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ABSTRACT
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Doctor of Philosophy

DISCRETE ABELIAN SYMMETRIES IN LATTICE GAUGE THEORY
by Paul Purdon Martin

Wilson's proposed lattice approximation to Quantum Chromodynamics is 
reviewed, including a discussion of the approximate non-perturbative 
Monte Carlo method of calculation. The Transfer Matrix formulation 
of lattice models is discussed. This approach is used to confirm 
the exponential decay of the plaquette-plaquette correlation function 
at large distances in the Z(2) gauge model in three dimensions. 
Perturbative expressions are obtained for the inverse correlation 
length in both strong and weak coupling.

By raising the transfer matrix to a finite power the partition 
function for a finite lattice Z(2) gauge model is obtained as an 
exact polynomial in functions of the coupling constant. The zeros of 
this polynomial are found and some plaquette-plaquette expectation 
values are extracted to test the applicability of an exponential fit 
for the inverse correlation length at short distances.

Similar calculations for the three dimensional Ising model are
discussed in an appendix.
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1. Introduction to Lattice Gauge Theory

We review aspects of Wilson's Lattice Gauge Theory [ 1 - 7 ]. In 
particular we discuss how physical observables might be extracted from 
a lattice model of Quantum Chromodynamics. We discuss some of the 
problems arising in practical lattice calculations with particular 
reference to some simpler problems.

1.1 Quantum Ghromodynamics

The motivation behind Wilson's proposed lattice gauge theory has been 
the need for a non-perturbative method of calculation in Quantum 
Chromodynamics. Here we will restrict consideration to pure Yang-Mills 
fields in Euclidean space. The Lagrangian is

L

a=l, Sy,v=l, 4
(1)

with

b, c
(2)

The f^^^ are structure constants of SU(3)

8
[ ] = 2i Z

c = 1

fabc (3)

where the X's are Gell-Mann matrices [ 8 ]. The gauge fields A^(x) are 
vector fields carrying an index of the adjoint representation of SU(3). 
We construct an element of the Lie algebra

A^(x)
a = 1, 8

4- A® (x) (4)

The Lagrangian is invariant under the following local gauge transforma­
tion

^ ^ [ 9^g(x) ] g (x) + g(x) A^(x) g (x) (5)

where g(x) is an element of SU(3).



with the gauge invariant addition of fermion fields carrying an index 
of the fundamental representation of SU(3) [ 9 ] this Lagrangian is 
hoped to give the (Euclidean) quantum field theory of strong 
interactions [ 10 - 12 ].

The Feynman path integral formulation [ 13, 14 ] of this theory 
becomes amenable to perturbative calculations upon addition to the 
Lagrangian of gauge fixing and ghost terms [ 15, 16 j. In order to 
make predictions of physical quantities, however, the theory must be 
renormalised. This is because Euclidean integrals of the form

I = /
d\

[
(6)

appear in coefficients of the perturbation expansion [ 9 ]. These 
integrals are divergent for n ^2. The divergences which occur in the 
perturbation series may be systematically cancelled by renormalisations 
of the field and coupling constant appearing in X-(eqn (1)) to leave 
finite coefficients [ 9 - 11 ]. Systematic treatment of the divergences 
is usually implemented by modifying the integrals, for example with 
n = 2

lim
I whe re Ie e

2tx V2 K dK
2 i2[ K" + A" ] and D

or

lim
I = A with IA

2.2 V dK
[ K' + A^ ] (7)

These latter integrals are finite. Divergent parts of the limiting 
integrals manifest themselves as terms in and An (A ) respectively. 
These terms may be manipulated and cancelled, at least formally, in 
the perturbation series.

This is not to say that the perturbation series will converge, but we 
will see later that there are conditions under which the renormalised 
coupling becomes small. Then we might hope that the leading terms in



the series are significant*. However strong interactions have properties 
which are not manifest in the theory in this perturbative region [ 17 
With the above remarks about renormalisation in mind we proceed to 
consider Wilson’s lattice approach [ 1 J.
1.2 Lattice Gauge Theory

Wilson proposed a lattice action which, for 'smooth' fields (see later) 
reduces to the action of QCD as the lattice spacing is set to zero. We 
will consider the pure gauge part (for proposals concerning the 
inclusion of fermionic fields see for instance [ 2, 3, 5, 18 ]). The 
gauge fields are thought of as being on the links of a hypercubical 
Euclidean lattice. Links are specified by a lattice site and an 
assigned 'forward' lattice direction out of the site.

S(g, a)='
2g sites y = 1, 2, 3, 4 

n V = 1, 2, 3, 4
^ y

Tr [ U^(n) U^(n + a(y)) fXn + a(u))
matrices

«:hn) ] (8)

where a(y) steps one lattice spacing in the y direction and

8 b
U^^n) = exp [ i a g Z ^_A^(n) ] (9)

The Greek indices labelling lattice directions are a notational 
convention; they are not to be regarded as Lorentz-type indices; there 
is no Euclidean invariance and we will not attempt to make these 
indices match in equations.

We assume that we may Taylor expand the fields (see later), firstly

+ a(y)) A^^n) + a(A^^n + a(y)) A,/n))
(10)

* Some phenomenological support is available on this basis, 
not discuss the point here (see [ 10 - 12 ]).

We will



Anticipating the continuum limit we write

+ a(h)) = A^(n) + a 9 ^ ) (11)

and rewrite the product of U's in the action:

U^(n) + a(^)) U ^ (n + a(u)) U^^(n) =

exp [ iag A^(n) ] exp [ iag (A^^n) + a 9 A^(n) + O(a^y)]

exp [-iag (A^^(n) + a 9^ A (n) + 0(a^%] exp [ -lag A^(x) ] (12)

where we have used

A^(n) = Z 4r A^^n) (13)

The Baker-Campbell-Hausdorf£ formula [ 19 j gives

ax ay ae e = e

with

2 3
a = ax + ay + 4r [ x, y ] + ([ Y ] ' [ Y, [ x, y] ])

24
[ X, [ y, [ X, y ] ] ] + O(a^) (14)

Repeated applications of eqn (14) will get (12) into the form of a 
single exponential

. 2exp { ia g (9^A^(n) - 9^ A^^ (n) + ig [ A ^ (n), A^^(n) ]) + 0(a ) }V y V

exp { ia^g Z (9^ A^(n) - 9^A^(n) - gf^^^ A^^n)A.^^n)) + O(a^) }
d

(15)

Altogether we have



s(g, a) Z Z Tr exp (ia^g Z (n) + 0(a^)) (16)
n^, V

Equation (14) shows that the order a"^ terms in the exponential are 
traceless and we may write

S(g,a)
2g

Z Z [3-a^g" (ZZ Tr (^4L) (n) F^'^^/n)) + O(a^) ]
yv yv

ny,^ a b
(17)

Before taking a ^ 0 it is instructive to consider the infinite volume 
lattice Fourier transform, which should reduce to an ordinary Fourier 
transform as a ^ 0. It will be sufficient to consider the one 
dimensional case (although see later). Since the sites of the lattice 
may be labelled by integers the momentum space is manifestly periodic

= C -(& i<P) (18)

since

c ^(n) (19)
n =

with c an arbitrary constant. We introduce physical distances and 
momenta by specifying a lattice spacing a, whereupon

X = nan

and

k = P/ (20)

so that

^(x) = ca e^^^ $(k)
" U

(21)

Notice that introducing the lattice has had the effect of cutting off 
the momentum integral at A = . Notice, however, that in higher
dimensions this is not the same cut-off as shown in eqn (7). In four 
dimensions, for example, the lattice cut-off generalises to



TT

a a

?y ^y
/ ^ '

“TTy -TTy
a ^ a

dk. dk^ dk_ dk. I z 3 4

whereas in eqn (7) the cut-off is not introduced until after the 
angular integrations have been performed.

Returning to eqn (21) and putting c = a as a ^ 0 we obtain

" /Zx, $(k) (22)

which is the usual definition. Also

c^(k) = a E Kx) ^ e *(x) dx
X a 0

(23)

provided

lim a E /_^ dx 
a ->• 0 X

(24)

Generalising (24) to four dimensions and dropping the constant term in 
(17) we obtain

S(g, 0) = / d^x^ E E F (25)
p, P a

Finally, notice that the lattice action (8) is invariant under the 
following local gauge transformation

U (n) ^ = S(") 6 + a(p)) (26)

where g(n) is an element of SU(3) on the site n. Following the line of 
argument above we write

exp (iag A (n)) ^ g(n) exp (iag A. (n)) [ g ^(n) + a3 g ^(n) + O(a^) J

(27)

then equating coefficients of order a we reproduce the continuum 
transformation of equation (5).
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Unfortunately equation (11) is only valid for smoothly varying fields 
[2, 7 ]. Consider a fluctuation in of magnitude A confined to a 
region of size a. For arbitrarily small a we can see the contribution 
to the action due to such a fluctuation [ 2 ]. is locally
dominated by its derivative part so (F^ 'v (Ay ) . However this 
fluctuation only extends over a volume a . The contribution to the 
action is of order A a at most. In Euclidean quantum field theory 
fluctuations will only be damped when the action becomes large (and 
negative). Presumably then, we should take into account fluctuations 
A a where n ^ 1. Under these conditions it does not seem 
justified to make the expansion in equation (11).

We see that the formal limit a -> 0 is insufficient to define a 
continuum quantum theory.

One way to proceed [ 17 ] would be to measure physical observables in 
the lattice system and find conditions under which they remain fixed 
as the lattice spacing is made arbitrarily small (for a given lattice 
size this means that observables with dimensions of length - 
correlation lengths - become very large compared with the spacing so 
that the granular effect is lost). Under these conditions Creutz [ 20 ] 
has tried to identify the lattice model with a regularised version of 
QCD. Before reviewing this approach we will try and see the 
attractive feature of Wilson's model which makes a connection with QCD 
desirable.

1.3 Strong coupling behaviour

We may write expectation values for lattice observables in 
Euclidean Space:

< = Z ^ / DU 0 exp [ S(g, a) ] (28)

where

Z = / DU exp [ S(g, a) J (29)

is the partition function for the lattice model and DU means integration 
over all field configurations (that is DU = IT dU where dU is the

links
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invariant group measure [ 16, 21 ]). When is large it is 
advantageous to expand the exponentiated action over characters 
(traces) of the irreducible representations of SU(3);

exp [
2g

^ Tr (UUUU) ]
n, p, u

n (f O-ly) + Z f O-ly) x'^UUUU)) 
n, w, V r ^ 0 'g

(30)

where

(-^r) = / dU exp ((-^^0 Tr(U)), r ^ 0
2g 2g

(31)

We put

/ d U (32)

then

/ d U x^\u ^) x^(U) = 5
rs (33)

Thus f is independent of g and the next dominant coefficient at large 
2 . ° 1 1g is f (—y) = 0(—y) where r = 1 gives the defining representation.2g/

Consider for instance the observable

Tr ( n U) (34)
T X R
planar
loop

applying (33) to (30), the lowest non vanishing term in the expansion 
in of eqn (28) gives

1 TR< 0 > oc (—) + higher orders (35)

We have not attempted to write down a lattice version of the fermionic 
part of the action, therefore we shall not obtain expectation values 
for observables involving quarks. However Wilson [ 1 ] has interpreted 
the expectation value in eqn (35) as

WY I



< 0 >
z[

z[ 0 ]

12

(36)

where z[ J ] is the partition function modified by the introduction of 
an external current loop around the planar loop T x R (see also 
Kogut [ 4 ], Itzykson and Zuber [ 9 ]). Putting T >> R and taking 
slices through the loop in the long direction (we have a Euclidean 
lattice but we could think of this as the time direction) we see 
'static' charges at a fixed separation R. We will see in the next 
chapter that

z[ J ]

z[ 0 ]
exp ( (E(J) - E(0))T } (37)

where e[ J ] is the lowest lying energy level for the system with 
static charges*. The energy difference is attributed to a potential 
between the charges and using (35) we obtain

V(R) « R (38)

If this picture could be extended to include quarks then it would imply 
confinement (see [ 7 ] and references therein). This is perhaps the 
major reason for trying to establish a connection between the strong 
coupling lattice model and asymptotically free perturbative QCD.

