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THEORY OF TOPOLOGICAL GROUPOIDS

by Gholamreza Danesh-Narule

This thesis takes up the notion of topological and differentiable 

categories and groupoids and of their local triviality. Beginning 

with definitions of an (algebraic) category with object class X* 

and appropriate commutative diagrams. These are extended easily 

to the topological and differentiable cases in later chapters. 

For brevity here, suppose X is a Hausdorff space, path-connected 

(p.c.), locally path-connected (&.p.c.), and locally simply 

connected (2.s,c.). As important examples we consider PX (the set 

of all paths) as a topological category, and ?X (the fundamental 

groupoid) as a topological groupoid, over X, also ^X is a covering 

space of X X X, and v.(^X,.) is computed. The relation between 

connected groupoids and fibre bundles is studied. We show that 

every connected locally trivial (&.t.) groupoid over X has a bundle 

structure over X x X, and for each x e X, St^x is a principal bundle 

over X with group G {x} . Also, every connected A.t. groupoid with 

discrete vertex groups over X is shown to be isomorphic to a quotient 

groupoid of vX; and if ^^X is abelian, then 

^^(0, o^) % TT^^^'^G^ * °x^ ^ ^i(X» ^)'

The notion of topological covering morphism is introduced; 

if p: X --------- -> Y is a covering map of Hausdorff spaces, then 



p*: irX—-------->1TY Is a covering morphism of topological gronpoids.

In case G is a connected. &.t. Hausdorff groupoid, 3 a 1 - 1 

correspondence between the closed subgroups of its vertex group and 

its covering groupoids. If G is a connected A.t. groupoid with 

discrete vertex groups over X, then the universal covering space 

G of G is a groupoid over S^, and in case G = irX, % is the universal 

covering groupoid of G.

We consider the notion of ^d-transformation group (r, G), 

generalising the fundamental group of a transformation group. We 

show that this group is the set of all morphisms : & --------- >

lifting the elements of the group I. The set of all lifts of the 

identity in F is the group of cover transformations of &. Under

certain conditions the orbit set G/r is a topological groupoid and

the quotient morphism q : G /r is a covering

morphism.

Finally, we study some examples of Lie categories and groupoids.
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INTRODUCTION

In this chapter we first give a definition of categories, 

groupoids and functors in terms of maps and commutative diagrams. 

We take a path in a space X to he a continuous map :R-------  ̂X. 

This then allows us to define a reasonable topology on PX.

The plan of each chapter is given in the beginning of that 

chapter, except for Chapter I.

We follow the same terminology as in [2 j throughout the 

thesis.



1.

OEAPTER I

definition 1,1.1

Let C and, C^ be two claesee. We call 0 a category over C^ tf:- 

(O.) 3funotion8 1, i^i: C --- )C,

Called the Initial and final maps, respectively, 

(Og) If d = {(f, g) eCxC I *(f) « 1(g)} , 

then 3 a function 6; d — ̂0, (f, g),'w,^f.g , 

called "the composition function" such that:-

V (f, g)e d, i(f.g) « i(f) & *(f.g) = *(g) 

and lAilch satisfies the:-

Assoolative Law; V(f, g), (g, h)e d, (f.g),h « f.(g,h) 

(^S ) 3 a function u: 0^   ̂0 

called "the unit function" such that;-

V re 0^, l(u(x)) «= ^(u(x)) » x, and if f, g e 0 with 

1(f) - *(g) « X, then u(x).f « f & g.u(x) * g 

notations and terminology:

For each xe C^, we call u(x), the unit element of 0 at x, and u(0)i&C 

will be called the class of units of C, and denoted by 0. We also 

write fg, gof, f + g for 6(f, g), as convenient, We denote u(x) by 

o^, idien using additive notation, and 1^ in all other oases.

The set

C(x, y) " {fe C |i(f) = x & 4(f) » y)

X, yeO, will be called the set of morphisms from x to y. 

If fe0(x, y), we may also write f:x—,y, or x-f-^y. Por each 

feC, we call 1(f), 4(f) the initial and final objects of f, 

respectively, and the class C will be called the class of objects 
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of C, and the elements of C will be called the morphisms of the 

category 0, In order to specify the functions in a category 0, 

we sometimes write C » (C, C, i, ^ , 8 , u). We also write C , 

for the class of objects if it is not specified, and St^,^ 

for i'^fr) and (f\x), respectively.

Remarks 1.1.2

(1) For each xeC. the unit element 1^ is unique.

(2) If (i, y), (%', y')eC^xC^ and (z, y)3^(x\ y'), then:- 

0(x, y)r^C(z\ y') *4,

(3) It is immediate from the definition that u is an injection 

l.e. 0 is bijective with 0, the class of units in C. Eence 

one sometimes regards 0 as a sub-class of 0, the class of 

morphisms.

Definition 1*1.3

A groupoid G over the class G is a category over G^ in which

3 a function o: G — ̂G, o(g) = g

called the inverse function, satisfying the:- 

Inverse Law: V geG, i(g) =^(g ^),^(g) = i(g ^);

thus (g, g"'^)eD, (g-^ g)eD. Moreover

We call g-\ the inverse morphism of g. It follows from the 

definition that oCg"^) = g. i.e. g is the inverse morphism of g . 

And also, it follows that each gsG, has a unique inverse.

Remark 1.1.4:

Por each xeG, (i, *)"^(x, x) = G(x, x), the set of all morphisms 

from X to X, forms a group called "the vertex group" at x, with 1^ 
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as its identity element. This group will be denoted by G {x} as 

in [2] .

Definition 1.1.5:

Let C = C( , Cq, i. (^, 6. u), C = (C’, C'^. i!, <p', 6', u') be two 

categories. By a functor 1: C >C',

we mean a function T: CUC----- >C'LJC' 
o o 

satisfying

(F.) r(c) c c & r(c ) c c I — o — o

i.e.r preserves morphisms and objects.

(F^) The following diagrams are commutative.

Diagrams I and II simply show that r commutes with initial and

final maps, while diagram III indicates that:-

v.(f, g)eD, r(f.g.) = r(f).'r(g)

Diagram IV is another form of the statement:-

»x=Co, r(ip =1^,.,
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Lemma 1,1.6:

If C, O' are grouTPoide, then diagram 17 is equivalent to the 

following oommutatlve diagram.

Proof: Ivmama^v G

vg eO, g.g-^ = *rfg.g'"^)= r(ij.())

»aw.^r(g)«r(g ) ™ ^^(ig) (by III & 17)

Senoe F (g"^) = (rfg))"^ , and therefore we have;- 

r((^ (g)) = o'( r(g)) i.e. ro ofg) = o'or(g), ge O' 

Therefore 7 is commutative.

Conversely, 7'W"^I1^

7 X co^, r(i^) = Kf.f"'') = r(f).'r<f"^), fe st^x. 

= Kf).' ( Kf))"^ (by 7)

Let C =(C, 0, i,* ,6 , u), C = (C, 0^, i',^', 6\ u')

he two categories. We call C a subcategory of C if:-

(1) O'G C and C^^C^

(2) i' = i I C , *^, *|C', 8 = 8|L', u' = n |C^

If C* « C^, we call C a wide subcategory, and if

7 (x, y)e OU %^C^x OQ, 0'(%, w) = 0(x, y), 

we call C a full subcategory.

definition 1.1.8:

Let G and G' be groupoids, then G' is called a subgroupoid of G if 

(1) G' is a suboategory

(2) o'. o|G'
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Definition 1.1.9:

Let G be a gronpoid, and lot A be a subgronpoid of G. Then A is 

called normal if:-

V objects %, y of A, and V ae G(x, y), 

a A{x}a= Aty}.

Definition 1.1.10:

A gronpoid G over G is connected if:-

V X, ye G^, G(x, y) ^ *

Definition 1.1.11:

A groupoid G over G is said to be totally disconnected if:

V X, y^G^* xy=y-^G(x, y) = <(,

Definition 1.1.12:

A groupoid G over G is said to be a tree if:- 
0

V X, ycG, G(x, y) has only one element.

Definition 1.1.13:

A groupoid G over G^ is called discrete if u(G^) = G.

A first theorem on the structure of connected groupoids is 

that G i^Gfx} 'X'T (the free product), where T is any wide tree 

subgroupoid in G (see [2^ ).

SgCTION 1.2

An important example to Illustrate the definitions of section '

1 arises from the set of paths on a topological space.

Definition 1.2.1:

Let X be a topological space. By a path of length r we mean a 

continuous function f; 1Rt_..../X, where rclR"'' is the smallest 

number such that f ( (R^'^[o, r] ) is constant with the value f(r).
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We call f(o), f(r), the initial and final points of f, 

respectively. To specify the length we may write f^ whenever 

needed. For each xe X, we have a unique path of length zero, denoted 

by 0, We also denote the set of all paths in X by PX.

definition 1.2.2:

let f, gePX be paths of length r and s, respectively, such that 

f(r) = g(o). Define the non-oommutative addition of paths by:

|f(t) oft^r
(f + g)^ 

{ g(t - r) t^r

It is immediate from the definition that f + g: R^ — -bX 

is a path of length r + s.

Define the functions i, <|i , PX — ̂ X, 

by;- V f^e EX, l(f^) = f^(o) and *(g = f/r). 

Also, let D = {(f^, gg) ePX x gx | f^(r) = g^fo)} 

define the composition function<(i:D—^PX 

by:- T (f^,, gg)eD, *(f],, gg) = f^. + gg' 

Finally define the unit function 

u: X- ---- >PX

by:- V xeX, u(x) = o, the constant function at x.

From the definitions we see at once that 6 is associative and u 

satisfies the required conditions for a unit map in a category so:-

Theorem 1.2.3: (PX, X, i, $ , u, e) is a category

The details of proof are straightforward and omitted.-

Definition 1.2.4:

For each f^e FX, define the reverse map 

_f^. et—^x
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by;-
If (r + A o 9 r

s > r

WhereAe R"*" is the greatest number such that fl ^o, ^Jis constant. 

(Notice that this might happen, since the definition of f does not 

require that f^ should be non-constant in some neighbourhoods of 

o e .

It is Immediate that -f is a path of length r.

No;^: *(-f^) = l(f^) and i(-f^J "*(f^)

This suggests fX with this inverse might be a groupoid. Unfortunately 

f + (-f) / 0 in general. 8o we pass to homotopy classes. 

means ? a continuous function 

F: R^ X % — ̂x (l the unit interval) 

such that F(s, o) »= fp(s) * F(o, t) = f (o) = gq(o)

F(s, 1) = gq(8) ; F(1, t) = gq(q) = fp(p)'

Lemma 1.2,5:

(ii) for each fePX, f + (-f)= o, /\

Proof; (i) Let F: 

then V scR"^, 

Define S: R"^ x

R"^ X I — ̂X be the homotopy;

F(s, o) = f^(8) and F(s, 1) = g(9). 

I_)X

(F ((1 - t)(p +^) + t(q + ^^-s,t))o^s^(l-t)(p+A)
H(s, t) «=

7 4-t(q+^)

^F (o, t) s>(l-t)(p+€)f t(q+€'')
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('&aii(i ^' the greatest numbers s.t fp|[o,6]and g^| [o,^']are

constant). Obviously H is continuous and we have:-

F(p + 6 8, 0^ 8<p+<

S ^-p 8 > p+6.

(For f(p + + 6)

6'

and S(s, 1)
F(o, 1) 8> 9.46'

P
P

F(q + 6' —s, 1) 4"

g(q + ^' - s) q

8 > q

+

(For g(q +

Sence -f =-< 
P

61
q

s < q +

Define the homotopy 0, F
,+

by:

0(8, t)
f(tr)

f(2tr

f(o) 8> 2tr

4" t

+ 6

+F(s, t) f(r t6-tr), tr<< tr + 6

f(8 (1 2t)r + (t 1)6) 8) tr + 6

It is easily seen that 0 and F are continuous We have

F(8, 0) " o^^^\ and F(8, 1) =

^f(r + 6-s) 04 af r

f(6) r< &$: r + 6

f(8 - r) 8 ^r +6
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lf(8
-f + f ) 

r r s

(For f(8 - r) = f(&) , 

similarly, G(8, o) = and. G/s, 1) = (f + (-f )) 

q.e.d.

Lemma 1.2.6:

Given f^ePX, then for any r' cR^, 3 a path f of length r* 

such that f'= f^, and. f (R^^ = f^(R^)

Proof: Lefineo , :(Rt_—^.IR"^

hy: V seR'^.o^.^fs) = sry^,

ThenOrp ^^ a continuous map, and hence 

^r°r'r' ^^ ---- ̂^ 

is a path of length r'.

Claim: f =f/'^,].

Define the homotopy S:IR"*^jf I ---  .^X

by:

) o<:8$tr + (1 - t)r«

f(r) 8)tr + (1 - t)r' 

obviously 5 is continuous and is the required homotopy.

I^mma 1.2.7:

Proof! lot Fl f = A ,, and Gig » q ,, bo tho bomotoplos.

Define E : (R+ x hy:-

S(8, t)=i 
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where |F^| is the length of the path F^ : (R—_—^X obtained from 

the homotopy F, Then, obviously F(|F^|* t) = G(o, t) = f(p)(*X^XF'))

Hence H is continuous and we have:-

B(8, o) - (f + and n(8, 1) = (x, + Wg,)/g\ 

q.e.d.

Denote the equivalence relation = by R. We now pass to cosets and 

prove:-

Theorem li2^:

Let irX » ^^(^ ^®^ °^ ^^^ homotopy classes in FX. Then fX is a 

groupoid over X.

Proof: For each f ePK,. let f^ denote the homotopy class of f^.

(i) Define the initial and final maps

i, ^ : irX — —^X 

by: Vf^euX, i(f^) = f^(o) and *(f^) = f^/r). 

obviously independent of coset representatives

(ii) Let D ={(f^, gg)e irXx nX| f^/r) = gg(o)}. Define

8* D ---  >^X by: 8(f., g) = f + g (= f + g) 
_L a---------------------- _L--------------- kO ^ G 

It follows from 1.2.6 that 6 is well-defined.

Since addition in PX is associative and q:PX---  ̂^X, the quotient map, 

is onto and respects +, then:- 

addition in irX is associative.

(iii) Define the unit function u : X ---  ̂irX 

by: y X eX, u(x) = o^

Since o is a unit in PX, it follows the o^ serves as a unit in ?X.

(iv) Define the inverse functionctirX, — .^irX

by: Vf^eirX, o(^) =

Dy 1.2.5, 18 well-defined and we have:- 



l(f_) = f_(o) = f(r) = *(-f)

■«** «** , . mam NW. 
+(f_) = f_(r) = -fyCo) = l(-f) 

f^ + (-f^) = f^ + (.f^) = o^^^^) I (^ 1.2.5) 

-^r + ^r = -^r + ^r " \(r) J 

Therefore o satisfies the required conditions.

q. e # d.

We now show that irX is isomorphic to the fundamental groupoid 

Tr*X as defined inL^ ]. Por this we need the following lemma(-

Lemma 1.2,8:

Let f^: Ctt ---  ̂X be a path, and let (r, r'^^[o, q] be such that 

fql[r, r'J is constant. Then f^ is homotopic to the path 

f ; gl"^ ---  ̂X

defined by:- I ffs) o^s^r 
  f'(s) =\ . 

f(r' - r + s) s^r

Proof: Obviously f is a path of length q - r' + r. Define the 

homotopy E : (R^ x I — _yx 

by; ff(s) o^8<r 

S(s, t) = J f(r) r^s^r + t(r' - r) 

f^l - t)(r' - r) + 8^ s^r + t(r' - r)

Since t(r' - r)<r' - r, r + t(r' - r)^r'. Eence it is easily seen 

that E agrees on the intersections, and therefore it is continuous.

We have:- fffs) o^^s^r

B(s, o) = /f(r) s = r = f'(s) 

If/r' - r + s) 8:).r

^f(s) o^s^r

E(s, 1) =/ f(r) = f(s) r.::8<r' = f(s) 

f(8) s^r* 
C[* G * d *
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We call f the shrunk path of f.

Theorem 1.2.9: iTX i8 J^omgrghj^tojH^

Proof: Lot f be a path of length | f'| , as defined inL2], i.e. f is 

a continuous map from the interval ^o, | f'{ ^ into the space X. 

Then we can extend f to a path f ; (pt ---  ̂X by:-

V te R"*", (f'(t) 0^ t<| f I 

f(t) = (

obviously f and f have the same initial and final points.

Lefine U : ir'X — ̂irX

by: (i) V [fQe ir'X, U ([fQ) = f , where f is the extension of f'.

(ii) V xe X, w(x) = x

p is well-defined: Let f* v g*, thenS r, r^e^^ such that r +' f* 

is homotopic to r^ +\g', where (+') is the addition of paths as 

defined inC 2]i.e. Tf'fs) og: s ^Jf'l

Let PH Io, |f'| + r|^I ---- >X be the homotopy: r +' f'= r^ +' g'.

We extend P' to F : R^ x I --  ̂X

fp'(s, t) o( 8< (1 - t)|f'| + t |g'| 

by: P(s, t) = J /
' |F'(1 - t)|f'| + t |g'|, t) 8$ (1 - t) |f'| + t |g'| 

obviously P is continuous aipi is a homotopy from f to g, the 

extensions of f and g' respectively.

W is a morphism of groupoids:

Since p is identity on the set of objects and f, f have the same 

initial and final points it is easily seen that diagrams I and II in 

(pg) are satisfied. Obviously, the extension of o'^ :[qj--- >X, is 

the constant map o : (Rt ---- ̂X. Hence p([o'^ ]) = o^, the unit element 

at X in TrX. Therefore P commutes with the unit maps, i.e. diagram IV 
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of (Fg) is satisfied. Sence it remains to prove thatg commutes 

with the composition maps. Let L* be the set of all oomposable 

elements ^i^'X y^^^' ^ ^^t ^ : L'--- ^^'X be the composition map, 

then:-

V ([fg,|j?'])eD', w(Lf'] +'[g']) = ([f' +' g'J) = h 

where h is the extension of f +' g'. Let f and g be the 

extensions of f and g'xrespeotively. We show that h = f + g. 

We have:- (f*(s) o<:s^| f'l 
(f +' g')/ \ = 1 

g'(8 -I f'l ) tf'|<8 fif'l + Ig'l

Let f and g be of length p(<|f'|) and q((|g*|), respectively. 

Then (f/s) o^ s<^ p 

g(8 - p) S^p

If p = |f' |, then it is easily seen that h = f + g.

If p f: |f't, then f + g is the shrunk path of h as defined in 

1.2.8. (here h^p, |f'J is constant). Bonce f + g h. 

Therefore p([f'] +' [g*]) = h = f + g = f + g = p(Lf']) + p([g']) 

Bence (fh) is satisfied.

Now define \): 'irX ... ^ir 'X

by: V fe^X , v(f) = [f^] , fdiere f^ = f |(p, q] .

It is easily verified that (f + g). = f.| + g^ and 

f a gawm^f 'b g.. Therefore v is a well-defined morphism.

It is also easy to see that pov== 1^y and vow = 1^,^^ 

Bence w is a bijection and so an isomorphism of groupoids.

q.o.d.

Next consider another,important, example.

Let T be a vector bundle over the space X with the fibre R",
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and for each ze X, let T^ denote the fibre over z, which is 

topologically isomorphic to E"

Let ^(T) = '----/Ebm (T- , T ).

x,yGX

then we have:-

Theorem 1.2.10:

f'k, (T) is a category over X.

Proof: (i) Define the initial and final maps

i, 4" zC/T)----yX

as follows:- given fe^T), then3x, yeX s.t. feSom (T^, T ), 

then define i(f) = x and (Kf) = y

(ii) Let D = {(f, g) e i^T) x K(T) | <{)(f) = i(g) } ,

define G : D-—:»i^T)

by: e(f, g) = gof (the composition of maps).

Therefore 6 satisfies the associative law.

(iii) define the Unit map u ; X--- ^(T), 

by;- ¥ xe X , u(x) = id^^

Obviously u satisfies the required condition.

q.e.d.

Another rather trivial but important example is;-

Lemma 1.2.11: For any group r and any class X, X x X x r is

a groupoid over X.

Proof; Define; (i) i, b s X x x x r-- a? X by;-

i(x, y, y) = X and *(z, y, y) = y

(ii) Let D = {(x, y, y), (y, z, y'))

Define 4i: D-- ?X x x xf by;

$( (x, y, y), (y, z, y') = (x, z,y y')
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(iii) u: X——.yX x X x rby; u(x) = (x, x, 1)

(iv) o : X X X X C—»X X XX rty: o (x, y, Y) = (y, x, Y ^)

1.3: T^LOGY OF FX

Since PX = X^ , It carries the compact-open topology.

But this topology is not convenient for our purpose, so we will 

define a stronger topology for PX, which will turn it into a 

topological category, as we will see in chapter III.

Let f^ ePX, and let n ; PX--- j^E'*’ be the length function, 

i.e. n (f^) = r. Let {EJ be a basis for the system of neighbour­

hoods of f^ in C - 0 topology, and let {B.} be a basis for the nbds of 

r eE^ in the usual topology. Then define the new topology for

PX by taking as basis of neighbourhoods at f^ the family 

{N.nn""' (B ) I %E{N } , %G{B }} 
P U P 1 (Jk J

We call this topology the LCO topology (L for length).

Hemark

(i) Since E"*" is a neighbourhood of r, and the length function

n is onto, the LCD topology of PX contains the C - 0 

topology,

(ii) The length map p is continuous in the LCO topology.

(iii) i; PX--- ^X, i(f) = f(o), has path lifting property 

(seeLSjp. 83)

Note; Throughout the thesis, we v^ill deal with the LCO topology

of PX, and the topology of nX will be the quotient topology

obtained from the LCO topology and denoted by Q-LCO

topology.
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CHAPTER II

THE FUNDAMENTAL GROUPOPyX

In this chapter, from any given wide normal su.hgrou.poid 

A of a connected gronpoid (G, G^^, i, i^ 0 , n, o), we construct 

a groupoid, called E., over G°^ by defining an equivalence 

relation R. in G; and take E^ = ^&^. The process is analogous 

to the construction of covering spaces, We also construct 

another groupoid, called G^, over B^. Then, we will study the 

connection between G and these groupoids. It turns out that 

G. la a covering groupoid of G x G with appropriate projection 

to be defined. If G arises as a fundamental groupoid of a 

path-connected, locally path connected and locally simply 

connected space X, then we show that B^ and hence ?% is a 

covering space of X * X. Finally we prove some theorems vdiich 

enable us to compute ir^ (^ ^* ^)* idiere X is as above. We close 

the chapter by introducing another topology for rX which is 

more convenient in practice and prove its equivalence to other 

existant topologies on irX.

2.1 CONSTRUCTION OF B^

Let (G, G°^, i, 4i, 6 , c , u) be a connected groupoid, 

and let A be any wide normal subgroupoid of G. Then it 

follows that;

V X G G°^ , A (x)O G {x}

Conversely, given any normal subgroup A of the vertex group 

G {z}, z G G°^, then we construct a wide connected normal 

subgroupoid A of G as follows:-
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Let T be any wide tree in G, then G % G {z} * T, with

the isomorphism g^^: a^ %.^ "^^ia + a' - T. , where a'eG 
({la'

(z)

and T^eT(x^ z). Take A = g ^ (A * T), then:-

Lemma 2.1.1:

A is a wide, normal, connected subgroupoid of G

Proof: (i) Define the initial and final maps by:- 

^A - ^k ^^ *A ^1^

(ii) Let D^ = {(a, b)s A x A| *(a) = i(b)} , then

D.CD, and we have:-

^(^A^"^^' ^^^* ^^^ (^* ^^^ ^A* ^^^^ ^* ^ ^ '^' Hence g 

unique a', b' e A such that a = t. + a* - T. 
z la (fA

But (a, b)e D^=5'^(a) = i(b) —-=. t = T. 
A (pa ID 

and a', b'e A==>af+ b*E A

Therefore 6(a, b) = a + b« (%. + a* - r. ) + (t.. + b' - T..) 
la ID

^ia ^ (a' + b*) -

Hence a + be A, So, we can define:-

^A: DA—^A by 8^ = e|D^.

(iii) Since A is a subgroup of G (z), o^e A^. Hence, it 

follows that VyeG°^, OyCA

Therefore, define u^: G°^  —>A

by:- ^A^^^ " ^/x) = o

So it meets the required conditions (Por, u does).

(iv) Finally, define o^: A— — >A by o^ = o|A.

This can be done, for:-

Let deA, then 3 a unique d'eA such that d := T._ + d* - T
*d
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since d' e A..—eA , we have:- 

^(^) "=..................." ^id = \(-d) ("^^) " ':4,(-d)

Hence o(d) eA. i.e. G(A)(^ A 

Therefore (A, G^^, i^, <{)^* 0^* u^, o^) is a groupoid contained 

in G. It is immediate from the construction that A is a wide 

suhgroupoid of G. It is easily seen that TCA, therefore A is 

connected.

It remains to show the normality of A in G. For this^ ve 

must show that:

Vx, y eG°^, Vge G(x,y), -g + A {x} + gcA (y)

We have;- g eG(x*y)==».^g'e G {z} s.t. g = r + g' - T

a eA {x} ... ^ ^a'e A s.t. a = T + a' - T^

So, -g + a + g * (r - g* - r) + (t + a* - r) + (r + g' - T ) 

= Ty + (-g* + a' + g') - Ty.

But hy normality of A in G {z} we have -g' + a* + g'e A^.

Hence -g + a + g eA {y} . q.e.d.

Thus normal subgroupoids exist. The independence of vertex groups 

of A from the tree T will be discussed later (see 2.1.4.)

The relation R^:

Let A be a wide suhgroupoid of G.

Define a relation R^ in G as follows:- let ae G, then for any be G, 

bR.a<p==>ib = ia, ({ib = ^a and a - beA {ia} .

R^ is an equivalence relation:-

(i) R. is reflexive: V ae G, a - a = o^^e A {ia}=>aR^a

(ii) R. is symmetric: V a, be G,

bR.a:===>a - be A {ia} - ae A {ia}==^aR^b.
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(iii) R^ is transitive: V a, b, c e G s.t. t'R^^ ^'^'i cR^b* 

we have:-

bR^a=.==^>a - b e A {ia} , ib = ia and <|,b = ^a

cRb - c e A {ib} = A {ia} » ic * ib & 4)C = (|,b

By group property of A {ia} , (a - c) = (a - b) + (b - c)e A {ia) .

