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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING AND APPLIED SCIENCES 

Doctor of Philosophy 

THE NUMERICAL MODELLING OF LAMINAR AND TURBULENT 
FLUID FLOW 

by Michael Anthony Kavanagh 

The numerical solution of the Navier-Stokes Equations is 
presented for a two-dimensional incompressible fluid in terms of stream 
function and vorticity. An uncoupled Galerkin formulation is derived 
from the governing equations and their respective natural boundary 
conditions. By assuming a polynomial variation of both unknowns within 
the flow domain an approximate -solution is achieved by the finite 
element method. 

In the first part of this work a successful solution of three 
laminar flow problems is achieved, i. e. the flow: within a square 
cavity, over a downstream step and past a circular cylinder. Adequate 
comparison is made with earlier work. 

In the second part the solution scheme is extended to model 
developing turbulent flow in a channel by means of an algebraic closure 
of the time averaged equations. 

In order to model a variety of flow problems the development of 
a suitable automatic mesh generating scheme is carried out. Providing 
a fast and efficient discretization of each flow region. 

This work concentrates on evaluating the solution scheme by 
solving problems where previous work already exists. With the aid of 
the mesh generator the program can also be used as a practical 
predictive tool. 
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NOTATION 

u fluid velocity i 

U. time averaged velocity 

p fluid pressure 

P time averaged pressure 

t time 

xi spatial coordinates 

s, n local coordinates of a surface 

bi body forces 

Ti. surface stresses 

D 
., rate of deformation tensor iJ 

D 
.. time averaged rate of deformation tensor 1J 

w fluid vorticity 

S2 time averaged fluid vorticity 

stream function 

`Y time averaged stream function 

the weighting functions of both unknowns 

the interpolation functions over one element 

6ij Kronecker delta, 6ij=1 if i=j, =0 if i#j 

(-)' fluctuating part of unknown (-) 

D(-) complete derivative of (-) 
Dt 
(=) time derivative of (-) 

D(-) small increment of (-) 

p density of fluid 

u. dynamic viscosity of the fluid 

V kinematic viscosity of the fluid 

o" i shear stress 

Re Reynolds number (ul/v) 
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va apparent kinematic viscosity 

vt total kinematic viscosity 

a wall shear stress w 

u* wall friction velocity 

u'iu'ý Reynolds stress 

K universal mixing length 

A Van Driest damping constant 
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1. Introduction 

To model the flow of an incompressible viscous fluid in two 

dimensions the solution of the Navier-Stokes equation and the 

continuity equation is required, i. e. the (N. S) set of equations. They 

can be considered in either the steady state or the transient form. 

From the creeping flow of metal extrusion to the turbulent flow about 

an aeroplane wing; the governing equations are of the same form, and 

the same basic techniques are adopted. With such importance attached 

to this problem there is a great need to develop suitable solution 

techniques. 

Great difficulties have been met in solving this problem 

analytically owing to the non-linearities of the momentum equation. It 

has been necessary to turn to approximate or numerical techniques to 

achieve solution for practical flow problems. An original work by Thom 

[1] to model the flow past a cylinder by the Finite Difference 

technique, (F. D. T), was presented in 1933. Subsequently this 

numerical technique has been developed to model a wide variety of flow 

problems; see Kawaguti [2], Apelt [3] and Gosman et al [4]. 

Inheriting many ideas from (F. D) work and also adopting the 

Finite Element Method (F. E. M) from solid mechanics the fluid dynamicist 

can now tackle flow problems of greater complexity. The inherent 

ability of the (F. E. M) to discretize the problem domain in an irregular 

fashion makes it most suitable for modelling fluid flow where localised 

regions within a domain have large variations of the unknowns, e. g. 

close to the solid wall. Furthermore it has the ability to handle 

natural boundary conditions with ease. Both are distinct advantages 

over the (F. D. T), as a consequence the (F. E. M) has superseded it for 
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most structural problems. In actual fact the (F. D. T) may be considered 

a special case of the more general (F. F. AI). 

As mentioned above the non-linearity of the momentum equation 

is the major difficulty when solving a flow problem. This is caused by 

the complete derivative of the velocity at a fixed point in the fluid 

w. r. t. time. Increasing the magnitude of the inertial effects 

increases the extent of the non-linearity, causing greater difficulty 

in achieving a solution. Numerically it is overcome by a quasi- 

linearisation of the momentum equation and the solution is achieved by 

an iterative process. 

Writing the set of (N. S) equations in terms of velocity and 

pressure (uiP) a solution can be obtained in terms of these primitive 

variables. A (F. E) solution in this manner was first developed by 

Zienkiewicz [5] for slow creeping flow. In this case the problem is 

simplified as the viscous terms dominate and the non-linear inertial 

terms become negligible. By ignoring these terms the momentum equation 

reduces to the Stokes equation. Later the technique was extended to 

the full (N. S) equations with the inertial terms included by Taylor and 

Hood [6]. 

Further development of this approach has been carried out by 

Kawahara et al [7] and Nickell et al [8]. All these schemes experience 

the same major drawback when calculating the pressure in the 

formulation. It is not possible to calculate pressure with the same 

accuracy as velocity because the continuity condition is a constraint 

on the velocity alone and not a full relationship between pressure and 

velocity. It has been generally found that in order to solve the set 

of equations successfully the element interpolation of velocity needs 61 
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to be of one order greater then the pressure. 

To by-pass the pressure problem, Fortin [9] developed a 

technique to solve the momentum equation with the null divergence of 

velocity explicit to the interpolation scheme chosen. This scheme 

enables the incompressibility, i. e. the continuity of the flow, to be 

inherent in the interpolation scheme. The pressure can then be 

eliminated from the formulation and a solution can be achieved. This 

technique does solve the problem of having to compute the pressure 

iteratively; however, construction of a suitable interpolation field is 

difficult. Fortin uses some approximations to demonstrate his ideas. 

Extending the idea of defining the continuity directly, the 

momentum equation is written in terms of a variable whose definition 

applies continuity directly, i. e. stream function. Tuann and Olson 

[10] write the momentum equation in terms of stream function alone, 

(ý), with the continuity applied by its definition. As the momentum 

equation is now of fourth order the element discretization has to be of 

C' compatibility. An approximate solution is reached in terms of 

quintic triangles for the stream -function, with the velocity and 

pressure retrieved subsequently. Owing to the complication of the 

fourth order equation this technique has not proved attractive to other 

workers. 

To reduce the order of this equation it can be written in terms 

of an intermediate variable, i. e. vorticity (w). It is now necessary 

to solve two equations, i. e. the vorticity transport equation and the 

Poisson equation which relates stream function to vorticity. Strictly 

speaking the vorticity transport equation is produced by taking the 

curl of the momentum equation, with the fourth order stream function 
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equation derived from it subsequently. The solution of fluid flow in 

terms of stream function and vorticity has the advantage of excluding 

pressure as an unknown. Such an approach has found favour with several 

(F. D) engineers; see for example Burggraff [11] and Cosman [2j. The 

problem of defining the vorticity boundary condition on the no-slip 

wall has caused many (F. E) researchers to revert to the primitive 

approach, i. e. (ui, P). 

Separate work by Baker [12] and Cheng [13] has produced a 

Galerkin (F. E) solution technique for the transient problem in terms of 

stream function and vorticity, (ý, w). Owing to the problem of defining 

the vorticity on the no-slip wall directly a steady state solution has 

proved difficult. Instead an iterative solution is possible by 

integrating through time. The solution is stopped when the steady 

state has been reached or when a suitable amount of time has passed to 

describe adequately the transient problem. 

Above, a general summary of the major approaches for solving 

the (N. S) equations is presented. Each solution has particular merits 

and drawbacks; currently much debate abounds as to the best scheme. In 

general the (F. D) engineers prefer the stream function vorticity 

approach, (y, w), whereas the (F. E) engineers prefer the primitive 

variable approach; (ui, P). 

Here a (F. E) solution of two dimensional flow is presented, 

based on the transient stream function vorticity approach. Using the 

Calerkin method, Two seperate integral statements are constructed for 

the vorticity transport equation and the Poisson relationship. The 

solution of vorticity is obtained iteratively with the non-linearity 

expressed in terms of stream function, which is updated periodically by 
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solving the equivalent Poisson statement. 

The time integration scheme is a semi-implicit technique based 

on a forward and backward integration, which is designed to reduce 

solution instability at high values of Reynolds number, Re; see Smith 

[14]. The no-slip vorticity boundary condition is applied as a natural 

condition based on a limiting equation at the wall. 

A mesh generation program has been linked to the solver to 

allow large and varied flow conditions to be considered with a minimum 

of effort; see Nelson [15]. Similarly a contour plotting program is 

attached to the solution program to enable fast processing of results. 

Finally the laminar model is extended to solve problems in the 

turbulent range. The mechanisms of turbulent flow are different from 

those of laminar flow, producing a superposition of random velocities 

on the overall mean motion. When solving a turbulent problem it is 

necessary to write the equations in terms of time averaged variables. 

When expressing the momentum equation in terms of time averaged 

velocity and pressure an additional term is produced which is a 

function of the fluctuating velocities. This is known as the Reynolds 

stress and is caused by the lateral transfer of momentum. To solve the 

equations in this form the Reynolds stress has to be expressed in terms 

of the time averaged unknowns. 

By assuming the turbulent stresses to be of the same form as 

the viscous stresses, Boussinesq related them to the gradient of the 

time averaged velocity. This was made possible by the introduction of 

turbulent or apparent viscosity, which differs from molecular viscosity 

in being a local function of the fluid motion and not a constant 
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property of the fluid. 

The use of the turbulent viscosity concept was later extended 

by Prandtl [16]. In the molecular theory of gases the kinematic 

molecular viscosity is caused by the momentum transfer of molecules. 

Similarly, Prandtl proposed that the turbulent viscosity is caused by 

the momentum transfer of lumps of fluid. With this in mind lie equated 

the turbulent viscosity to the product of mixing length and time 

averaged velocity. The variation of the mixing length within a flow 

region has been derived empirically for many flow problems. It is now 

possible to achieve closure of the time averaged equations and 

consequently a solution of such problems is possible. 

rauch (F. D) work has been carried out to produce such turbulent 

solutions. Solutions in terms of the primitive variables have been 

developed by Cebeci and Smith [17] and Patankar and Spalding [18]. 

Using the stream function and vorticity approach Gosman et al [4] have 

also produced a successful turbulent model. 

More recently a (F. E) solution of the time averaged equations 

has been achieved in terms of the primitive variables by Hughes [19]. 

In this case a turbulent model in terms of stream function and 

vorticity is presented , adopting the mixing length concept to achieve 

closure of the equations. This model is developed by extending the 

existing time dependent solution scheme. 

The aim of this work is to develop a general scheme designed to 

solve a variety of viscous flow problems in both the laminar and 

turbulent range. With the introduction of the mesh generator this is 

achieved with much reduced effort. 
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In chapter two the governing equations of fluid flow are 

presented . They are subsequently expressed in terms of stream 

function -and vorticity as the unknowns. Finally the boundary 

conditions of the flow domain are explained. 

In chapter three the set of governing equations is expressed in 

the (F. E) form, from which an approximate solution is obtained. The 

semi-implicit time integration scheme is outlined where the time step 

restrictions are explained. Finally the application of the vorticity 

condition on the no-slip wall is introduced. 

In chapter four the interface between the data generator and 

the fluid flow program is outlined. A simple way of ensuring a 

suitable mesh discretization for flow problems is presented. 

In chapter five a variety of flow problems is solved using this 

(F. E) scheme. All these problems are in the steady state laminar 

range, i. e. the flow in a square cavity, the flow over a downstream 

step and the flow past a circular cylinder. With the use of earlier 

numerical and experimental work an evaluation of the solution method is 

achieved. 

Following on from this successful work the model is extended to 

handle turbulent conditions. In chapter six the theory of turbulent 

flow is discussed. The existing (F. E) program is extended by including 

an algebraic model of the turbulent mechanisms. Finally the complete 

solution of developing flow in a channel encompassing both the laminar 

and the turbulent range is presented. 
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2. The Theory of Fluid Flow 

2.1 Introduction 

In this work the flow of a two-dimensional incompressible fluid 

is presented. Below, a brief description of the Navier-Stokes 

equations is given. Then these equations are written in a form to be 

solved. For a fuller explanation of the governing equations see 

Malvern [20]. However, many fluid mechanics text books provide a more 

complete discussion of the continuum equations; refer to the 

bibliography below. 

The equations presented throughout this work are expressed in 

terms of Cartesian tensor notation. Subscript indicies are employed to 

represent the three component directions. A standard summation 

convention is introduced without the need to write summation symbols. 

2.2 The Governing Equations of Fluid Flow 

As in the solution of most engineering problems a fluid is 

considered to have continuum properties. This enables us to ignore its 

discrete molecular components and consider only the macroscopic scale. 

By considering a small element of fluid, the conservation of 

mass is applied to it. The equations are expressed spatially; where 

ui is velocity and p is fluid density. 

a (Pu. ) ) 
= at ax. 

(2.2.1) 

As the fluid is incompressible its density is constant 

throughout, therefore the equation is reduced to: 
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Zu. 
1=0 (2.2.2) 

ax. 
i 

Considering all the forces acting on a small element of fluid, 

and applying Newton's second law of motion, an equilibrium equation is 

obtained; 

pawl ST.. 

- pb. +a 13 (2.2.3) au t x. 
3 

Above is the equation describing the conservation of momentum, 

the forces acting on an element of fluid being divided into body force, 

bi, and surface force, Ti. which is known as Chauchy's stress tensor. 

It is now necessary to express the constitutive equations 

relating the surface stresses to the strains. At this point the 

distinction must be made between solid and fluid continua. 

In a solid continuum the shear stresses may be resisted, and so 

they are a function of the shear strains. A fluid, however, cannot 

hold shear stress, and so it will deform. Instead they are a function 

of the shear stress rate. The constitutive equations for a linear 

elastic material are derived from Hookes law, relating stress to 

strain. This was later extended to a fluid by Stokes, and so by 

applying Stokes law of friction the shear stresses can be expressed in 

terms of the strain rate; see appendix Al. 
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Tij -. -Pi aij + r(Dij) (2.2.4) 

öij - Kronecker delta, dij =1 if i=j, =0 i#j: " 

P. - pressure 

Did - the rate of deformation tensor 

Above is the constitutive relationship of surface stresses with 

deformation for any fluid. In this case the fluid is isotropic, i. e. 

incompressible with a constant viscosity. This is also known as a 

Newtonian fluid, consequently the function above takes the following 

form: 

Tip = -P S.. +a Dkk 6 id + 211 Did (2.2.5) 
13 

A- bulk viscosity 

4- dynamic viscosity 

Dkk - the volumetric dilatation or rate of change of 
volume of a fluid element 

.., is defined in a similar The rate -of deformation- tensor, - D1J 

way to the strain tensor in solid mechanics, with velocity replacing 

deformation; see appendix Al. 

au. au 
Did 

2(axl + ll (2.2.6) 
i aX1J 

Substituting the constitutive relation, (2.2.5), into the 

momentum equation, (2.2.3), produces the Navier-Stokes equation for 

momentum. That, combined with continuity, (2.2.2), is the set of 

equations which governs the flow of an incompressible Newtonian fluid. 
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The derivation of Tij is detailed in its general form; here a 

particular result shall be quoted, for further details see appendix Al. 

"-Differentiating equation (2.2.5) w. r. t xi, and substituting into this 

the definition of the deformation tensor, Dj. Applying continuity to 

this directly will produce: 

ST.. au 

_-dX +p-I (2.2.7) ax X 
JJJ 

The bulk viscosity may be cancelled for a fluid of an isotropic 

form. Substituting this into the momentum equation, (2.2.3), to 

obtain: 

aU. dP a 
aui 

+ p at p bi 
dxi uax. ax. (2.2.8) 

JJ 

The body forces, bi per unit mass, refer to any external force 

acting on the mass of fluid, e. g. magnetic or gravitational forces. 

Here the latter are more likely; however, this may be incorporated into 

the direct pressure gradient if there is no free surface. 

At this stage an equation which relates the rate of change of 

momentum to forces expressed in terms of fluid deformation has been 

presented. So far this equation may refer to the motion of a particle 

through a fluid, the Lagrangian frame, or to the motion at one point in 

the fluid through time, the Eulerian frame. In the study of fluid flow 

the Eulerian approach is more convenient. This is in contrast to solid 

mechanics where the small deformation theory allows the Lagrangian 

frame of reference to be adopted; see Gallagher et al [211. To 

consider the motion of a fluid at a fixed point it is necessary to take 
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the complete derivative of velocity with time. This is known as the 

substantial derivative and introduces the non-linear convective term as 

follows: 

au. du. au. ax. 
1_1+iJ 

at dt ax. at 

(2.2.9) 

dui aui 

dt + uj axj 

- is a general partial derivative 

defining the operator: 
ax 

1 

D( ddt) 
+ u. 

a( ) (2.2.10) 
J axj 

In terms of an Eulerian field the momentum equation may be 

written: 

x 

1ý 

lýUxii 0*), 

v- kinematic viscosity = u/P 
d- is a specific derivative in a single direction dx. 

1 

The convective terms produced by this derivative cause great 

difficulty when solving the set of (N. S) equations. As the Re for a 

particular problem is increased these non-linear terms become larger. 

In order to solve any practical flow problem it is necessary to deal 

with a highly non-linear momentum equation. Analytical solutions are 

unavailable, and so it is necessary to turn to numerical methods to 

solve problems of any practical importance. 
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Above the derivation of the (N. S) set of equations describing 

the flow of fluid has been outlined. This derivation has been 

simplified by the assumption of constant fluid density and viscosity. 

Both are reasonable for the range of problems to be solved here. 

Although this work is mainly concerned with the application of 

these equations, it is still necessary to present a working knowledge 

of their derivation. 

2.3 To Express the Navier-Stokes Equations in Terms of 

Stream function and Vorticity 

To solve the set of (N. S) equations by numerical techniques two 

major approaches exist; the solution in terms of the primitive 

variables, (ui, P), by solving the equations presented in the previous 

section, and a solution in terms of alternative variables, stream 

function and vorticity (p , w). 

Writing the equations in terms of the latter enables the 

continuity of the fluid to be satisfied directly by the definition of 

stream function. For this reason many (F. D) engineers have adopted 

this approach successfully; e. g. Kawaguti [2] and Burggraf [11]. 

Furthermore the evaluation of pressure is no longer necessary ; 

this would involve a solution of the divergence form of the momentum 

equation ; see Tuann and Olson [10]. The disadvantage of solving the 

problem in this manner is in the application of a suitable vorticity 

boundary condition on the no-slip solid boundary. 

In recent years the finite element method has been used to 

predict the unsteady flow past a circular cylinder; see Smith [14]. 
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Leading on from this the solution of a variety of steady state flow 

problems is carried out here, with extensive comparison made with 

earlier work. 

It is first necessary to express the governing equations in 

terms of stream function and vorticity. 

Both these equations are written in spatial form. Here the two- 

dimensional form is considered, thus the vorticity is reduced to a 

scalar in the flow region. 

Defining the variables stream function, (p) , and vorticity, 

(w): 

ul ax2 
(2.3.1) 

u2 ax1 

au2 auf 
U) _- (2.3.2) 

axl ax2 

Where the vorticity is the curl of velocity acting along a line 

normal to the plane of two components; here it is treated as a scalar. 

By taking the curl of the momentum equation the vorticity 

transport equation is now written: 

nw 
_ 32W 

Dt V- =0 (2.3.3) 
J 

This is of the same form as the momentum equation but with 
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vorticity as the unknown variable; both are particular examples of the 

transport equation. The original equation refers to the transport of 

-"momentum and-the final equation refers to the transport of vorticity. 

By substituting equation (2.3.1) into equation (2.3.2) a 

relationship between stream function and vorticity is obtained, see 

appendix A. 2. 

a2 
aw 

(2.3.4) 

Equations (2.3.3) and (2.3.4) represent the set of equations 

which govern viscous fluid flow in two dimensions. By substituting the 

definition of stream function, equation (2.3.1), into the continuity 

relationship, equation (2.2.2), it can be shown that the fluid 

continuity is satisfied directly, see appendix A. 2. 

2.4 The Boundary Conditions of the Problem 

A two dimensional domain is considered in which the fluid flow 

is governed by the two equations above, i. e. equations (2.3.3) and 

(2.3.4). This domain is enclosed by a boundary defining the limits of 

the problem. 

This boundary is separated into a flux type and a rigid type. 

The direction vectors (s, n) are lines tangential and normal to the 

boundary respectively. 

2.4.1 The Rigid Boundary 

(i) The Free-slip Boundary 

This is not truly a rigid boundary but it is used to define the 
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limits of the domain. In the primitive scheme it is described as a 

line of zero shear stress. Here it is treated as a streamline 

-boundary, by describing'the stream function as: 

äs 
=0 or ý=i (2.4. la) 

The vorticity is a measure of the fluid rotation. This 

rotation will diminish with distance from the solid or no- slip wall. 

As the free- slip wall defines the limit of the domain it is reasonable 

to assume the vorticity to be zero along it; thus: 

=0 (2.4. lb) 

(ii) The No-slip Boundary 

This boundary describes the line of a solid obstruction to the 

fluid flow. It also imposes restrictions on the flow in that region. 