1.4 The Renormalisation Group

The applications of the renormalisation group to perturbative QCD and 
to statistical mechanics have been extensively reviewed [ 10, 11, 14, 23, 
24 ]. We will highlight some specific points.

The approach pioneered by Creutz and others [ 20, 25 ] has been to try 
and identify the known asymptotic behaviour of QCD in the intermediate/ 
weak coupling region of the lattice model. The lattice is treated as a 
means of regularisation. It is instructive to start by comparing 
different methods of regularising divergences which appear in the 
continuum perturbation expansions.

* Strictly speaking we will consider an equivalent case for arbitrarily 
large finite lattices and arbitrarily large finite groups - see Camp 
and Fisher [22]. See also Refs [ 4 ] and [23 ] for the 
relationship between transfer matrix and Hamiltonian formalisms.
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Consider, for example, the following integrals

A , 3 ,,-r r c k dk
[k/ + ] ' % 2

D - 1.<» k dk
2 ^2[ + A" ]

D = 4 - E (39)

A
[ ^n (1 + (-^)) +

A'
1 + (-j)

A

- 1 ] (40)

k-' [
(Ah

s/2 r(2-%) r(%) ] (41)

for large A^ and small e we may expand the logarithm and gamma functions 
to obtain

IA = 5 [ An + constants + 0(-~) ] (42)

I = I [ - An + constants + 0(e) ] (43)

2 2Notice that coefficients of An A^ and are equal and that coefficients
of An A^ are equal in the limits. If A , k and A are dimensionful

-2 3/o ^quantities then I. and (y ) I are dimensionless provided y has theE
same dimensions as A , k and A.c
y is an arbitrary dimensionful parameter, we will also use it to 
separate off the divergence in Ij^

_2 1-2 A^ 1
(y ) I = I [---An + constants + 0(e) J

W
2

lyy = 5 [ An 2^ “ An —y + constants + 0(—y) ]-2

(44)

(45)
y A

We may now consider the appearance of such integrals in the perturbative 
calculation of truncated vertex functions by Feynman graphs [lO]. We
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will write the unrenormalised truncated n-point vertex function 
obtained from the Feynman rules for QCD (see for instance Itzykson and 
Zuber [ 9 ]) as

(^i' g) (1 + g)) (46)

where i = 1, .... n and E P. =0. The P. are the momenta on the external

legs. contains loop integrals which are only finite by virtue of
finite e or A (the integrals are well represented by those discussed 
above, see [ 9, 10, 26 ]), however we may construct

(47)

where is finite as A ™ (E 0) by rewriting the Lagrangian (1) in 
terms of renormalised fields and coupling constant. To see this 
consider the following procedure.

Neglecting gauge fixing and ghost terms (see Ihykson and Zuber [ 9 ] 
for details) we write (with repeated index summation)

^ ‘-7^

* f h OA" - 9//)

g Z, A ‘a ' f®'’" A ^ '=
4 4 p V y V (48)

i.e. the unrenormalised quantities are rewritten (symbolically)

^/2 -3/^
(49)

We can see that we may rewrite the Feynman rules (and hence vertex 
functions) in terms of the renormalised quantities by introducing 
some multiplicative factors. The Z's are chosen so that these factors 
formally cancel the divergences in the vertex functions order by order 
[ 27 J. Within this general requirement there is considerable freedom 
in the choice of renormalisation. Consider the two point function, 
which is well represented by
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(p, g) ^ (1 + Cg^ (A^ = p^) + 0(g^)) (50)

where C is some (gauge dependent) quantity. Introducing

r_2
= 1 - Zn + o(g^)

y
(51)

removes the divergence at this order (we could equally well have chosen

= 1 - Cg^ (A^ = y^) + O(g^)
c
£

(52)

where y is any arbitrary momentum value - see later).

Z may be similarly calculated from the divergent parts of the three
(3)

gluon vertex F whereupon equation (49) may be written in the form

2g = g^ (1 + Z2 ^
y

where $ is a constant, o

The dependence resides in g, while the y dependence is in g^. Now 
putting A^ = y we find

g(y) = g^ (y) (54)

so that

- 3 -g(A_) = g(y) + s (y) zyyZ (55)

Also y is arbitrary so we may choose it very close to A . We write

g(A^) = g(y) + 6A dg(y)

dy
(56)
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with 6A = A Since £n (1 + ~)
y

6A we have

y ^4-^ = g^(y) +
dy

(57)

In fact g is negative [ 28 ] so g gets smaller as the cut-off gets 
bigger (for small g). We may obtain an approximate expression for 
the A^ dependence of g(A ):

/ is 
S<p) .3 A A

c dy (58)

so

g (A^) ~ -2(i„ to 4)
(59)

where

A = y exp (-
2EI g (y)

-) (60)

This result is modified by the inclusion of 0(g ) terms in equation (53)
but still g(A^) -3- 0 as A^ A few points are worth making. Firstly
a different prescription for obtaining Z (such as equation (52))

3 . ^
changes equation (53) at 0(g ). Equation (54) is then altered at 

30(g ) so that (at this order) equation (55) is unchanged.

Secondly, imagine that it were possible to measure a 'physical'
observable (such as the string tension of section 1.3) as a function of
the bare coupling in lattice gauge theory. If the claim that the
lattice model is just QCD regulated by the lattice spacing is correct,
then we now know what this coupling dependence must be. The

2dimensionless string tension measured on the lattice is a a . We 
require that all the cut-off dependence comes from that implicit in g, 
and none from the physical quantity itself. This implies
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a a = a
<■¥

exp (- ■) (61)

(from equation (60)). Under these conditions the physical quantity
2remains fixed while a and a a go to zero in accordance with the $ of

QCD.
2If a a varied in some other way from equation (61) at small g then the 

requirement that the physical quantity stayed fixed would imply a 
different $ or a different form for equation (57) altogether. The 
lattice model would not be cut-off QCD.

From this point of view the interest in lattice gauge theory lies in 
trying to calculate the g dependence of observables. There is no more 
expectation of solving lattice gauge theory than solving QCD, however 
the lattice model is amenable to a powerful form of non-perturbative 
approximation. Before completing our review of Creutz's approach we 
will briefly outline this method of calculating with the lattice model.

1.5 Monte Carlo calculations [ 29 J
We want to obtain an approximation for expectation values, which we will 
write symbolically as

< ^ / DU Q%U) exp [ S(U) ] (62)

Here we may think of { U } as a set of numbers describing a possible 
configuration of the system. If we make the set finite then we can 
write down a description of a configuration. There are still an 
infinite number of configurations, however, and it is only practical 
to approximate the full integral as a sum over a finite sequence of 
states. To obtain a reasonable approximation we will see later tha 
the density of states in the sequence should approach

exp [ S(U) ]
p(U)-------=------ (63)

Since the set of numbers is finite we can generate successive 
configurations from preceding ones with a specific algorithm. That is 
the probability of obtaining configuration U' from U may be specified -
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P(U', U). Consider the following algorithm: A random generator is 
used to suggest a new configuration 
discarded by the following criteria
used to suggest a new configuration = Q(U), the U' is then used or

q(u) if p(u') > p(u)
U' = { Q(U) p(U') > xp(U)

U otherwise (64)

where x is a number generated randomly between 0 and 1. The probability 
that Q(U) suggests U' is written Q(U', U) whereupon

P(U', U)
Q(U', U) ... if (1) p(U') ^ p(U), U' ^ U 

P(U')Q(U', U) P(U)
The rest .., (iii) U’ 
(call it R)

(ii) p(U') < p(U)
u (65)

Now provided Q(U’, U) = Q(U, U') we have

ZPOJ.U') P(U')= Z Q(U, U')p(U') + Z Q(u,u') P(U) + Rp(in 
U' U'in(i) U'indi)

Z P(U', U) p(U) = p(U) 
U'

(66)

Writing the n-step probability as P^(U’, U) we have

z P(u', u") Pg^U", U) = P^ ^ ^(U', U)
u"

so that as m CO P (U' , U) p(U') or with

Pg/:u', u) = P(U') + D^CU', u)

D^^U', U)

(67)

(68)
m CO

Under these conditions we will see that the expectation value of the 
sequence average of (T(U) over a sequence of configurations . .... U, 
approaches < (T > as 0.
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The expectation of the sequence average is

< (T > >■(«». "s - l)
all possible 
sequences

N
. P(Ui. j S 0'(U^) 

n = 1

N

- (Z P(U^, U^) + Z OXUg) P(U^, U^) PCU^, u^) + ...)
U, U^,

N (Z dXu) p(u, u ) + Z dXu) p.(u, u ) + ...)

u u

N

U n = 1

N
Z C^U) (p(U) + 1 Z D^(U, U^))
u n = 1

(69)

There is a positive constant X such that

I ^ e “Xn (70)

so

Z D <
n = 1

(71)

and < O' > approaches < (T > as N

A similar calculation shows that the standard deviation from < (T > also 
tends to zero as N tends to infinity [ 29 ] .

In principle this method could demonstrate that the same model which 
confines quarks at large distances exhibits QCD asymptotic freedom at 
short distances. In practice the evidence it provides is weakened by 
technical difficulties. Many of these difficulties stem from the
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requirement that configurations may be described by a finite set of 
numbers. This means that there must be a finite lattice, and yet we 
have seen that the region of interest (small g) should be a region of 
diverging (dimensionless) correlation lengths.

Fortunately this property of diverging correlation lengths at critical 
coupling values is not unique to the lattice SU(3) gauge model. We will 
be able to examine some simpler models with this behaviour.

Within the calculational scheme we have described above there is a 
freedom (in the choice of Q(U) for instance) in the precise 
implementation of equation (64). In fact there are other algorithms 
which reproduce equation (68). It is not known, except by trial and 
error, how these choices affect X [ 7, 20 ]. Other things which have 
an effect on the rate of convergence of this approximation are the 
action S and (implicitly) the coupling g. Again the details are not 
known, but convergence is generally poor close to the critical 
coupling values we have discussed. As a rule of thumb convergence is 
best when a relatively small number of configurations have a 
relatively large p(U). These considerations would not be important but 
for the fact that there are practical limitations on N.

Fortunately again we will be able to examine models with finite lattice 
size exactly. This corresponds to the N ^ limit (see later).

Further severe practical problems due to finite lattice size arise when 
the observable (T itself is required to be non-local. In the case of the 
loop expectation value of section 1.3, the interpretation we made 
strictly required that the loop be very long. We will see in chapter 2 
that similar requirements pertain to the extraction of correlation 
lengths from lattice observables. Nonetheless Creutz persisted with a 
calculation of this kind on a finite lattice and obtained a rough fit 
to equation (61) in the small g region [ 20 J. The observable quantity 
used was the string tension. His results suggest that the continuum 
limit of Wilson's model has a non-vanishing string tension with the 
asymptotic behaviour required for QCD. His results also yield an 
approximate value for the A parameter.
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The search for further evidence in this connection has taken two 
paths. Although the string tension has been the easiest quantity to 
extract from calculations with Wilson’s model [ 30 ] the problems 
indicated above place severe restrictions on the accuracy of its 
measurement. It has become favourable to measure other quantities 
(now that the A parameter is found, comparisons with data are 
possible). Introducing quarks into the model introduces further 
parameters into the action [_ 2, 3 ] . Once these are fixed from the 
data the remaining lowest lying masses of the model may be approximately 
calculated [si]. Agreement with data lends support to the 
interpretation which we have discussed, however the calculational 
problems we have described remain. The philosophy is to increase the 
weight of evidence available. Increasing the quality of the 
approximation is a task of considerable proportions [32].

