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For every finite graph G without isolated vertices, there is an 
associated set of transpositions A(g) which correspond in a
natural way to the edges of G. n.(G) generates a group H which 
is a symmetric group iff G is connected. The Cayley graph 
r(H,il) clearly depends only on G, and is called the 
transposition graph of G, P(G).

The distance between any two vertices of a transposition graph 
P(G) is established in the cases where G is a complete graph, a 
complete graph with an edge deleted, a path graph, or a star.
The diameter of P(G) is obtained as a corollary in these cases. 
General upper and lower bounds are found for the diameter of 
r(G) which depend on the number of vertices and the diameter of G.

If G has no connected components isomorphic to C^ or E theni-f ij
the automorphisms of'P(G) are completely determined by the 
automorphisms of G. In particular, if G is a connected graph 
on n vertices with no non-trivial automorphisms, then P(G) ia a 
graphical regular representation of S^.
Every transposition graph with at least four vertices is 

hamiltonian.
If the complement of the line graph of a graph G is hamiltonian 

then the genus of P(G) depends only on the number of vertices and 
edges of G. This result can be generalised if G has no circuits 
of length three.

Finally, it is proved that the complement of the line graph of 
a graph G is ha.miltonian iff every vertex of G is incident to at 
most half the edges of G and every edge of G is non-incident to 
at least two other edges of G, provided G has at least thirty 
four edges.
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IHTEODUCTIOK
For every graph G without isolated vertices there is a

corresponding transposition graph r'(G), which is a Gayle)- graph 
of the group generated by a, set of transpositions corresponding 
to the edges of G. This correspondence is described in chapter 1, 
and a more explicit description of transposition graphs is given.
In the following chapters, a number of properties of transposition 
graphs are studied. It is often the case that e, problem about a 

transposition graph r'(G) can be reduced to a problem about G, 
although this is not necessarily possible for all graphs G.

Several straightforward properties of transposition grsphs 
ere dealt with in chapter 1, including colourings, edge colourings, 
connectedness and vertex transitivity. The problem of finding 
the distance between two arbitrary vertices of a transposition 
graph is also examined, but explicit formulae are only obtained 
in a few special cases. The problem of finding the diameter of a 
transposition graph appears to be no easier.

Chapter 2 is devoted to an examination of the subgraphs of a
transposition graph. A complete classification is given of those
subgraphs isomorphic to C., K„ _ and K, The classification of4 4, ^ a > a
subgraphs isoccrphic to is far more complicated, and only that 
part of it needed in later chapters is proved here. Finally, the 

girth of all transposition graphs is established.
The automcrphisms of a. transposition graph are studied in 

chapter 3. One interesting result is that if G has no non-trivial 
automorphisms, then r'(G) is a graphical regular representation.

This is a special case of the main result which states that for 
most graphs G, all the automorphisms of P(g) are derived from the



automorphisms of G. The only exceptional graphs are C. and K^, 

and any graph containing one of these as a component. In each 

of these cases, r’(G) has additional automorphisms not accounted 

for'by the automorphisms of G.
In chapter 4 it is proved that every non-trivial transposition

graph has a hamiltonian circuit. The main result needed to prove 
this is that for every tree T on 3 or more vertices, r'(T) is 

hamiltonian. The proof divides into two main cases, depending on 
whether T is isomorphic to ^ ^ for some n. In this case r’(T) 

has no circuits of length 4, so the method used for other trees 

does not apply. The proof in the general case does not use any 
properties of trees except that for every end vertex of the tree 
there is another which is distance 3 or more from the first.
The results in this chapter generalise a theorem of J. Denes and 
E» Torok, (s).

The genus of a transposition graph is studied in chapter 5.
The genus of r’(G) is established for those graphs G such^that 
L(G), the complement of the line graph of G, is hamiltonian, or 
such that G has no circuits of length 3. The problem is much 
harder for graphs G which satisfy neither of these conditions, 
but has been solved in a few special cases. The question of 

which graphs have hamiltonian line graph complements is studied 

in the final section of the chapter, and a strong necessary and 
sufficient condition for this is established for all graphs with 

at least 34 edges.



CHAPTER 0: DEFINITIONS AND NOTATION
graph G is an ordered pair (V, E) where V is a non-empty 

finite set of vertices and E is a set of pairs of (distinct) 
vertices of G, called edges■ With this deiiniuion a graph is 

finite and has neither loops nor multiple edges. A multigraph 

is a graph which is allowed to have multiple edges, but no loops. 
A graph S = (V, E') is a subgraph of G = (V, E) if V C V and 
E' C E. H is a spanning subgraph of G if it is a subgraph of G 

and V = T.
If e = fu, vj is an edge of a graph G then u and v are the 

end vertices of e, and u and v are ao.jacent in u-. This relation

is often denoted by u v, or simply uz-^v. A vertex u is
incident to an edge e if u is an end vertex of e. Two edges 
e' and e' are incident if they have a common end vertex.
Otherwise, e and e' are non-incident or independent.

The degree or valency d^(v) of a vertex v of a graph G is 
the number of vertices of G adjacent to v. A^vertex of degree 0 
is an isolated vertex. Graphs in this thesis will normally have
no isolated vertices. If G is a with vertices v , Vg,...,
V then the degree sequence of G is the sequence d^(v^), dg(vg), 

..., .d^(v ) ; it is usually ordered in such a way that
. ■$dg^(v^).

A walk of length k joining u and v in G is a sequence of
V,vertices and edges of G of the form v^, e^, v^, e^, v^,...,

®k’ ^0 “ ^k ” ^ ®i “ I ^i-1 ’ ^ = 1,..., k.

A walk joining u and v is closed if u = v, and is a path if no
two vertices of the walk (except possibly u and v) are equal;
a closed path is called a circuit. Note that the edges e e^
will frequently be omitted from the definition of a walk.



A graph G is connected if every pair of vertices of G are 

joined by some path; otherwise, G is disconnected. A connected

component of G is a maximal connected subgraph of G. Each vertex 
and edge of G belongs to precisely one connected component of G.

If V is a vertex of a connected graph G, then G - {vj will 
denote the subgraph of G with vertex set V(G) - {vj and edge set 

E(V(G)) - E(v), where E(v) is the set of edges of G incident to v. 
A vertex v of a connected graph G is a out vertex of G if G - (vj 

is disconnected. A graph which has no cut vertices is called 
2-connected. A block of a graph G is a maximal 2-connected 

subgraph of G-
If u and V are vertices of a connected graph G then the 

distance between u and v, d^(u, v), is the length of the shortest 
path in G joining u and v. The diameter of a graph G is the 
maximum distance between any two vertices.

A circuit is trivial if it .is of the form u or u, v, u.

A graph which contains no non-trivial circuits is called acyclic, 

or more normally, a forest. A connected forest is called a tree. 
The girth of a graph which is not a forest is the length of its 
shortest non-trivial circuit. A graph which has no circuits of 
odd length is called bipartite. Note that every forest is 
automatically bipartite.

A colouring of a graph G is a function which assigns a 
colour to each vertex of G,' and which has the property that no 
two adjacent vertices are.assigned the same colour. A graph G is 
k-colourable if there is a colouring of G which assigns k colours 
to the vertices of G. Note that a bipartite graph can also be 
defined as a graph which is 2-colourable. The chromatic number 
of G is the smallest value of k such that G is k-colourable.



An edge colouring, the k-edge cclourahility and the edge 

chromatic number of a graph are defined in the same way with 

edges replacing vertices and incidence replacing adjacency.

An isomorphism between two graphs G and G' is a hijection 

from V(G) to V(G') which preserves adjacencies. An automorphism 

of G is an isomorphism from G to itself. An automorphism may 

be regarded as an adjacency preserving permutation of V(G).

A graph G is vertex transitive if for any two vertices u and v 

of G, there is an automorphism of G mapping u to v.

If G is any graph with a non-empty edge set E, then the line 
graph of G, L(G), is the graph with vertex set E with an edge 
^e^, e^J iff e^ is incident to .

If G and G' are any graphs, then G X G' is the graph with 
vertex set 7(G) X V(G') with an edge ^\u, u'), (v, v')J iff 

u = V and {u', v'} € E(G') or u' = v' and |’u, vj g E(G). G X G' 

is called the cartesian product of G and G'.
The complete graph on n vertices, E , is the graph with 

vertex set ^nj and edge set E(E^) - j| : i, j ^ [nj and i ^ j j

The complete bipartite graph Km.n the graph defined by
= [m + n] and E(K^^^) = [^i, jj : i6 [m] and j ( [m+n]- [n] j.

The path of length n-1, P , is defined by 7(P ) = ^nj and 

E(P^) = ^^i, i+1 j : i = 1, ..., n-1 . The circuit of length n,

is defined by V(C^) = 7(P^) and E(C^) = E(P^)u[^1, n}j .

In the above definitions and throughout most of this thesis, 

^nj is used to denote th“ set of integers from 1 to n inclusive. 

Occasionally, however, [^x] is used to denote the integer part 
•of X. It will normally be obvious which is meant. -^xj will 

mean the least integer not less than x. Curly brackets will 

occasionally be used as ordinary brackets and as set brackets.
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A1though the more general group-theoretical definitions 
will not be stated in this chapter, some definitions concerning 

permutations will, since they are frequently used in this thesis,

A permutation of a set X is a bisection from X to itself.
The set of all permutations of X forms a group called the
symmetric group on X, and is denoted by S(x). In this thesis,

X will invariably be a finite set. In this case, if X has n

elements (often called letters), then S(x) has nl elements.
X will very often be the set Tnj , and in this case, 3(x) will

be written as S .n
Throughout this thesis, the image of a variable x under a 

function f will be denoted by xf rather than. f(x). With this 

notation, the product of two functions f and g will be written 

as fg, where x(fg) = (xf)g . This notati'on will in particular 

be used for permutations.

'If X € X and (T' € S(x) then C/ moves x if x C" f x ; 

otherwise, 6^ fixes x. Two permutations p and of X are 

disjoint if p fixes every letter moved by 0^, and vice versa.

A. permutation cj' of X is a. cycle if for every x. and j 
which are moved by CT^, y = x(cr^) for some number k. Every

cycle can be written in the form (x. Xp ... x^) where x. € X
and X. , = X. <7* ; i = 1,..., r, subscripts mod r. A cycle of14- I 1
this form will be called a cycle of length r, or an r-cycle« 

2-cycles are usually called transpositions. Note that the 

permutation which fixes every letter of X is trivially a cycle, 
but cannot be written in the above form. Instead it is written 

as -(l), and it is called the identity permutation.
A well-known theorem states that every permutation can be 

expressed as a product of disjoint, non-trivial cycles in an



essentially unique way. (it is unique up to the order of the 

disjoint cycles.) This representation will frequently be used 

thruughout this thesis. Another well-known result states that 

every permutation can be expressed as a product of transpositions, 

This representation is far from unique.
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CEAPTER 1: GRAPES ARE TRANSPOSITIONS

SECTION 1.1: INTRODUCTION
This chapter is concerned with a nnir.her of problems which 

arise from the stndy of a correspondence between graphs and 
sets of transpositions. This correspondence is well-known, and 
several papers have been published on the closely-related topic 
of the graphs connected with minimal products of transpositions. 
All this material is presented in section 1.2. /

In section 1.3 a rather different connection between graphs 
and sets of transpositions is introduced, namely the transposition 
graph of a set of transpositions. Equivalently, the transposition 
graph can. be derived-from the graph corresponding to the set of 
transpositions. This is the more useful way of defining a 
transposition graph and is used continuously in this thesis. - 
A number of simple properties of transposition graphs are 
established concerning regularity, connectedness, vertex 
transitivity and vertex a^.d edge colcurability. All the results 
in this section are either special cases of more general results 
or they are simple consequences of the definitions and the 
properties of transpositions and their products.

Section 1.4 is concerned with the problem of finding the 
distance between two vertices of a transposition graph.
This problem may be thought of as generalising the results on 
minimal products of transpositions presented in section 1.2.
In general, this problem appears to be very difficult, so most 
of the results in section 1.4 are concerned with special cases. 
Exact formulae are given for the distance between two arbitrary 
vertices in four special .families of tra-nsposition graphs.
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Th© pToblsiii of finding the disiuetei' of a onansposition gnaph is 

a. special case of this problem, bet seems to be no easier.
Upner end lower bounds are given for the diameter of a 

transrosition graph. Only one of these bounds is close to uhe 

true diameters in the four special cases which have been solved.



SECTION 2: TRANSPOSITIONS AND GRAPHS

There is a close connection between graphs and sets of 

transpositions. If G=(V,E) is any graph without isolated 

vertices and without loss of generality V=[n], then G is 

associated with a set of transpositions = j(ij):fi, jj< sj.
Clearly, since G has no isolated vertices, each ie[n] is per­

muted by some CUfil(G).
Conversely, a set of transpositions il is associated with 

a graph G(H); =(v(n) ,E(A) ) where V(ll)= [i; icy^i for some 

and E(fL) = -[{i, ; (i Note that by the definition of V(A),

G(XI) has no isolated vertices. Thus there is a 1-1 connection 

between graphs without isolated vertices and sets of trans­
positions.

Examples.

If G^ is the graph in fig. 1.2.1 thenn.(G^)={(l 2), (3 4),
(4 5)j.

2), (2 3), (3 4)j then G(il^) is the graph in

fig. 1.2.2, 
Fig. 1.2.1

-CK
2

0-
3

Fig. 1.2.2 G(^): -o- -o
4

Theorem 1.2.1

If jCI is a (non-empty) set of transpositions end without 

loss of generality 7(fl)=[n], then 1% generates S iff G(Xl) is 
connected.

Proof

Suppose that il. generates S^; it is necessary to show that 

there is a path joining any two vertices of G(il).
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Let be any two vertices of G(fl). Since i, j € Y(fL) = [n] ,

the transposition (i j)6S . By hypothesis, generates so 
3 transpositions , cugs •••> XI. such that (i j)=¥, where

¥ 3 Note that the transpositions CU/ , ... CU^ need

not necessarily be distinct.
Let MJ’ be the first transposition in ¥ which moves i; (JU^

mus t be of the form (A)^ = (i i^) since i CU^#i.

Let be the first transposition in ¥ after moving i^;

(jU ^ must be of the form Uj^=(i^ ig)

Similarly OJ are defined, and UJ^=(i^_^ i^) for

r™3,...,m.

It is clear from the definition of , (ju ^, ... , UJ ^ that 

¥ moves i to.i., then to i^, and finally to i^. Thus i¥=i^. 
However, ¥=(i j) so i¥=j. It follows that i^=j.

Now 6 XI for r=1,2,...,m, hence = ,i^|4 E(XI) for

r—1,2,...,m. ^ i, i , ^i , i 2^ » • • • j ^ ^m-* 1 ^ ^m^ ^ walh in G(XI)

from i to j since j=i . It follows immediately that there is 

a path in G(Xl) joining i to j, so G(X1) is connected.

Conversely suppose that G(A) is connected and that (i j) is 

any transposition in S . ¥e show that (i j) is.generated by 
transpositions in XI .

G(A) is connected and i and j are vertices of G(XI) since 

i, j e [nj =:V(fl) . Thus there is a path i,i^ ,ig,.. .ig^_.|, j in G(XI) 

joining i to j.
It is easy to check that

(1 j)=(i ^m-1^(^m-1 ^m-l)'"

(i^ i2)(i i^).

Also, since {i,i^}, |i^_^,jj,and ■[i^_^ , ; r=2, . . . , m-1 are

edges of G(n.), all the transpositions in the above product are
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elements of XI. Thus Cl generates every transposition in S .
A well-known result of elementary group theory states that 

every permutation in S may be written as a product of

transpositions in S , so it follows that Xl generates .

Theorem 1.P.1 has appeared several times in the literature,

and appears to be due to Polya (12 ). J. D^nes ( 7 > P 65)

mentions in a somewhat confusing footnote a result in Polya 

(12 ) which implies theorem 1.2.1 as an immediate corollary.
J. P^nes and:E. Torok ( 8 ) give’a .direct proof of theorem 
1.2.1 while mentioning Polya's result in passing. Finally,

C. Berge ( 3 > PP 141-14?) also proves the result attributed 
by D^nes to Polya, but does not himself attribute it to P6lya. 
This is strange as Berge is aware of Danes' paper, which he cites 

as a reference.. Unfortunately, some of the references to chapter 

4 of Berge ( 3 ) are wrongly given after chapter 5* P^lya (12 ) 

does appear in this combined list of references, so it may be a ' 

reference to chapter 4- This, however, is unlikely since 

chapter 5 is concerned with enumeration, which is of course the 
main subject of p€lya (12 ).

Corollary 1.2.2

If G(H) has connected components G , G^,..., G^ and - 

V = V(G^); r = 1,..., k, then XL generates the group

s(v,)s(v^)...s(v.) ss(v,)xs(v_)x ...XS(V,).1/-\'2 

Proof
Let XI^ = Xl(G^); r = 1, . .., k. The sets Xl^ , X%g, .. . , £1^

form a partition of XZ . By theorem 1.2.1, Xl_^ generates S(V ),

so the group generated by O, certainly contains S(V.)S(Vp)...S(V.)
If r ^ s, then G and G^ are distinc.t components of G(X1) so

V A V = d) . This implies that if Oj e XI and OJ (= /~l r s' r.r ss
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then .
Suppose that 0^ is any permutation generated by ;

then there exist transpositions CV., Caj^, . .., OU 6 £1. \

suph that CT^ = W. OUp... Using the fact proved above

that transpositions in distinct sets JTI and jTl commute,r s
this may be rewritten in the form

1 1 2 2 k k= CU ^ • OV CO -I • * * bO • . • LaJ h • • • (COI I i-g I r^

where 6 -O-■ for s = 1,..., r and for j = 1,..., k. 
s J J

In this product,, CO £ , .. . , CaJ ^ are in the same order
j

with respect to one another as they were in the product

Since (?'_. = CO’^CO^. •-60^ is a product of transpositions 
u ] z r^

in j, 6 S(Vj) for .j = 1,..., k. Hence C/- is an element

of S(V.)S(7g)...S(V^). It follows that the group generated

by n. is S(V^)S(Vg)...S(7^).

To show that S(7 )...S(7^J is isomorphic to the group 

S(V.)XS(Vg)x ...^S(7^), consider the following-mapping.

from S(V^)XS(Vg)X ...XS(V^) to S(7^)S(7g)...S(V^) :

(cr^j ~ 0^2'" ^k ’ is an element

of S(7.).
J

It is clear that if r ^ s, ..cTl 6 S(V^) and S(V^) then

Also, s(v^)n S(Vg) = {(1)} . using these

two. facts it is easy to show that (j) is an injective homomorphi 

Cj)-is obviously surjective, so it is an isomorphism and the 

result follows.

In the proof of theorem 1.2.1, a walk in G(il.) was derived 

from a product of transpositions in XX . This suggests that

sm.
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the connection between graphs and products- of transpositions - 
is worth investigating.
Definition 1.2.1 :A word is a product of tran-spositions. Two 

words and are identical if they are identical
as products of transpositions , and equal (W^=Wg) if they 
represent the same permutation. The length of a word W is the 
number of transpositions in W, and is written l(w).
Definition 1.2.2; If W is a word, the multigraph of W, G(w), 
is the multigraph with l(w) edges, one of which corresponds to 

each transposition in V in the same way aS' for the graph of a 
set of transpositions.
Example

If we(l 2)(2 5)(l 2)(4 5)(1 2)(2 3), then G(w) is the multi­

graph in fig, 1.2.3.

Figure 1.2.3 G(W):
3

o—

In general there is not a 1-1 correspondence between words 
and multigraphs; one multigraph may correspond to several words, 
For example, if W'=(1 2)(4 5)(2 3)(l 2)(2 3)(l 2), then G(W') 
is again the multigraph in fig. 1.2.3. Thus G(W)=G(W'),but 

W#W'. Note also that W=(1 2)(4 5)#(2 3)(4 5)=W'.
Definition 1.2.3: A multi graph G is related to a permutation 
G'^ if there is a word W such that G=G(w) and W= 0% Let ^(g) =

For example, if G is the multigraph in fig. 1.2.3, then 

G'<1 2)(4 5) and G«<2 3)(4 5), so (1 2)(4 5), (2 3)(4 5)fZ(G).

This relation has been studied by M. Eden ( 9) in the special 

case when G is a graph without multiple edges. In particular, 
Eden found a number of constructions for graphs G such that
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G-v(l) or "maps to the identity". The smallest such graph is 

the complete graph on 4 vertices, E., since

ws(l 2)(3 4)(1 3)(2 4)(1 4)(2 3)=(1), aiid G(w)=K^.
Using two constructions, Eden showed that each wheel W^:=

(V ,E^) where V =[n+l] , and E =-[ {n+1, i} , {i, i+lj ;i=1,...,n, 

subscripts mod n} maps to the identity for n^5. Finally, using 

further constructions, he showed that ^(E^)=A^ if n=0,1 mod 4 

and that if n=2,3 mod 4*

This relation between graphs and words has an application 
to the genus of a family of graph embeddings which will be 
discussed in a later chapter.

The following result is implicit in the proof of theorem 1.2.1
Proposition 1.2.5

If W is a word and iW=j, then there is a path in G(w) 

joining i to j. Q

The following simple result is useful in chapter 2;
Proposition 1.2.4

If W is a word and W=(l), then G(w) has no vertex of degree 1. 

Proof

Suppose on the contrary that W=(l) and that G(w) has a
vertex i of degree 1. Since i has degree 1, it is adjacent to 
exactly one other vertex j of G(w). By the definition of G(w),

(i j) appears exactly once in W, so W'=W,(i j )Wg, where iW.=iWg=i 
Letcr=W^;k=1,2. Since W=(l), CZ{(i j)c^=(l),so (i j)=0-!j'^cr2\ 

Thus iC'^Q-gV^* However, i <55j=i and i 0'2=i, hence i (T^^=i and 

i (rg^=i, so ± which is a contradiction. Thus G(w)

has no vertex of degree 1.Q
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A particularly important special case which has been studied

by several authors is the relation between graphs and minimal

words.

Definition 1.2.4 A word W is minimal if W'=W=#» l(W )^l(w). 

Notation Let o(cr) denote the number of cycles (including 
1-cycles) of a permutationlet c*((5“) denote the number 
of non-trivial cycles in O', and let n*(cr) denote the number of 

objects moved by .

The following result is well-known:
Proposition 1.2.5

If W is a word and W= eS then W is minimal iff l(w)=n-c(cr). 

Proof
A proof of this result is given in Chrystal ( 5 

Another proof is given in Higgs & de Witte (11,p.378) which 
is based on the graph of W. □
Corollary 1.2.6

If ¥ is a word and W= CT then W is minimal iff l(w)=n (cT')-c (cr) 

Proof

Clearly, 0"^ S provided n is sufficiently large. For such an n,

n*(0')= ||id[nj : icT^ijj , so n-n (cr)= j|ie [n] : icr=i|| .

Also, c(o')-c*(ct')= 1 “^trivial cycles in cr'f )

= I-fi: i (f=i} (

= n-n (c).

Hence n-c(6')- n*((3')-c*(d) and the result follows by propos­

ition 1.2.5 • □
Note that n*((y) and do not depend on what symmetric

group is a member of, hence the length of a minimal word 
representing crdoes not either, although it appears to in
proposition 1.2.5.
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Theorem 1.2.7 (Higgs & de Witte)

A word W is minimal iff G(w) is acyclic, that is, G(W) is 

a forest.

Proof

A proof of this result may be found in Higgs & de Witte 

(11,p.378 theorem 3). Q 

Corollary 1.2.8 (D^nes)

If W is a word , then ¥ represents an n-cycle and l(w)=n-1 
iff G(w) is a tree on n vertices.

Proof

Proofs of this result may be found in Higgs & de Witte (l 1 , 

p.379 corollary 3), Berge ( 3,p.143) and Denes ( 7 ). Note, 

however, that Danes' proof is incomplete. 0 
Corollary 1.2.9

If G is a tree on n vertices and d-e^(G) then <T is an n-cyc'le. [] 

Examples

W 5(1 2)(2 3)(3 4)(2 3)=(1 4 2) is not a minimal word repres­

enting (1 42) since
(i) l(w)=4>n*((l 4 2))-c*((T 4 2))=3-1=2 (corollary 1.2.6)
(ii) G(w) has a cycle of length 2, 2—3—2 (theorem 1.2.7).

W’=(l 2)(2 4)(5 6)(l 3)=(1 4 2 3)(5 6) is a minimal word

representing (l 4 2 3)(5 6)=(j^ since
(i) l(W')=4=6-2=n (cr')-c {(f) (corollary 1.2.6)

(ii) G(W'), the (multi)graph in fig. 1.2.4, is acyclic (th
1.2.7)

Figiire

eorem

-0....-o-
312456

If G is the graph in fig. 1.2.2 then !^(g) = ^(1 2)(2 3)(3 4),

(1 2)(3 4)(2 3), (2 3)(1 2)(3 4), (2 3)(3 4)(l 2),
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(3 4)(1 2)(2 3), (3 4)(2 3)(1 2)},
hence I(G)={(l 4 3 2), (l 3 4 2), (l 2 4 3), (124 3),
(1 3 4 2), (1 2 3 4)},
so I(G)={(1 4 3 2), (1 3 4 2), (1 2 4 3), (1 2 3 4)}, and 

every CT^%(G) is a 4-cycle (corollary 1,2.9).
Theorem 1,2.10 (Eden &'Schutzenberger)

If T is a tree on n vertices with degree sequence d ,dg,...d 
then (%(T)(=d^jdg:...d^: .

Proof

Proofs of this result may be found in Eden & Sohutzenberger 
(l0) and in Serge ( 3 ,p.147).O 
Theorem 1,2,11 (Serge)

If T is a tree on n vertices, then (i ...1 )€l(T) iff the
following diagram has no crossings:

4_ are drawn in a circle, and i. is joined to i,I j k
by a straight line iff i is adjacent to i^ in T.

Proof

A proof of this result may be found in Serge ( ^ ,p.143). Note 
that theorem 1.2.10 may be deduced as a corollary of this 
result. O
Examples

If T is the graph in fig. 1.2.2, then j ^(T)|= 1 .'2.'2.'1 .'=4 by 
theorem 1,2.10. This agrees with the value obtained for | ^(T)[ 

in the previous example. Further, (l 3 2 4)^Z(T) since the 
diagram in fig. 1.2.3 has a crossing, while (l 4 3 2)€2[(T) 
since the diagram in fig. 1.2.6 has no crossing.
Figure 1.2.3
diagram of (1 3 2 4):

.-■■'I

4.

crossing
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Figure 1.2.6 

diagram of (l 4 3 2):

Theorems 1.2.10 and 1.2.11 can be easily generalised to hold 

for any forest; in fact theorem 1.2,10 is already true for any 

forest, while theorem 1.2.11 must be applied to each component 

of the forest. Thus it is known which graphs are graphs of 

minimal words, and which graphs are graphs of a minimal word 

representing a given permutation. Hence graphs of minimal words 

are very well understood.

By theorem 1.2.1, XL generates S iff G(fl) is connected and 

V(il) = [n] . Thus it is reasonable to investigate the minimum 

length of a word W representing a given permutation cr-, where 

transpositions in W are constrained to lie in some set such 

that G(n) is connected. This seems to be a far harder problem 

and it has only been solved in a few special cases. It will 

be discussed in section 1.4.
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SECTION 1.5; TRANSPOSITION GRAPHS

In this section, another type of graph associated with sets 

of transpositions ' is introduced, the transposition graph.

All the results in section 1.2 can be interpreted as results 

about certain transposition graphs, although most of this 

interpretation will be left to later sections or omitted entir­

ely as it is completely straightforward.

Definitioni.5.1

If G is a graph without isolated vertices, the transposition 

graph of G, r(G), is the graph (V(p), E(r)) where 7(r)= 

the group generated by fl(G) ,and E(r)= j jT(G)X

0'^= and oj^n}. Since a;^=(l), 0^= iff O'^ = cf g OG'

Thus the definition of an edge in P(g) does not

depend on the order of C ^ and

Example

If G is the smaller graph in fig. 1.3.1, then X)l(G)='^(1 2),

(2 3)]» so ^iTL(G)^= S_ by theorem 1.2.1 , and P(g) is the 

larger graph in fig. 1.3.1. Note, for example, that inP(G),

(1 3)^'(1 3 2) since (l 3)=(l 3 2)(1 2) snui (1 2)€JKG).
Figure 1.3.1

G:

(1 3 2)

Other examples of transposition graphs may be found later in 

this section and in appendix 1 where all transposition graphs 

with 24 or fewer vertices are listed.



A transposition graph is clearly a special type of Cayley 

graph (as defined in White (l5>p.22) , not as in Behzad & 

Chartrand ( 2 ,p.173)). However, this observation is not part­

icularly helpful , and will not be used except in chapter 4 

of this thesis. Thus a number of theorems stated here for 

transposition graphs will also hold for Cayley graphs, but 

these theorems are all of an elementary nature and are not 

worth stating more generally here since the general proofs 

often involve additional complications.

There is a natural labelling of the edges of a transposition 

graph r(G); if is an edge of r(G) then there is a

transposition W€fI(G) such that is clearly unique

and is regarded as the label ofThus every edge of 

f’(G) is labelled with a unique element of {1(G).

Proposition 1.3.1

Each vertex O' of a transposition graph r(G) is adjacent to 
the vertices where jl(G)= { (V., ..., (D j .

Proof

is adjacent to (S' in T (G) iff ^ O', o'’} is an edge of r(G), 

iff O' '= (ful for some XI.(g) . Clearly, Pc'.^ , so

the vertices Cuy , , . . . , are distinct. □

Corollary 1.5.2

A transposition graph r(G) is regular of degree m, where

m=fs(G)|. O

It is convenient to give a preliminary result on the auto­

morphisms of a transposition graph here. Further results will 

be given in chapter 4.

Definition 1.5.2 An automorphism of a transposition graph r(G) 

is label-preserving if it maps every edge to an edge with the
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same label. Such an automorphism may also be called a strong 

automorphism. The group of strong automorphisms of a trans­
position graph P(G) will be denoted by Ag(P(G)).

Theorem 1.5.3

■^g(r(G))^<j3.(G))>, and is transitive on the vertices of P(g). 

Proof

Define a function f: <rL(G)>—^ Ag(P(G)) by ^o'"'

where (|^-,€S(<’.^(g)/') and is defined by t<^'^(G)/'.

It is first necessary to show that f is well-defined by showing 

that ®A^ (P(G) ) .

is a permutation of the vertices of P(G) and if {j 

is an edge of p(G) then {cPj, (^2^ ^ Since

•[ CT^, CJ'2} is ari edge of P(G) there must be some CU6ll(G) such 

that <r2= 0:1 CA/, so so
^'*^1 ^ edge of PCg) labelled U) and f

is well-defined.

■ The remainder of the proof consists of showing that f is a 

group isomorphism. This is done by showing that f preserves 

products so it is a homomorphism, and that f is injective and 

surjective.

, and (rj<k(r(/p=

=( Va^6^(G)>.

Thus ((PC )f = ( CTf)( cHf), and f is a group homomorphism.

Suppose that Crf= CHf; then =^,-i , so ijV = CTj 

V cTlj £<^11(G)^. Thus taking = , we have ( 1 ) (T"^ = ( 1 ) cr'"^,

and hence (y'=C'', so f is injective.
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m

Suppose (j> 6 A^(r(G)), and let =( 1 . Let <7^ be any per­

mutation in <^-n.(G)/', and let tb be any transposition in il-(G),

Then 01^, ^^2^' where 0“^= , is an edge of PCg) labelled

U>, and hence { » ^2! f edge of P(g)

labelled cu . Thus ( =( OLj ^ ) 6u by the definition

of an edge inp(G).

By definition, XL generates ^X1(g)\ so if o^’ is any ele- 

lent of <’n.(G))>, then 3 G such that

j. '= Wg... Now ( 0^* =( . ca^) 6
=(c0^ cUg... )<|5 by the

above argument.

Repeating this argument k-1 times , we have
(cr')<|) =(i)<|)w =(i)(j)gy' ztco" =

Thus <p =( j- ^ )f, and f is surjective.

