2ý2] 1. aIaa 

Numerical values from Example 4.2 are 

i 1 2 3 4 5 6 

r2 . 416 . 035 . 020 . 000 . 027 . 011 i 

r? 2 
. 368 . 061 . 019 . 037 . 008 . 017 

1 

r? 2- E(y? )2i2 . 040 -. 021 -. 154 . 226 . 374 -. 422 
3. a 3. aaI I 

L II 

Note that the values r? and r? 2 are similar and that the relative L 3. 

bias for the correlation matrix is smaller for the first two components 
but takes a relatively large value for the last four components. This 

, effect, however, is less worrying if we consider the absolute biases. 

2 3 4 5 6 

), r; z 252.7 1.9 o. 5 0.0 o. 2 0.1 l 
A? (r? 2-E (yý) 2r2-) 0.17 -0.02 -0.07 -0.03 -0.03 )i -O. C Liiaiaa1 1 1 1 1 1 
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Hence in this example the proportions of variance explained by 

the different components will be much more affected by selection for 

the covariance matrix than for the correlation matrix. 

We might summarise the selection effect. on the'eigenvectors. 

by the Euclidean distance between g. (g? ) and _yi(y? 
) (cf. Bebbington 

111 
and Smith, 1977). From Theorem 4.11 for the case P2 "1 

E (gi-yi) , (gi-yi) s '2S21 
I dlA 

whdre di = Jbil{. bý/(X X )211Z 
Jýi j i- 22 

(assuming the variance of gi is negligible) and from Theorem 4.12: 

-t JA EI 
[{ 

(gpi-Ypi) ' (gpi-Ypi) 111 "-2E2] 1 

where 

e? =( Elb? b? - E(y? )ct(y? )CL j2] 2 
/(X P-X? )2)1 

I jo. j123. jaIiaij 

We now evaluate d. and e? for Example 4.2 and for comparison we 
1 3. 

also evaluate 

d? = Jb? j{jl: 
jbý2/(X? -Xý)2j1 

3. L01Lj 

i 1 2 3 4 51 6_ 

d. 

I 

. 047 . 007 . 043 . 008 . 044 . 034 
1 

d? . 096 . 105 . 066 . 051 . 036 . 027 
1 

e? . 021 . 038 . 060 . 107 . 087 . 025 

/ 

P As for the eigenvalues the second term in e. tends to cancel out the 
3, 

first term making e? usually less than d? . In this example all the 
3.1 

selection effects are fairly small but this is because the first 

priný-ipal component is very dominating and selection occurs mainly 

along the first component. In other examples, the selection effects 

may be much larger. 
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The above numerical work has been aimed at investigating the 

conjecture that selection effects are smaller for correlation matrices 

than for covariance matrices. Although the data from Example 4.2 provides 

some evidence in support of this conjecture we would suggest that 
in general it would be dangerous to take this as an assumption. Note 

that we have demonstrated that it can be quite misleading to assume 

that ýR 11 
is a covariance matrix from a distribution where the (X di 

have unit variances and then to apply the results of Theorem 4.11. 

In order to obtain the variances of the estimates, let the 

conditional covariance matrix of the principal components yj ... y Pi 
given X2 be 

E 
y. 2 a ij xibiE 

22 
b! 

Aslin Theorem 2.10 and Corollary 2.11 let 

0 
ys 

[b 
is 22s b! ] 

Z* mS+ý 

y y. 2 ys 

Theorem 4.13 

Under the conditions of Theorem 4.11 and the assumption that 
x 1IX2 is multivariate normal: 

V (tils, 12) A 2(E*2, - ý2sjj)/n I yi y 

V (Xils, 2E2) I 2; k? /n 
ii L 

cov (1., L. ls, x )I 2(E* - ýZsjj)/n IIj --2 yij y 

cov II 
(Litt jls'ý2) 'I 

Proof : 

Combining Corollaries 2.11 and 4.8: 
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cov I(lit'j 
I S'2Y '* JaFiayiOyjayjý(l*aaE*N + EUEAZI -ýsaOsWosaOsOi) /n 

2(y! E*yj)? /n - 2(y! ýsyj)/n 
1 3. 

2(Z*ý. - ý2 )/n 
Y13 Ysij 

as required 

The results for Model II follow as a special case with ý 
ys . 0, 

E* = diag(X ). 
yi 

Note that, as remarked after Theorem 2.8, even under balanced 

sampling with S 22s -E 22 the result for Model I differs from that of 

Model II ( which is the same as that given in Corollary 4.9). This is 

because of the non-centrality introduced by. conditioning on 2ý2* 

If, for example, we take an srs design and evaluate the moments of 

zI under Model I then they would be the same as for Model II in Theorem 

4.13. 

Note also that the variances and covariances of the ZI are 

analogous to those of the diagonal elements of S lls 
in Corollary 2.11. 

As in Theorem 2.10 we may rewrite the main result in Theorem 4.13 as: 

cov (tipt (2E2.4E )/n 
Iy 2ij + y. 2ijOysij 

Note finally that cov I 
(glitz is linear in S 22s since the quadratic 

terms cancel each other out. 

Theorem 4.14 

Under the conditions of Theorem 4.11 and the assumption that 
YX 

2 is multivariate normal: 

cov E' s* 
y YCLB+, 

*iß j (X I(gi"gil's'32) ý Ji 
Hi *ij, * eysijeysaß-e 

l' 'Yy 
ysiß ySial 

ya Y, /n(A i-x a)(X i-x s) 
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cov 
Exy Yct/(, Xi-Xct)2n if 

II(gi*gjls'a2) 
Xiaii 

aa 

X Xjyjy! /(Xi-Xj)2n if iIj 
iI 

Proof : 

From Corollary 4.8: 

cov (w covI(gi'gjls'2E2) m a; iaýj i ia'wJals'2E2)Yaya 

where 

cov I 
(w ia' w jals'2Y ý kEtmnyikyatyjmyancov(Sllski'Sllsmnls'2E2)1('ýi-x a) 

('ýj -x 

=Z Y'-k'(cti'Yjmyßn('*kmE*n + 1: * E*m - ýskmýstn - ktnm 1Z kn X 

ýsknýstm) /n(. X i-X a) 
(X i -)L a) 

(Y! E*YjyE*y + Y! E*y Y,, ', E*yj 
1aa1a 

- yj'ý y yoLý syj 
) /n (X i-X(l) (, Xj -X a) 1sa 

= (E*ijz* + Z*. E*. -e-e 
ya ß ylß Y3CL ysij ysaß 

- ýYsiOysjcl )/n(A i-x a)(Xi-x 
) as required 

The result for Model II follows as a special case with ý 
ys = 0, 

Z* = diag(A ). 
yi 

The Maximum Likelihood Estimator 

If the eigenvalues of Z 11 are simple then the eigenvalues 

X1 
P1 of Z 11 and the corresponding eigenvectors yl... y PI 

are 

the MLE s of Xi... x 
P and yl ... YP respectively by the principle 

of invariance for ML estimation. 

Theorem 4.15 

If the eigenvalues of Z 11 are simple and E0p (n- 
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(e. g. if X 1IX2 is multivariate nomal) then 

E (ýjjs, 2E2) - xi + bi - )b,! + tr(i i-I E /n+O (n-l) 
I (S22-E22 

3., 

[ 
22 22s)-P2-1] y. 2ii p 

E= Yi +EW. 0 (n 
I 

(ý iI s'12) joi iiyj 
,p 

where 
[b 

(S -Z )b! + (tr(S S- j 22 22 1 22 22s) - P2 - 1) 1: 
y. 2ij 

Proof : 

This follows by combining (3.26) and Corollary 4.8. 

Theorem 4.16: 

If 
, 

the eigenvalues of Ell are simple and X JX2 is multivariate 

normal then 

cov 
.. 

E2 2 -3/2 
I 

(Xi, Xjls,. E2) = 2n' 
y. 2ii 

/n + 4EY 
. 2ijýyij 

/n + OP(n 

cov 16ipij 
I s,. K2) = alo: i oolj 

fn' [Ey. 
2ijEy. 2a$ + Ey. 2isEy. 2ja] /n 

E 
y. 2ij*yaa + Ey. 2aOyij + 1: 

y. 2ia*yja + Ey. 2jaýyiaý 

/n(X CA a) 
(X i-x a)+0p (n -3/2 ) 

where 

I, - --l - --i 
nn- P2 -1+ tr(S 22 s 22s s 22 s 22s) 

IP bSSSb! - --l - 
yij mi 22 22s 22 J 

Proof : 

This follows from Theorem 3.5 and Corollary 4.8 as in the proofs 
of Theorems 4.13, and 4.14. 
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Note that, assuming the p-convergence of S 22s away from zero, 

+0 (n -1 
I(Xils'2E2) = X1 

p 

Yj +0 I(Yils'2Y ýp 

Hence the second moments of and yi dominate their MSE's 

asymptotically. Note that S 22s features as a denominator in the 

covariances of and yi and so these variances will increase as 

S 22s 
' decreases', since B is then estimated more poorly. 

The Design-Based Estimator 

Theorem 4.17 

If the eigenvalues of Z are simple and and 11 1 pl 
g*... g* are eigenvalues and eigenvectors of S*ls, then providing 1p1 
S* -I is 'small' 

lls 11 

E (itc is 
.K)1 

Xi + bi )b! 
112 

(S*22s - E22 
i 

EI (gli 1s 12E2) 1 '(l +j Eei wj iyj Je' jl 3 

where w.. -b (S* -Z )b! /(X -x ji j 22s 22 1i 

Proof: This follows from Theorem 3.12 and Corollary 4.8. 

This result is analogous to Theorem 4.11. Simulation results 

suggest that the approximation is good for large samples for a 

wide range of values of S* Note that Theorem 4.12 would 22s ' 
also apply in the design based case if we substitute the 

eigenvalues and eigenvectors of Rt (defined in (4.5)) 
11 

for I? and gý and substitute S* for S The discussion 
3. L 22s 22s' 

following Theorems 4.11 and 4.12 would also apply if we substitute 

A* for A. As noted in'Section 4.1, the form of the misspecification- 

effect is the same for Sr S* and is largely determined by the lis 0 lls 
model correlation structure whereas the degree of the misspecification 

effects depends largely on the differences S lls -E 11 and St ls -E ll* 
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Theorem 4.18 

If the eigenvalues of E 11 are simple and X 1IX2 
is multivariate 

normal then providing S* -E is 'small' 
lls 11 

i-, 2tr(M2) 1: 2 + 2E covI(kfll'Zfj'l S'2E2) 
[ 

y. 21j y. 2ij yij] 

cov (gt, gfls, - r(M2) EEEE 
113 42) '! ' tý 

aOio0j[Zy. 2ijEy. 2a$+ y. 2isEy. 2ja+ Y. 2ijý*ya$ 

+E /(xi-x ) (X -x) y. 2aß Yij+Ey. 2iß yja y. 2ja yiß] CL iß 

where M is defined in Theorem 3.12 

and 
b S** b! 

yij mi 22s J 

Proof : 

This follows from Theorem 3.12 and Corollary 4.8. 

4.4 Factor Analysis 

The study of the effect of sample selection on factor, analysis 
has a long history., This is probably because of an interest in the ' 

conjecture that there exists a fundamental invariant structure of human 

abilities which ought to be reflected, in the factor analysis of mental 

test data for any group of human subjects. 

Thomson (1938) and Ledermann (1938b), adopting Pearson's (1903) 

population-level approach, supposed that (X VX2 ) jointly obeyed a 
factor analysis model in the population and that selection was made 

according to X 2* They showed that under 'univariate selection', 
i. e. P2 "11 the new correlation matrix also obeyed a factor analysis 

model with'the same number of common factors but with different 

factor loadings and communalities. Thomson and Ledermann (1939) then 

showed that under Imultivariate selection', i. e. P2 >1, the 

new correlation matrix also obeyed a factor analysis model but with, 
in general, P2 extra common factors, where X1 did not depend on the 

new Iselection factors'. It is interesting to note that Thomson and 
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Ledermann made use of the concept of a superpopulati6n of 'might have 

beens' (Thomson and Ledermann, 1939, p. 289) of which the sample and 

the population iaight be thought of as samples. Their reason for adopting 

this approach was, however, somewhat different from ours. They were 

concerned with the process of evolution where one generation (the sample) 

was selected from a previous generation (the population) and where the 

sample might even outnumber the population. 

Thomson and Ledermann's results were considered as rather 

disturbing since they cast doubt on the idea that factors can be 

'interpreted as basic and identifiable psychological processes' 
(Thurstone, 1945; see also Lawley and Maxwell, 1971, p. 114). A more 

optimistic view was expressed by Thurstone (1945) who showed that, 

although the factor loadings were generally altered, zero loadings were 

not ('simple structure' is invariant) and he argued that any new 'selection 

factors' should be 'classed with the residual factors which reflect the 

conditions of particular experiments' (p. 179). Thomson (1951, p. 304) 

found this argument rather unconvincing. 

A rather elegant, review of the work of Thomson, Ledermann and 

Thurstone is given by Ahmavaara (1954) who used the geometric approach 

of Section 2.2.1. He showed also thatthe effect of multivariate 

selection on factor analysis based on the covariance matz-ix was just to 

change the columns of the factor loading matrix of X, proportionately. 

, Meredith (1964a) took an approach which is closer to our interests. 

He supposed that in the population X1 obeyed a factor analysis model 

and that selection took place according to other variables X2 which 

were independent of the unique factors of the X1 model and were related 

to the. common factors as in Lawley (1943) (i. e. as in our Model I). He 

showed that selection did not introduce any new common factors and that, 
for a given rotation, the new'factor loadings were unchanged for the 

covariance matrix (Ahmavaara's (1954) result differed because he imposed 

a particular normalisation on the factors). Our discussion will be 

based on Meredith's work. 

Finally, Bloxom (1972) extended Meredith's work by allowing the 

selection variables X2 also to be correlated with the unique factors. 

This complicates the picture greatly and in particular introduces new 

co n factors as in Thomson and Ledermann (1939). 
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In this section we shall make Meredith's assumption that X2 

is independent of the unique factors. This seems to us reasonable since 

the common factors are intended to tap all the 'behavioural' components 

of the X1 variables and the unique factors represent measurement error 

and the 'non-behavioural' unique components of the X variables 
(e. g. Fielding,. 1977). This is not to say that Bloxom's approach 

could not be adapted to our problem but we suspect that a more interesting 

extension would be to assume that the variances of the unique factors 

depend on X2e. g. the reliability of attitude items might vary between 

social classes or age groups. 

Suppose then that X1 obeys a factor analysis model (marginally) 

in the super population, i. e. 

Af 

where f is an unobserved m. x1 vector of common factors- 

u is an unobserved p, x1 vector of unique factors 

E(f) =0E (u) =0 

VM ý ID, cov(f, u) =0, V(u) -T- diag (ý i) 

The covariance structure of X1 is 

E 11 - AiDAI +T (4.42) 

Let D diag(ali) where ali is defined in (4.2) 

Then 

where 

E 11 DA0 A' +T (4.43) 
ppp 

Ap =D11A, TP DTD 

A is the matrix of (covariance) factor loadings. 
Ap is the matrix of (correlation) factor loadings. 
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Suppose that X2 is independent of u and that f is related 

to X2 by Model I of section 2.1., i. e. 

E(f IX 
2)Bf2 

(X2- 11 2) 

V(fIX2 )Ef. 2 

Then for the case- nN the selected covariance matrix is from 

(2.38): 

s US 2E i'l + B(S 22s-E22 
)B' 

Alý A+T 
s 

0 w ere 
4ý = ýD +B (S -E )B' ' 

s f2 22s 22 f2 

is the selected covariance matrix of f 

since 
B- AB f2 

Let 

diag(S' .. ) 
is llsil 

(4.44) 

(4.45) 

(4.46) 

Then the selected correlation matrix is 

where 

D -1 s D-1 -A -1 +T Is US ls R slýR R 

AR = D- 
1A 

,Tn D-1 TD-1 ls R ls ls 

(4.47) 

Comparing (4.42) and (4.44) we see that S lls obeys a factor 

analysis model with the same number of common factors and the same 

unique variances as Z 11 and, given the rotation in (4.44), the same 
factor loadings. On the other hand, comparing (4.43) and (4.47), 

we see that R 11' obeys a factor analysis'model with the same number 

of co n factors as Pll but with different unique variances and factor 

loadings (unless D is , I). Hence the recommendation that under selection 
it is best to work with the X1 variables in their original units. Note, 

however, that each zero in Ap has a zero in the corresponding position 
in AR'i. e. 'simple structure' is preserved. 
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We have shown that, given a particular rotation of the model 

for Ell , there exists a rotation of the model for Slls such that 

the factor loadings are the same. It is straightforward to show 

(Meredith, 1964a) that given any rotation of the model for Z 11 
there exists a rotation of the model for S 11 such that the factor 

loadings are the same. Conversely, it is also true that given any 

rotation of the model for S US there exists a rotation of the model 

for E 11 such that the factor loadings are invariant. The problem 

for interpretation, however, is that in general 4ý 
S00. 

This means, 

for example, (1) that although we might obtain the 'correct' factor 

loading matrix from S lls we might be misled into thinking that the. 

common factors are correlated when in fact (in the population) they are 

not or (2) that we might be misled by the 'percentages of variance' 

explained by each factor and by the communalities. Meredith cannot 

deal with this problem since he supposes that the data refers to several 

samples selected from the population but where noýpopulation data is 

available. Meredith-(1964b) therefore only considers the problem of 

appropriately rotating within-sample factor analyses in order to 

obtain an invariant A with generally varying ýP s matrices. 

We suppose, however, that (finite) population data is available 

on X2* For the remainder of this section we consider six different 

methods of estimating A, 0 and T. As usual there is the rotation- 
indeterminacy of the factor analysis model. We shall therefore set 

t-I and accept that we can only estimate A up to'an orthogonal 

rotation. 

1. The Standard Estimator 

Suppose that we enter S lls into a standard factor analysis 

package, say using ML estimation. From (4.44) we shall obtain 

consistent-estimators of T and of a rotation of A. In general 

we obtain an inconsistent estimator of AW . Note that if m-1 

the estimated factor loading vector will be consistent for a vector 

proportional to A. 
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2. A Desigri-ý-based_Estimator 

Suppose that we enter St into a standard factor analysis lls 
package. Then we shall obtain ý-consistent estimators of T and of a 

rotation of A. The estimator of AOA' will be p&-consistent. ' 

The estimators are in general inefficient. 

3. Exact ML Estimator 

Assume that (X IX2) are jointly normally distributed. Recall 

from Section (3.2) that the likelihood-may be expressed as 

P(-xlsl2E2' S, 11 1.2'El. 2 , B5P(sl2E2) P(x 211121E22) 
(4.48) 

Unlike principal components analysis we cannot maximise (4.48) 

by entering Z 11 
int oa ML factor analysis package (see estimator 4) 

because A, O and T are not 1-1 functions of E 110 Instead the 

parameters in (4.48) are restricted by 

B= AB m AOA' +T- AB E-'B' A' 
f2 ' El. 2 f2 22 f2 

For the purposes of ML estimation it is inconvenient to set (D 

and so we adopt an alternative identifying restriction which may be 

removed later by rotation. We may naturally parameterise the model by 

(P1.2 , A, B f2' 1: f. 2' 'Y' 112' 1: 22) 

where 
E 4ý -BZ B' f. 2 f2 22 f2 

since 
E 1.2 'a AE f. 2 A' +T 

One obvious source of underidentification occurs under the rotation 
A* - AH , B*_ -H -1 B E* = 4-lE HI-1 where H is a non-singular f2 f2l f. 2 f. 2 
mxm matrix. For in this case the likelihood is unchanged by 

substituting (111.2 
, A*, B*f21 E*f. 21 'Y' 112' E 22 

). We propose therefore 

to impose the constraint: 

E f. 2 I 
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If m=1 this removes the underidentification (up to sign indeterminacy 

in A and B f2 ). If m>1 then there is still a lack of identification 

because H may be an orthogonal matrix. This may be removed by 

requiring that A'T A is a diagonal matrix with elements on the diagonal 

arranged in descending order of magnitude (c. f. Lawley and Maxwell, 
1971, p. 8). Let us now rewrite the likelihood, ignoring the middle 
term in (4.48) which is fixed, as 

ý-x 
lský2s* 111.21 A, Bf 2, T) p (121 ý12' E 22) 

(4.49) 

It seems reasonable to assume that ('11.20 A, B f2l 'Y) and 
(P21 ý22 ) are Cartesian independent (Definition 1.1). Hence the 

likelihood may be maximised by maximising the two terms of (4.49) 

separately. The second term is maximised as before by 

112 2'E 22 -S 22 (4.50) 

The first term is, for the case m=1, the likelihood of the multiple- 

indicator multiple cause (MIMIC) model of J6reskog and Goldberger (1975). 

In their model the X2 variables were causes of the latent variable f 

and they were specifically interested in B f2 
(whereas we treat X2 

as a 'nuisance'). They show how to maximise the first term of our 

likelihood and note the generalisability of their approach to the case 

m>1. They contrast the case where x 2s 
is fixed with the case where 

x 21*** X 2. are a random sample from N (1121 E22)' In the latter case 

the likelihood is 
P2 

P(XlJ2E2s' "1; 21 A, B f2l 7) P(-x2slý12' 122) (4.51) 

They note that the MLE's of (P 1.2' A, B f2' 'Y) are the same in both 

cases. But (4.51) is the likelihood of a random sample of n values 
(x li, x2i ) from a multivariate normal distribution with 

x1 41.2 +AB f21j21 
,VX, 

1 

. 
A(B f2r22 B f'2+, W+ý AB f2 Z 22 Ex 

21 
- 

1J2 x2Z 22 Bf' 2 A' .Z 
22 

(4.52) 
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which may be maximised for example using the programme LISREL (Joreskog 

and SUrbom, 1978) to give MLE's (V 
1.2 -A, 

B f2l T). Note that (4.51) 

is maximised when V2 'ý x 2s and 1: 22 mS 22s but these values should 

be disregarded in favour of. the actual MLE's in (4.44). Note also 

that the mean structure of XI is effectively unconstrained in 

(4.52) so 

111.2 +AB f2 x 2s w xls 

x is +AB f2 (x 
2-x 2s) c. f. (3.1) 

AA^-IA Note also that P=I+BZBc. f. (3.2) 
f2 22 f2 

If we finally wish to adopt the normalisation 0=I we may take 
.. I 
Alý as the estimated factor loading matrix. 

, 
4. Approximate ML Estimator (A) 

Suppose that we enter E 11 into a ML factor analysis package. 
This will give consistent (up to rotation) but inefficient estimators 

of A and T. 

, 
5. Approximate ML Estimator (B) 

Suppose, as in Method I, we enter 
_S US into a ML factor analysis 

package and obtain the estimates A and T for orthogonal factors f. 

From (4.44) we know that, subject to orthogonal rotations 
A A019 f 1.0 If 

In order to estimate 0 we need to estimate B 
sss f2 

from (4.45). Suppose we regress the factors scores 
i 

on X2 as in 

Joreskog and Goldberger (1975 p. 636). 

Let B f2 = 
IAI(; iýl 

+B (4.53) 

where B is defined in (3.4) 

Then since B- AB ZIp-'B 
we have f2s f2 

B f2 sB f2 
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and from 4.45 

--2- 1+B (S Z )B , 
s f2 22s 22 f2 

+ 
s f2(S22s - E22); f2 'ýs 

(I B (S E )B 
s f2 22s 22 f2) 

Hence we might estimate A by 

A(I -B f2 (S 22s -Z 22 )B 
f2) 

and estimate T by 

6. Approximate ML Estimator (C) 

Jdreskog and Goldberger (1975) consider the same approach as 

5 but using the matrix 

s-ss -1 ,s 1.2s US 12s 22s 21s 

For n=N=- the analogous result to (4.44) is 

s 1'. 2s ' AE f. 2 A' +T 

Since they adopt the normalisation E f. 2 ýI it is natural to consider 
factor analysing S If we wish to set 0-I we must estimate 

- 
1.2s* 

Ef. 2* Define B f2 as in (4.53) where A and T are obtained from 

an orthogonal factor analysis of S 1.2s' Then 

E2B f2 f. 2 f2 

Now EI-BEB, f. 2 f2 22 f2 

I- zi BEB f. 2 
ýU 

22 
ý; 

2 Ef. 2 

an estimate of E f. 2 is 
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A-A-1 -1 E f. 2 (I B f2 E 22 B f2 

and we may estimate A by AE f. 2 and T by T. 

Comparison 

The advantages of the exact ML method compared with the approximate 

ML methods are 

(1) It is more efficient. 

(2) Standard errors and likelihood ratio tests may be obtained 
from the LISREL procedure. 

JUreskog and Goldberger (1975) compare the efficiency of the 

exact ML method in estimating A with the approximate method 6. They 

show theoretically that a substantial gain in efficiency is possible 
if f is reasonably correlated with X 2* Even so, we suspect that the 

second reason above is the major advantage of the exact ML method. In 

the similar problem of factor analysing binary data Muthen (1978) finds 

that the exact ML method gives very similar estimates to a factor 

analysis of tetrachoric correlations (c. f. our method 4) and concludes 

that the main advantage of the former method is that LR tests and 

standard errors are available. 

0 



- 139 - 

CHAPTER FIVE - STANDARD ESTIMATORS UNDER TWO-STAGE SAMPLING 

5.1 Framework 

In Chapters 5,6 and 7 we consider a two-stage population 

consisting of N identifiable clusters where the i th 
cluster contains 

M1 identifiable units. We consider two possible ways of labelling the 

units in the finite population. 

M Lexicographic Labelling: Ordering of the N clusters and of 

each of the sets of M. units within each cluster. -are defined. Then 

. th 1 th the j element of the i cluster is labelled (i, j) for i =1 ... N, 

j=1 ... M i* 

e (ii) Arbitrary Labelling: The M0- EM 
I units in the population are 

arbitrarily indexed k=l ... M0 .' Then for each 
th 

k, xk is defined as in 

Example 1.2, i. e. xk=ei if k is in the i cluster (e 
3. 

is the 
(N-1) x1 vector with 1 in the (i-1) th 

place and zeros elsewhere, 
i=2 ... N, el=g). Each unit is then labe 

I 
lled by the pair (k, xk), k-l... M 

0 

Let us initially consider the second labelling since it fits 

in with our notation in Section 1.2. Associated with k th 
unit of the 

finite population, U say, is apx1 vector y Let (yl .. yý' k01 
x= (xj... Then we suppose that a sample, s, is selected from a 

U accordingoto the'values x. As before y represents the 'inference' 

variables and x the 'design' variables. 

Much of the discussion of this section will be concerned with 
the choice of an appropriate superpopulation model. As noted in 

Section 1.3.2., there may be many situations where we are interested 

in the distribution of y given x. However, in our approach we 

suppose that the clustering in the population is irrelevant to the 

target of interest. We therefore wish to define Model I, the 'correct' 

superpopulation model (see Section 1.2.1), in such a way that we may 
also define a 'marginalP distribution for ly' which will be the target 

of inte 
- 
rest. The cluster sizes, Mi , play an important role, so letting 

M- (M, *.. M we might express a general superpopulation model as: N 

(Y-1 2E, 11) P (x 1. ý! ) 
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Conventional models for p(. XI. K, M) p(xlM) are given for 

example by Scott and Smith (1969) and Royall (1976b). In order to obtain 

the marginal distribution pQ), however, we need also to specify 

p(M). One possibility might be for M to be multinomial as in Example 

1.3 so that the x,, are 1ID. This approach seems, however, to be 

more appropriate for stratification where N is fixed e. g. 2 sexes, 
5 social classes etc. A more appropriate model for clusters would seem 

to us to be where the clusters, e. g. schools or wards, were considered 

to be a random sample from an infinite population, in which case the 

MI will be IID. Such an assumption may also, of course, be necessary 
for statistical inference when only a subset of the clusters are actually 

observed. 

One problem with such a model is that, although we might be able 

to integrate x out of (5.1), say using the random permutation distribution 

of Example 1.6, we cannot wholly integrate out M because y is a 

PM 0x1 vector where M0 is a random variable. This problem is no 

easier under the lexicographic labelling scheme when the labelling of 

.X 
depends not just on M0 but also on M. 

To avoid this difficulty we prefer, instead to make use of the 

concept,, often used by R. A. Fisher, of a superpopulation as an infinite 

set of units (e. g. Foreman and Brewer, 1971). We think of the finite 

population as a random sample of clusters from an infinite population 

of clusters in which the distribution of the values y per unit is 

the target of interest. An example of such a model with a clear ý 
generating mechanism is given by Leamer (1978, p. 293). Henceforth we use 
the lexicographic labelling scheme. 

Example 5.1 

An infinite population (superpopulation) of (completed) families 
is generated by the following mechanism. Each family continues having 

children until it has either one boy or two children (if the first child 
is a girl). The probability of any child being born a boy is X 
(uniformly across the population and independent of other births). 
The clusters consist of the children in each family. The finite 



- 141 - 

population consists 6f ýN such clusters (a random sample of clusters 

from the superpopulation). 

Let M. = number of children in i th 
cluster i=l... N 

1 th th 
yij ,1 if i child-of i cluster is a boy i-l... N, jM 

=0 if jth child of ith cluster is a girl 

Y- , (Yll *- Ylm 
i 

... YNMX)' 

For N=1 the p. d. f of (1, M) is 

m p (, Y, M) 

2 

(010), 2 

For general N the p. d. f is a product of such densities. 

The targei of interest in this example is the sex distribution 

(per child) in the superpopulation. This does not, of course, depend 

on the families' stopping rule and is 

P(Y=I) -x, P(Y=O) -1-x 

We refer to this as the 'marginal' distribution of y unconditional 

on clustering. The question now of interest is : how do we get from 

p(y, M) to this distribution? Let hc (M) be the proportion of clusters 
in the superpopulation of size M and let hu (M) be the proportion 

of units (children) in the superpopulation which belong to'clusters 
(families) of size M. These are generally not the same and are related 
by 

hu (M) - Mh 
c 

(M)/El M'h 
C(MI) 

(5.2) 
m 

I hc (M) is obtained as the marginal distribution of !I from 

above. 
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h (M) h (M) 
c u 

x X/(2-X) 

I-X (2-2X)/(2-X) 

The sex distribution in the superpopulation for clusters of a given 

size is obtained from the conditional distribution, -p(ZIM). 

___ 

2. p(zI) 
1. (1) 1 
2 (0,1)' -A 

2 (0,0)' 1-A 

Hence: 

Proportion of boys in clusters of size 1 in superpopulation -1 
Proportion of boys in clusters of size 2 in superpopulation - 0.5X 

The required 'marginal' distribution, the sex distribution (per child) 
in the superpopulation is then obtained as: 

Proportion of boys in superpopulation -1hu (1)+0.5Xh 
u 

(2) 

- 

=X 

Note that this is not the same as 

average proportion of boys per cluster in superpopulation 

= lh (1) + 0.5Xh (2) 

-X+0.5X(1-X) 

' 

- I-5X - 0.5X2 



- 143 - 

, -In the light of this example, let us now summarise our approach. 

The N clusters in the finite population are assumed to be a random 

sample from an infinite population of clusters., Letting 

Yi '0 (Y! 'Y, we are essentially assuming that the N vectors 
11. - -yiM 

I'( =1 (Y!, M 
1... 

N) are IID. Since it is rather non-standard to 

speak of vectors of different lengths as sharing common distributions 

we may split our assumption into two parts : (i) M, ... MN are assumed 

to be IID, with a common distribution hc (M),, say, (ii) yj ... yN are 

independent given M where the conditional distribution of yi given 

M depends only-on Mi and is given, say, by p(yilM i ). Hence 

Pp (y 
3. 

IM 
I 

)h 
c 

(M 

The target of interest is conceived of as the 'marginal 

distribution of y' in the superpopulation. This is obtained from 

p(X, jj) as follows. The distribution of the jth cluster member in 

clusters of size M' is defined as 

f, (y1my= P((Y,.,.. Y! -Jy 
vy! ý, ... yAYIM)'d ... 

"d' d ... d if11 J+ YI Yj-j Yj+j YM 

The'marginal distribution of y' in clusters of size M is defined 

as 

m 
f (YIM) -jfj (y 1 m) /m 

m 

The target of interest, the 'marginal distribution of y' in the 

superpopulation is defined as 

p(y) -Z f(ylM)h 
U(M) m 

where h (M) is defined in terms of hc (M) in (5.2). 

Note that, although in Example 5.1 Mi was a 'function' 

of yi , the above approach is applicable where yi and Mi are 

related in a general manner e. g. if school classes are clusters and 

academic performance then yi may depend causally on M 
2. . 
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The approach above is too general for our purposes, since it 

takes account of ordering within clusters. We'suppose that for 

practical purposes it is reasonable to assume that the yij are 

exchangebly distributed within clusters (e. g. Bellhouse et. al., 1977). 

In this case fi (yjM) = f(yjM), j-1,.. M. Finally, we make one 
further assumption. -We suppose that the within-cluster distribution 

of the yij is IID conditional on a random 'mixing parameter', ei. 

(Note that de Finetti's Theorem states that any infinite exchangeable 

sequence may be so represented, but in our case the MI are finite). 

One implication of this assumption is that intracluster correlation 

must be non-negative which is perhaps undesirable. A more general 
'marginal' model as in Royall (1976b) would not be so restrictive 
(note that our 'mixing' model may be extended as in Walsh (1947) to 

allow for negative intra-cluster correlations). However, our primary 

aim is intuitive clarification and we find results for our model are 
illuminating since we shall be able to distinguish naturally between 
'within-cluster' and 'between-cluster' components. The similarity 
between the results for 'mixing' models and 'marginal' models may be 

seen by comparing the results of Scott and Smith (1969) and Royall (1976b) 

for continuous variables and Brier (1980) and Altham (1976) for discrete 

variables. 

Formally, then, we consider a superpopulation model where 
(y, M) is assumed to be a realisation of (Y, M) where Y- (Yll. **Y AN 

and M- (Ml ... MN). For notational covenience we assume that the 

Y 
13 are continuous (vector) random variables. We consider two 

specifications of the joint probability distribution of (Y, M). 

Model I (the 'true' Model) 

There exist (q-vector) unobserved random variables 0i 

... N)- such that: 

conditional on 0- (Ol.. 
*6 N) and M the random variables Y, 

j 
i-1... N, j -'l ... Mi) are independent and Y 

Ij 
has p. d. f 

f(Y16ij. ý, ) indexed by the (vector) parameter ý,, 
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(2) conditional on M the random variables ei, (i -1... N), are 

independent with p. d. f's g(e ilMil ý2 ) indexed by the vector 

parameter *2 (again for notational convenience the 61 are 

assumed continuous random variables), 

(3) M 
l-*MN are IID random variables with probability mass function 

hC (MiIX) indexed by the (vector) parameter X. 

The joint p. d. f of (Y, M) is thus 

N 
HH f(Y hc(MiIX) d8i 

jmi ijl'i g(oilMi' ý2 

Model II (the IID Model) 

(1) The Y 
ij are IID given M with p. d. f. 

f 
o(ylelp, 

ý2 , X) mjf f(Yle, ý1) g(e IM'ý2 )hu(MIX)d6 (5.3) 
m 

where 

hu (MI X) -- 
Mh 

c 
(M 1 x) 

Z M'h (M' 
mi c 

(2) M 
1***MN are as distributed in Model 1 (3). 

The joint p. d. f. of (Y, M) is thus 

fo (Y if 
1ý1 

1ý2'ý )l hc (Mi I X) 

We now give some examples of our Model I. 

