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ABSTRACT

FACULTY OF SCIENCE

MATHEMATICS

Doctor of Philosophy

THEORY OF TOPOLOGICAL GROUPOIDS

by Gholamreza Danesh-Naruie

This thesis takes up the notion of topological and differentiable
categories and groupoids and of their local triviality. Beginning
with definitions of an (algebraic) category with object class X,
and appropriate commutative diagrams. These are extended easily
to the topological and differentiable cases in later chapters.

For brevity here, suppose X is a Hausdorff space, path-connected
(p.c.), locally path-connected (¢2.p.c.), and locally simply
connected (g.s.c.). As important examples we consider PX (the set
of all paths) as a topological category, and =X (the fundamental
groupoid) as a topological groupoid, over X, also 7X is a covering

space of X x X, and 7 {(7X,.) is computed. The relation between

1

connected groupoids and fibre bundles is studied. We show that
every connected locally trivial (g.t.) groupcid over X has a bundle

structure over X x X, and for each x ¢ ¥, St,.x is a principal bundle

G

over X with group G {x} . Also, every connected %.t. groupoid with
discrete vertex groups over X is shown to be isomorphic to a quotient

groupoid of 7X; and if n.X is abelian, then

1
ﬂl(G9 ox) A ﬂl(Sth s Ox) o ﬂl(Xy %x).

e

The notion of topological covering morphism is introduced;

if p: X e ¥ 18 & covering map of Hausdorff spaces, then



Pg? T¥e————>7Y is a covering morphism of topological groupoids.
In case G is a connected L.t. Hausdorff groupoid, 3 a 1 - 1
correspondence between the closed subgroups of its vertex group and
its covering groupoids. If G is a connected 2.t. groupoid with
discrete vertex groups over X, then the universal covering space
8 or ¢ is a groupoid over %, and in case G = uX, ¢ is the universal
covering groupoid of G.

We consider the notion of Efd*transformation group (T, G),
generalising the fundamental group of a transformation group. We

show that this group is the set of all morphisms : g - > 8

lifting the elements of the group TI. The set of all lifts of the
identity in I is the group of cover transformations of ¥. Under

certain conditions the orbit set G/ is a topological groupoid and

I
the quotient morphism g : G

e G/T is a covering
morphism.

Finally, we study some examples of Lie categories and groupoids.
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INTRODUCTION

In this chapter we first give a definition of categories,
groupoids and functors in terms of maps and commutative diagrams.
We take a path in a space X to be a continuous map ugiwmwﬁﬁm—ﬁyx.
This then allows us to define a reasonable topology on PX.

The plan of each chapter is given in the beginning of that
chapter, except for Chapter I.

We follow the same terminology as in [Zilthroughout the

thesis.



CHAPTER I

Definition 1.1.1

Let C and Co be two classes. Ve call C a category over C0 ife-
(01) 3 functions i, ¢: C——C,,

Called the initial and f£inal maps, respectively.

(c,) 1f D={(f, g) eCxCc | ¢(£) = i(g)} ,
then 3 a function 6: D—syC, (£, g@)rwmif.g ,

called "the composition function" such thati-

¥(f, g)e D, ilf.g) = i(f) & »(f.g) = ¢(g)
and which satisfies the:-

Associative Law: ¥(f, g), (g, h)e D, (f.g).h = £.(g.h)

(C3 ) 3 a function wu: CorC

called "the unit function" such thati-

¥ xeC, i(u(x)) = ¢(u(x)) = x, and if £, ¢ € C with

i(f) = ¢(g) = %, then u(x).f = £ & gou(x) = g

Botations and terminclogy:

For each x¢ C_, we call u{x), the unit element of C at x, and u(CO)QE;C

will be called the class of units of C, and denoted by 0. We also

write fg, gof, £ + g for 6(f, g), as convenient. We denote u{x) by
0 when using additive notation, and 1x in all other cases.
The set

C(x, y) = {feC|i(f) =x & of) =y}

X, ys.Co, will be called the set of morphisme from x to y.
If feC(x, v), we may also write £1X ey, OT x.f;ay. For each

feC, we call i(f), ¢(f) the initial and final objects of f,

respectively, and the class CO will be called the class of objects




2.
of C, and the elements of C will be called the morphisms of the
category €. In order to specify the functions in a category C,
we sometimes write C = (C, Cor 159 58, u), We also write P,
for the class of objects if it is not specified, and Sth{Ex
for i~ (x) and 51(x), respectively.

Remarks 1.1.2

(1) TFor each xeC_, the unit element 1, is unique.
(2) 1f (%, y), (x'y ¥') eC_xC  and (x, y)#(x', y'), then:-
Clx, y)Meolx', y') =
(3) It is immediate from the definition that u is an injection
i.e. CO is bijective with O, the class of units in C. Hence
one sometimes regards CO as a sub~-class of C, the class of
morphisms.

Definition 1.l.3

A groupoid G over the class GO is a category over Go in which
3 a function o G—G, o(g) = g'"1

called the inverse function, satisfying the:-

Tnverse Law: ¥ geG, i(g) =4 (gﬁ1);4>(g) = i(gnt);

thus (g, g~1)e D, (g~1, g) e D. Moreover

-1 -1
® = 1.. d e gl = 1
&8 i(g) 0 E €7 Tye)

We call g‘T, the inverse morphism of g. It follows from the

s ~1 . . - . -1
definition that o{(g ) = g. i.e. g is the inverse morphism of g .

And also, it follows that each geG, has a unique inverse.

Remark 1.1.k4:

. -~ .
For each xeG_, (i, o) (x, x) = G(x, x), the set of all morphisms

from x to x, forms a group called "the vertex group" at x, with 1x







Temma 1.1.6:

If ¢, C' are groupoids, then disgram IV ig equivalent to the

following commutative diagram, C I }C‘
Proof: Ives=V g L f l o
¥ geC, g.g‘1 = Ti(g>»wm¢1‘(g-g~1)x F(1i(g)) C r y C'
7 ()1 (g7 = 1 (5, (by TIT & TV)
Hence P(gr1) = (F(g))"1, and therefore we have:-
I'(o (g)) =o'( r(g)) i.e. To olg) = o'or(g), g C.
Therefore V is commutative.
Conversely, VeIV
¥xeC, r(1) = N££™) = 1) )(e71), fe Sty
= ().t (eN™ (vy V)
= Tir(r ()7 Trcae)) = ety VD)
gec.ds

Definition 1.1.7:

(¢, ¢!y i'ye'y @'y u')

#

Let ¢ =(C, Cor 116 ,0 , w), C!

be two categories. We call C' a subcategory of C ifi-

(1) ¢'€ ¢ and C' &C
o] O

]

(2) i =1ifct, ¢'=¢[C', o6 =06]D", u =ulC

If Cé = Co’ we call C' a wide subcategory, and if
¥ (x, y)eC!xCl&C xC_, C'(x, ¥) = Clx, ),
we call C' a full subcategory.

Definition 1.1.8:

Let G and G' be groupoids, then G' is called a subgroupoid of G if

(1) G' is a subcategory

(2) o= ola?



Definition 1.1.9:

Let G be a groupoid, and leot A be a subgroupoid of G. Then A is
called normal ifi-
¥ objects x, ¥y of A, and ¥ ace G(x, v),
a‘“lA{x Yo=-A{y}.

Definition 1.1.10:

A groupoid G over GO is connected ifs-
¥x, ye G, Glx, v) + ¢

Definition 1.1.11:

A groupoid G over Go is said to be totally disconnected ifs

Vx, yeG , xFy==>0(x, y) = ¢

Definition 1.1.12:

A groupoid G over G is said to be a tree ifs-
0 ——

¥x, ye G, G(x, y) has only one element.

Definition 1.1.13:

A groupoid G over G_ is called discrete if u(Go) = G.

A firgt theorem on the structure of connected groupoids is

that G a G{x} *T (the free product), where T is any wide tree

subgroupoid in G (see [ 27| J.

SECTION 1.2
An important example to illustrate the definitions of section -
1 arises from the set of paths on a topological space.

Definition 1.2.1:

Let X be a topological space. By a path of length r we mean a

contimious function f: Bf;*»¢X, where reIR+ is the smallest

pumber such that £ | (ﬁ+"‘w[o, r] ) is constant with the value f(r).



We call £(o), £{r), the initial and final points of f,
respectively. To specify the length we may write f_, whenever
needed. For each xe¢ X, we have a unique path of length zero, denoted
by 0, We also denote the set of all paths in X by PX.

D’,finition 1 @ 2 e 2 H

Let f, g€ PX be paths of length r and s, respectively, such that

fl(r) = g(o). Define the non-commutative addition of paths by:

| [£(t)  ostsr
(f + g)t = -
{g(t - T) t% r

Tt is immediate from the definition that f + gt R ———bX
is a path of length r + s.

Define the functions i, ¢ , PX—s X,

i

by:- ¥ £ €PX, i(fr) = fr(o) and ¢(fr) fr(r).

g (o)}

#

Also, let D = {(fr, gs) ePX x PX | fr(r)
define the composition function¢ :D—3PX
by:- ¥ (£, g)eD, o(f, g) =1 +eg
Finally define the unit function

uy X3 PX
by:- ¥ xeX, u(x) = o, the constant function at x.
From the definitions we see at once that 6 is associative and u
satisfies the required conditions for a unit map in a category so:-

Theorem 1.2.3: (PX, X, i, ¢ , u, 6 ) is a category

The details of proof are straightforward and omitted.

Definition 1.2.4:

For each fre PX, define the reverge map

"fr: mf;MMM;X



by~

Wherefe R* is the greatest number such that f| Lo, £]is constant.
(Notice that this might happen, since the definition of fr does not
requirc that fr should be non-constant in some neighbourhoods of

og 'LR+> .

It is immediate that “fr is a path of length r.

Note: ¢(~f ) = i(f ) and i(-f ) =¢ (£ )

This suggests PX with this inverse might be a groupcid. Unfortunately
f + (-f) # 0 in general. So we pass to homotopy classes.

fp = g, means 7 a continuous function

Fi: BT « T—3X (I the unit interval)
such that F(s, o) = fp(s) v Flo, t) = fp(o) = gq(o)
Fls, 1) = g (s (1, t) = = f (p).
(sy 1) gq)y (1, +) gq<q) pp)
Temma 1.2,5:
i if £ = then =f ¢ =g .
(i) 1 o= 8y ‘then o &g
(ii) for each fePX, £+ (wfr)z %0 ()
wf 4+ f =0
r T fr{r}
Proof: (i) TLet F: BT X T X be the homotopy: fp= 8,7

then ¥ se R, F(s, o) = fp(s) and F(s, 1) = gq(s).

Define H: Rt x T W>X

( ) (7 ((1 - t)(p +€) + t(q + @‘)-s,t)}o:t sg (1-t)(p+e)
H(s, t) =
° +t(q+ 0)

|
(7 (o, 1) s2 (1-t)(p+e)+ t(g+e")



8@
(%4 and €' the greatest numbers s.t. fp{[o,,ﬁ]and gqi Lo,@']a;re

constant). Obviously H is contimous and we have:-

1 #(p +£ - s, 0) oss&p-&&fp(p&»&s) 0<s g Pl
H(s, o) = LF(O, o) S 2P "y £ (o) 8>+l
jfp(p +£-3) 0888
- {fp(O) sxp = ~pl®)

(For fp(p 4 £ms) = fp(o), p<ssp + &)

Flq +£"'" =8, 1) osfssq+ &' qu(q +2' -s) o< sgate
and H(s, 1) ={p(, ) 5% q +€e’»lgq(o) sz g

i

gq(q + &' -« g) osgs5q
= ~gq(8)

gq(O) s3q
(For gq(q + 42! -8) = gq(O); Qg s<qg +2£").

Hence =-f = .
ce p~gq

(ii) Define the homotopy G, F: RY x I—X
by~
(f(s), o< s<gtr
fltr), trss<tr +4
G(s, t) =
£(2tr +4€-s), tr +2< sg 2tr + &
£(o) S» 2tr + 4
(f{r + t £-8), o< sg'tr
Fls, t) = Jf(r + t &=-tr), trs sg tr + £
L?(s +(1-2t)r + (t ~ 1)), s3tr +2

It is easily seen that G and F are continuous. We have:~
flr + 2-8) o€ sg ¥
P(s, 0) = O (x) and F(s, 1) = J f(&) rEsg T+ £

f(s - 1) S 3T +2



(For f(s - r) = £(2) , r&¢sgr +2 )
similarly, G(s, o) = °6(0) and G(s, 1) = (fr + (-fr))s

g.e.d.
Lemma 1.2.6:

Given fre PX, then for any r! eIR+, A a path £' of length r'

such that f'= f , and f' ®" = fr(ﬁ+)

Proof: Defineo¢ i ﬁ+M{R+

e
by ¥ seR, Gr':c(S) = ST/
Thenor,r is a continuous map, and hence
+
fro 9t R
is a path of length xr'.

=X

Claim: £ =f 00,
" r r'r

Define the homotopy H:[Ei+x Ty X

by

£ ( S ) ofsstr + (1 - t)r'
8(s,t) = (' tr o+ (1 - t)r!

2f(r) sztr + (1 - t)r'

obviously H is contiruous and is the required homotopy.

Lemma 1.2.71

Let (fD, gh) €D and (xp,,uq,)a D. If £ =2y, and g = oo then

g.e.d.

D! + qu

Proof: Let T fp = )\p" and G:gq 2 Mgt be the homotopies.

£ o+ g =2
p " &

Y
Define H s B+ x I

5X bys-

F(s, t) ogsgl|F
H(s, t)= |

Gls = [Fyp t)  s3|F
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where [Ft[ is the length of the path F_ 3 ﬁmemm,X obtained from

t
the homotopy F. Then, obviocusly F(IFt[, t) = Glo, t) = fp(p)(#ly(P')>
Hence H is continuocus and we have:-
H(Ss O) = (fp + gq)(s) and H(S, 1) = (Ap‘ + uQ')<S)
g.e.d.
Denote the equivalence relation = by R. We now pass to cosets and

prove: -

Theorem l.2.73

Let 71X = PX/R’ the set of all homotopy classes in PX. Then #X is a

groupoid over X.

Proof: For each fr ePX, let ?; denote the homotopy class of fr’
(i) Define the initial and final maps
i, 4t aX—sX

by: ﬁf&aﬁx,‘§(§¥) = fr(o) and E(E;) = fr(r).
obviously independent of coset representatives
(ii) Let D ={(“5§r, "és)e wxx mx| £ (r) = g (0)}. Define

8: D —1X by: E(E;, gé) = E;”Ifgg (= E? + Eé)
It follows from 1.216 that  is well-defined.
Since addition in PX is associative and g:PX —> 11X, the quotient map,
ig onto and respects +, theni-
addition in 7% is associative.

(iii) Define the unit function u : X s

by: ¥ xeX, ulx) = 5?
Since o is a unit in PX, it follows the 3% serves as a unit in nX.
(iv) Define the inverse function TinX.—ynX

by: ¥ f enX, G(fr) = -f

By 1.2.5, 0 is well-defined and we have:-



ll!

I?):f(o)mﬁ‘(r):;(?)

