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1.     Introduction 

     Observational studies are in common use for estimating and comparing the 

effects of different ‘treatments’ (medical treatments, teaching methods, new policies, 

etc.). In this kind of studies, the assignment of subjects to treatments often depends 

on latent assignment variables that are unknown to the investigator but could be 

related to the values of the response variable even when conditioning on known 

covariates. Consequently, a direct comparison of the response distributions (given 

the model covariates) or moments of these distributions between treatment groups 

might be misleading because units exposed to one treatment could differ in 

important but unknown characteristics from units exposed to other treatments.  

     Consider a finite population U  composed of N  elements, {1,..., }N . Suppose that 

every element i U�  is potentially exposed to m treatments with responses  

, 1,...,t
iy t m . The random variable t

iy  represents the response that would be 

obtained if unit i  had been exposed to treatment t . The target parameters of interest 

are population means like, ,
1

1 Np t t
ii

y
N

P � ¦ , or 
1

1
( | )

Nt t
i ii

E y x
N

P � ¦ , where ix  

defines a set of known covariates that affects the responses, and the expectation 

( | )t
i iE y x  is with respect to a ‘superpopulation’ model postulated for the responses. 

Very often, contrasts between the parameters ,p tP  or tP  are of primary interest, 

such as the mean difference between two treatments, known as the average 

treatment effect (ATE). The assumption that every element in the population could 

possibly be exposed to every treatment, known as the “counterfactual approach”, 

underlies many of the methods used in observational studies, starting with Neyman 

(1923/1990) and Fisher (1951). Rubin (1974, 1977), Rosenbaum (1984), 

Rosenbaum and Rubin (1983, 1984) and Smith and Sugden (1988) among others 

followed this formulation.  

     In practice, every element can be exposed to only one treatment if the net 

treatment effects are to be compared on ‘equal grounds’ (Holland, 1986). Also, it is 

rarely the case that all the population elements participate in the study. Let S define 

a sample of observational units of size n  and denote by iS  the probability that 

element i U�  is included in the sample. The probabilities iS  possibly depend on 

sampling variables iZ , which may affect the treatment response but may not be 
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known to the analyst. In observational studies, unlike in survey sampling, the 

probabilities iS  are often unknown, as the selection to the sample could be by ‘self-

selection’. Every unit j S�  is exposed to one of the m  treatments with treatment 

assignment probabilities, [ ( ) | ]t
jp Pr T j t j S  � ; 

1
1

m t
jt

p�  ¦ , where T  defines the 

assignment process. The probabilities t
jp  are assumed to depend on treatment 

assignment variables jA , which again may affect the responses but are unknown in 

a typical observational study. The probability that unit i U�  is included in the sample 

and assigned to treatment t  is therefore,  

                 ( , ( ) ) ( ) ( ( ) | ) t t
i i iP i S T i t P i S P T i t i S p qS�   � u  �  u  .            (1.1)                   

After the assignments take place, the sample S  is divided into sub-samples tS  of 

size tn , 
1

m

t
t

n n
�

 ¦ , where { | , ( ) }, 1,...,tS i i S T i t t m �   . Epidemiologists 

sometimes refer to the bias induced by the sampling process as selection bias, and 

the bias resulting from the assignment process as confounding bias; see the 

discussion in Rothman (2002).  

     Sugden and Smith (1988) establish conditions on the sampling and assignment 

processes that allow ignoring them in the inference process. A simple special case is 

when all the sample selection probabilities iS  are equal and similarly for the 

assignment probabilities t
ip , such that t t

iq q  for every i U� . The condition that 

every element in the population has the same probability of being exposed to a given 

treatment t  constitutes a special case of a strongly ignorable assignment. An 

assignment process with sample inclusion probabilities iS  and treatment assignment 

probabilities t
ip  is strongly ignorable given ix , if the sample model satisfies, 

                          ( | ) ( | , ) ( | ),t
t t t t
i i i i p i iS

f y x f y x i S f y x i U� �  � ,                  (1.2)                                 

where ( | )t
p i if y x  defines the ‘population’ probability density function (pdf) of t

iy  under 

the formulation described above by which every element in the population is 

potentially exposed to each of the treatments 1,...,t m . This definition of strong 

ignorability corresponds to the concept of ‘noninformative sampling’ in sample survey 

inference as defined in Pfeffermann et al. (1998). It is satisfied under the condition of 

independence between the assignment process and the response values, given the 
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covariates, as stated in Rosenbaum and Rubin (1983). The latter article assumes 

implicitly that the initial sample S  is selected by simple random sampling.  

     The problem of observational studies is that although the measurements t
jy  are 

only taken after that the sample units are assigned to the various treatments, they 

may be related to the sampling variables jZ  and/or the treatment assignment 

variables jA . If the effects of these variables on the responses are not accounted for 

by the covariates jx  included in the model, the ignorability condition (1.2) is no 

longer satisfied and the sample pdf ( | )t
t
i iS

f y x  is different from the population pdf 

( | )t
p i if y x . As well known and illustrated in this article, ignoring the effect of the 

sample selection or the treatment assignment may result in highly biased estimators.   

     In this article we study the plausibility of approximating the pdf ( | )t
t
i iS

f y x  of the 

observed responses under a given treatment by modeling the hypothetical 

population distribution under strong ignorability and the assignment rule. Fitting the 

resulting ‘sample model’ to the observed responses enables then to estimate the 

population model and hence estimate and compare the net treatment effects. The 

use of this approach is validated by showing that the sample model is identifiable 

under some general conditions on the population distribution under strong 

ignorability and the sampling/assignment rule. Furthermore, the goodness of fit of the 

sample model can be tested using simple test statistics.  Estimating the population 

distribution and the assignment rule enables also to test the validity of applying 

propensity scores methods or instrumental variables in any given problem.  

     The paper is organized as follows. Section 2 contains a brief review of some of 

the classical methods in common use. Section 3 defines the sample model and 

discusses the estimation of the unknown model parameters. Section 4 defines 

sufficient conditions guaranteeing the identifiability of the sample model and Section 

5 outlines test statistics for testing the goodness of fit of this model. Section 6 

illustrates the application of the proposed approach and compares it to some other 

approaches proposed in the literature using data collected as part of the PISA 

program carried out by OECD. In this illustration we compare pupils’ test scores in 

mathematics between public and private schools in Ireland. A simulation study that 
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uses the models fitted to this data set enables studying additional features of our 

approach. We conclude with a brief discussion in Section 7.      

2.     Methods in common use  

     In this section we review briefly some of the classical methods for observational 

studies in common use. This review is important for a better understanding of the 

approach outlined in subsequent sections and for the empirical comparison between 

the alternative methods in Section 6. We consider for convenience a two treatments 

case ( 0,1)T   and assume that the sample 0 1S S S �  of size n  is selected with 

equal probabilities. The target parameter is defined to be the sample ‘average 

treatment effect’,   

                              1 0

1 1

1 1
( | ) ( | )

n n

p i i p i i i
i i

ATE E y x E y x d
n n� �

ª º �  ¬ ¼¦ ¦ ,                       (2.1)               

where ( )pE �  is the expectation under the population distribution. As mentioned 

earlier, most of the literature on observational studies does not distinguish between 

the initial sample before the assignment to treatments and the population from which 

the sample is taken. Note also that if the initial sample is selected with known 

probabilities, the ATE in the population can be estimated from the sample estimators 

ˆ{ }id  by application of classical sample surveys methods. See also below.  

2.1. Methods for strongly ignorable treatment assignments 

2.1.1.   Regression methods 

     Suppose that the population model for the potential response ty  has the general 

form, 

                                    ( )t t ty r x u � , ( ) 0t
pE u  , 0,1t  ,                                 (2.2)                            

where tr  is a deterministic function of x , and that the assignment process is 

ignorable such that (1.2) holds. Under this assumption, ( | ) ( | )t
t t

pS
E y x E y x = ( )tr x , 

0,1t  , where ( )tS
E �  is the expectation under the sample distribution 

( | ) ( | , )t
t t t
i i i iS

f y x f y x i S �  (see Section 3.1). Hence, one can estimate in this case 

the regressions ( ), 0,1tr x t   from the sample data in 0S  and 1S , and estimate,  
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                                    1 0

1

1ˆ ˆ ˆ( ) ( )
n

i i
i

ATE r x r x
n �

ª º �¬ ¼¦ .                                              (2.3)  

 

 2.1.2.  Imputation methods 

     Methods in this category impute the potential responses 0
iy  for 0i S�  and 1

jy  for 

1j S�  by matching the covariates x . In practice, x  is often of high dimension, in 

which case the one-dimensional ‘propensity score’ ( ) ( 1| )e x P T x   is used 

instead. Rosenbaum and Rubin (1983) show that under strongly ignorable treatment 

assignments, the potential responses 1 0,y y  are independent of T  given  ( )e x , thus 

validating the use of the propensity scores for matching. In practice, the propensity 

scores are estimated by fitting logistic or probit models.  
 

