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ABSTRACT

In observational studies the assignment of units to treatments is with unknown
probabilities. Consequently, estimation and comparison of treatment effects based on the
empirical distributions of the response under the various treatments can be biased since
units exposed to one treatment could differ in important but unknown characteristics
from units exposed to other treatments.

In this article we study the plausibility of analyzing observational data by deriving the
parametric distribution of the observed response under a given treatment as a function of
the distribution that would be obtained under a strongly ignorable assignment, and the
assignment process, which is modeled as a function of the observed data (the response
and covariate values). The use of this approach is founded by showing that the sample
distribution of the observed responses is identifiable under some general conditions. The
goodness of fit of this distribution can be tested by using standard test statistics since it
refers to the observed data, but we also develop a new test. The proposed approach
allows also testing the assumptions underlying the use of methods that employ
instrumental variables, or methods that use propensity scores with a given set of
covariates.

We assess the performance of the proposed approach and compare it to existing
approaches using data collected in the year 2000 by OECD for the Programme for
International Student Assessment (PISA). In the present application we compare
students’ scores in mathematics between public and private schools in Ireland and
conclude, somewhat surprisingly, that the public schools perform better than the private
schools. This finding is supported by one of the existing methods as well.
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1. Introduction

Observational studies are in common use for estimating and comparing the
effects of different ‘treatments’ (medical treatments, teaching methods, new policies,
etc.). In this kind of studies, the assignment of subjects to treatments often depends
on latent assignment variables that are unknown to the investigator but could be
related to the values of the response variable even when conditioning on known
covariates. Consequently, a direct comparison of the response distributions (given
the model covariates) or moments of these distributions between treatment groups
might be misleading because units exposed to one treatment could differ in
important but unknown characteristics from units exposed to other treatments.

Consider a finite population U composed of N elements, {1,...,N}. Suppose that
every element ieU is potentially exposed to m treatments with responses
y;,t=1,...,m. The random variable y' represents the response that would be

obtained if unit i had been exposed to treatment ¢. The target parameters of interest
. . 1 , |
are population means like, ﬂp’fzﬁzii]yi, or u ZWZLEU;'X!‘)’ where x,

defines a set of known covariates that affects the responses, and the expectation

E(y; 1x;) is with respect to a ‘superpopulation’ model postulated for the responses.

Very often, contrasts between the parameters u”' or u' are of primary interest,

such as the mean difference between two treatments, known as the average
treatment effect (ATE). The assumption that every element in the population could
possibly be exposed to every treatment, known as the “counterfactual approach”,
underlies many of the methods used in observational studies, starting with Neyman
(1923/1990) and Fisher (1951). Rubin (1974, 1977), Rosenbaum (1984),
Rosenbaum and Rubin (1983, 1984) and Smith and Sugden (1988) among others
followed this formulation.

In practice, every element can be exposed to only one treatment if the net
treatment effects are to be compared on ‘equal grounds’ (Holland, 1986). Also, it is
rarely the case that all the population elements participate in the study. Let S define

a sample of observational units of size n and denote by 7z, the probability that
element i eU is included in the sample. The probabilities 7, possibly depend on

sampling variables Z., which may affect the treatment response but may not be



known to the analyst. In observational studies, unlike in survey sampling, the

probabilities 7, are often unknown, as the selection to the sample could be by ‘self-
selection’. Every unit je S is exposed to one of the m treatments with treatment
assignment probabilities, p, = Pr{T(j)=11jeS]; " pi =1, where T defines the
assignment process. The probabilities p;. are assumed to depend on treatment
assignment variables A,, which again may affect the responses but are unknown in
a typical observational study. The probability that unit i e U is included in the sample
and assigned to treatment ¢ is therefore,

PieS, Ti)=t)=PieS)xPT @) =tlieS)=n,xp; =q;. (1.1)

After the assignments take place, the sample S is divided into sub-samples S’ of
size n,, Zn, =n, where S'={ilieS,TG{)=t},t=1,...m. Epidemiologists
t=1

sometimes refer to the bias induced by the sampling process as selection bias, and
the bias resulting from the assignment process as confounding bias; see the
discussion in Rothman (2002).

Sugden and Smith (1988) establish conditions on the sampling and assignment
processes that allow ignoring them in the inference process. A simple special case is

when all the sample selection probabilities 7, are equal and similarly for the

assignment probabilities p;, such that ¢, =¢' for every i eU . The condition that

every element in the population has the same probability of being exposed to a given
treatment ¢ constitutes a special case of a strongly ignorable assignment. An

assignment process with sample inclusion probabilities 7; and treatment assignment

probabilities p; is strongly ignorable given x,, if the sample model satisfies,
foOilx)=fi1x,ieS)=f,(y1x), VieU, (1.2)
where f,(y; |x,) defines the ‘population’ probability density function (pdf) of y; under

the formulation described above by which every element in the population is
potentially exposed to each of the treatments ¢ =1,...,m. This definition of strong
ignorability corresponds to the concept of ‘noninformative sampling’ in sample survey
inference as defined in Pfeffermann et al. (1998). It is satisfied under the condition of

independence between the assignment process and the response values, given the



covariates, as stated in Rosenbaum and Rubin (1983). The latter article assumes

implicitly that the initial sample S is selected by simple random sampling.
The problem of observational studies is that although the measurements y; are

only taken after that the sample units are assigned to the various treatments, they

may be related to the sampling variables Z, and/or the treatment assignment
variables A, . If the effects of these variables on the responses are not accounted for

by the covariates x; included in the model, the ignorability condition (1.2) is no

longer satisfied and the sample pdf fS,(yf | x;) is different from the population pdf

fp(yf | x;). As well known and illustrated in this article, ignoring the effect of the
sample selection or the treatment assignment may result in highly biased estimators.
In this article we study the plausibility of approximating the padf fS,(yf | x;) of the

observed responses under a given treatment by modeling the hypothetical
population distribution under strong ignorability and the assignment rule. Fitting the
resulting ‘sample model’ to the observed responses enables then to estimate the
population model and hence estimate and compare the net treatment effects. The
use of this approach is validated by showing that the sample model is identifiable
under some general conditions on the population distribution under strong
ignorability and the sampling/assignment rule. Furthermore, the goodness of fit of the
sample model can be tested using simple test statistics. Estimating the population
distribution and the assignment rule enables also to test the validity of applying
propensity scores methods or instrumental variables in any given problem.

The paper is organized as follows. Section 2 contains a brief review of some of
the classical methods in common use. Section 3 defines the sample model and
discusses the estimation of the unknown model parameters. Section 4 defines
sufficient conditions guaranteeing the identifiability of the sample model and Section
5 outlines test statistics for testing the goodness of fit of this model. Section 6
illustrates the application of the proposed approach and compares it to some other
approaches proposed in the literature using data collected as part of the PISA
program carried out by OECD. In this illustration we compare pupils’ test scores in

mathematics between public and private schools in Ireland. A simulation study that



uses the models fitted to this data set enables studying additional features of our
approach. We conclude with a brief discussion in Section 7.

2. Methods in common use

In this section we review briefly some of the classical methods for observational
studies in common use. This review is important for a better understanding of the
approach outlined in subsequent sections and for the empirical comparison between

the alternative methods in Section 6. We consider for convenience a two treatments
case (T =0,1) and assume that the sample S=S"US' of size n is selected with

equal probabilities. The target parameter is defined to be the sample ‘average
treatment effect’,

ATEz%i[Ep(y}Ixi)—Ep(y;)|X,~)]=%idi’ (2.1)
i=1 i=1

where E () is the expectation under the population distribution. As mentioned

earlier, most of the literature on observational studies does not distinguish between
the initial sample before the assignment to treatments and the population from which
the sample is taken. Note also that if the initial sample is selected with known

probabilities, the ATE in the population can be estimated from the sample estimators

{c?i} by application of classical sample surveys methods. See also below.