The velocity along the no-slip boundary is zero; this is defined in 

terms of stream function gradients to produce: 

an (2.4.2a) 

ä =o 

A value for the vorticity or its gradient normal to the 

boundary is also applied along this boundary: 
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aw 
an _ 9w 

(2.4.2b) 

W =w 

The difficulty arises in expressing the boundary values gw and 

w since knowledge of the distribution of vorticity along it is 

unavailable, at least until a solution is achieved. A typical no-slip 

boundary is a cylindrical obstruction in a flow regime. 

2.4.2 The Flux Boundary 

The flux condition permits the flow of fluid into and out of 

the domain. The conditions for the inflow boundary are: 

Stream function: 

0=T (2.4.3a) 

Vorticity: 

(2.4.3b) 

This means that the velocity at the inflow boundary can be 

specified as . un.. If the vorticity is zero and the stream function 

has a linear variation along the boundary, the tangential velocity is 

also zero, consequently normal parallel flow is enforced. 

The conditions for the outflow boundary are defined as: 
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Stream function: 

21=- (2.4.4a) 
all 

Vorticity: 

aw g (2.4.4b) 
an m 

The choice of gW and g, is arbitrary; choosing them to be 

zero will produce a parallel flow condition normal to this boundary. 

The application of an outflowing boundary defines the limits of 

the domain in the direction of the flow. To define this explicitly it 

is necessary to position it far enough downstream so that the flow is 

no longer influenced by any disturbances upstream, e. g. disturbances 

caused by a bluff body. Such a rigid condition would need to be 

located so far downstream that the resulting flow domain would be 

prohibitively large. Instead it is necessary to impose an implicit 

boundary condition at some practical distance from the obstruction of 

the form stated above. 

In order to achieve a practical location for this boundary some 

speculation is necessary. However, it is not expected that this will 

affect flow upstream as long as it is placed well away from the 

disturbance. 

In this chapter the equations governing fluid flow have been 

derived and expressed in terms of stream function vorticity, icy 
, w) . 

The boundary conditions necessary to solve a problem within a fluid 

domain have also been presented. 

In order to solve such flow problems the Finite Element Method, 
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(F. E. M), is applied to the set of equations. By using this approximate 

method it is possible to overcome the problems inherent in solving the 

-non-linear equations. In the next chapter the application of the 

(F. E. M) to the fluid flow equations is presented. 
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3. The Finite Element Formulation 

3.1 Introduction 

The (F. E. M) is now applied to the governing equations derived 

in the last chapter. 

In this method the differential equations are replaced by 

equivalent integral formulations, which both represent a stationary 

condition, written in terms of approximate unknowns. From these 

formulations an approximate solution of the dependent variables is 

obtained; here the variables are vorticity, (w), and stream function, 

The above formulation is obtained by multiplying a differential 

equation by a weighting function and integrating this expression over 

the entire domain of the problem. 

In this problem there are two differential equations describing 

the flow behaviour and so either one equivalent formulation may be 

developed for them in a coupled form, or two separate formulations may 

be produced, see Tuann and Olson [10]. Here, two separate formulations 

are produced and the resulting matrix equations are treated 

independently. 

At this stage the domain is discretized into small regions 

called finite elements. A simple variation of the unknown is taken 

over each element separately, and the effect of all the elements added 

together fulfills the relaxed stationary constraint. The choice of 

weighting function and approximate solution of a variable over an 

element will effect the accuracy of the solution, as will the 

discretization of the domain. 

In a similar fashion the weighting technique can be applied to 
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approximate the natural or implied boundary equations. In this case 

the equation is weighted and integrated over the boundary side. In 

the (F. E. P! ) the sum of both the boundary term and the domain term is 

assumed to be stationary. This formulation is applied over each 

element and each contribution is added to the global system which 

describes the entire domain. At this point the essential boundary 

conditions are imposed directly to the system of equations. Finally 

the solution of a set of non-homogeneous equations is produced by 

standard matrix inversion techniques. 

As this work is primarily concerned with the application of the 

(F. E. M), and so this brief explanation is sufficient. For further 

mathematical justification of this method see Connors and Brebbia [22] 

and Zienkiewicz [23]. 

The ease with which the (F. E. M) can model problems of an 

arbitrary shape coupled with its ability to mesh a domain with local 

concentration of nodes makes it attractive for all kinds of engineering 

problems. In the field of fluid mechanics this is particularly 

important where large gradients of vorticity and stream function occur 

close to the no-slip boundary, e. g. the wake behind a cylinder. 

A further advantage when compared to the (F. D. T) is its ability 

to approximate the natural boundary condition as part of the 

formulation; some of these constraints have proved to be as difficult 

to describe directly as the governing equations. 

. 
Below, integral formulations are developed for the two 

governing equations. Here the particular weighted residual technique 

applied is the Galerkin method, where the weighting function is chosen 

to be of the same form as the local variation of the unknown, i. e. a 
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polynomial of the same order. 

3.2 The Equivalent Formulations 

The weighting technique is applied to the set of equations 

governing the two dimensional flow of an incompressible Newtonian 

fluid; see equation (2.3.3) and (2.3.4). 

The (W. R. T) is the most general method by which an integral 

formulation is derived from a differential equation and its associated 

boundary conditions. When considering the equilibrium equation in 

elasticity it is possible to relate the weighted residual formulation 

to the principle of virtual work and the principle of minimum potential 

energy. Owing to the character of the momentum equation for a fluid 

continuum, whether in its present or original form, it is not possible 

to derive a variational statement from it. Many attempts have been made 

to develop restricted or pseudo-variational statements; see Tuann [10] 

and Finlayson [24]. In this work the generalized (W. R. T) is used to 

provide an equivalent integral formulation. Failing to obtain a 

variational form of the equations results in an unsymmetric matrix 

equation due to the presence of the convective terms. For a more 

extensive discussion of this problem see Zienkiewicz [23]. 

The vorticity transport equation is of the form; 

Dw 
_ 

dw 
+ 

ate aw 
_ 

8th aW (2w a2w) 
Dt it ax2 ax1 ax1 ax2 = va-ý +aJ in A (3.2.1) 

with the relationship between stream function and vorticity 

being: 
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+a_ -w in A (3.2.2) 
ax 2 

As these two equations govern the fluid flow, two equivalent 

formulations are required. As mentioned in the previous section, the 

sum of the governing formulation and its natural boundary formulation 

is assumed to be stationary. 

The boundary of the flow domain is split into two sections for 

each variable; see section 2.4. The boundary conditions for the two 

variables may be expressed: 

Stream function: 

J) =ýi on S 

(3.2.3a) 
än 

on Sý =2 

Vorticity: 

onS W1 

an gw on Sw 
2 

(3.2.3b) 

Where SS1 and S1 are the essential boundary sides for stream 

function and vorticity, and S 
ý2 and S 

W2 are the natural boundary sides. 

The weighted formulations of both equations are: 
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[ýdt 
+ 

aw 
-a, 

aw a2a, a2w 
aw dA - 

A ax2 ax1 ax1 ax2 - vý +a 2JJ axi 

w- än) 
öw ds =0 

w2 (3.2.4a) 

-A 
I4+ a +0, J dý, dA 

-gI 6p ds =0 
S2 

[an 

V'JJl (3.2.4b) 

Where 6w and dy are respectively the weighting functions for 

the momentum equation and the stream function vorticity relationship. 

Integrating both formulations by parts will produce a weak form 0 

of the equations: 

dw 
+ 

3ý aw 
- 

aw 6w dA JA dt 8x2 ax1 3x1 ax2) 

I aw adw LW aawl 
s 

gw dw dS (3.2.5 a) 
A laxl axl + 

x2 a- -vJ x2J 
w2 
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(ate aal + -IL as ýl dA - 
J 

waI) dA laa1 ax1 aX2 axe) A 

=s aip dS (3.2.5b) JS ý2 

Above are the two formulations governing the flow of fluid in 

the domain, A, bounded by the natural boundaries S and S 
w2 'p2 

An approximate solution of the variables is now introduced. If 

the domain is discretized into small but finite elements it is possible 

to assume a polynomial variation over each element. 

n=NE j=NNE 

n=1 j=1 

NNE - number of node per element 

NE - number of elements 

T () - the transpose of the matrix 

(3.2.6) 

Where u is the variable and is expressed in terms of 

interpolation functions, ýT , and nodal unknown values of u, un, over 
i 

each element. Here there are two variables, however; the interpolation 

functions over each element are taken to be the same for both. 

n=NE 
E ýTn 

n=1 

n=NE 
E ýý wJ 

n=1 

(3.2.7) 
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As stated in section 3.1, a successful application of the 

weighted residual technique occurs when the weighting functions are of 

the same form as the approximate solution chosen; this particular 

weighting technique is attributed to Calerkin, see Finlayson [25]. 

The weighting functions are taken to be of the same form as 

equation (3.2.7) above: 

n=NE 
dw =E6wn 

n=1 i 

(3.2.8) 

n=NE 
6ý =Eýi 

n=1 

Substituting the approximate solution for vorticity and stream 

function, equations (3.2.7), and the weighting functions, equations 

(3.2.8), into the respective formulations , equations (3.2.5), 

produces: 

n=NE 

" ýT) wn +. 
aýT aý T 

ýn 
aýTj 

n=1 LýjJJJ ax ax xV)w. a2j1 Jý J ax2 3 

a$ý a$T aý. Tn 
+vw. 

c 
da =v x1 ax1 ax2 ax2, ýý gw n dsJ (3.2.9a) 

is 

w2 
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n=NE ae aýT 
T 

E 3- 
la a+ ah as 

,j- 
(¢, i . 

ý) 
wý r da 

n=l la11221 

9n ds] (3.2.9b) Is2 

a- element area 

s; s ý2 - the natural boundaries of the element 
w2 

the element matricies are defined as: 

m=4j. 
ý) da 

a 

jý 
-T 

aýT aýT aýT1 
a= L(Je 

J_ Je cn Ja 

lax2 axl axl ax2)1 da 

aý aýT 
k= 

(7x ýý+ý da 
(3.2.10) 

a1 
ax1 ax2 ax2J 

_ ýj gWds Js U2 

- ge ds 
s ý2 

( )e - the element array 

see appendix B for the results of the element integration. 

Both equations are now written in element matrix form: 

n=NL 
Em wn +a (1 n) 

wn + vk wn = vb 
(3.2. l la) 

n=1 - -- 
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n=NE 
nn Ekm (3.2.1lb) 

n=1 

W- time derivative of vorticity 

Both equations apply to each element separately within the 

domain A. As the formulations refer to an integral over the entire 

domain, it is necessary to sum all the element effects together, 

producing global matrix equations: 

Mw + A(ý) w+ vKw = vB (3.2.12a) 

K, ý= li +4 (3.2.12b) 

Where and w are the nodal arrays containing discrete values 

of stream function and vorticity respectively. These are the set of 

finite element equations governing fluid flow in terms of nodal 

variables. In this work three noded linear triangular elements are 

adopted, refer to appendix B. By using a local homogeneous coordinate 

system over each triangle the element matricies are calculated in a 

general manner, see Connors and Brebbia [22]. The global matricies 

are then assembled; subsequently the essential boundary conditions are 

applied directly to this system. Finally a set of (NxN) non- 

homogeneous equations is solved in terms of N unknowns, i. e the nodal 

variable array, using standard matrix inversion techniques; see 

Brebbia and Ferrante [26]. 

In order to solve the above system of equations two additional 
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problems need to be overcome. In order to solve the non-linear 

momentum equation it is necessary to linearize the convective matrix, 

i: e A(te) of equation (3.2.12a). This equation also contains a time 

derivative and so some form of time integration scheme is required. 

The following section deals with these problems and sets out 

the equations in a form suitable for computation. 

3.3 The Solution Technique 

In the previous section the equations are replaced by their 

finite element equivalent formulations. In this section these are 

rearranged into a form that can be solved, overcoming the non-linearity 

and time dependence of the momentum equation. 

Earlier work by Smith [14] produced a set of such schemes by 

which the non-linear time-dependent matrix equations, (3.2.12), can be 

solved. The most successful scheme applied was the semi-implicit 

fractional step. This has proved to be stable at high values of Re; 

when other schemes break down. 

Any such solution scheme employs a time marching technique 

solving a quasi-linear equation until a solution is achieved. The non- 

linear convective matrix A(1) being linearized by evaluating it in 

terms of the previous time step valud of stream function. Eventually 

the discrepancy between both solutions becomes negligible as the 

problem is iterated. 

When employing the time-dependent form of the momentum equation 

the correct solution to a particular flow problem may not necessarily 

be of a steady state nature. The Re may be high enough for unsteady 
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flow to occur, for example at Re>40 for a cylindrical obstruction the 

fluid flow becomes unsteady; see the experimental work of Coutanceau 

-and-Boua rd [27]. 

In the unsteady range of flow the motion can be periodic and 

cyclically steady, e. g. the development of the vortex street in 

cyclindrical flow. Some confusion may result in recognising when the 

correct solution has been achieved in this type of flow. 

For example, a time dependent (F. D) solution to flow past a 

cylinder was presented by Payne [28] at Re=40 and 100. This work was 

later extended by Ingham [29] covering a greater time interval. The 

result of continuing the integration procedure produced results closer 

to the steady solution for Re=40. 

To integrate the solution numerically in time, i. e. to march 

through time, a linear variation of the variable is assumed over a 

small time step: 

(wt+At - Wt) Aw 
_a 

(3.3.1) 
At At 

Due to the time dependent term above it is necessary to 

initially define the values cf one of the unknown variables before 

commencing the solution. 

(i) Starting with the initial values of vorticity, ut. 

Using the stream function vorticity relationship; the stream function 

at time t is obtained: 

K=M+B 

9 
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By letting Bý=0 since 0 on S412, the outflow boundary, this 

equation is reduced to: 

Kt = it mt (3.3.2) 

(ii) Differentiating equation (3.3.2) w. r. t. time: 

Ký, =Mw 

and substituting it into the momentum equation, (3.2.12), to 

produce: 

+ A(V 
t+Lt mt +vK wt =vBw 

Rearranging the equation in terms of the unknown L. Letting 

Bil=0 then solving for stream function. 

IK 
pt - A(wt), = -IA(It) wt +vK wt] (3.3.3) 

(iii) This step involves computing Wt+At using the 

momentum equation; 
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ti 
(wt+At -d+ 

A(±t+, 
ýt)wt +vK wt =v Bw 

The value of Bw on the no-slip boundary is non-trivial, being a 

function of both vorticity and stream function, see section 3.4 below. 

Bw=Fp+ F2 

The momentum equation is written with Aw taken as the unknown: 

MOw=-At[A(lt+At) wt+vKwt 

-v F1 jt+Ot - F2 wt1 (3.3.4) 

(iv) The second time step value for vorticity, 

mt+ZAt' is computed using the momentum equation again: 

(W 
M t+2At - ýt+At 

At 
+ A(i't+At) Wt+2tt 

+vKm t+2L t= v F1 ýt+, ýt +v F2 wt+2At 

This equation is written with Lw as the unknown array. 

1 
= 

CGt+A(iýit+Qt) 
+vKvF21 Aw 

- LQt+ot) +vx-v F2] Wt+ot +v r1 ýt+ot 

(v) In the final step the stream function is updated, 

2 t+2E t": 

(3.3.5) 
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ý` "t+2At = ti wt+20t (3.3.6) 

Steps (i) to (v) outline one cycle of the fractional step 

method. The scheme marches through time by iterating from (ii) to (v) 

until a solution is reached. 

In steps (iii) to (iv) the vorticity is computed over a period 

of 2Gt. Step (iii) may be considered a forward step about time t-bt. 

Conversely step (iv) is a backward step about time t4 t. The 

combination of the two ensures increased stability of the solution. 

The overall centering of the two integration steps about time t-tflt is 

clearly illustrated when equations (3.3.4) and (3.3.5) are summed. 

ic'3t+2At 

-A( 

(wt+2At + wt 
Ti 2A t -It+A t2 

(`fit+2ot + c't 
-vK +F 2 1(-t+Et) 

+ vF 2 

(ýt+2At + Wd 
(3.3.7) 

2 

An initial estimate of the vorticity array has to be made to 

evaluate the convective matrix in equation (3.3.3). The choice of the 

starting vorticity will effect- the number of iterations required to 

reach a solution. The simple choice is to assume the vorticity to be 

zero throughout the region, i. e. orthogonal flow. However the 

vorticity solution of the same problem at a lower Re may be used in 

order to speed up the solution at high values of Re. 

The choice of time step is critical to ensure convergence to a 
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correct solution. Failure to use a correct step causes either 

convergence to an incorrect solution or complete divergence of the 

-solution. The former problem arises when at high Re the time step to 

ensure stability is larger then that required to achieve a correct 

solution. It is important to distinguish between the two. 

An empirical formula to define a maximum time step to ensure 

stability for particular flow conditions and mesh size has been 

obtained; see section (3.5) below. 

In this section the five matrix equations, (3.3.2) to (3.3.6), 

which are used to solve the flow iteratively are presented. When 

solving for vorticity the no-slip boundary condition is non-trivial and 

is a function of both stream function and vorticity. This boundary 

condition is expressed in a suitable (F. E) form outlined in the 

preceeding section. 

3.4 The No-Slip Vorticity Boundary Condition 

The problems associated with describing a vorticity constraint 

on this boundary have caused many researchers to rely on the primitive 

approach when implementing the (F. E. M); see Taylor and Hood [6] and 

Hutton [30]. The value of vorticity or its gradient along a normal to 

the no-slip boundary is unknown at the start of the solution. Instead 

it is necessary to develop an expression based on the limiting physical 

effects at the wall. 

. 
The development of such a constraint has been given sound 

treatment by (F. D) workers who have a preference for the stream 

function vorticity approach; see Gosman et al [4]. 
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As the gradients in the direction tangential to the wall are 

much smaller then those in the normal direction, they are neglected. 

, Resulting "from this the momentum equation is reduced to its one- 

dimensional form, the resulting solution of which is linear: 

w=An+B (3.4.1) 

n- normal to no-slip boundary 

Here again constant viscosity and density of the fluid is 

assumed. The relationship between stream function and vorticity is 

also reduced to its one- dimensional form. 

a2-='uu (3.4.2) 

Substituting this into equation (3.4.1) and integrating twice 

w. r. t. n produces: 

n3 n2 
_- 6-B2+ Cln + C2 (3.4.3) 

The constants of the equation are evaluated from boundary 

values of stream function and vorticity on the wall, at a point s: 

l (aw 
la n) 

s 

B= w s 

cl = a ä 
) 

S 

C2 = l's 
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Rewriting equation (3.4.3) 

n3 2l 
+IäIn+ fr (3.4.4) 

s6 
WS 

2` 
/s s 

Considering the stream function at a point x normal to the wall 

at a distance £ from s, produces: 

32 ,Q 
(3.4-5) fix - ý's =- 

an) 6 
Ti's 

2+f 2j) 

ss 

see figure 3.1 

As the variation of vorticity normal to the wall is linear it is 

consistent to define its derivative numerically as: 

[23 ýwn 

SQ 

Substituting this into equation (3.4.5) and rearranging it an 

expression for the vorticity at the wall is obtained; ws: 

3 WX 
ý3() ws =-T (lp - ý's) -2Q1n1 (3.4.6) 

Equation (3.4.6) represents the vorticity at the wall in terms 

of calculable values. The value of 
(ý) is usually zero, it 
an_s 

represents the speed at which the no-slip wall is moving. In the 

classical problem of flow in a square cavity the top wall or 'moving 

lid' has a fixed velocity, and the equation becomes 
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3 wx 3vrL 
ms =-F (VAX ' V's) -2+Q (3.4.7) 

vML - is the velocity of the wall 

Using the above equation it is possible to express the no-slip 

boundary matrix as used in section (3.3), in terms of discrete nodal 

values of stream function and vorticity. The boundary matrix may be 

expressed in terms of no-slip element side components: 

NS 
B=E bl 

i=1 

NS - total number of no-slip boundary elements 

From equation (3.2.10) each element component may be expressed 

in terms of nodal values of the unknowns and the interpolation 

functions. 

aw ea 
e -e b_ =s gds jnn ds wj 

[Js 

NSB SNSB NSB 

wý - local no-slip boundary vorticity values expressed using 
equation (3.4.7) 

sNSB - is the no-slip boundary wall 

Integrating the expression above along an element side by using 

a linear interpolation scheme produces; 
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1 
e m2 e ý _ 
w 4A 

1 

we - the boundary side vorticity value 

m- the length of a boundary element side 

See appendix B for the boundary side integration. The value of 

the vorticity on the no-slip wall may be obtained using the limiting 

equation obtained above: 

1 1 
e b =f + f Lo. 1 2 

1 1 

where: 
3m2 f1 ý' 4AZ2 

(fix - ýS) 

e_ m2 (3.4.8) 
f2 Wj 8A Wx 

for the normal case where vmL is equal to zero. Above is the 

expression used in section (3.3) steps (iii) and (iv). 

In most cases the no-slip walls are stationary and so vmL may 

be ignored. In the case of the cavity problem this extra constant term 

is placed into the load vector. 

3.5 The Stability Criterion 

An empirical formula is required to define the maximum time 

step to ensure a stable solution for the integration scheme based on 

properties of the mesh and the fluid flow. Such a formula was derived 

from work on cylinder flow problems. 

41 



In most integration schemes the stability criterion changes as 

the convective terms become significant and its stability is reduced. 

