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UNIVERSITY OF SOUTHAMPTON
ABSTRACT
FACULTY OF SOCIAL SCIENCES

SOCIAL STATISTICS

Doctor of Philosophy

MULTIVARIATE ANALYSIS OF SAMPLE SURVEY DATA

by Christopher John Skinner

Multivariate methods are used widely with sample survey data, yet the
assumption of independently and identically distributed observations
underlying many of these methods may be invalid for surveys of complex
design., This thesis attempts to outline a formal statistical approach

to this problem.

A distinction is drawn between a disaggregated approach, where the aim
is to model the data in relation to the structure of the population used
in the sample design, and an aggregate approach where the target of
inference is a population characteristic. Only the latter approach 1is
considered., Most attention is given to the choice and properties of
point estimators of a covariance matrix, In addition the estimation of
correlation coefficients, regression coefficients, principal components

and parameters .in factor analysis is considered.

Inference is mainly based on stochastic superpopulation models rather
than on the classical randomisation distribution induced by a prébability
sampling design., The thesis divided into two parts, In the first part,

a very general sample selection scheme depending on a set of design
variables is combined with a rather restrictive classical superpopulation
model in which units are independent with values distributed multivariate-
normally. In the second part, a conventional two-stage sampling scheme

is combined with a general superpopulation model for a clustered

population.



CHAPTER ONE - INTRODUCTION

1.1 The Use of Multivariate Analvsis in Social Survevy Research

Multivariate methods are now widely used in the social sciences
for the analysis of social survey data. Recent books on the use of
such methods for the analysis of surveys are Ferber (1980) and
O'Muircheartaigh and Payne (1977a, b). The contents of a haphazard
sample of four recent social science journals are analysed in Table
l.1. In three of these journals over 66% of the papers contain some
multivariate analysis (usually correlation analysis, regression

analysis or factor analysis) and of these the majority are based on

social survey data,

Table 1.1. Contents of Four Recent Social Science Journals.

Human J. of Social Sociology
Pa
per includes Relations Marriage&]  Forces & Social
33 1980 The Family| 68 1979/80 | Research
41 1979 64 1979/80
no.empirical work 4
empirical work! but
no multivariate o
analysis
multivariate 18
analysis based on
(a) social survey
data (11)
(b) not social 7)
survey data?
Total number of 74 27

papers

Notes: ! Includes comparisons of subclass means, simple cross-tabulations,

standardised rates.

¢ Includes studies where the units of analysis are countries,

U.S. states etc. and small experimental studies.

One might offer two related reasons why multivariate methods are

important for the analysis of social survey data.



(1) Measurement: Many 'concepts' in the social sciences do not

possess unique operational definitions and instead several indicators

are often measured which are subsequently analysed simultaneously using,
for example, factor analysis.

(2) Explanation: 'Social research is frequently concerned with

analysing relationships between variables using multivariate methods,

such as regression analysis. These methods are particularly important

for social surveys because they can provide 'statistical control'’ in
place of experimental control.

In this thesis we shall view multivariate analysis as a branch
of statistical inference;

by a stochastic model.

observations are assumed to be generated

The mechanism by which a given model generates

the observations may have a theoretical justification or it méy just

be a mathematical simplification (Bartholomew, 1973 pp.1-9). The

usual aim of multivariate analysis is to make inference about certain
parameters of the model.

Conventional models in multivariate analysis (e.g. Morrison,

1976) are either unstructured, where observations Yye.+y, are realisations

0f independently and identically distributed (IID) random variables,

Yl...Yn,*with probability densities f(yile) (i=1,...n), or structured,

where Yye+-y, are realisations of random variables Yl"'Y which are

n
independent conditiomlon known values Xy .o .xnwith densities f(yilx
(i=1l...n).

In each case O is the object of interest.

g0 9

Models for observations ‘from sample surveys will be discussed

in Section'1.2 but are broadly of two types:

(1) Observations are generated by what Cassel et al (1977 Ch.2)
call the Fixed Population Model in which the ohly stochastic
element enters via a probability sampling design and the
parameters of the model are the finite population values.

(2)

The finite population values are themselves generated by a

stochastic model, the superpopulation model. In this case
the model generating the sample observations might be taken

ags either (a) the combination of the superpopulation model



and the sampling design or (b) if the desigﬁ'is non-informative,

just the superpopulation model restricted to the sampled units

(e.g. Royall, 1971).

For the Fixed Population Model (1), the sample observations
will only obey the unstructured model if the design is srswr and

only obey the structured model 1f the design is stratified srswr and

stratum membership is denoted by X Similarly for model (2)(a)

the sample observations will only obey the unstructured model if the
superpopulation model is unstructured and the design is non-informative and
only obey the structured model if the superpopulation model is

structured with respect to x, and the design is non-informative given the

i
xi. In other cases the conventional models of multivariate analysis

will not apply.- Even in these cases, it is by no means obvious that
conventional methods are applicable because the target for inference
may no longer be the 'conventional parameter of interest' for the
sample model. We discuss possible targets for inference in Section
1.3. but we do now give two examples.

(1) Suppose in the superpopulation model that Y "'Yﬁ are IID,

N(u, 0?) where 1 is the target for inferenc:. Suppose the
(informative) sampling design selects only .those units in
the population for which:yi < K. Then the sample model is .
IID (truncated normal) with a mean which is no longer the
-target of inference.

(11) In some circumstances we may be interested in the specific
finite population (see 1.3.1) rather than the superpopulation
model. In this case under approach (2) above, conventional

parametric inference would be inappropriate since the object

O0f inference would be realisation of a random variable rather

than a parameter.