2.1. Methods for strongly ignorable treatment assignments
2.1.1. Regression methods

Suppose that the population model for the potential response y’ has the general
form,

y=r'x)+u', E,(u')=0,1=0,1, (2.2)

where r' is a deterministic function of x, and that the assignment process is

ignorable such that (1.2) holds. Under this assumption, E_, O =E,(y' 1x)=r'(x),

t=0,1, where E_ () is the expectation under the sample distribution
fo(yi1x)=f(y lx,ieS") (see Section 3.1). Hence, one can estimate in this case

the regressions ' (x), t =0,1 from the sample data in S° and S', and estimate,



ATE = li[fl(xi) -#(x) . (2.3)

nio
2.1.2. Imputation methods

Methods in this category impute the potential responses ;' for i€ S° and y! for

jeS' by matching the covariates x. In practice, x is often of high dimension, in
which case the one-dimensional ‘propensity score’ e(x)=P(T =1lx) is used
instead. Rosenbaum and Rubin (1983) show that under strongly ignorable treatment
assignments, the potential responses y',y° are independent of T given e(x), thus
validating the use of the propensity scores for matching. In practice, the propensity
scores are estimated by fitting logistic or probit models.

Mean imputation

Denote by J!,(i) the M closest matches in S’ for unit ie S'" based on x or

é(x). Then, forunit ie "™ $ "=y and ¥ _ L * t=0,1. Estimate,
Vi Vi Vi Y

jeli ()
N 1 n R .
ATE = =3 (5, =31 (2.4)
i=1
See Abadie and Imbens (2006) for more details.

2.1.3. Propensity weighted contrasts

Propensity scores have been proposed also for constructing weighted estimators
of the corresponding population means, similarly to the Horvitz and Thompson
(1952) and Hajek (1971) estimators. Consider the estimator,

Ty, (1-T)
() Z Z1—() =

where 7, =1 if ie S' such that y,=y;,and 7,=0 and y, = y0 otherwise (see also

ATE = [Z

(2.6)

Rosenbaum, 1987.) For large samples this estimator is approximately unbiased for
(3'=3)=>Y." (3 —y))/n under all possible assignments of a given sample

(assuming correct specification of the propensity scores).

Robins et al. (1994) consider the estimator,

AfE = L3 Tt — 2P ) 1 (=T, +1T, =20 ()

— - (2.7)
ng e(x,) I1-e(x,)



This estimator has the “double-robustness” property of being consistent even if only
the model fitted for the propensity scores, or the regression models (2.2) in the two
sub-samples are correctly specified. The estimator (2.7) resembles the GREG
estimator (Sarndal, 1980), which is in common use in survey sampling. Recently, Qin
and Zhang (2007) proposed a new estimator having a somewhat stronger
robustness property than (2.7). See Imbens (2004) for review and discussion of

semiparametric estimators under strongly ignorable treatment assignment.

2.2. Methods that use external variables to control the assignment

Two methods in common use in this group are the method of control functions

and the method of instrumental variables.

2.2.1. Control functions
This method was originally proposed by Heckman (1978,1979). It assumes that
the population model consists of two equations:

a) A structural equation modelling the potential responses; y' =r'(x)+u',

E,(u')=0,t=0,1 (same as (2.2)).

b) A latent variable equation modelling the treatment assignment,
W:m(v)-i—uv,Ep(uv):O;T:1<:>W20, (2.8)

where W is a latent variable and m is a deterministic function of v, a set of
observed covariates ‘explaining’ the choice of treatments. The problem is to model
the sample expectations,

ES,(y[Ix,v)zr[(x)+ES,(u’|x,v), t=0,1. (2.9)
Assuming, E(u' | x,v,T)=Eu'|T), t=0,1, we have,

EW lxv,T=1)=Eu'|W >0)=Eu' lu, >-m®)) = K,(v)

: (2.10)
EW’1x,v,T=0)=Eu’ W <0)=E@’lu, <-m(())=K,()

and hence,

E, (' lx,v)=r'(0)+K, (), t=0,1. (2.11)
The functions K,(v) are called ‘control functions’. A common practice of fitting the

model (2.11) is to assume that (uv,u‘,uo) is trivariate normal with expectation zero



and covariance matrix .. Heckman and Vytlacil (2006) review extensions of the

method, including non-parametric estimation.
2.2.2. Instrumental variables

Suppose that the means in the population models (2.2) are linear,
r'(x)= ' +x’f', such that ATE = (u' — 11°)+X(B' - p°) where x =" x,/n. The
(conventional) instrumental variables method assumes the sample model,

y=p' +ST+(1-T)x’ B’ +Tx’ B +u, (2.12)
where y=Ty'+(1-T)y°, u is the unobserved residual, which is correlated with the

assignment variable 7 and & = (u' — 1°).

The method assumes the availability of instrumental variables f satisfying,

a Ewlx,f)=0;b. E,(y'Ix,f)=E,(y'1x), t=0,1; c. Pr(T =1lx,f)=g(x,f), a
‘non-trivial’ function of f; d.Var(ulx, f) is constant. Let, x’=(1,T,(1-T)x’,Tx’) be
the vector of ‘covariates’, z’=(1,g,(1—g)x’ gx’) the vector of ‘instruments’ and

denote by 8= (u",5,p°, B") the unknown parameters. Multiplying both sides of
(2.12) by z’ and taking expectations, implies using condition a,

E(z’X)0 =E(z'y). (2.13)
Estimation of @ in (2.13) is carried out in two steps:

1 — Estimate g(x, f)= ET| x, f)= P(T =1lx, f) by fitting probit or logit regression;

2 - Estimate the vector parameter 6 as é,vz(ZEi'ii)‘IZi'yi, where
i=1 i=1

2'=(0,8,(1-g)x", gx"),. Wooldridge (2002, Ch.18.4) discusses different plausible

conditions regarding the behavior of the error u in (2.12) and corresponding
estimation procedures.

The method of instrumental variables has been extended for estimating other
parameters of interest. Imbens and Angrist (1994) and Angrist et al. (1996) define a
Local Average Treatment Effect (LATE) and show how to estimate it using
instrumental variables. Local instrumental variables (LIV) is an alternative approach
of implementing the method of control functions, see Heckman and Vytlacil (2006).
Heckman and Navarro (2004) provide conditions under which the LATE is a special

case of LIV.



2.3 Discussion

All the methods described above assume the existence of known variables that
control the effect of the assignment process under certain conditions. Two major
challenges with the use of these methods are therefore how to identify plausible
‘control variables’ and how to test that they satisfy the required conditions.
Rosenbaum (2002) discusses methods of testing the sensitivity of the inference to
different assumptions on confounding variables that affect the assignments.

In the remainder of this article we discuss an alternative approach for
observational studies that does not require the use of control variables. Moreover, as
illustrated in Section 6, the use of this approach allows testing the appropriateness of

candidate instrumental variables and/or the use of propensity scores for inference.

3. An alternative approach for observational studies

Our proposed approach attempts to approximate the parametric sample
distribution of the observed responses under a given treatment. The validity of this
approach is studied theoretically in Sections 4 and 5, and empirically in Section 6.