§(t r)=f(r)~~»f(0)“1(f)

T+ (1) = f+(f>“of(o) (by 1.2.5)
-»fr+fr=—'fr+fr== fr(r)

Therefore ¢ satisfies the required conditions.
g.€.de.
We now show that X is isomorphic to the fundamental groupoid
m'X as defined inl2 ]. For this we need the following lemma:-
Lemma 1.2.8:

Let fq: Bf;nmm5Xibe a path, and let [r, r'}<[o, g] be such that

fq[[r, r'] is constant. Then £, is homotopic to the path

£ R ey X

defined by:- £(s) 0g8«<r
£i(s) =9 . : ,

f(r' - r +8) 83T

Proof: Obviously f' is a path of length g - r' + r. Define the

homotopy g RV« T —3X
by “£(s) 0ogS < T
H(s, t) = £(r) rescr + tlr' - 1)

f(l - t)(xr' -~ 1) + s} syr + tlr' - )
Since t(r' = r)sr' - v, r + t{r' - r)<cr'. Hence it is easily seen

that H agrees on the intersections, and therefore it is continuous.

We have:- £(s) ogs8gT
H(s, o) = ¢f(x) s =T = £'(s)
flet -2 +8) syr
Vf(s) oL 8
H(s, 1) =¢ £(z) = £(s) r<sgr' = f(s)

?
f(s) ST qe€eda
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We call f£!' the shrunk path of f.

Theorenn 1.2.9: 7X is isomorphic to 7'X

Proof: Lot f' be a path of length| £, as defined in{2}, i.e. f' is
a continuous map from the interval [o, { £ } into the space X.
Then we can extend f' to a path f : [RLW‘;X by s
¥ teRT, £1(t) ostg| £t
£(t) = o
(et ) b2l

obviously £' and f havc the same initial and final points.

Define u: ™X_ym X
by: (1) % [£e mx, v ([£7]) =T , where f is the extension of f'.
(i11) ¥ xe X, ulx) = x

u is well-defined: Let £' ~ gf, thend r, Ty sﬁf such that r +' !

is homotopic to r, +'g', where (+') is the addition of paths as
defined inl 2Ji.e. (f'(s) o< s <|f"|
(el - {g‘(s et |t es <lt] 4 ]
Let F's [o, {f‘f + r} X Jae3X be the homotopy: r +' f£'= r, +t g'.
We extend F' to F : R x T——uX
(F1(s, t)  os ss (1 - t)|£'] +t |g']

by: (s, t) =

~ e - 0]+t e, 1) s (- 1) [£7] + ¢ g
obviously F is contimuous and is a homotopy from f to g, the

extensions of ' and g' respectively.

v is a2 morphism of groupoids:

Since u is identity on the set of objects and f, f' have the same
initial and final points it is easily seen that diagrams I and II in

)X, is

(Fg) are satisfied. Obviously, the extension of o‘X : [ o)

o+ — .
the constant map ot Ro—sX. Hence u({_o'x 1) = o, the unit clement

at x in "X. Therefore M commutes with the unit maps, i.e. diagram IV
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of (FQ) is satisfied. Hence it remains to prove that u commutes
with the commosition maps. Let D' be the set of all composable

elements inn 'X yn'X, and let ' : D! > 1 'X be the composition map,

thens~
v ([£7,[e' D ed, u(le] +'(g']) = (L£" +' gJ) =h

where h ig the extension of f' +' g'. Let f and g be the

extensions of f' and g',respectively. We gshow that ho=f + o,

We have:- £'(s) o8 T
(f' _i,,? gi)(s) -
g'(s 4 o) levlgs <let] + gt
Tet f and g be of length p(g|f']) and a(¢lg'|), respeatively.
Then f(s) ogsg¢p
(£ + g>(s) =
gls - p) 8201
If p = |t ], then it is casily seen that h = £ + g.
If p + |f*|, then £ + g is the shrunk path of h as defined in

1.2.8. (here hﬁ?, !f‘g is constant). Hence f + g = h.

Therefore u({£'] +' [g']) =h=F rg=17F + g =u(ls"]) + u({eg])
Hence (F2> is satisfied.
Now define vi¢ 11X X
by V’?qewx y v(?) = Ef13 , Where f1 = f Hp, q} .
Tt is easily verificd that (f + g)1 = f, + g, end
f= g:mww9f1 v~ gy. Therefore v is a well-defined morphism.
It is also easy to see that uov== 1“X and vou = 1 .
Hence u is a bijection and so an isomorphism of groupoids.
Q.C.d.
Next consider another,important, example.

Let T be a vector bundle over the space X with the fibre R,
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CHAPTER IT

THE FUNDAMENTAL GROUP OF 71X

In this chapter, from any given wide normal subgroupoid
A of a connected groupoid (G, GOb, i, $ & , u, o), we construct

a groupoid, called EA’ over pr by defining an equivalence

G/
E, = 'R,

to the construction of covering spaces. We also construct

relation RA in Gy and take The procese is analogous

another groupoid, called GA

connection between G and these groupoids. It turnsg out that

. over EA’ Then, we will study the

QA is a covering groupoid of G x G with appropriate projection
to be defined. If G arises as a fundamental groupoid of a
path~-connected, locally path connected and locally simply
conmected space X, then we show that EA and hence X is a
covering space of X x X, Finally we prove some theorems which
enable us to compute T, (n X, 1), where X is as above. We close
the chapter by introducing another topology for nX which is

more convenient in practice and prove its equivalence to other
existant topologies on 7X.

2.1 CONSTRUCTION OF EA

Let (G, pr, i, 4,6 , 0, u) be a connected groupoid,
and let A be any wide normal subgroupoid of G. Then it
follows that:

¥ x e ¢ , A {x}=3 G {x}
Conversely, given any normal subgroup Az of the vertex group
G {z}, z ¢ GOb, then we construct a wide connected normal

subgroupoid A of G as follows:t=



iT.

Let T be any wide tree in G, then G & G {z} ¥ T, with
3 - . ¥ - ¥
the isomorphism ET' 8Tyt a8 Téa, where a'eG {2z}
-1
and TXST(X, z). Take A = T (AZ ¥ T), then:—
Lemme 2,1.1:

A is a wide, normal, connected subgroupcoid of G

Proof: (i) Define the initial and final maps by:-
A

(ii) Let D, = {(a, )e A x A] ¢(a) = i(b)} , then

DAQ;D, and we have:~

= ila and ¢, = ¢|a

G(DA)Q;A, For, let {a, be Dy, then &, b ¢ A. Hence 3

unigque a', b' ¢ AZ such that a=1. +a' -1

18 ba
o L
b Tib + b T¢b
But (&: b)EZ DA':::"—""? ¢(a) = 1(b) g Td)a. = Tiba
and a', b'e A==—2>g+ b'c A
Z z
= = L Vo
Therefore 6(a, b) = a + b (Tia + a T¢a) + (Tib + b T¢b)
= Ti& + '(a, + ‘b?) - :{15}3
Hence a + be A, So, we can define:-
0,7 Dg——>A by 6, = 0|D,.
(iii) Since A, is a subgroup of G {z}, o A . Hence, it
follows that ¥yec®P, o €A
Therefore, define u,: GOb A
by~ uA(x) = u{x) = o,

So it meets the required conditions (For, u does).

(iv) Finally, define o,: A——>A by 0, = ola.

This can be done, for:-

Let deA, then 3 a unique d'eA such that d = T,, + d’

-1

od
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Since 4' ¢ Aizxzxx>*d‘ EAZ, we have:—
e -t - =
O(d) d T¢d + ( d ) Tid Ti(""d)
Hence o(d) eA. i.e. o(A)C A

+ (-a') ~ To(-a)
Therefore (4, GOb, iA’ Gps Ops Ups OA) is a groupoid contained
in G. It is immediate from the construction that A is a wide
subgroupoid of G. It is easily seen that T { A, therefore A is
connected.

It remains to show the normality of A in G. For this, we

must show that:

wx, y 6%, ¥ge G(x,y), ~& + A {x} + g A {y}
We have:~ g eG(x,y)==—>7Jg'e G {2z} s8.t. g= Tt gt - T,
a eh {x} =—> Ja'e A s.t. a=1 +a' -1
Z b's X
< P - . L 2. i | B
S0, =g +a+g (ry g Tx) + (Tx + a TX} + (Tx + g Iy)
= + -gt o+ a' + ! = T e
T, (-g g') v
But by normality of Az in G {z} we have ~g' + a' + g'e AZ.
Hence -~g + a + g A {y} . q.e.d.

Thus normal subgroupoids exist. The independence of vertex groups
of A from the tree T will be discussed later (see 2.1.4.)
The relation RA:

Let A be a wide subgroupoid of G.

Define a relation R, in G as follows:- let ae G, then for any be G,

A
bR a<===>ib = ias, ¢b = ¢a and a - be A {ia} .
RA is an equivalence relation:-
(1) R, is reflexive: ¥ ac G, a ~ & = o, ¢ A {1a}:=:>aRAa
(ii) RA is symmetric: ¥ a, be G,

bRAa:zxn»a ~ be A {ig} ==2>b -~ ag A {ia}_mm>aRAb.
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(iii) RA is transitive: ¥ a, b, ¢ ¢ & s.t. PR.a and cR,b,

we have:~-

bR, 8 o>l = be A {ia} , ib = ia and ¢b = ¢a

cR,b ceeeeb - ¢ ¢ A {ib} = A {ia} , ic = ib & ¢c = ¢b
By group property of A {ia} , (. ~c) = (a-b) + (b~cle A {ia}
Hence, cRAa.
Therefore RA partitions G into disjoint equivalence classes.
We denote the equivalence class of any ac G by {a].A.
Hence, ¥ a G, {&}A = %bsG(ia, va)| a ~ beh {ia}}
We also denote the quotient set G/RA by EA’ and the quotient
function: G ~*M9EA‘by Py

Lemma 2.1.2:

If A is normal in G, then E, is & groupoid over GOb and

Py G ——>E. can be extended to a functor of groupoids.

A
Proof: (i) Define the functions KA} EA‘: E; >¢oP

bY:,'“ ¥ EBJA 2 iAIB«'}A = l(a} & EA{:aXA = ¢(a)

Tt is immediate from the definition of RA’ that EA and EA are

well—-defined.

(ii) Let D, ={({a1,, [v], )] b, [2),=1,(0), de. 02 = ib)}

Define SA.: DA-“~>mA
by:- 8, ( Tl s 6y, )= fa + b),, where
a+b=260(a, b).

-

0, is well-defined: let a',efa],, b‘s{b}A; we must show that

[a‘ + b? AT [a + b}A . i.e. we must show that

a+b~-(a'+b')e A{ ia% .

we have:-
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a' €(a7Aﬁ*ﬂ> a - a'ealial ==Joer {ia} s.t. a =a + a’

b' efal,==> b - bealibl =>a' + (b - ') - a'ed {ia},

by normality of A in G (this is the first place where normelity is

assumed),

i

Hence, a + b - (a' + ') =g +a’ +b - Db' - a’
o+ (a' + (b~-Db") ~a')e A {ia}.

We need to show the associative law for §A'

Let ( [BJA? [bjA Vo ([bl,s lely )eﬁk. Then using the associativity

of 8 , we have:-

(faly + 1+ [e]y =[a+], + [c], = [(a +0) + ]

JA
= T = 1 i
=fa+ o] =aly v [orc]y =fa]y + (o], v |e]))
(iii) Define EA; GOEM»EA
by~ VxeGOb, u (x) = [o 1 , where o = ulx).
A wa X

uy satisfies the required conditions for the unit map in EA' For,

let [a]AgEA, then ZA [ﬁJA = i(a) and g@£a]A = ¢(a) and we have:-

i
0. + 8,{
18 -

[a AJ+ [oéa}A ¢aj
(iv) Define'EA: EA >EA by o, [aJA [*&JA

o, is well-defined: Let bs[a}A, we must show that I—b}A = ["a]A.

{bi }A + [a}A

a

i

[ PO

A

H
by
T P

ey

i

a + 0 a]A

i

To show this, we must prove =~ a + beA {da}.
We have:-
befééftxrab - geh {ia} ===>~a + b =-a +(b - a) + ach {¢al}.

(by normality of A).

Oy satisfies the inverse law: For, EA {a}A = ¢A£~a]A and mA:&]A

i

€A i"&]A.
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and we have:«{vajA + [*a?A z[a - alA x(b;aj. = QA(ia)

{*a}A + {a}A =(~a +al, = |0,

1

Hence it is the inverse function in EA
Define Py to be the identity function on the set of objects, i.e.
¥ stOb, p,(x) = x.
A
Then (F;) is satisfied (by definition). So, we need only to show
the commutativity of disgrams in (FZ)' We havei-
(i) ¥ aeG, pAoﬁ(a) = pA(¢a) = ¢a

Top,(8) = 3,(p,(a) ) = §, [ a], = s

Hence pAo¢ = ggppA. Similarly pAoi = iAOPA‘

(ii) ¥ (a,bleb, éAO (pA x pA)(a, b) = éA('Id]A,Ib]A)

#

[a + b, = [o(a, v) Ia

]

P08 (a, D).

i

p, (6(a, b))

it

LI 0o 3 T = =g m( = )
(i1i) ¥ ae G, vopA(a) GA[aJA ! ajA {a(a) ]A. pA(G(aL
= pAoa(a)
Hence all the conditions for p, to be a functor are satisfied.

g.e.d.

Remarks 2.1.3:

(1) the vertex groups of EA are G {X}/A{X}’ xeGOP
(ii) If A is a tree in G, then EA = G. It is also clear from
the construction of A that if AZ = {oz}, the trivial subgroup
of G{z}, then A is a tree. Hence as in the case of groups, if
we take Az to be the trivial subgroup of Gi{z}, then EA = G,

We showed in 2.1.1. how A might be obtained from a subgroup

AZ of the vertex group G {z}., 1In that case E, depends on the

A

following choices:—
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Hence (Fq) and (F2) are satisfied.
geeede
Remark
Let » ¢ H——F be also a morphism of connected groupoids.
Let M2 F be z wide normal subgroupoid s.t.
¥ye B°°, A (B {y} ) < Ml A (y)}
Then ¥ x ¢ GOb,A on (& {x} ) =x (n (&{x} ) ) a(Bn(x)} )
S ¥ {(A(n(x) )} =M ron (x)}
Hence, we get induced morphismas-
Ay S EBmmw?EM and (Aon)*: Eﬁ-w7 r
It is easily seen thats-
(xom)y = Agon, and (id.), = idﬂ%
i.e. the assignment A —— » X, 18 oovariiant° Hence we have at
oneces-
Lemma 2.1.8:

If n:G—H is an isomorphism of connected groupoids, then

My 2 EAM~»7EB is also an isomorphism.

2.2 THE GROUROID GA

ok

s

Tet A be a wide, connected normal subgroupoiévG, and let EA
be the set of equivalence classes as defined in section 2.1.
Defines~

G, = {(n, [a], g) | (n, a)e D, (a, g)e DIZG x B, x G

Then we have:i-

Theorem 2.2.1: GA is a connected groupoid over EA.