Example 5.2 

The conventional univariate one-way random effects model (e. g. 
Novick and Jackson, 1974, p. 314) 

Y ij 
12., M 1%, NID (0 i, ý 1) 

oil NID (*21'*22) 
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is usually expressed conditional on M. Tan (1978) gives the natural 

multivariate extension of this model 

Example 5.3 

Example 5.2 may be extended to allow for dependence of the 

intra-cluster correlation on M according to the usual power-law 

form (e. g. Hansen et al., 1953, p. 307) 

Yijl2,11 ru NID(Oj, ý, ) 

6ilE Il- NID (*21'ý22'i ý23 
) 

Example 5.4 

Example 5.2 may also be extended to the heteroskedastic case 

(e. g. Novick and Jackson, 1974, p. 318): 

NID(6 li'62i) 

where Oli and 62 i are conditionally independent given 

Gli 111 1%, NID (*21'*22) 

logo 2ilý 1%, NID (ý23'*24) 

It seems more natural to treat both 61i and 02 i as random 

effects rather than treating 6 11 as random and 0 2i as fixed (e. g. 
Scott and Smith, 1969; Rao et al., 1981). 

Before proceeding we comment again on what is the most unusual 
feature of our models, the fact that the MI are taken as random. We 

have made this assumption in order to define a marginal distribution f0 

irrespective of clustering. This assumption was also made by Fuller 
(1975, Appendix A) in order to facilitate asymptotic arguments. The 

assumption that the (0i, Mi) are jointly IID given (ý21ý) seems to 

us to be a natural definition of between-cluster exchangeability, a 
definition which has traditionally been probd1matic. For example, 
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Rao (1975b) makes the simplifying assumption that 0i does not depend 

on M 
3. and Bellhouse et. al., (1977) attach a rather artificial 

importance to the quantity max(M i ). In practice, of course, we shall 

eventually also need to make restrictive assumptions about the joint 

distribution of (Oi, M d. 

We assume that the targets for inference are the parameters of 
f 
0(*11ý21ý') 

in (5.3). Specifically, -as in Chapter 2, we shall be 
interested in the mean vector, u, and covariance matrix, E, of Y. 
We now show that under weak conditions the finite population mean, 
converges to U. We may show similarly that the finite population 
covariance matrix converges to E. 

Let NN 
Y. 

13 

m 
3. 

m 
2. 

where 
M. 

I 

jil 
y ijlm 1 

Then 

E IN ii i) =I 
ff"Y"Yle'Y 

g(61M'ý2 )hc (MIA)dedy 
m 

f 
Yfo(ylýP*2 X)dy 1, M'hc(M'IX) 

m 

ilE 

Hence, assuming the existence of fourth moments of MI-yi the Strong Law 

of Large Numbers implies 

a. sM 
Em i 

ýjlN - UE(M) 

j IF 

where almost sure convergence under Model I is denoted by a. s(I). 
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Similarly, assuming'the existence of fourth moments of 

a. sM 
Em i IN -)E (M) 

Hence 

_ a. s 

Let us now recall our assumptions about the sampling design. 

A subset s is selected from Us is a realisation of the random 

variable S, the distribution of which is defined by the sampling 

design p(SIM = M). The sampling design is assumed non-informative given 
M=M, i. e. Y and S are conditionally independent given 
M=M. Without loss of generality let s=n 

and write = (y I' )' and Y similarly. The observed data Y-s ll*-Yým _=S n is then d=(, ys, s, M) a realisation of D= (Y S, M) . The p. d. f. 
Z-S - 

of D under Model I is 

H PI (D) =f (Y 
ii 

je 
ilý1) g(ei Im 

i'ý2 )do p(Slý2) fl hc (mi 1 X) (5.4) 
UJ)ES 

and under Model II is 

IN 

p (D) = 
(i 

rl 
j)FS 

f 
o(yijlýl'ý2'ý) P(s Jýj) 11 hc NIX) (5.5) 

Now we should like to be able to make inference conditional on the 

sample s obtained. Therefore we should like (s, M) to be ancillary 
for the parameter of interest (see Section 1.2.3). (Note s always 
depends on M via U). Let us consider two restrictive assumptions 

about Model I. 

Assumption A01 and MI are independent, i-1... N, 

and X are Cartesian independent (Definition 1.1), 

where lp - (*19Y'. 

Assumption B the distribution of each Y 
13 

gives hf-M does not 

depend on M, i-l... N, jw1... Mip (except in so 

far as j< Mi), 

(iii) ý and X are Cartesian independent. 
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We shall consider theppractical interpretation of these 

assumptions shortly. We initially discuss their formal implications. 

Note that Assumption A implies Assumption B, because Y ij only depends 

on M via 01. Firstly, we show that under Assumption B (or A) the target 

of inference is a function of ý. 

Lenma 5.1 

Under Assumption B (or A) f0 (Y4, X) does not depend on X. 

Proof : 

Under Model II the density of Yij given M is 

f(Y ijl0i'Y g(OJMVý2 )dOi = p(Yijl*) 

say, under-Assumption B. 

Hence from (5.1) 

f0 (Yl*, X) = p(Yjý) Ihc (MIX) 
M 

= P(yl o 

does not depend on X. 

Now from (5.4) and Definition 1.2. (s, MI is ancillary for * under 

Model I if Assumption B holds and from (5.5) and Lemma 5.1., (s, 11) is 

ancillary for V under Model, II. Hence, according to the CQnditionality 

Principle we may condition on (s, ! j) when making inference about if 

Assumption B(or A) holds. 

We now, pose two questions : (i) is B likely to hold in practice 

and (ii) is there a weaker assumption which we might make such that 
(s, M) would still be ancillary for the target of inference? 
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(i) Validity of Assumptions A and B 

The important parts of assumptions A and B are contained in 

the sections (i).. Roughly, A makes the assumption that thecluster 

values yij are completely independent of cluster size whereas B 

allows the joint distribution of yij and. y, 3, 
(jOj') to depend on 

M. , in particular the intra-cluster correlation may depend on M.. 

It is important to note that these assumptions refer to the 
intra-survey dependence of the yij on the MI and not to an 
inter-survey dependence. There have been various empirical investi- 

gations of the inter-survey dependence of the y's on the M's 

For example, Hansen et al (1953 p. 588) grouped 1940 census data into 

equal size clusters of M households by order of enumeration,. for 

M-3,9 and 27, and then computed intra-cluster correlations for 

various variables. This permitted a hypothetical comparison between 

three surveys. On the basis of this and similar evidence Hansen et al 

state, for example : 'if the units included in the clusters are few and 

are immediately contiguous there will ordinarily. be a higher [intra-cluster] 

correlation... than when clusters are larger and there is a greater 

geographic scatter of the units' (p. 262). 

Such results are important in considerations of the optimal 
design of two-stage surveys (e. g. Hansen et al., 1953, p. 306; Cochran, 

1977, p. 244; Brewer et al., 1977). However, the same empirical evidence 
has been used to, justify models used for intra-survey comparison of 

estimators (e. g. Des Raj, 1958; Rao, 1967; Foreman and Brewer, 1971; 

Royall, 1976b; Cochran, 1977, p. 256). We use an example to emphasize 
the distinction. Consider two surveys of the same population, one of 
which uses census enumeration districts (ED's) as clusters and the other 

of which uses wards (comprising several ED's). In accordance with 
Hansen et al's statement on inter-survey comparisons it would appear_ 
almost axiomatic that the average intracluster correlation for the 
first survey would be not less than the average intracluster correlation 
in the second for any variable. However, consider just the first survey. 
In order to equalize workloads, ED's in homogenous areas are relatively 
large and ED's in 'difficult' areas, such as those containing multi- 

occupancy households, are relatively small. Hence for many variables 

r" T 
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the intra-cluster correlation may be higher for the larger clusters 

than for the smaller clusters in contrast with the inter-survey situation. 

In general it is not difficult to conceive of situations where 
Assumption A and B might fail to hold. For example, in national surveys 

with clusters as geographical regions MI will usually be larger in 

urban clusters than in rural clusters and many y variables may be 

correlated with the urban/rural dichotomy. However, such differences 

are usually allowed forý by stratification and Assumption B may be 

reasonable within strata. Some diagnostic checks of assumptions A and 
B are given in Sections 5.3 - 5.5 where, for a particular data set on 

schools, both assumptions seem plausible. 
I 

Even under these assumptions our model is still as general as 

most models in the literature (e. g. Rao and Scott's (1981) extension 
of Brier's (1980) model 

, 
to the case of unequal Mi 's essentially makes 

AssumptionA). If Assumption B does not hold then an approach as in 

Chapter 3 might be possible setting x li " yi, x2i -M1. 

A necessary condition for_(S, M) to be ancillary for the 
taraet of inference. 

We know that Assumption B is a sufficient condition for (s, 
JU) 

to be ancillary for the target of inference. A necessary and sufficient 
condition is that 

f0 (*, X) does not depend on x 

(ii) * and X are Cartesian independent. 
J 

We give two counter-examples to show that B is not a necessary condition. 

(a) If I is known then f0 (Yjý, X) trivially does not depend on X 

although Y ij and MI may still be dependent. 

(b) Let ;k take two values, X1 and 
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Let 
h(MIA) = -1 'M=1,3 if X 

2 

1 
=I, M-2,4 

. 
if X- X2 

Let 
f 

"Y161Y 9(61M'ý2 )d = fj(Yjý) if M-1 or 2 

f2 (YI*) if M=3 or 4 

Then 

f0 (Yjý, X) = 
If 

1 
(ylo +f 2(yW1 

/2 if X1 or 'X2 

Hence f0 does not depend on X but Y and M are not 
independent. I 

Such examples are, however, rather artificial and do not seem 

to possess any natural practical interpretation. We therefore feel 

that B is an adequately general sufficient condition for inference 

to be conditional on (s, M). 

For the remainder of this chapter we propose to evaluate the 

properties of standard estimators (i. e. estimators under the assumption 

that Model II is correct) under Model I subject to Assumptions A and 

B and under Model II. Given the argument above we shall evaluate 

the sampling distributions of estimators conditional on (s, M). 

5.2 General Properties of Standard Estimators 

The most general form of a standard estimator (i. e. an estimator 
based, on the assumption that Model II is correct) that we shall consider 
is g(T) , where g is a given real-valued function, T- (T,... T 

p 

ThýI h(yij) h-l... p, (5.6) 
(ij)CS 

and h is a given real-valued function. This definition includes means, 

variances, covariances, correlation coefficients and regression coefficients 
(c. f. Krew ski and Rao, 1981). For example, if h(y) - y/(ml+... m n) 

then Th is the sample mean. Note that in general h may depend on 
the quantities Ml*.. mn and n which might vary between samples, s. 
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We initially define some notation. 

Let 

s1= li; (ij) es for some 

s 2i ý {j ; ("j) c sl 

Without loss of generality suppose 

s {1... nl s 2i 
{1 ... mi 

Let 
nn 

mI mi I MUM (5.7) 
0 i=l Vl 10 

Let p and a2 be the mean and variance of h(y) in the superpopulation hh 
i. e. 

11 h=f h(y)f0(yjý, A)dy (5.8) 

a2 =f (h(y) -p )2 fo(yjý,, X)dy (5.9) hh 

where f is defined in (5.3). 

Let Th (M) be the intra-cluster correlation of h(y) in a 

cluster of size M under Model I, i. e. 

T (M) = corr h(Y ), h(Y.., )IMi - M] i0j, (5.10) h I[ ij 

We now consider the properties of the estimator, Th 

and then consider the more general estimator, g(T). 
J 

Lemma 5.2 

If Assumption B holds 

EI (T 
hls'-M) EII(T hls'll) 

Mollh 

n 
v+m (m T (M /M m 02 I(Th 

Is'M) m 
iii i i- h ol oh 

v ii (ThISID moah2 
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Proof : 

From Lemma 5.1, if B holds the distribution of Yij given 

M under Model I is f0 (Yijl*) . Hence 

nmi 
EI (T 

hls'!! 
) ý11 h(Y 

ij 
)fo(Yijl*)dY 

ij i1 j=l 

=Mo 11 

E II 
(T 

h1s'-M) 

nm 
vI (T 

hIs'M) ýII VI[h(Y ij )IM 
i=l j=1 
n 

+II cov I 
[h 

(Y ij ), h(Y ij - )IM 
j 

M 02 +2 h 'm i (m 
i-l)T h 

(M i )a 
h 

if B holds 

1+ Ein (M 1) T (M ) /m m a2 i i- hi o] oh 

nmi 
v II (T hl s'M) VII(h(Yij) lýJI 

m Cy2 oh 
Corollary 52 

If Assumption A holds 

V (T w1+ (M*-l)T m CF2 I hls'-M) 

I 

h] oh 
/ 

where Th (M) -Th does'not depený on M. We shall also require the 

covariances between the Th and Tk* The analogous results are 

given in the following Lemma. 

Lemma 5.3 

If Assumption B holds then 

n 
cov I 

(T 
hT k1s'M) 

1+1 M2. (m COT hk 
(M 

i 
)/M 

0M0a hk i=l 

I 
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where 
T hk 

(M) = cov I 

[h 
(Y 

ij 
), k(Y 

3-3 
)1 mi -1 m il 

/a 
hk' 

a hk ýf (h (y) - ji h) 
(k(y) - "k) fo(yjý, A)dy (5.12) 

Proof : 

If B holds then the distribution of, Yij given- M-M under 

Model I is f0 (Y 
ij 

1ý) 
. Hence 

covj[h(Yij) k(Y ij) a hk 
Now 

COV (T T cov, 
[h 

(Yij k (Y 
I h' ks '11) '- Ii 

ii i=l j =1 

n 
+II cov I 

[h 
(Y ij k (Yij, ) 

- jýj 
[1 

+ EMi(Mi-l)T hk(Mi)/mo]moohk 

as require4. 

To obtain corresponding results for g(T) we use a Taylor 

Series Linearisation. For this purpose we need to adopt a limiting 

argument. It is more straightforward to index the limits by n (as in 

Fuller, 1975) that by N as in Section 2.1. We therefore consider a 

nested sequence of finite populations, Un, containing Nn clusters, 

where each of the sets of finite population values Q, 11) obey Model I. 

In addition we define a sequence of sampling designs pn (SIM). 

Let Fn be the distribution of a statistic T- T(, ys) with 

respect to Model I conditional on (s 
n, 

Mn). We shall say that 

L 
T-Fa. s. 

if 
P (F 

nW- 
F(t) for all t 

where the probability measure is taken with respect to the joint distribution 

of 
_(s ,M). 
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We shall require the following three conditions. 

n 
mij 

a. s 
_ Cl: 'jh Ph hp 

n 
C2: nMa. 

s 
i[l + (M i-1)rhk (Mi)]a 

hk 
ýhk h, k -1... p 

n 2+6 C3: nI Ela hi - r1miph is bounded a. s h=1... p for some 6>0 
i-1 

where 
M. 

cl 
hi h 

These conditions seem reasonable for the h types functions that we 

shall consider. Generally h will either involve a denominator 

(Ea d-1 or (Imi-l)-' and hence condition C1 essentially just requires 

the existence of the moments of Y... Condition C2 involves a similar 

requirement in addition to the coefficient of variation of the MI 

being bounded and the Th functions being regular. Condition C3 is 

a standard Liapounov-type condition. 

Lenma 5.4 

If Assumption B and Conditions Cl, C2 and C3 hold then under 
Model I 

T 
L 

ru - ---*- N (0, E) a. s 

LTpP 

iwhere 

hk hk 
Proof 

Write 

where 

hi 

M. 
I 

hi = nahi -nI h(Y ij) 
j-1 
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I 

then 

I 
(t 

hil s, M) = run iph 

cov I 
(t 

hi' tkils, M) - n2m, (l+(m 
i -I)T hk 

(M i))Clhk 

from Le-a 5.3. 

The result*then follows by applying a Central Limit Theorem for independent 

non-identically distributed random variables (e. g. Krewski and Rao, 

1981, Lemma 3.1). 

In order to obtain the corresponding result for g(T) we need 

one more condition : C4 
_: 

g is a real-valued continuous function 

with continuous first and second derivatives at the point ý- (ý, ... p 

Lemma 5.5 

If Assumption B and conditions Cl - C4 hold then under Model I 

L 
r-[g(T) - gCll)] -* N(O, I a, s vn 

hk 
ghCV)gkCV)ýhk 

where gh(D is the partial derivative of g(T) with respect to Ih 

evaluated at T 

Proof : 

This follows from Lemma 5.4 by standard Taylor Series Linearisation 
(e. g. Raoj 1ý73, p. 387).. 

Corollary 5.5 

We may write 

VI[g(T)ls, l! 
] 

" 
[I 

+ I: Mi(Mi-l)T 9 
(Mj)/m6lmoEEO 

ki 

v 11 
[8 

(-T) I S, i! 
] 

16 m0 EEO ki 
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where 

9 
(M 

kl 
I, Clkl T 

ki (Mi) (5.13) 
kZ 

kI 'o Oki /Era 
kl 

OkL ý gk(")gX(ý)akZ 

Proof : 

From LemTn; a 5.5. 

vI (g(T)ls, M) =I gh(ý)gk(lj)ýhk /n 
hk - 

n 
gh(ý)gk(ý) I mi 

[I 
+ (Mi-l)T 

hk(Mi)] hk 
from C2 

hk i=l 

n 
m0 Eza hk + 

.1 
mi(b, i-1) 

Ia 
hk T hk 

(M 
i) 

1=1 hk 
[1 

+ Imi(mi-1), r, (Mi) m01a hk hk 

as required. 

Let us now consider the results of Lemmas 5.2 and 5.5. Under 

Assumption B we see that misspecifying the model as Model II instead of 
Model I only affects the variance of Th and does not introduce biis. 

For g(T) there may be a Imisspecification bias' but this of an order 

smaller than the effect of misspecification on the variance. This is 

in direct contrast with the results of Chapter 2 (e. g. Theorems 2.1, 

2.4 and 2.10) where the main effect of misspecification was in terms 

, of bias rather than variance. These results are, however, in accordance 

with the empirical work of Kish and Frankel (1974) who generally found 

negligible desigrz effects on bias(except for-the multiple correlation 

coefficient). 
On the basis of these results we propose in the remainder of this 

chapter (and also in Chapter 7) to sumarise the effect of misspecification 
by a single quantity. 

e 
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Definition 5.1 If Assumption B holds and T is a 'standard' 

estimator of then the (conditionaZ) misspecification effect 

of T is defined as 

meff(Tls, M) =VI (Tls, M)/V ii 
(Tjs,. ý) (5.14) 

Hence from Lemma 5.2. 

meff(T his'D "1+E mi(mi-14"Mmo (5.15) 

and from Corollary 5.5.1 11 

meff(g(T)ls, M) -1 1+ Emi (mi-l)T 
9 

(M i )/m 
0 

(5.16) 

If Assumption A holds then from Corollary 5.2 

meff (Thl S, M) -1+ (M*-l)T 
h (5.17) 

and similarly 

meff(g(T)ls, LA) -1 1+ (M*-l)T 
9 

(5.18) 

If the mI are all equal to m then m* -m and the misspec ification 

effect has the familiar form of a design effect for cluster sampling 

where T is the intra-cluster correlation (e. g. Kish, 1965,8.2). 

Let us consider this analogy more formally. 

Definition 5.2: Suppose p(sill) is a fixed size design of size 

n= n(m) . The design effect of T is defined as 

where 

d ef f (T Vp (T IX, ll) /V 
PO 

(T 

V (TIZ, 11) -I (T(ys) - i)lp(slM) 
pS 

-I T(Xs) p(al! j) 
S 

Vp (T (T QS) 
0 

)2 PO (SIM) 

0S 

To IT (y 
S) Po(SIM) 
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PO (sl! j). is the (simple random) sampling design which assigns equal 
probability to all possible samples of size n(M) from U, and the 
notation T(, ys) is used to emphasise that T depends on s. 

We now show why our results for misspecification effects 
correspond to formulae for design effects when mm 

Lemma 5.6 

Let pl(SIM) denote a with-replacement PPS epsem design, i. e. 

let S 
n, N 

denote the set of ordered subsets of {I 
... N) of size n. 

Let S1s; s MA) ;iCSn, N' JC Sm, M' iý 

Write ics it Ci, j) cs for some jcS 

Then scS 
ics 0 i)M 

. =o. 

Let P2 (SI!! ) derote the srswr design with same fixed size as p 

i. e. let S2 denote the set of all samples of size nm from U(M). 

nm 
Then p (Slc=m) if scS 2 

(wo 

= if sj 

Then the sampling distribution of ys under p1 obeys assumption 

and (2) of Model I with (M 
is yil Yimi ) substituted for 01 

and (y 
11 "' YNHN ) substituted for Similarly the sampling 

distribution of-y 
3 

under p2 obeys assumption (i) of, Model II with 

the same substituted'value for *., Furthermore the marginal distribution 

of y, j, which is the same under p1 and. p 2, 
does not depend on M and 

hence, under our analogy, Assuzption B holds. 
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Proof: Let 0, (Miq yi, yiM i=l ... N 

Then (1) conditional on ei (i e s) the components yj Of ys are 

independent under p with 

P(y ij = Ykiloi et) ý 11Mt if t=k for 1=1 Mt 

0 if t7fk 

and (2) conditional on M, 81 (1 e s) are independent with 

Ne -=6 IM), =M /M. t=l ... N 
itto 

The marginal distribution of Y ij 
(i e s)-is then 

P(y 
1 

Mk 
_ 1/ýo k--l ... N, 1=1 ... Mk 

= Yktlý! *) =K' 
ij M0 

Fpr p2 the components yij Of ys are iid with 

. P(Y 
ij Yki l/Mo k- 1 ... N, Z=1... Mýký 

Corollary 5. 

Formulae for design effects with respect to the designs p1 

and p2 of Lemma 5.6 may be obtained as particular cases of general 

formulae for (conditional) misspecification, effects using Models I 

and II. 

Lemma 5.8 

The only designs which are isomorphic to Models I and II 

in the sense of Lemma 5.6 and for which B holds are given by p1 

and p2 in Lemma 5.6. 

Proof 

In order for there to be independence within and between 

clusters in Model I, p1 must be of the form: 

p (sIM) =n a(M )(1 
) b(M, ) 

1 
ics 

iMi 
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where a(M i 
)and b(M 

i) are functions of Mi. The total sample size is 

then 

M0=I b(M 
i ics 

But this. is the, length of the. vector ys which has fixed length under 

Model I. Herce m0 must be fixed under p1 and, since the clusters 

are selected independently with replacement, b(M must be a constant, 

b (M 
i)=m. 

Similarly the number of clusters n must be a constant. 

Now the marginal distribution of a component y, j of ys under 

Pi is given by 

P(y 
ij =y ki 

1 ý) =a (Mk) /Mk k=l N 

If B holds this must not depend on ýk and henc. e p1 must be given by 

the PPS design in Lemma 5.6 Finally since the marginal distribution 

of y, j must be the same under p1 and p2 we must have p2 as given in 

Lemma 5.6 

To summarise, formulae that we shall obtain for misspecification 

effects will also be applicable to design effects under the design in 

Lemma 5.6 subject to reparametrisation. Note that design effects are 

often used for inferential purposes as proportional adjustments for 

simple random sampling variance formulae and in this sense are not 

dissimilar in-interpretation to misspecification effects. 

Let usnow consider more closely the formulae for misspecification 

effects. These depend on'the population structure through Th (M) and 

T9 (M) and on the sample, s, selected through the m 1. . If Assumption 

A holds then the form 1+ (M* - 1)T has also been derived by Campbell 

(1977), Holt (1980) and Rao and Scott (1981). Note that this differs 

from the formula 1+ (m--l)roh used e. g. by Kish et al. (1976). 

If we equate these terms 

1+ (M*-l)T =1+(; - 1)roh 
then Irohl - M*-' I-rl 

M-1 

>, 1r I 
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S ince I 

M* =m+ E(m -M)2/m > i0, m 

Hence Kish et al's (1976) roh will in general be greater than our T. 

From (5.10)- T (M) may be interpreted as a generalised h 
intra-cluster correlation. In the following lemm we show that the 

same is true for T9 (M) defined in (5.13) (c. f. Woodruff, 1971). 

Lemma 5.9 

If B holds 

T (M corr (Zij 
,AýI Mi) 

2-1 

where 

z ii - .1h 
(Y 

ij) gh(ma'-P) 
h 

Proof : 

From (5.13) and (5.11) 

T9 (M d-II gh(mo-l')gk(mo-p) cov, 
[h 

(Y ij ), k(Y ijoilll 
I gh(moogk(mcý 11)7hk 

hkhk 

= cov I[Zij, z 
2-1 'Im il 

/var 
. 

[ziil 

as required. _ 

All the results obtained so far in this section have only been 

based on the within-cluster exchangeability of'the Y 
Lj . Using the 6i 

we may now obtain another representation of the T'S- 

Let Phi ýEI (h(Y 
ij )lei) (5.19) 

Then if B holds 

(M v /(12 (5.20) 
hi I(llhilMi) h 
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i. e. Th measures the between-cluster variation in h(Y ij ) relative 
to the overall variation. Note that a2 may be decomposed into between h 
and within-cluster components 

az =V (v + EI(a2, IM, ) (5.21) 
hI hilMd h 

where a2 =V (h(Y (5.22) 
hi I ij) 

I ei) 

Analogous approximate results are also available for T9. 

Lemma 5.10 

If B holds 

(M i) =v ilg(U i )Im il 
/m 

0v Hlg 
(T)ls, h] 

where ui = (Uiý ... Uip) 

ih m0 li hi 

Proof : 

For Z.. defined in Lemma 5.9 
Ij 

Hence from Lemma 5.9 

EI (Z ij 
la 

i)-Egh (mo-lj) ljhi 

vI (I 
- gh(m oll)"hilMi) 

9dv (%0h(Yjj)) 
I F'h 

h 

vI (I gh (mall ) MO'jh i 
1A) 

h 

moV II(I gh (m 
0 u)T hls'-M-) h 

Now 
E I(Mollhi 

Im d- Moph 
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Hence VI(g(ul)lmi) 
T (K )I- 

9i moVIj(g(T)js, jj) 

as required. 

Note that this result does not involve partial derivatives 

and we suggest that it might have uses in variance estimation. 

In this section we have argued that given Assumption B for our 

Models I and II the main effect of misspecification may be summarised 
in a single measure. This'misspecification effect' depends in the same 

way'on thedesign for any statistic g(T). The only difference occurs 
in the intracluster correlations T (M) . In the remainder of this 

chapter we shall be concerned with the form of' T9 (M)' for various 

statistics gýT). Finally in this section, however, we consider the 
implications of misspecification when Assumption B does not hold. 

If B does not hold then f0 (Yl*, X) (defined in 5.3)) depends 

in general on X as well as ý. The target of inference is therefore 

generally a function of A: and ý and as argued in Section 5.1 (s, M) 

is no longer ancillary for this target of inference. Hence we consider 

properties of estimators unconditional on s and M. To see how 

different this situation can be we initially take an example. 

Example 5.5 

Let us adaptýExample 5.1. ' Suppose MI-1 or 2 with 
hc (1) -X, hc (2) -1- X*. Suppose that Y 

Lj -'. 1 with probability 

/ one in clusters of size 1 and suppose that in clusters of size 2 

p1 (Y il'yi2) - (0,0)iMi - 2] -1-X 

p[(yil'yi2) - (0.1)iMi - 2] mP1 (Y ii, y i2 (1,0)IM il - X/2 

Suppose that N-- and that we select just one cluster of size M 

with probability a for M-1 and 1-a for M-2. If M-2 

suppose we select one unit from the cluster at random. Let T be the 

single observed value yij . Then 
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EI (T) =a+ (1-a)X/2 

E ii 
(T) -X 

vI (T) = (1-a)X/2(1-X/2) +a+ (1-a)X2/4 - (a+(I-a)X/2)2 

V11(T) = X(1-A) 

Hence there is a misspecification bias unless a+ (1-a)X/2 -Xi. e. 
if a= X/(2-X) i. e. if the sampling is PPS. Note also that the 
'misspecification effect' above, VI (T)/V (T), is unbounded since 

as X-0, VI (T) -+ a(l-a) and V II 
(T) 0. More practically, 

suppose we select n such values independently. Then the misspecification 
bias of the sample mean is exactly as above wheareas the variances under 
both Models are of 0(n-'). This situation is more akin to Chapter 2 

than to other results in this section. 

One situation where the pý - misspecification effect will 

only act via the variance rather than bias is when the design is 

self-weighting. We now consider such effects for two self-weighting 
designs. For simplicity we restrict attention to the sample mean 

M. 
nI 

Ys 
ill jil 

Yijlmo 

where yi, is assumed univariate. Note that distributions will be 

taken unconditionally and the limits are evaluated as discussed 

after Corollary 5.3. Note also that finite moment assumptions as. ý 
in Fuller (1975, Theorem A) are assumed. 

Lemma 5.11a 

If B does not hold and the sampling design is the self- 
weighting PPS design given by p, in Lemma 5.6 with fixed m then 
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(ys) as N 

(y 
s 

nv I 
(y 

s 

11 
+I (M-1) TI 02/m as 

nv ii 
(y (12/m 

where p and a2 are the mean and variance of Y 
ij 

in the distribution 

f of (5,3) and 0 

T= corr I 
(Y 

ij 
Y! 

ii 

is evaluated with respect to the distribution hU (M) defined in (5.2) 

Proof : 

Let f (y IM) be the distribution of Y- given M. ij 3. 

i. e. f(ylm) = f(ylo'*l) g(OIM' ý2 )dO 

Let P(M) = yf(ylM)dy 

Then EI(y )= EIýEJEI(ýSjs, M)j ym s 

[n 
= EIJEI m P(m i )/nm 

NN 
-EIIM. U(M I M. 

IN 

i-1 LiNi. 1 11 
I 

ZMli(M)h 
C(M) as ZMh 

C(M) 

= Ell (M)h 
U(M) 

=p 
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(ys )=p as in Lemma 5.2. 

Let a2(m ). v olilmi) 
BiI 

a2(M E (crflM 
wII 

where E (Y 10 cý =V (Yijl6i) as in (5.19) and (5.22). 
I ij iLI 

Then 

v (y V {E (-Sls, M)l +E {V (Y 
IsIIY-II Sis, 

M)l 

n 
Jýin 

n 
V p(M )/n +E 02(M-)/n2 + a2(M )/n2MJ 

IIiIBiwi 

V II 

NNN 
)--)2/ 

N 

ill 
mip(mi)/ I Mij + E, Xm i(p(mi 11 Xm 

NN 
+ Ejýijj Mi(ma2(Mi) + a2(M mij/nm 

Bw 

where 

NN 

ill 
mip(mivil M. 

nV (Y, ) -)- EMON-11)2 h (M)/Eh (M) + EM(M02(M)+a2(M))h (M)/Eh (M)m I S. ccBwcc 

as 

provided nIN -+ 0 as N -* - 

nv I 
(YS Z (M) 2h 

u 
(M) 

+ E(ma2(M)+a&(M))hu(M)/m (5.23) 
B 

Now 

T- corr I 
(Y 

ij ly. ij 

= VI(U, )/a2 

. 
[Ecy2(M)h 

(M) 
Bu +r . 

(U (M) - j) 2hu (M) 
I 

IaZ (5.24) 

a2 . EaW2(M)h. (M) 
u 

+ Ea2(M)h (M) 
Bu + E(v(M)-Oýh (M) 

u 
(5.25) 
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Combining (5.23) - (5.25) 

nV I 
(ys (1 + (m--l)T)G2/M as required 

Finally nVII(ysl = a2/m follows from Lemma 5.2., '' 

LeTmna 5.11b 

If B does not hold and the sampling design is a single-stage 

clustered, design (where the clusters are selected by srswor) then 

EI (y as N 

E II(YS) =P-- 

nVI (y 
S) 

11 
+ E(Mi(Mi-l)T(M d) hi 

M1 02/1ý1 

nVII(yS) CF2/VM 

where 

jjM =E (M 
i), T(m i)=E21 Mi) /a2 

Proof : 

We use the same notation as in Lemma 5.11 

nn 
E, (; 

s)= 
Ej(. X M 

1. 
U (m 

3. 
)/ Xm 

il 
1= i=1 

., 
The (mill(mi), mi )) are IID with 

E (Mili (Mi)) - EMp (M) hc (M) 

- ZU(M)h 
u 

(M)EMh 
C(M) 

ý till m 

E(M - ZMh 
c 

(M) UM 
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Hence EI (y 
s Up m 

/UM as 

Ejj(ys) as in Lemma 5.2 

vV 
nj 

Mi,, ilin, Mi + EI(EM, a? /(EMi)2) (YS) 

In order to evaluate the first term we use a Taylor series expansion 
2 

of the ratio g(x, y) = x/y where g X(X, Y) = 1/y ,gy (X, Y) - -X/Y so 

nn 
nVI iIm illi mI nV I 

(EMiiii/O/P 
m 

+ nV (ZM /n)1121 112 - 2nljcov(ZM /n, EM /n)/112 
Iim il'i im 

V (M 2+ 02U2/U2 - 2pcov(M M )/112 
I lil'i 

"R mm ili, i 14 

where 

a2 = Var (M 
m 

Hence 

nv (y v (M "i )/112 +- ý2112/112 - 2pcov(MiliipM )/112 + E(M c; 3)/ij2 
IsimmmimiLm 

Now as in (5.25) 

G2, = 
[EI(Mill? 

) - 112pM + E(Mjcrý /p 
IIm 

Hence 

nV (y a2/11 + 
[E 

(M? vý) - V2U2 + a2 U2 - 2UE (M? pi)+2p2 2 
Ism111mmI 

-E (M p? ) + 1121, /112 iI MI m 

cy2/1, + 
[E 

(M (M -1)p? ) - 2jiE(M (M -1) mIii1. ii 

- 2112p + 112 2+ 02 11 2 211 
] 

/112 
mWm +1, ii m 

02/1, +2 m 
/11 

m 

C2/11 + a2E M (M -1)T(mi)] u2 m I[ iim 

+EI 
ými 

(M 
i-l)T(mi)l 

/P 
Mi CF2/11 m 

as required. 
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n 
nV ii(ys nV ii(p) + nE II[a2/ 

-, a2/1, m as 

Note that Lemma 5.11 also follows by applying a Taylor series 

linearisation to a special case of Theorem A of Fuller (1975) who obtains 

the asymptotic moments of the. sample mean per psu under Model I. 

Lemmas 5.11a and 5.11b suggest a form of robustness of our 

results to departures from Assumption B when the design is self-weighting. 

5.3 Misspecification Effects of Means 

In this section we suppose that yij is univariate (i. e. p- 1). 

The extension to general p is straightforward. We consider 

M. 
nI 

Tym = 
ii, 

-ii, Yij, " 
0 

(5.26) 

as an estimator of the mean of f0 defined in (5.3). 

Note that T YM may be expressed in the form Th of (5.6) 

with h(y) - y/m, 0. 
It follows from Lemma 5.2 that misspecification of 

Model I as Model II does not introduce any bias under Assumption B. 

T YM 
is unbiased for V under both models under this assumption. 

Lemma 5.12 

I 
If Assumption B holds 

meff(Tymis, M) -1 +'Erýi(uij-1)T 
ym 

(M i )/m 
0 

where 

Ym (M i corr I (Yij Y. Im 
I . -i 

Corollary 5.13 

If Assumption A holds 

meff(Tymls, li) -1+ (M*-l)TyM 

(5.27) 

(5.28) 

(5.29) 
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Proof : 

This follows from (5.15) and (5.17) on the basis of Lemma 5.2. 

An alternative representation of T YM 
(M) may be obtained as in 

(5.20) by letting 

vi .EI (Y Ulad 

V (Y I ii 
I od 

a2 (M V (11,1 Mj BII 

a2 I -WIM*. ) 
W(M EI13. 