As we have said, a continuum limit may be taken at any 'critical* point 
of the model where correlation lengths measured in terms of the lattice 
spacing diverge. Consider the two conjectures in figure 1 for a 
'non-perturbative' version of equation (57), called the ^-function [ 11 ] 
The renormalisation scheme (equation (51) or (52), or holding 
observables fixed) will affect this picture only quantitatively. The 
g-function is no easier to extract from the theory than any other 
quantity, however the conjectures are instructive:

If the solid curve is qualitatively correct then, for asymptotically 
free QCD, at larger and larger distances the coupling tends to g^ (which 
we have drawn outside the 'convergent' region of the strong coupling 
expansion). Then the lattice confinement argument is inapplicable.
The strong coupling string tension could vanish as the spontaneous 
magnetisation vanishes above T^ in an Ising Ferromagnet (see later).
The continuum theory associated with the lattice strong coupling region 
is not asymptotically free - we have drawn it everywhere outside the 
'convergent' region of QCD perturbation theory.

If the dashed curve is correct then Creutz's approximate calculations 
are not misleading (although we have still to check if the lack of 
Euclidean invariance in our regularisation is a problem).
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(convergent?)
QCD

perturbation
theory

(convergent?)
lattice

strong coupling 
expansion

Figure 1

Conjectured forms for the g-function.

- The arrows show the effect on the bare coupling of reducing the 
lattice spacing a (or the effect on the renormalised coupling of 
increasing the momentum scale).
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We will briefly mention an alternative approach to that of Creutz. 
Consider the partition function for the lattice model in equation (8) 
Schematically we have

Z = / DU exp { S(g, U) } (72)

We could try and rewrite this multiple integral as an integral over 
fewer variables (fewer sites). If we could rewrite the argument as a 
new action then this would describe a model with a bigger lattice 
spacing. For instance with

“new’ ’

/ DU K(U, U^^^^ exp { S(g, U) } (73)

and

/ DU K(U, U ) = 1new ’ new (74)

then

^ ^ ““new ( =new <Snew- “new’ >' (75)

The procedure could then be repeated to change the spacing again. In
fact S and subsequent effective actions could contain any new
interaction provided the symmetries of the original action were 
preserved [ 3 j. The nth action could be written

S„ (g'"’. U)

- we have associated a coupling g. with each interaction so that S 
and S^ _ ^ differ only in coupling values. In principle we could 
extract figure 1 as a slice of the many dimensional plot of
(g (n) (n - 1) ) against g^ [ 33 ]

A practical approximation to this process has been suggested by 
Wilson [ 34 ] (in the context of spin-models there are earlier 
suggestions - see [ 24 ]). A finite lattice and finite set of 
interactions are considered. The couplings are adjusted to hold
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observables fixed on different lattices. Implementing this procedure 
requires a careful choice of retained interactions and observables to 
minimise finite size effects and statistical problems (from the Monte 
Carlo calculations). We will not discuss this approach further. See 
the paper of Wilson [ 34] and references therein.

1.6 Simpler Models

We have seen that (neglecting problems with Euclidean invariance and 
the inclusion of fermions [ 7 ]) the usefulness of lattice gauge theory 
depends crucially on the positions of the zeros of figure 1 (in 
statistical mechanics terms, the phase structure). Hopes for finding this 
structure depend in turn on the validity and correct interpretation of 
the approximations we have discussed. Even using these approximations 
the problem is hard and it is worthwhile to test them on some simpler 
models. A whole range of gauge and spin models have been examined in 
various dimensions to test the limitations of the Monte Carlo 
technique [ 7 ]. In the present work we will make exact calculations 
and concentrate on the effect of finite size.

Perhaps the simplest non-trivial lattice gauge model is that with Z(2) 
symmetry in three dimensions. The a = 0 limit discussed in section 1.2 
has no equivalent here. The continuum limit associated with the 
second order phase transition in this model will not concern us.

We will start by briefly reviewing the Transfer Matrix formulation 
which, for lattice models, parallels the Hamiltonian formulation of 
quantum field theory [ 4 ]. In this framework, and specifically for 
the Z(2) case, we will show how to extract inverse correlation lengths 
or masses from the Euclidean lattice model by considering plaquette- 
plaquette expectation values.

Next we will obtain an exact expression for the partition function on 
a finite lattice. The zeros of the partition function in complex 
coupling constant space are found. The finite lattice image of a 
phase transition is identified with zeros close to the real axis. In 
fact on the infinite lattice a line of zeros is expected to cross the 
real axis. Since the partition function always appears in the 
denominator in expectation values this prevents using any series
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expansion beyond such a line. In particular the strong coupling 
expansion for the 'string tension' could not be used to imply a non­
vanishing value below the The phase transition is precisely
associated with vanishing string tension in the Z(2) model [ 4 ]. 
Unfortunately our lattice is too small to measure a string tension. 
Other observables vanish (or diverge, depending on dimensions) at 
the critical point and then reappear. For the mass gap in particular 
we will identify a finite lattice image of this behaviour.

In an appendix we discuss the Ising model (the action is

'ising
links ij

1' J

with ((). taking values from { ±1 } on the sites i of the lattice).
This has a spontaneous magnetisation with behaviour analogous to the 
string tension at a phase transition. A finite lattice vestige of this 
behaviour is observed.

A number of avenues for further research are suggested by this work.
We will mention them briefly in a discussion section.

We try to use conventional notations (in so far as they have been 
established). In particular we will use the coupling constant g « 
so that small g corresponds to 'strong coupling' (or to high ®
temperature in the statistical mechanical equivalent: 6 = Temp ).
However we will define and use some new notations for labelling lattice 
variables with an eye towards uncluttered equations.
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2. Transfer Matrix Approach I« The infinite lattice

We confirm the exponential behaviour of plaquette correlation functions 
for a Z(2) gauge model at large distances and on an infinite lattice 
using the Transfer Matrix technique. We identify the inverse correlation 
length with the so called strong coupling glueball mass.

2.1 Introduction

28

The usefulness of the transfer matrix approach to infinite lattice 
problems rests on two key points. Firstly that the contribution to 
the Action of the lattice model due to a d-1 dimensional slice of the 
lattice may be written entirely in terms of the configuration of 
variables within that slice and the configuration of variables within 
an adjacent slice (as is the case for the spin and gauge models we 
have described). Secondly that the matrix formed by exponentiating 
these contributions, with rows and columns labelled by the relevant 
configurations, should have a unique largest positive eigenvalue 
(as is the case for all positive matrices).

Under these conditions, as we shall see, lattice problems effectively 
reduce to modified d-1 dimensional problems which are often much easier 
to solve. In particular thermodynamic quantities depend only on the 
largest eigenvalue of the matrix we have described, and all observables 
may be expressed in terms of the spectrum of this matrix. The crucial 
feature of such a problem, then, becomes the diagonalisability of this 
Transfer Matrix. In fact for the two dimensional Ising model the 
matrix turns out to be exactly diagonalisable (Schultz, Mattis and 
Lieb [ 1 ]), forming the basis of an exact solution to this problem.
Both spin and gauge Z(2) models in arbitrary dimensions with intra 
layer interactions set to zero are exactly diagonalisable, whereupon 
the full models may be obtained perturbatively for small intra layer 
interactions. This approach has been discussed by Camp and Fisher [ 2 ] 
for the Z(2) spin model. Camp [ 3 ] goes on to demonstrate the 
exponential behaviour of the spin-spin correlation function, showing 
that the decay is governed by the model's mass gap (or inverse 
correlation length) at large distances.

Here we will use the transfer matrix approach to obtain the large 
distance behaviour of the plaquette correlation function in a 3d Z(2) 
gauge theory. We will first review the idea (as described in Camp and
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Fisher, and Schultz, Mattis and Lieb) outlining a proof of the relevant 
property of positive matrices (the theorem of Perron). We will then 
proceed to give calculational details for the Z(2) gauge theory, 
obtaining the relevant mass to second non-trivial order and in 
agreement with the strong coupling results of Munster [ 4 ].

2.2 The Transfer Matrix

The configurations of a d-1 dimensional layer of a lattice of side L 
may be labelled by a number C. If the lattice variables only take on a 
finite range of values C is finite and in particular for a Z(M) gauge 
theory

1, . Md L
d-1

(1)
In this case contributions to the Action due to the addition of a new
layer to an old one are completely determined by C ^ , and C If^ old new
A(C , ,, C ) gives these contributions we define the transfer matrix old’ new ^
by

(K) c, c' = exp “B A(c ) ] (2)

Then for a system periodic in the layering direction (for example) we 
find the partition function for N layers in terms of K:

(3)

Furthermore if B(n) is an observable in the nth layer and

c' ■ h, c' (4)

where B(c) is the value of B in configuration c then

-1 M-T? ~ R ~< B(n) B(n + R) > = Tr (K B K B) . (5)

Provided L and N are fairly small we may construct K and its higher 
powers explicitly, manipulating their entries algebraicaly as polynomials 
in exp [ B . This is the idea behind the small lattice calculations we 
will discuss in the next chapter. Here, however, we will make use of a 
theorem of Perron to obtain as ymptotic forms for such expectation 
values as N and R tend to infinity.
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1,3 The theorem of Perron (non-degeneracy of largest eigenvalue of K)

First note that (from (2)) K has all positive entries for finite B. We 
shall say that K is a 'positive matrix'. Adopting the notation of 
Bellman [ 5 ] we write K > 0. For matrices with all non-negative 
entries we write M ) 0, and we adopt an equivalent notation for 
vectors. It will be convenient in this proof to normalise vectors by

c
E

i = 1
X. = 1 1 (6)

Let S(X) be the set of non-negative numbers for which there exist 
vectors x ^ 0 such that

Kx ^ Xx (7)

Then

and

E E K.. X. XJ
i j

E E K.. ^ E E K.. X.J
i j i j

(8)

In general we would want to be able to extend consideration to infinite 
L and M, and the modifications to the present discussion strictly 
necessary for this are discussed in Camp and Fisher (and references 
therein). Here, however, we will use only finite (although arbitrarily 
large) K, and assume that there are no problems.

If X^ is the largest X e S(X) then for some x

K ) A .o

(o)

(9)

We have



31

Z K . X. Ij J
j = 1

(o) X = d > 0o 1

c
Z

j = 1
"Scj "j(o) k=2, ...,c (10)

without loss of generality if X is not in fact an eigenvalue of K. 
However for

2Xc
0
0
0

(11)

we have Ky > X y which contradicts the maximum property of X^. Thus 
d = 0 and in fact X is an eigenvalue with a positive eigenvector
(from (10) since K is positive).

X is in fact the eigenvalue with greatest absolute value. If there is 
an eigenvalue X for which ] X | ^ X and

KZ = XZ (12)

then with | Z ] the vector whose components are the absolute values of 
the components of Z we have

K Z X (13)

(the absolute value of the sum of two complex numbers is maximised if 
they are colinear) but (7) applies to | Z | so that | X | = X and

K| Z I = I X I I Z I XZ KZ (14)

Since K is positive all components of Z must be colinear in the complex 
plane and

KZ = XZ is equivalent to Kw = Xw (15)

where w > 0 so that X is real and positive and hence equal to X
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Finally if there is a vector linearly independent of x 
necessarily positive for which

(o) and not

KZ X Zo (16)

we may construct x^°^ + eZ where e is the smallest scalar for which 

one or more components of + eZ are zero, but we have

K (x^°^ + ez) = (x^°^ + eZ) (17)

and we have seen that for (x^°^ + eZ) > 0 this implies + eZ) > 0.

Thus there can be no such Z and X is non-degenerate. This proof 
appeals only to the positive quality of K, and is Perron's Theorem. The 
Jordan Form of K may thus be written:

K* = T K T

X

h 1

0

1
X,

m

1
X,

(18)

Breaking this up into the (b + 1) blocks corresponding to degenerate 
eigenvalues we label the vectors
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0
0 = < m, n I = I m, n >

0

0

1 4r nth of d entries in mth block m (19)

0
0

then with

m
mth block

(20)

we have

b ^
K'= Z [ X I + Z |m, n><m, n+1 |] 

** m m '
m = 0 n = 1

(21)

Now
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d - 1 m
[ Z |m, n > <m, n + l| 

n = 1

d - p m
E |m, n><m, n+p

n = 1

for p < dm

so that

0 otherwise

(22)

b p 
(K')^ = Z Z

m = 0 £ = 0

d - £ m
(p ^ I ^ ^ ^ I ^2 " ^

n = 1

using the binomial expansion. Tr K = Tr K' so that

^ b /, \ N
■NT M /A \Z = Z Z < m, n I (K') |m,n>=A (1+ Zd ( ) )

Jn o m \ a /_ . , Vo/m=On=l m =1
(24)

for instance. Notice that as N -> «> Z„ ->■ A^. With B' = T ^ B T and
N o

< 0 I = < 0 , 1 I we obtain

<B> = <0|B'|0>.
N CO

(25)

We define

< 5B(n)5B(n + R) > E < B(n) B(n + R) > - < B(n) > < B(n + R) >

N >> R <=o

d.-p1
(R:^")Tpr ^

p=0 2=1
R: <0 I B' I i, 2 >< i, 2 + p I B' |0>

A?