3.1.  The sample distribution

As described in the introduction, we assume that the sample S’ of units exposed
to treatment ¢ is generally obtained in two stages. First, a sample S of n

observational units is obtained with inclusion probabilities 7, and then every unit

j €S is assigned (or assigns itself) to one of the m treatments with probabilities,

P, . pl=1. Alternatively, the assignment to treatments may take place in the

population and then a sample is selected from each of the treatment groups. This
scenario underlies the application in Section 6 where we compare students’
proficiencies in public and private schools based on probability samples of students
from the two types of schools. The analysis below applies to both cases but we

assume for convenience that the sample selection takes place first. Denote by

q; =7, x p; the probability that unit j e U is included in the sample and assigned to

treatment ¢, and by fp(y; I x;) the population pdf that would be obtained under a



strongly ignorable assignment process as defined by (1.2). The sample pdf of y;. for
unit je S’ is obtained by application of Bayes theorem as,

Lo Oilx)=fOx,,jeS)=[Pr(jeS 1y, x)f,(y; 1 x)/Pr(jeS Ix), (3.1)
where Pr(jeS"|x;)= [Pr(je S 1y}.x)f, (¥} 1x)dy; .
Remark 1: It follows from (3.1) that the sample pdfis generally different from the pdf
fp(yl.’ |x;) under strong ignorability unless Pr(jeS'1y},x;) =Pr(jeS"lx;) for all

y’/ in which case the sampling and treatment assignment can be ignored in the
inference process. See Rosenbaum (1987) for a similar condition.

Remark 2: The probabilities Pr(je S’ lx;) are the propensity scores, introduced by

Rosenbaum and Rubin (1983). See Section 2.1.2 above.

Remark 3: The probabilities Pr(jeS’1y},x;) are generally not the same as the
actual inclusion probabilities, q; =Pr(jeS"), which as discussed in the Introduction,
may depend on sampling variables Zj and treatment assignment variables Aj that
are possibly related to the responses y? Nonetheless, by regarding the probabilities
q;. as realizations of random variables, the following relationship holds,

Pr(jeS' 1y}, x;) = [Pr(jeS 1y}, x;.4) f (g} 1 ¥}, x)dg = E(g 1 ¥5.x)). (3.2)
Substituting (3.2) in (3.1) gives an alternative representation for the sample pdf as,

_ B ;) f 05 1)
E(q; lx;)

The use of (3.3) for inference instead of (3.1) has the advantage that it only requires

fo (¥ 1x)) (3.3)

specifying the form of the conditional expectations, E(g’; | y',x;).

The sample pdf defined by (3.1) or (3.3) was shown in recent years to provide a
valuable modeling approach for inference from complex sample surveys; see the
articles by Pfeffermann et al. (1998), Pfeffermann and Sverchkov (1999, 2003),
Chambers et al. (2003), Sverchkov and Pfeffermann (2004) and Pfeffermann et al.
(2006). These studies utilize the sample pdf for inference generalized linear and

multi-level models, testing of distribution functions and prediction of finite population

10



totals. Pfeffermann and Sverchkov (1999, 2003) and Chambers et al. (2003)
develop test statistics for testing the informativeness of the sampling process.

The obvious distinction between survey sampling and observational studies is
that in survey sampling the sample inclusion probabilities are generally known for
every element in the sample, which enables identifying and estimating the
conditional expectations E(z, | y,,x;), and testing the informativeness of the sampling
process. This is generally not the case in observational studies, requiring therefore to

model the parametric forms of the probabilities Pr(jeS'Iy’,x;) in (3.1) or the

expectations E(q;. Iy;,xj) in (38.3). Fitting the logistic or probit function for these

probabilities is a natural choice. As discussed below, modeling the sample pdf by
use of (3.1) or (3.3) allows estimating the unknown parameters indexing the pdf

[, (¥ 1x;) and the probabilities Pr(j S’ 1y},x;) or the expectations E(q;1y’,x,),
and testing the goodness of fit of the estimated sample pdf.
3.2. Estimating the parameters of the sample distribution

So far we suppressed for convenience in the notation the parameters indexing
the sample pdf. Consider the pdf (3.3). Testing the existence of possible treatment
effects requires initially to allow for different parameters for different treatments.
Adding the unknown parameters to the notation, the sample pdf under a given
treatment ¢ takes the form,

E(q; 1y x;a) f, () 1x;:6")
E(q;. lx; a0

fo O x 0,00 = (3.4)

Assuming that the inclusion in the sample and the assignment to the treatments are
independent between units and that the responses y;. are likewise independent, the
sample likelihood for treatment t takes the form,

t t ot t yals
n, E(qlly]’x]’a )fp(y]|x,,9)
= E(q1x;;a',6")

Lyl 050y}, x1=]] : (3.5)

Alternatively, the likelihood (3.5) can be replaced by the joint (‘full’) likelihood of
the sample selection and the sample measurements, defined as,

11



L [a’,49’;{y",x.;jeS’,xi,iéS’}]:
o BRCARR REOVACARSCD) | BIES ACAE RN

The likelihood (3.6) has the advantage of comprising the model for the probabilities

(3.6)

g; for units outside the sample and thus using more information for estimating the

model parameters, but finding the maximum is often more complicated. Notice that
by dividing and multiplying by the product Hj‘:IE(q;. lx;;a',0"), the likelihood in
(3.6) is seen to be the product of the sample likelihood (3.5) and the probability of

observing the sample §’, given the covariates x, in and outside S’. This likelihood

is often applied in other areas, like when modeling data exposed to nonresponse,
see, e.g., Greenlees et al. (1982), Gelman (2003, Ch.7), Pfeffermann and Sverchkov
(2003) and Little (2004).

Maximization of either of the likelihoods (3.5) or (3.6) with respect to the unknown
parameters yields the maximum likelihood estimators (mle) {&' 0 1=1 m}.

Replacing the unknown model parameters by their mle yields the estimates,

fp(y; lx;)=f,( Ixj;é’); q; =EA(q; 1y, x;)=E(q;1y,,x;;&") (3.7)

Remark 4: The separate likelihoods defined by (3.5) and (3.6) can be enhanced by
modeling jointly the sample responses and assignment probabilities for all the

sample units. This extension seems natural since every unit is assigned to one and
only one of the treatments, implying Z:E(q; |x;;a',0")=1. Empirical evidence so
far did not show any significant improvement by this joint modelling.
3.3. Calibration constraints

Suppose that the population size, N, is known and likewise some or all of the
means, }?i :ijvzlxki/N, or that they can be estimated unbiasedly (e.g., when the
initial sample is selected with known probabilities 7,). Under the model, and for
sufficiently large sample sizes, N= Z /g ) N and X Z (x; /q )/1\7 = )?i

for each r. Thus, the estimation process can be enhanced by maximizing the

likelihoods (3.5) or (3.6) subject to the constraints,

12



D Wgp=N , D" (x,/qplY) (/gD =X, i=1...p*, (3.8)
with p*< p=dim(x). When the expectation under the population distribution is

linear, i.e., Ep(yi‘ lx)=x"p", one can replace the p* constraints in the right hand
. . 1 n s ot t v ° Nt v v v
side of (3.8) by the constraint sz:l(xj p'1q)=X"p" where X'=(X,,...X ),

thus reducing the number of constraints. Note that this constraint contains also g’ .
Changing the base sampling weights w,=(1/7;) such that they satisfy

constraints of the form (3.8) and thus utilize knowledge of population means of
auxiliary variables that are related to the response variable of interest is very

common in survey sampling estimation. See, Deville and Sarndal (1992).