In the fractional step technique, owing to its inherent stability, one 

criterion suffices: 

DT 
0.7 

oF +1 (3.5.1) 

v- viscosity 

k- dimension of an element normal to the flow direction'' 

m- dimension of an element parallel to the flow 

DT - time step or interval in the integration technique 

For this scheme the time step limit increases with Re. 

It must be emphasised that this criterion ensures only a stable 

solution and not a correct one. At high Re the time step may satisfy 

stability but not produce a correct solution. 

It must also be chosen on the basis of the distance travelled 

during the time step. If the distance travelled within the step is 

greater then an element side length, convergence to a correct solution 

is unlikely. Consequently this distance must be smaller then the mesh 

size to ensure a correct solution. 

At some Re there is a cut-off time step DT 
max 

describing the 

maximum allowable time step to ensure a correct solution for a 

particular mesh configuration. This may be expressed as: 

0 
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DT <L 
max um (3.5.2) 

L- minimum element dimension 

um - mean fluid velocity 

The stability criterion, equation (3.5.1), is obtained empirically from the 

solution of flow past a cylinder: it does not necessarily hold for 

other flow problems; however, it seems reasonable to use it as a guide. 

In this chapter the set of equations governing fluid flow in a 

domain is rewritten in its finite element equivalent form. 

To solve these two matrix equations the problem of time 

dependence and the non-linearity of the momentum equation has to be 

overcome. It is necessary to choose a time marching sequence which 

enables the solution of both variables iteratively. 

The application of a vorticity condition on the no-slip 

boundary has also been dealt with. It is reasonable to assume that the 

stream function and vorticity variation parallel to the wall are 

negligible compared to normal variations. The momentum equation is 

expressed in a one dimensional form; from this an expression is 

obtained for wall vorticity in terms of calculable values. This 

expression is finally introduced into the no-slip condition. 

Having presented a (F. E. M) solution procedure for the flow of 

fluid it is necessary to apply this technique to some practical 

problems. Previous work concentrated on the problem of unsteady flow 

past a cylinder. Here the solution of a greater variety of problems 

is possible, due to the incorporation of a general mesh generation 

0 
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program. 

The following chapter discusses in detail its inclusion in the 

(N. S) solution program. 
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4. The Automatic Mesh Generator 

4.1 Introduction 

The solution technique used to solve the (N. S) equations by the 

(F. E. M) has been presented in the previous chapter. 

In order to test the success of the technique a variety of flow 

conditions needs to be considered. The ease with which the (F. E. M) 

lends itself to problems of arbitrary shape, coupled with its ability 

to deal with large localised variable gradients, makes it suitable for 

fluid flow analysis. However, the problems involved in creating the 

large amount of data which is required to discretize such a flow region 

can be a major drawback. A great number of nodal points is needed to 

describe a region for flow of a practical nature due to the large 

variable gradients adjacent to the no-slip wall. Furthermore a variety 

of mesh patterns is often needed before a suitable one can be found to 

represent adequately a particular flow case. Obviously this requires 

the solution of some preliminary trail meshes in order to obtain some 

knowledge of the flow behaviour. - 

The introduction of an automatic mesh generator in front of the 

solver would reduce the man hours required to produce suitable problem 

data, consequently making it possible to try a variety of mesh patterns 

when modelling a particular problem. Such a mesh generator would also 

permit the modelling of a range of flow problems with much less effort. 

Work by Nelson [15] in 1976 resulted in a mesh generation program, this 

is adapted here to the particular needs of the fluid flow problem. 

The basis of the mesh algorithm is a fortran-extended language designed 

to discretize a two-dimensional domain with the minimum of information. 
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Here this mesh generation program is adapted to be interfaced 

with the solution program. It sits on top of the solver and its 

overall size in the program may be eliminated by a straight-forward 

overlay procedure. 

The ease with which this fortran-extended language can be used 

to discretize a region enables a variety of meshes to be considered. 

Furthermore, when testing the success of the solution technique by 

increasing the mesh refinement of a flow problem the meshing program 

will reduce the effort considerably, enabling a thorough numerical 

study to be made; see chapter five. 

In this chapter a brief description of the mesh program is 

presented. Subsequently the extensive work required in interfacing 

the generator and the fluid flow program is explained showing a special 

treatment of the no-slip and free-slip boundaries. Finally the need to 

produce highly regularised meshes is discussed and it is then shown how 

this is carried out by special data description. 

4.2 The High Level Language 

In the mesh program the use of a high-level or fortran-extended 

language to provide information to the program is exploited. A set of 

simple commands has been developed to represent a complex string of 

operations used in producing a (F. E) mesh. 

The running of the mesh generator and the subsequent running of 

the solution program are carried out through these high *level commands. 

For an outline of the relevant commands refer to Nelson [31]. 
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4.3 Supervisory Calls 

'Once the -mesh has been generated it is necessary to transfer 

the problem data from the mesh program to the solver. This occurs by 

means of a fortran extended command execute. When this occurs a 

subroutine 'USRPRG' is called which now replaces the main (F. E) 

program. This is the starting routine of the (F. E) solver and it is 

here that the interface between the two programs is made. 

It is first necessary to transfer the problem data into the 

solution program and this is carried out by a series of supervisory 

calls., again refer [31]. 

The program terminates when the subroutine FPSTOP(n) is called 

if n is zero it stops in the normal way. If n is non-zero this abort 

number is printed out, thus indicating why and where the program has 

stopped. A set of abort numbers has been created related to the 

interface section of the program , see appendix C for the current list 

of these numbers. With the use of the supervisory commands the problem 

data can be transferred to the solution program. Subsequently the 

program runs in the normal way. 

4.4 The Interface between Mesh Program and the Solution Program 

In order to combine the mesh program and the (F. E) program an 

interface is developed to suit the particular needs of the fluid flow 

problem. In this section the interface development is explained. 

So far this mesh generator has been demonstrated in 

successfully discretizing two dimensional domains of many different 

shapes, without any concern about the quality of the mesh and the 
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subsequent results produced from them. The purpose of this research is 

to model real fluid flow problems, consequently this program has to be 

geared to generate suitable mesh discretizations. The solution program 

is dealing with two separate unknowns, i. e. stream function and 

vorticity, in conjunction the no-slip boundary condition is applied in 

a non-standard manner. As a consequence the variety of boundary types 

is greater than in most cases. In order to handle the transfer of 

these boundary conditions successfully a suitable interface between the 

two programs is created. 

The input subroutine which reads in the data directly is 

replaced by a series of supervisory calls to transfer data from the 

mesh generator instead. 

The basic problem parameters, nodal coordinates and element 

connectivity are obtained directly by implementing the relevant 

supervisory calls. The problem of defining the boundary conditions is 

not so simple. 

(i) To Transfer the Boundary Condition Data 

The boundary conditions as described in section (2.3) are 

applied. 

To recap, these are: the natural outflow condition; where the 

stream function and vorticity gradients are set to zero, this is 

applied in the matrix formulation by default. The no-slip boundary 

conditions where stream function is prescribed and vorticity is defined 

by a limiting equation, and finally the free-slip boundary where both 

stream function and vorticity are prescribed. In the interface section 

it is necessary to distinguish between the no-slip and the free-slip 
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boundary nodes. 

The no-slip wall can be either moving or stationary, see 

section (3.4), and this velocity needs to be transferred. Normally the 

no-slip wall is stationary: however, in the case of a closed cavity for 

example the top wall is moving. 

The boundary information needed for the solution program 

consists of the node number, the boundary type, the prescribed stream 

function value, the no-slip wall velocity and the prescribed vorticity. 

In most cases the prescribed vorticity is zero, but in the case of 

developed channel flow it is not; where the inlet velocity profile is 

of a parabolic form. 

An interfacing subroutine is developed to assemble the boundary 

nodes in an adjacent order about the boundary with the free-slip and 

no-slip walls separated by dummy nodes. 

The mesh generation scheme has been designed to deal with 

problems of many boundary configurations, enabling it to model a 

variety of flow problems. 

(a) The first is the enclosed problem with a complete 

no-slip boundary; see figure 4.1(a). This fully enclosed configuration 

may be useful in solving the flow within a square cavity induced by a 

moving wall. 

(b) The second consists of two boundaries of a no-slip 

and a free-slip type; see figure 4.1(b), with the outlet defined by 

default. .. Note that the inlet has'the same variable configuration as 

the free-slip boundary. This boundary distribution can be applied to 

the solution of flow past a plate, for example. 
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(c) the third problem contains two no-slip boundaries 

separated by a free-slip boundary, i. e. the inlet, see figure 4.1(c). 

This boundary type -maybe used to model flow within a channel, e. g. a 

channel containing a downstream step. 

(d) This case is similar to (b) with two boundary types. 

However; here there is an obstruction of a no-slip boundary type 

surrounded by three free-slip boundaries describing the inflow and two 

side boundaries with an outflow boundary downstream; see figure 4.1(d). 

This configuration is useful when modelling the flow past any 

bluff body, e. g. a circular cyclinder in parallel flow. 

(e) This is an extension of type (d) where a set of obstructions 

of no-slip boundary types are surrounded by three free-slip boundaries 

as in (d), see figure 4.1(e). This is useful in modelling the 

interaction between a set of obstructions in a flow regime, e. g. two 

or more cylinders in a parallel flow field. 

In the forthcoming chapters some of these boundary 

configurations are used to solve some practical flow problems. 

With this list of problem configurations the program can model 

a wide variety of flow conditions. It must be remembered that any 

extension to this collection may be made by a simple addition to the 

particular interfacing routine. 

(ii) To Check the Number of Nodes on the No-Slip Boundary 

The limiting vorticity boundary condition is applied in such a 

manner that any element can have a maximum of two nodes on the no-slip 

boundary, i. e. a boundary element can have a maximum of one boundary 
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side. 

The mesh generation program can produce elements containing 

three wall nodes. especially at a corner of a region, see figure 

4.2(a), as it is not designed to make such a distinction. 

An interfacing routine is first employed to locate such 

elements and subsequently to change the element configuration to ensure 

that this does not occur; see figure 4.2(b). 

(iii) The Use of Disc Files to Store Mesh Data 

When generating a large mesh the computer time taken becomes 

significant. In order to reduce the overall run time it is necessary 

to set up a disk file of the mesh data and for subsequent running of 

the problem this data is read directly into the solver. As these flow 

problems are highly non-linear several program runs may be needed to 

achieve a reasonable solution, this feature can reduce the C. P. U time 

considerably. 

When a mesh is initially generated and found to be suitable for 

numerical -analysis the nodal coordinates, element connectivity and 

boundary arrays are written to a data set. 

(iv) The Optimization of the Node Numbering 

The mesh program provides a mesh that has been optimized; 

however, preliminary work has shown that an improvement can be made to 

this optimization scheme. 
1 

With increasing refinement of the mesh discretization the need 

to achieve a more efficient node numbering scheme becomes apparent. 

This is more acute here since the system matricies are non-symmetric 
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and both their upper and lower diagonal parts have to be stored, thus 

doubling the amount of space normally required for a symmetric problem. 

A-renumbering subroutine is included at the interface stage. It 

assumes the y- axis to be the shortest and thus numbers sequentially 

up this axis along a constant x line, beginning at the lowest x and y 

nodal point, see figure 4.3. 

The assumption that the y- axis is the shortest is reasonable 

for all the problems considered here since the mainstream velocity is 

usually taken to be in the longitudinal x direction. 

(v) The Problem Data Graphics Package 

The set of interface routines described above is designed to 

produce the mesh data from the mesh generation program to suit the 

particular needs of the solution program. 

The solution program requires a set of arrays which stores both 

boundary nodes and elements in a particular order about each boundary. 

To ensure this is occuring correctly each time a new mesh is produced, 

these need to be checked. 

A graphics program has been developed which plots the complete 

mesh and these relevant nodal and element arrays. In this way a quick 

and safe visual check of the problem data can be made, before the mesh 

is chosen to carry out numerical analysis. 

With the addition of these features at the interface stage a 

suitable optimized mesh is generated with -the minimum of data 

definition and CPU time. 
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4.5 A Preprocessor for Internal Node Generation 

In non-linear flow problems the quality of the region 

discretization is critical to the success of the solution obtained. 

This can also be said for structural problems: however, it is more 

pronounced in fluid mechanics where the non-linearities of flow can 

cause great problems. If the distribution of nodes within the region 

is poor or the element connectivity is irregular, i. e. many elements 

attached to one node, the results appear to be unstable and inaccurate, 

as the element discretization inadequately describes the flow problem. 

It is found that the automatic internal node generator used in 

the mesh program, does not produce an adequate distribution of internal 

nodes. Instead it is necessary to specify the internal nodes directly. 

Even when defining the internal nodes in this manner with a regular 

spacing between them the element pattern is irregular, although they 

are of a constant size. 

Figure 4.4 illustrates the discretization of an 11x11 square 

mesh; where the internal nodes have been defined as above. The mesh 

discretization displays this irregular element distribution mentioned. 

In order to improve the element distribution a full 

understanding of the meshing algorithm is needed. 

It first considers two nodes as the current base line. It then 

scans all the remaining nodes and the most suitable one is taken to 

create the next element. The most suitable node is the one producing 

the smallest circle with these two base nodes, see figure 4.5(a). 

In the special case where the nodes are regularly spaced there 

are obviously two of equal suitability: then the meshing routine 
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chooses the first one it reaches, which is not necessarily the correct 

one to ensure a regular element distribution. To ensure that the 

correct node is chosen the position of each internal node may be 

adjusted slightly,; see figure 4.5(b). 

A preprocessor is developed to produce the adjusted nodal 

positions which will ensure that a regular mesh is created. Figure 

4.6(a) shows how the nodes are adjusted to generate this regular 

symmetric mesh for a square domain. Figure 4.6(b) shows an 9x9 square 

symmetric mesh produced in this manner. 

Once the mesh is computed, a routine is inserted at the 

interface stage of the program to readjust the nodes to their correct 

positions. 

Similar preprocessor routines are developed to produce a 

suitable displacement of internal nodes for other flow configurations. 

In this chapter the mesh generating program has been introduced 

to reduce the effort required in producing problem data. This user- 

orientated scheme is designed to_ be interfaced with the fluid flow 

program. Since a large part of this work has involved the development 

of a successful interface between the two programs it has been 

necessary to devote a complete chapter to its description. 

A series of subroutines is produced to ensure the smooth 

transfer of data from the generator to the solver. In conjunction 

with this a suite of preprocessor programs is developed to produce the 

correct nodal data to ensure regular mesh discretization. Having 

adopted this mesh program the production of suitable and compact 

problem data is now possible. A variety of flow problems can now be 
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modelled with much reduced effort. In chapter five this is clearly 

demonstrated when the complete system is used to model some laminar 

flow examples. 

In section 4.4 the solution system is shown to be capable of 

dealing with a wide variety of flow conditions. Obviously it is beyond 

the scope of this work to try all of them: however, some problems are 

attempted for which existing work is available. 
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5. A Study of Laminar Flow 

: ý5.1 Introduction 

The mesh generation system has been interfaced with the (F. E) 

flow program. It is now possible to solve various flow problems without 

the need for tedious manual data processing. 

In this chapter some flow examples are modelled and extensive 

comparison is made with earlier numerical and experimental work,. if 

available. 

There are three main aims of this chapter: 

(i) To evaluate and demonstrate the effectivness of the 

mesh generating scheme, 

(ii) To assess the value of the solution technique, and 

(iii) To gain further enlightenment about various flow conditions. 

5.2 Square cavity flow 

5.2.1 Introduction 

In this section recirculating flow within a square cavity 

induced by the motion of a top 'moving lid' is solved for various flow 

conditions. The solution of this example can shed light on more 

complicated separated flows, for example the wake behind a cylinder. 

For this reason extensive numerical work has been carried out 

on this problem. Moreover, owing to its simple geometry, (F. E) and 

(F. D) discretization is straightforward. In this problem increasing 
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the mesh refinement requires little additional effort, and so a full 

test of the solution technique can be made. 

As the flow problem is of a closed form and all the boundaries 

are of an explicit nature a solution is achieved with relative ease. 

Furthermore, fluid flow within a confined region remains steady 

throughout a wider range of Re than that of open flow. 

The walls of the cavity are all of a no-slip type, with the top 

wall moving horizontally as a 'lid', see section 3.4. Figure 5.1 

illustrates the problem and the boundary conditions applied. 

A preprocessor is used to compute the internal nodes suitable 

for regular square mesh discretization: see section 4.5. Using this 

process a series of meshes is produced with increasing refinement, i. e. 

11x11,17x17,21x21 and 31x31. By increasing the mesh refinement a 

better model of the flow is expected. 

A study of the fluid flow within the cavity is obtained at Re 

of 10-4 , 100 and 400. Initially the vorticity is set to zero for the 

starting flow of Re=10 . For subsequent increases of Re the initial 4 

vorticity is taken from the previous solution. 

The Reynolds Number is defined as, Re=dU/v . Contour plots of 

the solution variables of stream function and vorticity are produced 

using a graphic postprocessor. The variable contour plots are 

normalized; where y, ' /Ud and w'=-wd/U, 

Where: 

U- is the mainstream velocity 

d- is the characteristic length, i. e. the dimension of the cavity 
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Extensive (F. E) and (F. D) work is available for comparison. 

Here the (F. D) results of Burggraf [11] are used. lie presents a (F. D) 

solution adopting a stream function vorticity approach supported by an 

analytical solution at low Re. In addition a (F. E) work by Tuann and 

Olson [32] is quoted. In this case a solution is obtained for the 

stream function based on the momentum equation written in terms of 

stream function alone. As this produces a fourth order equation a 

unique quintic triangular discretization of the domain has been 

introduced. 

As in the current study, Tuann and Olson produced a series of 

results using four mesh discretizations. The results taken for 

comparison are obtained using the most refined mesh, i. e. the 8x8 

quintic mesh. 

The work by Burggraf is used to compare the two different 

numerical techniques. Conversely the work of Tuann provides a 

comparison between two different approaches of the (F. E) technique. 

Both ensure a rigorous test of the current solution scheme. 

5.2.2 Results 
t 

Here contour plots of stream function and vorticity are 

presented, see figures 5.2 - 5.7. Each figure contains the plots of 

one variable at a particular Re. The figures (a) - (d) show results of 

the current work with increased mesh refinement, and (e) and (f) show 

the earlier (F. D) work of Burggraf and the (F. E) work of Tuann and 

Olson respectively. 

ii) Re=10-4 

Solutions for the square cavity problem at a Re of 10-- are 

60 



obtained for the four meshes mentioned above. 

This is a slow creeping flow condition and has a limiting 

solution similar to the biharmonic equation of plate bending. As this 

limiting condition is reached the inertial effects become negligible 

and the solution becomes symmetric. 

Figures 5.2 and 5.3 show plots of stream function and vorticity 

respectively. Both sets of results display the expected symmetry 

comparing well with previous work. The accuracy of the flow solution 

is shown to improve with increased mesh refinement. 

In the stream function plots the flow structure is well 

defined, consisting of a main central vortex core and two secondary 

vortices at both lower corners. 

All current results show the inner core stream function value 

to be too high, as the inner streamline of level 0.1 is a point in the 

centre of the vortex for both the earlier solutions. This streamline 

however appears to converge to the centre of the vortex as the mesh is 

refined. The discrepancy is also due to the limiting vorticity 

solution from which the stream function is derived. 

The secondary vortices at both lower corners are too large and 

produce some fluctuation of the streamline, see figure 5.2(d). 

The vorticity results all display this similar converging 

distribution, with these two secondary vortices occuring at the lower 

corners. These results converge with mesh refinement to compare very 

well with Burggraf; see figures 5.3(d) and 5.3(e). However, a 

comparison with Tuann is not so good; see figure 5.3(f). 
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The secondary vortices of the most refined solution, see figure 

5.3(d), appear as a combination of three smaller vortices about each 

`corner. This is due to-the limited resolution of the elements in this 

region close to the corner. In the local region about a corner the 

variation of the unknowns is large, in order to describe this 

accurately a large amount of local mesh refinement is needed when using 

linear elements. It is these vortices which cause the fluctuations in 

the streamline plots as shown in figure 5.2(d). 

In the (F. E) technique of Tuann the vorticity is obtained from 

the approximate solution of stream function. Conversely here the 

stream function is retrieved from a solution of vorticity. The leading 

variables in both (F. E) schemes, i. e. the stream function of Tuann and 

the vorticity here, display good comparison with the (F. D) work, 

whereas the retrieved results display some error. 

(ii) Re=100 

Using the vorticity results from (i) as the initial values a 

solution at Re=100 is computed. 

Figures 5.4 and 5.5 present the stream function and vorticity 

results obtained at this Re. 

Increasing the Re the inertial effects are now large enough to 

become significant. The result has been to shift the main vortex 

centre to the left, causing the flow to lose symmerty. Again the 

overall structure is the same as above, consisting of a main central 

core and two secondary vortices at both lower corners. Here the left- 

hand vortex has enlarged compared to the right-hand'one : see figure 

5.4(d). 
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As in (i) the inner part of the main vortex core has a larger 

value of stream function then that of the previous solutions; as 

illustrated in figures 5.4(d), (e) and (f). The secondary vortices are 

similarly too large, displaying the same streamline fluctuations. 

Again the vorticity results compare most accurately with 

Burggraf . The secondary vortices are again defined as a combination 

of three small vortices about'each corner; see figure 5.5(d). 