(26)

where the A. is the largest eigenvalue for which

< 0 I B' I i, 2 > ^ 0 (27)
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2.4 Perturbative calculation for the asymptotic form of the plaquette
correlation function

The transfer matrix for the Z(2) gauge model in three dimensions is 
most easily written down in a gauge in which all the link variables in 
the layering direction are fixed equal to + 1 [ 6 ]. In lattice gauge 
theory one chooses a gauge by fixing any set of link variables which do 
not form a closed loop [ 7 ]. Strictly speaking our choice of gauge 
forms closed loops if we take periodic boundary conditions and we are 
thus no longer at liberty to do so. However it may be shown (Camp and 
Fisher) that in the infinite N limit equation (26) is the same for open 
or periodic boundaries.

For the three dimensional Z(2) gauge model in this gauge

A(c, c') "i "j "k ^2 ^ u. u. 1 1 (28)
plaquettes 
in layer, 

ijki

links
i

where u^ is a link variable taking values from { 1, -1 } and ul is the 
corresponding variable in the adjacent layer specified by c and c' 
respectively. Note that for convenience in this section we depart from 
the usual notation of labelling sites, and label links of the lattice.

We will obtain the plaquette correlation function by perturbation
expansion about Bj. = 0. The first step is to obtain K | B_j_ = 0 in

2diagonal form. We will order the configurations of the 2L link variables 
in a layer as follows. Arbitrarily assign each link with a number 
1, 2L , write down a configuration by writing 1 for a link at +1
and 0 for a link at -1 for each of the links in order of their 
numbering. The binary number thus formed gives a Configuration C.

Notice that in this scheme if we write all 2 
in ascending order,

2ljbinary labelling numbers

000
100

2^^

00, 000 .. 01, 000 .. 10, ..., oil .. 11, 

00, 100 .. 01, 100 .. 10........... Ill .. 11

the firstb'correspond to all the configurations with link 1 set to -1 
while the secondX correspond to configurations with link 1 set to +1.



Subdividing each of these blocks, the first 2 / labels give configurations
2X^ .with link 2 set to -1 and the second % y give +1. And so it goes on.

We use this ordering for the rows and columns of K. It allows for K 
to be constructed in matrix notation by multiple direct products. We 
introduce a notation for direct products of matrices and vectors;

36

ax ay bx by

az at hz bt

cx cy dx dy
cz ct dz dt

where x, y, z and t are square matrices, and

X
eh

fg
\ fh /

where g and h are column vectors.

With this formalism K may be constructed as follows: 

We define

(29)

a(n) = exp (B) + exp (-$) CT° x 0° x ... x 0° x ... 0°

2 22l 2L^where 1 is the 2 x 2 unit matrix and

(30)

(31)

n runs over the links in a layer and the 0^ is in the nth position in 
the multiple direct product. Then labelling the rows and columns of 
0(n) by the old and new configurations c and c' we may interpret 0(n) 
as having non-zero entries exp ((3) when all variables are unchanged and 
exp (-B) when all variables except n are unchanged. 0(n) O(m) then 
has entries giving the exponentiated action due to variables n and m 
where all other variables are unchanged and multiplication by successive 
c’s introduces the effect of all other variables. We write
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^ = 0 = "
links
n

(32)

With j I as the vector formed by taking a multiple direct product of

'i\ . /a'
's with/ I in the nth position we obtain

1 / lb

a(n)

a(n)

= (gB + g-G) /^

1 n 1

. (,G - '

-1

(33)

Note that with iD - 2
1 1

-/ ’we have
-1 -1 n

n
$n

n n

n ,-l n

(34)

so that

T
I'u = 0

n
(35)

T♦n *n

and we may write cr(n) = cosh B exp (- 2,n (tanh B) ^ ) (36) whereupon 
K L _ = (cosh B)"^ exp [ - £n (tanh B) ^ ] (37). The maximum

'B. = 0
links
h9 “22L"^ . 2L - 1eigenvalue is (cosh B) '' , the next largest is (cosh B) sinh 6
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and corresponds to eigenvectors 2for any one of the 2L' possible

values of n, lower eigenvalues correspond to eigenvectors with 

introduced at m ^ n in the multiple direct product, and so on.

To introduce the contribution of plaquettes within the layer we note 
that these are independent of the configuration of the adjacent layer. 
We may introduce the contribution of a single plaquette

K ^ K. exp [ o^(i) o^(j) 0^(k) o^(^) ] (38)

where i, j, k, & are the links round the plaquette and

z - , 0 0 z o „ocr(n)=a xa -k ... a x o x .. o (39)

1 0
with = I j in the nth position in the multiple direct product.

0 -1,

Note that a^(n) gives a factor of +1 when U = +1 and -1 when = -1. 
thus a combination of four of these round a plaquette will give the 
matrix B (of equation (4)) for the plaquette correlation function.

Introducing the effect of all plaquettes in the layer we obtain

K = ( n a(n))( n exp g, [o^(i) o^(j) o^(k) a^(&) ] ) (40)
links plaquettes
n in

layer,
iik2

Since 0^(n) " ^ (41) the eigenvalue spectrum of K is no longer
clear. We expand in powers of g,

K = ( n o(n)) + ( n a(n)) x
links links
n n

a

E 1
nT ( z z _z ,n q(1) (j) (k) °\2)^ J

n = 1 plaquettes
ljk2

(42)
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From equation (26) we see that in order to calculate the plaquette 
correlation function we need to know the eigenvalues and eigenstates of 
the maximum eigenvalue state and the largest eigenvalue state which 
couples to this via the plaquette operator.

From the Perron theorem we know that the maximum state remains non­
degenerate. We will therefore calculate the eigenvalue and 
eigenstate to lowest non-trivial order using Rayleigh-Schrodinger 
perturbation theory (see for instance Schiff [ 8 ], the only 
modification is that our operators are non-Herraitian so that the bra 
and ket states must be calculated separately*).

The zeroth order eigenstate is the unperturbed maximum eigenstate with 
eigenvalue (cosh 3)^^ which will be written | 0 ° >. The unperturbed
eigenstates are orthonormal, although in general degenerate. Adopting 
the notation of the previous section we obtain:

blocks 
m = 1

(cosh 8)^^ ™(sinh 6)™
2 2(cosh 3)^^ - (cosh 3)^^ ™(sinh 3)™

X

m
E I m, n^°^ >< m, n^°^ ^ “(i) °<j) 4) k<i) I

n = 1 plaquettes
ijk&

From equations (41) and (34) and the orthonormality condition we obtain

(L I 0 (1) (tanh 3)
1 - (tanh 8)^

4, (iik^j(°) > (44)
plaquettes

ijk2

and 3i.<0^^^ I =3
^ 1 - tanh^3 < 4, ijk2 (o) where

plaquettes
{ I 4, (ijk2)^°^ > } are the subset of degenerate eigenstates with m = 4

links form a plaquette.

* We could have chosen a Hermitian Transfer Matrix by sharing out the 
intra layer interactions symmetrically. In any event we will obtain 
real eigenvalues.
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There is no lowest order correction to the eigenvalue. At order 
we obtain

B^Ccosh 6)^^ [i<0*°' E aVaV E aVaV I
plaquettes plaquettes

1 - (tanh g) 4
plaquettes plaquettes

ijk&

- Bf (cosh ^ J ]

1 - (tanh B)

2again using equation (41) and (34) and noting that L is the total 
number of plaquettes in a layer.

In fact the largest eigenvalue states coupled to the vacuum by

(45)

= oi Og1 j k i (46)

(where i, j, k, Z label the links of a plaquette) are just the subset 
of m = 4 states appearing in | 0^^^ > (equation (44)).

This is at first sight a problem. The m = 4 states are initially 
degenerate and at whatever level the degeneracy turns out to be broken 
one might expect the subset to get mixed up with all the other m = 4 
states. In fact we shall see that the states in the subset turn out 
to mix only among themselves, and that their degeneracy is broken in 
second order.

From degenerate perturbation theory (see for example Schiff 'Quantum 
Mechanics') we know that

< 4, xyzt (o)

plaquettes
ijk2

4 4 < i 4, abcd^°^ > 0 (47)

if xyzt are the links of a plaquette and then the degeneracy is not 
broken in lowest order (note in particular that the plaquette operator 
does not couple < 4, xyzt^°^ | to any other m = 4 state). At order 6j_ 

we find
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2 g
cosh^^ ^6sinh^g<4,xyzl:^°^| Z a(jau)^+6^( Z oocra),

plaquettes plaquettes

21L^ / T \S I m,n><m, n|. cosh gexp tanhgZip^ip^ j ( Z aaaa)] | 4, abed
X plaquettes

(o).

m,n (X^- X^)

^ 0 (48)

provided that the links a, b, c and d form a plaquette. The linear 
combinations of unperturbed eigenstates which are the eigenstates of the 
full transfer matrix will be those which diagonalise the matrix implied 
above.

If we choose periodic boundary conditions the matrix elements above will 
depend only on the relative position of plaquette ijk£ and plaquette 
abed. We may uniquely associate each plaquette in the two dimensional 
layer with a position on the lattice, the combinations required are 
thus

p > = E I 4, xyzt(°) > (49)
r

where £ is a position on the dual momentum lattice and £ is the
position of plaquette xyzt on the original layer lattice.

We obtain (replacing < 4, xyzt^^^ | and | 4, abed^^^ > with < p | and | p' > in (48))(0)

^ ^ -abed r r ,2
—ijkil —abed ^ [ 2 ^ -abed'

2 ^ ^abed * '
non-zero lattice 

vectors v

X 4X (N - 5) X
^ ^ ^(X, - X_) ^ (X, - X^) ^ (X^ - Xg) ) -abed)

4 '4



42

X X
" -(X, - ^ <HljU' Sated + S)

unit
lattice
vectors

a

X^ Xg* <(X - X ) * r -)> ^ ^ ^'SijU’ Sated ^ =)
non-unit
lattice
vectors

w

^4 ^ (P, P') [ IT + ^ + Z e ipw
w

- s^) Tvp-ip- (X^ - Xg)

X X
+ + (X^ - Xg)

+ (■(X4 - x^) (X^ - Xg)
) Z e"Ey]
w

(50)

now

cosh^^ 6 , 2L ~ 8q . ,8n cosh p sinh B
.2L^ -4. . ,4. .21^0 ,2L^ - 4 . .4Q ,2L^ - Sg . .8.

cosh p sinh p - cosh p cosh sinh p -cosh p sinh p

(tanh '^B - l)+(tanh^B - 1)

(tanh^B - l)(tanh ^B - 1)

-1 (51)

so we have
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= X, ^ - —4— + ^ )
tanh B - 1 tanh g - 1 tanh g - 1

+ (1+ ----J:----  + -----J:----- ) % e^E^l
tanh g - 1 tanh g - 1

(52)

with

pd), .g _1_ ; ^ ---- 1
/l^ r S

0^°^ >
- 1

+ --- [4----  Z I 6, ijkbcd^°^ >
tanh 3 - 1

^ Z I 8, ijk& abcd(°^ >]
tanh g - 1 w

(relative position of plaquette abed)
and

(53)

(1) 1_ , ^ 

r 1 - tanh
< 0 (o)

+ ---- --- Y~ E < 4, ijkbcd^°^
1 - tanh g

—--— Z<8, ijk£ abcd^°^ | ]
1 - tanh 6 w

(54)