Formally,there seem to be three possible approaches to the

multivariate analysis of sample survey data.

(a) We could treat the multivariate anlysis as an exercise in
data analysis/descriptive statistics eschewing sample/population

distinctions. This is an approach that has attracted increasing

interest (e.g. Gnanadesikan, 1977) due mainly to the unrealistic



multivariate normality assumptions of classical multivariate
analysis.-

(b) We might define finite population parameters of interest e.g.
correlation matrices, covariance matrices, linear regression
coefficients and consider inference about these parameters '
under the Fixed Population Model (1) above.

(c) We might adopt thé superpopulation model approach (2) above
and make inference either about the finite population

'*parameters' as in (b) or about the parameters in the super-

population model.

The choice of approach depends to a-large extent on the context

of the analysis, When analysing a pilot survey or when ‘'searching
for structure' at an early stage of analysis approach (a) might be °
sensible. We are, however, specifically interested in the sampling

mechanism and so shall reject approach (a).

We now argue why we prefer approach (c¢) to approach (b).
Firstly, there are compelling reasons (e.g. Royall, 1971), which we
shall not pursue, why approach (c) is more desirable than (b) even
for the classical survey sampling problem of estimating finite
population means and totals., More importantly, we consider that there
is usually a qualitative difference between multivariate analysis and
this classical problem. In studying relationships between variables
and the effects of measurement error etc. it is almost necessary to
have a model. Even a simple statistic such as a product-moment
correlation coefficient lacks meaning if there 1s no underlying linear
relationship. Hansen et al (1978) as well as Sarndal and Kempthorne,
in discussion of their paper, refer to the necessity of a model in
causal analysis. Sarndal adds that 'it seems clear to me that the
model-based framework, being of wider scope, will prove superior in
the development of this area' (data analysis for sample surveys).
Several discussants of Kish and Frankel (1974) also question the use
of approach (b) for regression analysis on the same grounds. Finally,
although the use of approach (b) might be reasonable for certain
descriptive multivariate analysis, our consistent use of approach (c)

will provide a more uniform theoretical perspective.



In this thesis we shall be addressing two broad questions

(discussed in a more restricted form in Section 1.2,2):

(A) To what extent are conventional multivariate methods,
specifically those based on unstructured IID models,
applicable to sample survey data?

(B) What alternative methods might be adopted which are more

appropriate for sample survey data?

In particular we shall be concerned with (i) the implications
of non-independence in the superpopulation model due to clustering

and (11i) the effect of selection with respect to variables correlated

with variables of interest in an II1D model.

We might compare questions (A) and (B) with the more 'traditional’
questions posed, for example, by Kish and Frankel (1974). They note
that most statistical methods are based on ;he assumption of srs and
ask what is the impact of complex survey designs. We suggest that often
their questions are included in ours since complex designs will only usually
be adopted if an IID model is inappropriate. Our questions are,
however, more general because as Kempthorne (1978) notes, for example:
'That one should pay attention to clustering or covariance in attempted

causal modelling even i1f one has a srs, seems obvious'.

In the classical problem of estimating a finite population mean
question (A), 1i.e. whaf are the properties of the (unweighted) sample
mean 3s an estimator of the finite population mean, is fairly trivial
and much of survey sampling theory (e.g. Cochran, 1977) is devoted to
question (B), i.e. how should we best estimate the finite population
mean for given designs and/or models., In this thesis we shall glve
considerable attention to question (A)., Three reasons for .-this are:

(i) Question (A) ‘is not s0 trivial for multivariate analysis.

(ii) Whereas most practicising survey samplers take account
0of complex survey designs when estimating population means
and totals, many social scientists still use (and are likely
to continue to use) IID based methods. This is sometimes
for practical simplicity or due to the availability of‘

computer packages and is sometimes forced on secondary users



of survey -data who do not have access to the design
information, perhaps for confidentiality reasons (see
also discussion by Rao and Scott, 1981).

(1ii) There are conjectures that multivariate methods are
more robust to departures from the I1D assumption. For
‘example, Morgan and Sonquist (1963) wrote that 'there is
some reason to believe that the clustering and stratification
of the sample becomes less and less important the more

complex and more multivariate the analysis being undertaken’'.

We end this opening section with Smith's (1976) indication of
the importance of this subject: s

'The vast majority of surveys are multivariate an& multipurpose.
The design and analysis of multivariate surveys must be one of the

next major areas for research and if theoretical statisticians fail
to rise to the challenge the rift between them and practical statisticians

will grow wider.'

1.2 Formal Framework for SamEIe Survezs

The foundations of sample survey theory have been extensively

investigated (reviews are given by Cassel et al., 1977, and Smith,

1976) and so our discussion is brief and restricted to selected topics.

1.2.1 Sampling Designs

We consider a finite populatiion of N identifiable units denoted
by U = {1...N}. A sample isdefined as a subset of U (hence our definition
ignores the order of selection or multiplicity of units). Let F
be the set of all subsets of U. A sampling design, p(s), is a real-

valued function on ;'such that:

p(s) 2 0 for all s £ F

Zp(s) =1
7

The design defines a probability distribution for a random
variable S taking values s ¢ f' s P(S=s) = p(s).