As before both sets of results presented display improved 

accuracy with increased mesh refinement. Due to the increased inertial 

effects this improvement is more pronounced as the non-linearities of 

the problem increase; compare figure 5.5(a) with 5.5(d). 

(iii) Re=400 

Using the vorticity results of (ii) as the initial flow 

conditions the solution at a Re=400 is obtained. With increasing 

inertial effects the non-linear terms become larger and the flow 

configuration is more unstable. 

Figures 5.6 and 5.7 display the stream function and vorticity 

plots along with the comparative work of Burggraff and Tuann. 

The shape of the streamline plots is consistent with the 

earlier work. Again the inner core region displays values of stream 

function that are too high. Similarly the work of Tuann shows the same 

trend, with the main vortex stream function value large compared to 

that of Burggraf; see figures 5.6(e) and 5.6(f). - 

The outer streamline of the main vortex displays a point of 

inflection at the top right-hand corner; this is consistent with both 
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earlier (F. D) and (F. E) results. 

Comparing these results with the solution at Re=100; the main 

vortex has moved slightly right, back towards the centre of the cavity 

and downwards. The left-hand secondary vortex has grown vertically 

restricting the size of the main vortex, thus pushing it back towards 

the centre. The right-hand vortex has now extended into the centre of 

the cavity. 

These vorticity plots, see figure 5.7, illustrate how unstable 

the flow regime has become due to the increased inertial effects. 

Only the finest mesh can now achieve a smooth distribution of 

vorticity, see figure 5.7(d). 

This result compares reasonably well with the work of Burggraf: 

however, the central region of the main vortex is different, figure 

5.7(e). Greater similarity is now shown with the work of Tuann, see 

figure 5.7(f). Along the outer boundary of the main core the three 

meshes display good agreement. Within the main core the (F. D) solution 

differs from both (F. E) solutions, displaying lower values of 

vorticity. 

Similarly the vorticity contour level of -1.0 on the left-hand 

side of the cavity attaches itself to the bottom wall in both (F. E) 

solutions. Conversely in the (F. D) solution this contour level is 

split into two separate regions indicating that the vortex movement is 

more developed in the (F. E) results. 

At a Re=400 the inertial effects have become so large that they 

produce great non-linearities in the flow . They manifest themselves 

as an unstable vorticity distribution within the flow region; see 
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figures 5.7(a) - (b). In the past mixed success has been met for 

results at Re greater then 400. It seems reasonable to assume that 

with the current methods available the solution limit has been reached 

at about this Re. Any attempt to increase the Re beyond this point has 

proved to be speculative. 

When the limits of the solution are reached both (F. E) 

solutions display similar behaviour. They both differ from the (F. D) 

solution, which indicates a consistent distinction between the two 

techniques. 

5.2.3 Conclusion 

Four mesh discretizations are used to model flow within a 

square cavity at Re of 10-4 , 100 and 400. Contour plots of stream 

function and vorticity illustrate how the solution improves with 

increased mesh discretization. 

A full comparison with earlier (F. E) and (F. D) results-has been 

carried out. It is found that the vorticity solution is more accurate 

then that of stream function when compared to the (F. D) solution. The 

reverse is the case for the (F. E) solution of Tuann and Olson, where 

the stream function results compare better then those of vorticity. It 

is concluded that in general the results for the leading variables are 

good, whereas the retrieved results are subject to some inaccuracy. 

The two secondary vortices of the finest mesh are described as 

a combination of three smaller vortices. This is due to the limited 

resolution of the linear elements in a region of large vorticity 

gradient and results in a fluctuating streamline at both lower corners. 
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At a Re=400 the limits of the solution technique are approached 

for the cavity problem. Only the finest mesh discretization provides a 

smooth vorticity distribution. At this Re both (F. E) solutions are 

similar, with the (F. D) work producing a less developed vorticity 

distribution. At the upper limit the (F. D) solution is proving less 

accurate when compared to both (F. E) solutions. The (F. E) solutions 

are similar and so the discrepancy cannot be due to the limiting 

resolution of the linear elements as displayed by the corner vortices. 

Instead it must be due to a fundamental difference between both 

numerical techniques. It is more likely that the range of the (F. D) 

technique is exceeded at Re=400. 

The above study displays a rigorous test of the solution 

technique. By making extensive comparisons with two sets of reliable 

numerical results and refining the mesh to illustrate its convergence 

capabilities, much information about the solution scheme has been 

gained. These results provide the standard by which the quality of 

more difficult flow problems may be anticipated. Consequently it is 

now desirable to extend this research to other flow configurations 

where an informed judgement can be made of the computed results. 

5.3 Flow Over a Downstream Step 

5.3.1 Introduction 

In the previous section the flow within a square cavity 

generated by a top moving wall is presented. The results obtained are 

shown to compare well with previous numerical work. This enclosed 

problem lends itself easily to solution, since the boundary conditions 

are well defined and its shape is easy to handle. 
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In order to test the program more fully, it is necessary to 

extend the model to other flow problems; preferably of a more practical 

nature. The flow over a downstream facing step is of considerable 

importance and so is to be investigated next. 

This problem can also be considered as a sudden expansion in a 

channel and its solution is important in many fluid applications. It 

may be necessary to compute for instance the energy loss caused by such 

expansions. This would be vital when calculating the pressure gradient 

required to pump water through a network of channels. 

It may be desirable to calculate the shear stress on the walls 

of the channel, especially in the recirculation region behind the step. 

This is useful to the civil engineer who may be concerned with the rate 

of scour in either a natural or a man-made environment. 

Owning to its wide application, considerable work has been 

carried out to solve this problem. In particular, there exists a set 

of reliable experimental results gathered by Denham and Patrick [331. 

The velocity measurements were obtained using a newly developed 

directionally sensitive laser anemometer. 

As a consequence of this work a (F. D) solution to the step 

problem was presented by Atkins et al [34]. Using stream function and 

vorticity as the dependent variables a solution is obtained applying 

both central differencing and directional differencing schemes in the 

laminar and turbulent range of flow. 

Work by Hutton et al [35] has produced a solution to this 

problem using the (F. E. M). Solving the flow in terms of velocity and 

pressure : with the introduction of a special wall element successful 
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results have been achieved. 

More recently a paper by Thomas; C. E. et al [36] presents 

further (F. E) results for this problem. In this paper, a solution is 

computed in terms of velocity and pressure again for both the laminar 

and turbulent problem. The instabilities of the problem are by passed 

by introducing upwinding weighting functions. 

Here, there is the unique opportunity to model a problem and 

make comparison with reliable experimental and numerical data. 

In addition, it allows the author to demonstrate the ability of 

the solution scheme in modelling a variety of boundary conditions. 

This step example may be considered an example of a general class of 

channel problems; see section 4.4(1). 

5.3.2 The Problem Discription 

Figure 5.8 illustrates the boundary conditions of the step 

problem, with the flow moving from right to left. 

The top and bottom boundaries are both no-slip walls, where the 

stream function is prescribed and the vorticity is described by the 

limiting boundary condition. 

On the left-hand side or inlet boundary the stream function and 

vorticity are perscribed such that the velocity profile is of a fully 

developed form within a channel. This profile takes the form of a 

parabola and may be expressed by: 
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i 
ul = Dm 

[Z 
2D] (5.3.1) 

Z= x2-h 

h- step height 

u- the centre line velocity 
m 

D- the half channel width 

When using a primitive variable scheme the velocity variation 

is simply prescribed along the inlet boundary. In this case as the 

dependent variables are stream function and vorticity it is necessary 

to prescribe the equivalent stream function and vorticity values. 

From section 2.3 the stream function is defined as: 

iZ= ul (5.3.2) 
2 

Taking the integral of equation (5.3.1), within the channel 

width a cubic variation of the stream function is obtained: 

= Dm 
C22 

- 
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D+ 
C1, (5.3.3) 

By defining the datum stream function value to be zero and 

assuming the centre line velocity to be unity, the equation becomes: 

Z2 Z3 
-5- -3 (5.3.4) 

The stream function may now be prescribed as a function of 
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position along the inflow boundary. 

As the inflowing velocity is not parallel the vorticity of the 

boundary is non-trivial. By considering this physically, it can be 

seen that some rotation of the fluid must exist to produce a parabolic 

velocity profile. 

From section 2.3 the vorticity is defined as: 

au2 au 1 
W- axl - ax2 

The velocity normal to the direction of main flow is considered 

minimal and so: 

Zu1 auf 
(5.3.5) 

ax2 az 

where: 

2A Z2 
ul =D- -D 2' 

and so: 

w=-D2+ 2Z 
(5.3.6) 

The vorticity along the inlet boundary can now be prescribed as 

a function of position. 

If the vorticity is assumed to be zero along the inlet 

boundary, and equation (5.3.4) is used to prescribe the stream 

function, a conflict between the two conditions will occur. The former 
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is applying a parallel velocity condition and the latter a parabolic 

velocity condition. The resultant flow would be some combined 

condition. 

Referring to figure 5.8 again, on the right hand side or 

outflowing boundary, the natural conditions are applied. There is some 

doubt as to its precise location with respect to the step. In theory, 

it should be positioned far enough downstream, so that the effect of 

the step on the flow has diminished. 

As in the case of the square cavity problem, a small 

preprocessor is written to compute the nodal data of the step domain 

automatically. Similarly, these nodes are adjusted to ensure a regular 

mesh discretization. 

In this case it is necessary to describe local regions within 

the domain by a varying mesh discretization. In the cavity problem 

adequate results are obtained without this extra complication. 

The step is an open type problem, containing both an inflow and 

an outflow boundary. This means that there are large differences in 

flow behaviour within the domain, from the large variations of the 

unknowns due to recirculation behind the step, to the small variations 

further downstream. In order to discretize the problem efficiently it 

is necessary to have local variations of nodal distribution. 

In truth, the discretization of the cavity can also be made 

more efficient, however, the problem is not so acute in this enclosed 

case. 

Initially, the step domain was split into two distinct regions. 

In the area downstream of the step including the recirculation zone, 
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there are large variations of the unknowns, requiring a fine nodal 

resolution. In the region above the step, from the inflow to the 

outflow boundary, the nodal discretization need not be so fine. Figure 

5.9a shows the type of mesh produced in this manner. A series of such 

meshes was produced, but the results computed from them proved to be 

very unstable. 

It is concluded that the region about the top corner of the 

step is very sensitive to the quality of the local discretization. 

From figure 5.9(a) it can be seen that the zone coincides with the 

interface of the two mesh regions. What is needed is a regular 

discretization tracing the bottom wall from the left hand boundary to 

the right hand boundary. 

This is achieved by introducing a different nodal distribution 

scheme. Now the variation of nodal concentration is split 

orthogonally, parallel to the direction of flow and along the normal to 

it across the channel. For a particular point in the domain the nodal 

distribution in either direction depends upon its location in that 

direction. The nodal concentration is zoned with increasing fineness 

as the step is approached, from either direction. 

Since the variation of the unknowns is highly orthogonal due to 

the character of the problem it is possible to define a suitable 

discretization of the domain by applying such a scheme. 

Figure (5.9b) illustrates the step domain discretized in this 

manner . The region near the top wall is discretized using a coarse 

distribution. Since there is no recirculation at this wall, it is 

considered to be adequate. 
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It can be seen from figure 5.9(b) that care is needed in the 

orthogonal zoning scheme to ensure that the discretization of the 

--region about the top corner of the step is regular. This is found to 

reduce the instability of the results. 

5.3.3 Results 

Using this mesh generation scheme the step problem is computed 

at, Re=73,125 and 191, at which there already exist both experimental 

and numerical results. To be consistent with earlier work; Re=hUe/v, 

where, h is the step height, U. is the mean inlet velocity. These 

results are presented in terms of velocity profiles at various 

positions along the channel. In addition, to ensure consistency with 

earlier work the ratio of the inlet channel width to the outlet channel 

width is equal to 2. 

Here, the velocity at positions along the channel is calculated 

from the stream function solution, and is plotted so that a direct 

comparison can be made with earlier work. In conjunction, 

equivorticity and streamline plots are also presented. 

From the velocity values measured by Denham and Patrick, the 

stream function throughout the channel was computed at Re=73. In order 

to make a direct comparison with this result the contour levels are 

adjusted; ýmax; where *' are the plotted values and Wmax the 

maximum stream function value along the top wall. 

Although there are no vorticity results available in the 

literature for comparison, it is still important to present them for 

the benefit of future work. The equivorticity levels are normalised, 

w'=-wh/Umax, where w' are the plotted levels and Umax the maximum 
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upstream velocity. 

Two meshes are chosen to model the problem, a coarse one 

already presented in figure 5.9b, and a finer mesh; shown in figure 

5.9c. 

As in the case of the square cavity problem, inital conditions 

equivalent to orthogonal flow are applied, i. e. the vorticity in the 

domain is set to zero. A solution at Re=73 is first found, then 

subsequent solutions at higher Re are obtained by applying the 

vorticity of the previous solution as the initial flow conditions. 

Below the results for this problem are presented: 

(i) Re=73 

Figures 5. (10,11 and 12) show the equivorticity plots the 

streamline plots and the velocity profiles at Re=73 respectively. 

Considering the vorticity; figure 5.10(a) is a solution from 

the coarse mesh while figure 5.10(b) shows a solution using the fine 

mesh. In the case of one-dimensional channel flow the vorticity 

represents the gradient of the velocity. Along a channel without an 

expansion the equivorticity lines would be straight and parallel to the 

channel walls. Figure 5.10 shows the vorticity lines running parallel 

to the walls both upstream of the disturbance and further downstream as 

the effect of the step diminshes. Note also that these lines are 

closer together upstream and gradually spread out downstream with the 

velocity diminishing as the channel expands. 

In the recirculation zone behind the step the vorticity pattern 

is not as regular and more difficult to predict. It is shown to be an 
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area of large variations of vorticity, especially close to the step 

where both meshes have difficulty in describing the flow. The finer 

mesh produces --a , better plot-especially in-this region. In addition , 

downstrean of the mesh the vorticity spreads out in a more symmetrical 

fashion about the centreline of flow when compared to the coarse mesh. 

Figures 5.11(a) and 5.11(b) show the streamline plots for the 

coarse and fine mesh respectively. In figure 5.11(c) a streamline plot 

presented by Denham and Patrick, derived from velocity measurements, ` is 

also presented. 

Good comparision is displayed between the numerical solutions 

and the experimental solution, especially in the region away from the 

step. All three plots display a similar wake region, with the zero 

streamline marking its outline. The fine mesh result shows a wake 

region which is in closer agreement with that of Denham et al. 

Within the recirculation zone the variation of the stream 

function is at its largest. The fine mesh displays a marked 

improvement over the coarse mesh for this region. Close to the step, 

however, the gradients are too large due to the sharp change in 

geometry. This produces a corner condition similar to that of the 

square cavity problem. 

Figures 5.12(a) and 5.12(b) present the velocity profiles along 

the channel for both meshes in conjunction with experimental results 

obtained by Denham et al. Figure 5.12(c) presents the earlier (F. E) 

results of Hutton [35] and (F. D) work of Atkins-[34] compared with the 

-experimental results. 

These velocity profiles illustrate clearly the effect of the 
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step on the flow. Upstream a parabolic velocity profile exists as 

prescribed. Behind the step the flow is recirculating, this is 

`illustrated by the negative components within the wake region. Further 

downstream beyond the wake region the recirculation effects diminish as 

the parabolic velocity profile returns. Obviously, the maximum centre- 

line velocity downstream is less then that upstream, due to the 

expanded width of the channel. 

Both the coarse and fine mesh solutions compare adequately with 

the experimental measurements. There is a distinct improvement in the 

solution of the fine mesh compared to that of the coarse one. 

From figure 5.12(c) it is possible to compare the current 

results with existing numerical work. Both the work of Hutton et al 

and Atkins et al compare favourably with the current results. This 

clearly shows the scheme's ability to model such flow problems. 

There is however some error, notably near the top wall for both 

meshes; where the' discretization could be improved to describe the 

prescribed veloctiy distribution along the inlet boundary more 

accurately. Furthermore, the actual input velocity of the experimental' 

work is not quite of a parabolic nature. Consequently, the results 

could be improved if the exact experimental profile was prescribed 

along the inlet boundary. Both these improvements are necessary in 

order to reproduce to experimental results exactly. However, it is 

felt that the current results adequately represent the problem and what 

is needed is to test the existing problem at a higher Re. 

(ii) Re=125 

Figures 5.13(a) and (b) display the vorticity plots for both 
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meshes at Re=125. Again the lines run parallel to the channel wall 

both upstream and downstream of the step. The recirculating vorticity 

levels have extended further --downstream due to the increased Re of 

flow. However there is a distinct difference in the lengths of this 

zone which must be due to the difference in mesh discretization. 

The additional inertial effects caused by increasing the Re 

make the flow problem more difficult to solve. This is clearly 

illustrated by the oscillating vorticity lines in the upstream region. 

These oscillations are greater in the coarse mesh solution. There is 

some oscillation of the vorticity in this region at Re=73, however, it 

has much increased here. 

Figures 5.14(a) and 5.14(b) present the streamline plots for 

both meshes at Re=125. Again a similar flow pattern exists as in the 

previous case with a smooth channel flow upstream and downstream with 

recirculation in between caused by the step. 

Due to the increased Re of flow the wake extends downstream for 

both solutions. As in the vorticity results the fine mesh produces a 

longer wake then the coarse one. Again the problem of defining the 

flow in the corner region is illustrated near the bottom corner of the 

step. 

Figures 5.15(a) and (b) present the velocity profiles for both 

solutions at this Re. Again a good comparison is made with the work of 

Denham and Patrick. Clearly a better model of the flow is made by the 

finer mesh. As already mentioned the wake extends further downstream ; 

this is displayed here by negative velocity components occuring further 

downstream. 
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As at Re=73 there is an error in the velocity distribution 

along the top wall. This is due to coarse discretization of the domain 

locally. As the -Re is increased this error should also increase. 

Furthermore, the downstream outflow boundary is now close enough to the 

wake to influence the last velocity profile and produce an error with 

the experimental results. This can be overcome by positioning the 

outflow boundary further downstream. 

(iii) Re=191 

Figures 15.16(a) and (b) show the vorticity results for both 

meshes at this Re. Both display the same vorticity field as before 

with the recirculation zone moving even further downstream. 

Due to the increased non-linearity of the problem the inlet 

oscillations have grown. As a result the solution has become very 

unstable and great care is necessary to find a solution. As in the 

previous case the vorticity lines in the step region are close together 

due to the recirculation of the flow there. There is some improvement 

in the solution of the fine mesh compared to the coarse mesh with the 

flow vorticity distribution being smoother. 

The streamline plots, see figures 15.17(a) and (b), illustrate 

clearly how the wake region extends further downstream. The fine mesh 

produces a better solution especially in the recirculation zone. 

The velocity plots are presented in figures 5.18 (a) and (b) 

for both meshes. In addition figure 5.18(c) shows the results of (F. E) 

work by Hutton et al compared with the experimental measurements. 

Both meshes produce a reasonable comparison with the work of 

Denham and Patrick with the finer mesh producing closer agreement. The 
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errors in the top half of the channel and downstream of the step are 

apparent as before. 

A good comparison can be seen with the (F. E) results of Hutton 

which again show the current technique to be a reasonable method of 

solving this problem. 

Owing to the large oscillations existing in the vorticity 

solution the problem at this Re is very unstable, consequently a better 

domain discretization is needed to extend the solution to higher Re. 

It is decided to conclude the problem here since adequate 

results have been obtained. Following on from this an attempt to 

model the more elaborate problem of flow past a cylinder is presented, 

again combining the solution technique and the mesh generation program. 

5.3.4Conclusions to the Step Problem 

In the section above a comprehensive solution to the problem of 

flow over a downstream facing step is presented. Extensive comparision 

with earlier. experimental and numerical work is carried out. 

It is concluded that adequate success is achieved when using 

this stream function vorticity approach. 

In order to improve these results further a number of 

possibilities are available. Failure to completely model the quadratic 

velocity variation along the top wall of the channel suggests an 

improved mesh discretization in this region is required. 

As the Re is increased and the wake extends further downstream 

it approaches the downstream boundary. The result is that this 

boundary begins to influence the flow in a region where the step 
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disturbances are still significant. To combat this the boundary may be 

positioned further downstream 

As already mentioned the inlet velocity of the experimental 

problem is not exactly of a parabolic form. In the earlier (F. E) work 

both the theoretical and experimental inlet velocity profiles are 

prescribed. It is expected that an improvement in the velocity results 

would occur if the actual experimental profiles were prescribed. 

In the (F. D) work of Atkins it is found that a better 

description of the problem is achieved if the prescribed conditions on 

the inlet boundary are replaced by less restrictive conditions. He 

reports that using the prescribed conditions the vorticity 

perpendicular to the flow is undefined, and the resulting streamlines 

drop immediately after the step. This particular phenomonon is not 

found here where the inlet conditions are applied in a similar manner. 

The oscillations of the vorticity which occur in the inlet 

region are well known to numerical engineers. Using the primitive 

variables similar oscillations occur for velocity results. 

Leone and Gresho [37] describe them as wriggles, and suggest 

that they may be caused by a combination of singularities at the inlet 

and constraining effects at the outlet. Some people have found it 

necessary to introduce upwinding weighting functions in order to 

achieve a stable solution. 

