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SOME PROPERTIES OF TRANSPOSITION GRAPHS
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For every finite graph G without isolated vertices, there 1is an
vassociated set of transpositions 1(G) which correspond in a
natural way to the edges of G. [l(G) generates a group H which
is a symmetric group iff G is connected. The Cayley grarh

(", f1) clearly depends only on G, and is called the
transposition graph of G, (G).

The distance between any two vertices of a transposition grarh
(G) is established in the cases where G is a complete graph, a
complete graph with an edge deleted, a path graph, or a star.

The diameter of [*(G) is obtained as a corollary in these cases.
General upper and lower'bounds are found for the diametef of
P(G) which depend on the number of vertices and the diameter of G.

If G has no connected components isomorphic to C, or K_ then
the automorphisms of [(G) are completely determineg by tﬁe
autorworphisme of G. In partiéular, if G is a connected graph
on n vertices with no non-~trivial automcrphisms, then fKG) is a
graphical regular represertation of S, C

Every transposition graph with at least four vertices is
hamiltonian.

If the complement of the line graph of a graph G is hamiltonian
then the genus of [(G) depends only on the number of vertices and
edges of G. This result can be generalised if G has no circuits
.of length three.

Finally, it is proved fhat thé complement of the line éréph of
a graph G is hamiltoniah‘iff every vertex of G is incident to at
most half the edges of G and every edge of G is non-incident to
at least two other edgesnof G, provided G has at least thirty

four edges.
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INTRODUCTION

For every graph G without isolated Qertices there is a
corresponding transposition graph[(G), which is s Cayley graph
of the group generated by a set of transpositions corresponding\
tc the edges of G. This correspondence is described in chapter 1,
and 2 more explicit descrirtion of transposition graphs is given.

:

In the following chapters, a number of rroperties of transposition

4

graphs are studied. It is often the case that & problem about a
transposition graph [7(G) can be reduced to a problem about G,
although this is not necesszrily possible for all grsphs G.

Several straightforward preoperities of trensposition greohs

Y

re dealt with in chapter 1, including colourings, edge colourings,
connectedness and vertex transitivity. The problem of finding

the distance between two 9rhitrary vertices ¢f a transposition
graph is also examined,'but explicit formulae are only obtained

in & few special cases. The prcblem of finding the diameter of a
transposition graph appears to be no easier.

Chapter 2 is devoted to an examination of thé éubgraphs of a
trarsposition graph. A complete classification is given of those
subgraphs isomorphic to C K and K . The clegsgification of
subgraphs isomcrphic to C, is far more compliceted, and only that
part of it needed in later chapters is proved here. Finally, the
girth of all transposition graphs 1s esteblished.

: The zutomcrrhisms of =2 transposition graph are stucied in
chapter %, Ore interesting result is that if G has no non-trivial
automorphisms, thenfﬂ(G) is a graphical regulser representation.

This is a epecial cese of the main result which states that for

most graphs G, z2ll the automorphisms of M(G) are derived from the



automorphisms of G. The only exceptional graphs are C, and Kn’

4
and any graph containing one of these as a2 component. 1In each

of these cases, [{G) has additional automorphisms not accounted
for by the auntomorphisms of G.

In chapter 4 it is proved thaf every non-trivial transposition
graph has a hamiltonian circuit. The main result needed to prove
fhis is that for every tr;e T on % or more vertices, [(T) is
hamiltonian. The proof divides into two main cases, depending on
whether T is isomorphic to KT,n—1 for some n. In this case (T)
has no circuits of length 4, so the method uced for other trees
does not apply. The proof in the general case does not use any
properties of trees except that for-every end vexrtex of the tree
there is another which is distance % or more from the first,

The results in this chapter gerneralise a theorem of J. Dénes and
E. T6rdk, (8).

The genus of & transposition graph ig s+ udied in chapter 5.
The genus ofrﬁ(é) is established for those graphs G such_ that
E(G), the complement of the line graph of Gyis hamiltonian, or
‘such that G has no circuits of length %. The problem is much
harder for graphs G which satisfy neither of these conditions,
but has been solved in a few special cases. The queétion of
which graphs have hamiltonian line graph complements ‘is studiéd
in the final section of the rhapter, and a strong necessary and

~sufficient condition for this is established for all graphs with

at least %24 edges.



CHAPTER O: DEFINITIONS AND NOTATION

A graph G is an ordered pair (V, B) where V is a non-empty
finite set of vertices and E is a set of pairs of (distinct)
vertices of G, called edges. With this definition a graph is
finite and has neither locps nor multiple edges. A multigraph
is a graph which is allowed to have multiple edges, but no loops.
A graph H = (v', B') is a subgraghvof G=(V, B) if V' € V and

E'C E. H is a spanning subgraph of G if it is a gsubgraph of G

and V' =V,
If e = {u, v} is an edge of a graph G then u and v are the

end vertices of e, and u and v are adjacent in G. This relation

ig often denoted by u ~a Vs or simply u~v. A vertex u is
incident to an edge e if u is an end vertex of e. Two edges
e and e'! are incident if they have a common end vertex.

Otherwise, e and e' are non-incident or independent.

The degree or valency dG(v) of a vertex v of a graph G is

the number of vertices of G adjacent to v. A vertex of degree O

is an isolated vertex. Graphs in this theéis will normally heve

‘no isolated vertices. If G is a graph with vertices v1, v2,...,

v, ‘then the degree sequence of G is the sequence dG(VW)’ dG(Vz)"

...,.dG(vn) s it is usually ordered in such a way that

do(v,) € dglvy)g .- Laglv,).

A walk of length k joining u and v in G is a sequence of

vertices and edges of G of the form Voo e1, v1, €5r Voseees vk_1,

2 v, where v. = u, v, = v and e; =.{vi 4 vi} for i = 1,..., k.

"k’ 'k 0 k
A walk joining w and v is closed if u = v, and is a path if no
two vertices of the walk (except possibly u and v) are equalj

a closed path is called a circuit. Note that the edges € yeeey &

. will frequentlv be omitted from the definition of a walk.



A graph G is connected if every pair of vertices of G are

joined by some path; otherwise, G is disconnected. A connected

component of G is a maximal connected subgraph of G. Each vertex
and edge of G belongs to precisely one connected component of G.

If v is a vertex of a cornnected graph G, then G - {ﬁ} will
denote the subgraph of G with vertex set V(G) - {v} and edge set
B(V(G)) - B(v), where E(v) is the set of edges of G incident to v.
A vertex v of a connected graph G is a cut vertex of G if G = {v}
isfdisconnected. A graph which has no cut vertices is called
2-connected. A block of a graph G is a maximal 2-connected
subgraph of G.

If u and v are vertices of a connected graph G then the
distance hetween u and v, dG(u, v), is the length of the shortest
path in G joining u and v. The diameter of a graph G is the
maximun distance between any two vertices.

A circuit is trivial if it is of the form u or u, v, u.

A graph which contains no non-trivial circuits is called acyclic,
or more normally, a forest. A connected forest is balled a iree.
The girth of a graph which is not a forest is the length of its
shortest non-trivial circuit. A graph which has no circuits of
odd length is called bipartite. Note that every forest is
automatically bipartite.

A g¢olouring of a graph G is a function which assigns a
colour to each weriasx of G, and which has the »roparty that no
two adjacent vertices are assigned the same colour. A graph G is

k-=colourable if there is a colouring of G which assigns k colours

to the vertices of G. Note that a bipartite graph can also be

defined as a graph which is 2=-colourable. The chromatic number

of G is the smallest value of k such that G is kx-colourable.
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An edge colouring, the k-edze cclourability and the edge

chromatic rumber of a graph are defined in the same way with
edges replacing vertices and incidence replacing adjacency.
ot

An isomorphism between two graphs G and G' is a Dbijection

from V(G) to V(G') which preserves adjacencies. An automorphism

of G is an isomorphism from G to itself. An automorphism may
be regarded as an adjacency preserving permutaticn of V(G).

A graph G is vertex transitive if for any two vertices u and v

of G, there is an automorphism of G mapping u to v.

If G is arny graph with a non-empty edge set E, then the line
§£3£E of G, L(G), is the graph with vertex set E with an edge
{e1, 62} iff ey is incident to €y

If G and G' are any graphs, then G X G %s the graph with
vertex set V(G) X V(G') with an edge {(u, ut), (v, v')} iff
u = v and {ﬁ', v'} € B(G') or u' = v' and {u, v} € B(G). Gx G

is called the cartesian product of G and G'.

The complete graph on n vertices, Kﬁ, is the graph with

vertex set [n] and edge set E(Kn) :»{{i, j}: i, 3é‘fﬁfand i j} .

The complete bipartite graph Km " is the graph defined by
b4

En + n] and E(K n) = {{i, j}: ie [q]and jé€ [m+n]*’[n3}.

, 1

V(Km’n/ =
The path of length n-1, P , is defined by V(P ) = [n] and
'E(Pn) {{1, 1+1} = Tyeeey n—1} The circuit of length n,
C_, is defined by v(cn) = V(Pn) and B(C ) = B(P)u{ {1, n}}

In the above cdefinitions and throughcut most of this thesis,
[n] is usei to denote the set of integers from 1 to n inclusive.
Occasionally, however, [x] is uged to denote the integer pert
of x, It will normally be obvious which is meant. {X} will

mean the least integer not less than x. Curly brackets will

occasionally be used as ordinary brackets and as set brackets.
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Although the more general group-theoretical definitions
will not be stated in this chapter, some definitions concerning
permutations will, since they are frequently used in this thesis.
A Bermutation of a set X is a bijection from X to itself.
The set of all permutztions of X forms a group called the

symmetric group on X, and is denoted by S(X). In this thesis,

X will invariably be a finite set. In this case, if X has n
elements (often called letters), then S(X) has n! elements.

X will very often be the set [n] , and in this case, S(X) will
te written as Sn’ .

Throughout this thesis, the image of a variable x under a
function f will be denoted by xf rather than. ©(x). With this
notation, the product of two functiqné f and g will be written
ss fg, where x(fg) = (xf)é . This ﬁctatibn will in particular
be used for permutations.

If x € X and 07 € S(X) then O ‘moves x if x O # x ;

otherwise, 6”7 fixes x. Two permutations €> and O of X are

disjoint if E) fixes every letter moved by 07, and vice versa.

-

-
EN

A permutation ¢ of X is a eycle if for evezy x and y

. k ,
which are moved by ¢, v = x(0~ ) for some number k. BEvery
cycle can be written in the form (x1 Xy nee x%) where X ¢ X
and X4 = xicf s 1= 1,040., T, subscripts mod r. A cycle of

this form will be called a cycle of length r, or an r-cycle.

2-cycles are usually called transpositions. Note'that the

permutation which fixes every letter of X is trivially a cycle,
but cannot te written in the above form. Instead it is writiten

as .{1), and it is called the identity permutation.

A well-known theorem states that every permutation can bte

expressed as a product of disjoint, non-trivial cyecles in an



essentially unique way. (It is unique up to the order of the
disjoint cycles.) This representation will frequently be used
throughout this thesis. Another well-known result states that
every permutation can be expressed as a product of transpositions.’

This representation is far from unique.
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CHAPTER 1: GRAPHS AND TRANSPOSITIONS

SECTION 1.1: INTRODUCTION

This chapter is concerned with a nurber of problems which
arise from the study of a correspordence between grephs and
sets of transpositions. This ccrrespondence is well-known, and
several papers have been published on %the clcsely-related topic
of the graphs connected with minimal products of transpositions.
All this material is presented in seciion 1.2. y

In section 1.3 a rather different connection between graphs
and setz of transpositions is introduced, namely the transposition
grapk of a set of transpositiens. BEquivalently, the transposition
graph can. be derived. from the graph correspondirg to the set of

-

transposgitions. This is the more useful way of cdefining a
/

transpositiorn graph and is used continuously in this theéis.h~
A pumber of simple properties of.transposition graphs are
gstablished concerning regularity, connectedness, veértex
transitivity and vertex a;d edge colcurability. ’Ali'the.results
in this section are eithier special ceses of more gzneral results
or they are simple ccnsequences of the definitions and the
properties of transgpositions zand their products.

Section 1.4 is concerned with the problem of finding the

. .

distance tetween two vertices of a transvosition graph.
This problem may bé thought of as generalising the results on
minimal products of transpositions presented in section 1.2.
In general, this problem appears to be very difficult, so most
of the results in section 1.4 are concerned withkspeoial cases.
Exact formulae are given for the distance between two arb;trary

.

vertices in four special families of transposition graphs.
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The problem of finding the diemeter of a transposition graph is
a special casé of this problem, but seems to be no easier.
Upper #nd lower becunds are given for the diameter of a
transutosition graph. Only one of these bournds is close to the

true diameters in the four special cases which have been solved.

i
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SECTION 2: TRANSPOSITIONS AND GRAPHS

There is a close connection between granhs and sets of
transpositions. If G=(V,E) is any graph without isolated
vertices and without loss of generality V=[n], then G is
associated with a set of transpositionsfl(G):z{(ij)z{i,j}éE}.
Clearly, since G has no isolated vertices, each ié[n] is perm

muted by some UJGfl(G).

Conversely, a set of transpositions £l is associated with
a graph G():=(V({),E(UL)) where V(ﬂ):{i:ﬂu#i for some wé€ 2}
and B()={{i,3}:(: j)€R2}. Note that by the definition of V(Q),
G(£2) has no isolated vertices. Thus there is a 1-1 connectiony
between graphs without isolated vertices and sets of transe

positions.

Examples.
If G, is the graph in fig. 1.2.1 thenfl(G1)={(1 2), (3 4),

(4 5)}.
;;(12={(1 2), (2 3), (3 4)} then G(Qz) is the g?aph in

fig. 1.2.2.

Pig. 1.2.1
G s

Fig‘ 1.2.2

Ga,): o -
2 T2

Theorem 1.2.1

If QO is a (non-empty) set of transpositions end without
loss of generality V()=[n], then generates Sn iff G(Q) is
connected.

Proof

Suppose that (L generates Sn; it is necessary to show that

there is a path joining any two vertices of GQQ).
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Let i,.J be any two vertices of G(1). Since i, jéV(ﬂ):[n],
the transposition (i j)éSn. By hypothesis, {L generates Sn s0
3 transpositions @, , Wy, ..., W, €L such that (i j)=W, where
We %wQ...wK. Note that the transpositions M,dﬁ,...wkneed

not necessarily be distinct.

LetUJ% be the first transposition in W which moves 1ij UU%

must be of the form UU%:(i 11) since iwi#i.
Let bué be the first transposition in W after UJ; moving i
must be of the form (;Ué:(i,I 12).

17
W
Similarly Wj,..., W  are defined, and w!=(i, , i) for
T=3,..4,0,
It is clear from the definition of ou%, ugé,..., uJé that

W moves 1 to 1 then to i and finally to im. Thus iW=im.

1? 2
However, W=(i j) so iW=j. It follows that i=J.

Now UJéeflfor r=1,2,...,m, hence e£:={1 I}éE(ﬂ) for

r¥1’i
P=1,2, 000 ,m. {1,11}, {11,i2},...,{im_1,im} is a walk in G({)
from i to j since jzim. Itvfollows immediately that there is R
a path in G{)) joining i to j, so G() is connecéed;

Conversely suppose that G({1) is connected and that (i j) is
any transposition in Sn. We show that (i j) is.generated by
transpositions inf .

G({L) is connected and i and j are vertices of G{1) since

i, J e[n}:V(ﬂ). Thus there is a path i,1i,,1 i 43 in G)

oy
joining i to j.
It is easy to check that
(i 3)=(1 i1)(i1 i2)...(im_2 im_1)(im_1 j)(im_2 im_1)...
(i1 12)(1 11).
Also, since {i,i1}, {im~1,j},and {ir—W’ii};r=2""’m~1 are

edges of G{UL), all the transpositions in the above product are
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elements of £ . Thus {1 generates every transposition in Sn'

A well=known result of elementary group theory states that

every permutation in Sn may be written as a product of

transpositions in §_, so it follows that {1 generates S, -
Theorem 1.2.1 has appeared several times in the literature,

and appears to be due to Pélya (12 ). J. Dénes ( 7, p 65)

mentions in a somewhat confusing fooinote é result in Pblya

(12 ) which implies theorem 1.2.1 as an immediate corcllary.

T. Dénes and E. Toxdk ( 8 ) givg'aAdirect proof of theorem

1.2.71 while mentioning P6lya's result in passing. Finally,

C. Berge ( 3, pp 141-142) also proves the result attributed

by Dénes to P8lya, but does not himself attribute it to Pblya.

This is st;ange as Berge 1is aware of Dénes' paper, which he cites

as a reference. Unfortunately, some of the referencés to chapter

4 of Berge ( 3 ) are wrongly given after chapter 5. Pélya (12 )

does appear in this combined list of references, so it may be a -

reference to chapter 4. Thié, héwever, is unlikelyvsince

chapter 5 is concerned with enumeration, which is of course the

main subject of Pélya (12 ).

Corollazxy 1.2.7

If G(L2) has connected components G Goyerey G and.

1’ k
Vr = V(GT); r=1,..., k, then {2 generates the group
s(v1)s(V2)...s(vk) = s(vq)x s(v2)x v X s(vk).

Proof

Let Slr = Il(Gr); T = 1,..., K. The sets 111, (9% G

2,;-

form a partition of {2 . By theorem 1.7.1, Q2 generates S(Vr),

so the group generated by {L certainly contains S(VT)S(VZ)"'S(Vk)’
If r # s, then G, and G_ are distinct components of G(£2) so

~ = at if o 2 O e
VrKW Vs = ¢ . This implies that if Lurh,, Ly and pjstjjj_s
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then ourws: ousc,ur .

Suppose that O’ is any permutation generated by.CL H
then there exist transpositions W,, Wy,e.e, W el
such that 07 = W, Wyeeatn - Using the fact proved above
that transpositions in distinct sets il'r and fﬁ_s commute,
this may be rewritten in the form

2 k

1 1 2 k
6" - C’antnwr1w1onowr2~o. (/L),‘...(A)r

k

where cug e,flj for s = 1,444, rj and for J = 1y4eeey K.

In this product,cui ,(A)g ,...,C&)i_ are in the same order
with respect to one another as theyJwere in the product

u,',";] (,02. .o CUm .

Since OJj = 0J$UJ§...OU£. is a product of transpositions
Cin Slj, o~5 € s(vj) for j = %,..., k. Hence O is an element
of §(v,)s(7,)...8(V,). It follows that the group generated
by (L is S(VT)S(V2)...S(VK).

To show that S(V1)...S(Vk) is isomorphic to the group
S(V1)X S(VZ)X ...><S(Vk), consider the Zollowing -mapping.

from s(v1)x s(vz)x ...><s(vk) t0o s(vw)s(vz)...s(vk) :

(0’1, (7’2,..., G‘k)(}) = 0”10“2... ©°, s where G‘J. is an element
of s(vj).

It is clear that if r # s, O € s(vr) and oj;é-s(vs) then
0L 0, = .0 Also, S(V )0 s(V) = {(1)} . Using these
two. facts it is easy to show that 4) is an injective homomorphism.
(¢-is obviously surjective, sc it is an isomorphism and the
“result follows.
In the proof of theorem 1.2.1, a walk in G(fl) was derived

from a prpduct of transpositions in £L. This suggests that
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the connection between graphs and products of transpositions .
is worth investigating.

Definition 1.2.1 tA word is a product of tramspositions. Two

words W, and W, are identical (W,=W,) if they are identical
as products of transpositions , and egual (W1=W2) if they
represent the same permutation. The length of a word W is the
number of transpositions in W, and is written 1(w).

Definition 1.2.2: If W is a word, the multigraph of W, G(W),

is the multigraph with 1(W) edges, one of which corresponds to
each transposition in W in the same way as for the graph of a

set of transpositions.

Example
1 w=(1 2)(2 3)(1 2)(4 5)(1 2)(2 3), then G(W) is the multi-

graph in fig. 1.2.3.

Figure 1.2.3

G(W): Ee—=x > s

1 2 5 4 5

In general there is not a 1-1 correspondence between words
and multigraphs; one multigraph may correspond t& séveral words.
For example, if W'=(1 2)(4 5)(2 3)(1 2)(2 3)(1 2), then G(W')
is again the multigraph in fig. 1.2.3. Thus G(W)=G(W'),but
WEW!. Note also that W=(1 2)(4 5)%(2 3)(4 5)=W".

Definition 1.2.3: A multigraph G is related to a permutation O,

GM &, if there is a word W such that G=G(W) ard W=0: Let 3(G) =
{6&G¢vcj.
For example, if G is the multigraph in fig, 1.2.3, then
G(1 2)(4 5) and G2 3)(4 5), so (1 2)(4 5), (2 3)(4 5)€%(G).
This relation has been studied by M. Eden ( 9) in the special
case when G is 2 graph without multiple edges. In particular,

Eden found a number of constructions for graphs G such that
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G~(1) or M™maps to the identity". The smallest such graph is
the complete graph on 4 vertices, K4, since
w=(1 2)(3 4)(1 3)(2 4)(1 4)(2 3)=(1), and G(W)=K,.

Using two constructions, Eden showed that each wheel wn:=
(Vn,En) where V ={p+1], and E ={{n+1,i},{i,i+1} si=1,...,0,
subscripts mod n} maps to the identity for n23. Finally, using
further constructions, he showed thatz:(Kn)zAn if n=0,1 mod 4
and that (Kn)=Sn—An if n=2,3 mod 4.

This relation batween graphs and words has an application
to the genus of a family of graph embeddings which will be
discussed in a later chapter.

The following result is implicit in the proof of theorem 1.2.1:

Proposition 1.2.3

If W is a word and iW=j, then there is 2 path in G(W)
joining i to j. [J
The following simple result is useful in chapter 2@

Proposition 1.2.4

If W is a word and W=(1), then G(W) has no vergex‘of deéree 1.
Proof

Suppose on the contrary that W=(1) aud that G(W) has a
vertex i1 of degree 1. Since 1 has degree 1, it is adjacent to
exactly one other vertex j of G(W). By the definition of G(W),
(i j) appears exactli-once in W, so W=w1(i j)wz, where iW1=iw2=i.
Let g =W, ;k=1,2. Since w=(1), cg(i j)cé=(1),so (i j):cr;10’51.
Thus iCT;1cr51%i. However, i 03=i and ig,=i, hence i<7:1=i and

1

if721=i, s0 ichjcrg =i, which is a contradiction. Thus G(W)

has no vertex of degree 1.[]
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A particularly important specilal case which has been studied
by several authors is the relation between graphs and minimal

words.

Definition 1.2.4 A word W is minimal if W'=W= 1(W')21(W).

Notation Let c(6) denote the number of cycles (including
1-cycles) of a permutationcéS ; let c*(aﬁ denote the number
of non-trivial cycles in 0, and let n*(cﬁ denote tine number of
objects moved by O .