We suppose that, associated with the ith unit of U, there is a

pair of vectors (yi, xi) of dimensions (p, q) (i=1l...N). ,The y
variables are variables of interest (inference variables, Smith,
1978) and are observed for members of the sample but are unobserved
for other units in U. The x variables are auxtiliary vartables
(design variables, Smith, 1978). Let x

(xl'...xN')' and

Yy = (Yl'---YN')'. We assume that p(s) is a (deterministic) function
of x and does not depend on y and write p(s) = p(sLE). The
identification of the units may be used in the design by letting the

first component of x, be the label, 1 (i=l...N). We distinguish

i
between two cases:

(1) Known selection scheme: X, N and p(s[z) are all known before

the sample is selected. In this case the design is said to be
non—-informative given x and N.
(2) Unknown selection scheme: Not all of x, N and p(s[g) are

known before the sample is selected.

Examples of Known Selection Schemes
1. All the usual probability sampling designs discussed in standard

sampling textbooks (e.g. Cochran, 1977) have known selection schemes.

We give two examples:

(a) Example 1.1 - Stratified random sampling without replacement

Let_gl be the (H~]1) vector of zeros and let‘gh
vector with unity as its (h—l)th element and zeros elsewhere (h=2...H).

be the (H-1)

Suppose that X,

2R (i=1...N). Then U may be partitioned into H strata

Sh = Sh(E) (h=1...H) such that:

is known and may only take one of the values

LeSe=>x, =8

Let N, be the number of units in Sh(EN

h = N) and let n_...n

h 1l H
integers such that 1 £ nh < Nh (h=1...H). Let ;; be the set of all

subsets of Sh of size nh and let

}ST = ;ST(_J_I_) = {SIU”'UBH 8 € ;h , h=1,..H}

be glven

Then a stratified random sampling without replacement design is defined
by



H [N \ -1
p(s|x) Hl(n;:) S € ;ST

(1.1)

il
-

n
.. -
2N

3

(b) Example 1.2 - Two-stage Sampling

Let theigi and Sh be defined as in (a). Let ;' be the set of
all subsets of {1...H}. Let p'(s'lg) be a sampling design on.jﬂ.

Let ;h (now) be the set of all subsets of Sh' For each s'e }' write,
without loss of generality, s' = {1...ns,} and let

f(s') = {31U...Usns, P 8, € ?h}'

Let = U ;(s')
TS « P
.8 ei
Let‘ph(shb_, s') be a given sampling design on;(s'). Then a
two;sfage sampling désign is defined by

p(s|x) = (I p (s |x,30)p"(s"|x) s €&
hes'

0 S ¢:?&s

is in fact the set of all subsets

(Note that, as defined above, TS

of U. ‘S'TS 1s usually restricted by constraints on '5' and the ?h).

2. Lord and Novick (1968 p.140) describe the selection of samples
on the basis of test scores (or vectors of test scores) X, Usually

3 consists of those units in U such that x, > K where K is a specified

number.

3. Royall (1970) describes an 'optimal' sampling plan in which
the n units in U with largest (univariate) xi values are selected
with probability one and other units are selected with probability

Zero.

Examgles of Unknown Selection Schemes

4. "Scott (1977) describes a situation where x is unknown, e.g.

secondary users may know that a stratified sample was selected but

not be able to identify which strata individual members of the sample
belong to.



S. The mechanism by which non-response occurs.in. sample surveys

1s generally unknown., We might suppose that the probability.of response.

depends only on a specific set of variables x,, but where P<5L§) and x

il
are unknown (c.f. Rubin, 1977). y | L.

1.2.2 Models and Targets for Inference

As noted in Section 1.1 we shall adopt a superpopulation model
approach.. Most conventional superpopulation médels are cases.of
what we shall call a conditional superpopulation model. . Recall
y = (yl' ¢ oo yN')' and x = (xl'...xN')'. Then in a conditional .. . . .
superpopulation model y is assumed to be a realisation of: the random
vector Y = (Yi...YN')' with probability density function (p.d.f) .
p(glg) conditional on x. We shall, however, find that a more.convenient
framework is offered by an unconditional superpopulation model where
(y' x')' is a joint realisation of (Y'X')' with joint p.d.f. . ...
p(!lz)p(z) where X = (Xi...XN')'. This enables us also to consider
the marginal distribution of Y with p.d.f. p(Y). In this section-
we assume that p(!lg), p(X) and p(Y) are members of known classes of
distributions indexed by unknown (usually vector) parameters
0 e O, d € & and ¢y € ¥ respectively. We write p(}_{_I_J_{_,B), p(_x;ltb)gand
p(IJ¢)- Y is, of course, a function of 0 and ¢. For most of this
thesis we shall, in fact, relax the assumption that the p.d.f.'s
are members of given parametric families and only assume certain
moment properties of the distributions. In Chapter 5 we shall also
relax the assumption, made implicitly above, that N is fixed and allow
it, as well, to be a realisation of a random variable.

The choice of targets for inference will be discussed in Section
l1.3. The target will be either a function of y (a finite population.
'parameter') or a function of {y (a superpopulation parameter). In

fact, for all the models that we shall consider, Y Y. will possess

lillN

an exchangeable distribution (unconditional on X) and hence share a
common marginal distribution, p(Ylwo) say, 1indexed by a parameter

wo’ a function of Y. The only superpopulation parameters of interest

that we shall consider will be function of wo.
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In this thesis we shall only be concerned with point estimation
(see Section 1.4). For this restricted problem we may rephrase questions
(A) and (B) of Section 1.1 as:
(A) What are the properties of the standard estimators of multivariate

analysis in the survey context?

(B) What alternative estimators might we adopt?