Proof: (i) Define L0 0 Gy, by:-

¥ (n, 2l g)e Gy IA(h, (el g) = Ea]A coas 2.2.1 (a)
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q) f (h7 [a_}j7 g) = {h + a + f‘;’?‘[ o5 8 @ 2»2-1 (b)
It follows from the normality of A that the 'final' function

is independent of representatives in 34 L For,
- &

a1€{a}Aumuga,, a1€ A [ia}==sh + a - a1 - he A {ih}

"

(by normality of A4)
oy (0 4+ 2 + g) - (h + 2\ 4 g)e A {ih)
ey {h + a + gl = [h + q1 o+ g}

<u>Mt@=1w mwg>muiu“g>ﬁ +e),

Define & IS D M%G
((h (2], &), (u', (v], & )»~ (n, (s, &) + (u', (], &")
= (' +n, (), g+e)

(Note change of order in n' o4 h)

] A satisfies the associative law:

1 Ty o

Tet (X, ¥) = ((n, (2], &), (0, Dbl , &) €Dy
Is . 2 v el

and (Y, 2) = ((h ’ Lblﬁ.s 2y )9 (haa Lcj@jle g )) EDA

Then [h + a -+ g}A = [b]A and }:hT + b + 31][& = [C)A (by 2.2.1

(a) & (b))
- 4 1 ¥ } .
Hence th' + (h+a+g) +¢g ]A = Lo , dec.
1 = 1
QA (h fhg La}w g+ g ) = I, (7) = [C]A.
RN - 1 Yoo )
Thereforc:= ((h + h, LaJA, g+e ), Z) eD, L*)
. 5 . v
Similarly, (X, (K +1n, Lb]&, U gg)) ETDA\’
By associativity in G and B, (X +Y¥) + Z = X + (Y + Z), since

each sum exist (by * )
(iii) Define the unit map U,: B,—>G, by:i-

¥ [ajAeEA’ Ua ( Ca}ﬁ) = <Oia’ I;a}fl" O¢a>°
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It is easily scen that this satisfies the required conditions
for the unit function.

(iv) Define the inverse function® ,: G,—G,
bys- ¥ (h, fa]A, gleG, , ZA(h, E;ales g) = ("h;f:h +a + g:i_&s ~g)
For, if X = (h, [a]A, g), it is easy to verify that:-

\ = )

0, () =1, €,(X)) &I, (X) =2, (2(X)) ;

thus (X, z:A(X)) , and(z, (X), X)e D,
w —~ = f T

and X tIy x) O[a;A (Oia’ 2lye cha)

zA(x)+xon

).

h+a+g}A = (Oih’.i;h*a*ghx’ °ue

So far, we have proved that (GA’ Byy Ty 6ps Ups ZA) is a

groupoid. We next show that it is counected.

Let [a}A, {:b}A eB,, then, by connectedness of G, FeeGl g(a), 6 (b))

Iet h=b - g - a, so (h, fa]A, g) €G,, and by 2.2.1 (a) & (v),
(h9 Ca]A: é’;) EGA ( Ea]A’ {blA ) #4’

q.e.d.

Behaviour of GA under morphisms

Let n: G—-=H be a connected morphism of groupoids satisfying
the conditions in (2.1.8). Then p induces a morphism
My ¢ ('}A—»»«M»H}3

as follows:~

(1) &l By = ny (as fefined earlier)

(i1) ¥ (n,{aly, @e Gy, nylh, L3l 8) = G (0),[n(a)lgs n(e)
Since [n (a)}B is independent of any representative in [a] A
(see discussion preceding 2.1.8.), N, is well-defined. Moreover:-

;1"* is a morphism of groupoids: For, ¥ (n, fa]A, g) aGA, we have:~
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5*OIA(h9 Ea-}As g) ”ﬁ*([a]A) “n*({:a}A) "‘E’l (a)]B

Lony(h, [2l,, &) = T(n(a), [n(a)]y » n(é) ) = [n(e)]
Hence ﬁ*oIA = IBoﬁ*. Similarly ﬁ*oéA = @Boﬁ*.

Therefore #, commtes with the initial and final functions.

Next, ¥ (Oia’ La.:i‘,;g Od)a)’ ﬁ*(oia’ [a}A! O¢a) = (ﬂ(oia); &(a)]B?

n(o¢aj>= (gn(ia)’[h (a)]B’ O”(¢a9 (for n is a morphism
- {Oi(n(a) ’ [”(a’)lB’ °¢(n(a>>‘ of groupoids)
Hence 7, commutes with unit functions. So, it remains to show
that 7, commutes with the composition functions.
Let (Kh, [a]A, g), (n', [b]A, g')}g Er, thens-
nx ((h, (al,, & + (n', [b];, &")) = n.(n' + 1, [a],, & + &)
= (n(h' +h), [n(a)]gs nle + g‘)>

=<n (8') + n(8), [n(a)]g nle) + nlg")} (.7 n is a morphism)

- (), [n(@) ]y n(e) +{nn), (0] nle)

= ey (2, &) + 7alny [6], &")
Remarks
Let A: H—F be a morphism of groupoids satisfying the same
conditions as n. Then, in the same manner as in Remark preceding
2.1.8. the assignment n -n, is covarient, so:=-

Theorem 2.2.23%

If n: G~H is an isomorphism of connected groupoids. Then

Nyt GA~*~waH§ is an isomorphism.

g.e.d.

We now show the connection between GA>and G.
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Define the functions r, g3 G -:G by:-

A
— b
HEA =1, 3 EA~v~~ »6°° & 2(n, {a]As g) =-h.
- b
B, =7, B0 ar(h, [a), &) - e

Reason for mirnus sign will be seen in 2.2.3. below. Recall
change of order h'+ h in definition earlier.

Lemma 2.2.3:

£, T8 GA""’”""”’ G, as defined above, are morphism of groupoids.
Proof: Since the proofs in both cases are similar, we prove only
one of them, say for 2. It follows from the definition that
(F‘i> is satisfied. ¥ (h, La:fA, g) €G,, we havei-
Lol (B, Lol @) =2 (ey(ny L2l @) =tfin +a+ el )

«-:EA([_h +a+gl) =ilh+a+g =ilh)

(;)Oﬂ,(h, [a]As g) = ¢>(""h) = i(h>

+

Hence go0¢, = ¢08 . Similarly 901, = io%.
¢y = ¢ A

ob
VL&}AE EA = (GA>

i 2<Oia’ {*ajA’ O¢a) = 55 T %ia°
V((h; [al,, &), (n', LR, g’)) € /JSA’ we haves-
E(h’ {.a‘]Af g) + (h', Eb']j‘;’ g')

= -(h' + h) = -h - h!

il

o(' +n, Lal,, g +¢")

R(hy {:a?/\_? g) + Q'(h'1 {bJA9 g')

it

Hence F2 is satisficd. Therefore g is a covariant morphism.

ge.e.d.

Obviously, (g,, r): G[;»_—a(} x G ig a morphism, but more can be

said. One of the main and important connections between G and

G& is that (,Q, r) ig a covering morphism in sense of[ 2 ] Thus s -

Theorem 2.2.4:

(g, )¢ G,—~——G x G is a covering morphism.
A
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Proof: We must show that for each [al:E, = (G&)Ob, the
————— PRy 43 &

restriction of (g, r) to St [a]A is a 1 - 1 function onto
A

Sty G(Q, T) [a}A = Sty G(ia,¢ a).
(1) ¥(n, {alﬂ, g), (nr, [a}A, g')e St ﬂa}A, we haves-

(lﬂ r)(hr [aJAs g)

#
i

(2, v)(n', Lal,, &) ==(-n, &) = (-n', g")

===zh = h', g = g’

i

Hence (h, [a]A, g) = (n', [a]A; g', which shows that (& r) is
1 -1 on St[a]A.

Fis
(ii) Given any (h, g)e¢ Sty G(ia, ba), we have i(h) = ia and
i(g) =¢ a (by definition of product of categorics). Hence
(-h, a), (a, g)eDd. So, (-h, [a X g)eSt[a}A, and we have
(Rs r)("hr LalAa g) = (h, 8)*

Therefore the restriction is onto.

g.e.de.

Consider now an application, to the case when G = X,

Let G = 71X, where X is a path-connccted, locally path-comnected

b has a topology,

and locally simply comnccted space; then EA = GAO
called "the lifted topeology" denoted by L - topology, which turn it
into a covering space of (G x G)Ob =X x X (seel 2 Jp. 309).

Thercfore we havei-

Corollary 2.2.5:

Let G = mX, where X is a path-connected, locally path-connected

and locally sinply connected space. Then Ef (and hence X as a

special case) with the lifted topology is a covering space of

X x X, with the projection (EA,'gA)s EA~wm~;X x Ko
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(The equivalence of this topology to that obtained from LCO-topology,
as a quotient space, will be proved in next section).

Notation: In case G = 71X, we denote E, by w to digstinguish it

A A

from the general case. The space X will be assumed to be path-

connected, locally path-connected and locally simply connected for

the rest of the chapter.

Lemma 2.2.63

For any [a]@ el ,

s

(2, r)(GA{ ga;A}) = {(f, g)e G{ia} xG{¢a}|-f + a + g - ac A.{ia}}

Proof: Iet (h, [a]ﬁ, g)e GA{'{a}A}, then [h + a + g}A = @A(hg t"_a?A, g)
= [a]A

Therefore:- h+a+g=-ach {ia}
and i(h),= o(h) = ia, ilg) = ¢(g) =9 a.
so, - he G {ia} and ge.G{¢a}. Hence:~

(2, 2)(b, (2], &) = (-h, g)e G {ia} x G{¢e}
Conversely, let (f, g)e G {ia}x G {¢a} such that -f + a + g - ae & {ia}
Then  [~f +a + ng = {2, (by definition of B,).
Hence (-, {‘a}A, g)e GA{[afA }, and we haves-

(£, &) = (8, 2)(-f, (al,, 8)e (g, 2)(G, lal D).

gecade

Now suppose that A{x} is in the centrc of G {x}, then:-

Theorem 2.2.73

For each :x:gGOb, GA{EOXEA} WG {x vA{B

Proof: Since (g, r) is a covering morphism, G,{{a],} s (g, r)(GA{ {OX]A})

By 2.2.6 (5, 2)(Gy(fo J,})

i

p
(f, 8)e G{x} X Gx}|-f + 8¢ & (X}

fi

E(f, f+a)|feGx}, ach {X}E

it

H, say. (LG {x} %G {x})



Define ¢ H—a3G{x x A {x
bys- ¥(f, £ +a)eH, v(f, £ +a)=(f, a)

Y is a homomorphisms

p( (£, £+a)+(g g+b))=v(f+g £f+a+g+Dh)
=yp(f +g, £ +g +a+1b) (by hypothesis)

=(f+g, a+b)=(f, a) + (g, b)

i

=p(f, £ +2a)+v(g, g+b)

Obviously ¥y is 1 - 1 and onto. Hence ¥ is an isomorphism.

Corollary 2.2.8:

If A is a tree subgroupoid, then GA{[OX}A}@ G {x}

Corollary 2.2.93

If 4 {x} is in the centre of w1(X, x),

Wl(WAX , o A fy n1(X, %) %A {x}

Proof: By 2.2.7, =X ,{{o ]} nX{x} x Mx} = m (X, x) x Alx}.

On tho other hand W(WAX> A (WX)A (see{g], 9.5.5.)
Hence (WAX, (OX1A> N <WX>A{[O§}A} Ay ﬂ,E(X9 %) x A{x}.

geCede

Corollary 2.2.10:

¥xex,y(ﬁqox)%ﬁﬁxgﬁ

Proof: If we take A to be a tree groupoid, then ﬂ}X = nf. Hence
by 2.2.9, n1(wX, Ox) A n1(X, x)x { o} & w1(X, x)

g.e.d.
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| ) - - TS
Let o<e<t t -1 and let X =! t Y r +€ j > K Then

clearly

NzTUﬁyWQﬁ.“ﬁTm%VWQﬂTGﬁ}?WpfﬂcnﬂTﬂﬂl },

- 1

-1
I My -
“n - 1yﬂ? (x , T +€)

is an open ncighbourhood of A in PX (n being the length map).
Claims N%=M. Lot uSsN, then it is casy to find t‘1, t’z,
t'n _ 1€IS such that u(t'i) eW‘i, i=1, coe, n =1, and ¥ is not

constant on some neighbourhood of t’i, i=1, seey; n = 1. Clearly

uc’t'i, t'i+1])§;wi’ i”?, ...,fl°'1,

Definesm
A(b+t o gt &t,~t,
( J*T)’ i 3=

it

xézaﬁm«ax, Gom A, vee, n.bysxj(t) =

e t 2t,-t,
( J) s 5%
fu(e+tr, ) 0 b gt', -1,
_ . -1 = -1
u‘zﬁf~m~»X, 3= 1,e00p.net by (t) =) J J 3
! J u(t'.) t oyttt
J 3 3=1

A

-1/
clearly xj(i =1y cees 1), pj(j =1, «oey n = 1) arc of longth

and ungﬁf-max by: ¥ t eRY, u (8) = u(t + ¢

t, - b,
J j-1

We haves- xj(o) = (%

o ] 3 = - ¢
and t‘j t P respectively, and n(un) s =t

e
= - (RHcw,
i - 1) A 1(ﬁj Jq by ,) and xJ(B < 5

3319 s oy Ilo

uj(o) = u(t'j _ 1) =My q(t’j -1 t'j _ 2) and
uj(ﬁ+)sawa, =1, ees, N
Hencexj -1 +-Aj and My ooq + by are defined for j = 1, ..., n; and
we havei-
A=

”)\T+}\2+aqo+>_n

(%)

i

u p1+u2+¢..+pn
Let ngPij(A(tj), p(t'j)> , 3 =0, 1, eeop, n -1 and

oe P G0 (2)yu (s))



Then =, + .+ ov. ePW.(u.(o NG AN
Yy o g ¥y vy PTG, ey
sery o= 1
& - 3 S
and -~y _ 4+ g+ ovee PLGE, ), u(s)
Hence, by simply connectedness of Wj‘s, we haves-
e 3. - = o t ' \' i = s e v
Yj -1 + )\j + Yj Ujsﬁx<u<t j - 1)9 U(t j)/ s Ty ooy B 1
and Y - 1 +~3\; + ?;; =mﬂ;e7rX(}\(l‘>y p(5)>

i1

Thereforei- T = (=) +7h; + yqy) + oo G + 70

VAN U Y oLy
YO+1+2+..o+n+Yn
R A S *
Yoo A Y (by (%))
Since YOEPW'O(MTEO), \i(to)) = PU(A (o), “(O)}
and T RE0 (M), W) = BV(M=), M(s))

we geﬁﬂ,ﬂA« U’{j}a’ V> = 4, [ajfi’ Ve (by 2.3.1.)

Hence ueM, and N&M. Thereforce< U,{a"_IA, V> is open in the
quotient topology.

Conversely, let M ‘E;.:'WAX be open in the gquotient topclogy; we show
that it is open in C ~ N topology.

Lot [a] e M, then N = {fe PX | {,"flAe M)

is open in PX and contains any representative path Ax' of a.

Then 3 closed intervals K, Ky, «.., K I, open sets Ups.on,

27 m T
UmE.X,

m
ande> o such thatie N' n"1 (v -¢ , * +¢ )&N, wherc W' =®T(Ki,Ui)-

Now, let K = {j [oeKj,o\gjgm}
L={l‘rgKi90§i§m}
.1 Y i ™ i
Define 3 Uy if K £ 3 ; QQEL U, if LA B
o 7 =
u = X , otherwise { X, otherwise

Tt is immediste from the definition that A(o)e U, Alr)e V.















L3,
with sbelian fundamental group, then any covering space N of
X x X corresponding to onﬂf(x>, & a subgroup of 7,(X), has a
groupoid structurc. This then tells us all connected locally
trivial groupoids, over X, with discrete vertex groups. Morcover,
in casc X is p.C., L.p.C. and L.s.c. space, we show thatn X has
bundle structure over X.