To show that A (r(G)) is transitive on the vertices of P(G), 

it is necessary to show there is an automorphism in A^(p(G)) 

mapping (1) to any given vertex of r(G). Let 6^ be any vertex 
of r(G); then C€<Q.(G)), so ;})(reA^(rXG)), and (l)l{)(r = cr(l)=(r:q

In its more general form, the above result is very well- 

known; the above proof is very similar to that of White (l5,p.25). 

Corollary ,1.5.4

If r'(G) is a transposition graph and Uj££1(G), then there is 

an automorphism of r(G) mapping any edge of PCg) labelled co 
to any other edge of r(G) labelled U>.

Proof

Let CT^ be a vertex incident to the first edge, let be

a vertex incident to the second edge, and let Q" =
^ fO' " ^ ^ y ^1 “^2* is only ope edge incident to CT"^

or 6^2 labelled U) , and is a label-preserving automorphism
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so cj)p- must have the required property. 0

Now consider a walk ^^^2*"''^ transposition 

graph r(G). Since | Ci , edge of TCg) for i=1,...,

k-1, 3 » ^2'" " » ^-1 ^ such that for

i= 1,...,k-1. Thus 0"^= cr'^LO^^, S'^OU ^UJ 2 and so
on, until finally ^ ^2''' ^k-1' Clearly, walks in
r(G) corres{)ond to words in JuL(G).

Now suppose the above walk is closed, so (f^ Then

^2*“^k-1 ^1 ^2* * * *^k-1“^''^ closed

walks inp(G) correspond to relations in .^.(G), that is, words 

in il.(G) representing the identity (1).
Proposition 1.3.5

For any graph G, PCg) is connected.

Proof

We will show there is a walk in r(G) joining (1) to any other 
vertex (f of r(G). Since cr is a vertex of r(G), ^6^jrL(G)^.

By the definition of <;^jQ.(g)/> ,3 , GU^, ... , il(G) such that

<7^= Ca/^ 1^2• • • = ("I ) ^2* * • ^k ' by the above obser­

vation, there is a walk in PCg) from (1) to O', and hence r(G)

is connected. Q 
Proposition 1.5.6

A transposition graph r(G) is bipartite and the partition 
of ^1%(G))> is A uB , where A is the set of even permutations in
<'iI(G)/> and B is the set of odd permutations in <^17.(g))».

Proof

If A V B is not a suitable partition of <"J1(g)^ then there is 
an edge ^ CT^, j of PCg) such that both Crj and are even

(or odd) permutations. However, so 3 W6il.(G) such that

= CT'. CO. CO is a transposition, which is an odd permutation,



so is even iff <3^ is odd, so 0^^ and y'g cannot both be

even (or odd) . Hence A u B is a suitable partition for r(G) 

and r(G) is bipartite. D

It follows that a transposition graph is 2-colourable and 

has no circuits of odd length. The edge-chromatic number of 

a transposition graph is equally easy to obtain.

Proposition 1.3.7

The edge-chromatic number of a transposition graph PCg) is 

m = fE(G)(.

Proof

P(G) is regular of degree m by corollary 1.3.2 so at least m 

colours are needed for the edges of r(G). There is a natural 

colouring of the edges of P(G) given by the natural labelling 

of the edges of P(g) with elements of iI(G), since no two 

edges incident to a vertex of r(G) can have the same label. 

Since jfl,(G)[ = |E(G)j = m, it follows that the edge-chromatic 

number of P(G) is m. Q 

Proposition 1.3.8

If gf Gg , then r(G^)S r(Gg) .

Proof

Let f be an .isomorphism from G. to G^ . f induces an 

isomorphism P, fromp(G^) to PCG^) defined by 

O'^'F = f ^ CT^f V 6^^ € ^ jQ.(G^ )'^. To prove P is an isomorphism, 

we first show that P maps vertices of P(G^) to vertices of 

rCGg). (i^ iff {i^ , jj€E(G^) iff{i^f ,
P(Gg) ,since f is an isomorphism, iff (i^f j^f) = f"^(i^ j )f 

= (i^ j^)P 6 Jn(Gg) , Now suppose that is a vertex of P(G )

so 0^^ XL(G^ )/i Then 3 transpositions ..., ^ jl_(G )

such that CT^ = OU . . UJ^ .
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Hence OliF = f""" Wg...LU^f

=f"''(x; f f^'^CUgf ...

= ( ^F)...( Wj^F) .

Since W F 6 il(Gp) for all it follows that

CT^P €<[ Jl(Gg)^ = V( n(Gg)) , so F maps vertices of r(G^) to 

vertices off^(Gg).

F is clearly injective , hence F is surjective since 

fCn-(G^))>| = !K il.(Gg) )> I by corollary 1.2.2 and the fact 

that G S Gg , so P is a bijection.

If ■[ ®'-| > cyJ| } is an edge of r(G^) labelled W , then 

W . Hence (/^jP = ( w)F = f"'' Wf

= f"^ €" f f'^Wf = (TF WF .

Since WF 6 _fl(G ) , {"o^^F? <y JjP} is an edge of r'(Gg) labelled

U> F , and P is an isomorphism . Q 

Proposition 1.5.9

G, then

f(G) = ^(G^)X r(G2)X ... X r(G^) , where X denotes the product

If G has connected components G. , G^ ,...,

of two graphs.

Proof

Define a function F i PCG^ )x ^(G j^)x... X r'(Gj^)-^r(G) by 

( , 0^,..., ... . This is well-defined

since ^ <(’I1(G2)/^ for i = 1, 2,..., k, and since <CiZ.(G)'/' = 
<^il(G^)^<Cil(Gg)^ ... by corollary 1.2.2.

F is clearly a bijection by corollary 1.2.2 , so it remains 

to show that F maps edges to edges.

( (3"^, Cfg,..., N ....O' in r(G )X ...X r(G^)
iff for some i such that l^^i^k , for some
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il(G^) , and V j ^ i by the definition of product.

Now ( ...,

— 6^^6"2 ••• 0^j_ LOj^ • • • 0^ ^
_ 6^.|(r2 (/k'^i

and commutes with every 6^. ^<C5I(G . )^where j ^ i.

Thus ( <x:;,..., O'^)F = ( ..... (X^)F w., and
( 0":!,..., ( c/^,..., inr(G) so F is an iso-

morphism. Q

¥e now give a detailed example to illustrate some of the 

above results. Let G be the graph in fig. 1.3.2 , so 

11(G) = ((1 2), (3 4), (4 5)} , and {Jl(G))^ = s{l, 2} .s[3,4,5}.
By the above results, r(G) is 3-regular, vertex transitive, 

connected, bipartite, 3-ehge colourable and isomorphic to 
r(G^ )X r'(Gg) , where G and G are the two connected compon­

ents of G. r(G^), r(Gg) and r(G) are shown in figs. 1.3.3 and 4. 

Figure 1.3.2
G : 0-----9 o---- 0----- o
12345

The partition of P(G) is shown by drawing vertices in A as # 

and vertices in B as o . This partition gives a 2-colouring of 

r(G). The edge colouring is given by the edge labels. It is 

obvious that r(G) is connected, regular , vertex transitive 

and isomorphic to PCG^)x r(G2).

Figure 1.3.3

r(Gj:
(1) (1 2)



Figure 1.3.4

(1 2)(3 5 4)

While transposition graphs do not seem to have been studied 
as a family before, there are several published papers in which 
particular transposition graphs are mentioned. The papers below 
are those which have the greatest relevence to this thesis.
Denes & Tordk ( 8 , section 2) prove that the graph obtained by 
replacing the (undirected) edges of ) by pairs of directed 
edges has a directed hamiltonian path. This is of course 
equivalent to proving that ) has a hamiltonian path. They 
then give a formula for the number of ways that a given element 
of may be expressed as the product of a given number of 
transpositions in S^. (This last restriction is clearly needed, 
though it is omitted in the paper.) This formula also gives the 
number of distinct paths of a given length joining two vertices 

Faths in transposition graphs are studied in the next
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section, although the emphasis is on their existence, not on 

the number of them.

G. Eingel ( 13) uses a special type of embedding of n(P ) 

in an orientable surface to establish an upper bound for the 
genus of the group S . A generalisation of this type of 

embedding is useful in establishing the genus of a very large 

class of transposition graphs. This type of embedding is 
discussed extensively in chapter 5*

N. L. Biggs and A. T. White ( 4 > P 136) set as an extended 
exercise the study of two Cayley embeddings of P(C ) and p(K. ).

The exercise is mainly concerned with proving that these embeddings 

are symmetrical. This term is defined in (4 ). Cayley embeddings

are studied in section 5.3 of this thesis. An interesting 

generalisation of this exercise is as follows; which graphs G 

are such that P(g) has a symmetrical Cayley embedding ? This 

seems to be equivalent to asking which graphs G have an 

automorphism which acts cyclically on E(G). A necessary condition 
for this is that G is edge transitive, but it is probably not 
sufficient. This problem is not examined elsewhere in this thesis 
since the emphasis in chapter 5 is on genus rather than symmetry.
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SECTION 1.4 ; DISTANCE IN TRANSPOSITION GRAPHS

The general problem considered in this section is to find 

the distance between any two vertices of a given transposition 

graph. The distance between and to r(G) will be den­
oted by ®P(q)( , CXg) ’ simply by D( , cT^) if it is

obvious from the context which transposition graph is'referred 

to. In fact, it is not necessary to consider two arbitrary 
vertices; since transposition graphs are vertex transitive , 

one of the vertices may be chosen to be (l) . The following 

result implies that it is sufficient to consider transposition 

graphs of connected graphs.

Proposition 1.4.1

If G has connected components G^ ,Gg G and 0^ is a

vertex of r(G) then

4 Dr(Gi) ((1) , ,

where S(v(G%)) for i = 1, 2, ..., k, and c/= cr^... (Y .

Proof

This result is a simple consequence of the fact that r(G) 
is isomorphic to r(G^)xr(G2)X...xr(G^^)' It is obvious that
if H, and Eg are graphs and E = E X Eg , then
^E {.^^1 ’ ^2^’ (^1 ’ ~ ^ ^Eg^^2 ’ ^2^ ’

from the definition of the product X . The result now follows 
by using the isomorphism constructed in proposition 1.3.9. O 

Note that it is not true that a shortest path from (l) to 
C in a transposition graph r(G) corresponds to a minimal 
word for & . k simple counter-example is obtained by letting 

G be the graph in fig. I.3.I and taking y= (1 3) . There are 
two paths of length 3 joining (1) to corresponding to the
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words (1 2)(2 3)(1 2) and (z 3)(1 2)(2 3)» However, the minimal 

word for & is simply (l 3)which does not correspond to any 

path in r(G). The length of a minimal word does, however, give 

a lower bound for distance in a transposition graph.

Proposition 1.4.2

D((l) , (X ) n ( (K) - c ( CX) in any transposition graph 

r(G) which has (K as a vertex.
Proof

Suppose P^^g\((l) , (y ) = k ; then there is a path in r(G) 

of length k from (l) to 0^ , and hence a corresponding word ¥ = 0^ 
such that l(w) = k . By corollary 1.2.6 , l(w) ^ n ( ^) - c (^) 
so the result follows. D

It is possible to give a necessary and sufficient condition
,((l),0')=n*((X)for when DfJp(G)VV 0^) . First it is

necessary to introduce some notation. If p = (i^ i^ ... i^) 

and i^, i^,..., i^ are vertices of G , the diagram of p in G 
is the subgraph of G induced by i^, i^,..., i^ J- drawn with 

i^ , ig,...,i^, in cyclic order around a circle and joined by 
straight line segments. A subdiagram has the obvious meaning, 

and is plane if no two line segments of the subdiagram intersect 
inside the circle.

Example

If G is the graph in fig. 1.4.1, and 0^ = (1 4)(2 5 3 6) 

then Of has cycles ^ ^ = (1 4) and = (2 5 3 6).
Figure 1.4.1

G:
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The diagrams of and ^^ .in G are shown in fig. 1.4-2 ,

and a connected, plane, spanning subdiagram of the diagram of 
^ in G is shown in fig. 1-4-3 - 

Figure 1.4-2

Diagram of : Diagram of P 

2
2

^6
4

Figure 1.4-3 

Subdiagram of p

Theorem 1.4-3

If 0^ is a vertex of r(G), then D((i) , O' ) = n*((T') -c*( O') 

iff the diagram of each cycle of O' has a connected, plane, 

spanning subdiagram.

Proof

Suppose first that D((i) , C/) = n (cf) - c (cf) ; then 

the path of length n - c in PCg) corresponds to a minimal 

word W for O'. Thus G(v) is acyclic by theorem 1.2.7 , and 
each component of G(¥) corresponds to a- cycle of ^, so 

without altering the order of transpositions in each component
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of G(w), W may be rearranged to give another minimal word for CT^ 

W* = Wg , where is a minimal word for , the

i th cycle of oh. G(¥^) is a minima,! word for a cycle, hence by 

corollary 1.2.8, G(¥^) is a tree and by theorem 1.2.11, the 

diagram of in G(¥^) is plane . Now G(¥^) is a tree on the

vertices moved by and is a connected, spanning subgraph of

the subgraph of G induced by the vertices moved by It .

follows that the diagram of p. in G has a plane, connected, 
spanning subgraph .

The converse is similar, and uses the reverse implication, 

in theorem 1.2.11 . Q

For example, if G and 2b are as in the previous example, 
figs.1.4-2. and 1.4-5 show that each cycle of o' has a connected 
plane spanning subdiagram in G, hence by theorem 1.4.3 ,

D r(G) ((1) , (1 4)(2 5 3 6)) = n ( (1 4)(2 536))

- o ( (1 4)(2 5 3 6) )
= 6 — 2 = 4 -

Theorem 1.4-3 implies that even to find whether or not a 

permutation is the minimum possible distance from (l) in some

transposition graph is a complicated problem . Hence there is 
no hope of finding a general formula for Dp^g^((l) , cH ) if 

both G and & are arbitrary. It is possible to place rest­
rictions on both G and (f , but it is more natural to place 
the restrictions on G. In a number of special cases it is 
possible to derive explicit formulae for D((i) ,); the 
cases which will be considered here are P(g) when G is K ,

K
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First, however, we give a relatively simple condition for 

<T' to he more than the minimum possible distance from (1) 

in r(G).

Corollary 1.4.4

If is a vertex of P(G), and has a cycle p such that 

the subgraph of G induced by the vertices moved by p is 

disconnected, then Dp^^^((l) , Cr') > n ( <y) - c ((X).
Proof

The hypothesis implies that the diagram of p in G is 

disconnected and cannot have a connected subdiagram. The 

result follows from theorem 1.4-3. O 

Theorem 1.4.5

If O' is a vertex of r(K ) (i.e. (X'€ S ) ,thenn
.((1) , O') = n''((y) _

Proof

n'

|*1{K ) contains every transposition in S , so everyn n
word in S corresponds to a walk in P(E^) . Also, if W 

is a minimal word representing ex' > then moves every letter 

occuring in a transposition in W by a result of Higgs & 
de Witte (l1, theorem 2), Since S , every transposition 
in W is in , so W corresponds to a path in r(l[ ) joining
(l) to 0^ , and D-zg. \((1 ) , O' ) = n*( o') - c*( o') • □

This result can also be proved as a corollary to theorem 
1.4.3, since the diagram of any r-cycle in Z must be isomor­
phic to , and any subdiagram isomorphic to ^ ^ must be 
connected, plane and spanning.

Corollary 1.4.6
E ; n ^ 2 are the only connected graphs. G such thatn

Lp/^\((l) , O' ) = n (o') - c ( <y') for all vertices cf of P(G) ,
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Proof

If G is not a complete graph, then G has two vertices, 
i and j say, which are not adjacent. Now let he any 

permutation which is a vertex of r(G) and which has (i j) as

a cycle. Since i 'jp j in G , the subgraph of G induced by i

and j is disconnected, and the result follows from corollary
1.4.4. []
Theorem 1.4.7

If C is a vertex of - {l, 2} ), then
^((1) , oM) = { n*((y) - C*(cx) if (1 2) is not a cycle of (/,

_ n^ () - c*{&) f 2 if (1 2) is a cycle of o'.

Proof

For the duration of this proof, let G = E - ^1, 2} .

If p is a cycle of of length m , then the diagram of (3 in 
G is isomorphic to E unless 1 and 2 are both permuted by 
when the diagram is isomorphic to - -[l, 2} . In either 

case, a plane connected spanning subdiagram isomorphic to 
F. is obtained, provided m > 2, by choosing some i per­
muted by p which is distinct from 1 and 2 and joining it to 
every other vertex of the diagram . If m = 2, the diagram 
itself is plane, connected and spanning unless p = (1 2).
Thus if (1 2) is not a cycle of (T', then by theorem I.4.3, 
D((1) , (T) = n''(a') _ c''(o") .

If (1 2) is a cycle of , let C/' = (1 2)C^ . It is clear 
that n*((y') = n*(0'') - 2 and c^((y) = c*(G-') - 1 since 

fixes 1 and 2 but otherwise is identical to CX . Thus there is 
a path from (1) to c/* in r(G) of length n*((r'') - c*((y')' =

n (C^) - c (C) -2 + 1 n {ty) - c ( y) - 1. However, there

is a path of length 3 from to (/in r(G) given by
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CT' = O"' (1 3)(2 3)(1 3) - Hence there is a path of length 

n*( O') - c (CK) + 2 in r(G) from (l) to It remains to

show that this is the shortest possible path . Since the 

diagram of (1 2) in G is disconnected, it follows from theorem 

1.4-3 and proposition 1.4-2 that D((l) , C^)> n (CX) - c (o'). 
Finally, if D((i) j 0^) = n (o') - c (+ 1 , there would be 

paths of both even and odd lengths from (l) to Cf in ^(G) which 

would contradict the fact that r(G) is bipartite. Thus the 

result follows. U 

Theorem 1.4-8

If O' is a vertex of P(K^ ^ ^), where 1 is the vertex of

K. . of degree n-1 and 2, 3,-.-, a are the vertices of degree 1 , n—1
1 , then D((i) > 0”') = n*( O'’) + c^(cx) - 2 if O' permutes 1

n (S^) t c (o^) if <5^ fixes 1.

Proof

For the duration of this proof, let G = E. . .1 , n-1
Suppose that (T has disjoint, non-trivial cycles 

Pof lengths r^ , rg,...,r^ respectively which do not contain 

1, and a possibly trivial cycle p. containing 1. If i ^ 1,

then p_. = j.'i,2
0

1
h.r.H-' b.d ■

so p. may be written as a product of r. + 1 transpositions
in H.(g). If = (1 j. ... j ) is non-trivial, thenu I ^ r^

j ) , so may be written as a
^0

pQ = (1 J -] ) (^ 12^'**^”^ y , r Q

product of Uq - 1 transpositions in P(G). The same conclusion 

holds if p is trivial. Thus (f may be written as a product of

^0 - ^ + + 1 + ... + + 1 = Tq f + t r^ + k. - 1
transpositions in Q(g). If is non-trivial, then c (S') = 
k + 1 and n (OT) = r. + r. r, so there is a path in r'(G)
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from (l) to of length n ( +-c(a')-2. If is

'2'trivial, then n ( O' ) = r^ + r^f .,. -t r^ = -t + ... + r, - 1

and c {&) = k, so there is a path in r(G) of length n*(o^) + 

c*( o') joining (1 ) to O'' .

It remains to show there are no shorter paths from (1) to 
in r(C-). Suppose that ¥ is a word 

in jn(G) representing &, and that ¥ has length m.

Each letter moved by C' must occur in some transposition in ¥, 

so m ^ n ( O') - 1 . ¥e make the following claim: each cycle
of O' fixing 1 moves some letter j. such that the trans­

position (1 j.) occurs at least twice in ¥ . For suppose ¥ 
contains each letter of the cycle (j^ ... j ) once only;
then¥ = ¥^(l j^)¥g(l jp...¥^(l where
(j^, jg,".., j^) is a permutation of (j , j^,..., j ) and
Ji'V.k 1

,-1

for k 1 , . .., r and 1 = 1,..., r+1 . Let j 0
1¥^' , so j^ ¥^ = 1 ; then jQ¥ = l(l j:|)¥p ... ¥^^ ^

= 4' ^2-' ^r+l'

= j^ , since j' is fixed by
^2*'"' ^r4.1 -ip*"" (1 ^0
same cycle as j:| , so must be one of jj| , j^ j^ , and
hence one of these must occur in two transpositions of ¥ , which
is a contradiction.

Suppose first that 1 0"^:^ 1 ; then by the above argument, 
m > n*( O') - 1 + (c*( CK) _ 1) = n*( O') -f c*( (S') - 2 ,

Now suppose that 1 O' = 1 , so by the above argument, 
m^n(o')-1+c( o') . However, m must have the same parity 
as n ( O') - c ( O') , since o' may be represented as a product of 
n (o') - c ( O') transpositions . thus m + n*( O') - c*( O') must
be even. If m = n (O')-)- c’(o') - 1 , then we nave 2n ((O') - 1



is even, which is a contradiction, thus m > n (o') + c (o') 

if O' fixes 1 , and the result follows. Q 

Definition 1.4.1

If t3^ 4 and 1 < i < j < n then i and j introduce an 

inversion in O' if i 0^ > j O' . The number of inversions in 

is the sum of the inversions introduced by all pairs i, j 

such that 1 ^ i < j ^ n . The number of inversions in O'' is 

denoted by l(<5^) .

Clearly, iCcf) -5% "g n (n - 1) since each unordered pair i, j 

can introduce at most one inversion in O'.

Example

If ^ = (l 2 3 5 4) ^ S , ][(y) = 4 since 1cr>4C^ ,
20'>4(f' , 3a'>40' ,and .
Theorem 1.4.9

If P is the graph with vertex set [n] and with edges •[l , cj, 

£2, 3} »•••> {n-1, nj and O' is a vertex of r(P ) , then

"r(Pn

Proof

)((i) .o') = i((y)

This result is essentially Theorem 1 of C. Serge (3 ,p128) 
in a disguised form. D

It should be possible to extend these results to other 

families of graphs. Particularly promising families include 

the complete bipartite graphs , of which ^ ^ is an example, 

complete graphs with a small number of edges deleted, and trees 

with a reasonably simple structure.

One possible simplification of the general distance problem 

is to study the diameter of a transposition graph. Unfortunately, 

very few exact values of this parameter are known, although a 

number of upper and lower bounds have been obtained.



-39-

Theorem 1.4.10
Vn > 2, diam r(E^) = n - 1 , diam P(K^ n 1^ “ nj - 2 ,

n
diam r(P^) = ^ n (n - 1), and V n 3, diam P(K^ - e) = n.

Proof

All these results are obtained by maximising the distance

formulae'given in theorems 1.4.5, 7, 8 and 9. The result is

obvious for diam'p(K ).n
For diam - e), note that V S , n ( O') n and

c (O') 1 so n^(O') _ c*(cr')< n - 1. Also, if D( (1), <0 ) =

n (o') - c (Cr') + 2 , then (1 2) is a cycle of &, so (O = (1 2) 

or c (o') 2 ,and in either case, n*( O) - c*(<y) + 2 •$' n.

If (T'= (1 2)(3 4 ... n) , D((i) , o' ) = n , so the upper bound 

is attained.

For diam r(P ) , it has already been noted that l(cf) ^n'
— n (n - l), so this is an upper bound for the diameter . 

o'= (1 n)(2 n-l)(3 n-2) ... is the (unique) permutation such 

that l(o') attains this bound, since every pair i < j introduces 

an inversion.

Diam T(K^ n-1^ must be considered in two special cases, n 

even and n odd.

Suppose first that n is even, and that n = 2m . If (O IS
a permutation fixing 1 , then n ( O) < 2m - 1 and c*( o') m - 1

since each non-trivial cycle must permute at least two letters. 
Thus D( (l) , O' ) = n*( O') + c*( O') 3m - 2 . If O' is a 

permutation which moves 1 , then n*(0) ^ 2m and c*(O) m.

Thus D((l) , O) = n*(0) + c*(0) - 2 <3ni - 2 . It follows 
that 3m - 2 n ^ - 2 is an upper bound for the diameter.

0= (l 2)(3 4)(5 6)...(n-1 n) is such that D((l) , O' ) = 3m - 2 

so the bound is attained.
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Now suppose that n is odd and 'that n 2m + 1 If CJ' is

a permutation fixing 1 , then n ( cr} ^ 2m and c ( O') ^ m so

D((l) j_<^) = n (o') t c (O' ) $m . If Cf is a permutation 

moving 1 , then n(cJ')^2m-J-1 and c (o^) ^ m , so

D((l) , G^) = n (o') f c (c) - 2 $m - 1. Thus an upper
f 7 ■)bound for the diameter is -^nj. - 2 .

(f = (2 3)(4 5)*»«(n-1 n) is a permutation such that 
N((1) , Cy ) = ^m , so the upper bound is attained. Q

Theorem 1.4*10 gives the diameters of all transposition 

graphs of connected graphs on 4 or fewer vertices with two excep­
tions which are dealt with in the next result.

Proposition 1.4*11
If G is either of the graphs in fig. 1.4-4 , then 

diam r(G) = 4 - 

Proof

The simplest way to establish this result in either case 

is to use the diagram of PCg) in appendix 1, label an arbitrary 

vertex 0 , label all adjacent vertices 1 , label all unlabelled

vertices adjacent to a vertex labelled 1 with 2 ,:md iterate
this procedure until all vertices are labelled. The largest

label in the graph is clearly the diameter; in both cases here
it turns out to be 4- Q 

Figure 1.4-4

1q-------q2 1 ^
—o 4

Three bounds are now given for the diameter of a trans­
position graph of any connected graph, and are compared with 
the exact values established in theorem 1.4.10 .



the path is i

Theorem 1.4.12

Diam r(G) ^ (n - l)(2(diam G) - l) , where G is any 

connected graph on n vertices.

Proof

By proposition 1.2.5 , any permutation in S may he written 

as a product of at most n - 1 transpositions. Let (i j) he 

any transposition in S ; since G is connected, there is a path 

in G joining i to j whose length is k ^ diam G . Suppose that

j . It is easy to check 

-U^rt (i j) = (i i^)(i^ i2)...(i^_2 1^-1 

(i^ i2)(i i^) ,

so (i j) may he written as a product of 2k - 1 transpositions 

in n(G). It follows that any permutation in S may be written 

as a product of at most (n - l)(2(diam G) - 1) transpositions 

in Xi-(G). The result follows from the correspondence between 

products of transpositions in n(G) and walks in r(G). UJ

Every connected graph contains a vertex whose removal does 
not disconnect the graph. This follows from theorem 2.3 of 

Behzad & Chartrand (2 , p. 24). Hence if G is connected and

has n vertices, there is a sequence v^, v^ ^ ,...,Vg of vertices 

of G such that all the graphs G^ = G, G% ^ = G^ 

i = n,..., 2 are connected.

Theorem 1.4.15

If G is a connected graph on n vertices and G^, G^ ^,...,G^n'
n.

are defined as above, then diam PCg) ^ T diam G. .
ih ^

Proof

■ Let C3^ be a vertex of r(G), and let v , v^_^, ... , v. be 
defined as above. Since G is connected, there is a path of 
length k ^ diam G joining v to v O' , v u u^ ^ . .. ^
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u, . rw V 0"^ . It is easy to check that K—1 n
°'n-1 =

is a permutation fixing v^. Thus is a vertex of r(G^ ^)

and there is a path of length k ^ diam G in r(G) from O' to

n-1 * This argument can be repeated until we reach a perm­

utation <r4 which fixes v , v1 n’ n-1 v^ and hence must be the

identity . Clearly, CTj' lies at a distance of at most 
n
^ diam G. from inp(G). D 
i=2 ^
Theorem 1.4.14

If G is a connected graph on n vertices and & is any
V

1 ^ertex of ^(G), then diam r(G) ^ Iu(i, iCT") •
1=1

Proof
n

For each vertex O' of P(g) , define f„( O^) = T] D.(i, iO^),^ 1=1 ^

Now let CO= (j k) €: X1(g) and let = 0^(3 k).

If i O' f j, k then ±0' = x O' ; if i CT = j, then icy = k, and 
if ±0'= k, then iO^ ' = j. Thus if 1 ^ j, k then I^(i, iCT') =

DgXi, i(^') so Dg/i, IcX) - Dg(i, !(/*) = 0. If iCT = j 
then Dg(i, i0<) - Dg(i, iy') = D^(i, j) - D^(i, k)

= 0, 1, or -1 since j k .

A similar result holds if i 0^ = k .
n

-GW / -
n

Hence fr((y) - " ^G(^'
1=1

= j) - Dg(:iQ, k)) +
(1^(1^, k) - j))
where 1^(X = j and 1^ = k ,

= 0, 1, —1, 2, or —2 .
((1), O') = r, so there are trans-Now suppose that

, LU

Let O'q = (1) and let CX = cTi . for i = 1,..., r .

positions , ..., such that O' = UJ^ .
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By the previous argument, f^( Oh) - ) = 0, 1, -1, 2, -2,

and hence | fg^( CT^) - fg( ) ( ^ 2 for i = 1 ,..., r .

Thus lycr^) - f^(a'g)|«r (rycr^) - ...+

2r .

However, Of = (l). so f (O'n) = 0 while cr = C/ , so
n

y = z yi-
1=1

fact that diamp(G) ^ r ^ ^r^ ^" O

The result now follows from the

To obtain the best lower bound for the diameter from this 

result it is necessary to choose different permutations 

according to the graph being considered.

The above bounds for the diameter are now compared with 

the exact values in four special cases,

Case 1 ; G = K .------- n
By theorem 1.4.10 , diam P(g) = n - 1; the upper bound of

theorem 1.4.12 is (n - l)(2diam G - l) = (n - l)(2 - 1) = n - 1

so the bound is exact. Taking v. = i for i = n,_..., 2 , then
G. = K. , so diam G. = 1 for i = n,..., 2 . Thus the upper ^ ^ ^ n
bound of theorem 1.4,15 is diam G. = n - 1 . There are

i=2 ^
many permutations (T^ giving the best lower bound for the 

diameter; among them is 0~'= (l 2 ... n) which gives a bound of

n since D„(i, iO^) = 1 for i = 1,..., n . Thus both upper1
2 " - —- -Q'
bounds are exact while the lower bound is too small by a factor 

of about 2 .

Case 2 : G = -^e|.

Diam G = 2, so the first upper bound is (4 - 1)(n - 1) =

3(n - 1 ). If e = ■^ n-1, n} , taking v = i for i = n, . .., 2

gives G = K -lei while G. = K. for i = n-1,...,2 . n n 1J 1 1
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Hence diam = 2, and diam G^= 1 for i = n-1,..., 2 , so 

the second upper bound for the diameter is

2 + 1 + 1+...+ 1=n.

Taking cr" = (1 2 ... n-2)(n-1 n) gives the best value for the

lower bound of -^(1+ 1+...+ 1+ 2 + 2) 1 (n + 2) .
Comparing these bounds with the actual diameter of n, the 

first upper bound is too large by a factor of about 3 , the 

second upper bound is exact and the lower bound is too small 

by a factor of about 2 .

Cases 3 and"4 will be dealt with more briefly as the results 

are similar to the first two cases .

Case 3 : G = P----- ^ ^
In this case, diam P(G) = n(n - 1) . The first upper

bound is (n - l)(2n - 3) , the second upper bound is exact,

t1 2—(n ) , so the first upper

bound is too large by a factor of 4 and the lower bound is too 

small by a factor of 2.

Case d : G = Eh . .------ - 1, n-1
In this case, diam PCg) = {'2 ^ • the first upper

bound is 3(a - 1) , the second upper bound is 2n - 3 , and 

the lower bound is n - 1 .

Thus in general none of the bounds is necessarily close to 

the actual diameter, although the second upper bound is norm- 

ally much closer than the other two bounds. The lower bound 

is particularly weak as in three out of the four cases above 

it is no better than the trivial lower bound of n-1 given 

by the length of a minimal word for (l 2 3 ... n) . It does, 

however, give g^)od results for graphs where every vertex has 

an antipodal vertex, a unique vertex at a distance from the
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first vertex equal to the diameter of the graph. An example 

of this is G = C. , the graph with vertices 1, 2, 5, 4 and 
edges {l, 2}, {2, 3], (3, 4], (1, 4] . Taking 0<= (1 3)(2 4)

gives a lower bound for the diameter of 4, which by proposition 

1.4.11 is the exact value . It is not known whether or not the 
lower bound always gives the exact diameter of r(<4) where G is 
an antipodal graph.