Bence, cR.a.

Therefore R. partitions G into disjoint equivalence classes.

We denote the equivalence class of any ae G by [& ^A' 

Bence, V a cG, [a]^ « \beG(i8, ^a)| a - bcA {ia}j

We also denote the quotient set G/p by E^, and the quotient 

function: G - — >E^ by p^.

Leinma 2.1.2:

If A is normal in G, then E^ is a g^xq^^dcn^f G°^and 

can be extended to a functor of groupoids.
A___________ ____________ ___ ____ _—

Proof: (i) Define the functions i^, i|i^ : E^---->G

^y^- ^A * ^A ^^-^A = i(a) & d'j^C^lA - ^(^^

It is immediate from the definition of R^, that i^ and ^^ are

well-defined.

(ii) Let b^ =(([a] ^, [b]^ )| *^ [&]A*V^^A *^ '^ ^^^^

Define 8^ : D^—"^^A 

by:- 8^ ( [a)A ' t^^A 

a f b = 0(a , b).

8^ is well-defined: let a',e[a]^^ b'e[b]^^ we must show that

[a' + bg ^ = [8. + b]^ . i.e. we must show that

a + b - (a' + b')e A.| ia| .

we have:-
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a' efal.^^ a - a'GA{ia}=^^aeA fia) s.t, a = a + a'

by normality of A in G (this is the first place where normality is 

assumed).

Hence, a + b - (a* + b') = o + a' + b - b? - a* =

a + (a* + (b - b') - a*)e A {ia}.

We need to show the associative law for 8.,

Let ( I at., I bl. ), (fbl,, fcl. )eD.. Then using the associativity

of 8 , we have:-

(iii) Define u^: G°- — — >E^

^A

by:- YxeG"^^, u (x) = fol where o^ = u(x).

satisfies the required conditions for the unit map in E^. For,

l^t [aJAGEA, then i^ faj^ = i(a) and (|)Afa]A " *(&) aii"^ '"'^ have:

(iv) Define'c^: E^ ---- >E^ by o^

^A is well-defined: Let be[a]^, we must show that IL

To show this, we must prove - a + beA {^a}.

We have:-

be(^-=^b - aeA {ia}=::>-a + b =-a +(b - a) + asA {^a}.

(by normality of A), 

o^ satisfies the inverse law: Por, i^ [aj^^ = ^A^^^OA '^'/j-^^A
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and we have:-[ aT^ f L-&J^ =[& - a]^ "L°-'a]' " ^A^^^^

Hence it is the inverse function in K

Define p. to he the identity function on the set of objects, i.e.

V xeG°^, ^A^^^ "

Then (P^) is satisfied (by definition). So, we need only to show 

the commutativity of diagrams in (Pg). We have;-

(i) V aeG, p.oi{i.(a) = p^((|)a) = *8

Hence p.O(|) = *AOpA' Similarly p^oi = ^^^^A"

(ii) V (a,b)eD, 6^0 (p^ x p^)(a, b) = 6^(^ I^A'^^^A^

= p. (8(a, b) ) = p^o8 (a, b).

(iii) V ae G, o^op^(a) = o^^a]^ = f-a]^ =[a(a) ]^ = p^(o(a)) 

= p^oo(a)

Hence all the conditions for p. to be a functor are satisfied.

q.e.d.

Remarks 2.1.3=

(i) the vertex groups of

(ii) If A is a tree in G, then E^ = G. It is also clear from

the construction of A that = {o}, the trivial subgroupif A^

of G{z}, then A is a tree. Hence as in the case of groups, if

we take A to be the trivial subgroup of G{z}, then E^ = G.

We showed in 2.1.1. how A might be obtained from a subgroup 

of the vertex group G (z). In that case E. depends on the 

following choices:-
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(i) The tree T<^ G

(ii) The object z e G°"*^

(iii) The normal subgroup A^.

We now investigate the relation between different E^’s obtained 

by changing each of the above choices.

Lemma 2.1.45

Let T' be another tree used in the construction of A in 

2.1.1. Let C^’: G;^G {z} * T’, and let A- = $'^' (A^*T').

Then V ze G°^, A {x} = A' {x}.

Proof: For any x EG°^, let t'^ denote the unique element of

T’ (x, z).

Then, by oonstruotion, we have;-

Vge A { x} , ^■a- unique ue A^ s.t. g =T^+a-T^.

Let X = * ’ x^ G- { z} , then; -

Hence 3 = ^ x ™ ^ + ct + X ~

But A <3. G {z}"=^- X+ Ct + X eA . Hence BeA {x} (by con- 
z z 

stoTuction) . Therefore A {3i^ ( x} . Similarly A {x} (C A {x}

q.e.d.

Corollary 2.1.5: ^^^ = ^_j« ''^^ other words, the change of T has no 

effect on E^.

Proof; VCal^eE^, we have:-

&a]A = {ti GG(ia, 4»:a) | a - be A { ia} }

= {b EG(ia, ifi^) I a - bE A' (ia) } (by 2.1.4)

= [a]/ eE^, .

Hence E^. E^, . Similarly E^’ C E^.

q.e.d.
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Definition 2.1.6; Let G be a groupoid, then subgroups A(_G {x}, 

bCL ty^ are said, to be conjugate in G, if^-X e G (x, y) 

such that - X + A + X = B.

Notice that if A and. B are subgroups of the same vertex 

groups, then this definition is the usual definition for conjugate 

subgroups,

The other two cases are dealt with in the following lemma ,

simultaneously.

Lemma 2.1.7?

Let B^<I G {y} be conjugate to A^ in G, then E^ = E^.

Proof; Let 5-^; G v G {y} * T, and let B = ^ ^ (B^ * T) . Then 

we show that V x eG°^, A {x} = B {x}.

LetaeB{x}, thenS-yeB^ s.t. a = t^ + y- t^« (1)

Since B^ is conjugate to A^, 

3'a eG (z, y) s.t.

—a + A + a = B . 
z y

Hence, YE®y==^3BeA^ s.t.

Y = - a + g + (2)

Let 6^ = a +T eGfz}, then it follows from (1) & (2) that;- 

"=':][y-='+B+a-T^.T^+Ty-B''+B+ s'" -i^ -T^. 

1 1
But T^ "'■y ” '''x’ ^^^ normality of A^, - g + 6+ g 

Hence a = t ^ + ( -g +g+g)-T^ e-A-{x} .

Therefore B { x} C, A { x} . Similarly A { x}{^B { x} .

Hence, as with the proof of corollary 2.1.5? it follows that

q.e.d.

Let n : G-- ?H be a morphism of connected groupoids, and let A(^ G,

B (C H be wide normal subgroupoids
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s.t, vxeG°^, n (A {]^ )(2B{n(x)}

We now investigate the effect onn of passage to the quotient.

n induces a morphism n^^: E^ ^^' with the commutative 

diagram c------------------- R

as follows:- )^

n*| (E,°"*^ = G°"*^) = n, andV La3. e E , n^la j. ) =(n (a)J^.

n* is TToll-defined: Let a' E[a\, then a - a*eA {ia }. Hence, 

hy hypothesis n (a - a') = n (a) - n (a*) e B {n (ia) } . 

Therefore {)n (a')]y =Ln (a)}^.

Let G = (G, G°^, i, ^1, e , u, a ) and H = (H, H°"*^, i', Q i, 

u', o').

Then the following diagrams are commutative;-

For, let CaJ^E E^, then;-

’^*. ° '^' A (^A ^ ^^"^ ^^^^ =n (* (a)) =n o,^ (a).

on (La Jy.^ ^B ^ ^’^ ^^'^'^A^ =(?)'( n (a)) = (^' o q (a).

But n is a morphism of groupoids^so - n Oc^) = c^j'on •

Hence, n * o <,^^ = r.^ on *•

Similarlyn ^o i^ = i^ oq*.

Next, let ( fa]^, tb]^) eD^, then;-

’1* ( Ca]_^ + [bj^ ) = q^( [a + b]j = [q(a + b)]g = Ln^^') + n(b)]g 

= [n(a)]g + [q(h)]g =q^([a]^ ) + n* ( LbJj^) .

For all [a]^, q^(- [a]^) = n*( C-a]^) = [n(-a)]g = t-n(a)]5 = -qj^aj^).
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Hence (F^) and (Fg) are satisfied.

q.e.d.

Remark

Let X ; H- — ;>F be also a morphism of connected gronpoids.

Let M CF be a wide normal snbgronpoid s.t.

V ye n°^, X (H {y} ) M{ X (y)}

Then V x e G°^,X on (A {%} ) = X (n (A{%} ) )Cx(B{n(x)} ) 

$ M {x(n(x) )} = M( xon (%)}

Hence, we get induced morphisma:-

X*: Eg—and (xon)*:

It is easily seen that:-

(xon)^ = X^on* and (idg)^ =

i.e, the assignment X i*X^ is covariant. Hence we have at 

once:-

Lemma 2.1*8:

If n:G ---  ̂H is an isomorphism of connected gronpolds, then 

n^: --- ^Eg is also an Isomorphism.

2.2 THE GROUBOlO G.

Let A be a wide, connected normal subg:?oupoid^G, and let E^ 

be the set of equivalence classes as defined in section 2.1.

Lefine:-

G^ = {(h, [a^, g) I (h, a)e L, (a, g)e ^}C:G x B^x G

Then we have:-

Theorem 2.2.1: G^ is a connected groupoid over E^.

Proof: (i) Define 1*,^ ^^ G^^ ---  ̂E^ by:-
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$ A (h, [aj., g) = Gi + a + g]. .... 2.2.1 (b)

It follows from the normality of A that the final' function

^. is independent of representatives in l^^y Por, 

E L^ -^ /^ %e=KkM^ 8, '«' cl g: A {13.}=*^*====^ h. 4- 3, 8. tl E A {Ah } 

(by normality of A)

(h 4* a 4" g) ™ (h 4* a 4" g) c A {ih} 

[h + a + g]^ = [h + a"" + g]^.

f(h, [a]*, g), (h^, [bk, g^)^[h +

Define 6 A^ I^A --  ̂̂ 'i

by:' 6 ((h, Lal^^, g), (h , CbA* g )

= (h^ + h, g + gb

(Note change of order in h + h)

G . satisfies the associative law:

Let (X, Y) = ^(h, L^'f, g), (h^, [b],^ , gb) sD^ 

and (Y, Z) = ((hf [^4^, g^), (h^, [c]^, g^)) e"^ 

Then [h + a + gj. = [b]. and [h^ + b + g^J. = [cl (by 2.2.1

(a) & (b^

Hence [h^ + (h + a + g) + g^]. = [o]^ i.e.

Therefore:- ((h + h, [a]., g 

Similarly, ^X, (t^ + hb Ct)]^*

By associativity in G and E., (X + Y) + Z = X + (Y + Z), since

each sum exist (by * ) 

(iii) Define the unit map D^: E/ — ""^G^ by:- 

V M^GE^,U^ ( [a]^) = (O^g; la]^, 0^^). 
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It Is easily seen that this satisfies the required conditions 

for the unit function,

(iv) Define the inverse function Z^^ G.-—^G^ 

by*- V (h, [a]^, ^)^^A * ^A^^* ^-^^A* ^^ " ("b,[h + a + g]^, -g) 

For, if X * (h, [&]&* ^)* ^"^^ ^^ ^^^y to verify that:-

$^ (X) . I^ (E/X)) & I^ (X) = $^ ( Z(X)) ) 

thus (X, z/X)) , and(Zj^ (X), X)e 1^ 

and X +z^ (X) - ^[aj^ " (°ia* ^A' *^a^

(X) + X = 0|-]^ gj^ (Oih'L ^A' ^^fg)'

So far, we have proved that (G^, E^, I^, ,|,^, U^, Ej^) is a 

groupoid. We next show that it is connected, 

let [a]^, Cb].c%* then, by connectedness of G,3'geG(({,(a),*(b)) 

Let h# b - g - a, so (h* [a]j^, g) eG^, and by 2,2,1 (a) & (b), 

(h, g)eG^ ( [a]j^, [b]^ ) /$

q,e,d.

Dehaviour\of G^ under morphisms

Let n: G — %^E be a connected morphism of groupolds satisfying 

the conditions in (2.1.8). Then ^ induces a morphism 

as follows:-

(1) n^l E^ " n* (as defined earlier)

(ii) V (h,Ca]^, g)e G^, n*(h, Ca]^, g) « (n(h),[n(a)]g* n^^^ 

Since Cn(a)]g is independent of any representative in [a]^ 

(see discussion preceding 2.1,8.), n^ is well-defined. Moreover*- 

n^ is a morphism of grou^lds: For, V (h, fa]^, g) sG^, we have;- 
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n*ol^(h, [a.]^, g) "n*([a]^) '=n^(.(Ca]j^) =&(a)]g 

lgO%(h, fa]^, g) = Ig(n(h),fn(a)]^ , n(gJ ) ^^[p(&^B

Senoe n#.olA " ^°%' Similarly n*o$^ = $2°%' 

Therefore fi)^ oommutee with the Initial and final functions. 

Next, y (o^^, La]^, o^g), h*(o^^, [a]^, o^^) - (n(oig^), (n(a)]B,'

of groupoids)

Bence ri^ commutes with unit functions. So, it remains to show 

that n* commutes with the composition functions.

Let (()^* [a]^, s)* Ch*, C^3^* g'))c D^, then:-

(h, [a]^, g) + (h*, [t]^, g')^ = n*(^' + ^* [^^L' 6

»:^yi (h*) + p(h), jn(oO 2* nCg) + n(^'A ( * Ti to 

= Cn(h),[n(a)]g, n(g^ +(T<h'), [n(b)}g, n(g'))

+ g')

a morphism)

" n*(k, C^]j^) 6) "*" n*Ch, [b]^^ g')

Remark:

Let X: E --- )F be a morphism of groupoids satisfying the same 

conditions as n. Then, in the same manner as in Remark preceding

2.1.8. the assignment n^^rf^ is covariant, so:-

Theorem 2.2.2;

yf T,; G — ̂E is an isomorphism of connected groupoids. Then 

B*' ^A"""^^ ^^ ^ isomorphism. 

q.e.d.

Ve now show the connection between G. and G. 
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Define the functions r, j^: G^. ->G hy:-

^I^A *A' ^A''—^^°^ &r(h, [a]^, g) = g 

Reason for minus sign will he seen in 2.2.3. below. Recall 

change of order h'+ h in definition earlier.

lemma 2,2.3:

A, r: G^^G^ as defined above, are morphism of grou.noids. 

Proof: Since the proofs in both cases are similar, we prove only 

one of them, say for &. It follows from the definition that 

(P.) is satisfied, V (h, L^-J^, g) cG^, we have:.- 

&o^ (h, [a]^, g) =i^2L(^' [^^A* ^4 + ^ + 6]^ )

= i^([h + a + g]^) = i(h + a + g) = 1(h)

*o&(h, [a]j^, g) = *(-h) = i(h)

Sence jio*^ = *0A . Similarly ioi^ = iof,.

vf(h, [aj^, g), (h', [b]^, g'^e5^, we have:- 

t(h, [a]^, g) + (h', [b]^, gO = Jl(h' + h, [a]^, g + g')

= .(h* + h) = -h - h' = i(h, [a^, g) + &(h\ [bj^, g'

Sence Pg is satisfied. Therefore & is a covariant morphism.

Obviously, (&, r): G.---- >G x G is a moi^phism, but more can bo 

said. One of the main and important connections between G and 

G^ is that ((,, r) is a covering morphism in sense of [ 2 ]. Thus:-

Theorem 2.2.4:

(]t, r): G.----)G x G is a covering morphism.
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Proof: We must show that for each [a^sE,, = (G^)°^, the 

restriction of (&, r) to St^ [a], is a 1 - 1 function onto

(i) V(h, [a]^, g), (h', [a];^, g^)e St [a]^, we have:- 

(f, r)(h, [a]^, g) = (&, r)(h^, Ca]^, g'J-^^f-h, g) = (-h', g') 

r'%=^h » h\ g = g'

Hence (h, [3]^, g) = (h/, L&lj^, g', which shows that (% r) is 

1 - 1 on 8t[a]..

(ii) Given any (h, g)g8t^^ ^(ia, *a), we have i(h) = ia and 

i(g) -<^ a (by definition of product of categories). Hence 

(-h, a), (a, g)eH. 80, (-h, [al* g)ESt[a]^, and we have 

(&, r)(-h, [a]^, g) = (h, g).

Therefore the restriction is onto.

q.e.d.

Consider now an application, to the case when G = ^X. 

let G = irX, where X is a path-connected, locally path-connected 

and locally simply connected space; then Ek = G.°^ has a topology, 

called "the lifted topology" denoted by 1 - topology, which turn it 

into a covering space of (G x G)°^ = X x X (8ee[2 ]p. 309)'

Therefore we have;-

Corollary 2.2,5:

let G « irX, where X is a path-connected, locally path-connected 

and locally simply connected space. Then E^ (and hence irX as a 

special case) with the lifted topology is a covering space of 

X X X, with the projection (i., ^^^: E^ ----  ^X x X.
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(The equivalence of this topology to that obtained from LCO-topology, 

as a quotient space, will be proved in next section).

Notation: In case G = irX, we denote E. by ir^X, to distinguish it 

from the general case. The space X will be assumed to be path- 

connected, locally path-connected and locally simply connected for 

the rest of the chapter. 

lemma 2.2.6:

For any|[a]^ sE^,

(i, r)(G((^1.}) = {(f, g)e G{ia} xG{*a}|-f + a + g - ae A{ia}j 

Proof: let (h, [a^^ g)e (^^fW^^' then [h + a + ^^ = $^(h, C^-T^* s)

Therefore:- h + a + g - ae A {ia} 

and i(h),= $(h) = ia, i(g) = *(g) =$ a.

so, - he G {ia} and ge-.G{(|)a}. Eence:-

(i, r)(h, [a]^^ g) = (-h, g)e G {ia} xG{^a} 

Conversely, let (f, g)e G {ia}x G {({a} such that -f + a + g - ae A {ia} 

Then [-f + a + gj. = {a)^ (by definition of E^).

Bence (-f, la)^; g)e G^{[a]^}, and we have:- 

(f, g) = (&, r)(-f, [a]^; g)e (i, r)(G^{[a]^}).

q.e.d.

Now suppose that A{x} is in the centre of G {x}, then:-

Theorem 2.2.7:

Por each xeG°^, G,{[o],^ } i^G{3{} xA{:^

^oof: Since (^, r) is a covering morphism, (^^{(a-]^} % (t, ^)(^A^(°x]A)^ 

By 2.2.6 (&, r)(G,{[o^].}) = ((f, g)e G{x} X G{%}|-f + ge A (%}!

= ^Xl* f + s.) I fe G {z} , ae A {%} )

= B, say. (CG {x}xG {x})
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Define ip : H--- )G { %} x A { x}

by:- y(f, f + a) eS, ^(f, f + a) = (f, a) 

is a homomorphism:

];,( (f, f + a) + (g* g + b)) =^(f + g, f + a + g + b)

=^(f + g, f + g + a + b) (by hypothesis) 

= (f + g, a + b) = (f, a) + (g, b) 

=^(f, f + a) +^(g, g + b)

Obviouslyi^ is 1 - 1 and onto. Bence ^ is an isomorphism.

. e. d.

Corollary 2.2*8:

If A is a tree subgronpoid, then ^.{'[ojj^};^ G {%}

Corollary 2.2.9:

If A {%} is in the centre of ir^(X, i),

X

Proof: Dy 2.2.?, irX J[Oy]^} % irX{x} x A{x} = ^^(X, z)x A{x}.

On the other hand ^(^,X) % (^X)^ (see[2], 5'5'5\)

Hence ir^ (^r^^' ^°xlA? ^ (^^')A^[°xlA? '^ ^^CX* ^) ^ A{x}.

q.o.d.

Corollary 2.2.10:

V xeX, ir^(xX, o^) % ^^(X, x)

Proof: If we take A to be a tree groupoid, then ir^X = irX, Hence 

by 2.2.9, iT^(T:X, o^) % ^^(X, x)x { o^) % ir^(X, x) 

(^* G * d. m
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Theorem 2.2.11;

Let A and B he two wide connected normal subgroupoids of the 

connected groupoid G s.t. V xeG°^g A{x} <;2B{x}.

Then G^ is a covering groupoid of G_.

Proof: It follows from 2.2.7. that the characteristic group of 

(s,, r): G^---- >G x G at Ca^^ is contained in the characteristic 

group of (£, r)^: G^——>G x G at (,^1^.

Oove-ri1l<^
Hence, 3 a unique^^rphism

^AB° i^A’ ^-^^A * %'Mb
s.t. (£, r)^ = (&, r)gOP^.

(8ee[2 ]p. 300)

q.e.d.

Corollary 2.2.12:

If G =irX, then for any A^cB^ normal inir Vx, x), ir^X is a 

covering space of ir^X.

Corollary 2.2.13:

V A^<]Tr^(X, x), irX is a covering space of "T^X.

3. EQUIVALENCE OF.L-TOFOLOGY ON tt^X TO THE QUOTIENT TOPOLOGY.

We saw in section 2 that ir ^X carries the L-topology which turn 

it into a covering space of x x X, Since tt^X is a quotient set of 

ttX, it has a natural topology which is the quotient topology 

obtained from that ofirX. Our aim is to show that these two 

topologies are equivalent. For this, ve define another topology, 

suggested by the classical topology of covering spaces, which will 

be referred to as "C - N topology" (an abbreviation for canonical-



neighbourhood, topology), and. shovf that both L-topology and. the 

quotient topology on tt^ are equivalent to this topology. It 

turns out that the C - H topology is more convenient in practice. 

C - N topology: let CalAEir.X, and lot U and V bo two canonical 

neighbourhoods of ia and ^a, respectively, obtained from the 

property of X, i.e. every loop in U 

let PU and PV" denote the categories 

then define< U, [aj^, V> = {[y + a +

In other words each element of y 

<U, L&I., "v> is represented by 'v

and V is null-homotopic in X. 

of paths in U and V respectively, 

^^1 y2P[J(x, ia),x2Pv(^a,y),

an element of ttX which is a composition of three roads, where the 

first road has a representative path in Ph and the third one has a 

representative in PV, and the middle term is always a. 

let {U}. , {v). be bases for the canonical neighbourhoods of ia 
13,

and (jia, respectively, in X, Then, we define C - M topology for tt^X 

by taking {<U, Ca]^, v>| ^^^^ig.’ 

neighbourhoods of each Ca], in ir ,X.

V e{v}, i as a basis for the 
? aj

We now Verify that this system of neighbourhoods of ^aj,^

actually satisfies the conditions required for a basis of a topology

omr^X

^J =<”.Wa-(i) For any<ir, [al, V > , we have[a3^ = [o . + 3, 4- O 
la

(ii) Given <U, La}^, V >, <TJ) [aj^^, VSwith non-empty intersection, 

we must show that9<'0j, {aj^, V^> 5.<U, Caj^. ? V>n<U*, [^aj^, v’> .

Since <n, [a]^, T>n<n', [a]^, T,> /* 

we have UATT' / ((i, V/*^V' / <) 
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Hence, 3 U.e {U}. and V e {V} s.t. U <iU/3U’ &V.^ VnV. 
1 ]_a I I I

Cl^: <UpC^]^, 7;|> S: <U,(a:^, 7>A<H',[a]^, V'>

Let lbl^E<H, ,[a]^, 7^> , then h = Y^ + a + X^ where Y^ ^FH^ (ih,ia)

and X 3,FV. ((|)a, Ch). Moreover ihe TJ^CHnU' & (})he V^CV nv.

Then:- U^^U^=»P[r^^PH——>Y^2.FH(ih, ia)

U^H'-=»pj_^cpg,-- >Y^ '^PU’(ib, ia)

V_| ^v—->PV^£PV”-->Y^ ^PV,(c()a, «frh) 

V^&V’-- >PV^^PV*'—^Y^ "PV’((f)a, <i)b)

Hence Cbl^ c<U,i2a]^^, V> & [b]^G< U', [a]^, 7'> . Therefore:- 

lb]^e< U, [a]^, 7>n<U', [al^, 7'>

(iii) Let Cb^e< U, [a]^^, 7> we must show that

3 <U*, Lb]^^, 7’>s.t. <U’, [bj^, 7'> ^<H, Ca\, 7>

But this follows from the following lemma;-

Lemma 2.3.1!

If Lb"l^ E <TJ, Laj^» 7 >, then <H, [h]^, v> = <U, (a]^, 7>

Proof; Let ib = x and 41 b = y, then3Y;Xe if]

X3P7(^a, y), and b = Y + a + A

Let [cjj^ e< U, [b]^, 7 >, then o = Y* + a + 

where Y'2 Pa(x', x),X 2 F7(y, y') 

x' = io and y’ = 4)C. Hence [cL =G' "^ ^ "^ 

£y ’ + (y + a + A) + A ']^ = Gf " + a + A"1^E< 

s.

H

'-A '

where Y " = Y ' + Y — Fbf^'; ia) and A " = A + A ' 2^^^' (^a, y') 

Therefore <H, ^^^A' ^ > — <^' La]^, "V^

Conversely, let <1^, ^^^A' ^ ^' then d = Y.; + a + A^i where

Y.,ZFa(id, ia) andA.|2P7 (^a, *d). Takingy' =Y ^ -yand

A ’ = - A + A ^ , we get:-
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Cd^ = [y + a + xj^ Ly' + Y + a + X + X’3^= Cy’ + b + X’3^^

E< IT, [a]^, 7>

Hence < U, [_a2^, V>£.<U, Lbl^, 7>

Therefore <U, [_a]^, V>=<H, Cb]^, V>

q.e.d.

Remark; nsual covering' space of X (with usual 

topolo^)

Theorem 2.3-25

The C - N topology and the quotient topology on E^ are 

e^ivalent.

Proof: We first show that any basic open set <IJ, Cal^^, V> in

C - IT topology is open in the quotient topology. For this we must 

show that M = {fepX |}.f J^e<P? ^®'^A’ ^^^ ^^ open in PX, LetXe M be 

a path of length r, say, thenX(o)e U andX(r)e 7. Since X(l^) is 

compact, it can be covered by a finite number of simply connected 

open sets W^ = U, W^, ...... W^ = V 

of X. Hence, we can subdivide I into intervals 
r

E. — r^t-i i* 1 ’ ii — 1 » ...«, n 
J J-1

such that n

Moreover we can choose K., j=1, n in such a way that

A is not constant in some neighbourhood of t., j = 1, ...., n - 1. 