Question (A) is essentially a robustness question, What happens
when the standard assumptions of multivariate analysis do not hold?
OQur use of the term robustness here is broader than, say, the restricted
definition of Huber (1972), who is still concerned with IID observations,
and we would include studies such as that of Praetz (1981) who considers
the effect of serially correlated residuals on F-tests in multiple
regression. To answer question (A) we compare the properties of
'classical' (standard) estimators under a hypothetical 'true' model,
Model I, with the properties under a corresponding IID model, Model II,
in which the Yi (i=1...N) are assumed to be IID and independent of x
with common distribution p(Ylwo) (defined above). A difference between

the properties of the estimator under the two models will be inter-

preted as a misspecification effect, i.e. an effect of misspecifying

the model as Model II when, in fact, the true model is Model I. This
is the model-based analogy of the more usual concept of a design effect
(e.g. Kish, 1965), the effect of using a complex sampling design instead
of srs. Question (A) is not formally a problem of statistical inference.
We might, for example, consider the sampling distribution of a given
estimator conditional on any statistics of our choice, if this helps

us to understand the properties of the estimator. We do not even

need to 'know' the sample selection scheme which might, for example,

be a combination of a probability design and non-response. We proceed
as if'hypothetical sampling schemes and models were correct. This

kind of investigation is an example of the traditional use of super-

population models (Smith, 1976).

Question (B) essentially implies an optimality question. What
is the best estimator of a given quantity? This 1s a classical problem
of statistical inference and involves the more recent use of super-

population models (Smith, 1976). It assumes the model to be correct
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and if it is not we should ideally investigate the effect of departures

from the model on the optimal estimators.

1.2.3 Inference

L T T e S

Likelihood AEEroach

i .

Without loss of generality let s = {1...n}
- ' ty ¢ - - ' AN
Let 'XS (Yl & % -yn ) ) I.B. (Yn+1- & in)

p(_z_sl_{lrs!e) = J p(ll_’_:_le)d_z.s. ”

Assuming a known selection scheme the data is

e

.ad = ('ES’ S, E)

Hence the likelihood (for the unconditional superpopulation model) is

L8, ¢) = p(y.|x, s, 8) p(s|x) pCx|$ (1.2)

o p(lsll‘.: s, 0) p(:_:_ld:), since p(s|_:_r_) is known.

Hence from the Likelihood Principle (e.g. Cox and Hinkley, 1974, p.39)
inference about 6 and ¢, and hence P, should not depend on the sampling

design, p(s|x). (See Smith, 1978).

The Likelihood Approach to the prediction of y 1s more problematic.
ﬁinkley (1979) (also Lauritzen, 1974) would define the predictive likeli-

hood as
b(d'T) ot p(zSIT, X, 8) p(slg) p(gng)
S p(zsl'l‘, x, s) p(x|T)

where T = T(z;_é) is a minimal sufficient statistic for (6, ¢) were

y to be observed. Royall (1976a) would define the predictive likelihood
of a function, h(i), of y of interest as

p(Islh(I.) y 58X, e)p(ilh(i)’ $)

this being the ratio of the 'posterior distribution' of h(y),
p(h(z)|d), and the ’'prior distribution' p(h(y)). An advantage of
Hinkley's definition is that the likelihood does not depend on the
parameters (6, ¢), whereas Royall's likelihood will in general. A
disadvantage of Hinkley's definition is that his likelihood may often
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be degenerate. In each case, however, inference about y or h(y)

does not depend on the sampling design.

Bazesian AEEroabh

Let t(9, ¢) be a prior distribution for (6, ¢). The posterior

distribution of (O, ¢) is
p(8, ¢|d) = p(y_|x, s, 8 p(s|x) p(x|4) (O, ¢)
= ply_|x, s, 0) p(x|[¢).1(0, ¢)
The posterior distribution of a function h(y) of y is
p(h(y) |d) = p(y_|h(p), x, s) p(s|x) p(hfp ) p(x)
. J p(y |h(p), x, 5,8) p(h(y)|x,0) p(x|4)
t(0, ¢) do d¢ | Ny

Note that if 0 and ¢ are prior independent so that T(6, ¢) = v(6)In(¢)

then . .
p(h(y) |d) = J p(y_|h(p), x, s, 6) p(h(y)|x,8)u(B) dO

i.e. inference from the unconditional superpopulation model 1s the
same as from the conditional superpopulation model. As for the

Likelihood Approach, inference about y or y does not depend on the

sampling design.

Samgling Theorz AEEroach

We might evaluate the sampling distribution of an estimator,

e(d), with respect to repeated realisations‘(z,‘g) from the modei (%)
distribution and/or with respect to the randomisation (p) distribution
induced by repeatedly selecting samplés using p(slg). Various
combinations of the £ and p-distributions have been used, e.g. Cassel

et al (1976) coﬁsider'minimising the {p-MSE subject to p-unbiasedness,

on the basis of essentially ad hoc grounds. Formally, however, it

would only seem appropriate not to consider the joinf Ep-distrlbution

if we’can 'separate'’ the inference procedure by margining to h sufficient

statistic or conditioning on an ancillary statistic.
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Definition 1.1 :, Suppose a parameter A, taking values in A, may be
_partitioned into. A = (8, ¢) where O takes values in O and ¢ takes value
in 4. 6 and ¢ are said to be Cartesian independent 1f A is the

Cartesian product of O and ¢, l.e. - <L :

- A ="{(9, ¢) : 80O, ¢ £ 0}

Definition 1.2 : For a model indexed by A = (6,H¢),‘where 8 and ¢

are Cartesian indépendent, suppose S = (T,C) is a sufficient statistic

for A. If B
4 ) (a) the p.d.f. of C depends on ¢ but not on 0,

(b) the conditional p.d.f. of T given C = ¢ depends on 6
but not on ¢ for all values of ¢, then C is called ancillary for

0.