3.4. Estimation of population parameters

3.4.1. Estimation based on the population model under strong ignorability

. . L 1
In this section we focus on the estimation of the means ' :NZLE(Y; lx;),

t=1,...m. If the covariates x, are known for every unit i e U , then by (3.7),
At 1 N 7 t t 1 N t At
p=—=>"E(lx.0 ):NzizlEp(yi I x,;0"). (3.9)

Note that if Ep(y[ | x,;0")is linear, the computation of (3.9) only requires knowledge

A

of the population means X,. The estimator 42’ can be used also for predicting the

mean u"' = Z’il yi /N . If the initial sample is selected with equal probabilities, '

can be estimated by the sample mean, i = ZjeS E,,(yi’ lx.;0")/n.

Remark 5: The estimator (3.9) looks similar to the estimator used for the estimation
of the ATE defined by (2.3). Note, however, the estimator (3.9) accounts for an

informative treatment assignment process and it does not assume strong ignorability.

3.4.2. Estimation based on estimated inclusion probabilities

The population parameters can be estimated also by use of Hajek (1971)
estimators utilizing the estimated probabilities qu. The Hajek estimator is in common

use in survey sampling applications. The resulting estimators have the form,

13



tog At [ ' .0l At
Y L Zjes‘ yj/qj : ,L’\l;_l _ ZjeS’EP(yj |xj’9 )/qj . (310)

/uH At At
Zjes' (1/qj) Zjes’ (l/qj)

(Compare with (2.6)). Alternatively, one could use the ‘doubly robustified’ estimator,

Z» Iy —E (' 1x:00118, .

At jes J p Jj j j N ) t

o = +—Y  E (yilx,0"). 3.11
" Zjesf(l/@;) NZ’:1 p (i 15,07 ( )

(Compare with 2.7)). Large differences between the estimators in (3.9) and the

estimators in (3.10) or (3.11) may indicate misspecification of either the population
model under strong ignorability, or the treatment assignment probabilities. See

Section 5 for a corresponding test statistic.

Remark 6: The estimators defined by (3.10) and (3.11) look similar to the estimators
defined by (2.6) and (2.7), but as with the estimator (3.9), the estimators in (3.10)
and (3.11) account for an informative treatment assignment process. This is reflected

by the use of the probabilities g =Pr(jeS' |y’ ,x;) instead of the propensity

scores &, =Pr(jeS'Ix,).

4. Model identifiability

4.1. Identifiability problem

A major question underlying the use of the sample pdf (3.1) or (3.3) is model
identifiability. By identifiability we mean the nonexistence of different pairs of
population pdfs under strong ignorability and treatment assignment probabilities
yielding the same sample pdf. Clearly, if different pairs exist, the model is not

identifiable. At first thought it would seem that this is always the case since (3.1) for
example is the sample pdf if the population pdf is fp(y} lx;) and the assignment
probability is Pr(jeS"'lyj,x;), but also if the population pdfis f(y'1x;) and the

units are assigned with equal probabilities. However, as shown below, under certain
conditions, the sample pdfis generally identifiable.

In what follows we restrict to a single treatment ¢ and assume that y;. is
continuous. To simplify the notation in this section we denote by ¢(y) the

assignment probability to the sample S’, denoted hereafter simply by S, and by
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f,(y) the population pdf for treatment ¢ under strong ignorability, assuming for

convenience no covariates (see Remark 9 below). With this notation, the sample pdf

q(y)-f,(y)
[a)- £,y

forunitsin S is f.(y)= and the identifiability of the sample model is

defined as follows:

Model identifiability: The sample model f (y) is identifiable if no different pairs
LA (0.q" D1, Lf ().9 ()] exist that induce the same sample pdf f,(y).

4.2 Conditions for model identifiability
Suppose that there exist two treatment assignment probability rules (TAP)

g (y),q?(y), and two pdfs f,"(y), f,”(y) that are strictly positve on J <R

yielding the same sample pdf f,(y), or equivalently,

9" _ 7
7 )

In what follows we assume that densities f"(y) and f,*(y) that satisfy certain

vyeld ;K= [qg £ 0dyl [¢? ) £ (dy. (4.1)

requirements are given, and define conditions under which no associated TAPs
g™ (), ¢ (y) exist that satisfy (4.1). This is done by studying the limit of each side
of (4.1) as y tends to some limit point such as +o0, —0 or 0, choosing the limit point

in such a way that the left hand side of (4.1) converges to a finite positive number
whereas the limit of the right hand side is either 0, o or does not exist.
Remark 7: the use of this strategy enables to verify the identifiability of the sample

pdf for many practical situations. Nonetheless, as shown later, there are other cases

that need to be studied differently. Let R, (y)= £, (y)/ f,"(¥) .
Lemma 1 (similar to Lee and Berger, 2001): Assume that J =[c,©) for some
constant c. If the densities f,”(y) and f,”(y) are strictly positive on J and,

lime(y) =0, o or does not exist, (4.2)
y—®

there are no ¢ (y), ¢”’(y) on J with finite positive limits at y — « satisfying (4.1).

Proof. Follows from (4.2) and taking the limit y — c on both sides of (4.1).
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An example of (4.2) is two normal densities with different mean or variance.
Another example is two Gamma densities with different location parameters. In both
examples the limit of the ratio is either 0 or o«o. Examples of TAPs satisfying the
requirement in the lemma are the Logistic and Probit functions with positive

coefficients for the response values.
Lemma 2: Assume that J = (—oo,c] for some constant c. If f,"(y) and f:*(y) are

strictly positive on J and,

lim R,(y)=0, « or does not exist, (4.3)
y—>- o

there are no ¢ (y), ¢”’(y)on J with finite positive limits at y — —o satisfying (4.1).
The proof is similar to the proof of Lemma 1. Examples of (4.3) are two normal
densities with different mean or variance or two double exponential (Laplace)
densities with different location and scale parameters. In both examples the limit of
the ratio is either 0 or «. Examples of TAPs satisfying the requirement in the lemma
are the Logistic and Probit functions with negative coefficients for the response
values.

. exp(a; +b.
Remark 8: When ¢"(y)= pla; +5,)

and f(y)=N(u.;0?), j=1,2, the
[+ exp(a, +b,y) Fr=N@;o5),

sample model is identifiable by Lemma 1 If b, >0, and by Lemma 21if b, <0.

Lemma 3: Assume that 0 is a limit point of J and that f\"(y), f,*(y) are strictly

positive in J and satisfy,

lim R, (y)=0, « ordoes not exist. (4.4)

y—0* (y—07)
Then there are no ¢ (), ¢'”(y) with finite positive limits at y =0 satisfying (4.1).

The proof is again similar to the proof of Lemma 1. Examples of (4.4) are two
Gamma pdfs with different location parameters or two Beta pdfs with different
parameters. In both examples the limit of the ratio is either 0 or oo, depending on
the relative magnitude of the corresponding parameters. Logistic and Probit
functions satisfy the requirement from the TAPs in the lemma.

Lemmas 1-3 cover many practical cases but as mentioned in Remark 7, there are
other interesting and possibly practical cases that need to be studied separately.
Below we consider cases where the TAPs are nonincreasing Logistic or Probit
functions and the population densities are defined on the non-negative real line.
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Case 1. Logistic assignment rules

exp(aj +bjy)

Suppose that ¢ (y)=
1+ exp(a; + bjy)

,b; <0, j=1,2 and J=[0,0). In this

case the identity (4.1) can be expressed as,

2)
11:’2;’3((2 iZZyy)) K 21) ((3 expl(a, —a)+ (b, —b)y], Vye[0,0).  (4.5)
The left hand side of (4.5) tends to 1 as y — o« . However, the limit of the right hand
side depends on the forms of f,"(y) and f,”(y). In Appendix A we consider an
example of two exponential densities.