For each ;((t.), we can choose a path-connected nei^bourhood W .
J

such that:

W' = U, W =7 and W .CW.AW. ., j / o, n. 
o n 0~ 0 a + 1 ’ ’

Since A(tj)6W.r.w. W’ . exists and oven can be simply

connected.
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Let o<e<t - t ., and let K' =1 t ,, r +e Thon
n n - 1 n L n - I j n

clearly

N = T(Ep w,)n...nT(E', , v')n ...nT({t _

is an open noi^honrhood of X in PX (n being the length map).

Claim; N&M. Lot P cN, then it is easy to find t'^,
2’

t' ^el such that p(t'.) eW., 1 *= 1, .«,» n - 1, 
H — I 8 1 1 

and P is not

constant on some neighbourhood of tH, 1 = 1, ., n - 1. Clearly

Lefine:-
rx(t+t._.) , o<t^t.-t.^

X : tR^—--*x, j = 1, «.., & i)y! j (t) =)

u.:IR'--- *X, j = 1,,..nnAl'by:p.(t)

and p^:Rt—»X by: V t eR"^, p/t) = p(t + t'^ _ p

clearly X.(i = 1$ n), p.(j = 1» ^^ - "l) ^"^ °^ length

t. - t. .and t' - t'. respectively, and n(p_) = s - t* _ . 
j J 1 J J 1 '

We have:- Xj(o) = x(tj _ p = Xj _ ^Ctj _ _ g) and Xj(R )^^j*

Pj(R^)SWj, j = 1, IX.

HenceX. . + X. and u. . + p. are defined for j = 1, »«, xx; and

we have;-

X = X^ + Xg + ... + x^

P "= P. + P2 "*" ^n

(*)

Let Y4ePW\(x(tp, p(t'.)) , j = o, 1, 
J J J J '

..,, n 1 and

YnC ^'/^ (^)*(' (^))
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Then

Eence

+ Xz + Yi ePW.(^.(o), p.(t'. - t'. _ j - 1,

* * * ; T1 — 1

-Yn. - 1 + ^n + YnG ^^^^^(t^ _ p, ^(s))

by simply connectedness of W.'s, we have:-

n -

"Yn - 1 Yn p^iG'n^^^^^^)* pX^))

Therefore:- p = +\"Yn - 1

= -Y + + «« + ^ + Y

« J:^ + T+ 3^. (by (*))

Since Tz-PW' (X(t ), = P[T(^(o), '^(o))

and 3^2FW^^(^(r), ^(s)) = PV(^(r), ^^(8))

we getCp]^e< E,CA]^, V > = <T, [a]^, V)' (by 2.3.1.)

Scnce peJVt, and NSM. Thorefore< E,(a]^, V> ie open in the 

quotient topology. 

Oonversely, let MSinX be open in the quotient topology; we show 

that it is open in C - N topology.

Let[aJ^e M, then N = {fe PX| [fl^c M)

is open in EX and contains any representative path X^ of a.

Then ^closed intervals KI, KI, K^I, open sets E. ,....»

E SX,

ande> o such thatXe E\n n^(r -e , r +e )SN, where E' ^f^T^^i'^i)"

Now, let K c {j I OE X., 0 j ^ m}

L = {i I rg X., 0 .{: i m}

X , otherwise ^ X , otherwise

Define

U

It is immediate from the definition that x(o)e E, x(r)e V.
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Therefore, 3 simply connected open sets U’ and V 

such that x(o)e U' S:U and X(r)e V'^V.

Claim; <U', L^J;^? V*>—M

By continuity of X, 3e^, £2 eiR^ such that:- 

x( L°, e-|l)-^’ ™^ ^(C^ ~ ^2’ ^J^~

Moreover, ( te E., je K t > e^ 
I J ' ' (**) 
j te E., i^ L t< r - £2

Let [h]^ E<U', [^a]^, V’> , then h = y + a + v , where y and V have 

representatives in PU’ and PV* respectively.

Hence, hy lemma 1.2.6. 3fe PH* and ge PV*, of lengths

, £ = minimum {e^, Eg, e^} such that:-

h = f + a + g = f + X + g = u , wherop = f + X + g.

We now show that peN'y^n \r -e , r +e )S.N

We have n(f + X + g) = £ + r + £< r + ^ /E(r -e , r +E )i
3 ' ' 

and r _ 
f(t) t E

p(t) =< x(t -E ) E ^ + E 

g(t - r -E ) t^ r + E 

It is now easily verified (using (**) ) that

Vte K., p(t)e U , j = 1 > • = •, ra-

Hence ue<^ t (K. , H. )<h p (r -e , 3? +e ) 5=-H 

Therefore fc"]^ ” ^^^A^ ^^'’ iLhis completes the proof of the claim.

Thus M is a neighhoxirhood of each of its points in the C - IT 

topology. Hence it is open.

q.e.d.
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Theorem 2.3-3 i

The C - N topolo^ is equivalent to the L - topology.

Proof; This follovra froinj_ 219.5-5- and the following theoremo

Theorem 2.3.4 :

TT^X with C - M topolo^ is a covering space of X x X with the 

projection; ( £, r);Tr X----->X x X as defined in 2.2.4.

Proof: Let{ IT }be a cover of X by simply connected open sets. Then 
a 

^^i'^ ^j I ^i' ^j^^ °^^"^ cover of X x X and is a basis

for the product topology on X x X.

Let<U , fa]^, V> be a canonical neighbourhood of L a-l^ i^'’’^ ^^i then:-

(&, r) HU.fa] , V> is a homeomorphism onto U x y.

Let [b]^, [c]^e<U, [a]^, V> , then;-

( £, r) (Lb]^) = ( t, r)(£cj^) —"Xib, (j)b) ='(ic, c) =z-=z;> ib = ic

' , & (j) b = (j) c (^1)

and £b2^e<U, [a]^, V> —...^.-.^b = y^ + a + x^ , where Y^2PU(ib, ia),

X,2F9'(*a, (^b)

[C] E<U,[a]^, V > =^c = Yg + a + Xg, where YgZiuCic, ia), 

Xg^FVC^a, *c).

It follows from (l) that:- iY| = iY2 ^ 4»X^ = 'I'Xg -

Eence, by property of U and V, y.| = Y2 and X^ = X^ 

Therefore Cbl^,^ =t'*^l ^i^j^. ~ L^q "^ ^ "*" ^2^A ~^^^A’ which shows 

that (Z., r) is 1 - 1 on <U, ^aj^^, Y> .

Next, let (x, y)E U x 7, then xe U and ye T. LetY2PE(x, ia) and 

X^2PV(4)a, y), then(_Y,, + a + X^^^e <U, [ al^^^, V^ , and we have;- 

(^, r)( [Y^ + a + Xj^ ) = (iYp *xp = (x, y).

So (&, r) maps <U, [a]., V> onto E x 7.



But{<U, [a]^, V>1U, Ve{U^)anci fal^^cir^X j is a basis for the C - N 

topology on ir^X and {U x v |n, T e{U^}} is a basis for the product 

topology on X X X. Hence (£, r) maps bijectively basis to basis, 

and. so it is a homeomorphism.

We now show that for any IJ x V, H, V e {U^^} 

(i, r)"'’(U X V) = L7<H, [al^, 7> is a disjoint union. 

Let<U, [b]^, 7> ,<n, [c]^, 7> ^(&, r)""" (U x7) have non-empty 

intersection, then3M,such that;- 

L'^Ia^^ and[d3^e< U, [cl^j 7> -

But by 2.3.1• we have;-

<TJ, Lb]^j 7 > = <U, Cd]_^, 7 > = <U, (cj^, 7>

Wir)fl.ny, we must shovj that (5,, r) maps ir^^X onto X x X. Let (x, y)E 

X X X, then since jC is path-connected, 3 a eirXfx, y), end we have:- 

(&, r)([a]^) = (ia, ,^a) = (x, y)

q * G»d *
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CHAPTER III

TOPOLOGICAL STRUCTURE OF ttX

Introduction; In this chapter, vze first consider the question 

of topological categories and groupoids. These categories and 

groupoids were first introduced by C. Ehresmann (^ij in 1958? i^i 

a rather special way without giving any examples. We introduce 

a new definition and yive some nice examples, e.g. ^vc show that 

if X is a Hausdorff space, then PX (the set of all paths) is a 

topological category and ^X (the fundamental groupoid of X) is 

a topological groupoid over X. As another important example 

we prove that’H!(t), the set of all homorphisms between the fibres 

of a vector bundle T over a Hausdorff space X, is a topological 

categoiy over X,

In section 2, we show that a special kind of these groupoids 

called "locally trivial" have bundle structures over the cartisian 

product of their object space with itself, and for each x, st^x 

(= i”\x))is a principal bundle over X, under tho projection * 

and the structure group uJx^. Hence, every locally trivial 

groupoid G with discrete vertex groups over X is a covering space 

of X X X, and St^x is a covering space of X. We show that if X 

is path-connected and locally path-connected and locally simply 

connected Hausdorff space, thenirX is locally trivial, and since 

X has discrete fundamental group, once again, we obtain tho 

covering space structure for itX over Xx X, We prove that every 

locally trivial groupoid G over a p.c., A .p.c. end &.s.c. space X, 

with discreteY^kres is isomorphic to ir .X for some normal 

subgroupoid A of irX; and if X is p.c., A .p.c. and A .s.c. space 
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with ahcllan fundamontal group, then any covering space N of 

X X X corresponding to A^xir (X), A^ a subgroup of ir, (X), has a 

groupoid structure. This then tolls us all connected locally 

trivial groupoids, over X, with discrete vertex groups. Moreover, 

in case X is p.c., A.p.o. and l.s.c. space, we show thatirX has 

bundle structure over X.

In the last section, we prove some more facts about irX, e.g. 

we show that if Xi,Y, as spaces, thonirX^xY as topological 

groupoids. Finally, wo close the section and the chapter by 

introducing the notion of homotopy for topological groupoids and 

show that if X= Y as spaces, thenirX^ -nY as topological groupoidsa

if X and Y are p.c., (,'P'C. and ji.s.c. spaces.



1, TOPOLOGICAL CATEGORIES AND GROUPOIDS^

Definition 3.1.1s

A category C = (C, C°^, i,A ,e , ^) is called a topological 

category if:-

(1) C and 0°^ are topological spaces with C°^ Sausdorff

(2) All the maps i, i(i ,6 , u are continuous.

(Wc take the relative topology for D, the set of composable 

pairs).

Definition 3.1.2:

A groupoid G = (G, G°"*^, i,(j) ,6 , u, a ) is called a topological 

groupoid ifs-

(1) G is a topological categoiy

(2) the inverse map a is continuous

Before giving examples of topological categories and groupoids 

we make the following useful remarks about their properties.

Remarks; 3.1.3.

(1) Since C°^ is Hausdorff,then V xeC°^, {x} is closed. Hence;- 

In every topological category, for every object x, the sets 

Stx = i”\x) and ^^^ = <!> ^(x)

are closed subsets of C.

(2) Since ¥ x, ye C°^, C(x, y) = Stx/^Sy, it follows that:- 

In every topological category, the sets C(x, y), x, ye C°^, 

are closed.

(3) let H, 7 SC°^ be open, then C(U, V) = i"'* (h)/^ (V) is open

(4) Let G be a topological groupoid, then 7 xe G°^, the vertex 

group G{x} = St^o^^ is closed in G.
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(5) Let f eC(x, y), Twhere C is a. topologioal category, then 

f indnoes continnons functions:- 

fA: St .-- — ">St , defined hy: . A(a) = f + a (<» 8(f, a) ) 

A^' defined by: A^ (h) = h + f (= 6(h, f) 

Continuity of these functions follows from that of 8.

In case of ^oupoids, « A, A^ are homeomornhisms.

(6) Let ')b = {(f, g, h)e C x C x C| (f, g)e L and (g, h)e L} , then 

the function 8 : 3) — —

defined by: 8 (f, g, h) = f + g + h is continuous

For, let TT^: C x C x C- — >C and iTg : C >< C x C — — »C x C 

be the projections defined by: ^,(a, b, o) = a 

iTn b, c) = (b, c) 

then irl = I ^ and Tr\ I ^ are continuous. Now the 

continuity of 8 follows from the % ^Zllfil&i^I) 

commutative diagram:-

(7) Let G be a topological groupoid, connected in the groupold 

sense. Then V x, y, x', y*, e G°^, G(x, y) is homeomorphic 

to G(z', y') 

Proof: Since G is connected, G(x, x') / 4" y') / 4)

Let f eG(x, x') and g eG(y, y') be 

any elements. Lefine:-

n: G(x, y) ---  >G(x', y') j-|

p: G(x*, y*)—>G(x, y) ^'

by: 9 hEG(x, y),p(h) = -f + h + g

9 h'eG(%\ y*),M(h*) = f + h' - g 

nand rare oontlnuous:

For, n = _^AoAg andp = ^ApA 
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It is oasily seen that;- yon = id.^(^ y) a^^^ nop = ^'^.^(x* y*) 

Hence ri is a hijcction and ^ "* = p • Therefore it is a 

honeonorphism.

(8) In every topological ^onpoid, connected in the abstract sense, 

the vertex groups arc ieomorphic topological groups. 

Proof; That the vertex groups are homeomorphic follows from (7)- 

We only need to show that they are isomorphic as abstract 

groups. If in (?) we take x = y and x' = y* and f = g then 

¥ h eG{x} , p (h) = -f + h + f.

Let h^, h2e G{x} , then p(h^ + h2) = -f + (h^ + h^) + f 

= —f ■*■ 1^.| + f — f + h2 + f = p(h^) +p (b2)

Hence p is an isomorphism.

(9) Let L denote the set of composable pairs in C x c, C a 

topological category, then D is a closed subset of C x C, 

For, let 6 = {(x, x)E C°^ x C°^} be the diagonal, then A is 

closed,since C°^ is Hausdorff. Then D = (<f) xi) ^ (a), and 

hence it is closed.

(10) In every topological category C°^ is homeomorphic to 0, the 

set of units in C.

For, u'= (()|0 = i I 0 is the inverse map of u, and we already 

knov/ that u;' C°—--- -^0 is bijective. Hence, it is a 

homeomorphism.

(11) 0 is closed in C if C is Hausdorff. For 0 is a retract 

of C, and any retract of a Hausdorff space is closed (sec 

e.g. L6 Jp. 25 )
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Examples;

(1) Every topological semigroup C is a topological category 

over one object. For, in this case, i,{^and. u are 

constant maps and hence continuous. D = C x C and q is 

the composition of elements, and so hy definition is 

continuous.

(2) Every category(groupoidjis a topological category(^groupoid) 

with discrete topology on both, the set of objects and 

the set of morphisms.

(3) Every topological group is a topological groupoid over 

one object for the same reason as (1),

(4) Any union of topological (semigroups) groups is a 

topological (category) groupoid, with discrete topology 

for the set of objects, and the sum topology for the 

set of morphisms.

These are all rather trivial examples; we now proceed 

to shovz some non-trivial examples.

Theorem 3.1*42

If % is a Hausdorff space, then PX is_ a topological category over X. 

Proof; (i) For each t e R"*", letv^s PX--->X be the evaluation map, 

i.e. VfepX, xi^(f) = f(t). Theny is continuous (e.g. sec [ 6 } 

p. 74). Obviously i =x'^ and hence it is continuous.

Next, lot U be an open neighbourhood of (j)(f) = f(r) eX (r being the 

length of f). Then since f is continuous, j e> 0 s.t. f(r - e , r + E )^'J. 

Let E = [r - E /g, r +e /g "j, thorn; (k, N)nn \r - e/g, r + e/g) is 

a neighbourhood of f in PX. For any g er (K, U) / h ri "* (r - e /2., r + e /g) 

lot s be the length of g, then r - e/g < s < r + e/g and so g(s) eU.
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Hence ^( t(K, H)<')n '*(r - e/g, r + e/g) )^U.

Therefore ,(1 is continuous.

(ii) The Unit map u;X---- >PX is continuous

For, let (<^?^i t(K., f o? e) "be any neighbourhood of 
1— 111/*'—

o^ = u(x) in PX, then O-(K.) = %, i = 1, .. . n. Hence

= 11/1^. Therefore TJ is an open neighbourhood of x in X. Obviously

V yeU, " yeUCH^, i = 1, .n.

\ -1 Hence o^ e ^'iZi'^'^ ^^p’ ^i^/O ’i" (' E o, e ) )

i.e. u(U)C(Qr(K., U^) )nn"^ (o, e ) 

Therefore u is continuous.

So, it remains onl.y to show the continuity of e :D-----> PX.

Since the proof is lengthy, wc prefer to do it in a separo-te lemma.

Lemma 3•1•5 2

The composition functions ;D----> PX is continuous.

Proof; Let t(K, U) be any subbasic open set in PX, containing

6 (f^, gg) = f^ + gg. Thon for any e>o, wc show that 3 a^, Og > ^ 

and compact subsets K^, k^'CH"*', and open sets U^, Ug CX s.t. 

f^erCK^, U^),QT7^^r -cr^, r + o^) = H^ , say,and

gg erCXg, H2)g^,r,"\r - yg, r + Og) = ^^^2’ ^^-y-'^nd

6 E^*^-^ X I^g) C3 D)<^,-(K, TJ)/'!,-, "'fr + s -£ , r + s + e)

Since U is open and f^ + g^ is continuous, 3y>o s.t.

V t eR"*" s.t. d(t, K) <y (f^ + gg)^ eU.

Let L = {t efft"*" | d(t, K)<y } , then (f + g^)(L)(CH- (Wo have

K^L)
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Wc consider 4 cases as follows:-

(1) Suppose K/^ [o, r^ / (^ and E,'^ [r, r + sj / (k 

Then, let 0=0. " ^2 ^ minimum {y, e/^} , and let

K.;^ = K<q fo, r + aj and K2 r -a , r + 8

We have;-
r

^^r

Hence

and.

f - 
r

V k,

Hence

s^t g(t - r)

£T (K, u)==>¥ k^£ ^1

f^ GT(K^s

68(^2) = gg(& - :c

H)nq'"\r - o, r +

: H.some

and.

ieL-

Therefore (f 
r

-1 
n

as n)n

Claim;

Let (f'

But

g, s + o)))'^^ = ^, say.

8(N)(C iCK, U)r,n"'' -e

gp e^, thG]:^ 8 (fp, gq) = fp + Sq 

g^)(E) i^H, and | p + q - (r + s

We must show that;-

ffyE^)CU and | p - <a

.^ EE2, £

U

^s^"^ ^^2’ ^^'^'1 

I" + ct)) X fTCk2

-1 ■

s

p
-1/(r - 0 ,

, -1 
i p a,

s I <0

Up + q - (r + s)]

4- g^)(K)^U

3 ^^

For, k < p = rCk) e U (by *)
p ®q^k

p * S^k ■ Sq^l^ -»k - p eE^ p) E u (ty *) 

Therefore (f^ + g^)(K) ,CH. Hence f^ + g^ et (K, U)r3n (r + s - e.

(2) lot K<'1 [o, r3 = 4i , Enfr, r + s] ^ 4, ; 

We can choose y in such a way that L/O [o, r] = * . Let U^ CX 
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be any open set conta-ining f^(r), then3Y>o such that 

f^(r -y*, r + y') I^tr^. Lot y = ninimumi^ ^y^, ^',^ , dfr, k)l, 

and lot E^ = [r - o , r + o-l , Kg = L - r 

Thon f^ET (Kp up and g^ 61(^2, U). For,

7 kgE Eg' ^3(^2^ "" ^8^^ - ^^ ^°^ ^°™^ ^Gl' 

" ^^r ^8^ ^^^ ^^' 

cloarly (f^, g^) eU = ^( t(K^, up^Ti"'’('r - cr , r + o))x 

(? (^2' ^)A n \^ - 0 ; 8 + a )^/^ U

It follows easily that 6(u)c t(K, U)^q~'*(r + s- £,r + s+ g.) 

For, let (fp gp eU, then 7k eK, (f'p+ S'q,)^^ g^^k - p). But 

k - p eKg, hence gq(k - p) eU. (Notice that k is always >p.) 

(3) Let Kn [r, r + s3 = ij), K<1 [o, r] / i*< -

We take K. = K. Lot Ug ^® ^^ open sot containing g^fs), thon 

gv> o such that gg (s - v ? s + \j ) ^ Ug. Let Kg = (s - v y 2» ^ "^ ^ ^ 2I ' 

thon gg ET (Kg, Ug), and by definition xvc havo;-

7 k e K, (f^ + gg)^ = f^(k) e U. (*.‘ k e K is less than r),

Let 0 = min (E/gi (1(]:; K)) , thon wo havo:- 

(f^, gg) E U = f( T (K^ , U)^r|"'^ (r - y, r 4-y ))

X ( T(Kg, Tyg)/^P (s - 0, 8 +y I)

Given (fp gp E )^, then p > k, 7 kE K. Hence ;-

(f' + g’). = f'(k)E U.by definition.

Therefore f^ + g* eT(K, U),and hence

8(ig) CT(K, U) r'^ n (r + s - E,r + s + e)

(4) Kn [o, ]?] = En[r, r + s] = ({i

This case is easily verified. q.e.d.
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Lemma 3.1.6;

The ma-p a; PX---- >PX, defined by j(f) = -f, is continuous,.

Proofs Let N be a basic neighbourhood of - f, and let r^Cf) = r. 

Then 3 closed intervals K^, ...., K^(^ !R'*', open sets U^, .... TJ^ 

in-X and£)> o such that - fe,-^":pi rCKj,? ^j,)/^!! \r - £, r + e) = M, 

say. Without loss of generality we may assume K^^^ [^o, r] , i = 1, 

 n. Let Kj_ = r + ?, - K^, where ['c. £^ is the maximum intcr-.'al 

such that f| [o,£] is. constant. Clcaj?ly K^ is compact and we havcs- 

^ri2l^ - e, r + e) = N, say.

Claim a(lT) ^ M,

Let gg eH, then s E(r - e, r + e) and so -g^e p \r - e, r + e).

We have - g_(K.) = g(r + .i?, - k.) = g_(K! ) C ' 1 = 1* - , ^'

Hence -g^ eM.

q.e.d.

Corollary 3.1-7!

The final map cj) ! PX--- >X has path lifting property.

Proof; Given any path f in X, j a path f in PX such that 

iof = f (For the initial map i has path lifting property, by remark 

(iii) in 1.3). Then dof is a path in PX and we have:-

(^o(oof) = (6oa)of = iof = f.

q.e.d.

Theorem 3.1.8;

If X is a Hausdorff space, then tX is a topological groupoid pyer_X-

Proof; Let q; PX--- ■>ttX be the quotient map, then we have the 

follov/ing commutative diagrams;-
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Hence continuity of the maps relating to ttX follows from those 

relating to PX.

q.e.i.

Definition 3*1.9s

Let C, C* he topological categories. A function p ; C——>C* is 

called, a functor of topological categories if;

(1) p is an abstract functor

(2) pjc and p|C°^ arc continuous.

It is immediate from the above diagrams that;-

Lcmma 3.1.10:

The quotient map q ; PX-- >itX vmth q| X = identity, is a functor of 

topological categories.

Another example of topological groupoids is obtained from the spa.ee 

of all continuous functions P(Pg^> %) = {f: 1^^ -..->X }, with the 

C - 0 topology, where Ig, = [o, a] <^ R"^

Let D = {(f, g) eP X F [ f(a) = g(o)}

Define 6 :D--- ^^(^g.’ ^X ®(^’ s) = f«g’
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■Whore f.g; I---- > X is defined, "bys- ( f(2t) o <: t <: a/_

(f'g)^ = \ s(2t - a) a/g t ^ a

(iTotioo that if a = 1, then elements of F are paths, and the a'bove 

operation is the product of paths, in the old sense).

Let D carry the relative topology then;-

Lemna 3.1.10;

The map 6;D--- > F(I^.X) is continuous.

Proof; Let K = t(K, U) he any subbasic open set continuing f.g , 

we show that 0*"' (n) is open in D.

LctA^, X2” ^a---- '^^a ^® def inted by;- 

V te I^,-------- = t/2 and X2(t) = t (*) 

obviously X,,Xg are continuous. Lot K^ = X^^ (k), i = 1, 2., then

Kj., i = 1, 2 is compact- So t(K^, TJ) is a basic open set, hence 

( t(K.^, U)x t (K2, U)),-^D = N is open in D.

Claim; 6 (n) = N;

Let (f, g’)e 6~\iT), then f’.g'cT (K, U) = N. Hence f’.g’(K),^H.

But = Jf'C2t) o < t << a/2 
I (**) 
{ g' (2t - a) a/g ^ t $ a

Now, V k E Ep lot k = x/k^E E, then by (*) k^ = 2k, o < k < a/g

Sonce f'(kj = f'(2k), c,< k f a/g, and so by f**) f'(k^) = f*(2k) 

= f'.g’(k) e U.

Therefore f’(K^)<^U, and f'cT (K^ , U).

Similarly, V k2E K2, g’(k2)e d, and hence g'CXg) ^ d.

Hence (f*, g*)eH i.<-. 6 (d) C d.

Conversely, let (f^ , g^)e N, thon:-

(Ep U)=-^f/E)(^U 7

g^GT (Eg, d)==:!>g^(E2)(Sd J



Lot ko E, thon;-

f if o k f a/g, '3 kjC Kp X^(k^) = k, = 2k

if a/g < k < a.gkgS Kg s.t. Xg(kg) = k, i.e. kg = 2k - a

Honco V ke K, wo havo:-

^^1'^l^k - ffi(^^) , ° _ ff\(k.)E IT 

\ i ' by (***) 
t6i(2k - a), a/g < k $ a |g^(kg)e u

Therefore f^.g^^^ (E, Tl) = N. Hence (f^, g^) oG (^^'

Since any basic open set in F is a finite intersection of subbasio 

onon sots and. 8 ^ prosorvos intorsoctions, it follows that G is 

continuous. ^^a-^'

Lemma 3«1«11:

Tlio map o: F—->F defined by:-

V feF,o(f) = f"^, where f"^(t) = f(a - t), tel^)i8 continuous

Proof: Let N = T(E, P) contain f \ then f (E)

Define P: I^---- >1^ by p(t)=a-t.

then obviously P is continuous, and E' = p \E) = a - K

is compact.