The following result is well-known:

Proposition 1.2.5

If W is a word and W= c’esn then W is minimal iff 1(W)=n-c(¢).
Proof

A proof of this result is given in Chrystal (5)
Another proof is given in Higgs & de Witte (11,p.378) which
is based on the graph of W. [

Corollary 1.2.6

If W is a word and W=¢" then W is minimal iff %(w)=n*(oﬁ-c*(oﬁ.
Proof

Clearly, of Sn provided n is sufficiently large. For such an n,
n*(o‘ﬁ= l{ie[n]: io’%i}t , SO n—n*(o‘)z l{is [n]: io’:i}[ .
Also, c(o?—c*(0?=({trivial cycles in O€ Sn}]
{i:i0=1}
n—n*(cﬁ.

it

Hence n-c(6)= n*(dj-c*(67 and the result follows by propos-—
itien 1.2.5. J

Note that n*(gﬁ and c*(dj do not depend on what symmetric
group O is a member of, hence the length of a minimal word
representing ¢~ does not either, although it appears to in

proposition 1.2.5.
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Theorem 1.2.7 (Higgs & de Witte)

A word W is minimal iff G(W) is acyelic, that is, G(W) is
a forest.
Proof

A proof of this result may be found in Higgs & de Witte

(11,p.378 theorem 3). [J

Corollary 1.2.8 (Dénes)

If W is a word , then W represents an n-cycle and l(W)=n~1
iff G(W) is a treé on n vertices.
Proof

Proofs of this result may be found in Higgs & de Witte (11,
p.379 corollary 3), Berge ( 3,p.143) and Dénes ( 7). Note,
however, that Dénes' proof is incomplete. [J

Corollary 1.2.9

If G is a tree on n vertices and 6-€Z(G) then o is an n-cycle. []
Examples
w=(1 2)(2 3)(3 4)(2 3)=(1 4 2) is not a minimal word repres—
enting (1 4 2) since o
(1) 1(W)=43>0"((1 4 2))=c"((+ 4 2))=3-1=2 (corollary 1.2.6)
(ii) 6(W) has a cycle of length 2, 2=3—2 (theorem 1.2.7).
wr=(1 2)(2 4)(5 6)(1 3)=(1 4 2 3)(5 6) is a minimal word
representing (1 4 2 3)(5 6)=¢" since
(1) l(W')=4£6~2=n*(d0—c*(60 (corollary 1.2.6)
(ii) G(w'), the (multi)graph in fig. 1.2.4, is acyclic (theorem
1.2.7)

Figure 1.2.4 G(W'):

[ o oeeem, S+ S - SH, ]
1 2 4 5 6

If G is the graph in fig. 1.2.2 then 2(¢)={(1 2)(2 3)(3 4),

(1 2)(3 4)(2 3), (2 3)(1 2)(3 4), (2 3)(3 4)(1 2),
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(3 4)(1 2)(2 3), (3 4)(2 3)(1 2)},

nence F(&)={(1432), (1342, (1243), (124 3),
(1342), (123 )}, |

so T(e)={(1432), (1342, (1243), (123 )}, ane
every 0°€¢3(G) is a 4-cycle (corollary 1.2.9).

Theorem 1.2.10 (Eden & "Schitzenberger)

If T is a tree on n vertices with degree sequence d d2""dn

1’
— 1 1 1
then.[E(T)f—d1.d2....dn. .
Proof
Proofs of this result may be found in Eden & Schutzenberger

(10) and in Berge ( 3,p.147).0

Theorem 1.2.11 (Berge)

If T is a tree on n vertices, then (i1 i, ...in)GZKT) iff the
following diagram has no crossings:
i1, i2,..., in are drawn in a circle, and ij is joined to ik
by a straight line iff ij is adjacent to i. in T,
Proof

A proof of this result may be found in Berge ( 3,0.145). Note
that theorem 1.2.10 may be deduced as a corollary of this
result. [J
Examples

If T is the graph in fig.1.2.2, then [3(T)!z11212111=4 by
theorem 1.2.10. This agrees with the value obtained for [ZKT)[
in the previous example. Further, (1 3 2 4%#ZXT) since the
diagram in fig. 1.2.5 has a crossing, while (1 4 3 2)e3(T)

since the diagram in fig. 1.2.6 has no crossing.

Figure 1.2.5 _J-'% crossing

diagram of (1 3 2 4)
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Figure 1.2.6

diagram of (1 4 3 2):

Theorems 1.2.10 and 1.2.11 can be easily generalised to héld
for any forest; in fact theorem 1.2,10 is already true for any
forest, while theorem 1.2.11 must be applied to each component
of the forest. Thus it is known which graphs are graphs of
minimal words, and which graphs are graphs of a minimal word
representing a given permutation. Hence graphs of minimal words
are very well understood.

By theorem 1.2.1, {L generates sn iff G(fY) is connected and
V(Q)=[n]. Thus it is reasonable to investigate the minimum
length of a word W representing a given permutation ¢--, where
transpositions in W are constrained to lie in some set {L such
that G(Q) is connected. This seems to be a far harder problem
and it has only been solved in a few special cases. It will

be discussed in section 1.4.
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SECTION 1.3: TRANSPOSITION GRAPHS

In this section, another type of graph aséociated with sets
of transpositions ~ is introduced, the transposition graph.
All the results in section 1.2 can be interpreted as results
about certain itransposition graphs, although most of this
interpretation will be left to later sections or omitted entir-
ely as it is completely straightforward.

Definitioni.3.1

If G is a graph without isolated vertices, the transpogition
raph of G, ["(G), is the graph (V([™), E(I")) where y(F‘):(Q_(G»,

the group generated by fU(G),and E(M)= {{0'1, 0’2}: oy 0’25<ﬂ((})>,

O’2= Oiw and wéﬂ}‘.Since w2=(1), O“2= ij iff o’1=o‘2u).
Thus the definition of an edge {y1, 512} in [M(G) does not

depend on the order of ¢, and oy

1
Example

If G is the smaller graph in fig. 1.3.1, then Q(6)={(1 2),
(2 3)}, so {LL(G)= S3 by theorem 1.2.1 , and[”(q) is the
larger graph in fig. 1.3.1. Note, for example, that in!“(G),
(1 3)~(1 3 2) since (1 3)=(1 3 2)(1 2) and (1 2)€ Q(G).

Pigure 1.%.1

G: o——o—0 r(G): (1) (1 2)
1 2 3

(2 3) (13 2)

(12 3) (1 3)

Other examples of transposition graphs may be found later in
this section and in appendix 1 where all transposition graphs

with 24 or fewer vertices are listed.



A transposition graph is clearly a specizl type of Cayley
graph (as defined in White (15,p;22) , not as in Behzad &
Chartrand (2 ,p.173)). However, this observation is not part-
icularly\helpful y and will not be used except in chapter 4
of this thesis, Thus a number of theorems stated here for
transposition graphs will also hold for Cayley graphs, but
these theorems are all of an elementary nature and are not
worth stating more generally here since the general proofs
often involve additional complications.

There is a natural labelling of the edges of a transposition
graph F(G); if {041, 012} is an edge of [(G) then there is a
transposition wefL(G) such that o,= a?uu. w is clearly unique
and is regarded as the label of {CY ,CYZ}. Thus every edge of
[7(G) is labelled with a unique element of {2(G).

Proposition 1.3.i

Each vertex O of a transposition graph [7(G) is adjacent to
the vertices o”ww W,y e e, OW where _Q.(G—):{WW’UJZ,..., wm}.
o' is adjacent to 6 inI'(G) iff{O‘, O"} is an edge of [(G),

iff g'=gw, for some w, € (G). Clearly, wi.,J: Wjéﬁ’%%o-'wj, so

the vertices D’u)1, cw

Lyeees S, are distinct. 3

Corollary 1.3%.2

A transposition graph [ (G) is regular of degree m, where
n=[E(C)|. [

It is convenient to give a preliminary result on the auto-
morphisms of a transposition graph here. Further results will
be given in chapter 4.

Definition 1.3.2 An automorphism of a transposition graph [M(G)

ig label-preserving if it maps every edge to an edge with the
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same label. Such an automorphism may also be called a gtrong
automorphism. The group of strong automorphisms of a trans-
position graph M(G) will be denoted by AS(F(G)).

Theorem 1.3.3

As(r(G))§<Xl(G)>, and is transiftive on the vertices of [Y(G).
Proof
Define a function f: <n_(G)>->AS((‘"(G)) by o'f= 4;0,-‘
- . . gl
where 4)0,.16S(<-Q(G)/) and is defined by O ({)m_da; ch-'1 <(a)).
It is first necessary to show that f is well-defined by showing
that ‘Po,aeAs(r‘(G)).
?bf\is a2 permutation of the vertices of [(G) and if {.OH, Ciz}
) -t - .
is an edge of ['(G) then -{0’ , 6”2} \bo,.,={0’o’1,0' 0/2} Since
{cﬁw cé}is an edge of [7(G) there must be some W€SYG) such
- - ~ - - -
that 07,= 07w, 'so W= 0'11 G, = 0-11(0-'0")6“240' 'a)"(070y), <o
- ll . ~
{5’1, 52}‘Pc"={d o",l,O" 52} is an edge of [(G) labelled Ww and f
is well-defined.
- The remainder of the proof consists of showing that f is a
group isomorphism. This is done by showing that f preserves
products so it is a homomorphism, and that f is injective and
surjective,
“y=1 -1 -1
(JO/' )f:: ¢(6_61)"l ’ and d! 4)(0.0.1)—1: (O"Q/') O’:]: OJ O.— O"]
1 -
=( OV'] ‘pc'q) CPC)"l‘~‘l
=( 0, )qSo.ﬂ Q-1 Yareda(e)) .
Thus (676" )f= (0f)( 0'f), and f is a group homomorphism.
Suppose that O f=0"f; then ¢¢»l =(P0.rl , S0 0'1 P = O'; qSo-/-l
A4 Qi1é<ﬂl(G)>. Thus teking CT%=(1), we have (1)Cr-1=(1)crf'1,

and hence ¢g'=€"', so f is injective.
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Suppese tPeAS(P(G)), and let O°=(1)4) . Let O"1 be any per=
nutation in L1(G)?, and let W be any transposition in LG).
Then {G‘q, 0‘2}, where O"2=O’1u) , is an edge of ['(G) labelled
w, and hence {0’1, 0”2}:{) ={o’1§), O’Zz‘,b} is an edge of [7(G)
labelled w. Thus (03 W)$ = 0,4 =( 07 )W by the definition
of an edge in ['(G).

By definition, {L generates {L(G)), so if @' is any ele=
ment of {S(G)), then 3 Gl u@,...,cdkéfl such that

| . \ —_
o'= W, Wy oo W Fow (g1)d =( w1w2...wk)\b

=(w1 wz...wk_1)¢w by the

k
above argument.
Repeating this argument k-1 times , we have
(e =(NIW w,...w =(1)¢o' =0"0" = (") b Vo 'eale)
Thus ¢ =(071)f, and f is surjective. .
To show that AS(F(G)) is transitive on the vertices of [7(G),
it is necessary to show theré is an automorphism in AS(F(G))
mapping (1) to any given vertex of [(G). Let 6 be any vertex
of [(G); then < (G)Y, so (Po—éAs(r(G)), and (1)@0»:0’(1):0’. d
In its more general form, the above result is very well~

knownj the above proof is very similar to that of White (15,p.25).

Corollary 1.3%.4

Ir (G) is a transposition graph and we(G), then there is
an automorphism of M(G) mapping any edge of [(G) labelled (w
to any other edge of ["(G) labelled W.

Eroof

Let O} be a vertex incident to the first edge, let GVZ be
a vertex incident to the second edge, and let cr::CVQCYqj.
0"1(;)6=6J20’;1 5’1 =G’2. There is only one edge incident to 6’1

or Sé labelled W, and ?Uais a label-preserving avtomorphism
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S0 ¢« must have the required property. [J

Now consider a walk quvcév...N o} in a transposition
graph M(G). Since { 0% 03-1} is an edge of [(G) for i=1,...,
- w =
k-1, 9 W, 2,...,cgk_1eSI(G) such that 07 .= 0, w, for
i= 1yeeeyk=1. Thus O‘2= c?w“.’ 6’3=6"2w2= €1w1w2 and so
on, until finally O, =0 W, W, .., W, .. Clearly, walks in

k 177172 k-1

M(G) correspond to words in LL(G).

Now suppose the above walk is closed, so cfk= g?. Then

= = w oow

OJ‘I O/k O-% (JJ,] 2° Ke1

walks in [[(G) correspond to relations in fL(G), that is, words

-Te) (u1 u&...CUk_1=(1). thus closed

in ©.(G) representing the identity (1).

Proposition 1.3%3.5

For any graph G, r(G) is connected.
Proof

We will show there is a walk in F(G) joining (1) to ary other
vertex @ of [(G). Since 0" is a vertex of [ (G), /e Lu(c)).
By the definition of <LU(G)?,3 W, W,,..., W €S(G) such that
0= W, Woeeowy = (1)CU10J2...LUk . Thus by the’aﬁove obser-
vation, there is a walk in [(G) from (1) to O, and hence [(G)
is connected. [J |

Proposition 1.3.6

A transposition graph r(G) is bipartite and the partition
of (El(G)> is AUuB , where A is the set of even permutations in
{Q(G)” and B is the set of odd permutations in {J2(G)D.
Proof

If AUuB is not a suitable partition of'CHKG)k then there is
an edge {.03, oéj}of [(G) such that both O? and Gé are even
(or odd) permutations. However, cﬁ1n:o§'so d well(G) such that

oé = G?(ﬁ. W is a transposition,which is an odd permutation,



so Oq ig even iff GE is odd, so o, and ob cannot both be
even (or odd) . Hence AuB is a suitable partition for M(G)
and ["(G) is bipartite. [J

It follows that a transposition graph is 2-colourable and
has no circuits of odd length. The edge-chromatic number of

a transposition graph is equally easy to obtain.

Proposition 1.3.7

The edge-chromatic number of a transposition graph [(G) is
n = [B(G)].
Proof

(G) is regular of degree m by corollary 1.3.2 so at least m
colours are needed for the edges of [(G). There is a natural
colouring of the edges of [(G) given by the natural labelling
of the edges of [(G) with eléments of £1(G), since no two
edges incident to a vertex of [(G) can have the same label.
Since | fL.(G)| = IEB(G)] = m, it follows that the edge-chromatic
number of [(G) is m. O

Proposition 1.3%3.8

o o
If G, & G, , then P(G1)s F(GQ) .

Proof

Let f be an . isomorphism from G1 to G2 . I induces an

isomorphism F,from{"(G1) to F(Gp) defined by

o, F = £ o,f A4 5}é<fII(G1)7. To prcve F is 2n isomorphism,

we first show that F maps vertices of P(G1) to vertices of

rG,). (i, 3,)€ Q(c,) ifs {1, , 3,]ene,) ifr {in ) j1f}€
E(Gz) ,since f is an isomorphism, iff (i1f j1f) = f‘T(i1 j1)f
= (i1 j1)E‘é Sl(Gz) , Now suppose that Oq is a vertex of F(G1)

y Wy een, W €0(G,)

so 0, e< Sl(G1XZ Then 3 transpositions 601

SuCh that 0’1 = w,} wzo ) wk .
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1 2
= (W) (wF)

Cukf

Since W F € Q(G,) for all w, € .Q(G1), it follows that
O}E’e(il(G2)> = V([’(Gz)) , so F maps vertices of P(G1) to

vertices ofl"(Gz).

F is clearly injective , hence F is surjective since
{(,(Z_(G1)>I =< Q_(G2)>I by corollary 1.2.2 and the fact

that Gj &% G, , so F is a bijection.

2
If {6'1, ol } is an edge of P(G1) labelled W , then
‘ -1

(é”1w)F=f
1

G} wit

o’y = o, W . Hence 0’1'F

£ e g 5T
Since OUFQ.Q.(G?) , {0’1F, 011'F} is an edge of r'(Gz) labelled
WPF , and P is an isomorphism . [

Proposition 1.3.9

1f G has .connected components G1 , G2 yeosny Gk then

r(e)

of two graphs.

113

["(G1)X r(Gz)X ...)(F(Gk) , where X denotes the product

Proof

Define a function F 3 !"(G,I)x P(Gz)x...xr‘(ek)ar'(G) by
( 0, 0’2,..., oJk)F ::o‘1 0“2 e c"'k e This is well=-defined
since G’ié<Q(Gi)> for i =1, 2,..., k, and since <L(G)) =
<ae)y <_Q,(G2)} oo UG )Y by corollary 1.2.2.

F is clearly a bijection by corollary 1.2.2 , so it remains
to show that F maps edges to edges.
(04 Tpreees ) & (05000 ) 1al7(G )X L. X M(6,)

iff for some i such that 1 ik , cﬁi = cficui for some w. e
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_(I(Gi) , and 0“5 = O’j Y j 4 i by the definition of product.

NOW( OJ" ese 9 6‘1'()F=( 611, se 0y Giwi,..-, GJk)F

6J1€2 * e @ Gliwi L I} c/k
5? 6y ++e g W; since Oui€<SXGi)>

and commutes with every 5‘je<Sl(Gj)7where J# i
Thus ( B PRPP o‘f{)F = ( 0*’1,..., @k)F W, , and
( OJ;,..., OJQ)F‘V ( OH,..., @Jk)F inT'(G) so F is an iso-
morphisme [J

We now give a detailed example to illustrate some of the
above results. Let G be the greph in fig. 1.3.2 , so
@) ={02), G4, (45}, and <)) =s{1, 4 .5{3,4,5}.
By the above results, P(G) is 3-regular, vertex transitive,
connected, bipartite, 3-edge colourable and isomorphic to
F(G1)qu(G2) » where G,

ents of G. I"(C—q), F(GZ) and ["(G) are shown in figs. 1.3.3 and 4.

and G2 are the two connected compon-

Figure 1.3%.2
G ¢ o 0 o o

1 2 3 4 5

The partition of [(G) is shown by drawing verticés in A as e
and vertices in B as © . This partition gives a 2-colouring of
P(G). The edge colouring is given by the edge labels. It is
obvious that F(G) is connected, regular , vertex transitive
and isomorphic to F(G1)Xfﬁ(G2).

Figure 1.%.3

(1) (3 4)
P(G2):

r(G1): ——e g
(1) (2) (4 5) (3 5 4)

(3 4 5) (3 5)



Figure 1.3%.4

m(G)s (1 2)

(1 2)(3 5 4)

(1 2)(3 4 5)

While transposition graphs do not seem to have been studied
as a family before, there are several published papers in which
particular transposition graphs are mentioned. The papers below
aré those which have the greatest relevence to this thesis.
Dénes & Torok ( &, section 2) prove that the graph obtained by
replacing the (undirected) edges of FKKH) by pairs of directed
edges has a directed hamiltonian path. This is of course
equivalent to'proving that FKKH) has a hamiltonian path. They
then give a formula for the number of ways that a given element
of Sn may be expressed as the product of a given number of
transpositions in Sn' (This last restriction is clearly needed,
though it is omitted in the paper.) This formula also gives the
number of distinet paths of a given length joining two vertices

of F(Kﬂ). Paths in transposition graphs are studied in the next



section, although the emphasis is on their existence, not on
the number of them,
G. Ringel ( 13) uses a special type of embedding oflﬂ(Pn)
in an orientable surface to establish an upper bound for the
genus of the gfoup Sn‘ A generalisation of this type of
embedding is useful in establishing the genus of a very large
class of transposition graphs. This type of embedding is
discussed extensively in chapter 5.
N. L. Biggs and A. T. White (4 , p 136) set as an extended
).

The exercise is mainly concerned with proving that these embeddings

exercise the study of two Cayley embeddings of{ﬂ(Cn) and’r'(Khn_1
are symmetrical. This term is defined in (4 ). Cayley embeddings
are studied in section 5.3 of this thesis. An interesting
generalisation of this exercise is as follows: which graphs G

are such that [(G) has a symmetrical Cayley embedding ? This

seems to be equivalent to asking which graphs G have an
automorphism which acts cyclically on E(G). A necessary condition
for this is that G is edge transitive, but it is’prbbably not
sufficient. This problem is not examined elsewhere in this thesis

since the emphasis in chapter 5 is on genus rather than symmetry.



SECTION 1.4 : DISTANCE IN TRANSPOSITION GRAPHS

The general problem considered in this section is to find
the distance between any two vertices of a given transposition
graph. The distance between 041 and OE in M(G) will be den-
oted by DP(G)( O}, Ob) , or simply by D( GH, 6%) if it is
obvious from the context which transposition graph is referred
to. In fact, it is not necessary to consider two arbitrary
vertices; since transposition graphs are vertex transitive ,
onerf the vertices may be chosen to be (1) . The following
result implies that it is sufficient to consider transposition
graphs of connected graphs.

Proposition 1.4.1

If G has connected components G ,G2 syeeey G, and O is a

1 k

vertex of ['(G) then
Dp(ey((1) 5 o) =,D,-(G1)((1) , O%) + DF(G2)((1) y O)F.es
+0p(g y((1) 5 6y
where 016 S(V(Gi)) for i = 1, 2, ..., k, and 0f=.cf1cré... G&.
Proof
This result is a simple consequence of the fact that [(G)
is isomorphic to r(G1)xlﬂ(G2)X ...x["(Gk). It is obvious that
if H, H1 and H2 are graphs and H = H1><H2 , then
dy «{_(u1 , uzz, (v1 , vg)} = dH1(u1 , v1)4-dH2(u2 R v2) ,
from the definition of the product X . The result now follows
by using the isomorphism constructed in proposition 1.3.9. U
Note that it is not true that a shortest path from (1) to
O in a transposition graph ['(G) corresponds to a minimal
word for ¢ . A simple counter—example is obtained by letting
G be the graph in fig. 1.3.1 and taking 0’= (1 3) . There are

two paths of length 3 joining (1) to O’ corresponding to the



words (1 2)(2 3)(1 2) and (2 3)(1 2)(2 3). However, the minimal
word for ¢ is simply (1 S)Which deoes not correspond to any
path in ((G). The length of a minimal word does, however, give
a lower bound for distance in a transposition graph.

Proposition 1.4.2

p((1) , 07) > n*(OJ) - c*(cﬂ) in any transposition graph
T(¢) which has 0 as a vertex.
Proof -
Suppose DF(G)((1> , 0/ ) = k ; then there is a path in [(G)
of length k from (1) to 6’ , and hence a corresponding word W = @7
such that 1(W) = k¥ . By corollary 1.2.6 , 1(W) > n*(o/) - c*(O’)
so the result follows. UJ

It is possible to give a necessary and sufficient condition
for when DP(G)((T) , O ) = n*(CV) - c*(CV) . First it is
necessary to introduce some notation. If 0 = (i1 iy eee ik)

and i are vertices of G , the diagram of‘Q in G

1 iz,..., ik
is the subgraph of G induced by {'11, i2,..., ikj-ldrawn with
i1, 12,...,ik in cyclic order around a circle and joined by
straight line segments. A subdiagram has the obvious meaning,
and is plane if no two line segments of the subdiagram intersect
inside the circle.
Example

If G iz the graph in fig. 1.4.1, and 6 = (1 4)(2 5 3 6)
then © has cycles €1 = (1 4) and 912 = (25 3 6).