Mean imputation  

     Denote by ( )t
MJ i  the M  closest matches in tS  for unit 1 ti S

��  based on x  or 

(̂ )e x . Then, for unit 1 ti S
��  1 1ˆ t t

i iy y
� �  and 

( )

1ˆ
t
M

t t
i j

j J i

y y
M 	

 ¦ , 0,1t  .  Estimate,  

                                                  1 0

1

1ˆ ˆ ˆ( )
n

i i
i

ATE y y
n 


 �¦ .                                           (2.4) 

 

See Abadie and Imbens (2006) for more details.  

2.1.3.  Propensity weighted contrasts 

     Propensity scores have been proposed also for constructing weighted estimators 

of the corresponding population means, similarly to the Horvitz and Thompson 

(1952) and Hajek (1971) estimators. Consider the estimator, 

                    1 1

1 1 1 1

(1 ) 1ˆ [ ] [ ] [ ]
ˆ ˆ ˆ ˆ( ) ( ) 1 ( ) 1 ( )

n n n n
i i i i i

i
i i i ii i i i

T T y T T
ATE y

e x e x e x e x
� �

� � � �

� � � � �¦ ¦ ¦ ¦ .              (2.6)                         

where 1iT   if 1i S�  such that 1
i iy y , and 0iT   and 0

i iy y , otherwise (see also 

Rosenbaum, 1987.) For large samples this estimator is approximately unbiased for 

1 0 1 0
1

( ) ( ) /
n

i ii
y y y y n
�  �¦  under all possible assignments of a given sample 

(assuming correct specification of the propensity scores). 

  
      Robins et al. (1994) consider the estimator,  
                                                                                                                                                                                                                                      

    
1 0

1 1

ˆ ˆ ˆ ˆ[ ( )] ( ) (1 ) [ ( )] ( )1 1ˆ
ˆ ˆ( ) 1 ( )

n n
i i i i i i i i i i

i ii i

T y T e x r x T y T e x r x
ATE

n e x n e x� �

� � � � � � �¦ ¦ .            (2.7) 
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This estimator has the “double-robustness” property of being consistent even if only 

the model fitted for the propensity scores, or the regression models (2.2) in the two 

sub-samples are correctly specified. The estimator (2.7) resembles the GREG 

estimator (Sarndal, 1980), which is in common use in survey sampling. Recently, Qin 

and Zhang (2007) proposed a new estimator having a somewhat stronger 

robustness property than (2.7). See Imbens (2004) for review and discussion of 

semiparametric estimators under strongly ignorable treatment assignment.   
 

2.2. Methods that use external variables to control the assignment 

     Two methods in common use in this group are the method of control functions 

and the method of instrumental variables.  
 

2.2.1.  Control functions 

     This method was originally proposed by Heckman (1978,1979). It assumes that 

the population model consists of two equations:  

a) A structural equation modelling the potential responses; ( )t t ty r x u � , 

( ) 0t
pE u  , 0,1t    (same as (2.2)).  

 

b) A latent variable equation modelling the treatment assignment,  

                                 ( ) , ( ) 0 ; 1 0v p vW m v u E u T W �   � t ,                           (2.8)                    

where W  is a latent variable and m  is a deterministic function of v , a set of 

observed covariates ‘explaining’ the choice of treatments. The problem is to model 

the sample expectations,  

                               ( | , ) ( ) ( | , ), 0,1t t
t t t

S S
E y x v r x E u x v t �  .                              (2.9) 

Assuming, ( | , , ) ( | )t tE u x v T E u T , 0,1t  , we have,   

     
1 1 1

1

0 0 0
0

( | , , 1) ( | 0) ( | ( )) ( )

( | , , 0) ( | 0) ( | ( )) ( )
v

v

E u x v T E u W E u u m v K v

E u x v T E u W E u u m v K v

  t  t �  
  �  � �  ,                          (2.10) 

and hence, 

                                      ( | , ) ( ) ( ), 0,1t
t t

tS
E y x v r x K v t �  .                               (2.11)                                    

The functions ( )tK v  are called ‘control functions’. A common practice of fitting the 

model (2.11) is to assume that 1 0( , , )vu u u  is trivariate normal with expectation zero 
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and covariance matrix ¦ . Heckman and Vytlacil (2006) review extensions of the 

method, including non-parametric estimation.  
  

2.2.2. Instrumental variables  

    Suppose that the means in the population models (2.2) are linear, 

( ) ’t t tr x xP E � , such that 1 0 1 0( ) ( )ATE xP P E E � � �  where 
1

/
n

ii
x x n� ¦ . The 

(conventional) instrumental variables method assumes the sample model,  

                     0 0 1(1 ) ’ ’y T T x Tx uP G E E � � � � � ,                          (2.12) 

where 1 0(1 )y Ty T y � � , u  is the unobserved residual, which is correlated with the 

assignment variable T  and 1 0( )G P P � .   

The method assumes the availability of instrumental variables f  satisfying, 

a. ( | , ) 0E u x f  ; b. ( | , ) ( | )t t
p pE y x f E y x , 0,1t  ;  c. Pr( 1| , ) ( , )T x f g x f  , a 

‘non-trivial’ function of f ; d. ( | , )Var u x f  is constant. Let, ’ (1, , (1 ) ’, ’)x T T x Tx ��  be 

the vector of ‘covariates’, ’ (1, , (1 ) ’, ’)z g g x gx �  the vector of ‘instruments’ and 

denote by 0 0 1( , , , )T P G E E  the unknown parameters. Multiplying both sides of 

(2.12) by ’z  and taking expectations, implies using condition a,  

( ) = ( )E z’x ( ]
 \� .                                                                                                 (2.13) 

Estimation of T  in (2.13) is carried out in two steps: 

1 – Estimate ˆ ˆ(̂ , ) ( | , ) ( 1| , )g x f E T x f P T x f    by fitting probit or logit regression;   

2 - Estimate the vector parameter T  as 1

1 1

ˆ ˆ ˆ( ' ) '
n n

IV i i i i
i i

z x z yT �

� �
 ¦ ¦� , where 

ˆ ˆ ˆ'̂ (1, ,(1 ) ', ')i iz g g x gx � . Wooldridge (2002, Ch.18.4) discusses different plausible 

conditions regarding the behavior of the error u  in (2.12) and corresponding 

estimation procedures.  

     The method of instrumental variables has been extended for estimating other 

parameters of interest. Imbens and Angrist (1994) and Angrist et al. (1996) define a 

Local Average Treatment Effect (LATE) and show how to estimate it using 

instrumental variables. Local instrumental variables (LIV) is an alternative approach 

of implementing the method of control functions, see Heckman and Vytlacil (2006). 

Heckman and Navarro (2004) provide conditions under which the LATE is a special 

case of LIV.   
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2.3 Discussion  

     All the methods described above assume the existence of known variables that 

control the effect of the assignment process under certain conditions. Two major 

challenges with the use of these methods are therefore how to identify plausible 

‘control variables’ and how to test that they satisfy the required conditions. 

Rosenbaum (2002) discusses methods of testing the sensitivity of the inference to 

different assumptions on confounding variables that affect the assignments.  

     In the remainder of this article we discuss an alternative approach for 

observational studies that does not require the use of control variables. Moreover, as 

illustrated in Section 6, the use of this approach allows testing the appropriateness of 

candidate instrumental variables and/or the use of propensity scores for inference. 

3.     An alternative approach for observational studies 
 

     Our proposed approach attempts to approximate the parametric sample 

distribution of the observed responses under a given treatment. The validity of this 

approach is studied theoretically in Sections 4 and 5, and empirically in Section 6.   
 

3.1. The sample distribution 
 

     As described in the introduction, we assume that the sample tS  of units exposed 

to treatment t  is generally obtained in two stages. First, a sample S  of n  

observational units is obtained with inclusion probabilities iS  and then every unit 

j S�  is assigned (or assigns itself) to one of the m  treatments with probabilities, 

t
jp , 

1
1

m t
jt

p�  ¦ . Alternatively, the assignment to treatments may take place in the 

population and then a sample is selected from each of the treatment groups. This 

scenario underlies the application in Section 6 where we compare students’ 

proficiencies in public and private schools based on probability samples of students 

from the two types of schools. The analysis below applies to both cases but we 

assume for convenience that the sample selection takes place first.  Denote by 
t t
j j jq pS u  the probability that unit j U�  is included in the sample and assigned to 

treatment t , and by ( | )t
p j jf y x  the population pdf that would be obtained under a 
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strongly ignorable assignment process as defined by (1.2). The sample pdf of t
jy  for 

unit tj S�  is obtained by application of Bayes theorem as,     

    ( | ) ( | , ) [Pr( | , ) ( | )]/ Pr( | )t
t t t t t t t
j j j j j j p j j jS

f y x f y x j S j S y x f y x j S x �  � � ,     (3.1)     

where Pr( | ) Pr( | , ) ( | )t t t t t
j j j p j j jj S x j S y x f y x dy�  �³ .  