Claim: u ^(E) = T(E*, D)

Lot g eo'^N), then g""^ cE , therefore g'^E)^?. Hence:- 

g(K') = g(a - E) = g \E)cE.

So, gGi;(K', n). Ecnco o ^(E)(1T(E', E).

Conversely, lot her (E*, U), then h(K')oiU. t.a.

h(a - E) = h ^(E)

Therefore h ^OT (E, E) = E, and so, he o (E)« Therefore 

T(E', E)<So''\E).

Then, continuity of o follows from the fact that each open sot 

, , -1
contains a finite intersection of subbasic open sots and o
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preserves the intersection. q.e.d.

The following is easily verified:-

Lenmia 3.1.12:

(1) f = g -: T^f = g

(ii) f.f ~ C^, f \f == Cy

(iii) f.t = f = c .f 
y X

where c^, c^ are constant maps with the values x = f(o) and 

y = f(a), respectively.

(iv) Let (f, f^), (g, g^)eD, then:-

f = g and ^= g^===>f.fjg g.gj

(v) Let (f, g), (g, h)eD, then (f. g).h = f.(g.h).

Theorem 3.1.13:

If X is Hausdorf,then ]^ = F(l X)yp, the set of all homotopy classes 

in F with the quotient topology, is a topological groupoid over X. 

Proof: For each feP, let cls(f) denote the homotopy class of f. 

(i) Define the initial and final maps i^, (f»p ^   >X, 

by:- i^(cls(f) ) = f(o) and ^^(cls(f) ) = f(a).

(ii) Let D ={(cls(f), cls(g) )| f(a) = g(o)} 

Define 8,: D^   *^ by:-

8 (cls(f), cls(g) ) = cls(f).cls(g) = cls(f.g).

By 3.1.12, 8^ is well-defined and satisfies the associative law. 

(iii) Define the unit map u^: X   >^ by:-

u^(x) = cls(c^) = o^.

It follows from 3.1.12. that u, satisfies the conditions required 

for a unit function.
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(iv) Define the inverse functioncr^ ; I^---> f^ 

tiy:- cr^(c£s(f))= clsff"”')

Aj'T’ain by 3.1-12. it is well-defined and is the right function.

Therefore is an abstract groupoid over X.

We now show that the maps i, ,4,^ ,6^, u^, o^ arc continuous.

Let v^, v^; F(lg^> X)----->X be the evaluation maps, and let 

q^: F--- >F be the quotient map. Then v^, v q^,are continuous. 

Let u; X--->F be defined by: u(x) = o , then u is continuous. For, 

let t(k, TJ) be any subbasic open set, contoining c , then x e U. 

Clearly u(TT)(^T(E, U). Now the continuity of i|,<>;|,8pUpOj 

follows from the continuity of v^, v^,9 , u,a from commutative 

diagrams similar to those in 3.1.9.

q.e.d.

As another important example of topological categories, we 

now proceed to show that if X is Hausdorff, then the category 

(^(t) (see 1.2.10) is a topologica.1 category over X.

^(T) has a natural topology defined as follovirs;- 

Let'(_/= {U <C X I U is open and T |u U x R^ }, and let for each 

U £■)_)., ii.-y. be the homeomorphism; T lU f^ U x R^. Thon for each

TT, - U,

and V (x, y) G U X V, f e HomCT , T ), 3 a unique f' e Som(E^, R^^) 
y

such that the diagram is commutative. T—--------->T
X . y

Definen^ ^: 5T)(TT, V)--->Dx 7 xEomfR^ R^)
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by:- n^^ ^<f) - (1(f), *(f), f) '

by:- n^^ ^(f) = f

Cloarlyn is a bijection. The following properties ofn 

are immediate. Since we will refer to thorn later on we put them 

in the form of a lemma:-

Lemma 3.1.4:

Let n, V, W G 1^, then V (x, y, z) e Ux 7 x T?, f e Bom(T^, T^),

geikm (T^, T^) we have:-

We topologize ^T)(B,V) by requiring n to be a homeomorphism.

Thus ^(T) (n, V) has the structure of a product space, We now 

define a topology for^(T) as follows:-

W 1%^T) Wil be open if V B, V e[/,1^J n g(T)(U, 7) is open 

ing(T)(B, 7).

It follows immediately from the definition that V TJ,7GV,(^T)(n, 7) 

is open in^(T).

Theorem 3.1.15:. ................... .  i.m. i*'10.11,1 IImil... »' ' i./'MWmei

^(T) = (^(T), %, i, 4i, u, 8) is a topological category.

Proof: We only need to verify the continuity of functions.

(i ) The function i: ^(T)- >X is continuous. For, letTTCX 

be any open sot, we must show i (u) is open. Let g e i (U), 

then ^ U* el^s.t. i(g) eU' and U* gTT. let V e7/be any element 

of^i containing 4i(g), thenge^(T)(U', V)<^i ^(u).
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Hence i ^(u) is a neighbourhood of each of its elements, and hence 

open. Similarly the final function (fi ; ^^*(1)--- >X is continuous, 

vii) The map 0! D-- ->(3(t) is continuous.

For, let (f, g) eD eind let '^ be a neighbourhood of 6 (f, g) = gof, 

then ^ U, V etl and open N ^Som (iR^, (R^^) and g wC^ containing 

gof 8.t. U X V X N % W-

(For, letU', T'e'Uto s.t. i(f)GU, (^ (g)E7, then gof E^(T)(U^ V') 

and we can take w = ^n^5(T)(U', V<). Since ^(t)(U', V) is 

homeomorphic to H' x 7' x Hom (jR*^, (R^), 5 open sets U CU’ and 

V^V’ and open N Hon (R^, IR^) s.t. w % U x 7 x N. Obviously

U, V ^)

let H| el/and i(g) = i)i(f)EU., then H is a nei^bourhood of

% Jgof) = % ^(g) on (f) (by 3.1.14)
Ll,V U-jV Uy U^

Hut Eom(lR^, R ) is a topological semi-group; hence ^ H^ N^ 

neighbourhoods of n 

H^oN^CH (*)

Then W^ ^ U x U^ x N^ and W^ !t ^-j * 7 x N^ are neighbourhoods of 

f and g, respectively. Therefore W’ = (w^;( ^U^^ ^ 

is a nel^bourhood of (f, g) in 1, and we have:-

8(W')i^ W^W (it follows from 3.1.14 and (*) )

Hence G is continuous. It remains to prove the continuity of the 

unit map u:X---> ^(t)

Let W bo any open neighbourhood of u(x) = ld|p , and let 

X
U e^ contain x. Then W* = W<^^(t)(U, U) is open and contains

id^ . Let i('W’) = U', ij>(W') = 7*, then ^ an open neighbourhood H 

X
of Identity in Hom (iR^, R^) such that W’f^, U* x 7' x N. Then

U' z^ 7* is a neighbourhood of x, and it is easily seen that

^(g)cand g^ (f), respectively, s.t.
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V ye U\n V cU, u(y) = Id. e V <2^. 

y
Eonoo u. is continuous.

g* 0»d #

Let (^(T) be the sot of
all invortable elements in

Then ^(T)

with the restrictions of the maps relating to ^(?) is a sub­

category of^(T). Moreovor:-

Corollary 3.1.16:

^(T), the set of all isomorphisms between the fibres,of a vector 

bundle T, over the Eauedorff space X, is a topological groupold over X. 

Proof: It follows from 3.1.1$. that^(T) is a topological category

( a sub-oategory)of^(T) over X. So wo need only to show that the 

inverse map c ;^(T) --- ̂^(T) , defined byO (f) * f 

is continuous. Lot W be an open neighbourhood of f \ and let

E, Ve'^jisnch that i(f ^) = ^(f)e E and ^(f ^) ^i(f)e V. Then

W* A ^T)(E, V) is open in(^^T)(E, V). Eenoe open sots E*^E,

V'^ V, E Ciao (R^, iP'^) such that

W= W* V) % E* X V' X N.

Since Iso (iR^, R^) is a topological group N"'' is open and hence

V' X E' X N"^ is open in V x y x iso (R^, R^). Therefore

W. = X E' X is an open neighbourhood of f. Clocrly
1 v,u

CW.

Q^# e. d *

Eofinition 3.1.1?:

By a connected topological groupoid wo mean a topological groupoid 

which is connected as an abstract groupoid.

Theorem 3.1.18: If G is a connected topological groupoid, then 

for any wide normal connected subgroupoid A CG, E^ is a topological 

groupoid.
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Proof: Lot E^ carry the quotient topology, then the quotient 

morphism p.: G—>E. is continuous (Recoil that p^ |G°^ is Identity) 

Row the continuity of the maps relating to E^ follows from the 

continuity of those relating to G, by using the following 

commutative diagrams

id

Por example, to prove i. is continuous lot be open

Since E. has the quotient topology. (N) is open in
^1

A
""I /T ™PA (\

(R) ) is open in G. Rut,

(R) = i (R). Ronco it is

by commutativity of diagram,

open (Por 1 is continuous) and

therefore i,^ is continuous.

q. 0«d.

Theorem 3,1,19:

If G and E are topological categories, then the product category

G X S is a topological category.

^oof; Let G . (G, G°^, i^,* 

and E = (S, B°^, 1^,4,

Then, by definition G x E = (g

G' G'

E* S' ^)

X E, G°^ X S°^, i X 1,4, X
S'

G X S'
Ug). where8 ^ ^ g is defined by:-
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We take the product topologies for G x H and G°^ x E°^

Then, continuity of i^^ x 1^,(|,^ x^ ^ and ^^x ^^ is straight­

forward. Hence, wo need only show the continuity ofe g g

Let IL and denote the sot of composablo pairs in

G X G, H X H and (G x E) x (G x E), respectively.

Let (g., h., g^, h_)E Dp and lot E x M be a neighbourhood 

of ^Q ^ E^^l* ^1' ^2' ^2^ " ^^G^^1' ^g)* ^E^^1* ^2^ ^ ' then N 

is a neighbourhood of 8_(g,, g,.) in G and M is a neighbourhood 

of 8g(h. , hg) in S. Since G and S are topological categories 

2 E., Eg, neighbourhoods of g^ gg, respectively, in G s.t.

8g ( (E^ X Eg)nD(J6 E

andgMp Mg, neighbourhoods of h^, hg, respectively, in S s.t.

8g((M^ X Mg)nD^$M

But then E. X M. and Eg x Mg are neighbourhoods of (g^,h^) and 

(gg, hg) respectively in G x E. Eenco:-

A = ((E^ X M^ X (Eg X Mg^nDg ,, g 

is a neighbourhood of (g^, h^, gg, hg) in Bg ^ g, and wo have:- 

v(n^, ni^, Ug, nig) oA, ^q. x H^^1 ^1 ^2^ ^^^

Hence 8g ^ g(A)<^E x M, and so 8^ ^g is continuous. q.e.d

Corollary 3.1.20: If G and E are topological groupoids, then 

G X E is a topological groupoid.

By 3.1.19, G x E is a topological category. So, wo need 

only to verify the continuity of the inverse function:- 

o_ G X E- ---  >G X H



62

defined, by:- o^ ^(g, h) = (og,(g), Og(h)) - o^ x dy(g, h)

But this follows from that of andoq.. q^e.d.

2. LOCALLY TRIVIAL GROUPOIDS Aim IKE BimPItE STBUCTURES OP irX.

In this sootlon, wo define the notion of "locally trivial" groupoids 

introduced by 0. Shresmann [4], and study its relations with the 

theory of fibre bundles.

Befinition 3.2.1: A topological groupoid G over the space X is 

called locally trivial, if for each object x^e X, 3 an open 

neighbourhoodn of x^ in X and a continuous map:

X : nG 
c a

such that 9 xe U^ , i(X^ (x) ) = % and ^(X^ (x) ) « x^, 

where i and c() arc the initial and final maps $ respectively, in G 

Notice: Wo will refer to these maps as "continuous lifts", and

IT will be called "liftablo". 
a

Examples 3.2.2.:

(1) If X is a path-oonnooted, locally path-connected and locally 

simply connected Bausdorff space, then nX is locally trivial. 

Proof: By the local properties of X, for each x^ e X, there exists 

a simply connected neighbourhood IT^ of x^ . BefinoX^ : 17^^ >ir X 

by:- 9 XEU ,X^ (x) = ye^ X(x, x^ ), idiore ye FG^ (x, x^) 

Sinoo all the paths in G with the same end points arc homotopic 

in X, X is well-defined.

X is continuous: Lot< G^,y , V^> bo any basic open neighbourhood 

of y inirX,^ then ^^ OP^^ ^-^"^ contains x. Honco ^a path- 

connected neighbourhood % of x contained in Ur^G^.
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Then V yeU , X (y) E< TT^,Y , V^> . For, let ve PU(y, x), then;-

A (y) = v™+^ = V + Y = \) + Y + o e < U, ,Y , V > .

Therefore X is continuous.

q.e.d.

(2) The KTOupoid. ^X?) (soo 3.1.16) is locally trivial

contain x . 
a

U X Iso(iP-^, E^), where 
a

Proof; For each x e X, let Ue ----- Q( a

Let n „ :>)(V„, n„) „U^ 

a
X

”".• "a

Chy y as in the definition of the topology of G(T) ).

Define A : TJ------->^T) by;- 
a a

VyeTI ,A (y) - "V, U

Since q’ is a homeomorphism A^ is continuous.

q.G.d.

Lemma 3.2.3; If G is a locally trivial groupoid over X, so is E^.

^nof: Let x^^e X = (E^)°^ = G°^, then, by locally triviality 

of G, 3 ^^ open neighbourhood U^ of x^ and a continuous lift 

A ; U --- > G. Then a" = p.oA ; U ---- >E. is a continuous map, 
a a--------------- a A a Ct A 

where p^; G —>E^ is the quotient morphism. But p^ | X is 

identity, so;-

3- X e n^, i^(x^ (x) ). 1/p^o l^(i), - lA^h'^'lh - ^(h 

*AGa(:x) ) - *4 [-'‘a(x)]J^ - ♦(X„(x) ) - x^.

Hence A^ is the required local lifting.

q.e.d.

Lemma 3.2.4s

If G and H arc locally trivial topological groupoid over X and

Y, respectively, then G x H is locally trivial, over X >< Y.
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Proof: Given (z^ , y^) eXx y = (G x E)°^, then z^^ e X and 

y E Y. Bonce, 3 U , V open noi^bourhoode of x , y^ in X 

and Y, respectively, and the continuous lifts:

a a

*s(Wa(y) ) " 3^ ' V'^a^y) ) = y

Bence X x u: U. x y — —>G B is a continuous map, s.t.

Similarly, *g x n^^c "" ^^Cx* y) ) = (^ ' % )* therefore G >< E 

is locally trivial. ^^^'^'

Given a topological groupF, r x r acts continuously onf by:-

(Yp Yg) . g =Y., + g - Yg

Clearly r x r acts effectively on r. Thus we may regard r x r 

as a subgroup of Aut f.

The next theorem shows the rolatiens betwoon fibre bundles and 

locally trivial groupoids (cf[12 ^theorem 2.B.J

Theorem 2.2.5:

lot G = (G, X, i, *, 8, o, u) be a connected locally trivial 

topological groupoid, and let x^e X be a fixed object. Then G 

is a coordinate bundle over X x x, with the projection (i, *), 

fibre G {x ) and group G (x } G (x^l

P[oof: Since G is locally trivial, wo have an open cover (B^}of X, 

and a family of continuous lifts{ X^: U^--- ->G}. let T be any 

wide tree in G, and lot % eT(x , x ) bo its unique element.
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Then for each U^^ vro have a maps P^^s TJq^----^G 

defined, lys- ¥'x e Uq, , P„(x) = ^a(x) + ^^ 

obviously Pq= A_^ o ^^ and hence it is continuous. Moreover:- 

i(Pg(x) ) = X and *(P(^(x) ) = x^.

Wc will call P the associated lift ofX^. (They aro introduced 

only for simplification.)

The 8etU= {U^ x U^ |U^ , Ug£{U^}} is an open cover of X x x,

and we take it as the set of coordinate neighbourhoods.

For each U 
a

^g ^11, (lefinc the coordinate function

ag
^6 X G{x 

0
\u X 

a

6

We have

U a 6

V c EG(Ug,, Ug), *^go *^g(c)= *n6(^°' *°' - ^0(1°) + ° -^g(*c) )

= PyCic) +('-Py(ic) + c + Pg(^c) ) - Pg(<f>c) = C 

Therefore *a«°*a«-

Similarly *^o *^. Idy^ x n, x G (l^l

= V-'Eence A is a bijection with
(% og

We next show that Ip are continuous 
og

and hence

*og is a hoiaeonorphism.

Let t: G X G --->G x G be the twisting map, i.c.

t(a, b) = (b, a); and let js gIx^) ---->G be the inclusion map,

then we haves-
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*Qg= ^o(lQ ^ t) 0 (pg )^ (°opg) ^^j)

%ere 0 is as definod in 3 = 1.3(6)* Since all maps in this 

composition arc continnons, (|ig is continuous.

Let \): G(ng, Ug ) >G bo dofined by the following commutative 

diagram:-

G(U , n.) Ug X G iZS^^liglf^Gx Gx G

where j G(ng, Ug) -----  >'G ir-

I
denotes the inclusion map. 3.1.3.(6)

Thon, obviously \) is continuous, and wo have:-

(i,* , V), iduero i and * are the restrictions of 1 

and ^ to G(U, V) = (i, *)-^CDg x Pg). Eonce »gg is continuous. 

We now show that those coordinate functions satisfy tho required 

conditions for a coordinate bundle (seo [loj)

(i) V (%', y')e E^ X Eg, dofino:- 
, : G (x } ---  >(i, *)"^(x', y') =G(x', y')

Then V (x, y) e (U^ X Ug ) n(U^ , '

we have:- V a eG { x^) , -

+ Pg,(y) = Yy + & -Yy

andYy = " Pgpy) +Pg(y)e Gfx^}

Yy) ^^ ^\) (^o)

"= -p^x) +p^(x) +a -pg(y)

where Y^ = - P^^^) '*'P(%(^) ^^^ ^^0^

(ii) Thomap g :(T^x Ug)n(E^,x 

defined by:- ,g, (x, y) =4,

is continuous.
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Tho continuous lifts Pg^Pg^,and.Pg\ Pg give rise to contimieus 

maps 8(^g,:n(png^--- ''(^^*(? *%a'(*) =-^0,^ + ^a (^)

Sgg': TTgnTTg---- >G {x^} , Sg g(y) = -Pg,(y) +Pg(y)' 

^°:^' ^a (f=^°(''°^a'('c() ^ ^g g*"" ^^(('(^g' 'Pg)' 

Oleariyg^. = S ,x S -, and hence it is continuous.

Tho coordinate bundle obtained as above, depends on the 

choices that wore made, i.e. depends on the continuous lifts 

and the tree T. Wo now show that different choices give rise 

to equivalent coordinate bundles.

For each Ua . lot : U ----->G be another continuous 

lift, end lot T' bo another tree in tho construction of p^ 

Thon, as before, we got a continuous map

Senoo, for each coordinate noi^bourhood S^ x Ug, tho new 

coordinate function will bo:-

defined by:- *^ g(x, y, a) = P\(^) + a, - p'g(y), 

and for each pair/u x s , s ,x U.Xthc new coordinate
XU p u P / 

transformation will be:-

defined by:- y) =*"a'6Sx,y° ^\ 6 x,y

= ("P *^^ (x) + ^a^^) ' P'^(3^) "^^ P'g(y)/ 

For each b^^ x Ug, define

^y:" ^ag(^' ^^ "^ ^"^^a^^^ "*" ^a^^^* "^6^^^ +P^(y) )
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obviously is continuous, and we have:- 

V(x, y)e (Ug X Ug)n(U^,x Ug,),

= (-P'ai(*) "*" pQit*) " Pg,(x) + pQ,(x) -Pg/x) + p^ (x), -P'g,(y) 

+pg'(y) -Pg,(y) + pg(y) - pg(y) + p'g(y))

= (-p'^,(x) + p_Xx),- p'^(y) + pj(y) ) + (-p.(x) + p (x), 

- pg,(y) + Pg(y) ) + (-p^(x) + p^Xx), -pg(y) + p'g(y))

Hence, the two coordinate bundles are equivalent (see[10 ]p.l2) 

Corollary 3.2.6;

If the vertex groups of a connected locally trivial groupoid G 

over X are discrete, then G is a covering space of X x x.

Remarks 3.2.7.

(1) When X is p.c., A.p.c. and &.s.c., then ^^(X,.) is a discrete

topological group. Hence, once again, we get:- 

If X is a p.c., &.p.c. and &.s.c. Hausdorff space, then ^X, 

and hence v.X, is a covering space of X x x. In case ^i(X,.)

is abelian, ir^X corresponds to the subgroup A{'}x ^^(X, .)cvi(X x X).

(2) Since G is a bundle over X x X, with the projection (i,^ ), 

it follows that in any connected locally trivial groupoid G, the 

initial MLd final majgs are oper^

(3) Given a cG, let U. , U, be the liftable open neighbourhoods of 

ia and (()a, respectively. Then for any open neighbourhoods N^^lG(ia, ^a) 

the set M ={X.(x) + n - X. (y)| xsU. ,yGU. , neN } is open in G. 

For, let(|)^j^g^^Q)g^^:l^ x l^ x G;[x^ -   yG(U^, Ug) be the coordinate 

function, thou M = ■< U^^ k (-t.^ . + T^^) ).
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(4) Let G Lc a connected, locally trivial gronpoid., and. let t 

"be an element of the tree T with initial x^, Then given any 

open neighbourhood N of t, 3 a basic open neighbourhood

< Nq, TJ..| > = tn + P (y) I ne N^, ye U^} of t contained in N. 

Proof; Since (i)(N) is open and contains (J)(t), 3®' lif"ta-blc open 

neighbourhoods U.^ of <i)(T) and the continuous lift p ; TJ.j >G, 

Let Uq be any liftable neighbourhood of x^, then H..^ = ITr3G(U^., TJ..|)

is open in G(TJq, U.^ ) R; U^ x U.^ x G {x^} and contains t • Hence 

3 neighbourhoods N of 0 in G {x^jsuch that N^ = < IT^, H^ >• 
o 

q.c.d.

Theorem 3.2.8;

Let (G, X, i, <{> , 6, a, u) be a connected locally trivial groupoid. 

Then for each x^f X, Stx^ is a principal fibre bundle over X with 

the projection 4 and the group G {x^} acting on itself on the right.

Proof; LotiU^}be a cover of X by liftable open sets, and for 

each a , let p ; IT--- j> G be an associated continuous lift, such 
a a 

that ¥ xe U , i(p (x) = x and (j) (p (x))= x . 
a a------a 0 

Por each a,define ip ; U x G {x } ^4 (u)AStx 
a a------- o------------ a u 

by;- ip^ (x, a) = 3. - p (x) -

By the same type of argument as in3.2.5. it is easy to see that h
is a homeomorphism.

Next, for each xe U^ , let ifi^^, ^; G {x^}---- >(^ (U^)r)StxQ 

be defined by;-------------- ip^ x^®"^ ~'^a ^^’ ®'^ 

then we have a homeomorphism 
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t 1= %(, o ^

which is a right translation. For, wo havo:- 

V aeG , t(a) =:ip.\(a -p(x))= a-p_(x) +p/x) - a + Y'

translation: a—^-/''^a + y^ ofQ (x^} on itself. Therefore

t = Y sG {x } .X 0 ,
So, it remains to show that the map

is continnons, V xeU Il we have:- 

8 0(90 p . pJ(x) = 8 0(00 p (x), p (x))= 8 (-p (x) p (x) ) 

= -p (x) +p(x) = 6

Bence g^g p.),and therefore its continnity follows 

from that of 6, o, p an^p^. Thus wo have verifiod the 

conditions of Steenrod ( jlO ^, p.?)'

(^»G $ d«

The principal coordinate bundle obtained above depends on

the choices ofp's Wo now show that if we choose different

liftsp' : B ----  *G, wo got oqpivalent coordinate bundles, 
a

For each B , define the continuous map a
p ; B -----  >G by p (x) = -p (x) + p' (x)
a a a a <*

For each pair B, B_ with BnB. let 
dp p

be tho now coordinate transformation. Then

VxeB^nT^, g%g(x) =Yx = -P^x)+ Pg (::) 

S'ag(x) = -Ao (x) + (pgW- P^(x) 4pg(x) "Pg(x)) + p^ (x) 

= (.h^(x) 4pQ(x)) + (-P^(x) +pg(x)) + (-pg(x) + pg (x))
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= -W^(x) + %g(x) + Wg(x)'

Thoreforo the tw) coordinate bundles are equivalent

Corollary 3.2.9:

For each wide connected normal subgroupoid A of tho locally 

trivial groupoid G over X, X^ <= Stg x^ is a principal bundle 

over X with tho projection*..

In case A is not normal in G, E^ is not a groupoid. In this 

case X. = St x / is a bundle over X under the same projection 

and fibre but the ^oup G{x^ (see^kjp. 147)

Corollary 3.2.10:

If G has discrete vortex groups, thon X^ is a covering space of X.

[&eorom^^^«l^

Every connected locally trivial groupoid G, over a p.o.,t.p. and 

Ls.c. space X, with discrete vertex groups is isomorphic toir^X 

for some subgroupoid ACirX.

Proof: let x eX, thon by 3.2.10. *: St^x^----:,X is a covering 

map. Senoo *,; ir(St^x^) ---  > *X is a covering morphism of 

groupoids. Lot G' = ^^g^o----- "^^ ^\G'°x ----  *^^\x^o ^"^ ^^^ 

restriction of^^. Thon as wo seo later (4.1.2.) q is a 

homeomorphism, lot * : irG' ---- ̂G* be tho final map, then

1 = ?oa^:St - ---  >St«x is continuous and open, let T be 
o, Go

a wide tree in *X,then xX % T * G (x^} .

Define (: xX ---  >G by:(| X « id, and for any

a = -T + a' + Tg e^X(y,z), ((a) = -I^(Ty) + 1(^') + liCtg)* 

wheroT denote tho unique clement of T(x^, x).

Clearly ( is a morphism of abstract groupoids. Moreover g is onto.
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For, given ge 0(3^ z) then g = -L(T ) + g' 
^1

+ L(Tg, ), ^ore

g'e G {Xq}.