In the last section, we prove some more facts aboutn X, c.g.
we show that if Xa Y, as spaces, thoner&ﬁY as topological
groupoids. TFinally, we close the section and the chapter by
introducing thc notion of homotopy for topological groupoids and
show that if X= Y as spaces, thenmX= #f as topological groupoids;

if X and Y are pP.Ces; g:PsCo and g.5.Ce SPacCES,
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(5) Let £ eC(x, y), where C is a topological category, then
f induces continuous functionsi-

£f+ea (m p(f, a) )

]

g b Stjw«-»»aStX, defined by: , A(a)

Ay :é“”x- > ¢, dofincd by: A g (b) =b + £ (=6(b, £)

Continuity of these functions follows from that of 6.

In case of groupoids, P A, A p 8Ye homeomorphisms.
(6) Tet b =1(f, g h)e CxC x| (£, gle D and (g, h)e D}, then

the function 8§ : B ——sC

defined by: 6 (f, g, h) = £ + g + h is continuous

For, let m4y: C x C x CormsC and T3 t 0 x C x Lol x C
$

be the projections defined by: wﬂ(a, b, ¢) = a

ﬂz’a(ag by C) = (bs C)

then n7 = m, | B and LA 3 | B are contimous. Now the
#

] =
contimity of 6 follows from the rﬂ (“5 4 60“3,3) i)

N T
commtative diagrams- e\icé?/e

(7) Let G be a topological groupoid, connected in the groupoid

sense. Then ¥ x, 7, X', ¥'s € GOb, G(x, y) is homeomorphic

to G(x', ')

Proof: Since G is connected, G(x, x') £ ¢ and G(y, ¥v') # ¢

Tet £ eG(x, x') and geGly, y') be

any clements. Defines- 9 “ - T 7
i i
neG(x, ¥) — 0!, ¥ g ga
ue Glx', y')—sG6(x, ¥) ”’/C/ ://
ey
by: ¥heGlx, y),n(h) = -f +h +g b 7

¥h'eGlxr, y),u(h") =f +h' =g
nand yare oontimuous:

For, n szAoAgandu :fA:;A_,g_



























5k
Let ke K, thoens-

if o £ k « a/z, Jlkye K, st Aﬁ(kj) =k, i.c. k, =2k
L if a/, <k s2,3ke K, s.5 A(ky) =k, decs ky = 2k - @
Henee ¥ ke X, wo haves-
(f1‘g1)k - jnfT(ZK) , 0 £k < a/2 ) f1(k1)e g
- by (*¥*)

hY
(gj(Qk - a), a/2 <k < a 381(k2)€ 5

Therefore f,.g, €7 (¥, U) = N. Hence (f ) €6«1(N>.

1 17 &y

Since any basic open sct in F is a finitc intersection of subbasic
-1 . . . .

open scte and © prescerves intersections, it follows that ¢ is

continucus. g.e.4.

Temma 3.1.11%

The mep o3 F——>F defined bys-

¥ fef,o(f) = fﬂﬁ, where f_1(t) = fla - 1), tel, ,is continuous

Proof: Lot N = <(X, U) contain £ 1, then £ (K) < U.

Define P3 I- >I_ by o(t) = a - &
then obviously p is continuous, and K' = p*ﬂ(K) =a =X

is compact.

Claims: G"T(N) = t(K', U)

Let g EO"T(N)Q then g”TE:N , thercfore g’T(K)ggU“ Honces-
g(X) = gla - ¥) = g (V).

So, get (XK', U). Henee a“?(N)g;f(K‘, ).

Converscly, let her (XK', U), thon h(K')£U. i.c.
n(a - K) = h"1(K)<;;U

Therefore nler (¥, U) = W, and so, he 0"1(N), Thercfore

(X, U)g;g”1(N).

Then, continuity of o follows from the fact that each open sct

. . . . . -
contains o finite interscetion of subbasic open scts and g



preserves the intersection. q.e.d.
The following is easily verified:-

Lemms 3.1.12:

(i) f = g e =g
(1d) f.f =zc¢ , f .f=2c¢
(1ii) f.&_ = f = ¢_.f

¥

where oo cy are constant maps with the values x = f(o) and

y = f£(a), respectively.

(iv) Let (f, f1), (g, g1)eD, then:-

f =g and a : g1===s=:>f.f1s 8.8

(v) Let (f, g), (g, h)eD, then (f. g).h = f.(g.h).

Theorem 3.1.13:

If X is Hausdorf,then e F(Ia, X)/R’ the set of all homotopy classes

in F with the quotient topology, is a topological groupoid over X.

Proof: For each feF, let cls(f) denote the homotopy class of f.
(i) Define the initiel and final meps iy, ¢4: ¥ ——>X,

by:~ ij(cls(f) } = £(o) and ¢1(cls(f) )y = f(a).
(ii) Let D ={(cls(f), cls(g) )| f(a) = glo)}

Define 81: D{“"“*% by~

61(cls(f), els(g) ) = cls(f).cls(g) = cls(f.g).
By 3.1.12, 61 is well-defined and satisfies the associative law.
(iii)  Define the unit map uy: X — by~
u1(x) = cls(cx) = 0.

It follows from 3.1.12. that u, satisfies the conditions required

for a unit function.






°T.

by on o (0) = (a(6), ¢ (£), £')
and ;u, Lt G, v)— Hom(R™, R™)
bys:- ﬁu, V(f) = f!

Clegrly n is a bijection. The following properties of n

U, V U, V
are immediatc. Since we will refer to thom latcr on we put them
in the form of 2 lemmas-

Lemma 3.1.43

Let U, V, W €7}, then ¥ (%, y, z)eUx Vx W, szom(TX, Ty),

m (T : S
g e Hom ( . 'I‘Z) we have

(n, [(eof) =7 (g) on _(£)

Ve

i

x..1 .

(11) A, (7)) = @, (2)

We topologize (T)(U,V) by requiring "a, v to be a homeomorphism.
Thus {2(T) (U, V) has thc structure of a product space, We now
definc a topology for (5(T) as follows:-

Any ’UQ@(T) will be open if ¥ U, V EL,L,’LJ /M @(T)(U, V) is open
in 5(T)(U, V).

It follows immcdiately from the definition that ¥ U,ve\L,(A(T)(U, V)
is open in [5(T).

) = (5(T), X, i, ¢, u, 0) is a topological catecgory.

Proof: We only nced to verify the continuity of functions.

(i) The function i: (5(T) —>X is continuous. For, let UC X
be any open sct, we must show i~ (U) is open. Let g e ;71 (),
then J U' els.t. i(g) eU' and U' C U. Let V el/be any element

of 1L containing ¢ (g), then g ¢ C(T)(U', V) & i~ 1(o).
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¥ ye UV U, uly) = idy, e WV,
Hence u is continuous. Y
ge.€:de.
Let é?(T) be the set of all invertable eloments in tj(T). Then é%(T)
with the restrictions of the maps relating to t;(T) is a sub-
category oféi(T). Moreovers:-

Corollary 3.1.16:

(1), the sot of all isomorphisms between the fibres of a vector

bundle T, over the Hausdorff space X, is a topological groupoid over X,

Proof: It follows from 3.1.15. thaté%(T) is a topological category
(a sub-category)oféi(T) over X. So we nced only to show that the
inverse map © :EQ(T)-*«chTT) , defined byo (f) = £
is continuocus. Let W' be an open neighbourhood of f"1, and let
U, Ve Usuch that i(f™) = ¢(£)e U and ¢(f”1) = i(f)e V. Then
oA %(T)(U, V) is open ingr(rﬂ)(u, V). Hence J open scts U'E.T,
VeV, N CIso (", ") such that
T n%(u, V) 4 U x V' ox N,

Since Iso (Bn, Rn) is a topological group N"1 is open and hence
VUox U x N is open in v x y x Iso (R, BY). Therefore
W, = n;:&V’ x Ut x N"1> is an open neighbourhood of f. Clecrly
o(’«.@) <.

qeCaede

Definition 3.1.173

By a conneceted topological groupcid we mean a topological groupoid

which is connceted as an abstract groupoid.

Theorem 3.1.18: If G is a connccted topological groupcid, then

-

for any wide normal conneccted subgroupoid A C G, EA is a topeological

groupoid.
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Proofs Let Eﬁ carry the quoticnt topology, then the quotient
£Xool X

morphisn p,: G —>B, is contimous (Reco1l that D, {GOb is identity)

Now the contimuity of the maps rclating to E& follows from the

P

continmuity of those relating to G, by using the following

commutative diagrams

Gd% i G 4 5 Gob
id l ¢(/w-~ PAK\\é A\\jt id
T -
ob A J v S ob ob
E, < B, >E, (=6¢"7)
°
p_ A - ob A R
DPaxPy .op G o’w,cg; E, >E,
el &\ \W Oa Pu k Py 1‘3] L’A
R v > T % i
A A ob
G >B, By >8 ¢ 7> C
For example, to prove E} is continuous, lct N'Q;Eib be open.
Since B, has the quotient topology, EA"1(N) is open in B, if

pA"1( EA"1(N) ) is open in G. But, by commutativity of diagram,
pA”1(EA—1(N) = i“T(N). Honce it is open (For 4 is contimuous) and
theroforeizﬂ is continuous.

Qe@aele

Theoren 3.1,19:

If G and H arc topological categorices, then the product category

G x H is a topological category.
ob

il

Proof: Let G (G, ¢

g i@ﬂb G96 Q? uG)
and H

H

oL
(Ha HO 3 1H3¢ 0’ 6 I’ llH>

s cas ob ob . .
Then, by definition G xH = (6 xH, ¢~ x H ", 1o % i, ¢ X ¢ g

] , U, X u_). wherc® is defined by:-
G xH G H G *H
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aG x I (<g1 h'I)’(gQ’ h2>) = &9(}(@19 82)5 OH(h'!’ h2>)
b

We take the product topologies for G x H and G%° x HOb
Then, continuity of iG X iq,¢ L and R is straight-

forward. Henece, we need only show the continuity of ¢ G o

Let DG’ DH and DG ¥ H denote the sct of composable pairs in

G xG, Hx Hand (G x H) x (¢ x H), respectively.

Let (gq, his 8y h2)e Dyy o 2nd 1ot ¥ x Mbe a neighbourhood

of 8, . (& Byy 8y By) = (8:(gys &), ey(ny, hy) ), then N

igs a neighbourhood of GG(gT, gz) in G and M is a neighbourhood

of QH(h1, h2) in H. Since G and H arc topological categories

3 N1, Né, necighbourhoods of Ey1 Eps respectively, in G s.t.
o, ((N, x N,)nD) C N

and 4 M,, M,, ncighbourhoods of h,, h,, respectively, in H s.t.
1 2 1

2
6y (M, x M) M D) cM

But then N1 x M1 and N2 X M2 are neighbourhoods of (g1,h1) and

<€2’ h2> respectively in G x H.  Henco:-

A = ((N,i x M) x (I, MQ)}QDG .
is a neighbourhood of (g1, h1, 8o hz) in DG X 1 and we have:-
V(nq, My Ny mz) eh, 8. H(nﬂ’ my, By mz) =

(eG(n1, n,), GH(m1, mZ»E:N‘x M

Hence 6 (A)CN x M, 2nd so 0 xpy i8 contimous. g.e.d.

Gx H
Corollary 3.1.20: If G and H are topological groupoids, then

G x H is a topological groupoid.

Proofs By 3.1.19, G x H is a topological category. So, we nced
only to verify the continuity of the inverse function:-

Sc x gt Gx He—>»Gx H
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defined by:- on H(g, h) = (oG(g), oHKh}) =0, X CH<€9 h)

But this follows from that of 9 and O g.e.d.

2. LOCALLY TRIVIAL GROUPOIDS AND THE BUNDLE STRUCTURES OF 7X.

Tn this section, we define the notion of "locally trivial? groupcids
introduced by C. Ehresmann {14], and study ite relations with the
theory of fibre bundles.

Dofinition 3.2.1: A topological groupoid G over the space X 1is

ecalled locally trivial, if for each objcet X, € X, q an open
neighbourhood Ua of X, in X and a contiruous map:

At U G

a a
such that ¥ xe Ua R 1(Xa (x)) = x and ¢(ka (x)) = X
where i and ¢ arc the initial and final maps,respectively, in G
Notice: We will refer to these maps as "continuous 1lifts", and
Ua will be called "liftable".

Examples 3.2.2.8

(1) If X is a path-comnccted, locally path-connected and locally

simply comnccted Hausdorff spacc, thon 7¥ is loecally trivial.

Proof: By the local propertics of X, for each X, € X, there exists
a simply connccted nuighbourhood'Um of X, e Dcfineka : Udfmw%w X
byi= ¥xeU A (x) = vem X(x, X ), where ye PU (%, xa)

Since all the paths in'Uu with the same ond points arc homotopic
in X, Ku is well=defined.

Aa is continuous: Tot< U1{?‘, V1> be any basic open neighbourhocd

of ¥ inmX., then Uaf1U1 is open and contains x. Hence 4 a path-

connected neighbourhood ¥ of x contained in U (”\UT.
¢






6)’{'h
Proof: Given <Xa y ¥y eXx Y = (G = H)Ob, then x € X and
Y5 Y, Hence, 4 Ug ’ V& open neighbourhoods of xq y Yy in ¥
and Y, respectively, and the continuous lifts:
At U G
a [0

¢ T e
bl Va H

(¢
sebe ¥, e U xV , ¢ (A (x) ) =%, 1,0, (x) ) =x
6, () ) =3, o gl () ) =¥
Hence A wg U, X Vv, —>G Hisa continuous map, S.t.

¥ o ) <l % W, b i 50 % vy 06 1)) = ig 00 (0), ¥ ()
=( ig0g (x) ), ig(ug(y) )= (x5 ¥)

Similarly, ¢, « H(ka x ua(x, ) ) =(x ), thercfore G* E

is locally trivial. q.e.d.

Given a topological group I, T x T acts continuously onT by:-

(s Yy) s @ =Y, +8 -7,
Cleoxrly T x T acts offectively on I'. Thus we may regerd T x T
as a subgroup of Aut I'.
The next theorem shows the rclaticns between fibre bundles and
locally trivial groupoids (cf[lgﬁtheorom 2.5.)