Remark 1: It follows from (3.1) that the sample pdf is generally different from the pdf 

( | )t
p i if y x  under strong ignorability unless Pr( | , )t t

j jj S y x�  Pr( | )t
jj S x �  for all 

t
jy , in which case the sampling and treatment assignment can be ignored in the 

inference process. See Rosenbaum (1987) for a similar condition. 

Remark 2: The probabilities Pr( | )t
jj S x�  are the propensity scores, introduced by 

Rosenbaum and Rubin (1983).  See Section 2.1.2 above.  

Remark 3: The probabilities Pr( | , )t t
j jj S y x�  are generally not the same as the 

actual inclusion probabilities, Pr( )t t
jq j S � , which as discussed in the Introduction, 

may depend on sampling variables jZ  and treatment assignment variables jA  that 

are possibly related to the responses t
jy . Nonetheless, by regarding the probabilities 

t
jq  as realizations of random variables, the following relationship holds, 

    Pr( | , ) Pr( | , , ) ( | , ) ( | , )t t t t t t t t t t
j j j j j j j j j j j jj S y x j S y x q f q y x dq E q y x�  �  ³ .         (3.2)  

Substituting (3.2) in (3.1) gives an alternative representation for the sample pdf as, 

                           
( | , ) ( | )

( | )
( | )

t

t t t
j j j p j jt

j j tS
j j

E q y x f y x
f y x

E q x
 .                                      (3.3) 

The use of (3.3) for inference instead of (3.1) has the advantage that it only requires 

specifying the form of the conditional expectations, ( | , )t t
j j jE q y x .  

     The sample pdf defined by (3.1) or (3.3) was shown in recent years to provide a 

valuable modeling approach for inference from complex sample surveys; see the 

articles by Pfeffermann et al. (1998), Pfeffermann and Sverchkov (1999, 2003), 

Chambers et al. (2003), Sverchkov and Pfeffermann (2004) and Pfeffermann et al. 

(2006). These studies utilize the sample pdf for inference generalized linear and 

multi-level models, testing of distribution functions and prediction of finite population 
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totals. Pfeffermann and Sverchkov (1999, 2003) and  Chambers et al. (2003) 

develop test statistics for testing the informativeness of the sampling process. 
 

     The obvious distinction between survey sampling and observational studies is 

that in survey sampling the sample inclusion probabilities are generally known for 

every element in the sample, which enables identifying and estimating the 

conditional expectations ( | , )i i iE y xS , and testing the informativeness of the sampling 

process. This is generally not the case in observational studies, requiring therefore to 

model the parametric forms of the probabilities Pr( | , )t t
j jj S y x�  in (3.1) or the 

expectations ( | , )t t
j j jE q y x  in (3.3).  Fitting the logistic or probit function for these 

probabilities is a natural choice. As discussed below, modeling the sample pdf by 

use of (3.1) or (3.3) allows estimating the unknown parameters indexing the pdf 

( | )t
p j jf y x  and the probabilities Pr( | , )t t

j jj S y x�  or the expectations ( | , )t t
j j jE q y x , 

and testing the goodness of fit of the estimated sample pdf.  
 

3.2.  Estimating the parameters of the sample distribution  

     So far we suppressed for convenience in the notation the parameters indexing 

the sample pdf. Consider the pdf (3.3). Testing the existence of possible treatment 

effects requires initially to allow for different parameters for different treatments. 

Adding the unknown parameters to the notation, the sample pdf under a given 

treatment t  takes the form, 

                    
( | , ; ) ( | ; )

( | ; , )
( | ; , )

t

t t t t t
j j j p j jt t t

j j t t tS
j j

E q y x f y x
f y x

E q x

D TD T D T .                           (3.4) 

Assuming that the inclusion in the sample and the assignment to the treatments are 

independent between units and that the responses t
jy  are likewise independent, the 

sample likelihood for treatment t takes the form, 

                  1

( | , ; ) ( | ; )
[ , ;{ , }]

( | ; , )
t

t

t t t t t
n j j j p j jt t t

j j t t tjS
j j

E q y x f y x
L y x

E q x

D TD T D T� � .                (3.5)  

     Alternatively, the likelihood (3.5) can be replaced by the joint (‘full’) likelihood of 

the sample selection and the sample measurements, defined as,  
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1

[ , ;{ , ; , , }]

( | , ; ) ( | ; ) [1 ( | ; , )]t

t

t t t t t
S j j i

n t t t t t t t t
j j j p j j i ij i S

L y x j S x i S

E q y x f y x E q x

D T
D T D T� �

� �  
 �� � .            (3.6) 

The likelihood (3.6) has the advantage of comprising the model for the probabilities 
t
iq   for units outside the sample and thus using more information for estimating the 

model parameters, but finding the maximum is often more complicated. Notice that 

by dividing and multiplying by the product 
1

( | ; , )tn t t t
j jj

E q x D T�� , the likelihood in 

(3.6) is seen to be the product of the sample likelihood (3.5) and the probability of 

observing the sample tS , given the covariates kx in and outside tS . This likelihood 

is often applied in other areas, like when modeling data exposed to nonresponse, 

see, e.g., Greenlees et al. (1982), Gelman (2003, Ch.7), Pfeffermann and Sverchkov 

(2003) and Little (2004).  
 

     Maximization of either of the likelihoods (3.5) or (3.6) with respect to the unknown 

parameters yields the maximum likelihood estimators (mle) ˆˆ{ , , 1,..., }t t t mD T  . 

Replacing the unknown model parameters by their mle yields the estimates,   
  

          ˆ ˆ ˆ ˆˆ( | ) ( | ; ); ( | , ) ( | , ; )t t t t t t t t t
p j j p j j j j j j j j jf y x f y x q E q y x E q y xT D                 (3.7)   

Remark 4: The separate likelihoods defined by (3.5) and (3.6) can be enhanced by 

modeling jointly the sample responses and assignment probabilities for all the 

sample units. This extension seems natural since every unit is assigned to one and 

only one of the treatments, implying 
1

( | ; , ) 1
m t t t

j jt
E q x D T�  ¦ . Empirical evidence so 

far did not show any significant improvement by this joint modelling.   
 

3.3. Calibration constraints  

     Suppose that the population size, N, is known and likewise some or all of the 

means, 
1

/
N

i kik
X x N� ¦ , or that they can be estimated unbiasedly (e.g., when the 

initial sample is selected with known probabilities iS ). Under the model, and for 

sufficiently large sample sizes, 
1

ˆ ˆ(1/ )tn t
jj

N q N� #¦  and 
1

ˆ ˆˆ( / ) /tn t
i ji j ij

X x q N X� #¦  

for each t . Thus, the estimation process can be enhanced by maximizing the 

likelihoods (3.5) or (3.6) subject to the constraints, 
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1
(1/ )tn t

jj
q N�  ¦    ,   

1 1
( / ) / (1/ ) , 1,..., *t tn nt t

ji j j ij j
x q q X i p� �   ¦ ¦ ,              (3.8) 

with * dim( )p p xd  . When the expectation under the population distribution is 

linear, i.e., ( | ) ’t t
p i i iE y x x E , one can replace the *p  constraints in the right hand 

side of (3.8) by the constraint 
1

1
( ’ / ) ’tn t t t

j jj
x q X

N
E E�  ¦  where 1 *’ ( ,..., )pX X X , 

thus reducing the number of constraints. Note that this constraint contains also tE . 

     Changing the base sampling weights (1/ )i iw S  such that they satisfy 

constraints of the form (3.8) and thus utilize knowledge of population means of 

auxiliary variables that are related to the response variable of interest is very 

common in survey sampling estimation. See, Deville and Sarndal (1992).  
  
3.4.  Estimation of population parameters 

3.4.1.  Estimation based on the population model  under strong ignorability 

     In this section we focus on the estimation of the means 
1

1
( | )

Nt t
i ii

E y x
N

P � ¦ , 

1,...,t m .  If the covariates ix  are known for every unit i U� , then by (3.7), 

                             
1 1

1 1 ˆˆˆ ( | , ) ( | ; )
N Nt t t t t

p i i p i ii i
E y x E y x

N N
P T T� �  ¦ ¦ .                  (3.9) 

Note that if ( | ; )t t
p i iE y x T is linear, the computation of (3.9) only requires knowledge 

of the population means iX . The estimator ˆtP  can be used also for predicting the 

mean ,
1

/
Np t t

ii
y NP   ¦ . If the initial sample is selected with equal probabilities, tP  

can be estimated by the sample mean, ˆˆ ( | ; ) /t t t
s p i ij S

E y x nP T! ¦ . 