(In fact T^ = ?(T) is a tree in G), Let p^, ePG’(o^, g'), then

<|,op^, is a loop at x^ in X. Bonce ()i*(w ,) = <t>0VgteTr^ (X, x^).

let h = -T

For, L(*oW , 
6

+ *op , + T^, then 5(h) = -L(Ty

) = ^oq~\i^^(Pg;))= <'(Ug') = g'

) + l(*ow , ) + ^(Tg,) 

) + g' + ^(^g.) = S'

S is continuous: lot B be a nei^bourhood of g (a) then 3

neighbourhoods N^, 1^2, B^ of 1(7^), L(a*)) ^('•^^^ ^^ *^ such that 

^(((-UP X ^2 X IT^)/^35 )^ N (%, % as in 3.1.3(6) ).

let B'. = B.r^StpX , then N'1 1 Lr O I
^'2 ^'3 arc nei^bourhoods of

1(T ), L(a'), L(t^), respectively, in St^x^. Hence by continuity 

of 1, *3 neighbourhoods, M^, M2, M^ of t^, a’,T^ , respectively, 

such that l(M^) i = 1, 2, 3- Using C - H topology of 

irX, 3 Uasic neighbourhoods <t^, U> ^"^ t^, V> of t^ and t^ such 

that<Ty, U> CMp <T^, V> CM2. (Recall that <b, w> = 

{b + Y lyePW}). Thon <U, a , V> is a basic neighbourhood of a 

in ttX. It is easy to see that ?( <TJ, a, V>) CH- 

Therefore ^ is a morphism of topological groupoids.

Moreover 5 is open. For, lot H = < U, a, 7> be a basic 

neighbourhood of a = -T^ + a' + T^, then 3neighbourhoods H^, 

N2 of Ty and T^, respectively, in St^^^x^ such that H = -H^ + a’ + ^2* 

Hence L(lTj^), i = 1, 2 is open in St^x^, and therefore 

ifnp = '^^^'^y)’ ^* ^^‘^ ^(^^2^ = <U(t^), V> (Recall that 

< c, W(^> = {c + A(^(t)| ie ^Q })• Since G has discrete vertex 

groups, l(a’) is open in G tx^} and hence;- 

t We take U, V to be liftable in G.
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^(N) = -L(N^) + L(a') + LC^g) = <U, L(a')» V>. Thus g is open.

Next, let A be any subgroupoid of irX such that:-

V xeX, A {x} = g ^(o^)

Then iT^X is a topological groupoid, and we show that G % Tr.X.

Define g : ?^X—»G by g( [a]^ ) = C(a), and g| X = id- 

irX __ E------G
Then the diagram is commutative and 

algebraically g : irX % G (see |_2 p. 27?). ^

That g is a homeomorphism follows from the fact that ir.X carries 

the quotient topology and g is open. q.e.d.

Corollary 3«2.11a: Let G be a connected, locally trivial groupoid 

over the p.c., &.p.c., &.s.c. space X, then

^l^^^^x^ '^ ^l(StGX, o^) X ^^(X, x). (This follows from 3.2.11. & 2.2.$.)

Remark 3.2.12: Let X be a p.c., &.p.c. and &.s.c. space with abelian 

fundamental group, then every covering space N of X x x corresponding to 

the subgroup A^x ^^(X) of ^^Cx) ^ ^^^ ^ groupoid structure 

isomorphic to ir^X. Where A is the groupoid obtained from A. as in 

chapter II. Because ir.X is a covering space of X x x and by 2.2.9.

has the fundamental group isomorphic to A x ir. Therefore ir^X

is homeomorphic to N. This gives a locally trivial groupoid structure 

to N with discrete vertex groups. By the above theorem , . N has only 

one such structure.

Example: Let f : S ----"->8^, z-^^^^^z^ be the n-fold covering map, 

then fxid : T = 8^ x s^   ̂s^ x g^ is also a covering map 

corresponding the subgroup A x^^(s^)( = n^ x 2). Renee T % ^8^.

Therefore:

For any infinite subgroup of Z, the Torus has only one locally 

trivial groupoid structure over 8^, with discrete vertex groups. 
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Wo now show that if X is p.c., & .p.c. and&.s.c. Sausdorff 

space, then for each wide ooimeotod normal subgronpoid

A of '^X, ir .X has a bundle structuro over X with the projection 

iaCor the group r = ir^X and the fibre F = i^

whore x e X is a fixed olomont. With F and r as above we have: 
0

Theorem 3.2*13:

(S., X, F,r , i.) is a coordinato bundle.

^ogf: lot {Cr } bo a cover of X by simply connected neighbourhoods

(referred to as canonical neighbourhoods). Por cachU^ ^^n^' 

let %. be a fixed point in 1^^, and lot T bo any wido tree in vX. 

For each y QC, denote the unique element of T(y, x^) by T .

$. is well-defined: Since Y is unique (by the property of U.) 

and '''i is fixed, wo need only consider the case of taking

different representatives of [&]».

let a' G^a,J[., wc must show thatjjf + "^^ + a'^^ = [/ + T^^ + ^9 A'

But:- a' e[a]. t^zc^a - a'c A {x^} ^=^

(Y+ T.)+(a-a*)-(Y + T.) eA {x }(by normality of A)

; ^====))'[f+ Tj^ + a]^ = [Y + T^ + a']^.

$j^ is 1 - 1: let (x, [a]^), (y, [b]^) eU^ * P, then:-
*:aagM***M*H—Mm*.w*—.p—Wk***- . .*'".*Mw*q*=
$j^(x, [a]^) = $^(y, [b]^) :=>[f+ Tj^ + a]^ =[Y' + T^^ + b ]^.

f iY = iY ' ^=> X « y => Y = Y ' (by the property of U.) 

a = i^b :>a - b is defined
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Also, [

1'

be A

a

T .
1

^ Ti + ::jA

+ a- b- (Y'+ Tj^)e A {x}

a

4- (a - b) - (Y'+ Tj^)e A{ x}

{x^} (by normality of A)

SencG (x, [a-]^) = (y, M^)-

5'j,-is onto; Given [TjJj^a i^ \^^); then let 

a = -T^ - A + b, where 

»j^(ib, [a]^) = [A + T^ 

3>^ is continuous;

A'^FJ (ib, Xj^). Then:- 

+ (-T^ -X + b) ]^ = [b]^.

X '

1
^Ti'Lot IT be a neighbouThood. of $ . (x 

then IT contains a basic open sot 

<U, [y + T^ + a]^, V > .

Let W be a canonical neighbourhood of ia = x^, 

then <W, [a]^, V >is a basic open neighbourhood 

of [aj^ in 2^. Eonoc M = < W, [aj^, V > HF is a neighbourhood 

of [^aj^ in F. Let U* = TJ/^G^, then U* y M is a ncighboxirhood 

of (x, [a].), and we have:- 

t(G' X M)^ < U, [y + T j. + a]^, 7> C N.

(This easily follows from the property of U^).

'^ j, is opens Let IT ^ Uj_ x F be open, then

^ open sets U' ^G^, and V’ <^F s.t. N = G' x V .

We show that ^(N) is open.

Let [bj^ E *j_(G), then 3 x e G’ and L^j^ e V’ s.t.

*i(x, [a]p = [b]^.

Let6e7rX(x, x^^) contain PGj^(x, x^^), then [b]^ =f6 +t - + a^^ 

Since V’ is open, 3 V open in E^ s.t. T' = l/'/^F.
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But then ? contains a basic neighbourhood< W, [ a]., V> , 

whore W is a canonical noi^bourhood of x . Lot U^ bo a 

canonical neighbourhood of x contained in B', then< U^, [^jA' ^^ 

is a canonical neighbourhood of bj. in E^.

Claln: <11^ [b]^, 7>(^$.(K)

I^t [c].e<Bp fl]jA, ^ ^) G']^ lotveTfX(ic, x) contain PB^(io,x)f

ueiTX(i^a, 4»c) contain PV(*a, i^c), 

then [cl = [v + b + w] ^ =5'^+6 + 'rj^+a+w]^=: $^(ic, [a + u^). 

ButicCN' and [a+ul^eV, hence folpet (N). Therefore #j^^(N) 

is a neighbourhood of each of its olomonts, and hence open.

Therefore ^ is a homeomorphism

Boxt, wo show tha,t tho colloction{$j^}, as constructed above, 

satisfy tho required conditions for a system of coordinate

functions.

(i)

(ii)

It is obvious that i.o $.: U^ x F—>11^^ is a projection.

Por each z eU^^, lot *^^ g. : F—>^\z) be defined by:-

Wo must show that for any xeUj^nU., U^, Uj, ^f^)* tho 

homeomorphism $ / o * . : F ——>F

is an element of f . Wo have: -

But {-T, - Yg + Y. + '^-1 A = ^^^ * havo:-

[_T. - T; + y^ + T^ Bonco

(ill) Wo must show that for each pair B^^, B., with non-empty

intersection, tho map: g. . : B.n B.——>r



defined by g^^^Cx) = 5i -1 
j,x

I'Gt [ahGF, and lot

J,x 

then

JA’

Let N CTJ^<-)TJ^ be any path-connected 

neighbourhood of x. For any x' e LT,

let X^PN(x', x) be the unique morphism

TT.

r?.nd let

o $. is

^^1 +

f'' o

- L^ "^ ^j

2 '1

.[Y\ 4. T. + ah

then o _ y'2 4- y'^ +

By simply connected property of TJ^ and IJ^, we have;-

Hence g^ ^Ja

Therefore g^ ^ is constant on N and hence continuous over

This completes the proof of the theorem. 

q.c.d.

The above coordinate bundle depends on the choices made, i.e. 

on the fixed point x^e U^, and the tree T. Ue now show that if 

vze choose a different tree T’, sa-y, and another fixed point 

x’.eU., then the resulting coordinate bundle is equivalent to 

the above.

Let, for anyU^ ^^^a^

; U. X F
1 1

"V ("i’ 

be defined by $j^(x, [a]^) = py’ + ^ "*" ®'^A*



and g*ji(x) = [-T’^ - ^2 ■ ^2 *^’i^A

J <^ J J -i- ' -^

where P. ; U.----- defined hy ^.(x) a 

d^ ; U^---- >r defined hy y^(x) = + ^^ + 

Obviously d^ & P. arc continuous, and hence the above coordinate 

bundles arc equivalent . 

In a similar way it can be shown that (E^> X, F, f , <t>^) 

is a coordinate bundle with the same set of coordinate, 

neighbourhoods, but with^'^” . ) , as the set of coordinate functions 

where '^H : U^ F • ^ 1^^ (U^^)

is defined bys <S*j,(x, |_a]^) = -a -T^ - y(= -5>j^(x, [S'Ia^ ^' 

These two coordinate bundles arc equivalent a.s the following 

lemma showss-

Lemna 3•2.145

The coordinate bundles (E^^, X, F, f, i^) and (E^ , X, F, F , 4"^^) 

are equivalent.
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Proof: - Por each x G U^/^ U., we have: -

jl ^^^ ~^j,x°‘^i,x"!-"^l' ^1 j A (this can be seen

easily from the definition)

Hence, V xeu.nn.,
1 J

Therefore the two bnndles

are equivalent (see Steenrad p. 12). (hereX H ---  ̂Fis the

constant nap to tho identity of F.) 

Remark The intersection of i^ and ^^ fibres over each x eX, is 

?^X{x} = the group of the bundle.

3. SOME MORE FAGTS ABOUT jr%: 

lemma 3.3,1* 

lot p:X ---  >Y' bo a continuous nap of p.o., &,p.c., A.s.o.

Hausdorff spaces. Then p_^; irX --- ̂?Y defined by f ^^^^^^^ypof 

is a morphism of topological groupoids. 

Proof: It is known (seej^P ]p. 18?) that p_^ is an abstract 

morphism, so wo need only show tho continuity of p^. 

lot <U, pof, V > a basic neighbourhood of pof in iry, then 

p ^ (u) and p \v) are open neighbourhoods of i(f) and 4)(f), 

respectively. Hence ^simply connected neighbourhoods H., V^ of 

i(f) & 4i(f),rospoctively,.s.t.p(H^)CH and p(V^) C^' Then 

^^^4; f, >is a basic neighbourhood of f, and it is easily 

seen that p* (<Hp f, V^ >)<C<H, p^^, V>

q * 0. d *

The following corollary is easily verified.

Corollary 3.3.2;
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r p w.\./->xp(=p*)

The function ir: J is a functor fron the oateROiy 
^ X "^^/^^—^ TT X

of p.c,, &.P., &.8.C. Hausdorff spaoGS and, continuous maps to the 

oate/?ory of locally trivial topolo^dcal ^roupoids and continuous 

morphisms.

In case of more general spaces Iemma 3«3'1. is true if we make 

the restriction that p:X— >Y ho a light map, i.e. V ye Y, 

p"^(y) he a discrete suhspace of X.

lemma 3«3.3:

Lot p:X — —^Y be a light map of Hausdorff spaces, then p^ tPX—>IY 

is a functor of topological categories.

Proof:

It is easily seen that p^ is an abstract functor (see [2 ]p. 18?) 

Since p is li^t, for each fe PX, f and pof have the same lengths, 

let Hnrr^(r -e , r +e ) be a basic neighbourhood of pof in PY, 

then ^closed intervals K., ..., K^^R^, open sets H^, ..... 

n
H Y such that H %(%., H.).

let M = /TSpx t(K-, pr^(H^) ), then clearly M/np \r -e , r +e ) 

is a neighbourhood of f and it is easily seen that:-

py (ll/^p ^(r - e, r +e ) ^H<pp (r -e , r +e )

Hence p/ is a continuous functor.

6 G e e

Corpllary J). S*4:

If p: X --- >y is a light map of Hausdorff spaces^ then

--- »TTY is a morphism of topological groupoids.

Proof:

Continuity of p^ is easily followed from that of p^and the 
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following coomutative 

diagram, where q?s denote 

the quotient morphisms. 

q.e.d.

Theorem 3j;^j^^

If p: X ---- >Y is a homeomorphism of Hausdorff spaces, then ; 

p^ : 'trX   >TrY is an isomorphism of topological groupoids.

Proof:

Wo know that pu is an abstract morphism (seo [P ] ). That p^ 

is a homeomorphism follows from 3.3.4«

Theorem 3.3.6:

let X * X. X Xg, where X^, X^ are p.c., &.p.o. and ^.s.c. 
w,MUniminmrnTTn«i,:f„,r,7jTai ':.' 'i. 1 ., .... mill : i ■iiiiiIhiiiiiiihiiiiihi /l■llllll.ll^ ' " ..

Hausdorff spaces, then irX ^ irX. x trXg

Proof:

By 3.1.19 irX.^ X 1^X2 ^^ topological groupoid over X x X. 

lot p. : X' — >X_, i = 1, 2, be the i -projootion, then 

by 3.3.1 p^^ : rX— >^X^, i = 1, 2, is continuous.

Define z; :'n'X — >^X, x irXg 

by:- S(f) = (Ty*(f) , P2*(:^) )'

It is known seof 2] 6.4.4. that C is an isomorphism of

abstract groupoids. So, we need only prove the continuity of C 

and its invorsOr

C is continuous: let H.x bo a neighbourhood of (p^*(f), 
.UEim.%mN.ii.mifiiM«iiM.lwiN..'*i"'.m.='i'i"iiwiWi',' w—. I V I f\

P2^(f),)j:hen Hj., i = 1, 2 is a neighbourhood of p^^{f), i = 1 2

inmX. Hence ^ canonical

contained in H., i = 1, 2

neighbourhoods <H., p^^(f), V^>

Thon<Hp p^*(f), V^> X <H2, p2*(f),

^2 C ^4 ^ ^2' ^^ then B = <H^ x Hg, f, V^ x 7^ > is a
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neighbourhood of f in-rX, and we have:-

V Y + f + X e B(x, y), ^ ( y + f + X ) = (p^^( Y + ^ + ^ ), P^*^ Y + ^ + ^ )) 

= (p^*(Y) + Pi*(f) + P^*(x), Pg^fy) + P2*(^) "*" P2*(^^ ^' 

Baty^PfU^ X U2)(x, if)===»P^*(Y)C^Fn^(p^(x), i^(p^^(f)), 

P2*(Y)^PDr2(p2(x), i2(p2*(^) )

X3P(V^ X V2)(*f, y)=>p^*(x)2PV/*/P2*(f) ), Pi(y)), 

P2*(x) 2^2(*2(^2*(^))*^2^y^^

Eence 5 (y + f + x) e< E^ p^*(f), V^> x< Eg, Pg^Cf), V2>cn^x Eg

Therefore c.(B)C.IT. x E^.

Let E ho any open set in irX, we show that g(E) is open. Let fe E, 

then 3a canonical neighbourhood <E. x Eg, f, V. x Vg> of f 

contained in E. Obviously <U., p,*(f), V,> and< U«, Pgu(f),Vg > 

arc canonical neighbourhoods of p^^(f) & pg*(f), respectively.

Bence< U., puu(f), V.> x <n., P^(f), V_> is a neighbourhood of 

(P^*(f), P2*(f))

01^: < Up p^*(f), V^> X 4Tg, P2*(f), Vg> C ^(E).

Let Yj^ + Pi*(f) + X^e< Uj^, P^*(f), V^> , i = 1, 2; and let

y'.e y. and x*.e X. i = 1, 2 ho any representative paths. Thon:- 

y' = (y'^, y'2)E P(U^ x Eg) & X' = (x'^, X'g)e P(V^ x Vg).

Therefore y = Y'2I'(U4 ^ Ug) and X = X' "^PCV, x 7^),

Senoe y + f + Xe < E. x E_, f, V, x v> CE.

Obviously, ^(y + f + x) = (y^ + f^ +X^, Yg + fg + Yg)

Therefore (y^ + f^ + Xp Yg + fg + Xg)E ^(E).

Senoe ^(E) is a neighbourhood of c(f). Since f was arbitrary, 

^(E) is open. Hence is a homeomorphism.
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Theorem 3.3.7,

Let X and Y be p.c., &.p.c. and ^.s.c. spaces, and let

f a g: X--------- >Y, then f^^ a 8* ir^ ——»irY.

Proof: Let n:X x I—.—------- >Y be thehomotopy from f to g; i.e.

V X eX, H(x, o) = f(x) and H(x* l) « g(x)

Then by 3.3.1. H^^: ir(X x I) ------- >xY is continuous. Let

g: x(X X I)—X irl be the homeomorphism constructed 

in 3.3.6., then the composition, 

Txu H*
trX X I - .»^x X iri ------- >x(x x i) -------  ̂^y 

where u:I --------- >xl is the unit map, is continuous and is the

required homotopy from f^ to g^^. For, VXexX and Vtel,

(X, t)..x^—'^(X, o.)'^--- >(X, c.)'*—-* Ho(X, c.) 
u--------------t 

where c^: R -----  ----- >I is the constant path at t.

It is easily seen that

Ho(X, c^) = foX and ho<X, c.) = goX

Hence VXex X, H,og ^o(l x u)(x, o) = foX » f#(x)

H#og ^0(1 X u)(x, 1) = gox « g*(T)

q.e.d.

Definition 3.3.8: Two topological groupoids are said to be 

homotopic, if they are homotopic both as spaces and as abstract 

groupoids.

Theorem 3.3.9: Let X and Y be p.c.,&.p.c, and t.s.c, Bausdorff

spaces, and let X = Y. Then xX = irY.

Proof: Brown ( [2j, 6.$.10) has shown that irX » xY as abstract 

groupoids, and by 3.3.7. and the covariance property of *, 

xX a irY as spaces.
q.e.d.
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CSAPTER TV

COVERING GROUPOIDS

Introduction:

P.J. Siggins [$ Jhas developed the notion of covering 

gcoupolds, and R. Rrown[2 Jhas shown that they model the 

covering map of spaces. Wo now consider the topological 

analogue, and show that if p* X-—>Y he a covering map of 

Hausdorff spaces, then p^* irX--- >nY is a covering morphism of 

topological groupoids. In section 2 we study the question of 

existence of these groupoids for a given connected locally 

trivial groupold. In last section we prove that the universal 

covering space of any locally trivial groupold G, with discrete 

vc]*tex groups, over a path—connected, locally path—connected and 

locally simply connected space X has a locally trivial groupold 

structure over the universal covering space of X. In case 

G = TrX, wo show that the universal covering space of G Is a 

topological covering groupold of G,

Section 1:

Definition 4.1.1:

Lot n: %——>G he a momhism of to-pological grouuoids: then p 1^ 

called a covering momhlsm if:-

Vx e%°^ , p |Stgx=p'.St^x--- *'St^p(x)

is a homeomorphism (i.e. p is fibre preserving).

Theorem 4.1.2.

If p* X-—>y is a covering map of Hausdorff spaces, then 

p^; irX ——>iiY

is a covering morphism of topological groupoids.
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Proof:

It is shown in f 2], p. 296, that V xeX, p^ | St^^; 8t^^--- ^8i^^p(x) 

is a hijootion, and by 3.3.4,p^^ ^ hence p^ = p* | St % is 

oontinnous. We now show that p^: St x—>Stp(x) is open and 

hence a homeomorphism.

Let q, : PX--- >iTX and g,, ; PY---Mtl be the quotient maps. 

Let '^ be a basic open subset of Si^yX, we must show that p^C^) 

is open in S-l^yp(X). Por this we must prove that q"^ (p*(^) ) 

is open in Stpyp(x). Lot N e q ^ (^)# then N is open in St^^^

Let ^ eq'y (p*(h)),then by covering property of p, 3:^:^eStp^ s.t. 

^ P/^r^* ^^^® I"/' ^ ^^ ^^ ^^"^ ^'^^^^'^ fhnotor; 

f "^pof (see 3.3.3.). It is easily seen that f^elT. Senoo 

open sets Up    ^n ^ ^' closed intervals Ep..... ,X^^I^

aaid real e> o s.t.

f^ GT (Ep spnAT (E^, n^) n «r^(r - e , r + e ) ^ IT. 

Since p is an open map (being a covering map), p(U^) C Y, 1 = 1,

. n is open. SencoT (Ep p(S^)

n"\r - e , r + e ) = S, say, is open in

St^p(x), and wo have Pj^(l^) = 6']. e^i* 1^° ^^°^ ^^^ ^1 

contained in q'"y(p*(lT)), it suffices to show that N^ . p^ (s).

It follows from the construction of S^ that p/S) CIT^.

Conversely, let g^ eSp then ga unique f^e ^"^px^ ^'^' 

gg"P/(f8)' ^^^^

—»VteX^, pQfg(tp ) "P(fg(\) )ep(np, 1=1,...,n

==> Ig(^^) G ^j[* 1 = 1, ...., n
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Benoe g^e p/lT); thoreforc N^ ,SPj^ W' '^'^^ ovory g^e q"^(p*(A')) 

is an interior point, and so qy(p^(S'))i8 open.

q.e.d,

Lenma, 4.1&3:

Let p: %, X---- >G, x bo a connected covering momhism of 

topological gronpois, i,e. G & G are connected). If G is locally 

trivial then p 1%°^; %^^'... ->G^^ is an open map.

Proof:

Let Uf^.'b^^ be open, and let ^, * be the final naps in % and G, 

respectively. Thon K = ^ ^ (if) n St % is open in St x Since 

p is a covering map, p( K)is open in St^x. Eenoe ^an open set

%/ ^ G such that p(E) =%/ D St x.

Since p is connected, p(Tl) =:(;)(p(K))

Let yep('[r) be any point, and lot V., V^ be liftable open 

neighbourhoods of x, y, respectively. Thon G(7^, Vg) is 

homeomorphic to V. x Vg x G ( 3} , and'Tj /^ G(7^, Vg) = *\^'y say 

is open in G(V , Tg). Senoe gopon neighbourhoods V^, 7^ of x 

and y, respectively, such that '^ % 7^ x 7^ x N, for some open 

set E in G {x}. Cfbviously,

*(U') = <|,(U'nSt x) = 7^ 

and%JL'6U =>11'^181 x<^tL ^St x = p(E)

«====><{,(tl''^ St x)c*(p(E))= P(T^)

Therefore 7* ^p(E). Since y vas arbitrary, p(u) is open,

q.e.d.

Definition 4.1.4:

Let p:%, X--- >G, x bo a covering morphism of topological
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z^oupoids. If the dia.gran of pointed morphisms

is commu.te.tive, then :?' is called a lifting' of f =

Theorem 4»l-5s

Let ps S, X---X "be a covering K,z-----------> G, x 

morphism, and let fs K, z --->G, x he anv connected morphism,, 

of topological groupoids. Let G he locally trivial, then f 

lifts to a unique morphism '^ ; K, z >&, 3t of topologicaJ^ 

groupoids if f(K {z}) pC^^fx}).

Proof; The existence and uniqueness of f, as an abstract 

morphism is shoivn in (fpj, S*3.3.)» So, it remains to shovz the 

continuity of f. Nov; f is defined as follov/s;-

Let Thea vzide tree in K, then any a ,e K can be written of the 

form a = + a’ + t^, where T^e T" starting at z, and 

a*e K{z}. Hence f(a) = -fG.,) + f(a‘) + 1^2)- Since p is 

a covering map, p.|; St x > St x, the restriction of p, is 

a homeomorphism. Let q = p.j"^ , then define by;-

V y EE°^ , ^(y) = ^(q(ffT^))), tyE T(z, y).

? a = -T.| + a' + T^, ^(a-) = -q.(f(TP )+ q(f(a')) + q(f(T2))' 

(Notice that q(f(a*) ) eG{x} . Por f(a’)e p(G{x}) by hypothesis). 

Clearly f(z) = x, and ^ ]K°^ is continuous. Pc must show that

f is continuous on the space of morphisms. Let N be an open 

neighbourhood of'^(a) in'?^, then ^open neighbourhoods N.^, N2 

of q(f(T.^) ) and q(f(T2) ), respectively, in St x and N^ of 

q(f(a’) ) in "b- {x}. such that -N,.| + N^ + N2 C N.

Then, since q is continuous, ^open neighbourhoods IL of fCx^),

i = 1., 2 in St X, and M^ of f(a*) in G {x} such that

q(M^)c\, i = 1; 2, 3.
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Let T’ be the- tree in G used in its bundle structure, thens-

f( Tj_) = ttj^ + tj^, i = 1» 2, t^e T*, a^E G{ Xq }.

Hence J neighbourhoods M, , M ‘^s^/ a., i = 15, 2 in St x 

■ i “i 

and G {x}, respectively, such that

M + M, C^^-, i = 1 ? 2.