Then if B holds 

a2 .Vy CF2(M + a2(M. ) 
BW1. 

and from (5.20) if B holds 

(M) - 02(M)/02 Jýa B 
(5.30) 

2(M)/a2 aý 

If A holds 02(M) . Cr2 , a2(M) - a2 and' BBw 

Tym w CF2 /a2 
B 

The above results depend fundamentally on Assumption B. Recall that the 

major component of Assumption B is that. the marginal distribution of 
Y 

1J 
does not depend on Mi (except that J<mi). In particular for 

there to be no misspecification bias in T YM we need E(Y Omi) free 

of MiI This might be checked diagnostically by plotting 

M. 

yyi rmý I 

against M 
3. . If B holds the regression function E(yilMi) should not 

depend on M 
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We give in Figures 5.1 - 5.3 such plots for a National Survey 

of Attainment conducted in Wales in 1960. The sample design was a 

stratified cluster sampling design where clusters were schools. The 

strata were defined by geographical region , type of school and sex 

of school. The schools were selected from a Ministry of Education list 

by using a fixed sampling interval for each stratum. For sampled schools 

all children aged over 14 were selected, i. e. mMI. After excluding 

children with missing values on the variables of interest a total 

of 3053 children remained, divided into n 50 clusters. The M 
1. 

's 

differed greatly ranging from 5 to 136 (m 61.1, m* - 77.8). 

The variables considered were 

AM : Attitude to Mathematics -7 point scale. 

TM : Mathematics Test - 85 item test, scores out of 85 

W: Welsh reading test - 35 item test, scores out of 35. 

The effect of stratification was investigated but did not affect the 

conclusions and strata are not indicated below. 

Cluster Mean 

Yi 

IA 

** ** ** 
** **- 

* ********* *** 

* ** 
a* ** * 

** 

/ 

21 Figure 5.1 : National-S-Ur e- 
AM-Attitude to Mathematics 

1 

50 100 mi Cluster Size 
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Figure 5.2 : National Survey 

Cluster Mean TM - Mathematics Test 

Yi 

60 

40- 

20 

ýO 100 M Cluster Size 

Cluster Mean 
Figure 5.3 National Survey 

y dr 
W-Welsh Language Test 

20. 

10. 

4F 0 1* 
50 100 mi Cluster Size 
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Firstly, we note that the (conditional) standard errors of the 

yI as estimators of the Vi are relatively small being approximately 
1.2VM 

I, 
15.2M 

I and 6.3M 
I 

for figures 5.1 to 5.3 respectively. 
Indeed the standard errors are less than the minimum calibration of the 

computer plotting routine if Mi>, 36,24 or 29 for Figure 5.1,5.2 or 
5.3 respectively. There is no evidence in Figure 5.1 of E(Jyilmi) 

depending on M Note that the dependence of V(yiJ11i) 
_on 

M 

is permissible under B. In Figure 5.2 the regression of yi on M 

appears to increase slightly with M The clustering of schools into 

selective grammar schools with high yi and other schools with low yi 
is apparent. Assumption B appears (just) untenable here because 

mathematical ability is related to school size (probably because of 

urban/rural differences). Figure 5.3 again does not appear to present 

any evidence against Assumption B. Note that in seven schools/clusters 

all children scored zero on the Welsh test (and in two schools almost 

all scored zero), indicating the strength of the inter-cluster differences 

on this variable. 

It is also interesting to be able to check the validity of 
Assumption A since the form of the misspecification effect in Corollary 

5.13 is rather simpler than that-in Lemma 5.12. -It is clear from (5.31) 

that a sufficient condition for the simpler form of misspecification 

effect to hold is that a2(M) does not depend on M. A natural w 
diagnostic check of this condition is obtained by plotting 

M. 

CT4 (Yij ji)2/(mi-1) (5.32) 
jml 

against 14 If A holds_then the regression function 

E 41mi) Ej(aflni) . a2(M, ) should not depend on H. . Such plots ILwL 
for the National Survey of Attainment data are given in Figures 5.4-5.6. 
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Figure 5.4 - National Survey 

AM-Attitude to Mathematics 

* 

2 

1- 

IF 

2f 

ir 

Cluster Variance 
50 100 m Cluster Size 

yigure 5.5 - Nat ional Survey 

-------, TM-Mathematics Test 

400- 

3001 

200 

100. 

100 mi Cluster Size 
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Cluster Variance 

L- Figure 5.6 - National Survey 

W-Welsh Reading Test 

so- 

Ar 

60 
if 

t 

40 

20 

Ef 
a L- 

*. ", *a it . io it Pf ' 09 
50 100 M Cluster Size i 

In none of these plots does the regression function clearly 

deviate from the horizontal. This is in contrast to what we would 

expect if the intra-cluster correlation were in fact a decreasing function 

of M (see Section 5.1) in which case we would expect E(aflM to i 
increase monotonically to an asymptote, a2 

In the example above, Assumption A seemed reasonable. In 

general, however, T YM 
(M) will depend on M, say 

T (M) - f(H) (5.33) 

In Section 5.1 we distinguished between the intra-survey 

dependence of T (M) and the inter-survey dependence. We noted that 
YM 

there has been a certain amount of empirical investigation of the latter 

dependence but not, to our knowledge, of the former. We noted 

also that these two dependences might be very 
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different essentially because in the former case the Mi might be 

'proxies' for -background variables highly related to the yij - 
We also argued, however, that stratification might account for such 

relations between the M1 and yij . For example, in the 1975 

Family Expenditure Survey the average size of psu's (M i) per stratum 

ranged from 3,800 in rurual Southern Scotland to 241,000 in Greater 

London. Across the whole population we might find that the intracluster 

correlation was higher on some variables in a London psu than in a 

Southern Scottish psu of much smaller size. However, within strata 

we might find that the intra-stratum dependence of T YM on M was 

similar to the inter-survey dependence. This would be the case if the 

cluster sizes were 'randomly., -distributed' irrespective of the yij 

values. On the basis of this argument we now investigate some of the 

literature on the inter-survey form of f(M). 

f_(M) mi a+ b/M ; a, b>0 

This is suggested by Cochran (1963, p. 256). 

(ii) 42 (M) - aM -b ; a, b>0 

This is suggested by Hansen et al (1953). It originates from 

work by Smith (1938) who performed an empirical investigation of crop 

experiments where Y referred to yield and the clusters were plots 

of size MI. Further empirical evidence from crop experiments was 

provided by Mahalanobis (1944). 

Let 

11 -I Yij /M i 

Let 

vI (i ilmd (5.34) 

a2(M H+ a2(M wiB 

(i + (mi-l), r (m))a2/mi (5.35) YM i 
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On the basis of his empirical evidence Smith (1938) proposed the 

following 'law': 

g(M. ) - a2k-b 0 
3. L 

This model and its generalisation 

g(M aa2ý-b (5.36) 

have been widely used in the survey sampling literature (e. g. Cochran, 

1977, p. 256). (Note that the special value a-1 follows from 

g(l) Combining (5.35) and (5: 36) we have 

T Yni . (M) . (aM7b+l_, )/(M_l) 

aM -b =f2 (M) as m 

Such a connection between Smith's (1938) law and Hansen et al's (1953) 

model was demonstrated by'Brewer et al (1977). Note also that if 

T YM 
(M) = fl(M) is substituted into (5.35) then 

g(M i 
(l +, (Mi-1) (a+ b/M 2) 02/M i 

(a + (1--a+b)/M 
i -b /M 

1 
2)02 

whiih Cochran (1963, p. 256) argues may also be approximated by 

g i) _ CM-, 
d (M where 0*d<2 

as in (5.36) 

(iii) 
3- 

(M) .1_ aMb ;0<a, b<1 

On the basis of farm survey data, Jessen (1942) proposed a 

model, which in our notation may be written 

a2 (M) - CMb w 
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This implies 

f(M) = (a2_cMb)la2 

=f3 (M) where a- c/az 

f3 (11)ý gave a better fit to Jessen's data than f2 (M) but 

f3 has the theoretical. disadvantage, noted by Hendricks (1944), 

that f3 (M) as M violating the constraint T 

As an illustration, Table 5.1 contains some estimated values of 

T YM 
(M and corresponding MI from Hansen et al (1953) for variables 

with low, medium and high intrýtcluster correlation. 

Table 5.1 Intra-cluster correlations of selected characteristics of 

selected cities over 100,00 

T Ym 
(m 

i) 
Average Rental 

M Males 25-34 Males in Value 
i 

Labour Force 

3 
. 045 

. 12 
. 45 

9 
. 026 

. 10 
. 36 

27 
. 018 

. 07 
. 

25 

62 
. 0079 

. 03 
. 12 

These values are plotted in Figures 5.7-5.9. For this data it 

appears that the best-fit is obtained in Figure 5.9 for f3 (M), the least 

theoretically attractive function. 
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Figure 5.7 
I 

linear it T=f1 (M) 

"eooe 

109(T 
ýi gure 5.8 

linear if Tf2 (M) 

log (M) 

log(l 

linear it Tf 3(y) 

log(m) 

Figure 5.9 
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In the case of area sampling it is natural to view Model I as a spatial 

process (Cochran, 1946; Whittle 1956,1962) where the intra-cluster 

correlation is-, related to the spatial correlation between members of 

the same cluster. Let Y(x) be a random variable indexed by the 

planar coordinates x. We assume the process is stationary: 

E(Y(x)) '-'ý 11 for all x 

V(y(x)) = a2 for all x 

and isotropic: 

co , rr(Y(x), Y(x')) = P(s) 

for all x and xI a distance s apart. 

Consider a cluster defined by a geographical region ni of area Ai 

Let 1 1, =f 

A dx 

,I 
Y(x) dx/A, 

the mean value of Y in the cluster. 

Then under B, 
-the 

intracluster correlation in n 
3. 

is 
- 

I 
Ti =IV 01 

1) 
Ar 2 

=fn 
fS, 

cov(Y(x), Y(xI) dx dxI/a2A 2 (5.37) 

Let a be the maximum distance between two points in 11 and let K (s) 
ii 

denote the distribution of distances between two points chosen randomly 

in 01. Then, changing variables, we have from (5.37) 

ai 

01 Tif p(s) K (s) ds (5.38) 

This formula indicates how Ti is a weighted mean of the spatial 

correlations between points in Q,. Whittle (1956) suggests considering 

a class of regions &I 
i of the same shape so that the size of each region 

is specified by a i. I 
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Then A, = A(a 
ia12 

A(l) 

Ki (s) = K(s/a 
i 

)/a 

and, changing variables in (5.38) to t= s/a,, we have 

Ti-o P(a i t) K(t) dt (5.39) 
I fc 

Hence, for example, if 

P(S) = as- 
b 

-b 
then Ti = aa ifo t K(t) dt 

-b 
ce Cc i 

or if P(s) = O(s-b 

--b then Ti O(a 
i 

In general-T i 
is a convolution of p and K. If p has the more familiar 

exponential form 

(s) e- 
Xs 

then T 

fo 

e 
Xait 

K(t) dt 

a Laplace transform of K. If, for example, X is a Gamma distribution 

with parameters 0 and r then 

(Xa 
i+ 

ß)-, 

Alternatively suppose 11 
1 

is the one-dimensional strip (O, a i) 
then 

fa 

0c 
T, =2a 

if t 
. 

-X(t-S) ds dt/a 2 
c 

2 
cl 

e-; 
kt) 

dt/a 2), 
fo 

i 

=2 a- 
1A- 

2(1 - e-Xai) a 
-2 

2a as a 

Hence the functional form Of T may be quite different to that of 
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If p and the population density are uniform across clusters (within 

strata). Then 

and for example if 

then 

as in f 2(M) - 

cc Mi I 

p (s) 'M as-b 

-b/2 T CC 

The population density 6=M /aý may, however, be related ii2. 

to Mie. g. in an area with high 6i an interviewer may be given a 

random sample of addresses from a cluster with high Mi since the 

cluster area will be relatively small and vice versa. The intra-cluster 

correlation will then only have the above form if pi(s) - p(sV67, 
1) since in this case 

1 

Ti -f Pi (ait) K(Odt 

f0 
pi(VRi/Si t) K(t)dt 

P(Vg. t) K(t) dt 
01 

In general the functional form f(M) may be investigated by plotting 
(defined'in 5.32) against M. as in Figures 5.4-5.6. 

1 

. 
IM. ) . cr2(M ) 

111 

= a2(l - f(M i 
)) 

The estimation of aZ is discussed in Section 5.4 and Chapter 6. 

Note that for weighted least squares fitting 
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V-(aýJM V (aýJM +E (V(ý? 10 )IMi) 
1 2.1 111i 

-1 V (aflm + o(mi 

Hence the weights'depend mainly on the model assumptions about 

v WIM 

5.4 Misspecification Effects of Variances 

As in Section 5.3, we suppose yij is univariate. 

Let 
M. 

nI 
Tyv =II (Yij-Tym),, (Mo-., ) (5.40) 

i=l j=l 

where T YM 
is defined in (5.26) 

We consider T,, 
v & 

the variance of f 
0 

non-linear function 

Th in (5.6) as say 

to approximate T iv 

s an estimator (the standard estimator) of a2 9 
defined in (5.3). We could express T Yv as a 

g(T) , of additive statistics of the form 

in Krewski and Rao (1981). But we prefer instead 

by 

M. 
nI 

Tyý =II hv(yij) 
i=l j-1 

where 

v 
(Y) . V)2/(M 0 -1) 

and v is the mean of f 

te then approximate the misspecification effect of T YV by that of 
T-. Note that the fact that T- is not an observable statistic YV YV 
does not matter since we are only interested in the theoretical 

properties of T We sus'pect that the moments of T- are a better 
YV Yv 

approximation to the moments of T YV than the usual Taylor series 

approximation but we do not intend to prove this. We shall however 

demonstrate the asymptotic equivalence, in a certain sense, of the 

misspecification effects of T by T- in Theorem 5.23. The main Yv Yv 
advantage of Tyý is that it is of the additive form (5.6) and hence 

we may use the simple results of Section 5.2. 
1 
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From Lemma 5.2 it follows that misspecification of Model I 

as Model II does not introduce any bias into T Y; under Assumption B. 

In fact 

Lemma 5.14 

E I(T4 s, M) -E ii 
(Tyýjs, M) -m0 02/(m 0 -1) (5.40a) 

If Assumption B holds 

where 

Corollary 5.15 

n 
meff(T -1s, ll)-= 1+ Mi(mi-l)Tyý(Mi)/M (5.41) 

Yv 0 

Tyý(Mj) = corr, 
I(y, 

j-ý1)2, (y, j; -11)21M il 9j0 jl (5.42) 

If Assumption A holds 

meff(Tyýjs, M)- 1+ (M*-l)T - (5.43) 
YV' 

Proof :I 

ý% . These results follow from (5.15) and (5.17) 

In order to express T -(M in terms of 0 we introduce 
YV 3. 

some notation. 

If 

Let k 3i ýE I[ 
(Y ij -11 i )31e 

il 

kE- 3aý 4i I[(Yij-lli)'Ioi] I 

Y(m v (02 
I 

IM 
i) 

k 4W (M i)-EI (k 4ilMd 

k (M )-E (U, -U)41M, 3a4 (M 4B i I[ 
I-B 

c1 (M i)= COVI[(U, -11)2, C; IM, 
] 

c2 (M i)= covj[lii, k 3ilMi] 
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Lemma 5.16 

If B holds the fourth cumulant of f0k4, obeys the following 

identity for any MI. 

k4ýk 4W (M i)+k 4B (M i)+ 3y(M i)+ 6c 1 (M i)+ 4c 2 (M i) 

Proof: 

k4ý Ej[(yij-11)41Mj 3C74 

= EI[E, ((Yij- 11i)4 + 4(Y ij-11i )3(p, -U) + 6(yij-p, )2(p, -p)2 

4(Y ij-ý'i. 
) (P 

1 -11)3 + (U, -U)41e, )IM 
il 

- 304 

EI[k 3aý + 4k (pi-p) + 6a4(p, -U)2 + (p, -V)41M 3CF4 4i +I 3i I 

k (M )+ 3y(M )+ 3(14(M )+ 4c (M )+6 2(M. )a2(M. ) 4W iiwi2i aý iBi 

6c (M +k (M )+ 3a4(M )- 3(a2(M )+ a2(M 
2 

1 4B iBiBiw 

=k 4W (M i)+k 4B (M i)+ 3y(M i)+ 6c 1 
(M i)+ 4c 2 (M i) 

Lemma 5.17 

If B holds 

T (M 2a4(M +k (M )+ 2c (M + y(M )]/(2a4+k4) 
YV- B 4B i1i 
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Proof : 

Tyý(Mj) - corr, 
I 

(y, 
j-11)2, 

(y, 
j; -11)21M ill 

var I» 
E[(y, j-1j)210, 

] IMJ 

=- F-- (5.44) 
var (y, j -11) 21 M 

varj[a? + (pi-4)21M 
]/(2a4 

+k 
1i4 

[2a4 
(Mi) +k (M )+ 2c (M )+y (Mi)] / (2Cr4 +k B 4B iIi4 

Corollary 5.18 

If A holds 

Tyý = (2a4, + k+ 2c + y)/(2a4 +k) (5.45) 
B 4B 14 

We shall considerthese results later in this Section but 

initially we consider diagnostic checks of Assumptions B and A. In 

order for there to be no misspecification bias we need E(h 
v 

(Y ii 
)IMi) 

to be free of M1. This requirement may be checked by plotting 
M. 

&I 
(m 

0 -1)h vi 
(m 

01 
fi 
V(Yij)/Mo 

(5.46) 
j=l 

mi 

j11 
(Yij-p), /Mo 

where M. n 1. IIY.. /m (5.47) 
i=i j-1 13 1 

against Mi*I If B holds the regression function E((m 
0 -1)h vi 

IM d 

should not depend on Mi (assuming the effect of estimating U is 

negligible). Such plots are given in Figures 5.10-5.12 for the 
National Survey of Attainment data. - 
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Figure 5.10 - National Survey 
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(M 
0 

1)h 
vi Figure -5-12 - National All! =re 

W-Welsh Rea4Lng Test 

200 

100 

50 100 M,, Cluster Size 

As in Figure 5.1, there is no obvious evidence in Figure 5.10 

that Assumption B is violated. The trend in Figure 5.2 is no longer 

evident in Figure 5.11 nor is the selective/non-selective school 

clustering. Figure 5.12 seems broadly similar to Figure 5.3 although 

there is possibly a decrease in the regression function. 

Again the form of the misspecification effect in Corollary 5.15 

is rather simpler when Assumption A holds. Note that from (5.44) 

If 
Ty; (Mi) -1- EI[VI[(y, j-ýj)2jejjM', /(204+k 4) (5.48) 

An estimator (predictor) of Vj[(y, j-11)216 il is 

MiM 
a2, .12 v 

(Yij -1j) 2-I (Yik-U)2/m /(Mi-l) (5.49) 
j=l 

I 

k=l 
il 

Hence the validity of Corollary 5.15 may be checked by plotting 62 
vi 

against- M If Assumption A holds the regression function E(82 IM i- vi i 
should not depend on Mi (assuming the effect of estimating jj is 

negligible). Such plots for the National Survey of Attainment data are 

given in Figures 5.13 - 5.15. 
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Figure 5.13 - National Survey 

AM-Attitude to Mathematics 
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2 X10-4 vi I 

2 Figure 5.15 - National Survey 

W-Welsh Reading 
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As in Figures 5.4-5.6, there is little evidence here of the 

regression 
I 

functions 
I 
depending on Mi 9 let alone increasing to 

I 
an 

asymptote. Here again Assumption A seems ýlausible. 

It 
Wenow compare the misspecification effects of T YM and T Yý- 

We may restrict our comparison to that of T YM 
(M i) and Tyý(Mi) since 

the misspecification effects in (5.27) and (5.41) have the same form. 

It is helpful to consider some special cases separately. 

Case 1: A holds, a2=a2kkN PiW9 31' 3W' 

It A holds 

T, T YM Ym 

Tyý(M) ='T YV 
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Algebraic Comparison of-T YM and T YV 

From (5.30) and (5.45) 

t 
T YM ý-- cr B 

Z/a2 (5.50) 

yv ý- (2a 
B4+k 4B 

)/(2a4 +k4). (5.51) 

If kk0, as for example in the case when Y is distributed 
4B ý4W 

normally within clusters and U is, distributed normally, between 
i 

clusters, then 

YV Ym 

T Hence T YV % Ym 

Indeed, since T YM 
. is usually 'small' in most surveys, T TV will be 

'very small'. This is in accordance with Kish and Frankel's (1974) 

conjecture that deffs for complex statistics are smaller than deffs 

for means. 

In the general non-normal case 

TT2 (5.52) Y; ý ý2 
+T YM 

2K 
B+ 

(1-. r Ym 
)2 l1w 

) 

Ym 

where KB is the kurtosis of Vi between clusters 

KW is the kurtosis within clusters 

It is clear that T YV will only be greater than T Ym 
in very exceptional 

cases when KB is very positive and KW is very negative (that is close 

to -2). 
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Graphic Comparison Of T YM and T Vý 

From (5.27) and (5.42) we may compare Tym and T YV by comparing 

plots of Y 
ij against Y, 

J,, 
(J+J') with plots of (Yj _ 11)2 against 

(Yijl - 11)2. 

Example 5.6 

Consider a population consisting of a mixture?, according to 

equal proportions, of f ive types of cluster within which Y 
ij 

is 

I 
uniformly distributed on the intervals (0,2), (1,3), (2,4), (3,5) 

and (4,6) respectively. In Figure 5.16 Y 
ij 

is plotted against 

Y, 
jt 

(J+J') and within-cluster 95% probability squares are 

indicated. In Figure 5.17 (Y 
ij _ 11)2 is plotted against (Y 

ij V )2 

(where V=3). In this figure within-cluster probability density 

contours are hyperbolae. The largest shape in Figure 5.17 

corresponds to the two extreme clusters (0,2) and (4,6). These 

two clusters tend to dominate Figure 5.17 and to attenuate TW 
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Figure 5.16 - Mixture of Uniform 

Distributions 

95% Probability regions for Y, Yl 

ij 

11)2 ij I 

9 
Lgure 5.17 - Mixture of Uniform 

Distributions 

i% Probability regions for 

r- V) 2, (Y v- V) 2 

5 

5 (Y 
ij 11); d 

1 
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The two Figures graphically illustrate hOW T may be higher 
Ym 

than T TV 

A similar comparison would be obtained it the within cluster 

distribution were normal. In this case the constant probability 

contours in Figure 5.16 would be circles of constant diameter and 

the contours in Figure 5.17 would be approximately hyperbolae (the 

(Y 
ij -02 have non-central chi-squared distributions), the tails of 

which tend to attenuate T YV' 

Case 2: A holds, U, = V, i=l N 

As in Case 1, if A holds, 

T Ym 
(M 

i)T Ym 

T YV 
(M 

i)r YV 

Also in this case, from (5.30), 

YM 

Algebraic Comparison Of T YM and T ylý 

From (5.45) 

T y/(2a 4+k+ 3y) (5.53) 
YV W 4W 

Hence it y+O then T Ylt >T Ym contradicting Kish and Frankel's (1974) 

conjecture that deffs for complex statistics are not greater than 

deffs for means. 

We may interpret the expression for T YV 
in (5.53) by recalling 

that T 
Ym may be viewed as a measure of homogeneity of cluster means 

11 1 
(if A holds) 
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corr (Yii, Yjjd (J+J, ) 
YM 

An analogous measure of homogeneity of cluster variances a2 

may be defined as 

T Yv2 2- corr, [(Y, 
j _ Ui)2, (y 

ij, - 111 )21 

= var I 
(a 

i 
2)/varj[(yij _ Ili)2] 

=w4+k 4W 
+ 3y) 

again assuming that A holds. We see from (5.53) and (5.54) that 

in Case 2 

T 
Y%r Yv2 

Graphic Comparison Of T Ym and T yir 

As for Case 1 we illustrate how T YM and T YVI may be compared 

graphically, by example. 

Example 5.7 

Consider a population consisting of a mixture (according to 

(5.54) 

arbitrary proportions) of three 
. 

types of cluster within which Y 
ij 

is uniformly 

distributed on the intervals (0,6), (1,5) and (2,4) respectively. 

In, Figure 5.18 Y ij 
is plotted against Yijv Q+JI) and the concentric 

within-cluster 95% probability squares are indicated. We note that 

Y, 
j and Y, 

J, are uncorrelated not only within clusters but also across 

the whole population as we would expect if T YM ý 0. In Figure 5.19 

(Y 
ij - U)2 is plotted against (YJ, - V)2 (where p=3). As in Figure 

5.17. within-cluster probability contours are hyperbolae and 95% 

probability regions are indicated. In Figure 5.19 there is a 
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Figure 5.18 - Mixture of 

Uniform Distributions 

9504 probability regions 

for Y, Yl 

ij 

ij , -1j) 

9 

Figure 5.19 - Mixture of Uniform 

Distributions 95% probability 

regions for (Y u)2, (Y' - 02 

5 

5 9 Cii - lj)z 
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positive, though low, correlation between (Y 
ij - U)2 and (. YJ, - U)2 

indicating a positive value Of T YVI, 

In order to recognise the sign ol the population correlation 

in diagram such as Figure 5.19 we note that if W denotes the 

within cluster distribution and B denotes the between-cluster 

distribution and if Z and ZI are two random variables such that 

cov v (Z, Z') = 

then 

v (z cov(Z'Z" Co WB 'Z') 

= cov B 
(E 

W 
(Z), Ew (Z'» 

In Figure 5.19 the pairs (E w (Z), Ew (ZI) are the cluster centroids and 

are denoted by *. Clearly the centroids are positively correlated in 

this figure and so T YT, 
is positive. 

Example 5.18 

Consider a population consisting of a mixture of three types of cluster 

within which Y 
ij 

is normally distributed with zero means and standard 

deviations a=1,2,3 respectively. In Figure 5.20 Y 
ij 

is plotted 

against Yijv (J+jl) and the concentric 95% probability circles are 

indicated (with radii V"-2 log(. 0r) a=2.45a). Yij and Y, 
j, are 

uncorrelated both within clusters and across the whole population. 

In Figure 5.21 Z= (Y ij - V)2 is plotted against Z' = (Y, jl - 11)2 

(where p= 0). Constant within-cluster probability density 

contours are defined by the equation 

log(=t/C, 4) + (Z + Zt)/CI2 = 

for different constants C, since Z/a2 and ZI/a2 are independently 
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v 

Figure 5.20 - Mixture of 

Normal Distributions 

95% confidence regions 

for Y, Yl 

ij 

ij 0- 11)2 

Figure 5.21 - Mixture of 

Normal Distributions - 

Constant Probability Regions 

for (y _ V)2, (y, - U)2 

20 40 (Yij - U)2 
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distributed within clusters as chi-squared random variables with 

one degree of freedom. It appears to be a difficult mathematical 

problem to find the value of C corresponding to a 95% probability 

region. Instead we mark the contours in Figure 5.21 defined by 

log(ZZ, /a4) + (Z + Zt)/a2 = log(4) +4 

which pass through the points M2,2a2) and which def ine regions all 

having the same within-cluster probability content. As in Example 5.2 

the position of the centroids indicates a positive (but low) value of 

T YVI compared with a zero value Of T Ym* 

Case 3: A holds 

We now consider the general case when A holds. As in cases I 

an d 2, T ym 
(M 

i)= TyM p, Tyý(Mj) - Tyý . 

Algebraic Comparison$ Of T Ym and T YV 

From (5.30) 

T YM ý'- aB 2/a2 

In this case Ty TF 
is a combination of the expressions (5.51) and 

(5.53) obtained in the last two cases. 

Let T YVI ": (2a 
B4+k 4B 

)/(2a4 + IE 
4W +k 4B 

Let rv= corr I 
1(l'i 

- 11)2, criZ] 

=cI (2a 
B4+k 4B 

)-i Y-i 

Then from (5.45) 

Tn =W 
VI 

T 
Yvl 

+ 2r 
v 

(w 
V1 

T 
Yvl w 

v2 
T 

Yv2 
)i+w 

v2 
T 

Yv2 
(5.55) 

where w (2a4 +k+k )/(2a4 +k 
V, 4W 4B 4 

w (2a 4+ IE + 3y) / (2cr4. + IE 
v2 w 4W 4 
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and T Yv2 
is given in (5.54). 

Note that in Case 1 

IwV, 
=I, -rYV2 =0, r Yý = Yvl 

and in Case 2 

T0wT '2 T 
Yvl ý v2 Y; Yv2 

In Table 5.2 we give some parameter estimates based on 1975 

Family Expenditure Survey data (for the method of estimation see the 

Appendix). The FES sample design is described in Kemsley (1969). 

To summarise, 1782 adminstrative areas of Great Britain were divided 

into 168 strata using regional, area-type and economic stratification 

factors. Within each stratum a single adminstrative area was 

selected as a psu by PPS and retained in the sample for four quarters 

according to a rotation scheme which replaced 42(= 168/4) psu's 

each quarter. Within each psu a new ward or group of parishes) was 

selected as a ssu by PPS at each quarter. Within each ssu, 16 

addresses (households) were selected by srs. Hence the overal design 

was epsem. 

We make the simplifying assumption that each cluster consists of 

41 households selected within the stratum in the given year, 1975. 

This yields 7054 households (out of 168 x 16 x4- 10752 possible 

households) divided into n- 168 clusters of approximately equal size 

(m - 42.0, m* - 42.6). We thus ignore stratification, differences 

between psu's within strata, differences between quarters and non-response. 

These simplifications mean thatiýthe mI and n are large enough for 

the sampling errors to be small. The variables considered were: 
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V1 : normal gross income 

V2 : expenditure on food 

V3 : total expenditure 

Logarithms of each variable were taken to remove skewness. The 

cluster sizes, Mi , vary from about 3000 in rural areas to about 

250,000 in the GLC. We may therefore expect Assumption B to be invalid 

for the variables of interest although given Lemma 5.11 and the 

self-weighting design we. might hope that this does not matter too much. 

From Table 5. Ywe-sie-e-iýiat 

YV T Yv2 

The fact that T YV 
is mainly a function of the dispersion in cluster 

variances (as measured by T Yv2 
) is to be expected. For, when the 

effect of clustering is not 'too great', the population moments a2 

and k4 are approximately equal to the within-cluster moments aW2 

and k 
4w and so w 

vl 
and w 

v2 
will be approximately unity (as above). 

Furthermore, unless the within or between cluster kurtosis is severe, 

TYvl will be approximately equal to T YM 
2 which will be very small 

Cas above). Hence we might expect T YTF 
to be'dominated by T Yv2* 

Table 5.2 - Parameter Estimates for the Family Expenditure Survey 

Variable Y T YM w 
vi 

T 
Yvi rv 

A 

w v2 
T Yv2 T Y; meff(Tým) meff(Ty; ) 

log(vl) 
. 032 . 993 . 001 -. 301 . 941 . 004 . 0033 2.325 1.137 

log(V2) 
. 016 . 921 . 000 -. 026 . 971 . 027 . 0267 1.675 2.112 

log(V3) 
. 031 . 981 . 001 -. 112 . 942 . 007 . 00721 2.284 1.300 

T 
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It is clear from the above that T YV 
depends fundamentally on the 

joint distribution of and q12. By means of five examples we now 

suggest how various relationships between Vi and a- i 
2might arise. 

y 
ij 

has a Poisson within-cluster distribution with parameter 

Then 1j, = a, 2 
i 

(ii) Y, 
j 

has a lognormal within-cluster distribution which varies 

only in its scale parameter between clusters. Then a12aV12. 

Scatter diagrams of Vi (= yi) against a12 (see 5.32) for 

two variables, which we might expect to be lognormally distributed, 

are given in Figures 5.22 and 5.23. In both examples (i) and (ii) 

and in these scatter diagrams 11 1 and a12 are related monotonically. 

In this case (V 
i-02 and a12 will be related non-monotonically 

and we might expect rv to be small. This situation is illustrated in 

Figure 5.24. 

Figure 5.24 

a2 

I 

li li i 

0.2 

- 

Ile now give three examples where Vi and a12 are not related 

monotonically. - 

In Figure 5.25 is plotted against a12 for the variable 
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a12x 10-2 

cluster variance 
Figure 5.22 - General Household Survey 

Y= Gross Value of Property 

11,, cluster mean 

2 Figure 5.23 - General Household Survey 

cluster variance Y Gross weekly income of head of 
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(iii) QContinued) 

TM (juathematics testj ; from the National Survey. OX Attainment 

data. Two groups of clusters (schools) are evident. A simple 

model for such data is as follows. 

TM scores are distributed in the population according to the 

distribution F defined on the interval [a, b] (a=10, b=80). 

For schools in group 1, TM scores are distributed according 

to F truncated above by Ci (* b). Hence and a12 increase 

as ci increases and so cy 12 
increases as V increases in group 1. 

For schools in group 2, TM scores are distributed according to 

F truncated below by ci (>, a). Hence pi increases but a12 

decreases as ci increases and so a12 decreases as Vi increases. 

in Figure 5.26 2 is plotted against (V 
i- 11)2and the 

relationship is roughly monotonic since lies between the 

values for the two groups of schools. In this case we would 

expect rv to be non-negligible. 

(iv) In Figure 5.27 V^ i 
is plotted against 2 for the variable W 

(Welsh reading) from the National Survey of Attainment data. 

A very simplified model is as follows. 

Individuals in the population are either 'Welsh speakers', who 

always score W=b, or 'Non-Welsh speakers' who always score W=a. 

It the proportion of Welsh speakers in the i 
th 

cluster is pi 

then 

11, = (1-P 
i 

)a +pi 

a12= (b-a)2 Pi (1-P 
i) 

= (Iii- a)/(b-li i) 

In Figure 5.27 a line corresponding to a--4, b=24 is drawn. 
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Figure 5.25 - National Survey 

Y= TM - Mathematics Test 

500 Cýo (U, _ 11)2 
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Y=W- Welsh Language 
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(Continued) 

Since the distribution of pits is not symmetric (there are 

more non-Welsh speakers than Welsh-speakers) the relationship 

bet ween a12 an d (Ij 
i- V)2 as depicted in Figure 5.28 is non- 

monotonic and is not unlike Figure 5.24. 

(v) In (iv) the within-cluster distribution of W is a linear 

transformation of a Bernoulli distribution. This may be 

generalised to the situation where the population is a mixture 

of two groups with means, a and b, and common variances C2. 

If the proportion of group 2 in the i 
th 

cluster is pi then 

11, = (1-P 
i 

)a +pi 

a121= C2 + (b-a)2p i (1-P i) 

= C2 + (11 
1- 

If E(p i)=0.5 then 

ji = (a+b) /2 

and a12= C2 + (b-a)2/4 - (V 
i- U)2 

1 

So a12 is linearly related to (U 
1- 11)2 

Moreover a12+ (U 
i -U)2 is constant and so T YV 

=0 (see Lemma 5.17) 

even though -r Ym 
f 0. In general if E(p 

i+0.5 
then the 

relationship between a12 and (U 
i- V)2 will not be monotonic 

as in Figure 5.28. 

Geometric Comparison of T Ym and., T y ýr 

We indicate how T and T may depend on the joint distribution Ym Ti 

of U and a2 by example. 
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Example 5.9 

Consider two populations 

Population 1-a mixture Cin equal proportions) of six clusters within 

which Y 
ij 

is uniformly distributed on the intervals (- r3, 
- 4) 

(-l, 0), (0,1), (l, vT), (yT, r3) respectively. 

Population 2-a mixture (in equal proportions) of six clusters 

within which Y 
ij 

is uniformly distributed on the intervals (-r3, -r3 + 1), 

C- VY + 1, - VY + r2) 
, (- r3 + V2-, 0) , (0, r3 - 

r2) 
,( 

r3 
- vT, r3 

- 1) , 

(a - 1.4) respectively. 