Definition 1.2 is the definition of 'extended ancillarity’
given by Cox and Hiﬁkley (1974, p.35) and is the same as the definition
of S-ancillarity givén by Barndorff-Nielsen (1978, p.50). The
Cbﬂditionality Principle (Cox and Hinkley, 1974 p.38) then states that
if C is ancillary for 6 then inference about 6 should be made conditional
on C taking its observedkvalue. This principle is not entirely well-
defined since C may’not be unique but we shall not consider this
problem. As an example, let C = (8, X), T = ¥ and 0 and ¢ (supposed
Cartesian independent) be as defined in the unconditional superpopulation
model then C is ancillary for 6 and so, according to the Conditionality
Principle we shouldimake inference about 6 conditional on s, the

actual samplé obtained, and omn x,

Formal conditioning arguments for prediction appear only to be
available in terms of sufficiency and not ancillarity although the

Conditionality Principle 1s still appealed to (e.g. Royall and Cumberland,
1981, p.68). Lauritzen's (1974) definition of predictive sufficiency

may be expressed as:

Definition 1.3. Let Y be an observed random vector with distribution

indexed by 6. Let S=S(Y) be a sufficient statistic for 6. Let Z

be an unobserved random vector such that the joint distribution of
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(Y, Z) is also indexed by 0. Then S is said to be predictive suffictent

for Z if Y is conditionally independent of Z given S.

We now propose a definition of predictive ancillarity in the
spirit of Definition 1.2 and 1.3.

Definition 1.4. Let Y, S, Z and 6 be as in Definition 1.3 (S 1is

sufficient for 6 and predictive sufficient for Z)., Suppose 6 = (A, ¢)
where A and ¢ are Cartesian independent and suppose S = (T,C). Then
C is said to be predictive ancillary for Z if:

(a) thé p.d.f. of C depends on ¢ but not on 0,

(b) the conditional p.d.f. of (T, Z) given C=c depends on ©

but not on ¢ for all values of c.

The analogy of the Conditionality Principle is then to make
inference about Z conditional on C taking its observed value, if C

1s predictive ancillary for 2,

We:are interested in making inference about either_i_or Y in
the unconditional superpopulation model., If we let T =_zs, Z = Yo
and C = (s, xX) and suppose 8 and ¢ are Cartesian independent then C
is predictive ancillary for Z and we therefore make inference about Z
and hence about y conditional on C., As in the Bayesian approach,where
Jthe condition that 0 and ¢ are prior independent is equivalent to the
condition that 0 and ¢ are Cartesian independent in this case,
inferenceifrom the unconditional superpopulation model would be the
same as for the conditional superpopulation model and it does not depend

on the sampling design, but only on the actual sample obtained.

Inference about y is more problematic.

Example 1.3: Consider Example 1.1 of Section 1.2.1. Suppose the Yi

are independent Bernoulli random variables given.E_withP(Yi=1[§iégh)= Bh
so that

| H mh(s) nh-mh(s)
p(y |8, x, 6) = 0T 6 (1-6.) |
p hey B h (1.3)
where 6t= (81...9H) and mh(s) = I Yy
ies:x, =e

—1 h
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Suppose that p(é\g) 1§+a proﬁortionate allocation stratified srswor

are IID with P(x -Eh) = ¢h’(z¢h = 1) and N is

design and the Xx

1 4
'fixed. Then p(s[g) is given in (l.1) and h
H Nh
p(x|¢) = T ¢ b= (Byeeeb) (1.4)
h 1 H
h=1 »
Suppose the parameter of interest 1s ¢y = E(Yi) = zeh ¢h.-

a [ S

In the example above we should like to.consider the properties
of a given estimator (say the . sample mean) of Y, conditional on the
actual sample, s, obtained rather than averaging its properties over
all possible samples. We should also like to consider the properties
of an estimator conditional on x since, for example, if H = 2 we

would expect an estimate based on sample with Nl = N2 = N/2 to be

'better' than an estimate based on a sample with Nl = N, N2 = 0.

However, x is sufficient for ¢ and so if C is a function of x then
the distribution of the data, d, given C can depend only on 0. Since
Y is not a known function of 6, C cannot be ancillary for y by
condition (b) of Definition 1l.2. Hence we cannot appeal to the
Conditionalitylprinciple to make inference about  conditional on x.
Similarly, the‘marginalEdistribution of s depends on a function a(¢)
of ¢ whereas the conditional distribution ofz3 and x given s depends
on a function b(06, ¢) of (6, ¢) which is not Cartesian independent
o{ﬁah(¢). Hencé'again from Definition 1.2 s is8 not ancillary for ¢

and we cannot condition on s in making inference about Y.

We might attempt to construct some ad hoc procedures for
inference about Y which avoid the use of p(s[z). A point estimator
of Y may be obtained by setting y = Y(6, ¢) where 6 1s derived from
the conditional distribution, p(zsLEJe) and ¢ from p(§J¢). In our
= mh(s)/nh, ¢h = Nh/N and hence set

h
We cannot construct a confidence interval for {y of known

example we might take 6
confidence level where the confidence measure is conditional on s.