Note that the diameter of a transposition graphn(G) does not 
depend only on the number of vertices and the diameter of G.

For example, G^ = - ^ej and G^ = G^. both have 5 vertices and
diameter 2. However, di8m(r'(G.)) = 5 by theorem 1.4.10, and if 
G^ has 1 ^ 2 3^ 4-/ 5 1, then \((l), (l 3 5 2 4)) ^
2 + 2 + 2 + 2 + 2 / 2 = 5 by theorem 1.4.14- Birb (l 3 5 2 4) is 
an even permutation, so D((i), (1 352 4)) > 6. It follows 

that r(G ) andjT^Gg) hav^ different diameters.
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CHAPTER 2 : TRANSPOSITION SUBGRAPHS

SECTION 2.1 : INTRODUCTION

The main purpose of tais chapter is to introduce some 

theory concerning the subgraphs of transposition graphs.

The most important idea is that of the type of a transposition 

subgraph. This is a graph associated with the edge labels of 

the transposition subgraph. Type is defined in section 2.2, 
as are the ideas of transposition subgraphs being identically 
labelled and equivalently labelled. These properties, are both 
equivalence relations on the set of transposition subgraphs.
A number of simple properties of these relations are proved, 

and are-then used to classify transposition subgraphs isomorphic
to C:, K_ , and K., _ . These classifications are very useful4 4, p P» P
in the remainder of the thesis.

S-ection 2.3 presents- without proof a similar classification 
for transposition subgraphs.isomorphic to G^. The reason for 
omitting the proof is that it is very long, and only part of the 
result is needed later in the thesis. This part of the result 
is proved. The section concludes with some simple results 
on the existence of circuits of certain lengths in transposition 
subgraphs. In particular it is shown that all but a small family 
of transposition graphs have girth 4* The remainder have girth 6.

The results presented in this chapter are confined largely 
to those needed in later chapters. However, a number of other 

problems concerning uniquely labellable transposition subgraphs 
and forbidden subgraphs of transposition graphs have also been 

studied. There is considerable scope for extending the results 
in this chapter.
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SECTIOM 2 ; CLASSIFICATION OF TRANSPOSITION SUBGRAPHS

Definition 2.2.1

Any subgraph -A of a- transposition graph r(G) will be 

called a transposition subgraph; a transposition subgraph 

retains the vertex and edge labelling of the transposition 

graph containing it.

Definition 2.2.2

Given any transposition subgraph A there is an associated 

multigraph G(A ), the type of A , defined as follows :

Let JTLC A ) = W is the label of some edge of . Now

define V(G( A ) ) = = {_i: ± (JJ f i for some w € A ) | .

If (i j) ^il is the label of k edges of A then G(A) has k 

edges joining i to j. Note that by definition, i and j are 

vertices of G(A)*

Example

If A is the graph in fig. 2.2.1 then A is a transposition 

subgraph as it is a subgraph of r(G), where G is the graph in

fig. 1.3.2. Clearly from fig 2.2.1, .ri(A) = 4), (4 5)j ,

hence V(G(/1)) = V(il(A)) = ^3> 4, s}. Finally, G(A) has one 

edge joining 3 to 4 and two edges joining 4 to 5 since A has
one edge labelled (3 4) and two edges labelled (4 5) j G(^)

is shown in fig. 2.2.2 .

Figure 2.2.1 A•

(4 5) (3 4) (4 5)
O-**

(1 2) (1 2)(4 5) (1 2)(3 4 5) (1 2)(3 5)

Figure 2.2.2

3
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If A is a walk in some transposition graph, then A is

clearly a transposition subgraph. Since A is a walk , there 
is a corresponding product of transpositions W . It is clear 
that the type of A , G( A) is identical to the multigraph of 
W, G(w); hence type generalises the idea of the multigraph of 

a word. It follows that the results of Berge, Eden & 
Schutzenberger and Higgs & de Witte in section 1.2 on the multi- 
graphs of minimal words may be translated into results on the 
types of walks in transposition graphs. However, this must be 
done carefully for unless the transposition graph is ), 
shortest paths do not necessarily correspond to minimal words. 
^ote: The word 'type' is used rather than the word 'multigraph' 
in the context of transposition subgraphs since to refer to 
the multigraph of a subgraph of a transposition graph (of a 
graph) would be rather confusing.

It is sometimes convenient to ignore the fact that G(A) 
has multiple edges and to consider instead the reduced type
n
G(A), the graph obtained by merging any multiple edges of G(A) 
into single edges.
Proposition 2.2.1

If Acr(G), then G(A) C G.
Proof

From its definition, G(A) is simply G(IL(6)) with 
multiple edges, so G(A) is identical to G(^A)). Also, 
il( A) CIKC) since fL(G) contains every edge label of r'(G), 
and hence of A since Acl^G). It follows that G(fl(A))C 
G(n(G)) = G, and hence G(A ) C G. D

This result has a near converse, which will be proved later 

in this section.
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Pefinition 2.2.5

Two transposition subgraphs A and A' are identically 

labelled if there is an automorphism f:A —» A' such that 

f maps an edge of A labelled W to an edge of A' labelled Cu .
Note that if A and A' are identically labelled, then 

G(Z\) = A')* Clearly the property of being identically
labelled is an equivalence relation on the set of all trans- 
position subgraphs. However, a mnre useful equivalence relation 
is defined below.

If g: G G' is an isomorphism, then g maps edges of G to 
edges of G' and hence induces a bisection from fl(G) to rL(G') 
which will be denoted by h 
Definition 2.2.4

Two transposition subgraphs A and A' are equivalently 
labelled if there are isomorphisms f: A A’ and

g: G( A ^ G( A') such that V cxJ t Jl( A ) , every edge £ of A
labelled C*J is mapped by f to an edge £f of A' labelled 
^hg , where h is the bisection from _(%(A) to Jl( A') 

induced by g .
Examnle

Let A^> Ag, A, be the transposition subgraphs in 
fig. 2.2.3 ; then A ^ and A^ are equivalently labelled, but 
neither of them is equivalently labelled to A ? .
Figure 2.2.3

(1) (12) (1) (45) (1) (12)
(56)

(54)
(56)

(54)

12) (26)
A;

(45)

(15) (56)

(26) (34

(54)

A3

(12)
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For the sake of clarity,, most of the vertex labels have 

been omitted from fig. 2.2.3 • They can easily be replaced 

by starting with the vertex (1) in each graph , and postmult-

iplying it by the adjacent edg^ labels to prodnce the adjacent
vertices, and so on.

To see that A ^ is equivalently labelled to Ap , consider 

the isomorphism f; defined by (l)-^(l3), (l2)—^(l),

(l2)(34)->(45), (34)-:>(l^)(45), (34)(56)->(l3)(26)(45), and
(56) —»(13)(26)j and the isomorphism g; G( A. ) —> G( Ap) defined 

by 1—^1, 2—3“5*5» 4-^4, 5 —* 2, 6 6. g induces the

bijection h : il( Ag) defined by (12)--»(13),

(34)—^(45)j (56)—^(26). Now if £- is any edge of A ^ labelled 
(12) such as {(12)(34), (34)j =€ , then 6f ={(45), (l5)(45)j 
is an edge of A ^ labelled (13) = (l2)h« as required. It is 
straightforward to check that this works for all other edge 
labels in Xl(A^) and for all other edges of A^.

Suppose that is equivalently labelled to A_ , so there
exist isomorphisms f: , g: G( A.,)"* G(A ) with the
required properties. Let (l^)hg = (ij), where (ij) = (12),

(34) or (56). The two edges of A^ labelled (12) must both 
be mapped by f to edges of A_ labelled (ij), and since the 
two edges labelled (12) are both incident to a common edge , 
they must be mapped by f to two edges of with this property. 
However, A has no two edges with the same label which are both 
incident to some other edge of A , so is not equivalently
labelled to A 3 '

The proof that is not equivalently labelled to A, is 
similar to this. In fact it follows from the fact that being 

equivalently labelled is an eequivalence relation .



Being equivalently labelled is an equivalence relation.

Proof

A transposition subgraph is equivalently labelled to itself 
since we may choose f and g to be the identity. If A is equi­
valently labelled to and f and g are isomorphisms with the
required properties, then A’ is equivalently labelled to A , 

since f””' and g""* are isomorphisms with the required properties. 
Finally, if is equivalently labelled to and ZL is equi­
valently labelled to and f^: A^-> and g^: G(A^)“^G( );

i = 1, 2 are isomorphisms with the required properties, then 

f^fp is an isomorphism from A^ to A^ and g^g^ is an isomorphism 

from G(A^) to G(A_) and f^f^and g^g^ have the required property.

Thus the relation is reflexive, symmetric and transitive and 

hence is an equivalence relation. Q

Ve now establish a number of other results on equivalently 
labelled transposition subgraphs .

Proposition 2.2.5

If A is equivalently labelledto A', then A - A' as graphs 
and G(A) - G(A’) as multigraphs.
Proof

It is clear from the definition that A- A' and G(A) = G(il') 
as graphs, so it is only necessary to show that the isomorphism 

g: G(A)*-^G(A') is an isomorphism from G(A) to G(A') • This is 

the case iff g preserves the multiple edges of G(A). If some 

pair of vertices i, j of G(A) are joined by k edges, then (i j) 
is the label of k edges of A - Each of these edges is mapped 

by f to an edge of A' labelled (i j)h so there are k edges of

Proposition 2.2.2

A' labelled (i j)h
S Now by the definition of h
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(i j)h is the transposition in TL(^') corresponding to

[i, j} g = ^ig, jg} , so (i j)h = (ig jg). This is the label

of k edges of iff ig is joined to jg in by k edges.
Thus g does preserve edge multiplicities, so it is an isomor­
phism from G(A) to G(]^'). D

Note, however, the converse to this result does not hold.
A counter-example is given by the transposition subgraphs A. 
and in fig.2.2.3 •

Proposition 2.2.4

If ^ and A' are identically labelled, then they are 

equivalently labelled.

Proof

This result is obvious from the two definitions. D 
Definition 2.2.5

If A is a transposition subgraph and (^is a permutation 

then is defined to be.the transposition subgraph obtained 
by premultiplying every vertex of A by Gf.

Proposition 2.2.5
For all A and ^ , A is identically labelled to O' A .

Proof
It suffices to show that f: A defined by P —9

for all vertices 0 of A is a.' label-preserving isomorphism.
If ^ 2^ is an edge of A labelled CU, then P 7^ ^ 2 = "

mapped by f to ^0'^^,(ybjand =
^ O (p2 "Pi'^Pg - GU , so f is a label-preserving iso­

morphism. o 

Proposition 2.2.6
If A is a connected transposition subgraph and G is a graph 

such that G(A) C G then A is identically labelled to a subgraph
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cr(G).
Proof

Suppose that p is a vertex of A , and let /X ' = ^ A,

so is identically labelled to A and has (l) as a vertex.
Thus it suffices to prove that J\' is a subgraph of p(G).

Since ^' is connected, if O'is any vertex of , there is a 

path in A' joining (l) to (7. Let this path be (l) = CT^ rv

<K, /V (/g = cr , where for i = 1,..., k .
Now G(A') = G(A)C G, so n(A')Cil(G), and 
6 ri(G). Also, (1) is a vertex of r’(G), soO^ = i

1 IS

a vertex ofr(G). Similarly, .... are vertices of
r(G), so (Tis a vertex of r(G) and the result follows. Q

The above result is the near-converse to proposition 2.2.1 
referred to after the proof of 2.2.1 .

Proposition 2.2.7

If A A' are equivalently labelled connected transposition 
subgraphs and A Cj\., then there exists a transposition subgraph 

J\J such that A ' C A.' and A is equivalently labelled to J\j .

Proof

To prove this result, the following lemma is needed.
Lemma

If h is an isomorphism from a graph E to a graph E' and 
if G is a graph such that E C G, then 3 a graph G' and an 
isomorphism g: G-»G' such that H’ C G' and gi = h .

Proof of lemma

Let V'(G - H) be any set such that |V(G - H)1 = 1 V(G - H)f 
and V'(g - H)n'V(H') = (|), and let f be a bijeotion from 

V(G - H) to V'(G — H). (Note that G — H is the graph obtained
by deleting the vertices of H from G.)
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Now define a graph G' in the following way:
Let V(G*) = V'(G - E) u T(H') , let g: T(G)-:>V(G') be the
map defined by vg = yh if v g. T(E) and vg = vf if v € T(G - E),
and let E(G') =-^{ng, vgj : vj € E(g) j .

Claim: g is an isomorphism from G to G'; for clearly g is 
a bisection from V(G) to T(G'), and the definition of the 
edges of G* ensures that g maps edges to edges.

E' is a subgraph of G' since V(E^) c 7(0') and E(E )g =
E(E )h by the definition of g, so E(E )g = E(E') since by 
definition, h maps E(h) to E(H’),

Finally, it is obvious from the definition of g that 
S’ IH ~ ^

Proof of 2.2.7
Since A is equivalently labelled to A', there is an 

isomorphism g: G(A)-i>G(AJ), and since AcA., G(A) C G(J\^ 
so by the lemma there is a graph G* and an isomorphism g' from 
GCA.) to G' such that G(A') C G' and g' = g . There is
also an isomorphism f: A A' which maps edges of A labelled (jj 
to edges of A' labelled ('Vh , where h is the bisection from 
/1(A) toi%(A') induced by g. Let (Tbe a vertex of A , and let 
O'’ = CXf ; ex' is a vertex of A'-

Now define f by pf = (T-CgO'^a-'^pS' for all vertices 
P of A. f is injective, for if

= 0-'(s')"''(y"''p2g' so . f i

used to define JV' o-s follows:
Let V(A') “■^pf ■ ^ is a vertex Of _A_ j ,

E(Ai) ={{p'|f’> f2^'I • [Pl’ P2I ^ edge of A,]. If 
{^1' 62}^^ labelled (i j), thenj" p^f, p2^'j labelled 
(ig* jg'). It is necessary to check that with this definition

IS

and let



J\j is a correctly labelled transposition subgraph which 
satisfies the conditions of the proposition.

Certainly, Y(J\J) is a set of permutations, so it is only 

necessary to check that the edges of _/\j are well-defined.

If an- edge of TLlabelled (i j), then = (i j)
Also, p^f' and ,p ^f' are vertices ofj\,'. Now

= S'"^ PT’Vg' cr',-1 1 -1c'g' O'

=g'"^(i j)g'

= (ig* jg')
80 Pgf'^ is well-defined as an edge labelled (ig' jg'),

Clearly, f is an isomorphism from _A_to j\i mapping edges 
labelled (i j) to edges labelled (ig' jg') = (i j)h , , thus 
Wis equivalently labelled tojV'.

Finally we must show that c J\J • Let p' be any
vertex of A'; since A' is connected, there is a path 
0'' = 0’o Cr2^'**o'Cr'j|. =p' in from <3-'to p'. Hence 3

transpositions such that

ex'I = i = 1,..., k .
Now f mapscr toe/' by definition, and it maps edges of ^ 

labelled UJ to edges of A' labelled W = oUh . Let be 

vertices of A such that iCTf = c/! for i = 1,..., k, and let 
be labelled Ol so tiLh = g~'^ CO^g = w j

O',!' = &'g'~^ 0'~^cy,g'

W2...CU^)g'

cr )g'
cyCg'"^ w^g')(g'"^Wgg')...(g'"^ (^g').
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Hov;ever, CU. corresponds to an edge of A , so if 

W. = (x y), then x and y are vertices of G(A). Using the

lemma, g' was chosen so that g' G(A) g, so
.1-^ (/J' — CVj^h^, — f 03? i — 1, -««, h .

Hence = o"(6t;^hg)(a;ghg)...((-<;]^hg)

— Lkj -j CO 2 * • • CO ^

= p’ , so p ' is a vertex of J\J • It is easy 

to show that every edge of A' is an edge of J\J. This completes 

the proof of proposition 2.2.7- Q 
Example

The graphs 6, A' and_A_in fig 2.2.4 satisfy the hypotheses of 

proposition 2.2.7 and A.' in fig 2.2.5 is equivalently labelled to 

-A. and A,' d A'-Ajis constructed as in the proof of prop. 2.2.7 • 

Figure 2.2.4

.. (12)____ .

04)
Figure 2.2.5

(1) (1 2)
(24) 

A: (12) (13)

(1) (1 2) (1 2 3)

A:

(l 2 4)

(24) (25)
(1 4) (1 2 4) —O

(1 5 2 4)

Definition 2.2.6
A transposition subgraph A has an induced labelling if it 

is an induced subgraph of some transposition graph. Otherwise 

it has a non-induced labelling.

Example

The transposition subgraph in figure 2.2.3 has a
non-induced labelling. For suppose it is an induced subgraph
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of r(G-) for some graph G. Then P(g) has edges labelled (1 2),

(3 4) and(5 6) so £l, 2|, ^3, 4} and ^3, are edges of G. 

However, (l) and (3 4) are vertices of PCg) and (3 4)6il(G) 
so ^(l), (3 4)1 is an edge of r(G) since (l)"^(3 4) = (3 4)£ 
X1.(G). Also, (l) and (3 4) are vertices of but ^(l), (3 4)} 

is not an edge ofso A^ is not an induced subgraph of P(g).

The graphA^ in fig. 2,2.3 has an induced labelling since 

it is an induced subgraph of P(G) where G is the graph with 

vertices 1, 2,..., 6 and edges ^1, 2], j^3, 4j , f5, •

It is possible to classify transposition subgraphs according 
to which equivalence class of equivalently labelled graphs they 

belong to. This is particularly useful for small transposition 

subgraphs when it turns out that the number of equivalence 
classes is fairly small. In particular, the classification of 
transposition subgraphs isomorphic to C. is used repeatedly 
in this thesis, while the classification of transposition 
subgraphs isomorphic to E and 0% is vital to the study ofr, 2'5 o
the automorphisms of transposition graphs.
Theorem 2.2.5

If A is a transposition subgraph isomorphic to C. then A is 
equivalently labelled to either A^ or Ag, where A. and A^ are 
the graphs in fig. 2.2.6.
Figure 2.2.6

(1)_ (12) A12) (1)_ (12) Jj2)

(23)

V^......... f

(34) (34) (13)

(12)(M) (13)^(34) (12) (12) "^152)
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Proof
Note that A^ and A are not equivalently labelled since 

G(A^) has 3 vertices and is not isomorphic to 0(^2) which 

has 4 .

If A has a vertex O' , then by premultiplying every vertex 

of A. by we obtain an identically labelled transposition 
subgraph 0- A which has (l) as a vertex. Thus we may assume 

without loss of generality that (l) is a vertex of A . Let 

the edge labels of A be , to^ in clockwise order

starting from (1),. so A is the graph in fig. 2.2.7 .

Figure 2.2.7

A :

3 "^5 ' ^

Clearly, UJ. ^ CD. . , subscripts mod 4, or we wouldX 1 f* I .
have either (1) = or , in which case A would
not be isomorphic to C,. Hence there can be at most two edges
in A with tne same label. It follows that G(A) has at most 

two edges joining any pair of vertices.
W = UJ^ C(h is an identity word since A is a circuit 

in seme transposition graph, and hence G(A) = G(W) has no 
vertex of degree 1 by proposition 1.2.4 . Also, G(A) has 
exactly 4 edges, so G(A) must be isomorphic to one of the 
multigraphs G^,..., G^ since they are the only multigraphs 
with 4 edges, no vertex of degree 1 and no more than 2 edges 
joining any pair of vertices. They are. shown in fig. 2.2.$ .
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"4 =

If G(A) = , then A must have 2 edges labelled (i j)
and 2 edges labelled (k l), and these pairs must be non­
incident. Hence A is the graph in fig 2.2.9 which is clearly 
equivalently labelled to .
Figure 2.2.9

(1^,___(ij) j)

(kl)

(k l) (i j)(k 1)

If G(A) = Gg, then A has 2 edges labelled (i j) which must 
be non-incident so A is one or other of the graphs in fig. 2.2.10, 
These two graphs are both equivalently labelled to A p ; for the 
first graph, take f: (1) —?(1), (i j) —^(1 2), (i k j) —>(1 5 2) 
and ( i k) —>(1 3) , and take g: i 1, j —^ 2, k—> 3. ■ For 
the second graph take f: (l)-?(l), (l j)—>( 1 2),
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(i j k) (1 3 2) and. (j k)
j 1 and k —> 3 •

Figure 2.2.10

(ij)

(1 3) and take

(i j)

(ik)

(i k) *(i k j) (j k)*

g:

j)

(i j k)

If G(^ = G^, then G( whichever of

the transpositions (i j), (j k), (k l), (i l) is Gu .

Hence by corollary 1.2.8, ¥' = CO^OJ^Cu^ represents a 4-cycle , 

(x y 2 w), say. Now ¥ = Oj = ¥' CV ., and ¥ repres­

ents the identity, so (x 3' z w) = (1), and CU = (x w z y), 

which is a contradiction since Uj^ is a transposition.
Finally, if G(A) = G., by similar arguments to the first 

case, must be the graph in fig. 2.2.11 . However, if this were 
true, ¥ = (i j)(j k)(i j)(j k) = (i j k) = (1), which gives a 
contradiction.

Figure 2.2.11

(ij)

(ij)

This completes the proof of theorem 2.2,S • D
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Theorem 2.2.9

If is a transposition subgraph isomorphic to _ , then^ J 9
A is equivalently labelled to the graph A, in fig. 2.2.11 . 

Figure 2.2.11

Let A be the graph in fig. 2.2.12. 

Figure 2.2.12

(1 2

Ot,

Let A' be the subgraph of A induced by , (Xg, o'-, .j ,

and let A" be the subgraph of A induced by c/^j.

A' is isomorphic to C. so by theorem 2.2,8, A' is equivalently 

labelled to A. or A^ , where and Ag are the graphs in fig.

2.2.6 .
Suppose first that A'is equivalently labelled to A^, so

without loss of generality, = (i j) and CxJ^ = CJ =
(k l). However, , C ] and CT. } are also edges of A">

so (i j) and (k l) are labels of edges of A" s.nd hence ^i,, jj 

and |k, l| are edges of G(A") • Hence •G(A") $ , so by theorem

2.2.8, A' ir-ust be equivalently labelled to A^ . Hence G(A")
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can only be the graph with vertices i, j, k, 1 and edges j j

and ^k, l} . Hence must be either (i j) or (k l) . In 

either case this gives a contradiction, for if UJ^ = (i j), 
then Wg = so , while if UJ^ = (k l) , then

= <JJ^ so O'^ = &^ - Therefore must be equivalently

labelled to Ag , so without loss of generality, CV = (/J = (i j), 

UJg = (i k) and = (j k).

By a similar argument to the previous one, A" must also be 
equivalently labelled to Ag . The only possible choice for 

Wg is CUg = (j k), and the only choice for is = (i k).

(Any other choice would imply either 0^ or 0^ = CT^ «)

Now A is clearly equivalently labelled to A^ ; one possible 

choice for f and g is f: (T^ J> (1 2), (1) > t—> (1 3),

2 $), 3) and g: f-^l, k,-»2 . O

Theorem 2.2.10

If A is a transposition subgraph isomorphic to K , , then
) J V

A is equivalently labelled to A^, where A. is the graph in fig.
2.2.13 .

Figure 2.2.13
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Proof

Suppose that A has vertices CT^,..., Og and that 0"^ r-' 
cr'j iff iand j have different parities. Let 

so A' is isomorphic to _ ; then by theorem 2.2.9, A' 

equivalently labelled to A , the graph in fig. 2.2.11 .

Hence by proposition 2.2.7, there is a graph A* such that A 
is equivalently labelled to A* and A^CA*. It is clear from 

fig 2.2.11 that T(A*) = T(A^) V where O' is some permutation ^
andE(A*) 3),O'}, {(2 3),O'}} . Let

these three edges be labelled j ^2'^3 •
Now the graph A" = A* “ IC"! 2 3)} = 3 , so by theorem ; .

2.2.9 and definition 2.2.4 G(A") = G(A^) = E . Also, A"
contains edges labelled (1 2), (1 3), (2 3), Gt/ , 0^^, IxJ . and

Finally, to'avoid identifying <7* with (1) or (1 2 3) in 

we must have = (2 3), ^2 ~ (^ 2) and CO ^ = (13), so 

C = (1 32) and A* = A. . Thus A is equivalently labelled to

A 4 • a
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SECTIOH 2.3 : CLASSIFICATION OF CIRCUITS OF LENGTH SIX
The classification of transposition subgraphs isomorphic to 

Gg which will be described in this section is rather complicated, 

but a considerable part of the result is needed to study the 

automorphisms of a transposition graph. Since the proof of the 

full classification is very lengthy, splitting into fifteen 

separate cases, it will not be stated in full here; only that 

part of the classification needed to prove later results in this 

thesis will be proved here.

It is convenient to introduce an abbreviated notation for 

transposition subgraphs isomorphic to Cg . If is a vertex of 

A - Cg and the edge labels of A are , C<V ,..., in order 

from o', A will be denoted by CT ; ... --V^ . If (T= (l),

it will be suppressed in the notation. Also, if A has an induced 

labelling, it will be marked with an asterisk *. For example, if 

A, is the graph in fig. 2.2.3, (l 2)(3 4) is a vertex of A:,, so 

= (1 2)(3 4);(^4)(12)(36)(34)(12)(36)*. More simply, since 

(l) is a vertex of A^, = ('I2)(34)(56)(l2)(34)(56)*.

Theorem 2.3.1

If A is a transposition subgraph isomorphic to Cg , then 

A is equivalently labelled to one of the following graphs, 
which are grouped into nine classes. Every graph in class i
has reduced type , where G. ; 1 = 1, 2,..., $ are the graphs 
in fig. 2.3.1 •

Class 1 : (12)(34)(56)(12)(34)(56)*, (12)(34)(56)(12)(56)(34);
Class 2 : (12)(34)(45)(12)(45)(M);
Class 3 : (l2)(23)U2)(23)(l2)(23);
Class 4 : (12)(34)(12)(35)(34)(45) , (12)(34)(12)(35)(45)(35),

(12)(34)(35)(12)(34)(45)*;
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Class 5 : (12)(M)(12)(23)(34)(24) , (12)(34)(12)(23)(24)(23); 

Class 6 : (12)(23)(13)(12)(23)(13) ;
Class 7 : (12)(23)(12)(34)(14)(34)*, (12)(23)(12)(14)(34)(14)*, 

(12)(23)(M)(12)(14)(34)*;
Class 8 : (12)(15)(14)(23)(13)(M)*, (12)(13)(14)(12)(23)(34)*,

(12)(13)(23)(54)(13)(14) , (12)(23)(12)(34)(13)(14) ;
Class 9 : (12)(M)(13)(24)(14)(23)* .
Piig-are 2.5.1

1 o-

30-

-0 2

-0 4 

-0 ^

1 o- -o2

GA
Gr

Proof

Part of the proof of this result is given later in this 

section; the remainder is omitted. O'
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Theorem 2.5.2

If Z\ is a transposition subgraph isomorphic to Cg which has 
an induced labelling, then its reduced type G(/\) is isomorphic 

to either , Gy G^, G^, Gg, or G^, where Gy Gy..., G. are 

some of the graphs in fig. 2.3.1 •

Proof

This result is clearly a corollary to theorem 2.3.1? but the 

proof given here is independent of theorem 2.3-1 •

Let 0~' be any vertex of A ; since A = Cg there is a (unique) 
vertex O"' distance 5 from CTinA. In fact, A is the union of 
two edge-disjoint paths joining to (y' . Hence there exist 

transpositions W , € il(A) such that

cr’ = (x/g OL = (ruj\ This situation is illustrated

in fig; 2.3.2
Figure 2.3.2

O'

Let p = CV^ Wg = CUjj CVg , and let ¥ ~ (j)^ UJ^U/^ and 
¥' 5 (JO be words. It is clear that G(A) is the
(multi)graph obtained by forming the union of G(v} and G(¥'), 
leaving any multiple edges distinct.

Since p is the product of three transpositions, it must be 
one of the following permutations, where a,b,... are distinct: 
(a b 0 d) , (a b c)(d e), (a b)(c d)(e f), or (a b) . In each 
of the first three cases, W and ¥' are minimal words for p ,
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hence G(¥) and G(¥') are forests whose connected components 

correspond to the disjoint cycles of p .
If p= (a b c d) then G(¥) and G(W') are trees on the 

vertices a, b, c, d, and hence G(/\) is a graph with four 
vertices. (in fact, it can be any connected graph on four 
vertices.)

If p = (a b c)(d e) , then both G(¥) and G(W') must be one
of the graphs in fig. 2.3.5 hence G(^) is one of the graphs 

in fig. 2.3.4 •
Fig-are 2.3.3
a bo----------0— c b -o o-

a
-0

a-o-

do- -o e do- -oe -6 G

Figure 2.3.4
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do- -o e

d o- -o e Whe: :e |x, y, 2 j = b, c j
If p = (a b)(c d)(e f), then both G(¥) and G(¥’) must be 

the graph in fig. 2.3.5, 2nd hence G(/\) is the graph in fig.

2.3.5 .

Figure 2.3.5

a o-
c o-

-o b 
-o d

e <3- -o f

If P = (a b) then ¥ and ¥* are not minimal words, hence by
theorem 1.2.8 the graphs G(¥) and G(W') must contain circuits. 
Also, ^ CUg and CU^ ^ bU g , so G(w) and G(¥') have at least
two distinct edges. Finally, by hypothesis,A has an induced
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labelling, and hence ■{a,bj- cannot be an edge of either G(w) or 

G(W'). (if it were, (a b) would be the label of some edge of A> 

and Cr' would be joined to (y' by an edge labelled (a b) in any 

transposition graph containing A , which gives a contradiction.) 

By proposition 1.2.3 > a and b are in the same component of G(w) 

and G(¥’), but by the above observation they are not adjacent .in 

either graph. Since G(w) and G(W') have exactly 3 edges and must 
■contain a circuit, they must be the graphs in fig.2.3-6 , where 

c and d may now he identical.

Figure 2.3.6

G(¥) = ao,... .... -c<r or G(w) = a -------- o b

G(¥') ao- b or G(¥') o D

Hence ^ if c # d and G^^) = P, if c = d .
Combining the above four cases, we have shown that G(A) is 

isomorphic to one of the six graphs in the hypothesis, or to one 
of the graphs in fig 2.3-7 •

Figare 2.3-7

1
-o-

3
G* :

-o b

1 4

To complete the proof of theorem 2.3-2 it is sufficient to 

show that there is no transposition subgraph A satisfying the



hypotheses such that G(Z\) is isomorphic to one of the graphs 
in fig. 2.3-7 - Let Cf, O'*, p , (jJ^, W, W be defined
as before. Note that if is any of the graphs in fig. 2.3.7
then by the previous arguments, p ^ (a b) .

Lemma 2.3%3

If A has two edges with the same label W, then these edges 
must be diametrically opposite in A.

Proof
Suppose that A has two such edges which are not diametrically

opposite. Since they have the same label they cannot be incident, 
so the only remaining possibility is that there is a third edge
incident to both of them. Let this edge be labelled CU ', so 
contains the subgraph in fig. 2.3-8 . Q 
Figure 2.3.8

au

was chosen to be an arbitrary vertex of A , so we may
anachoose O'= so or' = . Now cr' = cxp ,

O'' = C'cucu’ cU - o' UJ ^ W' OJ - Cr'Cu* , where 60 * is a trans­

position. Hence p = (30* is a transposition. This contradicts 

the observation made just before this lemma.
Lemma 2.3.4

If {i jj. is an edge of G(2l) such that either i or j is a 

vertex of degree 1, then A has at least 2 edges labelled (i j),
Proof

This lemma follows immediately from proposition 1.2.4. The 
word W = (1) in the proposition is obtained by multiplying the
labels of A in cyclic order. Q
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Using these two lemmas it is easy to see that A must be 

one of the graphs in fig. 2.3.9. Aj_ corresponds to G(A) = 

for i = 1, 2, 3 > and A^ and correspond to G{A) = G' . 