The marginal distributions of Vi and a12 are the same in both 

populations. Hence T Ym 
is the same in both populations, as can be 

verified graphically by comparing Figures 5.29 and 5.30. However, 

2 and (Ili - V)2 are negatively correlated in population 1 whereas 

they are positively correlated in population 2. By inspecting 

I, 
Figures 5.31 and 5.32 it appears that 

Y,: 
is greater in population 1 

than in population 2. This is somewhat unexpected since from (5.55) 

we might expect T Yf 
to be greater when rv is positi. ve. 

To investigate the dependence Of T YV on rvj consider the 

special case c2=k YB ý- k, 
Yw = 0. Then from (5.45) 

2a 
B4+ 

2c +y 
-4 

+ 6c + 3y 2a 
1 

2a4(T 2- 1) 
1 Ym 3 
3 2a4 + 6c + 3y 

Now a2, -T 
YM 

and -y are held constant across our populations. So if 

T YM 
>1 14 = . 

58 T YVI 
decreases as c1 or rv increases, whereas if 
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Figure 5.30 - Population 2 
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Figure 5.31 - Population 1 
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T 
Ym <1 1r3 -Ty, increases as cl or rv increases. 

Figures 5.29 - 5.32 have been drawn with high values of TYM 

for graphical simplicity and the latter case applies. However, 

in practice Tym is unlikely to be greater than . 58. This example 

illustrates the dangers of drawing general conclusions from such 

graphical comparisons. 

Case 4: B holds but'A does not hold 

There seems to be little point in extending the algebraic or 

graphical comparisons of the last sections, since in this case we 

would need to model several functions of M, for example aB 2(M), 

c1 (M) and y(M),, even when normality is assumed. However, it is 

possible to extend the spatial process argument of Section 5.3 

We may generalise (5.39) to 
1 

T hi 

f 
Ph (a, t) K(t) dt 

0 

where Ph (s) = corr[h(Y(x)), h(Y(xl))] 

and s is the distance between x and xl. 

For a stationary stochastic process 

k 

k 

k+ 2k 2 

Phv 
22 11. 

k+ 2k 
42 

where k2, R4 are the (common) univariate cumulants of Y(x) and Y(xl) 

and k 
11 and R 

22 are bivariate cumulants. In the case of a Gaussian 

process kk0 and 22 4 

(5.56) 

(5.57) 
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13hv 
(S) P(S)2 uniformly in s 

Hence 

Tyvi 

fp 
2(a 

i 
t) K(t) dt (5.58) 

0 

Ymi f rom (5.39) 

Hence Kish and Frankel's (1974) conjecture that deffs of complex 

statistics are less than deffs of means applies. In the non-gaussian 

case we may write P hv (s) in terms of p(s) as in (5.52) and argue 

as in Case 1 that PhV(S) will only be greater than p (s) in very 

extreme cases, so that again we would expect the conjecture to 

apply. We consider two examples. 

Example 1: P(s) = as -b 

phV(s) = a2 s-2b 

ai cc Mi 

-b/2 Then T Ym 
(M 

i cc Mi 

T Yi (M i cc M 
i-b 

The constants of proportionality may be taken as unity if we assume 

T Ym 
(1) - TY; (l) -1. Hence not only is Ty; i 

less than TyMi 

uniformly in M i- but Ty; ýi also decreases at a faster rate than 

0 
'rymi as MI increases. 

Note, however, that the analogy with the model of Smith (1938) 

described in Section 5.3 seems to fail. From (5.34) - 

Ym (M i)v i(vilmi)/az 

(5.59) 

IVI (i 
i'mi) 

/a2 
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Smith (1938) argued reasonably that V (j, lMi) > I, G2/M i so that the 

coefficient of Mi in V i1mi) should lie between -1 and 0. - 
In our notation 0$b<2 But the same argument. would suggest 
that the coefficient of Mi in T,, ý(Mi) should lie between -1 
and 0 i. e. 0<b, <1 which is inconsistent. 

Example 2p 
hl 

(s) =e -AS 

h2 
(s) = e-; 

)LB 

(I cc Mi 

K(t) N gainma ($, r) 

Then T Ymi «" (1 mii+ ß)- 
r 

T Y; vi 
9; (2XM 

i*+ )-r 

Assuming that the effect of 0 is negligible for large MiI 

Ymi 
C, mi _r/2 

Yýri , 'i -r/2 

In this example T yii 
is again uniformly less than T Ymi 

but now 

decreases at the same rate. 

We now establish some preliminary results in order to prove 

(5.60) 

Theorem 5.22ý which shows that the meffs of T and T- are asymptotically 
Yv YV 

equivalent in a certain sense. First of all Lemma 5* 19 gives f ormulae 

for the first two moments of a quadratic form. These formulae reduce 

to the standard results for normal random variables (e. g. Searle, 1971, 

p. 57) as a special case. 
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Lemma 5.19 

Let X1... Xn be independent random variables with zero means, variances 

a12 and fourth cumulants, k 
41 

(i=l ... n). 

Let A 
ij 

(i, j=l ... n) be constants. 

Then E( 
ii 

A, 
j 

X, Xj) A,, a12 

2222 
var( i 

A, 
j 

X, Xj) 2, J A Cr ia+jAiik 41 

Corollarv 5.20 

If A 
ij =Wiwi and Y= Zw 

iXi 
then 

, E(y2) = Ew 
12 cr 12 

-, 
var (y2) = 2(Zw 

12a1 
2)2 + Ew 

14 
ii 

41 

In order to prove Lemma 5.6, we shall require the following 

generalisation of Cauchy's inequality. 

Lemma 5.21 

Let Z1Z be random variables (not necessarily independent) with 

finite n 
th 

moments. 

Then 

n 
Zi (Z n)] 1 /n 

E[ 11 3$[ 11 E (5.61) 
J=l J=l 

Proof 

(5.61)-is true for n=2 since it is then equivalent to Cauchy's inequality. 

Suppose (5.61) is true for n. 
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Then 
n+l n 

n+l n 

E[ 11 Zj <E [( 11 Xi)nj n+l [E (X 
n+l 

n+l)] n+l 

i=l i=l 

by Holder's inequality 
n n+l 11 

< II E L(X n n+l E (X n+l i n+1 

by assumption 
n+1 n+l 

1 
II E(X 

ý, 1, i=l 

Hence (5.61) holds for n+1 and Lemma 5.71-follows by Induction. 

Lemma 5.22 

Let Z1 *** Zm be random variables (notýnecessarily independent) 

which have ac on marginal distribution with moments: 

Vr '= E(Z i 
'r) <- r=1,2 ... 

and cumulants kr; r=1,2 ... 

Let ZZ 
i /m have moments -p and cumulants k 

Then 

kr4, kr r=1,2 

Proof 

Let ýzM be the characteristic function of the common marginal 

distribution of Z1... Zm and let ýz (t) be the corresponding cumulant 

generating function. 

iz -t ýz (t) = E(e J) 

YO = log ýzM 

Similarly let 

E 
izt) 

IýZ, M= log q(t) 
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Then 

iz; t/M ý-z M= E(H e3 
i 

[11 E (e izjt 
)] 

I/In 
by Lemma 5.5 

i 

1/m 

= (t) uniformly in t 

Hence Pr 
1< 

'pr r=l, 2 ... 

and since log is a monotonic Increasing function, 

ft(t) = log 

log 

*Z 
IM 

and kr<kr r=1,2 

In order to demonstrate the asymptotic equivalence of meff(T Yv) 
and meff(T Yv 

) we recall the limiting argument of Section 5.2. 

We consider a nested sequence of finite populations Un obeying 
Model I and a sequence of designs Pn(sIjj) selecting a fixed number, 

n, of clusters. 

We assume 

a. s 
C4 mf/n <- as N r. - 1,2,4. where the limit 

iCS 3, mr 

is taken with respect to pn(sl2j) and hc(Mi) . Assumption C4 

seems reasonable since mi < Mi and so 

Zmf/n /n 

and by the Strong Law of Large Numbers EM r /n converges almost i 
surely provided appropriate moments of hc (M) are finite. 



- 218 - 

Hence Em 
ir 

/n is bounded above and below and so will only fail to 

converge if the sampling designs depend on N in a peculiar 

'non-monotonic' manner. 

If Assumptions B and C4 hold then 

a. s. 
meff(T ý-Is, m) - meff(Ty Is, M) 0 as N 

Yv v 

Proof Let w, /M m i 

z y 11 ij ij 
m i 

Xý EZ /M 
i 

Then 
n 

T 
YM pE 

i=l 

and 

T 
Yv 

ZE(Y, 
j 

Tym)2/(m 
0-1 

Tv, - "o (T 
YM _ 11) 2/ (m 

0 

T 
yiý -m0 (Ew 

ixi 
)2/(mo - (5.62) 

Under Model I, Z 
ii 

Z 
imi 

have a common marginal distribution (given 

s and M), if B holds, with mean zero, variance 02 and fourth cumulant 

k for i=1 ... n. Let a2 and k be the variance and fourth cumulant 4h 4Xi 

of Xi (given s and M) Then from Lemma 5.22 

a xi 
2 

1< a2 

k 
4Xi <k4 
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Now X1-Xn are independent (given S and M), with zero means. 

Hence from corollary 5.20 

var I 
E(I: w iXi 

)21S, M 2(Ew 
12a xi 

2)2 + Ew 
i 

4k 
M 

152 a4(Ew 1 
2)2 + (Ew 

1 
4) k4 

2 U4(Em 2)2/m 4+ (Em 4) k /M4 
10140 

It follows from Assumption C4 that 

n2var 
[(Ew X )2 IS, M C, = 2a4 P 2/ P4 (5.63) 

Iii m2 ml 

where C1 is a constant 

From--Lemma 5.2 we obtain 

nvar, [TY,,, j s. M]= nC 2 (EM i+ 
EM 

i 
(M 1- 1) T YOMEMi - 1)2 

a. s., C0+ (11 11- )T2 
2 ml m2 mi Yl mi 

C3 (5.64) 

where C2 and C3 are constants. 

From (5.62) we obtain 

n[var (T 
;0 

(Tyý 
Iy 

JS, M var IIs, 
M)j 

m2 
=n 

1-(zmo-- Cii-), 
7 var I 

C(Ew 
ix 

)2 1 S, ýü 

2m 
0 

cov (T (Ew X )2 
mI YO, iiIS, 

DI 

m2n 

l< (m 
0 
_, )z var, [(Ew 

i, xiIS, !! I I 

2m 
+m01 [var 

I 
(Ty,, I 

s, 
'M ) var I 

MW 
ix1 

)2 
0 

s. 00 (5.65) 

from (5.63) and (5.64). 
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But the previous argument is also valid for Model II. Hence 

nvar II 
ITYV Is" 

-M 
1 2ý C4 ,a constant 

and 

n[var ii(Tyvl., s, M)- var ii (TY, Is, M )] a. s. )0 (5.66) 

The result then follows from (5.65) and (5.66) using Definition '5.1' 

and noting that C3 and C4 are non-zero. 

Theorem 5.23 demonstrates, the almost-sure convergence of 

the meffs of T and T- as n increases. The rate of YV YV 
convergence is of order 0p (n 

Finally, to make a finite sample comparison between the two 

meffs we give the exact meff of T YV 
in Theorem 5.24. 

If B holds 

n 
EI (TYVIS, M, e) = C12(1 .- Ein i (M i -1). r Ym 

(M 
i 

)/(M 
0 -1)M 0) 

(5 «. 67) 
1 

E ii 
(TYvIs, M, ý) = Cr2 (5.68) 

and the (conditional) meff of T 
Yv 

is 

meff(Tyvls, M, *) = var I 
(TYVIS, M)/var 

ii(Tyvl 
S, M) (5.69) 
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where 
n 

var I (Tyvls, M) E (2m 
0 m, 2(mo - 2m i )a 

B 
4(M 

i) i=l 

4momi (m 
0- 

2m 
i)aB 

2(M 
i 

)a 
W 

2(M 
i) 

2momi (m 
0- 

2) aw 4(M 
i) 

+mi 2(m 
0-mi 

)2k 
4B 

(M 
i)+mi 

(m 
0- 

1)2-k 
4W 

(M 
i) 

mi (m 
o 

2m 
i, + 2m 

02- 
2m 

omi- 
4m 

0+ 
3m 

i 
Mm 

i) 

+mi (4m 
02+ 

2m 
o 

2m 
i -, 2m 

om12- 
lom 

0Mi+ 
6m 

i 
2)C 

1 
(M 

i) 

4m 
i 

(m - Mm -mi)c2 (M i 
)) 

(m 
0+ 

Em 
i 

(m 
i- 

1) T 
Ymi 

) 21 /M 
0 

(M 
0- 

1)2 (5.70) 

var II 
(Tyvls, M) =k4 /m 

0+ 
2C4/(m 

o- 
1) 

Proof: Using the same notation as in Theorem5.23 we first establish 

(5.67) 

EI E(EW 
ix1 

)2 is'! 11 = EW 
1 

20 
xi 

2 from Corollary 5.20 

where a2E (X 2 
xi Ii 

Imi) 

=EI [E((X 
i-11 1 

)2 + (Ili-11)210 
i)I 

mil 

I= 
EI[ai2/mi + Ol 

1- 11) 2 IM 
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=aw 2(M 
i 

)/m i+aB 
2(M 

i) 

= a2/m i+ 
(m 

1- 
1) aB 2(M 

i 
)/M 

i 

= a2(l + (m 1- 1) T YM 
(M 

i ))/m i from (5.31) 

Hence 

EI [(EW 
ix1 

)2 Is 
ILI] = a2 I: m i 

(1+(m 
i- 

1)T 
Ym 

(M, ))/MO2 

02(m +Em (m 1)T (M ))/m2 
01 1- Ym i0 

Hence from (5.40a) and (5.62) 

(5.72) 

(5.73) 

EI ETY� , S, 311 =m0 a2/ (M 
o- 

1) - C2(M 
0+ 

EM 
i 

(M 
i -1)T YM 

(M 
i» 

/m 
0 

(m 
0 -1) 

CF2(1-Em (m - 1)T (M )/M (m 
ii Ym. i00 

We now evaluate the variance of T 
YV under Model I. From (5.62) we 

have 

10 , (ZwiXi)21. q, Kl/(mo-1) var [Tyvls, Lll = varI[TY, ý1s, K1 - 2m cov[Ty., 

+ M2 var 
C(Ew X )2 _1)2 0111 

ls, mll/(Mo 

And from Corollary 5.20 

2a 2)2 + Ew 4 varj[(EwiXi)21SIH 2(Ew 
i xi ik 4Xi 

where k 4Xi = EI[Xi4lMi] - 3aXi4 

= EICE[(Xi-, ji)4 + 4(X 
1- 11 1 

)1(11, -p) + 6(X 
i-ii i)2 

(11 
i-1j) 

2 

4(X - 11 ) (ii - IJ) 3+ (4 _V) 
41 oi] 1 Mi] _ 3a 4 

iiii xi 

(5.74) 

(5.75)' 

= EI C3,: y14/Mi2 + k4 
i/mi 

3+ 4k 
31 

(11 
1-11) 

/m 
12+ 

6cr 
12 

(11 
i-1j) 

2/m 
i 

+ (Ili-11)4lMi] - 3aXi4 - 

(3a w 
4(M 

i)+ 3y(M i 
))/M 

12+k 4W (M i)/Mi 
3+ 4c 2 (M 

i 
)/Jn 

12 

+ 6(c 1 (M i)+aw 
2(M 

i )a 
B 

2(M 
i Wmi +k 4B (M i)+ 3a B 

4(M 
i) 
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- 3(a 
w 

2(M 
i 

)/M 
i+aB 

2(M 
1 

))2 

k 
4B 

(M 
i)+ 

6c 
1 

(M 
i 

)/M 
i+ 

3y(M 
i 

)/M 
12+ 

4c 
2 

(M 
i 

)/m 
12 

+-k 4W 
(M 

i 
)/m 

i 
(5.76) 

We note, as a check, that k 4Xi ý- k4 if m, =1 from Lemma 5.16. 

Combining (5.73), (5.75) and (5.76), we obtain 

var [(I: 
w X )2j, j'M +Em 4 2a4(m 

01 
(M 

i- 
1)T 

Ym 
(Mi)ý /M 

0 

Zm 
i 

4(k 
4B 

(M 
i)+ 

6c 
I 

(M 
i 

)/M 
i+ 

3y(M 
i 

)/m 
12 

+ 4c 
2 

(M 
i 

)/M 
12+k 4W 

(M 
i 

)/M 
i 

3)/m. 4 (5.77) 

We now evaluate the second term in (5.74), 

" (EwiXi)21S, M )210,! 11/(M covjTyý COVI 
cl: l: z2 

if(Ew 
x- 1) 

ii10 

= Esw 
12 cov I 

(Z 
ij 

29xi 21ä, M)/(m 
o- 

1) 

since cov I 
(ZiJ2, WiX iwkx kl6'M-) 2- 0 if i+k 

Now 

(5.78) 

cov I 
(ZiJ2, X12lg, M) = cov, [E, (Zij2.1()i), E(X12['()i)lii I MI 

+ EICCOV(Zij2, X12joi)lg, M] (5.79) 

We shall require the following moments of Z 
ij 

EI (Z 
ij 

10 
1)v i-ii 

/ 
(5.80) 

E (Z 21E) )= (V -p)2 +a2 I ii iii 

E (Z 31() Ol U) 3+ 3(vt 11) a2+k I ii 1 31 (5.82) 

EI (Z 
1 

410 
1)= (11 1-4)4 + 6(V i _4)20 12+ 4(p, -ii)k 31 +k 41 + 3cr 14 (5.83) i 
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Furthermore 

EI (X 
12 

E) (Ij j) 2+ai 2/M 

and so from (5.81) 

covj[]gl(Zij2l()i) E(X 21E) Is'M [(1,2 +2 cov 

(vi-U)2 +i 2/m I. 4, Ml 

=k 4B 
(M 

i)+ 
2a 

B4 
(M 

i)+ 
(Di 

i, + 1) c1 (M 
i) 

/M 
i 

+ Y(m i)/Mi 
(5.84)' 

Now 
, 

cov I 
(Z 

ij. 
2, Xi 21E) 

i)= cov I 
(Zij2,1: Z 

ik 
2+ 

_E 'Z ik 
Z 

ik 
lo 

i)/m 12 
k k+k' 

= Cvar 
I 

(Zij210 
i)+ 

2(m 
1- 

1) cov I 
(zij2, Zijlo 

i)EI 
(Z 

iji 
01 J/m 

12 

= 
[4 (11 

1- p) 2CF 
12+ 

4(11 
1- 11) k 

31 +k 41 + 2cr 
i 

+ 2(m 
1- 

1) (2 (Ij 
i- P)a 12+kU 

)01 
1- 11)] /M 

i 

from (5.78) - (5.81) 

= [4m, (p 
i- p)2a 12+ 

2(m 
i+ 

1)(11 
1- 11) k 31 +k 41 + 2ai4]/mi2 

Hence 

Ej[covj(Zij2 
, X12lEyIS, ý11 = 

[4m, (al32(Mi)aW2(M 
i)+c1 

(M 
i 

)) 1, r 

+ 2(m 
i+ 

1) c2 (M 
i)+k 4W 

(M 
i)+ 

2y(M 
i+ 

2a w 
4(Mi)]/mi2 

(5.85) 

Substituting -(5.84) and (5.75) into (5.79) 

COV I 
(ZiJ2, Xi 219, M) =k 4B 

(M 
i)+ 

2(a 
B 

2(M 
i)+aw 

2(M 
i 

)/M 
1 

)2 

+ 5) c1 (M 1 MM i 

(rg i+ 2)y(M 
i 

)/m 
12+ 2(m i+ 1)c 2 (M i )An 12+k 4w (M i )/m 12 

(5.86) 
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Substituting (5.86) into (5.78) 

cov , 
Nv uwixiflq, 

ýHl = E(m 
i 

3k 
4B 

(M 
i 

)'+ 2m 
i 

3(a 
B 

2(M 
i+aw 

2(M 
i 

)/M 
1 

)2 
i 

+ (m 
i+ 

5) mi 2C 
1 

(M 
i)+ aj i 

(m 
i+ 

2)y(M 
i)+ 

2m 
i 

(m 
i+ 

1) c2 (M 
i) 

mk (M ))/m2 (M. (5.87) 
i 4W 100 

Now 

var (T 
-Is, 

M) =m var (Z 21M )/(m - 1)2 ii Yv 0 ij 10 

=M0 (k 
4+ 

2a4)/(m 
0- 

1)2 (5.88) 

Hence from (5.41) 

var I 
(T 

Y; ý 
I, 

-M) 
= (1 +. Em 

i 
(m 

i- 
1) Ty ;ý (m 

i 
)/M )m (k 

4+ 
2C, 4)/(m 

0- . 1)2 

= 
EM 

o 
(k 

4+ 
2a4) + Em 

i 
(m 

i- 
1)(2a 

B 
4(M 

i) 

k 
4B 

(M 
i)+ 

2c 
1 

(M 
i)+ Y(m i 

))]/(m 
0- 

1)2 (5.89) 

from Lemma 5.17 

Substituting (5.77), (5.87) and (5.89) into (5.74) we obtain (5.70). 

The momentsof T Yv under Model II in (5.68) and (5.71) are obtained 

directly from classical theory. 

In Table 5.3 we give estimates of the misspecification effects 

of T- and T for the Family Expenditure Survey data. The estimation YV Yv 
procedure is described in the Appendix. It is clear that for this data 

the estimates are very close. 

Table 5-3. - -Estimates of misspecification effects for FES data 

Variable Y meff(T -) 
Yv meff(Tyv) 

log (Vl) 1.1366 1.1374 

log (V2) 2.1123 2.1121 

log (V3) 1.3004 1.3005 
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5.5 Misspecification Effects of Covariances 

It is now sufficient to assume that yij is bivariate, i. e. 

p=2. We label the components (x ij, yij ). Let 

nm 
T XYC ýI (xij-TXm)(yij-Tym)/(m 

0 -1) 
j=l 

where 

Ty = EZx /m T zzyij/m 
0 YM 0 

We consider T xyc as an estimator 

the covariance between X and Y 

is, of course, a generalisation of 

T Yv =T YyC . As for T Yv . 
we shall aý 

where 

(the standard estimator)of aXY 
for f0 defined in (5.3). T XYC 
T Yv defined in (5.40) since 

? proximate T XYc 
by 

TXyý h (x ij - Yij 
i=i 

j =i 
c 

c 
(x ij, Yij) = (x ij-Ix )(yij-iiy)/(m0-1) 

and jj x and Ily are the means of X and Y respectively in f0 

We shall approximate the misspecification effect of T XYC by 

that of TXY; which may be obtained using the results of Section 5.2 

since T- is of the additive form (5.6). From Lemma 5.2 it follows Xyc 
that the effect of misspecifying Model I as Model II does not introduce 

any bias into -T - under Assumption B. XYC 
EI (TXYjs, ýL) - EII(TXyjs, M) -m0a XY 

/(M 
0 -1) 

If Assumption B holds. 

mef f (TXy- 1 s, M) -1+Zm. (mi-1) TXY2 (Mi) /m (5.90) 

where 

TXyZ(Mi) - corr, 
[h 

c 
(X 

ij yij ), hc (Xiitpyij, ) Imi 1iýit 

(5.91) 
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Corollary 5.26 

If Assumption A holds 

meff(TXYEIS, M) =1+ (M*-l)T 
xyz (5.92) 

In order to express TXyý in terms of 01 we introduce the following 

notation. 

Let p Y2., a2. be the univariate within-cluster moments Xi'I'Yi " X3. Y3. 
as defined in Section 5.4. 

Let 

CY xyi 
= cov I (X 

ij Yij I 'd 
Let a2 (M a2 (M 02 (M a2 (M be defined as in Section 5.4. XB i YB i xw i YW 

Let 

" XYB 
(M 

i)= cov I 
(, p xil 11 yi, 

mi) 

" XYW 
(M 

i)=EI 
(a 

xyilmi) 

XY 
(M i)= var I 

(Crxyi I Mi) 

c lxy 
(M 

i cov i 
(LT 

xy, ' 
(lixi-lix) (ii 

yi-ll ymi 

k 
22B 

(M 
i)= 

EI E(lIxi-, IX )2 (ljyi-ljy JIM 
11 

2 (M )a2 (M 2a 2 (M 
XB i YB i XYB i 

k 22Bis the (2,2) th bivariate cumulant of N 
xi, Ilyi ) (Kendall and 

Stuart, 1969, p. 82) and is equal to zero if V xi and V Yi are jointly 

normally distributed. 

It follows as in Section 5.4 that if B holds then 

Cr 2=a2 (M + a. XW2 
(M 

x XB i 

cr 2=2 (M + cr 2 (M 
y "'YB i YW i 

a XY = (T XYB (M i)+a XYW(Mi) 
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If B holds -a 
2, a2 and a do not depend on Mi 9 as does not 
xY XY 

the (2,2) th 
cumulant of (X: Ljp Y ij) 

k EIC(X, J-pX)2(yij-li 
)21M a 2a 2- 2aXY2 

22 yixY 

Lemma 5.27 

If B holds 

2 (M )a 2(M +a2 (M )+k (M + 2c (M +y (M 
(M XB i YB i XYB i 22B i lxy i XY i 

XYC ix2ay2 +- a XY 
2+k 

22 

--- 
0.93) 

Proof : 

From (5.91) 

xyýI Z- ""i Rxif vx My 
ii -p y 

), (X 
, j, -px)(y li, -ll y 

)im, ] J+i 1 

= varý [(ljx, 
-lix) (ljy, -ljy) +a xyi 

Im 
ii 

var I 
[(X 

ij -ii x) (Y ij-ily 
)IM 13 

gi 2(M )a 2(M )+a 2(M )+k (M )+ 2c (M )+y (M 
XB i YB i XYB i 22B i ixy i XY i 

ax2 cr y2+ axy 2+k 
22 
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Corollary 5.28 

If A holds 

T2a2+a2+k+ 2c +y xyC- "3 axB YB XYB 22B ixy XY 

CF 2 a. 2+a2+k 
xy XY 22 

We'note that, in the special case when X 
ij = Yijv 

2 
XB ayB, 

x2y2 

k 22B 

c ixy 

224 
B XYB B 

a2 cr XY 
2 a4 

k 
4B 

k22k4 

01 YXY «ý y 

h (X, Y) =hv (X) 

and Lemmas 5.25 and 5.27 reduce to Lemmas 5.14 and 5.17. 

(5.94) 

We now consider diagnostic checks of Assumptions B and A. 

Univariate checks were given in Section 5.3 and 5.4. In order for there 

to be no iiisspecification bias in TXyý we need EI(hc(XijYij)lMi) 

to be free of MI. This requirement may be checked by plotting 

(M -1)h 0 ci , (M 
0 -1) 

jhc (X ij, Yij)/m 0 j=l 

mi y) /m 
0, j=i 

I 
where ýX and ýY are defined as in (5.47), against M. . If B 

holds the regression function EI ((m 
0 -1)4h6 ci 

JMi) should1not depend on 
Mi (assuming the effect of estimating px and ji Y 

is negligible). 
Such plots are given in Figures 5.33 - 5.35 for the National Survey 

of Attainment data. Although the variance functions do appear to depend 

on MI, there is very little visual evidence of the regression functions 

depending on Mi* We note that the negative covariances in Figure 5.33 

are accounted for by the fact that AM-Attitude to Mathematics is scored 

such that high scores correspond to negative attitudes towards Mathematics 

and vice versa. 
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We may rewrite TX7ý(Mj) as 

1- EI[var, [hc(X, 
J, 

Y, 
J) 

16 ]1 M J/var, PC (Xj 
ii 'Y ij)] 

It follows that, given B, a sufficient condition for the meff of 

TXyý to have the simpler form of 
(5.92) is that the expectation of 

var I 
[h 

C, 
(X 

ij 'Y ij 
)16, ] does not depend on Mi. A diagnostic check of 

^2 
this condition is obtained by Plotting cr against M 

^2 
Cii, where cy Ci 

is defined 

as in (5.49). Plots of a 2, 
C1 = V((Xij-llx)(Y 

ij -11 Y 
)JO 

i) against Mi are given 

in Figures 5.36-5.38 for the three pairs of variables from the National 

Survey of Attainment data. In these Figures there. is little visual 

evidence of the regression functions depending on M 
i* 

There may be 

a slight increase in the regression function in Figure 5.36. and a 

slight variation in Figure 5.37 but it certainly does not appear that 

E(S ; 
c, 

JMi) increases montonically to an asymptote, as we would expect 

if the intra-cluster correlation were a decreasing function of Mi. 
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Figure 5.33- National Survey 
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Figure 5.35- National Survey 
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Figure 5.37- National Survey' 
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We now compare the meff of TXYc- with the meffs of TXM and Ty.. 

We consider four special cases. 

Case 1: 'A holds, a xyi a XYW 

If A holds 

T- (M T XYC xy; 

I 
If aa then xyi XYW 

(from corollary 5.26) 

ixy 

Hence T2a2+ aXY2 +kMa2a2+a2+k xyC- 
(aXB 

YB B 22B xy XY 22 

Let the overall correlation between X and y, be p -. = a XY 
laxay 

and let the correlation between pXi and pyi be 

pB=a XYB 
Ar 

XB (YYB 

Then 

TT 
1+p 

B2+K2 
xyc xm YM 

( 

1+p2 +K2 

where Kk la 2a2 
22B 22B XB YB 

K 
22 ýk 22 

/"X 2 cr y2 

(5.95) 

(5.96) 

Hence, assuming that the kurtoses K 
22B and K 

22 
do not differ greatly, 

TXY; will be small if either TXM or TyM is small and it will typically 

be smaller than both. This result is in the spirit of the conjectures 

of Kish and Frankel (1974). We illustrate the result by an example. 

Example 5.10 

Consider a population consisting of a mixture according to equal 

proportions, of five types of clusters within which X 
ij 

is marginally 
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uniformly distributed on (0.9,1.1), (1.9,2.1), (2.9,3.1), (3.9,4.1) 

and (4.9,5.1) respectively and Y, 
j 

is marginally uniformly distributed 

on (0,2), (1,3), (2,4), (3,5) and (4,6) respectively (as in Example 

5.6). Hence X is a highly clustered variable whereas the clustering 

on Y is somewhat less. We make no assumption about the joint 

distributions except that all within-cluster combinations of X 
ij and 

Y, 
j are possible. 100% probability regions for X 

ij and XJ' (J+J, ) 

are plotted in Figure 5.39 and for Y 
ij and Y 

ij 
I in Figure 5.40 

Corresponding regions are plotted in Figure 5.41 for (X 
ij -11 XM ij -11 Y 

and (X 
ij, -Ijx MY 

ij. -V Y 
)(pX=pY=3). The Figures appear to confirm what 

we might expect from (5.96) that T xyý 
is less than both T XM and T YM' 

Case 2: No clustering on one or both variables 

If )i =p or u (alternatively if Ty xi x Yi ý, - 11 Y0 or T,,, = O)then 

from (5.93) 

TXYý(M, ) = yXY(Mi)/(CFX2 Oýy 2+ 
17xy 2+k 

22 
) (5.97) 

Hence the misspecification effect depends fundamentally on the variation 

in covariances between clusters. In particular, even if both X and Y 

exhibit no marginal clustering it is not necessary that - TX-jý (Mi) =0 (as 

in Case 1). To illustrate this point we give an example. 

Example 5.11 

Consider a population consisting of a mixture, in equal proportions 

of two types of cluster. In both types of cluster (X 
ij- 

Y 
ij 

) has a 

bivariate normal distribution with zero means and unit variances. In 

the first type of cluster a xYi =p and in the second type a xYi = -P. 

Plots of within-cluster concentration eclipses are given in Figure 5.42 
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Figure 5.39- Example 5.10 
100% probability 
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Figure 5.40- Example 5.10 
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5, 
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Figure 5.41- Example 5.10 ' 
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I ii x 

(X ij -11 X) 
(Y ij -11 y) 

Y 
ij 1 1 
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y ij 

Figure 5.42 Example 5.11 
Within-cluster concentration 
eclipses 

ij 

Figure 5.43 - Example 5.11 
Concentration regions for 
(X-u 

x 
)(Y-P ) and 

(XI-U 
x 

)(YI-v 
y) 

when P=l 

(X ij - Ij x) 
(yij-lj 

y) 

0, (X, ý --u 1 (V, -11 1 
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Within-cluster probability regions for X, 
j and X, 

jI 
Q+JI) or Y 

ij 

and Y 
ij 

I are just circles 
. 

of the same diameter, centre (0,0), since 

both X and Y exhibit no marginal clustering. However, if we plot 

(X 
ij-)lx 

) (Y 
ii-11 Y) against (X 

ij, -Ilx ) (Y 
ij 

, -11 Y) 
(J+J'' Px = Ily = 0) 

we find that, assuming p>0, the first type of cluster tends to be 

concentrated in the positive quadrant while the second type of 

cluster is concentrated in the negative quadrant, making TXYý(M, ) non- 

zero. The extreme case where p=1 is plotted in Figure 5.43. In 

this example (5.97) simplifies to 

T-=y /(1+2y - )= p2/(1+2p2) xyc xy XY 

since K- EI [EI [(Xij-,, 
Xi) 

2 (yij-lly: L2) 
16 M O'X 2 Oýy 2- Cr XY 

2 
22 

Ej[aX12(T 2+ 2aXyi2lMil -aX2ay2 -aXY2 y 

2yXy 

and 

y. w = var(a xyi) 

p2/2 + p2/2 = p2 

Hence T- is bounded above by 1/3, and is equal to this value when XYC 

p= ±1. 

Case 3: A holds 

J 
In general, if A holds, TXyý(Mi TXYý will be a combination of 

the expressions (5.96) and (5.97). If (V 
xi, 11 Yi 

) are normally distributed 

between clusters we may write from (5.94) 

TXy; 2 T, +T2+T3 

where 
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T, =TT (l+P 2) CT 2cy 2/(CF 2(1 2(1+p2) +k) 
xm Ym Bxyxy 22 

T 2c /(a2 Cr2(1+p2) +k 2ý ixy xY 22) 

T YXY/(aX 2a 
Y 

2(1+p2) +k 22) 3 

Some estimates of these quantities for the three Family 

Expenditure Survey variables are given in Table 5.4. The method 

of estimation is descri bed in fke lq? tenctix. 

Table 5.4 Estimates for FES Data 

Variables X, Y T1 T2 T3 TXya 

log(Vl), Iog(V2) . 0006 -. 0012 . 0154 . 0148 

log(Vl), log(V3) . 0012 -. 0014 . 0075 . 0073 

log(V2), log(V3) . 0005 -. 0010 . 0164 . 0159 

It is clear from Table 5.4 that for each pair of variables T 
XYC 

is dominated by T 3' 
This is simply explained. T1 is very small 

in each case because the T Xm 
Is are small (see Table 5.2) and the 

overall kurtoses k 
22 are not far from zero. Furthermore, a simple 

consequence of the definition of c lXY 
is that 

k< 2(T T 2k 1 3) 

and hence if T1 is very small then so is T 2' 
Hence TXY; is mainly 

determined by T 3* T3 might be taken as a standardised measure of 

the variation in cluster covariances, a XYi* 

Case 4: B holds but A does not hold 

As in Section 5.4, we just consider the spatial process approach. 
We now assume that (X, Y) is a stationary isotropic bivariate spatial 

process and from (5.56) 
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XYE 
(M 

i) 
f lphc((Iit) X(t)dt 

0 

where - corr[ý. (X(x), Y(x)), h (X(xl), Y(xl)j Phc 
c--c-- 

and s is the distance between x and xl. 