There is much discussion as to the reliability of such 

upwinding schemes. The critics claim that it introduces false 

diffusion effects, and the solution achieved is not that required. 

However, there is some work available showing that upwinding can be 
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successful for certain cases. For example the (F. E) results obtained 

by Thomas et al use such a scheme. 

As can be seen from the above discussion much work is still 

needed before a complete solution is achieved to this step problem. 

Certain improvements can be made to the current scheme in order to 

produce better and more stable results. 

It is not the purpose of this research to devote itself 

entirely to a study of the step problem. Instead it has been used to 

display successfully the solution scheme's capability. Now it is 

necessary to apply the scheme to another flow problem. 

5.4 The Flow Past a Circular Cylinder 

5.4.1 Introduction 

The (F. E) solution scheme based on a stream function vorticity 

formulation has been used to model flow within a square cavity and flow 

over a downstream facing step. The results obtained compare well with 

available experimental and numerical work. 

In this section the problem of flow past a cylinder is modelled 

using the same solution scheme. This is a prototype of the general 

problem of flow past any bluff body. From the early drawings of the 

vortex flow past a bridge pier by Leonardo da Vinci, man has 

endeavoured to obtain a better understanding of this problem. The 

solution of bluff body problems has a wide relevance to the engineering 

world as a whole. Consequently, much attention has been given to its 

analysis both in the numerical and the experimental field. 

It is true to say that the desire to model this problem more 
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than any other has had the greatest influence on the development of 

numerical techniques for viscous fluid flow. 

For example as far back as 1933 pioneer work by Thom [1] 

produced a solution to the cylinder problem in terms of difference 

equations at Re=10 and 20. Extending this work Kawaguti [2] produced a 

(F. D) solution at Re=40. 

This (F. D) work was further extended, with the advent of 

computational methods, by Allen and Southwell [38], and Apelt [3] for 

the steady state case and by Payne [28] and Kawaguti and Jain [39] for 

the time dependent problem. 

An interesting development was presented by Thoman and Szewczk 

[40] who extended the central difference scheme to directional 

differencing for the convective terms. It is claimed that the errors 

caused by this upwinding may be minimized if careful choice of the 

(F. D) cell structure is made. Using this scheme a solution has been 

achieved up to Re=3x105. 

A good solution of the steady state problem using the (F. D. T) 

was later developed by Dennis and Chang [41] up to Re=100. This 

technique differs from others in that a solution of the stream function 

is expressed in terms of a Fourier series thus simplifying the relation 

between stream function and vorticity. The steady state solution to 

the cylinder problem at Re=5 to 100 is presented in terms of streamline 

and equivorticity plots. These results are used for comparative 

purposes below. 

At about the same time work by Takami and Keller [42] reported 

a solution to this problem for Re=1 to 60. Here again a solution is 
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achieved by the (F. D. T) for the steady state equations. The problem 

is solved iteratively and convergence of the drag coefficient is 

monitered. Again results are presented in terms of streamline and 

equivorticity plots and shall be quoted below. 

More recently, a successful solution to this problem has been 

achieved by Nieustadt and Keller [43] up to Re=40. Extending the work 

of Dennis and Chang both the stream function and the vorticity are 

expressed in terms of Fourier series. The resultant system of second 

order ordinary equations has been solved by the (F. D. T). 

All this numerical work has been supported by experimental 

work, see Taneda [44], Acrivos et al [45] and more recently by 

Coutanceau and Bouard [27] to name but a few. The numerical solutions 

chosen for comparison here have been shown to compare well with this 

experimental work. 

Resulting from this large amount of (F. D) research certain 

guidelines have evolved. The solution of the governing equations in 

terms of stream function and vorticity as the dependent variables is 

clearly favoured; in fact none of the solutions quoted above uses the 

primitive variable approach. The steady state solution is preferred 

to the time-dependent one for problems in the steady range of flow. 

Most of these techniques have adopted a transformation of the 

coordinates in order to improve the cell structure about the cylinder; 

thus reducing the errors caused by the discretization of the domain. 

The distinct advantages of the (F. E. M) in solving problems of 

an irregular domain are clearly important in this example. Along with 

the other advantages it provides an attractive alternative to the well 
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tried (F. D. T). Withstanding this not much work has been carried out 

using the (F. E. M). As a result the relative merits of the different 

approaches are not so clear. 

Work by Taylor and Hood [6] has produced some steady state 

solutions to the flow past a cylinder using pressure and velocity as 

the dependent variables. A more comprehensive solution was presented 

by Tuann and Olson [46] using stream function alone as the dependent 

variable, as reported in the square cavity example. The results are 

presented in terms of plots of stream function and vorticity for Re=1 

to 100, and shall be used below for comparative purposes. Smith [14] 

used a similar technique to produce some predictive solutions to the 

unsteady flow case. However, no extensive comparison was made with 

other numerical work for the steady state case. 

5.4.2 The Problem Description 

The boundary conditions describing the bluff body problem are 

presented in figure 5.19. The vorticity and stream function are 

prescribed on the inflow boundary to ensure parallel flow. 

The cylindrical obstruction is defined as a no-slip boundary 

where the stream function is constant and the vorticity is described by 

the limiting constraint. Along the side boundaries both the vorticity 

and stream function are prescribed. This is a free-slip wall and 

defines the limits of the influence of the obstruction on the flow 

latterly. The stream function is constant as the wall runs parallel to 

the flow and the vorticity is zero since it is-assumed that the fluid 

rotation has diminished to a minimum in this region. 

The outlet is described by natural boundary conditions as in 
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the previous examples. This and the side boundaries are positioned far 

enough away from the obstruction to ensure they have no influence on 

the flow. 

Since the velocity along the inlet boundary is constant the 

variation of stream function along it is linear with the gradient 

representing the value of the velocity. In addition, the vorticity is 

zero on this boundary since there is no rotation of the fluid. 

As in the case of the two previous examples above, a 

preprocessor is developed to generate the internal nodes of the 

cylinder domain automatically. These are routed directly to the mesh 

generating scheme. This preprocessor enables the discretization of 

the domain with a certain degree of flexibility built in, in order to 

increase mesh refinement where desired. 

The mesh is divided into two regions, the first being about the 

cylinder and the second downstream of the cylinder. In the first a 

completely symmetric nodal distribution is described. It is defined by 

a set of concentric rings of nodes about the cylinder. Figure 5.20 

illustrates this nodal distribution clearly for a cylinder described by 

16 nodes. It can be seen that the width of each ring of elements 

increases with distance from the obstruction. This is reasonable since 

the variable gradients decrease with distance from the body. 

This figure also shows that each ring of nodes is rotated about 

the axis of the cylinder so that every node is positioned between two 

nodes. of both adjacent inner and outer rings. - This has been done to 

ensure a good triangular discretization in this region. This is more 

clearly illustrated in figure 5.21(a) and (b); where the mesh 

discretization about the cylinder is presented for both a fine and a 
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coarse mesh. 

The boundary of the region is defined by a square centred about 

the cylinder described by the same number of nodes as each ring. This 

boundary is placed far enough away from the obstruction so that it is 

not expected to influence the flow about the cylinder. 

Quite obviously, this is not the case downstream where the 

presence of the wake, especially at high Re, makes it necessary to 

enlarge the flow domain. The second part of the domain is discretized 

symmetrically about the centre line of the flow. Again the element 

width is increased with distance from the obstruction. Figure 5.22 

shows the discretization of the entire domain including this downstream 

region. The symmetry of the region is ensured by applying the 

adjustment technique discussed in section 4.5. 

The method of discretizing the cylinder domain has been 

outlined above. In the step problem some speculation is needed before 

a suitable mesh discretization is achieved. As there are no sharp 

corners here such problems are unlikely. Moreover, research into the 

cylinder problem has been more extensive; consequently a better 

knowledge of the flow behaviour is available, thus reducing the amount 

of speculation required. 

5.4.3 Results 

Using the nodal distribution scheme outlined in the previous 

section a steady solution of flow past a cylinder up to Re=40 is 

computed. 

Two meshes are used with figures 5.21(a) and (b) showing the 

coarse and fine mesh discretization for the region about the 
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obstruction. The coarse mesh has 16 nodes describing the cylinder 

while the fine mesh has 32 nodes describing the cylinder. 

The results are presented in terms of streamline and 

equivorticity plots about the cylinder. Both contour levels are 

normalised; with ý'=w/Ua and w'=-wa/U, where U is the inlet velocity and 

a is the cylinder radius. The Reynolds number is taken as; Re=2aU/v. 

These results are compared directly with the comprehensive 

(F. E) work of Tuann and Olson along with other (F. D) solutions where 

available. Each figure contains four plots, where (a) and (b) are the 

current solution for the coarse and fine mesh respectively while (c) 

and (d) are the results of earlier (F. E) and (F. D) work respectively. 

Since all the results are found to be symmetrical about the axis of 

flow only one half of the flow is presented. 

(i) Re=1 

Figures 5.23 and 5.24 show the streamline and vorticity plots 

respectively. The (F. D) work of Takami and Keller is used here for 

comparative purposes. -l 

The streamline results compare well with both earlier works. 

They show the slow motion ofluiý d without any separation on the 

downstream side of the body. The finer mesh produces a smoother 

distribution of stream function when compared to that of the coarse 

mesh. 

This is also the case for the vorticity plots: see figure 5.24. 

The (F. D) results show a vorticity distribution which is closer to the 

obstruction compared with both (F. E) solutions; however, all four plots 

are in good agreement with each other. They show the vorticity to be 
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a maximum close to the body , decreasing with distance away from it. 

It must be remarked that as the flow is so low that the vorticity is 

-also'nearly=symmertical--about an axis perpendicular to the flow through 

the centre of the cylinder. 

In addition figure 5.35(a) shows a plot of vorticity about the 

cylinder. This displays the vorticity increasing steadily from the 

downstream stagnation point, reaching a maximum at an angle of about 

1090 and decreasing to zero at the upstream stagnation point. 

(ii) Re=5. 

Figures 5.25 and 5.26 present the streamline and equivorticity 

plots for this Re. Again the (F. D) work of Takami and Keller is used 

for comparison. 

In the streamline plots all four results are in good agreement 

in the region away from the cylinder. Closer to the cylinder, however, 

both the coarse and fine meshes display a small separation zone which 

does not exist in either earlier work. There is a distinct decrease in 

length of the separation regions as the mesh is refined, indicating 

that this error is due to the limitation of linear element 

discretization in the region of the wake where large gradients of the 

unknowns exist. It is quite common to find the wake length varying 

with mesh refinement. 

As the Re increases the vorticity effects are pushed further 

downstream . Both the fine and the coarse mesh illustrate this 

clearly, with the former producing a more developed flow pattern. No 

(F. D) work is available at this Re; however, a good comparison with the 

work of Tuann and Olson can be seen. 
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Figure 5.35(b) shows the distribution of the wall vorticity 

with angle about the cylinder, where a comparison with the work of 

Tuann and Olson and the (F. D) work of Dennis and Chang is made. 

The vorticity distribution is similar to that at Re=1.0. Due 

to the increase in the Re the maximum vorticity value increases and its 

position moves upstream towards the inlet. Moreover, in the region 

about the downstream stagnation point for 0=0°to 15 ° the wall 

vorticity is zero. 

When compared to earlier work the wall vorticity for both 

meshes is larger then that of the earlier work, with the (F. E) work of 

Tuann producing closer agreement then that of Dennis and Chang. The 

position of the maximum is coincident for all the solutions at e=123°, 

except for the crude mesh which is positioned slightly downstream of 

this. 

The fine mesh produces a reduced wall distribution which is 

closer to both the previous solutions. Indicating how the solution is 

converging as the mesh is refined. 

(iii) Re=7. 

The streamline plots of figure 5.27 take a similar form to 

those of the previous Re. In the region away from the body the flow 

appears to be in close agreement with the earlier work. The (F. D) 

results quoted here are from Dennis and Chang. 

In the region close to the body and especially in the 

downstream section the comparison is not so good. All four solutions 

display some separation downstream of the cylinder; however; both 

current results produce a larger separation zone then the earlier work. 
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The work of Tuann and Olson shows closer agreement with the current 

work. 

All four vorticity solutions are in good agreement showing how 

its influence extends further downstream as the Re increases, see 

figure 5.28c. Again the fine mesh produces a better overall 

distribution then the coarse one. The solution presented by Tuann is 

somewhat unstable extending further downstream then the others. 

The wall vorticity plot, see figure 5.35(c), is of a similar 

shape to the last Re. As the Re increases the maximum vorticity on the 

wall also increases. There is a region close to the downstream 

stagnation point, from 6=0°to 23°, where the vorticity has become 

negative. This is indicitive of the growth of a separation zone, i. e a 

region where the fluid is rotating in the reverse direction. 

(iv) Re=10.0 

Figure 5.29 presents the streamline plots which display a 

continuing trend as the separation zone behind the obstruction grows 

with increasing Re. Again the results show greater separation when 

compared to earlier (F. E) and (F. D) solutions. The (F. D) results are 

taken from Dennis and Chang. 

The vorticity solutions are more favourable where all four 

plots show good agreement, see figure 5.30. Again the work of Tuann 

shows greater instability with the vorticity effecting the fluid 

further downstream then any of the other solutions. 

The wall vorticity plot, figure 5.35(d) shows the maximum wall 

value to have increased and the negative region about the downstream 

stagnation point to have enlarged, from ©=O°to 34°. 
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(v) Re=20.0 

The-streamline plot at Re=20.0 again show an enlarged wake due 

to the increased Re, see figure 5.31. Similarly the current results 

fail to compare well with the earlier work in the region close to the 

body, however, the fine mesh shows an improvement. The (F. D) results 

qouted here are again taken from Dennis and Chang. 

The vorticity plots shown in figure 5.32 are in good agreement, 

the vorticity having influenced the flow further downstream as the Re 

increases. The work of Tuann is again unstable and extends further 

downstream when compared to the other solutions. 

The wall vorticity distribution figure 5.35(e) shows an 

increased maximum and minimum value with the negative region extending 

from 9=0°to 45° . This plot shows the coarse results to be shifted 

downstream slightly when compared to the other results. The fine mesh 

produces a similar distribution to the previous results, although the 

actual values are again too high. 

(vi) Re=40.0 

The streamline plots again show an extended separation zone, see 

figure 5.33. The coarse mesh results look unstable as the inertial 

terms become very significant. The finer mesh produces a more 

reasonable result. It must be noted that both results display a wake 

whose width extends above the top of the cylinder, this is consistent 

with both previous results. 

Turning to the vorticity plots, see figure 5.34, the coarse 

mesh produces a very unstable solution, however, good agreement is seen 
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between all four solutions. The work of Tuann again presents an 

unstable solution. The fine mesh plot shows some small oscillations of 

the contours upstream of -the obstruction, these are generally 

associated with excessive inertial effects for the mesh discretization 

used. 

The wall vorticity distribution has grown as expected , see 

figure 5.35(f), with the maximum and minimum vorticity values 

increasing and the negative vorticity region extending from 0=0°to 56,0. 

(iv) The Development of the Wake 

Above, the results are presented and successful comparison with 

earlier work is made. Here a discussion of the development of the flow 

with increasing Re is explained. 

At Re=1 the flow is slow and creeping with the viscous terms 

dominant, producing a nearly symmertical pattern between the upstream 

and downstream part of the obstruction. 

By increasing the Re to 5 the inertial effects become more 

significant. The flow becomes assymetric as the vorticity begins to 

influence the flow downstream of the body. The wall vorticity graphs 

help to illustrate this assymetry as the position of the maximum value 

moves towards the upstream stagnation point. 

At about Re=7. separation of the fluid occurs in the downstream 

region of the cylinder. This phenomenon of separation is well known in 

viscous fluid flow and can be clearly explained using the cylinder 

problem as an example. 

Various experiments have been carried out bearing the 
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conclusion that separation can only occur in a fluid flow environment 

containing a negative pressure gradient. 

The pressure distribution on the obstruction is crucial to the 

fluid behaviour about it. Starting at the upstream stagnation point 

the pressure applied to the wall is a maximum. Moving along the wall 

downstream to the top of the cylinder, the fluid speed increases and 

the pressure drops to a minimum, thus producing a positive pressure 

gradient along this section of the wall. Moving further downstream 

towards the downstream stagnation point the fluid velocity decreases 

again, producing a negative pressure gradient in this region. 

If the frictional effects are large enough the fluid fails to 

reach the downstream stagnation point before its velocity becomes zero 

and so separation occurs producing a negative velocity recirculation 

zone in this part of the cylinder. As the fluid flow direction in this 

zone is opposite to the main direction of flow it is reasonable to 

expect the fluid to be rotating in a negative direction to the external 

region. 

Increasing the Re further the pattern continues with the 

vorticity influencing the fluid further downstream from the 

obstruction. In conjunction, the separation point creeps upstream 

along the wall extending the region of separation behind the body. As 

the negative gradient rises the fluid flow in this region is retarded 

sooner thus causing separation to occur closer to the top of the 

cylinder. 

As mentioned above at Re=40.0 the wake region becomes wider 

than the cylinder diameter, although the point of separation is still 

below the top of the cylinder. This means that the wake region is no 
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longer completely screened from the oncoming flow by the cylinder. It 

is speculated that this is the reason for the unsteady vortex shedding. 

For if the Re is increased above 40 regular oscillatory vortex shedding 

occurs alternatively from the top and the bottom of the cylinder. 

Such a study is not included here, however, extensive work on this 

subject has been presented by Smith. 

5.4.4 Conclusions 

The solution of flow past a cylinder is presented for the 

steady state case at a Re of 1 to 40. Good comparison is made with 

earlier numerical work. 

The streamline solution shows the poorest comparison with 

earlier work in the region close to the body. Conversely, the 

vorticity solution provides a reasonable comparison up to a Re of 40, 

although at this Re the coarse mesh contour lines display large 

oscillations. 

In truth this mesh is inadequate when modelling flows at high 

values of Re. However, it provides a guide to the lower limit 

capabilities of the solution scheme. The fine mesh produces a good 

vorticity distribution, however, at Re=40 there are small oscillations 

in the contour lines upstream of the obstruction. This indicates the 

presence of excessive inertial effects. 

The wall vorticity results show the current solution to be 

converging towards that obtained by earlier numerical work as the 

domain mesh is refined. The vorticity about the body for the fine mesh 

is still somewhat larger than in the earlier solutions. 

This underlines the limitations of the use of linear element 
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discretization when modelling flow close to the no-slip wall. Here the 

cylindrical obstruction has been described by a polygon of sixteen 

sides for the coarse mesh and thirty-two sides for the fine mesh. 

Increasing the number of sides on the polygon will obviously improve 

this approximation. Since there are large variations of the flow close 

to the obstruction, this region is very sensitive to any change in wall 

shape. In experimental work great care is needed to ensure that the 

obstruction is free from any uneveness, as they are found to alter the 

resultant flow considerably. Such uneveness can reduce the upper limit 

of steady state flow, for example the uneven surface of a golf ball 

encourages the development of a turbulent wake improving its flight 

through the air. The unsmooth shape of the fine mesh, even using 32 

nodes, is causing a similar effect of the vorticity close to the wall. 

In order to combat this a greater mesh refinement can be 

carried out. In the steady case the problem may be halved by 

considering just the top part of the problem with an axis of symmetry 

running from the inlet to the outlet boundary . 

A further improvement to the description of the no-slip wall 

boundary may be made if the local wall elements are replaced by 

superparametric elements with the boundary side described by a curve. 

The stream function is poorer then the vorticity since it is 

calculated using the approximate solution of vorticity. This has been 

disussed in detail in section 5.2 in the case of the square cavity 

problem. In that section the (F. E) work of Tuann and Olson produced 

better results for stream function then vorticity. Here for the 

cylinder problem this is also the case as the vorticity plots of Tuann 

produce erratic contour levels, especially at the higher Re. The 
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reasons for this are the same, with the flow being solved in terms of 

stream function and vorticity being computed once convergence has been 

achieved. 

The problem of flow past a cylinder is modelled using the 

(F. E. M) in terms of stream function and vorticity, with the use of the 

mesh generation scheme to discretize the region. 

The results are compared with earlier* numerical work and 

reasonable agreement is achieved. These results also demonstrate the 

ease with which the system can model a bluff body problem. 

Consequently, the scheme could quite easily be adapted to study the 

flow past an aerofoil shaped body for example. Such predictive work is 

beyond the scope of this current research. 

Three flow problems are presented here. Earlier numerical 

work and experimental work is used in order to assess the results. A 

reasonable comparison is found, however improvements can be made to 

each problem studied. 

In conjunction, the scheme is demonstrated to correctly 

discretize three general cases of flow problem automatically, i. e 

enclosed flow, channel flow and bluff body flow. This list may be 

extended; however, such a study is beyond the limits of this work. 

With the laminar flow case having been extensively studied the 

emphasis shall now turn to the solution of turbulent flow conditions. 

In the following chapter the way in which this is done is presented. 

By modifying the existing program it is possible to extend the scope of 

this work to the mechanisms of turbulence. 
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6.1 Introduction 

In the previous chapters the solution of fluid flow for the 

laminar case is studied. Here the concepts of turbulent flow are 

introduced and the methods of solution are discussed. 

In laminar flow the fluid moves in a series of layers with no 

momentum transfer between them. In turbulent flow, however, although 

the overall flow is in one direction, superimposed on this is an 

irregular transverse motion. The distinction between the two types of 

flow was made by Reynolds in 1883 while tracing the flow of fluid in a 

circular pipe using a dye. 