Theorenm 2.2.5:

et ¢ = (G, X, i, ¢, 8, 0, u) be a conmected locally trivial

topological groupoid, and lct x € X be a fixed object. Then G

resmesn

is a coordinate bundlc over X % X, with the projection (i, ¢),

fibre G {xa} and group G {xo} e {XO}

amn

Proof: Since G is loecally trivial, we have an open cover {Ua}of X,
and a family of contimuous 1ifts{ Ayt U&-->G}. Let T be any

wide trec in G, and let 1 eT(x , XO) be its unique element.
a .
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{\} -
¢aB= 6@(1G‘X t) o (Od x (OODB> xJ)
8"
Where 8 is as defined in 3.1.3(6). Since all maps in this
conpnsition are continuous, ¢a8 is continmuous.
Let vi G(U, Ug ) ——>G be defined by the following commutative

diagramns-

. ; . ’5
c(u,, Ug) (1,60 5 ')y x Ug X G (906 )" 28" "6 g Gx

o
\.\" - e l
— — ¥
2 B
where j's G<Ua3 UB) e (G U - Y D%’
denotes the inclusion map. T~ (as in

~ G 3.1.3.(6)

Then, obvicusly V is contimuous, and we havei-
Wugx (E;$”9 V), wherc E’andlg arc the restrictions of i
. -1 - . .
and ¢ to (U, V) = (i, ¢) (Uu % U8>' Henee waa is continuous.
We now show that those cocrdinate functions satisfy the regquired

conditions for a coordinatc bundle (sco (le)

(1) v (x', y')€'Ua x UB’ defines-
fedx ) ——(, o), ) =6t v)

o}
o, x', ¥

o . . 1 ]
by: FaeGlxd, b0 0 (a) = %B(X , ¥y a)

Then V (XQ y) E(UO. * Uﬁ)m(UCLQ x Use) = (U@{’\)U(X'> % (Usm g! )9
-
we have:- V?a EG'{XO}’ © argn X,y © u B,XS?J -

e ey 6u00 a0 ()

i

~p () 4o () +a -0 (y) + pal¥) =¥, 2 -1y

[

1 Yy) . o,
where Y = - pa{x) +~pa(x) aG—{xO} and Yy = - pggy) + pB(yDE G{xo}

. -1
Henee 6 = (Yx’ yy) eG-{XO} x G {XO}

o8 L%y tas, %,y

(ii) The mep g :(qux UB)(W(Ua,x UB,) -~>G~{XO} x G {XO}
. -

defined by:- éaB, 08! (Xa y) =b 4 81 %,y o %B‘-X,y

ig continuous.



6?*
The continuous liftspa,pqdkandpg’)og give risc to continuous
maps S ot U({’“\,UaT—w”*G{xO} » 8§ Oﬂ,(;s:) = »Om(x) +0, (x)
S gt Ugmly —6 (x b, 8g 4(v) = =pgi (v) +0g(y)
For, s, = eo(ccpd,pa) and SB g = eO(OCDB?,pB).

ClcarlygdB gt = S = 8 nd hence it is continuous.
3

a o g g’ &
g.Code
The coordinate bundle obtained as above, depends on the
choices that were made, i.c. depends on the continuous lifts
and the trec T. We now show that different choices give rise
to cquivalent coordinate bundles.
For cach Uo , lect x&g UQ#WMWW>G be ancther continuous
1ift, ond let T' be another tree in the constructicn of Py,
Then, as before, we get a continuous map

>G ¢

‘ Ed
Py * ch
Henec, for cach coordinate neighbourhood Ua x Ugy the new
coordinate function will bos-

L ¢ @ T
4 U, * UB x G {xO}M—»G(Uay LB)
e o ¥ 2 = o P
defined by:- ¢! o(x, ¥, a) =o' (x) +2-0 8(3}“),

and for ench pair(Ua X UB’ Ua'x Ugo,thc new coordinate

transformation will bei-

g'aB,Of:B'(UOL x UB)P><UQ, X UB') >G {XO} x G {Xo}

T o B XY
= (p" o (x) + pL (%) p‘@(y) + o‘B(Y))

. o R 2 8
defined by,—- gOLBﬂX‘B'(X, y) = ¢ d'B'}ngo o

For cach Uy x UB’ define

u ¢« U, X U

o8 M 8~”MWW>G-{XO} x G {xc}

byi- gl ¥) = (2o (x) 4 pr(x), ~0g(y) +ei(y) )
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obviously Mog ig continuous, and we have:-
¥(x, y)e (U, x Ugdo(Uy % Ug,),

8 ypargr (5oy) = (=01 (%) + 00 (%), = o', (¥) + 0',(¥) )

¥
a&g

]

(=o' (x) + o i (x) = o (x) + o (x) =0 (x) + 0l (x), =05 (y)

+08*(y) ~08,(y) + pg(y) - DB(Y) + p'B(y))

H

(=pt o (x) + o (x) = ptply) + pg(y) )+ (mpylx) + o (x),

- pB,(y) + pﬁ(y) )+ (o (x) + pi(x), =pgly) + 0'4(y))
= "UavBi(XaY) + ga%&'B'(x’y) + UQB(X, y)
Hence, the two coordinate bundles are equivalent (seeflo ]p.lQ)

Corollary 3.2.6:

If the vertex groups of a connected locally trivial groupoid G

over X are discrete, then G 1s a covering space of X x X,

Remarks 3.2.7.

(1) When X is p.c., %.p.c. and £.s.c., then m(X,.) is a discrete
topological group. Hence, once again, we get:-

If X is a p.c., L.p.c. and %£.s8.c., Hausdorff space, then nX,

and hence ﬂAX, is a covering space of X x X, In case wi(X,.)

is abelian, m,X corresponds to the subgroup A{:}x m (X, < Jem (X x X).

(2) Since G is a bundle over X x X, with the projection (i,6 ),

it follows that in any connected locally trivial groupoid G, the

initial and final maps are open.

(3) Given a eG, let Uia’ U,, be the liftable open neighbourhoods of

¢
ia and ¢a, respectively. Then for any open neighbourhoods Nag;G(ia, da)

the set M z{)\ia(x) +n - A¢a(y)t x€U; el s neNa} is open in G.

ba,
For, 1etq)(ia)Q)a)n& x ‘é x G{xé,*-_5a(ua, UB) be the coordinate

XUax(»«T,

¢a)(Uia ¢ ia T Na + T¢a) ).

function, then M = Qia)(
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t = w"T Y s G {xo} —C {XO}

B,XO O,X
which is a right translation. Tor, we havei-

veg {x ) v (- = - =2 :
VaeG {x )}, t(a) wsyx(& o, (x))= a pa(x) +p8(x) B+ oy
where YX = ~Da<x) + QB<X>€ G {XO} . Henee t is o right
translation: a-=——>a + Y of G {xo} on itsclf. Therefore
t =y eG {XO} R
So, it remains to show that the map

—— G { X}

st UMnTU
o B o1 Fe Yy

Q&B

ig contimuous. ¥ xeU M UB we haves-
o

Bofloo Py ps)(x)

il

80o(oop (%), Py (x))=0 ("%(X)’ps (x))

il

-0, (x) 4 (x) =y, = ga8<x>°

Hence Zug = 8oflaoo 08’08),213{1@ therefore its continmuity follows
from that of 6, o, pgaﬁdpa. Thus we have verificd the
conditions of Stecnrod ( ;@o }, peT)e

g.Cede
The principal coordinate bundlc obtained above depends on
the choices of p 's. Ve now show that if we choosc different
1iftsp; H U&--9G9 we get cquivalent coordinate bundles.
For cach Ua , definc the continuous nap

byt U,— G by “a(x) = ~pa(X) + 0, (x)

For crch pair U , Uy with U UB £ ¢, lot

| B
qmeY%mUB >G{x&
be the new coordinate transformation. Then
i) ! =y ! = -p Yy !
¥x e Ja/“‘qUB 5 gas (Y) Yy P Xt QB (x)
R ! e awfd ] - - H 3
Mo, &lyg () = -0l (1) + (o () = (%) +0,(x) =g () )+ oy ()

= (0 (x) 490,(x)) + (wp () 4p()) + (o (x) + 0] ()



T1.

= 1y () + g (1) + g ().
Therefore the two coordinate bundles arc equivalent

Corollary 3.2.9:

Tor each wide comnected normal subgroupoid A of the locally

trivial groupoid G over X, XA = StE x is a principal bundle

X A
o)

over X with the projection ZfA.

In casc A is not normal in G, EA is not a groupoid. In this

case XA = 8% Xo/ ig a bundle over X under the same projection
x R

and £ibré but the g%oup G{ xo} (see[ 4 ipe. 147)

Corollary 3.2.10%

If G has discrcte vertex groups, then X 4 is a covering space of X.

X
Theoren 3.2.113 °

Every connected locally trivial groupoid G, OVCI & DeCey g.Pe and

L.s.c. space X, with discrcte vertex groups is isomorphic to nAX

for some subgroupoid ACTX.

Proof: Let x eX, then by 3.2.10. ¢ ¢ SthOm,._...;,X is a covering
map. Hence ¢4 n(Stho) ——> X is a covering morphism of
groupoids. Let G' = StG

restriction of¢,. Then as we sec later (4.1.2.) q is a

X and g: Stwg,oX:maSthKO be the

homeomorphism. Let $ : 7G'——3G' be the final map, then

L= ?oq”] :St“XxOMS’chO is continuous and open. Let T be

a wide trce in "X,then X & T * G{xo}.

Dofine E: aX—>G by:g| X = id, and for any
a=-T +al+1, enX(y,z), g(a) = ~Llz,) + L(a') + L(g,),
whero‘rx denote the unique element of 'I'(xo, x) e

Clearly £ is a morphism of abstrnct groupoids. Morcover £ is onto.
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g(N) = -L(1,) + L{a*) + L(§,) = <U, L{a'), V>. Thus £ is open.
1

o)
Next, let A be any subgroupoid of 71X such that:-

¥ xeX, A {x} = gml(oy)

Then WAX is a topological groupoid, and we show that G Y WAX.

Define g : m,X——>G by g {aJA ) = £{a), and g| X = id-
. (9.4 £ > G

. 7
gAt s
WXX”/

Then the disgram is commutative and
algebraically g : WAK A G (see [2 1, p. 2757, g
That g is a homeomorphism follows from the fact that an carries

the quotient topology and £ is open. g.e.d.

Corollary 3.2.11la: Let G be a connected, locally trivial groupoid

over the p.c., £.p.c., L.s.c. gpace X, then

+ his f :
nl(G,ox) Ay Wl(S“GX’ ox) x wl(X, x). (This follows from 3.2.11. & 2.2.9.)

Remark 3.2.12: Let X be a p.c., £.p.c. and %.5.c. space with abelian

fundamental group, then every covering space N of X x X corresponding to
the subgroup AOXInl(X) of wl(X) x wl(X) has a groupoid structure
isomorphic to m k. Where A is the groupoid obtained from Acas in
chapter II. Because WAX is a covering space of X x X and by 2.2.9,
has the fundamental group isomorphic to AO x ﬂl(x). Therefore ﬂAX

is homeomorphic to N. This gives a locally trivial groupoid structure
to N with discrete vertex groups. By the above theorem , . N has only
one such structure.

1

Example: Let f : Sl~m-*a8 s Z afvm»zn be the n~-fold covering map,

then fxid : T = Sl % Sl———-m}Sl x Sl is also a covering map

corresponding the subgroup A Xﬂl(Sl)( = n#% x % ). Hence T g wASl°
Therefore:

For any infinite subgrouv of 7, the Torus has only one locally

trivial groupoid structure over Sli with discrete vertex groups.




Th.
Wo now show that if X is p.c., £ .p.c. and L .s.c. Hausdorff
space, then for ecach  wide commected normal subgroupoid
A.of‘“X,'nAX has a bundle structurc over X with the projection
Eg(or EA), the group I' = 7 ,X {XO} and the fibre F = EA”T(XO)g
wherc x € X is a fixed clement. With F and T as above we have:i-
Theorem 3.2.133

(EA’ X, ¥, T, EA) is a coordinatc bundle.

Proof: Let {Ua} be a cover of X by simply connected neighbourhoods
(referrcd to as canonical ncighbourhoods). For cach U, a{Ua},

let x, be a fixed point in Ui’ and let T be any wide trce in wX.
For cach y €X, dcnote the unique eclement of (v, XO> by Tyu

Definc 0. 2 U x F-—-%§A’1(Ui)

by~ @i(x, {a}A) = [Y + T+ a]A,

where YT;P’Ui(x9 xi)

Qi is well-defined: Since ¥ is unique (by the property of Ui)

o e, i

and Ti is fixed, we nced only consider the case of taking
different reproscntativis of [a}ro
3
Let a' Ef&lA* we rust show thatEY + T+ a]A = [Y + T, ai]A,
But:~ a! e[a]ﬁ::::>a - a'e A {XO} ——
(y+ ri)+(a“a')*<Y + Ti) eh {x }(by normality of A)
Wyﬂi+a~<y+11+a')EA{X}
« imirimiis oo it =3 a" »
B LA P TR AP 1s

9, is 1 - 1: Tet (x, [a}A), (y, [b]A) eU, x ¥, then:-

°.(x, [a])) =@, [v3,) =[y+ 1, +2], =yt 4, + b 1,
— iy = iy'== x =y=>v =v' (by thc property of Ui)

da= oSb=——>a - b is defined






TG&
But then ¥ contains a basic nceighbourhood < W, f }A’ V>,

where W is a canonical ncighbourhood of x . Let U1 he a

canonical ncighbourhcod of x contained in U', then< U1, [blﬁ, V>
o+

is a canonical ncighbourhood of( blA in EQQ
- L 28

Claim: <Uw{ﬁﬁﬁ,v>g®4N)
Let [c ] e< U, [b}A, 7 >, and letven X(ic, x) contain PU, (ic,x),
penX{¢a, ¢c) contain PV{(pa, dc),

then = [v + b+ ] [v S HT, + oA +u]A =<I>i(io, (a +ujA)o

1
[CJA A

i
But ic €N' and Ié.+-u1A‘€V‘, hence [

+
7 heref X

O}A 6¢i{N). Therefore @i(N)

is a ncighbourhood of cach of its clcments, and hence open.

Therefore %ﬂis a homcomorphism

Next, we show that the oolloction{Qi}, as constructed above,
satisfy the required conditions for a system of coordinate
functions.

(i) It is cbvious that zho 2.2 U, x F—>T, is a projection.

(ii) TFor cach z el,, let & . F—w~>1 (z) be defined by:-
i, z° ‘&lf> =9, (Z’ La}A>°

Ve must show that for any x eUir)Uj, Ui’ Uj’ e{U&}, the

homeomorphism 7' 08, i F-—>F

Jyx i,%

ig an clcment of T. We haves-

ﬂ'[ Jﬁ £EFR, @ o® [a = @53X§§Y1 g ot aJA}

= [— A 5}A°

But [-Tj - Y, + Y, + T ]A = Bel , and wc havei-

[,T - Yy kY, kT, F al, =8,[3]A = 8([a]A)» Henee
f‘ o ® = Bel
Jyx i.x

(iii) We must show that for cach pair U, Uj, with non-cmpty

=T

int.rscction, the map: g. . & U, U.-
’ P ©5,1 AL
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Proof:~ Tor each xE'Uif\Uj, we haves-

- — 1 S we 9 i

bji(x) = Qbsx o q&,iminTi - kY, +Tj by (as we saw in 3.2.11.)
-1 , 4

ot = 0’ = | e - -

g Jl(x) ¢ 3,x 0 i,x [ oty +“%.QA (this can be scen

easily from the definiticn)

Hence, ¥ xeU.NT gji(x) = g‘ji(x), Therefore the two bundles

j?
are equivalont (sce Steenrad p. 12). (here%k s ka-a¢’is the
constant map to the identity of T.)

Remark: The intersection of iA

nAX {XO} = the group of the bundle.

and fibres over cach x X%, 1is
A ¢

3.  30ME MORE FACTS ABOUT 7%:

Lenma 3.3.48

Let piX —~—>Y be a conbtinuous map Of DeCey L eDsCoy L 8eCoe
& b 3

Hausdorff spaces. Then py: 7X —> 1Y defined bng vvﬁw%ﬂw;pOf

is a morphism of topological groupoids.

Proof: It is known (sec[2 Jp. 187) that p, is an abstract
morphisn, so woe neced only show the continuity of py.