However we could for example obtain a confidence interval for yY*= 29h¢h

which had known confidence level conditional on 8 and x and we could

also obtain € such that P(lw* - wl < g) takes a given value without

reference to p(s I_:_:_) .



- 16 -

We have argued above that, in general, it is impossible to
appeal to the Conditionality Principle to condition on s when making
inference about . In some circumstance it will be possible, for
example if 91 = eee = BH = § above then Yy = 6 and (s, x) in ancillary
for y. That fundamental differencesdexist*between_the problems of
predicting y and estimating { is not unknown; forfexample, Royall
and Her;on (1973 p.881) note the differences between optimal design
for these 'two cases.. In a practical sense, however,‘these differences
are annoying. For by letting N increase we may make finite population
parameters arbltrarily close to the corresponding superpopulation
parameters (see 1.3.2), yet formally we should make conditional
inference about the former and (in general) unconditional inference
about the latter. For this reason it may‘be unnecessarily formal not
to adopt a conditional approach for estimating y (as in Holt et al,
1980). As in the example above we might alwaxs susbtitute yY* for ¢,

a difference of no practical significance if N is large.

Progosed AEEroach

We shall mainly adopt a Sampling Theory approach. This choice’
is largely arbitrary and we do not intend here to discuss comparative
inference. It does, however, have the advantage that we may make fairly
“weak model assumptions in terms of moments without specifying distributional
forms and we may evaluate the properties of estimators {n terms of the
traditional survey sampler's measures of bigs and MSE., It does have
the disadvantage, dliscussed above, that conditional 1nférence about
¢y is problematic. .

We note that our choice of point estimators would‘nof vary much
between approaches, We shall especially use maximum likelihood
estimators which have a natural interpretation in the Likelihood
Approach, are posterior modes with respect to uniform priors in the

Bayesian Approach and have optimal asymptotic properties in the Sampling
Theory Approach.
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1.3 Object of Inference - , .

1.3.1 Finite or Superpopulation Parameters - . -

The task of multivariate analysis 1is to represent complex sets
of data in a simple and 'interpretable' way. . In Section 1.1 . we noted
that the approach of classical multivariate analysis to this task
depends fundamentally on the specification of a model such that (1)
the model has a simple structure and has 'interpretable' parameters
and (1i) the data are consistent with .the hypothesis that the data
is a realisation from the model. The objects of inference are the

parameters of the model, o &

For our problem, where a sample.is selected from a finite
population, it is most natural and analogous to view the super-
population model as the data generating mechanism of interest and to
view the probability sampling design-and the realisation of the
finite population as impositions on top of the model which do not .
altef our objects of interest. In this case the targets for inference

will be the superpopulation parameters.

It may be argued, however, that in certain circumstances finite
population 'parameters' will be of interest. In time series analysis
it is assumed that a given time series is a single realisation of a
stochastic process and, although the parameters of this stochastic
process may be interesting per se, when making forecasts one is
interested in future values for the given realisation rather. than
the future behaviour of the model. Similarly one might be interested
in the actual correlation coefficient for a given finite population
rather than for the hypothetical superpopulation from which the finite
population is a ‘'sample'. Fuller (1973) notes that there is a third
possibility. We may be interested in the 'parameters' of a finite
population separated from the finite population studied by time or
space. We might assume that both these finite populations are independent

realisations of the same superpopulation model.

Inferences about finite or superpopulation: parameters are sometimes
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called descriptive or analytical inferences respectively (e.g. Holt
and Smith, 1976). On the other hand these terms are also taken to
refer to non-causal or causal analyses respectively (e.g. Rao, 197)J5).
That these two 'definitions' are equivalent is not obvious. It may

be that for causal inference only superpopulation parameters are

relevant (e.g. Barnard, 1971; Kalton, 1976; Hansen et al, 1978) but
superpopulation parameters must also be of interest in non-causal
analyses such as factor analysis.

Overall we suspect that superpopulation parameters are of
most relevance for multivariate analysis and we take this to be
also the broad conclusion of Fuller's (1973) useful discussion of
regression analysis. This approach, we suggest, is most likely
to appeal to those users of classical multivariate methods who have
limited interest in survey sampling. On the other hand the topic of
this thesis falls very much within the statistical subdiscipline
of 'Survey Sampling' and so it will be useful to consider the problem
of estimating finite population parameters in order to provide analogues

with the classical theory of estimating means and totals.

The problem of defining a natural 1l-1 correspondence between
superpopulation and finite population parameters for a given model
is disbussed in the next seétion. We might hope that such a |
correspondence would imply that the difference between the two types
of parameters converged to zero as ti‘.l& finite population size increaséd

and for this reason the distinction between finite and superpopulation

targets of inference should have limited practical significance.

1.3.2 Aggregated or Disaggregated Parameters

Later in this section we argue that in different circumstances
either disaggregated (e.g. within-stratum) parameters or aggregated

parameters may be of interest.

We consider initially the problem of definition. An exampié
is helpful. |



Examgle 1.4

Consider the model in Example 1.3. x partition U into subgroups

S, = S_ (x) (h=1...H) where .

> s ﬂ =
ieSh ' xi eh i=1...N

For present purposes these subgroups may be strata or clusters.
We are not here concerned with sampling., Suppose, as in Example 1.3,

that the Yi are independent Bernoulli random variables given x with

P(Y, = 1|x1 = e ) = 6 . Suppose also that the X, are IID with
P(xi = eh) = 0p Then the'Yi‘(i=1...N) are unconditionally IID

Bernoulli random variables with P(Yi‘= 1) = zeh ¢h = 3y,

In this example it is natural to define the disaggregated
superpopulation parameters as 0 = (6,...6,) and the aggregated
superpopulation parameter as Y. Correspondingly the disaggregated
finite population parameters may be defined as 6(y) = (;i..:;h)

where'§£ = I y,/N,_ and the aggregated finite population parameter
h
as Y(y) =y = Zyi/N. Note that as N + = 6(y) converges almost surely

to 6 and Y(y) to .