Case 2. Probit assignment rules

Suppose that J=[0,.0) and ¢'’(y)=®(a;+b,y), b, <0, j=12, where ®()
defines the normal cumulative pdf. The identity (4.2) is now,

O, +by) _ L20)
®(a, +b2y) fp(l)(y)

D(a, +by)
®(a, +b,y)

Vy €[0,00). (4.6)

For y sufficiently large, the ratio can be bounded as (see Appendix B),

l-& a,+by ¢(a,+by) < O(a, +by) <1+81 a,+b,y ¢(a,+by)
l+&, a+by ¢(a,+b,y) ®(a,+byy) l-g, a +by ¢(a,+b,y)

(4.7)

where ¢(-) denotes the standard normal pdf and ¢,,&, >0 are arbitrarily small.

Thus, by (4.7), and for y sufficiently large,

a2+b2y.1—gl< f}fz)(y).(o(a2+b2y)<a2+b2y.1+81
a +by l+eg, () ela+by)  a+by l-g,

(4.8)

The left and right hand sides of (4.8) tend to (b,/b,) as ¢,,&, = 0;y — «. However,

the limit of the middle part of (4.8) depends on the forms of the pdfs /1" (y), £, ().

In Appendix C we consider an example of two exponential densities.

Remark 9: So far we studied the identifiability of the sample model assuming that
there are no covariates. In practice, both the probability assignment rule and the
population pdf may depend on observable covariates x. For example, in the

exp(c+oy+x’y)
l+exp(c+Sy+x’y)’

empirical analysis in Section 6 we use, ¢(y;c,0,7)=
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fp(y;ﬂ,az): N(x’f;0°). Evidently, the identifiability arguments presented above

apply to this case as well, provided that the covariate values are sufficiently spread
to allow the identification of their coefficients. See Cox and Snell (1989, Section

3.4.3) for related discussion.

5. Model Assessment

Assessing the goodness of fit of an estimated model is an old problem underlying
almost every statistical application. This is particularly imperative for models of the
form (3.1) or (38.3) as both the distribution under strong ignorability and the
assignment probabilities are generally unknown. On the other hand, once the
identifiability of the sample pdf has been established, there is nothing unique in the
present case and one faces the classical problem of having a random sample from
an hypothesized pdf which has to be tested. Below we overview a few plausible test
statistics that can be used for assessing the goodness of fit of the sample pdf.

5.1. Compare theoretical and empirical distributions

Once the model parameters {«',0'} have been estimated, the cumulative
sample distribution function (cdf) for sample unit j € S’ can be estimated as,

1t Y t i t
Fiylx) = [ f, () 1x:d, 6)ay'. (5.1)
The ‘expected’ mean number of sample units with observations y’j <y under the

hypothesized model is therefore, F, (y;&, é’)zzjes, F!(y1x,)/n,, which can be

I(y, <), where I(y’ <)

. . ~ 1
compared to the empirical proportion Fy,,,(y) = —Zjes,
n

is the indicator function. The null hypothesis that the sample model fits the sample

data can be tested by use of the Kolmogorov-Smirnov (KS) test statistic,

KS, =max | F},, (') = F, (y':&', 6" 1. (5.2)
y'es'

The KS test is known to be nonparametric, but this is only true if the parameters
of the theoretical distribution are known. Otherwise, the distribution of the KS statistic
depends in a complex way on the true values of the model parameters. Correct
critical values can be obtained by use of parametric bootstrap. The procedure

consists of generating many samples from the estimated hypothesized model, re-
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estimating the unknown parameters from each bootstrap sample and the
corresponding KS statistic, and then computing the critical values based on the
bootstrap distribution of the KS statistic. See Babu and Rao (2004) for regularity
conditions justifying the use of this procedure.

Another possibility of comparing the hypothesized distribution with the empirical

sample distribution is by using the Moran (1951) test. Let y, <y, <...< Yory denote
the ordered values of the response and let p; = Zjes, Fj’(y(i) Ix;)/n,, where FJ.’ is

defined by (5.1). Compute the differences (spacings), Di(o?’,é’):p(i)—p([fl),

i=1..n, with p, =0, p, =1.The Moran test statistic is,

M(&',0'")==->logD,@'.0"). (5.3)
i=1

Cheng and Stephens (1989) show that under mild regularity conditions the statistic

defined by (5.3) has asymptotically (n, — o) normal distribution with mean y, and

variance o, given, up to the order of m™' by,

1 1 :
v, =m(logm+y)—————, 0. =m 7 —l—i, (5.4)
2 12m

wherem=n,+1, and y =0.5772 is the Euler's constant. This property makes the
test very attractive but its performance is known to be sensitive to the existence of

‘close observations’. Cheng and Stephens (1989) propose modifications for the case
of tied observations.

5.2. Compare estimates obtained from the estimated population distribution with

estimates based on the estimated assignment probabilities

Section 3.4 considers two alternative methods of estimating the population
parameters 4 and u”'. The first method uses the estimated population pdf
(Equation 3.9). The second method uses the estimated inclusion probabilities
(Equations 3.10, 3.11). If the parametric forms of the population distribution under
strong ignorability and the conditional expectations of the inclusion probabilities are
correctly specified, we expect the two sets of estimators to be sufficiently close.

Large differences would indicate that at least one of the models is misspecified. For
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a given treatment t, we may test for example, H,: A" = E(i,, — ii') =0 using the

test statistic,

U' = (flpg = 1)1 SD (it — 1) (5.5)
o> IY—E, (6 x50,
Note that by (3.9) and (3.11), A'=j,, - =— o
Zjes'(l/qj)
N o . E.(e/q;) ,
=Zj€5,ej/qj/zjes,(l/qj). Under correct assignments, ESTCJ'):E"(Q)’
st i

where E (-) is the expectation under the sample distribution (3.3) (Pfeffermann and
Sverchkov, 1999), such that A" is asymptotically unbiased for the population mean
of the residuals in treatment ¢, and E, (e/) =0 if the population model for treatment ¢

is specified correctly.

The asymptotic distribution of A" under correct model specification is obtained by

noting that it is the solution of the estimating equations, ZTJ.(e;—A’)/q; =0;

j=1

du(y).x,,T,a',0)=0, where T, =1 if jeS' and zero otherwise, and u() is the

j=1

score function with the likelihood defined by (3.6). Noting that E[ZTj(e:. ~A)/q),
j=1

Zu(yj.,xj,Tj,a’,@’)]zo at the true parameter values «',6', A’ under the joint
j=l

distribution of (yj.,Tj), it follows from the theory of M-estimation (Stefansky and

Boos, 2002) that

Jn(A = A)SNO,5). (5.6)

In order to estimate £ and apply the statistic U’ in (5.5), note that the score
function can be written as u(y',x,,T,,a",0") =T,g(y},x,,a',0") +(1-T,)s(x,,a',0"),
where g(-) and s(-) are the derivatives of the corresponding log-likelihood

expressions. After some algebra and following the theory of M-estimation we obtain
that,
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Y=v, 20Ty, +h' T, with v, = %ZEP[(ej’ A" /g1,
j=1

:—ZE [(e —A)g(y/ ., x)], I=1(¢") == ZE ¢ =(a',0") is the Fisher

n’]l 8¢t,

t

A

n e —A
Information matrix and h’:—lZE(a[Tj ! 1/0¢"). The estimator X is

j1 j

obtained by estimating E,(-) by the corresponding sample value, substituting the
unknown parameters by their sample estimates and estimating the population totals

by inverse probability weighting. The estimator 3 is consistent for £ under mild

regularity conditions, lverson and Randles (1989).