Lt <U, pof, V> a basic neighbourhood of pof inmy, then

pr (U) and pnj(V) are open ncighbourhoods of i(f) and ¢ (f),
respectively. Hence 3 simply connected neighbourhoods U1, V& of
i(f) & ¢(f) respectively, .s.t,p(UT) C U and p(v1) C V. Then
>is a basic neighbourhood of ?, and it is ecasily

<U, £, v,

scen that p, ( <U,, f, V& >)Q; <U, Dops V>

1?
g.Cedo
The following corollary is easily verificd.

Corollary 3.3.2:¢
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Y W“P<:P%>
The function ms ig a functor from the category

X s~ n X
Of DPeCoy LoDy Leo8.C. Housdorff spaces and contimuous maps to the

catezory of locally trivial topological groupoids and continuous

norphisns.

In case of more general spaces Lerma 3.3.1. is truc if we make
the restriction that p:X—-sY be a light map, i.c¢e ¥ ye ¥,
p_j(y) be a discretc subspace of X.

Lerma 3.3.3:

Let psX——»Y be a light map of Hausdorff spaces, then Dy s P —FY

is a functor of topological categories.

Tt is casily scen that Py is an abstract functor (see[Z Tp. 187)
Since p is light, for each fe PX, f and p?f have the same longths.
Let Nfﬁnﬂ1(r ~¢ , T +€ ) be a basic neighbourhood of pof in PY,

then closecd intervals Kq,
U, ( ¥ such that N =é} T(Ki, Ui).

n ,
Let M = /;;;\ T(Ki’ p'T(Ui) ), then clearly M/’Wn"1(r e 4, T e )

seensy Knt:'8+’ open sets U1, ceasn

s

is a neighbourhood of f and it is casily scen that:-
Py @ﬂf\rfi(r - g, T 4€ ) Q;wannq(r -E , T +E )
Hence p¥ is a continuous functor.
qeCeds

Corollary 3.3.45%

If p: X—>y is a light map of Hausdorff spaces, then

Pyt ™—>wY is a morphism of topological groupoids.

Proofl:

Contimity of p, is casily followed from that of p#,and the



b
following cormmutative PX # >PY
diagram, where g's denote / /W\\D
9y \ q,
the quoticnt morphisms. x Py Sy
ge.¢.de

Theoren 3.3.5:2

If ps X >Y is a homeomorphism of Hausdorff spaces, then
Py ¢ mh—>n¥ is an isomorphisn of topological groupoids.
Proof's

We know that p, is an abstract morphisn (see [2 ] )e That Py
is a homeomorphism follows from 3.3.4.

Theorcnm 3.3.63

Let X = X,i x Xé, whero X1, Xz
Hausdorff spaces, then #X & ﬂX1 P WXZ

BYC PeCey feDeCe and f+5.Co

Proof:

By 3.1.19 ﬂX1 x WX2 is a topological groupoid over X x X.

Let p, ¢ X—>X,, i =1, 2, be the 30

~projection, then
by 3.3.1 Dix * WX"”*?WXi, i=1, 2, is contimuous.

Define ¢ :ﬂX¥-%WX1 x sz

by:- c(£) = (p(£) 5 poelD) ).

It iz known seei 2] 6.4.4. that ¢ is an isomorphisn of
abstract groupoids. So, we nced only prove the continuity of ¢
and its invorse.

r is continuous: Lot N?:x N2 be a neighbourhood of (p1*(f)?
pZ*(f),)ﬁhen N., i =1, 2 is a neighbourhood of pi*(f), i=1, 2
iHT&X. Hence 3 canonical neighbourhoods <Ui’ pi*(f), Vi>
contained in Ny, i =1, 2. Thon<U,, pj*(f), v, > x <T,, pg%ff),
V2>QN1XN. But then B = <U, x U,, £, V,x V,> is a

2 2’
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neighbourhood of £ ingX, and we haves-
¥ v+ £ +x eB(x, v), g(y+j?+k)==ﬁm*(y+.f+k),1%*(y+.f+k))
= (2 (¥) + 2y ) + 25 (0)s Do (y) + ppulE) + 2y (1) ).
Buty DP(U, x U,)(x, if) ==p (V) D P, (p,(x), 1 (p (),
Doy (V) D B (0, (5], 1,05 (E) )
APV, x V) (ef, v) ==>p,,, (0) DPV, (¢, (p0(£) )y 2, (¥))s
Pox (1) 2 PV, (45 (050 (£)), 2, ()
Hence £ (y + £ + A) e< Uy, Doy (£), 7> x< Uy, poy(£), V> Clyx I,
Thercfore ¢ (B) C N, x N,
r is opens

Tet N be any open sct in nX, we show that n(N) is open. Let fe N,

then Fa canonical neighbourhood <U, x U,, f, V, x V,> of f
contained in N. Obviously <U, p1%(f), V,> and<U,, pz%(f),v2 >

arc canonical ncighbourhoods of p1%(f) & pZ*(f), respectively.
Hencex UT’ pq%(f), V1> b <U2, pz%(f)9 V2> ig a neighbourhood of

Claim: < U, pj*(f), V> x <U (£), V> < g(w).

27 Pox
Lot vy + pi*(f) + A e< Uy, pi*(f>,, V.> , i=1, 2; and lect

y‘ig Y; and x’ig A i=1, 2 be any representative paths. Theni-

S = (Yg1? Y )e B(U, xU,) & A = Oy, A )e B(T, x V).

Ther-forc y = y' DP(U, x UZ) and A = A DR(V, % T,).

1

Hence y + £ + de < U, x Uy £5 V, x V> N

Obviously, oy + £ + A) = (y1 L Ay Y, b D, y2)

Therefore (y1 + f, + A + £, + xz)e ().

17 M Yo T A
Honce ¢(N) is a neighbourhood of r(f). Since f was arbitrary,
(M) is open. Hence g is a homeomorphism.

qe0sds
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Theorem 3.3.7,

Let X and Y be p.c., 2.p.c. and 2.5.¢c., sSpaces, and let

B—

f~g XY, then f, = g; X

Proof: Let H:X X I-~———>Y be the homotopy from f to g; i.e.
¥ x eX, H(x, o) = £(x) and H(x, 1) = g(x)
Then by 3.3.1. Hy: (X x I)——oe—sqY is continuous. Let
£: w(X x I)-———>7Y x 71 be the homeomorphism constructed
in 3.3.6., then the com.posi’ciog1
Txu £ By
T %X Teread X X ] s S (X T} e Y

where u:l —————>51 is the unit map, is continuous and is the

required homotopy from f, to g4+ For, ¥renX  and ¥tel,

(A, t)evrms>(2, ot)vwmww»(A, ct)wuw%% Ho{x, ct)
+ .
where Cypt R ~————>T is the constant path at t.

It is easily seen that

]

Hola, co) = fox and HolA, cl) gOA

i

Hence ¥Aem X, Hyof To(1 x u)(x, o) = Tor = £,(3)

[

Heof To(1 x u) (X, 1) = goh = g, (%)
q‘e’d.

Definition 3.3.8: Two topological groupoids are said to be

homotopic, if they are homotopic both as spaces and as abstract
groupoids.

Theorem 3.3.9: Let X and Y be p.c.,%.p.c. and %.s.c. Hausdorff

spaces, and let X = Y, Then X = 5.

Proof: Brown ( [2], 6.5.10) has shown that X = wY¥ as abstract
groupoids, and by 3.3.7. and the covariance property of ¥,

nX = 7Y as spaces, g.e.d.
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CHAPTER IV

COVERING GROUPOIDS

Introduction:

P.J. Higgins [5 ]has developed the notion of covering
groupoids, and R. Brown[2 Jhas shown that they model the
covering map of spaces. We now consider the topological
analogue, and show that if p: X ——>Y be a covering map of
Hausdorff spaces, then p,: mX———>71 is a covering morphism of
topological groupoids. In section 2 we study the question of
existence of these groupoids for a given comnccted locally
trivial groupoid. In last section we prove that the universal
covering space of any locally trivial groupoid G, with discrete
vertex groups, over a path-connected, locally path-connected and
locally simply connected space X has a locally trivial groupoid
structure over the universal covering space of X. In case

G = nX, we show that the unmiversal covering space of G is a
topological covering groupoid of G.

Section 13

Definition 4.l.1:

Let pe ¥ >G be a morphism of topological groupcids; then p is

called a covering morphism if:-

b A a n
¥ % et s D ‘StﬁgngSt&x«wwm>StGp(x)

is & homeomorphism (i.e. p is fibre preserving).

Theoren 4.1.2.

If p: X——>Y ig a covering map of Hausdorff spaces, then

Py’ TE —>0f

is a covering morphism of topological groupoids.
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Proof's

It is shown in [ 27, p. 296, that ¥ xeX, Dy | St yx: St yx wStﬂyp(x)
is a bijection, and by 3.3.k,p, and hence py = Dy |8t x is

continuous. We now show that pg: St % —> Stp(x) is open and

hence a homeomorphism.

Let Ay @ X >rX and q, ¢ PY —>7Y be the quotient maps.
Let QI(I be a basic open subset of Sﬁﬂxx, we must show that p*(N)
is open in St Yp(X). For this we must prove that q"; (p*(m )

: . ) -1 - .
is open in StP,’{p(x). Let N =qy G:I), then N is open in Stpyx

-1 . |
Let g eqy (p*(ﬁ) ) ,then by covering property of p, 5?ffr e Stpyx 8.t
g, = p’{((fr), where PX —> PY is the induced functor:
£ ~>pof (see 3.3.3.). It is casily scen that f ¢N. Hence
4 open sets U1, ceneny Un € X, closed intervals KP"""KnQIr
and real >0 8.%.
| =
£ et (K1’ U1>m...e.nr (Kn, Un)nn (r e, r+e) CN.
Since p is an open map (being a covering nap), p(Ui) CY, i=1,.
veess, N is open. Hencert (K1, p(U1) YA eoseant (Kn, p(Un) YN
7 r e, r +¢) = N, say, is open in
Stﬂxp(x), and we have p;jf(fr) =g, ely. To show that N, is
contained in g (5, ()}, it suffices to show that Ny = By ().
Tt follows from the construction of N, that p #(N) ..
Conversely, let g, an then Fa unique fsﬁ Stpx.x g.be
8 = Dy (fs). Buts-
gSENd}mvtﬁKi, gs(tiI)ep(Ui), i&‘t, am oo n
===> ¥ te¢ Kii qus(tj} ) = p<f8<ti) )E p<Ui)2 i=1,y00.50

mfs(ti)EUi, i%”, noeo’n
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> f_e N

-1
Hence g ¢ p;,/!(N); therefore N, Cry (N). Thus cvery g,.¢ qg(p*(ﬁ'»
is an interior point, and so q-,; (p%(lr{r)) is open.

gee.de
Lepma 4.1.3:

"y . .
Let ps E, %3G, X be a connected covering morphism of

topological groupois, i.c. T & G arc connected). If G is locally

trivial then p lrt"}Obz ’éobm-m» GOb is an open map.

Proof:

Let Ug:éOb be opeon, and let 3, ¢ be the final maps in % and Gy
respectively. Then K ziﬁ”T(U):ﬁ Sty is open in St ¥ Since
p is a covering map, p( K)is open in Sth. Hence ;f an open set
U € G such that p(K) =7/ N St x.

Since p is comnected, p(U) =¢ (p(X))

Let y e p(U) be any point, and lot ‘\71, VZ be liftablc open
neighbourhoods of %, y, respectively. Then G(VJ{y VZ) is
homeonorphic to V‘l x V2 x G{x , and U N G(VT’ VZ) = W', say
is open in G(VT’ V2)° Hence Fopen neighbourhoods Vi, V) of x
and y, respectively, such that (' w V,; x Véx N, for some open
set ¥ in G {x}. Obviously,

o) = o(U'nst x) = V)
and U U == NSt xg U NSt x = p(K)

=56 (L' NSt %) co(p(K)) = p(U)

Therefore V4 < p(U). Since y was arbitrary, p(U) is open.

Qa€els

Definition 4.1.4:

Let p:a, r}u{wG’ x be a covering morphism of topological
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This corollary easily follows from L.1.5. q.e.d.
Remark:

By 4.1.6. all universal covering groupoids of a connected locally
trivial groupoid G are topologically isomorphic.

Lemma 4.1.9:

N . . .
Let p : 52 % ———3(, ¥ be a covering morphism of topological
groupoids, then the characteristic group of pli.e. p(%{x} ) is
closed.
Proof':
. v . . AV
Since p |St x onto St x is a homeomorphism and e {x}is closed,

p(a {¥} ) is closed in St x and hence in G {x}.

2. EXISTENCE OF COVERING GROUPOIDS

We now look at the question of existence of covering
groupoids. Let G be a connected topological groupoid over the
space X, and let RA pe the relation defined in chapter two. Let;

X, = St x/R

" A GE = {( [a],, ble £ x G |(a, b)e D} .

pe %
(Recall that if ¢ is locally trivial with discrete vertex groups,

then X, is a covering space of X).
X

Then we have:-

Lerma 4.2.1:
GAX is a connected groupoid over XA .
p'e
Proof:
. x .
Define IA’ @A : GA > XAX

the initial and final maps by:-

1, [aTys B) = Talys o [l ®) =[a + v],.



90.

We must show that ¢,
£

'r'- ] ¢ . y n thi e w v Mo
show that{’a + b]A = La + b]Aa For this, wc rust show that

is welledefined. Lot a'g {a]A, then we rust

a' +b - (a+b) =a' - ae h{x}.
But this follows from definition of RA' (i.ce at g[a]A

ﬁmmwa’waggxp.

(1) Tob Dy = {C (2], ¥)y ([l @ Ve ey « ¢ |la+ v =[],

Define the composition function @ ;2%
(Ta

by:"' QA ( ([a]Ar b)a ( [C]Aﬂ ) )

BA is associative:

i MA, )=([a,b+a)

1ot ( ([2]y ) 4 (Lol @) Jeghs ( ([l @), (o1, ) e

therns:-

[a + b]A =[], » [c + d]ﬁ = [e],===a + b ~ ccAx]
c+d-celR.

Hence a + b +d=c=2a+b=-c+c+d=ceh{x}. Therefore

[a+b+a], =[e].

Thus ([a 1 o+ a) + ([cjm f) ie dcfincd, and we haves-

( ([a}ﬂ, b) + (fc]A, d )y+ ([e]A, £) = ([a],, b+ a)y + ( [c I )

( [a],, (®+a)+1£) (1)

(faly ®) + ((fel, @)+ ([e]y @ ) = ([aly, b) + (lel, a+9)
= { 2] b+ (a +£)) (2)

it

Since G is a groupoid, (b +d) + £ =b + (a4 + £). Hence (1) = (2).

(131) Dofinc the unit mapy,: X~ Gy
X
by:i= ¥ [a],eX, ’UA( (a],) = ( [27 o¢<a)),

Then, ¥ ( [a]ﬁ, b), ([c]p, a) s.t. [c + d}A = [a]ﬁ, we have

@a:ib:(bdz(‘ga
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it
it

([a]A, o, * B)
( [ajﬁ’ b) .
([elpr @)+ (L] 0,,) = ([el, d v °.0)

( {[e] D)

( LalA’ O¢a> + <[a]A’ D) (EajA’ Oip * b)

i

it
#

([ely, a+o04)

e

it

(iv) Definc the inverse function I,: s ¢F by~
i A A
X -
¥ (lal;, b) Gy, £,( [aly, b) = ([2 + ], ~b).