This example and its corresponding definitions may be extended

naturally to other situations where the Y, are independent between

i

subgroups, given x, and for ieSh the Y, are IID given x with a distri-

i

bution indexed by Bh, e.g. Yi ~ Np (uh, Zh), eh = (uh, Zh), and where

X is distributed as in this example.

We now bonsider how these définitions may be extended to the
general model p(!lg, 0) p(X| $) of Section 1.2.2. It seems natural
to define the vector of disaggregated superpopulation parameters as
0, but it is not clear how to define corresponding finite population
parameters. We would like a map from 6 £ © to 6(y) € Rk (0 = (61...9k)').
One choice would be to define O(y) as the maximum likelihood estimator
of 6 were Y = y and X = x to be observed. This, however, confuses the
definitional question with the problem of inference. In general no

natural map is available. For example, if Yl...YN'§.~'NID (6, 1) then .0
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is both the mean and median of the superpopulation, 1In different
circumstances either the mean or the median of the finite population
might be targets of inference. For our purposes we shall usually

be able to define 6 as av function of the moments of p(z|§_) and then
define 6(y) naturally as the same function of ‘corresponding' moments
of y, as in Example 1.4, Even if we can adequately define 'corresponding'’
here we shall still face problems with models which assume that the
moments are structured as in factor analysis. - It is difficult to
conceive of a finite population analogue to a factor loading, for
example, without resorting to a point estimation map. This just adds
further support to the case for choosing superpopulation rather than

finite population parameters (see previous section).

The problem of defining aggregate parameters 1s, however, to
some extent reversed, it being easier in some cases to define the
finite population parameters than the superpopulation parameters.

I1f Yl...YN are*unconditibnalif IID with common marginhl distribution

indexed byxw, as in Example 1.4, then it seems natural to view Y

as the aggregate superpopulation parameter. However, as noted in

Section 1.2.2, in the most general models that we shall consider

Yl' 5 .YN are unconditionally exchangeably distributed with common marginal

distribution indexed by wo. It is tempting to define the aggregate

superpopulation parameter as wo bﬁt this raises pfoblems as the

i

fbilowing example shows.

ExamEIe 1.9

Let x be defined as in Example 1.4 with the same marginal

- '
(Yil"'YiNh)

distribution given by (1.4). Given X we may define'zh

f h - llll - = * & @ L
or H where S (x) {11 i}

h

Given Xx, suppose'zl..ﬂxﬂ are independent and that, for h = 1...H,

il"'YiN are the first Nh terms of an infinite exchangeable sequence,

h

Y
Eh = (Yle...) of O-1 random variables whose distribution (given x)
is indexed by Bh. This defines the distribution p(zlEJ 0) where

6 = (91...95).
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o o v
Now suppose that P(Yi = 1L§i -_gh) Bh where Bh is a function

of Bh. Then as in Example 1.4

E(Y,) = P(Y, = 1) = z%h 0, = ¥, Say.

i
Now de Finetts's theorem implies (e.g. Hall and Heyde, 1980, Theorem

7.2) that tﬁere exist random variables Zl...ZH concentrated on [b,;]

such that

s N N -k
. { h k h

Hence 1f N - « then Nh +-w a.s. and

™ 2 <+ Z a.s.
yhlf* h o “p 2°

¥, -,

v tl‘i & -+ n | 9 L
Hence z yLEszl .ZH ZNhZh/N a.s
and ﬁylzl.;.zh-+ Z$, Z, a.s. (1.5)
The Zh may be interpreted as random effects. '(1.5) implies that the
limit of';'depends on the H realisations of Zl"'ZH and so';'a.s. does

not converge to wo = E(Yi)' If wo is the superpopulation counterpart
of';'this contradicts our desired property that differences between
corresponding finite population and superpopulation parameters should

converge to zero as N - o,

In practice such models have been proposed for clustered populations
(e.g. Altham, 1976) and the problem occurs because we have held the
number of clusters fixed and so forced the cluster sizes to increase,
The problem is removed if we let the number of clusters increase as

in the following example.

Example 1.6
Let U be partitioned into H clusters Sl"'SH of sizes Nl"'Nﬁ
respectively. Let Ni.;:Nﬁ be IID realisations of a random variable
v and 1et1§.=‘(N11..NH). Define X 00X, a8 in Example 1.4 such that
‘> x. =e =
ieSh X, e, } l1...N )

Given.ﬁidefine
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L(N) = lN'l X el

1 (g;e
Nﬂ H

i.e. L(N) consists of N1 vectors e, stacked on top of N, vectors e

etc. We also define N! vectors LHQE) which are obtained from L(N)
in L(N). Define the conditional

2

by permuting the N vectors e
distribution p (EI.ID by

h

p(X = L_(N)|N) = 1/N!