By 3.2.7. (iOM,,i= 1 2 contains a neighbourhood of the form

<B., IJ.> of t.
11 1

i = 1, 2, where U^ is a liftable neighbourhood 

of Aft.), i = 1, 2. Then M’ = -B, - M + M + M + B is a 

neighbourhood of -a. + a' + ag ^ (^ ^\^'

But a = -t - o.^ + a' +02 + "*=2' ^°^°® <^i' ^\ Ug > is a 

nei^bourhood of a in G. Let N' = f \ <%!.], M', Hg >), then H'

is a neighbourhood of a in E. It is easy to seo that "k (IT)CH. 

q.e.d.
Corollary 4'1'O:

Lot p: "b, X—>G, X and f: E, z—>G, x be connected covering 

morphisms of topological groupoids. Let G be locally trivial,

(l)lf f(0:zi})6(&{z}),then ): E, z —>&, x , the lift of f is a

covering morphism.

(ii) If f(E{z}) = p(G{x}), then f is an isomorphism of topological

groupoids.

Definition 4«I»7:

Let G be a topological groupoid, then any covering groupoids % of 

G imhich covers all other covering groupoids of G is called a 

universal covering groupoid of G.

Corollary 4.1.8!

Any tree covering groupoid of a connected locally trivial 

groupoid G is a universal covering groupoid .ofj% 
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This corollary easily follows from 4.1.5. q^e.d.

Remark.:

By 4.1.6. all universal covering groupoids of a connected locally 

trivial groupoid G are topologically isomorphic.

Lemma 4.1.9=

Let p : %i X .....  —>G, X be a covering morphism of topological 

groupoids^ then the characteristic group of p(i.e. p(%{x} ) is 

closed.

Proof:

Since p |st x onto St x is a homeomorphism and % {x^is closed) 

p(% {x} ) is closed in St x and hence in G {x}.

q.e.d.

2. EXISTENCE OF COVERING GROUPOIDS

We now look at the question of existence of covering 

groupoids. Let G be a connected topological groupoid over the 

space X, and let R^ be the relation defined in chapter two. Let; 

X^ = St x/R^ . G^ = {( [a]^^ b)e X^ x G |(a, b)E D} .

X
(Recall that if G is locally trivial with discrete vertex groups, 

then X. is a covering space of X).
X

Then we have:-

Lemma 4.2.1:

G.^ is a connected groupoid over X^ .

Proof:

Define 1^, $^ : G^ ----  —> X^

the initial and final maps by:-
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We must show that A, is woll-dofinod. Lot a'e [a]., then we must 

show thatF a' + h]^ = [a + h]^^ For this, wo must show that

& ^ -f- t) {Q, 4" t)) — 5, 3, C A {X} 0

But this follows from definition of R^. (i.c. a' e[3']^

(li ) = {( ( [a]^, b), ([ o]^, d) )e G* x G^ |[a +

Bofino the composition function --- ̂ (^^ 

by:- 0^ ( ((aj^, b), ( [c]^^ d) )*([aj^^b)+([c]^^d)*([a]^;b+d)

6, is associative:

then:-

fa + bl, = , fc + = rel,==>a + b - ceA{%},

c 4- d e E -^ 3^ *

Bonce a + b + d - o = a + b — c + c + d - eEA{x}» Therefore

Thus ([a],, b + d) + ([o]^^ f) is defined, and wo havo:-

Since G is a groupoid, (b + d) + f = b + (d + f). Bonce (1) = (2).

(iii) Bcfinc the unit mapg.: X. ----  ̂G?

Then, V ( [a^^ b), ([o]^, d) s.t. [o + d]^ = [a^^ wo have

({a = ib , (pd = da
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= ([aj^' ^)'

( [cli, '^) + (f^A' °*a) = (i^^A? '^ + °*a) " (^""^A' ^ ^ °^d)

(iv) Define the inverse function Z.; G^ --- > G^ ty:-

V ([al^, b) GG^, E^( [a]^; b) = ( [a + b]^^ -b).

Similar to that of $., it is easily soon that z^ is well-defined.

It satisfies the required oonditlons. For,

and wo have:-

( [aj^, b) +([a + b]^^ -b) = ( [a]^^ b - b) = ([a]^, o^^)

( [a + b]^, -b) + ([a]^, b) = ([a + bl^^, -b + b) = ([a + b]^, (^^) 

= ([EL + bl^, O^(^ ^ ^))

G? is connected; let[a]j^,[b^^eX^ , then

( - a + b)eG*^ ([a]^^ [b]^),

q.e.d.

As wo saw in 4.1.9, the characteristic group of any covering 

morphism is a closed group. Wo now show that in case G is a 

connected locally trivial groupoid, every closed subgroup of the 

vertex group Gfx }, jx e G°^givo rise to a covering groupoid of G.

We first prove:-

Theorem 4.2,2:

lot G be g^ connected locally trivial groupoid over the space X and let 

A be any'wide connected closed subgroupold of G, then G. is a
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topological groupoid over X. . 
X

Proof

By 4.2.1, G^ is an abstract groupoid over X. . Since A is closed

in G, A {x} is a closed subgroup of G{x} .
X
Hence G{x} /^{x}

is Hausdorff (see fi ]p. 231). By 3.2.10,X^ is a bundle over X 
X

with fibre *^'t^Vj;^^£^p ^-^d.

Since G^ CX.x G, we take

X 
from the product topology

hence it is Hausdorff.

its topology to be the induced topology

on X, X G. Now we verify the continuity

of the functions

(i) Let TT^

(ii) Let qs

X X be the first projection, then

and hence it is continuous.

St X—>X, be the quotient map, then we have the

X 
following commutative diagram.

(st XX G)rTD —-------- >St X

q X 1

G/

<1

which guarantees the

nap in G).

(iii) Let ""1 "A

Then

\
continuity °^ »A' the composition

X G X

""2,

X
^A X G

X

G

X

1 " "^1

= IT
2,4 - 2'4

are continuous.

Hence r = 6 on'2 ^^e

\ be

be

the

the

first projection

projection onto

2nd a-nd 4th factors

,---->D

->G is continuous. Therefore 6 1’
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is continuous.

(iv) Let (^^! E^--- >X Le the final map, as heforc, and. let 

usX--- >G he the unit nap in G, then uo^y^s Xy^-----5*G is 

continuous. Therefore Uyy = (1» ^oh_^) ° X^—--- ^-Gy^ is
X

continuous, v/here 1; Xy------^^^A ^^ "*"^‘^ identity map.

(v) The Inverse function Zy^ is continuous. For, let

IT2$ Xyy X G --->G he the 2nd projection, then 
X

■^2 ■^2! ^A ' ^A----^^ ^® continuous. If 0 denotes the inverse

map in G, then v = 0011*2 i® continuous. Now, V" (£a]y^, h) eG^ 

WG bave:-

^A^ ^^^A' ^^ "" [a + h]^, -h)= ($y^( [a]^, b), v( [a]^, h) ). 

Hence Zyy = ($y,, v), and therefore it is continuous.

q.c.d.

Remark 1

We need the condition A to bo closed only for Xy^ to he Hausdorff. 

In case of locally trivial groupoids with discrete vertex groups 

we do not need to include this condition, for in that case X^ 

is a covering space of X and hence Hausdorff property of Xyy 

follo^7s from that of X.

As the proof shows,locally triviality condition on G has 

nothing to do with the continuity of the functions related . to 

G^. Now if G is a Hausdorff space, then St^x is Hausdorff. 

Therefore we,.have;-

Corollary 4.2.3;

Let G he a connected Hausdorff groupoid, then

G^ = {(a, h) eSt X X G | (a, h)e D }is a topological groupoid
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over St X. (G^ corresponds to A = ^ o^, )

We now define p : G.------- --- ^ G ty:-

V ( [a]^, b)tG2 . p( [a]^, b) = b

X
( ^: G is the final map)

We show that it is a covering morphism of topological groupoids.

Theorem 4.2.4: Let A^ be a closed subgroup of G {x} , then:-

p : G^___________ > G, as defined above, is a connected covering

morphism of topological groupoids. Moreover,

*t°x]^=X -f^^^lyl

Proof:

p 13 an abstract morphism: it is easily seen that all the following 

diagrams are commutative.

P
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p is continuous; For, p = 1(21 G^ , idierG iTg" ^/ ^®

the 2nci projection, and. p| X^ =4'^1 ^A ' ^^^ro (|)^:E^-——*X 

X X
is the final map. Hence p is continuous and open.

Let p* =.p| St(.x [a],^^ ; St [aj^^----e»St^((i)a), then;-

p' is 1 - 1; For, p*( [a]^^, h) = p'([a]^, c) =>h = c. Hence

^MA' ^^ ^[^^A*

p' is onto; Given any he St^tjia, then ([a]^, b)E St [a]^, and

we have p'([aj,, 1])= h

p' is open: Lot^be a neighbourhood of ([a]., b)E StFa]^, then

'AH- ex, and N. CG, neighbourhoods of 

such that H..)nG^)nSt [a]

bC^Ja’ respectively,

A

= { ([aj^; b) I be H.^riStg^a }. 

Then p' C/V^ = N. nSt^a open in Stgijja. 

Therefore p' is a homeomorphism, and hence p is a covering 

morphism of topological groupoids.

Hence b eA { x } . i,e. p([o^"[ , t) E A {x} . Therefore 

p(=^ir°x]i) e^t"^’-
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Conversely, given "be A {x} , then ["bj^^ = fo^j . Hence 

COx? ’ ^)e ^A't^x} > anti "b = p( [c^J , B)e P^‘^a{[°xL^ )" 

Therefore A })'

Corollary 4'2.$:

For any closed subgroups A^^B^ of G^ {X} in the connected 

locally trivial groupoid G, over X, G^.^ is a covering groupoid 

of G^. (a and B are subgrcupoids obtained as in Chapter Two.)

Proof; It is an immediate conseq,uence of 4.1.5. and 4.2.5.

The following corollary is iiamediatc from 4«2.3« and 4«2.5- 

Corollary 4.2.7*.

Let G be a connected Hausdorff groupoid, then G^^ is a covering 

groupoid of G with trivial characteristic group.

Corollaiy 4-2.8;

For any connected locally trivial Hausdorff groupoid G, G^ is the 

universal covering groupoid of G.

Corollary 4.2.9:

Let G, X be a pointed connected locally trivial Hausdorff groupoid, 

then 3 a 1 - 1 correspondence betv/een all connected covering 

group-'ids of G and the closed subgroups of its vortex group G {x} . 

Proof; It follows from. 4.1.9., 4.2.5. and 4.1.6.

3, THE UMIVERSAL COVERING SPACE GROUPOID

Let G = (G, X, i, (j), e, u, a) be a locally trivial groupoid, with 

discrete vertex groups, over the p.c, S,.p.c. and ji,.s.c. space X. 

Then ^ = St „o , x eX is the universal covering space of G. We now 
X

shoxv that & is a topological groupoid over 3^ = ^\%^"
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We denote the homotopy class of each path f by f.

Lat f, geG such that log « ^of, then log = *of.

lot F.: log « i()Of bo the homotopy, then since 1: G— — ̂X Is a 

flbro map, we can lift F^ to a homotopy^: lkt_ — ̂G, from g such 

that 10 ^ = F^. Let g* =^, then we have log' = ^of,

Hence, given g, fcG s.t. log = *of, there always exist 

representatives f;<ef, g^ eg s.t. iog^ =((,01^. Hence 

V teR"^, l(g/t) ) =*(f(t) ).

Let f, g be paths In G starting from o such that log «^of.

Thon wo can define a function f * g i B^ ---  >G by:-

Vte(R\ (f * g)^^\ " f(t) + g(t) (.6(f(t), g(t) ).

We have the following commutative diagram:-

where A is the diagonal map, and hence continuous. Therefore

f * g is continuous and hence it is a path in G. Moreover

(f * g)/ \ = f(o) + g(o) = 0^ + Hence f * g e&.
(^ y 3C vL JfX

Lemma 4.3*1:

Let f, g,Y sndv be paths in G such that f(o) = g(o) = o and 

f +Y * 6 + V are defined and ^o(f + Y) = io(g + u) & i'Of = log. 

Then (f + y) * (g + v) = (f * g) + (v * y)*

Proof:

^o(f +Y) — lo(g + \*)'='*^jiOf +((»Oy «= log + iO\)«

Sincei^of » log, we get<{)OY = iov . Hence Y *v is defined. How

V te B'*',

( (f +Y ) * (g + v) ). " (f +Y )+ + (g +\) )+
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C ff(t) + g(t), o < t -^p
- , where p is the common 

I (t - p) + (t - p), t >p 

length of f & g 
f(f* g)(t) o< t< p

1,0 * v)(t - p) t > p

= (f * g) + ( Y* v) )(t)'

Therefore (f + y) * (g + \^) =* (^ * g) "t (Y *

Theorem 4.3.2:

G is a topological gronpoid. over 3t.

Proof:

(i) Define the Initial and final maps i, * : G ---  >X hy;

V f eG, i(f) . iof & = *0f.

Then i = i^| G and * = 4,^ |%, where i^, *^: ifG >irX are 

induced morphisms. Bence i and 'f' a^^o continuous.

(ii) Let D = ((f, g)e Q G l^^of = log define:

^. L — ̂G'by'8(f, g) = f * gh as obtained above,(= f^g )«

0 is well-defined:

Let f^ Gf, g^e g, then ] g^ ^G^PG^x* ^.t. iog^ = *of^.

Let P: f = f. and G: g' '^ g^ , then:-

*oP: *of = *of., and ioG: log' = iog^

Put wo have, '('of = log' and ^of^ = iog^, hence:- 

(*oF, ioG): (*of, *of) = ($of^, *of^).

Since (1, *): G — >X x x is a covering map (",' G has discrete 

vertex groupsj^ 3a homotopy X: Tfo^of - X^ such that 

(i, *)oX = (*oF, loG).

nence ioX = *oP and *oX = ioG. Therefore, for each (s, t)e R^^ I, 
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i(K(8,t) ) = *(F (8, t) & $(E(8, t) ) = 1(G(8, t) ).(*)

Wc have:- loE = i|iof^ = (|)oE^ and E^(o) = o^ 

on the other hand no it>of^ is also a lift of ijiof^ at o^. For

i(uo((iof.) = (iou.)o(i|)of^) = 4>of^ /
' I ." lou = <f>ou. = id^. )

(})(u.O({)Of^) = ((|)ou)o(4iof^) = (fiof^ \ y 

Hence by unique lifting property of (i, <ti), K^ = uo<}iof^. 

Define H; iR"^ * I >G by;-

H(s, t) = F(s, t) + K(s, t) + G(s, t) (it is defined by *) 

obviously H is continuous and we haves- 

h(s, o) = F(8, o) + K(s, o) + G(s, o) = f(s) + u(4>of(s) ) + 

g*(s) = f(s) + g*(s) - (f * g')(s)

H(s, 1) = F(s, 1) + K(s, 1) + G(s, 1) = f^(s) + u(<f>of^(s) ) + g^'(s) 

= f^(s) + g^'(s) = (f^ * gpCs).

Hence f * g' = f * g^ , and so f * g* = f * gJj.

6 is associative:

Let f, g, h eG such that <l>of = log and ifiog = ioh, then;- 

(f <S) g) §) h = f * g <g) h = (f g) * h = f* (g * h) = f g, (g @) h). 

For, ( (f * g) * h)_|. = f(t) + (f * h) ^ = (f(t) + f(t) + h(t) ) 

By associativity of 6>( (f * g) * h )^ = (f * (g * h) )^.

6 is continuous; Since G is the subspace of ttG, the sctsof the 

form < f, w > = { f + Y | y ^P W(f (p), y), ye W } ,

^ere W is simply connected nei^bourhood of f(p)(p being the length 

of f), form a basis for the topology of ?^ (see C - IT topology).

Now let <f * g*, W >be a basic open neighbourhood of

G(f, g) = f * g' , then W is an open nei^bourhood of (f * g')(p) = 

f(p) +g'(p)' Since G is a topological groupoid, 9 simply connected 

neighbourhoods U and V of f(p) and g(p), respectively ,such that 
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8( (U X V)n D ) CW

Then < f, U > and<g\V>are neighbourhoods of f and g'= g, 

respectively in %. Hence N = (< f, U> x < g, V >) A D is a 

neighbourhood of (f, g) in

Claim:

8(N)(; W>

Let (f^ , gje N, we may assume ({xzzf.^ = iog}. Then 

fl = f + Y where YGPU(f(p), f^(p')) 

g| = g'+ V uePV(g*(p), g,(p') ) 

where p* = common length of f, & & . Then 

eC^, g{) = fj ® g^ = fj * gj = (f + Y) *(g' + v)

= (f * g') + (y * u) by (4'3'1')

= (f * g^H^Y * v)

It is easily verified thaty * u 2PW(f * g*(p), f * g^(p')' 

Therefore 8(f. , &)&< f * g', W > , and hence 8" is continuous.

(iii) Por each f*e St^^x , Uof'e Stp^ox (u is the unit map in G).

Hence, if fe PG such that (|)Of = f = io(uof*), then

(f * (uof')).= f(t) + u(f'(t))= f, + u(({](f(t) ) = f(t) 1 

similarly, if g ePG s.t. iog = f, then (uof') * g = g.)

Define the unit map u : ^   > % by u (f) = uof

It follows from(#)that u satisfies the required conditions.

u IS continuous^

u = Uj^l X , where u* : irX--- irG is the induced morphism.

Hence it is continuous.

(iv) Define the inverse map
'b <1, 0 ; G --------------> G

by: o(f) = oof

VtdR, (f*(cof))^ = f(t) + oof(t) = f(t) -f(t) = '^ h(i(f(t)) )
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Hence (f^ dof = f * (dof) = uo(iof) = u(iof) 

Similarly, o^^f = u(dof).

o IS continuous:

Por, o = c* |G onto G, where c^^ : ^G ----- —>iTG is the induced

morphism. Hence it is continuous. This completes the proof of 

the theorem. ^^^'^'

Lemma 4.3.3:

& is a locally trivial groupoid.

Proof:

Let fe), we must show that ^an open neighbourhood *^ in % and a

continuous lift P^jH^r --------  ̂^ ^^^^ ^^^^

V gcH^ , i(Z^(g))= g and d(E^Xg))= f

Let r be the length of f, and let U^^^) be a simply connected 

neighbourhood of f(r).

Then:-

^^ ' Uf(r)> = ^':^ + ^ I ^f(r)(^('")' y^"f(r)^

is an open neighbourhood of f.

Define:

^f(r)' ----------  '

by:- Z-(f + y) = g- , 

where g— is the unique lift of (f + Y; i^) ^b o^, by the 

covering morphism (i, d)*: ^rG "^^^ ''^^'

Let the end point of g— be asG, then given any basic neighbourhood 

N of ^ in G, ^ a simply connected open neighbourhood H'^
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of a in G such that

neighbourhood N'^ of a is of the form

{A'(x) + a - X"(y) I xeU, yeV, U, V some simply connected 

neighbourhoods of i(a) & ii)(a)}

Where X * : U -------- ---- >G

and X": V ------------->^G

are continuous lifts, then <f + y, U > is a neighbourhood of

f + Y.

Claim; Z— (< f + y , U > ) C- N.

Let f + y + V E <f + y , U >, then v(iR"*") (^ U.

Define h: iR ------------ >G by h(t) = ^'('v(t) ) + a.

It is easy to see that h is continuous. By definition h(<R"'") <^Si'^- 

(i , (i))oh = (ioh, <)oh) = (v, c^^^^) (^f(r) constant path at f(r).)

Hence h is the unique lift of (u, Of(p))' Therefore g;^ + h 

is the unique lift of (FT^ +v , f), i.e. Z^(f + Y, v) = g;^ + bcN.

Hence Z-^ is continuous.

q.e.d.
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Define p ; & —>G by: p(f} = f(r), f G%U^.

Then p |% , G and p |%, X are covering maps of spaces.

We now show that p is a morphism of topological groupoids.

(i) VfeG, ( lop(f) = i(f(r) ) = (iof)(r) 
) iop = poi
I po%(f) = p(lZf) = (lof)(r)

Similarly *op = po*

(ii) V (f, g)G2(, p(f<^g) = P(f * g) = Cf * g)(r) = f(r) + g(r) 

= p(f) + p(;) - 6(p(f), p(^) )

Hence po8 =6 o(p x p)

(iii) V Te ]^, pou(x) = pWx) ) = p(uox) = (uox)(8).

uop(x) = u(p(x) ) = Tl(x(8) ) = UOX (s)'

Henco pou. = nop.

In general, the covering space groupoid & nood not be a 

covering gronpoid. But if G is a fundamental groupoid of a p*o«, 

l.p.c* & A.s.c. space, then p is a covering morphism of topological 

groupoids. In fact, it is a universal covering morphism. Wo 

first prove the following useful lemma.

Lemma 4.3.^:

Let G = tdC, X a path-connected and &.p,c. & ^^s.c. space, then 

V feG = ^t^G°x ' f(s) =. - iof 4- *of, s is the length of f.
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Proof;

Wg have (i,<^ );G --- > X x X is a covering map, hence

(i, .^)^,^ 5 irG-- ^ttX X ttX is a covering morphism.

Therefore given any (a, h) e St^^x x St^^x, 3 a unique f e G- 

such that (i, ^ )^ (f) = (a, b). i.e. iof = a & (j) of = b.

Mow, define g; E"^--- > G, by; ¥ teE"*", g(t) =-(iof)^ + (i,5of)^

where, for each path A X^(s) = x(ts). Hence

X = constant & X = X. o I
Therefore g(o) = - (iof) + (^of) = - o + p = o = o . Hence 

O O X X X X 

g eG,and we have g(8) = - iof + <j)of, s is the common length of

f & g. Then by construction iog = iof & d^S = ii>of,

Hence g is a lift of (iof, 4)of). Therefore f = g, and, 

f(s) = g(s) = - iof + ifiof.

q.e.d.

Theorem 4'3."5:

If G = irX, where X is a p.c., Jl.p.c. and&.s.c. Hausdorff space, 

then p: %—>G is a covering morphism.

Proof;

Wc need only shov/ that p' = p| St^y St^y--- xSt^p(y) 

is a bijection. For, then p being a covering map it is open and 

continuous hence p' is a homeomorphism.

p* is 1 - 1 ; Let f, geSt^y, then:- 

p'(f) = P'(g) ====> iof = iog = y, and f(r) = ffs). Hut by 4.3.k. 

f(r) =: - iof + (j) of & g(s) = - iog + <^ og.

Hence - iof + rj) of = - iog + (#> og => (^ of = (|i og.
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Then f and g are the lifts of the sane morphism at o^ by (i,* )*' 

Hence f = g. 

n' is onto:

Given a e St^pQ, then y + ^ ^^ defined and

(y ) y "f a) c St^X X St^x.

Let h be the unique lift of (y, y + a) at o, then

ioh «: y & ^oh = y + a

Therefore p*(h)= h(q)«: -ioh + ({,oh = -y + y+ a = a «

Hence p* is onto.
q.e.d.

Corollary 4«3«6:

If G = irX, X p.c., &.p.o, & 1.8.0. Hausdorff space then& is 

isomorphic to G^ , the universal covering groupoid of G.

Proof:

We need only prove that p hasirivial characteristic groups at any 

e "k. Let f e%{y}, then iof -*of =y. hence,

p*(7) = f(r) = - iof +^of = -y +y= 0(^^ eG {p(y) }. 

Therefore the characteristic group of p atyis trivial.

Hence 6 % .
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CEIFTER V

d-TRAH6P0RMAII0H GROUPS

Introduction:

In this ohaptor wo introduce the notion of S^d-transformation groups 

for groupoids, and show that if X is a Bausdorff space and ()' ^ X) 

is a topological transformation group, then $' , ir X) is a 

topological^d-transformation group. We generalise the notion of 

fundamental group of a transformation group introduced by P. Rhodes 

r 8], to the fundamental groupoid of a ^d-transformation group and 

show that if (F , G) is a topological ^d-transformation group and 

G is connected, then the fundamental groupoid r^^ of ( r, G) is also 

a connected topological groupoid. In case G = irX, X path- 

connected Bausdorff, then for any x e F ^^^^ ( = l) the vertex group 

r {x} is o(X, X, r ), the fundamental group of ( r , X) as defined 

injg'8]. Bence, since T is connected, then V x,y.e X, o(X, x, p), 

o(X, y, r) are isomorphic topological groups. We obtain exact 

sequences of abstract groupoids and morphisms, and groups and 

homomorphisms which in the special case G = xX, reduce to the 

sequences in[9]p. 906 . We show that if G is a connected locally 

trivial Bausdorff groupoid, then for each x ef ^°^, F ^ { x} is the set 

of all morphisms from G* , the universal covering groupoid of G, 

onto itself which lift the elements of F; and show that the set of 

all lifts of the identity of F is the group of cover transformations 

of G^ and isomorphic to G {x }.

In section 3, we show that if F acts freely and property 

discontinuously on G, then the orbit set G^ is a topological 

groupoid over G^ , and the quotient morphism: G—^G/^ is a covering 
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morphism of topological groupoiis.

1. DEFINITIONS AND EXAMPLES

Definition 5.1.1:

Lotr bo a group and G a groupoid over a set X. Wo say (F, G) 

is a ^d- transformation group, if Facts on G and X as sets such 

that VXe^ the following conditions are satisfied:

(i) V ae G, l(X.a) = X.(la) & ^(x.a) = X.(*a)

(ii) V(a, b)e D, X. (a + b) = X.a + X.b

(lii) V aeG, X.(-a) = -(x,a).

It is called effective if (X.g = g, all ge G => x^ G

|X.x = X, all xeX^aaoa^ X = e

Remark;

It is immediate from the definition that VXeF , the map

X^ : G --- > G

defined by:- V ge G, X*(a) = X.g , V xeX, X*(x) = X.x

is a morphism of groupoids, in fact it is an isomorphism.

It is easily soon that ^ is covariant; hence the map 

i(i ; F----> Aut(G), X—

is a homomorphism, ip is an embedding if (r, G) is an effective 

^d-transfomation group. Eonoe, in this case, we may identify x* 

with X or vice versa.

DefinitionJ^j;]j;2j

A^fd-transformation group (r , G) is called a topological 

&d-transformation group, if:-

fi) F is a topological group and G is a topological groupoid

(ii) y XeF , X^: G—>G is a morphism of topological groupoids.
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Examples:

let ( r, X) be a topological transformation group, where X is a 

Bansdorff space, then (r, irX) is a topological A) i-transformation

Proof:

By hypothesis, for each XeT, the map x^: X—>X. defined by 

X*(x) = X«x is continuous. Bence for each f eFX(%, y),

X*of ePX(x.x, x.y). Moreover, V X, p ef, fe.FX» we have:-

(i) (Xp)# = X*o p^ (ii) e*of = f, 

where e is the identity of r.