Figure 1.4.1

Ny
AN

G:
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The diagrams of @ ’ and €2<in G are shown in fig. 1.4.2 ,
and a connected, plane, spanning subdiagram of the diagram of
€2 in G is shown in fig. 1.4.3% .

Figure 1.4.2

Diagram of 91 : Diagram of PZ :
! 2
/’-O—\\ - -
rd ~ — ’? ~ o
/ N 7’
/ \
/ \
I }
i ]
\ /
AN /
P
\\\ i ’/
4

FPigure 1.4.3

Subdiagram of 92 :

Theorem 1.4.3

If 07 is a vertex of '(G), then D((1) , o) = n*(CV) —c*(CY)
iff the diagram of each cycle of ¢ has a connected, plane,
spanning subdiagram.

Proof

Suppose first that D((1) , 07) = n*(cf) - c*(c’) ; then

he path of length n* - c* in (G) corresponds 1o a minimal
word W for 0., Thus G(W) is acyclic by theorem 1.2.7 , and
each component of G(W) corresponds to a cycle of O, so

without altering the order of transpositions in each component



of G(W), W may be rearranged to give another minimal word foror,
W' =W, W, ... W , where W, is a minimal word for Pi , the

i th cycle of o”. G(Wi) is a minimel word for a cycle, hence by
corollary 1.2.8, G(Wi) is a tree and by theorem 1.2.11, the
diagram of Pi in G(Wi) is plane . Now G(Wi) is a tree on the
vertices moved by ei’ and is a connected, spanning subgraph of
the subgraph of G induced by the vertices moved by ei' It .
follows that the diagram of fi in G has a plane, connected,
spanning subgraph .

The converse 1is similar, and uses the reverse implication.
in theorem 1.2.11 . []

For example, if G and & are as in the previous exanmple,
figs.1.4.2 and 1.4.% show that each cycle of ¢ has a connected
plane spanning subdiagram in G, hence by theorem 1.4.3 ,

A (14)(2536))
- (14)(2536))
=6 =2 =4 .

i

Dr(g)(“) , (1 4)(2536))

Theorem 1.4.3%3 implies that even to find whether or not a
permutation is the minimum possible distance from (1) in some
transposition graph is a complicated problem . Hence there is
no hope of finding a general formula for DF(G)(<1) , 07 ) if
both G and O are arbitrary. t is possible to place rest-
rictions on both G and ¢’ , but it is more natural %o place
the restrictions on G. In a number of special cases it is
possible to derive explicit formulae for D((1) , 7 ); the
cases which will be considered here are [(G) when G is Kn ,

K -{e}, K q = %, ond B .
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First, however, we give a relatively simple condition for
0 to be more than the minimum possible distance from (1)
in [7(G).

Corollary 1.4.4

If © is a vertex of [(G), and has a cycle e such that
the subgraph of G induced by the vertices moved by e is
disconnected, then DF(G)((1) , O7) Y n*(cV) - ().
Proof

The hypothesis implies that the diagram of e in G is
disconnected and cannot have a connected subdiagram. The
result follows from theorem 1.4.3. [J

Theorem 1.4.5

If ¢ is a vertex of F(Kn) (i.e. 0€ Sn) ,then
Bz )((1) 5 ) =57 (&) - () .
Proof

11(Kn) contains every transposition in §_, so every
word in S corresponds to a walk in F(Kn) . Also, if W
is a minimal word representing ¢’, then O moves every letter
occuring in a transposition in W by a result of Higgs &
de Witte (11, theorem 2). Since OJéSn , every transposition
in W is in Sn s SO W corresponds to a path in F(Kn) Joining
(1) t0 ©, end D (1) , 00) =0 (o) = ¢ (o) . O

This result cannalso be proved as a corollary to theorem
1.4.3, since the diagram of any ?—cycle in Knmust be isomore
phic to Kr , and any subdiagram isomorphic to K1,r—1 must be
connected, plane and spanning.

Corollary 1.4.6

Kn 3 n 2 2 are the only connected graphs G such that

D(”(G)(“) , 0 ) = n*(d) - (3*((5/) for all vertices ¢ of [7(G).



-35.

Proof
If G is not a complete graph, then G has two vertices,

i and j say, which are not adjacent. Now let ¢ be any

permutation which is a vertex of [(G) and which has (i j) as

a cycle. Since ilﬁ j in G , the subgraph of G induced by i

and ] is disconnected, and the result follows from corollary

1.4.4. O

Theorem 1.4.7

If ¢ is a vertex of F(Kn - {1, 2} ), then
D((1) , ) =4 0 (&) = ¢ (&) if (1 2) is not a cycle of &,
n*(o’) - c*(o’) + 2 if (1 2) is a cycle of O .
Proof

For the duration of this proof, les G = K_ - {1, 2} .

If E> is a cycle nf O of length m , thén the diagram of € in
G is isomorphic to Km unless 1 and 2 are both permuted by
when the diagram is isomorphic to X - {1, 2} . In either
case, a plane connected spanning subdiagram isomorphic to

Kj, n—q 1s obtained, provided m ? 2, by choosing some i per-
muted by P which is distinct from 1 and 2 and joining it to
every other vertex of the diagram , If m = 2, the diagram
itself is plane, connected and spanning unless p = (1 2).
Thus if (1 2) is not a2 cycle of 0, then by theorem 1.4.3,
D((1) ,0°) = n () = ¢ (o) .

If (1 2) is a cycle of @, let O'' = (1 2)& . It is clear
that n (O°') =0 (0%) = 2 and ¢ (&) = ¢ (o) = 1 since g
fixes 1 and 2 but otherwise is identical tc O° . Thus there is
a path from (1) to o' in [(G) 5f length n*(o“) - c*(c“)'z
n*(c’) - c*(tf) -2+ 1= n*(c“) - c*( &) - 1. However, there

is & path of length 3 from O'' to ¢ in [(G) given by
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o= o'(1 3)(2 3)(1 3) . Hence there is a path of length
n*((r) - c*(cf) + 2 in [(G) from (1) to ©. It remains to

show that this is the shortest possible path . Since the
diagram of (1 2) in G is disconnected, it follows from theorem
1.4.3 and proposition 1.4.2 that D((1) , &)y n (o) = ¢ ().
Finally, if D((1) ,07) = n*(o') - c*(O") + 1, there would be
paths of both even and odd léngths from (1) to © in['(G) which
would contradict the fact that [(G) is bipartite. Thus the
result follpws. g

Theorem 1.4.8

If O is a vertex of(_‘(K1 n 1), where 1 is the vertex of
, n-

K1, ne1 of degree n-1 and 2, 3,..., 0 are the vertices of degree
1, then D((1) » 07) = n (&) + ¢ (o) = 2 if O permutes 1
n*(sJ) + c*(cv) if 67 fixes 1.
Proof
For the duration of thig proof, let G = Kj, et *

Suppose that 0 has disjoint, non-trivial cycles Pq’ Corenes
P}f of lengths Ty TosesesTy respectively which do not contain
1, and a possibly trivial cycle (30 containing 1. If i } 1,
then Q. = (31,1 Jio e Ji,ri) = (1 3i,1)(1 31,2)"'

(1 Ji’ri)(1 3 40 s

S0 Pi may be written as a prcduct of TS 4+ 1 transpositions

i,1

in Q(G¢). If QO = (1 I dp eee dy ) is non-trivial, then
0

PO = (1 j1)(1 j?)...(1 jr ), so QO may be written as a
) 0

product of r., -~ 1 transpositions in [(G). The same conclusion

0

holds if Q(D is trivial. Thus Glmay be written as a product of
- r = . as T k -
Ty 1 4+ r, + 7 4 .. + Ty + 1 Ty + r1 + + Ty + k 1
*
transpositions in QG). If Py is non-trivial, then c (6) =

k + 1 and n*(c’) =Tyt Ty teeet T S0 there is a path in (&)
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* *
from (1) to 0 of length n (&) + ¢ (o) -2 . If PO is

*
triviael, then n (G') = r1~+ r2+ ...+-rk =Tyt r1+ ...4—rk -1

and c*(c’) = k, so there is a path in ['(G) of length ﬁ*(cf)+
c*(o’> joining (1) <0 07,

It remains to show there are no shorter paths from (1) to 6~
in M(G). Suppose that W is a word
in fYG) representing 6, and that W has length m.
Each letter moved by O must occur in some transposition in W,
som » n*(Oﬁ - 1 . We make the following claim: each cycle
@i of O fixing 1 moves some letter ji such that the t?ans—
position (1 ji) occurs at least twice in W . For suppose W
containg each letter of the cycle (j1 32 N jr) once only:
then W = w1(1 j;)w2(1 jé)...wr(1 jlg)qu_1 , where
(j%, 3hreeny j;) is a permutation of (jj, Joreses jr) and
I
W, s gy W

=j£ for k =1,.00y v and 1 = 1,..., v+ 71 . Let jO =

15 then j W = 1(1 34)w? e W

1= + 1

pere Woy g7

I

v
= j% , Since j; is fixed by

Woyeany W, 4 and by (1 jé),..., (1 jé) . Thus j, is in the
same cycle as j; y SO jo must be one of j; , jé yaeoy j% , and
hence one of thesé must occur in two transpositions of W , which
is a coatradiction.

Suppose first that 1074+ 1 ; then by the above argument,
myn(0) =14+ (c () =1)=n(6)+ (&) =2 .
Now suppose that 10 = 1 , so by the above argument,
m 7 n*(cf) -1+ d*(cf) . However, m rust have tie same parity
as n*(Cf) - c*(cj) , since ¢ may be represented as a product of
n*( o) - o*(o‘) transpositions . thus m o+ n*( o) - c*(O’) must

. *
be even. If m=n (0°)+ ¢ (0°) - 1, then we have 2n (&) - 1



* *
is even, which is a contradiction. thus m 2 n (o) + ¢ (o)
if O fixes 1 , and the result follows. [J

Definition 1.4.1

If 0'¢ S and 1 €1 <j<n then i and j introduce an

inversion in o if i¢’ > jo . The number of inversions in

CT/is the sum of the inversions introduced by all pairs i, J
such that 1 i< j £n . The number of inversions in O is
denoted by I(0’) .

Clearly, I(0) ¥ n (n - 1) since each unordered pair i, j

N [

can introduce at most one inversion in O .

Example

If © =(12354)€8S., then I( o) = 4 since 107> 407 ,

5
20> 48 , 30°> 406 ,and 30’ > 5¢ .

Theorem 1.4.9

If Pn is the graph with vertex set [nj and with.edges {1, 2},
{2, 3} yeoey {n—1, q}and O is a vertex of F(Pn) , then
DF(Pn)((1) o) = 1(&) .
Proof

This result is essentially Theorem 1 of C. Berge (3 ,p128)
in a disguised form. ]

It should Ee possible to extend these results to other
families of graphs. Particularly promising families include

the complete bipartite graphs , of which X is an example,

1,n=-1
complete graphs with a small number of edges deleted, and trees
with a reasonably simple structure.

One possible simplification of the general distance problem
is to study the diameter of a transposition graph. Unfortunately,

very few exact values of this parameter are known, although a

number of upper and lower bounds have been obtained,



Theorem 1.4.10

¥n » 2, diam F(Kn) =n -1, dian F(K1,n_1) = % n} -2,
diam F(Pn) = % n{n=-1), and Yn » 3, diam[ﬁ(Kn - e) =n.
Proof

'All these results are obtained by maximising the distance
formulae given in theorems 1.4.5, 7, 8 and 9. The result is
obvious for giam'F(Kn).

For diam r'(Kn - e), note that ¥V 0/¢ 8,9 n*( o) < n and
¢F(0) 3 1 s0 n¥(F) - (o) € n - 1. Also, if D((1),0° ) =
n*(o/) - c*(c’)+ 2 , then (1 2) is a cycle of 0, so 0 = (1 2)
or c*(cf) > 2 ,and in either case, n*(Cf) -,C*(Cr>'+ 2 ¥ n.

If 0= (12)(34 .eon) , D((1) ,0 ) =n , so the upper bound
is attained. |

- For diamf"(Pn) , it has already been noted that I(¢) §
% n (n - 1), so this is an upper bound for the diameter .
o= (1 n)(2 n=1)(3 n=2) ... is the (unique) permutation such
that I(¢') attains this bound, since every pair i < J introduces
an inversion.

Diam!"(K1,n_1) must be considered in two special cases, n
even and n odd.

Suppose first that n is even, and that n = 2m . If o is
a permutation fixing 1 , then n*K 0’) g 2m - 1 and c*(cf)~s m o= 1
since each non~trivial cycle must permute at least two letters.
Thus D((1) , O°) =n*(o‘) + c*(o’)\< m - 2 . If O is a
permutation which moves 1 , thén n*(cf)-s 2m and c*(cf)~s m.
Thus D((1) , &) =n (&) + ¢ () =2 € 3m - 2 . Tt follows

2
o= (12)(3 4)(5 6)e..(n=1 n) is such that D((1) ,0 ) = 3m - 2

that %m - 2 ={‘i n}- - 2 1is an upper bound for the diameter.

so the bound is attained.
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Now suppose that n is odd and that n = 2m + 1 . If o is
* *
a permutation fixing 1 , thenn (&) £ 2m and ¢ () ¢« m , so
*
D((1) , @) =n (o) % c*(c‘) £ 3m . If © is a permutation
* *
moving 1 , then n (&) £ 2m + 1 and ¢ (&) £ m , so
* *
D((1) , 0) =n(0) +c (0) -2 ¢3%m ~ 1. Thus an upper
bound for the diameter is 3m =-{%§n} -2 .
.
0= (2 3)(4 5)...(n-1 n) is a permutation such that
D((1) , & ) = 3m , so the upper bound is attained. U]
Theorem 1.4.10 gives the diameters of all transposition
graphs of connected graphs on 4 or fewer vertices with two excep-

tions which are dealt with in the next result.

Proposition 1.4.11

If G is eitner of the graphs in fig. 1.4.4 , then
diam M(G) = 4 .
Proof

The simplest way to establish this result in either case
is to use the diagram of F(G) in appendix 1, label an arbitrary
vertex O , label all adjacent vertices 1 , label ail unlabelled
vertices adjacent to a vertex labelled 1 with 2 ,and iterate
this procedure until all vertices are labelled. The largest
label in the graph is clearly the diameter; in both cases here
it turns out to be 4. [J

Figure 1.4.4

14 2 7
D&-————o 4
34 4 2 5

Three bounds are now given for the diameter of a trans—

position graph of any connected graph, and are compared with

the exact values established in theorem 1.4.10 .
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Theorem 1.4.12

Diam "(G) € (n - 1)(2(diam G) - 1) , where G is any
connected graph on n vertices.
Proof

By proposition 1.2.5 , any permutation in Sn may be written
as a product of at most n - 1 transpositions. Let (i j) be
any transposition in Sn ;3 since G is connected, there is a path
in G joining i to J whose length is k £ diam G . Suppose that
the path is 1 A’i1fv izhl...ﬁ'ik_1‘v J + It is easy to check
that (1 §) = (L 1,004, 1,000 (dy 5 1 )(E_y 3 _p 1 )---

CHEWICER

so (1 j) may be written as a product of 2k - 1 transpositions
in £1(G). It follows that any permutation in Sn may be written
as a product of at most (n - 1)(2(diam G) - 1) transpositions
in £(G). The result follows from the correspondence between
products of transpositions in (G) and walks in [(G). O

Every connected graph contains a' vertex whose removal does
not disconnect the graph. This follows from thegrém 2.3 of
Behzad & Chartrand (2 , p. 24). Hence if G is connected and
has n vertices, there is a sequence Vir Vpeq veeesVo of vertices
of G such that all ?he graphs Gn = G, Gi~1 = Gi —{vi};
i =n,..49 2 are connected.

Theorem 1.4.13%

G

If G is a connected graph on n vertices and Gn’ Gn—1""’ 5

n
are defined as above, then diam [ (G) ¢ E:diam G .
i=2 1

Proof

- Let © be a vertex of [(G), and let v be

v ey V
n?® n~1?*"°? "2

defined as above. Since Gn is connected, there is a path of

length k € diam Gn joining v to ﬁncv y Vi, v Uy uZAJ...'V
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LS mvno/ . It is easy to check that

=0/ (v, 0 u_ )y _, uk_g)...(u2 u1)(u1 v

Crn—1 n)
is a permutation fixing v . Thus 07 . is a vertex of F(Gn-‘l)

and there is a path of length k  diam G_ in (G) from O to

o’ . This argument can be repeated until we reach a perm-

n-1

utation O‘; which fixes v , v

identity . Clearly, O? lies at a distance of at most

% diam G, from O/in["'(G). [}
i=2

Theorem 1.4.14

et 700 v2 and hence must be the

If G is a connected graph on n vertices and C is any
n
vertex of [(G), then diam M(G) > %- 2. DG(i, i07) .
i=1

Proof

n »
For each vertex ¢ of ['(G) , define fc_( o) = 3 DG(i, i0).
i=1

o(3 X).

If i60°# j, k then 107" = 107 3 if 10" = j, then i3’' = k, and

Now let W= (j k)& Q1(G) and let g~

i

if 107 =k, then i0°' = j. Thus if i # j, k then D (i, i07) =

0. If 1i0° = j

DG(i, k)

DG(i, idt') so DG(i, io”) - DG(i, io’t)

D.(1, )

I

then Dy(i, 10°) - D,(i, 10°")
=0, 1, or -1 since j~ k .

A similar result holds if i 6= k .

v%{DG(i, 109) - py(i, 1071)}

Hence fG(O") - fG( o)

]

(Dg(iyy &) = Dy(iy, 3))
where 1,0" = j and i10“’= k ,

o, 1, =1, 2, or =2 ,

Now suppose that DP(G)((”’ 0”) = r, so there are trans-
1ti w . =
positions W,, 53eees W such that o W, Wz... Wr .

Let O“O=(1) and let Gz_fo-li_jwi for 1 = 1,000y T &



By the previous argument, fG( D&) - fG( 03_1) =0, 1, -1, 2, =2,
and hence Ifc( GE) - fG(cVi~1)1$ 2 fOr i = 1yeeey T
Thus 1£,(07) - £ ()¢ |£,(0 ) - £.(0, D+ ...+
Ifs(cﬁ) - fg(o)l
L 2r .

However, O7 = (1), so fG(CVO) = 0 while O, = o, so

n
[fG(c:r)lz 52% DG(i, i0’) . The result now follows from the

. 1

fact that diam[7(G) 3¢ > E]fc(cﬁr)[. a

To obtain the best lower bound for the diameter from this
result it is necessary to choose different permutations
according to the graph being considered.

The above bounds for the diameter are now compared with
the exact values in four special cases.
Case 1 ¢+ G =K .

n .

By theorem 1.4.10 , diam {*(G) = n - 1; the upper bound of

theorem 1.4.12 is (n = 1)(2diam G = 1) = (n = 1)(2 = 1) =n - 1

so the bound is exact. Taking v, = ifor i =mn,..., 2, then

Gi = Ki , S0 diam Gi =1 for i =n,esey 2 « Thus the upper
n

bound of theorem 1.4,13 is 2: diam Gi =n -1, There are
i=2

many permutations € giving the best lower bound for the
diameter; among them is ¢’ = (1 2 ... n) which gives a bound of
% n since DG(i, ioY) =1 for i = 1,..., n . Thus both upper

bounds are exact while the lower bound is too small by a factor

of about 2 .

Case 2 : G =K -fe}.
Diam G = 2, so the first upper bound is (4 - 1)(n = 1) =
3(n - 1), If e =‘{n-1, n} , taking v, = ifori=n,.e., 2

gives Gn = Kn —f%»whlle Gi = Ki for‘ 1 = n=1y.eey2
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Hence diam Gp = 2, and diam Gy = 1 for i =n-1,..., 2, 80
the second upper bound for the diameter is
241+ 1+...+1 =n.

Taking o’ = (1 2 ... n-2)(n-1 n) gives the best value for the
lower bound of %(1 F At t 0+ 2) = % (n + 2) .

Comparing these bounds with the actual diasmeter of n, the
first upper bound is too large by a factor of about 3 , the
second upper bound is exact and the lower bound is too small
by a factor of about 2

Cases 3 ‘and 4 will be dealt with more briefly as the results
are similar to the first two cases .
Case 3 : G = Pn .

In this case, diam [(G) = % n(n -— 1) . The first upper
bound is (n - 1)(2n - %) , the second upper bound is exact,
and the lower bound is at best [%{nz)], so the first upper
bound is too large by a factor of 4 and the lower bound is too

small by a factor of 2.
Case 4 : G = K1’ N1

In this case, diam [(G) = {% n} - 2 . the first upper
bound 1is B(n - 1) , the second ﬁpper bound is 2n - 3 , and
the lower bound is n - 1

Thus in general none of the bounds is necessarily close to
the actual diameter, although the second upper bound is norm-
ally much closer than the other two bounds. The lower bound
is particularly weak as in three out of the four cases above
it 1s no better than the trivial lower bound of n - 1 given
by the length of a minimal word for (1 2 3 ... n) . It does,
however, give good results for graphs wbere every vertex has

an antipodal vertex, a unigue vertex at a distance from the



first vertex equal to the diameter of the graph. An example
of this is G = C4 , the grabh with vertices 1, 2, 3, 4 and
eages {1, 2}, {2, 3}, {5, 4}, {1, 4} . maxing o= (1 3)(2 4)
gives a lower bound for the diameter of 4, which by proposition
1.4.71 is the exact value . It is not known whether or not the
lower bound always gives the exact diameter of ['(G) where G is
an antipodal graph.

Note that the diameter of a traﬂsposition graphfﬂ(G) ¢oos not
depend only on the number of vertices and the dizmeter of G.
For example, G1 = K5 - {e} and.G2 = C5 both have § vertiices and

dizameter 2. However, diem(F(Gi))

&}

5 by theorem 1.4.10, and if
>(('i), (13524)) 2

24+ 2+ 24+ 2+2 /2 =75hy theorem 1.4.14. But (1 35 2 4) is

G, has 1~ 2 ~M3F3~m AN 5~ 1, then D
b e
l(“

~

w1\

an even permuiztion, so D((1), (1 35 2 4)) > 6. It follows

that F(G?) and f(Gg) have different diameters.
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CHAPTER 2 : TRANSPOSITION SUBGRAPHS

SECTION 2.1 : INTRODUCTION

The main purpese of tais chapter is to introduce some
theory conéerning the subgraphskof transposition graphs.
The most important idea is that of the type of a transposition
subgraph. This is a graph associated withhthe edge labels of
the transposition subgraph. Type is definea in section 2.2,
as are the ideas of transposition subgraphs being identically
labelled and equivalently labelled.. These properties. are both
equivalence relations on the set of transposition sﬁbgraphs.
A number of simple properties of these relations are proved,
and are then used %o classify trénsposition subgraphs isomorphic
and X .