Figure 2.3.9

However, each of these possibilities gives a contradiction. 

Since each of the graphs A-j»•. * > A^ is a transposition subgraph, 

the product of the edge labels in cyclic order must be an 
identity word. However, (12)(13)(14)(12)(13)(14) = (13)(24) ,

(12)(13)(45)(12)(13)(45) = (1 3 2), (12)(23)(34)(12)(23)(34) =
(1 3)(2 4), (12)(23)(34)(12)(24)(34) =(123) and finally,
(1?)(34)(25)(12)(24)(23) = (1 2 4), giving a contradiction in 

each case. This completes the proof of theorem 2.3.2 . CJ
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Determining the existence of circuits of a given length 

in a transposition graph is a far easier problem than 

classifying them.

Proposition 2.5.5

P(G) contains circuits of length 4 iff G ^ K for all1 , n
n ^ 1 .
Proof

There exist transposition subgraphs such that G(A)
is isomorphic to a graph- in fig. 2.3-10 , by theorem 2.2.8. 

By proposition 2-2.6, if G is a graph containing either of 

these graphs as a subgraph, then P(G) contains a subgraph 

isomorphic to C. . The result now follows from the observation 

that the only graphs without isolated vertices which do not 

contain two independent edges are and ^ ; n ^ 1. Q 

Figure 2.3.10

Proposition 2.3.6

Every transposition graph with 6 or more vertices contains 

a circuit of length 6.

Proof

Every graph contains a pair of incident edges unless all 
its edges are independent of each othrr. Hence every graph 

without isolated vertices except and G , the graph in fig.

2.3-10, contain one or other of the graphs in fig.2-3-11 as a 

subgraph.
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Figure 2.5.11

Now there exist transposition subgraphs ^ = Cg 

such that G(A) is isomorphic to either of the graphs in fig. 

2.3.11. In the condensed notation of theorem 2.3*1 they are 
(12)(23)(12)(23)(12)(23) and (12)(34)(56)(12)(34)(56) . The 

result now follows from proposition 2.2.6 and the observation 
that r'(Eg) andp(G^) have 2 and 4 vertices respectively. O 

Corollary 2.3.7

A transposition graph PC^) has girth 4 unless G = K 
when r'(G) has girth 6 provided n ^ 2.

Proof

1,n '

This result follows immediately from the two previous 
results and the fact that a transposition graph is bipartite.Q 

A similar result to proposition 2.3.6 can be proved for 
circuits of length 8. The proof uses transposition subgraphs 

isomorphic to Cg with reduced types isomorphic to ^1,3 4 ’
G. and Gg , where G and G^ are the graphs in fig. 2.3.1 .

Thus it is possible to conjecture that the result holds for 
circuits of all even lengths 3- 6. An equivalent and more 

natural way to state this conjecture is as follows: A trans­

position graph with 2m vertices contains a circuit of length 
2k for all k such that 3 k ^ m. (Note that all transposition 
graphs have an even number of vertices.) This alternative 

conjecture has been verified for all m 12, The conjecture 
also implies that all transposition graphs are hamiltonian.

This is proved in chapter 4 of this thesis.
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CEAPTER 3: AHTOMOEPEISMS OP TBANSPOSITIOB GRAPES

SECTION 3.1; lETPODUCTIOH

In this chapter it is proved that any automorphism of a 

transposition graph can be expressed as the product of tvc or 

three special types of automorphism, a strong automorphism as 
defined in section 1.3, a weak automorphism fixing (l), and an 

irregular automorphism. Weak and irregular automorphisms are 

defined in section 3.2; weak automorphisms may be thought of as 
permuting the edge labels of the transposition graph, while 

irregular automorphisms destroy the edge labelling.
The weak automorphisms of a, transposition graph are completely 

described in section 3.2. In fact the weak automorphisms of P(G) 

are very closely related to the autoniorphisms of G. It is also 

shown that every automorphism of a transposition graph behaves 
'locally' like a weak automorphism. This result is used to prove 
that P(G) is a graphical regular representation iff G has no non­
trivial automorphisms.

In section 3.3 it is proved that if G is a graph with no 
component isomorphic to a complete graph or to C, then ^(G) has no 
irreg'ulfir automorphisms. In this case the automorphisms ofP(G) 

can be completely described in terms of automorphisms of G.

The irregular automorphisms of P(K^) and P(Care described 

in section 3*4, and the converse to the result of section 3*3 is 

proved.

Note that for most of the results in this chapter, graphs 

with a component isomorphic to K are excluded since they . 

complicate the statement of the results while adding little to

the theory.
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SECTION 3.2 ;PRELIMINARY RESULTS

The automorphism group of a transposition graph PCg) will 

be denoted by A(r(G)). Strong (or label-preserving) automorphisms 

of a transposition graph were defined in section 1.3 (definition 

1.3.2), and the group of such automorphisms is denoted by A^(r(G)), 
Clearly, A^(r(G)) ^ A(r(G)). It is very useful in this chapter 

to distinguish an intermediate group of automorphisms, the weak 

automorphisms of a transposition graph.

Definition 3.2.1

An automorphism 6 of a transposition graph P(G) is weak or 
label-permuting if V edges , 6^ of r(G), and have the 

same label iff 8 and 6^ 6 have the same label. The set of 

weak automorphisms of a transposition graph forms a group denoted 

by A^(r(G)). Every strong automorphism is a weak automorphism, 

so Ag(r(G)) ^ A^(r(G)) ^ A(r(G)) .
Definition 3.2.2

If 6 is an automorphism of r(G), and O' is a vertex of r(G), 

then 6 fixes O' if (xB = (X . . The set of all automorphisms offl^G) 

fixing O' forms a group called the stabiliser of O^, denoted by 
A(P(G),0'). The group A^(r\G),C^) is defined similarly. 

Proposition 3.2.1

Every automorphism of r(G) may be expressed as the product 

of a strong automorphism and an automorphism fixing (1); hence

A(r(G)) = A^(r(G)).A(r(G), (D) .
Proof

Let 6 be an automorphism of P(g), and let O' be such that

= (1). Let ^ be the strong automorphism of P(G) mapping 
p to 0^ for all vertices p of P(g). Since the strong auto­
morphisms of P(G) form a group, is a strong automorphism.
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Also, ^ )]^ =0^6 = (l), so is an auto­

morphism fixing (l). Since 8 = , the result follows. Q

In this section it will be shown that every element of 

A(r(G)» (l)) is the product of an element of A^(P(G), (i)) 

and an element of A(p(G), (l), D-(G)), the group of auto­
morphisms of r(G) fixing (l) and every vertex adjacent to (l).
In section 3*3 it will be shown that this second group is the 

identity for almost all graphs G. Thus it is very useful to 

study the group A^(P(G), (i)).

Lemma 3.2.2

If A is a subgraph of P(G) and A- G. , then 3 A’ = K? ^ 

such that A C A' C P(g) iff G(A) = E? .

Proof

By theorem 2.2.8 and theorem 2.2.10, if A = G. . A' = E
4 V»V

and Ac A' then G(A) = G(A') = E 3 *
Conversely, if G(A) = E^ , then (i j), (i k) and (j k) are 

labels of edges of A , where i, j, and k are the vertices of 
G(A) . Hence (i j), (i k), and (j k)fi%(G) so if 0^ is any 

vertex of A , then 0^(i j), CX(i k), cr(j k), 0^(i j k),

<y(i k j) and (X are vertices of Pg). Furthermore, they 

induce a subgraph A' of P(g) isomorphic to E_ , containing 

A as a subgraph . Cl 
Lemma 3.2.3

If G is any connected graph with 3 or more vertices, then 

every edge automorphism of G is induced by a vertex automorphism 
unless G is one of the graphs in fig.3.2.1 .

Proof

See Behzad & Chartrand (2 , p.l69) . Q
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Figure 5.2.1

Lemma 3.2.4

If G is as in lemma 3-2.3> then every edge automorphism of 

G which maps all subgraphs of G isomorphic to to subgraphs 

isomorphic to is induced by a vertex automorphism of G.

Proof

The result follows from lemma 3*2.3 unless G is one of the 

graphs in fig. 3*2.1 . If G is one of these graphs, then every 

edge automorphism of G not induced by a vertex automorphism is 

listed in Behzad & Chartrand (2, p. I69); it is easy to check 
that none of them preserves triangles. Q 
Lemma 3.2.5

If g is an automorphism of G, then "8^ : p g ^ p g for 

all vertices p of r(G) is a weak automorphism of. P(G) fixing (1) 

Proof

Let g be an automorphism of G and let (i j)€fl(G). Prom 

the definition of -f^G) we have {i, j j" €E(G), and since g is an 

automorphism, -j^i, j j g = ^ig, jgj ( E(G), so (ig jg) $ il(G). 

However, (i j) 0^, = g"^(i j)g = (ig jg), so (i j) 0^ € n(G) 

for all transpositions (i j)€ jC7.(G).

Now let p be any vertex of r’(G); hence there exist (1) ,
GUg, ..., 6 XUg) such that p = ^-]^2**'^k ’ Therefore

p P g = S~^

= (g"^^.,g)(g"^6V2g)...(g""^GU]^g)

= ^4 "' ^k ’ , 6^^,..-., CU ^ J1(G) . Hence

p 0 is a vertex of P(g), so @ maps vertices of r'(G) to
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vertices 01 r(G).
Now let p^be an edge af PCg) labelled CU , so

=0U£.Cl(G).{p,,p2 jSg = 8g, and
= (e'Vi g)

= g g g ^2 ^
= s"VTV2 «

= g~^ W g 6 il(G).

Therefore G maps edges of Hg) labelled LU to edges of p(G) 
labelled g"""'OU g, so 8 is a weak automorphism of P(G). 
Finally, (l) = g"^ (l) g = (l), so 6^ fixes (l). D

Theorem 5.2.6
For every automorphism 06 A(P[G), (1)) , there is an

automorphism g •€. A(G) such that (b = 0“"'0 is an automorphism
' .g

of P(G). fixing (1) and every vertex of Pg) adjacent to (l), 
where 0^ is the automorphism of lemma 3-2.5 •

Proof

The set of vertices of P(g) adjacent to (1) is X7.(G). Since
n

0 fixes (1), it must permute these vertices. Let &lj^ be the 
permutation of 11(G) induced in this way, and let g* be the 
corresponding permutation of E(g).

We first show that g* is an edge automorphism of G; that is, 
a permutation of E(G) which preserves the incidence and 
independence of the edges of G. Suppose that e. and e^ are non­
incident edges of G which correspond to and W in 11(G). 
Then (CAJ^CO^)^ = (l). If A is the subgraph of p(G) induced by 

the vertices (l), and then A = G and G(/\) is
isomorphic to Q. in figure 2.3.10, so G(/1) ^ K_ . Hence by

1

lemma 3.2.2, there is no graph

Ac A' cr(G).

K3,5

3
such that
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6 is an automorphism, so it must map A to a subgraph A6 
isomorphic to A and such that there is no subgraph A" of r(G) 
with A" = K, ^ and A8 C A" C n(G). Hence by lemma 3.2.2,

G(A0 ) ^ K, , hence by theorem 2.2.8, G(A0) = , the graph
in fig. 2.3.10 . However, (l) is fixed by 8 and and ^ 

are mapped to 6 and Wg8 respectively, and these correspond 
to e^g* and e^g* by the definition of g* . Since 1), 6^ ^0 j-

and (1 ), CUgG are edges of A 9 labelled UJ^d and 0 , 
e .g* and e^g* are edges of G(A8) , and since g* is a 
permutation, they must be distinct edges. Since G(A9) = >
e.g* and e^g* must be non-incident. Hence g* is an edge
automorphism of G.

We now show that g* preserves triangles in G. Let e 1 * 2
and e, be edges of G forming a triangle (a subgraph isomorphic 

to K,), and let , 0^, be the corresponding elements of 
/1(G). Then a , the subgraph of PCg) induced by the vertices 

(l), , GUg, Wy Wg is isomorphic to ^ . A f® mapped

by 9 to a graphA'6 - K _ , and by a similar argument to above,
^ 9 J

G(A9 ) contains the edges e^g*, e^g*, e,g* which are distinct 

since g* is a permutation. By theorem 2.2.9, G(A0) - , so

e,|g*, Bgg* and e,g* form a triangle in G, and g* is triangle 

preserving. It follows from lemma 3-2.4 that g* is induced by 
some automorphism g of G. That is, for all edges j^i, of G,

{i, i} g* = {ig» jgj -

Now suppose (i j)4n(G), and (i j) Q = (k l)^fl(G).

Then <[i, j j g* = jig, jgj = jk, l], so (i j)@ = (k l) =

(ig jg) = g~^ (i j) g = (i j)9 , where 0 is the weak 

automorphism defined in lemma 3-2.5 - Hence if p = Q 0 , 

then (l)(|) = (l)6~^0 =g(l) g”^j0 = (1) 0 = (1) since 0 fixes



(l) by hypothesis. Also, if U> is any element of il.(G), 
then OO (j) = joJ Q 0

= ^CAJ 0g^0g by the above argument ,

= (JJ , .

Since the set of vertices adjacent to (1) in PCg) is n(G), 

fixes every vertex adjacent to (l). This completes the proof 

of theorem 3•2.6 . D 

Theorem 5.2.7

If G is a graph such that every connected component of G 

has at least three vertices, then A^CPCg), (1)) = a(g) and every 
element of A^(f’(G), (l)) is of the form 0^:ph-;>g ^ p g for all 

vertices p of P(G), where g 6 a(g).

Proof

Consider the function f: A(G)—> A^(p(G), (1)) defined by 

g h-^Q for all g A(G); f is well defined since by lemma 

3.2.5 , 8g € A^(r(G), (1)) . We show that f is a group 

isomorphism, and begin by showing f is a homomorphism.

If g^, gg 6 A(G), then g^g^f =8 . If p is any vertex

of r(G), then pG^ = (g^ ^^1 ^2^

= g;^ g;Y Si S2
= gg^pGg )go = )G
= pGg e ' T g 1 ^2

^2
Hence 0_ _ = 0_ (s. gp)f = (g.f)(gpf) and f is a

0-j02 6 ^ ©2 i \ ^

homomorphism.

To show f is injective, suppose g € ker(f), so f maps g 

to the identity in A^(P(G), (1)) . Then for all vertices of 

P(G), p8g = g^p)g = p. Suppose that g 4^ (1), so g moves 

some vertex of G. Without loss of generality, suppose that 

1g = 2 . The component of G containing 1 has at least three
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vertices by hypothesis, so it must contain at least one vertex 

distinct from both 1 and 2, which we may choose to be 3- (Note 

that 2 need not be in the same component of G as 1.) Since 1 

and 3 are in the same component of G, D.(G) generates (l 3) 

by corollary 1.2.2, so (1 3) is a vertex of Since

g“’' p g = p for all vertices of P(g) we have 

g"^(l 3) g = (lg 3g) = (2 3g) = (1 5).
This is a contradiction since 2 jfc 1, 3 • Hence g = (l), and 
f is injective.

Finally, if 6^A^(r(G), (l)), then8^A(r(G), (l)) so by 
theorem 3*2.6 and lemma 3*2.5 there is some 0^6 A^(r(G), (t)) 

such that ^ = B Q fixes (l) and every vertex of PCg)s
adjacent to (l). Now since A^(P(G), (i)) is a group and 
9,0g £ A^(P(G), (l)), ij) ^ A^(r(G), (l)). Since p fixes (l) 
and every vertex adjacent to (l), ^ fixes the edge label of 
every edge incident to (l). Hence the permutation of the edge 
labels of P(G) induced by ^ is the identity, so ^ is a strong 
automorphism. Since fixes (l), (|) is the identity, so 
0 = 0g and f is surjective. This completes the proof of 
theorem 3*2.7 * D 

Definition 3.2.3
A non-trivial automorphism of a transposition graph which 

fixes (l) and every vertex adjacent to (l) is called an 
irregular automorphism. The set of all irregular automorphisms 
of r(G), together with the identity, forms a group denoted by

A(r(G), (l),fl(G)).
Proposition 3.2.8

Every automorphism of a transposition graph may be expressed 

as the product of a strong automorphism, a weak automorphism
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fixing (l), and (possibly) an irregular automorphism.

Proof

This result follows immediately from proposition 3*2.1, 

theorem 3.2.6 and the definition of an irregular automorphism. D

Irregular automorphisms of transposition graphs are 

studied in the next section. In general, a transposition graph 

has no irregular automorphisms, so its automorphisms are 

completely described by theorem 1.3.3 and theorem 3*2.7 • 

Proposition 3.2.9

If CT^ is any vertex of a transposition graph r(G) and <j) is 
any automorphism of TCg) fixing Cl, then cj) permutes the edges 

of P(G) incident to o~, and hence (j) permutes the labels of 
these edges. Thus (j) induces a permutation of E(g); this 

permutation is induced by an automorphism of G.

Proof

This result follows from theorem 3*2.7 and the fact that 

there is a label-preserving automorphism of FXg) from (1) to 0^.O 

Definition 3.2.4

A graphical regular representation of a group ^ is a graph 
G such that A(G) = and a(G, v) = |lj for all vertices v

of G.
Graphical regular representations of the symmetric groups 

S have been studied by M.E. "Watkins (14), Watkins’ graphical 

regular representations are Cayley graphs generated by rather 

complicated sets of permutations, which are far from being 
minimal sets of generators . Using transposition graphs it is 

simple to construct numerous relatively simple graphical regular 

representations for ; n ^ 6. For n ^ 7, some of these graphs 

are minimally generated.
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Pro-position 3.2.10
If G is a connected graph on n vertices such that A(G) =-{1j, 

then P(G) is a graphical regular representation for S .

Proof
By proposition 3 •2.1, A(f’(G)) = A^(P(G) ). A(r(G), (l)), and 

by theorems 1.3.3 and 1.2.1, A (p(G)) = . Now suppose that

(|)€ A(r(G), (l)); by theorem 3.2.7, A^(f(G), (l)) =(l} , and 

hence by theorem 3.2.6, (|) fixes every vertex of P(G) adjacent to 

(1). Let CT’ be one of these vertices; by proposition 3-2.9, (|) 
must fix every edge label incident to so (|) fixes every 
vertex adjacent to o/. It follows that 6 fixes every vertex of 

r(G) distance ^ 2 from (l). Repeating this argument as often 

as required, it is clear that t|) is the identity, so 
A(r(G), (l)) ={l} emd A(r(G)) ^ . O

Connected graphs G with n vertices such that a(G) = -[ 1 } 

exist for all n ^ 6. A set of such graphs is shown in fig.

3.2.2; note that for n ^ 7 they correspond to minimal sets of 
generators for S by theorem 1.2.1 and the fact that trees are 
minimal connected graphs.

Figure 3.2,2
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SECTION 3.-3: RESTRICTIONS ON IHKEGUIAB AUTOMORPHISMS
The main result in this section is that transposition graphs 

of almost all graphs have no irregular automorphisms. The 

exceptional graphs are also listed. Unfortunately, these 

results exclude graphs which have a connected component 

isomorphic to , since they are not covered by theorem 3.2.7. 

Before embarking on the proof of the main result, however, it is 

worth demonstrating that some transposition graphs do actually 

have irregular automorphisms. The simplest example is r'(K^) =
E ,, the graph in fig. 2.2.13. By definition, an irregular 
automorphism is an automorphism which fixes (l) and every vertex 
adjacent to (1). ((1 2 3) (132)), the automorphism of r(E^)

which transposes (l 2 3) and (1 3 2),is clearly irregular. The 

irregular automorphisms of r(E ) ; n ^ 3 are studied in section

3.4 .

It is convenient to introduce two special notations for 
diagrams of graphs. They will not be mixed in the same diagram. 
Notation 1: if H is a subgraph of G, then a vertex of H will 
normally be denoted by o , but if H contains every edg'e of G 

adjacent to some vertex v , then v will be denoted by ♦ .

For example, if H = ^ ^ and G = , then the vertices of
fig.3.3.1(a) are correctly labelled, but those of fig. 3.3.1(h) 
are not.

Figure 3-3.1
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Notation 2; if 6 is an automorphism of PCg), and if </ is a 

vertex of r(G) fixed by 0 , then & may be denoted by g rather 

than o in a diagram showing the action of 0 onP(G).

It is also convenient to use the following notation; if 

e is an edge of a graph , then (X>^ will be the 'transposition 

corresponding to e in the normal way.
Definition 5.3.1

An automorphism f of a graph G fixes a vertex v of G if 

vf = v, and f fixes an edge e of G if ef = e . Note that if 
f fixes e, then f does not necessarily fix the end vertices of e. 

Proposition 5.5.1

If e and f are independent edges of a graph G and Q is an

automorphism of P(G) fixing the vertices LO and cfCAJ„ then

0 also fixes the vertex = CT'OUr- CO .el i e
Proof

Suppose that ((T Wg - Cf' f O^W^CO^ . * Now and

C/CO^ are adjacent to C/C^J^CO^ and 0 is an automorphism, so

and O'OO^ are adjacent to CT' . It follows that the graph 
A of fig. 3»5«2 is a subgraph of P(G).

Figure 5.3.2

A

Since A, = ^, by theorem 2.2-9? G(A) = . However,:,3’
and are labels of edges of A, so e and f are edges of

G(A) . This is a contradiction, since e and f are independent. Q
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Theorem 5/3.2
If e and f are edges of a graph G such that one of the 

graphs in fig. 3-3-3 is a subgraph of G, and if ^ is an 

automorphism of /^(G) fixing the vertices p, and

of r(G), then 9 also fixes the vertices pCAJ^U^^ , 

and = p LKJ^ .

Fig-ire 3-3-3

Proof
Let A-be the subgraph of PC^) isomorphic to Cg defined by 

A = P i (jJ (JJr.CO 60 in the notation introduced in section

2.3- By hypothesis, e and f cannot both be edges in a circuit 
of length 3 in. G, and hence A is an induced subgraph of P(g). 
(For if not, there would be a circuit of length 4 in P(G) 

containing edges labelled (O^ and . Since e is incident to f 

the reduced type of this circuit of length 4 must be isomorphic 

to C^. Since it is a subgraph of G and contains e and f, this is 

a contradiction.)

Let A’ = A6 > the image of A under Q . Since Q is an 

isomorphism, A’ is an induced subgraph of PCg) isomorphic to 

Cg. Eonce by theorem 2.3-2, G(A') is Isomorphic to one of the 

graphs G^, Gy G^, G^, Gg, G^ in fig.2.3.1 . Since Q fixes 

the vertices p, pcc^ and p of P(g), A' contains edges 

labelled and , and hence G(A') contains edges e and f.

Also, G(A') is a subgraph of G. The only one of the graphs 

Gy Gy..., Gg consistent with these facts and with the
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restrictions on e and f imposed by hypothesis is . It

follows that G(/\* ) = 2 and has edges e and f. The only sub­

graph A'- of P(G) containing the vertices p , and p .

isomorphic to and with reduced type G(/Y) as above is A.
That is, Q naps A to itself. Since 6 fixes two adjacent vertices 

of A > it is easy to see that Q fixes every vertex of A . D 

Definition 5.5.2

Given an edge e of G, an automorphism g of G is of type A 

(w.r.t. e) if g fixes e, every edge of G not incident to e, and

every edge f of G such that one of the graphs in fig. 3-3-5 is
a subgraph of G.

Definition 3.3,3

An edge e of G is A-stable if the only automorphism of type A 

w.r.t. e is the identity.

Proposition 3.3.3

If e is an A-stable edge of G and 0 is an automorphism of 

P(G) fixing a vertex p of P(G), and fixing every vertex of P(g) 

adjacent to p , then 0 fixes every vertex of PCg) adjacent to

Proof
By proposition 3-2.9> since 6 fixes jO 60^ , it induces an 

automorphism g of G whose action on the edges of G is identical 
to the action of 0 on the labels of the edges of P(G) incident 
to P . 8 fixes p and p > hence 0 fixes the edge

labelled Ou^ incident to . It follows that g fixes e

in G. We now show that g is of type A w.r.t. e.

Let f be any edge of G not incident to e ; by hypothesis,
■0 fixes p, pCfg , and P ^ p » and hence by proposition 3-3*1 >
'Q fixes so "6 fixes the edge labelled incident
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to p6i^. It follows that g fixes f in G.

If f is an edge of G such that one of the graphs in fig.

3.3-3 is a subgraph of G, then P fixed by the orem

3.3-2, BO 0 fixes the edge labelled incident to ^ .

Hence g fixes f in G. By definition, g is of type A w-r»t. e. 

Since e is A-stable by hypothesis, g must be the identity, so 

9 fixes every vertex of n(G) adjacent to . XU

We now show that if G has an edge e which is not A-stable 

then G has a fairly special local structure.

Proposition 3.3.4

If G is a graph such that every component of G has at least 
three vertices, and if e is an edge of G which is not A-stable 
and g is a non-trivial automorphism of G of type.A w.r.t. e 

then G contains one of the graphs in fig. 3-3-4 as a subgraph 
and g is a product of some of the following permutations; 

i) anyO^€S(k^, k^) , ii) (l^ 1^) ,iii) (i j)(m^^ ^^1,2)

Figure 3.3-4
m

,1
ms,2

Where r ^ 2, s 0 and t ^ 0 ,
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P’roof
Let e = <|^i, j j and 1st g be a non-trivial automorphism of 

G which is of type A w.r.t. e. Let G' be the graph obtained 

by deleting i and j from G. G' may be disconnected, so let 

G^, G^,..., G^ be the connected components of G'.

Lemma 3.3.5

The graph G < q ^ n is fixed pointwise by g unless

G has one or two vertices.q
Proof of lemma

If Gq has 3 or more vertices, then it must clearly have 

2 incident edges, since it is a connected graph. These two 

edges cannot be incident to e by the definition of G , so 

they are fixed by g. Since they have exactly one common vertex, 

it must also be fixed by g. Let ti.is vertex be u. If v is any 

vertex adjacent to u in G^ then e' = -^u, vj- is an edge of G .

Both u and e' are fixed by g so v must be fixed by g. Since G 
is connected this argument can be extended to any vertex of G . O 

Lemma 3.3.6

If G is any of the graphs in fig.3.3.5 then G is fixedq
pointwise by g.

Figure 3.3.5
i (a) (b)

(c)

(d)
-o-

u

u

In case (d), 7(0^) = {"u^. Otherwise, V(G ) = ^u, v j- .
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Proof of lemma

In cases (a), (b), (c), e' vj- is fixed by g, and
u and V have different valencies, and cannot be in the same 
cycle of g. Hence they must be fixed by g. In case (d), g 

must fix u since it of type A w.r.t. e. In case (e), by a 

similar argument, g fixes f = ^ j, u_} and since j and u have , 

different valencies, g must fix u. Similarly, g fixes v. Q

By definition, g is ,non-trivia], so one of the graphs of 
fig. 3-3*6 must be a subgraph of G. (They are the only 

remaining possibilities, by the two lemmas.)

(b)

In case (a), G must have two of the subgraphs, or else u 
must be fixed by g. In case (c), (i j) must be a cycle of g 

for if i and j are fixed then u and v are also fixed. The 

result clearly fellows from these observations. Q 

Definition 3.3.4
An edge of a graph G is 3-stable if e is A-stable, or if e 

lies in a circuit of length 3 in G which also contains an A- 

stable edge.

Proposition 3.3.7

If e = j}is a .B-stabls edge of a graph G, where G

has no component with 1 or 2 vertices, and if 0 is an , 

automorphism of r(G) which fixes some vertex o'of P(G) and 
every vertex of r(G) adjacent to , then 0 fixes every

vertex adjacent to CX.
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Proof

If e is A-stsble then the result follows immediately from 

proposition 3*3.3> so suppose that e is not A-stahle and lies 

in a circuit of length 3 with some A-stable edge c, say. Let 

the third edge in the circuit be d.

If 0 fixes every vertex of P(g) adjacent to , then

the result follows, so suppose that 0 permutes the vertices of 
P(g) in a non-trivial way. By proposition 3>2.9 there is a 

corresponding automorphism g of G whose action on the edges 
of G is identical to the action of 0 on the labels of the edges 
of P(G) incident to ; g is clearly a. non-trivial

automorphism. As in the proof of proposition 3.3.3, S is of 
typo A w.r.t. e .

Let e =^i, j j and let k be the other vertex in the special 
circuit of length 3, so without loss of generality, c =ji, kj- 

and d = fj, kj .

Lemma 3.3.8

The vertices i, j, k are fixed by g.

Proof of lemma

Since c is A-stable, 0 fixes every vertex of P(g) adjacent

to by proposition 5.3.3. In particular, 3 fixes the

vertices Cf(JJ Ca), and CjJ (jJ . However, UJ = (TOO ivc d o e c d e c
and so 0 fixes the edges of P(g) labelled

LO^ and Cci ^ incident to the vertex Cy Hence g fixes the

edges c and d in G, It follows immediately that g fixes the 

vertices i, j and k of G. O
Since g fixes i and j, the end vertices of e, and since g 

is of type A w.r.t. e, by proposition 3.3.4 the only vertices 

of G not necessarily fixed by g are k^, k^,..., and 1^ and 1^,
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the vertices in subgraphs i) and ii) of fig. 3*3.4* (Either 

the k*s or the I's must be vertices of G by proposition 3.3.4.) 
Lemma 3.3.9

If is a vertex of G then c' = '{i, k^is A-stable.

Proof of lemma

Since r ^ 2 by proposition 3.3.4, i must have valency ^ 3. 

Also, k. has valency 2, (i k^) cannot be a cycle in any 

automorphism of G. Hence by proposition 3.3.4, if c' is not 

A-stable then one of the graphs in fig. 5.3.7 must be a subgraph

of G.
Figure 3.3.7

In either case, k. has valency ^ 3, giving a contradiction. D 
Hence by lemma 3.3.8, if k^ is a vertex of G then k is 

fixed by g. Since g is non-trivial, the only remaining 

possibility is that 1^ and 1 are vertices of G.

Lemma 3.3.10
If 1^ and Ig are vertices of G then the edge c' =-^i, l.j 

is A-stable.

Proof of lemma

The proof of this lemma splits into two cases.

Case 1; both i and j are adjacent to vertices of G apart from 

each other and 1^ and 1^ .

In this case, i has valency ^4 and has valency 5 so (i 1 ) 

cannot be a cycle in any automorphism of G. Hence by proposition 

3.3.4, if o' is not A-stable then one of the graphs in fig. 3.3*7
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must be a subgraph of G, where k is taken to be 1^.

Since 1. is adjacent only to i, j and 1^, in either case, 

one of the black vertices must be j. This contradicts the fact 

that j has valency ^ 4.

Case 2; one of the vertices i and j has valency 3«

In this case, none of the edges in the subgraph of G 

induced by the vertices i, j, 1^, Ig is A-stable. Since e =

^i, jj- does not lie in any circuits of G outside this subgraph 

it follows that e is not B-stable, contrary to hypothesis. This 

situation is illustrated in fig. 3«3.8 in the case, j has 

valency 3-0 

Figure 3.3.8

Again it follows by lemma 3-3.8 that g fixes 1 1

Similarly, g fixes 1_. Hence g fixes every vertex of G and so 
6 fixes every vertex of PCg) adjacent to Cr'O^ • O 

Definition 3.3.5

An edge e of a graph G is G-stable if the component of G 

containing e is not isomorphic to E. , and if e lies in a 
subgraph of G isomorphic to the graph in fig. 3.3*9 -

gigure 3.3.9
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Proposition 5.3.11

If G is a graph such that every component of G has at least

three vertices, if e is a C-stable edge of G, and if 6 is an

automorphism of P(G) such that 0 fixes and every vertex of

r’(G) adjacent to Cf, then-Q fixes every vertex of P(G) adjacent

to cKw . 
e

Proof
As in the proofs of the earlier results, 6 induces an 

automorphism g of G by its action on the edges ofp'(G) incident 

to ; as before, g is of type A w.r.t. e. Hence by-

proposition 3.3.4, one of the subgraphs of fig. 3.3.4 is a 

subgraph of G. (if g were a trivial automorphism of G, then 
the.-result would follow immediately.)