 

Remark 5: The estimator (3.9) looks similar to the estimator used for the estimation 

of the ATE defined by (2.3). Note, however, the estimator (3.9) accounts for an 

informative treatment assignment process and it does not assume strong ignorability.  
 

3.4.2. Estimation based on estimated inclusion probabilities    

     The population parameters can be estimated also by use of Hajek (1971) 

estimators utilizing the estimated probabilities ˆt
jq . The Hajek estimator is in common 

use in survey sampling applications. The resulting estimators have the form, 
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                       ,
ˆ/

ˆ
ˆ(1/ )

t

t

t t
j jj Sp t

H t
jj S

y q

q
P "

"

 ¦¦    ;  
ˆ ˆ( | ; ) /

ˆ
ˆ(1/ )

t

t

t t t
p j j jj St

H t
jj S

E y x q

q

TP #

#

 ¦ ¦ .                 (3.10)          

(Compare with (2.6)). Alternatively, one could use the ‘doubly robustified’ estimator,  
 

                  
1

ˆ ˆ[ ( | ; )]/ 1 ˆˆ ( | , )
ˆ(1/ )

t

t

t t t t
j p j j j Nj St t t

DR p i it i
jj S

y E y x q
E y x

q N

TP T$

%
$

� �¦ ¦¦ .           (3.11) 

 

(Compare with 2.7)). Large differences between the estimators in (3.9) and the 

estimators in (3.10) or (3.11) may indicate misspecification of either the population 

model under strong ignorability, or the treatment assignment probabilities. See 

Section 5 for a corresponding test statistic. 
 

Remark 6: The estimators defined by (3.10) and (3.11) look similar to the estimators 

defined by (2.6) and (2.7), but as with the estimator (3.9), the estimators in (3.10) 

and (3.11) account for an informative treatment assignment process. This is reflected 

by the use of the probabilities ˆˆ ( | , )t t t
j j jq Pr j S y x �  instead of the propensity 

scores ˆˆ ( | )t t
j je Pr j S x � .  

 

4.     Model identifiability 

4.1.  Identifiability problem  

     A major question underlying the use of the sample pdf (3.1) or (3.3) is model 

identifiability. By identifiability we mean the nonexistence of different pairs of 

population pdfs under strong ignorability and treatment assignment probabilities 

yielding the same sample pdf.  Clearly, if different pairs exist, the model is not 

identifiable. At first thought it would seem that this is always the case since (3.1) for 

example is the sample pdf if the population pdf is ( | )t
p j jf y x  and the assignment 

probability is Pr( | , )t t
j jj S y x� , but also if the population pdf is ( | )t

t
j jS

f y x  and the 

units are assigned with equal probabilities. However, as shown below, under certain 

conditions, the sample pdf is generally identifiable.  

     In what follows we restrict to a single treatment t  and assume that t
jy  is 

continuous. To simplify the notation in this section we denote by ( )q y  the 

assignment probability to the sample tS , denoted hereafter simply by S , and by 
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( )pf y  the population pdf for treatment t  under strong ignorability, assuming for 

convenience no covariates (see Remark 9 below). With this notation, the sample pdf 

for units in S  is 
( ) ( )

( )
( ) ( )

p
s

p

q y f y
f y

q y f y dy

� �³  and the identifiability of the sample model is 

defined as follows: 

  
Model identifiability: The sample model ( )sf y  is identifiable if no different pairs 

(1) (1)[ ( ), ( )]pf y q y , (2) (2)[ ( ), ( )]pf y q y exist that induce the same sample pdf ( )sf y .  

 

4.2 Conditions for model identifiability  

     Suppose that there exist two treatment assignment probability rules (TAP) 
(1) (2)( ), ( )q y q y , and two pdfs (1) (2)( ), ( )p pf y f y  that are strictly positive on J � R  

yielding the same sample pdf ( )sf y , or equivalently,  

    
(2)(1)

(2) (1)

( )( )
( ) ( )

p

p

f yq y
K

q y f y
    y J� �   ; (1) (1) (2) (2)( ) ( ) / ( ) ( )p pK q y f y dy q y f y dy � �³ ³ .   (4.1) 

      In what follows we assume that densities (1) ( )pf y  and (2) ( )pf y  that satisfy certain 

requirements are given, and define conditions under which no associated TAPs 
(1) (2)( ), ( )q y q y  exist that satisfy (4.1). This is done by studying the limit of each side 

of (4.1) as y  tends to some limit point such as ,�f �f  or 0 , choosing the limit point 

in such a way that the left hand side of (4.1) converges to a finite positive number 

whereas the limit of the right hand side is either 0 , f  or does not exist.   

Remark 7: the use of this strategy enables to verify the identifiability of the sample 

pdf for many practical situations. Nonetheless, as shown later, there are other cases 

that need to be studied differently. Let (2) (1)( ) ( ) / ( )p p pR y f y f y .  

Lemma 1 (similar to Lee and Berger, 2001): Assume that [ , )J c f  for some 

constant c . If the densities (1) ( )pf y  and (2) ( )pf y  are strictly positive on J and, 

                                    lim ( ) 0py
R y&('  , f  or does not exist,                                  (4.2) 

there are no (1) (2)( ), ( )q y q y  on J  with finite positive limits at foy  satisfying (4.1).  

Proof: Follows from (4.2) and taking the limit y of  on both sides of (4.1). 
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     An example of (4.2) is two normal densities with different mean or variance. 

Another example is two Gamma densities with different location parameters. In both 

examples the limit of the ratio is either 0  or f . Examples of TAPs satisfying the 

requirement in the lemma are the Logistic and Probit functions with positive 

coefficients for the response values.  

Lemma 2: Assume that ( , ]J c �f  for some constant c . If (1) ( )pf y  and (2) ( )pf y  are 

strictly positive on J  and,  

                               lim ( ) 0py
R y)+*-,  , f  or does not exist,                               (4.3) 

there are no (1) (2)( ), ( )q y q y on J  with finite positive limits at y o �f  satisfying (4.1).  

The proof is similar to the proof of Lemma 1. Examples of (4.3) are two normal 

densities with different mean or variance or two double exponential (Laplace) 

densities with different location and scale parameters. In both examples the limit of 

the ratio is either 0  or f . Examples of TAPs satisfying the requirement in the lemma 

are the Logistic and Probit functions with negative coefficients for the response 

values.  

Remark 8:  When ( ) exp( )
( )

1 exp( )
j jj

j j

a b y
q y

a b y

� � �  and ( ) 2( ) N( ; )j
j jf y P V , 1,2j  , the 

sample model is identifiable by Lemma 1 If 0jb ! , and by Lemma 2 if 0jb � .  

Lemma 3: Assume that 0  is a limit point of J  and that (1) ( )pf y , (2) ( )pf y  are strictly 

positive in J  and satisfy,  

                               
0 ( 0 )
lim ( ) 0p

y y
R y. /0 0  , f  or does not exist.                             (4.4)                                                    

Then there are no (1) (2)( ), ( )q y q y  with finite positive limits at 0y   satisfying (4.1).   

The proof is again similar to the proof of Lemma 1. Examples of (4.4) are two 

Gamma pdfs with different location parameters or two Beta pdfs with different 

parameters. In both examples the limit of the ratio is either 0  or f , depending on 

the relative magnitude of the corresponding parameters. Logistic and Probit 

functions satisfy the requirement from the TAPs in the lemma.  

     Lemmas 1-3 cover many practical cases but as mentioned in Remark 7, there are 

other interesting and possibly practical cases that need to be studied separately. 

Below we consider cases where the TAPs are nonincreasing Logistic or Probit 

functions and the population densities are defined on the non-negative real line.  
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Case 1. Logistic assignment rules 

     Suppose that ( ) exp( )
( ) , 0, 1,2

1 exp( )
j jj

j
j j

a b y
q y b j

a b y

� �  � �  and [0, )J  f . In this 

case the identity (4.1) can be expressed as, 

                
(2)

2 2
2 1 2 1(1)

1 1

( )1 exp( )
exp[( ) ( ) ], [0, )

1 exp( ) ( )
p

p

f ya b y
K a a b b y y

a b y f y
� �  � � � � � f� � .      (4.5) 

The left hand side of (4.5) tends to 1  as y of . However, the limit of the right hand 

side depends on the forms of (1) ( )pf y  and (2) ( )pf y . In Appendix A we consider an 

example of two exponential densities.  
 

Case 2. Probit assignment rules 

Suppose that [0, )J  f  and ( ) ( ) ( ), 0, 1,2j
j j jq y a b y b j ) � �  , where ( )) �  

defines the normal cumulative pdf. The identity (4.2) is now,   

                                  
(2)

1 1
(1)

2 2

( )( )
[0, )

( ) ( )
p

p

f ya b y
K y

a b y f y
) �  � � � f) � .                              (4.6)                                                              

For y  sufficiently large, the ratio 1 1

2 2

( )
( )
a b y
a b y

) �
) �  can be bounded as (see Appendix B), 

   1 2 2 1 1 1 1 1 2 2 1 1

2 1 1 2 2 2 2 2 1 1 2 2

1 ( ) ( ) 1 ( )
1 ( ) ( ) 1 ( )

a b y a b y a b y a b y a b y
a b y a b y a b y a b y a b y

H M H M
H M H M

� � � ) � � � �� � � � � �� � � ) � � � � ,         (4.7) 

where ( )M �  denotes the standard normal pdf and 1 2, 0H H !  are arbitrarily small. 