K213 373 )

in the remainder of the thesis.

to C,, These classifications are very useful
Section 2.3 presents.- without proof a similar classification

for transposition subgraphs. isomorphic to 06. The reason for

omitting the proof is that it is very long, and ohly part of the

result is needed later in the thesis. This part of the result

is proved. The section concludes with some simple £esu1ts

on the existence of circuits of certain lengths in transposition

subgraphs. In partiéular it is shown that all but 2 swall family

of transpositioﬁ graphs have girth 4. The remainder have girfh 6.4
. The results presented in this chapter are confined largely

to those needed in later chapters. However, a number of other

problems cbncerning uniquely labellable transposition subgraphs

and forbidden subgraphs of transposition graphs have also been

studied. There is considerable scope for extending the results

" in this chapter.
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SECTION 2 : CLASSIFICATION OF TRANSPOSITION SUBGRAPHS

Definition 2.2.1

Any subgraph A of a transposition graph [(G) will be

called a transposition subgraph; a transposition subgraph

retains the vertex and edge labelling of the transposition
graph containing it.

Definition 2.2.2

Given any transposition subgraph A there is an associated
multigraph G(A ), the type of A , defined as follows
Let (L(A) = {w: W is the label of some edge of A} . Now
define V(G(A)) = v(N(A)) = {i: iw # i for somewe {U(A) }
If (i j) edl is the label of k edges of A then G(A) has k
edges joining i to j. ©Note that by definition, i and j are
vertices of G(A).
Example

If A is the graph in fig. 2.2.1 then A is a transposition
subgraph as it is a subgraph éf "(G), where G is the graph in
fig. 1.3.2. Clearly from fig 2.2.1, (L(A) = {'(5'4), 5},
hence V(G(A)) = v(£2(4)) = {5, 4, 5}. Finally, G(A) has one
edge joining 3 to 4 and two edges joining 4 to 5 since A has
one edge labelled (3 4) and two edges labelled (4 5) ; a(A)
is ghown in fig. 2.2.2 .
Figure 2.2.1 INE:

_ (4 5) o (34) R (45) N
(1 2) (1 2)(4 5) (12)(3 4 5) (12)(3 5)

Pigure 2.,2.°

(D) o < >
5 4 ~5
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If A is a walk in some transposition graph, then A is
clearly a transposition subgraph. Since A is a walk s, there
is'a corresponding product of transpositions W . It is clear
that the type of Ax, G( A) is identical to the mnultigraph of
W, G(W); hence type generalises the idea of the multigraph of
a word. It follows that the results of Berge, Eden &
Schitzenberger and Higgs & de Witte in section 1.2 on the multi-
graphs of minimal words may be translated into results on the
types of walks in transposition graphs. However, this must be
done carefully for unless the transposition graph is F(Kn),

shortest paths do not necessarily correspond to minimal words.

Note: The word 'type' is used rather than the word 'multigraph!
in the context of transposition subgraphs since to refer to
the multigraph of a subgraph of a transposition graph (of a
graph) would be rather confusing.

It is sometimes convenient to ignore the fact that G(?ﬁ)

has multiple edges and to consider instead the reduced type

5([}), the graph obtained by merging any multiple edges of a(A)
into single edges.

Proposition 2.2.1

If DAc(G), then G(A) ¢ G.

Proof

From its definition, G{A) is simply G( QU O)) with
multiple edges, so G(A) is identical to G(LL(A)). Also,
U A) ¢ Qe) éince SUG) contains every edge label of e,
and hence of O since ACI(G). It follows that G( (o)) c
G(QUG)) = G, and hence G(A ) ¢ ¢. [I

This result has a near converse, which will be proved later

in this section.
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Definition 2.2.3

Two transposition subgraphs A and A' are identically

labelled if there is an automorphism f: A = A' such that
f maps an edge of /A labelled W to an edge of /\' labelled w.
Note that if A and At are identically labelled, then
G(A) = G(A'). Clearly the property of being identically
labelled is an equivalence relation on the set of all trans-
position subgraphs. However, a more useful equivalence relation
is defined below.
If g: G-G' is an isomorphism, then g maps edges of G to
edges of G' and hence induces a bijection from LL(G) to LU(G')
which will be denoted by hg .

Definition 2.2.4

Two transposition subgraphs A and A' are equivalently

labelled if there are isomorphisms f:[\ —> [&' and
g: G(A)—=G(A"') such that ¥V we 2(A), every edge £ of /
labelled W is mapped by f to an edge E£Ff of A' labelled
Wh,_ , where h, is the bijection from N(A) to (A
induced by g .
Example

Let [}1, [}2, [lB be the transposition subgraphs in

fig. 2.2.3 3 then A . and Z§2 are equivalently labelled, but

1
neither of them is equivalently labelled to ZXB .

Figure 2.2.3

(1) (45) (1) (12)
(56) (34)

(34 (56)
(12)




For the sake of clarity, most of the vertex labels have
been omitted from fig. 2.2.3 . They can easily be replaced
by starting with the vertex (1) in each graph , and postmult-
iplying it by the adjacent edge labels to produce the adjacent
vertices, and so on.

To see that A, is equivalently labelled to 132 , consider

1
the isomorphism f: 131->132 defined by (1) —=(13), (12)—(1),
(12)(34) —(45), (34) —=(13)(45), (34)(56) —>(13)(26)(45), and
(56) —(13)(26), and the isomorphism g: a<431>-»'5<432> defined
by 11, 23, 355, 44, 52, 6—>6. g induces the
bijection h: 11(431)~s§11[>2) defined by (12)~—>(13),

(34) —>(45), (56) —>(26). Now if € is any edge of [&1 labelled
(12) such as { (12)(34), (54)} =€, then £f = {(45), (13)(45)]
is an edge of 152 labelled (13) = (12)h, as required. It is
straightforward to check that this works for all other edge
labels in (L(A,) and for all other edges of 4&1.

Suppose that 431 is equivalently labelled to A so there

3
exist isomorphisms f=ll1“>Z}5 , g E([lj)“* E(Zl%)‘with the
required properties. Let (12)hg = (13), where (ij) = (12),
(34) or (56). The two edges of [&1 labelled (12) nmust both

be mapped by f to edges of [XB labelled (ij), and since the

two edges labelled (12) are both incident to a common edge ,
they must be mapped by f to two edges of [33 with this property.
However, [SB has no two edges with the same label which are both

incident to some other edge of ESS, so Aﬁ is not equivalently

labelled to le )

The proof that 132 is not equivalently labelled to 133 is
similar to this. In fact it follows from the fact that being

equivalently labelled is an eqpivalence relation .



Proposition 2.2.2

Being equivalently labelled is an equivalence relation.
Proof

A transposition subgraph is equivalently labelled to itself
since we may choose f and g to be the identity. If A is equi-
valently labelled to A', and f and g are isomorphisms with the
required properties, then A' is equivalently labelled to [X,
since f'-1 and g"1 are isomorphisms with the required properties.
Finally, if A,] is equivalently labelled to A2 a,ndA2 is equi=-

3 . - -7
valently labelled to 4, and f,: Ai»Ai-H and g, : u(Ai) [ @aN

3 i41)s
i =1, 2 are isomorphisms with the required properties, then
f1f9 is an isomorphism from A1 tOZXB and g,85 is an isomorphism

from E(Aj) to E<A3) and f f,and g, g, have the required property.

Thus the relation is reflexive, symmétric and transitive and
hence is an equivalence relation. [

We now es%ablish a number of other results on equivalently
lavelled transposition subgraphs .

Proposition 2.2.3

n

If Ais equivalently labelledto A', then A

and G(A)

Proof

[' as graphs

n

G(A') as multigraphs.

It is clear from the definition that A¥ A' and G(A) = G(A')
as graphs, so it is only necessary to show that the isomorphism
g: G(A)~>G(A') is an isomorphism from G(J) to G(A'). This is
the case 1ff g preserves the multiple edges of G(\). If some
pair of vertices i, j of G(\) are joined by k edges, then (i i)
is the label of k edges of A . Each of these edges is mapped
by f to an edge of A' labelled (i j)hg.y so there are Xk edges of

A' labelled (i j)hg . Now by the definition of h o,

(=}
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v
(i j)hg is the transpositioﬁ in SL(A') corresponding to
i, 3} &= iig, jg} , so (i j)hg = (ig jg). This is the label
of k edges of A\' iff ig is joined to jg in G(A') by k edges.
Thus g does preserve edge multiplicities, so it is an isomor-
phism from G(A) to G(J\). O
Note, however, the converse to this result does not hold.

A counter-—example is given by the transposition subgraphsél1
and 03 in fig.2.2.3% .

Proposition 2.2.4

If Aand A' are identically labelled, then they are
equivalently labvelled.
Proof

This result is obvious from the two definitions. [

Definition 2.2.5

If D is a transposition subgraph and Cﬂis>akpermutation
then @) is defined to be.the transposition subgraph obtained
by premultiplying every vertex of Q;by & .

Proposition 2.2.5

For all (\ and §, N is identically labelled to OO

Proof

It suffices to show that £: A =90 A defined by (J"?’ o
for all vertices g of A is a label~preserving isomorphism.
1£{0,, 0§ is an edge of A lavelled (v, then P70, =W .
{(3 1’923 is mapped by f to EO’Pj,o’egand (O/€1)_1(O’(>2) =
€;1 071(5"62 =€;1 (32 =W y80 f is a label~preserving iso~
morphism. [J

Proposition 2.2.6

If N\ is a connected transposition subgraph and G is a graph

such that G(A) € G then Ais identically labelled to a subgraph



A el
Proof
Suppose that e is a vertex of A y, and let A' = €'~1Zl,
so A' is identically labelled to A and has (1) as a vertex.
Thus it suffices to prove that A' is a subgraph of [XG).
Since A' is connected, if 0 is any vertex of [\', there is a
path in A' joining (1) to 0. Let this path be (1) = CVO ~
0 ~N G/p VeV 0 =0, where o, = O/i-‘lwi for i
Now G(A') = G(QA) © G, so QL(A') ¢ £1(G), and W,y Woyeen,
u)kéﬂ_(G). Also, (1) is a vertex of I(G), so O'; = (‘l)u}1 is

]

1,‘..’k.

a vertex of ["(G). Similarly, CVé,CTé,...,CVk are vertices of
T(G), so 07is a vertex of [(G) and tke result follows. LJ
The above result is the near-converse to proposition 2.2.1

referred to after the proof of 2.2.1 .

Proposition 2.2.7

If [\ 4nd A' are equivalently labelled connected transposition
subgraphs and.Z& C /., then there exists a transposition subgraph

Q! such that A' ¢ ! and N is equivalently labelled to .

To prove this result, the following lemma is needed.
Lemma
If h is an isomorphism from a graph H to a grarh H' and
if G is a graph such that H ¢ G, thea d a graph G' and an
isomorphism g: G —>G' such that H' ¢ G' and glg = h .

Proof of lemma

Let V'(G - H) be any set such that [V'(G - H)| = |v(G - H)}
and V'(G - H)nV(H') = ¢, and let f be a bijection from
V(G - H) to V'(G - H). (Note that G -« H is the graph obtained

by deleting the vertices of H from G.)



Now define & graph G' in the following way:
Let V(G') = V'(G - BE) u V(H') , let g: V(G)~>TV(G') be the
map defined by vg = vh if v € V(H) and vg = vf if v € V(G - H),
and let E(G') ={{ug, vg} : fu, vféE(G)} .

Claim: g is an isomorphism from G to G'; for clearly g is
a bijection from V(G)Ato V(G'), and the definition of the
edges of G' ensures that g mapé edges to edges.

H' is a subgraph of G' since V(H') ¢ V(G') and E(H g =
E(H )h by the definition of g, so E(H )g = E(H') since by
definition, h maps E(H) to E(H').

Finally, it is obvious from the definition of g thet
gIH =n. O

Proof of 2.2.7

Since A is equivalently labelled to,ﬁ',’there is an
isomorphism g: G(A)—> G(A'), and since Ac N, G(p) ¢ G(MN)
0 by the lemma there is a graph G' and an isomorphism g' from
GLA) to G' such that G(A') C G' and g';G(A) = g . There is
also an isomorphism f: A= A yhicn maps edges of A labelled w
to edges of f\' labelled UJhg s where hg is the bijection from
QA) t0 (') induced by g. Let 0° be a vertex of A , and let
o' = 0°f 3 o' is a vertex of A'.

Now define f' by pf' = w'(g')-1o~_1p g' for all vertices
p ot L. £' is injective, for if @.f' = P, then
o' (g o e8' = o~'(g‘)"10/"192g' so P, = @, . f'is
used to define J\' as follows:
Let V(A') ={()f' : £ is a vertex dT_/\_} , and let
E(A") ={{ij', ?2f'} : {91, €2§ is an edge of ./\_}. If
{@1, ez}is labelled (i 3), then{P1f', ng'} is labelled

(ig' Jjg'). It is necessary %o check that with this definition



N is a correctly labelled transposition subgraph which
satisfies the conditions of the proposition.

Certainly, V(A') is a set of permutations, so it is only
necessary to check that the edges of /\' are well-defined.
Tf {91, f’zﬁ is an edge of Mlabelled (i j), then 9;1 o, = (i3i).
Also, €1f7 and Q ,f* are vertices of \'. VNow
(045)7(p ) = (oe T o™ p e (oe o™ 0 ,8")
g 9'{1 o3 g’”1 g'g"1 o e8!
g"19;1€2g'
=271 e

]

= (ig' jg')
so §€1f”, P2f’} is well-defined as an edge labelled (ig' jg').
Clearly, f' is an isomorphism from J«_tO N mapping edges

labelled (i j) to edges labelled (ig' jg') = (i i)h

o

ot 2 thus
N is equivalently labelled toJ\!.

Finally we must show that A ¢ A . Let P' be any
vertex of[l’; since ﬁﬂ is connected, there is a path
O'=O LNl O =(_>' in A ffom o' to ()'). Hence 3
transpositions UJ%,U)é,...,LUéé_IZ(Af) such that
g*i = £_1OU£ for i =1,..., k.

Now f maps & tog ' by definition, and it maps edges of AN
labelled (U to edges of A' labelled wW' = Wh_ . Let O be

vertices of O such that dzf = c“i for i = 1,.4., k, and let

o’ = o = !
CTi_q, i} be labelledckg so LUEhg g .LUig w! o
oL = o'g'” O'"1o“kg'

]

ore 0"'1(o’ou1 W,ew. o, )g!

it

101_1
c's (ijzn.wkk'

o (s w,e (e W) (g w,e').

1]



However, UJi corresponds to an edge of A , so 1if

W, = (x y), then x and y are vertices of G@). TUsing the

lemma, g' was chosen so that g'{G(A) = g, 80
-1 _ _ .

2! U)ig’ = Luihg, = cuihg for i = 1,..., k .
] 9,

lod (w1hg}(w2hg}...(wkhg)

2’
Hence @kf'

i

] 1] 1
o'Wy Wi WOy
= P’ , SO Q ''is a vertex of f\'. It is easy

it

to show that every edge of [A\' is an edge of \'. This cocmpletes

the proof of proposition 2.2.7. []

Example
The graphs O, A' and N.in fig 2.2.4 satisfy %he hypotheses of

proposition 2.2.7 and A! in fig 2.2.5 is equivalently labelled to
Jm.and A c N . \'is constructed as in the proof of prop. 2.2.7 .

Pigure 2.2.4

O o (12)
(1) (1 2) R S R S 2N
L (24) (1) (1 2) (12 3)
(14) (124)
Pigure 2.2.5
2 2
N S = (134(5) (152 4)

Definition 2.2.6

A transposition subgraph /A has an induced labelling if it

is an induced subgraph of some transposition graph. Otherwise

it has a non-induced labelling.

Example
The transposition subgraph [k1 in figure 2.2.3 has a

non-induced lahtelling. For suppose it is an induced subgraph
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of [(G) for some graph G. Then rYG) has edges labelled (1 2),
(3 4) and(5 6) so {1, 2}, {3, 4} and {5, 6} are edges of G.
However, (1) and (3 4) are vertices of [(G) and (3 4)efL(G)
so {(1), 5 O} 15 an eage o2 '(6) since (1175 4) = (5 e
0.(G). Also, (1) and (3 4) are vertices ofA1 but {(1), (3 42
is not an edge Of[kT so AH iS.HOt an induced subgraph of rKG).

The graph[k3 in fig. 2.2.3 has an induced labelling since
it is an induced subgraph of [(G) where G is the graph with
vertices 1, 2,..., 6 and edges {1, 2}, {3, 4, {5, 6} .

It is possible to classify transposition subgraphs according
to which equivalence class of equivalently labelled graphs they
belong to. This is éarticulérly useful for small transposition
subgraphs when it turns out that the number of equivelence
classes is fairly emall. In pafticular, the classification of
transposition subgraphs isomorphic to CA 1s used repeatedly
in this thesis, while the classification of transposition
subgraphs isomorphic to %3~5 and 06 is vital to the study of
the automorphisms of transposition graphs.

Theorem 2.2.8

It is a transposition subgraph isomorphic to C4 then A is
equivalently labelled to either L\.1 or A2, where A,] aLndA2 are
the graphs in fig. 2.2.4.

Figure 2.2.6

(1), (12)  (q2)

(34) a, (34)

(34)" a2y (12)(34)




Proof

Note that L\-1 and A2 are not equivalently labelled since
G(A‘I) has 3 vertices and is not isomorphic to G(Az) which
has 4 .

If A has a vertex ¢’ , then by premultiplying every vertex
of A by CT:‘"1 we obtain an identically labelled *ransposition
subgraph c~‘1ﬂ;which has (1) as a vertex. Thus we may assume
without loss of generality that (1) is a vertex of 0. TLet
the edge labels of A be OJ1, WZ, WB, w4 in clockwise order
starting from (1), so [\ is the graph in fig. 2.2.7 .

Pigure 2,2.7

(1 Wy, oy

A w, w,
»]

O"3 W3 092

learly, wi F W , Subscripts mod 4, or we would

141 o
have either (1) = 0, or O“,I = 0% in which case A would

not be isomorphic to C4. Hence there can be at most two edges

in A with tae same label., It follows that G(A) has at most
two edges joining any pair of vertices,

W= UJ1 (AJZ (/U3 (Aﬁ is an identity word since A is a circuit
in scme transpositicn graph, and hence G(A) = G(W) has no
vertex of cegree 1 ty proposition 1.2.4 . Also, G(A) has
exactly 4 edges, so G(A) must be isomorphic to one of the
multigraphs G,],..., G4 since they are the only multigraphs
with 4 edges, no vertex of degree 1 and no more %han 2 edges

Jjoining any pair of vertices. They are. shown in fig. 2.2.8 .



Figure 2.2, %

k
P >
G1. C—2.
ke >
i ]
i J
5 R e
3 4 i ; X
1 k

If G(A) = G, , then A must have 2 edges labelled (i j)
and 2 edges labelled (k 1), and these pairs must be non-
incident. Hence A is the graph in fig 2.2.9 which is clearly
equivalently labzlled to Aﬁ .

Figure 2.2.9

(1)o__(43) (i 3)

(k1) (k1)

e 7y (G

If G(A) = G then A has 2 edges labelled (i j) which must

2’

be non-incident so A is one or cther of the graphs in fig. 2.2.10.

These two graphs are both equivalently labelled to A for the

5 3
first graph, take f: (1)—=>(1), (i j)—=>(1 2), (i k¥ 3) —=>(1 3 2)
and (1 k)-—>(1 3) , and take g: i ~>1, j—>2, k=>3. .  For

the second graph take f: (1) = (1), (1 3)—(1 2).



B Cm

(1 3x)=(132)and (j k)= (1 3) and take g: i-— 2,
J—>1 and k—3 .

Figure 2.2.10

(23 (5 5) (1o 29 (1 §)
(ik) (3k) (5Kk) (ik)
(1 x)° (i3) (i k j) (3 k) (:3) °(1i j k)

1f G(Qp) = G3’ then \G(QJ1,“J, U%) = P, whichever of

2 4
the transpositions (i j), (J k), (k 1), (i 1) is CLZ .

Hence by corollary 1.2.8, W' = W CDECU represents a 4-cycle ,

1 3
(x vy z w), say. Now W = (4)1OU2CUBCU4 = W'Ww,, and W repres~
ents the identity, so (x v 2 w)(AZ = (1), and 004 =(xwzy),
which is a contradiction since UJ4 is a transposition.

Finally, if G(A) = G,, by similar arguments to the first

4’
case, [\ must be the graph in fig. 2.2.11. However, if this were
true, W= (1 3)(3 K)(i §)(3 k) = (i 3 k) = (1), which gives a
contradiction.

Figure 2,2.11

(1— )0

(k) (k)

o o
3 (13) 2

This completes the proof of theorem 2.2.8 . []



Theorem 2.2.9

If [\ is a transposition subgraph isomorphic to K then

2,37
Ais equivalently labelled to the graph A3 in fig. 2.2.11 .

Figure 2.2.11

o (12 3)
Proof
Let 0 be the graph in fig. 2.2.12.
Figure 2.2.12
o4

Let A' be the subgraph of A induced by {0‘1, O o'z 6“4}:
and let A" be the subgraph of A induced by {0‘2, 0’3, oy OJB}.

{\' is isomorphic to C, so by thecrem 2.2,8, A' is equivalently

4
labelled to A1 or AQ , Where A1 amd’A2 are the graphs in fig.
2.2.6 .

Suppose first that A'is equivalently labelled %o A,[, S0
without loss of generality, W, = UJB = (i 3) and w, = LJ4 =
(k 1). However, io’g, 0’31 and {0’3, 0’4} are also edges of \\",
so (1 j) and (k 1) ares labels of edges of A" and hence gi,,j}
and {k, 1} are edges of G(A") . Hence .G(A") éKB , S0 by theoren

2.2.8, A" nust bte equivalently labelled to A1 . Hence G(A")



can only be the graph with veftices i, Jjy k, 1 and edges {i, j}
and {k, 1} . Hence ¢, must be either (i 3) ox (k1) . In
(1 3),

then W, =W, so O, = 0. , while if W, = (k 1) , then
6 3 3 5 6

]

either case this gives a contradiction, for if w6

’UJ6 = 0, so o, = 0“5 . Therefore L' must be equivalently
labelled to A2 , 8o without loss of generality, X, =LN3 = (1 3),
W, = (i k) and uu4 = (3 k).

By a similar argument to the previous one, A" must also be
equivalently labelled to A2 . The only possible choice for

LU6 is Wy = (i k), and the only choice for W_ is £U5 = (i k).

5
(Any other choice would imply either O’1 or 0’3 = 05 .)

Now D is clearly equivalently labelled to A one possible

3;
choice for f and g is f: 0‘1@(1 2), O-/zr-—>(1), 0’39(1 %),

0“4»»(1 2 3), 0“5»»(2 3) and g: i=>1, j#>3, k2 . O

Theorem 2.2.10

IfA is a transposition subgraph isomorphic to K then

° Kz
A is equivalently labelled to Aél’ where A4 is the graph in fig.
2.2.13 .

Figure 2.2.13

TAY

-
-

4
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Proof
Suppose that A has vertices 6'1,..., 0‘6 and that ONi o~
c“j iff iand j have different parities. Let A' =A - {016},

so A' is isomorphic to K then by theorem 2.2.9, A' is

2,3
equivalently labelled to ZLB,

Hence by propcsition 2.2.7, there is a graph (\* such that A

the graph in fig. 2.2.11 .

is equivalently labtelled to A* and ABCLZX*. It is clear from
fig 2.2.11 that V(A*) = VQﬁB)LI&1L where O is some permutation,

ane 2(4%) = 28)vi{0 2,00, 00 N0t e 5ot L e

these three edges be labelled M ,CLE,CU respectively.