Similar to that of @A, it is casily scen that Yy is well-defined.
It satisfics the requirced conditions. TFor,
°,(fal, v) =la+ b], = I,( [a + DI, -b)
2,([a+b],, ~b) =[a+d=-b] =[al =T,0 [, b).

and wo haves-

it

( (2], b) +([a + b] -b) = ( {a]Ag b - b) ([a}A, Oib)

i

(fa1yr o, ,)-

it

( [2+71],, -b) + ([a}A? b) = ([a + 1], -b+ b) = ([a + Y 95b)

(fa + 8 O (a4 1))

X .
G, is connected: ILet [ajA’[bIA,QXAX’ then

([?]A, - g + b)eGXA ([a]A, [b]A).

i

Geeoda
As we saw in 4.1.9, the characteristic group of any covering
morphisn is o closed group. We now show that in case G is a
connected locally trivial groupoid, every closcd subgroup of the
] ob . . . .
vertex group G{Xo}y‘XOE:G give risc to a covering groupoid of G.
e first provei~

Theoren 4.2.23

Lot G be a connected locally trivial groupoid over the space X and let

A be any 'wide connected closed gubgroupoid of G, then Gf is a
3,
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We denote the homotopy class of cach path f by T
Let ?, Ee}} such that '{85 = ng, then icg = ¢of.
Let Ft: iog = ¢of be the homotopy, then since i3 G—X is a
fibre map, we can 1ift Ft to a homotopyyt: {Rf_w-;(}, from g such

that io 7, = F Let g' z%, then we have iog! = ¢of.

£
Hence, given 'éy Felb s.t. ?55 = W, there always exist
representatives f1€¥’ g, eg S.h. iog, =¢of,. Hence
¥ tel', i(g (1) ) =4 (£(2) ).
Let £, g be paths in G starting from 0, such that log =¢cf.
Then we can define a function £ % g ¢ ﬁ+~»~—~>G by s~

¥t eRT, (£ % 8)yy = £() +a(8) (=0 (2(£), &(t) ).
We have the following commutetive diagram:-

— = R xR x g—>D
\ V

where A is the diagonal map, and hence continmuous. Therefore

f % g is continuous and hence it is a path in G. Moreover

(f = g)(o) = (o) + glo) = o +o, =0 Hemce f*ge g.

Temma 4.3.13

Let £, g,y andv be paths in G such that £(o) = glo) = o, and
f+y, g + varc defined and ¢o(f +y) = iolg +v) & ¢of = iog.

Then (f + v) # (g +v) = (£ = &) + (y & v].

Proof:

bolf +7v)

#

io(g + v) =e=ppof +¢o0y = iog + loy.

Since ¢ of = iog, we get g0y = iov . Henee Y #v is defined. Now
¥ te R,
( (£ +y)

¥

(g+v) )y = (£ 4y )y + (g +v )y
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I

£(t) + g(t), o €t <p
, where p is the common

(t-p)+ (t-p) t2>p
(£ = g)(t) : og t< P
LG #v)(&-p) t2 D
(£% g) + Cyxv) )(5).

Therefore (£ +y) % (g +v) = (% g) + (y # v).

longth of £ & g

it

#

ge€sda

Theorem 4.3.28

~

G is a topological groupoid over %.

Proofs

; . . . oo §” Y
(i) Define the initial and final maps i, ¢ ¢ G—>X by:

LY Ny —— Ny [—
¥ FfeG, i(f) = iof & ¢(f) = dof.

i M . oY % . .

Then i = i | G and ¢ = ¢ |G, where i, ¢,: TG —>7X arc
induced morphisms. Hence 1 and '&7 arc contirmuous.

2% o, v ny U= P
(i) Tet D= {(F, @)e G x G [¢of = 1og ), defines

@

Y ~ ol e e [N . e
: D—>G by 0(F, g) = £ * g', as obtained above,(= £ &g ).
A
0 is well-defined:

Let £, ef, &4¢ &, then 3 g} eStpgo,, s.t. iogl = $of,.

Let Fs £

f1

f,! and G: gt = g,} , theni-

$oF: ¢of = ¢pof,, and ioG: iog' = iog}l.

1
But we have, ¢of = iog' and ¢of, = iog,}, hences-
(40F, ioG): (¢of, ¢of) = (¢of1, <t>of.‘1).

Since (i, ¢): G—>X x X is a covering map ('.' G ras discrete

vertex groups), H a homotopy K: Toéof = K,‘ such that

(i, ¢)oK = (¢oF, ioG).

Hence ioK = $oF and ¢oK = ioG. Therefore, for cach (s, t)e Rx I,
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8( (UxV)nD)CWu

Then < £, U > and#é‘,v>are nelghbourhoods of f and §‘=’E,

respectively in G. Hence N = (< f, U> x < g, V ») ATDis a
neighbourhood of (f, g) in B.
Claim:

" S

6(I) C <f * g', W>

B 5
Let (f,, g)e N, ve may assume ¢ofy = iog;. Then
£ 5 f 4y where yePU(£(p), f1(P'))

vePV(g'(p), g (p') )

it

Oq«
4
<

&
where p' = common length of f, & & - Then

]

fé“"('f?,a)*ﬁ@g} = £ % g = (£ +y)x(g" +v)

i

(f#g") + (y#v) by (4.3.1.)

it

(fxgh)Hy s v)
It is easily verified thaty % v 2PW(f = g'(p), £ g}(p').
Therefore g(fés é%)s< f«% g', W> , and hence § is continuous.

(iii) For each f'e StpyX s Uof'e Stp,ox (u is the unit map in G).

i

Hence, if fe PG such that ¢of = £' = io(uof'), then

(£ % (worm)) = £(t) + ulr'(6)f= £ + uly(s) ) = £(t) \

*
Similarly, if g ePG s.t. iog = f', then (uof') % g = g.%h)
Define the unit map 4 : X — > & by 4 (T) = wof'

It follows from{#)that % satisfies the required conditions.
3 is continuous :

X = Uy | X , where Uy ¢ 7mX——> 7G is the induced morphism.
Hence it is continuous.

@i — ¢

by: 5(F) = gor

(iv) Define the inverse map

vteR', (fa(oof)), = £(t) + oof(t) = £(t) -£(t) = O tp(y)) = W(i(E(£)) )
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Hence (EQQ G6of = f % (gof) = uoliof) = ul(iof)

Similarly. Gofé§§ = gzéof).

N, .
¢ 18 continuous:

v v LY . .
For, ¢ = O, }G onto G, where o, : 1G > 15 the induced
morphism. Hence it is continuous. This completes the proof of
the theorem. g.e.d.

Lemma 4.3.3:

Vv o, _— .
G is a locally trivial groupoid.

Proof:

Let %é%a we must show that Jan open neighbourhood Nf in X and a

continuous 1ift Z§:N§ ---m»w4ya such that

. v - — _—
¥ gellz , l(ﬂf(g))* g and g(x§(g))* f
Let r be the length of £, and let Uf(r) be a simply connected

neighbourhood of f{r),

3 U = F v vy - I

<L Up(p)” f+vy |y 2 PLf(r)(f(r), ¥, ysUf(r)}
is an open neighbourhood of f.
Define:

Lo <F, Uapy> > G

T £(r)

by~ EE(L + Y) = g:; 3

where g; is the unigque 1lift of (§‘+'?3.§) at Ow’ by the
covering morphism (i, 6),: TG > 7X X X,
Let the end point of'é? be acG, then given any basic neighbourhood

— W . .
N of &y in G, 9 a simply commected open neighbourhood N'a






103.

Define p & & —>G bys p(?:")r = (), T eGeY,

Then p [é , G and p lk? X arc covering maps of spaces.

Te now show that p is a morphism of topological groupoids.
i(f(x) ) = (dof)(x)

p(iof) = (iof)(x)

i

- Ny .
(i) ¥ feG, S iop(f) .
=y 1Op ® POL

i

| poX(D)

Similarly ¢op = poh

H

(T xg) =(f xa)(x) = £(x) + glr)

o(T) + p(g) = olp(f), plg) )

(i1) ¥ (F, 8) e, pEmea)

i
H

Hence pog =0 O(P X P)
p(ul) )
u(p(a) )

pluoyr) = (uor)(s).
u(as) ) = uor (s).

(i11) ¥ Te X, pou(n)

]
i
HH

#
#

uop(2)
¥
Hence pou = uoP.

Tn general, the covering space groupoid & nced not be a
covering groupoid. But if G is a fundamental groupcid of a P.Cey
2.D.Co & R.S.c. space, then p is a covering morphism of topological
groupoids. In fact, it is 2 universal covering morphism. We

first prove the following mseful lemma.

Lemmaﬂ4.3.h:

Let G = X, X a path-commected and %.p.c. & f.8.c. space, then

¥ fed = Sthox , F(s) = - iof % sof, s is the length of f.
e rmpreamees ]
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Then f and E arc the 1ifts of the same morphism at o by (i, )%~

Hence T a'g.

p! is onto:

Given'gs:StGp(;), then ; + 2 is defined and
(; s :;+§)58t@x X S%GX, |

Let %&bc the unique 1ift of (;} ;'+‘5) at Oy then

o}

ioh = ;h& oh = v +
Therefore p'(h)= hlq)= -ioh + $oh = —y + y+ a = a .
Hence p' is onto.

gs€ale
Corollary 4.3.62

TIf G = 1%, X DeCoy LeDeCo & Lo8.c. Hausdorff space then ¢ is
isomorphic to Gi , the universal covoring groupoid of G.
Proof:
We nced only prove that p has trivial charactoristic groups at any
v e X. Let £ (¥}, then fof = gof =y . Hence,

p'(F) = £(x) = = Tof +40f = ~ +y= OP(T{,")eG{P(;) } -
Therefore the characteristic group of D at7§i§ trivial ,
Hence & Ay G§ o

qae,ﬁ&
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CHAPTER V

Y 4-TRANSFORMATION GROUPS

Introductions

In this chapter we introduce the notion of S}fd»transformation groups
for groupoids, and show that if X is a Hausdorff spacc and (, x)
is a topological transformation group, then € ,7X) is a
topological g{d-—transformation group. We generalisc the notion of
fundamental group of a transformation group introduccd by F. Bhodes
[ 8:] , to the fundamental groupoid of a @ d-transformation group and
show that if (T, G) is a topological Yd-transformation group and
G is connccted, then the fundamental groupoid 1 of (r, G) is also
a connected topological groupoid. In case G = nX, X path-
connected Hausdorff, then for any x e I‘OOb ( = X) the vertex group
F(){x»} is o(X, %, T'), tho fundamental group of (T, X) as defined
in[8]. Hence, since T is connected, then ¥ x,ye %X, of{X, X, )
o(X, v, I') arc isomorphic topological groups. We obtain exact
sequences of abstract groupoids and morphisms, and groups and
homomorphisms which in the speeial case G = x X, reduce to the
sequences in[9]p~ 906 . Wc show that if G is a connected locally
trivial Hausdorff groupoid, then for ecach x el OOb, I, { %} is the set
of all morphisms from Gz , the universal covering groupcid of G
onto itself which 1ift the clements of T and show that the set of
all lifts of the identity of I' is the group of cover transformations
of Gz and isomorphic to G {x }.

In section 3, we show that if T acts freely and property
discontinuously on G, then the orbit sect G/I' is a topological

groupoid over GZ}D , and the quotient morphism: G-«—-~>G/T is a covering
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morphism of topological groupcids.

1. DEFINITIONS AND EXAMPLES

Definition H.l.1:

LotT be a group and G a groupoid over a set X. We say (r, G)

is a %-—transformation group, if T acts on G and X as scts such

that ¥Ael, the following conditions arc satisfied:
(i) ¥aeG, i(r.a) =Ar.(ia) & ¢(r.2) = x.(¢a)
(i1) ¥(a, b)e D, A. (2 +Db) = r.a +A.b

(iii) ¥ aeG, Ael-a) = =(nea).

gy 21l ge G == )= ¢

i

It is called effective if {A.g

AsX

[

%, all xegX ===z X = e
Remaxk:
It is immediatc from the definition that ¥ xel , the map

Ay 2 G—> G
defined by:- ¥ geG, A (2) = ., ¥FxeX, a(x) = 21ex
is a morphism of groupoids, in fact it is an isomorphism.
Tt is easily scen that * is covariant; hence the map

P 3 T > Aut(G), A~rma A %t

is a homomorphism. ¥ is an embedding if (r, G) is an effective
de-»—transformation group. Hence, in this casc, we may identify X,

with X or vice versa.

Definition 5.1.2:2

i Yd-transformation group (I , G) is called a topological

gdatx‘ansformation group, if:-

(i) T is a topological group and G is a topological groupoid

(ii) ¥ xel , Ayt G—>G is a morphism of topological groupoids.
*
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Ixamples:

Let (1, X) be a tonological transformation group, where X is a

Hausdorff space, then (1, 7X) is a topological Y d-transformation

£Loupe.,
Proof:
By hypothesis, for cach xel's the map ay,: X —>X. defined by
A*(x) = %.Xx is contimuous. Hence for cach f ¢PX(x, v),
A 50f ePX(x.x, A.y). Moreover, ¥ A, u e, f¢ PX, we haves-
(1) Oy = 240 uy (ii) eyof = f,
where ¢ is the identity of r.
Since f' = f == ), of"' = ), 0f , we have a well-defined action on
nX, defined by:-
g ETA, Aof = ;;Ef (e ﬂX>9

which satisficss~-

i
i

(1) (¥, uel , (Wu).T = (AH),0F = A ou,0f = Aw uy0f = A.(u.T).

and E‘EWX

o e ——c P

(i1) e.f = geof =1

i

(i11) ¥ T enX, and ¥ aelr , i(A.£) = i(i0f) = (\of ) 2 (£(0) ) =
A(E () ) =2 (i(E) )

similarly, s(A.f) = 2. (s(F) ).

(iv) ¥ T, g enX, such that £(r) = g(o) (v being the length of f),

we haves-

It

A (Fag) =2.(Ff +g) = Ao(f + @) = Ayof + rg0g

e

= A 0f + A ,08 = Aof + Aof?
(v) Wer and ¥ £ enX, >\.<-fr) = ”(*‘?Q“ For, let [o,g] be the

maximum interval on which £ is constant, theni~
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¥ teRT, Ao(-£) (1) = A(-£(t) ) = A (£ (x 4% = ) = Aof(x + & - t)

it

-x Lof(t).

Hence Ao(-f) = X(=f) = Xol=f) = =(Aof) = (2. ).
Thercfore (T, nX) is a,%dmtransformation groupMe know X is a
topological groupoid and by hypothesis T is a topological group.
So, it remains to show that A, ¢ nX—>nX, Ael , is continuous.
Since (T, X) is a topologicel transformation group Ayt X—>X 1is
homeomorphism; and by 3.3.5.A; nX——>7X is continuous.

geCade
Following Rhodes[ 9} we gives-

Definition 5.1.38

Let (I', G) be a @7d~transformatinn group, with G connected, and let
L be a wide connccted normal subgroupoid of G,

We say & is invariant under Tifs-

ob

Vrel and ¥ xeG 7, Ao & {x} = 4 {x. x}.

Lemma 5.1.4¢

Let (T, G) be a gjdwtransformation group, where G is connected,

and let 4~§;G-b@ any wide connected normal subgroupoid of G. If

for some x gGOb, Ao O {x} = A {A.x}, rels

then A is invariant under T .