The proof of this result splits into two cases.
Case 1; e = ^i,j% in fig. 3.3.10 .

Figure 3.3.10
j

(Note that since the component of G containing e is not 

isomorphic to K. , then i must be adjacent to some vertex m 
other than j, k and 1.)

Since i and j have different valencies, (ij) cannot be a 

cycle of g. Also, j is not adjacent to any vertices of valency 

2, so by proposition 3.3.4, g = (k l), since it must fix every 

other vertex of G.
Let b =^i, kj- , let c =|i, ij-and let d = |j, kj.
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Clearly, g transposes edges b and c of G, and hence Q transposes 

the edges of P(G) labelled and CO incident to , by

the definition of g. This is illustrated in fig. 3-3-12 .

Figure 3.3.12

Note that = (3^60^since b, d and e are the edges

of a circuit of length 3 iel G.

However, is not adjacent to in P(g), or there

would be a circuit of length 4 in P(G) with edges labelled CO^, 

(jU^ and W (and one other label). This is a contradiction, by 
theorem 2.2.8 . In this case, Q does not preserve adjacencies 

inP(G), which is also a contradiction.

Case 2; e = |k, 1j in fig. 3.3.10 .

As in case 1, the only non-trivial possibility for g is 

g = (k l).
Let c = l^i, kj and let d = ^i, 1^ ; g clearly transposes

c and d. Hence 6 acts on P(g) as shown in fig. 3.3.13.

Consider the action of Q on the edges of /^(G) incident to .

0 fixes the edge labelled , and transposes the edges labelled 

and CV . Hence the automorphism g' of G induced by the 
action of Q on the edges of P(g) incident to tJ"^ fixes c and 

transposes d and e. This implies that (i k) is a cycle of g',
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which is a contradiction since i and k have different valencies

in G.
Hence in either case, g is trivial and the result follows. 

Figure 5.3.13

Proposition 3.3.12

If G is a graph such that every component of G has at least 

3 vertices, and if e is an edge of G which is not B- or C-stable 
then the component of G containing e is isomorphic to K ; n ^ 3>n
or L ; n ^ 1, where L is the graph in fig. 3.3-.14 .

n n
Figure 3.3.14

n
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Proof
Since e = j j is not B-stable, it follows that e is not 

A-stable, and hence by proposition 3.3.4, one of the graphs in 

fig. 3.3.4 is a subgraph of G. If i) or ii) is a subgraph of 

G then by lemma 3.3.9 or lemma 3.3.10 respectively, e lies in 

a circuit of length 3 with an A-stable edge and hence is B-stable, 

or else e is C-stable. In either case this is a contradiction.

The only remaining possibility is that iii) is a subgraph of 

G. Suppose first that both s 3^ 0 and t )> 0 in fig. 3.3.4 .

Lemma 3.3.13
In this case, e' = j^i, p^is A-stable.

Proof of lemma

Suppose that g is an automorphism of G that is of type A 
w.r.t. e'. By definition, g fixes d^ 1 ’ 2^ hence

m g = m or m ^ . It follows that (ip.) cannot be a cycle
1j) 1)1 1 f id f

of g since i is adjacent to m but p is not adjacent to m g.
1 j I I 1,1

Hence if g is non-trivial, then by proposition 3.3.4, one of the 
graphs i) or ii) in fig. 3.3.4 is a subgraph of G. i) cannot be 

a subgraph of G since every vertex of G adjacent to i and to p 

must also be adjacent to j, and hence has valency 3 or more.
If ii) is a subgraph of G then the above argument implies that 
j must be one of the black vertices in the subgraph , and hence 
by an inspection of fig. 3.3.4 ii), every vertex adjacent to j 

is contained in a circuit of length 3 in G. This is a contra­

diction, since j is adjacent to m , which lies in no circuit
' t

of length 3 in G. It follows that g is trivial, and hence e' 

is A-stable. O

This result implies that e is B-stable, which is a contra­

diction. It follows that either s = 0 or t = 0.
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If both 8=0 and t = 0 then the component of G containing 
e is isomorphic to . If t = 0 and s > 0 then the component 

of G containing e is isomorphic to L . In either case there 

is nothing remaining to prove. The only remaining case is 
s = 0 and t )> 0. In this case G contains the graph in fig.

3.3.15 as a subgraph. (Note the relabelling of the vertices of G.) 

Figure 3.3.15

If e' = q^is A-stable then e is B-stable. Hence by 

proposition 3*3-4» one of the graphs in fig. 3-3.4 is a subgraph 
of G. Note that if v is any vertex of G , then i 'v v iff j 'v v, 
provided v ^ i or j.

If i) or ii) is a subgraph of G then j is distinct from or 1^ 

respectively, without loss of generality. Hence k^ has valency 

3 if i) is a subgraph, since it is adjacent to i,j and q . This 

is a contradiction. If ii) is a subgraph of G then j is adjacent 

to i, and 1^ . The only possibility is that j = 1^ , and 

hence i and j have valency 3* It is easy to check that in this 
case e is C-stable, which is a contradiction. The only remaining 
possibility is that iii) is a subgraph of G and that (i ) is a 

cycle of a non-trivial automorphism of type A w.r.t. e'. Note, 

however, that in fig. 3.3.4 iii), e must be changed to e' and 

j must be changed to q^. , since we are now considering e', not e. 
The other labels of the graph do not clash with the new notation 
introduced in fig. 3.3.15.
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Pirst suppose that s > 0 in the relabelled version of fig.
3.3.4 iii). Since j lies in the circuit i A/ j rv of G, 

j ^ m. g since m. „ does not lie in a circuit of length 3 in G. 
Hence i m . and j <T^ m. . which contradicts the observation1 j 1 ' 19'
that i A/ V iff j rv V . It follows that s = 0. Hence if v is any 

vertex of G distinct from i and then i 'v v iff q rv v.

A similar argument holds for q^,..., q^ and hence the component 

of G containing e is a complete graph. This completes the proof 

of proposition 3*3»12. O 

Proposition 3.5.14

If e is an edge of a graph G which has no component with 

less than 3 vertices, and if the component of G containing e is 
isomorphic to L ; n ^ 2, and if 0 is an automorphism of /^(G) 

fixing and every vertex of TCg) adjacent to , then 

fixes every vertex of P(G) adjacent to CT^OJ^ .

Proof Let g be the automorphism of G corresponding to the 
action of 9 on the labels of the edges of PCg) incident to

. As before, by proposition 3.3.1 and theorem 3.3.2, g 
is of type. A w.r.t. e. If e is not the edge ■{'i, jj in fig. 

3.3.14 then e is clearly A-stable and the result follows by 
proposition 3.3.3, so suppose that e ={'i-, j j • The only 

non-trivial automorphism of G which is of type A w.r.t. e is

(i j)(k^ ^i)(^2 ^n^'
g = (i j)(k^ l^)(k2 l.g)...(k^ . Hence if = ^j, k^],

and d^ =-[l^, ij- ; r = 1, 2, —, n , then g fixes 

e and c^ and transposes b^ and d^ . Hence B fixes the edges 

of r(G) labelled (i j) and (k^ 1^) incident to = 0^(i j),
and transposes the edges labelled (j k ) and (i l^J.
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Lemma 5.5.15

If a and a' are edges of a graph G such that every automorphism 

of G fixing a also fixes a’, and if 0 is an automorphism of P(G) 

fixing ^ and ^ then 0 also fixes P^a^a' *

Proof of lemma
The automorphism of G induced hy the action of 0 on the labels 

of edges of P(G) incident to must fix a in G, and hence it

must fix a' by hypothesis. The result follows immediately. □

We now show that 0 fixes all the vertices of r'(G) in fig. 

3.3.16. Each vertex in the figure is numbered 1,..., 6; this 
number gives the reason that the vertex is fixed by 0 . Since 

each numbered reason assumes that the previous reasons are true, 

they should be read in ascending order.

Figure 3-3.16

e

e b.

Note that CO LO (jJ Co,S U. S

and that = ((i j)(j k^))'

= l^)(j k^)(i j)
- (i j)( j k^) = (1),

= (1).
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1: Vertices numbered 1 are fixed by hypothesis.

2: (T'OU CAJ. is fixed by proposition 5-3-3 since c^ is an 
°1 1 ^

A-stable edge of G,

3: This vertex is fixed by applying lemma 3»3.15 taking b^, e 

and Cyoo as a, a' and D respectively.

4: This vertex is fixed by applying lemma 3*3-15 to b^, e and (X.

3: This vertex is fixed by lemma 3-3.15 applied to d^, b^ and 

LU . CO ^ .

6: This vertex is fixed by lemma 3-3-15 applied to b^, e and
cr'w^^We •

Hence Q fixes the edge labelled CO incident to CS^UO ,
1 ®

which contradicts the earlier observation that 'Q must transpose
this edge with the edge labelled GU, . This completes the proof

1
of proposition 3-3-14- O 

Theorem 3.3.16

If G is a graph without any connected components isomorphic 

to C. or to ; n ^ 1 then [""(G) has no irregular automorphisms. 

Proof

By proposition 5-3-12, every edge of G is B- or C-stable,
or lies in a component'of G isomorphic to L^j n ^ 2, Let 0 be

any automorphism of r(G) fixing (1) and every vertex of P(G)

adjacent to (1), and let CX be any vertex of P(G) distance 2

from (l), so = (l)cU CO where d and e are edges of G.e d

Then 0 fixes CX by proposition 3-3-7, proposition 3-3-11 or 

proposition 3-3-14 since e is either B-stable, C-stablm or lies 

in a component of G isomorphic to L^ ; n 2. Hence 'G fixes 
every vertex of P(G) distance 2 from (1). The same argument 

can be used to show that & fixes vertices any distance from (1) 
and hence, since P(G) is connected, G fixes every vertex of P(G).O
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Corollary 3.5.17

If G is a graph such that no component of G is isomorphic 

to C. or to ; n 1, then the stabiliser of PCg),
A(r(G), (l)) = A^(P(G), (1)), the group of weak automorphisms 

of P(G) fixing (l).

Proof

This result follows from theorem 3*3«l6 and theorem 3*2.6. D
In the next section it will be shown that the converse of 

this result also holds, so if G has a component isomorphic to 
C. or to then r(G) has irregular automorphisms.

Corollary 3.3.1? shows that for almost all graphs G, the: 

stabiliser of PCG) is isomorphic to A(G), and that all the 

elements of the stabiliser are very closely connected with 
automorphisms of G.
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SECTIOM 5.4; IRBEGULAR AUTOMORPHISMS OF AND

In the previous section it was shown that if G has no 

component isomorphic to C. or then r(G) has no irregular 

automorphisms. In the present section it will be shown that 

r'(C^) and n > 3 all have irregular automorphisms, and

all the irregular automorphisms of these graphs will be 

described.

Theorem 3.4.1

For all n ^ 3> the bisection Q : S^—^ S defined by 

Q = 0'~^ is an irregular automorphism of r(K^).

Proof
n'

Clearly, @ permutes the vertices of f’(K^), so to show that 
0 is an automorphism it suffices to show that 0 preserves 

adjacency in p(K^). Let and 0^^ be any two adjacent vertices
of P(K^), so CTg = CX. Gu for some L<j6-Q_(K^). Note that since 

E has an edge joining every possible pair of vertices, )

contains every transposition in S^.

cr^0 =0^2”* ~ (w) ^ = Lu cr. coop”' since UJ^ = (1),
= cy ^ Cf ^ where Co' is a permutation

of S conjugate to CV. Now conjugate permutations have the 

same cycle structure, so (JJ' is also a transposition, and hence 

by the earlier observation, CAJ ' It follows that
is adjacent to CX , so Q is an automorphism of r(K^). 

To see that 6 is irregular, note that (l)^ = (I) and

=(l) for all CX so 0 fixes (1) and every vertex of

P(K ) adjacent to (1). Also, since n ^ 3> (1 ? 3) is a vertex 

of and (l 2 3)8 = (1 3 2) ^ (1 2 3) so is a non-

trivial automorphism. Q

In fact p(K ) has no other irregular automorphisms. This
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will be proved in the following result. It can also easily be 

shown that Q is not an automorphism of any other transposition 

graph.

Theorem 5.4.2
For all n ^ 5, 0 is the only irregular automorphism of P(K^),

Proof
n'

Suppose that (p is another irregular automorphism of P(K ). 

Define d to be the largest integer such that for all vertices ^ 

of r(K^) such that Dp^g ^((l), p ) ^ d j p6 = pcj) . Note 
that d ^ 1 since both 0 and p fix (1) and every vertex adjacent 

to (l) by the definition of an irregular automorphism. Since 

r(K^) has diameter n-1 by theorem 1.4.10, d ^ n-2, for if 
d = n-1 then 0 and p would be identical.

The proof now temporarily splits into two separate cases.
Case 1: d = 1.

In this case there is some vertex D of P(E ) such that

Dr(k)n'
((l), p) = 2 and pO = p"”'. By theorem 1.4.5,

n (p) - c (p) = 2j and since each cycle contributing to c

must move at least 2 letters, the only solutions to this equation 
are n = 3> c =1 and n = 4, c = 2. Hence p is a cycle of 

length 3 or a product of two disjoint cycles of length 2.
(it is probably more easy to prove this directly using the fact 

that p is the product of two transpositions.)

If p is an involution then p = (i j)(k l) for some i,...,l. 

Since p^ f p0 , pp f ((i j)(k l))"^ = (i j)(k l).

However, by proposition 5-5.1, taking (y = (1), = (i j)

and W ^ = (k l), p fixes p , giving a contradiction. Hence 

p = (i j k) for some i, j, k. Now consider the action of p 
on the subgraph of r(K ) in fig. 5-4-1-



Figure 3.4.1
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(1)

A - , and that G(Z\) is the complete graph with vertices

i, j, and k. Also, contains the vertices (l), (i j),

(j k) and (i k) since they are all fixed by p . Since p is 

an automorphism ofP(K^), must be isomorphic to A •

It follows from theorem 2.2.10 that G(A<^ ) = K,,.and since 

contains edges labelled (ij), (jk) and (ik), G( A^ ) = G(A). 

Since A(j) and A contain common vertices it is easy to see 

that A^* = A . Hence = (i j k) or (i k j) so = p

or = p A If pp = p ^ then pp =p0 , which is a

contradiction, so p^ = p

We now show that ip must fix every vertex of p(K^) distance 

2 from (1) .

Consider the automorphism of E induced by the action of (|> 

on the edges of P(K ) incident to (i j), g, say. From the above 

figure, g fixes ^i, jj, j, kj-, kj , and hence g fixes the 

vertices i, j, and k of K^. If 1 is any other vertex of K , 
then we have already seen that p fixes'the vertex (i j)(k l)
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of rXz ) and hence c|) fixes the edge of labelled (kl)

ident to (i j). It follows that g fixes the edge ^k, ij ofincic

K , and since g fixes k, g must also fix 1. Hence g is then
identity and ‘p fixes every vertex of adjacent to (i j).

Let be the subgraph of ) in fig. 3-4.2, where 1 is

any vertex of K .n
Figure 5.4.2

(1)

(j) fixes (l), (i j), and (i l) by definition, and fixes 
(i j l) and (i 1 j) since they are adjacent to (i j). Hence 

(|) fixes the edges of r'(E^) labelled (il), (ij) and (jl) incident 

to (i l). This is a repeat of the earlier situation with 1, i, j 

replacing i, j, k. Hence by. the previous argument, (f) fixes 

every vertex of r(K ) adjacent to (i l).

By a similar extension of this argument, if 1 and m are any 

two vertices of then (|) fixes every vertex of adjacent

to (l m). Hence ^ fixes every vertex of ) distance 2

from (l).

Case 2: d ^ 2.
In this case, pii) = 00 for every vertex of p(E ) distance 

■^2 from (l). Since 0>(6)^ = (p ^)0=(p^)”'=p>0*^is
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the identity automorphism of r'(Z^). Hence if p is a vertex 

of P(K^) such that the distance from (1) to p is at most 2
then p ( (|)0 ) = (pij) )0 = ( p0 )0 = p (0 )^ = P . Hence

if (p = (jj'O , then ^ is an automorphism of P(K^) fixing every
vertex distance 2 or less from (l). Note that ^ cannot be 
the identity, for then we would have (j) = @ since 0 is an 

involution.

Hence in either case we have an irregular automorphism of 
p(Z^) which fixes every vertex distance d or less from (l), 

where 2 d ^ n - 2. From now on, this automorphism will be 
referred to as ^ . (Of course, in case 1, Vp is simply .)

Since d is chosen to be as large, as possible, there is some

vertex D of P(H^) such that p [jj ^ p and Dp/g -sCCOj p ) = d+1 . 

Hence by theorem 1.4.5, n(p)-c(p)= d+1, and hence
n(p)-c(p)^3 since d ^ 2. Therefore p has at least 

one cycle of length 4 or more, or at least two cycles of length 
2 or more in its cycle structure. These two cases are considered 

separately.

Case 1: p = CT"(i j k 1...), where Ct is a permutation 

fixing i, j, k, 1.

Hence p (i j) = (P( j k l...)(i),

p(k 1) = cr(i j l...)(k),
and p(i j)(k l) = CX (j l...)(i)(k).
Now n*(p (i j)) - c*(p (i j)) = n*( p ) - c*( p ) - 1 = d, 

since P (i j) fixes i, but otherwise moves the same vertices 

as p , and it has the same number of non-trivial cycles.
Hence D-Zg P(i j)) = d and p (i j) is fixed by p .

Similarly, Dp/g n((i)> P (k l)) = d so p(k l) is fixed hyp ,
' n' .

and Dp/g ^^(l), p(i j)(k l)) = d - 1 , so p(i j)(k l) is
I V
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also fixed by (p .

Case 2; p =0^(i !...)» where O' is a permutation

fixing i, j,k and 1.
Hence P(i j) = CX (j...)(i)(k !...)> 

p(k 1) =0"(i j...)(l...)(k), 
and p(i j)(k l) = 0'(j...)(i...)(i)(k).

It is easy to check that the distances from (l) to p (i j),

P (k l) and P (i j)(k l) are the same as in case 1, so all 

these vertices are fixed hy p .

Thus in both cases, p (i j)(k l), p(i j) and p(k l) are 
fixed by (p . Hence taking C = p (i j)(k l), CO^ = (k l) and 

= (i j), by proposition 3*3.1^ Ip fixes p , which gives 

a contradiction. This completes the proof of theorem 3*4.2. D 
Note that the group of irregular automorphisms of p(K ),

together with the identity, is isomorphic to , the cyclic group 
of order 2.

We now consider the irregular automorphisms of P(C^), where 

C. is of course the circuit of length 4* P(C^) turns out to

have three irregular automorphisms, which are described in the 

next result. It is easy to check that the group of irregular 

automorphisms of P(C^), together with the identity, is the

Klein-4 group, since all three irregular automorphisms are 

involutions.

In the statement of the next result, if <|) is an automorphism 

of P(G) and p and p ’ are vertices of r(G) such that p = p ' 

and p ' =p then we will write Cp : p<J—>p' .
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Theorem 5.4.5

If C. is the graph with vertices 1, 2, 3 and 4 and edges 
, 2|, -1^2, 3j", ^ 3, 4j, -^4, ij- then the only automorphisms of 

1^(0^) fixing (l) and every vertex adjacent to (l) are 1, ^,

and (|) ^ where 1 is the identity automorphism and

(1 2 4)4-»(l 3 2), (1 4 3)<-*'(2 3 4), (l 3)4->(l 2 3 4),
(2 4)<~4(1 4 3 2) and fixes every other vertex of P(C^),

(j)g: (1 4 2)4^(1 3 4), (1 2 3)'*-»'(2 4 3), (2 4)<-)'(l 2 3 4),
(1 3)<*^(1 432) and fixes every other vertex of P(C^),

(() : (1 3)<-^(2 4), (123 4)'*-^(l 4 3 2), (1 2 4)^(1 3 2),
(1 4 3)4-i»(2 3 4), (1 3 4)'^->(l 4 2), (1 2 3)'^(2 4 3),
and fixes every other vertex of P(C.).

Proof

p(C^) may be conveniently divided into two edge-disjoint 

subgraphs and Ag as shown in fig, 3.4.3. These two graphs 

have eight common vertices which are joined by dotted lines in

fig. 3.4.3.
Let ^ be any automorphism of P(C^) fixing the vertices 

(1), (1 2), (2 3), (3 4) and (1 4) . It is easy to check that 

(1 3)(2 4) is the only vertex of p(C.) distance 4 from (1), so 

(1 3)(2 4) must be fixed by (p . Also, (p fixes (l 2)(3 4) 
since it is the only vertex of P(C^) which is adjacent to both 
(1 2) and (3 4), apart from (1) which is already fixed by (p . 

Similarly, (p fixes (l 4)(2 3). P fixes (1 324) since it is 

the only vertex of p(C^) adjacent to (1 4)(2 3) and distance 2 

from (1 2), apart from (1 4) and (2 3) which are already fixed 
by (j) . Similarly, fixes (1 4 2 3), (1 34 2) and (1 2 4 3)-

Thus fixes every vertex of P(C.) in A ^ except for those 

which are also vertices of Ag.
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Fifflxre 3.4.3 : PCc^).
(1)

a = (1 2 4), b = (1 3 2), c = (2 3 4), d = (1 4 3), 
g = (1 4 2), h = (1 3 4), i = (1 2 3), j = (% 4 3), 
e = (1 2)(3 4), f = (1 4)(2 3).
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Since (1 2 4) and (1 3 2) are the only vertices of PCc^) 

adjacent to both (l 2) and (1 3 2 4), and since (1 2) and 

(1 324) are fixed by ^ , it follows that either (j) fixes 

both (1 2 4) and (1 3 2) or ((1 24) (1 3 2)) is a cycle of. 
Similarly, either (2 3 4) and (1 4 3) are fixed by <p or

((2 34) (1 4 3)) is a cycle of (j) ; either (l 42) and (1 3 4)

are both fixed by cj? or ((1 4 2) (1 3 4)) is a cycle of ; 

and finally, either (1 2 3) and (243) are both fixed by (p 
or ((1 2 3) (2 4 3)) is a cycle of p> .

Suppose that ((1 2 4) (1 32)) is a cycle of c|? but that

((2 3 4) (1 4 3)) is not, so Ip maps (1 2 4) to (1 3 2) and
fixes (2 3 4)' This givep a contradiction since

)((1 2 4), (2 3 4)) = 2 ^ 4 = )((1 3 2), (2 3 4)) ,
so Ip does not preserve distance in n(C^). Similarly, if 

(2 3 4) (1 4 3)) is a cycle of p then ((1 2 4) (l 3 2)') is 
a cycle ofp . Thus ((1 2 4) (l 5 2)) is a cycle of p iff 

((2 3 4) (1 4 3)) is. Similarly, ((1 4 2) (H 3 4)) is a cycle 
of ({) iff ((1 2 3) (2 4 3)) is.

If none of the above cycles are cycles of ij) then (|) fixes 

(1 2 4)> (1 3 2),..., (2 4 3). Hence <|) also fixes (2 4) since 

it is the only vertex of PC*^^) adjacent to both (l 2 4) and 
(2 4 3). Similarly, fixes (1 3), (1 2 3 4) (uni (l 4 3 2), 
and hence is the identity.

If ((1 2 4) (1 3 2)) and ((2 3 4) (1 4 3)) are cycles of ^ 
but ((1 4 2) (1 3 4)) and ((1 2 3) (2 4 3)) are not, and if 
(|)^ is the automorphism defined in the statement of this theorem 
then ^ fixes (1 2 4), (1 3 ?),..., (2 4 3) and hence by the
above argument, (j) ^ is the identity. Since (j) ^ is an 

involution, (p = (j) .. (it is easy to check that ^ is an
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automorphism of by studying its action on in

fig. 5.4.3.)
By a similar argument, if ((1 4 2) (1 3 4)) and 

((1 '2 3) (2 4 3)) are cycles of c|) but ((1 2 4) (l 3 2)) and 

((2 3 4) (1 i 3)) are not, then (j? = . Finally, if all

four transpositions are cycles of tp then p = p ^ .

This completes the proof of theorem 3.4.3. O 

Corollary 3.4.4

If G is a graph with a component isomorphic to C. or to 

n ^ 3, then P(G) has an irregular automorphism.

Proof

Let p be an irregular automorphism ofp(H), where H is the 

component . of G isomorphic to or K^. By proposition 1.3.9 
P(g) = P(H)X’Z^ , and every vertex of P(g) can be written in 

the*-form O'f , where CP is a vertex of P(h) and commutes 

with . Now define an automorphism ’ of P(G) by 

p ' = (O'P , where p = Oft and O' is a vertex ofP(H).

It is easy to check that p' is an irregular automorphism
of r(G). I]

It is probably possible to extend the results in this 

chapter to all transposition graphs. However, in the remaining 

cases there is not such a natural connection between 
automorphisms of G and automorphisms ofp(G).
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CEAPTEE 4: EAMILTONIAE CIECEITS IN TEANSPOSITION GRAPHS

SECTION 4.1; INTEOPHCTION

The main aim of this chapter is to prove that all 

transposition graphs with four or more vertices are hami1ton!an. 

This is not a particularly surprising result in view of the fact 

that only a few non-hamiltonian, vertex transitive graphs 

are known.

In section 4-2 some simple results are proved concerning-the 

large scale structure of a transposition graph P(G), where G is 

a connected graph. Of particular interest is the way in which 
r(G') is contained inP(G), where G' is a connected graph 

obtained by deleting a vertex of G. These results are useful in 

both section 4*3 and 4.4.

In section 4.3 it is proved that r(K^ ^ ^) is hamiltonian for 

all n 3. This case must be dealt with separately since n 1^

contains no circuits of length 4-, so. the method of proof used in 
the general case'does not work.

The main result is proved in section 4.4. It is in fact a 

simple corollary to the result that PCt) is hamiltonian for any 

tree T with 3 or more vertices. The proof of this result takes 
up most of this section. The general method of proof is very. 

simple but unfortunately.does not work on trees with six or 

fewer vertices. These are dealt with by means of a laborious 

step by ste-p argument which takes up much of the section.



Ye begin by giving some results on the left cosets of S
in S , where r ^ n-1. n
Definition 4.2.1

SECTIOS 4.2; THE LARGE-SCALE STRUCTURE OF TRANSPOSITION GRAPHS

If r n-1 - and. <y € 'S^ then the left coset o' S is defined

by = .[crp : p€ si
If (y and Cy are elements of the- same left coset of S 12 r

in then we will write ^2’ '^r clearly

equivalence relation.

Proposition 4.2.1

an

For all oy1 ' ^ 2 ^ "n' "^1
r+1 ^ s sC' n, s 0"”^ = s

(Xo 6 S^, cX,

2

0^2 iff Vs such that

Proof

If CT^j 0^2 fben there is some (X ^ S such that 

<yj' » 0^2 ^ ^ ‘ Hence there exist ^ , (D. 6 S such that

and = CZ'pV,. O" = ,
and GTg = = Crj p , where If :r+1^r n,
then sCg'' = s(O'^p)'''' = = (sp"'')cr;[''

= s since p €■ and fixes every s such that

> r.
Conversely, if 80"^^= aCg^ for all s such that r+1\^sXn,

-1let p = crpo-g , so s p = s((;r^''(yg) = (s
= (sC2^) 0^2 “ and hence p 6 S^. 

Also, (X ^ and Cy^ lie in the same left coset of since 

p 6- so the result follows. Q

Notation: The left coset 0-*S will be denoted by
<fi^, ig, ..., i^-r^ where i^ = (n+1-s) for 8 = 1, 2,.. ,

n-r. This symbol is well-defined by proposition 4.2.1 .

• 1

Note that i.,...,i are distinct and lie between 1 and n.
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In this chapter we will mostly be interested in the cases 

r = n-1 and r = n-2, when the notation simplifies to C and 

j respectively.

Proposition 4.2.2

Every finite connected graph G has a vertex v which is not 

a cat-vertex of G.

Proof

This result is a simplified version of theorem 2.3 of 

Behzad and Chartrand, and is very easy to prove. O 
Corollary 4.2.3

Every connected graph G on n vertices can he labelled in 
such a way that G^ := G - ^ ; ^r+2’'*'’ "''nl connected

for all r such that 1 ^ r ̂  n-1.

Proof

Simply cJioose v to be any vertex of G which is not a
cut vertex of G, choose v to be a vertex of G . which isn—I n—1
not a cut vertex of G^ ^, and so on. Q 
Theorem 4.2.4

Let G be a graph on the vertices 1, 2,..., n such that 
:= G -^r+1, r+2,..., nj is connected for all r. Then each 

left coset CT'S^ is a set of vertices of r(G) and induces a
subgraph A of r(G) which is identically labelled to r(G^).

Proof

It is obvious that 0“ is a set of vertices of r(G) since 
O'S^ is a subset of S^. Hence it induces a subgraph ZX of P(g), 
Consider the map c|) : P(G^) defined by cj) : p —^ CT'p

^ maps to CS^, and hence maps vertices of ^(G ) to vertices 
of A . It remains to show that ij) is an is omorphism and maps 

edges ofr'(G ) labelled Co to edges of'A labelled Ci) .
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Suppose that and p^ are adjacent vertices of P(G^) and

p2 = P ^ W where CU 6d(G^) . By definition, { p ^ 2^^ ~

{crp^, cypg}, and crpg = crp^k;, so and o'p2 are

adjacent vertices of P(G) joined by an edge labelled C<J .

Since A is an induced subgraph of P(G) and Cp ^ and CT'jO ^ are 
vertices of A , p maps edges of P(G^) labelled CU to edges of 

A labelled CU , and the result follows. 0
The subgraph ofP(G) induced by the coset ^ i., ig,..., in̂-r-

of S will be denoted by i^, ig,..., » where G is

the (connected) graph obtained by deleting the vertices r41, r+2, 

..., n from G.

For example, if n = 4, r = 3, and G is the graph with vertices 
1, 2, 3 and 4, and edges ^ 1 , 2 j ,^2, 3 j >{3» 4 j then P(g) is 

shown in fig. 4*2-1. There are four left cosets of S_ in S.,
<fl^ , <( 2 )>, <C 3'/'} ^ 4 ^ in the above notation. Note that 

<(4 = (l)S, . These cosets and the subgraphs ofp(G) induced

by them are also shown in fig. 4*2.1. It is easy to see that 

<"4/^P(G^) =P(g^) , and that the other subgraphs are all 

identically labelled to P(G^).

Proposition 4.2,5

If G is a connected graph on n vertices and G is labelled 
in such a way that n is not a cut vertex of G, and if -|'i, n^ 

is an edge of G , and if j ^ k are such that 1 ^ j,k ^ n 

then there are (n-2).' edges of P(G) labelled (i n) joining 
<(^j )>n(G^_^) to <(" k')>p(G^_^). (That is, edges which have one 

end vertex in one coset, and the other end vertex in the other 
coset.)

An example of this result can be seen in fig. 4.2.1, where 
there are (4-2): = 2 edges labelled (34) joining any two cosets.
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Fiisrare 4.2.1

(1 2 3 4) (1 3 4)

(34)

Proof of proposition 4*2.5

Ve make the following claim: if = 0'^(i n) then 

and 6 k iff i = k and n cr“ ' = j .

For suppose that O'^ and O'^ are as above; since ^ j ^ ,
then n 0'“"' = j by definition. Also, by a similar argument, 

k = n = n( Ch^i n))~’’ = n j (± n)“’*cr”''} = n| (i n)cr~'^J

= i- as claimed.