3
Now the graph A" = A* - {(1 2 3)} g K2 3+ SO by theorem : .
-4

2.2.9 and definition 2.2.4 G(A") = E(AB) =K Also, A"

3 *
contains edges labelled (1 2), (1 3), (2 3), www,),w
se {%9("}29(‘03}: {(1 2), (1 3)’ (2 5)3~ .

Finally, to avoid identifying ¢ with (1) or (1 2 3) in O,

sand

3

we must have CU1 = (2 5),(&% = (1 2) and UJ3 = (1 3), so
= (132) and A* =0 . Thus \ is equivalently labelled %o

i
A4.EI
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SECTION 2.5 : CLASSIFICATION OF CIRCUITS OF LENGTH SIX

The classification of ftransposition subgraphs isomorphic to
06 which will be described in this section is rather complicated,
but a considerable part of the result is rneeded to study the
automorphisms of a transposition graph. Since the proof of the
full classification is very lengthy, splitting into fifteen
separate cases, it will not be stated in full here; only that
part of the classification needed to prove later results in this
'thesis will be proved here.

It is convenient to introduce an abbreviated notation for
transposition subgrephs isomoiphic to 06 . If ¢ is a vertex of
A= 06 and the edge labels of A are C'Jj, WQ,...,WC/) in order

from @, A will te denoted by Oy Wy wes WL I£ 0= (1),

2
it will be suppressed in the notation. Also, if A has an induced
labelling, it will be marked with an asterisk ¥, TFor example, if
[}3 is the graph in fig. 2.2.3, (1 2)(3 4) is a vertex of [XE, so
A5 = (12)(5 4);(34)(12)(56)(34)(12)(56)*. More simply, since
(1) is a vertex of Ay, A, = (12)(34)(56)(12)(34)(56)*.

Theorem 2.%,1

If A\ is a transposition subgraph isomorphic to Cg » then
A is equivalently labelled to one of the following graphs,
which are grouped into nine classes. BEvery graph in class i
has reduced type G, , where G, ; i =1, 2,..., 9 are the graphs
in fig. 2.3.1 .
Class 1 : (12)(34)(56)(12)(34)(56)*, (12)(34)(56)(12)(56)(34);
Class 2 : (12)(54)(45)(12)(45)(34); |
Class 3 : (12)(23)(12)(23)(12)(23);
Class 4 : (12)(34)(12)(35)(34)(45) , (12)(34)(12)(35)(45)(35),

(12)(34)(35)(12)(34) (45)%;



Class 5 :
Class 6

Class 7T :

~£5~

(12)(23)(34)(12)(14)(34)*;

Class 8 :

(12)(34)(12)(23)(34)(24) , (12)(34)(12)(23)(24)(23>;
(12)(23)(13)(12)(23)(13) ;
(12)(23)(12)(34)(14)(34)%, (12)(23)(12)(14)(34)(14)*,

(12)(13)(14)(23)(13)(34)*, (12)(13)(14)(12)(23)(34)*,

(12)(13)(23)(34)(12)(14) , (12)(23)(12)(34)(13)(14) ;

Class 9

Pigure 2.%.1

%

1 o 2

3 Oy [,

J

5 gmem———g 6

7
1 2
3 4
Prodf

(12)(34)(13)(24)(14)(23)* .

G2
o o —0
3 4 5
G5
3.
]
2
4
GB
1 2
3 4

Part of the proof of this result is

sectiony

the remainder is omitted. [

GT
J
o 0- -0
1 2 3
Gg
1
QdiiiiiiEEbB
79
1 >
3 4

given later in this
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Theorem 2.3.2

If A is a transposition subgraph isomorphic to C6 which has
an induced labelling, then its reduced type EQA) is isomorphic

G. are

to either G1, G3’ G4, G7, G8’ or G9, where G1, GB""’ 9

some of the graphs in fig. 2.3.1 .
Proof

This result is clearly a corollary to theorem 2.3.1, but the
proof given here is independent of theorem 2.3.1 .

Let O~ be any vertex of A ; since A2 Cp there is a (unique)
vertex O-' distance 3 from O"inll. In fact, O is the union of
two edge~disjoint paths joining O to ov' . Hence there exist
transpositions Wq, W2, W3’W1" 'y w% € £L(D) such that
o' = CVLU1LU2(A% = CVLU§¢UéLUé . This situation is illustrated

in fig. 2.3.2 .

Pigure 2.3.72

wo

Let P = UU,](,U2LU3 = UJ%UJéCU% , and let W = £U1CMECU3 and
W'E wiwjw) be words. It is clear that G(AQ) is tre
(multi)graph obtained by forming the union of G(W) and G(w'),
leaving any multiple edges distinct.

Since e is the product of three transpositions, it must be
one of the following permutations, where a,b,... are distinct:

(abcd), (abec)(de), (ab)cd)ef), or (a b) . In each

of the first three cases, W and W' are minimal words for P y



hence G(W) and G(W') are forests whose connected components
correspond to the disjoint cycles of o .

If p = (a b c d) then G(W) ard G(W') are treec on the
vertices a., b, c, d, and hence G(A) is a graph with four
vertices. (In fact, it can be any connected graph on four
vertices.)

If = (a b c)(d e) , then both G(W) and G(W') must be one
of the graphs in fig. 2.3.3 and hence G(A) is one of the graphs
in fig. 2.3.4 .

Pigure 2.3.3

a b c b c a c a b
o -0 - o —> 0 O D
d o—————— e d o @ do—m-—s €

Figure 2.3.4
a
xc; ég -
b c d o0 ¢
d o——rr——=0 ¢ Where {x, Ty z} =v{:a, o, c} .

If o = (a b)(c d)(e £), then both G(W) and G(W!') must be
the graph in fig. 2.3.5, and hence G(A) is the grarh in fig.
2.3.5 .

Figure 2.3.5

If g = (a b) then W and W' are not minimal words, hence by
theorem 1.2.8 the graphs G(W) and G(W') must contain circuits.
Also, W, ¢ W, and W] Fwl , so G(W) and G(W') have at least

two distinct edges. Finelly, by hypothesis,[ﬁ has an induced
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labelling, and hence {a,b} cannot be an edge of either G(W) or
G(w'). (If it were, (a b) would be the label of some edge of A,
and 0 would be joined to o' by an edge labelled (a b) in any
transposition graph containing 4, which gives a contradiction.)
By proposition 1.2.3 , a znd b are in the same component of G(W)
and G(wW'), but‘by the above observation they are not adjacent in
either graph. Since G(W) and G(W') have exactly 3 edges and must
contain a circuit, they must be ths graphs in fig.2.3.6 , where

¢ ard d may now he identical.

Figure 2.3.6

6(W) = ao—— 3 b or G(V) = T —
G(W') = ao——% "®b  or G(W') = a « meo

4ifc#dandE(Q)QP3ifc=d.

Combining the above four cases, we have shown that G(A) is

Hence G(A) % ¢

isomorphic to one of the six graphs in the hypothesis, or tc one
of thc graphs in fig 2.3.7

Figure 2.3.7
2

2 1 3
o~ © -0
G' : G_' .
1 2 o o5
1
4 3
3
G) G!
3c:L s L) -} 4 1 2
1 2 z 4 4

To complete the prodf cf theorem 2.3.2 it is sufficient to

show that there is no transpositicn subgraph O satisfying the



hypotheses such that EQ&) is isomorphic to one of the graphs

in fig. 2.3.7 . Let o, O, O Wysens, w%, W, W' be defined
as before. Note that if G(A) is any of the graphs in fig. 2.3.7
then by the previous arguments, p# (a b) .

Lemma 2.%.3%

I1f A has two edges with the same label W, then these edges
must be diametrically opposite in A
Proof

Suppose that 4 hes two such edges which are not diametrically
opposite. Since they have the same label they cannot be incident,
so the only remaining possibility is that there is a third edge
incident to both of them. Let this edge e labelled W', so
contains the subgraph in fig. 2.3.8 . [

Figure 2.3.8

w oW oW
o7 o5 oy

Qq

G’ was chosen to be an arbitrary vertex Qflx‘,‘so we may
choose 07 = OP’1 so o' = CVA + Now o' = cwf} , and
o' =0Cww'w = o‘w-1w'w = OVWw* , where WW* is a trang-
vosition. Hence P = (W* is a transposition. This contradicts
the observation made just before this lemma,

Lemma 2.3%.4

If {i j} is an edge of G(A) such that either i or j is a
vertex of degree 1, then { has at least 2 edges labelled (i j).
Proof

This lemma fcllows immediately from proposition 1.2.4. The
word W = (1) in the proposition is obtained by multiplying the

labels of A in cyclic order. [J
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Using these two lemmas it is easy to see that 4 must be
one of the graphs in fig. 2.3%.9, Ai corresponds to G(A) = G!
for i=1, 2, 3, and 134 and[kS correspond to E(A) = Gi .
Figure 2.3.9

(13)

(24) | (24)

However, each of these possibilities gives a contradiction.
Since each of the graphs 131,...,[35 is'a transposition subgraph,
the procduct of the edge labels in cyclic order must be an
identity word. Hewever, (12)(13)(14)(12)(13)(14) = (13)(24) ,
(12)(13)(45)(12)(13)(45) = (1 3 2), (12)(23)(34)(12)(23)(34) =
(1 3)(2 4), (12)(23)(34)(12)(24)(34) = (1 2 3) and finally,
(12)(34)(23)(12)(24)(23) = (1 2 4), giving a contradiction in

each case. This completes the proof of theorem 2.3.2 . [J
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Determining the existence of circuits of a given length
in a transposition graph is a far easier problem than
classifying then,

Proposition 2.3.5

'(G) contzins circuite of length 4 iff G #’K1 , for all
’
n21.
Proof

‘There exist transposition subgraphs A £ C, such that G(A)

4
ig isomorphic to a graph in fig. 2.3.10 , by theorem 2.2.8.

By proposition 2.2.6, if G is akgraph containing either of
these graphs as a subgraph, then [(G) contains a subgraph

isomorphic to C The result now follows from the observation

4
that the only graphs without isolatad vertices which do not

contain two independent edges are K, and K1 A >1. O

’

3

Figure 2.3%.10

Proposition 2.3.6

Every transposition graph with 6 or more vertices contains
a cireuit of length 6.
Proof

Every graph contains a pair of incident edges unless all
its edges are independent of each other. Hence every graph
without isolated vertices except K2 and G1 , the graph in fig.
2.3.10, contain one or other of the graphs in fig.2.3.171 as a

subgraph.
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Figure 2.3.11

Now there exist transposition subgraphs A & 06
such that E(A) is isomorphic to either of the graphs in fig.
2.%.11. 1In the condensed notation of theorem 2.%.1 they are
(12)(23)(12)(23)(12)(23) and (12)(34)(56)(12)(34)(56) . The
result now follows from proposition 2.2.6 and the observation
that fKKz) and.rKGd) have 2 and 4 vertices respectively. (O

Corollary 2.3%.7

A transposition graph ['(G) has girth 4 unless G £ X

1,n ?*
when [M(G) has girth 6 provided n 2 2.
Proof
This result follows immediately from the two previous
results and the fact that a transposition graph is bipartite. ]
A similar result to proposition 2.3.6 can be proved for

cifcuits of length 8, The proof uses transposition subgraphs

1,3 * By 2
G1 and G2 , where G1 and G9 are the graphs in fig. 2.3.1 .

Thus it is possible to conjecture that the result helds for

isomorphic to 08 with reduced types isomorphic to X

circuits of all evern 1engthé 2 6. An equivalent and more
natural way to state this conjecture is as follows: A trans-
position graph with 2m vertices contains a circuit of length

2k for all k such that 3 <k < m. (Note that all transposition
graphs have an even number of vertices.) This alterrnative
conjecture has been verified for all m < 12. The conjecture
also implies that all transposition graphs are hemiltonian.

Thig is proved in chapter 4 of this thesis.
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CHAPTER 3: AUTOMORPHISMS OF TRANSPOSITION GRAPHS

SECTION #2,1: INTRODUCTICN

In this chapter it is proved that any autcmorphism c¢f a
 t1anspositi6n graph can be expressed asg the product of twe or
three special types of automorphism, a strong automovvhism es
defired in section 1.3, a weak automorpkism fixing (1), and an
ir;egular automorphism. Weak znd irregular automorphisms are
defined ir section 3.2; weak sutomorphisms may be thought of as
permuting the edge latels of the transposition graph, while
_ irrégular automorphisms destroy the edge labelling.

The weak autcmorphisms of & transposition graph are completely
descrited ir section 3.2. 1In fact the weak avtonorphisms of I(G)
2re very closely related to the sutomorphismes of G. It is also
shown thet every automorphism of a transposition graph behaves
’1oqally' like a weak autcmcrphism, This result is used to prove
that [(G) is 2 graphical reguler representetion iff G has no non-
triviel automorphisms. ) |

In section 3.3 it is prové@_that if G is a greph with ro

-

L then [{G) has ro

irregulsr automorphisms. In this case the automorphisms offﬂ(G)

compenent isomorphic to a complete graph or to C

.

can te completely described in terms of zutomorphismes of G.

The irregular automorphisms of FKKn) and fKCA) are cdescrited
ir section 3.4, and the converse to the result of section 2.3 is
proved.

Note that for most of the results in this chapter, graphs
" with 2 component isomorphic to K, are éxcltded gsince they

2
corplicate the stztement of the results while addirg little to

the theory.
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SECTION 3,2 :PRELIMINARY RESULTS

The automorphism group of a tréﬁsposition graph [(G) will
be denoted by A([(G)). Strong (or label-preserving) automorphisms
of a transposition graph were defined in section 1.3 (definition
1.3.2), and the group of such automorphisms is denoted by AS(F(G)).
Clearly, AS(F(G)) < A(M(G)). It is very useful in this chapter
to distinguish an intermediate group of automorphisms, the weak

automorphisms of a transposition graph.

Definition 3.2.1
An automorphism O of a transposition graph ['(G) is weak or

label-permuting if V edges £ €, of r(a), 51 and £2 have the

same label iff €1 8 and 826 have the same label, The set of
weak automorphisms of a transposition graph forms a group denoted
by Aw(r(G)). Every strong automorphism is a weak automorphism,
so 4,(1(6))  4,(1(6)) < 4(1(S)) .

Definition 3.2.2

If O is an automorphism of [(G), and O is a vertex of [(G),
then O fixes 0 if 08 = 0° .. The set of all automorphisms of[{G)
fixing O forms a group called the stabiliser of ¢/, denoted by
A(T(G),0°). The group AW(F(G),O’) is defined similarly.

Provosition 3.2.1

Every automorphism of [(G) may be expressed as the product
of a strong automorphism and an automorphism fixing (1); hence
A(M(6)) = 4 (1(6)).a(0(6), (1)) .

Proof

Let 6 be an automorphism of [(G), and let ® be such that
08 - (1). ©Let @r be the strong automorphism of F(G) mapping
P to 0P for all vertices @ of [M(¢). Since the strong auto-

morphisms of ["(G) form a group, ¢;ﬂ is a strong automorphism.
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Also, (1)[‘%»9_} =[C'(1)]e =00 = (1), so (Pa,e is an auto-

morphism fixing (1). Since 9:4);1(4356) , the result follows.[]
In this section it will be shown that every element of

A(M(a), (1)) is the product of an element of Aw(fKG), (1))

and an element of A(F(G), (1), £(G)), the group of auto-

morphisms of [(G) fixing (1) and every vertex adjacent to (1).

In section 3.3 it will be shown that this second group is the

identity for almost all graphs G. Thus it is very useful to

study the group A ([XG), (1)).

Lemma 3.2.2

I1f A is a subgraph of [(G) and AZ C4 , then AA' & K5,3
such that AcA' ¢ [((G) iff G(Q) & Ky .
Proof

By theorem 2.2.8 and theorem 2.2.710,if A= C4 AT E K3,3

and A C A" then GA) ¥ G(A') & K3 .

Conversely, if G(A) 2 K, , then (i j), (i k) and (j k) are

3

labels of edges of [X, where 1, j, and k are the vertices of
G(A) . Hence (i j), (1 k), and (j k)€(G) so if O~ is any
vertex of 4, then 0°(i j), OXi k), o(j k), o(i j k),
O(i k j) and O’ are vertices of MG). Furthermore, they

induce a subgraph A' of P(G) isomorphic to K containing

353
A as a subgraph . 0

Lemma %3.2.3

If G is any connected graph with 3 or more vertices, then
every edge automorphism of G is induced by a vertex automorphism
unless G is one of the graphs in fig.3.2.1 .

Proof

See Behzad & Chartrand (2, p.169) . I
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Figure 3.2.1

Lemma 3.2.4

If G is as in lemma 3.2.3, then every edge automorphism of

G which maps all subgraphs of G isomorphic to K, to subgraphs

3
isomorphic to K3 is induced by a vertex automorphism of G.
Proof

The result follows from lemma 3%.2.3 unless G is one of the
graphs in fig. 3.2.1 . If G is one of these graphs, then every
edge automorphism of G not induced by a vertex automorphism is
listed in Behzad & Chartrand ( 2, p. 169); it is easy to check

that none of them preserves triangles. [J

Lemma 3.2.5

If g is an automorphism of G, then ‘6g :f:z—-? g-1 e g for
all vertices p of (G) is a weak automorphism of [(G) fixing (1).
Proof

' Let g be an automorphism of G and let (i 3j)€f1(G). From
the definition of LYG) we have {i, j}-eE(G), and since g is an
automorphism, {i, j} g = {ig, jg} ¢ B(G), so (ig jeg)e (G).
However, (i j) Gg = g~1(i j)e = (ig jg), so (i j)eg € N(G)
for all transpositions (i j) € {L(G).

Now let P be any vertex of ['(G); hence there exist w,,

W,

PO,

yeees W € L1(G) such that e: -’AJ1 CUZ...UJk . Therefore

-1 -1
g P g =g (w1w2...wk)g

(&7 w,e) (e wye)... (e w,e)

]

= ou;cué...Lui , where (U}, UJé,-v., u)i EJZ(G). Hence

p@ is a vertex of [(G), so Qé maps vertices of [(G) to
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vertices of [M(G).

Now let {91’ QZ}be an edge of [(G) labelled W, so
o e, mwee).{p,p, }6, = {P16, £,60,} end
(£,67(P,8,) = (&7¢; &) (7g, 0
g'1(>]'1 g g e, &
g-—‘l ();1 92 =
g lw g e (a).

1]

]

Therefore Qg:maps edges of F(G) labelled W to edges of rKG)
labelled g-1cu>g, so egg is a weak automorphism of [(G).
Finally, (1) 98;= g-1 (1) g = (1), so Gg fixes (1). O

Theorem 3.2.6

For every automorphism Be a(f(e), (1)) , there is an
auvtomorphism g £ A(G) such that C‘b = 9;‘6 is an automorphism
of [(G).fixing (1) and every vertex of.r(G) adjacent to (1),
where eégiﬁ the automorphism of lemma 3.2.5 .

Proof

The set of vertices of [(G) adjacent to (1) is LU(G). Since
9 fixes (1), itvmust permute these vertices. Let é&i be the
permutation of £2(G) induced in this way, and let g* be the
corresponding permutation of E(G).

We first show that g% is an edge automorphism of G; that is,
a permutation of E(G) which preserves the incidence and
independence of the edges of G. Suppose that e, and e, are non-
incident edges of G which correspond to LU1 and LUZ in §(G).
Then (UU1O\)2)2 = (1). If A\ is the subgraph of [(G) induced by

the vertices (1), &/, UJg, and LU1bUZ then A = C, and G(A) is

4

isomorphic to Gﬁ in figure 2.3.10, so G(A) ¢ K3 . Hence by

lemma 3.2.2, there is no graph A' & K5 3 such that
9

Ach ().
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0 is an automorphism, so it must map A to a subgraph JAXS)
isomorphic to A and such that there is no subgraph A" of ['(G)

with A" £ K and A0 ¢ A" ¢ I(G). Hence by lemma 3.2.2,
3

3,
G(AB) ? K3 , hence by theorem 2.2.8, G(AB) ¥ (3'1 , the graph
in fig. 2.3.10 . However, (1) is fixed by O and W, and W,

are mapped to 0019 and 6026 respectively, and these correspond
to e,g* and e, g* by the definition of g*¥ . Since {(1), QJTE§}
and {(1), bl)ze} are edges of A9 1avelled qu and er ,
e,‘g* and ezg* are edges of E(AB) , and since g% is a
permutation, they must be distinct edges. Since G(ABD) Z G‘l ,
é1g* and ezg* must be non-incident. Hence g% is an edge

automorphism of G.

We now show that g¥* preserves triangles in G. Let e, , e

1 2
and e3 be edges of G forming a triangle (a subgraph isomorphic
to K3)’ and let UJ1, WZ’ W} be the corresponding elements of

Q(G). Then A | the subgraph of [(G) induced by the vertices

(1), W,l, w,_, w (.A)1 W2 is isomorphic %o K2 3 . [\ is mapped
b

29 3’

by 0 toa graphAez-".' K2 3 and by a similar ai'gﬂment to above,
b

G(AQ) contains the edges e, 8%, e, 8%, egg* which are distinct

since g* is a permutation. By theorem 2.2.9, G(AD) ¥ K SO

3 9
ejg*, ezg* and eBg* form a triangle in G, and g* is triangle
preserving., It follows from lemma 3.2.4 that g¥*¥ is induced by
some automorphism g of G. That is, for all edges {i, j} of G,
{i, j} g* = {ig, jg} .

Now suppose (i j)€ fL(G), and (1 3)8 = (x 1)e f2(G).
Then {1, i} ex = {ie, ie} ={k, 1}, so (1 )8 = (x 1) =
(ig jg) = g.1 (i 3) g = (4 j>9g’ where eg is the weak

. . . . -7
automorphism defined in lemma 3.2.5 . Hence 1f4) = eg @ ,

then (100 = (1078 =[e (1) &0 = (118 = (1) since B rixes



(1) by hypothesis. Also, if W is any element of (L(G),
W w "1]

then (P {: ﬁg 6

[Ux) e;}eg by the above argument ,

= W .

]

Since the set of vertices adjacent to (1) in [(G) isL(G), ¢
fixes every vertex adjacent to (1). This completes the proof
of theorem 3,2.6 . [J

Theorem 3.2.7

If G is a graph such that every connected component of G
has at least three vertices, then AW(F(G), (1)) 2 A(G) and every
element of Aw(r‘(G), (1)) is of the form egzpf——) g_1 @ g for all
vertices Q of (G), where g € A(G).
Proof

Consider the }unction fi A(G)-—VAW(FKG), (1)) defined by
gr~>9g for all g € A(G); f is well defined since by lemma
3.2.5 , eg & AW(F(G), (1)) . We show that f is a group
isomorphism, and begin by showing f is a homomorphism.