From equation (52) we see that the degeneracy is broken, 
now gives (for plaquettes at r and r + R)

Equation (26)

< 6B(r) 6B(r + R) > = Z < g | | p >< p | ^aao^ | 0 >
P °

Z exp [ R(£n X(p) - £n X )] (-y + 0(g^))o - ^
P

Z exp 12 R(£n (tanh g) + g [(•tanh^g - 1 tanh ^g - 1 tanh ^g - 1
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+ (1+---- 1----+ ^
tanh'^3 “ 1 tanh

).Z ] + 0(6^)) ] . + 0(6^)) (55)

Contributions at order B come from

<o/°^.t aoao |p^°^>< loaao I + aaaa | p^^^xp/^^laaaa |c/°^>1 r ' ' r ' ' r r

I Goaa I p^°^><p^°^ I aaao | | aaaa | p^°^><p^°^ |

I (2)oaaa >r '
(56)

where

6^ < 0^^^ 6, xyzbcd^°^ >

plaquettes nearest 
neighbours

tanh
(1 - tanh^B)(1 - tanh^B) (1 “ tanh^B)

!, xyzt abcd^°^ > { tanh^B

plaquettes non- 
nearest 

neighbours

(1 - tanh^B) (1 - tanh'^B)

(1 - tanh^B)
} ] (57)

and

I 0^^^ > < 6, xyzbcd (o)

plaquettes nearest 
neighbours

tanh 10, I tanh B
(1 - tanh^B)(l - tanh^B) (1 “ tanh^B)
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< 8, xyztabcd^°^ | { tanh^^B

plaquettes -non 
nearest 

neighbours

(1 - tanh^B)(l - tanh^B)

, I tanh B 1 + --------- -— j-
(1 - tanh B)

(58)

combining these with equations (34), (43), (44), (53), and (54) we 
obtain

{ - (---- --- ^-)^ - (----- ^

1 - tanh B 1 - tanh B

[-(-
nearest

neighbours
a

tanh^B ) - ^
1 - tanh-4.

+ 2( -)(-1 - tanh^B tanh ^B “ 1 ) + 2 0-
tanh

-)(----^—T")
1 1 - tanh B

2(tanh^B + tanh^^B) (1 + tanh B)
(1 - tanh^B)(l - tanh^B) (1 - tanh^B)

]} (59)

Notice that potentially awkward terms involving sums over non- nearest 
neighbours have all cancelled. After some algebra we obtain

{ - (1 + tanh^B)
(1 - tanh^B)^

ip.a
nearest

neighbours
a

r 2 tanh^B(l -*• 2 tanh^B + 2 tanh^B ~ 2 tanh^B - 2 tanh^B ~ tanh^^B)-|

(1 - tanh^B)^(1 - tanh^B)

(60)



Since g is given by (—-— , —-—) where n^, n^ range from 1 to L, as 
L tends to infinity p.(i = 1, 2) tends to a continuous variable with 
range (0, 2m). The sum over g is

46

iL
L
E iL

L 
Z

ng = 1

2mn 2mn«((-T' -f) (61)

and

lim -jZ f (g) =
2,rg:i,2w^,, 
b 2m 4 2m ^^^1' ^'2'^

L CO

Therefore in the infinite volume limit

(62)

O TT ? 7T 1 ^^0
< 6 B(n) 6 B(n + R) ° ° (2V^

exp [ R { £n (tanh'^6) + L
tanh^B - 1 tanh 1 tanh

0(6^) } ]

exp [ R { 2^2[ 1 +-----T-----+----- :4-----] (cos p + cos p„) } ]

tanh B - 1 tanh B “ 1

. (1 + bI [ <■ (1 + tanh^B)

(1 - tanh^B)^
■) + 2 (cos p + cos Po) C •. ■ 1 J + O(B^)) (63)

The leading term, then, is proportional to I (x) where

2mI^(x) = cos (vp^) exp (x cos p ) (64)

while the leading correction is proportional to I For large R ^ x
these have the same asymptotic behaviour (Camp [ 3 ]), in particular

I^(x) = (2mx) ^ e^ [ 1 + - + 0(x ) ] (65)

so that for small Q we may neglect non-leading terms and obtain
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<6 B(n)5 B(n + R) > z exp [ - R m ]

R (66)

which is the usual form provided m is the so called z(2) glueball mass,
Reading m from (63) we obtain agreement with the strong coupling
expansion of Munster [ 4 ] up to O(g^) (we cannot check beyond this

3 3order since there will be contributions at 0(g) to 0(0 ))

m = - 4 £n (tanh g) + 0(6^) (67).

It should be straightforward to pursue this calculation both to 
higher orders and to include off-axis correlations. We could, for 
instance, obtain the asymptotic angular dependence of correlations (see 
Camp [ 3 j and conclusions). For the purposes of this work, however, 
we are primarily interested in confirming equation (66) as the 
asymptotic form for plaquette correlations. In the next chapter we will 
observe the behaviour of plaquette correlations at much shorter 
distances.

Although we have achieved the expected result for this calculation, a 
result which is qualitatively very similar to that achieved by Camp 
and Fisher for the Ising model, it is interesting to note that the 
calculation has really followed a quite different quantitative path. 
Specifically, in the Ising model calculation the spin operator couples 
to the largest eigenvalue degenerate states, whose degeneracy is 
broken in lowest order. Thus the nearest neighbour interaction 
naturally leads to the degeneracy being broken by cos p terms in 
momentum space and the problem reduces to Bessel functions in the 
infinite limit. In contrast the largest eigenvalue degenerate states 
which couple in the gauge model have their degeneracy broken at second 
order, effectively introducing plaquette-plaquette couplings throughout 
the lattice. This gives rise to potentially divergent contributions 
as the infinite limit as approached. In this case, then, it is a 
notable sequence of exact cancellations of terms from different parts of 
the calculation which removes these problems I

In fact we have not shown that such cancellations continue to occur at 
higher orders. However the calculation is so far consistent with the
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strong coupling expansion of Munster, which cannot break down at 
higher orders, and we assume that no terms occur at higher orders here 
to destroy the form of equation (66).

2.5 Large g behaviour

Finally in this section we briefly examine the behaviour of the mass 
gap at large $. Note from appendix I that the large B region of a 
2(2) gauge model is transformed into the small B region of an Ising 
model in three dimensions. Note also that the quantity dual to a 
plaquette-plaquette expectation value is given by (Savit [ 9 ], 
appendix)

B* = ”1 in tanh B

Zq(6)
(68)

where Z (g) is the Ising model p.f. and % (g) is a modified Ising model 
p.f. obtained by changing the sign of the coupling associated with 
links dual to plaquettes a and b. [ | signifies a plaquette.

In the transfer matrix formalism, for example with periodic boundaries, 
we write

Z (g) = Tr [ K K ].R (69)

where K gives the contribution of a layer modified as above. We may 
proceed as before (equation (26)) with B = K. We will not carry out a 
detailed calculation for the asymptotic form as N » R ^ “ but rather 
assume that the mass gap will as before be given by

m £n X jin Xn (70)

where is the eigenvalue of the lowest eigenstate coupled to < 0 | by 
K. The modified coupling in K is on a link between layers and thus 
alters the K | ^ part. We see from equation (33) that this
involves only a sign change when the relevant layer site occurs in an 
eigenstate. The unperturbed eigenstates remain as eigenstates. As for
K we expand K in terms of g (K,, = K |

B. 0 etc)
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K = K| K, Ki + K| (K, 1) (71)

The first term has only diagonal matrix elements and from (41) and the 
Ising version of (42) all subsequent terms have diagonal elements and 
elements corresponding to changes from even to even eigenstates. A 
similar calculation to that indicated in equation (43) (for the Ising 
model in this case, see Camp [ 3 ]) shows that eigenstates with 
unperturbed eigenvalue X have only odd unperturbed states in them.
Xg is the lowest eigenvalue required. Camp gives this as

X„(0) = cosh^g tanh^g { 1 + + 0($f) } (72)

and

&n X - 2n X„ = -2 £n tanh g + 8g + 0(g) o z (73)

After duality transformation (with g now the dual gauge model coupling) 
we obtain for large g ,

m = 4g - 8e + 0(egauge (74)

This note has provided a large g limit check on calculations to be 
discussed in the next chapter.
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3. Transfer Matrix Approach II. The small lattice

We examine the results of a small lattice calculation in which the
transfer matrix is raised to a high power algebraically and expectation 
values appear as ratios of exact polynomials.

3.1 Introduction

In the previous chapter we discussed the behaviour of correlation 
functions on the lattice in the perturbative region of small 6. The 
discussion concerned a discrete gauge group, although similar results 
from direct expansions apply to continuous groups (Munster [ 1 ]).
Away from the perturbative regime these methods are unhelpful in 
either discrete or continuous models and one must turn to approximate 
non-perturbative techniques.

We saw in the first chapter (section 1.5) how a sequence of possible 
gauge configurations may be generated in such a way that their 
distribution approaches the Boltzmanian weighting of a path integral.
In order to achieve this in practice it is necessary to parametrise 
the configurations. Each link gauge variable may be described by a 
finite number of parameters for any gauge group of physical interest, 
but we must also require that there be a finite number of variables.
In other words, importance sampling Monte Carlo calculations imply 
finite lattices.

This means that results are at best only indicative of infinite lattice 
phenomena. One expects a very good approximation in regions where the 
correlation lengths of the model are small, and a poorer one as 
correlations grow to permeate the lattice.

In particular, phase transitions do not occur. Their presence on the 
infinite lattice has been successfully inferred from Monte Carlo 
results (Creutz [ 2 J), but the finite lattice image appears dramatic 
only because of finite sample size. What does this mean? Monte Carlo 
calculations sample only a finite number of gauge configurations (out 
of an infinite number of possibilities in general), and although the 
ultimate Boltzmanian distribution of these configurations is of the 
essence of the importance sampling Monte Carlo algorithm, the rate at 
which this distribution is approached may be slow. The rate of
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convergence of a Monte Carlo approximation is governed by the 
quantity X (equation(70),section 1.5). This depends on the state of 
the model and the method of generating configurations.

We will evaluate directly the kind of path integral approximated by 
a sequence of Monte Carlo configurations on a finite lattice. We 
assume that finite lattice vestigial phase structures will look 
qualitatively similar in models with similar infinite lattice phase 
structures, regardless of the gauge group. Since we do not propose to 
examine the naive continuum limit (section 1.2) in this work, we may 
as well take advantage of the form of Wilson's Lattice Action [ 3 ] 
(gauge fields taking values from the group rather than the algebra) and 
consider a finite gauge group 4 ] .

Although exact calculations on finite lattices are not a new idea 
([ 5 ], [ 6 ]) they have yet to be applied to Lattice Gauge theories.
We will see later that gauge models are more realistically modelled 
than conventional Z(2) spin models on a finite lattice. The idea is 
simply that, for fields taking values from a finite set, the relevant 
path integral becomes a finite sum and thus in principle trivial. The 
sum may be large, but practical limits on its size come from the 
solution of computing problems which need not concern us here.

The relevance to physics of a finite lattice model with a discrete 
gauge group is not immediate! However, exact solutions for non-trivial 
lattice models are not abundant, particularly in greater than two 
dimensions. We present exact results, applicable in all regions of 
coupling constant space, on (as far as we know) the largest lattice 
presently amenable to such treatment.

Firstly, this will allow us to examine the zeros of the finite lattice 
partition function, which should provide an indication of the global 
analytic structure of a lattice model [ 7 ]. It will also be 
possible to obtain subtracted plaquette-plaquette correlations exactly. 
Now in the case of a discrete global symmetry on an infinite lattice 
the symmetry is broken spontaneously at the critical temperature.
This allows the use of a local order parameter. On a finite lattice no 
symmetry is spontaneously broken and the order parameter remains zero 
unless the symmetry is broken by hand. This is essential for the



measurement of subtracted spin-spin correlations (otherwise the 
subtraction is always zero and correlations do not decay exponentially) 
thus we are forced to use an artificial symmetry breaking (see 
Appendix II). Contrastingly a gauge symmetry is not spontaneously 
broken on any lattice (this is Elitzur’s Theorem, see [ 8 ]) and a 
gauge invariant non-local order parameter is chosen from the start [ 9 ]. 
The need for artificial symmetry breaking never arises.