5.3. Assess the coherence of estimated propensity scores for different treatments

Since every sample unit is assigned to one and only one of the treatments, under

correct model specification > " Pr(jeS'lx,)=1 for every unitj, where
Pr(jeS'lx;)) =E(q;|x;)= IE(qj Iy, x;)f, (¥, 1x;,)dy; is the propensity score
(denominator of 3.1 or 3.3). Thus, one can test the sample models by testing the null

hypothesis, H,:Y." Pr(jeS'lx;)=1 forall j. A plausible test statistic is therefore,

M, =maxI1->" Pr(jes Ix)l, (5.7)

jes
where lsr(jeS’ Ixj)zﬁ(q; | x;). Note in this respect that the sample models are

fitted independently for each treatment (see Section 3.2).

The distribution of the test statistic (5.7) under the null hypothesis has yet to be
established (and possibly approximated by use of parametric bootstrap), and its use

is restricted therefore at this stage to descriptive analysis.

6. Application of the new approach to the PISA survey

6.1. Data used for present application

We study the performance of the proposed approach and compare it to the other
methods described in Section 2, using data collected in Ireland in the year 2000 by
OECD for the Programme for International Student Assessment (PISA). The purpose
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of this program is to study the proficiency of pupils aged 15 in mathematics, science
and reading in 34 countries.

6.2. Sampling design

The sampling design underlying the PISA study is in most countries a stratified
two-stage sampling design. The strata are defined by size, type of school and
gender composition. Within each stratum, the first stage of sampling is a probability
proportional to size (PPS) sample of schools with the size defined by the ‘anticipated’
number of 15 years old pupils enrolled in the school. A minimum of 150 schools has
been selected in each country (or all the schools if there are less than 150 schools in
the country). The second stage consists of an equal probability sample of 35 pupils
from the corresponding age group in each of the sampled schools (or all the pupils in
schools with less than 35 pupils aged 15).

By this sampling design, pupils included in the sample in a given country are not
equally representative of the pupils aged 15 in the country and each pupil is
assigned therefore a sampling weight. The weight is the reciprocal of the product of
the school inclusion probability and the pupil’s inclusion probability within his school,
adjusted for non-participation of schools and nonresponse of pupils. We performed
some of the analyses described below incorporating the weights but found that it had
no effect on the values of the estimates, implying that the sample selection is
noninformative for the models we use. For more information on the PISA sampling
design and weighting see PISA 2000 Technical Report, Chapters 4 and 6.

In the present application we compare proficiency scores in mathematics
between public schools and private schools in Ireland. This is a good example of an
observational study because pupils attending the two types of schools are different in
their family background and other important characteristics. The whole dataset has
been analyzed previously by Vandenberghe and Robin (2004) using existing
methods. The data from Ireland is of particular interest because different existing
methods provide ATE estimates with opposite sings (see Section 6.5 and
Vandenberghe and Robin, 2004). The sample data refers to 1256 students in private
schools (¢t =1) and 702 students in public schools (1 =0).

6.3. Computation of response values
The response value in the PISA study (proficiency in mathematics in the present
application) is not observed directly even for sampled pupils and is treated as a
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missing value. PISA uses two approaches for imputing the missing proficiencies: a
maximum likelihood approach and a multiple imputation approach. Let the binary

variable d; take the value 1 if pupil j answers correctly question i of the PISA

examination and 0 otherwise. The probability Pr(d; =1) is the logistic probability,

4

Pr(dl.j =1Ia.,bl.,wj) =[1+exp(—aq, (y/j —b, )I'. The parameter a, measures how
question i distinguishes between persons of different proficiency; the parameter b,
represents the ‘difficulty’ of question i and y/; is the unobserved proficiency score.
The imputed score for student j is the MLE z/7j. Note that the logistic models have

no covariates, implying conditional independence of the answers on background

characteristics, given the score ;.

The second approach draws at random multiple values from the conditional

distribution of y, given the indicators d;,=(d,,....d,;), (m is the number of
questions), and covariates x; representing individual background characteristics like

age and gender. The conditional pdfof i/, given d; and x; is expressed as,

fly;ld,.x;)c fl[[Pr(dij =D"[Pr(d, =0)" " f(w, 1 x,,4,0), (6.1)
where Pr(dl.j =1|a,-,b,~,lﬂ,-)_ is modeled as above and f(l//j Ixj,ﬂ,,az) is the normal
distribution with mean x;l and variance o”. Note that the responses to the various
questions are assumed to be independent given the parameters 7, = (a,,b,,y/;) . Five
imputed values of i/, are drawn for every student j in the sample.

In the present application we use the second approach and following
Vandenberghe and Robin (2004) we standardized the values by dividing them by
their empirical standard deviation. The use of this approach enables estimating the

variances of the ATE estimates using multiple imputation theory (Rubin, 1987).
Denote by Af"Ed the ATE estimate from imputed data set d ,d =1,...,5. Following
the theory of multiple imputation,

ATE=Y" ATE,/5 ; Var(ATE)= (1+1/5B+V (6.2)
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where B :Zzzl(AfEd —ATE)*/4 is the ‘between’ imputation variance and
\% :Z;Vd /5 is the ‘within’ imputation variance, Vd =V&r(AfEd). For the
ATE estimator (' — ) with ' defined by (3.9) we computed Vd using the
estimated inverse information matrix. For the ATE estimator (i, — A),) With 2.
defined by (3.11), we estimated Vd similarly to the estimation of ¥ in Section 5.2.
Note that f, and f,, are independent since they refer to different treatments.
6.4. Model for PISA data

In the analysis that follows we model the sample pdf (3.1) by assuming a normal

distribution for the potential population responses and the logistic model for the

assignment probabilities. Thus, using the notation of Section 3,

exp(c’ +8"y’ +x'y")

L0 x) =N B ol);Pr(jeS | x,,y)) = t=0,1. (6.3)

I+exp(c’' +0"Y] +x;7’)’
In (6.3) ¢t =0 defines public schools and ¢ =1 private schools. As shown in Section

4, the sample pdf is identifiable for 5" #0 (see Remark 8).

6.4.1 Explanatory variables

Six explanatory variables (covariates) were found to be significant in at least one
of the models fitted to the PISA data. Gender (1 for girls 0 for boys), father's
education (F.E= 1 for high education, 0 otherwise), family socio-economic index
(S.E.I), index of home educational resources (H.E.R), average socio-economic index
of the student’s schoolmates (S.E.S, proposed by Vandenberghe and Robin, 2004 to
account for potential peer effects), and school location (S.loc= 1 if school located in
an urban area, 0 otherwise). The continuous variables have been standardized.
Remark 10: Vandenberghe and Robin (2004) considered additional variables, but
these were not found to be significant in our analysis.
Remark 11: The variable school location was used by Vandenberghe and Robin
(2004) as an instrumental variable. The authors fit the model (2.13) but impose

B' = p° = . They show that it has a significant effect on the probability of attending

private schools in all the countries (thus satisfying Condition ¢ in Section 2.2.2).

However, the approaches considered in the literature for observational studies do

24



not permit testing directly the other requirement from an instrumental variable that
the school location is exogenous to the student’s proficiency given the model
covariates (Condition a). The authors claim that this requirement is plausible using
similar arguments to Hoxby (2000). As mentioned in Section 2.3, the use of our

approach enables testing this requirement (see below).

6.4.2 Computational details
We computed the maximum likelihood estimates of the unknown parameters by

maximizing the full likelihood (3.6) with respect to 0" =(f',0,); ' =(c',0",y"). For
this, we used the maximization routine nim in R (Development Core Team (2004)).