Thus, by (4.7), and for y  sufficiently large,  

             
(2)

2 2 1 2 2 2 2 1
(1)

1 1 2 1 1 1 1 2

( )1 ( ) 1
1 ( ) ( ) 1

p

p

f ya b y a b y a b y
K

a b y f y a b y a b y
H M H
H M H

� � � � �� � � � �� � � � � .                      (4.8)  

The left and right hand sides of (4.8) tend to 2 1( / )b b  as 1 2, 0; yH H o of . However, 

the limit of the middle part of (4.8) depends on the forms of the pdfs (1) ( )pf y , (2) ( )pf y . 

In Appendix C we consider an example of two exponential densities.  

Remark 9: So far we studied the identifiability of the sample model assuming that 

there are no covariates. In practice, both the probability assignment rule and the 

population pdf may depend on observable covariates x . For example, in the 

empirical analysis in Section 6 we use, 
exp( ’ )

( ; , , )
1 exp( ’ )

c y x
q y c

c y x
G JG J G J

� � � � � ; 
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2 2( ; , ) N( ’ ; )pf y xE V E V . Evidently, the identifiability arguments presented above 

apply to this case as well, provided that the covariate values are sufficiently spread 

to allow the identification of their coefficients. See Cox and Snell (1989, Section 

3.4.3) for related discussion.   

5.     Model Assessment 

     Assessing the goodness of fit of an estimated model is an old problem underlying 

almost every statistical application. This is particularly imperative for models of the 

form (3.1) or (3.3) as both the distribution under strong ignorability and the   

assignment probabilities are generally unknown. On the other hand, once the 

identifiability of the sample pdf has been established, there is nothing unique in the 

present case and one faces the classical problem of having a random sample from 

an hypothesized pdf which has to be tested. Below we overview a few plausible test 

statistics that can be used for assessing the goodness of fit of the sample pdf.  

 
5.1. Compare theoretical and  empirical distributions 

     Once the model parameters { , }t tD T  have been estimated, the cumulative 

sample distribution function (cdf) for sample unit tj S�  can be estimated as, 

                                        ˆˆ ˆ( | ) ( | ; , )t

yt t t t t
j j j j jS

F y x f y x dyD T
132

 ³ .                             (5.1) 

The ‘expected’ mean number of sample units with observations t
jy yd  under the 

hypothesized model is therefore, ˆˆ ˆˆ( ; , ) ( | ) /t t
t t t

j j tS j S
F y F y x nD T 4 ¦ , which can be 

compared to the empirical proportion 
1ˆ ( ) = ( )t

t t
EMP jj S

t

F y y y
n

5 , d¦ , where ( )t
jy y, d  

is the indicator function. The null hypothesis that the sample model fits the sample 

data can be tested by use of the Kolmogorov-Smirnov (KS) test statistic, 

ˆˆ ˆ ˆmax | ( ) ( ; , ) |t
t t

i

t t t t t
t EMP j jSy S

KS F y F y D T
6

 � .                                     (5.2) 

 The KS test is known to be nonparametric, but this is only true if the parameters 

of the theoretical distribution are known. Otherwise, the distribution of the KS statistic 

depends in a complex way on the true values of the model parameters. Correct 

critical values can be obtained by use of parametric bootstrap. The procedure 

consists of generating many samples from the estimated hypothesized model, re-
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estimating the unknown parameters from each bootstrap sample and the 

corresponding KS statistic, and then computing the critical values based on the 

bootstrap distribution of the KS statistic. See Babu and Rao (2004) for regularity 

conditions justifying the use of this procedure. 
  

     Another possibility of comparing the hypothesized distribution with the empirical 

sample distribution is by using the Moran (1951) test. Let (1) (2) ( )
... tn

y y y� � �  denote 

the ordered values of the response and let ( ) ( )
ˆ( | ) /t

t
i j i j tj S

p F y x n7 ¦ , where t̂
jF  is 

defined by (5.1). Compute the differences (spacings), ˆˆ( , )t t
iD D T  ( ) ( 1)i ip p 8� , 

1... ti n  with 0 0p  , 1
tnp  . The Moran test statistic is,  

                                            
1

ˆ ˆˆ ˆ( , ) log ( , )
tn

t t t t
i

i

M DD T D T
9

 �¦ .                                   (5.3) 

Cheng and Stephens (1989) show that under mild regularity conditions the statistic 

defined by (5.3) has asymptotically ( tn of ) normal distribution with mean mJ  and 

variance 2
mV , given, up to the order of 1m

:
 by,   

1 1
log

2 12m  P� P� � �
m

� � , 
2

2 1 1
1

6 2 6m m
m

SV § · � � �¨ ¸© ¹ ,                         (5.4)  

where 1tm n � , and 0.5772J |  is the Euler’s constant. This property makes the 

test very attractive but its performance is known to be sensitive to the existence of 

‘close observations’. Cheng and Stephens (1989) propose modifications for the case 

of tied observations.  
  

5.2. Compare estimates obtained from the estimated population distribution with 

estimates based on the estimated assignment probabilities 

 
     Section 3.4 considers two alternative methods of estimating the population 

parameters tP  and ,p tP . The first method uses the estimated population pdf 

(Equation 3.9). The second method uses the estimated inclusion probabilities 

(Equations 3.10, 3.11). If the parametric forms of the population distribution under 

strong ignorability and the conditional expectations of the inclusion probabilities are 

correctly specified, we expect the two sets of estimators to be sufficiently close. 

Large differences would indicate that at least one of the models is misspecified. For 
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a given treatment t, we may test for example, 0 ˆ ˆ: ( ) 0t t t
DRH E P P'  �   using the 

test statistic,  

                                         ˆˆ ˆ ˆ ˆ( ) / ( )t t t t t
DR DRU SDP P P P � �                                       (5.5) 

Note that by (3.9) and (3.11), 
ˆ ˆ[ ( | ; )]/

ˆ ˆ ˆ
ˆ(1/ )

t

t

t t t t
j p j j jj St t t

DR t
jj S

y E y x q

q

TP P ;

;

�'  �  ¦ ¦  

ˆ ˆ ˆ/ / (1/ )t t
t t t
j j jj S j S

e q q< < ¦ ¦ . Under correct assignments, 
( / )

( )
(1/ )

t

t

t t
i i tS

p it
iS

E e q
E e

E q
 , 

where ( )tS
E �  is the expectation under the sample distribution (3.3) (Pfeffermann and 

Sverchkov, 1999), such that t̂'  is asymptotically unbiased for the population mean 

of the residuals in treatment t, and ( ) 0t
p iE e   if the population model for treatment t 

is specified correctly.  

     The asymptotic distribution of t̂'  under correct model specification is obtained by 

noting that it is the solution of the estimating equations, 
1

( ) / 0
n

t t t
j j j

j

T e q
=

� '  ¦ ; 

1

( , , , , ) 0
n

t t t
j j j

j

u y x T D T
>

 ¦ , where 1jT   if tj S�  and zero otherwise, and ( )u �  is the 

score function with the likelihood defined by (3.6). Noting that 
1

[ ( ) / ,
n

t t t
j j j

j

E T e q
?

� '¦  

1

( , , , , )] 0
n

t t t
j j j

j

u y x T D T
@

 ¦  at the true parameter values , ,t tD T t'  under the joint 

distribution of ( , )t
j jy T , it follows from the theory of M-estimation (Stefansky and 

Boos, 2002) that  

                                                 ˆ( ) (0, )
D

tn N' � ' o 6 .                                           (5.6) 

     In order to estimate 6  and apply the statistic tU  in (5.5), note that the score 

function can be written as ( , , , , ) ( , , , )t t t t t t
j j j j j ju y x T T g y xD T D T  (1 ) ( , , )t t

j jT s x D T� � , 

where ( )g �  and ( )s �  are the derivatives of the corresponding log-likelihood 

expressions. After some algebra and following the theory of M-estimation we obtain 

that, 
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1 1
11 212v h v h h

A Ac c6  � , � , , with 2
11

1

1
[( ) / ]

n
t t t

p j j
j

v E e q
n B

 � '¦ ,  

12
1

1
[( ) ( , )]

n
t t t

p j j j
j

v E e g y x
n C

 � '¦ , 
1

1
( )

n
jt
t

j

u
E

n
I ID

w,  ,  w¦ ; ( , )t t tI D T  is the Fisher 

Information matrix and 
1

1
( [ ]/ )

t tn
j t

j t
j j

e
h E T

n q
I

E

� 'c  � w w¦ . The estimator 6̂  is 

obtained by estimating ( )pE �  by the corresponding sample value, substituting the 

unknown parameters by their sample estimates and estimating the population totals 

by inverse probability weighting. The estimator 6̂  is consistent for 6  under mild 

regularity conditions, Iverson and Randles (1989).   