Since f* = f »=> X^of ^^ X^of , wo have a well-defined action on 

irX, defined by:-

Vf eirX, X.f = X^cf (e trX),

Txhich satisfies :-

(i) (V X, per , (Xp).f = (Xp)^of = X^oPj(.of = X. p^of = X.(p.f).

[and f GTrX

(ii) e.f = e^of = f

(iil) V f eirX, and V Xef , i(x.f) = i(x*of) = (X*of)(^ X*(f(o) ) =

X^(l(f))=X.(i(f))

Similarly, (^(x.f) = X.(({)(f) ).

(iv) V f, g eirX, such the.t f(r) = g(o) (r being the length of f), 

wo havo:-

X.(f + g) = X.(f + g) = X^o(f + g) = X^of + X^og

= X^of + X^og = X.f + X.g

(v) VXer and V f eirX, xX-fJ = -(x.f^). For, let |o,j^] bo the 

maximum interval on which f is constant, then:-
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V te[R^; A^p(-f)(t) = A^/-f(t) ) = X^/f (r +& - t) = ^^pfCr + A - t)

HencG X,(-f) = X,(-f') = X^^(-f) = —(x^pf) = -(X»f)« 

Theroforc (r, TrX) is aS^d-transfomation group.We know irX is a 

topological groupoid. ejod by hypothesis r is a topological group.

So, it remains to show that X^ : irX—>?TX, XeT , is continuous. 

Since (r, X) is a topological transformation group X^: X — >X is 

homeomor'phiam; and by3.3.5.X*irX—^irX is continuous.

Following Fhodesr9], wo givo:-

befinition 5.1,3:

Let (r, G) be a yyd-transformation group, with G connected, and let 

A bo a wide oonnooted normal subgroupoid of G.

We say A is invariant under fif:-

V Xer and V x eG°^, X. A {x} = A {X. x}.

lemma 5.1,4:

let (r, G) be a ^d-trensformation group, whore G is connected, 

and let A^^G be any wide connected normal subgroupoid of G. If 

for some x eG°^, x. A {x} = A {X.x}, XeT

then A is invariant under r.

Proof:

lot y eG°^, and let geA {y} , then given a eG(y, x), g a eA {x} 

such that 6 = a +« - a

SenceX«8 = X«(a 4-a — a) = X. a +X.a + X.(—a) = x. a + x* c* "" X*^.

But X.aeG(X.y.X.x) and by hypothesis X.aeAf X. x} , hence by 

normality of A, X. SnsAf X. y} ,

Conversely, givon 6' oA {X. y }, then for any b'e G(x.y, X*x), 
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^a'eAfX. x} s.t. ^ =1^' + a' - b'.

lot b = X \ b' anda = X'^ct , then, be G(y, x) and ae A {%}

and we have;- 6' = X. b + X.a - X. b = X.(b + o - b)e X.Jlf^r} ,

Because aeA {%}*—^b + a - be A (yl^by normality of A.

Hence X. A {y} = A{X. y} .

Since y was an arbitrary object, wo haveproved that A is invariant 

under F. q.e.d.

Lemma 5.1.5:

Lot (r. G) bo a topologioal^^d-transformationgroup, and let 

A<^G bo a wide connoctod invariant subgroupoid of G, then 

(r , B^) is a topological^d-transformation group.

Proof;

Lefino the action of F on E^ as follows;-

^ [aj;/ Ev V A^r, A. [a]^ .[A. a]^

This action is well-defined; For, lot ale [a]., then;- 

a - a'e A {ia}=>X.(a - a') = X. a - X, a'e A{X.(ia)} = A{i(x.a)}

[X. a'].. % havo;-

= X.fllla],).(i) V X,p er, V [a ] ^ , (Xp).[a]^ =[ X.(w.a)]^

(ii) Let oe Fbe the identity, then:-

(iii) V[a]^, X. (i^^[al^) ) = X,(i(a) ) = i(x.

Similarly, X.(*^([a]^) ) =<,^(i,.[a]^).

(iv) V [a]^ , fbj.eE, s.t. (a, b)eL, we have

^'( [^^A "*" [^^A? - X.[a + b]^ = ix.(a + b)]^ =[ X. a + X. bl 

^[X. a]. +[X'.b]. =X. [a]. 4- X. [b]. . 
AX

(v) V [aj, cEk, X.(-[a].) = x.f- a]. =t\.(-a)]. =[-(x, a)]. 
Ai Ax Al, w AAl Al

"[x.
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SencG (r, E.) is a ^d-transformation group.

ByS.l.lQ.E^ is a topological groupoid.

So, WG need only show that V XeT ,

obtained from the action of X on E. is continuous.

But this follows from the following* comnrutcOtivG diagram

Q. —A ^ ——-. ■—"^ G

e 0 e d @
9. FgmAMEgTg^_gROWOlJD_OFJ;__&d2TgA^^

Lot (r, G) bo a connoctod ^d-transformation group, and lot A be a 

wide connected normal subgroupoid of G invariant under r.

Then E, is a groupoid and hence f x E. = r, is a product 

groupoid over G°^. % now show that f^^ has a different groupoid 

structure over G^, whoso vortex [groups are the fundamental group 

of the transformation group (f, X) in the case that G arises as 

a fundamental groupoid of the space X. (see [ 8 ^).

(i) Define i^, 4i'^ : f^ — —> G°^ by;-

(ii) Let D^ = {^X, [r"]^), ( p, [s]p )| *^<X, [r]^) = 

i^(w , [s]^) i.e. x2\j^^j^rn_zJl^

Define G'^ ; D^ ---  ̂r^ by:-

8^( (X, [r]), (p, [s]) ) = (xp, [r + X. gT) ( = (X, [r]J#(u,: s],))
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8^ is well-defined:

Let r^ efr]^, s^ e[s]^^ we must show ^r^ + X. -s^]^ = ^r + X.s]^

i'G. r, + X.s. - X.s - rGA{i(r) }

But: s^ ep]^t:«-»8_^ - seA{i(s) }-=>X .s^ -X.8 = X.(s. - s)

eA {X.(i(8) )} by invariance of A.

> r^ + X.s^ - X.s - r^e A {i(r)} (I) 

by normality of A*

and r^ E[r]^=,2^ r. - rGA{i(r) } (II)

Then, it follows from (I) and (II) that r^ + x.s. - X.s - r eA {i(r) } 

8^ is associative:

Let ( (X, [r]p, (w, [6]^p ) eD^ and ( (p, [s^^^, (v, [tj^) ) cD^, 

then:-

( (X, [r]^) # (p, [s]^) ) # (u, rt]^) = (Xw, [r + X.s]^) # (\,, [t]^) 

" ( (Xw)v, [r + X.8 + (Xp).t]^p

= (Xwu, [r + X.s + X.(n.t)]^J

and

(X, [ r]^) * ( (w,[ s]^) * (u, [t]^) ) = (X, [r]^; * (wv, [s + p.t]^;

= (x(pv), [r + x.(s + w.t)]^^

= (Xpu, [r + X.s + X.(p.t)]^^

(iii) Define u'^ : G°- ----  >r. by:-

Since i (e, [ol ) = i(o) = x

"f" (^» [°yl ) = ^ "(4^0^))= e.(x) = X

Moreover:- Let (X, [r]^), (p, [s]^^ ef^ be such that:

i^X, [r]^2 = i(r) = x & (|,^(u, [sj^^ = ^"^.(^(s) ) = x, (*)



113
then (e, |ol ) * (X,[ r] ) = (eX, I o + e.rl.) = 

L^JA? * (^'1 oj ) = (we, fs + U.ol ) = 

= (p, Ma)' ^°^ W.x 

Hence u^ is the unit function in r..

(iv) Define the inverse function

('. [rJAl

(^,|s +0 
L H "

= i{)(s)(by *)

and (^ (x »|^X '(^^)j^ - (^ ^) (^^X ^k(-r) ) = X.(X ^k^(-r) )

=XX \(ifi(-r) ) 

= e.(i(r) ) = i(r) = i^'(X,r

S^nce ( (X, [r]^^ , (X"^\ [^''\)-r)]^) ) eD^ 

and ( (X-^, [x"^.(-T)]^;, (X, I

Moreover:-

^Gnce (r^^ G^ , i^, 8^*11"^, cr'^) is a groupoid. 

r,^^ ia connected: For any x, ye G°^, let re G(x,X.y))Xer, then

^^^^^ ^^^r, X.o^ = °x.x' ^^ G^^, it follows that any tree subgroupoid 

T of G is invariant under T. In this case r^ = r x G, and we denote 
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it by r^.

Definition 5.2.1:

Sor any connoctod^d-transformation group (r, G), f^, with the 

above structure, is called "the fundamental groupoid" of (r, G), 

and its vertox.groups will bo called "the fundamental groups" of 

(r, G).

Theorem 5.2 . 2 :

If (r, G) is a topological^d-transformation group and G is 

connected, then F^ is a topological groupoid.

Proof:

(i) Let V. : F x E.(=r,) ---- ̂E. be the second projection, then 
' ' % 
i"^ = i^o^g. Hence it is continuous. (Recall that E^ =

^ axBiw .UOM BPM. WWW ^ 
= (B^, G , 1^, 4,^, 8^, o^, u^) /

(ii) Let S : F x G°^ ---- >G°^ bo the continuous map defined by:-

S(X, x) = X. X and lotc' : F ---  >F be the inverse map.

Lot^^ ; F^ ---  >F bo the first projection, then:-

*'' = Eo(o'ov., ^.ovg)

Hence it is continuous.

(iii) Let g:F x E,^---- >E, be the continuous map defined by:- 

5(1, frl,) = X. frl, =fx. rl. (by 5.1.5. this is defined).

Let TT^ : (F x E^^ x (r x E^) ---  >F, i = 1, 3.

IT. : (F X Ej X (F X Ej—j = 2, 4

be the obvious projections. Thon it is easily seen that:- 

8^ = (8'o(v^, ir^) , 8^o(v2,E o(vp ir^) ) ), 

where 8' : F x r   >Fis the composition map. 

Hence 8^ is continuous.
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(iv) lot c : G°---- >r be the constant map at e.

Thon = (o, u. ) .

Bence it is continuous.

(v) lot TT., ir_ : r^--- >r and E., bo the first and 2nd projections, 

respectively. Thon it is easily seen that;-

(Z' = (a'o?^, So(o'o^.,o^o?2) ) 

whore g:r x g—   >E. is as above, and o, is the inverse map in E^. 

Bonce o^ is continuous.

0. d.

Exact sequences

lot (r, G) be a^d-transformation group and let G°^ = X. Thon 

X X X X r is a connected groupoid (soel.2.1]) over X.

Ve now investigate tho relation of X x X x r with r^ from the 

algebraic point of view.

lofine n : f^ — >X x x x r 

by: n(X, [r^^ = (i(r), X ^.^(r), X) and.nlx is identity. 

lemma 5.2.3:

n is a morphism of groupoids . 

let i,^^, 6^, u^, 0^ be the maps in X x x x r, then;- 

(i) V(x, [r],)er, noi^^x, [r],) = n(l(r) ) = i(r) 

i^on(X, [r]^^ = (i (r), X-^.^(r), x) = i(r)

.A A 
Bonce noi' = i^on Similarly no(') = ^^on

(ii) ^( (X, [r],), (p, [s],) ) eD^,

n( (X,[rl^) * (p.Cejp ) = n(Xw, [r + X.s]^)

= (i(r+X.s), (Xu)-^.^(r + X.s),Xp )

= p X .^(X.8),Xp;
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= (l(r), .*(8) ),Xw)

(By definition of action) 

= (i(r), y ■'* .6 (s),Ay )

= ( i(r), A-1^(r),X)(X-^^(r), 

y -^ .4) (s), y )

= (i(r), A "'’ .6 (r),X )(i(s), y ■'* .6 (s),y )

('.' A .i(s) = 4i (r) )

(iii) V (e, [oj^)Gr^, n(e, [qj^) = (i(o^), e-'^^fo^), e) 

= (x, X, e) = o e X X X X r 

q.o.d.

Lot (a, [i*],^) eKor n,thcnn(A, [r^^) = (i(r), A~\(j)(r), x) is an 

identity in X x X x r. Hence X= e, and X \({)(^) = 4i(r) = i(r).

Senco r eG { i(r) } . So:-

Kern = |(o.fr]^) |r eG {i(r)}j ;^ E° , xvhcrc E° denotes the 

wide and full totally disconnected subgroupoid of E^. i.Co 

E? is the union of all vertex groups of E,,

Hence by ( [ 2 ]8.3.2.) wo have:-

^A/E° ^ ii:(^)

But n is prito.. For, given (x, y, X ) e X x X x r , lot r e G(x, X .y), 

then (X, [r]j^)Er and n(x, filj^) = (i(r), X-\4,(r),x)

= (i(r), A''\A.y),X ) = (x, y,X )• 

Therefore ^A/„o f^ X x X x r.

Hence, wo have the following exact sequence of groupoids:- 

(5.2.4.) 0--- >E2---->r^----->x X X X r-----> 0

Where 0 at the ends means the discrete groupoid of units in G.
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IText, define A : r ^—e. r^, by:-

(i) A| r°^ = identity, (ii) A(X, r) = (x, f rl.), (x, r)er^.

A is a mornhism of ^gronnoids:

(i) Let 1'"', ({i'^ denote the initial and final mai)8 inr°; then:- 

V(X, r) ef^, Aol°(X, r) = A(i^(x, r) ) = A(i(r) ) »= i(r) 

io A(X, r) = f"(x, [rl^) = i(r).

HenccAoi^ = i'^'oA. Similarly Ao^° = <()^0A .

(ii) V ( (X, r), (p, s) ) ell°, A( (x, r) ^^ (^, a) ) =A(Xp, r ti.

= (Xw, [r + X.s].) (X, [r]^) ^ (p, [s]^) = A(x, r) ^A(w, a).

(iii) V(G, 0^) er^, I identity of r^ at xA(e, o^) — ( e,

Hence A: f---->r^ is a morphism of gronpoids.

Lot (x, r)E I(erA , then A(x, r) = (x, [rj.) is a unit element 

in fy^. Hence X = e, = [o^^ , ^oro x = i(r).

Therefore re A {%} , and we have:-

KerA = {(o, r)| reA {%} , x oG^^ } %A°, the wide, full and 

totally disconnected siih^p?oiipoid of A. 

_A__is_on^ given (x,[r]J er,, (x, r) and

A(X, r) = C^, [r]^)

Therefore^o/yO^ r,, and wo get the following short exact 

sequence of gronpoids

(5.2.5) 0 —> A°—>r '—o

Moro generally, lot A^B bo invariant snbgronpoids of G, then we 

can define a morphism

X : — >rg , by X (^ [r]^) = (x, [r]g). 

x|r^°^ a identity

It is easily seen (following the same lino as A) that x is a 
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morphism onto with

Ker(x) = {(o, [r]^)| roB {%} , zEG°^} , 

where B°, A^ are wile and full totally disconnected suhgroupoids 

of B and A/roapeotivoly. Bence, we have the following short 

exact eoqnonoe;-

(5.2.6.) 0 — > B% ----  ^i^_JL^pg — — > 0

Botice that B,, is a gronpoid over G^ . Por A' is a (wide 

totally disconnected) normal snhgroupoid of B" 

Bext, for each xeG°^,n homomorphism of the object 

group r^{x} onto the group r, with Kern = ; 

and A^ = A|r^ {x} is a homomorphism of the object group F {x} 

onto F^ {x} with &rA = A {x} . Bonce wc got the following exact 

sequences of groups and homomorphisms

(5.2.T.)

0 — >A {x} ----  >r {x} ----- {x} — —»o
App^licatipn 5.2.8:

Let G = irX, the fundamental groupoid of a space X. Then F^ {x} 

= o(X, X, G), the fundamental group of the transformation group 

(F, X) as defined in |'8 "j. By replacing G {%}, F^ {%} and F^ {x} 

by ir4(X, x), o(X, f), o. (X, x, F), 

respectively, wo got the exact sequonoos in [q ]p. 9O6.

In case X is path-connected Hausdorff,^X and hence F^, are connected 

topological groupoids. Bence all object groups are isomorphic 

topological groups. Therefore V x, yeX, o. (X, x, f) and 

(7* (3^, y* F) arc isomorphic topological groups.
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Given any ^d-transformation group (T, G), with G connected then, 

as we have seen, for any invariant subgroupoid A of G and any 

xeG°^, r^ and G^ are connected groupoids over G°^ and Stg x^ 

respectively. Let r. = f. {x} be the vertex group at x, and 

define an action of r^ on G^ as follows:-

V(X, [r]^)er/, and V( [a], b)eG2 , [aJ^eStg x = (G^)"^,

(^) [^1^?" ( [^]A» ^) - ( Lr + X. a]^ , X.b)

(X, [r]^p. [a]^ =ir + X . a]^.

The action^* is well-defined: Let s e[r^, cefsl, we must show

[r + X . aj^ = [s + X . c]^. i.e. r + X. a - X. c - seA {x} . But

c - ce A {x} '==>X. a - X. c = X.(a - c)gA {X, x}

(By invariance of A)

— >r + X. a - X. c - reA {x} (By normality of A)

and se[r].=>r - se A {x}

Hence r + X. a - X, c - r + r - s = r + X. a - X. c - seA {x} .

The operation does satisfy the required conditions:-

(^) (^, C^^A? ^^^ I^^^A^ ^[^^A' ^) ) - (^' [^^A? "(^ "^ p.aj^^p.b)

= (fr + X.(s + p.a)]^^ X,(p.b) ) = ((r + X.s + (Xu).a].^ (Xp). b) 

= (Xp, [r + X.s ^A^'^L^JA' ^) '^ ( (^,[ r]^p * (p, [s]^p)A({a]^^ b)

(ii) (e, [o^]) . ( [a]^, b) = ( [o^ + e.a]^^ e.b ) = ( [a]^, b).

So, r^ acts on G^ as a set. (i), (ii) also shows that F^ acts on X^ . 

(iii) I( (X, [r].)-((a]., b) ) = I( [r + X.a]., X.b) = [r + X.aJ.

= (X, [r]^^^[a]^

= (X, rr]^y<(i( [a]^^ b) ).

Similarly, ^( (X, [rl^^^lfa]^, b) ) = (X, fr]^^ (*([a]^, b) ).
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(iv) (a, irj^) A ( (Lan_^j b) + (Ecj^j d.) ) = (x, L^Ja^ ^t^^^A’^"*"^) 

= ([r + X. aj^, X. ("b + d) )

= ( I r + X = 3''! ^ sr X • b + X o d) ) 

= (L'r + X. au_, X. b) + ( [r + x • cj^^, X-d)

(v) (X, r r]^) '- (-( [a]^, b) ) = (x, [::]A) " ( [a + b j^, - b) 

= ( [r + X. (a b) ]^,X - (-b) )

= ( fr 4- X « a 4- X . b ]y^, —X « b) =—( [r 4- X ^aj^^; X «b)

= _( (X, [r]p ([a]^, b) )

Thorcforo TTC have the following lemma and corollary.

lemma 5.2.$:

If (r, G) is a 9^d-transformation group, with G connected, and A 

is an invariant subgroupoid of G under r ,then V i ^G^ , (fA' ^A^ 

is also a^ d-transformation group.

Corollary 5.2.10:

If (r, G) is a^d-transformation group and G is connected then 

(r^ , G^), where G^ is the universal covering groupoid of G (in 

the abstract sense) and r ^ is the fundamental group of (f, G) 

at X, is a ^d-tra-nsformation ,group.

In ease of topological ^d-transformation groups, since G^ need 

not be a topological groupoid (because of non-Eausdorff object 

space), zoj:o8trij^ur8Olye8_tp__;g!ec^ofAo9  ̂

groupoids with Hausdorff vertex froups. Sos-

Theorem 5.2.11;

Let G be_a cormected locally_A:cJyi3dA^oupoi

vertex gpcpups_,__and _le.t ,(rj. GJ, b_e, atogDpXofLiyal,J^_d-1^^^^^ 
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group. Then for any invariomt subgroupoid A of G underf , and 

for any xeG°^, (f ./", G,^) is a topological ^ d-transformation 

group.

Proof 5

By 5.2.10, (r,"^, 0^^) is a^d-tr/nsformation group, and by 

5.2.2. r^ is a topological groupoid and hence f^^^ is a 

topological group. By 1^2.2 G^^ is a topological groupoid. So vze 

need only prove the continuity of the action, i.c. the continuity of 

of the map (x, [ r]^^ )*; G^^---->(^f^ , (x, [ r]^) Ef^^, defined by 

(^ ) [ ^]j» )* (la-Jj^, b) = (x , L ^1^) [si]^, b) = ( [r + X «a j^,X «b).

let p. : G—>E. bo the quotient morphism, 8: D—>G, the 

composition map in G and X^ : G--->G that obtained from the action

of X on G. Thon:-

(X, [r]p*([a]^, b) = ([r +X.a]^, X.b) = (p^(r +x.a), X .b) 

= (p^(r +X^(a) ) , X*(b))= (p^o6(r, x*(a) ),

= (p^o8(r, X*(a) ), X*(b) ). •

Therefore continuity of (X, [r]^)^ follows from those of 0, p^ and x^. 

q.c.d.

Definition 5-2.12;

Let (r, G) and (?, ?^) be topological^d-trensfernation groups, and 

let p; 2^ —>G be a covering morphism of topological greupoids. 

Let Xef, then ^e?will be called a lift of x, if the following 

diagram is commutative, G ----- --------^

i.o.X^ is a lift of X^op in the usual p ' j P

sense, G ----- > G
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Theorem 5*2.13s

Let G he a connected locally trivial Hausdorff groupoid, and let 

(r, G) he an effective topological0/d-transformation group. Then 
   —  - -. . ..   ,**. ,•.,— , .«,.— •«....—I «!,.—I—, in ■ |» I— - .»...—..— --I rill ^- . . "T 

^^ is the group of all morphisms from G^^ onto itself v/hich lift 

the elements of r.

Proofs

For any AeT and reG(x, X.x), (x , [: 

following commatativc diagram.

Since p is a covering morphism, (x, 

is a lift of X.

^/^^^A^ ®^^ ^'^ ^^° ^°

g---------------- > g

On the other hand, let g s G^^--->G^'h.e' any lift of X^op, then

we show that g = (A , [s].)^, for some s eG.

Let ( [a]^, b) eG^:^, and lot g( [a]^, b) = ( fd]^, o) eC/, then:-

4: (a) = i(b) and 4: (d) = i(c)

By definition pog =A^op, so wo have c = pogf ;,a'']_^« b)

= ^^op( b) =X*(h),

Hence 4>(d) = i(c) = i(x*(h) ) = A*(ib) (For, x* is a morphism)

= A*((i) (a) ) = A.4)(a).

Therefore de G(x, A •4)(a.) ). Since x •=>-e G-(a .x, X *4) (£*•) )? 9 s-^^i*l^®

s e G(x, X .x) such that s + X .a = d. Hence [s + X»a)^^ = Ld"*!^.

Therefore g( (a-}^^, h) = ( [‘ic) = ( i_s + x»a3^, X»b)

= (x, Csy^^, ( la]^, h).

Thus g = (a, Lsj^)*. So, for any fixed AeF, the set

{(a, tr]^) |reG(x, A.x)}

is the set of all lifts of AeF . Wo now show that if (a , [r]^), 

(p, [s]^) arc lifts of x and p , respectively, then
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(X, [rj^)*(ij, [s]^) = (Xp, ir 4- X.sj^) is a lift of Xp. We 

must shovz that po(Xp, Pt + X.s]^^)^ = (Xp)^op.

V ([a]^, t), (po(Xp, (r + X.s]^) )( [a]^, b) =

= p( (Xp, [r + X.sl^)...( b) )

= p( jr + X.s-t-Xp.al ^, (Xp).b)= (Xp).b

and (Xp)_,^op( (a'i,^, b) = (Xp)*(b) = (Xp).b

Hence po(Xp, j_r + X.sT^)^ = (Xp)*op.

q.c.d.

Corollary S.-.^jlIAl

r^^, the fundamental group of (r, C), is the group of all morphisma 

from Gq^, the universal covering greapoid of G, onto itself vzhich 

lift the elements of F.

As an application, consider the case G = ttX, X.p.c., £..p.c., i,.s.c.

then G % % and Stx = x, the universal covering space of X. 
o

CorollfSL 5 • 2 .j^r

o(x, X, r), the fundajnental zsa^oUTjJ^is the group of a]A 

continuous maps from the universal covering spa^_of]Lpnto i^^ 

TRhich lift the oloments of F.

definition 5«2.16:

let p : %—>G be a covering morphism of topological groupoids. 

Then any morphism h : % —>% such that pgh = h, is called a 

cover transformation.

It is easily seen that the sot of all cover transformations of % 

form a group.

Let X = G, the identity element of F, then e^ : G -- >G is the 
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identity morphism. Hence each lift of e is a cover transformation 

of G,.^, As we saw in the proof of 5-2.13, the set of lifts of e is

{(e, '"r i^^) I r eG(x, e.x)} = { (c, rrj^)|reG{x} , 

which is clearly isomorphic to B. {x} . Therefore:-

Cp^llary 5.2.17:

The group of cover transformations of G,"^ is isomorphic to the 

vertex group E^ {x} .

3. ORBIT GROUFOLDS

Definition 5.3.1:

A group r acts freely on a sot X, if g.x = x for some x eX and 

g eG implies g = e (the identity).

Definition 5.3.2:

The group G is said to act properly discontinuously on a space X 

if the following conditions are satisfiod:-

(i) If two points x, x' eX arc not congruent modulo G, then

X, x' have ncighhourhoods U, U’, respectively, such that;

¥ geG, (g,U)nH‘ = (j)

(Tills condition implies th?-t Xy^ is Hausdorff.)

(ii) For each x eX, the isotropy group G^ = { g eG [ g.x = x }

is finite, (Note that if G acts freely this condition is 

sa.tisf ied).

(iii) Each xeX has a ncighhourhood U, stable by G^, such thats- 

G n (g-U) = ^ for every geG and g^G .