Let yx (S) = cov[xý-X), X(-X, )] 

yy (S) = cov[y(-X), Y(-X, )] 
YXY (s) =c OVEX ý_X) ,y (_X, )1 

YYX(s) = covEyýX), X(X')] 
We assume y 

XY 
(S) =y YX 

(S) 

Let r X(S) = Yx(s)lax 2, ry(S) = yy(S)/ay2 , rxy(s)= Yxy(s)laxay 

Then rx (s) and ry(s) correspond to p(s) in (5.57). We shall assume 

that the process in Gaussian, in which case 

Phc(s) = corr[(X(x)-jj x )(Y(x)-UY) , (X(xl)-IIX)(Y(xl)-py )l 

YX (S)y 
y 

(S) +y XY 
2(s) 

axay+a XY 

rx (S) ry(s) + rxy Z(S) 

+ p2 

where p=a XY la xay as before. 
i 
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Hence 

T=iI (a Or (a t) + r2 (a t)]K(t)dt/(l+p2) (5.98) 
xyý(Mi) 

Irx 
iyi XY i 

0 

Now from Schwarz's inequality 

fI 
rX(a, t)ry(a, t)K(t)dt < 

[f 1 
rX2(a, t)K(t)dt 

f1ry 
2(a 

i 
t)K(t)dtj 

000 

(T - (Mi)Ty, -(m 
xv vI 

4 (TxM (M 
- 
)T 

Ym(Ml))l 
from (5.58) 

If, we also make the assumption that 

r2 (S) ;g ; 32r (s)r (s) 
XY xy 

which would seem reasonable in practice, then it follows that 

xya 
(M 

i 
(T 

xm 
(M 

i 
)T 

Ym 
(M 

I 

If there is little spatial correlation on one variable, say Y, so 

that -r (M decays very quickly with respect of M. then T (M 
YM i IL XYE i 

will also decay very quickly with respect to M,. 

5.6 Conclusion 

In this, chapter we have considered the properties of estimators 

based on the assumption that observations are IID. Under a general 

clustered population model it was shown that, misspecification of.. the 

model as IID does not introduce model-bias provided Assumption B holds, 

i. e. provided the marginal distributions of the observations within 

clusters do not depend on the cluster sizes. The true model-variance 

of 
/ 

the estimate is, however, greater than the IID-variance by a 

factor referred to as the misspecification effect (Definition 5.1). 

Similar results hold for the design-model-bias and variance even if 

B does not hold providing the design is self-weighting. 

The form of this misspecification effect was investigated for 

means, variances and covarainces. The misspecification effect depends 

on a statistic T only via a generalised intra-cluster correlation T(T) 
(which may also depend on the cluster size). Conjectures given by Kish 

and Frankel (1974) that design effects for complex statistics are 
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less than those of means and formulae such as that in Bebbington and 

Smith (1977, p. 185) relating design effects for complex statistics 

to intra-cluster correlations for means suggest that we might be 

able to relate T (variance) and T (covariance) to T (mean). 

It turns out that no simple relations necessarily hold between these 

quantities. For example, the usual intracluster correlations for 

the means of X and Y might both be zero whereas the misspecification 

effects for the variances of X and Y or for the covariýnce 

between X and Y may all be greater than one. On the basis of 

algebraic arguments and empirical work on Family Expenditure Survey 

data we conjecture that T (variance) will usually be largely 

determined by the variance between cluster variances-and T (covariance) 

by the variation between cluster covariances provided the overall 
intra-cluster correlations (on the means) are not excessive (say > 0.2). 

Such results correspond to the interpretation of T (mean) as a 

measure of variation between cluster means. 

We also argue that if the clusters may be viewed as regions of 

constant shape in an isotropic stationary spatial process of constant 

population density then T (variance) and T (covariance) will 

generally be less than the corresponding T (mean)'s. Further 

empirical investigation such as that of Proctor (1980) is necessary 
in order to formulate functional relationships between the T'S 

and the cluster, size. Such an approach might be useful-for the design 

of analytical surveys. For example, for a given cost function (e. g. 
Brewer et. al,, 1977) it may be that when estimating covariances fewer 

clusters need be sampled than when estimating means to attain a given 

precision. 

t 
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CHAPTER SIX - ALTERNATIVE ESTIMATORS UNDER TWO-STAGE SAMPLING 

6.1 Introduction 

In this chapter we assume that Model I of Section 5.1 is true 

and moreover that Assumption A (of the same section) is also true. 

Hence, in particular, 

EI (Y ij 
im 

i)= ja 

vI (Y 
ij 

Im 
i)=Z 

(6.2) 

where jj and Z are the mean vector and covariance matrix respectively 

of f0 defined in (5.3) and where we now take Y 
ij to be a general pxl 

vector. 

In Section 6.2 we shall consider the model-based estimation of 

and Z. In Section 6.3 we consider model-based predictors of 

Nmi 
II yij 

i=l j =1 
(6.3) 

Nmi 
and s=II (yi -Y)(Y ij -Y), /(M 

0- 
1). (6.4) 

i=l J=l 
i 

In Section 6.4 we consider design-based predictors of y and S. 

As noted after Lemma 5.1, (s, M) will be ancillary for V and E 

if Assumption A holds. Hence our inference procedures are based on 

the (Model I) sampling distribution of the y ij given s and M. 

It is somewhat unfortunate that our discussion is restricted to 

the case when Assumption A holds, since as noted in Chapter 5 the 

standard estimators will be least satisfactory when Assumption B (and 

hence A) does not hold. However, as will be seen, the 'optimal' 

estimation of U and Z even under Assumption A is not that easy and it 

seems necessary to deal with the simplest case first. 



- 244 - 

6.2 Model-Based Estimation 

In Section 3.2 we only used one estimation method - maximum 

likelihood. In the variance components literature a number of other 

methods have also been used for various reasons (Harville,, 1977) and 

we therefore consider in addition some of these methods. Our model 

is essentially a generalised multivariate random. effects model where 

the random effects are 

11, =EIC ij 
1 ei) (6.5) 

and Ei =vI (Y 
ij 

je 
i) 

(6.6) 

This seems to us a more natural model than models which take Ui as 

random and Ei as fixed (e. g. Rao et al, 1981). The estimation problem 

for our model is not, however, particularly easy and so we consider 

progressively-more general cases, viz. Case 1: m, =mp E, =ZW9 Case 2 

mi unequal and Z, =EW and Case 3: mi unequal, Zi unequal. 

Case 1: m:, =m, Z, =ZW 

This is the conventional. balanced one-way multivariate random 

effects model (e. g. Searle, 1956). The basic parametersr are p 

EW = VI(YiJIe i) and ZB = VI 01 
i1mi). 

ANOVA Estimation 

Lemma 6.1 

The ANOVA estimators are 

nm 
)JANOVA 'ý ys =71 yij /mn (6.7) 

i=l J=l 

i 
`= sB /M + (M-1) SW /M (6.8) ANOVA ss 

Bn 
where ssm (yi-ys MY 

i-ys 
)'/(n-1) (6.9) 

Wnm 
ss (Yij-yi)(Yij-yi (6.10) 

i=l J=l 



245 - 

m 
Yi I yijlm 

J=l 

11ANOVA and Z 
ANOVA are unbiased for U and Z respectively given s and M. 

Proof : Let (y 
ll'**Ylmy2l***Ynm 

)' beý the nmxP data matrix. Let 

Lm= In; /rmn, where Inm is the mnxl vector of ones. Let LB be a (n-1) 

xn- matrix such that the rows of 
Lm 

form an orthonormal basis of 
(L 

B) 
the subspace of Rmn spanned by vectors ei (i=1 ... n) which have ones in 

the [, (m_, ) + 1]th'to mth positions and zeros elsewhere. Let LW be the 

(nm-n) xnm matrix such that the rows of 

L= 

(L 
m 

LB 

LW 

n form an orthonormal basis of'O . 
Hence LLI = LIL =I mn 

The ANOVA decomposition is then 

Y'L 
m 

'L 
mk+k, 

LB'LBk + k'LWY 

and k'Lm'Lmk mn y. y. 1 

L, L n_, ) SB 
BBs 

ýILWILWý = n(m-l)S 
w 
s 

The IANOVAI estimator of p is ys L -//mn and is unbiased for p since 
MY 

E1(jIM, S) = 

where we ignore the distinction between y, j and Y, 
J. 

To obtain the 

ANOVA estimators of ZB and EW write ý in the linear model form 

I ul + diag (1 +i (6.12) 
mn nm 

where 11 (p 
n- 

P)l t 

11-111ý ... (y 
lm-111 

P (yim-lin 
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Note that LWý = LW6 and EI(5 5111, s) =Zw so that 

EI Q' Lý LW Yls, M) = EI(61LýLW431s, M) 

= tr(LW'LW)E, (BC-Ils, M) 

= tr(IWILW) I: 
W 

Also by definition IjW' LW = diagn(PBm) where PBm = Im -1mIm Vm so that 

EI Q'LW'LWkIs, M) = ntr(P Bm)EW 

= n(m-l)E 

Hence E (S'ls, M) =E and Sw is the unbiased ANOVA estimate of EW. Isws 

Similarly 

EI (9'LBLBýis, M) = EI (ä'mp 
Bnä + a' L 

B' 
L 

BZ'ls'M) 

= tr(mp 
Bn 

)Z 
B+ tr (LB'LB)'W 

= in (n- 1) Z 

(L 
B 

'LB = diag(Iml 
M 

I/M) -1 kn 
I 
mn 

I/mn) 

Hence (S 
B_Sw 

Vin is the unbiased ANOVA estimate of Z Hence the ss B' 
unbiased ANOVA estimator of E=ZB+Ew is 

Bww 
ANOVA 

(S 
8ss 

)/M +Ss 

SB /in + OR- 1) Sw /in 
S3 

Lemma 6.2 

it y ij 
le 

i Il, Np (11 v ZY 

and ji i 
Im 

1 1%, Np (11, EB) (6.13) 
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then v1 (11 
ANOVAIS'D = (1 + (m-l)E 

BE 
)E/mn (6.14) 

vI (z 
ANOVAijls'M) = 1(mE. 

ii +E wii 
)(ME 

Bjj +E Wii 

+ (ME 
Bij +r wij 

)2]/m2(n-, ) + (M-1)(E 
wii 

E 
Wii + ZWIJ2)/m2n 

(6.15) 

(E 
ii 

E 
ii + EiJ2 + (M-1)(E 

Bii 
E 

Bjj +E Bi J2))/mn as n 

Proof Since ItaILM, LB ILB and LW'LW are idempotent, Cochran's theorem 

applies (e. g. Anderson, 1958,7.4) and 

n(m-I)S 
w= 51LWILW 5 Ilu W (tr(LWILW), IW) 
sp 

W (n(m-1), Z 
W) 

(6.16) 

B (n-1) SsWp (tr(P 
Bn ME B+Ew 

= BE B+Ew) 

sw and SB are independent. 
ss 

Hence as in Lemma 2.9 

V (SB m)/M2 + (m-1)2 V (SW S, m)/M2 vI (E ANOVAijls'M) =II sij 
Is 

I siJI 

= ((M-r + (ME +E+ (ME +E )2 )/m2(n-l) 
Bw ii. BwBw ii 

+ (M-1) (E 
wii 

r 
wij + EWij2)/m2n 

as required. 
Also 

vI (p 
ANOVA'S' M) =EI (I: 

W/znls, 
M) +V1 (1: 11 1 

/nls, M) 

= EW/mn +EB /n 

= (1 + (m-1) ZB Z- 1 )E/mn 
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Note that p ANOVA. 
is identical to the standard estimator T 

YM of (5.26). 

The elements of Z 
ANOVA 

differ slightly from T 
Yv and T 

xyc 
defined in 

(5.40) and Section 5.5, since 

= (n-1) SB /(nm-1) +. n(m-l)S 
w /(nm-1) Tyv 

sii sii 

(n-1) SB /(nm-1) + n(m-1) Sw /(nm-1) 
xyc sij sij 

Note that the two estimators converge as n and that from Lemma 6.2 

the Imisspecification effect' of ANOVA 
has the familiar 1+ (M-1)T 

form as n 

ML Estimation 

Lemma 6.3 

If (6.13) holds the maximum likelihood estimators of p and E are 

PML = ys 
4 

nm 
EML II (Yij-ys)(Y 

ij-ys 
)I/mn 

i=l J=l 

Proof : This follows by generalising standard results for the case 

p=l (e. g. Arnold, 1981 p. 251). Note that E 
ML 

is always non-negative 

definite and so always lies in the admissible parameter space (unlike 

the ML estimators of EB which has a positive probability of lying on 

the boundary of the parameter space). 

Note that V ML 
is the same estimator as p ANOVA and as in Chapter 

5 and that E 
ML 

is a multiple (mn-l)/mn of the standard estimators 

T 
Yv and T 

xyc in Chapter 5. 

Restricted Maximum Likelihood (REML) Estimation 

A number of authors (e. g. Patterson and Thompson, 1971) have 

argued that in estimating ZB and Zw it is better to maximise the 

marginal likelihood of SB and SW (sufficient statistics for E and Z 
ssBw 
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than to maximise the full likelihood function. 

Lemma 6.4 

If (6.13) holds the REML estimate of Z is 

REML ANOVA 

Proof : From (6.16) and (6.17) n(m-l)_S 
w 

and (n-1) SB are independent 
ss 

Wishart random matrices and so their log joint density (marginal 
likelihood) is 

-J(n(m-1) logIEW1 + (n-1) + n(m-1) tr(SWE- 
1 log ImIB 

: ý' EWI 
sW 

(n-1) tr(S B (ME +E sBw 

Hence the REML estimates of E is Sw and of mZ +Z is SB and hence 
Bw ýw sBws 

of E is Sa /Z + (M-1) Sa /M E 
ANOVA' 

Minimum Variance Unbiased Estimation 

Lemma 6.5 

YS is the uniformly minimum -variance linear unbiased estimate of 
E ANOVA is the uniformly minimum 

A 
variance quadratic unbiased estimator 

of Z. If (6.13) holds then y and Z are the uniformly minimum a. ANOVA 
variance unbiased estimators of V and Z respectively. 

Proof y is a BLUE of p by the Gatrs-Markov theorem. Tan (1978) shows s 
that Z 

ANOVA is a BQUE of E. Under normality ys and Z 
ANOVA are uniformly 

BUE's from the Lehman-Scheffe Theorem because (y *SB, SB) is a complete 
8sW 

sufficient statistic for (p, Z 
B* 

EW) (see Arnold, 1981, p. 248 for p=l), 

and because ys and Z 
ANOVA are unbiased for V and Z. 

Case 2: mi unequal, Z,. = E 

This is the conventional unbalanced one-way classification 

multivariate random effects model (e. g. Searle, 1956). The basic 
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parameters are agaln v, Zw and ZB. 

ANOVA Estimation 

Lemma 6.6 

The ANOVA estimators are 
A 

"ANOVA ' 
'0 ys 

BWW E 
ANOVA 

(n-1)(S 
sss 

Mm 
o-M*) 

+Ss 

nm 
where ys yij /M 

0 
(6.18) 

i=l J=l 

sBm (y -Y MY -Y )'/(n-1) 
ssis 

in i 
ssy (y -Y MY -Yi ), /(m 

0 -n) (6.20) 
i=l J=l ii i ij 

mi 

Y, yij /M i J=l 

m= Im, /n ,m0= nm , M* = Jm12/mo 

11 ANOVA and Z 
ANOVA are unbiased for ji and Z respectively given s and m. 

Proof : These estimators are given by Searle (1956) and are obtained 

as in Lemma 6.1. 

Note that V is again the standard estimator of Chapter 5 ANOVA 
but that E 

ANOVA again differs from T 
Yv and T 

xyc 

T 
Yv 

(n-l)S B /(m -1) sii 0 
+ (m n) 

0 
Sw /(M 1) 

sii 0 

T 
C= XY (n-l)S 

B 
/(M -1) sij 0 

+ (m -n) 0 
Sw /(M 1) 

sij 0- 
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Note again that both estimators converge as n provided m and m* 

converge. 

The variance of under Model I is given in Chapter 5. PANOVA 

The variance of E 
ANOVA is given by Searle (1956) under the assumption 

of normality but is not reproduced here since it is rather complicated. 

ML Estimator 

ML estimation is much more difficult in the unbalanced case. We 

initially obtain V in terms of the MLE's of ZB and EW essentially 

using generalised least squares (Harville-I 1977). 

Lemma 6.7 

if Y 
ij 

le 
i '%, Np (pit Ew), 11,1M, 'V Np 01, VE B 

then the maximum 

likelihood estimator of p is 

nn 
IAiyAi Yi 

J=J, i=l 

where A, 
BML +E WML 

/M 
i 

and Z 
BML and Z 

WML are the MLE's of ZB and Zw 

Proof : Let yi be the pm i xl vector, y, l = (Yil ... Yim. 

Then EI (y 
il 

I mi) =1mi (S) p 

ZY, 71 il, i) B BL i9M; i 

P 
wm 

rw+P 
Bm 

(M 
iEB+Ew 

where P 
Bin - 

ý- 1mIm. t /Jn Ip vhn =Im-p Bm. 

The log likelihood is 

L= -jEzip log 2H - JE loglEY, 1 -J(y, -lm. @ 11). r. 
Yi 

1 
(y 1- 1@ p) 

6 M, 
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Now Z-1=p AA Z-1 -1 
Yi WIK WW+ PBuL OX (ti ZB + 

and IZ 
yil 

= IZWlmi-l'lmi 1:, 
3 + -rwl 

Further (y 1a Of p01: -' (y i& U) 
I )n Wm. wiM 

=yI pww. w Yi 

m 

= trG Y (y yi) (y ij yi Ew 
J=l 

and (y 11 P) , PBm. (g) (m iEB+E W) (yi -1M, 

tr[m, Cy, - U)Cyi - UP (H iEB+Ew 

Hence 

.tm0p log(2H) -J(m,, -n) logIEWI-i E loglm, ZB+ Ewl 

E tr(E (y 
ij-yi 

MY 
ij-yi 

pEw1 
i 

tr[m, Cy, 
-u)(y, -11)1 (mi EB+E 

W)- 

m0p log(2n) -J(mo-n) logIEWI-1 E 10913niEB + EWI 
i 

(m -n) tr(S 
w E- 1 

0sW 

E(Fi-11)'(I: 
B + 

B+E W-", i) 

nn 
where B+EW 

/M 
i 

(EB +EW /M 
ii 

Hence the likelihood is maximised when U with E and E 
BML WML 

substituted for ZB and EWi. e. v= 'PML- 

Note that V ML 
is the linear combination of the yi weighted 

. 
according 

to their inverse covariance matrices, A, , and that lj,, =p ANOVA only 

it 
jB 

= 0. Note also that 
;V 

may be written as ML ML 
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11ML '2 (Z AiZA 
iyi 

(6.21) 

where A, 
BML 

(E 
BML + EWML/M 

i 

is the multivariate generalisation of the Xi in Scott and Smith (1969). 

Unfortunately no closed-form expressions for Z and E are BML WML 
available (see e. g. Searle, 1971, p. 462 for the univariate case). Instead 

many numerical approaches have been proposed (e. g. Hartley and Rao, 1967; 

Hemmerle and Hartley, 1973; Harville, 1977). 'We only present one iterative 

approach based on the EM'algorithm (e. g. Demster et al, 1977,1981). 

The EM approach distinguishes between the 'incomplete data' which 

In our case is Is ý- (yll Ylm 
I 

... y 
11M n) 

and theýlcomplete data' 

which we take to be (zs- ... 11 
n 

). We make the normality assumptions 

of Lemma 6.7 and so the distribution of the complete (or incomplete), 

data is indexed by 6= (p, ZB1 EW ). A sufficient statistic for 8, were 

the complete data to be observed, is T= (p, SSw) where: 

n 
EPI /n 

sil I/n 

Sw= EE(y ij-11i) (Yij-lli) I/M 
0- 

The EM algorithm proceeds as follows: 

Select inital values e(O) for 0, e. g. the ANOVA estimators. 

For k=1,2... 

2.. j E-step. Compute T 
(k) 

= E(TI4 
,e=e 

(k-l 

3. M-step. Let e(k) be the value of 0 which maximises the likelihood 
(k) 

of, the complete data based on T Repeat 2 and 3 until 

convergence. 

This algorithm always converges to a limit 0(-)although not necessarily 

to the global maximum of the (incomplete) likelhood, 6,,. The convergence 

can, however, be slow and Thompson (1977) has pointed out that, in the 

A 
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univariate version of the above problem the EM algorithm will converge 

slowly if %. is relatively small (which is likely to be the case in 

cluster surveys). Clearly further numerical investigation is necessary 

to assess the practicality of the above approach. 

We now give explicitexpressions for the E and M-steps of the 

algorithm. 

Lemma 6.8 

With the assumptions and notation above, the E-step is obtained 

by: 

n (k) (k) 
= E(ii, 0=p /n 

1=1 

(k-1) n 
E (S 0=e )= I 

J=l 

n (k- 1) (k- 1) 
/m n w i. 

(k) Q-1) wn 
(k-1) (k-1) 

E(S 
w 

10,0 =0 'o-n) SS, 
0 

+1 Aiw so 

+01 a-A i 
(k-1) )(Yi -P 

(k-1))(, 
_V(k-1)) '(I-A 

i 
(W) )Qm 

-k= (k-1) (k-l)- (k-1) where pi E(V, 14, e=0)=Ai Yi + (I-A 
i 

B 
(k) 

(E 
B 

(k) 
+EwW Al. 

i 
)- 1 

and 
w 

is defined in (6.20). 
a 

The M-step is obtain by 

6 (k) 
= 

(k) 

Proof : E(MI4 , 6) = ZE(Ij, 11s, e)/n 

Now 11 1 is independent of y kj 'i#k and so 

E(ji, 14,1) = E(1,, l y,. 
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where yi is defined in the proof of Lemma 6.7. 

Yi I p, 96 1%, N 
PM, 

[(l 
m; 

@Ip) pit ImI (D Ewl 

ji, 10 11, 
p 

0, EB) 

Hence, e. g. from the Lemma on page 4 of Lindley and Smith (1972), 

ji, ly, 
p 0 Il- Np (B 

i 
b,, B, ) (6.22) 

where B -1 = (1 (9 1 ), (1 0E )- 1a) 
iMpmWm 

=irw-I+E B- 
I 

EW) Yi+ EB 

-1--1 in iEw Yi +EB 

.,. Bib, = (m 
iEw-1+E B- 

I 
)- 

1miE 
W- 

l CY, 
- V) 

-1 - 
B 

(E 
B+ 

zw/mi) (y 
i 

A 
iyi + (I-A i 

where Ai=EB (-r 
B+EW 

/M 
i 

)- I 

Z(A iyi + (I-A i )U)/n as required 

.iE 
(S 

11 
14,0) = 

Now(conditional on the vi are independently distibuted as in 

(6.22). Hence 

E(S lZs, 6) = E(E(n-l)lj, p, '/n2 -Ev lljl/n2lZ,, 
11 1 i? dj 

i 

(B 
ibi 

bi'B, t +Bi )/n2 + jj B, b, bj'Bj'/n2 
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(n-1) ZB /n2 + E(Ij -7)(p --ý)/n 

in obvious notation 

(n-1) ZA iEw /Z in+Z (Ii i-11) Oji- p) /n 

as required ' 

E(S ly, 
' 6) = E(EE(y - 11 ) (y - 11 ), /m 11 

E(EE(y 
ij-yi 

)(y 
ij-yi 

)1/MO 

+ Ein (ii -y ) (ii 
111 Jyi 0 

(M -n) Sw /M 
0s0 

+ Em, [(Il i-yi 
) (p i-yi +Bi] /M 

o 

(m 
wý+ EA Z 

07 n) S. 
9/h 01 W/M 0 

Em 
i 

(i-Ai) Cy, -u)(-y, -p)'(I-Ai)'/mo 

as required 

Finally, the likelihood of the complete data is the product of the m0 

densities of the y which are IID I'v N(O, Z 
W and the n de nsities 

of the Vi which are IID N(ji, E 
B 

). Hence 

(k) (k) (k) 
= -(k) (k) (k) 

EWSWv 11 11 9EBS 11 

as required. 

Note that the Ui above are the multivariate analogues of the predictors 

of Ui in Scott and Smith (1969) which shrink yi towards U. 

Note also that 
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W 

(k-1) - (k-1) 
Z(A 

i Yi + (I-A 
i) 11 

(ZA i 
(k-1) Ink(EA i 

(k-1) )- 1 (EA' i 
(k-1) 

Yi 

so that at convergence when V 
(k) 

= 11 
(k-1) 

we have 

(EA M ZA i 
(k) 

Yi 

as in (6.20). 

REML Estimation 

One approach would be to maximise the likelihood of (y 
11 -Y a ... 

YlM ys ... YnM YS ) (e. g. Harville, 1977, p. 325). Another 

approach would be to assume a flat prior for U'(Dempster, et al, 

1981, p. 343). In neither case would there appear to be much gain in 

computational efficiency (e. g. Dempster et al, 1981) nor in estimation 

efficiency (e. g. Harville, 1977,, since the number of parameters in 

P is likely to be much less than the overall degrees of freedom). Note 

that REML is not the same as maximising the likelihood concentrated by 

11 ML of Lemma-6.17. 

Minimwn Variance Unbiased Estimation 

In the case of unequal m. there are no un* rmZy minimum variance 
iý 

ifo 

unbiased estimators of V and Z. Instead we may consider estimators 

which are locaZZy best at given points of the parameter space. For 

example, 

2= (Z Ai)EA iyi 

where A, = (E 
B+E W/Mi) and EB and EW are fixed 'prior values' 

(independent of the data), is minimum variance linear unbiased for V 

when EB=EB and EW =E W* Similarlyllocally minimum variance quadratic 

unbiased estimators of EB and EW are given by Lamotte (1973) for the 

(6.23) 

I 
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case of norms, lity with p=1. These estimators depend on prior values 
1/2 EB /E 

W and 11/_r W. 
The problem with such estimators is, of course, the 

specification of the prior values. The sensitivity of such estimators 

to the values is greatest when there are least restrictions (e. g. 

unbiasedness, invariance, quadratic) on the estimators. In the ludicrously 

exteme case of no restrictions, the trivial minimum variance estimators 

of p and E are the 'prior values' V and E. A number of studies have 

been made of the sensitivity of such locally best estimators to the 

prior values and of the efficiency of these estimators with respect 

to the ANO" estimators. For example, the simulation studies of Hess 

(1979) and Swallow, (1981) suggest that for p=1 the ANOVA estimator 

of EW is always preferable and the ANOVA estimator of ZB is preferable 

if EB /E 
W 

is small (say < 1) as is usualli the case in cluster surveys. 

On the basis of large sample theory for p=1, Seely (1979) 

also recommends the ANOVA estimator of EW and, when the intracluster 

correlation is low, the ANO" estimator of E 
B' 

One way of avoiding the dependence on prior values is to substitute 

estimates of these values. This will, however, generally invalidate 

the optimal properties of the estimators. See, for example, Fuller 

and Battese (1973) on the properties of V above with ANOVA estimators 

substituted for ZB and Z 
W. 

Alternatively an iterative procedure 

of resubsitution of best estimates for prior values might be used. 

For the estimation of Z under normality the iterated minimum variance 

quadratic translation-invariant unbiased estimator turns out to be 

identical to the REML estimator (Searle, 1979; Rao, 1979). 

In summary, in spite of the vast amount of recent literature on 

minimum variance estimation particularly since Rao's work on MINQUE 

estimation in the early 19701s, there seems little advantage for our 
purposes in going beyond ANOVA and ML estimation. 

Case 3 : is i and Zi unequal 

ANOVA Estimation 

In this case the moments of the Y 
ij are 
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E (Y 
ii)= 

EE (Y 
ij 

le 
i)= 

E(p 
i)= 11 (6.24) 

cov(Yiip Y 
kt 

)= cov(p V l1k )+ E(cov(Y, 
J, 

Y 
kilai' 

ek)) 

= 1: 
B+ 

E(E i)=EB+Ew it i=k J=Z 

= 1: 
B 

if i=k jj4X 

=0 if igik (6.25) 

Hence the first and second moment structure is as in Case 1 and 2 

and so the ANO" estimators are as before and are unbiased. 

ML Estimation 

One possible distributional assumption would be that 
- 
the Y 

ij 
were Jointly normally distributed (unconditional on the 01) with the 

mean and covariance sturcture of (6.24) and (6.25). In this case the 

ML estimates would be identical to those given for Cases 1 and 2. 

Alternatively we might attempt to specify the within and between 

cluster distributions separately. We take the within cluster 

distribution as before as: 

Y, JIO, N Np(vi, Z, ) 

For tractability, we take the usual conjugate prior (e. g. 
Dempster, 1969, p. 368) for the between cluster distribution: 

i 11 1 
,: 

1 1%, N (11, b2 Zi) 

a, =E 

1- 
1-, 

"wp (C, a -1 ) 

where (Ii, b2, c, n) are unknown parameters. Hence 
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I E= V(Y 
ij 

)= V(p 
i)+ 

E(E 
i) 

=E V(ji 
ilY +V E(V 

il"d + E(E 
i) 

E [(l + b2) E .I 

= (1 +b2) i2/(c-p-1) 

since Ei has an inverse Wishart distribution (e. g. Johnson and Kotz, 

1974, p. 164). The above distribution is rather unsatisfactory since 

it assumes that the between-cluster covariance structure is 

proportional to the within-cluster covariance structure. However, 

it seems the most obvious starting point. 

ML estimates of V and Z may be obtained as in Case 2 using the 

EM algorithm where the complete data is now Qs p, 1 ... Pn 111 "*nn)* Were 

the complete data to be observed, the likelihood would be of the 

exponential family form (Dempster et al, 1977) with sufficient statistic 

T= (EQ,, Elogjaj, Epila 
i 'p,, En, p, ) for 0 b2, c, f2)(see proof 

of Lemma 6.9). The EM algorithm proceeds as in Case 2. Expressions 

for the separate steps are given in the following lemma. 

Lemma 6.9 

With the assumptions and notation above the E-step is obtained by 
I 

E(I: 92,14,0) =i+ c) ni* 
i=l 

E(rlogln, i 17� 0) = np log2 +j1,1[(m, +c+l-k)/2] +j ioglni*l 
i=l k=l JL-. L 

n 
*on *jj *+ pb2 

n 
(1+M b2)-l E (ElljL 10 illi IZ., e) =I (Mi+c)lji iii 

(En 
i Pj ly, 

' 0) =j (M 
1 +0 21 *li 

i* i=l 

where pi*= (p/m 
i+ 

bZ--Y i 
)/(l/m 

i+ 
b2) 

(y 
ij-yi)(Yij-yi + (y 

i-11) 
(y 

i-P) 
I (1/m 

i +b2)-l J- 1 
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and 7 is the diga-ma function (e. g. Abramowitz and Stegun, 1964, 

p. 258). 

At the M-step the ML estimators of e given T are 

ii = (En 
i) 

En 
1 11 1 

(6.26) 

b2= 1: (p 
i-11) 

tQi (P, -Ii)/np (6.27) 

.=-1 
cg [log I En i /nj - (ElogjSI, j)/n] (6.28) 

/nc) 

where g is the monotonic decreasing function 

p 
g(c) = plog(c/2) -II 

[(c+l-j)/2] 
J=l 

Proof Given the assumptionsabove the posterior distributions of 

11 1 and i are (e. g. Dempster, 1969, p. 369) 

11 11 
rl 

il Y-S, 0 1%, Np(p', *, b2 i2, -l/(l+M 
i 

ý2)) 

9,14 ,0Np (M, +C, sli*) 

Hence E(Ea, 14 
, 0) = E(m, +c)Q, * 

(6.29) 

Also from Chen (1979, Theorem 2.1) 

p 
E(Zlogjn, IIz... e) = np log2+ .11 

[(m, +c+l-k)/2] + ElogIn 
1 

*1 
i k=1 

n 
Now E(Ell, 'Sl lj: LI4, e) E[E(tr(v, u, 'n, ) IQ e) el 

n 
=IE [li 

1 
*19 

1 11 1*+ tr[b2n ini 
/(l-fm 

i 
b2) I Iz, 

0, el 
i=l 

nn 
(m i+c)ui ii+ pb2 (1+mib2) 

11 
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n 
E(Ell e) =I E[E(Q W4, a] 

i=l 

n 
=I E(Q 1 11 1* 

lys, 8) 
i=l 

n 
I (M +c) *)I 

. L-JL 

Now the joint p. d. f. of Vi and 11 
1 

is given by 

P (pi Iai e) =k1 b-pln 
iIi X-P 

[- (v 
i -U), o 

i 
(p 

i- U)/2b2] 

p 
P(gile) k2 2-'Cp Cn r[i(c+l-j)]]-' jnj'cjn., j'(C-P-l)exp-jtr(Ml 

i J=l 

Hence 

POJ 10) =k 2- 
jcp 

b-p[ 
p 

ili(C-P) il"i 3nr 
[j(c+l-j)j]-ljaj IcIn 

J=l 

exp -j 
[(ji 

1- 11) 111 
1 

(11 
1- p)/b2 + tr(QQ i 

)I 

Now the likelihood of the complete data may be written 

n 
P(Y, I ul ... 11. n P(v i 

where the first term does not depend on 6. Hence for the M-step we need 

only consider the second component of the above likelihood. The log of 

this expression is 

p 
Z(lj, b2, C, 11) =k4- Jncp log2 -inp log b2_ nj logr (i(c+l-j)) 

J=l 

+ Jnc ]Log jai +j (C-P)ýrlog Inil 

-11) 111 (p ji)/b2 

This is maximised when li ii, in (6.26) since 

i-)J) I sl 101 CIO E01 
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Also, by direct differentiation, the MLE of b2 is b2 in (6.27). 

Substituting these values the concentrated log likelihood is 

n 
k(p, b2, c, Q) =k4 ýýj ncp log2 -j np log b2 -n 

I logra(ý+l-j)) 
J=l 

+i nc loglnl -j (c-p) EloglQ, I-Jnp 
-jtzjnZfl, ) 

I 

The MLE of SI is obtained as for the usual'MLE of the covariance matrix 

of an IID normal sample as in (6.29). Substituting n= n(c) = (En /nc) 
i 

as a function of c we obtain 

p 
I(Ii, b2, c, C2(c)) =k5- Incp log2 -nI log r(i(c+l-j)) 

J=1 

--incloglEg i 
/nj + incp logc -J(c-p)Eloglnl 

- Jncp 

4 

Differentiating with respect to c we obtain 

d.. 2p ýi, - I(p, b, c, Q(c)) = -j nII (J(c+l-j)) -j n logIM, /nI 
c J=l 

+J np log(c/2) +JE loglnil 

=i n[g(c) - loglEn 
i 

/nj + (EloglQ, I)/n] 

Hence c is as in (6.28). 

Chen (1979) shows that g(c) is a monotone decreasing function and 

shows that the above algorithm involving the solution of an equation 

g(c) =k at each iteration is numerically feasible. Chen deals with 

a full Bayes analysis of the single sample problem of which our problem 

is essentially the multi-sample empirical Bayes analogue. 

Note that Ij i* shrinks yi towards V in estimating u,, but that 

unlike Ui in Lemma 6.8 which shrinks yi in a multivariate manner, y, 

is only shrunken variate by variate (in the same proportion). This 

is because we have assumed that the between-cluster covariance structure 
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is proportional to the within-cluster covariance structure. Note also 
1 -1 that the implied estimate of EIni /(M 

i +c) is a weighted combination 

of the three estimators a/c, 'Z (y 
ij-yi 

My 
ij-yi 

)I/m 
i and (y 

i-11)(Y i -p)'/b2. 

Hence the estimators 'borrow information' (Scott and Smith, 1969) not 

only in estimating V but also in estimating, Z. A similar approach was. 

taken by Novick and Jackson (1974, p. 318) for the univariate case p=1. 