 
5.3. Assess the coherence of estimated propensity scores for different treatments   
      
     Since every sample unit is assigned to one and only one of the treatments, under 

correct model specification 
1
Pr( | ) 1

m t
jt

j S xF �  ¦  for every unit j , where  

Pr( | )t
jj S x� ( | ) ( | , ) ( | )t t t t t

j j j j j p j j jE q x E q y x f y x dy  ³  is the propensity score 

(denominator of 3.1 or 3.3). Thus, one can test the sample models by testing the null 

hypothesis, 0 1
: Pr( | ) 1

m t
jt

H j S xG �  ¦  for all j . A plausible test statistic is therefore,   

                                     
1
ˆmax |1 Pr( | ) |

m t
s jtj S

M j S xHI � �¦ ,                                   (5.7) 

where ˆ ˆPr( | ) ( | )t t
j j jj S x E q x�  . Note in this respect that the sample models are 

fitted independently for each treatment (see Section 3.2).  
 

     The distribution of the test statistic (5.7) under the null hypothesis has yet to be 

established (and possibly approximated by use of parametric bootstrap), and its use 

is restricted therefore at this stage to descriptive analysis. 

6.       Application of the new approach to the PISA survey 
 

6.1.  Data used for present application      

     We study the performance of the proposed approach and compare it to the other 

methods described in Section 2, using data collected in Ireland in the year 2000 by 

OECD for the Programme for International Student Assessment (PISA). The purpose 



 22 

of this program is to study the proficiency of pupils aged 15 in mathematics, science 

and reading in 34 countries.  
 

6.2.  Sampling design 

     The sampling design underlying the PISA study is in most countries a stratified 

two-stage sampling design. The strata are defined by size, type of school and 

gender composition. Within each stratum, the first stage of sampling is a probability 

proportional to size (PPS) sample of schools with the size defined by the ‘anticipated’ 

number of 15 years old pupils enrolled in the school. A minimum of 150 schools has 

been selected in each country (or all the schools if there are less than 150 schools in 

the country). The second stage consists of an equal probability sample of 35 pupils 

from the corresponding age group in each of the sampled schools (or all the pupils in 

schools with less than 35 pupils aged 15).   

     By this sampling design, pupils included in the sample in a given country are not 

equally representative of the pupils aged 15 in the country and each pupil is 

assigned therefore a sampling weight. The weight is the reciprocal of the product of 

the school inclusion probability and the pupil’s inclusion probability within his school, 

adjusted for non-participation of schools and nonresponse of pupils. We performed 

some of the analyses described below incorporating the weights but found that it had 

no effect on the values of the estimates, implying that the sample selection is 

noninformative for the models we use. For more information on the PISA sampling 

design and weighting see PISA  2000 Technical Report, Chapters 4 and 6.  

     In the present application we compare proficiency scores in mathematics 

between public schools and private schools in Ireland. This is a good example of an 

observational study because pupils attending the two types of schools are different in 

their family background and other important characteristics. The whole dataset has 

been analyzed previously by Vandenberghe and Robin (2004) using existing 

methods. The data from Ireland is of particular interest because different existing 

methods provide ATE estimates with opposite sings (see Section 6.5 and 

Vandenberghe and Robin, 2004). The sample data refers to 1256 students in private 

schools ( 1t  ) and 702 students in public schools ( 0t  ).  
 

6.3.  Computation of response values 

    The response value in the PISA study (proficiency in mathematics in the present 

application) is not observed directly even for sampled pupils and is treated as a 
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missing value. PISA uses two approaches for imputing the missing proficiencies: a 

maximum likelihood approach and a multiple imputation approach. Let the binary 

variable ijd  take the value 1 if pupil j  answers correctly question i  of the PISA 

examination and 0 otherwise. The probability Pr( 1)ijd   is the logistic probability, 

Pr( 1| , , )ij i i jd a b \ 1[1 exp( ( )]i j ia b\ J � � � . The parameter ia  measures how 

question i  distinguishes between persons of different proficiency; the parameter ib  

represents the ‘difficulty’ of question i  and j\  is the unobserved proficiency score. 

The imputed score for student j  is the MLE ĵ\ . Note that the logistic models have 

no covariates, implying conditional independence of the answers on background 

characteristics, given the score j\ .  

     The second approach draws at random multiple values from the conditional 

distribution of j\  given the indicators 1( ,..., )j j m jd d d , (m  is the number of 

questions), and covariates jx  representing individual background characteristics like 

age and gender. The conditional pdf of j\  given jd  and jx  is expressed as,  

           (1 )

1

( | , ) [Pr( 1)] [Pr( 0)] ( | , , )ij ij

m
d d

j j j ij ij j j
i

f d x d d f x\ \ O VK

L
v   � ,              (6.1) 

where Pr( 1| , , )ij i i jd a b \  is modeled as above and 2( | , , )j jf x\ O V  is the normal 

distribution with mean jx Oc   and variance 2V . Note that the responses to the various 

questions are assumed to be independent given the parameters ( , , )ij i i ja bK \ . Five 

imputed values of j\  are drawn for every student j  in the sample.    

     In the present application we use the second approach and following 

Vandenberghe and Robin (2004) we standardized the values by dividing them by 

their empirical standard deviation. The use of this approach enables estimating the 

variances of the ATE estimates using multiple imputation theory (Rubin, 1987). 

Denote by ˆ
dATE  the ATE estimate from imputed data set d , 1,...,5d  . Following 

the theory of multiple imputation,   

                         
5

1
ˆ ˆ /5dd

ATE ATEM ¦  ; ˆˆ( ) (1 1/5)Var ATE B V � � ,                     (6.2) 
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where 
5 2

1
ˆ ˆ( ) / 4dd

B ATE ATEN �¦  is the ‘between’ imputation variance and 

5

1
ˆ / 5dd

V VO ¦   is  the   ‘within’  imputation   variance,  ˆ ˆˆ( )d dV Var ATE . For the   

ATE estimator 1 0ˆ ˆ( )P P�  with ˆtP  defined by (3.9) we computed d̂V  using the 

estimated inverse information matrix. For the ATE estimator 1 0ˆ ˆ( )DR DRP P�  with ˆt
DRP  

defined by (3.11), we estimated d̂V  similarly to the estimation of 6  in Section 5.2. 

Note that 1
D̂RP  and 0

D̂RP  are independent since they refer to different treatments.   

 
6.4.  Model for PISA data   

     In the analysis that follows we model the sample pdf (3.1) by assuming a normal 

distribution for the potential population responses and the logistic model for the 

assignment probabilities. Thus, using the notation of Section 3,   

  2( | ) ( , )t t
p j j j tf y x N x E Vc ;

exp( )
Pr( | , ) , 0,1

1 exp( )

t t t t
j jt t

j j t t t t
j j

c y x
j S x y t

c y x

G J
G J

c� ��   c� � � .  (6.3) 

In (6.3) 0t   defines public schools and 1t   private schools. As shown in Section 

4, the sample pdf  is identifiable for 0tG z  (see Remark 8).  

 
6.4.1 Explanatory variables  

     Six explanatory variables (covariates) were found to be significant in at least one 

of the models fitted to the PISA data. Gender (1 for girls 0 for boys), father’s 

education (F.E= 1 for high education, 0 otherwise), family socio-economic index 

(S.E.I), index of home educational resources (H.E.R), average socio-economic index 

of the student’s schoolmates (S.E.S, proposed by Vandenberghe and Robin, 2004 to 

account for potential peer effects), and school location (S.loc= 1 if school located in 

an urban area, 0 otherwise). The continuous variables have been standardized.   

Remark 10: Vandenberghe and Robin (2004) considered additional variables, but 

these were not found to be significant in our analysis.  

Remark 11: The variable school location was used by Vandenberghe and Robin 

(2004) as an instrumental variable. The authors fit the model (2.13) but impose 
1 0E E E  . They show that it has a significant effect on the probability of attending 

private schools in all the countries (thus satisfying Condition c in Section 2.2.2). 

However, the approaches considered in the literature for observational studies do 
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not permit testing directly the other requirement from an instrumental variable that 

the school location is exogenous to the student’s proficiency given the model 

covariates (Condition a). The authors claim that this requirement is plausible using 

similar arguments to Hoxby (2000). As mentioned in Section 2.3, the use of our 

approach enables testing this requirement (see below).  
 