Lemma 5.3.3:

Let (r, G) be a $(d-transformation group with X = G°^. If F acts 
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freely on G, then Gm = {r.g| ge G} is a groupoid over Xy .

Proof:

Lot gE G(x, y) ho any morphism, thon:-

y-yer , y.g :y.x>y.y.

Hence _____ ; Y . g : i______ । Y . !______ ■ Y *7
yer yer yer 

TThere " , " denotes the disjoint sum. Since r acts freely, 

viTC havc:-

Y / A Y.g / X.g, y.x / X.x, y.y / X.y 

Hence the above sums arc unions (sceT 2 }, p« 329)

Therefore v/c haves-

Y .g L_/ Y .X** CJ Y *7" 

yef yer yef 
Hence, P'S : r«x —>['7, on<^ ^^ can take r.g to be a morphism 

from r.% tn r .y. So let G = (G, X, i,(^ ,6 , u,a ), thens-

(i) Define the initial a,nd final functions i^, ({)^ : Gy^-- > Xy^.

by:- V r.geGy, , i^(r.g) = r.i(g) & ((,/r.g) = r.4)(g).

(ii) Let D^ = {(r. f, r.g)|(f, g)E L}

(D the set of composable pairs in CxG )

Define 8^ ; D^ --- ^/r

by:- 6^(r.f, r.g) = r.f + r.g = r.(f + g)( = r.6(f, g) )

Since ¥yer & ?(f, g) e D, y.(f + g) = y.f + y.g, the above definition

makes sense. It satisfies the associative law:-

¥(f, g), (g, h) eD, (r.f + r.g) + r.h = r.(f + g) + r.h

= r.( (f + s) + h)

= r.(f4-(g + h))=r.f+r.(g + h).

= r .f + (r eg + r .h)

(iii) Define the unit function u^ s Xm---- ^^A
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bys- u^(r*x) = o^ = r-o^ (= r.u(x) )

Clc?Tly i^(r.o^) = r.x = (i)^(r.o^), and we haves-

V f eG(x, y), g EG(z, x), F .g + T .o^ = T .(g + o^) = r .g

r .o^ + r .f = r (o^ + f) = r .f.

(iv) Define the inverse function o^ ; G^^^A

by:- o (r.f)=r.(-f)(=r.c(f)J

ciGojTiy 1, (o^(r.f) ) = *.,(r.f) = r.*(f)

({)^(o^(r.f) ) = i^(r.f) = r.i(f)

and r .f + r.(-f) = r,(f - f) = r •(Oj^(f)) = °r.i(f) 

r.(-f) +r.f - r(-f+ f) -r.(o^(t)) -°r.^(f).

Hence G^ is a groupoid over X.

Note; Gy^ will be called "the orbit groupcid".

Remark;

If G is connected, then G^ is connected.

Lemma 5♦Bq3j,

Let (r, g) be a ^d-transformation group. If f acts freely on G, 

then p 5 G--- <3.cfined by;-

V geG , xeX , p(g) = r.g and p(x) = r.x is a covering 

morphism.

Proof;

p is a morpliism of gyoupoids; For,

(i) V geG, po(() (g) = p((f)(g) ) = r.(|)(g)?
}=i^po(|; = ^^op

<i).,op(g) = <)^(r.g) = r.<<)(g)J

Similarly poi = i.|Op

(ii) V (f, g) e L, p(f + g) = r .(f + g) = r .f +r .g = p(f) + p(g)

(^^^^ °x G(^' P^°x) = F.o^ = (^.x = o^(^p
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Let p’ = pl St^x, xe X, then wc muet shovz that

p* ; St-x---> St„ (r.x) is ’bijoctive. Let f, £^e St„x, thcn;-

p'(f) = p'(g) -=^7 .f = r.s=::> r.f - r.G = r.(f - s) = ^r^^g

T=-,VYEr , Y.(f - s) = o^,^ 

==*f - S - °Y (^y taking y = e)

=r=^ f = g.

So p' is 1 - 1. Next, given ge St^ r.x, then g = r.g for sone 

gE Go Hence p*(g) = r.g = g.

Therefore p’ naps St„x onto St^ (r.x).

Eence p is a covering morphism.

q.e.d.

Theorem 5.3.4:

Let (r, G) he a topological^d-transformation group, and lot r act 

freely and properly discontinuously on G, then Gy is :-i topological 

groupoid over X/

Proof:

Lot Gy^ and Xy^ carry the quotient topology, then wo must show the 

continuity of maps i., i{i^, 8^, u^, o^. Since p is continuous, and 

it is a quotient norphisn, entinuity of these naps follote from the

continuity of i,(^ , 0 , u. o. For example, to show the continuity 

of i., say, wo know that i^op = poi and p is a quotient map; hence

continuity of i^ follovzs from the familiar argument about the quotient

topology.

Q_ • G o CL ♦

Corolla^ .5„.3 o 51

If ( r, G) is a topological ^d- transformation group and facts freely 



128.

and properly discontinuously on G, then p ; G —> G / is a covering 

morphism of topological groupoids.

Proof;

By 5'3.3. p is a covering morphism in the abstract sense; by

5.3.4. Gyp is a topological groupoid, and the quotient morphism 

p is continuous and open. Hence ¥ xe X, p* ; St^^x——> St^ r.x 

is a homeomorphism.

q.e.d.
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CtL^dPTBR VI

LIE CATEGORIES AND GROUP-OIDS

Introduction;

These categories and groupoids wore first intorduced by

C. Ehrosmann [ 4 ] , and received acre attention by Westman'.£12)

Wg give a nevj definition and produce some examples, e.g. Tor 

any vector bundle T over a differentiable manifold M, 5(t), the 

set of all homomorphisns botvrccn the fibres is a lie category, 

wlth^(T), the set of isomorphisms as Lie groupoid. Most of the 

results obtained in our ea,rlicr chapters in the topological case

go over to the differentiable case with minor modifications. We

give some indications in section 2.
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1. DEFINITIOHS' Aim EXAMPLES

Before starting the definition of Lie categories we nceds- 

Leirma 6.1.1;

Let the n-dimensional c manifold C he a category over the C 

a::o%i^;kLT^.srdJ^ thq_iniUal .%d_ fi]%l_ma]?8jj)o_^ 

aaEg_of. rcmlui._ Then D, the set of comppsahlc. .TDAirji,.is,._a 

closed submanifold of C x C.

Proof;

Let A CM X M he the diagonal, then Z\ (being the graph of 

i<3.: M—-> M) is a closed submanifold of M x M. The product 

map (j) X i ; C X C-- > M x M is a. C^ map of rank 2m = dim (M x m) , 

since r.ank i = rank (#> = m, by hypothesis. Hence for any 

(a, b) eD, the differential

af, X l)(a, b): ^)(C X =).-» T(^^, X M) 

is su’rjoctive. Therefore D = ((J) x i) "* (a ) is a. closed 

subma.nifold of C x C (Scci 3 !p. 21.) q.c.d.

Definition 6.1.2;

A set C is called a Lie category of class r, over a set M, 

if:-

(LC1) C is an algebraic category over M

(LC2) C and M are differentiable m.anifolds of cla^ss r with 

dim c > dim M

(LC3) i,(}) & u, the initial, final and unit W-aps, are 

diffcrcntia.blc maps of class r and ra-nks m = dim M. 

(LC4) The composition map q ; D >C, is a C^ map (by

6.1 D is a. submanifold of C x C).
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Definition 6.1.3s

A set G is called a Lie groupcid of class r over a set M, 

if s-

(i) G is a Lie category of class r and aai algebraic groupoid 

over M

(ii) The inverse map a : G----- 5> G is a C map.

Benarks 6.1.4:

(i) In every Lie category, fc'r every object x, Stx and ^^ arc 

closed submanifolds. This is a consequence -^f the fact that 

i and <!) arc of maximum ranlc.

(ii) In every lie category, V objects x, y the sets C(x, y) are 

closed submanifclds.

(iii) 0 = u(m), the set of units in C is a closed submanifold of

C diffeomorphic to M.

(Hence v/e mroy regard M as a. submanifold of C).

For, uo(j) (or uoi ) ; C---- >C io a C^ nap of rank m. Hence for 

each o h-O, "^ a coordinate chart (U, X ) in C such that

0 If = (a G H IX (a) = (x (si),««««, X (a), o, ...., o)} 

(sec f 11 Ip.41). Hence 0 is a closed submanifold of C (see [3 j 

p.21).

(iv) Lot f G C(x, y), then the map _A : St y--- > St x

f 4- 3-

is a C^ map. For, let C^ ; St y----- > St x be the constant 

map; a------> f then A = 8o(c^, id). Similarly

A : A .----- > a + f is a. C mo-p.

(v) Let G be a connected Lie groupoid, then V x, y, x’, y'e G , 

G(x, y) is diffeomorphic to G(x', y').
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(vi) In every connected Lie groupoid G, the vertex groups are 

isomorphic Lie groups.

The proofs of (v), (vi) follovz from (iv) similarly to 3.1.3(7? 8). 

Rather trivieJ examples of Lie groupoids are Lie groups vj-ith 

ohjcct set a point. For, i, (}), u are constant and hence are 

differentiable of class r, and obviously of constant rank. The 

other conditions follow from the definition of Lie groups. 

jR.B. The groupoid structures on a torus 9.rc not trivial, because 

object spe.ces arc not singleton.) • As non-trivial and important 

examples, we will show that for any Tfenifold M, kM and in 

general it JI is a Lie groupoid, and for any differentiable vector 

bundle T over a manifold M, £(T) is a Lie category over M.

Theorem 6,1.5;

Let M be an n-dimensional manifold of class r, then for any 

connected wide normal subgroupoid A of irM, ir M = 
.■■we*—I* ■. ,■! *.#*".*•. W WAWW.A*'.*''* ■. ■.■-■W****NW**WW.W.AW..M..A—- WA.- ■' ■ .AW^W AW .W"—A'.^mmik^^^^^^A.^^^.^^^^^w^W  A !■ 

(tr^M, i^, j),,; 6., u,, 0,) is a Lio groupoid of class r.

Proof:

M X 11 is a C^ manifold of dimension 2n. By 3.2.2. ttM and hence 

tt^M is locally trivial. Therefore tt,M is a covering space of 

M X M, and hence it is a covering manifold of class r and of 

dimension 2n, Moreover the covering map (i., ij),); tt.M-- > M x M 

is of class r end hence i, and (J), are of class r. The fact that 

i. and *^, have ranks n is a consequence of local diffeonorphism 

and the projection properties of (i^. , <j>y,) and

Tv^ ; M^ X M^---- > M^, i = 1, 2, respectively. 

Mext, we show that the composition 6,; 5,------- > E^ is class r.

Let ( [ajy, [b], ) cBy, , and lot U = < U^, K^],^? V^ > x< U2,Lb^'. »'V2 ’^
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be a. coordinate neighbourhood of ( [a1^ , 1'1},). Then

<Up j^a + b]^ , Vg > is a coordinate neighbourhood of |a + b j,.

in IT ,M.

Lot (X^, bj,)> (Vj^s V^) i = 1> 2 be coordinate charts in M, thens- 

tp .| = ^'^ 1 ^ "^ 1 ^ *^ ^ ^ ,T ’ (pl') ° ^''^ j_ ’ C ®'] ~ i^

arc charts in ir .M., Hence

is a chart in Tr^^M x tt ,M. Wc oust show that the nap

T = (A^ X Yg) 0 (i;j *^) o 8y^ O(Tp^ X ^g)-^'

i|^ X tP2(^'^'®2l)--------- 5.®^^, the representative function

of 6 , is C^. ¥ ( fe j,, (dl ,) e5^^, we havo:-

4, >f [cl,, fdk) = (A/ic), A_(id), )

= (A^ (ic),X^ (ic) 5 A ((^ c) y J o o e o y A ^(i'^) y e e o o 5,

Y 2 ^^ ^ /^ 9 e e • e y Y 2 ^4^ ^) )

and

X^ X Ygo(i^, (h) oe^( [c]^, IdJ^) = X^ X YgO(i;j *J( [c + d ]y^)

= X^ X Yg(ic, (Pd)

= (X^(ic), X^(ic), Yg((|id), g((pd) )

Hence we have the following coanutativo diagrams.

unn,^------- ^ <H^, [a + bj^^, 7g>

1
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where ir^, it^ and tt^^"^^ are the obvious projections and hence C^, 

Therefore F and hence e. is of class r.

Differentiability of_u^

Wc now show that the unit map u^.^; M----->Tr,jV[ is of cla,ss r. 

Let X e M, and U CM be a. coordinate neighbourhood of x, then 

<U, To 1 , U > is a coordinate neighbourhood of Co j = n(x) in 

TT ,M„ If g 2 U----- >£Ei^ is a chart in M, then

S )(go(i^, i^) :<U fo^l , D) ------- ^-R^'^

is a chart in i^,M. Thon P = gx go(i^, ^)o^g : IR^------ >IR ^ 

is a representative function for u^ It is easily seen that P is 

a projection and hence u^^is a G^ nap with ma-xinun ra,hk = n.

DifTerentiability of the inverse map 

Finally we must show that the inverse map 

0}, : T^M-------- >'n^M, [aj ;—f-a)^^

is differentiable of class r. Let<U, (aj^, V > be a coordinate 

neighbourhood of j'aj^, and let

X X Yo(i^, $^) :< U, [a];^, 7 > ---->BC!R^ 

bo a chart where (X, u)? (y, V) arc coordinate charts in M. Then

< V, [-a]^ , U > is a coordinate neighbourhood of . F^]^ ■'^^^ 

Y )( Xo(i., *.) :< V, r-a1y,_, D> > R^^ is also a chart in 

tr.M. It is easily verified that the following diagrons are

commutative:
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Therefore it follov/s that tt.o(y x. l)o(i,, ^,) ya o(i <() )~"^o( 1 y)""^ 

and henco o, is differentiahle of class r. q.c.d.

Theorem 6«1,6;

Let T be a vector bundle over a differentiable n~manifold M of 

clag8._^ t^_&TXJhe .cato2oiy_ of homomo^Msms between the

fitreSj^A _a _ LicLcatogosLpvG^

Proof:

From Chapter III, we know that L%(T) is a topological category 

over M. Topology of 2$(T) was defined by taking each

%, : <^(T)(U,V) ------>Ux 7 X Eom(k",B^) to bo a

homeomorphism (see 3 • 1.14) where IJ, V are any coordinate 

neighbourhoods in M such that T| U and T | V, are homeomorphic to 

TJ xiR^ and Vx iR^, respectively. Since M and Hom 6R^, iR^) are

manifolds, Ux V x Hom (R^, R^) is a manifold of dim. n(n + 2).

7e take each n^ ^ to be a diffcomorphism. Hence each



136.

^(T)(n, V) will be s. coordina.te neighbourhood, in (5'(T), and 

for any coordinate charts (A, U), (v, Y") ? (A x v x ^)on
2 u, V

is a chart in^'(T), where 5; HomCE^, 'E”)----- > iR^" is the 

unique chart defined by tricing a standard basis in E^ a,nd 

identifying each honcniorphisiii with its matrix. We must verify 

that these charts arc C^ related.

Let ^'(T)(U! , 7* ) be another coordinate neighbourhood such that 

G(T)(n,T) nT3(T)(n',T') /j,, then (n' % v')n(nx v)

= (U’/oU) X (V .^ V) M * 

Let X : ^(T)(TT', v') ^iR^^^"""^^ be a chart, then 3charts

^.1 2 b..-------MR^ and v. ; V.-------> E^ such thatx = (^..^vi^on

Wo must show that tho change of coordinates

S = (^'''0fS)on.^^, y^o n"^^^ o(A x v\ ^^i = A>B, 

where A = (Ax^xg) on^ ^T)(UnU^, Vnv ) )

B = (A XV x5)on ( ^(Y)(UnU, , V nvj )

is class r. Let x eA, then 3b e QT)(unu_^, VnVp such that

X = (X^(ib) , X^(ib), v^(*b), 5^(b') , 

g^ (b') ) where b* = n (b) = i|;".loboip (sec 3.1.14).

Then S(x) = (A^(ib), v ^ ((!)b), ^'’(b”),  g^ (b") ) 

where b" =41"^ oboipy . Let t^ = ip" cp.^, t^ = ip" oipy, then 

/ \ 2........... 2 (t.|, tg) can be regarded as a.n element of GL(n , R) x GL(n , E), 

-/•hich acts diffcrcntiably of class r on Hon (iR^, E^), bys- 

(t..| , t^) .0 = t~^ocot2.

To show the differentiability of S, we must prove ujos, j- = 1, . 

n(n + 2) is differentiable v/here it_. is the j"*"^^ projection. We have 

the following commutative diagramss- 
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A S B 17 S B

pf; 2 2A—'H5(Hon('Il^,iR^J)=R^----->Hom(B^,e^)---- >HoQ(iR^,E’^) —L..» R^

S j >2n ""j

Now C^ differentiability of Soir f lloi^s from that of 

^^cA , v^ov ,5 and the projections. Therefore the change of 

coordinates is differentiable of class r. Now wo verify 

differentiability of the related maps:-

(i) the initial nap i : ZS(T) ---- '-^ M is differentiable of 

class r. For, let g ^(^'(t)? then ^^^J? V e^( as in 3.1.14) such 

that g E^(T)(U, T). If (X, U), (v, V) are coordinate charts in 

M, then ((A x v x 5)on^ ^, g(T)(U,7) ) is a coordinate chart in 

^(T). T7o must show that

F = Aoion"^^ ^o(A X v X S)"'\(A X V X g)on^ /^(T)(N,T) )----)(R^. 

the representative function of i, is differentiable.

T^c ha.vc 5 -

(X X V X 5)on (g) = X X \, X E(lg,*s,g') = (x(lg),u(*g), s(g') ) 

= ()^\ig),...,A"(ig),v\*g),...,c\g'),...,^^ (g') 

and Xoi(g) = x(ig) = (x^ig)^ ..., x^(ig) ).
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Hence^ F is the restriction of the projection,' 

yn(n 2)----------- ^ ^pU Q^^Q ^]^g first factors. Therefore F and. 

hence i is differentiable of class r, and certainly of maximum rank, 

(ii) Similarly, ,j) ; ^(T) > M is differentiable of class r and 

of. maximum rank.

Therefore by 6.1, D < (3(T) x ^(t) is a submanifold.

(iii) The composition map 9: D------ -> ^(T) is differentiable of 

class r.

Het (f, g)ED and let U, V, W e^X such that 

i(f)eU, <i)(g)eV, i(g) = ({)(f)eW.

Then 2^(T)(U,V), )^(T)(U, W), )^(T)(W,V) are coordinate neighbour­

hoods containing gof, f and g, respectively. Hence,

7J = ( ^(T)(U, V) X ^(T)(W, V) ) <3 D

is a coordinate neighbourhood of (f, g) in D such that 

8(9/) C^(T)(U, V).

Let ipp ,pg, ^ be charts in M with the domains U, V and W 

respectively., then

2 ^J'g "^ ^)°^u v" ?^('^)(U, 'V) ------------ > H^^^ "^ 2)

X = (ifi^x if'g X ^)°\ v^ ((pg X ,p.^ X S)on^ "^ —._.____^{R^"(':^+^) 

are charts in C(T) and D, respectively, and we have;- 

for any (f^, g^elJ,

x(^i' S? = (*i "" *3 '^ ^)°\i,w'' ('''3 ^ 4 "^ 5)on(^.^^j(fi, g^) 

= (ip^ X ij,^ X 5(n^^^(fi) ), 1(^2 "^ 'j'l "^ 5(n(gi)^^.^) )

= (Vi X y,^ X G(if^, (f^), f'^), g,^ X ^g X g(ig^, ^g^, g'^) )

- (ip.|(if.|), xp^(({)f.|), ^(f'.|), (^^(ig ), Vi(<i)g-|), ^(g'.,) )
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= (^ J (if] ), ^^(ifi ), ip2(<i)fi), .?^ (f'l ),. .

and Z (g| of^ ) =

(*^ X *2 '^ 5)n^^^(g of ) = v,^ X ipg X s(ifp *g^, gr|Of'^)(by 

property of n , see S.l.l^i).

= (^l(if ) *2(*gl)' ^ (gf(g'of'i), )

So, we get the following commutative diagrams:-

-^^(T)(U,V)
8

(where ^j^^r^"^ ^^s the jth 

projections).

K(T)(U,V)

jP n(n+2)

8

X I n < j ^ 2n 

x(i;) 2
2n+n''+j

TT

In these cases HjOZoeox is a projection and hence differentiable

of class r.
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X ,

where p is the projection defined, by:-

P('P^» ) =

and v is the composition map (i.e. the product of matrices) in 

Hom(lR", iR"). Therefore p and v are differentiable of class r. Hence 

ir'^OYO\)o(E X ^ ^)op = TT2^+jOlo9ox is differentiable of class r. 

Hence 6 is differentiable of class r.

(iv) Finally, we must show that the unit map u : M —____ > ^(l)

is differentiable of class r and is of maximum rank..

Let (,p, U) be any coordinate chart in M such that meU, then

(^ X ^ X EoPy^y, ^(T)(U,U))is a coordinate chart in^(T) such that 

'^(^) ^ (^(T)(U,U). Now the differentiability of u and that it is of 

maximum rank follows from the same type of argument as the other maps. 

Corollary 6.7:

In every vector bundle T over a differentiable n-manifold^M, ■ 

^^"^^ ~ n,melif ^®°^'^m’'^n^ ^® ®' ^^® groupoid over M.
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Proof:

We first show that ^(T) with the relative topology is an open 

submanifold of ^(T). For each U, V e^J., (^(T)(U,V)

^ U v(^ "^ ^ "^ Iso(«'^, R'^).

But IsodR'^) R^^) is open in Hom(B'^, iR*^), therefore ^(T)(U,V)

is open in (^(T)(U,V) and hence in ^(T).

Thus j/(T) is open in ^(T). So, each^(T) (U,V), U.Vet/

is a coordinate neighbourhood in W(T).

Therefore the differentiability of i,cj) , u,6 , follows from that 

in ^(T). Therefore we only need to verify the differentiability 

of a: ^^(T)-------- >^(T)

^^^ \^(^)(U:V) be a coordinate neighbourhood of
f, then

1 
such that

^(T)(V,U) is a coordinate neighbourhood of f

a(^(T)(U,V) ) = ^(T)(V,U).

Let ip and v be charts in M with domains U and V, respectively, 

then ^ X \) X gon' and y x ip x gon' are charts in ^(T). 

Now the differentiability of s follows by using the same method 

as in 6.1.5. and take into consideration the fact that 

Iso(E^, R^) is a Lie group.

q.e.d.

Definition 6,1.8.

A Lie groupoid G over M of class r is calledlocally trivial, if for 

any meM, 3 a neighbourhood U and a C^ map X : U  --- ——> G

such that V xeU, i(X(x) ) = x and 4)(X(x) ) = m 
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Lemma 6.1.9:

Let M be a differentiable manifold, then for each connected wide 

normal subgroupoid A of irM, ir M is locally trivial.

Proof:

As we have seen tr.M is a locally trivial topological groupoid.

Recall that the local lifts were defined as follows:-

Let meM, and let U be a simply connected neighbourhood of m, 

then V X eU, X(x) = ■‘a j^, where a^PU(x, m).

Now let (ijj, U) be a coordinate chart in M, then <U, ^"^Jy^i U >

is a coordinate neighbourhood in tt^M, such that A(U)^<U, faj^, U> 

and it, X 1^, o(i^^, dy^) : <U, !>J^, U> > R^”^ (n = dim M)

is a chart in tt^M. To show the differentiability of X it suffices 

to show the differentiability of d^d o(i^p d^)oXod~"': d(U)<S!R“-—xR^^*.

But this easily follows using the standard arguments of earlier 

proofs. q.e.d.

Lemma 6.1.10:

^(T)(as in 6.6) is a locally trivial Lie groupoid over M.

Proof:

Let meM, and let Ue 2V lie a coordinate neighbourhood of m, then define 

X: U >.^(1) by: —

V xeM, let x(x) = n’"'* (x, m, iiipn), 

u,u
^^^^^ u I j^(T)(U,U).

u. @ ) LL w

Since n'^ ^ is a diffeomorphism, C^ differentiability of X easily 

follows. q.e.d.

SECTION 2

All the results about topological groupoids are true for Lie groupoids 

if we change the hypotheses from 'continuous* to 'differentiable* 
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6.2.1:

Every connected locally trivial Lie groupoid over M is a coordinate 

bundle over M x M.

A more complicated example occucs with transformation groups. Thus, 

definition of a Lie ^'d-transformation group and covering morphism 

just as in the topological case, but replacing continuity by 

differentiability. Then we have the following theorem and corollary:- 

Theorem 6.2.2:

If (r, G) is a properly discontinuous Lie ^/^-transformation group, 

and r acts freely on G, then the orbit manifold Gy^ is a Lie 

groupoid over My^,. (M = G°^).

Proof:

The fact that Gy^ and Xy^ are i^uotient manifolds follows from the 

theory of manifolds (see e.g. i, y t p. 41). So, we need only prove 

the differentiability of the maps. But these follow from the 

commutativity of diagrams similar to those used in 5.3,4.

For example differentiability of the inverse map a °/f °/r

is proved as follows;-

We have the following commutative diagram:- 

Let r.g = geGy^ and let (V, ^) be a coordinate chart in G/r such
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that geV. Then, by definition of the structure of G, 

ip = t^o(p|u) \ where U is a connected component of p~(V) 

containing g, and (u, ijj) is a coordinate chart in G. 

Let (V7, y) 136 a coordinate chart in G^^ such that cr(V) CW 

and Y = Yo(p|U') \ where (U', y) is a coordinate chart in G, 

with -geU*. Since a is differentiable Yocotp" ^ is differentiable.

To show the o is differentiablewe must show that the

representative function Yooo'i, \s differentiable.

-1

_1
(by commutativity of diagram)

But YOGOij; ")= Yo(p|U') ^ooo(P| U)o ip

= Yo(p|U') o(p| U')oooip

_1
= Yocoip

Hence y o o o u is differentiable. q.e.d.

Corollary 6.9=

If (r, u) is a properly discontinuous Lie^d-transformation group, 

and r acts freely on G, then p : G » Gy^ is a Li

covering morphism.

It should be clear that we now have the foundations of a 'Lie' 

theory of groupoids, and further research is necessary to develop the 

subject along the lines of the theory of Lie groups, as indicated 

by Westman f 12 ).

END,
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