They,, assumed that log (E N(p 02) and obtained the 'regressed estimate' 

of Zi as 

2/m y+2 (m 1) [a2 +2 (M, - (Y ij 
. 71 

1 1- .E 

Note that there do not appear to be closed form expressions for 

the MLE's in the balanced case m, =m as in Case 1. -For example, 

y was a fixed point of the algorithm in Lemma 6.8 when m-=m whereas i 
it is not in Lemma 6.9. 

We noted above that the between-cluster distribution of (v,, Z 

was rather restrictive. We suspect in fact that it is only restrictive 

for estimating V and not for Z. We do not consider any extension to a 

more general dstribution. We do note, - however, that the non-parametric 

maximum likelihood approach of Laird (1978) might be useful, where we 

specify y ij 
10 

1 Iv NP(31,, E, ) and where the marginal distribution of 

(Ijitz 
i) 

is estimated non-parametrically. 

Minimum Variance Unbiased'Estimation 

We may write our model as in (6.12) in multivariate mixed model 

form (Tan, 1979) : 

Xa + Zb + (6.30) 

where y= (y 1t... Yng)" Y, = (Yil Yim. P, 
.X=ý. m ,a= pl. 

VI Z diagn (1,, 
0 

), b= (bl' ... bnt)', b, I-pt, C =-(e 11... en ), 

ei (e 
il... 'im, P, C, j = ylj-ll: L. 

The covariance structure of y 

(given in (6 . 24) and (6.25))is the same as in Cases 1 and 2 and so 

the minimum variance linear unbiased estimator of V will be the same_ 

as in those Cases and is given by the Gauss-Markov Theorem applied to 
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the above model. This is somewhat surprising since we might expect 

a better estimator would be obtained by substituting Zi for ZW in Ai 

in (6.23) (c. f. Scott and Smith, 1969). One wonders whether some kind 

of conditioning argument is necessary. The MINQUES of ZB and ZW (and 

hence Z) will also be the same as in Cases 1 and 2 because the first 

and second moment structure is the same. MINQUE theory (e. g. Rao, 1971a) 

applies because the rows of b and e are uncorrelated. MINQUES are the 

same as minimum variance quadratic invariant unbiased estimators 

(MIVQUES) if the rows of b and e are independently normally distributed 

(Rao, 1971b). In our case, however the rows of e are generally not 

independent and so the MIVQUE's of ZB9 EW and Z will not be the same as 

in Cases I and 2. 

An intuitive way of obtaining MIVQUE's is to use the 'dispersion- 

mean correspondence' of. Pukelsheim (1976,1977) (see also the"derived 

model' of Brown, 1978). Any statistic which is invariant with respect 

to the location translation y-y+ Xa may be written as a function of 

MY (the maximal invariant) where M=I- X(X'X)- 
1 

XI (Pukelsheim, 1976). 

Since MX =0 we have 

My = MZb + Me 

= Uý , say, 

where U= (MZ M) , El = (b0cf). 

Now E(My (5 My) = E(UC 0 UE) 

= (U (91 U) EQ (& E) 

In, the univariate case we can write (Pukelsheim, 1976) 

EQ (97 C) = Aa* 

B 
I: 

w)I 

Hence E (My QD My) = X* a* 

1111 

where X* = (U 0 U)A (6.31) 
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According to the mean-dispersion correspondence we can view a* either 

as the dispersion parameter of the original model (6.30) or as the mean 

parameter of the derived model (6.31). Since the class of quadratic 

invariant unbiased estimators'in the original model is identical to 

the class of linear unbiased estimators in the dervAed model'the'MIVQUE 

can'be obtained by applying the Gauss-Markov Theorem to the'derived model. 

The same result applies for the multivariate case if y is vectored 

beforehand. * In the classical case of homogeneous variances E, =EW 

(where the rows of are independent) we can write the derived model 

as 

My (Z My ý-- Xa+ e* 

where e* has'the covariance structure given e. g. by Brown (1978, 

Lemma 1). When the Ei are-unequal we may introduce random effects 

into the derýed model 

MY 0 MY = X* a* + Z* b* 

where b* is now a function of the E -E, just as b-was a-function of iW 
the MIVQUE's may then be obtained by the Gauss-Markov Theorem. 

We do not intend to develop the algebra here but we conjecture that 

the ANOVA estimators are again MIVQUE in the balanced case M, =m 

(See Section 6.3). 
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6.3 Model-Based Prediction 

In this section we consider the minimum variance unbiased 

(MVU) (Definition 3.2) prediction of y and S (see (6.3) and (6.4)) 

under Model I of Section 5.1. As in Section 6.2 we assume that 

Assumption A (of Section 5.1) holds and we evaluate moments of 

predictors conditional on s and M. 

In Section 3.3 we used two approaches to MVU prediction: 

M we used the Lehmann-Scheffe type argument of Lemma 3.7, (11) we 

obtained the MVU predictors amongst a restricted class of linear or 

quadratic predictors. -In our present set-up we only use1he 

first approach under the very restrictive conditions of the following 

Lemma. ' 

T---- 0 lr% ý 

If Assumption A holds, m, = M, ='M (i=1 .... N) and 

YIV lo Np (11,9 1: .) i=l ... N, J=l ... M 
ij iwI 

piNp (11, rB) 

then the minimum variance unbiased predictors of y and S are 

= 

SB S= C(N-1) + N(M-I)SII(NM-1) (6.32) 
ss 

BW 
where y., S and S are defined in (6.7), (6.9) and (6.10). 

ss 

Proof 

As in Lemma 6.5 a complete sufficient statistic for 

0= (P. Is A, = (Jys, SB 'ýS 
w 

In the notation of Lemma 3.7, EW1 EB) 
ss 

Y= (Y 
11 *** ylý - yný)" z= (Y 

n+l: I ... YNý)'. The Joint 

distribution of (Y, Z) is indexed by 0 and, since Y is independent of 

Z, ýA is predictive sufficient for Z (definition 1.3). Initially let 



- 268 - 

T=y then, 

NM 
T= nM YS + *Z E yij 

i=n+l J=1 

44 

and so T Is a function of A and Z. 

Let Ty then 

E Tjs, M) 0 

so T is an unbiased predictor of T which is a function of A and so 

by Lemma 3.7. T=ys is minimum variance unbiased for Ty as 

required. 

Now let T=S then 

T= C(n-1) SB + n(M-1)SW + nM(-y 
s 

My ir 
sss 

NM 
+EE (y 

ij - My 
ij - y)13/(NM - 1) (6.33) 

i=n+l J=l 

which is a function of A and Z since y Is a function of A and Z. 

EI (Tis, M) = (N-1)M Z 
B/(NM 

1) + EW 

Also from the proof of Lemma 6.1. 

E (S 
Bjs 

I M) =MZ+E IsBW 

E (SWIs, M) = ISW 

Hence EI (SIS, M) = C(N-1)(M EB+EW)+ N(M-1) Eý'/(NM-l) 

= (N-4)M Z 
B/(NM-l) +EW 

Therefore S is an unbiased predictor of S, which is a function of A 

and so by Lemma 3.7, S is minimum variance unbiased for S. Note 
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y (in, --(6.7)) and-that S0 (N (see 
ANDVA 

EANOVA 
p 

The above result cannot be extended to the case of unequal m,, 

because no complete sufficient statistic exists, nor to the case 

m, = m, M, = M, m<M, because A. will not be predictive sufficient 

for Z. Instead we restrict our attention to linear or quadratic 

predictors. 

If Assumption A holds then the (locally) minimum variance 

linear unbiased predictor of y is 

Im 

0ys+E (M i, -mi) 11 1+Emi III/M 0 i=n+l 

where Ay+ (I -, A v 

11 = (-rA 
i 

)-l EA 
i 

ii 

ZZ B 
(1: 

B+ 
rw/mi. ) -1 

Proof 

As in the proof of Theorem 3.6. y is a minimum variance linear 

unbiased predictor iff aly is a minimum variance linear unbiased 

predictor of aly, where a is an arbitrary pxl vector. The latter 

predictor may be obtained from Theorem 2.1. of Royall (1976) as 

aly =. 
[mo a, y. + YI(x +v 1101 

v (Y x 

where -Y M 
(D a 

00 

Yiý 

II... Y'), , y! (Yim ... Yiý V i=l n Yn- Yn+l N1 +1 1 

Y, (y 
I, ... Yjý 

iP 
i=n+l N 
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ýX M01pX 11 1M0 
-m 0p 

VI var(Y Iv I101, =' cov(Y II, 
YI 

_1 V-1 a (X IvIXI)XII 
Y1, 

I 

vI and V may be obtained from (6.25) as 

n 
V, = E) (I m 

4D EW+jm (3 ZB)' 

n 
E) (PW. rW+P 

Bm 
(mi I: 

B +EW 
i=1 i 

n 
M -mipm B 

v 
H'i 

0 
kp ,M op L 

where () is the direct sum 

i 
m, n 

is the nxn matrix of ones, Jm J 
M'm 

p 
Bm 

JM /M PWM =Imp Bm 

0 is the mxn matrix of zeros 
m, n 

N 
k= -Z 'Mi-I 

i=n+l 

Henýe +-P (M Z+ýZ v-, IpWin EW 
Bm iBW 

tv-1 
n' 

-1 XIIX, =Emi (M 
iZB+ZW) 

n 
ýB 

,ZA i-11 assuming'Z B 
is non-singular 

i=1 

nn 
X, vIY, Zmi (m iZB+Z W) iEBZAi Yi 

i=l i=l 

I 
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Hence (ZA (ZA i Yi) 

n 
Now M, -m,, in, &A /M 

i vvI 

0 kp 'm 0p 

Hence V V-1 (Y 

M0 -M 0 (911 

Cm 
A1G1 

1m 
-M 

An6n 
nn 

0 
kp, 'l 

Hence yl(X ii +V 

n 
= (M 

0 -M 0 
)alp + (M mi) a' A 

i(Yi 

Hence 
nN 

alY ,= a' IMO ys+E (M i-mi )p 
i+Emi 

/mo 
i=1 i=n+l 

as required. 

Note that the predictor in Lemma 6.11 has a natural interpretation. 

The value of y ij 
for sampled units is predicted by y, j, 

the value of 
th 

y ij 
for non-sampled units in the I sampled cluster is predicted by U, # 

the minimum variance linear unbiased predictor of 11 1 
'(proof omitted) and 

the value of y ij 
for units is non-sampled clusters is predicted by U, 

the minimum variance linear unbiased estimator ofil(see 6.23). Note, 

as In Section 6.2, that it seems unsatisfactory that AI is not equal 
to EB (E 

B+EI 
/M 

I which would be the case if we had conditioned 

on the E 

We now turn to the prediction of S. From Lemma 6.11. we see 
that there is only a uniformly minimum variance linear unbiased 

predictor of y in the case m, = M, =M (i=l ... N). On the basis of 
the similarity between the results for estimating U and Z in Section 6.2 

we conjecture that there is also only a uniformly minimum variance 
I 
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quadratic unbiased predictor of S in this case. Because the prediction 

of S is more difficult than that of j we restrict ourselves to this case 

in the following Lemma and also assume p=l (i. e. y, j 
is univariate). 

Note, however, that the conditions of Lemma 6.12 are much weaker 

than those in Lemma 6.10. 

Lemma 6.12 

If Assumption A holds, m, =Mi=M (i=l ... N) and p=l then 

(defined in 6.3.2) is a uniformly, minimum variance quadratic predictor 

of S. 

Proof 

As in (6.33) we may write 

A+B 
ss 

where nM 
2M . -2/N /(NM-1) AEE y2 -ny s i-i J-1 ij s 

Nm 
-2 Bs E y2j - 2n(N-n) M ys y; IN (N-n)2M y IN] I(NM-1) 

is 

[i=n+l 

J=l 

Nm 
Y; E Er y ij 

/(N-n)M 
i=n+l J=l 

As depends only on the units in the sample and so we may write any 
quadratic predictor Q of S as 

nMnM 
Q=As+EEZ-Za 

ijkl Yij YkX (6.34) 
i=1 J=1 k=1 X=1 

We assume, without loss of generality, that a ijkX =a klij' 

If Q is unbiased for S then 

EI(Ea 
ijkt Yij y kZ1 s, M) =EI (B 

Sis, 
M) (6.35) 

ijkX 
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Evaluating both sides of (6.35) 

EI(Ea 
ijkJt y ij y kX 

1 s, M) =(Za ijkJL)ll 2+ (E a ijit 
)EB+ (Z a ijij 

)E 
w ijk)t ijkX ijz ii 

(6.36) 

using the first and second moment structure of y, j 
in (6.24) and (6.25). 

EI (B 
Sis, 

M) [-n (N-n) MIN] V, 2+ [(N-n) (N- 1) M/N] ZB 

+ [(N-n)(NM-1)1N]Z 
w 

)/(NM-1) 

= )L 
1 

112 +X2EB+13EW say (6.37) 

If is uniformly unbiased we may equate coefficients in (6.36) and 
(6.37) to obtain 

a ijkt 1 
(6.38) 

ijk. t 

ia ijil 2 (6.39) 

a ijij 3 (6.40) 

Now 

EýE(Q-S)21s, ! fl VIC(Q-A)js, ý] + V, [(S-A,, )Is, 

2 cov, CQ 
-As-, S Asl p, Mj (6.41) 

Let us now consider the third and fourth moment structure of y ij. 
As 

in Section 5.4. define the first four within cluster cumulants as 

a2 

kU 

k 
41 

EI (Y, 
j 

I e, ) 
E ((Y )21e 

I ij ui i 

EI ((Y 
ij - Ili )31e 

i) 

EI ((Y 
ij - Ili )410 

1)314 

and define the between cluster parameters 
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k 
3W 

EI (k 
3d 

k 
4W 

EI (k 
41 

) 

YVI (a 
1 

2) k 
3B 

E1 3) 

k 
4B 

E[(Ij 
1-04] -3aB4 where aB2B 

C1 cov IMI i-P)Z, a1 2) C2= cov I (V,, k 31) 

C3 cov I (Ui, a12)ý 

These do not depend on M since Assumption A holds. i 

We may now write 

VIC(Q-As)ls, v(Q-A + a, j, j a+2 aiji2)Y 
s ijk ikik iix 

+ (2 a iiii a ikik + 4. Za 
ijik. a ijig, )C 1 ijk;, ijkl 

+Ea ijik a ijkm )C 311 ijk. tm 

+ 4( Za ijij a' ijik )C 2 
(6.42) 

ijk 

where -v(Q-A 
s) 

is the variance of Q-A 
s obtained by setting a12=aW2= EWP 

k 31 k 3W ,k 41 k 4W in Model I. Further, subject to (6.38) (6.40), 

cov, [Q-A 
8, 

S-A 
SIS, 

Y] [-2(N-n)V/N(NM-l)][X 
3k 3W + 2X 1aW 

2P + 20 2+ MX 3 )C 3 

+ MX 2k 3B + 2M; k 1aB2 11J 

which does not depend on the a ijkJV Also VI ((S-A 
S 

)Is, M) does not 
dep, ond on the a ijkl and so from (6.41) the minimum variance quadratic 
unbiased, predictor of S is obtained, by minimising VI (Q-AsIs, M) given 
in (6.42). Now from theory on the standard random effects model 
(Graybill, 41954) the minimum variance quadratic unbiased estimator- 
of E (B-Is, M) is 

2+2+X2 Q As X1 11 2aB3 aw 
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where 112 =y .2_ 
s 

SB /nM 
s 

(SB _ aB 2= 
s 

SW 
s) 

/M 

a 2= SW 
W3 

Hence V(Q -A <V(Q -As 

We may minimise the remaining terms in (6.42) by using the fact that 

for n pairs (a,, $, ) the minimum of Za, O, subject to Za, = k, and 

ZO, =k2 occurs when a, =k1 /n, 01=k2 /n. Hence the minimum of 

V, [(Q 
- As)ls, M3 - v(Q - A. ) subject to (6.38) - (6.40) occurs when S 

X3 /nm 

InM(M-1) J+x 
2 3)' iji-t ' 

a ijkt ý- (1 1-x2 )/n(n-1)m2 i+k 

But in this case As -IA s 
and 

. 
so VI AsIs, M) is minimised 

subject to (6.38) (6.40) when Q. The proof-is completed by 

noting that Q S. 

6.4 Design-Based Estimation 

We now consider estimators of j and S (see 6.3 and 6.4) which 

might be considered appropriate on the basis of their properties with 

respect to the randomisation distribution induced by a given sampling 

design. 

Simple Random Sampling at Both Stages 

n clusters are selected by SRSWOR. Within the sampled clusters 
SRSWOR's of mi units are selected independently where i is the 

(population) cluster label. The first-order inclusion probability of 

unit (ij) is 

7r(, 
J) 

= m, n/m 
i 



- 276 - 

The design-unbiased Rorz. ýitz-Thompson estimator (ej: ofýSection 3.4) 

of y is 

tnIII 
Yin =zm iYi /nM -1. J=l 

where MM0 IN 

The ratio-type estimator (e 10 of Section 3.4) of y,. is 

n. n-- 
YR = 1: Mi Yi /n Ms 

i=l 

n 
where M=M /n 

si 

The expansion estimator (Royall, 1976b) of j is 

n 
my /M YE i10 YS 

Royall (1976b) compared these three estimators of y with the model-based 

predictor of Lemma 6.11 in the univariate case. The expansion estimator 
B 

is the MVLUE if Z=0. The Horvitz-Thompson estimator is model-biased 
--iZ unless MM in which case y HT `2 YR* The ratio-type estimator may be 

written 

nN1. n 
Y 'I E (M m )yi +zM (E M /ni )]/M 
R 22 M. '. +i-iis0 

i=1 i=n+l 1 

Comparing this with Lemma 6.11 ' YR may be viewed as the model-based 

predictor of y which predicts ji, by yi and estimates V. by the weighted 

mean ZMi Yi /ZM i If, however, the intracluster correlation is low 

the optimal weights should be closer to mi than Mi. 

In the multivariate case the design-based estimators estimate 

'variable by variable I whereas the model-based predictors 'borrow 

information' between variables unless the AI are diagonal e. g. if ZB 

is proportional to ZW. 

zz 
In the case. m, M, =M the design-based estimators, yHT# YR and 

YE a re all equal to ys, the uniformly minimum variance unbiased 
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model-based predictor. It is straightforward to verify also that 

in this case the design-based estimators e (S), e (S) and e (S) 
23 12 

of Section 3.4 are all equal to S (see 6.32), the uniformly minimum 

variance unbiased model-based predictor. Note that this estimator is 

also proposed for this case by Cochran (1977, p. 239). 

For general mi and M expressions for the estimators of S 

in Section 3.4 are complicated. For example, using the second-order 

inclusion probabilities 

7r =m n/M N i=k J=2- 
(ij) (kt) ii 

=Mi (M, -l)n/M i 
(M, -l)N i=k J+x 

mm n(n-l)/M M N(N-1) i+k 
ýi 

kik 

we may evaluate e3 as 

n 
3 (S) =NE cm 

i 
(M, -1)(n-1) + (m, -1)(N-1)(A 

s- 
mi)i s 

si 
/(m, -1)(n-1) 

+ (N 1)nM 
S, 

mi (y 
i- YR)(Yi - YR)'/(n-l) /nM 

0 
(M 

0 -1) 
nI, 

Mi 
where s (y y MY y P/M 

S, J=l ij i ij ii 

If we let n, N and assume the Mi are bounded then 

j2 MiS 
si M (Y 

(S) 111- YR)(vi - YR)' 

3 j2 nn 
MMi 

which we might view as the analogue of the Horvitz-Thompson estimator. 

The analogue of the ratio-type estimator is then given by e (S) which 12 
for large n and'N is 

n 
j2 mis 

si m (y 
i- YR) (vi - YR) 

j2 nn 
mimi 

(S) 
jz 

e (S) 12 F%2 
s 

The analogue of the expansion estimator is the standard estimator of 
S discussed in Chapter 5. 
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Note that the ratio-type estimators of y and S will be equal 

to the standard estimators of Chapter 5 (approximately equal for S) 

under proportionate allocation mi C1 mi. 

PPS Sampling 

n clusters are. selected with repZacement. The i th 
cluster is 

selected with probability Mi /M 
0 

(at each draw). Within the sampled 

clusters SRSWOR's of mi units are selected independently. 

The usual design-unbiased estimator of y (which is a combination 

of e6 (y) at the first stage and eI (y) at the second stage) is 

t 
Ypps yi 

This would be the natural model-based estimator of V if 

zB was-large relative, to ZW. Its interpretation as a model-based 

predictor of y is less obvious (Royall, 1976b, p. 660). 

We cannot immediately apply the definitions in Section 3.4. to 

obtain a design-based estimator of S because this design is a 

combination of with and without-replacement designs. Let us now 

distinguish between 

m 
Y, y ij 

/M 
i 

Mi 
and YS, y ij 

/M 
i 

then we may write (from 6.4) 

xMiN 
s=EE (y -y My )l +Mi (y 

i YMY /(M -1) 
i=l J=]L ij i ij - Yi 

0 

(6.43) 

Let us consider estimating the second term, since it is rather more' 
difficult than the first. If we have no subsampling I. e. m, =MI then 

we may estimate this term by generalising the est imators e7 or e8 of 
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Section 3.4. For 

N---I-N 
zmi (y 

i- 
My 

i- Y)l miyiyiWmi l)/M 

and an unbiased estimator analogous to e7 (S 
11 

) is 

n 
Miy I/n pmiyiMj yjl/n(n-l)p ipim0 i+j 

where p, =Mi /M 

This reduces to 

n 
MO (yi y)(y, - y)'/(n-1) 

n 
where yE; i /n 

J= 

In general, however, we have ii i<Mi and do not observe the yi Let 

us instead consider 

B «2 m0Z (ysi -y PPS 
Mysi -y Ppa 

)'/(n-1) 
i=i 

The expectation of sB over stages I and II of the design is 

E (s MEEyy 
pB01 

(an 

si si n si sil i=l i+j 
rin-1 n--oI- 

ME- (y y+S (1-f )/M -- Zyy, ]/(n-1) 
o ILk nn i+i i 

mi 
where S: 

L =iE1 (y 
ii yi MY 

ij Yi MY 
ij yi), /(M 

i- 
1) flL mi /M 

i 

n+ 
-1 Ep (s 

B)=M0EIz 
(y 

i y)(yi Y) 
a 

-) z si(l-f 
i) 

/m /(n-1) 

NNn 
Emi (y 

i y)(yi - Y), +m0nEsi (1-f 
i 

). m 
i 

/M 
inM0 i=l i=l 

NN mi 
=z (y - My - y)"+ 

-lz 
E (M -m MY -y MY -y)I 

i=l J=l ii ij i ij i 

/M (M 1) (6.44) ii 



- 28o - 

Finally we note that for constants a1... aN 

n Mi 
Ep(EaiE (y 

ij - Ysi)(Y ij -y si i=1 J=l 

n 
E (M 1) S 

'N 
Za (M 1)M 

iSi 
/M 

0 
(6.45) 

Hence combining (6.43) (6.45) a design-unbiased estimator of S is 

nj M, - ill; M, 
SrM (M -1) 

E (y 
ii - Ysi MY 

ij si PPS 

1, 

=ii) J-1 

+M0E1 (Ysi - ypps MY 
si - ypps )t/(n-1 )l /(MO-1) 

Mi 
=M 

[j 
EZ (y -y) (y -, y) 1/nm , 

i=J-J=l ij si ij si 

n 
+ (y 

si -y PPS 
)(Ysi y PPS 

/(Mo-l), 

Hence, as in'y 
pps, 

S 
PPS 

gives-unit weights to the within cluster sample 

moments. - Again this might be a plausible model-based estimator of J--ý 

if the between-cluster variation is large relative to the within-cluster 

variation. 

6.5 Conclusion 
I 

In this chapter we have considered estimators of V and Z and 

predictors of y and S which might be used in place of the standard 

estimators of Chapter 5. 

In the case of equal cluster sizes and no second-stage subsampling 

we show that standard design-based estimators of i and S have optimal 

properties as model-based predictors under Assumption A. These 



- 281 - 

estimators also have optimal properties as estimators of Ij and E 

for large N and are equal to the standard estimators of Chapter 5 

for large n. 

In other cases the problems of optimal estimation and prediction 

are less easy. -Under 
Assumption A both problems generally involve a. 

possibly iterated, two-stage procedure (i) prediction of 01 (= (Pitz 
i 

say) and (ii) estimation of V and Z or prediction of i-and S. The 

prediction of 01 generally involves pooling across clusters. There is 

clearly room for some ad hoc simplifications to bring out this 

structure more clearly in the estimation process. It would also be of 

interest to compare, probably by simulation, the efficiencies of the 

different estimators under Assumption A. 

The design-based estimators of y and S generally differ between 

those based on srs at the first stage which weight within-cluster 

moments by Mi and those based on PPS at the first stage which weight 

by unity. Under Assumption A with relatively low intracluster correlation, 

model-based considerations suggest that it may be better to weight by 

mi as in the standard estimators of Chapter 5. 

Extension of the model-based approach in this Chapter to the 

case when Assumption A does not hold would be of most interest for 

the case when Assumption B also does not hold, for in this situation 
it appears that the standard estimators of Chapter 5 could go badly wrong. 
The theory would presumably be easiest in the case of single-stage 

cluster sampling with m, =Mi when we might summarise information on the 
th 

i cluster by (yij Si say, and possibly refer to the approach of 

Chapters 2-4 with x vec(i,, S, ) and 'ý Mi* 
11 x21 " 
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CHAPTER 7. MULTIVARIATE METHODS UNDER TWO-STAGE SAMPLING 

In Chapters 5 and 6 we considered the estimation of U and 

E and the prediction of y and S. In this chapter we consider the 

estimation of functions of Z, viz correlation coefficients (Section 7.1), 

regression coefficients (Section 7.2) and principal components (Section 

7.3) and the estimation of parameters in a factor analysis model for 

Z (Section 7.4). We no longer consider the prediction problem. 

7.1 Correlation Coefficients 

As in Section 5.5 we assume that a pair (x ijyij ) is associated 

with the j th 
unit in the i th 

cluster. We consider the estimation of 

p=a /aiay where aXY, G2 and a2 are the second moments of X.. XY xY Ij 
and Y about their means in the distribution f defined in (5.3). 

We shall only consider the properties of the standard estimator of p 
I 

TTI /(T T XYr xyc Xv Yv (7.1) 

where T Xv and T Yv are defined as in (5.40) and T Xyc 
is defined in 

Section 5.5. We do not consider alternative estimators of p as in 

Chapter 6 because in the simple cases where we obtained a simple closed- 
form estimator of Z the estimator was approximately equal to T XYc 
anyway. 

In this chapter we suppose that Assumption B of Section 5.2 holds. 

In this case it follows from Lemma 5.5 that T XYr will be approximately 

unbiased for p for large n. Frankel (1971) simulated the p-distribution 

of T for various variables for self-weighting stratified (single-stage) XYr 
dlustered designs for a given finite population. We might conjecture 
from Lemma 5.11 that this p-distribution might resemble our &-distribution 

under Assumption B. Frankel (1971, p. 52) found that with n- 60 (and 

two psu's per stratum, and m0 -1 850) the average bias of T XYr was 
about 10% of the average standard error. We therefore propose to measure 
the effect of misspecifying Model II as Model I by the misspecification 
effect of Definition 5.1. As in Chapter 5 we shall approximate this 

misspecification effect by that of 
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T. = TXyý/(TXJYý)l (7.2) 
XYr 

where T- and T are as defined in Section 5.4 and T as xv Yv xyz 
in Section 5.5. 

Lemma 7.1 

If Assumption B holds 

n 
meff(TXyils, M) A1+m1 (m 

I 
-1)T XY i(mi)/m 

0 (7.3) 

where 
T --(M. ) corr h 11 jh Xij,, Yijl) M xyi If r(Xij'yij) r( 

IX-11 
xI 

fy-P 
y 

(X-P 
x12 

fy-P 
y 

(7.4) 

hr (X, Y) -ax 
-, 

FC IT 2 FaT + FcrT 
7.5) 

Proof : 

This follows from Lemma 5.5 (by noting that Cl and C2 apply) 

and Lemma 5.9 by noting that, 

TXYý =, g(TXypTXý, Tyý) (7.6) 

where 

g(X, Y, Z) . xy - 
IZ-1 (7.7) 

g (mop) glc(aXy, a2, a2) a-la-l 
xxYxY 

9 (moll) a -3 a -1 
y-2 -XY xy 

9 (mcru) 1a -1 a -3 
z2 -XY xY 

and so from LeTmna 5.9 

T- (M ) --corr[h (X ), h (X 1) 
Im 

XYr ir ii Y ij r ii �Y ij il 
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where 

h (X )= (X ) (Y )a-la-l 
r ýij 'Yij 

, 
ij -"x ij -1y xY 

-3 -1 + (X --j, 2a, aa ii x2 XY XY 

+ (Y 2 cr a-la-3 ij -1y 2 XY XY 

as required. 

Lemma 7.2 

If B holds 

(M. AV (r. M. /m V (TXf 
XYr iIIIo II r1s, 

M) 

where 

r. 

(11 
xi-"X) 

(Ijyi-Ily )+a 
xyi (7.8) 

I 
-p )2+ý2. [(p )2+a2 

Xi XxJ yi-ly yi] 

Proof 

From Lemma 5.10 and (7.7) we have 

Týyj(Mj)A V, g(U )IMil/m VII(TXyjIs, M) 
I 

il'Ui2'Ui3 0 

where 

umE, (hc (Xij Yij) I ei) 'M 
0 

M 01 
(vxi-ll 

X) 
Olyi-11 y)+a xyij 

/ (MO-1) 

u i2 m0E, (h 
v 

(X ij ei) 

m (pX, -pX)2 +2i] 
01 ax 0 

-u 0m0 El (h 
v 

(Y 
ij) 

I ei) 

M0 )2 +--Cr2,1/(. 
I(pyi 

yy0 

Hence 

g(u il'Ui2'Ui3 )-ri 

as required. 
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The quantity ri is of fundamental importance in determining 

TXy; -ri may be viewed as a generalised within-cluster correlation 

between X and Y such that E(r 
i)P. 

The following Lemma shows 

that ri is not greater than unity in absolute value. 

Lemma 7.3 

For r defined in (7.8) 

ri 1< 

Proof Let a VX, -Iij and 11yi-Ily 

Then 

r22 2)(a2+a 2)_ý 
i 

KE(a +aX, Yi 
(aa+cr 

XY'i 
)21 

where 

K= (a 2+a2) -1(a2 + ay12)-l 0 
Xi 

Hence 1-r2= K[a2a 2+ 02a 2-2a$cr + (cr112cr 2-a *, 2) 
i Yi Xi M Yi XYi 

>K [a2cr 
Yi 

2+ a2a X12 - 21a$11a 
XV , 

Ij 

>, K [a2a- 2+ 02a 2, 
_ 2 

Yi Xi a axiay I 

K([cxla Yi - 
Islaxi )2 

0 

If lit, p. and 'P Yi = ljy then ri = p, = aXyi 1C'XiC'Yi and the intra- 

cluster correlation T- is a measure of the variation in the cluster 
Xyr 

correlations, pi. In general ri is not equal to pi. In Figure 7.1 

contours of-constant ri are plotted for values of V Xi - 11 X and 

11yi -1 )1Y where p, =0 and a X1 
2=a 

Yi 
2_ = 1. In Figure 7.2 the 

same contours are plotted for pi = 0.5. We may mak 
.e 

two observations 

from these Figures. 

Firstly, if Tj and T are low-then r is approximately Ym. 

equal to p,. For example, suppose TXM 0.02, Tym 0.02 as in 

the Family Expenditure Survey data. Then, assuming Irw 2.1 the 
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Figdre 7.1 ri contours for pi 0 (a 
xi 

2= ay12 

yi- 11 y 

-1 xi x 

ri =. 4 .3 . 2ý .1 .1 .2 .3 .4 

Figure 7.2 ri contours for p, = 0.5 (a 
xi 

2 
Yi 

2 

11 Yi py 

/1 7/ 

xi )IX 

r, =. 7 6 .4 .3 .2 .10-. 1 .2 
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standard deviation of V Xi - 11 X 
(or py, - py) is approximately 0.14. 

Hence, by inspecting the Figures, ia at least 95% of the clusters we 

might expect the difference between ri and pi to be at most 0.1, 

and for most clusters rather less than this. In contrast, the 

standard deviation of the between-cluster distribution of pi 

is approximately 0.15 for the three FES variables. 

Secondly, we note from Figure 7.2 that, for, given values of 

T XM and Ty. , the expected difference between rI and pi is smaller 

if the within-correlation p and the between correlation (of V i Xi 

and are of the same sign and larger if they are of opposite sign. 

The following two Lemmas permit us to express TXy; in terms 

of population moments and hence to examine the form Of T XY; 
in some 

special cases. First of all we define some more notation, under the 

assumption that B-holds. 

Let k 31 =-E ii 
(X 

ij - ux )3(yij - py) -3 aX2, IIXY 

k 13 2E ii 
(X 

ij - 11 X) 
(yij - py) 33 CY2 CXY 

k 
31B 

(M 
i)= 

EI E(liX, 
- �X) 3(ljyi ljy)lMi] -3a XB 

2(M 
i XYB 

(M 
i 

r)31M] -372 k (M )= EI E(llxi 
- 11 x) 

(vyi - vý i YB 
(Mi)CXYB(Mi) 

c (M )= COVICaXi2, (ljyi - ly)21M] XOY ii 

CYOX (M 1)= COVIECFYJL2, (11. X: i - Ily)21MJ 

c XOXY(M )= cov ca 2 01 - 11 ) (11 - li )IM] 
iI xi I xi x Yi y 

c XYOX 
(M 

i Covj[aXyi, (,, 
Xi - IIX)21M J 

c YOXY 
(M 

i COVI[ayi2, (,, 
Xi - UX)(pyi -, Ily)lMi] 

c XY*Y 
(M 

i COVI CaXyi, (Ilyi - Ily) 21MJ 

6 (M )= COVI 
EaX12, ay12lM ] 

X-Y ii 

a 
X-KY 

(M 
i)= COVI[aXi2, aXyilMi] 

a (M )= cov 
[ay12, CrXyi IM 

YOXY iI 
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v ii 
(TXyýjs, M) - p2)2 + p2K]/m 0 

(7.9) 

where K=k(2+ cr /2). + k X/4 a4+k4 22 aXY x Ili 4, x 4Y/4 17 y 

-k 31 1aX2aXy -k 13/CFY 
2ay 

and k 4X and k 4Y are defined in Lemma 5.16 

If the joint distribution of (XJ, Y 
ij 

) is bivariate normal then K=0. 