Hence there is one edge labelled (i n) joining j to
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-1 -1<fk)> for each such that i (y ' = k and n O' ' = j •

There are clearly (ii-2)l permutations satisfying these 

constraints since i n and j ^ k . Q 

Pronosition 4.2.6

If G is a connected graph on n vertices and n is not a 

cut vertex of G then every edge of P(g) from j to ^ k ^ , 

where j ^ k, is labelled (in) for some i < n 

Proof

This result is obvious, for if 0^ = (i l) where i,l<( n,

then n = n(0''^(i l))"^ = n(i 1 = nO'""' , and hence

CTTj proposition 4.2.1. Q

Hence the large-scale structure of r'(G) can be described

as follows. There are n loft cosets of S . in S each ofn-1 n
which induces a subgraph of P(g) identically labelled to P(G'),
where G' = G - nJ . Each pair of these subgraphs is .joined

by (n-2)l edges of P(G) labelled (in) for each i such that
^i, nj is an edge of G. In the special case where G is a

tree, (and this case is very important in this chapter),

n must be an end vertex of G, or else it would be a cut vertex.
Hence n has valency 1 in G and there is a unique vertex i of G
adjacent to n. Thus each pair of cosets of S ^ in 8 aren-1 n
joined in r’(G) by (n-2)l edges, all of which are labelled (i n). 

Proposition 4.2.7

If G is a connected graph on n vertices such that

n-1 = G H and Gn—2 = Gn- - I" n-lj" are connected, and if

there exist vertices p and q of G such that p ^ q , p fv n-1

and qrvn, and if i , i^, j^, and j^ are distinct integers 
such that 1 ^ i.^, i^, j , jg ^ n, then there is a circuit of 
length 4 Acr(G) such that G(A) is the graph with edges
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|p, n-1 and |'q, nj- and such that A has one vertex in each
of the coeets <^^4 ' <^^2* "^1^

Before proving this result, it is probably worth explaining

its significance. No restriction at all is placed on G by the
constraints that G^ ^ and G^ ^ sire connected; by corollary 4*2.3

any connected graph can be labelled so as to make this true.

The only connected graph for which p and q do not exist for #ny

choice of n and n-1 is the graph K. . . Thus for all1 ,n—1
connected graphs except ^ ^ there is a choice of n, n-1, 

p and q satisfying all the hypotheses. The only constraint 

imposed by the choice of i^,..., is that n ^ 4*

The idea behind this result is that if a hamiltonian 
circuit exists inf^(G ), then this circuit and similarn— I
circuits in each coset give a set of circuits spanning the 

vertices of P(G). The hope is to use n-1 of the squares 

constructed in this result to patch together the spanning set 
of circuits to give a hamiltonian circuit inP(G). This idea 

is illustrated in fig. 4*2.2.

Figure 4*2.2

r(G):
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Proof of proposition 4*2.7

In the full permutation notation, let . be a permutation
1,1

with the following form;
^,1' f. j| . .1 ^1 ^2 ^2

...n...n-1...q....p..,.i n n-1 q p

in a more compressed notation. Such a permutation exists since 
i^» , ig and j are all distinct, and since n, n-1, p and q

are all distinct. Clearly, OTj -] 6 and since n(C^ ) -1 = 1

=-'Cand (n-l)( O':!
Let 01,^2 = n-1),

Cf1,1 ^ ^ ^1' ^1 '

so CX1,2 ^2 ^2 p n-1

^n-1 p y, n n-1 q p y

'^1 "^1 ^2 "^2 j^^l* '^2/' '

\n p q n-1 /

Similarly, = CT, ^ g (q n)
^2,1 ~ ^2,2 n-1 )f ig, j .

Finally; (7^^^ (q n) = ^ (p n-l)(q n) .
= (Xj^2 n-l)(q n)

and

= (X̂ ^ (p n-l)(q n)(p n-l)(q n)

° %i •
Also, since p c-j n-1 and q n in G, (p n-1), (q n) 6(1(0), 
and hence the subgraph A of P(G) induced by the vertices 

(X| ^ ^, ^,2’ g and (T^ ^ is a circuit of length 4 and
has one vertex in each of the required cosets. tD
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SECTION 4.3: HAMILTONIAN CIRCniTS IN TCZ. J.——^—----------------------------- i,n—1 —
Throughout this section, K will be the graph with1, n—1

vertices 1, 2,-.., n and edges -[ 1, 2} » -["l. 3] >•••» 1 j nj .

Definition 4.3.1

For this section only, two vertices and Cf ^ of P(K^ n 1 ^

are related if there exist,distinct numbers i, j, k such that 

CT^ = (1 i j k). An equivalent definition is that and

C/p are distance 3 apart in P(K^ n 1^ but do not both lie in 

any circuit of length 6 in P(K^ n-1^'

Proposition 4.3.1

If ^ and 0^2 are both related to the identity (1) then 

there is an automorphism of P(K. .) fixing (1) and mapping
IJ n**" I

to CT" 2 .

Proof

By definition there exist a^ , b., c. , a,^, b^, C2 such that
a., b., c. are 1 1 1CTj = (1 a^ b c^) and (7^ = (1 a^ bg o.). Since a., b 

distinct for i = 1, 2, there is a permutation p of S mapping 

a^ to ap , b. to b2 and c^ to Cp . This permutation is clearly 

an automorphism of ^ ^ . Hence by lemma 3.2.3,
0p : (T’p is an automorphism of P(K^ ^ ^) fixing (1).

Also, (1 a^ b^ c.^ a^ b^ c^)(^

= (1 a^p b^p )

= (1 ap bp Cp) by the definition of p . 
Hence @p is an automorphism of P(K^ n 1^ with the required 

properties, D 
Proposition 4.3.2

P(K ,) is hamiltonian, and has a Hamiltonian path
I , y

joining any two related vertices.
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Proof

P(K ) may be embedded in a torus as shown in fig. 4.3.1.
' f i'

The heavier lines in the figure form a hamiltonian circuit in 

the graph. Of course, the imbedding is irrelevant; it is simply 

a convenient way of drawing the graph, which is non-planar. 
Figure 4.3.1

Since P(E is vertex transitive, we may choose (1) as 
an end vertex of a hamiltonian path in P(K ,) without lossI I 0
of generality. By proposition d.J.i we may choose the other
end vertex of the path to be (l 2 3 4). A hamiltonian path
joining (l) to (1 2 3 4) in P(K is shown in fig. 4.3.2 .I > 3
This completes the proof of proposition 4.3.2. O



Figure 4.5.2
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Theorem 4.5.5

For all n ^ 4> if P(K^ _ ^) has a hamiltonian path joining 

any two related vertices, then P(K^ ia hamiltonian.
Proof

By theorem 4.2.4, the left cosets of in ^ induce 

subgraphs / i/>P(K^ .) ; i = 1, 2,.,., n+1 which are .
^ 19 n— I

identically labelled to P(K. .).1 j n— I

Lemma 4.5.4

For all 1=1, 2,..., n-1, there exist vertices Oi and

0"! of i')>P(K ) such that CK. and (y! are related

vertices of P(K ) and such that CT. = cf!(l n+l) (mod n-l).
1 9 n 14" 1 1

Proof of lemma

By definition, there exist a., b., c. such that 

O'I = Ch. (l a. b. c.). Also, if a_. , b._, or c. = n+1, then
1 1 111 -L 1* 1

it is easy to check that and cr'^ lie in different left
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of P(K^ n which are mapped to and by the label-

preserving isomorphism of theorem 4.2.4 are related in PCk^ n-1^

as well as in P( K. ). Let 4^. — (1 a. b. c . } | i — 1 y... ^ n^f 1.j j n V 1 111
For all n, choose O' - (l), so = (1 nfl). After this

choice, the proof divides into two cases.

Case 1; n = 4

Choose = (1 3 4 2), = (1 2 3 4), = (1 2 4 3),
p^ = (1 2 4 3) = (1 4 2 3).

With these choices, (7^, (y ^ are as in the table below;

cosets of in giving a contradiction. Hence the vertices

i 1 2 5 4 5

or1 (15) (2534) (12)(354) (1453) (1324)

G-i (15342) (12543) (14)(35) (13245) (1)

It is easy to check that these permutations have the required 

properties.

Case 2: n 5

Choose p^, pg, and as in case 1.

Choose p ^ = (1 k-1 k k+1) if 4 k ^ n-1.

Choose p ^ = (1 n 2 n-l), and finally choose = (l n n-1 2)

With these choices, (yn = (1 nfl) , = (1 nfl 3 4 2),

(3^ = (2 n+1 3 4) , = (1 2 nfl 4 3),
= (1 2)(3 nfl 4), azKl = (l 4)(3 nfl).

Claim; (y^ = (1 kfl)(k nf1) for k = 3,...> n-1 

Cl = (l k nfl k-l) for k = 4,..., n-1.

The claim is true for k = 3, so suppose it is true for all 

k ^i, where 3i ^ n-1 .
By definition. O''!it1

C'(1 ^fl) = (1 i+l)(l n+l)(l nfl),
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so = (1 i+1 n+1 i) , and

(^i+1 Pi+1 = ^
= (1 i+2)(i+1 n+1), and hence the claim is true for 

k = i+1. Hence the claim is true for all k ^ n-1. (Beyond this 

point, the definition of changes so the result does not hold.)

Finally, c/^ (1 nf1) = (l n)(n-1 n+l)(l n+l)

= (1 n n+l n-1),
Cf^ = (l n n+1 n-l)(l n 2 n-1) = (12 n-1 n n+l).

^n+1 - - n-1 n n+l)(l n+l) = (l 2 n-1 n), and finally.

O'’n+1 (l 2 n-1 n)(l n n-1 2) = (1).
It is now easy to check that ig /k )>

for k = 1, 2,..., n+1. Prom the way they are defined in terms of 
the 4-cycles and [y ' have the required properties, fl

This completes the proof of the lemma. ¥e now return to 

proving theorem 4»3»3*

Let T', and 'T' respectively be the vertices of P(K. .)k k 1,n-1^
mapped to and o"' by the isomorphism of theorem 4.2.4.

We have already seen in the proof of the lemma that H ^ and 

are related vertices of P(K^ ^ ^), and hence by hypothesis are 

joined by a hamiltonian path. This path is mapped by the 
isomorphism to a path joining to which is a spanning

subgraph of <[k)>r(K^ n-1^ The union of all these paths.

together with the edges joining ^ to to

and joining to is clearly a hamiltonian circuit
in P(K^ ^). This is illustrated in fig. 4.3.3 • O 

Corollary 4.3.3

P(K^ ^) is hamiltonian.

Proof

This follows immediately from theorems 4.3*3 and 4.3.2 . tJ
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Figure 4.5.5

Corollary 4.5.6

If p(K^ n-1^ has a hamiltonian path joining any two

related vertices, then has a hamiltonian path joining
any two related vertices.
Proof

We may choose the two related vertices to be (l) and 
= (1 n+1 2 4) by vertex transitivity and by proposition

4.3.1.
3y theorem 4.3.4 there is a hamiltonian circuit inT^E ^^ 1,n/

containing the vertices (3^, where these are
the vertices constructed in the proof of theorem 4.3.4.
Let A be the subgraph of this circuit obtained by deleting
all the vertices of the circuit in <(l/^r'(E ) except .19 n—1 j
Hence ^ is a path joining (1) = O'to <3-'^' .

Now CX (1 2 3 4) = (1 nf1 2 4)(1 234)= (l n+1 342)
= Cy , so O' is related to cT .

Hence as in the proof of theorem 4.3.4 there is a path joining
<y' to o'which spans 1 (^(E^ ). - It is clear that the
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union of this path and ^ is a hamiltonian path in r(E^ 
joining (l) to (X . O 

Corollary 4.5.7

P(Ki ^ ^) is hamiltonian for all n ^ 4*

Proof
This follows immediately from the preceding results. Q
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SECTIOM 4.4; HAMILTOHIAl CIRCUITS IN TCg)

In fact, most of this section will be concerned with 

the existance of a hamiltonian circuit inP(T), where T is 

an arbitrary tree. The more general result follows very 

easily from this special case.

It is not possible to use the same method of proof as in 

section which depended on the rather special structure
of K. . . The more general method of proof was discussed1 f n—I
briefly before the proof of proposition 4*2.7 • If T is a 

tree on n vertices, and T . = T -fnlisa tree on n-1

vertices such that P(T ) is hamiltonian, then we attemptn*“ 1
to string together hamiltonian circuits in the cosets 

^i)>P(T^_^) with circuits of length 4 to produce a hamil­
tonian circuit in P(T^): There is a fairly easy way of doing 

this, which works for all n ^ 7* Unfortunately, this method 

does not work at all for smaller values of n, for reasons 
which will be discussed later in this section, so laborious 

special arguments are needed for the first few values of n. 
These special arguments in fact make up the bulk of the proof 
that all transposition graphs are hamiltonian.

Definition 4.4.1
If T is a tree on n.vertices and i is an end vertex of T 

adjacent to j, then two edges of P(t) labelled (i j) are 
distant if they do not join the same two left cosets of 
S( [[nj - {i})* The two edges of P(t) are properly distant 

if no two of their end vertices lie in the same left coset. 
Note that two properly distant edges are of course distant. 

These definitions are illustrated in fig. 4*4*1 .
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Figure 4*4*1

<N> <‘"2> <"4>

If T* = T -|ij, and are edges of r’(T) labelled

(i j) as in fig. 4.4.1, then is distant from , and

properly distant from £but is neither distant nor properly 
distant from . (it is assumed that <rk^/" are

distinct cosets of S([n] - fi|).)

Proposition 4.4.1

Let T . be a tree on n-1 vertices such that u is not a n—I
vertex of T ., v is an end vertex of T . and such that P(T .)n—1 ■n — 'l '‘Vi—'l/n—1 n-1'
is hamiltonian. If T is the tree obtained by adding the vertex 
u and the edge ^u, vj to then r(T^) has a, hamiltonian

circuit containing any two distant edges of /^(T ) labelled (u v). 

Proof

Without loss of generality, suppose that v = n-1 and u = n. 
Since v is an end vertex of ^ there is a unique vertex w of 

adjacent to v. Again without loss of generality, we may 

suppose that w = n-2.

Let ^ and be any two distant edges of r(T^) labelled

(u v) = (n-1 n). By proposition 4.2.5, there exist edges of 

joining every pair of coeets <^i^(T^_^) and j ^

Hence there are edges £6^,..., f^-l ^(l^) labelled 

(n-1 n) such that the n cosets of S . -in S are joined in a 

chain by the edges , £^,..., ^ as shown in fig. 4.4.2.
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Figure 4.4.2

<4> <S>

In fig. 4.4.2, i., ig,..., are a permutation of the
numbers 1,2,..., n, and £' are a permutationI d n—I
of the edges ..., . (it is not convenient to
show , Eg,..., in their true order since E. and
may be either properly distant or distant but not properly 
distant. This would need two separate figures to show , and 
would be artificial since the circuit which will be constructed 
contains all the edges , .. . , ^.)

There is a hamiltonian circuit in <fi^^P(T^ ) since it
is isomorphic to ["'(T .), end since r(T ) is hamiltonian byri““ I n*" I
hypothesis. Let g ^ y CT for j = 1,...', n-1, where
p. is a vertex of <( i . ^ and (T^. is a vertex of . y.

Hence is a vertex of <[' i^ /^('^n-1 ^the hamiltonian 
circuit in ^i^^P(T^_^) there are two edge's incident to p ; 
let these edges be labelled CO^ and , where CaJ^ and 
correspond to edges of T^ ^. They must be distinct since 
two distinct edges of a transposition graph which are incident 
cannot have the same label. Hence at least one of these 
transpositions must be distinct from (n-2 n-1). Since by 
hypothesis n-1 has valency 1 in T^ ^, it follows that , say, 
must fix n-1. Also, UJ^ fixes n, so ( (n-1 n))^ = (1).

Hence there is a circuit of length 4 in r(T^) containing the
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vertices p , CTj, and Cu^ . By the contrapositive

of proposition 4.2.6, p ^ is a vertex of <(i^')>f^(T^ .) and 
CCj CU^ is a vertex of ip^r'(T^_^). For convenience, let the 

harniltonian circuit in C^i^y P{T^ ^) be and let the circuit

of length 4 just constructed be A. g .
' >

We now show that there is a.hamiltonian circuit in 
Ciig^ ^(^n-1 ^ containing the edge Suppose that

a hamiltonian circuit A inp(T^_^) contains no edge labelled 
CaJ^ . Clearly, G(A) ^ A-1 ” hence by proposition

2.2.6, A C P(T -fc/,})* However, T -Tqiis a disconnected
xi"— j C" p n— I L V

graph with two components, and hence p(T . - Tel) has n. i n_In— 1 V py 1 2.

vertices, where n^ f n^ = n-1, and 1 ^ n. , n. .(T n-2. This is 

a contradiction, since A is a spanning subgraph of r'(T^ ), and

has (n-l)j vertices. Since <Cig')>n(T^ ^ is identically labelled 

to P(i'^_-])j a- similar result holds for a hamiltonian circuit in 

)« We may choose the edge labelled 40 to be 

incident to (T^ by vertex transitivity. Hence as claimed there 

is a hamiltonian circuit A g i^ ^) containing the

edge , cr^cu^] .

These arguments may now be repeated to construct circuits
Ap 3’ A3 ' • • ’ n length 4, and hamiltonian circuits

A%' A/|>***> A^ such that A. . . has an edge in common with 
9 4 ^ JfjTi

and A Deleting these common edges gives a hamiltonian^ -"j+1 '
circuit in P(T ) containing the edges CI, ..., r' . , and
hence containing the edges ^. and . Q 

Corollary 4.4.2
Let be the tree obtained by adding an edge ^ n-1, nj 

to n 2' Then P(T^) has a hamiltonian circuit containing 
any two distant edges of the graph labelled (n-1 n).
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Proof

This follows immediately from corollary 4.3*7 and 
proposition 4.4.1. Q

' ■■ The next result in this section involves the lengthy
technical proof mentioned at the start of this section.
Theorem 4.4*3

If Tg is any tree on six vertices apart from ^ then 

there is a hamiltonian circuit in n(Tg) containing any two

distant edges labelled (u v), 'where u is an end vertex of Tx 
adjacent to v.
Proof

The proof of this result is given in a series of lemmas. 

Lemma 4.4*4

If T^ is any tree on 4 vertices and u is an end vertex 
of T^ adjacent to v, then PCT^) has a hamiltonian circuit 
containing any two edges labelled (u v). (Note that the edges 

labelled (u v) are not required to be distant.)

Proof of lemma 4-4.4
Without loss of generality, let the vertices of T. be 

1, 2, 3, 4 and let u = 4 and v = 1. Let the two edges of

As in the proof ofr(T^) labelled (l 4) be and
proposition 4.4.1, any hamiltonian circuit in r(T ) must 

contain at least one edge labelled (l 4), so by symmetry,
we, may assume that every hamiltonian circuit in n(T^)
contains £^. It remains to show that one of these hamiltonian
circuits also contains £ ^ .

There are two non-isomorphic trees on 4 vertices, namely

K and P . These two cases must be considered separately.
I $ V 4
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Case 1: T, K1,3 *
In this case, the hamiltonian circuit in fig. 4-4*3 

contains unless Eg is one of the edges g' or g" .
In this case the circuit obtained by reflecting the circuit 
in fig. 4.4.3 contains £ £' and , and hence contains

6. and Eg .

Figure 4-4.3

Case 2: T. =]^
In this case, the hamiltonian circuit in fig. 4-4.4 

contains £^ and Eg unless is one of the edges <f', £■"
or £*. As in case 1, the hamiltonian circuit obtained by 
reflecting the hamiltonian circuit in fig. 4-4.4 in a 
vertical axis contains , £', £" and £*, and hence

contains and Eg . This completes the proof of lemma

4.4.4.



Figure 4.4.
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Lemma 4.4.5

If T. is any tree on 4 vertices and u is an end vertex 

of T. adjacent to v, and if and any two edges of

P(T^) labelled (u v), then there are two circuits and A g

in P(T^) such that 1): and A^ together span n(T^);

2); A^ and Ag are disjoint ; and 3): ^^ is an edge of A 

and is an edge of Ag.

Proof

Again, the proof separates into two cases, T = K. _ and4 I 9 V
pi _ p As before, we assume that u = 4 and v = 1.
4 4'

Case 1: T, = K, ^------  4 1,3
In this case, let l\ and A„ be the circuits in fig. 4.4.5;
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Figure 4.4-5



Figure 4.4.7

Hote : The graph in fig. 4.4/5 is identically labelled to 

the graph in fig. 4.4.3, and the graphs in figs. 4.4.6 and 

4.4.7 are identically labelled to the graph in fig. 4-4.4.
Then since and l\ ^ together contain all the edges of

(T.) labelled (1 4), and A^ satisfy the hypotheses

of the lemma unless = £ ' or £ However, in this case, 

A ^ and A 2’ circuits obtained by reflecting and A p

in a vertical axis have the required properties.

Case 2; T^ =
In this case, A. and A^, the circuits in fig. 4-4.6, 

have the required properties unless = £'. In this event,
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the circuits and in fig. 4.4.7 do have the required
properties.

This completes the proof of lemma 4.4.5. Q 

Lemma 4.4.6

If T(- is any tree on 5 vertices--except K. and if u is 
D I ) 4

any end vertex of T^ adjacent to v, and if and £ ^ are2
any two edges of P(T^) labelled (u v), then there is a 
hamiltonian circuit in P(T^) containing ^ and .

Proof

Tc can be either of the graphs in fig. 4.4.8. In the 
first case, there are two possibilities for u up to isomorphism, 
and in the second case, one. In each of these cases we will 

assume without loss of generality that u = 5 and v = 2.
Note that T, has another end vertex distance 3 or more from u.

In each case, we will assume that this new end vertex is 4, and 
that the vertex adjacent to it is 1. The remaining vertex in 
T will be 3.
Figure 4.4.8

o-

Let be the tree obtained by deleting 5 from T^.

Since and are labelled (2 5), they must join cosets

of S. in Sc, and hence they are either properly distant,
distant but not properly distant, or not distant. In the case 
that they are not distant, £ ^ and £^ may both be edges in a, 

circuit of length 4 in p(T^) with edges labelled (1 4) and (2 5) 
Otherwise, they must lie in two distinct circuits of this type. 
These four cases are illustrated in fig. 4.4.9.
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Pigure 4.4.9
Case 1; 2^ and Eg are properly distant,

Note that all the vertices and edges in fig. 4-4.9 are distinct. 

Case 1;

By proposition 4-2.5, there are edges and of

labelled (25) such that joins ^^4
joins to where 1^,..., i^j 2,..., sj.

Each of the edges £ ^,..., £ ^ lies in a distinct circuit of
length 4, as shown in fig. 1.4-10-
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Figure 4.4.10

For j = 1,2,...,5 , i=^(T^). By lemma 4.4.4 there 

is a hamiltonian circuit in containing any two edges
labelled (14). Hence for j = 2, J5, 4, there is a Hamiltonian 
circuit in<^i^'^ containing the two edges in fig. 4.4.10 
labelled (14) . Similarly, there are Hamiltonian circuits 
in ^i.]^ snd containing the (single) edge in fig. 4.4.10
labelled (14). A Hamiltonian circuit in P(T^) containing £’^ 
and 62 is now obtained by taking the union of the Hamiltonian 
circuits in <fi^')> ; j = 1 , ... , 5, ?nd the four circuits of 
length 4 in fig. 4.4.10, and deleting the edges labelled (14) 

in fig. 4.4.10.
Case 2

In this case there exist edges and ^ ^ of r^T ) such
-Uhat joins ^iz^> to joins to
ic^ , where ^i^, ig,..., i^j = ^1, 2,..., sj . The 

remainder of the proof in this case is identical to the proof
of case 1.
Case 3

This case is now clearly a special case of case 1, for we 

may choose an edge labelled (2$) joining <^4?/ to
proceed as before.

Case 4
Since 4s identically labelled to r(T^), there are
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two circuits and Ag of <( i^^ which are disjoint, span

the vertices of i, and are such that one of the edges 

of i. ^ labelled (14) in fig. 4-4.9 is an edge of A-] > while 

the other is an edge of A ^. As in the previous cases, there 
is a hamiltonian circuit in ^ ig ^ which contains the two 

edges of labelled (14) in fig. 4.4.9. Hence we have

the situation in fig. 4.4.11 .

Figure 4.4.11
("2><h>

A careful examination of the hamiltonian circuits 

constructed in the proof of lemma 4.4*4 shows that A , the 

ha:.iltonian circuit in <Cig^^must contain at least 9 edges 

labelled (14). Hence there are another 7 edges labelled (14) 

in addition to the two in fig. 4.4*11. These edges 
give 14 additional vertices of i_^ incident to edges of A 

labelled (14). By proposition 4.2.5 , there are (5-2)! = 6 
edges of r(Tc) joining ig^ to hence not all
the 14 vertices above ca^ be joined to </i by edges labelled 
(25). However, if CT' is one of these 14 vertices, and CT (2 5) 

is not a vetrex of , then since C^(2 5) cannot be a vertex
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of must be a vertex of , where ^ i^, i^.

The proof in this case is now completed in much the same way 

as the proof in case 1.
This completes the proof of lemma 4.4.6. Q

It is now possible to prove theorem A.4-3- There are 

two cases to consider. We assume without loss of generality 

that u = 6 and v = 5. Since Tg ^ there is an end vertex
of Tg which is distance 3 or more from 6. Let this vertex be 

5 and let the vertex adjacent to it be 2.

Case 1; T^ -6 - - "1,4 '
In this case the result follows from corollary 4.4.2.

Gas
The proof in this case proceeds in an identical way to 

the proof of cases 1 and 2 of lemma 4-4.6.

This completes the proof of theorem 4.4.3. O 

Theorem 4.4.7

If T is any treeon n vertices such that T # , and

if u is an end vertex of T adjacent to v, and if 6^ and E
are any two properly distant edges of r(T) labelled (u v),
then there is a Hamiltonian circuit j.n r(T) containing E ,

and E

Proof
2 •

Case 1; n 7.

Without loss of generality, let u = 7 and let v = 4. 
Let T' be the tree obtained by deleting u = 7 from T.
If T' = K. r then the result follows from corollary 4-4-2,
hence we assume that T' ^ K 1,5'

Since T ^ K ^ , there is an end vertex 6, say, of T 
1,0

distance 3 or more from 7- Let the vertex of T adjacent to
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this vertex be 3. Since ^3, 6j and ^4, jJ are edges of T, 

every vertex of is incident to edges labelled (3 6) and

(4 7).
Let r ^ and C g be any two properly distant edges of r(T)

labelled (4 7). Each of these edges must lie in a circuit of
length 4 in P(t) with edges labelled (47) and (3 6), and

these circuits must be distinct, or ^ and C ^ would not

be distant. Suppose that ^ fon i = 1, 2 .

Now consider the left cosets of S^ in , and suppose

that k/), and that ^ 1^)^, for i = 1,2 .

Since C. and are properly distant, their end vertices

must lie in four different left cosets of S^ in S-, so

the numbers , jg, 1^ and 1^ are all distinct. Pj_(3 6)

must lie in the same left coset of Sg in as p^, but it

will lie in a different coset of S^ in S^ . Hence

p (3 6)$<fj^, m^)> where ^ for i = 1, 2.

By the defininion of the symbol <)".,.)> , each of the numbers

j., k., 1., m. must lie between 1 and J.1 1 1 1
Let r e [7] *■ ig, k^, kg, . If pp f jg

then let r^ - m^. Otherwise, choose r,„ in the same way as r^. 

In either case, r. and r^ -are well-defined and distinct.

By proposition 4*2.7 there is a circuit A of length 4 

in FXt) with edges labelled (3 6) and (47) with one vertex 
in each of the cosets r^'^, ^
/jg, r^'^ . This situation is illustrated in fig. 4*4*12.



Figure 4-4.12
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\

(Or ""i/ 1'

____ ^ 1 ——
- J

4-J —0
(47)

^y-Or '"i)

' <^i>
(36)

^ 0-/36)

"2>
(47) r
—(56)

(36)

ITote that r \ could be the same coset as

for ,i = 1, 2. All the other cosets in fig. 4»4-12 are 

definitely distinct. Also, A cannot have any vertices in 
common with the circuits of length 4 containing and ^^ , 

for if it did it would be identical to one of them and would 
join the wrong cosets of Sg. Let the vertices of A be 

T , where is identically
labelled toP(T')? and it is clear that ^/(36)} ana

7^-1 -1 > X ^ 01 ™^8t correspond to distant edges in p(T'),
since they join at least 3 cosets of S^. Hence there is a 
hamiltonian circuit in containing /36)j
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and fT. , T. • There is a similar hamiltonian
circuit in ^(T' ) .

By repeating the above arguments, the other cosets of Sg
in Sy may be connected, in a chain to , the coset
containing . (in fact, these constructions are much easier 
since no constraints are placed on the choice of A by the 

new coset being added.)
The hamiltonian circuit is completed in the same way as 

in the proof of lemma 4*4-6, case 1.

Case 2: n ^ 8

Now choose u = n and v = 4* As in case 1, if T’ = T - nj 

is isomorphic to K. _ then the result follows from1 ,VL—d

corollary 4*4*2, hence suppose that T' ^ K .
I y 11*“ 4.

An inductive proof is used, so suppose that the theorem holds
for trees with n-1 vertices.

Since T ^ K.. there is an end vertex n-1, say, of T' 1,n-l
distance 3 or more from n. Let n-1 be adjacent to 3 in T.
Note that by the induction hypothesis, there is a hamiltonian 
circuit in n(T') containing any two properly distant edges 
labelled (3 n-l).

Define £., P., Cf. , j. , k. , 1. and m. as in case 1,3. ' % 1 2. % 3- 3.
replacing $, 6 and 7 by n-2, n-1 and n respectively, where 
necessary. Now r^ and r^ can both be chosen to be elements 
of Tn] - {"j^, jg, kg, m^, mg] , and r.^ :# rg. This is

because [nj has at least 8 elements while the second set has 
at most 6.

A can now be chosen in the same way as in the previous

case, and the edges P-| ( 3 n-l)j and ^ ^^ 2}

now correspond to properly distant edges of r'(T'), since
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all the cosets in in a suitably modified version of

fig. 4.4.12 are now distinct. The proof now continues in
the same way as the proof of case 1.

This completes the proof of theorem 4.4.7. O 

Corollary 4.4.8

If G is any connected graph on 3 or more vertices then 
P(G) is hamiltonian.
Proof

By theorems 4.4.5 and 4-4.7 , if G is a tree on 4 or more 
vertices, then P(g) is hamiltonian. If G is a tree on 3 

vertices, then G = ^ f^G) = 0% , which is of course

hamiltonian. If G is not a tree then G contains a spanning 
tree T. r(T) is clearly a connected spanning subgraph of r(G) 
which is hamiltonian by the above remarks. It follows 
immediately that r(G') is hamiltonian. O 

Corollary 4-4.9

If G is any graph with 3 or more vertices and without 
isolated vertices then PCg) is hamiltonian.

Proof
Each component of G must have at least $ vemces, and .

if the components of G are G , G^,..., G,_ then by proposition 
1.3.9, r(G) = PCg^ ) X PCG^ ) X - • • xP(G]^) - Also, since G^ is 

connected, p(G^) has n^l vertices, where n^ is the number of 
vertices of G. , for i = 1, 2,..., k. Since n^ ^ 2, n^I is

even.
Lemma 4.4.10

If H and H' are path hamiltonian and have an even number 
of vertices, then H x H' is hamiltonian.
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Proof of lemma

If H has 2m vertices and H* has 2m' vertices, then EXE' 
has 4mm' vertices and since E and H' contain hamiltonian paths, 

EXE’ contains the graph in fig. 4.4.13 as a spanning subgraph. 

Figure 4.4.13

As shown, the subgraph in fig, 4.4.13 has a hamiltonian 
circuit, and hence H X E' is hamiltonian. Q

It immediately follows from the lemma that P(G) is 

hamiltonian. This completes the proof of corollary 4.4.9* Q 

The results in this chapter generalise a theorem of

J. D^nes, ( 8 , p. 262), which in effect states that

P(X^) is path hamiltonian.
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CHAPTER 5 : EMBEDDIMGS OF TRANSPOSITION GBAPHS

SECTION 5.1 ; IHTRODUCTIOW

Attention in this chapter is concentrated on two special 

types, of embedding of transposition graphs, the Cayley embedding 
and the alternating embedding. In both cases, the main problem 

considered here is that of finding the minimum genus of an 

embedding of the appropriate type for each transposition graph.