There has been considerable interest recently in the hadronic correlation 
functions in Monte Carlo lattice SU(3) gauge theory. The lattices 
have been of approximate size 6x6x6x12 [lo]. The idea is to 
fit masses to the exponential decay of these correlation functions. At 
large distances
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< A(o) A(R) > - <A(o):^A(R) > ~
R 2

(1)

where m is the lowest lying mass associated with A. Corrections to this 
form have higher powers of R in the denominator or larger masses in the 
exponential (see the previous chapter, for example). We see that 
fitting to this form is only absolutely safe as R o°. With a periodic 
lattice of the size mentioned above we cannot have R greater than 
six lattice spacings!

We will use the exact expressions generated for this work to fit 
separated plaquette expectation values (for separations up to 4 lattice 
spacings) to the asymptotic form given in equation (1).

We have established in the previous section that this is the correct 
asymptotic form for the Z(2) gauge model in d = 3 dimensions. We will 
be able to compare with the small B expansion for the lowest lying mass 
[ Munster [ l]] and with leading terms in the small e ^ expansion 

(previous chapter). We will also see that the mass gap becomes small 
close to B .

Finally we will compare mass fits using different plaquette separations 
at fixed B and find that discrepancies are small, i.e. that separation 
dependent corrections to the exponential form remain small even close to 
the critical point in this small lattice model (in contrast with the 
Ising model, appendix I).
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3.2 The Model

We discuss the requirements for a suitable model. It has been
suggested [ 7 ], [ 11 1, [ 12 ] that vestiges of infinite lattice

3 3behaviour persist on extremely small (e.g. 2,3) lattices. 
Specifically we find that although finite lattice models do not have 
phase transitions, measurable quantities such as specific heat will 
peak close to infinite lattice critical coupling values. However, 
while these small lattice sizes make partition functions (and their 
derivatives) relatively easy to obtain, they physically preclude the 
measurement of correlations between separated spins or plaquettes.

At the same time exact calculations on large lattices present 
computational difficulties. The compromise is to consider lattices 
of relatively large extent in one direction, and to measure 
correlations in this direction (cf [lo], [_ 13 J). We find that a 
Z(2) gauge model on a 3 x 3 x 9 lattice is accessible. This will be 
sufficient for measurement of correlations. It implies a sum over 
roughly 10^^ configurations after gauge fixing.

The partition function is

Z = E exp
configurations

[B
plaquettes

ijk&

(2)

where the link variable U.. takes values from { 1, - 1 } on the link 
between sites i and j (cf. the direct labeling of links in the previous 
chapter). Z cannot be evaluated directly. The calculation is simple 
but too long winded. We proceed as follows: the dual Ising model 
partition function is evaluated using the finite transfer matrix 
approach suggested following equation (5) of the previous chapter; Z 
is then obtained by the duality transformation described in 
Appendix I. Checks on this method are outlined in appendix III, where 
Z is also listed. Periodic boundaries are used in the short directions 
while free (3 = 0) boundaries are used in the long direction. We 
avoid periodic boundaries in the long direction so that separated 
plaquettes have a definite separation. We will discuss boundary effects 
in a subsequent section.
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The following features of the infinite lattice model should be noted: 

The Ising model in three dimensions has a unique second order phase
transition at ,22 (Fisher and Burford [ 14]). Duality
(appendix 1) then implies a unique second order phase transition for 
the Z(2) gauge model at g * .76 (see also Balian, Drouffe and 
Itzykson [ 4 ]). Interest in Z(2) gauge models was initially 
stimulated by the qualitative change in the behaviour of Wilson loop 
expectation values from

n
loop

. > Of exp []-f(B) (loop area) % (3)

at small 3, to

< n > or exp []“g(3) (loop perimeter) ]
loop

(4)

at large 3 (Wegner [ 9 ], Kogut [ 8 ]). Unfortunately exact 
calculations for the expectation values of different sizes of, say, 
square Wilson loops would require a lattice of large extent in at 
least two dimensions. The lattice described here could be used for 
N X 1 Wilson loops, but these are not sensitive to the crossover from 
area to perimeter dependence. Instead we will examine the plaquette 
correlation function. The correlation length associated with this 
function should become large close to the critical coupling, although 
as we have seen in the previous chapter we expect a finite mass gap in 
both the large and small coupling limits.

The Ising model partition function has a zero at g ; in fact there must 
be an infinite number of zeros in the neighbourhood of g in the 
complex coupling constant plane (Abe [ 15 ], also see later). Since 
duality implies that the gauge model partition function is proportional 
to that for the Ising model (with transformed coupling; appendix I) we 
expect a similar distribution of zeros in this case.

It is found in the case of the 2 dimensional Ising model that (for some 
boundary conditions) the zeros of a finite lattice model all lie on the 
line of the infinite lattice distribution [ 7 ]. We proceed under the 
assumption of a similar correspondence in the next section.
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3.3 Zeros of the partition function and behaviour of the specific heat

Before generating correlation functions we examine the partition 
function for the 3.x 3 x 9 Z(2) gauge model. Since the partition 
function is obtained as a polynomial (in this case a polynomial in 
tanh g, see appendices I and III) we may obtain the internal energy 
and specific heat directly:

Average plaquette
action

1 a ^ z(6)
N 96 (5)

Specific heat 1 9 ^ (g)
N 96

(6)

where N is the number of plaquettes.

The specific heat is shown as a function of g in figure 1. Similar 
results for the Ising model are given in appendix II. The peak in the 
specific heat close to g is more pronounced for the Ising model - we 
will be able to interpret this in terms of the distribution of zeros of 
the partition function.

First notice that we may write the partition function as

Z(g) a n (e-4g (Sj + ib.)) (7)
zeros

j

where (a. + ib.) is the position of the jth zero of Z(g) in the complex 
-46 3 3 _

e plane. Putting this into equation (6) we obtain

Specific heat = -16 -4g _-— e S
(a. + ib.)J 3

(e-4g
(8)

(aj+ ibj^'

Since the polynomial Z(g) has real coefficents the zeros must occur in 
complex conjugate pairs. The contribution to the specific heat on the 
real axis due to such a pair (now jointly labelled j) is given by
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Figure 1

Specific heat vs. coupling constant for the 3x3x9 lattice Z(2) 
gauge model.
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S.(x) X
NP

-a, ((x - a.)^ + b.^) + 2b.^ x ]

[(^ - a.)^ + b.^] ^ (9)

where x = e -43 Sj(x) has maxima at

y 2 ^ 2
X = ± / a. + b. ,J J

(10)

0 < X < 1 correspond to positive 3 and

(/a.^ + b.^)
Np 2 1

/a? -t- b? 
J J

(11)

The distribution of zeros in the complex x plane is shown in figure 2,
This may be compared with the distribution for the Ising model given in
appendix II. Figures 3 and 4 show the distribution of zeros in tanh 3 

2and tanh 3 for the gauge model. There are a few zeros which are not 
found (we use a modified Newton-Raphson technique [ 16 ]), and a few 
which lie well outside the unit circle in these plots.

Since the gauge model is obtained from a modified Ising model by the 
transformation

3-^-5 2n tanh 3 (12)

comparison with the conventional Ising model plot (appendix) shows the 
effect of the modified boundary conditions.

Equation (11) shows that the largest contribution to the specific heat 
from the nearest pair of zeros (j) pinching the positive x-axis is at

X
= /aT+bT

This compares with e

J
-43c

,07, 66

,05, 3c ~ .76, and corresponds closely to the
peak in figure 1. In fact we may associate this peak with a coherent

2 2distribution of zeros (i.e. a line with a + b ~ constant). This 
parallels the anticipated infinite lattice behaviour [isj. Notice 
from appendix II that the corresponding zeros in the finite lattice Ising 
model give, in this sense, more coherent contributions at 3^, and 
produce a more pronounced peak.
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Figure 2

Some zeros of the partition function plotted in e
lattice Z(2) gauge model.

-46 for the 3x3x9
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Figure 3

Some zeros of the partition function plotted in tanh B for the
3x3x9 lattice Z(2) gauge model.
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Figure 4

Some zeros of the partition function plotted in tanh
3x3x9 lattice Z(2) gauge model.

for the
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From these results it seems likely that the Z(2) gauge model has a 
line distribution of zeros passing through the real axis at 3^ [ 7 ]. 
There is clearly some further structure away from this line although 
the present lattice is too small (and too anisotropic) to find it.

3.4 Short distance behaviour of the plaquette correlation function

We label the layers of the lattice as indicated in fig 5, The layers 
are periodically bounded. We arbitrarily introduce a labelling scheme 
for the plaquettes within a layer (figure 6). We will only deal with 
layer plaquettes in this work, so the layer number followed by the 
layer vector identifies a unique plaquette. We then have a shorthand 
for plaquette expectation values:

(a, b, c)
configs

Z UUUU ]
plaquettes

Z [ $ Z uu^u]
configs plaquettes

(13)

where and are the link variables around plaquette
(b, c) in the ath lattice layer. We obtain expressions for the 
following quantities:

□ □ ^ < [](0, 0, 0) LJ (1, b, c) ' LJ (0, 0, 0) ''

< 0,0)0(1, b, c)>. <0
< Or-:

(1, 0, 0) '

(-2, 0, 0)1-^ (2, b, c) ^ (2, 0, 0) (14)

for all b and c. Note that the lattice is symmetrical under (a, b, c) 
->■ (-a, b, c). We write the subtracted correlation function as

D( I a, - a„ , " [3 0. 0) □ (a^. b, c) "

- < □ r, . n. m □ • - ■ ^(a^, 0, 0) (a_, b, c) (15)

We may construct linear combinations within a layer:
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Figure 5

4-3-2-1 012 3 4

Figure 6

Figure 5: Labelling scheme for lattice layers.

Figure 6: Labelling scheme for plaquettes in layer a.
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°(P,.(I > - exp (p b + p c) ]
b , c = -1, 0, + 1

<a (a^, b, c) —(a^, 0, 0) (a^, b, c) (ag, 0, 0)

where p., take values from { 1, 0, -1 }.

(16)

The squared plaquette expectation value < Q] ^ c) ^ plotted 
against 6 in figure 7 for a = 0. Discrepancies with a / 0 are small. 
The worst case is a = 2 at g with a discrepancy of about 1 %. The 
D(n) are also small, however, and we avoid using plaquettes with a ^ 3 
to try and minimise boundary effects.

The subtracted plaquette-plaquette expectation values are plotted 
against g in figure 8. In the small g region the lattice separation 
(2, 0, 0) gives a similar correlation to (1, 1, 0), and has a greater 
correlation than (1, 1, 1). In this sense the effective separation at
(a, b, c) is given by a + b + c

2separation / 2 . 2 ^ 2/a + b + c pertains
Close to g^, however, the true

Separations (2, 1, 0) and (1, 1, 1) (and (4, 0, 0) with (2, 1, 1)) do
not give identical small g behaviour on this small lattice because of 
the periodic boundaries. On an infinite lattice the lowest order 
strong coupling (small g) diagrams for these expectations are tubes 
connecting the relevant plaquettes (see appendix I, and for example 
figure 9).

^ 0(tanh^^ g)

Fig 9
/

II. i // /
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A

Figure 7

Plaquette expectation value squared vs. coupling for plaquette (0, 0, 0)



ab
c
d
0

f

hg

Figure 8

Subtracted plaquette-plaquette expectation values against coupling 
for the following plaquette-plaquette separations:

a) (1, 0, 0) 
d) (2, 0, 0)
g) (4, 0, 0)

b) (1, 1, 0)
c) (2, 1, 0)
h) (4, 1, 0)

c) (1, 1, 1)
f) (2, 1, 1)
i) (4, 1, 1)
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However with periodic boundaries it is possible to form diagrams at 
lower order (figure 10).