If gyr &, € A(G), then g,8,f =:6g1g2 . If é is any vertex
of ['(G), then 99g1g2 = (g, gz)'1€ (g, &,)
g5 gf@ g, &,
5 (09, )e, = (06, )0

i ng1eg2 .

Hence 9g1g2 = ngégg S0 (g,I gz)f
homomorphism.

£2

(g1f)(g2f) and f is a

To show f is injective, suppose g € ker(f), so f maps g
to the identity in Awﬂﬁ(G), (1)) . Then for all vertices of
P(G), peg = g‘1p g = P . Suppose that g # (1), so g moves
some vertex of G. Without loss of generality, suppose that

1g = 2 . The component of G containing 1 has at least three
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vertices by hypothesis, so it must contain at least one vertex
distinct from both 1 and 2, which we may choose to be 3. (Note
that 2 need not be in the same component of G as 1.) Since 1
and 3 are in the same component of G, (G) generates (1 3)

by corollary 1.2.2, so (1 3) is a vertex of [(G). Since

g P g =@ for all vertices of [(G) we have

e (13) g =(1g 3¢) = (2 38) = (1 3).

This is a contradiction since 2 # 1, 3 . Hence g = (1), and

f is injective.

Pinally, if O éAw(r'(G), (1)), then B e a([(Gc), (1)) so by
theorem 3.2.6 and lemma 3.2.5 there is some G’g € AW(F(G), (1))
such that ¢ =8 ; 8 rfixes (1) end every vertex of [(G)
adjacent to (1). Now since Awﬂ"(G), (1)) is a group and'

0,8, € 2,0(c), (1), 9ea(6), (1)). since  fixes (1)
and every vertex adjacent to (1), p fixes the edge label of
every edge incident to (1). Hence the permutation of the edge
labels of P(G) induced by @ is the identity, so ¢ is a strong
automorphism. Since § fixes (1), D is the identity, so
Q = E?g and f is surjective. This completes the proof of
theorem 3.2.7 . [J

Definition 3.2.3

A non-trivial automorphism of a transposition graph which
fixes (1) and every vertex adjacent to (1) is called an

irregular automorphism. The set of all irregular automorphisms

of 1(G), together with the identity, forms a group denoted by
A(l(e), (1), Q(c)).

Proposition 3.2.8

Every automorphism of a transposition graph may be expressed

as the product of a strong automorphism, a weak automorphism
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fixing (1), and (possibly) an irregular automorphism.
Proof
This result folldws immediately from proposition 3.2.1,
theorem 3.2.6 and the definition of an irregular automorphism. [J
Irregular automorphisms of transposition graphs are
studied in the next section. In general, a transposition graph
has no irregular automorphisms, so its automorphisms are
completely described by theorem 1.3.3 and theorem 3.2.7 .

‘Proposition 3.2.9

If o7 is any vertex of a transposition graph [M(G) and ¢ is
any automorphism of P(G) fixing ¢, then ¢ permutes the edges
of ["(G) incident to &, and hencec? permutes the labels of
these edges. Thus ¢ induces a permutation of E(G); this
permutation is induced by an automorphism of G.
Proof

This result follows from theorem 3.2.7 and the fact that
there is a label-preserving automorphism of rYG) from (1) to ¢ . O

Definition %.2.4

A graphical regular representation of a group g,is a graph

G such that A(G) g’?? and A(G, v) = {1} for all vertices v
of G. '

Graphical regular representations of the symmetric groups
S, have been studied by M.E. Watkins (14), Watkins' graphical
regular representations are Cayley graphs generated by rather
complicated sets of permutations, which are far from being
minimal sets of generators . Using transposition graphs it is
simple to construct numerous relatively simple graphical regular
representations for S ; n 2 6. Forn 2 7, some of these graphs

are minimally generated.
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Proposition 3.2.10

If G is a connected graph on n vertices such that A(G) g'{1},
then [*(G) is a graphical regular representation for S
Proof

By proposition 3.2.1, A([(G)) = As(r‘(G)).A(r‘(G), (1)), and
by theorems 1.3.3 and 1.2.1, AS(F(G)) = 5, . Now suppose that
qJe a(r(e), (1)); by theorem 3.2.7, 4 ([(6), (1)) = {1}, end
hence by theorem 3.2.6, ¢ fixes every vertex of [(G) adjacent to
(1). Let 0’ be one of these vertices; by proposition 3.2.9, ¢
must fix every edge label incident to Cf, so ¢ fixes every
vertex adjacent to 6°. It follows that ¢ fixes every vertex of
[(G) distance € 2 from (1). Repeating this argument as often
as required, it is clear that ¢ is the identity, so
a(l(e), (1)) 2{1} ana a((c)) 2s_. O

Connected graphs G with n vertices such that A(G) 2 {1}
exist for all n 2 6. A set of such graphs is shown in fig.
3.2.2; note that for n 2 7 they correspond to minimal sets of
generators for Sn by theorem 1.2.,1 and the fact that trees are
minimal connected graphs.

Figure 3.2.,2

4 5 6
n==6 -0 ©
1
2 3
5 6 n
n 7 - —0

3]
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SECTION 3.3%: RESTRICTIONS ON IRREGULAR AUTOMORPHISNMS

The main result in this section is that transposition giaphs
of almost all graphs have no irregular automorphisms. The
exceptional graphs are also listed. Unfortunately, these
results exclude graphs which have a connected component
igsomorphic to K2 , since they are not covered by theorem 3.2.7.
Before embarking on the proof of the main result, however, it is
worth demonstrating that some transposition grephs do actually
have ivregular automorphisms. The simplest example is ™Mk,) ¢
K5,3’ the graph in fig. 2.2.13. By definition, an irregular
automorphism is an automorphism which fixes (1) and every vertex
adjacent to (1). ((1 2 3) (1 3 2)), the zutomorphism of P(KB)
which transposes (1 2 3) and (1 3 2),is clearly irregular. The
irregular automorphisms of F(Kn) sy n 2 3 are stﬁdiéd in section
3.4 .

It is convenient to introduce two special notations for
diagrams of graphs. They will not be mixed in the same-diagram.
Notation 1: if H is a subgraph of G, then a ver%ei of H will
normally be denoted by o , but if H contains every edge of G
adjacent to some vertex v , then v will be dencted by e .

For example, if H = K1,n—1 and G = Kn , then the vertices of
fig.3.3.1(a) are correctly labelled, but those of fig. 3.3.1(b)

are not.

Figure 3.3.1
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Notation 2: if O is an automorphism of [(G), and if ¢ is a
vertex of [(G) fixed by § , then ¢’ may be denoted by m rather
than © in a diagram showing the action of 8 on['(G).

It ig also convenient to use the following notation: if
e is an edge of a graph , then CL% will be the 'transposition
corregponding to e in the normal way.

Definition %.3.1

An automorphism f of a graph G fixes a vertex v of G if
vf = v, and f fixeg an edge e of G if ef = e ., Note that if
f fixes e; then f does not necessarily fix the end vertices of e.

Proposition 3.3.1

If e and f are independent edges of a graph G and € is an
automorphism of [(G) fixing the vertices CV;CVLOG and oW, then
B also fixes the vertex c#tcécuf = crbuf u@ .

Proof

Suppose that (crguetuf)e =0" # oUWy . Now ot and
OJQUf are adjacent to c%zgtuf and 6 is an automorphism, so
0w, and ' are adjacent to O°' . It follows that the graph
Aof‘ fig., 3.3.2 is 2 subgraph of [(G).

Figure 3.3.2

A
o', oW,
W
» 6 1
oW Wp —* o
Since A ¥ K, 30 by theorem 2.2-9, G(A) ¥ K3 . However,
8
CL; and Cb} are labels of edges ofAA, so e and f =rz edges of

G(A). This is a contradiction, since e and f are independent. [J
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Theorem 3.3.2

If e and f are edges of a graph G such that one of the
graphs in fig. 3.3.3 is a subgraph of G, and if € is an
automorphism of [M(G) fixing the vertices F, Pu.{a and wa
of ['(G), then 8 also fixes the vertices {owewf , (wawe
and pae{wfwe = PWf Wewf .

Figure 3.3.3

9
¢
3

Proof

Let A .be the subgraph of ['(G) isomorphic to Cyz defined by
A = P W, W, tw, W, W, in the notation introduced in section
2.3. By hypothesis, e and f cannot both be edges in a circuit
of lengtn 3 in G, and hence A is an induced subgraph of F(G).
(For if not, there would be a circuit of length 4 in ["(G)
containing edges labelled We and Wf. Since els incident to £
the reduced type of this circuit of length 4 must bte isomorphic
to C,. Since it is a subgraph of G and contains e and f, this is

3

a contradiction.)

Let A\' = AB, the image of A under 8 . Since & is an
isomorphism, A' is an induced subgraph of P(G) isomorphic to
Cg. EHence by theorem 2.3.2, G(A') is isomorphic to cne of the
graphs G, Gz, G,, G, Gg, Gy im fig.2.3.1 . Since 8 rfixes
the vertices O, Qw, and (OWf of T(G), A' contains edges
labelled (,ue and Wf , and hence E(A’} contains edges e and f. ‘
Also, E(A’) is a subgraph of G. The only one of the szraphs

G GB""’ G9 consistent with these facts and with the

1’



restrictions on e and f imposed by hypothesis is G, . It
S

follows that E(Ay) = X and has edges e and f. The only sub-

1,2
Y . :

sraph A of ['(G) containing the vertices C» QLU and p

isomorphic to C, and with reduced type G(A') as above is A.

That is, 9 maps A to itself. Since 9 fixes two adjacent vertices

of A , it is easy to see that Q fixes every vertex of A . 0

Definition %.3%.2

Given an edge e of G, an automorphism g of G is of type A
»(w.f.t. e) if g fixes e, every edge of G not incident %o e, and
every edge f of G such that one of the graphs in fig. 3.3.3% is
a subgraph of G.

Definition 3.3.3%

An edge e of G is A-stable if the only automorphism of type A
wer.t. ¢ is the identity.

Proposition 3%.3%.3%

"If e is an A~-stable edge of G and e is an auvtomorphism of
['(G) fixing a vertex @ of ['(G), and fixing every vertex of (c)
adjacent to O, thea O fixes every vertex of F(é)‘adjacent to
oy -

Proof

By proposition 3.2.9, since S fixes fDOUe , it induces an
automorphism g of G whose action on the sdges of G is identical
to the action of 6 on the labels of the edges of [(G) incident
to (Ooue . 6 fixes p and @we , hence O fixes the edge
labelled (v incident to EMA% . It follows that g fixes e
in G. Ve now show that g is of type L w.r.t. e.

Let f be any edge of G not incident to e 3 by hypothesis,
© rixes e, Q(Lg yand €>UJf , and hence by proposition 3.3%.1,

'@ fixes pLUeOUf, so‘@ fixes the odge labelled u)f incident



e

to GDUé. It follows that g fixes f in G.

If £ is an edge of Gksuch that one of the graphs in fig.
3.3.% is a subgraph of G, then (JCLEUUf is fixed by theorem
3.3.2, 80 6 fixes the edge labelled bUf incident to P(L% .
Hence g fixes f in G. By definition, g is of type A w.r.t. e.
Since e is A-stable Dy hypotheéis, g must be the identity, so
O rixes every vertex of [(G) adjacent to ew . a

We now show that if G has an edge e which is not A-stable
then G has a fairly special local structurse.

Proposition 3.%.4

If G is a graph such that every component of G has at least
three vertices, and if e is an edge of G which is not A-stable
and g is a non-trivial auiomorphism of G of %type A w.r.t. e
then G contains one of the graphs in fig. 3.3.4 as a subgraph
and g is a product of some of:the following permutations:

i) any o’es(kq, Kyyoons .kr) , ii) (11 12;) ,iii) (4 j)(m1;1 m1,2)
w.s(m ; ms,z) .

8,
FPigure 3.3.4

ii)

D

Where r 22, s.,0 and t2 0,
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Proof

Let e = {i, j} and let g be a non-trivial automorphism of
G which is of type A wer.t. e. Let G' be the graph obtained
by deleting 1 and j from G. G' may be disconnected, so let
G1, G?,..., Gn be the connected components of G'.

Lemma 3.3%.5

The graph Gq ;5 1€ aq §n is fixed polntwise by g unless
Gq has one or two vertices.
Ezggg of lemma

If Gq haz 3 or more vertices, then it must cleariy have
2 incident edges, since it is a connected graph. These two
edges cannot be incident to e by the definition of Gq , SO
they are fixed by g. Since they have exactly one common vertex,
it must also be fixed bty g. Let tiis vertex be u. If v is any
vertex adjacent to v in Gq then e!' = {u, v} is an edge of Gq.
Both u and e' are fixed by g so v must be fixed by g. Since Gq
is connected this argument can be extended to any vertex of Gq.Ej

Lemma 3.3%.5

if Gq is any of the graphs in fig.3.3.5 then Gq is fixed
pointwise by g.

Figure %2.3%2,5

i (a) ’ (b)

J
e
i v
ef
o (@) .
O O )
i J u

In case (d), V(Gq) = {u}. Otherwise, V(Gq) = {u, v} .



Proof of lemma

In cases (a), (bv), (c), e"=<{u, v}- is fixed by g, and
u and v have different velencies, and cannot be in the same
cycle of g. Hence they must te fixed by g. In case (4), g
must fix u since it of type A w.r.t. e. In case (e), by a
gimilar argument, g fixes f =§-j, u} and since j and u have
different valencies, g must fix u. Similarly, g fixes v, U

By definition, g is non-trivial, sc one of the graphs of
fig. 3.3.6 must be a subgraph of G. (They are the only
remaining possibilities, by the two lemmas.)

Figure 3,3.6

(2) (v) ()

In case (a), G must have two of the subgraphs, or else u
must be fixed by g. In case (¢), (i j) must be a cycle of g
for if i and j are fixed then u and v are also fixed, The

result clearly fcllows from these observations. C]

Definition 3.3.4

An edge of a graph G is B=-starle if e is A-stable, or if e
lies in a circuit of length 3 in G which also contains an A-
stable edge.

Proposition 3.3.7

If & = {i, j}is a B=-stable edge of a graph G, where G
has no component with 1 or 2 vertices, and if 6 is an :
automorphism of [(G) which fixes some vertex o of [(G) and

every vertex of [(G) adjacent to &7, then 6 fixes every

vertex adjacent to CfLue .



Proof

If ¢ is A-stsble then the result follows immediately from
proposition 3.3.3, so suppose that e is not A-stable and lies
in a circuit of length ? with some A-stable edge 2, say. Let
the third edge in the circuit be d.

If O fixes every vertex of [(G) adjacent to o-u) » then
the result follows, so suppose that Q permutes the vertices of
["(G) in a non-trivial way. By proposition 3.2.9 there is a
corregponding automorphism g of G whose action on the edges
of G isg identical to the action of 0 on the labels of the edges
of{q(G) incident to Cﬁ&g 3 £ is clearly a non-trivial
automorphism. As in the proof cof proposition 3.3.,3, g is of

Let e = {i, j} and let k¥ be the other vertex in the speciel
circuit of length 3, so without loss of generality, c ={i, kj
and d = {j, k} .

Lemma 3.3%.8

The vertices i, J, k are fixed by g.
Proof of lemma

Since ¢ is A-stable, v fixes every vertex of [(G) adjacent
to 07%% by proposition 3.,3%.3. In particular, 6 fizes the
4 = CTLuer%
and CTCUECU; = crtu;cud, so @ fixes the edges of [[(G) labelled

vertices CTZUCCLE and CTZL;COe. However, 07W26U

Cbg and Qud‘incident to the vertex O“éLg. Hence g fixes the
edges ¢ and d in G. I% follows immediately that g fixes the
vertices i, j and k of G. O

Since g fixes i and Jj, the end vertices of e, and since g
is of type A w.r.t. e, by proposition 3.3.4 the only vertices

of G not necessarily fixed by g are k k2,..., kr and 1, and 1

1’ 1 27



the vertices in subgraphs i) and ii) of fig. 3.3.4. (Either
the k's or the 1's must be vertices of G by proposition 3.3.4.)

Lemmz %.3%.9

If k, is a vertex of G then o' = i1, k}is A-stable.
Proof of lemma
Since r Z 2 by proposition 3.3.4, i must have valency 2 3.

Also, k, has valency 2, (i k1) cannot be a cycle in any

1
automorphism of G. Hence by proposition 3,3.4, if c' is not
A-stable then one of the graphs in fig. 3.3.7 must be a subgraph
of G.

Pigure 3.3%.7

i ot k1 i o k1
In either case, k1 has valency 2‘5, giving a contradiction. [J
Hence by lemma 3.3.8, if k1 is a vertex of G then k1 is
fixed by g. Since g is non-=trivial, the only remaining

possibility is that l1 and 12 are vertices of G.

Lemma 3.3.10

If l1 and 1, are vertices of G then the edge ¢! ={i, 11}

2
is A-stable.

Proof of lemma

The proof of this lemma splits into two cases.
Case 1: both i and J are adjacent to vertices of G apart from
each other and 1, and 1, .

1 2

In this case, i has valency >4 and‘l1

cannot be a cycle in any automorphism of G. Hence by proposition

has valency 3 so (i 11)

3.3.4, if c¢' is not A-stable then one of the graphs in fig. 3.3.7
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must be a subgraph of G, where k1 is taken to be 11.

Since 11 is adjacent only to i, j and 12, in either case,
one of the black vertiges must be j. This contradicts the fact
that j has valency >/4.

Cage 2: one of the vertices i and j has wvalency 3.

In this case, none of the edges in the subgraph of G
induced by the vertices i, jJ, 11, 12 is A-stable. Since e =
{i, i} does not lie in any circuits of G outside this subgraph
it follows that e is not B-stable, contrary to hypothesis. This
situation is illustrated in fig. %.3.8 in the case j has

valency 3. a

Figure 3.3%.8

Again it follows by lemma 3.%2.8 that g fixes l1 .

Similarly, g fixes 1 Hence g fixes every vertex of G and S0

2.
O fixes every vertex of [(G) adjacent to ouy . 0

Definition 3.3.5

An edge e of a graph G is C-stable if the component of G
containing e is not isomorphic to K4 y and 1f e lies in a
subgraph of G isomorphic to the graph in fig. 3.3.9 .

Pigure 3.3%.9




Proposition 3.3.11

If G is a graph such that every component of G has at least
three vertices, if e is a C-stable edge of G, and if @ is an
automorphism of [(G) such that 8 fixes & and every vertex of
fq(G)'adjacent to O, then'e fixes every vertex of rKG) adjacent
to CTQAé .

Proof

As in the proofs of the earlier results, 6 induces an
automorphism g of G by its action on the edges of [(G) incident
to CVUQ ; as before, g is of type A w.r.t. e. Hence by
proposition 3.3.4, one of the subgraphs of fig. 3.3.4 is a
subgraph of G. (If g were a trivial automorphism of G, then
the.result would follow immediately.)

The proof of this result splits into two cases.
Case 1: e = {i,j}.in fig. 3.3.10 .

Figure 3.3%.10

1
(Note that since the component of G containing e is not

isomorphic to K, , then i must be adjacent to some vertex m

4
other than j, k and 1.)

Since i and j have different valencies, (ij) cannot be a
cycle of g. Also, J is not adjacent to any vertices of valency
2, so by proposition 3.3.4, g = (k 1), since it must fix every

other vertex of G,

Let b ={i, k} , let ¢ = {i, ;}and let d = {3, g},»
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Clearly, g transposes edges b and ¢ of G, and hence @ transposes

the edges of [Y(G) labelled W. and o, incident %o C}QL% , by

b
the definition of g. This is illustrated in fig. 3.3%.12 .

Figure 3.3%.12

>
Oﬂl@(ﬁ% <;1§”,‘Cribgcub ;'Crtubajd

Note that O“cUeLUb = CNUJbu)d since b, d aznd e are the edges
of a circuit éf length 3 in G.

However, CVLUeLUC is not adjacent to Cﬂ%% in f(?), or there
would be a circuit of length 4 in rKG) with edges labelled CUb,
LUC and.Ué (and one other label). This is a contradiction, by
theorem 2.2.8 . In this case, Q does not presér#e adjacencies
in [(G), which is also a contradiction.

Case 2: e = {k, 1} in fig. 3.3.10 .

As in case 1, the only non-trivial possibility for g is
g = (k 1).

Let ¢ = {i, k} and let d = {i, l}- 3 g clearly transposes
c and d. Hence &3 acts on ['(G) as shown in fig. 3.3.13.

Consider the action of B on the edges of [(G) incident to cﬁag.
@ fixes the edge labelled OUC, and transposes the edges labelled

W, and cue . Hence the automorphism g' of G induced bty the

d
action of B on the edges of [(G) incident to o), fixes c and

transposes d and e. This implies that (i k) is a cycle of g',
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which is a ccntradiction since i and k have different valencies

in G.

Hence in either case, g is trivial and the result follows.

Pigure %.3%.13%

a-lwe C'L)c ?\9_/7 ouLwy = O‘/Luc Wy

Proposition 3,3,12

If G is a graph such that every component of G has at least

and if e is an edge of G which is not B= or C=stable

; no >3,

3 vertices,

then the component of G containing e is isomorphic to Kn

or L_; n 2 1, where L_ is the graph in fig. 3.3.14 .

H

Figure 3.3%3.14
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Proof

Since e = {i, j} is not B-stable, it follows that e is not
A-stable, and hence by proposition 3.3.4, one of the graphs in
fig. 3.%3.4 is a subgraph of G. If i) or ii) is a subgraph of
G then by lemma 3.3.9 or lemma 3.3.10 respectively, e lies in
a circuit of length % with an A-stable edge and hence is B-stable,
or else e is C-stable. In either case this is a contradiction.

The only remaining possibility is that iii) is a subgraph of
G. Suppose first that both s> 0and t » 0 in fig., 3.3.4 .

Lemma %3.3.13%

In this case, e! = {i, p1§is A-stable.
Proof of lemma
Suppose that g is an automorphism of G that is of type A
w.r.t. e'. By definition, g fixes d, = {m , I } and hence
1 1,1 1,2
m g =n or m . It follows that (i p,) cannot be a cycle
B A 1,1 1,2 {

of g since i is adjacent to m but D, is not alljacent to m1 1g.
’

1,1
Hence if g is non—trivial, then by proposition 3.3.4, one of the
graphs i) or ii) in fig. 3.3.4 is a subgraph of)G; i)‘cannot be
a subgraph of G since every vertex of G adjacent to i and to p1
must also be adjacent to J, and hence has valency 3 or more.

If ii) ié a subgréph of G then the above argument implies that

J must be one of the black vertices in the subgraph , and hence
by an inspection of fig. 3.3.4 ii), every vertex adjacent to J
is contained in a circuit of length 3 in G, This is a contra-

diction, since j is adjacent to m , which lies in no circuit

1,2
of length 3 in G. It follows that g is trivial, and hence e!
is A-stable. OO

This result implies that e is B-stable, which is a contra-

diction., It follows that either s = 0 or t = 0.
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If both s = C and t = O then the component of G containing
e is isomorphic to K2 . If t =0 and s > 0O then the component
of G containing e is isomorphic to LS . In either case there
ig nothing remaining to prove. The only remaining case is
s =0 and t > 0. In this case G contains the graph in fig.
3.3.15 as a subgraph. (Note the relabelling of the vertices of G.)