Section $.2 is an informal introduction to the general theory 

of embeddings o( graphs on (orientable) surfaces, and is intended 

only to introduce those results needed in the next two sections.
Section 5-3 is concerned with embeddings of transposition 

graphs, and in particular, with Cayley embeddings of transposition 
graphs. It is shown that the minimum genus of a Caylfey embedding 

of a transposition graph P(G) is connected with the minimum order 

of a product of all the transpositions in i%(C). This problem is 

connected with a related problem of M. Eden, but is not studied in 
detail here.

Alternating embeddings are examined in detail in section 5.4, 

and it is proved that the minimum genus of an alternating . 

embedding of P(G) depends on how nearly L(G), the complement of 
the line graph of G, is hamiltonian.. In particular, if L(G) is 

hamiltonian, then P(G) has an alternating embedding whose genus 
is the minimum possible genus for any embedding of P(G). This 

is also the case if G contains no circuits of length 3 •^

Hamiltonian circuits in line graph complements are studied " 

in section 5-5- The main result is that if G has sufficiently 

many (^34) edges, then L(G) is hamiltonian iff G has no vertex 

incident to more than half the edges of G, and each edge of G is
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independent of at least two others. This second condition 

turns out to be relatively unimportant; only a rather small 

family of graphs with non-hamiltonian line graph complements 

satisfy the first condition but not the second. This result 

means that almost all graphs have hamiltonian line graph 
complements. It follows that the results in the previous 
section establish the genera of almost all transposition graphs. 

The only outstanding graphs P(G) are those for which G contains 
circuits of length three and a vertex of very high degree, or 

else G is small. Finding the genus of such transposition, graphs 

appears to be a difficult problem.
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SECTICM 5.2: EMBEDDINGS OF GRAPHS ON SURFACES
This section is intended only to introduce the basic 

terminology and results of the theory of embeddings needed 

in this chapter. It is not intended to be an introduction 

to the subject; for this, the reader is advised to consult 

the book 'Graphs, Groups and Surfaces' by A.T. White ( 15 ).

Following Biggs and White (4 , p.103), a surface will 

be defined as follows:

Definition 5.2.1

A surface is a compact topological space which is
2locally homeomorphic to the euclidean plane E and which 

has a consistent global orientation.

The well-known Classification Theorem for surfaces

implies that every surface (as defined here) is homeomorphic
to a sphere with a number of handles attached.
Definition 5.2.2

The genus of a surface is the number of handles which 
must be attached to a sphere to make it homeomorphic to the 

surface. This is well-defined since the number of handles 
is a topological invariant; that is, is preserved by 
homeoraorphisms.

Definition 5.2.3

An embedding of a graph G = (V,E) in a surface S is a
l-dimensional subset M(G,S) of S consisting of a number of 
points corresponding to the vertices of G and a number of 
lines corresponding to the edges of G. Two points of M 

are joined by a line of M iff the corresponding vertices of 
G are joined by the corresponding Also, two lines
may only intersect at a point of M.
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Intuitively, an embedding of G is simply a drawing 
of G on the surface.

Definition 5.2.4

A face of M(G,S) is a maximal connected subset of 

S - M(G,S). In all but one of the embeddings which will 

be considered in this chapter, every face will be simply- 

connected, or homeomorphic to an open disc.

Thus a face may be thought of as a region of the plane, 
and a surface is obtained by glueing together a number of 
faces along their edges. The glue lines form an embedding 

of some graph in the surface.

Note that if some face of an embedding is not simply 
connected, then we may remove that face from S and obtain 

a new surface by covering the holes with several simply- 
connected faces. This procedure gives an embedding of the 
same graph on a new surface which has a lower genus than the 
origi nal one. Thus an embedding of a graph on a surface of 
minimum possible genus has all its faces simply-connected.

Since this chapter is almost entirely concerned with 
embeddings of this type, the restriction to simply-connected 
faces is not a serious one. A more formal proof of the 
result sketched out above is given by J.¥.T.Youngs,( 16).

With the restriction to simply-connected faces, the 
following result holds:

Theorem 5.2.1

If M(G,S) is an embedding of G on S, and if M has v points 
and e lines and f faces then v-e+f=2- 2g, where g is 
the genus of S.



-150.

Proof

This result is very well-known. One proof of it may he 

found in White ( 15, p.41). Q 

Theorem 5.2.2

If M(G,S) is an embedding of G in S, and M has e lines

and f faces, and if the number of faces of M incident

to i lines of M for i ^ 3> then 2e = 3f ^ + 4f^ + 5f^ + ...
Note that a face of M incident to 1 or 2 lines of m(G,S) would 

imply that G had a loop or a multiple edge, contradicting the 

fact that G is a graph.

Proof

Let “3^^ denote the set of all faces of M(G,S) incident to 

i lines of M, so = f^. If F. € ^then F. is incident

to i lines of M. (Note that F. may be incident to the same 
line twice; this must be counted twice,) Hence the faces in 

are incident to a total of iflines of M.
However, since S is locally homeomorphic to the plane, 

each line of M is incident to two faces of M, again counting 
multiplicities. Hence equating the two different ways of 
counting the total number of incidences between lines and 

faces of M, 2e = 3f, + 4f^ + 5f^ . . O
In fact, embeddings of graphs on surfaces can be defined 

in a purely algebraic way, using the idea of a rotation of a 
graph. Consider a vertex v of a graph G, and suppose that G 

has an embedding M(G,S) in seme surface. For the sake of 
convenience, each vertex of G will be considered to be identical 

to its corresponding point in M. Suppose that v is adjacent to 

V., Vg,..., v^ in G, so there are lines of M joining v to each 

of these points in S. Since S is an orient able surface by
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definition, it has a consistent global orientation. Starting 

with one of the points adjacent to v and following the 

orientation around v, in turn, we reach all the other points 
of M joined to v, and finally return to the first point.

This is illustrated in fig. 5*2.1.

Figure 5*2.1 ^

V

orientation of S

3

Thus the orientation of S induces a cyclic permutation

(v V ... V ) of the vertices of G adjacent to v. Let
-1 2 k

this permutation be p Thus the embedding of G on S gives 

rise to cyclic permutations p ^ for every vertex v of G, where 
P_^ is a cyclic permutation of the vertices of G adjacent to v, 

Definition 5.2.5

If G is a graph, then a rotation R of G is a family 
R = v-e V(G) ’ where is a cyclic permutation of the

vertices adjacent to v.

Clearly, by the above argument, each embedding M(G,S) 

gives rise to a unique rotation of G, for a given orientation 

of S. It is not so obvious that each rotation of G gives a 

distinct embedding of G, but this is the case.

Thus it suffices to

show that an embedding can be constructed for each rotation of G,
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Given a rotation of G, E = ^ ^ ; we first construct the
faces of the embedding. Let ■{"v^, v jbe any edge of G, and 

let Vq = Vg. By definition, v^ is a vertex of G adjaceni 

to V., and is distinct from v^ provided v^ has valency 2 or

V ,more. Similarly, let v^ = v^ ,

Since G is finite, this process must eventually start repeating

'"g , and so on.

itself by reaching some vertex v. of G such that v. p = v1 1"1 V V. U
and V. p1 V. V,0

v^. (Of course, it could be the case that the

cycle began to repeat in the middle, but this would contradict

the fact that each P is a permutation, since there would be
i

two vertices v. and v. such that v. P = v. _ and
1 1

V. p = V. „.) This process gives a face of the embedding,

as shown in fig. 5-2.2.

Figure 5.2.2.

^i ^i-1

V/

Note that the situation of a vertex of degree 1 is 

illustrated in the figure. The orientation of the face is 
given by the cycles at each vertex. The other face incident 

to ^v^, v^]' is constructed similarly going from v^ to v^.

All the other faces of the embedding are constructed in a similar
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way to this. It remains to show that these faces fit together

properly to give a surface. Each edge of G can only be
incident to two faces, as was shown overleaf. It is possible

for an edge to be incident to the samej face twice; an example
of this is the edge-^w , v^} in fig. 5-2.2. Thus the faces

may be glued together so that the vertices and edges meet
properly. This procedure gives a manifold S. Each point of
S in the interior of a face clearly has a neighbourhood which

2is locally homeomorphic to E , so the interiors of the faces

arelocally flat. Each edge lies in two faces, so any point 
in the interior of the edge lies in a neighbourhood which is 
flat, as shown in fig. 5-2.5. Finally, S is flat at the vertices 
of G , as shown in fig. 5-2.4, so S is locally homeomorphic to 
E^.

Figure 5-2.3

Figure 5-2.4

Where = (v^ v^^ ... )'
1 2 'k
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The orientation of S is given by the orientation of each 

face of S. If this was not globally consistent, there would 

be two adjacent faces of S with conficting orientations.

Suppose that this is the case; since the two faces are adjacent, 

they must both be incident to some edge e of G. If e = f v^, v^J 

then the two faces are shown in fig. $.2.$.

Fifflire 5.2.5

These faces fit together as shown in fig. 5*2.6, and 

their orientations clearly agree. Thus S is orientable, and 

hence is a surface.

Figure 5.2.6



-155-

Thus embeddings of graphs on surfaces can be defined 

in terms of rotations of graphs. If an embedding of a graph 

G is defined in this way, and R is a rotation of G, then the

embedding of G induced by R will be denoted by M'(G,R).
Definition 5.2.6

The genus of an embedding M'(G,R) is the genus of the 

surface induced by R on which G is embedded.
Definition 5.2.7

The genus of a graph G is the minimum genus of any

embedding of G.
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SECTION 5.5: CAYLEY EMBEDDINGS OF TRANSPOSITION GRAPHS

Note that the two types of embeddings of transposition 

graphs described in this and the next section can both be 

generalised to any Cayley graph. However, this involves 

additional work which is not necessary for the purposes of 

this chapter. Further details of these embeddings may be 

found in White ( 15, p.78) and Biggs and White ( 4 , sections 

5.5, 5.6).
If cr' is any vertex of a transposition graph P(G), then 

the set of vertices of r'(G) adjacent to Cf is CTOJ^,

CfOJ^ where ^(^1, - .ri(G). Thus any cyclic

permutation of the vertices adjacent to will be of the form

... ), where ^r^,..., r^|
m

^1,..., mj . Regarding as a permutation of T(r(G)),

if Qq. : Tr C^TT for all vertices TT of P(G), then
PO' = 00“ ... CO ) • It follows that if R

is any rotation of r(G), so R = ^ where per- is a cyclic

permutation of the vertices adjacent to then

® ~ C ’ where is a cyclic permutation of

X2.(G). Hence an embedding of r(G) can be defined by a set of 
cyclic permutations of D~{g). If an embedding of p(G) is 
defined in this way, then it will be written as M*(P(G), R*) , 

where R* = is a cyclic permutation of S2.(Gj

for all vertices CT of P(G).

The simplest and most natural way to choose R* is to let 
R* = I , where ^2 ’'' ^m^, for all vertices

of P(G). (Any cyclic permutation of fZ(G) may be chosen 

instead of ( LU ... .)
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Definition 5.3.1

If M*( P(g), R*) is an embedding of this type then it 

will be called a Cayley embedding ofP(g). Note that if G 

has m edges then there are Cayley embeddings ofP(G).

Definition 5.3.2

The Cayley genus of a transposition graph, ^^(P(g)), 

is the minimum genus of any Cayley embedding ofP(G).

Theorem 5.3.1

If M*(n(G), R*) is a Cayley embedding of PCg), and if 
R* = [ P *}■ , where 0 * = ( CU CU ... CU ), then every 

face of M* is incident to mk edges of P(g), where k is the
order of TV = (JO

1 ^2
Proof

(jj as a permutation, 
^m

^i
Consider a face P of M* incident to the edge (T(jo^ \

P is shown in fig. 5»3-1- 

Figure 5.3.1

6u
1

I

(^l OpT' = cytu^ ... 60
p* m

Hence P is incident to the edge f O' ’, O' ' CU j , where 

c/ ' = C^Tf' . Starting again from O'' , P is as in fig. 5-3-2- 

Clearly, the sequence of vertices an^ edges only starts 
repeating when iT ^ = 1, that is, when j = k by hypothesis. 
Thus P is incident to mk edges of P(G). Q
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IS as

Corollary 5.5.2

If M*(P(G), R*) is a Cayley embedding of P(G), then 
M* has genus 1 + |?(P(G))| - 1 - ^ j" , where k i

defined in theorem 5*3*1 •

Proof

If g is the genus of M*, then by theorem 5-2.1, 
g = 1 +^^e - V- f j' , where v, e and f are respectively 

the number of vertices.and edges'ofP(G), and f is %he number of 
faces of M*. If G has m edges then P(G) is m-valent, and

hence e L-l2j

edges of P(G). Hence f

p. By theorem 5-2.2 and theorem 5-3.1,

2e = (mk)-f , = mkf since every face of M* is incident to mk
2e _ mv 
mk ~ mk -V. The result now

follows by substuting v = IV(P(G)){in the formula for the 

genus of M*. O 

Corollary 5.3.3
^c(r(G)) >1+^1 v(r(G))j _ 2}.

Proof

This follows immediately from the fact that k ^ 1 in the 

formula proved in corollary 5-3-2. Q
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Note that in the equation in corollary 5«3»2 there is 

only one term which does not directly depend on G, namely k. 
It is fairly easy to show that there exist graphs for which 

k can take several different values. The simplest example

is to take G = C , = ((l2) (34) (23) (14)) and
pg = ((12) (23) (34) (14)). Then = (l2)(34)(23)(l4)
so TT^ = (13)(24) and TT^ = (12)(23)(34)(14) = (243), and
hence k. = 2 and k^ = 3.

In section 1.2, definition 1.2.3, a graph G was defined to 
be related to a permutation cf if there exists a word W such 
that G = G(¥) and W = CT’ as a permutation. It is clear that 

if JT is defined as in the proof of theorem 5.3.1 then G is 
related to TT in this sense. It follows that the results of 

section 1.2 can be applied to find the genera of certain 
Cayley embeddings.

Proposition 5.3.4

A transposition graph P(G) has a Cayley genus of
1 + 1 |v(r’(G)) I- 2^ iff G maps to the identity (i.e. G 

is related to (1) in the sense of definition 1.2.3).

Proof

As in corollary 5.3.3, the result holds iff there is a 
cyclic permutation of f%(G)^ p = (W CO^ ... OJ^) such that 

.. . gj has order 1 , iff Gu. 6lA...6o' = (1 ) , iff G
i ^ Hi 1 d- m

maps to the identity . O
Among the graphs mapping to the identity are E ; 

n = 0, 1 mod 4, and the wheel graphs n ^ 3 defined in 
section 1.2 . For most gr-aphs which do not map to the 
identity, the Cayley genus of their transposition graph is 
hard to establish. However, if the graph is a tree, this is
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not the case.

Proposition 5.5.5

If T is a tree on n vertices then the Cayley genus of
r(T) is 1 + (n^ _ - 2) .

Proof

By corollary 1.2.9, if T is related to O' then (f is an 

n-cycle, which has order n. Thus whatever cyclic permutation 

p of Q-(G-) is chosen, its ordea^ k = n. The result follows 

after some algebraic manipulation of the expression in 
corollary 5.3-2. O

A similar result holds for the Cayley genus of f’(G) if 
G is a forest. However, the statement of the more general 

result is rather messy since it has to take into account 

the orders of the components of G, and involves their 

least common multiple. The proof is no more difficult, 

however.
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SECTION 5.A; ALTEI^TATIMG EMBEDDINGS OF TRANSPOSITION GRAPHS
If G is any graph, then by proposition 1.3.6, r*(G) is 

a bipartite graph, and a bipartition for r(G) is V(r) = A U B, 

where A is the set of even permutations in Y(P) and B is the 

set of odd permutations in V(p).

Definition 5.4.1

An embedding M(r(G), E*) of r(G) which is defined in terms 

of a set of cyclic permutations of is alternating if R* =

I'p^ J. ^ ^ satisfies the following condition:

there exists a cyclic permutation p* of fL(G) such that 
P ^ for all O'^ k and = p * ^ for all CT'&'h, where

A and B are defined as above.

Definition 5.4.2

The alternating genus -^^(PCg)) of a transposition graph 

rXc) is the smallest genus of any alternating embedding of the

graph.
Example; Let G be the graph in fig. 5*4.1; then the embedding 

in fig. 5*4.2 is an alternating embedding of fpG). The cyclic 

permutation of jn.(G) is p* = ((l2) (34) (56)).

Figure 5.4*1

G: o-------- a o-------- o n-------- <3

1 3 4

Since there are (m-l)! cyclic permutations of f^{G), where
m is the.number of edges of G, there are (m-l).' alternating 
embeddings of r(G). However, pairs of these embeddings are 
simply mirror images of one another, corresponding to inter-
changing p * and 0- •1 in definition 5*4*1.
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— orientation

The even vertices of P(G) are coloured white and the odd

vertices are coloured black. The orientation of the surface

is as shown in the figure.

Theorem 5.4.1

Let M(P(G), R*) be an alternating embedding of P(G) and 

let = ((V cVg ... be the cyclic permutation of T1(G)
in definition 5.4.I. Then each face of M is incident to either 

4 or* 6 edges of P(G), and if A is a circuit of P(g) bordering

a face of M then A is one of the graphs in fig. 5.4.5.

Figure 5.4.5

j+1

00i+1
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Proof

Let cy be any vertex of r'(G) and consider the two faces 
of M incident to the edge ; let these faces be P

. ^ "RH+l-lOT* AT

1

and Fg. Either or 0"^W ^ is an even permutation, so suppose

without loss of generality that O' is even. Then F^ and F^ are

as in fig. 5.4.4.

Figure 5.4.4

O^CAJ.

Concentrating on F^, , and hence

“"i+ie*-1 - OU^ , so the edge labels of F^ are as shown in

fig. 5.4.4. If = (1), then = cTcu,
and hence Fp is bounded by four edges, which form a subgraph of 

P(G) isomorphic to the first graph in fig. 5.4.3.

If (6U 40 (l), then (^- to = (l), and in a similar
-L d-t d_ d-t" I

way, Fg is bounded by six edges which form a subgraph of p'(G)
isomorphic to the second graph in fig. 5.4.3. Clearly, a similar 

result holds for F^. D 

Corollary 5.4.2
If M(r(G), R*) is an alternating embedding of P(g) and if

(p* is the cyclic permutation ofJT(G), and p* = (4o^ ...
then y(M) = 1 + ^ ^ ^ ^4™ - k - 12 j- , where k is the number

of transpositions UJ. in fLiGr) such that (OJ,(aJ. .)^ = 1 .
1 1 1+1' ’

(subscripts mod m).
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Proof

Every vertex of P(G) is incident to m faces of M, and by 

theorem 5-4.1 and by the definition of k, k of these faces are 

incident to 4 edges of r'(G) while the remaining m-k are incident 
to 6 edges of P(G). If f is the number of faces of M incident 
to 4 edges of P(G) then clearly, f^ = , since each
such face of M is incident to 4 vertices. Similarly, 
fX = (m-k^ If f is the total number of faces of M, 

then f = f. + f^, by theorem 5.4.1. The result now follows 
by algebraic manipulation of Euler's formula (theorem 5.2.1). 
Corollary 5.4.3

y,(c(s)) 1 + inr(G)). m )
ProoJ

This follows from corollary 5.4.2 and the fact that k m. D 
If G is any graph with at least one edge, then L(g) will 

denote the complement of the line graph of G, or the line graph 
complement of G.
Theorem 5.4.4

Let r ^ 0 be the smallest number of edges which must be added
to L(g) to make it hamiltonian; then

1 + r - 12)
Proof

We first show that r(G) has an alternating embedding with 
this genus, then show that it has no alternating embedding with 
a smaller genus.

Note that the vertices of L(G) are the edges of G.
Now suppose that by adding r edges to L(G) we obtain a hamiltonian 
circuit e^ 'N.' e^^^ ... ^ e^-^v e . Then r of these vertices are 
not adjacent in' L(G), and the remaining k == (m-r) are adjacent.
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by the definition of r.

For i m , let ^:XX(G) be the transposition

corresponding to e^ . If e^ rv in L(G), then e^ is non­

incident to , and hence and are disjoint

transpositions, so = (1). Similarly, if ®i+1

then {(AJj. = (l).

Now define a cyclic permutation p* of i^(G) by 

p* = (CaJ^ (JJ ^ Cu_ ... CU^), and let M(P(G)) be the alternating 

embedding of F(G) defined by p*. By corollary 5.4.2,

_ k - 12), where k is the number of 
transpositions ^^6 CL (G) such that = (1).

However, by the above argument, this is the number of vertices 

e. of L(G) such that e. e. .. There are (m~r) such vertices,
hence y (M) = (3m + r - 12).

If there'were an alternating embedding of P(G) with a 
smaller genus than M, then it would follow by reversing the 

above argument that L(G) could be made hamiltonian by the addition 
of fewer than r edges, contradicting the definition of r.
Hence the result holds. P]

Note that a particular consequence of this result is that 
if L(G) is hamiltonian, then the alternating genus of P(G) 
attains the bound of corollary 5.4.3.
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Theorem 5.4.5

If G is a bipartite graph and M and M_ are embeddings of G 
such that fj f^ and f™ = 0 for all m > 8, where f^ is the
number of faces of incident to j edges, then 
Proof

If fj^ is the total number of faces of M,, then

1
fj + f^ and

^2 = 4* 4* 4* •••

since G is bipartite and f™ = 0 if m ^ 8.
If G has T vertices and e edges then by theorem 5,2.2,

2e = 4f^+ = 4r++ 6f® + 8f® + 10fJ° + ... , and hence
4 - 4 = "#(4 - 4) + # 4 + i 4° + — •

By theorem 5.2.1,
= (1 + ^(e - V - fg)) - (l + l(e - V - f_|))
= i(fi - fg)

= 2^ (4 - 4) + (4 - 4) - 4 - 4° -)
^ ^) + i 4 + i 4° + )

5 "2 " 5 "2
^ 0 since fj ^ f^ . O
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Corolla.ry 5.4.6

If G is a. graph such that L(g) is hamiltonian, then

7^(r(G)) = 1 +

Prooj

vCr(Gn (m - 4)

By theorem 5*4.4? r(G) has an alternating embedding such 

that every face of the embedding is incident to 4 edges ofP(G), 

since L(g) is hamiltonian. By theorem 5•4.5? this is a minimum 

genus embedding for r(G). The formula follows from that of 

theorem 5«4-4 with r = 0.' O
Example: if G is the graph with 2n vertices and n disjoint edges 

[l , 2), ^3, 4, . .. , [2n-1, 2nj then P(g) = Q^, the n-cube, with 

2^ vertices. Also, L(G) = K , which is a hamiltonian graph.

Hence by corollary 5.4.6, = 1 + 2^'*'^(n - 4) .

Graphs.G for which L(G) is hamiltonian are studied in the 
following section, and the following result is proved:
If G is a graph with n vertices and m ^ 34 edges, then L(G) is 

hamiltonian iff G has no vertex v with degree d(v) > and every 

edge of G is non-incident to at least two others. In fact, this 
second condition is almost redundant.

Since large graphs with one vertex incident to more than 
Iralf the edges are relatively rare, corollary 5.4-6 gives the 
genus of almost all transposition graphs. Some of the remaining 
graphs are covered by the next result.
Corollary 5.4-7

If G is a graph with no circuits of length 3, then

y(r(G)) = 1 + ^
Proof

Let M' be any embedding of ^(G), and consider the faces of 

M’ incident to some vertex of P(G). Suppose that M' is defined
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in terms of some rotation R* of r'(G), and that
LVg ... where 0.(0) = .

Then the faces of M' incident to 0^ are as shown in fig. 5.4.5' 

Figure 5.4.5

Suppose that one of these faces F. is incident to 4 edges

of r(G), and let A be the subgraph of r(G) incident to

Since A = C^, then G(A) is isomorphic to one of the graphs in
fig. 5.4.6, by theorem 2.2.8. However, by proposition 2.2.6, 
G(A) *6 G, so G(A) ^ K,. Hence and are disjoint
transpositions, so (OV^^i+1^^ = (1) .

Figure 5.4.6
®i

i+1 ^i+1

Suppose that k is the largest number of faces of size 4 of M' 
to which any vertex of P(g) is incident, and.suppose that Cr' is 

incident to k faces of M' of size 4. For each such face,
= (lj, so there are at least k elements hoh 6 0-(G) 

such that (= (1). It follows that there are at least
k vertices e. of L(G) such that e. rv e .i+1' Hence by adding at
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most m-k edges y to L(G), we obtain a hamiltonian
circuit in L(G). Hence the alternating embedding M of P(g) 

generated by this hamiltonian circuit has at least k circuits 

of length 4 incident to each vertex ofp(G). Thus this 

alternating embedding M has more faces of size 4 than M', 

and hence by the argument of theorem 5«4.5> M has a smaller 

genus than M'. It follows that at least one minimum genus 

embedding of p(G) is alternating, and the result follows 
from theorem 5.4.4. O

Thus the genus of a transposition graph PCg) has been 

established for all graphs G such that either G has no circuit 

of length 3 or L(G) is hamiltonian. Further, in both these 

cases, at least one minimum genus embedding is alternating.
This is not necessarily the case for the remaining transposition 

graphs; several examples will be given of transposition graphs 

P(G) for which ^(P(G) ) <' ) . However, such embeddings

are normally very difficult to construct, and it can be even 

harder to prove that such an embedding is minimum genus.
For the remainder of this section, we will establish the 

genus of all but one of the transposition graphs with at most 
24 vertices. For the exceptional graph, there are two possible 
values for the genus.

It is easy to check that if P(G) is a transposition graph 
with 24 or fewer vertices, then G is one of the graphs in fig. 
5.4.7. This requires only corollary 1.2.2 and a list of small 

graphs. The line graph complements of these graphs are shown 
in fig. 5.4.8. The dotted lines in some of these graphs indicate 

the smallest set of edges which must be added to make the graph 

hamiltonian.
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Theorem 5.4.8
The genus of r(G.) is 0 if i = 1, 2, 4» 5 or 10,

1 if i = 7, 8 or 11, and 3 if i = 12.
Proof

For all these vs lues of i, G. has no circuits of length 3> 

so the genus of P(G^) is given by corollary 5*4.7. The value 

of r for each of these graphs is given by the number of dotted 

edges in fig. 5.4.8. £3

Theorem 5.4.9

y(r(G^)) = 1, ^(r(Gg)) = 2 and = 4 .
Proof

Two general lemmas are useful in proving this result:
Lemma 1

The genus of a graph is equal to the sum of the genera of 
its components.
Proof of lemma 1

This is a corollary to the following theorem of Battle, 
Barary, Kodama and Youngs ( 1 ): The genus of a graph is equal
to the sum of the genera of its blocks (maximal 2-connected 
subgraphs), tj 

Lemma 2
If H C G, then 2;"(B) ^ ^(G).

Proof of lemma 2
This is obvious, since any embedding of G on a surface 

automatically gives an embedding of H on the same surface. Q 
It is easy to check that by theorem 5*4*4, ^g^(r%G,)) = 1,

= 2 and ^g^(r'(G.|,)) = 4, giving upper bounds for 
the genera of these three graphs. However, r(G,.) = K,. , ; which
IS a well-known non-planar graph, so ^(p(G )) ^1. It follows
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that ^(r(G )) = 1.
By proposition 1.3.9, r(G^) = ^(Kg)X P(K^) and

r(G^^) = r(E^)x r'(E^);< r(E:^). Now r(K^) ^ and r(K^)3' El3' - 3,3 
C.X K.80 r(Gg) ^ Kg X and r(G^^) ^ Kg X Kg X .

Hence r(Gg) is spanned by two disjoint subgraphs isomorphic to 
K, , and p(G ,) is spanned by four such subgraphs.

It follows from the two lemmas that ^(P(G^))^ 1 + 1=2, 
and ^(r^G^j)) ^1+1+1+1=4. The result now follows
since ^(r(Gg))(r^^(r(Gg)) = 2, and 3'(r(G^^))C^jr(G^^)) =4.0 
Theorem 5.4.10

y(r(G^)) = 4 and = 7.
Proof

This result is proved by producing special embeddings for 
each of these graphs. The values of the genera of the two 

graphs stated above are both less than the alternating genera, 

namely 5 and 10. Hence the special embeddings are not alter­

nating embeddings. The two embeddings are of minimum genus 

since all faces of the embeddings are of size 4. The embedding 

of r(G^) is shown in fig. 5.4.9, and that of r(G^ O in fig.
5.4.10. The genera of the two embeddings can be computed using 
Euler's formula (theorem 5.2.1). lU

This leaves only G^. remaining. The following result will 

only be proved in outline since it is rather messy and does not 
completely solve the problem.

Theorem 5.4.11

^ (^(^14)) = 5 or 6.

Proof

If r(G_^^) had an embedding with all faces of size 4, then 

this would be a minimum genus embedding by theorem 5.4.5, and
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Figure 5.4.9
17 15

KEY

labels: a =z (l2), "b = (13), c = (2^), d = (45), e = (67). 
Vertex labels; 1 = (1), 2 = (l2), 3 = (123), 4 = (23),
5 = (152), 6 = (13), 7 = (45), 8 = (12)(45), 9 = (l23)(45),
10 = (23)(45), 11 = (152)(45), 12 = (13)(45), 15 = (45)(67),
14 = (12)(45)(67), 15 = (125)(45)(87), 16 = (25)(45)(67),
17 = (152)(45)(87), 18 = (15)(45)(67), 19 = (67), 20 = (12)(6I7), 
21 = (125)(67), 22 = (25)(67), 25 = (152)(67), 24 = (15)(67).
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Fii^ure 5.4.10

Edge labels; a = (12), b = (15), c = (14), d = (23), e = (34), 

f = (24). bote that some of the edge labels have been omitted

to improve clarity. They can be computed from the vertices. 
Vertex labels: 1 = (1), 2 = (12), 3 = (1$), 4 = (14), 5 = (23),
6 = (34), 7 = (24), 8 = (123), 9 = (152), 10 = (124), 11 = (142), 
12 = (134), 13 = (143), 14 = (234), 15 = (243), 16 = (12)(34),
17 = (13)(24), 18 = (14)(23), 19 = (1234), 20 = (1243),
21 = (1324), 22 = (1342), 23 = (1423), 24 = (1432).
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this embedding would have genus 4. Hence ^ 4.

Further, if r(G^^) has no such embedding then ^(P(G^^)) ^ 5.

By considering a vertex of P(G^ .) in such an embedding, and 

by examining all possible rotations of the edges incident to 
this vertex, it can be shown in each case that the embedding 
contains a Moebius strip and is hence non-orientable. In fact, 

the number of possible rotations is made small by symmetry and 

by the constraint that all five faces incident to the vertex 
have size 4» This 'establishes' the lower bound for the genus.

Since G^^ is a subgraph of G^^ , the embedding of r(G^^) in 
fig. 5-4.10 contains an embedding of P(G^^), which can be found 
by deleting all the edges of P(G^^) labelled (3 4)- This 

procedure enlarges some of the faces, and in fact one of the 
faces is not simply-connected. This face can be removed and 
replaced by two simply-connected faces, giving an embedding of 
r(G^.) on a surface of genus 6. The face which is not simply- 
connected is shown in fig. 5-4.11• O 
Figure 5-4.11

Note: the dotted edges are 'the deleted edges labelled (3 4).

(1423) (14)(23)



-177-

SECTIOH 5.5: HAMILTONIAN CIRCUITS IN LINE GRAPH COMPLEMENTS
In section 5.4 it was shown that there is a close connection

between the genns of a transposition graph fXG) and the 
existence of a hamiltonian circuit in L(G), the line graph 

complement of G. In tthLs section the existence of such circuits 
is investigated, and a simple necessary and sufficient condition
for L(G) to he hamiltonian (provided G has m > 34 edges) is 
proved. The proof of this result depends on Chvatal's theorem 
on forcibly hamiltonian degree sequences.( 6 ).

Definition 5^5.1
A graph G is normal if it satisfies the following two

conditions:

N1 : Each edge of G is non-incident to at least two others.
N2 : If G has m edges, then each vertex of G is incident to 

at most ^ edges of G.