. 
Proof: The first order Taylor Series expansion of var 'T 

illxyý 
is 

(c. f. Kendall and Stuart, 1969, Ch. 10) 

var (TXY; ) _= (m - 1) 2p2 [var (T 
XY2 +4 11 0 11 xyz) 

la Evar 
II 

(TXý) /aX 

+ var ii (Tyý)/ CY4+ 2'cov,, (TXý, Tyj)/aX2 17Y 2]/4 

C, 
TY-)/cyXyay23/m 2 cov (TXY;, TXý)/aXyaX2 _ Cov (TXY- ii v0 

(7.10) 

From the proofs of Lemmas 5.17 and 5.27 

var ii 
(TXY; ) = in 

0 
(ax2a 

y2+a XY 
2+k 

22 
)/(M 

0- 
1)2 (7.11) 

var ii 
(TXi)ý =m0 (2 OIX 4+k 

4X 
)/(M 

0- 
1)2 (7.12) 

var ii 
(Tyý) =m0 (2 ay4+k 4Y 

)/(M 
0- 

1)2 (7.13) 

Now 
cov II 

C& Tyý) =m0 COVI I 
E(X 

ij - 11 x 
)2, (yi. 

j - ljy)2]/(m 
0-- 

1)2 

=M0 (2 (1 KY 
2+k 

22 
)/(M 

0 .- 
1)2 (7.14) 

cov II 
(TXYý, TXý) -3 X0 cov, I 

c(, 
ij, - -"X 

) (Y 
ij li y 

), (X 
ij- - ljx )2]/(M 

0 -1)2 

M0 (2 a XY aXk 31 
)/(M 

0 -1)2 

Similarly 

cov (T,, -, T -) =m (2 aa2+k )/(m -1)2 II YV ,0 XY Y 13 0 

Substituting (7.11) - (7.16) into (7.10) gives 

var II 
(TXY; ) t p2[(l + p2)/p2 + (2 +2+ 402)/4 -22 

(7.16) 

k 
22 

/cr 
XY 

2+ (k 
4x 

/0 
x4+k« 

/a 
y4+2k 22 

/c 
x 

2a 
y 

2)/4 
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- -. k 
31 

/0 
XY aX2-k 13 

/cy 
XY ay 2] /m 

0 

«1-p2)2+ p2K)/m 0 
as'required. 

Lemma 7.5 

If B holds 

var I 
(r 

i 
imi) -p2 

[A 
1 

la 
XY 

2+ (A 
2 

la 
x4+A3 

/ay4. + 2A 
4 

/aX2a 
y 

2)/4 

--A5 la 
XY ax2-A6 la 

XY ay2] 

where A, =, var I 
E(p 

xi- px) (11 
yi-11 y)+ cr xyii 

mil 

a XB 
2(M 

i YB 
2(M 

i)+ XYB 
2(M 

i 
"22B(Mi) + 2c, 

XY(M, 
) 

y XY (M i) 

A2 varj[(UXi-,, X)2 ý. aX12lMi] 

2a 
XB 

4(M 
i 

)'+ k 4XB 
(M 

i)+ 
2c 

ix 
(M 

i)+yx 
(M 

i 

A3 "ý varj[(Ilyi_,, Y)2 + ay12lM i 

= 2a 4 (M + 1, (M )+ 2c (M +y (M') 
YB i 4YB i ly iyi 

A2+ Cr 2 
4= cov il(I'xi-"X' xi , (V 

yi-V y 
)2 +a Yi 

21mi 

&X -y 
(M = 2a 

XYB 
2(M 

i)+ 
k22B(Mi) +c X-Y(Mi) + CY*X(Mi) + 

57 JE("Xi-1'Xý(Pyi-Py) + CXY, , (pX, -VX)2 + CX121Mi] A' cov 

2orXYB(Mi) ýr2 
XB *(M i+k 31B 

(M 
i)+c XYIX 

(M 
i +-C X, XY 

(M 
i 

+ 6. 
X. XY 

(M 
i) 

A6= covl 
l(lXi-'Y ()'Yi-"Y) + aXYi " (Ilyi-py)2 + cry, 21Mi] 

2cf (M )02 (M )+k (M 
XYB i YB i 13B 

d+ CXY-Y(Mi) + 'CY-XY(Mi 

(7.17) 

X-X (Mi) 
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Proof,: (7.17), follows as-in Lemma 7.4 from the first-order Taylor 

Series expansion of var I 
(r 

i1mi) and by using the results of Lemmas 

5.17, and 5.27. 

We now use the results of Lemmas 7.2,7.4 and 7.5 

to evaluate'T - for some special cases. xyr 

Case. 1 :A holds, a xi 
2=a 

xw 
2, a Yi 

2v 2, a xyi 7, axyw (common within-cluster 
covariance matrix 

In this case 

c (M c -(M c (M C, (M X-Y i Y-X i X-XY i XY-X i 

C 
Y. XY (M iC xy. y (M i cr X-Y (M 

i X-XY (M i 

& 
Y-XY 

(M 
i)yx (M i)yy (M i)y XY (M i) 

C Ix (M 
i)C ly (M 

i)C ixy (M i)0 

And since A holds, susbtituting into Lemma 7.5 we have 

A, = cr XB 
2 cr YB 

2+a 
XYB 

2+k 
22B 

A2= 2a 
XB 

4+k 
UB 

A3= 2a 
YB 

4+k 
4YB 

A4= 2a 
XYB 

2+k 
22B 

A= 2cy-* a2+kA= 2a a2+k 5 XYB XB 31B 6 XYB YB 13B 

Hence, substituting into Lemmas 7.2,7.4 and 7.5 

l'IDjYm(' 
+ "B 2) +Z2p 2/2 +z Yin 

2p2/2 +TT P2 p2 XYr x1ft Xm Ym B 

- 2, r p- 2T - 2K. ]/ 
x3n 

rT 
xM r YM PB YM 

rT 
XM r YM pBP+p 

[(I-p2)2 
+ p2K] 

where K' w" k 22B'aXY 
2+ (k 

4XBý 
IaX4+k 

4YB la 
Y4+ 

2k 
22B 

la 
X 

2cr 
Y 

2)/4 

(7.18) 

- 2k 
31B/a XY aX2-2 Y3B*la 

XY ayz 
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We note-that T. Y; 
is a 'quadratic' function of TXM and Tym. Hence. 

if (i), both T-- and T are small and (ii) the between cluster distribu- 
xM - Yin 

tion, of u xi and 11 Yi 
is close to joint normality (to tha 

It 
Ký is very 

small) then T xy; 
is very small. 

Note, however, that it does not follov, as for TXya, that if eitherTXm or 

T is small then T is small. For if T 0. Then 
YM XYr YM 

TXy; -` P2(TXM 2/2 + Kl)/E(l - p2)2 + p2K] 

Case 2: A holds, V jyR a2 a2 (no clustering on Y) 
Yi Yi Yw 

In this case 

A, 
_, 

YXY 
,A22a XB 

4+k 
4XB +2c 

ix +Yx 

AAAA-d+6 34605 XY*X X-XY 

Hence. - substituting into Lemmas 7.2,7.4 and 7.5 

TXY, p2 [. yXY/CrXY2 + (2crXB2 +k 4XB +2 c1X + yX)/4 aX4 

ý.. (c +6 )/Cr, a 2]/(l -, p2)2 + p2K) "' '1-- '- 
XY-X X. XY XY X 

So, as for T xy; ' T XYr- 
is not necessarily zero in this case. However, 

unlike TXY;, even if aXY, = aXYV is constant then T xyi 
is in general 

non-zero since in this case 

2(2a 4-+ k)T ý/4cy 4' 

Tpx 
4X Xfr X from (5.45) 

xyi 
(1 - pZ)2 + p2K 

,. 

p2T Xv 

p2)2 

it the marginal distribution of X is normal. 

In contrast to these formulae, Bebbington and Smith (1977) suggest 

that 

T min (T. 'r XYr Ms YM 

provides 'quite- a good predictive equation' , on the basisl of their 
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empirical evidence. For the present case this formula suggests that 

T XYr should be zero. 

Case 3: A holds, vx-ix yi 2--ý 11 y 
(common within-cluster-means) 

In this*case 

r, = P, =a xyi 
la 

xi a Yi 

and so from (6.26) and (6.28) 

T xyi var I 
(p 

i 
)/[(l p2)2 + p2K] (7.19) 

where 
- 
as T xM and Tym, are zero. This is, of course, 

'in 
contrast to 

Kish and Frankells_(1974) conjectures. 

Case 4: A holds 

In general, -if A holds, TXYj will be a combination of expressions 

(7.18) and (7.19) We may write 

Tn- =T+T+T 
r123 

where T1 is given by the expression for T Xyl. 
in (7.18), T3 is given 

by (7-19) and T2 is such that 

IT 
21 

2(T, T 3) 

Some estimates of these quantities, under the assumption that X 
ij 

and Y 
ij are normally distributed within clusters are given in Table 7.1 

Table . 7.1 Estimates for FES Data 

Variables X, Y T2 T3 TXy;. 

log(Vl), log(V2) 1 . 00031. -. 003 . 061 .0 577 

log(Vl), log(V3) . 0005 -. 011 . 079, . 0683 

log(V2), log(V3) . 0004 -. 003 . 070 . 0673 

We note firstly that T- is dominated by T3 as in Table 5.4 for 
XYr 

T 
xyý- 

So the variation in the cluster correlation pi seems 
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to account for most of the intra cluster correlation. We might expect 
I 

this to be typically the case when both T XM and T Ym are small (and so T1 is 

very small). We note secondly that the values of T- in Table 7.1 
XYr 

are consistently much larger than the corresponding values Of T- 
XY-6 

in Table 5.4. Indeed, although all the values of T are less than 
XYc 

all the values of T in Table 5.2 in accordance with Kish and Frankel's 
YM 

C1974) conjectures, the values Of TXY; are uniformly greater than 

all the values of T This differs from the empirical results of 
Ym* 

Frankel (1971). One explanation for this fact is that the 

values of p are larger here than is 'common' in social surveys 

(P 12 . 68, p 13 
81" p 23 

77) and therefore (1 - p2)2, the 

dominating term in the denominae-or of T xyP 
is unusually small. 

Case 5: B holds but A does not hold 

As before we just consider the spatial process approach of Sections 

5.3'- 5.5. As for TXYC- we assume (X, Y) follows'a stationary 

Gaussian isotropic spatial process. In the notation of Section 

5.1 3 r,, as defined in (7.8) , may be written 
jai 

h3 (X(x), Y(x))dx I 

14h2 Mxvcý! 
jh2 

(Y W) dx] 
I 

Using the fact that 

yar, 
[(mo-l)hv(X(x))l 

= 20X4 

var, [(mo-l)hv(Y(x))l 
= 2a 

y4 

and var, [(mo-l)hc(X(x), Y(x))] = (1+p2)aX2ay2 

we may obtain7the first-order Taylor series expansion of 

var I 
(r 

i1mi) as 



294 

var U IMi) = p2[(l+p2)TXYC-i/02 +j (2TXV- + 2TY - 
iv 

+4 corr 
_)), 

h 
ff 

I 
Ch2 (X (x 

2 
(y (X') )] cýl Cýx ') 

- 
/2(1+p2) ff 

corr 
[h2(X(x)), h (X(x'), Y(xl)ýqx.! ýxl 

p3 

- V2(1+p2) 
ff 

corr 1 
512 (y (x) h3 (X(xl) Y(xl)uqlq. l 

p 
(7.20) 

Using standard results for the fourth moments of multivariate normal 

distributions 

corr Llb (X(X)), h, (Y(xl))] =r Y(. 
q)2 

Ivvx 

corr, 
[hv(X(x)), h (X(xl), Y(xl))] 

2. 
(s)r (s) 

c (1+ 02) 
X XY 

corr, 
[hv(Y(x), be(XCx'), Y(x')] =2' (s)r (S) 

Vr2(1+02) y XY 

Substituting these expression into (7.20) and using (5.56) - (5.58) 

and (5.98) we obtain 

var (ril, i) ý-Jl[ 10 
2(l +p2) rXY2(ait) + 2rX(a, t)ry(a, t) 

" p2r x 
2(a 

i t) + p2r y 
2((% 

1 
t) - Or 

XY 
(a 

i t)(rX(a, t) 

" ry(a t))j K(a t) dt/2 where a. - kM! 
iiII 

Hence from Lemmas 7.2 and 7.4 

T 
ji [2(l + p2) rXY2(ait) + 2r (a t) r (a t) xyi(mi) =0xiyi 

+ p2 rx 2(a 
i 

t) + p2 ry 2(ol 
i 

t) - 4pr 
XY 

(a 
i 

t)(rx(ait) 

ry(at))] K(a 
i t) dt/2(l _02)2 

This may be compared with (7.18).. As in (5.98) T- is an integral 
XYr 

of a quadratic function of rX(at) and (a t). However, T rXY i XYc 

is small if either or r is small whereas T- is only small if rX Y Xyr 

both rX and ry are small. In the same way the rate of decay of 

Ir - as a function of M is 'determined' by the rate of decay of XYC i 

the faster Of T XM, and TYM whereas the rate of decay Of T XY;. 
'a 

determined by the slower of the two. Expression for T, as a function 
XYr 

of Mi may be obtained by substituting particular functional forms for K(-). 
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7.2 Regression'Coefficients I 

As can be seen from the table in Section 1.5 there is a sizeable 
literature on the regression analysis of clustered survey data. This 

literature divides broadly into (i) variance estimation of the standard OLS 

estimator (Frankel, 1971; Kish and Frankel, 1974; Fuller, 1975; Shah et al, 
1977) and (ii) estimation of the parameters of a regression model reflecting 

the clustered population structure (Konijn, 1962; Porter, 1973; Campbell, 
1977; Pfefferman and Nathan, 1981; Holt and'Scott, 1981). In the 

terminology of Section 1.3.2, we would refer to the latter work as being 

concerned with disaggregated targets of inference and, as such, not of 
relevance to us. In specific cases, however, our models will coincide. 
Similarly, the work on variance estimation is of little relevance since 
it does not attempt to investigate the theoretical properties of the OLS 

estimator. One exception is Fuller (1975) who suggests an extension of 

a result similar to our Lemma 5.11b to that of the OLS estimator. 

In this section we consider the estimation of a /G2 
XY x 

by the standard estimator 
I 

T XYb ýT xyc 
/T 

xv (7.21) 

As in Section 7.1 we suppose that Assumption B holds and that T XYb 
is 

approximately unbiased for $. In Frankel (1971) the average bias of 
T XYb with n- 12 was about 5% of the average standard error. We shall 
approximate the misspecification effect of T 

XYb by that of 

TXy; = TXyý/TXý (7.22) 

Lemma 7.6 

If Assumption B holds 

n 
meff(T (M; -l)TXyý(Mj)/M XYbls'M + mi 10 (7.23) 

where 
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Proof : 

where 

TXYý(Mj) - corrj[h b 
(X ij Y ij ), hb (Xijl'yijý I Mi] i0 il (7.24) 

h b(X'Y) ý (X-'IX) (Y-11Y-ý(X-PX)) (7.25) 

This follows from Lemmas 5.5 and 5.9 noting that 

TXYý = g(TXYý, TXý) 

g(x, y) = X/Y 

9 (moll) = 1/a2 
x 

g (moll) aX., /a4 
yx 

from Lemma 5.9 

TXyg(Mi) = corr, 
[h 

b 
(Xij. Yij), h b(Xii �Y ij 

)Im il 

where 
h (X, Y) m (X-p )(y-lj )/02-(X-V )20 /04 « (X-4 )(y-Ij -e(X-lj » 

bxyxx XY xxyx 

Note that h 
b(Xij Y ij) = (Xij -11 x 

)eij where eij is the regression 'residual' 

eij ý Yij-Py-a(X -IIX). This suggests a variance estimation procedure based 
1 ij 

on 
ab (X ij Y ij) = (X ij-ý x 

)(Y ij, -ý Y-kxij-ý x 
)) as in Fuller (1975, p. 123). 

Lemma 7.7 

If B holds 

'r -(M )" V (biiMi)/m VII(TXyýjs, M) XYb i10 

where 

Proof : 

(lixi-iix)(pyi-py) + axyi 

1 (la -"x )2 + cy2ý 
xi 

By analogy with the proof of Lemma 7.2. 

(7.26) 

(7.27) 
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Lemma 7.8 

V (TXY; IS, M) ; cr 2(1-02 + K)/a2 (7.28) 
ii y 

imo 

42 
where K=k /02cr 2+ka 2/a6 a2- 2k aa ay 

22 XY 4X XY xY 31 XY/ X 

(Note: if the joint distribution of (X, 
J, 

Y 
ij 

) under Model II is 

normal then K=O) 

Proof : The first-order Taylor series expansion of var (T - )is 
II XYb 

1)2B2 var (T (M [var (T -)la2 + var (TX )/C, 4 
II XYb_ 0- 11 Xyc XY II X 

2cov 
II 

(TXYC-, TXYV-)/(yXyaX21/M02 

Substituting from (7.11), (7.12) and (7.15) 

var ii 
(T 

xy;, 
a2C(a 

x 
2a 

y2+a XY 
2+k 

22)/ axy 2+ (2a 
X 

4+X 
U 

)/Cy 
x4 

-2 (2ci 
XY ax2+k 31 

)/a 
x 

2Cr J(ino 

which gives (7,28), 

Lemma 7.9 

, 
If B holds 

var I 
(b 

i 
Im 

i) --' a2[Al/CrXY2 +A2 la 
x4- 

2A 
5 

la 
XY ax2] (7.29) 

where A,. A2 and A5 are given in Lemma 7.5. 

Proof 

(7.29) is the first-order Taylor series expansion. of varl(bIM i) 

We now use the results of Lemmas 7.7 - 7.9 to 

evaluate T- for some special cases. If Assumption A holds we define 
XYb 

the between-cluster and-mean within-cluster regression coefficients as 

s '2 cr 2 
B XYB/17XB 

OW = aXYW/aX: 

respectively. We note that $ is a weighted mean of 0B and 0,.. 
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T xmO B+ 
(1-T 

X-M 
)0 

W 
(7.30) 

Since T- is usually small 0 will usually be very close to xm W 

Case 1A holds, a22, a2 ='a YW2, aa xi axw Yi M= XYW' 
Y-OW 

In this case 

A, a XB a YB a XYB +k 22B 

,A 2a 4+k 
2 XB 4XB 

A5 2a 
XYB a XB 

2+k 
31B 

and so from Lemma 7.9 

var I (b i 
IM 

i)L a2((Cr XB 
2 OYB 2+a 

XYB 
2)/a 

XY 
2+ 2a XB 

4/a 
x4 

4a 
XYB a XB 

2/cr 
x2a XY 

)+ay 2KI/a 
x2 

(7.31) 

where KI = p2(k la 2+k la 4- 2k la 2a 
22B XY 4XB X 31B X XY 

Since aB OW we have 

a XYB 
21a 

xy 
2 CFXB4/a x4 z- a XYB a XB2/aX2 aXy 

Hence 

var, (b, IM, ) 02(aXB2 cyYB 2- aXYB2) /CIXY2 + ay2K'/aX2 

GY 2 
TT (1-p2) + Kt] (7.32) 

ax XM Yk B 

Substituting into (6.41) and using Lemma 6.7 we have 

TT (1-02) + Kv 
xm YM B (7.33) 

XYb 1-P2 +K 

If K= Kt =0 then 

-*TT (1-P 2)/(l-p2) 
XYb XX YM B 

Ta2/a2 Xni YI XB YIX 

=T xni T Ylxfii , say. (7.34) 

where a cr 2(1_p2) 
YfXB YB B 

CFYfX aY2 (, _p2) 
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T YIXM may be interpreted as the residual intra-class correlation in 

Y not explained by the linear regression of Y on X. 

Inference in regression analysis is conventionally performed 

conditionally on the x values, although, as Barndorff-Nielsen 

(1978, p. 36) Points out, the justification for this inferential 

separation is seldom given. The conditional distribution of the y 

values give the x values under Model I is given in Lemma 7.10. Normal 

within and between-cluster distributions are assumed since this gives 

linear regressions. Only the conditional distribution of Y, = (Y 
il 

Y 
imi 

)I given X, (X 
il ... x 

imi 
)' is considered since the pairs 

(Yip xi) are independent between clusters7. 

Lemma 7.10 

Let Y, = (Y il ... y imi. X, = (Xil x im, 

Suppose'- i(i) Model I holds 

(ii) Assumption-A holds 

(iii) a xi 
2 =_a xw 

2, a Yi 
2= 

yw 
2, 

Xyi Xyw 

Uv) Yi Ilyi 

2@1m. 
) 

Ilyi 

- 

(Xyl) 1( 

11 Xi) 

N( ýl 
I 

("xi) 

w0 Imi (7.35) 

and 11 
NyI: 

B 
(7.36) Y' 

JjXi px) 

where a YW 
2 Cy xywý YB 

2a 
XYB 

W= 

(aXYW 

aXW2) Zr B axyB aXB 2) 

Then yiy 

xN 
-(1 

21)(EW0p Wi + On 
iE 13 + I: 

W) 
PB 1 

(7.37) 

(15 

"X) 

yi Ix 
1 

1- N (1 
mIp Y-Ixi + owpwi x 

i, + 7, p 
Bi 

xi 
Yfxwpwi 

+a ylxi 
2p 

Bi ) 
(7.38) 
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where p Yjxi "py-F, lix 

= (m 
ia XYB +a XYW 

Mm 
ia XB 

2+a 
xW 

2) 

p 
Bi 11L., m 

I/M 
i 

I 

p 
wi M. 

p 
Bi 

a 

a222 YI xw 'YW XYW -IaXW2 

GY121 = mia 2+a2- (m a2+a 2)2/(m a2+a 2) 
x YB Yw i XYB XYW i XB xw 

Proof: Using standard results on normal mixtures of normal distributions 

(e. g. Lindley and Smith, 1972, pp. 4,5), it follows from (7.35) and 

(7-36) that 

N (I 
Y 

X12@1 ml 
)v@ I'M (12 @ 'in 

i) 

ZB(, 
2@ 

lm. ) 

YX)#) 

(7.37) follows immediately. (7.38) then follows using standard 

results on conditional distributions for multivariate normal random 

variables (e. g. Anderson, 1958 p. 29). ' 

Corollary 7.11 

If, in addition to assumptions (i) - (iv) of Lemma7.10we assume 

(V) aBý aw =a 

YJX, 'U N(lm. IIYIX + aXi, ay, 2 pWi +(M: Iay, 
2 + Cry, 2 (7.39) 

xw XB XW) 
PB 

i) 

where 

11 yIx "Y -a px 
a2a2-a 21a 2 

YJXB YB XYB XB 

Proof: AiaB+ (I. -A i 
)a 

W where. A, =mia XB 
2/ (MiCYXB 2+a 

xy 
2) 

if (v) holds 

Yjxi 
21a 

YB 
2+ aYW2 - 

T12(juia 
XB 

2+ aXW2) 

Mi YIXB2 + ay, XW 
2 
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Lemma 7.12 

If Model. II holds and (X 
ij, 

Yij ) are jointly normally distributed 

(as-in 7.32) then 

Y IX, 
j 

N N(IlylX + BX, 
j , UY12) 

(7.40) 
ij x 

where cyy 12 aY2 _a 
2/cr 2 

x XY x 

if 
Bw then 

aY12 = ay, 2 + cr 2 (7.41) 
x xw YJXB 

Proof: (7.40) is standard normal distribution theory. To obtain 

(7.41).: 

CF 2a2- $2 2 
YIX y ax 

=a YW 
2+a 

YB 
2- a2(a 

xw 
2+ cy XB 

2) 

=ýa YW 
2aw 2a 

xw 
2+a 

YB 
2B2 aXB2 

BB ow =a 

22 
Yl-xw YJXB 

It follows from CorollarY 7 . 11that when assumptions (i) - (v) 

hold (i. e. Case 1) the parameter space of Model I may be jointly 

indexed by the pairs of vectors Oj" 
YIX, 

5, ay, XW2, OYIXB 2) and 

X, 'xw 2, aXB 2). The conditional distribution of the Y values given 

the X values only depends on (V a2 2) and the marginal YjX' YJXW 'YIXB 

distribution of the X values only depends on XICIXW 
2, a XB 

2). Hence 

from Definition 1.2. the X values are ancillary for (V a YjX- Y1xw' 

-a 
2) and, as argued In Section 1.2.3, it seems reasonable to make YJXB 

inference about 0 conditional on the X values. From Lemma 7.12 it 

also seems reasonable to use conditional Inference for Model U. 

In the following Lemma all moments are assumed to be conditional 

on s and M. 
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Under the assumptions of Corollary 7.11 for Model I and of Lemma 7.12 

(with 0B ý- OW ) for Model II. 

EI (T XYbIA) = EII(T XYbI-X) 

var I (T XYb 
12ý)/var 

II(TXYb 
11) + (M*-l)T xM T YIXM 

(7.42) 

where X= (X 11- ... x 
nmn 

) 

%. IZZ 
(X 

ij -T xm 
) (X 

iK-TXm). 
i JfK 

T XM =Zmi (m 
1- 

1) Z (X, 
J- 

TXm)Z/Zým 
i 

and T YIXM 
is given in (7.34) 

Proof: From (7.21)T 
XYb W ij 

Y 
ij 

iýj 

where w ij = (X 
ii -TXm)/ZZ(Xij-TXm)2 

Hence EI (T 
M129 = EII(T 

XYb 
11) by definition of Model 11 

= Zzw 
ij(PYIX , Ox ij ) from Corollary 7.11 

since ZZw 
ij 0 ZEW 

ijxij 

Let w, f (wl ... w im* 

Then 

T 
XYb Wi ty 

i 

Hence 

var I (T XYb 
I X) = Ev 

iI var I (Y 1 
1.1) W, 

Zw (ay 12 pýj + (MicFY 12 + ay 12 mv IB xw), 
)Bi)wi 

from Corollary 7.11, 



- 303 - 

Cr 2 Zl: wij2 + ay 2ý (rm w vp w EEwij2) 
YIX I XB ii Bi i 

since a YIX 
2 22 'YIXW 2+a 

yjXB2 

= ay, 2 Zl: wij2 + aY12 EE (x -T )(X -T xm) x XB' 
i jfk 

ij xm ik 

ZEW 2(a 2 ay, 2 (M*-l) 'r ij Ylx + XB xm 

From Lemma 7.12 

var ii (T XYb 
ZZwij2 ay ix 2 

Dividing (7.43) by (7.44) gives (7.42). 

Expression '(7.42) is given by Campbell (1977). An alternative form 

for T XM 
is given by Holt and Scott (1981) using the identity. 

_rm 
2--T )2 

i 
(X, 

Xm 

ZE (X ij T Xm )2 

Note that expression (7.42) corresponds to the expression for 

T- in (7.34) where the superpopulation value Of T rather than 
XYb xM 

the sample value is used. 

The estimation of a difference between subclass means may be 

viewed as a special case of regression analysis where X only takes 

two values. The difference in means then corresponds to 0. In this 

(7.43) 

(7.44) 

case T can be interpreted as a measure of 'crossclassedness' (Kish 
x, 

et al, 1976). If TX =I then the subclasses are completely 'segregated' 

and 

var I 
(T 

XYb 
ll)/var 

II(TXYbll) 'ý 1+ (m*-l)T 
YIXM 

= var I (T Ym 
j2p/var 

ii(TYMIX) 
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If TX =0 then the subclasses are completely 'crossed' with the 

clusters and var I 
(T 

XYb 
IX)/var 

II 
(T 

XYb 
JX) attains its minimum. This 

is in accordance with the conventional wisdom on deffs for differences 

in subclass means (Kish et al, 1976). 

Case 2: A holds, a xi 
2=a 

xW 
2a 

Yi 
2. = a YW 

2, a xYi 0a XYW 

B and W are now allowed to differ. (7.31) again holds 

and it may alternatively be written 
a2a2 

var I (b i 
IM 

i)=Y2 
1TXm T YM(I-PB 

2) + 2T XM 
2 ýý 

. (0 B- 0)2+Kll (7.45) 
axaY2 

a22 2a 4 C, YB aXY) 2 

since 
y 

. 2T 2 -17x (0 - 0)2 XB x- 
2 xm 2B422 ay aaa xx XB x 

B2 
2a 

XYB 
2.2a 

XB 
4 4aXYB Cr XB 

2 (a 

XY 
2ax4a 

XY ax 2 

Combining (7.26), (7.28) and (7.45) gives 

'r Xm T YM(I-PB 
2) + 2T 

xm 
2a 

x 
2(a 

B- 
0)2/a 

y2+ 
KI 

T XYb 
1_ p2 +K 

(7.46) 

Comparing (7.33) and (7.46) we see that the difference between 

0B and OW (recall from 7.30 that $ 
B- 

(1-T 
Xm)(SB-aW 

has inflated 

the misspecification effect of - TXYb* 

Is it possible, in this case, to evaluate misspecification effects 

cdnditional on the X values -as in Case 17 In general it seems ixiappropriate 

to do so. We argue this in two ways. (i) 7rom Lemma 7-10the conditional 

distribution of YI given XI under Model I is Indexed by the parameter 

vector (V 
YjXi, 

0 
W, 

7, ayl-20 a 121). But" 
I Xw YX 

io i+ (1-0 dow 
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where ý, = (1 + (m, -l)T xm 
)/M 

i 

and so cannot be computed from the above parameter vector without 

knowledge of T xm 
(unless m, =l or $B= OW ). Hence it cannot be 

argued that the X values are ancillary for $ under Model I in this 

case. (ii) From Lemma 7-10we may express the conditional distribution 

of the Y values given the X values and the V Xi 
in terms of a linear 

model 

ij = li y+aB (lixi-lix )+ aw-(Xij-pxi) + "i + cii (7.47) 

Now the 11 xi are unobserved but we do know the sample cluster means 

Xi X /m, and w4i may write ij i 

xi 
+ TI 1 (7.48) 

(7.47) and (7.48) define a classical 'errors in variables 

regression' model for which the classical mode of analysis is 

unconditional on the X values. Holt and Scott (1981) replace 'P xi 

by Xi in (7.47) (and hence essentially replace 0B by T, ) and obtain 

expressions for the design effects of 0w and aB. 

Case 3: A holds, Vv xi x 

In this case 

b, = 01 = IXY, IX, ly, 

and so from (7.26) and (7.28) 

-T-- var (a )a 2/cry2(1_p2+K) (7.49) XYb Iix 

Hence even when T and possibly T are zero T need not be zero. xm- YM xy; 

It is interesting that T- does not depend on the residual intra- XYb 

cluster correlation T YIXM* 
To understand this we note that the 

between-cluster component of (7.47) drops out and we may write 
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Y Ily +ý (X )+6+C (7.50) i ij-"x i ij 

Now T (X, 
J-TXM)Y XYb ij ij 

(Xij-TXm)(Oi(Xij-vX) +a+C (7.51) 
ji ij 

But if U it then we would expect (X to be small and Xi Xý j ij-Txm) 

so (T. 51) is approximately 

i 
Z(Xij-TXM)2 +ZE (x 

ij-Txm)Eij jij 

The term, which induces the residual intra-cluster correlation 

T YIXM' 
is negligible. 

Case 4: A holds 

As for T- and T we may write xyc xy; 

T-=T+T+T XYb 123 

where T1 is given by (7-33), T3 by (7.49) and T2 is such that 

Jrýj < 2(T 
1T 3) 

Some estimates, of these quantities, under the assumption that X ij 

and Y, j are normally distributed within clusters are given in Table 

7.2. 

Table 7.2 Estimates for FES Data 

Variables X, Y T 1 2 T 3' T XYb 
log(Vl), log(V2) . 0005 -. 0012 . 0433 . 0426 

_109(Vl), 
log(V3) . 0002 -. 0005 . 0433 . 0431* 

log(V3), Iog(V2) . 0006 -. 0004 . 0295 . 0298 

Again T- is dominated by T which is proportional to the variation XYb 3 

in cluster regression coefficients, The values of T xy; are 
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smaller than those for TXyr- in Table 7.1 but still greater than the 

corresponding values for T xm 

Case 5: B holds but A does not hold 

By analogy with the results Of TXy; 
. 

we may write 

J1 [rX2y(a, t) + rX(a, t)ry(a, t) + 2p2r2(ait) 
xy; 

(Mi) 
x 

4pr 
x 

(a 
i 

Or XY (a 1 0] K(a i t)dt/(I_p2) 

Again expression for T- as a function of M may be obtained by 
XYb i 

substituting particular functional forms for K. 

7.3 Principal Components AnaIL! Lis 

As in Section 4.3, we restrict attention to the eigenvalues 

z1P and corresponding eigenvectors g, ... gP of the sample 

covariance matrix, 

nmi. 
s, 'I I (Yij-ys)(Yij-ys), /(mO-l) 

i=l j=l 

The first and second moments of the Ik and gk may be obtained by 

substituting the results of Sections 5.4 and 5.5 into Corollary 4.8. 

These results will be approximate for large n. Under Assumption B 

the Xk and gk will be approximately unbiased for the eigenvalues 
A1>... : ý, X 

P and the corresponding eigenvectors yl ... YP respectively 

of the super population covariance matrix E under Model I. Now Zk 

is the sample variance of the variate g' +0 (n-1) and the iyij Ykyij p 
variate Y. 'v.. has variance Y! EY. - X- . Hence the second moments of 

(7.52) 

. K- 13 11 'K K 

the Zk may be obtained from Section 5.4. The second moment of the gk 

are less easily derived. Rather than consider the full generality of 
Model I we restrict our investigation to the conventional multivariate 

one-way random effects model: 

Yijl6i 1%, Np(lii,, EW) (7.53) 

11 
1 

^- N 
P("'EB) 
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We require the following result: 

_ lt 

Given (7.53) 

cov I 
(S 

Sao' 
s 

sysis, 
m) = (E 

ay 
E WE 

a6 
E ay)/Mo + (M*-')(EBay E B06 +E Ba6 r BOy)/M. 

Proof : 

n-1 by 

As in Sections 5.4 and 5.5 we may approximate Ss to order 

nMi 
S; (y ii -11) (Yij -P) , /M 

0 i=l j=l 

Hence 

cov I 
(Ss. 

o, SSY6js, M) -1 E I[COVI(S; aa'S; y6 
leips, m)ls, i! 

j 

+ cov, 
[EI 

(S; 
aOl 

Oj, s, M), Ej(S; 
y6jOj, s, M)j9,!! 

] 

=E I[, Way, wa6 + : wa6, way +y )r 
W06 

+ (Pie-ýId(piy-py)rwý, 6 + wey 

+ wayls, 
d 

/M 
0 

+ cov zmj(ljjy-ljy)(11 
i 6-jj6) 

I S, jlj /MO2 

IE 
Way E WB6 +E WC, 6 E WSY +E Bay E W66 +E BSy E WC16 

+++ /M2 Ba6 W$- i Bay BW Ba6 BOy 0 

- (Z E+EZ )/m + (m*-1)(z EEE )/% 
ay ß6 ad ßy 0 Bay B86+ýBci6 BBy 

s ince 

Z-EB+Ew 
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We may now obtain the approximate first two moments of the eigenvalues 

of S 
s 

Lemma 7.15 

Given (7.53) 

(k 
kIs '11) 

1 

(I )a (1 + (M*-l), r2 )2 2/m 
I kl5'-M Xk 

'ý 
o 

where 

TAm Yý': BykýXk 

V (. Y, ili) /V, (Y Ik kyij) 

Proof : 

, We have already noted that Ik is approximately unbiased for 

Xk for large n. 

From Corollary 4.8: 

vI (I 
kls'-M) -4 1: (yk)ct(yk)a(yk)6(yk )y cov I 

(S 
saolss6yis'D aa6y 

l& 2(y Ey )2/m + 2(m*-1)(y IEByk )2/mo kk0k 

from Lemma 7.14 

2, X2/M + (M*-l)T2 
k o[l Al 

as required. 