Figure 3.3.15

qT, 9 Ly

If e!' = {i, q{&is A-stable then e is B~stable. Hence by
proposition 3.3.4, one of the graphs in fig. 3.3.4 is a subgraph
o{ G. DNote that if v is any vertex of G , then i ~ v iff j~ v,
provided v £ i or j.

If i) or ii) is a subgraph of G then j is distinct from k, or 1,

respectively, without loss of generality. Hence k1 has valency
3 if i) is a subgraph, since 1t is adjacent to 1,J and Qe This
is a contradiction. If ii) is a subgraph of G then j is adjacent

to i, q, and l1 . The only possibility is that j = 1 and

5 9
hence i and j have valency 3. It isheasy to check that in this
case e is C-stable, which is a contradiction. The only remaining
possibility is that iii) is a subgraph of G and that (i q1) is a
cycle of a non-trivial automerphism of type A w.r.t. e'. Note,
however, that in fig. %.3.4 iii), e must be changed to e' and

J must be changed to qT , Since we are now considering e', not e.

The other labels of the graph do not clash with the new notation

introduced in fig. %.3.15.
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First suppose that s > O in the relabelled version of fig.

3,%,4 iii). Since j lies in the circuit i & j ov q, of G;

J# m1,2 since m1,2 does not lie in a circuit of length 3 in G.
Hence 1 &~ m,]’1 and j ¢/m1,1 which contradicts the observation
that i Vv iff jrv v . It follows that s = 0, Hence if v is any
vertex of G distinct from i and 4, then 1 eov v 1iff q1hd Ve

A similar argument holds for Aoseees G and hence the component
of G containing e is a complete graph. This completes the proof
. of proposition 3.3.12. [J

Proposition 3.3.14

If e is an edge of a graph G which has no component with
less than 3 vertices, and if the component of G containing e is
isomorphic to Ln s n2 2, and if 9 is an automorphism of f(G)
fixing O and every vertex of [(G) adjacent to ©Y, then
fixes every vertex of (G) adjacent to crtbg .

Proof Let g be the automorphism of G corresponding to the
action of B on the labels of the edges of [(G) incident to
o“a)e . As before, by froposition 3.%3.1 and theorem 3.3.2, &
is of type A w.r.t. e. If e is not the edge {i, j} in fig.
2,3,14 then e is clearly A-stable and the result follows by
proposition 3.3.%, so éuppose that e = {i, j} . The onlyE
non-trivial automorphism’of G which is of type A w.r.t. e is
(i j)(k1 11)(k2 12)...(kn ln), so we must have

g = (1 )k, 1)(k, 1)euu(ky 1) . Hence if b = {j, kr},

c.. =Ekr, lr} and dr ='{lr, ;}~; r=1, 2,..., n , then g fixes
e and Ch and transposes br and dr . Hence 6 fixes the edges
of M(G) labelled (i j) and (kr 1r) incident to cﬁug =0(1i 3),

and transposes the edges labelled (J kr) and (i 1r)'



Lemma 3%.3%.15

If a and a' are edges of a graph G such that every automorphism
of G fixing a also fixes a', and if e is an automorphism of [(G)
fixing(D and P(Ua, then O also fixes GM)&UUa, .

Proof of lemma

The automorphism of G induced by the action of e on the labels
of edges of [(G) incident to CDCUa must fix a in G, and hence it
must fix a' by hypothesis. The result follows immediately. 3

We now show that O fixes all the vertices of [(G) in fig.
3.3.,16. FEach vertex in the figure is numbered 1,..., 63 this
number gives the reason that the vertex is fixed by 6 . Since
each numbered reason assumes that the previous reasons are true,
they should be read in ascending order.

Figure 3%.3,16

o, W, Wy
1 1
o w, wb O"aé Ly,
1 71 1
w
CTIC&"C(“U‘D(’Ue baﬁub1auecc%
11 1

I

(e, 1005 x)(1 )
(1 1)G G k) = (1),
(1).

Note that (O, W W,

w v
1 Py g€,

it

and that (W W, ) = ((1 )G €))7
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1¢ Vertices numbered 1 are fixed by hypothesis.

2:'671% uJb is fixed by proposition 3.3.3 since cy is an
1 1
A-gtable edge of G.

3: This vertex is fixed by applying lemma 3.3.15 taking b1, e

and O’OUC as a, a' and P respectively.
} 1
4: This vertex is fixed by applying lemma 3.3.15 to b1, e and O,

5: This vertex is fixed by lemma 3.3.15 applied to d1, b1 and

Crzugfk)b1uje ‘
6: This vertex is fixed by lemma 3.3.15 applied to b

Hence @ fixes the edge labelled Wb incident to G‘/LJ\()e ,
which contradicts the earlier observation that € must transpose

4 e and

this edge with the edge labelled Cbh . This completes the proof
' 1
of proposition 3.3.14. O

Theorem 3.3.16

If G is a graph without any connected components isomorphic

to C, or to K ; n 2 1 then [(G) has no irregular automorphisms.

4
Proof
By proposition 3.3.12, every edge of G is B= or C-stable,
or lies in a gomponent of G isomorphic to Lin > 2. Let O ve
any automorphism of [(G) fixing (1) and every vertex of ['(G)
adjacent to (1), and let O be any vertex of [(G) distance 2

from (1), so @ = (T)UJeLUh where d agnd e are edges of G.

Then ED fixes 07 by proposition 3.3.7, proposition 3.3.11 or
proposition 3.3.14 since e is either B-stable, C-stable or lies
in a component of G isomorphic to Ln ;N 7 2. Hence'e fixes
every vertex of [(G) distance 2 from {1). The same argument
can be used to show that & fixes vertices any distance from (1)

and hence, since [ (G) is connected, & fixes every vertex of [(G). ]
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Corollary 3.3.17

If G is a graph such that no component of G is isomorphic

to 04 or to K_ ; n 21, then the stabiliser of [(G),

A(C(c), (1))

of [*(G) fixing (1).

i

AWQ"(G), (%)), the group of weak automoprphisms

Proof
Thig result follows from theorem 3.3%,16 and theorem 3.2.6. [
In the next section it will be shown that the converse of
this result also holds, so if G has a component isomorphic to
C, or to K then [M(G) has irregular automorphisms.'
Corollary 3.3.17 shows that for almost all graphs G, the:
stabiliser of [(G) is isomorphic to A(G), and that ail the

elements of the stabiliser are . very closely connected with

automorphisms of G.
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SECTION 3.4: IRREGULAR AUTOMORPHISMS OF C4 AND KTL

In the previous section it was shown that if G has no

component isomorphic to C, or Kn then M(G) has no irregular

4
automorphisms. In the present section it will be shown that
r(C4) and F(Kn); n 2 3% all have irregular automorphisms, and
all the irregular automorphisms of these graphs will be

"described.

Theorem 3.4.7

For all n ) 3, the bijection @ : S ~» S_ defined by
ocB-0"" isan irregular zutomorphism of /"'(Kp)
Proof

Clearly, 9 permutes the vertices of F(Kn), so to show that
9 is an automorphism it suffices to show that E) preserves
adjacency in P(Kn). Let CT} and C*é be any two adjacent vertices
of FKKn), so 07, = oW for some (A)é.CL(Kh). Note that since
K, has an edge joining every possible pair of vertices, fL(Kn)
céntains every transposition in Sn'
0,6 =03 = (0w = wloT! = wodl since wi? = (1),

= O‘;1(CT%‘&/CY;1) = CF?OU' where (W' is a permutation

of Sn conjugate to &), DNow conjugate permutations have the

same cycle structure, so (L' 1s also a transposition, and hence

by the earlier observation, ' e.fL(Kn). It follows that

- -1
CV1 2

To see that O is irregular, note that (1)2 = (1) and

is adjacent to ¢ , so G is an automorphism of fKKn).
MJ? =(1) for all CL)QSZ(KH) so € fixes (1) and every vertex of
F(Kn) adjacent to (1). Also, sincen > 3, (1 2 3) is a vertex
of [(X_ ), and (123)8 = (132) #(123)s0 8 isa non-
trivial automorphism. ]

In fact {“(Kn) has no other irregular automorphisms. This
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will be proved in the following result. It can also easily be
shown that Q is not an automorphism of any other transposition

graph.

Theorem 3.4.2

For all n 2 3, O is the only irregular automorphism of F(Kn).

Suppose that 4) is another irregular automorphism of rYKn).
Define d to be the largest integer such that for all vertices e
of (K ) such that DF(Kn)(“)’ p)sa, \06 =P . vote
that d » 1 since both § and 4) fix (1) and every vertex adjacent
to (1) by the definition of an irregular automorphism. Since
F(Kn) has diameter n-1 by theorem 1.4.10, d < n-2, for if
d = n-1 then © and $ would be identical. |

The proof now temporarily splits into two separate cases.

Case 1: d = 1.

In this case there is some vertex 0 of’F(Kr) such that
-1 _
DZ(-Kn)((’I); @) =2 and p¢> + Pe =P . I:By theorem 1.4.5,
n (f)) -c ( P) 2, and since each cycle contributing to <t

must move at least 2 letters, the only solutions to this equation

It

* * * * .
aren =3, c¢c =1 andn =4, ¢ = 2. Hence €> is a cycle of

length 3 or a product of two disjoint cyclesvof length 2.
(1t is probably more easy to ﬁrove.this directly using the fact
that p is the product of two transpositions.)
If @ is an involution then 69 = (1 j)(k 1) for some i,...,1.
since P93 08 , P # ((2 NG 1™ = (1 3)(x 1).
However, by proposition 3.3.1, taking o = (1), W, = (i 3)
and L&'f = (k l),(# fixes @ , giving a contradiction. Hence
6) = (i j k) for some i, j, k. Now consider the action of é}

on the subgraph of M(k) in fig. 3.4.1.
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Figure 3.4.1

(1)

(i k)

(ik} (13)

(1 3 0¥ . O(1 & 3)

Let &\ be the subgraph of F(Kn) in fig. 3.4.1. ©Note that
A K3,3 and that G(/\) is the complete graph with vertices
i, j, and k. Also, Z&¢7 contains the vertices (1), (i j),

(j k) and (i k) since they are all fixed by ® . Since q7 is
an automorphism of[ﬂ(Kn), £y$‘ must be isomorphic to /) .

It follows from theorem 2.2.10 that E([l@ ) QAKB,,and since
contains edges labelled (ij), (jk) and (ik), E(Ad}) = G(A).
Since £§d> and ﬁk contain common vertices it is easy to see
that A =\ . Hence p¢> = (i.j k) or (i k j) so Qq) =0
or Pi} = 63—1. If pkp = e_1 then @\P =@9 , which is a
contradiction, so ([)(;) = E) .

We now show that ¢) must fix every vertex of r(Kn) distance
2 from (1) .

Consider the automorphism of Kn induced by the action of ¢
on the edges of rKKn) incident to (i j), g, say. From the above
figure, g fixes {i, i}, {3, K}, {1, 5}, and hence g fixes the
vertices i, j, and k of Kn' If 1 is any other vertex of Kn’

then we have already seen that ¢) fixes‘the vertex (i j)(k 1)
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of FTKn) and hence #) fixes the edge of FKKn) labelled (k1)
incident to (i j). It follows that g fixes the edge {k, 1} of
Kn’ and since g fixes k, g must also fix 1. Hence g is the
identity andl{) fixes every vertex of F(Kn) adjacent to (i j3).

Let /\' be the subgraph of F(Kn) in fig. 3.4.2, where 1 is
any vertex of Kn'

Figure 3.4.2

(13 1) (11 3)

O rfixes (1), (i j), and (i 1) by definition, and fixes
(i 5 1) and (i 1 j) since they are adjacent to (i j). Hence
@ fixes the edges of F(Kn) labelled (i1), (ij) and (jl) incident
to (i 1). This is a repeat of the earlier situation with 1, i, j
replacing i, j, k. Hence by. the previous argument, @ fixes
every vertex of F(Kn) adjacent to (i 1).

By a similar extension of this argument, if 1 and m are any
two vertices of Kn theﬂ ¢) fixes every vertex of{”(Kn) adjacent
to (1 m). Hence ¢) fixes every vertex of FKKH) distance 2
from (1).

Case 2: d 2 2.

In this case, é = P8 for every vertex of [M(K_) distance
i n

g2 from (1). since p(6)° = (@“>9 =(ph T =p, 0% s
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. the identity automorphism ofl"(Kn). Hence if G is a vertex
of F(Kn) such that the distance from (1) to P is at most 2
then 0 (00) = (PP )8 = (pB)IO = P(B)° =0 . Eence

if W =(b{9 , then ql is an automorphism of FKKH) fixing every
vertex distance 2 or less from (1). Note that 4/ cannot be
the identity, for then we would have q) = e since‘@ is an
involution.

Hence in either case we have an irregular automorphism of
r%Kn) which fixes every vértex‘distance d or less from (1),
where 2 £ d £ n - 2. From now on, this automorphism will be
referred to as 4/ . (Of course, in case 1, q) is simply ¢> )

Since d is chosen to be as large as possible, there is some
vertex P of F(Kn) such that Pkp # p and DF(K >((1), @ ) = d+1.
Hence by theorem 1.4.5, n*(ED) - c*(é)) = d+1,nand hence
n*(e) - o*(P); 3 since d 2 2. Therefore Q has at least
one cycle of length 4 or mbre, or at least two cycles of length
2 or more in its cycle structure; These two cases are considered
separately.

Case 1: P =0 (i jk1l...), where O is a permutation
fixing 1, J, k, 1.

Hence P (i j) =07(j k 1...)(4),

Pk 1) =0(1j 1...)(k),
and  P(i i) (x 1) = (j 1...)(i)(x).
Now 2" (P (1 3)) - (P (L 3)) =n(p) - (p) - 1=4,
since E’(i j) fixes i, but otherwise moves the same vertices
as P , and it has the same number of non-trivial cycles.
Hence DF(KH)((U, @ (i j)) =dand P(i j) is fixed by Y.
Similarly, DP(Kn)((”’ Pk 1)) =d so'e(k 1) is fixed by ¢/ y

and Dp(Kn)((w), (i i)k 1)) =d -1, o P(i 3)(x 1) is
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also fixed by ¢) .
Case 2: O =07(i jo..)(k 1...), where O is a permutation
fi#ing i, jy,k and 1.
Hence @(i §) =07 (§...)(1)(k 1...),
(k1) =07 (i j...)(1...)(k),
and O (k1) = 0(j...)(1... 0 (k).
It is easy to check that the distances from (1) to €>(i i),
P (k1) and @ (i 3)(k 1) are the same as in case 1, so all
these vertices are fixed by %) .

Thus in both cases, Q(i Ik 1), Q(i j) and ?(k 1) are
fixed by dg . Hence taking O =Q (i j)(k 1), W, = (k 1) and
W, = (i j), by proposition 3.3.1, qj fixes £ , which gives
a contradiction. This completes the proof of theorem 3.4.2. O

Note fhat the group of irregular automorphisms of F(Kn),

together with the identity, i1s iscomorphic to C the cyclic group

9
of order 2.

We now consider the irregular automorphisms of[ﬁ(C4), where
04 is of course the circuit of length 4. {"(04)’tﬁrns out to

have three irregular automorphisms, which are described in the
next result. It is easy to check that the group of irregular

automorphisms of r‘(c4), together with the identity, is K, , the

4’
Klein-4 group, since all three irregular automorphisms are
involutions.

In the statement of the next result, if @ is an automorphism

of [(G) and @ and @ ' are vertices of r"(G) such that 6)(1) = e'

and P '¢ =€‘ then we will write @ : pe>p' -
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Theorem 3.4.3

If 04 is the graph with vertices 1, 2, 3 and 4 and edges
{1, 21, {2, 3}, {3, 4}, {4, 1} then the only automorphisms of
f(C4) fixing (1) and every vertex adjacent to (1) are 1, 431,
4)2, and @ 3 where 1 is the identity automorphism and
O, (124)e(132), (143)e>(234), (13)>(1234),
(2 4)e3(1 4 %3 2) and fixes every other vertex of r%04),
G, (14 2)e>(134), (123)e>(243), (24)e>(1234),
(1 3)es(1 4 3 2) an§ fixes every other vertex of["(C4),
G, (13)e>(24), (1234301 432), (12403 2),
(14 3)e>(234), (134)e>(142), (123)>(2 4 3),
and fixes every other vertex of{ﬂ(C4).
Proof
r’(C4) may be conveniently divided into two edge~disjoint
subgraphs [31 and 132 as shown in fig, 3.4.3. These two graphs
have eight common vertices which are joined by dotted lines in
fig. 3.4.3.
Let © be any automorphism of rKC4) fixing %hé vertices
(1), (1 2), (2 3), (3 4) and (1 4) . It is easy to check that
(1 3)(2 4) is the only vertex of[ﬂ(C4> distance 4 from (1), so
(1 3)(2 4) must be fixed by ap . .Also, qJ fixes (1 2)(3 4)‘
since it is the only vertgx of{"(C4) which is adjacent to both
(1 2) and (3% 4), apart from (1) which is already fixed by'q) .
similarly, @ fixes (1 4)(2 3). § fixes (1 3 2 4) since it is
the only vertex of r‘(c4) adjacent to (1 4)(2 3) and distance 2
from (1 2), apart from (1 4) and (2 3) which are already fixed
by ¢ . similarly, @ fixes (14 2 3), (1 3 4 2) and (1 2 4 3).
Thus ¢> fixes every vertex of rKCA) in [31 except for those

which are also vertices of [&2.
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(1)

: P(C4).

Figure 3.4.3

=(234),d=(1143),

g=(142), h=(134),i=(123),3=(243),

a=(124), b=(132),c¢c

Key:

1 4)(2 3).

=(12)(34), £ =(

e
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Since (1 2 4) and (1 3 2) are the only vertiges of[‘(c4)
adjacent to both (1 2) and (1 3 2 4), and since (1 2) and
(1 3 2 4) are fixed by § ', it follows that either @ fixes
both (1 2 4) and (1 3 2) or ((1 2 4) (1 3 2)) is a cycle of .
Similarly, either (2 3 4) and (1 4 3) are fixed by <p or
((2 34) (1 4 3)) is a cycle of (P s either (1 4 2) and (1 3 4)
are both fixed by @ or ((1 4 2) (1 3 4)) is a cycle of § ;
and finally, either (1 2 3) and (2 4 3) are both fixed by<p
or ((1 23) (24 3)) is a cycle of H .

Suppose that ((1 2 4) (1 32)) is a cycle of 47 but that
((2 34) (1 4 3)) is not, so #) maps (1 2 4) to (1 3 2) and
fixes (2 3 4). This gives a contradiction since
Dr(c4>(“ 24), (234)) =24%4-= DF(%)(“ 32), (234)),
SO ¢> does not preserve distance in]”(c4). Similarly, if
(23 4) (14 3)) is a cyele of ® then ((1 2 4) (13 2))is
a cycle of . Thus ((1 2 4) (1 3 2)) is a cycle ofcp iff
((2 3 4) (1 4 3)) is. Similarly, ((1 4 2) (1 % 4)) is a cycle
of O irf ((123) (2 4 3)) is. T

If none of the above cycles are cycles of  then ¢> fixes
(1 24), (132),ee., (2 4 3). Hence (P also fixes (2 4) since
it is the only vertex of P(c4) adjacent to both (1 2 4) and
(2 4 3). ¢Similarly, 4’ fixes (1 3), (1 2 3 4) and (1 4 3 2),
and hence ® is the identity.

1f ((124) (132)) and ((2 3 4) (1 4 3)) ere cycles of ¢
but ((1 4 2) (1 3 4)) and ((1 2 3) (2 4 3)) are not, and if
¢1 is the automorphism defined in the statement of this theorem
then ¢xp ; fixes (1 2 4), (13 2),..., (2 4 3) and hence by the
above argument, O 431 is the identity. Siuce 491 is an

{

, X
involution, © = Q.- (It is easy to check that @,]is an



-111=-

automorphism oflﬂ(C4), by studying its action on [32 in
fig. 3.4.3.)

By a similar argument, if ((1 4 2) (1 3 4)) and
((1°2 3) (2 4 3)) are cycles of ® bvut ((1 2 4) (13 2)) and
((2 34) (14 3)) are not, then o = 432 . PFinally, if all
four transpositions are cycles of Ej) then (P = ¢3 .

This completes the proof of theorem 3.4.3. [J

Corollary %.4.4

"If G is a graph with a component isomorphic to C4 or to
K5 n 2 %, then [(G) has an irregular automorphism.
Proof

Let (}5 be an irregular automorphism of [[(H), where H is the
" component . of'G igomorovhic to 04 or Kn' By proposition 1.3%.9
ne) = P(H) x{\, and every vertex of [(G) can be written in
the- form O Y , where O is a vertex of [(H) and O commutes
with T . Yow define an automorphism bt of M(G) by |
Qq)' = (O’(i))"ﬂ' , where @ =0T and O is a vertex of M(m).
It is easy to check that’ (b.' is an irregular au%o;ﬁorphism
of F(G). In

It is probably possible to extend the results in this
cﬁapter to all transposition graphs. Howéver, in the remaining

cases there is not such a natural connection between -

automorphisms of G and automorphisms of [(G).

A
égfym N

ﬁm%mamy 24

%ﬁr Af’/
Fant
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CHAPTER 4: HAMILTONIAN CIRCUITS IN TRANSPOSITION GRAPHS

SECTION 4.1: INTRODUCTION

The main aim of this chapter is to prove that all
transposition graphs wiﬁh four or more vertices are hamiltonian.
This is not a particularly surprising result in view of the fact
that only a few non-hamiltonian, vertex transitive graphs
are known.

In section 4.2 some simple results are proved concerning the
1argevscale structure of & transposition grepk [(G), where G is
a connected graph. Of particular interest is the way in which
M(G') is contained in M(G), where G' is a connected gravh
obtained bty deleting a vertex of G. These results are useful‘in
toth section 4.3 and 4.4.

In section 4.3 it is proved that r(K1’n_1) is hezmiltonian for

all n 2 3. This case must be dealt with separately since (K

1,n—1)
centains no circults of length 4, so the method of proof used in
the genersl case does not work. |

The main result is proved in section 4.4. It is in fact a
simple corollary to the result that [(T) is hamiltonian for any
tree T with 3 or more vertiee;. The prcof of this result tzkes
up most of this section. The general ﬁethod of proof is very.
simple but uﬁfortunately.does not work on trees with six or

fewer vertices. These are dealt,with by means of a laborious

step by step argument which takes up much of the section.
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SECTION 4.2: THE LARGE-SCALE STRUCTURE OF TRANSPOSITION GRAPHS

wWe begin by giving some results on the left cosats of Sr
in Sn’ where r € n-1.

Definition 4.2.1

- If r {n~1and O‘é:svl then the left coset o’S_ is defined
by OrS, ={°P 1 pe sr} .
If O’1 and Cf2 are elements of the same left coset of Sr
o ; 1 . . .
in Sn then we will write CT% ~ cré, ~, is clearly an
equivalence relation.