0(tanh^^ B)
Fig 10

Nonetheless we observe that true separation becomes more important as 
$ is approached; specifically that D(4, 0, 0), D(4, 1, 0) and D(4, 1, 1) 
become more closely grouped than the other combinations (since

a when a >> b, c) and so on./ & + b^ + c^

The simplest way to try and extract an approximate mass or inverse 
correlation length m from these figures is to fit the (a, 0, 0)
separations to the form obtained in the previous chapter. The results 
from fitting D(4, 0, 0)/D(2, 0, 0) and D(2, 0, 0)/D(l, 0, 0) are shown 
in figure 11.

To leading order (at small g) we have

D(a, 0, 0) = (tanh g)^^

and applying equation (66) of chapter 2 we find

D(a^, 0, 0)

(17)

mapprox ^2
[ &n + jin

/DCa^, 0, 0)\
lD(a^, 0, 0)/ ]

jin (?) + m + 0(8 ) (18)

where m is the mass calculated in chapter 2 (equation(67)). The first
term approaches zero as a_ , a^ but for a^, a^ ( 4 and small g it
dominates the error in m . This is not a very interesting shortapprox
distance effect. We eliminate it by taking the linear combination
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E
/

Figure 11

Approximations to the lowest lying mass (in units of the inverse lattice 
spacing) against coupling as follows:

A) Strong coupling expansion (Munster [ 1 ])
B) Exponential fit to D(4, 0, 0)/D(2, 0, 0)
C) Exponential fit to D(2, 0, 0)/D(l, 0, 0)
D) Exponential fit to 0)^^^

E) Weak coupling expansion (Chapter 2).
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D,g Q. in equation 12, Then, in chapter 2, the implied modification 
of equation (55) will contain 6(p, 0) (see also equation (49)). This 
makes the sum over momentum states trivial and we obtain

0) ( I ) ~ exp (-m I ) (19)

The strong coupling (small g) expansion for m, including terms up to 
tanh% (Munster [ 1 ] ) , together with the large g expansion obtained in 

the previous chapter and m^^ , the fit from (4)/D^q (2), are
all shown in figure 11. It is interesting to try and see roughly where 
and how y becomes unrealistic. First note that Munster's Expansion 
does not fall to zero particulary close to gc. For m greater than about 
two inverse lattice spacings (see fig 11) the expansion may be no 
better an approximation than m/^y . Extending the series is an 
unnecessary labour however, since we can clearly see that m^y has 
failed by the time the correlation length reaches about .7 lattice 
spacings. This is smaller than might have been expected, nonetheless 
it must be attributed directed to the finite lattice size and not to a 
breakdown in the fitting procedure. Figure 12 shows the fit m^y
compared with that obtained from (2)/D^g g^ (1), If short
distance effects of the kind anticipated in the previous chapter were 
already spoiling the exponential form at m - 1.5 inverse lattice 
spacings one would expect an inconsistent prediction here, however the 
inconsistency is small.

This suggests that larger masses remain relatively large (in transfer 
matrix terms smaller eigenvalues remain relatively small) for this 
finite model as the «> lattice critical temperature is approached.

As we have noted before, the transfer matrix associated with 
a 3 X 3 layer in this model is a finite matrix. Thus it is 
possible in principle, to check the smallest masses by 
diagonalising the transfer matrix numerically, thus obtaining masses for 
a 3 X 3 X infinite system at any g (see section 2.3). In this approach, 
however, one must work with the gauge model transfer matrix from the 
start, and we have seen that the first, fifth and smaller eigenvalues 
would be required. This makes the calculation awkward in practice [l7 ] 
The corresponding calculation for the Ising model is relatively 
straightforward. We discuss this briefly in appendix II.
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Figure 12

Approximations to the lowest lying mass (in units of the inverse lattice 
spacing) against coupling as follows:

i) exponential fit to Q^(4)/D^Q g^(2)

ii) exponential fit to ^^(2)/D^^ ^^(1)
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In this section we have confirmed that the path sums associated with 
a finite lattice z(2) gauge model form closed expressions 
approximating the thermodynamic limit for both strong and weak 
coupling. The finite lattice allows consistent measurement of a 
correlation length, and the approximation breaks down only as this 
length approaches the lattice size.
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Discussion

We have checked the exponential fit method for extracting correlation 
lengths from finite lattice calculations. It is not sensible to use 
this method when the length approaches the lattice size (close to 6 ).
We have not yet been able to make a precise statement in this respect. 
Unfortunately a lattice with a 2 x 2 section is too small to extract 
masses in this way. A calculation with a 4 x 4 x n lattice is in 
progress, but will take considerable time. A line distribution of 
zeros of the partition function (through g ) is suggested in agreement 
with the form expected from Ising model calculations [ 1 ]. It may be 
possible to extend consideration in this respect to Z(3) models.

The computing side of this work was aided greatly by the existence of 
a duality transformation (appendix I) between the Z(2) gauge and spin 
models. In four dimensions the Z(2) gauge model is self dual [ 2 ].
The duality transformation may be extended to Z(N) symmetries for 
N -V 00 [ 3 ] although non-abelian groups have so far proved inaccesible. 
Recently Bhanot and Rebbi [ 4 ] and Petcher and Weingarten [ 5 % have 
shown that the discrete subgroups of SU(2) reproduce SU(2) results 
over a wide range of coupling constant (although they have a phase 
transition at large g). Monte Carlo calculations are more efficiently 
implemented with discrete groups, but these results are ultimately 
prone to the same statistical problems with numerically small 
observables as for SU(2). It may be possible to obtain duality 
relations for discrete non-abelian groups. Calculations for appropriate 
quantities in small g could give accurate large g results by duality 
(c.f. section 2.5 and [ 6 J).

In chapter 3 we saw how effective 'separations' on the lattice (as felt 
by correlation functions) changed towards true separations close to 
g^. So far we have not considered the problem of absence of Euclidean 
invariance in the lattice scheme. We have used a cubic lattice because 
it makes duality transformations easy. Beyond this however, a program 
on a conventional computer (not a parallel processor) favours no 
particular lattice structure. A worrying feature of the cubic lattice 
is that it has preferred directions, however far away you look. A 
random lattice looks more isotropic at large distances. It would be 
worth trying to confirm universality (of critical behaviour among models
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with the same dimensionality and interaction type) for lattice gauge 
theories. This should be relatively easy, even for SU(2). Since the 
usual hypercubical lattice is not expected to have physical relevance 
this would provide an important check on the lattice approach.

Finally it would be interesting to try and find $ for the Z(2) gauge 
model using the finite lattice renormalisation transformations 
mentioned briefly in Chapter 1, Calculations of this kind have been 
performed for the Ising model [ 7 ], but it could be instructive to 
deal with the different problems posed by a gauge interaction while 
maintaining a simple and fairly well understood model.
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Appendix 1: The Ising model and Z(2) gauge model in three dimensions

A comprehensive survey of the relationship between spin and gauge 
models on flat three dimensional lattices is given by Savit [ 1 ] (see 
also the pioneering work of Wegner [ 3 ] and Balian, Drouffe and 
Itzykson [ 4 ]). We introduce modifications required for a periodic 
lattice Q 2 ] .

The Z(2) gauge model partition function (eqn (2) of chapter 3 for 
example) may be written

K + 1P
Z(g) = Z n cosh 6

configurations plaquettes K
of U's ijk£ ^

± 1

K + 1 P
= z z n

configs configs plaquettes 
U’s K's

(cosh 3 tanh g) n U.y
links
ij

K 
Z
: ij

we have introduced K = ± 1 on the plaquettes p and Z

(1)
a sum over

P :
the four plaquettes common to link ij. The advantage of this form is 
that terms in which any is raised to an odd power are cancelled in 
the sum over configurations. The remaining terms get a factor of 
2 for each link and we may write

Z(g)

{ n

configs
K 'sP
K = + 1 }
P

exp [ Z
plaquettes

K

(2)

where g = -5 2-n (tanh B). The expression in curly brackets means that 
we only consider configurations in which the product of four s 
incident on every link gives + 1.
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Our task is to show that this constrained sum may be written as an 
unconstrained sum over Ising spins with an Ising interaction. The 
situation we have at the moment is a sum over the small-3 expansion 
terms for the gauge model partition function. We are summing over 
configurations of 's taking values on plaquettes under the constraint 
that the product of four incident on any link must be + 1. This means 
that the set of plaquettes with K taking value - 1 can be 
decomposed into closed surfaces in any allowed configuration. These 
configurations with closed surfaces are in one to one correspondence 
with strong coupling (small 3) diagrams.

If the lattice is on a flat space then each of these closed surfaces may 
be considered as the boundary of a volume made of elementary cubes. We 
define a set of variables S on the cubes as follows. For an arbitrary 
first cube we put S = + 1 then the others are either put = + 1, if they 
are an even number of surface walls away, or otherwise put = - 1. The 
product of two cube variables with a common plaquette is now equal to 
K for that plaquette. In three dimensions there is a one to one 
correspondence between links and plaquettes and between sites and 
cubes (think of a lattice shifted so that sites lie at the centre of 
cubes of the original lattice).

We have seen that all the configurations in the constrained sum may be 
generated from configurations of S^'s taking values on cubes (or sites). 
The K 's are obtained from the product of the two adjacent cubes. We 
have yet to show that all such cube configurations generate 
configurations which satisfy the constraint. Consider a constructed 
from adjacent S^'s

(3)

We require

n KF
plaquettes 

common to a link

+ 1 (4)

of course each occurs twice in the product so the constraint is always 
satisfied. We write from (2) and (3):
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Z(g) exp [ -6 3.S. 1
1 1 (5)

configs 
S

links
ij

(we have chosen to put the S's on sites). This is the Ising model.

If the lattice is periodically bounded then the closed surfaces formed 
from plaquettes with K = - 1 cannot always be considered as the 
boundaries of volumes. Consider a surface which is closed by virtue of 
the periodicity (a 'membrane' diagram in the strong coupling series).
We cannot make a consistent assignment of cube variables. In other 
words there is no cube configuration which generates a 'membrane'.

Notice, however, that if we were to put an additional factor into the 
interaction so that

K S, (J). . S .1 1 (6)

where ij - 1 for all links through a membrane 
+ 1 otherwise.

then this form generates all possible membrane configurations due to
periodicity in a pair of directions. Further introducing (f)
(23)

(13)
ij or

generates possible membranes due to periodicity in other pairs of 
directions. The complete partition function is thus obtained by 
summing over configurations of S^'s and over possible combinations of 
<j) insertions.

Notice that a lattice periodic in two directions (as in chapter three) 
only requires one insertion.

It is possible to generalise this discussion to include Z(N) models.
The non trivial (jj's take values from the relevant representations of
Z(N).

Expectation values of gauge invariant products of U's (closed loops, 
products of closed loops) are obtained as follows: Choose a surface of 
plaquettes bounded by the closed loop; change the sign of coupling on 
the corresponding links of the shifted 'dual' lattice Ising model; sum 
over configurations as above. This procedure has the effect of
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generating configurations with II K
P

1 on the links of the

closed loop so that a factor occurs in the expansion (1) to cancel 
that appearing from the expectation value.
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Appendix II: Small lattice results for the three dimensional Ising Model

We give the results of exact calculations for the specific heat, 
zeros of the partition function and spin-spin expectation values of the 
Ising model on a 3 x 3 x 8 lattice. These were preliminary 
calculations for the work discussed in Chapter 3.

Duality ensures that the locally and globally Z(2) symmetric lattice 
models have identical phase structure in three dimensions 
(reference [ 3 ] of appendix I). Nonetheless there are interesting 
differences between the two models. The Ising model has a 
spontaneous magnetisation or single spin expectation value as a local 
order parameter. Below the critical coupling value this quantity is 
zero as one might expect from the Z(2) symmetry of the Action:

A = g Z d>. d).
links
ij

(1)

(4>£ takes values from { ± 1 }). Above g this symmetry is spontaneously 
broken and the single spin expectation value becomes non-zero. This 
effect does not occur on a finite lattice so we break the symmetry by 
hand. In the model we discuss the symmetry is broken by fixing a layer 
of spins at each end of the lattice in the long direction to + 1.
There are eight free layers. We may think of a periodic lattice with 
a single frozen layer or an infinite frozen lattice containing an 
unfrozen bubble. Either way one anticipates that at small g, where the 
correlation length is small, the effect of the frozen layers will not 
permeate into the lattice (and that the single spin expectation value 
remains very small), while at larger g the single spin expectation 
approaches unity as in the full model. We will see how these ideas 
are approximately realised.