The choice of the initial values plays a crucial role in the convergence of the
maximization algorithm. However, empirical investigations show that for a fixed value

of the coefficient &', the maximization is not sensitive to the choice of the initial
values for the other parameters. We applied therefore the following algorithm which

performs well in our application.
1. Define a grid of plausible values for &' around zero. Maximize the likelihood for
each value &' with respect to the other parameters using as initial values for 8’ and

o, the values obtained by fitting a linear regression model to the sample data and

zeroes for ¢’ and »'. The parameters maximizing the likelihood over all the grid

values of &' are taken as the initial values.

2. Maximize the likelihood with respect to all the parameters (including &') with

initial values obtained in Step 1.

6.5 Results
Tables A1-A4 show the estimates and standard errors (Std. Error) obtained for
the private and public schools. Note that 5' >0, 5° <0, but &' is close to zero and

not significant. On the other hand, 5° is far from zero and highly significant,
indicating that for given values of the covariates, the probability to attend a public
school decreases very rapidly as the score increases. This finding suggests that
pupils attending public schools have a priori lower scores, and not because of a poor

quality of public schools. Note also that the instrument, school location, is
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nonsignificant in Tables A2 and A4 but highly significant in Tables A1 and A3. We
discuss this outcome in Section 6.6.

Table A5 shows the estimates of the population means by type of school and the
estimates of the ATE as obtained under our approach. We show the two estimates
considered in Section 3.3: the estimate (3.9) that is based on the estimated
population model and the doubly-robustified estimate (3.11). The two ATE estimates
are similar, negative and very significant, indicating the very interesting and
somewhat surprising result that the mean proficiency in public schools after
accounting for the school selection process is actually higher in public schools than
in private schools. Table A6 shows the ATE estimates obtained by some of the
existing methods reviewed in Section 2, using Stata (StataCorp, 2004) and R
packages (R Development Core Team, 2004). For the propensity score matching
method we used a one-to-one matching algorithm with replacement (see Section

2.1.2). For the control functions method we used the two-step Heckman’s (1979)
method, assuming that (uv,uo,ul) is trivariate Normal (see Section 2.2.1). Notice

that unlike the ATE estimates in Table A5, the crude difference between the
unadjusted sample means in the two types of schools is positive, suggesting that the
mean proficiency is higher in private schools than in private schools. This outcome
illustrates the problem of observational studies very pronouncedly. All the methods
except for the method of instrumental variables yield very small ATE estimates.
Table A7 shows the p-values of the goodness of fit test statistics discussed in
Section 5. The first 3 statistics are nonsignificant with p-values higher than 12%, thus
supporting the use of the selected models. As mentioned in Section 5.3, the
theoretical critical values of the M; statistic are unknown but notice its very low value.

Computing the critical values by parametric bootstrap yields a p-value of 0.30.

6.6. Testing of assumptions of existing methods
We mentioned before that the use of the proposed approach enables testing
some of the assumptions underlying the existing methods. Note first that the

coefficient of y is not significant in the logistic model for the private schools, thus

seemingly supporting the use of methods that use the propensity scores. However,
the coefficient of y is highly significant in the logistic model for public schools,

indicating that the covariates used in this study do not fully explain the choice of
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public schools and hence that the use of methods that use the propensity scores
with these covariates is not valid.

Next consider the instrument, ‘school location’. We notice in Tables A2 and A4
that the coefficient of the instrument is not significant in the two population models,
implying that Condition b underlying the use of instrumental variables is satisfied
(Section 2.2.2). Similarly, the instrument is highly significant in the two logistic
models (Tables A1 and A3) as assumed under Condition ¢. However, in the public

schools the assignment probabilities depend heavily on y, despite of including in the

model the covariates and the instrument, indicating that Condition a is not satisfied
and hence that the school location is not a proper instrument. Note, however, that
the use of the method of instrumental variables with this instrument yields the closest

ATE estimate to the estimate obtained under the new approach.

6.7 Simulation study

The simulation study is divided into two parts. In the first part we generated
independently 400 data sets from the model fitted to the data from Ireland when the
response values are the averages of the five imputed values (see section 6.3). The
sample sizes for the two types of schools were the same as in the original samples.
This part of the simulation study is therefore an application of parametric bootstrap
and it was carried out in order to study the performance of the proposed approach
and as another validation of the empirical results reported in Section 6.5. The
simulations allowed us also to compute the critical values of the KS test statistic

(Section 5.1) and of the M test statistic (Section 5.3; as noted there, the validity of
the use of parametric bootstrap for calculating the distribution of the M statistic

has yet to be studied). In order to save in space we don’t show the empirical means
and standard deviations of the model parameter estimates obtained for the 400 runs
but the means are generally very close to the true parameters and the standard
deviations are close to the standard errors computed for the original sample.

Table B1 shows the empirical means of the estimates of the population means
and the ATE over the 400 simulations, and the corresponding empirical standard
deviations (Std) of the means. The row titled “original sample” shows the estimates
obtained for the original samples from Ireland. Notice that these estimates are mildly
different from the estimates in Table A5 because the response values are now the

averages of the five imputed values. As is evident, the empirical means are close to
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the original estimates, even though the differences are ‘significant’. Interesting, the
empirical means are almost identical to the values shown in Table A5, which are
also means over the estimates obtained for the five separate sets of imputed values.
Table B2 shows the empirical means of the ATE estimates obtained under the
existing methods. As can be seen, the empirical means always have the same sign
as the original estimates shown in Table A6, and except in two cases the mean
estimates and the original estimates are close. The empirical standard deviations
are close to the standard errors shown in Table AG6.

All in all, the results obtained for this part of the simulation study show that
indeed the model parameters can be estimated almost unbiasedly with acceptable
standard error estimates, despite the rather complicated structure of the sample
model. Obtaining similar ATE estimates under the existing and the new method as
for the original samples can be used as another indication of the goodness of fit of
the models fitted to the data from Ireland and the corresponding ATE estimates.

In the second part of the simulation study we generated independently 400 other
data sets from the same model as above, except that the residual error terms in the
two populations models (public and private schools) were generated from a
distribution with 4 degrees of freedom instead of the normal distribution. For each
set we fit the model that assumes normal error terms, like in the first part. This part
of the simulation study was carried out mostly in order to study the performance of

the goodness of fit test statistics under a misspecified model. The ¢,, pdfis not very

)
far from the N(0,1) pdf and yet, we find that in this case some of the parameter
estimates are highly biased, interestingly, more so in the two logistic models,
despite the fact that these models have not been changed. Table C1 shows the
empirical means of the estimates of the population means and the ATE as obtained
under the misspecified model. As can be seen, the empirical means are biased in
this case but the biases are not extreme.

Table C2 shows the percentage of samples for which the goodness of fit tests
rejected the misspecified model at the 5% nominal level. These percentages
indicate the power of the various tests. The KS test basically rejects the

misspecified model in all the samples from private schools and in 60% of the

samples from public schools. The statistic U’ has somewhat better power than KS

in public schools but very low power in private schools. The Moran test has low
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power in both types of schools. Thus, KS shows overall the best performance, and
with the mild model misspecification considered, a power of 60% as obtained for the

public schools is not unexpected.

7. Discussion

In this article we propose a new approach for observational studies that recovers
the treatment assignment model and the population model, before the assignment,
from the sample data. On first thought, this seems impossible but we show in
Section 4 that the sample model holding for the observed data, which incorporates
the population model and the assignment probabilities, is identifiable under mild
conditions. Furthermore, the goodness of fit of the sample model can be tested by
standard test statistics because the sample model refers to the sample data. We
develop also in Section 5 a new test that compares the estimate of the population
mean obtained under the recovered population model, with an estimate of the
population mean that uses the estimated assignment probabilities.