As-remarked before, this result could have been obtained 
directly by substituting the variate yIY.. into Case 1 of Section 5.4 k 3.3 
(see 5.51), where the misspecification effect of a variance T Yý was 

obtained as 1+ (M*-l)T 2 and T a2/U2 - The broad interpretation 
YM YM B 

of Lemma 7- 15 is that the variance of Lk will be largest when the 
'direction of largest variation' of the ui is along Yk * At one 
extreme if the yi are confined to a hyperplane orthogonal to Yk 
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then TA 2* 0 and at the other extreme if the pi are confined to a 

one-dimensional line in the direction of y then EM aX I 
kB kykyk 

where 0<a<1 and Ta 
, Ak, 

Given (7.53) 
E I(gkl S'19 1 Yk 

)2 + (M*-I) II 'EByj*y3'. ': 
Byk I 

(Fk Is Ojyjyjlmo(ýj (yk 
jOk i0k jOk 

YýEBykyl! rByj)Yiyj! /(ý'k-ýi4) (xk -X j 
)m 

0 
(7.54) 

Proof : 

From Corollary 4.8 

vI I(gkls'-M) ý0 10 Cov(wk3. twkj)yiyj 
iOk jOk 

where 

cov(w ki'wkj) 
(yk)a(yi)$(Yk)6(yj)y cov(SaBSyS)/(Xk-Xi)(Xk-X 

aosy 
[(YýEyj)(YlEyk) 

+ (y]ýEYOýil: yj)+(m*-')(YýEByjy, 'LI: 
Byk 

., 
YýEByk'Y! IEByj)]/(ýk-ýi)(Xk-Xi)mo 

= 
[)k 

xi6 ij + (M*-')(YkoEBYjYIIEByk + YýEBYVil. ': Byj)]/(Xk-'Xi)(ýk. -Xj )m 
0 

and the result follows 

Special Case 1: EmaX10 <' a BI tylyt. x 

In this case the second term in (7.54) disappears for all k 

and so there is no increase in imprecision in gk over the IID Model II 

case (see Corollary 4.9). 
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Special Case 2: ZaXy Z' + a. Xmymym' 06 aZq am Biz ty. 1 m 

If 
,k 

is not equal to Z or m then the second term in 

(7.54) disappears and there is no increase in precision. If k 

say then I 

v IN ! /m (X. -)L 
f "M (Xtý-Xk 

I(gkls'M) ýIxk jyjlj oJk 
+('+(M*-')ClOm) k mym'(m 0 j Jkm 

Hence the lintra-cluster-correlation' enters again via a 

product. ak am . The misspecification effect will clearly be largest 

when Xm is close to Xk' It seems fair to attempt a broad generalisation. 

gk will be most unstable when both (1) the vI vary in the direction 

of Yk and (2)ýthe Vi vary in the direction of the ym for which 

X -X k 
is small. 

7.4 Factor Analysis 

In the standard approach to factor analysis we assume 

(c. f Section 4.4) 

ij -u+ Af ii +u ij 
(7.55) 

where 
f NID 

m 
(0,0) u ij ev N ID 

p 
WIT) 

the f 
13 and u Ij are independent, T is diagonal and the parameters 

are (u, A, 0, T). 

The parameters may be estimated by maximum likelihood (e. g. 

Lawley and Maxwell, 1971). These ML estimators are a function of the 

sample covariance matrix Ss (of 7.52) and so, in principle, we could 

obtain the distribution of these estimators given the alterdative 
distribution of Ss under Model I, e. g. using the results of Fuller 

et al. (1982). Such an approach only seems useful for variance estimation, 
however, and offers little theoretical insight. Instead we consider 

simplifying Model I. 
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Beginning with the linear model formulation (7.55) we might 

conceive of an intra-cluster dependence of the f 
ii and u LJ . Let 

us consider an example due to Muthdn (1981). The Y variables are 

responses to questions about attitudes to abortion. Muthdn fits a two 

factor solution (m - 2) . The first factor, labelled 'Medical', 

distinguishes between those people who find medical factors to be good 

reasons for justifying abortion and those who do not. The second factor, 

labelled 'social', distinguishes between those who find social factors 

to be good reasons and those who do not. In subsequent analysis Muthdn 

finds that individuals' scores on the factors differ particularly between 

religious groups (Protestant and Catholic) and to a lesser extent between 

individuals with different levels of education. In a similar manner 
it would seem likely that a clustered survey of the U. K. would exhibit 
intra-cluster correlation on these common factors e. g. we would expect 

very different factor scores in a working class area of Belfast compared 

with a middle-class area of London. On the other hand, as was argued 
in support of Meredith's (1964) model in Section 4.4, it is not obvious 
that there should be intracluster correlation on the unique factors u IJ 
If the u IJ represent measurement error and 'non-behaviourall unique 

components then these may not be associated with the socio-economic 
factors underlying the clustering. As noted in Section 4.4, the most 
likely effect of clustering on the u 1J would be for the T matrix 

to differ between clusters. Let us, however, only consider the simplest 

possible model with intra-cluster correlation for the f 
I. J . 

y 
13 -p+ Af ij +u 

ij 

ij -ai+C ij 

13 ,. Np (0, T) ,a1. n, Nm (0, o B)'Cij ý, NM(O, 0 W) 

where the uij, ai and cij are mutually independent. Note that 

V(Y ij )-E- AOAI 

V(f ij ). (D .0B+0w 
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Now the sample 'covariance matrix, SS (see 7.52), of the yij may be 

written 

ss- (S 
B+s W)/(mO-l) 

where n 
sBmi (yi-Y. )(yi-Y. )' 

M. 
nI 

sw=i11j11 (Yij-yi)(Yij-yi), 

In the simplest case of mmi-l... n ,SB and Sw are independent 

and 

sB. Wp (n-1, AOWA, +T+ MAO B 
AV) 

sw rv Wp (n(nr-l), Ow A, + T) 

Maximum likelihood estimates of A, T, 0B and 0W may then be obtained 

by, using the 'simultaneous factor analysis for several populations' 

option in LISREL (Joreskog and Sorbom, 1978). SB would be treated as 

the sample covariance matrix of a random sample of, n observations from 

one population and SW as the sample covariance matrix of a random 

sample of n(m--l) +1 observations from a second population. Using 

LISREL the factor loading matrix, A, and the specific variance matrix, 

T, may be constrained to be equal in both populations. The only 

problem might be that the estimate Q of the covariance matrix, 

V= ýP W+ wD B' 
in the first population and the estimate 8P 

W from the 

second population were such that VW= m(D B was not positive 

semi-definite. This should not be disturbing if one is only interested 

in the estimate of 0, ý- Q/m + (m-l)$ 
W 

/m , which will be positive 

semi-definite, providing 
ý 

and 0W are. 

We have now suggested 'alternative' estimators of the parameters 

under our simplified model. The question of the properties of the standard 

estimators remains. The simplification of the model has not made this 

problem essentially easier because, although the distribution of Ss is 

more straightforward, the standard estimators are still very complicated 
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functions of Ss Forthis reasons we only attempt a heuristic approach. 
As n increases 

SB /n Aý W A' +T+ mAOA' 

SW /n (m-1) WW A'+T) 

and so 
Ss (Aý 

W AI+T+mAOAI+(m--l)(AIýWA'+T))/m MW+T 

and so the estimators will be consistent. The problem occurs when 

n is fixed and m increases. In this case SW /m will converge to 

n(AO W A'+T) but SB /m will not converge. Rather it will act as 

nAS aB 
A' where 

-S aB 
is the between group covariance matrix of the a 2. 

n 
s 
aB 

(a 
I -a)(al-m)'/n 

Hence SS will approach 

A(O W +S 
aB 

)A' +. T 

For this reason we conjecture that intra-cluster correlation in our 

simplified model should have little effect on the estimates of T and 
A, subject to rotation, but that it will inflate the variance of the 

estimates of (P. We are hesitant in making this conjecture for at least 

two reasons. Firstly our argument depends on m being large, an 

assumption we have not previously used. Secondly the qualification 
'subject to rotation' is very vague. If we initially estimate an 

orthogonal factor model then the instability in will presumably 

affect A. One can only conjecture that the instability in $ would 

only perturb within the column space of A, e. g. if m-1 then 
it would only affect A proportionately. 
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CHAPTER EIGHT - CONCLUSION 

8.1 Summary of Thesis 

. 
This theses began with the observation that many statistical 

methods, including multivariate methods, are frequently used with, 

sample survey data without any consideration being given to the sample 

selection scheme. This raises two broad questions: (A) to what 

extent do-such methods remain valid under various selection schemes 

(robustness) and (B) what alternative methods might be adopted 

(optimaZity)? We distinguished between two approaches. In the first 

(dissaggregated) approach it is argued that the purpose of the 

multivariate analysis of sample survey data is to explore and model 

the. structure of the data in relation to the structure (e. g. stratifica- 

tion or. clustering) . of the population used in the sample. design. 

According to this. approach, question (A) may be answered negatively 

a priori since, by definition, standard methods take no account of such 

population structure. In the second (aggregated) approach it is 

argued, that the, population structure used in sample design is a priori 

irrelevant to-the substantive questionslof interest and hence any, 

targets of inference should be characteristics of the finite population 

(or of an aggregate superpopulation model of which the finite 

population is. a. realisation). Whilst noting that the first approach 

might often be appropriate, we. restricted the ambit of this thesis to 

the second aggregated approach. For this purpose both questions (A) 

and (B) are relevant. It should be noted, however, that we have charac- 

terised. the aggregated and disaggregated approaches in a rather extreme 

manner. 
-Substantial 

overlap between the approaches exists. For 

example, disaggregated. within-stratum analyses may be viewed as several 

aggregated analyses by redefining the strata as populations. 

More formally we distinguished between design-based and model- 

based approaches to statistical inference. This raises foundational 

questions which we have not addressed. For inference about finite 

population characteristics, the design-based approach does offer a 

practical and robust (in the sense of making few assumptions) procedure 
for answering question (B) and to a more limited extent answering , 
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question (A)...,, On the other, hand the model-based approach offers more 

theoretical, insight into both. questions andextends naturally to 

a disaggregated approach which the design-based approach does-not., 

Again, whilst recognising, the possibilities of the design-based 

approach, we'have largely restricted-the ambit of this thesis to, the 

model-based approach. 

We also compared the problems of making, inference about finite 

population and superpopulation parameters. The latter target of 

inference, seemed to us-to-be most natural, in multivariate,, analysis but 

we have also, to alesser extent, considered finite population 

parameters since this enables us toýcompare results with the design- 

based approach and also allows us to make fewer model assumptions 

(because a marginal distribution for the design variables need not be' 

specified). In both cases we. have limited our investigations to point 

estimation (and-prediction). 

-This thesis divides into two distinct parts. In Part I (Chapters 

2-4) we consider a selection scheme which is conceptually very general. 

The associated model, is, however, like most classical multivariate 

analysis, rather restrictive assuming independent individual values 

and either, multivariate normality. of else a linear homoskedastic, 

relationship between the'survey variables and the design variables. 

As such, this framework is very convenient for assessing the effects 

of selection on classical multivariate methods (question, A) without 

introducing extra distributional complications. The use of, this model 

(and selection scheme) in deriving alternative estimators (qu6stion B) 

should be treated with more caution since the assumptions are so 

restrictive. , In Chapter 2 we show how selection can induce bias 

into standard estimators of a mean vector or covariance matrix. In 

Chapter 3 we show how such bias-can be overcome by means of regression- 

type estimators., In Chapter 4 we demonstrate similarly the existence 

of bias in standard estimators of correlation coefficients and 

regression coefficients and, in principal components analysis and 

factor analysis. Again we suggest alternative estimators. 

In Part II (Chapters 5-7) we consider a more specific and conventional 
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sampling scheme: two-stage-sampling. We develop a model which-is 

very general and define parameters of interest in terms of an 

aggregate superpopulation. - 
In Chapter 5 we show that if the-marginal 

distribution of values does not depend on the cluster sizes then model- 

based inference may be-formally. -Justified and the standard, estimator 

are approximately model-unbiased. The variances of standard estimators- 

are, however, inflated by a factor which generalises the conventional 

I +-(m-1) p expression. -- If, on the other hand, the marginal distribution 

of values does depend on the cluster sizes then, provided the design 

is self-weighting, standard estimators appear to be approximately 

design-model unbiased and the design-model variance is inflated by a 

similar factor. The. form of the inflation factor is Investigated in 

detail for a number of statistics and model assumptions. In Chapter 6 

alternative estimators. of the aggregate superpopulation parameters 

and predictors, of the finite population moments are considered. In 

Chapter 7 the theoryýof Chapters 5 and 6 is extended-to the problems 

of estimating correlation coefficients and regression coefficients 

and to principal components analysis and factor analysis. 

8.2 . Conclusions and-Suggestions for 'Further Work 

Analytical surveys differ from descriptive surveys in a number 

of respects, in particular because the target of inference is 

seldom clear. It may be conjectured (see Chapter 1) that the problem 

of statistical-inference also differs, at least in magnitude, because 

survey sampling designs have less impact on, analytical inference than 

on descriptive inference. This might be argued from an a priori 

viewpoint, as one might attempt to justify haphazard sampling of 

subjects for psychophysiological experiments. 

For example, in regression analysis we might suppose that an i 
th 

individual's score y i. is determined by y, xi+01 where 0 is a 

scientific behaviouralconstant homogeneous across the population and 

the ei aredisturbances with distribution (given xi) homogenous 

across t he population. In the ideal case where the ei represent 'pure' 

measurement error or 'Popperian' random behaviour and are independent 

of any selection variables, inference about 0 may proceed In an 
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identical however the sample is selected. In the more practical 

case where the ei are related to the selection variables (e. g. they 

display intra-cluster correlation or systematic differences between 

strata) the impact of selection on inference about $ will depend on 

the effect of selection on the distribution of the ei* The impact of 

selection on inference about the population mean of the yi Is should 

be greater, however, being a combination of the effect of selection 

on theýe i and the effect of selection on the xi. 

- -This argument seemsýto break down in practice because there will 

also be an effect of selection on the regression relationship, for 

example there will be differences between strata or clusters (see 

Chapter 5). For this reason we have treated the problem of 

multivariate analysis as one of estimating the parameters of certain 

distributions across the population, a parallel inferential problem 

to that of descriptive surveys. As such we have avoided invoking 

deeper, ideas of scientific 'structural models' (Koopmans, 1947). 

, 
In this thesis we have considered the choice and properties of 

point estimators under various models/sampling designs. In practice 

we may divide the sampling designs that we have considered into three 

categories. 

(a) Stratified sampling (not based on auxiliary variable known for 

population). 

In this case standard point estimates weighted by the inverses 

of the stratum sampling fractions have reasonable design-based 

and model-based (see Section 2.3) interpretations when the 

target of inference is an aggregate parameter. 

(b) Sampling with auxiliary information 

Suppose the values of an auxiliary variable (or variables), 

X, are known for all finite population units (or in certain 

circumstances only-certain summary statistics for the finite 

population units will be known. We shall distinguish between 
two cases. 
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MX not used in selection 

Here we may have srs with auxiliary information and the regression- 

type estimators of Chapter 3 will have improved (large sample) efficiency 

over the sample mean both from a design-based and a model-based point of 

view. 

(ii) X. used in selection 

Ifl is used in a stratified or*ppx design then the regression- 

type'estimators of 'Chapter 3 will be model-unbiased and will generally 

differ from the conventional'design-based estimators. If X is used 

for truncated sampling or is used as a proxy for non-response (e. g. 

Nathan, 1982) ihen no design-unbiased estimator will exist but the same 

regression-type estimators may be used from a model-based point of view. 

'Multi-stage sampling 

In this situation the choice of point estimators is much less 

clear-cut. Under Assumptions A or B of Section 5.1. the most natural 

design based estimators would be the ratio-type estimators (for srs) 

or the unweighted estimators (for pps) discussed in Section 6.4. Under 

the same assumptions either of these estimators or the expansion-type 

estimators discussed in Chapter 5 should have model-biases of small 

order and the choice of most efficient estimators will depend on the 

distributional properties of the model (Section 6.2). Further work is 

needed to investigate the choice of estimaior when Assumption A or B 

of Section 5.1 does not hold. 

In the remainder of this chapter we consider areas for further 

research. Since this thesis only contains preliminary results on the 

particular problem of point estimation, the most important direction 

to follow would be towards a more practical 'package' of statistical 

methods for the analysis of multivariate survey data. We break down 

areas for further work according to the division of this thesis. 

1. Pearson-tXpe Selection Scheme 

(a) 
, 

In Sections 3.2 and 3.3 we presented some regression-type estimators 
based on the assumption of multivariate normality. The properties of 
these estimators may be compared with the more general regression-type 
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estimators -of Fuller (1982). Small sample properties of these estimators 

could be evaluated by Monte Carlo methods as in Holt et al (1980b) with 

special consideration being given to (i) robustness to departures from 

model assumptions and (ii) the measure of 'goodness' of the estimators 

e. g. with respect to the model or randomisation distribution. 

MA practical advantage of the conventional regression estimator 

is that it provides constant weights (for given auxiliary variables) 

to apply to all survey variables. Possible analogous-weights for the 

regression estimation of a covariance matrix should be investigated. 

(c) Diagnostic tests-for the use of the regression type estimators 

might be developed and the use of a procedure involving a preliminary 

test of significance might be evaluated using the approach of Grimes 
rA 

and Sukhatte (1980). 

(d) The alternative estimation procedures used for factor analysis 

in Section 4.4 should be further investigated., 

I 

(e) Estimators of standard errors and interval estimates based on 

the regression-type estimator should be considered. 

(f) Methods of hypothesis testing (e. g. F-tests in regression and 

LR tests in factor analysis) should be, considered. 

(g) The application of these methods to non-response problems and to 

sample selection problems considered by econometricians (e. g. Heckman, 

1979) should be investigated as in the work of Nathan (1982). 

(h) The problem of 'optimal' sample design for estimating covariances 

might be considered (c. f. Sedransk 1965a). 

Two-stage Sampling 

(a) In Chapter 6 we considered optimal model-based estimation and 

obtained only preliminary results of limited practical value. Simpler 

estimators should be developed for use under different model assumptions. 
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Generalised least squares estimation might provide the most straight- 

forward approach. Diagnostic checks are needed to distinguish between 

different, models. In particular the effect of dependence of the 

values on the cluster sizes needs more research. The problem of inform- 

ative design can arise here. The relation between model-based and 
design-based estimators needs to be considered also. 

(b) Estimates of standard errors and interval estimates are very 
important. The use of Lemma 5.10 for obtaining variance estimates 

without using partial derivatives should be investigated. Again 

comparisons should be made with design-based approaches, the properties 

of which might be evaluated under a model as in Fuller (1975). 

(c) In practice clusters are usually nested within strata. Methods 

should be extended to this situation and also to multi-stage designs. 

(d) The impact of clustering on hypothesis testing such as F-tests 

in regression (see Shah et al, 1977) should be considered. 

(e) The estimation procedures might be extended to disaggregated 

modelling. 

Problems of sample design might be considered with special 

reference to the spatial process approach of Chapter 5. 

Finally some case studies are needed. These might help not only 

to throw into perspective the relative practical importance of some 

of the issues discussed above, but also to make possible a comparison 

between the impact of survey design and other inferential problems. 

For example, in fitting regression models to Family Expenditure Survey 

data, Mkai (1981) shows that heteroskedasticity may have far greater 

effect on the standard errors of least squares estimators than does survey 
design. It would also be useful to develop an integrated approach to 

handling not only the impact of survey design but also that of measure- 

ment errors, another major problem for inference in analytical surveys 
(Fuller, 1975). 
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APPENDIX - PARAMETER ESTIMATION FOR TWO-STAGE MODEL 

In this section we explain how the estimates were obtained 

for Tables 5.2-5.4,7.1 and 7.2. We also consider how misspecification 

effects might be estimated. We assume that Model I of Section 5.1 is 

true and in addition that 

(i) assumption A holds (A. 1) 

and (ii) the within-cluster distributions are normal and the 

between-cluster distribution of (U 
xi, 11yi ) is normal. (A. 2) 

These assumptions are'strong but should not prevent us obtaining 

a rough idea of the relative orders of magnitude of the various 

components of the misspecification effects in Chapters 5 and 7 for 

the FES data. Under assumptions (A. 1) and (A. 2), we shall now show 

that all the parameters of interest may be expressed as functions of 

the four quantities below, where, the notation is as in Chapters 5 and 

7. 

CF XYW 

a XYB 

(iii) P(XV Y, Z,, v) = cov (a 
I xyi, 'Zvi 

, (iv) Q(X, Y, Z, V) = 
_covi(oxyi, 

Olzi -, liz) (11 V, - PV)) 

Table 5.2: Under assumptions (A. 1) and (A. 2), T Ym' w 
vl' 

T Yvil r 
VP 

wT Ty;, meff(T ), meff(T -) are known functions of a2 2 
v2' Yv2' YM Yv YB' a"P 

yy and c ly since 

a2 -2+ cy2 Y aiB YV 

k 4Y 'ý 3y 
y+ 

6c 
ly 

a2=a 'm ='a' YB YYB a YYW 

y= P(Y, Y, Y, Y), c Q(Y, Y, Y, Y) y ly 
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Table 5.4: Under assumptions (A. 1) and (A. 2), T1, TT and T- V3 xyC 

are known functions of a 21ýa 2-i-GY24 a 2ý (I a -, .C 
XB XW B YW# XYB" XYW 1XY1 YXY' CX-Y 

c Y-X' X-y since; 

PB «3 cy XYB 
/a 

XB UYB 

p= (a 
XYB 

+ C7XYW)/crxcry 

k 
22 ý- 4c 

ixy +c X-Y +c Y-X 
+ 2y 

XY +6 X-Y 

And a2 aM Ia2=a XB xw xxw 

c Q(XIYIXIY)l y3a = P(X, Y, X, Y) ixy 

xey ý- Q(X, X. Y, Y). cy. x ý Q(YIYSXIX) 

6 X-Y = P(X, X, Y, Y) 

Table 7.1: Under assumptions (A. 1) and (A. 2), T 11 T2' T3 and TXY; 

are known functions of a 2, a 2, a 2, a 2, cr XB XW YB YW XYB' CrXYW' clX' C: lY' 

c 1XVYXI YYI YXY, Cx. y", Cy. x, 
6 

X-Y, cxy-x, cx-xy, cxy-y, ly. xy, 

SX. n, Sy. n since 

k 
13 c XY-X +c X-XY +6 X-XY 

k 
31 4- c XY*Y , cy-xy , Y-xy 

And cxyox "': Q(X, Y, X, X), cx*xy `ý Q(XIXIXIY), 1 1-1 

cn. y Q(XIYIYIY)l cy-xy = Q(YIYIXIY) 

a 
X-XY = P(XIXIXIY)l a Y-XY = P(Y, Y, X, Y) 

Table 7.2: Under assumptions (A. 1) and (A. 2), 'T 1' TV -T 3 and TXYL 

are known functions of a 2, Cr 2, aY2, a 2, a XB XW B YW XYB' aXYW' clX' clXY' YV 

yxyt c X-Y' CY-X' 6X-Y, cxy. x" cx. xy, 
6 

X-XY* 
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Our approach to estimation is as follows. We estimate the quantities 

in (1) - (iv) by an ad hoc extension of the usual ANO" estimation 

procedure for variance components models (e. g. Searle, 1971). Our 

estimators'are 

Ms 
xyi 

/n 

where s £(x Xy 
xy, ii - xi ij - Yi)/(m i 

x, = Ex 

ij 
/mi 

31 Yi ý, Zy 
ij 

/m i 

a `2 (Z Fx, 
- x-) (-y, - 7) - (n-1) a )/(m 

0- 
m*) (: L: L) 

XYB ' mi xyw 

where ZZ x ij 
/M 

0, 
Y- y ij 

/M 
0 

P(X, Y, Z, V) =ZBi (X, Y, Z, V)/n -n aXYW aZVW/(n-1) 

where Bi (X, Y, Z, V) =aiAi (X, Y, Z, V) -ai (A 
i 

(X, V, Y, Z) 

+Ai (X, Z, Y, V)) 

i 
(X, Y, Z, V) =s 

xyi 
s 

Zvi 

+ 1/(n-1) 

ß, = (M 
i-, 

l)/(m 
i +1)(m, -2) 

(iv) Q(X, Y, Z, V) = En j: (s 
xyi - (IXYW) i 

; )/(n-1) 

IP(X, Y, Z, V)]/(n-2) 

where. X=Z (mo-2m 
i 

Vm 
im0 

In Lemma A. 2 we show that theso estimators are unbiased. We then sub- 

stitute the various estimates into the formulae in Chapters 5 and 7 to 

obtain the estimates for Tables 5.2 - 7.2. Since these formulae are 

in general non-linear the unbiasedness property is generally lost. 

In order to prove Lemma A. 2 we require the following results. 

Lemma A. 1 

x1... X4 are jointly normally distributed random vectors such 
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that 

E (X 
i)= 11, , cov(xipx i)=E ij 

ij =1... 4 

Let A and B be conformable matrices (of constants). Then 

E(X 1 
?A X2) ý tr(A E 

21 
)+UI 'A V2 

cov(X 1 
?AX2, X3 YB X4= tr(A Z 24 BYE 31 +AZ 23 

BE 
41) 

+v1 ?AE 
24 BY P3 +p2 ?A ? E14 Bt 113 

+ 1111 A I. L + ý2 ?A Bp4 1: 23B 4 
? E13 

Proof : 

E(X 
I 

'A X2E tr(X 
1 

'A X2 

tr(A EX 
2X11) 

= tr(A(-r 21 + 1121J1 1» 

= tr(A E 
21 

)+1tA 

cov(X 1 
rA X2, X3 'B X4) =cov«X 1 111 ) PA( X2 - 1J2 ), (X 

3- 113 ) fB( X4 - 114 

+ COV(li 1 
'A (X 

2-V 2) ' 1J3 PB(X 
4-p4)) 

" cov«X 

" cov(p 

+ cov« X, 

CGV«X 

- Ill )'A V2' 113 ? B( X4 114 )) 

, k( X2 112) ' (X3 - 113) B 114) 

- Ill 'A li 2' 
(X3 - P3) 'B 'J4) 

- Ul ) 'A( X2 - 112) ' (X 
3- 113 ) 'B( X4 - U4 )) 

1 
tA Z 

24 
13' 113 +p2 'A 'Z14 Bt 113 

1 
tA 

Zr 23 
B 11 4+ V2 t A' Z 

13 
BU4 

The result follows by noting that (e. g. Anderson, 1958, p. 39) 

cov [(X 
1- 11 1)i 

(X 
2-v2 

)1 # (X 
3- 113 )k (x 

4- 114) Q 

131k E 24JI +E 141t E 23jk 
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Lemma A. 2 

Under assumptions (A. 1) and (A'. 2) cr XYW' ('XYBO P(X'Y'Z'V) and 

Q(X, Y, Z, V) are unbiased for aXYW, a XYB' 
P(X, Y, Z, V) and Q(X, Y, Z, V) 

respectively. 

Proof: 

A 

axpy /(m, -l)n i Wm ii 

where Xif (x 
ii -x im 

yi, (Yil - Yim 

pI1 11 /M 
Wm imimimi 

Now E(x i lei) = vxi imi 

E(y 
i lei) = Ily 1m 

cov(xi 
lyi 

101)= CY 
XY 

iIm 

Hence from Lemma A. 1 

E(aXYWJý. ) = Z(tr(aXy P wm +vxImp Wm 
1m PV 

a xyi /n 

where 0= (8 
1a)? 

Hence E(a 
XYW 

a XYW 

(ii) Zmi (x 
i- x)(yi - y) = XIA y 

where xl (x t 
... x 1) 

yy (y 1 
... yn 1) 

A= diag(P 
Bmi 

i)- 
! )Bm 

(A. 3) 

(A. 4) 

(A. 5) 

pI-p 
Bm m wm 
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Now E(x12) 
ximx1m 

1nn 

IU (y 12) = (py im,... "y im') 11nn 
cov(x, yl2) = diag(a 

XY iImi) 

Hence from Lemma A. 1 

E(x'Ay12) = tr(diag(cry 
ip 

Bm 
i)- 

diag(a 
XY iImi 

)P 
Bm 

) 

+ Ein 
i lix 

i 
py 

i- 
(Z mi lax 

i) 
(1: mi"y i) 

/m 
0 

mi /m 
0) 

cy XY x 
'BHy (A. 6) 

where ll-X 

B 
ij 

xxn 
Ily ... Py 

mi-mi 2/mo i: r i=J 

= -M 

imj 
/M 

0 i: f i+j 

Now E(v 
x)=vX1 

EQY = "Yln 

cov(uxp2y) =a XYB 
In 

Hence from Lemma A. 1 and (A. 6) 

E(x'A 
B y) = Z(l - m, /mo)aXYW + tr(B aXYB'n) 

X"YLn 
'B ln 

I 

= (n-l)axyw + (mo - m*)a XYB 
(A. 7) 

Substituting (A. 7) into E(a XYB ) we obtain 

E (a 
XYB Cr XYB 

(iii) From 

s xyi 
=Xi lp 

WA i 
Yi /(M 

i- 
1) 
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Hence from (A. 3) (A-5) and Lemma A. 1 we have 

cov(S 
xyi ,s zv i 

le 
i 

tr(P 
WM 

i 
(a 

xv ia 
YZ 

i+a 
xz ia YV 

i 
)AM 

1-1)2) 

since P 
IYM 

11mi=0 

(a 
XV, YZ 

i+ 
XZ 

i 
YVI. 

)/(m 
i-1) 

Hence 

E(s 
xy iIs Zvi 

cov(s 
xy i Zv i)+a 

XYW a zVw 

= E(cov(s 
xyi , szv 

i 
lei )) + cov(axy 

iI 
cr zv i) 

XYW zvw 

= (P(X, V, Y, Z) + P(X, Z, Y, V) + axyw ayzw 

+a xzw a YVW)/(Mi-l) 

P(X, Y, Z, V) +a XYW azvw 

Hence 

E(B 
i 

(X, Y, Z, V))= E(A 
i 

(X, Y, Z, V)/(n-1)) 

i 
(M, -2 /(m 

i-lý(P(X, 
Y, Z, V) +a XYW a zvw ) 

(m i /(Mi-l) -1- 1/(m i-1)) - 

(P(X, V, Y, Z) + P(X, Z, Y, V) +a XYW ayzw 

.a xzw a YVW) 

= E(A 
i 

(X, Y, Z, V)/(n-1)) + P(X, Y, Z, V) 

a XYW a zvw 

Hence 

E(P(X, Y, Z, V)) = P(X, Y, Z, V) +a XYW a zvw 

+E (-r Ai (X, Y, Z, V) EE a 
xy ia zv i 

)/n(n-1) 

P(X, Y, Z, V) +a XYW zw + E(ZZ a 
xy 

s 
zv 

)/n(n-1) 

i+j ii 

= P(X, Y, Z, V) 
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(iv) Within clusters the cluster means zi and vi are independent of 

the cluster covariances s Hence 
xyi 

E(Q(X, Y, Z, V)I! ) = [n Z(a 
XY ia XY 

i 
/n)E((; 

ii 
LO) 

/(n-1) -X E(; (x, y, z, v)jý)]/(n-2) (A. 8) 

Now 

(I i- 
; )(; - v) = z'A 

Mv 

where A(') 
jk, jtkt = (mo mi)2/M 

0 
2mi2 if J=i J'=i 

= -(M 0mi 
)/mo2mi if J=i J I+i 

or if J+i il=i 

= -1 /MO 2 if 141 jl+i 

Hence from Lemma A. 1 

E((z z)(V tr(A diag(a 
zv iImi 

+ 11 
zp 

(m -mi )2/m 
02 

liz 11 
vjmj 

(m 
0-mi 

)/M 
02 

vjzimj 
(m 

0-m 
/M 

0 

11 11 
vmmk 

/M 2 

j k+i Zj k 

1v 01 
)2/m 10j zv 

/M 
0 J+i 

+ 11 
z1 

11 
vi 

(M 
022mim0) 

/M 
02 

(E 11 
zii Vi 10 

+ cross-product terms in Ux and jj y 
(i+j) 

( A. 9) 
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Now, when (A. 9) is substituted into (A. 8), the term 

Evm EP M/m 2 disappears since it does not derend on i. 

Also the cross-product terms disappear when the expectation 

of (A. 8) is taken (note that without loss of generality we 

may assume vz VV =0 since i and ;i-v do not depend 

on 11 z or Ii v 
). Hence 

E(Q(X, Y, Z, V)) [n Z E(a 
XYi 

Ea 
XY 

/n)(a 
zv 

(m 
0 -m i 

)2/m 
iM0 iiii 

+Sc; li (m - 2m )/m )/(n-1) 
j =i 

Mi 

zvj/mo, -«'" "Z iv1010 

- XP(X, Y, Z, V)]/(n-2) 

[n E E(a 
XY a XY 

/n)(a 
zv 

(m 
0- 

2m 
i 

)/M 
im0 

11 z 11 v 
(m 

0- 
2m 

i) 
/M 

0 
)/(n-1) - XP(X, Y, Z, V)] /(n-2) 

= CE(m 
0- 

2m 
i 

)P(X, Y, Z, V)/m 
im0+ 

E(m 
0- 

2m 
i 

)Q(X, Y, Z, V)/m 
0 

-X P(X, Y, Z, V)]/(n-2) 

= Q(X, Y, Z, V) 

Finally we consider the estimation of misspecification effects. 

We consider three broad procedures. 

(i) Making assumptions (A. 1) and (A. 2), we may substitute the 

above estimates into the various formulae. 

(ii) Making the weaker assumption B we may alternatively estimate 

the misspecification effect of Ty, 
m 

using the following 

result. 

Lemma A. 3 

Let cr 2=[ -)2 + Z(m x rmi(x 
i-x _, )(, _m i /M 

o 
)s X 

2]/(Mo-m*) 
i 

Then under Assumption BE (a 21S, M) 2 
Ixx 

Proof 

From Lemma A. 2(ii) 

E (Em ;ý- ;ý 212. ) = E(l-m /m )a 2 Ii (x 
i X) ia Xi + jLX'BI, X 



- 331 - 

Hence under B 

EI (Emi (xi-'j)2 I S, M) = Z. (1-mi/mo) Cr Xw 
2 (M 

i 

Em 
i (1-M i /M 

o 
)a B 

2(M 
i) 

Hence 

EI (a 
x 

21S, M) = 
[E(l-m 

i 
/M 

0 
)a 

XW2(Mi) + Emi(l-mi/mo)a 
B 

2(M 
i 

Z(m i- 1)(1-m i /mo) a Xw 
2(M 

i 
)]/(M 

o-M*) 

= Em 
i 

(1-m 
i 

/M 
0)ax 

2/(Mo-m*) 

since a2a2 (M )+a2 (M 
x Xw i XB i 

= cr 2 

An estimate of the misspecification effect of T 
xm 

is then, from 

Lemma 5.12. 

meff (T 
xmls, 

m, ý) =1+ Em 
i 

(m 
i-Ma x 

2-s 
xi 

2)/m 
oaX2 

Estimates of the misspecification effects of T 
Xv and T 

xyc 

may then be obtained by replacing X 
ij 

by (X 
ij-11 x 

)2 and (X 
ij-IIx 

(Y 
ij-11Y 

) respectively in the above formula. The justification 

for this approach derives from comparing equations (5.42 ) and 0.91 

with equation (5.28). Estimates of the misspecification effects of 

T 
XYr and T 

XYb may be obtained similarly by using Lemma 5.9. This 

does iequire the evaluation of some partial derivatives. 

(iii) We may avoid the evaluation of partial derivatives in (ii) 

by using Lemma 5.10. The misspecification effects are-, given in 

(7.3) and (7.23) in terms of r,, defined in (7.8), and b,, defined 

in (7.27). A possible estimate of (V 
xi-)Ix 

)(11yi-Ily )+ aXy,, the 

numerator of ri, is 
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Z (x ij-ljx C ij -ii y)/mi J=l 

Estimates of (ji 
xi-11 x 

)2 +a xi 
2 and (Ij 

yi-11 Y 
)2 +a Yi 

2 may be defined 

similarly. 

A comparison of estimates obtained by methods (i) and (ii) 

above for the misspecification effects of TXV and T 
xyc are given 

in Table A. l. 

Table A. 1 : Estimates for FES data 

meff(T Xv meff(TXYC) 

Variables* 123 1,2 1,3 2,3 

Method (1) 

Method (11) 

1 

1.137 2.112 1.300 

1.174 1.425 1.284 

1.615 1.303 1.660 

1.420 1.286 1.452 

1 

*variable 1= log(Vl) etc. 
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