Clearly as there are two mechanisms of flow a different 

solutions approach is required for both. However, the set of (N. S) 

equations govern the flow of a fluid. whatever its mechanism, but in the 

case of turbulent flow the equations have to be written in a more 

suitable form. If the existing equations are solved within the 

turbulent range of flow the results obtained will change with discrete 

intervals of time. These values have no overall meaning, since they 

represent random fluctuatations of the flow with respect to time. 

If the equations are written in terms of time averaged values 

the results obtained are of a more practical nature. When dealing with 

turbulent flow conditions the time averaged values of the unknowns have 

more practical relevance then the discrete fluctuating ones. 

When the equations are written in terms of time averaged 

velocity and pressure extra terms exist in the momentum equation. 

This is due to the transfer of momentum across the shear layers and is 

called the turbulent or Reynolds stress. 
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The problem arises when expressing this stress in terms of 

solvable unknowns in order to achieve closure of the set of equations. 

Work by Boussinesq in 1877 attempted to write the Reynolds stress in a 

form similar to the viscous stresses by introducing the concept of 

apparent viscosity. Although the idea of relating fluctuating stress 

to mean time averaged velocity has physical limitations, it has proved 

to be most successful in practice. 

The apparent viscosity approach was later extended by Prandtl 

in 1925. Basing his ideas on the molecular theory of gases he 

developed a relation for this viscosity in terms of a mixing length and 

time averaged velocity. It is now possible to shed some light on the 

physical meaning of the mixing length. It is similar to the mean free 

path in molecular theory and represents the distance travelled by a0 

lump of fluid before it changes its momentum. 

For some flow conditions the mixing length has been measured 

and is found in most cases to be of the order of the boundary layer 

thickness; see Escudier [47]. With some knowledge of the size of the 

mixing length closure of the governing equations is possible for 

certain turbulent flow conditions. 

Before the development of computational methods sophisticated 

analytical techniques were used to solve these problems, where the 

partial differential equations are integrated into ordinary 

differential equations and solved. In order to solve such equations 

crucial assumptions about the flow behaviour had to be made. At the 

Stanford conference in 1968 all the various techniques for predicting 

turbulent layer flow were assessed. The overall conclusion of the 

conference was that the numerical technique, particularily the (F. D. T) 
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at the time, proved to be more accurate and more general when compared 

to the best integral method; see Reynolds; W. C [481 for a review of 

this -conference. This conference was very much a watershed for the 

solution of turbulent boundary layer problems and heralded the future 

potential of the numerical approach. As a result much work has been 

carried out to achieve (F. D) solutions for this problem in terms of 

time averaged unknowns. 

Cebeci and Smith [17] developed a solution technique where 

closure was obtained by using the apparent or eddy viscosity concept. 

Work by Patankar and Spalding [18] developed a similar procedure and 

obtained closure to the equations by the use of Prandtl's mixing 

length. 

Gosman et al [4) solved the problem in terms of the time 

averaged stream function and vorticity, again defining the Reynolds 

stress by the use of mixing length. A further (F. D) solution in terms 

of stream function and vorticity as the dependent variables was 

presented by Richman and Azad [49] for flow through a circular pipe. 

Here again Prandtl's mixing length concept is employed. 

More recently work at Swansea has been carried out to develop a 

(F. E) solution scheme based on mean value primitive variables and again 

the mixing length idea has been adopted; see Hughes [19]. Here a 

variety of flow conditions has been modelled, from the axysymmetric 

flow through a pipe to the two-dimensional flow of a mixing layer. 

It must be noted that although the mixing length concept has 

shown a wide success, it is based on major assumptions about the 

mechanisms of turbulent mixing. Attempts have also been made to define 

the Reynolds stress directly by introducing separate differential 
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equations. Such schemes are very complicated and have proved to be 

computationally costly without any marked improvement in accuracy. For 

a comparison of both approaches see Birch [50]. 

Below the mixing length concept is explained more fully, with 

its adaptation to the stream function vorticity equations presented. 

6.2 The Equations of Turbulent Flow 

The two equations governing fluid flow are: 

continuity: 

au- 
1=0 

ax. 

momentum: 

du. au. dP 
au 

dt + uj + 
taxi. } 

8x 
3P 

dxi V axj J 

Again assuming that molecular viscosity and fluid density 

remain constant. 

Considering an arbitrary variable a: 

a =A+ a' 

where: JT A=T a(t + T) dT 
0 

where T is large compared to the time scale of turbulent flow. 

Where A is the time averaged value and a is the fluctuating 

value of the variable a. Similarly the variables velocity and pressure 

are defined in the same manner: 
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U. = Ui + ui 

P =P +p' 

Fitting into the above equations of motion to obtain: 

au. 1=o (6.2.2) 
ax. 

auf au i1 dP a ui au .a __T_ dt } Uj 
ax. p dx. + ax. 

(-C5 

x. 
+ ax. ax. 

dui j) u 
J1JJ13 

(6.2.3) 

The term caused by the fluctuating velocity may be considered 

as an extra component of stress in addition to viscous stresses and the 

direct pressure. 

The complete stress effect may now be expressed as: 

6i jU Di -p ui u! 13 JJJ 

Did - the time averaged deformation tensor 

p ui uý - the Reynolds stress 

It can be readily seen that the Reynolds stress is of a tensor 

form, similar to the viscous stresses. It was for this reason that 

Boussinesq interpreted them to be proportional to the mean velocity 

gradient, thus introducing the idea of turbulent viscosity. 

The stress tensor may be defined accordingly: 
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Q13 -1' 6 id + (u +P ems via 

where 
u au 

_ 
U. U. 

Em Dij em 
[10 

x. 
+ ax. 

J1 

em - turbulent viscosity 

This may be envisiged physically as an additional viscosity 

caused by the transverse motion of turbulent flow. A distinction must 

now be made between molecular viscosity and this apparent viscosity . 

The former is a property of the fluid, while the latter is a property 

of the fluid motion and disappears when the turbulent mechanisms 

diminsh. 

The introduction of the turbulent viscosity is a simple way of 

relating the fluctuating terms of the Reynolds stress to the mean flow 

velocity. 

Few people have actually used the equations in this precise 

form, since a direct definition of turbulent viscosity is difficult to 

predict. 

Consequently, Prandtl devised a relation for the turbulent 

viscosity based on the classical concepts of molecular viscosity. The 

molecular viscosity is caused by the diffusive nature of the molecules. 

Here the turbulent effects are considered to be caused by the diffusive 

nature of lumps of fluid. Considering the transport of a scalar a 

across a plane perpendicular to x2. 'The transport per unit area and 

time is: 
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_pý 
3a 

a2 ax2 

L- the mean length over which a lump of fluid travels 

Refer to Minze [51] for a more extensive discussion of the 

mixing length concept. 

Let a be the xl component of momentum per unit mass of fluid 

per unit area in unit time. 

a(pu 
m= u2Lm ax 

1 (6.2.5) 
2 

defining the turbulent stress components as follows: 

a12 =-m=-P u2Lm ax 

au 

2 

where the eddy viscosity becomes 

em - u2Lm (6.2.6) 

Assuming that the component ui is the difference in mean 

velocity between two adjacent layers of fluid; the fluctuating velocity 

may be expressed as: 

U' =L 
3Ul 

1 ax2 
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equating the fluctuating velocities in orthogonal directions: 

3U1 
u2 ui L Dx 

where the sign is defined by L. 

Substituting this into equation (6.2.6) the turbulent viscosity 

becomes: 

m2m 

aUl 

2 e=-uL= 
CONST. X 

in ax 

em = Q2 
aul 
ax 2 

(6.2.7) 

Q- is the mixing length 

The turbulent stress component may now be expressed as: 

aul aUi 
012 =p2 aX X 

(6.2.8) 
2a2 

Where 9, is Prandtl's mixing length, and represents the distance 

travelled by a lump of fluid before losing its excess momentum. It is 

now possible to express the Reynolds stress in a form more suitable for 

solution in terms of time averaged unknowns: 

aU. aU. 

axl axl 
(6.2.9) alb p ul uJ _p £2 

JJ 

It can be readily seen from the above relationship that in its 

general form the turbulent viscosity is a second order tensor. For the 
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specific case of two-dimensional unidirectional flow this is simplified 

to a scalar, e. g. for channel flow. 

The problem of solving turbulent flow has now been reduced to 

evaluating the mixing length. It is at this stage that empirical 

knowledge based on experimental investigation is sought. 

6.3 The Mixing Length Model 

It is now necessary to predict how the mixing length will vary 

within a turbulent region. Broadly speaking turbulence may be split 

into two types: free shear turbulence and wall turbulence. 

Both pose two distinct problems when predicting the variation 

of turbulent effects within the region. To do this a knowledge of the 

way the fluid behaves in such regions is required. 

(i) Free Shear Flows 

This is classified as a turbulent flow without the presence of 

a solid wall. Examples of this are the wake behind a cylinder and the 

wake of a jet. - 

All these wakes display a slowly widening pattern, with a 

similarity of the velocity profile downstream of the original 

disturbance. The turbulent viscosity is constant throughout the wake 

and so the mixing length is similarly taken to be a constant; see 

Townsend [52]. 

The mixing length may be written: 

I 
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= K1 d 

d- half width of the jet 

fil - empirical constant 

Where the flow is in the xl direction. 

(ii) Wall Turbulence 

There are two types of wall turbulence, that caused by the flow 

around rigid bodies and that by flow which is bounded within rigid 

walls. For both these conditions the behaviour near the wall is the 

same. 

Here, the problem of flow past a flat plate with zero incidence 

to the flow direction is used to demonstrate the general concepts of 

wall turbulence. 

The flow may be split into an external and an internal region. 

In the external region the fluid is unaffected by any disturbance 

whether viscous or turbulent, and may be considered inviscid. 

Conversely in the internal region the fluid is affected by both; as the 

wall is approached the viscous effects increase and the turbulent 

effects diminish until the flow becomes completely laminar adjacent to 

the wall. This dramatic change between the two regions was first 

proposed by Prandtl for the limiting case of reduced viscous effects 

with increasing Re. He concluded that no matter how large the Re there 

always exists a thin layer about the wall where the viscous effects are 

. significant: this is called the turbulent boundary layer. 

This layer can now be subdivided to obtain a fuller 
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understanding of the flow. 

Close to the wall the viscous effects dominate with the 

turbulent effects becoming negligible; this is called the viscous 

sublayer, i. e. x2 <6, see figure 6.1. Moving away from the wall the 

viscous effects decrease as the turbulent effects become more 

significant. At a certain point the turbulent effects begin to 

dominate, as the viscous effects tend to zero, i. e. atx2= t, 
this 

marks the start of the turbulent boundary layer. Between the end of 

the viscous sublayer and the start of the turbulent boundary layer 

there exists a transition region, where both effects are important, 

i. e. where YX2<6t.. 

The flow close to the wall is determined by assuming that the 

shear stress is constant throughout the viscous sublayer; producing a 

linear variation of velocity: 

Q 

Ü 
1u X2 X2 

ßw - wall shear stress 

The region of the turbulent boundary layer, i. e. bt<x2, is 

still sufficiently close to the wall for the shear stress to be assumed 

constant. Ignoring the viscous effects and assuming a linear variation 

of turbulent viscosity the velocity distribution is shown to be 

logarithmic: 

U1 =A Zn x2 +B x2 > 6t (6.3.2) 

Prandtl obtained the same logarithmic variation for velocity by 
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assuming a linear variation of the mixing length. 

The region where the linear velocity variation and the 

logarithmic velocity variation hold is called the constant stress 

layer. There is however a large part of the turbulent boundary layer 

where the shear stress is not constant. In this region the flow 

behaviour is similar to the external region where the turbulent 

viscosity is constant. 

No direct relation for the velocity profile is available in 

this non-constant stress region, however, there is a similarity of the 

velocity profiles in consecutive sections, which is described by the 

velocity defect law: 

U- Ux) Dl 
=( 

2 (6.3.3) 
un 

Yoý. 

u- wall friction velocity, u* =IpJ 

y( )- arbitrary function 

U0 - free stream velocity 

No further information is needed about the velocity in this 

region, since it has been found experimentally to coincide with the 

velocity variation in the constant stress region. 

So far the equations describing the velocity variation in both 

the fully viscous and the fully turbulent region have been presented. 

It is now necessary to obtain a smooth transition between these two 

,. limiting cases. Many attempts have been made to do this. A most 

successful attempt to describe the entire region using a single 

relation has been developed by Van Driest [531. 
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(iii) Van Driest's Model of Will Turbulence 

-Work- by Van Driest, produced a, theoretical velocity variation 

for the entire boundary layer. 

He bases his derivation on the diminishing amplitude of an 

oscillating fluid as a stationary wall is approached. The amplitude is 

found to increase by the factor [1-exp(-x2/A)] with distance from the 

wall. 

From equations (6.2.4) and (6.2.8) the total shear stress may 

be defined as: 

mull aUl aU1 
u il 

ax 
1+ p 2,2 ax ax (6.3.4) 

222 

As the wall is approached the turbulent effects are diminished 

and the viscous effects will dominate. In the turbulent boundary 

region Prandtl proposed that the mixing length varied linearly with 

distance from the wall. 

Q=º; x2 

K- universal mixing constant 

Van Driest assumes that the turbulent effects behave in a 

fashion similar to oscillations in the fluid and so derives a 

relationship for the mixing length over the entire boundary. 

X2l 
9. = I1 - exp JK XZ (6.3.5) 
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substituting this into equation (6.3.4) produces: 

DU 
Tfw - 11 

1ax 12 

ßu1(6.3.6) r ''2 12 Jau1 [axi) 
º: 

2 X2 I1- ehp 
I- 

A, 
1 

ax2 

A- Van Driest's damping parameter 

K- the universal mixing constant 

r nw - shear stress near the wall 

From this a formula for the velocity in the boundary layer was 

derived and found to match for all the three regions of the layer. 

Consequently it is possible to describe the full boundary 

region using the mixing length of Prandtl in*conjunction with this 

model. However, some empirical knowledge is still required in order to 

evaluate the damping constant A and the universal mixing constant K .. 

Furthermore, moving away from the wall, the turbulent stresses 

increase. At a certain point the wall no longer influences the 

transport of turbulence and the turbulent viscosity becomes constant. 

Consequently, it is also nesessary to define this cut-off point before 

a solution can be made. 

The mixing length for turbulent flow near a wall may now be 

expressed: 

( X2 
Q= [1 - exp I-Ir. XZ X2 xc 

(6.3.7) 

Q=Y. (x 
2=x c) 

x2 %, xc 
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The choice of cut-off point ac beyond which the turbulent 

effects are assumed constant is dependent upon the problem to be solved 

and is the subject of certain speculation. 

To summarize, closure of the time averaged equations is 

achieved by describing the Reynolds stress in terms of the mean 

gradient of flow and the turbulent viscosity. This apparent viscosity 

is subsequently defined in terms of mixing length, for which an 

empirical relation is presented. 

It is now necessary to express these equations in terms of 

stream function and vorticity, for which there already exists a (F. E) 

solution program. 

6.4 The Turbulent Equations in Terms of Stream Function and 

Vorticity 

As in section (6.2) above, the equations may be expressed in 

terms of their respective time averaged unknowns: 

V =''+ýl (6.4.1) 

w=i +c' 

The relationship between stream function and vorticity see 

equation (2.3.4), becomes: 

a2y 
a_ -St (6.4.2) 

J 

Considering the vorticity as a scalar, the turbulent transport 

may be obtained quite simply, where the source term is taken to be 
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zero: 

DQ 
_ 

320 
3(U1 w') 

vt ax. (6.4.3) 

This equation is of a similar form to equation (2.3.3) with the 

extra term representing the turbulent transport effect caused by the 

fluctuation of the velocity and the vorticity in the fluid. 

Applying Boussinesq's concept of turbulent viscosity this may 

be rewritten: 

asp ui w= ew ax. 
J 

cw - the turbulent vorticity viscosity 

Applying Prandlt's mixing length hypothesis the turbulent 

viscosity may be expressed as: 

au. 2 (E 
w) 13 = ýw 

axi 

The value of the mixing length is not necessarily of the same 

form as that of momentum; however, in this case, as in many, it is 

taken to be so. 

The transport of vorticity for two-dimensional unidirectional 

turbulent flow may now be written as: 
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22 

Dt ä+ 
(ýw JýUlj 

5x ax 
C6. a. +) 

1 

This equation may also be derived by taking the curl of the 

two-dimensional momentum equation. This leaves residual terms which 

are not significant in the flow problem modelled here. The (F. D) work 

of Richman and Azad found the effect of including these terms to be 

minimal, a similar conclusion was reported by Gosman. 

An algebraic closure to the governing equations has been 

achieved. Subsequently the solution of developing flow in a channel 

is presented. 

The shortcomings of this particular model are well known and 

many efforts have been made to improve on it. A major criticism of 

this approach is that it only accounts for the local influences of 

turbulence. 

In order to improve this Prandtl and Kolmogorov proposed that 

the turbulent stresses be related to the time averaged kinetic energy. 

This requires the solution of an extra differential equation for the 

kinetic energy: such a scheme is called the one-equation method. 

This was later extended to a two equation method, where the 

mixing length distribution is obtained by an additional differential 

equation. For a background of these models see; Launder and 

Spalding [54]. 

Both these models are beyond the scope of this work, but are 

necessary avenues of research when solving flows of a more complex 

nature. 
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6.5 The Finite Element Implementation 

'So far-closure of the governing equations describing turbulent 

flow is achieved by the introduction of apparent or turbulent 

viscosity. In the previous section these ideas have been applied to 

the existing vorticity transport equation and now the existing (F. E) 

program is extended to deal with certain turbulent cases. 

The total viscosity may be expressed as the sum of the 

molecular viscosity v and the apparent viscosity va. 

vt =v+ va (6.5.1) 

This may be defined more specifically: 

x2 2 12x ull 
vt =v+ K2 x2 [1 - exp (- ý)ý 

(6.5.2) 
2 

Since the total viscosity is no longer constant throughout the 

fluid domain the turbulent vorticity transport equation may be 

rewritten as: 

(v c2)1 nsi _a 
ýX- 

.tJ 
(6.5.3) 

Jj 

This may be expanded to give: 

a2v Do 2 

Dt =? +2 axt ax. + vt (6.5.4) 

JJ 
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Comparing this equation with the original Laminar vorticity 

transport equation (2.3.3) extra terms on the right-hand side have to 

be-included in the existing (F. E) formulation. 

Consequently applying the weighted residual technique in the 

same manner as before, as in section (3.2). 

a2v av2'1 [E2 
2t an 

_v ac 6 nap n- ah. ax. ax. t 

JA 

=ax - j333 

- vt (gn - 
an> aQ as =o (6.5.5) 

s m2 

The boundary conditions applied are identical to those used 

previously. Similarly the finite element equations are expressed using 

linear interpolation. The total viscosity values integrated over an 

element or its side may therefore be expressed as an average. 

By comparing the above formulation with the original one, see 

equation (3.2.4a), it can be seen that all but the second and third 

terms of the integral statement have already been derived. 

Considering these two terms alone: 

21 

- 

JA 
St aQ+2 ax Jt ax 

S2J an 

As in the case of the stream function and vorticity, for the 

benifit of expressing these terms the variation of the total vorticity 

is taken to be linear within each element. Consequently in order to 

express the first term it is necessary to integrate it by parts to 
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reduce its order. 

[32vt a ý 

n6 
]dA 

=- 
S an 6nn dS 
W 2 

apt IA 
Lax. ax . 3 

(6 sl n)] dA = 

- 
as taQn as + aat 

aäxSl) n dl + 
AJJ 

2 

I aVt aýl d S2 dA JA axe axe 

The additional terms may now be expressed as: 

vt 3(SSZ) 
_ 

apt aSt S ný dA - 

8v 
tnSn (6.5.6) 

A 
laxe axe axe axe s 

an 
w2 

The domain is again discretized and the unknowns are expressed 

in terms of discrete nodal values: 

n=NE n=NE St =E ýT S2 . 'Y 
JJ =E Q, T 

'Y . n=1 n=1 J -J 
(6.5.7) 

n=NE 
vt=E ýT v, 

n=1 J 
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where: 

ava¢j 
tl = Ja; a 

¢ýax da 

avt aý. T (6.5.8) 
t2 ax. 

ä da 
jaJ 

s= ri 
T ds 

B 
s w2 

Consequently the complete element formulation is expressed as: 

Em + a(n) ýn +vk cn 
av - 

nnn -tl St +t2St -sn -vav-ýw (6.5.9) 

vav - average total viscosity on an element 

The element effects are again summed together and the global 

form of the finite element formulation is obtained. 

M52+A (02+ v Ký2-T i2 +T QSQB 
av -1 - -2 av -w (6.5.10) 

The relationship between the time averaged stream function and 

the vorticity is similar to the laminar case; see equation (6.4.2). 

The boundary conditions are also the same. Subsequently the global 

form of the equations may be expressed as: 

KT- ri a=B (6.5.11) 
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The set of matrix equations have been presented; it is now 

necessary to arrange them in a suitable form in order to integrate 

-through time. 

6.6 The Solution Technique 

As the fractional step technique is shown to produce successful 

results for many laminar problems, it is reasonable to extend its use 

to solving flow in the turbulent range. 