Proposition 5-5.1

Conditions N1 and N2 are equivalent to conditions N1' and 
N2, where N1' is as follows:
N1' : G is not isomorphic to the graph in fig. 5-5*1 for any 
values of k and 1, and for any way of attaching e' 'to the rest 

of the graph in such a way that e is non-incident to e'.

Figure 3.3.1
w1

'y
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Proof

We show that G satisfies N2 but not N1 iff G is isomorphic 

to the graph in fig. 5-5.1; that is, (N2 /s -iNI ) iff -tNI ' .

For then we have (N1 A N2) iff ((N1 v -:N2)/\ N2) iff 
(-,(N2A _,N1)A N2) iff (n(-,N1')A N2) iff (NI'A N2), where

/\ and V denote the logical operations not, and and or 

respectively.

If G satisfies N2 but not N1, then it has some edge e, say, 

incident to all or all but one of the remaining edges of G.

Let e = -[u, vj , and if there is an edge of G not incident to e,

let it be e' = ^x, yj .

Suppose first that there is no such edge e', so every 
other edge of G is incident to either u or v. There are m-1 

such edges, so if k are incident to u, then m-1-k are incident 
to V. Hence d(u) + d(v) = (k + l) + (m-1-k + 1) = m+1 > 2 

Hence either u or v has degree > ^ , contradicting the

assertion that G satisfies N2. Hence there is an edge e' of G 

not incident to e. All the remaining m-2 edges of G are 

incident to u or v, so by a similar argument to the one above, 
both u and v have degree ^ . It is clear that G must be the 

graph in fig. $.5.1.
Conversely, if G is isomorphic to the graph in fig. 5.5-1» 

then it is obvious that G satisfies 112 but not N1. D
The significance of this result is that only a very small 

family of graphs satisfies N1 but not M2. The significance of 

Ml and M2 themselves is that they are the necessary and sufficient 

conditions for a graph with more than 34 edges to have a 

hamiltonian line graph complement.
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Theorem 5.5.2

If G is a graph with m ^ 34 edges, then L(G) is hamiltonian 

iff G is normal.

The proof of this result is rather complicated and takes up 

almost all of this section. The first stage of the proof is to 
prove the 'worst' case, where G has a vertex with degree ^ , the 

maximum possible degree for G to be normal. In fact, this is 

fairly easy to prove using Chv^tal's theorem. This result is 

then generalised to graphs with a vertex of degree - 4-

For graphs with maximum degree - 3 or less, the result is
proved by another method.

Proof

Lemma 3.3.3 (Chvatal)

If G is a graph on n vertices and G has degree sequence 

d(v^) ^ d(v^) -$■ . .. ^ d(v^), and for each i ^ either
n

(i): d(v^) i + 1 or (ii): d(y^ ^ n-i holds, then G is, 

hamiltonian. O 

Lemma 3.5.4 (Chvatal)

If G is a bipartite graph on 2n vertices with a bipartition 

V(G) = n V U' where ln| = |U'I = n, and if U = Ug,..., u^j
where d(u^) ^ d(ug)<... ^d(u^) and U' = ^u^, u^,..., u^ j

where d(u^)^ d(u^)^ .. . ^ d(u^), and for each i <" n, either

d(u.) ^ i + 1 or d(u' .) ^ n - i + 1, then G is hamiltonian. O 1 n-i
Proofs of these results may be found in Chvatal( 6 ). In fact,

the second result is a simple corollary of the first.

Lemma 3.3.5

If G is a graph with n vertices and has a vertex v such that 
d(v) ^ ^ , and G - ^ vj- is hamiltonian, then G is hamiltonian. 
Proof of 1emma 5•5•5

G - ^v^ has n - 1 vertices, so v is adjacent to more than
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half of its vertices. Hence v is adjacent to two consecutive 

vertices in the Hamiltonian circuit in G - ^vj,u and u', say. 

Deleting the edge |’u, u'j and inserting the edges ^u, vj and 

^u', v| gives a hamiltonian circuit in G. O 

Lemma 5.5.6

If G is a hamiltonian graph, then there is no non-empty set 

of vertices V C V(g) such that G - V has more than Iv'l 

connected components.

Proof

G contains a spanning circuit C. Deleting one vertex from 

C clearly leaves a connected graph. Deleting a further vertex 

leaves either a path, or two disjoint paths. It is clear that 

deleting k vertices from C leaves at most k disjoint components.
G will certainly have no more components than C after these 

deletions, so the result holds. □

Using these lemmas it is now possible to prove half of 
theorem 5-5.2 .

Theorem 5.5.2 (first half)

If G is a graph such that L(G) is hamiltonian then G 

is normal.

Proof

Each vertex of L(G) must have degree 2 or more for a circuit 
to pass through it. Hence each edge of G must be non-incident 
to at least two others. Hence G satisfies HI.

If some vertex of G is incident to k > ^ edges, then these 

edges are all incident to one another and hence are all non- 

adjacent vertices of L(g). Let E' denote the set of edges of G not 

incident to this vertex. Then |E'[ = m - k <^ . Considering 

these edges as vertices of L(G), L(G) - E’ consists of k mutually
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non-adjacent vertices, and hence has k >iEcomponents. This 

contradicts the hypothesis that L(g) is hamiltonian, by lemma 

5.5.6. Hence G has no such vertex and G satisfies N2. Hence 

G is normal. Q

Notice that this half of the proof is trivial, depending on 
only one straightforward lemma. It is very surprising that 

such weak conditions as N1 and N2 should turn out to be 
sufficient conditions for a graph to have a hamiltonian line 
graph complement, provided it has sufficiently many edges.

Lemma 5.5.7

If G is a graph with n vertices and m edges, and G has a
vertex v with degree d(v) = k = ^ , and k 6, then L(G) is

hamiltonian.

Proof

Let E be the set of edges of G incident to v, and let E'
be the set of edges not incident to v, so |E j = |E'|= k.

Let E = ^e^, e^,..., e^ j and let E' = {e^j , e^,..., e^ j .

Let H be the bipartite graph with vertex set E(G) and with 

an edge ^e, e'J iff e € E, e' € E' and e is not incident to e' 

in G. H is clearly a subgraph of L(G), and if H is hamiltonian 

then L(G) is also. Thus we suppose that H is not hamiltonian.

If d(e) is the degree of e as a vertex of H, and if 

d(e^) d(eg).^...<: and d(e^ ) ^ d( d(e^)
then by lemma 5.5.4, since by assumption H is not hamiltonian, 
there is some i <r k such that d(e.) < i and d(e,' .) ^ k-i.

If e' € E' then e' is not incident to v so e' is incident 

to at most two edges in E. Hence d(e') ^ k-2 for all e' $ E'. 

Hence k-i^d(e4 .) ^k-2, so i $ 2, and i = 1 or 2.

If i = 1, then d(e,) ^ 1. Now e^ is not adjacent in L(G) 

to any e € E, since they are both incident to v in G. Hence
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every edge of S incident to e. is also an edge of L(G).
It follows that e. has degree ^ 1 in 1(0), and hence N1 does 
not hold for G, giving a contradiction. Thus i = 2. .In this 
case, d(e,) = d(eg) = 2 d(e^_g) ^

Now partition E' into four sets:
B'(e , Sg) = ^e' 6 E' : e'~ and e' in H j ,
E'(e^) = ' € E' : e' ~ and e'r^ j ,
E'(eg) = r e' £ E' : e'~ and e' 7^ j ,
E'(.) = ^e'€ E' : e' e and e' -76 e ^ j .
Also, let |E'(e , 6^)1= a, |E'(eu)/ = for i = 1, 2 euui 
iE'(.)f = c .
There is at most one element of Ef( •) since at most one edge of

G in E' can be incident to both e. and e^, Hence c < 1.

a + bp = 2,

+ c

Also, d(e.) = a + b^, so a + b^ =

Finally, k = a + b. + b^ + c
^ (a + b^) + (a + bg)

< 2 + 2 + 1 = 5.

It follows that if k ^>6 then L(G) is hamiltonran. Q 
Before extending this result to graphs G with maximum degree 
less than ^ it is necessary to deal with an exceptional family 

of graphs with maximum degree ^ - 1 .

Lemma 5.5.8

If G is isomorphic to the graph in fig. 5-5»2 then L(g) 

is hamiltonian, provided k ^ 4
Proof

!t e = [u, vj, a^^ =fu, uj, b^^ =^, v^j ;■Lei
csfx^, y^}and d =|^X2, ^ ^ " ^^i^

In L(G), each vertex a. is adjacent to at least k-1 vertices
of B, and if a. b, and a. b. then i ’ = i„ . Similar facts1 J 12•1
hold for each vertex b
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x^o—-------o y.

^20- -O ^2

In fig. 3-5-2, all the vertices u. are distinct from one 

another, as are the vertices v^. Also, all the edges are distinct 

from one another, and x , , x^, y^ are distinct from u and v.

By the argument on the previous page, the subgraph of L(G) 

induced by the vertices in A and B contains ^ , the graph 

consisting of ^ with k mutually disjoint edges removed, as 

a spanning subgraph.
-X"

is a hamiltonian, edge-transitive graph and hence it 

contains a hamiltonian circuit containing any given edge, 

provided k ^ 5-

Also, in L(G), e rw c and e d, and c and d may be adjacent

to certain vertices in A and B. Hence L(G) contains a spanning

subgraph isomorphic to the graph in fig. 3-5.3.
Figure 3-5.5
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Now c is incident to at most 2 edges of A in G, and hence 

0 is adjacent to at least k-2 vertices of A in L(G). But k ^ 4, 

so c is adjacent to at least 2 vertices of A. Similarly, d is

adjacent to at least 2 vertices of B. Hence there is an edge 

^a^, bin the subgraph isomorphic to ^ such that a^ c 

and b . d in L(G) .

A hamiltonian circuit in L(G) is found by choosing a 

hamiltonian circuit in ^ containing the edge b.J ,

deleting this edge and adding the edges ^a^, cj ,^c, ej ,

^e, dj and ^d, b.j . D 

Lemma 5.5.9

If G is a normal graph with m edges and maximal degree 

k = n - a, where n = , a ^ 0 if m is odd, a ^ 1 if m is even,

and n2a + 9, end.if u is a vertex of degree k, then there is 

some edge e' of G which is not incident to u, and is incident to 

at most n - 1 other edges of G.

Proof

Let V be a vertex of G such that 1 = d(v) ^ d(v') for all 

vertices v' ^ u. Thus v has the second highest degree of all 

vertices of G.

Let E(u) be the set of edges of G incident to u, and let 

E(v) be similarly defined. Let E(u,v) = E(u) U E(v), let 

E'(u) = E(G) - E(u.), and let E'(u,v) = E(G) - E(u,v).

Now [E(u,v)[ = (e(u)! + |E(v)| - |(E(u)n E(v))[ , and

there is at most one edge incident to both u and v.

Hence k + 1 - 1 E(u,v) ^ k + 1 .

Also, m = 2n or 2n + 1, and |E'(u,v)f = m - [E(u,v)j , 

so if m = 2n + 1, then substituting k = n - a we obtain 
n + a - 1 + 1 ) E' (u, v) ( .^n+a-1 + 2 , and if m = 2n then
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n + a - 1-5'/E'(u,v)/^ n + a - 1 + 1.

If m = 2n 4- 1, then since k = n - a, E'(u,v) > 0.

If m = 2n, then a ^ 1, sol^k = n- a<n+a, so in either 

case, E’(u,v) is non- empty. Let e' ^ E'(u,v).

Since e' is not incident to u, e' is incident to at most 

two edges in E(u). Also, e' is clearly incident to at most 
IE'(u,v)|-ledges in E'(u,v) . Finally, e' is incident to at most 

two edges in E(v). Hence whether m is odd or even, e' is 

incident to at most 4+fE'(u,v)/-1 other edges of G, and taking 
the largest upper bound for |E'(u,v)|, e' is incident to at most 

4+(n+a-l+2)-1 =nta-l+5 other edges of G.

Hence the result holds unless 1 a + 5, which we now suppose 
to be the case.

For any end vertex v' of e', d(v') ^ d(v) a + 5 since 

e' is not incident to u. Hence e' is incident to at most 

2(a +5-l)=2a+8^ n-1 other edges of G, since by hypothesis 
n ^ 2a + 9- Hence the result holds. Q 

Lemma 5.5.10

If G is a normal graph with m edges and maximum degree
and n ^ 2a 4- 9j then L(g)n - a, where a ^ 0 and n = 

is hamiltonian.

Proof

The proof is by induction on a.

If a = 0 and m = 2n , then n ^ 9 ^ 6 and the result follows 

by 1emma 5•5•7 •

If a = 0 and m = 2n+1 then consider the edge e' whose 

existence was proved in lemma 5-5*9* If G' = G ~ -^e'j is a 

normal graph then it has maximum degree n and 2n edges, and 

n ^ 9 ^6, so L(G') is hamiltonian by lemma 5*5-7* Also, e'
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is incident to at most n-1 edges of G so it is adjacent to 

at least n vertices of L(G). Hence L(G) is Hamiltonian by 

1emma 5•5•5 •

If G' is not normal, then either.it Has some vertex w, say, 

v;itn degree d(w) > n or some edge e, say, incident to all but 

one of the other edges of G; (if e were incident to all the 

other edges, then it would be incident to all but one of the 

edges of G, contradicting the fact that G is normal.)

However, if w has degree ^ n+1 in G*', then it has degree 

n+1 or more in G, contradicting the hypothesis that G has 

maximum degree n. Also, if G' has an edge e incident to 

all but one edges of G' then since G’ satisfies condition N2,

G' is the graph in fig. 5.5.1. Also, e' cannot be incident to 

e since G is normal, so G is isomorphic to the graph in fig.

5.5.2, which is hamiltonian by lemma 5.5.8.

Now suppose that the result is true for all a ^ a^, and

let a = Uq + 1 . Suppose first that m = 2n. By lemma 5.■5*9

there is an edge e' € E'(u) incident to at most n-1 other

edges of G. Now G' = G - {*e'| has 2n - 1 = 2(n - I) + 1 edges

and maximum degree n - a = (n - 1) - (a - 1) = (n - 1) - .

Also, n ^ 2a + 9, hence (n-l)^2a+8= 2(a - 1) + 10 > 2a. + 9- 

Finally, G' is normal, since each edge of G is incident to at 

most 2(n - a - 1) other edges of G, and hence is non-incident to 

at least (2n - 1) - (2n - 2a - 2) = 2a + 1 5 edges of G. It

follows that each edge of G' is non-incident to at least 3-1=2 

edges of G'. Hence by-the induction hypothesis, L(G') is 

hamiltonian, and hence L(G) is hamiltonian by lemma 5.5*5.

Finally, if m = 2n + 1, then G’ = G - [e'J has 2n edges 

and maximum degree n - a. By a similar argument to the one above.
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G’ is normal. Hence L(G') is Hamiltonian by the arguments for 

m = 2n . It follows that L(g) is Hamiltonian. This completes 

the proof of lemma $.$.10 .

Lemma 5.5.11

If G is a normal graph with m > 34 edges and maximum degree

n a , where n = and a ^ 4,, then L(G) is Hamiltonian.

Proof

If m ^ 34 then n!^17 = 8 + 9^2a+9. Hence the result
follows immediately from lemma 3«5«1G. O

Definition 5.5.2
If G and G^ are graphs, then the sum of G^ and G^, G^ + G^ 

is any graph which is obtained by identifying a number of pairs
V., Vg of vertices, where v^ 6 V(G^) for i = 1, 2 .

For example, if G^ = ^ and G^ ^ then G^ + G^ could be
any of the graphs in fig. 5.3.4, as well as other possible graphs', 
Figure 3.3.4 Some possibilities for ^ ^ .

/

%
\
N> /

This definition is needed in the proof of theorem 3*5.2 in
the case where G has no vertices with degree ^ 
following general lemma is also needed.

- 4. The
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Lemma 5.5.12

If G is a graph with at least 6 vertices, with no isolated 
vertices, and with no three mutually non-incident edges,then
G = ^ ^ ^ or is the graph consisting1 ,m 1 ,m 1 ,n
of two disjoint copies of E_ .
Proof

Note that all these graphs do have the required properties.

The proof consists of showing that there are no other such graphs.
Suppose that G has c components. No component consists only

of an isolated vertex, so if c 3, then G contains three

mutually disjoint edges. Hence c 2. If c = 2, then if one of
these components contains two disjoint edges, then taking any edge

from the second component gives three mutually disjoint edges .

Hence every edge in each component of G is incident to every

other edge. Thus each component of G is either E, or E. for3 1,m
some value of m. Hence the result holds if G has 2 components.

The remaining possibility is that G has one component, and is 
connected. Let u be a vertex of maximum degree in G, and let
d(u) = d. If G' = G - {uj = E^ or E^ ^ then G h,d + ’^3
K. , + E. and the result follows. Hence we assume that G'1 ,d 1,m
contains a pair of non-incident edges e^ = {u^, v^^and 

®2 ~ {^2’ ^2} ■ d(u) ^ 3, then there is some vertex v of G
adjacent to u which is distinct from u., v^, u^, v^ . But then 

e = ^u, vj , e^ and are mutually distinct. Hence d(u) 4.

If d(u) = 4, then by the same argument, u must be adjacent 
to each of the vertices u , v^, u^, v^. Hence the graph in fig. 
3=5.5 is a subgraph of G. G is connected and has six vertices, 
so at least one of u.,..., v^ is adjacent to some other vertex 
V of G. By symmetry, this vertex may be taken to be u .
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But in this case, fv, u^j, u|, and ju^, v^} form a set

of three mutually disjoint edges in G.

If d(u) = 3> then u is adjacent to three of the vertices 

u^ Vg. Let u^ be the vertex not adjacent to u. Then

G contains the graph in fig. 5.5-6 as a subgraph.
Figure 5.5.6

u^

G is connected and has at least six vertices so there is

another vertex of G adjacent to one of u^, ..., v^ . There are

essentially three possibilities: v ~ u^, v u^ or v v. .
If Vu , then the same three edges as in the case d(u) = 4
are mutually disjoint . If v ~ u^ then Jv, u^j, ^v^, uj and

u^l are mutually disjoint . Finally, if v v^ then G contains

the graph in fig. 5.5.7. If G has no other vertices or edges

then G = E _ + . If G has another edge not incident to

v^ then it is easy to see that in every possible case G contains
three mutually disjoint edges. If G has a number of bther edges

incident only to v. then G = E. + E, for some m.1 1 ,m 3
This completes the proof of lemma 5.5.12 . £7
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Lemma 5.5.13

If G is normal and has m ^ 34 edges and has maximum degree

n - a where n 

Proof

and a ^ 5» then L(G) is hamiltonian.

The proof of this lemma is rather long, so to make it more 

readable It has been split into a number of shorter sublemmas.

Suppose that G is a graph satisfying the hypotheses of 

lemma 5-5.13> and that L(G) is not hamiltonian. Then by the 

contrapositive of lemma 5*5*3 there is some set of edges 

E* C E(G) such that each edge e' € E' is independent of at 

most k other edges of G, where k = [E'I ^ . Let H be the

subgraph of G induced by the edges in E'. -

The following sublemmas describe the structure of H.

Sublemma 1

H has no three mutually disjoint edges 

Proof of sublemma '1

Suppose that ejj, e^, and e' are mutually disjoint edges 

of G and are all elements of E’. Partition E(G) into the 

following subsets;

Ej = , e^ , j ,

E(e^) = ^ e: e is incident to e| but not to the other two edges
in j ; i = 1, 2, 3 ,

E(e.', e!) = j e : e is incident to e. and e. but not to the third ' 1 L 1
edge in E^ J
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E(.) = : e is not incident to any edge in E

Note that since the edges in are mntnally disjoint, no edge

of G can he incident to all three of them.

Let lE(e?)[= d., let |E(e!, e'.) i = h. . and let |E(.)' = c

Figure 5*5.8 shows that there are at most 4 edges incident to
both ef and e, so b. . 4.

1 J
Figure 5.^.8

Oc-

1 ,< e ■

Now e^ is non-incident to e^ , e' , and to each edge in 

E(ep, E(e'), E(e^, e^) and E(.). Hence e^ is adjacent to

+ c vertices of L(g). Similarly,2 + dg + d^ +

d(e') = 2 + d + d, + b , + c and
Z i p I 9 y

d(e^) = 2 + d^ + dg + b^ ^ + c .
However, d(e|) k < ^ and m = 3 + d^ + d^ + d^ + b

1,2

+ h,3 * h,3 + °
Hence 2m = 5 + 2d + 2d + 2d_ + 2b. ^ + 2b ^ + b^ , + 2o

= d(ejj) + d(eg) + d(e^) + b^ ^ + b^ ^ + b^ ^ - c 

■^^ + ^ + ^+ 4 + 4 + 4- 0 , maximising ev-ery term 

but the last, and minimising c.

Hence simplifying this expressinn, m <1 24 'C 34, which contradict: 

the hypothesis that m ^34. D

Hence by lemma 5.5*12, H has less than 6 vertices or else
^ = ^1,m + ^1,n ' Kl,m + or , or E = . :
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Sublemma 2

If E ^ E, _ or then k = - 2 .1,r
Proof

If H is not isomorphic to one of these graphs then H 

must contain two disjoint edges e' and e^ . Partition E(g) 

as E(g) = E(.) u E(e’) U E(ep U E(e^, ep , where E(.) is the set 

of edges of G incident to neither e' nor e^ , and so on.

Let d. = /E(ep| for i = 1 , 2 , let c = [ E( . )j and let 

b = |E(e^,ep[. As before, b ^ 4.

Hence in L(G), d(ej|) = 1 + d^ + c and d(e^) = 1 + d^ + c. 
Also, since ej 6 E' , d(ej^) ^ k.

Thus m = 0 + d. + dg + b + 2

2c + d^ + dg + 4 + 2 = d(e') + d(e') +4 

2k + 4.

Hence the result follows.

Sublemma 3
mIf H = K. for some r, then k^ — - 1 .1, r c

Proof

Let u be the vertex of degree r in H, and partition E(G) 
as follows: E(G) = E' U E U Eg , where E' is as always the

set of edges generating H , E. is the set of edges of G incident 
to u but not in E', and E^ is the set of edges not incident to u. 
Note that E' and Eg are disjoint sets since every edge in E' is 
incident to u by hypothesis. Let |E^(= b and let [E^| = c ;

(E'f = k by definition.
Consider the number of incidences in G between edges in E' 

and edges in E_, and let this number be s, say. Every edge in 
E’ is by definition non-incident to at most k edges of E , so 
it is incident to at least c-k edges of Eg. Hence s ^ k(c-k) .
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Since m = t + c + k, s^' k(m - 2k - b).

However, each edge e_ 6 is not incident to u and hence
is incident to at most 2 edges which are incident to u.

Since every edge in E' is incident to u, it follows that e^ 

is incident to at most 2 edges of E'. Hence s ^ 2c, and 

after substituting for c, s ^ 2(m - k - b). Combining this with 

the first inequality gives k(m - 2k - b) ^ 2(m - k - b), and 

after some algebra, we have (k - 2)(m - b) <" 2k - 2k .

Note that if k = 2 then this inequality holds. This case 

must be considered separately. First suppose that k ^ 3.
Note that b + k ^ ^ - 5 since b + k is the degree of u 

which is at most ^ - 5* Substituting in the previous

inequality, we have

(k - 2)(m _ (S - 3 - k)) (k - 2)(m - b) 4 2k'

Afterfurther manipulation, this gives

2k

Hence if k ^ 3, then k - 1.

= ^ + (k 2)
2k - 6 + 8 since k ^ 3 so ^ ^ 1 .
m

1

If k = 2, then let E' ={e^> e^jand partition E(G) as before 

in this proof. Also, partition E^ as follows:

Eg = Eg(.) U Eg(e:;) u Eg(ep U Eg(e:;, ep , where Eg(.) is the 
set of edges in Eg incident to neither e' nor , and so on.

Let |Eg(.)| = d^, jEg(epj= dg , !Eg(epf= d^ and |Eg(ep ep':= d^ 

Then c = d^ + dg + d^ + d^ .

Also, the degrees of e' and e^ in L(g) are given by 

d(ep = d^ + d^ ^ 2, and d(ep = d^ + dg , since k iT 2.

Finally, d 1 since only one edge not incident to u may be

incident to both e' and e' Hence c h + h + h * h
2d, + d„ + d, + d'1 ' 2 ' ^3

'b-2 + 2+1=5*
4



^94-

However, G is normal so at least half of its edges are not 

incident to n. Hence c , so m ^ 10, which contradicts
the hypothesis that m '^34. Hence k ^ 2.

This leaves only the case k = 1; but if this is the case
then G has an edge which is non-incident to at most one other 
edge of G. This contradicts the fact that G is normal.

This completes the proof of sublemma 3* D 
Sublemma 4

E K .

Proof

If E = E, then E' = ^e^, e^^ e^ j . No edge of G not in E'
can be incident to all three edges in E', since they form a 
subgraph isomorphic to by hypothesis. Also, no edge of G 
can he incident to only one of them, for the same reason.
Hence E(G) may be partitioned as
E(G) = E' u E(ej;, e^) U E(e^, e;) U E(e^, e]}) U E(.)

'1

where E(.) is the set of edges of G incident to none of the edges
n

of E' , E(e', e^) is the set of edges incident to ej| and e^ but
not to e', and so on. Let (E( e 7, e'. ){= b. . and let [e(.)1= c.

d 1 1 1 > 0
The degree of ej| in L(G) is given by d(e]|) = b^ ̂  + c ^ 3'

Similar formulae hold for e^ and e' .
Also, m = 3 + b ^ + b^ _ + b_ . + c

^ 3 + 3c + b^,2 + bg^^ + b^^^
3 + d(e7j) + d(Sg) + d(e^) ^ 12.

This contradicts the fact that m \ 34 by hypothesis.
Sublemma 5

mH has some vertex incident to at least — - 1 edges of H.
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Proof of sublemma 5

By sub lemma 1 and lemma 5 •5-12, E = Z

Z + Z^ , Z^ + Z_, Z^ + Z^, or S has 5 vertices.1 ,r 1 ,s’ 1,r 5 5 5
By sublemma 2, E = Z^ ^ or Z^ or has 2 ̂ 15

vertices. Thus H = Z^ ^ + Z^ ^ '
By sublemmas 3 and. 4, in each of these cases, E has at 

least § - 2
In each of the remaining cases, the central vertex of the

(larger) star is incident to more than half the edges of H.
The result follovs. Q

With these sublemmas it is possible to prove lemma 5.5.15-
Proof of le’.ima 5-5-15

By sublemma 5, E has some vertex u incident to at least 
& - 1 edges of G. Let E'(u) be the set of edges of E' incident 

to u, let E(u) be the remaining edges of G incident to u, and 
let E* be the set of all edges of G not incident to u. Note 
that E* will contain edges in E' and in E - S'.
Let lS'(u)j= b, /e(u)/= c and |E*j = d. The following equations 

all hold:
(1) : b ^ ^ - 1 by sublemma 5 ;
(2) : b + c ^ n - a, where n = and a 5 by hypothesis ;
( 3) : b + c + d = m ;

(4) : a 5 ;
(5) : m ^34 ;
(6) : c ^ 0.

Let e be the edge in E'(u) incident to the fewest edges in S*, 
and let s be the number of such edges- Since e ^ E', e is non­

incident to at most k edges of G, so d — s k, since e is non-

incident only to edges in E*. Eowever, d=m-b-cso
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b + c-Ks'Xm-k. Also, k<— so k <6

b + c 4- s m
L2u

{f} - 1 a'ld
+ 1 •••(7)-

Now consider the number of incidences between E'(u) and E*; 

this gives the inequality 2d ^ bs ...(3) , since each edge of E* 

is incident to at most 2 edges of E'(u), and each edge of E'(u) 

is incident to at least s edges of E*, by the definition of s. 
(2) and (7) imply s ^ a -H 1

^6 by (4).
(^) and (8) imply that 2(m - b - c) ^bs , but by (7),
b + 0 ^
2 (m - (

'm
.2j
m
12

+ 1 - s, hence

-f 1 - s)) ^ 2(m - b - c) ^ bs
-

s by (1).
Hence

4% -'
j

— Q

If m is odd, then 2= m + 1, so m + 2s - 1 ^ ms - "S

4(3s - 1)hence m ^ dV A cince s ^ 6 by an earlier inequality.s - 4
Hence m ^ 12 -t- M 34.s - '4 ' ' 2
Since m is odd, we conclude that m ^ 33? which contradicts
equation (5)-

If m is even then 2

After some manipulation this gives m 12 +

= m, so m + 2s- - 2 ^

_____ W -10 , 40 ,

ms

s_4 + g

■s.

40 = 32.
Again this contradicts the hypothesis that m 3^ 34.
This completes the proof of lernma 5.5.13. CJ

Theorem 3.3.2 now follows from this result and from lemma 5.3.11. D 
The proof of theorem 5.5-2 is very complicated, particularly 

the second half. However, the proof does not involve any 
particularly advanced ideas. The major weakness of the result 
is the value of m which must be assumed, namely m ^ 34. This 

seems to be the smallest value of m which can be obtained by 
the present method of proof, but it is probably far larger then
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is necessary. A niimber of examples are known of small graphs 
which are normal but do not have hamiltonian line graph
complements. The largest of these has 10 edges^ namely K^.
It is conjectured that this is the largest normal graph 
which does not have a hamiltonian line graph complement.
[fhe 'canonical' graphs are listed below. A number of other 
graphs can be obtained by modifying these graphs to produce 
further examples.
Figure 5.5.9 Canonical normal graphs with non-hamiltonian LGC's,

G i^G)

6 <>

0 o

b o
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Figure 5.5.9 (continued) 

G L(G)

The third, canonical graph, for example, can be modified to give 
the graphs in fig. 5,5.10, and two others.
Figure 5.5-10
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. The line graph complement of each of the graphs in fig.

5.5.10 is a spanning subgraph of the third line graph complement 
in fig. 5-5.9 and cannot be hamiltonian.

An exhaustive search has been made of all graphs with 8 or 
fewer edges but no further graphs were found. Numerous graphs 
with 9 or more edges have been examined, but so far no examples 
apart from have been found. It is tentatively conjectured 
that there are no other graphs apart from those mentioned above 
which are normal but do not have hamiltonian line graph complements, 
This conjecture is supported by the exhaustive search of small 
graphs, an unsuccessful search for likely counter-examples, 
the (fairly simple) propositions that all normal trees and all 
normal regular graphs except have hamiltonian line graph 
complements. Finally, it would be appropriate for K. to be the 
largest exceptional graph, since its line graph complement is 
Petersen's graph, an exceptional graph in other contexts.

However much it is improved, the present proof could not 
prove this conjecture. The proof of lemma 5.5.13 is useless 
for graphs with 21 or fewer edges since there exist normal 
graphs with hamiltonian line graph complements which have sets 
of edges E' with k <( ~ edges , each of which has valency k or 
less in L(G). The largest known example is , where E' can be 
any set of 10 edges.
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APPEIPIX 1! A LIST OF TRANSPOSITION GRAPHS ON AT MOST 24 VERTICES
There are 15 graphs G. ; i=1, 15 such that PCG ) has

at most 24 vertices. These graphs are all shown in fig. 5.4.7.
The notation of fig. 5-4«7 will also he used in this section. 
Transposition graphs which may be found elsewhere in this thesis 

will not be duplicated in this appendix. The graphs to which this 
remark applies are /^(G^), which may be found in fig. 2.2.9,

r(G^), (fig. 1.5.1),(fig. 2.2.15), rxc^), (fig. 5.4.2), 
rxG), (fig. 1.5,4), rxc^^), (fig. 4.2.1), rxG^^), (fig. 4.5.1)

and(l[C^g), (fig. 5.4.5) . '
r(G^):
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rXG^):

r(Gj:
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rXG^^)

The drawings of P(G-|^) and P(G^^) on the following page 
show the two graphs drawn on the torus, but with a number of 

lines crossing. This gives a more 'natural' picture of the

graph than is possible drawing it in the plane. To make this 
convention mnre reasonable, those hexagons containing three 
intersecting lines may be regarded as cross-caps. Thus the 
drawings may be regarded as non-orientable embeddings of
n(G ) andr'(G^^). This idea can be generalised.
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r(G^;):
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