6.4.2  Computational details 

     We computed the maximum likelihood estimates of the unknown parameters by 

maximizing the full likelihood (3.6) with respect to ( , ); ( , , )t t t t t t
t cT E V D G J  . For 

this, we used the maximization routine nlm in R (Development Core Team (2004)). 

The choice of the initial values plays a crucial role in the convergence of the 

maximization algorithm. However, empirical investigations show that for a fixed value 

of the coefficient tG , the maximization is not sensitive to the choice of the initial 

values for the other parameters. We applied therefore the following algorithm which 

performs well in our application.  

1. Define a grid of plausible values for tG  around zero. Maximize the likelihood for 

each value tG  with respect to the other parameters using as initial values for tE  and 

tV  the values obtained by fitting a linear regression model to the sample data and 

zeroes for tc  and tJ . The parameters maximizing the likelihood over all the grid 

values of tG  are taken as the initial values.  

2. Maximize the likelihood with respect to all the parameters (including tG ) with  

initial values obtained in Step 1. 

6.5   Results  

     Tables A1-A4 show the estimates and standard errors (Std. Error) obtained for 

the private and public schools. Note that 1̂ 0G ! , 0̂ 0G � , but 1̂G  is close to zero and 

not significant. On the other hand, 0̂G  is far from zero and highly significant, 

indicating that for given values of the covariates, the probability to attend a public 

school decreases very rapidly as the score increases. This finding suggests that 

pupils attending public schools have a priori lower scores, and not because of a poor 

quality of public schools. Note also that the instrument, school location, is 
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nonsignificant in Tables A2 and A4 but highly significant in Tables A1 and A3. We 

discuss this outcome in Section 6.6.   
   

     Table A5 shows the estimates of the population means by type of school and the 

estimates of the ATE as obtained under our approach. We show the two estimates 

considered in Section 3.3: the estimate (3.9) that is based on the estimated 

population model and the doubly-robustified estimate (3.11). The two ATE estimates 

are similar, negative and very significant, indicating the very interesting and 

somewhat surprising result that the mean proficiency in public schools after 

accounting for the school selection process is actually higher in public schools than 

in private schools. Table A6 shows the ATE estimates obtained by some of the 

existing methods reviewed in Section 2, using Stata (StataCorp, 2004) and R 

packages (R Development Core Team, 2004). For the propensity score matching 

method we used a one-to-one matching algorithm with replacement (see Section 

2.1.2). For the control functions method we used the two-step Heckman’s (1979) 

method, assuming that 0 1( , , )vu u u  is trivariate Normal (see Section 2.2.1). Notice 

that unlike the ATE estimates in Table A5, the crude difference between the 

unadjusted sample means in the two types of schools is positive, suggesting that the 

mean proficiency is higher in private schools than in private schools. This outcome 

illustrates the problem of observational studies very pronouncedly. All the methods 

except for the method of instrumental variables yield very small ATE estimates.  

     Table A7 shows the p-values of the goodness of fit test statistics discussed in 

Section 5. The first 3 statistics are nonsignificant with p-values higher than 12%, thus 

supporting the use of the selected models. As mentioned in Section 5.3, the 

theoretical critical values of the Ms statistic are unknown but notice its very low value. 

Computing the critical values by parametric bootstrap yields a p-value of 0.30.  

 
6.6. Testing of assumptions of existing methods 

     We mentioned before that the use of the proposed approach enables testing 

some of the assumptions underlying the existing methods. Note first that the 

coefficient of y  is not significant in the logistic model for the private schools, thus 

seemingly supporting the use of methods that use the propensity scores. However, 

the coefficient of y  is highly significant in the logistic model for public schools, 

indicating that the covariates used in this study do not fully explain the choice of 
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public schools and hence that the use of methods that use the propensity scores 

with these covariates is not valid.  

     Next consider the instrument, ‘school location’. We notice in Tables A2 and A4 

that the coefficient of the instrument is not significant in the two population models, 

implying that Condition b underlying the use of instrumental variables is satisfied 

(Section 2.2.2). Similarly, the instrument is highly significant in the two logistic 

models (Tables A1 and A3) as assumed under Condition c. However, in the public 

schools the assignment probabilities depend heavily on y , despite of including in the 

model the covariates and the instrument, indicating that Condition a is not satisfied 

and hence that the school location is not a proper instrument. Note, however, that 

the use of the method of instrumental variables with this instrument yields the closest 

ATE estimate to the estimate obtained under the new approach. 
    

6.7  Simulation study 

     The simulation study is divided into two parts. In the first part we generated 

independently 400 data sets from the model fitted to the data from Ireland when the 

response values are the averages of the five imputed values (see section 6.3). The 

sample sizes for the two types of schools were the same as in the original samples. 

This part of the simulation study is therefore an application of parametric bootstrap 

and it was carried out in order to study the performance of the proposed approach 

and as another validation of the empirical results reported in Section 6.5. The 

simulations allowed us also to compute the critical values of the KS test statistic 

(Section 5.1) and of the SM  test statistic (Section 5.3; as noted there, the validity of 

the use of parametric bootstrap for calculating the distribution of the SM  statistic 

has yet to be studied). In order to save in space we don’t show the empirical means 

and standard deviations of the model parameter estimates obtained for the 400 runs 

but the means are generally very close to the true parameters and the standard 

deviations are close to the standard errors computed for the original sample.  

     Table B1 shows the empirical means of the estimates of the population means 

and the ATE over the 400 simulations, and the corresponding empirical standard 

deviations (Std) of the means. The row titled “original sample” shows the estimates 

obtained for the original samples from Ireland. Notice that these estimates are mildly 

different from the estimates in Table A5 because the response values are now the 

averages of the five imputed values. As is evident, the empirical means are close to 
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the original estimates, even though the differences are ‘significant’. Interesting, the 

empirical means are almost identical to the values shown in Table A5, which are 

also means over the estimates obtained for the five separate sets of imputed values.   

Table B2 shows the empirical means of the ATE estimates obtained under the 

existing methods. As can be seen, the empirical means always have the same sign 

as the original estimates shown in Table A6, and except in two cases the mean 

estimates and the original estimates are close. The empirical standard deviations 

are close to the standard errors shown in Table A6.  

     All in all, the results obtained for this part of the simulation study show that 

indeed the model parameters can be estimated almost unbiasedly with acceptable 

standard error estimates, despite the rather complicated structure of the sample 

model. Obtaining similar ATE estimates under the existing and the new method as 

for the original samples can be used as another indication of the goodness of fit of 

the models fitted to the data from Ireland and the corresponding ATE estimates. 

     In the second part of the simulation study we generated independently 400 other 

data sets from the same model as above, except that the residual error terms in the 

two populations models (public and private schools) were generated from a t-

distribution with 4 degrees of freedom instead of the normal distribution. For each 

set we fit the model that assumes normal error terms, like in the first part. This part 

of the simulation study was carried out mostly in order to study the performance of 

the goodness of fit test statistics under a misspecified model. The (4)t  pdf is not very 

far from the N(0,1) pdf and yet, we find that in this case some of the parameter 

estimates are highly biased, interestingly, more so in the two logistic models, 

despite the fact that these models have not been changed.  Table C1 shows the 

empirical means of the estimates of the population means and the ATE as obtained 

under the misspecified model. As can be seen, the empirical means are biased in 

this case but the biases are not extreme.   

     Table C2 shows the percentage of samples for which the goodness of fit tests 

rejected the misspecified model at the 5% nominal level. These percentages 

indicate the power of the various tests. The KS test basically rejects the 

misspecified model in all the samples from private schools and in 60% of the 

samples from public schools. The statistic tU  has somewhat better power than KS 

in public schools but very low power in private schools. The Moran test has low 
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power in both types of schools. Thus, KS shows overall the best performance, and 

with the mild model misspecification considered, a power of 60% as obtained for the 

public schools is not unexpected.  
 

7.    Discussion 

     In this article we propose a new approach for observational studies that recovers 

the treatment assignment model and the population model, before the assignment, 

from the sample data. On first thought, this seems impossible but we show in 

Section 4 that the sample model holding for the observed data, which incorporates 

the population model and the assignment probabilities, is identifiable under mild 

conditions. Furthermore, the goodness of fit of the sample model can be tested by 

standard test statistics because the sample model refers to the sample data. We 

develop also in Section 5 a new test that compares the estimate of the population 

mean obtained under the recovered population model, with an estimate of the 

population mean that uses the estimated assignment probabilities.  

     The advantage of the proposed approach over existing methods that use the 

propensity scores or instrumental variables for estimating the treatment effects is 

that it does not require knowledge of the covariates or instruments that explain the 

assignment to treatments. Moreover, as illustrated in Section 6, the use of the new 

method actually enables to test the appropriateness of the use of these methods.  