Adopting this solution scheme as before it is necessary to 

express the solution equations in terms of time averaged variables and 

include the extra matrices. 

The solution scheme may now be described: 

(i) Input initial values of vorticity, nt, and obtain 

values for stream function, see equation (3.3.2): 

K Tt =M Sl 
t (6.6.1) 

(ii) An increment of stream function is now computed; see 

equation (3.3.3) 

KK 

C-A dl W Qt - vav K Sgt + T1 at - T2 ! it +S Sgt] 

(6.6.2) 

(iii) Writing the momentum formulation in terms of, at and 

! 
t+Atan increment of vorticity is computed, see equation (3.3.4). 
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MA SZ =-At[A i9't+Ad 
-ýIt+vavh 

-t 

- T1, Qt + T2 Sit -S 52t - vav F1 ! 
t+tt 

va r2 itl (6.6.3) 

(iv) By writing the momentum formulation in terms of Rt+2At 

and Tt+, 
t a futher increment of vorticity is obtained; see equation 

(3.3.5). 

ri [fit+A 
(fit+At) +vavK-T1+T2 

-S- vav F2J SZ =- jA ('t+at) + va 

-11+ T2 -S- vav F21 2t+Ot + vav F1 'yt+At (6.6.4) 

(v) Finally the stream function is updated by solving the 

Poisson formulation again. 

1 1t+2t, 
t = Mat+2tt 

At this stage the turbulent viscosity is updated using the 

algebraic relation and the cycle starts again at step (ii). It must be 

remembered that although the problem is time dependent, as the unknowns 

are time averaged, the solution is expected to be steady for most 

turbulent flows. It is only in some special cases that the time 

averaged solution of a turbulent flow is unsteady. 
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In this chapter the problem of modelling turbulent flow is 

discussed. The implementation of a suitable solution approach is 

-presented, -based on"the'mixing length concept. 

This is introduced to the existing (F. E) program in order to 

permit the solution of some turbulent problems. Finally the 

fractional step time integration scheme is adopted to solve these 

equations. Below the unidirectional flow within a two-dimensional 

channel is presented, starting with the laminar case and finally 

extending the solution to turbulent conditions. 

6.7 The Developing Flow in a Channel 

In the previous sections the methods of solving turbulent fluid 

flow problems are discussed with particular reference to the mixing 

length approach. Later this concept is applied to the existing laminar 

flow program. 

Here the suitability of this model is assessed by calculating 

the developing flow in a two-dimensional channel. This may be 

considered a prototype of a wide- range of more complex wall shear 

problems. Owing to its comparative simplicity it may be used as a test 

problem for any two-dimensional turbulent solution scheme. 

In the developing flow of a channel the flow changes from a 

boundary type at the entrance to a fully developed type at some 

distance downstream. The boundary layer grows from zero at the 

entrance until it reaches the centre line of the channel at which point 

the freestream is completely screened. 

Early methods of solving such flow problems involved suitable 

integral techniques. The assumptions made in order to permit such a 
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solution restrict their validity to the region where the freestream 

still has an influence, i. e. 0.0<x/A<15, where A is the channel width. 

Leading on from this a (F. D) solution of developing flow in a 

pipe was computed by solving the full time averaged stream function 

vorticity equations using the eddy viscosity concept to achieve closure 

of the equations, see Richman ad Azad [49]. 

More recently a (F. E) solution of the problem was reported by 

Hughes [19] employing the same closure techniques in terms of time 

averaged velocity and pressure. 

Here the (F. E. M) is extended to solve the equivalent two- 

dimensional flow problem in terms of stream function and vorticity. 

An identical comparison between developing pipe flow and 

channel flow is not expected. However similarities in the flow 

behaviour are expected. 

(i) The Problem Description 

Figure 6.2 illustrates the boundary distribution for developing 

flow in a channel. On the left hand or inlet boundary the vorticity is 

zero and the stream function is prescribed to be linear, thus providing 

a free stream parallel flow condition at the channel entrance. 

The bottom longitudinal boundary is a no-slip wall. On the 

top boundary the stream function and the vorticity are both prescribed, 

this free-slip wall describes the centre line axis of symmetry of the 

channel. The downstream or outlet boundary is described in the usual 

way. 

As the problem region is a rectangle the mesh discretization 
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may be simply described in terms of two arrays, the first containing 

the location of the nodes along the channel and the second containing 

the location of the nodes across the channel. Obviously the lateral 

variation of the flow variables is greatest close to the no-slip wall. 

Consequently the nodes across the channel must be placed closer 

together as the wall is approached. Similarly in the region adjacent 

to the entrance of the channel the lengthwise variations of flow are 

largest as the boundary layer grows. It is therefore necessary to 

position these nodes closer together in the entrance region. 

It must be remembered that there is a singularity at the bottom 

left hand corner where the inlet boundary and the solid wall join. 

Here a drastic change in the flow field occurs, from the freestream 

velocity of the adjacent inlet node to the zero velocity condition on 

the no-slip wall. Consequently a fine discretization of this region 

is required. 

Two meshes are used to solve this problem, where the 

longitudinal nodes are positioned at; 0.0,0.05,0.1,0.2,0.3,0.5, 

0.75,1.0,1.5,3.0,5.0,10.0,20.0,30.0,40.0,60.0,80.0,100.0,120.0,140.0, 

160.0,180.0,200.0. The nodal positions across the channel are; 

0.0,0.01,0.025,0.05,0.075,0.1,0.15,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0. 

The second mesh has the same distribution of nodes along the 

channel but a finer distribution of nodes across it. This distribution 

is the same as that used by Richman and Azad, where the width of the 

channel is divided into twenty equal spaces. The first eighteen are 

retained with a further twelve nodes between the no-slip wall and the 

node at y=0.1, a geometric progression of 1: 1.4 is used. 

Since the (F. E) model assumes only a linear variation of the 
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unknowns a fine discretization of the domain is needed to describe the 

large flow variable gradients which prevail in turbulent flow 

conditions. 

As a preliminary to solving the turbulent flow case and to 

provide suitable initial conditions for this problem the laminar case 

is computed. 

(ii) The Laminar Flow Case 

Implementing the original solution program as used in chapter 

five the channel problem is solved for Re=10,100,200,2500. 

Finally the vorticity results obtained at Re=2500 are used as 

the initial values of the turbulent flow. It is known that the 

transition from laminar to turbulent flow occurs at about this Re. 

The behaviour of developing flow can be described as the 

transition from the boundary layer at the entrance to a fully developed 

profile some distance downstream. In the case of laminar flow the 

fully developed velocity profile takes the form of a quadratic 

variation, as discussed in section 5.3. Results show this quadratic 

profile to exist, being described here by a cubic variation of stream 

function and a linear variation of vorticity across the channel in the 

fully developed region. 

This pattern exists whatever the Re. However, by increasing it 

the developing region extends further into the channel as the fully 

developed region is pushed downstream. The Re is defined as Re=AU/v, 

where A is the channel width and U is the inlet velocity. 

Figures 6.3 to 6.6 show the stream function and the vorticity 
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plots for the developing region at Re=10,100,200 and 2500. The contour 

levels are normalized; w'=yi/UA and c'=-Am/U. 

At Re=10 the vorticity and stream function plots show a small 

transition region from the entrance to the fully developed flow region 

where both fields show contour lines running parallel to the flow 

direction, see figure 6.3. The vorticity results highlight the 

singular point at the lower left hand corner where even at such a low 

Re the gradients are large. 

As the Re is increased the transition region extends further 

downstream and the fully developed region of flow is pushed further 

away from the entrance. 

At the same time the large variations caused by the singularity 

also grow downstream. Finally at Re=2500 the vorticity plots look very 

unstable since it seems likely at this stage that the flow mechanisms 

are changing from laminar to turbulent, see figure 6.6. 

A (F. E) solution of this problem was reported by Baker [121 

using a stream function vorticity approach. Current results compare 

well with this work. 

Figure 6.7 compares the velocity profiles in the developing 

region of flow for Re =200 and 2500 respectively. This illustrates how 

the fully developed region is forced downstream as the Re is increased. 

At Re=200 fully developed flow starts at approximately between x/A=1.5 

to 2.5, whereas at Re=2500 it starts at between x/A=5.0 to 10.0. 

Finally figure 6.8 shows the axial velocity along the channel 

at different distances across the channel at Re=2500. This clearly 

shows how the free stream velocity is diffused in the entrance region 
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resulting finally in a fully developed flow condition. 

(iii) The Turbulent Case 

Using the laminar vorticity field from the solution at Re=2500 

as the initial conditions of the turbulent solution is obtained at this 

Re. 

An algebraic closure of the equations is achieved where; K=0.38 

and A=26.0. The cut-off point for Van Driest's damping condition is 

at: x 
yl 

K 

A=0.09 

K- the universal mixing constant 

These parameters are taken from a (F. D) solution by Oliver 

[55]. Where a solution to developing flow within a pipe is solved 

using a stream function vorticity approach. He introduced two 

different algebraic models one in terms of a variable mixing length 

throughout the boundary layer and another in terms of a variable 

viscosity throughout the layer. Little difference was found when 

comparing both methods. 

Two meshes are used here to model the turbulent conditions. 

Figures 6.9 and 6.10 show the velocity profiles and the axial plots for 

both these meshes respectively. 

Both results illustrate a marked change in the velocity 

distribution throughout the channel. The laminar velocity profile has 

now been replaced by a flatter profile across the channel. This is 

-clearly 
displayed in figure 6.10 where the axial velocity is higher 

close to the wall and the centre line velocity is retarded. 
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Both the meshes produce similar flow configurations, with the 

coarse mesh producing a more diffused flow field. Also the finer mesh 

produces a smoother velocity field in the developing flow region. 

This change is consistent with the theoretical mechanisms of 

turbulence. Where the transfer of momentum lateral to the flow 

direction results in a better distribution of the time averaged 

velocity across the channel. 

This result is borne out by the velocity distribution obtained 

for flow in a circular pipe. A difference between the two types of 

flow occur close to the wall where the axial velocity at y=0.022 is 

markedly lower for the channel then for the pipe. 

Since the solution of the turbulent equations invokes different 

flow mechanisms the stability requirement needs to be reconsidered. 

Preliminary tests show the existing time step to be inappropriate. 

A lower time step is introduced, however it is beyond the 

bounds of this work to optimize this. Instead a reduced time step is 

used and a solution of the turbulent problem is computed initially with 

the coarser mesh. 

When using the finer mesh the time step has become very small 

indeed. This is due to the size of the elements close to the wall 

coupled with the reduced stability of the turbulent mechanisms. It is 

necessary to by pass the inordinate amount of C. P. U time necessary to 

achieve a solution when using this fine mesh. 

This is achieved by setting up the initial flow vorticity at 

each node of the mesh from the turbulent vorticity results obtained 

with the coarse one. A simple interpolation is employed to evaluate 
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each nodal point. 

Finally this composed vorticity solution is iterated until the 

full resolution of the mesh is achieved. 

The solution of this problem is very difficult owing to the 

reduced stability of the scheme. The-above results however show a 

turbulent solution to be possible. It is very much at the upper limits 

of the solution scheme, since the C. P. U. time required for a solution 

is becoming large. 

(iv) Conclusions to the Channel Problem 

In this chapter the solution of developing flow in a two- 

dimensional channel is solved. Initially under laminar conditions and 

finally under turbulent conditions. 

The laminar results comply with the expected behaviour with the 

flow starting as a boundary layer growth near the entrance and finally 

reaching a fully developed state some distance downstream. This 

displays the predicted parabolic velocity profile across the channel. 

The turbulent solution is subsequently obtained using the 

laminar results as the initial conditions. Here the velocity profiles 

show a distinct contrast to the laminar case. 

Owing to the reduced stability of the turbulent scheme it is 

necessary to compose initial flow values for the fine mesh solution. 

Any increase in the Re is ruled out owing to the large amount of C. P. U 

time required to achieve a solution. 

It is felt that an adequate demonstration of the different 

effects of both flow mechanisms is presented and so the study is 
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concluded. 
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CHAPTERSEVEN 

C0NCLUS10NS 
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7.1 Conclusions 

In this work a solution of to Navier-Stokes equations is 

obtained by the finite element method with the stream function and the 

vorticity taken as the dependent variables. Tiere the fluid is assumed 

to be incompressible and to have constant molecular viscosity. 

In chapter three the solution scheme is presented for the time 

dependent non-linear equations. The fractional step technique applied 

to the uncoupled equations is adopted owing to its stability at high 

Re. 

The problem of describing the vorticity behaviour on the no- 

slip wall is overcome by applying a limiting solution locally in the 

finite element formulation. 

It became clear that although the finite element method has 

distinct advantages over the finite difference technique, the mesh 

discretization required to model a flow problem at a reasonable Re 

becomes intolerably fine close to the no-slip boundary. Consequently a 

mesh generation scheme is incorporated into the program in order to 

provide suitable mesh discretization with the minimum of effort. 

Chapter four outlines how this user- orientated scheme works 

and later it explains how this scheme is adjusted to suit the 

particular needs of fluid flow conditions. For all the flow cases 

solved in this work a mesh generator is used to discretize the domain. 

In chapter five three fluid flow problems are modelled for the 

laminar steady state range. Extensive comparison is made with earlier 

work, which highlights the strengths and weaknesses of the solution 

scheme. 
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In chapter six the problem of turbulent flow is discussed. 

The various methods by which closure of the time-averaged turbulent 

-equations is -achieved are-mentioned here. Finally an algebraic form 

of the mixing length method is presented and a one dimensional 

turbulent flow in a channel is modelled by extending the original 

program. 

To model a steady state problem by solving the time-dependent 

equations is considered, by finite difference workers in any case, to 

be less efficient then solving the steady state equations. It is found 

that considerably more iterations of the program are needed before an 

adequate result is achieved. 

In the finite element method most of the numerical solutions 

quoted for comparative purposes adopt a solution of the steady state 

equations by the Newton-Raphson Method. The (N. R. PM) is known to have a 

quadratic rate of convergence and is obviously likely to be more 

efficient when compared to the monotonic convergence of the linear time 

integration scheme, as is used here. 

The disadvantage of the (N. R. M) is that the final solution is 

completely dependent upon the initial flow conditions applied. 

Consequently the scheme is prone to producing diverging solutions if 

care is not taken when defining the initial flow conditions. On the 

other hand the time-dependent scheme is not so sensitive to this and 

should not diverge, providing the time step does not exceed a certain 

value. This is a distinct advantage in very unstable problems where 

the possibilities of divergence are greater, e. g the flow over a step. 

As long as the time step is small enough the solution will converge. 

An empirical formula is used to define the upper limit of the 

132 



required time step. A distinction must be made between any converging 

solution and a correct converging solution. As the Re increases the 

upper limit of the time step also increases and at some point this 

exceeds the time step limit required to model any flow condition for 

that particular mesh. 

In order to speed up the solution scheme a variety of time step 

schemes have been tried to model the flow within a square cavity. The 

time step during the program run is taken to be a function of the 

gradient of the vorticity with time at the current cycle. Various 

functions are used, it is thought that when the gradient is small the 

time step can increase, and when it is large the time step must be 

reduced. 

The result of this work is very inconsistent: however, in some 

cases the problem converged with as much as a 50% reduction in the 

number of iterations. No overall guidelines are obtained since the 

results appeared not only to be mesh dependent but they also varied as 

the flow conditions changed. 

Leading on from this work efforts to try to improve the time 

integration scheme using a constant time step were tried. Instead of 

the fully implicit integration scheme adopted in the fractional step 

technique, a parital integration can be carried out by introducing a 

coefficient - to the matrix equation. In some cases this is considered 

to provide a better integration technique. Here again the square 

cavity problem is run with y=2/3 the Galerkin technique and y=1/2 the 

Crank-Nicholson technique. No significant change in the rate of 

convergence is found by using either scheme. 

Finally the Runge-Kutta integration scheme is adopted. Here 

133 



four values of the preceeding increment of the unknown are computed and 

the actual increment is taken as the sum of the four values weighted 

--separately. As this -scheme computes abetter estimate of the next 

increment when compared to the Eulerian scheme it is hoped that the 

time step may be enlarged. However, results show that the time step 

could not be increased significantly before the solution diverged. As 

the Eulerian scheme is much faster over each iteration it' is used in 

preference. However, the Runge-Kutta scheme may still be useful for 

particularily unstable problems where a more accurate integration 

scheme is needed to obtain a converging result. 

It is concluded that more knowledge is required about the 

mechanisms of time-integration for such non-linear problems. This is 

demonstrated by the inconsistent results reported above. These 

mechanisms are obviously more complicated than first thought. In order 

to improve the existing time integration scheme a fuller understanding 

of them is required. This is obviously a worthwhile area of further 

research. 

In some preliminary work using the fractional step technique 

the solution of flow past a cylinder is computed using double precision 

variables. Since the problem is non-linear it is important to ensure 

that the numerical errors accumulated over a succession of iterations 

do not significantly effect the resultant flow. All the computation is 

carried out on the IBM 360/195 machine at Rutherford: since a real 

variable has only four bytes per word this is a reasonable 

consideration. 

The double precision results compared well with those of the 

single precision, and so the possible numerical errors are small. 
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However, it is important to note that this double pecision run required 

about 20% fewer cycles to reach convergence. This indicates that the 

-numerical -. errors resulting when using single precision only have the 

effect of delaying the convergence. It would be ideal to run all the 

examples in double precision: however, since this drastically increases 

the size of the problem the single precision is used instead. 

The description of the vorticity along the no-slip boundary, as 

described in chapter three, is shown to produce successful results. 

As this is not a prescribed condition'it is non-linear and its effect 

converges as the solution is achieved. Different methods of applying 

. 
this condition are tested in order to improve the description of the 

flow behaviour in this region. 

Various methods of implementing the natural boundary conditions 

using the limiting equation as defined by Gosman are applied when 

solving the flow within a square cavity. As a result the 

implementation as outlined in chapter three provides the best 

description of the limiting equation along the no-slip wall. 

Recent work has been reported where the flow problem is solved 

in terms of stream function and vorticity with the no-slip vorticity 

condition being applied more directly. 

Work by Campion-Renson and Crochet [56] redefined the uncoupled 

Galerkin formulations of the governing equations. In this way the need 

to provide a vorticity condition on the no-slip boundary is by-passed 

and the gradient of the stream function w. r. t the normal is applied 

,. along the boundary. A successful solution to flow within a square 

cavity is obtained using this approach. 
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Secondly, work by Dhatt, T3onaventure and Bourque [571 produced 

a solution scheme in terms of vorticity and stream function for the 

-steady state problem. Using the coupled equations the vorticity no- 

slip boundary condition has again been by-passed in a more direct 

manner. This time the normal gradient of the stream function is 

employed to determine the boundary value of vorticity. Again 

successful results of the square cavity problem are obtained. 

Both techniques apply the no-slip condition directly: 

consequently the convergence of the problem is fast. There is little 

difference between the two schemes reported here: obviously the coupled 

scheme is a more direct application. The improvement of the no-slip 

vorticity condition is necessary in order to speed up the rate of 

convergence of the solution scheme. Such direct methods outlined 

above provide a good line for further research. 

Having carried out a series of tests applying different time 

integration schemes and no-slip boundary applications, the scheme 

presented in chapter three is finally adopted. 

The first problem of flow within a square cavity produced good 

agreement with earlier numerical solutions. In solving this enclosed 

example the problem of describing the flow about a corner comes to 

light. These corner points are considered to be areas where the flow 

is singular. In any numerical calculation such regtons are discretized 

very finely, thus endeavouring to keep the errors caused by the 

singularity localised. In a recent paper by Gupta and Manohar [58] the 

errors caused by the local discretization about these corner points 

have been studied. The conclusion is that greater inaccuracies occur 

in a corner where two stationary walls meet compared to a corner where 
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one wall is moving, i. e. the top corners of the cavity. This 

conclusion is borne out by the results presented here. Similar 

inaccuracies occur in both the-bottom corners of the cavity and also in 

the corners of the downstream step problem. 

This corner problem is well known in the general field of 

continuum mechanics. In structural problems elaborate techniques have 

been developed, by the introduction of double nodes for example, to 

overcome the abrupt change in direction of the boundary. Such methods 

could also be applied to the fluid problem. The problem of 

approximating the flow about a singular point is aggravated here where 

a linear variation of the unknowns has been chosen over each element. 

The second problem considered is the flow over a downstream 

facing step. Here good agreement is found with both earlier numerical 

and experimental results. This is a particularly unstable problem 

owing to the presence of two corner regions. Further improvement of 

the present results is possible if the exact experimental inlet 

velocity profiles are prescribed. In conjunction a finer mesh 

discretization of the top region is required to deal with the parabolic 

flow. 

The third problem chosen is the flow past a circular cylinder. 

The solution encompasses the steady state solution from the slow 

Stokesian flow through separation and up to the beginning of the 

unsteady state. The linear elements are causing some advance in the 

flow conditions due to describing an uneven cylinder wall. 

The solution of all these examples has underlined the 

limitations of the linear element solution scheme. However, they show 

that good agreement can be achieved if a fine discretization of the 

137 



domain is used. In order to improve the quality of the results further 

it is felt that more sophisticated elements must be introduced. This 

is demonstrated in the cylinder problem where the vorticity solution 

could be improved by the introduction of superparametric elements along 

the cylinder boundary. This would improve the integration about the 

boundary, since each element side would describe a curve instead of a 

straight line. 