The specific heat for the 3x3x8 model is given in figure 1. 
Intermediate results for a 3 x 3 x 4 model are also shown. There has 
been some use of finite size scaling arguments [ 1, 2, 3 ] in the 
literature to extract information about phase transitions from 
sequences of small lattices [ 4, 5, 6 ]. We have been dissuaded from 
attempting such calculations firstly because 2 x 2 x n lattices are too 
small and 4 x 4 x n lattices very awkward to calculate. Secondly
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Figure 1

Specific heat vs. coupling constant for (solid line) 3x3x8 lattice 
and (dashed line) 3x3x4 lattice Ising models.
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because a preliminary calculation using 2^, 3^ and 4^ [ 7 ] lattices

shows that the normal finite size scaling behaviour has not set in
at these very small sizes. The specific heat curves are given in
figure 2. Using the results of section 3.3 and the plots of zeros of

3 3the partition function for the 2 and 3 models in figure 3 it is easy 
to see why this is the case. In fact one may readily calculate the
32 partition function and obtain the zeros by hand:

Z(6) aCe”'*® . - i)^ - c)

- c*) (e"*® i) (a-^e

where

c = (1 ^(1 + 1) (2)

Equation (11) of section 3.3 shows then that the peak in the specific
heat will occur at approximately $ = .21. Although the real component
of the closest zero is closer and the imaginary component smaller for 

3the 3 model, the magnitude is actually further away from g . In fact 
it is the size of the imaginary component of the nearest zero for the 
2 model which pushes the magnitude close to In the light of
these results the finite size scaling approach is not pursued.

The zeros of the partition function for the 3x3x8 model are given 
in figure 4. The situation is similar to that discussed in section 3.3 
and reference [ 7 ].

In discussing spin-spin expectation values we adopt an equivalent 
notation to that of section 3.4, but label sites of the lattice rather 
than plaquettes. The unsubtracted spin-spin expectation values

0, 0) ^(1, 0, 0) ^*(1, 0, 0)*(-l, 0, 0) ^"^"^(-1, 0, 0)'l'(2, 0, 0) ^

and

^ ^(0, 0, 0) ^
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Figure 2

Specific heat vs. coupling constant for periodically bounded 2 , 3" 
34 lattice Ising models.

and
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Figure 3

Zeros of the partition function in e for periodically bounded 
2^ and 3^ lattice Ising models (+'s and dots respectively). Lines of 

constant magnitude are drawn for the zeros nearest the real axis in 
each case (see section 3.3).
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Figure 4 

“46Zeros of the partition function in e for the 3x3x8 lattice 
Ising model (zeros occur in complex conjugate pairs).
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are shown as functions of 3 in figure 5. Notice that < ^ 0)
is extremely small at small In fact it has negligible effect up to
3 - .18 (on the infinite lattice it would be zero up to 3 - .22).
Above 3^ it rises very sharply to + 1, which is at least qualitatively 
the behaviour we require.

Approximate fits to the lowest lying mass (inverse correlation length) 
are obtained by comparing the subtracted values at separations 4/3,
3/2 and 2/1. We have not taken the linear combinations necessary for 
momentum eigenstates. We anticipate a poor approximation for 
intermediate and large 3 in any case because of the severe boundary 
conditions. The mass fits m^^, and m^^ are shown in figure 6. The
small 3 expansion for the mass gap has been obtained to high order by 
Fisher and Burford [ 8 ]. This result is also shown in figure 6. The 
discrepancies at small 3 are exactly those described in section 3.4, so 
a momentum eigenstate fit would give good agreement with the series 
expansion result at small 3. However at large 3 there are problems.
We may write the subtracted expectation value for separated spins as

^ ^(0, 0, 0) ^(a, b, c) ^(0, 0, 0) ^(a, b, c)

exp [A] exp [ A J
configurations

ho, 0, 0)-ha. b, c) ■
configurations 
with 4).(J) = -1

(0, 0, 0)

( ha, b, c) - ’

exp [ A ] - Z exp [ A J
{ (f) = -1 }

(3)

The dominant term at large 3 has all spins aligned, this cancels in (3). 
Next leading terms have one spin flipped, these also cancel. In general 
on an infinite lattice the cancellations proceed up to an order 
proportional to the separation of the spins. This makes a large 3 
expansion for the subtracted quantity difficult to obtain. Consider 
the case of separation one lattice spacing. Here the leading non­
vanishing term comes from two adjacent spins flipped. The configuration
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Figure 5

Unsubtracted spin-spin expectation values vs. coupling for the 
3x3x8 lattice Ising model.

^ ^(0, 0, 0) *(1, 0, 0) ^

^ 0, 0) *(i, 0, 0) ^

^ ^\-l, 0, 0) ^(2, 0, 0) ^

' ho. 0, 0)
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Figure 6

Approximations to the lowest lying mass (in units of the inverse lattice 
spacing) as follows:

A) Strong coupling expansion (Fisher and Burford [ 8 ])
B) Lowest lying mass for 3 x 3 x “ lattice
C) Exponential fit from D(4, 0, 0)/D(3, 0, 0)
D) Exponential fit from D(3, 0, 0)/D(2, 0, 0)
E) Exponential fit from D(2, 0, 0)/D(l, 0, 0)

we have adopted the notation of section 3.4,
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in which the two spins being measured are flipped contributes +1 to 
< (j)(J) > and -1 to < (j) >. Since the flipped spins are adjacent, ten links 
make a negative contribution to the action. In the case of 
separation two lattice spacings the important configuration is that 
with three adjacent spins flipped in a row, including the two being 
measured. Here fourteen links make a negative contribution to the 
action, and so it goes on. Unfortunately at separation three the 
important configuration has eighteen negative links and this is 
precisely the number required to introduce an arbitrarily thick wall 
of flipped spins into the small lattice (by virtue of the periodicity). 
Configurations of this kind also contribute to the subtracted 
expectation value thus spoiling the large 3 behaviour at separation 
three and above.

With this in mind it is impossible to check the consistency of the 
pure exponential fit close to $ by comparing results from different 
pairs of separations. However, this fit clearly breaks down for the 
separation one case. The mass gap estimate actually takes small 
negative values close to g I Presumably we should include the effect 
of further masses (see chapter 2).

We have obtained the transfer matrix for the 3x3 layer in this model.
The largest eigenvalue and corresponding eigenvector were found by
repeated application to a random vector at fixed g. The next largest
eigenvalue was found by repeated application to a vector orthogonal to
the first eigenvector. The gap obtained from this calculation gives
the lowest lying mass for the 3 x 3 x °° lattice*. Results were obtained
numerically for several values of 3 and are included in figure 6. The
correlation length for this model is about 21 lattice spacings at g .
If the large g behaviour discussed above has not set in at g thenc

1 .also gives an estimate of about 2| lattice spacings. This ism43
roughly the effective size of the system (see [ 2, 3 ], in contrast with 
the gauge model case in chapter 3).

* without symmetry breaking.
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Appendix III. The partition functions

The Z(2) gauge model partition function is given in tables 1 and 2 in 
the following format:

Table 1 : N - 42

Table 2 : N - 41
N
N

where

Z(g) = Z (cosh (sinh
N

(1)

The Ising model partition function is then obtained from

(2N-225)gZ^(g)
N odd

(2)

72Now Z C = Z = 2 . The leading diagrams in the strong
N even N odd

coupling series (appendix 1) are:

1 + GkxjBxl)) + 9

/

+ (3x3x7x3 
+ 9x2)

+ ((6x9x(72-7)+2x9x(72-6))

+6x6)

min

(2x3)

+ (7x10 + 2x9) + etc.
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alternating + 1 $ - 1 between each layer except where interlayer 
interactions are modified.



Table 1: Neven
94

Table 2: Nodd

N-42 N N-41 N
12 6.003000000GJDOa00QC000ilO0C0CCCC 
U 13 05.0O0000CL'CC00 0O0OClO000C0CCCtj 
16 127935.00000JOODOOaCOOOOOOOOOCCC 
18 6294480.000000000000000000COCCrc 
20 178936 560.CGu;.'OaOCGOOCOuCOCCOCCC 
22 32 961 44790 .OOOuOijOOOCOOCOCOOOCCC 
24 43830342258.00000OCOQCOOOOCGCCCC 
26 449839669126.OOOOOOGOOOOOOOlOllC 
28 3729561635376.000OGGCOOOOOCGCCCC 
SO 25809635369632 .00 COCOOCGOuCOOCCC 
32 152806602513834.OOOOOCOOOGCCOCCC 
34 788613 0262S8 034.0COOOOCOOOCOCCCC 
36 3599267O'183531 76 . OOCOuOCCOCOOCCC 
38 14689399268536762 .0C0'OCOO0COOCCC 
40 540643891 47444999 .UOOGGOOCCOOCCC 
42 18060263593150562 I .UOOOOOCOOCCCC 
44 5502142 10941 04097 9-.COOOOOOGOUCCC 
46 15341 5 3492 78 06101 66 .0COOCCOOOCCC 
48 3924843953565828075.OCOOOOCOOCCC 
50 922825 3300045442383 .00000CCOCCCC 
52 19961872226508405663.COOOOCOOCCC 
54 39745 808295680145 21 9 . COOOOCOOCCC 
56 72855773929650908646.COOOOCOOCCL 
58 122945 48038908308 7809 .OOOGOOCCCC 
60 191034471546768152144.00CCCO0tCC 
62 2 7322 3 551 4 71 78 1 4892 72 .0000 COG CfC 
64 36004596065595646 4673 .OOOOCDCCCC 
66 43 7502 366787 02 934 6083-.OOOOOOCC CC 
68 4909427108375631948 45 .OOQCCUGCCC 
70 509782117035212651339.OCOuCOOCCC 
72 491053633 11 752001 76 5O.0000C0CCCC 
74 440081459479757594403.COOCCuOCCC 
76 - 36814267860554715 8913.0000000 etc 
78 288481 51300945065 0582 .OOOUOOOCCO 
to 212556361 91432324 7649 .OOOOCoOCCC 
82 14 784 0613979 03 386 06 14 .OOOOCOOCCC 
84 974623 3 762 7090126 58 4.COOOOOCCCCC 
86 o1148613890723145 43 5.COOOLCCGCCO 
88 3666204317Z85760501C.COOOUCCCCCC 
90 21088831329808529634.COOOCGOCCCC 
92 116824 12046185563 S3S.COOOOOOOCCC 
94 0254229893689498342.0GOCOOOOOCCC 
96 3246005514705544638.0CCOO0COCtCC 
98 1637865875736981 4 77 .0OOUUOOOCCL0 
100 805438012305423231.0COOOOCGCLCCO 
102 386852981030077642.OCOuOOCOCCCCO 
104 18181 753 33 82 4 9C999.0GGOOO'.OOLCCL 
106 8375536492752635 1 .OOCOOOOGOCCCO 
108 37869997817512065.00:OO0O00CCCC0 
110 16827424834909239.00COOOCCCCCCCL 
112 7356053023241589.COOQGOOGCCCCCCO 
114 3166465028057427.OOJCOOOOCOCCCCG 
116 1343213873721531.OOOOOOOOOOOCCCO 
11 8 56191 274 01 1 59 5 7.00'.'OGOQOOCGCCC GO 
120' 23192 419973 4606. ODOOCCOOCCGCCCCC 
122 9449580So89977.000O':COOOOJGOCCQO 
124 38018357646802.00000COOOOuOOCGCu 
126 15102 008532000.OCuC'OOCOOOOCOCCCO 
128 S928O96572O73.OO0OGCCOO0OC00CCCO 
13 0 22951 081265 37.0UPOOOCOOOOCOOCOCG 
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