The advantage of the proposed approach over existing methods that use the
propensity scores or instrumental variables for estimating the treatment effects is
that it does not require knowledge of the covariates or instruments that explain the
assignment to treatments. Moreover, as illustrated in Section 6, the use of the new
method actually enables to test the appropriateness of the use of these methods.

We applied the new approach for comparing the proficiency scores in
mathematics of children aged 15 between public and private schools in Ireland. Our
analysis shows that although the average score of pupils in the sample from private
schools is significantly higher than the average score of pupils from public schools,
the picture is reversed once the effect of the school selection is accounted for
properly. A similar conclusion is reached by application of the method of
instrumental variables, but the difference between the two types of schools is more
profound under the new method.

TABLES
A. PISA data in Ireland

The model was fitted for each set of imputed responses separately. The results in
Tables A1-A6 are obtained using the theory of multiple imputation described in
Section 6.2. Table A7 refers to a single data set with the responses defined by the

mean of the five imputed responses (after standardization).
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Private schools

Table A1. Assignment (logistic) model for private schools

Coefficient| ' | 9" |Gen.|F.edu| S.E.I |H.E.R|S.E.S | S.loc
Estimate |-145|0.23|0.70 | 0.04 |-0.08| 3.28 | 0.14 | 1.13
Std. Error | 1.55|0.25| 0.13 | 0.12 0.08 | 0.20 | 0.07 | 0.13
Table A2. Population (normal) model for private schools
Parameter | o, | Const| Gen. | F.edu | S.E.I| H.E.R | S.E.S | S.loc
Estimate |[0.88| 6.24 | -0.23 | 0.17 | 0.16 | 0.34 0.19 | -0.09
Std. Error | 0.02 | 0.11 0.06| 0.06 | 0.03| 0.11 0.03 0.06
Public schools
Table A3. Assignment (logistic) model for public schools
Coefficient| ° | 0 | Gen.|F.edu|S.E.I|HER|S.E.S| S.loc
Estimate | 15.08 | -2.18 |-0.78 | 0.17 | 0.35 | -2.85 | 0.29 | -1.57
Std. Error | 2.80| 0.55| 0.20| 0.23 | 0.14 | 049 | 0.14 0.26
Table A4. Population (normal) model for public schools
Parameter | 5, | Const | Gen. | F.edu | S.E.I| H.LE.R | S.E.S | S.loc
Estimate | 1.20| 698 | 0.18 | 0.10 | 0.16 | 1.48 0.31 0.23
Std. Error | 0.10| 0.18 | 0.10 | 0.09 | 0.05| 0.31 | 0.04 | 0.15
Table A5. Estimation of population means and ATE
Private School Public School ATE
P=Xp | B | B=XB| B |A=p - A,
Estimate 6.16 6.16 7.22 7.05 -1.05 -0.89
Std. Error 0.08 0.08 0.25 0.20 0.25 0.23
Table A6. Estimation of ATE by existing methods
Method | 3'_3° Reg. | Propens. | Hajek | Doubly | Instrum. Control
Matching Rob. Variables | Function
Estimate | 0.354 | 0.130 0.214 0.160 | 0.170 -0.726 -0.166
Std. Error | 0.045 | 0.052 0.103 0.051 0.052 0.247 0.130
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Table A7. Goodness of fit test statistics and p-values (in parentheses)

Statistics KS Moran | p’ M
Private schools | 0.0218 | - 0.4643 | -0.48
(0.125) | (0.64) | (0.64)
Public schools | 0.0399 | - 0.1647 | -1.24 | 0:04812
(0.166) | (0.87) |(0.22)

B. Simulations from model fitted to data from Ireland (400 simulated data sets)

Table B1. Estimation of population means and ATE

Private School Public School ATE
/All = )_C'Bl lalDR ,[lo = )_C'B :agR A = ,[ll - /ao ADR
Original sample 6.17 6.17 7.27 7.11 -1.10 -0.94
Emp. mean 6.17 6.17 7.20 7.07 -1.02 -0.90
Std of mean 0.005 0.005 0.006 0.009 0.007 0.01
Table B2. Estimation of ATE by existing methods
Method y'—3° Reg. | Propens. Hajek | Doubly | Instrum. Control
Matching Rob. | Variables | Function
Emp. mean | 0.361 | 0.134 0.126 0.158 | 0.167 -0.676 -0.365
Emp. Std 0.044 | 0.051 0.100 0.048 | 0.048 0.244 0.231
C. Simulations from misspecified model (400 simulated data sets)
Table C1. Estimation of population means and ATE
Private School Public School ATE
=X | B | B=XB M |A=p'-00 A,
Original Sample 6.17 6.17 7.27 7.11 -1.10 -0.94
Emp. mean 6.06 5.98 7.58 7.19 -1.52 -1.21
Std of mean 0.01 0.015 0.015 0.03 0.018 0.031
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Table C2. Percentage of rejection of misspecified model at 5% nominal level

Statistics KS Moran Mg U’
Private School 99.7% 49% 16%
Public School | 59.7% 19.5% 53.8% 66%

Appendix A: Identifiability of the sample pdf when the population pdfis

exponential and the assignment rule is logistic

exp(a;+b.y) ]
L ., b; <0,j=12;
1+exp(aj +bjy)
J =[0,). The right hand side of (4.5) is therefore,

Suppose that f,7(y) =6, exp(-0.y), " (y) =

G(y)zK%exp[(az—al)+(b2—bl+¢91—92)y]. If b,-b #6,-06,, letting y > o on
1

both sides of (4.5) yields a contradiction. If b, —b, =6, —6,, (4.5) takes the form,

1+6XP(“z+b2y):K&exp(a -a) ,VyeJ.
1+exp(a, +b,y) 6, 2~ 4)

Differentiating both sides with respect to y shows that it can only hold if

a,=a,, b, =b, and 6, =0, establishing the identifiability of the sample pdf.

Appendix B: Bounds on the ratio of two probit assignment probabilities

In order to bound the ratio Pla +hy) (b,,b, <0), we use the following results:
O(a, +b,y)
1. lim _XC(D()") =1 (Feller, 1968, pp. 175), 2.1f a>b>0, ¢ >d >0, then ac > bd .
X—>—0 ¢ X

It follows from Result 1 that for ¢ > 0 and sufficiently small negative x,

128 ) <) < ().
X —X

The bounds in (4.7) follow after some algebra using Result 2.
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Appendix C: Identifiability of the sample pdf when the population pdfis
exponential and the assignment rule is probit.

Let f7(y)=0,exp(=0,y), ¢ (y)=D(a, +b;y),b; <0,j=1,2; J =[0,0). The
middle part of (4.8) is therefore

2
G(y) = Kjexp[(alz —a})/2+ (6, +ab, -0, —ab)y+ (b —b;)I2)y].

1
If 6, +ab,—0,—ab, #0 or b} —b; #0, taking the limit of (4.8) when y — o yields
a contradiction. If 6, +ab, —6, —a,b, =0 and b} —b; =0 (equivalentto b, =b, =b),
then for y sufficiently large (4.8) takes the form,

a,+by 1-¢ a,+by 1+¢

—<Kiexp[(af—a§)/2]<
a,+by l+g, o, a, +by l-g,

Letting y — « we get K%exp[(al2 —a;)/2]=1.Also, by (4.6) at y=0,

1

Dla) _ b g B@) _expCaild) D) _ola) o) ol

(@) 0 ®(a,) exp(-a,/2)  P(a) @)  DPla) Pa,)

< a, = a, since A(x) =% is a one-to-one function. It follows that a, =a,, b, =b,
X

and 6, =0, , establishing the identifiability of the sample pdfin this case.
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