Now as in Example 1,5 suppose Y_...Y _ are independent givén X and N

-1  —H
and that, for h=1l...H, Yil"'YiNh are the first Nh terms of an infinite
exchangeable sequence Eh = (YIYZ'...) of 0-1 random variables whose
distribution given X and N depends on ehwhich is a known function of
Nh’ Bh = B(Nh) (we may restrict Eh_to a finite set if v is bounded).
Then -
P(Y, = llx = e, N) = %{N ), sa
i 23~ ®n' = h'* %Y

. _ _ v
S P(Y, = 1|N) = IN_ O(N )/IN

and as H *';'wo = P(Yi = 1) +-E(v3(v))/E(v) a.s.

N v =
ow Yy ZNh yh/ZNh
and the distribution of';£ depends only on'eh = B(Nh).‘ Hence the
Nh.;g are IID unconditionally where
E(N,y,) = E(NhE(yh|Nh)) (note y, is independent

of Xx)

E(v8(v))
Hence as H =+ =

f;-+-E(v3(v))/E(v) a.s.
Speaking roughly, the reason why (;'- wo)'+ O as H #+ o in Example 1.6

is that the marginal distribution of the Y, approaches IID as H + o

i
which 1t does not in Example 1.5,Under this kind of condition it seems
reasonable to define wo as the aggregate superpopulation parameter,
The definition of the aggregate finite population parameter then

follows as in the discussion of disaggregated parameters.

We now ignore the finite/super population distinction and
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attempt to classify*problems for which eitherkhisaggfegéted or aggregated
targets may be of interest. To some extent this is a hopeless task

since the object of inference depends so strongly on the substantive
context. However, it is an important subjecf and so we do try to throw

a little 1light on the problen.

Disaggregated Targets

Disaggregated targets ﬁay be of interest in:
" (a) certain descriptive surveys, w

(b) analytical surveys where the X, may be viewed as

| i
"background variables’'. -

In more detail:

(a) O'Muircheartaigh (1977) writes:

'The first and simplest purpose of multivariate analysis may
be data description or data reduction. The aim in this case is to
reduce the volume of data by transformihg the full data set into a
more compact form which preserves its essential characteristics and

which provides an accuratejsummary.'

If differences between, sayl withiﬁ-cluste; parameters exist,
then we might view these as essential characterisitcs of the data which
we wish to preservé by performing a disaggregated analysis. TFor example,
Holt et al (1976) consider the correlations between educational tests
and attitude variables from a survey of schoolchildren, where schools
are clusters. They find that the correlation structure differs between
schools and they suggest that it is more illuminating to investigate

correlations within certain school types, of similar correlation

structure, than to consider a single aggregate correlation matrix,

(b) The idea of disaggregating a population into subgroups,
with their implied social structure, for the pufpose of causal analyéis,
features widely in the social sciences (for example Dogan and Rokkam
1969 of, with special reference to the survey context, Coleman, 1959).

Galtung (1967, pp.37-38) writes:
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'A unit may be seen, judged and measured not only in absolute
terms but also relative to other units of the same kind belonging to
the same set. And it may often be fruitful to look for the structure
of the set. Secondly, it often happens that the set of units itself
is a unit of analytical interest and this unit itself may again generate

a set of interest in some context'.

In the discussion of Kish and Frankel (1974), Kalton, Sampford
and Brown question the value of regressing across strata when different
regression relationships hold . in the different strata. The value of
regressing across clusters may similarly be questioned. The case for
a disaggregated analysis is particularly strong when there are prior
substantive reasons for suspecting that subgroup membership influences
the regression relationship, as say when the subgroups are institutions

or countries.

For example, consider a survey of perinatal mortality among bables
born in hospitals where the clusters are hospitals, Suppose the

dependent variable Y. is a mortality rate and the independent variable

12 is the distance fiom the mother's home to the hospital. .We might

be interested in whether there is a greater mortality amongst babies
born of mothers living further from hospitals and the consequent policy
implications for siting of hospitals. Now Y2 will on average be greater
in rural hospitals than in urban hospitals. In Figure 1.1 we represent
the situation where a distance effect exists in both types of hospital
but where the overall regression slope is zero. In Figure 1.2 there

1s no distance effect in either type of hospital but overall a positive
effect exists. In each case we suggest the relevant policy implications
are derived from the disaggregated within cluster regressions (the
different levels in mortality for urban and rural hospitals would, of

course, also have other policy implications).

Hypothetical regression relationships between perinatal mortality, Y1

and distance from hospital, Y2 for rural and urban hospitals.
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Similar arguments would apply to surveys of schoolchildren,
where schools are used as subgroups. Relationships between variables
typically may depend on the school environment (e.g.. Rutter et al,
1979) and so it may be appropriate to examine disaggregated relationships
within schools and then separately to compare relationships between

schools.

In the above two institutional examples there are prior reasons
for expecting the subgroup relationships to be directly influenced
by subgroup membership. However, in many surveys strata or-clusters
form arbitrarily defined geographically continguous.areas which possess
no well-defined causal interpretation. Yet even in-this case it may be
sensible to examine disaggregated relationships, since by so doing we
may be controlling for 'extraneous ﬁariation' which may be desirable

given the non-experimental design of a survey, (e.g. Fields, 1971;

Bielby, 1981). For example suppose we wish to regress.Y household

1’
expenditure on a given commodity, on Y, household income. Suppose one

stratum is in an area containing predoiinately pensioner. households
with low incomes but small household size. Suppose another stratum is
an area containing mainly young families with higher average-household
income and with larger household sizes. Then a hypothetical regression
relationship in each stratum is represented in Figure 1.3. Again for
analytical purposes it may be sensible to examine within subgroup
relationships if the effect of increasing income is of -interest.

Figure 1.3: Hypothetical Relationship between Y income and Y, expenditure

2’ 1
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