     We applied the new approach for comparing the proficiency scores in 

mathematics of children aged 15 between public and private schools in Ireland. Our 

analysis shows that although the average score of pupils in the sample from private 

schools is significantly higher than the average score of pupils from public schools, 

the picture is reversed once the effect of the school selection is accounted for 

properly. A similar conclusion is reached by application of the method of 

instrumental variables, but the difference between the two types of schools is more 

profound under the new method.      
     

TABLES 

A. PISA data in Ireland     
 
     The model was fitted for each set of imputed responses separately. The results in 

Tables A1-A6 are obtained using the theory of multiple imputation described in 

Section 6.2. Table A7 refers to a single data set with the responses defined by the 

mean of the five imputed responses (after standardization). 
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Private schools 

Table A1. Assignment (logistic) model for private schools 
 

Coefficient 1C  
1G  Gen. F.edu S.E.I H.E.R S.E.S S.loc 

Estimate 

Std. Error 

-1.45 

 1.55 

0.23 

0.25 

0.70 

0.13 

0.04 

0.12 

- 0.08 

  0.08 

3.28 

0.20 

0.14 

0.07 

1.13 

0.13 

 

                      Table A2. Population (normal) model for private schools 
 

Parameter 1V  Const Gen. F.edu S.E.I H.E.R S.E.S S.loc 

Estimate 

Std. Error 

0.88 

0.02 

6.24 

0.11 

-0.23 

  0.06 

0.17 

0.06 

0.16 

0.03 

0.34 

0.11 

0.19 

0.03 

- 0.09 

   0.06 
 

Public schools 

Table A3. Assignment (logistic) model for public schools 
 

Coefficient 0C  
0G  Gen. F.edu S.E.I H.E.R S.E.S S.loc 

Estimate 

Std. Error 

15.08 

  2.80 

-2.18 

 0.55 

-0.78 

 0.20 

0.17 

0.23 

0.35 

0.14 

-2.85 

  0.49 

0.29 

0.14 

-1.57 

  0.26 

 
Table A4. Population (normal) model for public schools 

 
Parameter 0V  Const Gen. F.edu S.E.I H.E.R S.E.S S.loc 
Estimate 

Std. Error 

1.20 

0.10 

6.98 

0.18 

0.18 

0.10 

0.10 

0.09 

0.16 

0.05 

1.48 

0.31 

0.31 

0.04 

0.23 

0.15 
 

Table A5. Estimation of population means and ATE 

 
Private School Public School ATE  
1 1̂ˆ xP Ec  1

D̂RP  0 0̂ˆ xP Ec  0
D̂RP  1 0ˆ ˆ ˆP P'  �

 
D̂R'  

Estimate  

Std. Error 

6.16 

0.08 

6.16 

0.08 

7.22 

0.25 

7.05 

0.20 

-1.05 

  0.25 

-0.89 

 0.23 

 

Table A6. Estimation of ATE by existing methods 

Method 1 0y y�
 

Reg. Propens. 
Matching 

Hajek Doubly 
Rob. 

Instrum. 
Variables 

Control 
Function  

Estimate 

Std. Error 

0.354 

0.045 

0.130 

0.052 

0.214 

0.103 

0.160 

0.051 

0.170 

0.052 

- 0.726 

  0.247 

- 0.166 

  0.130 
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Table A7. Goodness of fit test statistics and p-values (in parentheses) 
 

Statistics KS Moran tU  SM  

Private schools 0.0218  
(0.125) 

- 0.4643 
(0.64) 

-0.48 
(0.64) 

Public schools 0.0399 
(0.166) 

- 0.1647 
(0.87)   

-1.24 
(0.22) 

 
 

0.04812 
 

 

B. Simulations from model fitted to data from Ireland (400 simulated data sets)  
        

Table B1. Estimation of population means and ATE 
 

Private School Public School ATE  
1 1̂ˆ xP Ec  1

D̂RP  0 0̂ˆ xP Ec 
 

0
D̂RP  1 0ˆ ˆ ˆP P'  �  D̂R'  

Original sample 6.17 
 

6.17 
 

7.27 7.11 
 

-1.10 -0.94 

Emp. mean 

Std of mean 

6.17 

0.005 

6.17 

0.005 

7.20 

0.006 

7.07 

0.009 

- 1.02 

0.007 

- 0.90 

0.01 
 

Table B2. Estimation of ATE by existing methods 

 

C. Simulations  from misspecified model  (400 simulated data sets) 

Table C�. Estimation of population means and ATE 

Private School Public School ATE  

1 1̂ˆ xP Ec  1
D̂RP  0 0̂ˆ xP Ec  0

D̂RP  1 0ˆ ˆ ˆP P'  �  D̂R'  

Original Sample 6.17 
 

6.17 
 

7.27 7.11 
 

-1.10 -0.94 

Emp. mean 

Std of mean 

6.06 

0.01 

5.98 

0.015 

7.58 

0.015 

7.19 

0.03 

-1.52 

0.018 

-1.21 

0.031 

 
 

Method 1 0y y�
 

Reg. Propens. 
Matching 

Hajek Doubly 
Rob. 

Instrum. 
Variables 

Control 
Function  

 
Emp. mean  

Emp. Std 

0.361 

0.044 

 

0.134 

0.051 

 

0.126 

0.100 

0.158 

0.048 

 

0.167 

0.048 

 

-0.676 

0.244 

-0.365 

0.231 
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Table C2. Percentage of rejection of misspecified model at 5% nominal level 

Statistics KS Moran SM  tU  

Private School 99.7% 49% 16% 

Public School 59.7% 19.5% 

 
53.8% 

66% 

 

Appendix A: Identifiability of the sample pdf when the population pdf is 

exponential and the assignment rule is logistic   

Suppose that ( ) ( ) exp( ),j
p j jf y yT T � ( ) exp( )

( ) , 0, 1,2
1 exp( )

j jj
j

j j

a b y
q y b j

a b y

� �  � � ; 

[0, )J  f . The right hand side of (4.5) is therefore,  

2
2 1 2 1 1 2

1

( ) exp[( ) ( ) ]G y K a a b b y
T T TT � � � � � . If 2 1 2 1b b T T� z � , letting y of  on 

both sides of (4.5) yields a contradiction. If 2 1 2 1b b T T�  � , (4.5) takes the form, 
    

2 2

1 1

1 exp( )
1 exp( )

a b y
a b y

� �
� �

2
2 1

1

exp( )K a a
T
T �  , y J� � . 

Differentiating both sides with respect to y  shows that it can only hold if  

1 2 1 2,a a b b   and 1 2T T , establishing  the identifiability of the sample pdf.  

Appendix B: Bounds on the ratio of two probit assignment probabilities 

In order to bound the ratio 1 1

2 2

( )
( )
a b y
a b y

) �
) �  ( 1 2, 0b b � ), we use the following results:  

1. 
( )

lim 1
( )x

x x
xMP+QSR

� )   (Feller, 1968, pp. 175),  2. If 0a bt ! , 0c d! ! , then ac bd! .  

It follows from Result 1 that for !�  and sufficiently small negative x ,  

1 1
( ) ( ) ( )x x x

x x
H HM M� �� � ) � �� � . 

The bounds in (4.7) follow after some algebra using Result 2.  
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Appendix C: Identifiability of the sample pdf when the population pdf is 

exponential and the assignment rule is probit.  

Let ( ) ( ) exp( ),j
p j jf y yT T � ( ) ( ) ( ), 0, 1,2j

j j jq y a b y b j ) � �  ; [0, )J  f . The 

middle part of (4.8) is therefore 

2 2 2 2 22
1 2 1 1 1 2 2 2 1 2

1

( ) exp[( ) / 2 ( ) (( ) / 2) ]G y K a a a b a b y b b y
T T TT � � � � � � � .  

If 1 1 1 2 2 2 0a b a bT T� � � z  or  2 2
1 2 0b b� z , taking the limit of (4.8) when y of  yields 

a contradiction. If  1 1 1 2 2 2 0a b a bT T� � �   and 2 2
1 2 0b b�   ( equivalent to 1 2b b b  ), 

then for y  sufficiently large (4.8) takes the form,  

2 22 1 2 2 1
1 2

1 2 1 1 2

1 1
exp[( ) / 2]

1 1
a by a by

K a a
a by a by

H T H
H T H

� � � �� � � � �� � � �  

 Letting y of  we get 2 22
1 2

1

exp[( ) / 2] 1K a a
T
T �  . Also, by (4.6) at 0y  , 

1 2

2 1

( )
( )
a

K
a

T
T

)  ) . Thus, 
2

1 1 1 1
2

2 2 22

( ) exp( / 2) ( ) ( )
( ) ( ) ( )exp( / 2)
a a a a
a a aa

M
M

) � ) �  ) )�  1 2

1 2

( ) ( )
( ) ( )
a a
a a

M M�  ) )  

1 2a a�   since 
( )

( )
( )
x

x
x

MO  )  is a one-to-one function. It follows that 1 2 1 2,a a b b   

and 1 2T T , establishing  the identifiability of the sample pdf in this case.  
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