The solution could be further improved by introducing quadratic 

elements, then the cylinder boundary could be described by 

isoparametric elements. 

Work at Swansea has reported the use of elements about the no- 

slip wall which assume a logarithmic variation of the unknowns. The 

solution of flow problems at large Re has proved to be much simpler 

with the use of such sophisticated elements. 

The introduction of upwinding weighting functions has found 

favour with some as a means of overcoming the problems which occur when 

the inertial effects become significant. This technique, which is 

similar to the directional differencing technique in finite difference, 

has been the subject of much controversy: however: some favourable 

results have been produced with it. 

The solution of vorticity has consistently been in better 

agreement with earlier results then the solution of stream function. 

This is clearly seen in the contour levels of flow past a cylinder. A 

similar trend occurs for the finite element solution of Tuann and 

Olson. , However in this case the stream function results are 

considerably better then the vorticity. 
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It is postulated that both discrepancies occur for similar 

reasons. In Tuann the flow is solved in terms of stream function and 

the vorticity is calculated from it once the stream function solution 

has reached convergence. Here the equations are solved in an uncoupled 

form with the vorticity as the leading variable and the stream function 

being updated periodically. The solution of stream function relies 

exclusively on the quality of the approximate vorticity solution. 

This is a major criticism of the uncoupled approach since the solution 

achieved has 
la staggered nature. The advantage of the uncoupled 

approach is that the number of unknowns is reduced, halved in this 

case, consequently reducing the size of the system matricies and the 

computer time per cycle for the same mesh. This can be very 

significant when a linear discretization is adopted since a large 

number of nodes are required to describe a flow problem. 

In chapter six the existing solution program is extended to 

model wall turbulence by means of an algebraic closure of the time 

averaged equations. The solution of developing flow in a channel is 

presented. 

Initially a laminar solution is obtained and the resulting flow 

is consistent with previous work. Leading on from this a turbulent 

solution is produced which shows a different flow distribution. There 

is a marked reduction in stability of the scheme due to the 

introduction of these turbulent terms. 

This result illustrates how the complicated three-dimensional 

mechanisms may be reduced to simple localized-effects. Obviously in 

general this is a: gross simplification of the problem however it proves 

reasonable in this specific case. 
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In order to pursue this study an improvement of the solution 

scheme is required. The introduction of a logarithmic variation of the 

flow variables in the near wall region would clearly reduce the number 

of elements required close to the wall. 

Conversley a technique has been applied by Oliver [55] and 

latterly by Hughes [19] where the near wall region is described by the 

law of the wall equations directly. This means that only the region 

away from the wall need be solved numerically. This again reduces the 

overall size of the mesh required. Moreover these suggestions will 

increase the size of the elements as a consequence the time step for 

solution would be larger. 

As can be seen from the above discussion the solution of fluid 

flow problems by numerical methods is by no means complete. Many 

avenues of reseach are still left open. 

In this research a variety of flow problems has been solved by 

numerical methods. The scheme developed is designed to describe the 

problem, solve it, and finally to process the results completely 

automatically. 

Below a list of recommendations of further work resulting from 

this study is presented. 

7.2 Recommendations 

(i) The introduction of a direct application of the no-slip 

boundary. This will have the effect of improving the rate of 

convergence. 

(ii) The development of a steady state solution of the 

equivalent coupled equations. By employing the Newton-Raphson 
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technique the rate of convergence would improve. 

(iii) Increase the order of the interpolation functions. 

A quadratic interpolation within each element would provide a better 

description of the near wall region. (N. B.: The mesh generating system 

can also produce triangles containing six nodes). 

(iv) The introduction of special wall elements for 

the no-slip boundary. Since the variation of unknowns in this region 

is large, more sophisticated elements would provide a better 

description of the flow. 

(v) The development of the equivalent axisymmetric scheme, 

this would enable the modelling of a variety of pipe flow problems. 

Many solutions are available for pipe flow especially in the turbulent 

range. 

(vi) The investigation of the mechanisms behind the 

development of time integration solutions. This work would enable the 

introduction of a reliable variable time step scheme which would make 

the solution faster. 
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Figure 3.1 The No-slip Wall 
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moving wall 

(a) An enclosed problem; the complete boundary is a no-slip wall 

(b) An open problem, the bottom is a no-slip wall, the left-hand 
and top boundary is a free-slip wall and the right-hand boundary 
is an outlet. 

Figure 4.1 List of Boundary Configurations 
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(c) A channel problem, both sides are no-slip boundaries, the left-hand 

side boundary is a free-slip and the right-hand boundary is an outlet. 

B 

(d) a bluff body problem, the obstruction is no-slip, the two sides 
and the inlet boundary are free-slip and the right-hand boundary 
downstream is an outlet. 

Figure 4.1 List of Boundary Configurations Continued 
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to 
8 

(e) As for (d) but with a multi-obstruction no-slip boundary. 

Figure 4.1 List of Boundary Configurations Continued 
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X 

(a) Likely element distribution generated by mesh program. 

/ 

/// 

(b) Such elements need to be located and adjusted 

Figure 4.2 Correcting the Corner Region Discretization 
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finds lower left-hand node and takes it as the 
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Figure 4.3 The Optimum Node Numbering Scheme for a 
Domain Describing Unidirectional Flow. 
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Figure 4.4 A Square 11 x 11 Mesh Generated using Regularly Spaced 

Nodes without any Adjustment 
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D 

(a) A and B are the base nodes, D is closer to them and so is more 
suitable than C. 

(b) Now both C and D are equally suitable to dnsure that C is chosen 
move the node to C'. 

Figure 4.5 Using the Mesh Generator to produce a Regular 
Mesh. 
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(a) The nodes are adjusted in order to ensure the generation of 
regular symmetric mesh. 

(b) A symmetric mesh resulting from the nodal adjustment 

Figure 4.6 How the Nodes are Adjusted to Ensure a Regular 
Mesh Discretization. 
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Figure 5.5 Vorticity at Re = 100 
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(a)- Initial mesh 

(b) Coarse mesh 

Figure 5.9 The Step Meshes 
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(c) Fine mesh 
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Figure. 5.10 The Vorticity at Re = 73 
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(a) Coarse results 

(b) Fine results 
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(c) Experimental results 

Figure 5.11 The Stream Function at Re = 73 
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Figure 5.12 The Velocity at Re- 73 
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(a) Coarse results 

(b) Fine results 

Figure 5.13 The Vorticity at Re = 125 

177 



(a) Coarse results 

(b) Fine results 

Figure. 5.14 The Stream Function at Re = 125 
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(a) Coarse results Denham and Patrick 

o Current results 
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(b) Fine results 

Figure 5.15 The Velocity at Re = 125 
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(a) Coarse results 

r-. -ý__ 

(b) Fine results 

Figure 5.16 The Vorticity at Re= 191 
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(a) Coarse results 
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(b) Fine results 

Figure 5.17 The Stream Function at Re = 191 
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(a) Coarse results - Denham and Patrick 

o Current results 

(b) Fine results 012 

III Ulu 

(c) Earlier results 

Figure 5.18 The Velocity at Re = 191 
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Figure 5.19 The Flow Past a Circular Cylinder with the 
Inlet Flow Being Prescribed. Parallel. 
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Figure 5.20 The Nodal Distributions about the Cylinder 
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(a) Coarse mesh nodes = 16 

(b) Fine mesh nodes = 32 

Figure 5.21 Element Distributions about the Cylinder 
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Figure 5.22 The Complete Mesh with 16 nodes Surrounding the Obstruction 
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Figure 5.23 The Stream Function at Re=I 
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(b) Fine results 

(c) ref: 48 

N =0.5 1 .. ý 

(d) ref: 44 

Figure 5'. 24 The Vorticity at Re =I 
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(a) Coarse results 

(b) Fine results 
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Figure 5.26 The Vorticity At Re=5 

190 



(a) Coarse results 

ýiý' 
(b) Fine results 

(c) ref: 48 

(d) ref: 43 
L0.0017 
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(a) Coarse results 
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Figure 5.31 The Stream Function at Re= 20 
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APPENDIX A. 1 - THE STRESS TENSOR 

The surface stress tensor T 
3.. 3 

has been defined as; 

T.. = -P 6 ly +AD6.. + 2U D.. (A. 1.1) 

for the case of a fluid continuum. 

This may be derived by initially considering an elastic solid 

continuum. Here again the general equilibrium equation holds: 

Bu. 8T. . 1_j 

at p bi + ax. 
J 

(A. 1.2) 

The stress tensor may be split into direct stresses of and shear 

stresses T 3. j . For an elastic solid a linear relationship between stress 

and strain is assumed by applying Hookes' Law. Considering the direct 

stresses initially; 

2 BE . Be. 
6- G- 

axa- +2G ax. 
(A. 1.3) i3. 

J1 

G- shear modulus 

ei - deformation vector = clx + s27- + e3z 

The first term of the above equation is the arithmetric mean of 

the direct stresses, the second term is caused by the dilatation of the 

continuum and the third is due to the direct strains. 

The second part of the stress tensor the shear stresses are a 

function of the shear strains alone, producing: 

aEi ae . 
-ý- Tip G (A. 1.4) -aX 

ý+ aX1 

Finally, the total stress tensor becomes: 

ac , aE . ac . Tip =a 6iß -2 axK did +G 
ýax 

+ (A. 1.5) 
ll J1 

When considering a fluid it is necessary to apply SLOW Law of 

friction. The strains are replaced by the rate of strains, tile shear 
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modulus G is replaced by the dynamic viscosity of the fluid jj and the 

mean direct stress is equated to the fluid pressure - P. Consequently 

the stress tensor for a fluid may now be expressed as: 

2 auK (. uau. 
Tip -P Sid -3 did +2 G13x. 

The rate of deformation tensor D ij may now be expressed in terms 

of velocity 

8u. au. 
Dii 21axl + ax 

} 

J 1J 
(A. 1.7) 

Substituting this into equation (A. 1.6) produces the expression 

quoted in Chapter 2. 

Tip _ -P S. -3UD did +2uD.. (A. 1.8) 

where 

A =- 
2 

u 
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APPENDIX A. 2 - THE PROPERTIES OF STREMI FUNCTION 

(c) Continuity 

The stream function is defined as: 

ul ax2 

a u2 axl 

(A. 2.1) 

The continuity requirement for an incompressible fluid is: 

Du. 

axl 
1 

Substituting equation (A. 2.1) into this produces: 

af aq) )+ 
--L 

u) )=0 
ýxj (ax Xý 2) 3x2l- T 

1.1 

a2ý _ a2ý 
ax1ax2 ax2ax1 

(A. 2.2) 

This is the case if the stream function is taken to be a normal 

continuous function. Consequently the continuity of the fluid is 

inherent in the definition of stream function. 

(ii) The vorticity - stream function relation 

Vorticity describes the local rotation of a fluid and in two- 

dimension may be considered as a scalar defined by: 

au2 Du1 

axl 3X2 

Substituting equation (A. 2.1) into thisproduces: 

a (- Do )-afn) 
wý ýxl ýXlj 'ýX2 rBx2J 

.. w= - 
ä-'Xz 

3 

(A. 2.3) 
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APPENDIX B- THE ELEMENT MATRICES OF THE GOVEMING FORMULAT10N 

The element matrices are integrated analytically in order to 

improve the efficiency and accuracy of the solution. In order to 

standardize the integration of a general element in the domain, a 

homogeneous coordinate system is adopted. 

The background to this coordinate system being presented below . 

Writing the interpolation functions in terms of the homogeneous 

coordinates along each element sides i. e. Ll, L2 
-' 

L 3' where; 

A2A3 

A 

refer to figure B. 1. 

Any point within the triangle may now be expressed in terms of 

this coordinate system. For example, the values of Ll, L2, L3 at 

the three nodal points of the triangle are presented in Table A. 1 below. 

NODE L1 L2 L3 

1 1 0 0 

2 0 1 0 

3 0 0 1 

Table A. 1 

The value of a given unknown at any point within the triangle 

depends on the relative influence of each nodal value. In this case a 

linear variation of the unknowns within the triangle has been chosen, 

and so it can be seen from inspection that the interpolation function 

takes the simple form: 

220 



V ý2' ý3, 

The relationship 

coordinate system is: 

X=XIx2 

-y- -YI 
Y3 

= [L 
1, L2, L 

33 
(11.2) 

between the lioniogeneous and the cartesian 

1L 

x3L2 (B. 3) 

Y3- 
-ý3- 

This may be inverted to produce: 

L1 al b1 c1 1 

L2 = 
2A 

a2 b2 c2 x (B. 4) 

L3 a3 b3 c3 Y 

where 

cc 1=x2 Y3 - Y2 X3; a2 X3 yl - X1 Y3 ;a3 ý-- X1 Y2 - X2 YI 

b1= Y2 - Y3 ;b2 ý-' Y3 yl; b3 'ý yl Y3 

x3-2; c2 = x1 - x3; c3 = x2 - xl 

The derivatives of the interpolation functions may be expressed 

using the chain rule: 

aý. aL 1 aý. al, 2 aL 3 
aýj 

(Lljj L, L)='3j-+ 
ali 

ax. 23 al, 1x+ aL 2 ax 3L 3 ax 

b+ 3L 
3b2+ 

DL b 31 23 

Using a linear interpolation this becomes: 

b 
aýj 

(Llq L, Lb ax 23 2A 2 

b3 

Consequently 
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cl 
aý. ay (Ll' L2' L3) 2A c2 

c3 

The integration of the homogeneous coordinates over an element 

or boundary side may be generalized: 

Li Lj LK dA = 
' i! j! K. 

- 2A i ! 
A1 2 3 ( +j+K+2) 

1 "t 1J1. ]. 

S 
L1 L2 dS = (i++l)-1 S 

the area of the triangular element 

the length of the element side, 1-2. 

This clearly illustrates how each particular integral may be 

generalized as a function of the particular triangle's area, or an 

element side's length. 

Below the element matrices for a general triangular element 

and side are presented. 

Here the standard matrices which are well reported in earlier 

(F. E. ) work shall simply be quoted in their final form. The less 

common non-linear matrices and the no-slip force vector shall be 

derived later. 

The element mass matrix: 

.21 l' 

E=1 12 

The element stiffness matrix: 

bI. c 

b [b 
1, b, b -4 A-T 22 31 'ý C2 Ecl' C2' C31' 

Lb 3-1 c 31 
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The force vector acting over an element side: 

as : 

1 
b=2 (B. 9) 

L1 

From equation (3.2.10) the element convective matrix is defined 

7T 
n 

yx x 
dA 

JA Iýj I'aa 
;x ay - 

This may be expanded as: 

FL 
1". ýl . 

a 4Az 'L 2 
Ecl' c2, c3l ý2 [bl, b2, b 3] 

A. L 2ý3. 

[bl, b2, b 31 *2 Icl' C2' C31 dA 

-ý3- 

This may now be integrated producing: 

I 

Lo = --I- [bl, b, b 12A 1 Ecl' C2. c3l ý2 2 31 

Eb 
1, b2'b 3ý 2 

Ecl' C2' C33 

(B. 10) 

[b (c +c+cc (b bb 12A 111223 ý3 11 'ý 1+2ý2+3 q'3 
1 

lb2ý c 2( 
u 

[b3( It ) _ýc3( n 

(b c 12A 212b2c 1) + ý3 (b 1 C3 -b3 cd3 

-1 
(b 2 c 2) + ý3 (b 

2c3 b3c 2)] 
(b 

3b+ bc3)+ ý2 (b 3c2 b2c3 )]) 

>]; 
)]} 
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ru 

_uI 
I 

a () -; ()3 -- (IL 11) -tI 

Li] 
From section 3.4 the boundary force vector is of the form: 

T 4i 
e bwS 

NSB 

ýj 3n. dSl w 

From the chain rule: 

aýj= "j ", "j " an ax x By 

= 
3x 3y 

x an ; cLy = '3n 

Along an element side the interpolation function becomes: 

ýý = [L1, L2] 

3ý GL, aL zý 
(, X 

+% 
[-äLyjl 

« 3x aL - ix ay, CL 3n ýy ýL Yl 2 ýx 

1 
(c a+b1 ct 

2A (c 
2ax+b2y 

aT i 
dS 

is 

NSB 
j an 2A 

is 

NSB 

11ax+b1a 
Y) ; (C2 CL x+b2 ct y 

dA 

,I 

(c 

This may now be integrated: 

S [(c a+ba (c a+ba 4A 
11x1y2x2y 

The local boundary effect may be expressed: 

b [(c, ax + b, ay) ax + 
'b 

w 4A (C2 2 C'Y)l 

Assuming the vorticity is constant along an element boundary. 
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(c +c)a 4A 12x 

S2 
4T toNSB 

refer to figure 

(B. 12) 

w NSB - is obtained from the local equation at element level, 

where the non-boundary node is taken as the offset point. 

Considering the extra matrices due to the variable viscosity in 

the turbulent range of flow, see equation (6.5.8). 

. 
ý, 2= an 6n da (B. 13) 

la 

ax 
3 

ax 
3 

T av t ýe . ýj 1 da ýX. 

av 
t 

ý Wx- UA 
a'L2 

[(bl + cl) ; (b 
2+ r-2) ; (b 

3+ c3)3 da 
3- 

LL 3 

This may now be integrated: 

t Eal, a, a ýx. 62 31 

where 

+C+bc 

b2) cc y)w NSB 
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Assuming a linear variation of viscosity within each element: 

v av 1 
[a a a 1 \ý ax. U ,, 2, 3 2 

i v - I 

And so the element matrix may be expressed as: 

+av+av1 [a,, (B. 14) 12A 
['I 'l 223 31 '32' a3l 

The second term is: 

t3 (6 2) 2 da 
Gx. ax. 

. *. 
zvt Dýi 

dý T da ax ax ii 

av 
ta1 

a2 [l, 1,11 
x. 

a 

LI 

-3 

Again assuming a linear variation of viscosity 

a 
[a, v, +a '02 +a3 '031 a2 [1,1,11 

12A 2 
a 3, 

The additional boundary term is expressed: 

tQds (B. 17) 
is 

Bn 
w2 

Again assuming a linear variation of the viscosity the gradient 

is constant over an element side: 

ýjj ds an 
w2 
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Applying the chain rule: 

av t av t 3x av 
t 3y 

an 3x an ay an 

av 1 [Z (b bb+tc 3n UxV 2' 3y 2' 3)3 2 
Y 3, 

9, 
x= cos 0; ZY =- sin 0 

6 is the angle of x with n 

S= [Z (b 
3, 

bb+9, (c 

vL 

x 2' 3y 1' C22 C3)3 V2 12A 

ri 

Y 3- 

1 

2 

18) 
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Figure B. 1 The Homogeneous Coordinate System 
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APPENDIX C-A LIST OF SOLVER ABORT CODES. 

1\, To expressions are available to calculate the size of the two 

main arrays used in the (N. S) solver; i. e. real and integer array. 

This ensures the most efficient use of program space. 

Where: 

NI - the size of solution matrix. 

Two such arrays are required in order to store 
. both the upper and 

lower diagonal parts of the non-linear matrix. 

N2 - the size of the unknown array. 

Since the solver deals with stream function and vorticity 

separately, this is equivalent to the number of nodes. 

N3 - the size of the boundary array. 

N4 - the maximum number of elements. 

The storage scheme is split into two main arrays storing the 

real variables and integers separately where, 

A(NR), NR 3x Nl + 12 x N2 + 27 x N3 
(C. 1) 

B(NI), NI 3x N4 +2x N2 + 16 x N3 

NX - the real array size 

NY - the integer array size 

List of Abort Codes 

When the subroutine FPSTOP(n) is called anywhere in tile programp 

execution stops and the abort number n is printed. 

Below a list of such abort numbers related to tile solution 

part of the program is presented: 
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error in subroutine USER1, where the main real array size is 

exceeded. 

(2) - error in subroutine USERI, where the main integer array size 

is exceeded. 

(3) - error in subroutine USER2, where the element array size is 

too small, i. e. NELMS>N4. 

(4) - error in subroutine USER2, where the nodal array size is too 

small, i. e. NN>N2. 

error in subroutine USER2, where the restricted array size is 

too small, i. e. NRN>N3- 

error in subroutine USER2, when the boundary element array is 

too large, i. e. NBEL>N3. 

(7) - error in subroutine USER2, where the size of the solution 

matrix is too small, i. e. NNNV>Nl. 

(8) - error in subroutine USER2, where the size of the no-slip 

boundary element array is too small, i. e. NSEL>N3. 

(9) - error in subroutine USER2 before subroutine INSLIP is called. 

To check that there is enough auxilary space required in 

INSLIP, i. e. 4xN3>Nl. 

(10) - error in subroutine INSLIP unable to find any nodes adjacent to 

the current one on the no-slip boundary. 

(11) - error in subroutine INSLIP unable to find an adjacent node to 

the first or last node of the no-slip boundary. 
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(12) - error ill subroutine USERI check the size of parameters 

NELMS, NIN, NNNV before reading in the mesh. 

(13) - error in subroutine RENUM, cannot find a suitable starting 

node for renumbering. 

where 

NELMS - the number of elements 

NN - the number of nodes 

IsTNNV - the size of the solution array required 

NRN - the number of restricted nodes 

NBEL - the number of boundary elements 

NSEL - the number of elements containing one boundary side. 
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