Proof:

Let v aGOb, and let Beh {y} , then given a eG(y, %), Joceh (%
such that B = a +a -~ a

Honce A8 =r.{a +a =a) =Xr. 2 +hea +2.(-a) = Xe @ + %o & = Xe00
But A.aeG(A.y.A.x) and by hypothcsis A.o e 4{ A. x} , hence by
normality of L, A. Bl 2. ¥} &

Conversely, civen ' e {A. ¥y }, then for any b'e G(A.y, A.x),
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Fateh{r. x}  s.t. B' = b' + a' - b',

Let b = A, b' ando = Xﬂ1.a., then be G(y, x) and oe 4 {x}

and we haves= B' = Ao b+ Ao~ A b= A(b + a=Db)e AA{y}.
Becausce aeh {x}==>b +a - be A {y},by normality of L.

Hence A. 4 {y} = A{Xx. ¥y} .

Since y was an arbitrary object, we have proved that A is invariant

under T. Gealle

Lemma 5.1.5¢

Let (. @) be a topological %d»—transformation grcup, and let

A C G be a wide connected invariant subgroupoid of G, then

(r, EA) is a topologicalg d-transformation group.

Proof:
Define the action of T on EA ag follows:~
¥ lal,eDd
[w'!ih.\. .A.’

This action is well-defined: For, lct a'e [a]f, thens -
&

¥aeT, A 2], =[oe,

a - a'e b {ial==x.(a - 2a') = A. a - A. a'e 4{r.(i2)} = &{i(x.a)}
Thercfore [k. aly= [K. ?"]A’ We haves-
(1) ¥rauel, ¥ 2], , Ow.ll =[2Ga)], = r0ik],).
(ii) Let ce I'pe the identity, then:-
¢. [a], = [e. al, = [a],
(iii) ¥ (2], Ae (:([a] Yy ) =a.(ifa) ) = i(h. a) = (r. ‘a) )
Similarly, A. (A( [P]A) ) = gﬁ NEI ).
(iv) ¥ [a]ﬁ » (0], eEA s.t. {a, b)eD, we haves-
A({] fb]\i)_k [a+b] [k.(a+b)]£,k=[)\.a+>\,b]j&
' =£A. a]A ‘4"[}\'. bjff\. = A, [a]fx + A, [blA
(v) ¥ [al, eE,, )\.(-ﬂ[a]A) = e [= 2], =[}\,(~a)1,l =[ ~(x aﬂA

= W[Ae alA
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Hence (T, EA) is a g/d—transformatiﬁn froup.
By3.l.l8nEA is a topological groupoid.
S50, we nced only show that ¥ iel ,

s

A B, > B

p29 L’

obtained from the action of A on B, is continuous.
EEY

But this follows from the following commutative diagram

G Ay /ﬁm;>z<}
pA (;a Py

E”ﬂ ?—EA

¥
B
>}

GaCedos
2. FUNDAMEN?AL GROUPOID OF A gjd*TRANSFORMATION GROUP

Let (T, G) be a commected Yd-transformation group, and lot A be a
wide comnceted normal subgroupoid of G invariant under p.
Thern E& is a groupoid and hcnee T x EA = rﬁ is a product
groupnid over GOb, Yo now show that FA has a different groupoid
structure over ngg whosc vertex groups arc the fundamental group
of the tfansformation eroup (T, X) in the case that G ariscs as
a fundamcntal groupoid of the space X. (see [ 8 1).
(1)  Dofinc i, ¢* ¢ I —> ¢°° vye-
¥ (4, (2] er,, 20, [2]) = 5, [2], = i(x)
M0 [23) = 27T G T2],) = 2T e) ).

(11) Let 0" = {0v, [=]), Cw, [51,) )1 o*0, [x],) -

i, [s7) feee AL = i) f
Define 6% iDAw—ﬁ»I‘E bys-

A

o, [1), G, [sT) ) = Ow, [z 42 s]) (= G, [2])%, [s])

i

i
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eA is well~defined:

1 ) - =
Let r, e[rJA, s e [s],, we must show[r1 + A SllA [r + A.s]A

i.e. r, + A.s1 - h.s ~reh{i(r)}

. seA{i(s)}w)\.s,[ - X .8 %)\.(31

ed {1.(i(s) )} by invariance of A.

But: 5 g[s]Ammmw s - 5)

Receaseanassy T o

g *¥As ~A.s e A {i(r)y (1)

by normality of A,

and r a[r1A=::> r, ~reA{i(r)} (II)

1 1

Then, it follows from (I) and (II) that r, + 3.5, ~A.s -~ rehA{i(r)}.

1 1

A . . .
87 is associstive:

Let (O, [r]), @, [s],) ) edtand C (u, [s1), &, [£]) ) e,
then:-
(O [¥7y) * G [8T) ) % (v, [83) = Ow, Tr o+ 08T * (v, [8])

COwdvs [r+ as + () t]))

]

= (v, [+ aes + A.(u.t)]A)

and

i

Ou el # C G, [sT) % (v, [21) ) = (a [x3,) * (uv, [5 +u.t],)

#

(o), [r+au(s + u.t)]A)

L}

(v, [r + a.s + A.(u.t)]A)

A

(iii) Define u ob

e >FA by~

b A - '
¥ xeG°°, ut(x) = (e,[ OX]A}.
i(ox) = x

]

Since iA(e, [ox] )
A

A
¢ (e, [OX]A)

we have i’(e, [Ox} ) =
' A

H

emj.(¢(ox))x e.(x}) = x

A
(e, [oxlA).

Moreover:- Let (A, [r]A), (u, [S]A) el', be such that:

if, [r]A) =i(r) = x & ¢A(u, [SJA) = u*1.(¢(s) ) =x, (%)



then (e, g:oX}A) s Lx] ) = (er, o+ er],) = O, [r])
(u,[slg %(eg[oglg m(ue,[s +;uo%k8 $<u’[S'PQHJJA)
= (4, [s],). For u.x = o(s)(by *)
Hence u' is the unit function in Tpe
(iv) Define the inverse function
GA : T~—*~———-—> I’
im0t 2] = 7Y [ JA
men 207 Lh T ()] = 107 ) =0T i) = 0ot )
= o*0n, (2],
ana 07U, = 0T LG0T ) ) = a0 o) )
=07 (6(=r) )
= <ﬂr>):iu>ai%u[§Am
Bence (O, [x],) , 07, ] ) ) o
end ( (A7, [x**.<~r>]A)9 0, 2] ) et
Moreover:-
O =] = 070 DT = a7 e e (-] )
= (e, r + M7 ) = (e, [x - 1))

= (e, [Oi(rﬁi ).
(", [XMTJ*r)-kAM1.}A)
(e, P‘ (-r + T)JA = (e, [ ”1'%(1:)]

= (e, [OA"* e¢(r)] A

Hence (YA, GOb, iA, ¢A, SA,IXA, OA) is a groupoid.

4

LI ] < o 5]

il

)
A

r, is conpected: For any x, ye GOb, let re G(x,A.y),Ael’, then
(A,[ﬂA)EFAOQ v).

Since ¥iel, k.ox = 0y s XE GOb, it follows that any tree subgroupoid

T of G is invariant under I'. In this case I' = I' x G, and we denote

T
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it by PO.

Dofinition 5.2.1t

For any connootcdg}dwtransformation group (T, G), FO, with the

above structurce, is called "the fundamental groupoid" of (r, G),

and its vertex .grouns will be called "the fundamentel zroups” of

(r. 6.

Theorem 5.2,23

1f (r, G) is = topological%5d—transformation group and G is

connected, then I', is a topological groupoid.

L
Proof:
(i) Let P I x EA<:Tﬁ> w~nﬁyﬂhibe the second projection, then
. ELOWZ° Hence it is continuous. (Reeall that B, =
b+ - o
= (3, 6% T, 6y, 0,0, w))

(ii) Let & : T x (}(ﬂi—»-w%«(}Ob be the continuous map defined bys-

E(h, x) =X, x and lolo' : T >T be the inverse map.

Lotﬂ1 2 TA*->F bo the firet nrojection, theni-
,f*,__ 1 A
" = Eo(o o, s ¢A0ﬂ2)

Hence it is continuous.

(iii) Let &£sT x B, >E¥ be the continuous map defined bys-
Fan 24
er, (z1) =». [x], =[x. »], (by 5.1.5. this is defined).
Lot 7y (r x EA) x (T x EA)—wﬁ—ar, i=1, 3.

2, 4

]

"o (r = m) x (rxE)—>E j

be the obvious projections. Thon it is casily seen thats-

ok = (evo(n,, ;) , 8,01, olry, m,) ) ),

where 6' ¢ ' x T

»I'is the composition map.

A ,
Henee 677 is continuous.
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(iv) Lot c @ GOE»*~QP be the constant map at e.
A -
Then v = (c, uA)e

Hence it is contirnuous.

(v) ILet Tys Ty ¢ I;—>T and B,, be the first and 2nd projections,
respectively. Thon it is casily scen that:-

A ' '

o* = (o om tolo owj,GAOﬁg) )
where £ x Eﬂ >E§ is as above, and 3} is the inverse map in EAa

A, .
Henece o7 is continuous.
g.c.ds

Exact scquences

Let (I', G) be af%d~transformation grous and let @°® = X, Then
X x X x T is a connceted groupoid (sce 1.2.11) over X.

We now investigate the relation of X x X x I with T', from the

A
algebraic point of vicw.
Define n o3 TA > X X x T
by n(}, [r]A) = (i(z), k"1.¢(r)g A) and nlX is identity.

Temma 5.2.3:¢

N _is a morphism of grounoids.

Let i1,¢1, 91, Uy 9y be the maps in X x X x T, thens-
n(i(r) ) = i(x)
(i (), 270 (x), 1) = ilx)
Hence noiA = i1on Similarly no<¢>A = ¢1on
(i1) ¥ O, [x1), @&, [s],) ) eD%,
nCOGxT) * G, s]) ) =n0w, [z +2.s])

= (i(r+r.s), Ou) oz + xs)hp )

(1) 30, [])erys moit(r, [x])

i

it

i1on(ky [r]ﬁ)

= (i(x), U‘d}\”q b (has),Au)
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Next, definca 7T o> T, byi-
(1) af £°° = demtity, (i) a4, =) = O, [2],), () x)er,.

4 is a morphism of groupoidss

(i) Let i”, ¢ dencte the initisl and finsl meps in r°, then:-
2 (%G, 2) ) = ali(z) ) = i(x)

i“On, ixl) i(r).
5

il
1

¥, ) er, 2oi’Gy, )

i
it

a0, )
Hence 40i° = i“oa. Similarly aoc” = @‘l;o[; .
(i1) ¥ (O, 2), Gy s) ) e al G, 2) % by 8) ) =40y,  #es)
= (O, [r+as] ) = O [21) # G, [=]) =80, ) %G, s).

(iii) ¥(e, CY) el s rle, OX> = (e, {OX}f% identity of FA at x.

Hence A rg———*a-rf is & morphism of groupoids.
2%

Lot (A, r)e Kera , then aln, v) = (i, i‘ri,) is a unit elcment

-

in I‘[\. Hence A = ¢, [ 1] L= [o_{”} , whore x = i{r).
L I xd, 3

Therefore re & {x} , and we haves-
ob . o -
Kerd = {(c, r)| rei{x} , xeG ~ } ab , the wide, full and

totally discronnected subrroupoid of A,

A is ontos given O, { r]ﬁ') el ;s Ly ) er  and

o

a(x, ) = O, [2])
Thercfore I‘o/!_o & T,y and we get the following short cxact

sequence of groupoids:-

L O A
(5.2.5) 0 —>4 >T >T o

More generally, let ALB be invariant subgroupoids of G, then we

can define a morphism

X: I;{L "FB ? by X <}‘? ET]A) = (Aﬁ Ler)“

X{rAO% = identity

It is ecasily scen (following the same linc as A) that x is a



118.

morphism onto T with

B’
Ker (x ) :{(o,irlﬁﬂ reB {x} , LR %Bég '

wheroe BO, 47 are wide and full totally disconnccted subgroupcoids

of B and A,rcspeetively. Hence, we have the following short

exact scquencee-

8}

£ o X
(5.2.6.) o© By vy Iy
MNotice that B?ﬂ is a groupoid over GObo Fer A° ig a (wide

0]

totally disconnceted) normal subsgroupoid of B

Next, for cach x¢ GOb,nx =n]qa {x} is & homomorphism of the object

G {x}
@mmf{x}oMotngwmwyxuU1%m1 T
x
L {x}
and A = A{TO {x} is a homomorphism of tho cbject group Fo {x}

onto I, {x} with,KérAX = A {x} . Henece we got the following exact

sequences of groups and homomorphisms

G 1x}
ofm»>/////;W“M>T {x} —"x —T —0

A Ix} »

b

(5.2.7.)

o >4 {x}»»«~m>Fo {x} >T, {x}——>0

AL

Application 5.2,8:

Let G = wX, the fundamental groupcid of a epace X. Then T {x}
=0(X, x, G), the fundamental group of the transformation group

(r, X) as defincd in (8 1. By replacing G {3}, Iy {x} and r, {x}

by m (%, x), 0%, %, T), 0, (%, x, T),
x
respectively, we got the exact sequences in [ g ]p,

In case X is path-connccted Hausdorff,7X and hence ', arc connected
wh

tonological groupoidsa. Hence all object groups are isomorphic

topoclogical grouns. Therefore ¥ x, yeX, o, (X, x, F) and
,L-LX
(X, v, ') arc isomorphic topological groups.
X
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Given any @fd»transformation group (I', G), with G connected then,

as we have seen, for any invariant subgroupoid A of G and any

xeGOb, FA and C* are connected groupoids over GOb and St

A E
F:s

respectively. Let FX = FA {x} be the vertex group at x, and

define an action of Fi on GX as follows:-—

b . b'e e N x,0b
A » and ¥( [a7, b)dﬁ ’[d@ﬁmﬂicm(QM

(s [rl)s (fafs ®) = (le+ aoal, 5 Aub)

¥(A, [r],)er

b

(X, {TJA)A [a]A =y 4+ A . a}A.

The action # is well-defined: Let s e{rl, celal,, we must show
L » N

A

ls + 2, C]A' i.e. v+ Ao a~ . ¢ - seA {x} . But

i

[r+x . al,

ce A {x} ==>x. a - A. ¢ = r.{(a ~ c)eA {1, x}

=
ﬂ
{0
i

(By invariance of A)

>y + Ao a ~ A. ¢ - reA {x} (By normality of A)
and se[r], ===>r - se A {x}
Hence r + A. a -~ A, ¢ ~r +r —g =1 + i.a - r. ¢ - seh {x}

The operation does satisfy the required conditions:-—

(L) Oy rl) 06 (81,0~ ({2l ) ) = O, [r]) ~ (B + w.al ,u.b)

LA
= (r + r.{s + u.a)]A, Auo(pad) ) o= ([r + Aus + (Au).a]A, (Au). b)
= (Ap, [r + X.s ]A)A([ajAa p) = OO [xl,) % (u, {810~ ([a],, b)
(ii) (e, :OX}A) ~ [a]Ag b) = ( [ox + ey, e ) = (al,, bJ).
So, FK acts on GX as a set. (i), (i1i) also shows that Fi acts on XA .
(i41) TC O, [r])~t(aly, ) ) = I0Dr + aa],, Ab) =[x +2e], ’

]

(A, [rl)elal,

()"-9 erjA)"(I( [ajAa b) )o

il

similarly, ¢( (A, [r1)atlal,, D) ) = (4, [r],) ~ (s([a],, b) ).
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