Propogition 4.2.1

For all Q% , 0%, € S, O% ~, O, iff Vs such that
r+l < s<n, s 0;1 = scz";1 .
Proof

I CP% ~_ 07 then there is some'cr’e S, such that
01’ ’ 0“2 eo’sr . Hence there exist @1, (32 =3 Sr such that
Oy = 0@, and O, = 07, Thus O = O‘WPT = 0,05
and 0“2 = U1€>;1@2 = 0’1 6) , Where pesr. If r+1 & s ¢ n,
then 5073 = s(0,0) = s(p 07 = sp Mo

= 357;1 since G)G-Sr and fixes every s such that

S>I‘.

Conversely, if sCTq1= sCT;1 for all s such that r+1.& SQ{IM

]

-1 -1 =1
16t ED =O~1 012 4 S0 8 €= S(O—"l O2> (so‘:l )OJZ

-1
(scr2 )CT2 = s, and hence G’E S,

Also, CV1 and CYZ lie in the same left coset of Sr since
e = Sr so the result follows. [J
Notation: The left coset O’Sr will be denoted by

2,.- ’

it
-

(fi1, ipene, in—r>> where i = (n+1-s) o1 for s
n-r. This symbol is well-defined by proposition 4.2.1 .

Note that i1""’is are distinct and lie between 1 and n.
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In this chapter we will mostly be interested in the cases
r = n-1 and r = n-2, when the notation simplifies to € i and
<i, J > respectively.

Proposition 4.2.2

BEvery finite connected graph G has a vertex v which is not
a cut-veritex of G.
Proof

This result is a simplified version of theorem 2.3 of
Behzad and Chartrand, and is very easy‘to prove. a

Corollary 4.2.3

Every connected graph G on n vertices can be labelled in
such a way that Gr 1= G —.{vr+1, Vr+2""’ vn} 1s connected
for all r such that 1 £ r £ n-1.

Proof
Simply choose vn tc be any vertex of G which is not a

cut vertex of G, choose v to be a vertex of Gp which is

N~ 1

not a cut vertex of Gn- and so on. [J

1’
Theorem 4.2.4

Let G be a graph on the vertices 1, 2,..., n such that
Gr i= G -n{r+1, T42yenny g}is connected for all r. Then each
left coset G“Sr is a set of vertices of [M(G) and induces a
subgraph [\ of M(G) which is identically labelled to re,).
Proof

It is obvious that b‘Sr is a set of vertices of M(G) since
O'S, is a subset of § . Hence it induces a subgraph A of [(G).
Consider the map q) :F(Gr) —> /\ defined by C;) : P —>0'C .
q) maps 8§ to CTSr, and hence maps vertices of[ﬂ(Gr) to vertices
of [&. It remains to show that (b is an is omorphism and maps

edges of F(Gr) labelled (W %o edges of [\ labelled W .
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Suppose that €>1 and 632 are adgacegt~vertlces of fKGr) and
P, = P, W where we{lc ). By definition, {91, (oz}qb -
{O‘PV OPZ}’ and O"(v"g = 0’91(»() , S0 0‘“(31 amdo“p2 are
adjacent vertices of [7(G) joined by an edge labelled (U .

Since [\ is an induced subgraph of [(G) and 0’0, and CVGJ2 are
vertices of ZX , 4) naps edges offﬂ(Gr) labelled (WJ to edges of
[\ 1abelled W , and the result follows. [

The subgraph offq(G) induced by the coset (Ti1, i2,..., in—r:>
of §_ will be denoted by i,y igyeeny 3y SI(G), where G_ is
the (connected) graph obtained by deleting the vertices r+1, r+2,
seey n from G.

For example, if n = 4, » = 3, and G is the graph with vertices

1, 2, 3 znd 4, ~nd edges {1, 2} , {2, 3} ,{3, 4} then['(G) is
shown in fig. 4.2.1. There are four left cosets of S3 in 84,

<1> , < 2>, <3>, (A> in the above notation. Note that
<A:> = (1)83 . These cosets and the subgraphs of [7(G) induced
bty them are also shown in fig. 4.2.1. It is easy to see that
<f4>f1(G5) Elﬂ(GB) , and that the other subgraphs are all
identically labelled to F(GB).

Proposition 4.2.5

If G is a connected graph on n vertices and G is labelled
in such a way that n is not a cut vertex of G, and if {i, n}—
is an edge of G, and if j # k are such that 1 L j,k& n
then there are (n-2)! edges of [(G) labelled (i n) joining
< >r“(cn_1) to (xPl(G__,). (That is, edges which have one
end vertex in one coset, and the other end vertex in the other
coset.)

An example of this result can be;seen in fig. 4.2.1, where

there are (4-2)! = 2 edges labelled (3 4) joiningz any two cosets.
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Figure 4.2.1

(123 4) (13 4)

(1 4 2)

{1yMG,)

(14 3) (1 4)}

(1 3)(2 4). £14)(23)
(34)

(34)

Proof of proposition 4.2.5

We make the following claim: if O7 = O°,(i n) then
2 1

- -
Od1€‘<j> and U/QC‘<1<> iff i()’,l1 = k and no~1'~= 3o
For suppose that CV1 and sz are as above; since Cﬁ16<fj:>,

then nCJ‘jI'1 = J by definition. Also, by a similar argument,

k=003 =a(ey e an{G e} =0 f G o)
. o
= 107 as claimed.

Hence there is ocne edge labelled (i n) joining < iV to
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1 = k and no:1 = J.

{k > for each O” ¢ S, such that i o

There are clearly (n-2)! permutations satisfying these
constraints since i # nand j £k . O

Proposition 4.2.6

If G is a connected graph on n vertices and n is not a
cut vertex of G then every edge of I(G) from < j ) to <l§>,
where j # k, is labelled (i n) for some i < n
Proof

This result is obvious, for if Cfé = CTA(i 1) where i,1< n,
then n(};1 = n(CTH(i l))‘1 = n(i 1)cr:1 = ncr;1 , and hence
CT% ~ 6’2 by proposition 4.2.1. [J

Hence the large-scale structure of rTG) can be described
as follows. There are n Loft cosets of Sn—1 in Sn each of
which induces a subgraph of [(G) identicelly labelled to [(G'),
where G' = G -{;n} . Bach pair of these subgraphs is joined
by (n=-2)! edges of M(G) labelled (i n) for each i such that
{i, n} is an edge of G. In the special case where G is a
tree, (and this case is very important in this chapter),
n must be an end vertex of G, or else it would be a cut vertex.
Hence n has valency 1 in»G and there is a unique vertex i of &

adjacent to n. Thus each pair of cosets of Sn in S are

-1
joined in [7(G) by (n-2)! edges, all of which are labelled (i n),

Provosition 4.2.7

If G is a connected graph on n vertices such that

Gn-1 =G —-{n} and Gn—Q = Gn—1 —-{ne1} are connected, and if

there exist vertices p and q of G such that p # ¢ , p o~ n=-1

&

and g ~n, and if 1 i2, jj, and j2 are distinct integers

1’
such that 1 g’i1, i2, 31, j2 £ n, then there is a circuit of

lergth 4 ACM(G) such that G(A) is the graph with edges
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{b, l—1}- and {q, q} and such that /\ has one vertex in each

of the cosets <i1, j1> s (i,!, 32> , <i2’ j1> and <i2, j2>.
Before proving this result, it is probably worth explaining

its significance. No restriction at all is placed on G by the

constraints that Gn-1 and Gn—2 are connected; by corollary 4.2.3

any connected graph can be labelled so as to make this true.

The only connected graph for which p and q do not exist for any

. Thus for all

choice of n and n-1 is the graph K1 N
y N

connected graphs except K there is a choice of n, n-1,

1,n~=1
p and gq satisfying all the hypotheses. The only constraint
imposed by the choice of i1,..., j2 is that n } 4.

The idea behind this result is that if a hamiltonian
circuit exists in[‘(Gn_1), then this circuit and similar
circuits in e;ch coset give a set of circuits spanning the
vertices of [(G). The hope is to use n-1 of the sguares
constructed in this result %o patéh together the spanning set
of circuits to give a hamiltonian circuit in F(G). This idea

is illustrated in fig. 4.2.2.

Figure 4.2.°2
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Proof of proposition 4.2.7

In the full permutation notation, let O? be a permutation
?

1

with the following form:

0‘1“’1 =,-~~°011---Jr{°“12"~32'“ = ll J,! 12 32
-o.nooon‘1-ooqooonpooco n n_1 q p

in a more compressed notation. Such a permutation exists since

i1, j1, i2 and j2 are all distinct, and since n, n-1, p and g

1

are all distinct. Clearly, O , € § and since n(CJ’1 1)"1 =i,
b4 H)

-1 . . .
and (n—1>(0;’1) =""J1$ O/»},»} 6(119 J1> .
Leb 0/1’2 OJ_]’,’(p n-1)9

S0 O?,2 = (11 iy iy dp|{ P 0=
nn-1qg p n-1 p
19303 3 €ty dyy

n p g n=i

Similarly, T%,0 = T4, (qa n) €<12,~ 3'2> and
O =05, n-1)€ iy, jb .
Finally, O | (q n) = %, 5 (p n-1)(q n) .
Y (¢ n)(» n-1)(q n)
S 4 (p n-1)(a n)(p n=1)(q n)
= Olm :
Also, since pe~n-1 and g~n in G, (p n-1), (qa n) € (a),

]

and hence the subgraph [X of rTG) induced by the vertices

c73,1, CT%’Q’ Cyé,z and CJ"2’1 is a circuit of length 4 and

has one vertex in each of the required cosets. [J
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SECTION 4.3: HAMILTONIAN CIRCUITS IN [(X

)e

Throughout this section, K1 ne1 will be the graph with
, i~

'vertices 1y 252049 n and edges -{1, 2} , {1, 33 sev ey { 1, n} .

1 ,n"’1

Definition 4.3.1

For this section only, two vertices CT% and CYQ of MK 1)

1,n-

are related if there exist distinct numbers i, j, k such that

cré = cr1(1 i j k). An eguivalent definition is that cr1 and

g

are distance 3% apart in FKK1 o 1) but do not both lie in
,n=

).

any circuit of length 6 in P(K1 e
-

Propogition 4.3%.,1

If cf1 and 07, are both related to the identity (1) then

there is an automorphism of P(K ) fixing (1) and mapping

1,1’1‘1
Cf1 to o, -
Proof
By definition there exist a1, b1, 01, a2, b2, 02 such that
Cq = (1 a, b, 01) and O} = (1 a, b, 02). Since a,, b, c, are

distinct for i = 1, 2, there is a permutation (D of Sn mapring

a, to a b, to b, and ¢, to ¢ This permutéfibn.is clearly

1 2 7 2 1

an automorphism of K

2 »
1.n-1 Hence by lemma 3.2.5,
b
-1 . . I
6@ N O'@ is an automorphism of P(K1,n—1) fixing (1).
‘ -1
Also, (1 a, b, 01)<]@ e (1 a, b, 01)€

(12,000 ci0)

(1 a, by, ¢2) by the definition of E>.

Hence Eag)is an automorphism ofr‘(K1 0 1) with the required
,n—
properties. a

Proposition 4.3.2

r'(K1 3) is hamiltonian, and has a hamiltonian path
’

joining any two related vertices.
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Proof

F(K1’3) may be embedded in a torus as shown in fig. 4.3.1.
The heavier lines in the figure form a hamiltonian circuit in
the graph. Of course, the imbedding is irrelevant; it is simply
a convenient way of drawing the graph, which is non-planar.

FPigure 4.3%3.1

Since K is vertex transitive, we may choose (1) as
1,3 -

an end vertex of a hamiltonien path in F(K1’3) without loss
of generality. By proposition 4.3.1 we may choose the other
end vertex of the path to be (1 2 3 4). A haniltonian path
joining (1) to (1 2 3 4) in F(K1,3) is shown in fig., 4.3.2 .

This completes the proof of proposition 4.%.2. i]



Figure 4.3,2

Theorem 4.3%.3

For all n 24, if(ﬁ(K1,E_1) has a hamiltonian path joining
any two related vertices, then r(Kj,n)~is hamiltpnian.
Proof

By theorem 4.2.4, the left cosets of Sn in Sn_,_1 induce
subgraphs <:i>{ﬁ(K1,n_1) s 1 =1, 2,..4, n+1 which are
).

identically labelled to :”(K1 e
,n-

Lemma 4.3%,4

For all i =1, 2,..., 0~1, there exist vertices CTi and
ol of <i>{"(K1 ,_q) such that O’ and ’! are related
s

vertices of [(K, _) and such that O, ., = ¢!(1 n+1) (mod n-1).
1,0 14 1

1

Proof of lemma
By definition, there exist 2y bi’ ¢, such that

| - 3 ~ —_
C"i = CT;(1 a; b, ci). Alsc, if a,, b,, or c, = n+1, then

it is easy %o check that Og and cﬂi lie in different left
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cosets of Sn in Sn+1, giving a contradiction. Hence the vertices
offﬂ(K1 n 1) which are mapped to 07 and ¢! by *the label-
, N~

)

preserving isomorphism of theorem 4.2.4 are related inlﬁ(K1 et
; o
as well as in F(K1,n). Let Fﬁ = (1 a; by ci) 5 1= 1,000,041,
For all n, choose (}'é+1 = (1), so CT} = (1 n+1). After this

choice, the proof divides into two cases.

Case 1: n = 4

Choose 91

€4

With these choices, Cf1

(1342), Pp=01234), @=0_0243),
(1243) and Py =(1423).

R CY% seens cré are as in the table below:

= (15) (25%4) (12)(354) | (1453) (1324)

ol | (15342) (12543) | (14)(35) | (13245) (1)

1

It is easy to check that these permutaticns hLave the required
properties. -
Case 2: n 2 5
Chocse F1, P2’ and @5 as in case 1.
Choose ek = (1 k=1 k k+1) if 4 & k £ n=1.
Choose D = (1 n 2 n-1), and finally choose €>n+1 = (1 n n=-12).

With these choices, o= = (1 nt1) , gv! = (1 241 3 4 2),

o 241 3 4) 5, o =(12n+1 4 3),

i

oz = (1.2)(3 nt1 4), and g4 = (1 4)(3 n+1).
3 3

]

Claim: o7} (1 +1)(k n+1) for k = 3,..., n-1

It

o (1 k n#1 k=1) for k = 4,4..., 0~1.

The claim is true for k = 3, so suppose it is true for all
k & i, where 3gig n-1

By definition, o’i+1 = 0’5(1 n+1) = (1 i+1)(i n+1)(1 n+1),
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S0 Cfi+1 = (1 i+1 n+1 i) , and

o= O = (1 i+1 n+1 1)(1 1 i+1 i+2)

i+1 141

ey
= (1 1i+2)(i+1 n+1), and hence the claim is true for
k = i41. Hence the claim is true for all k { n-1. (Beyond this

point, the definition of EDk changes so the result does not hold.)

Finally, o/, = £_1(1 nt1) = (1 n)(n-1 n+1)(1 n+1)
= (1 n n%1 n=-1),
o) = (1 n n+1 n~1)(1 n2n-1)=(12n-1nn+1),
0.1 = (1 22-110241)(1 1) = (1 2 n-1 n), and finally,
cr£+1 = (1 2n% n)(1 nn-12)=(1).
It is now easy to check that CT&, cwﬁze <k:>

for k =1, 2,..., n+l1. From the way they are defined in terms of
the 4-cycles (Dk’ cfk and O’é have the required properties. ]
This completes the procf of the lemma. We now return to

proving theorem 4.3.3.

)

Let Tfk and QT; respectively be the vertices ofl”(K1 e
W ’ b

mapped to cfk and cri by the isomecrphism of theorem 4.2.4.
We have already seen in the proof of the lemma that Tfk and ’Eé

are related vertices of [(K ), and hence by hypothesis are

1yn=1

joined by a hamiltonian path. This path is mapped by the

igomorphism to a path Jjoining (Tk to Cfi which is a spanning

subgraph of <k>!—'(K1 n 1). The union of all these paths,
g L=

together with the edges Jjoining c’£+1 to CT1, Cf{ to c72,...,

and Jjoining c’é to CT"n+1 is clearly a hamiltonian circuit

in (K, ). This is illustrated in fig. 4.3.3 . )
’

Corollary 4.%.5

{"(K1 4) is hamiltonian.
?
Proof

This follows immediately from theorems 4.3%3.3 and 4.3%3.2 . [J



FPigure 4.%.3

OME, ) \

Corollary 4.3.6

If F(K1,n_1) has a hamiltonian path Joining any two
related vertices, then f”(K1’n) has a hamiltonian path joining
any two related vertices. |
Proof

We may choose the two related vertices to be (1) and

o’ = (1 n+t1 2 4) by vertex transitivity and by proposition

4e3.1.
By theorem 4.3.4 there is a hamiltonian circuit inlﬂ'(K1 n>
s
containing the vertices cra, Cﬁ;,..., cr%+1, where these are

the vertices constructed in the proof of theérem 4.3.4.

Let /A be the subgraph of this circuit obtained by deleting
all the vertices of the circuit in <:1>fq(K1’n_1) except er .
Hepce A i§ a path joining (1) = O’A+1
(1041 24)(1 22 4) = (1041 3 4 2)

to o“; .
Now O (1 2 3% 4)

il

il

o so O is related to ol .
Hence as in the proof of theorem 4.3%.4 there is a path joining

o~ to CV% whizh spans < 1)(K -It is clear that the

1,n—1)'
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)

union of this path and /\ is a hamiltonian path in FKK1 0
1

joining (1) to 07 . &

Corollary 4.3%3.7

rKK1 n 1) is hamiltonian for all n > 4.
)N~
Proof

This follows immediately from the preceding results. 3
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SECTION 4.4: HAMILTONIAN CIRCUITS IN M(G)

In fact, most of this section will be concerned with
the existance of a hamiltonian circuit in [(T), where T is
an arbitrary tree. The more general result follows very
easily from this special case.

It is not possible to use the same method of proof as in
section 4.3, which depended on the rather special structure

of The more general method of proof was discussed

K1,n-1 :
briefly before the proof of proposition 4.2.7 . If Tn is a
tree on n vertices, and Tn—1 = Tn - {n} is a tree on n-1
vertices such that P(Tn-1) is hamiltonian, then we attempt

to string together hamiltonian circuits in the cosets
(1>F(Tn_1) with circuits of length 4 to produce a hamil-
tonian circuit in F(Tn): There is a f;irly easy way of doing
this, which works for all n } 7. Unfortunately, this method
does not work at all for smaller values of n, for reasons
which will be discussed later in this section, so laborious
special arguments are needed for the first few Qalues of n.
These special arguments in fact make up the bulk of the proof

that all transposition graphs are hamiltonian,

Definition 4.4.1

If T is a tree on n vertices and i is an end vertex of T
adjacent to j, then two edges of [(T) labelled (i j) are

distant if they do not join the same two left cosets of

s( [n] - {i}). The two edges of [(T) are properly distant
if no two of their end vertices lie in the same left coset.
Note thet two properly distant edges are of course distant.

These definitions are illustrated in fig. 4.4.71 .
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Figure 4.4.1

{542

I£ 7' =T - {i}, and €,s-e0s €, ave edges of ['(T) labelled

4
(i j) as in fig. 4.4.1, then EE is distant from 53 , and
properly distant from Eﬁ, but is neither distant nor properly
distant from £2 . (It is assumed that <k1> yeees </k4> are
distinct cosets of S([n] - {i}).)

Propogition 4.4.1

Let Tn—1 be a tree on n-1 vertices such that uw is not a

vertex of T s, v is an end vertex of T and such that [(T )
n-1 n-1 n-1
is hamiltonian. If Tn is the tree obtained by adding the vertex

u and the edge {u, v} to T then P(Tn) has a hamiltonian

-1’

circuit containing any two distant edges of fYTn) labelled (u v).

Proof
Without loss of generality, suppose that v = n-1 and u = n.

Since v is an end vertex of T there is a unique vertex w of

n-1

Tn—1 adjacent to v. Again without loss of generality, we may

suppose that w = n-2.

Let €1 and 52 be any two distant edges of P(Tn) labelled
(u v) = (n—1 n). By proposition 4.2.5, there exist edges of
F(Tn) joining every pair of cosets <fi;>(Tn_1) and <'s,> (Tn—1)‘
Hence there are edges E.B,' 64,..., 65_1 of rKTn) labelled
(n-1 n) such that the n cosets of Sn—1 in Sn are joined in a

chain by the edges E., €2,..., £ as shown in fig. 4.4.2.

1 n-1



Figure 4.4.2

In fig. 4.4.2, i1, iz,..., in are a permutation of the

numbers 1,2,..., n, and g%, Eé,..., g are a permutation

1
-1

of the edges £, EZ,..., ) . (It is not convenient to

1
show €1, 52,..., E£_1 in their true order since €&

n~1
1 and 52
may be either properly distant or distant but not properly
distant. This would need two separate figures to show , and
would be artificial since the circuit which will be constructed
contains all the edges 5;,..., 5&_1.)

There is a hamiltonian circuit in <fi1>fﬂ(Tn_1) since it
is isomorphic to F(Tn_1), end since F(Tn_1) is hamiltonian by
hypgthesis. Let 25 = {€7j, er} for j = 1,...,, n=1, where
GG is a vertex of <:ij>7 and CTB ig a vertex of <Ej+1>'
Hence €>1 is a vertex of <'i1:ﬂ4(Tn_1). In the hamiltonian
circuit in < i, /(T

let these edges be labelled 601 and W

n1) there are two edges incident to 631;

5+ where LUH and CL%

correspond to edges of Tn They must be distinet since

I
two distinct edges of a transposition graph which are incident
cannot heve the same label. Hence at least one of these

transpositions must be distinct from (n-2 n-1). Since by

it follows that UJ1, say,

hypothesis n~1 has valency 1 in Tn—1’
must fix n-1. Also, CL% fixes n, so ( UJ1(n—1 n))2 = (1).

Hence there is a circuit of length 4 in P(Tn) containing the



vertices Pj, 07, G)1CUT’ and C?QCU1 . By the contrapositive
of proposition 4.2.6, © JW, is a vertex of <<i1>[ﬁ(Tn_1) and
Craa)1 is a vertex of <’i2>ﬁﬂ(Tn_1). For convenience, let the
hamiltonian circuit in <(i1>/ﬁ(Tn_1) be Z&1 and let the circuit

of length 4 Jjust constructed be Zk1 o -
?

We now show that there is a. hamiltonian circuit in
<12>{ﬁ(Tn_1) containing the edge {CT%, CrHCLQ}. Suppose that
a hamiltonian circuit Z\ in rYTn_1) contains no edge labelled
;- Clearly, G(A) C T“__1 - {e&,-and‘hence by proposition
- §el
2.2.6, ACF(Tn_,] {%)) However, T

graph with two components, and hence fKTn_1 —.{gg) has n11 n2!

-1 —f'%%is a disconnected
vertices, where n, + n, = n-~1, and 1 g'n1, n, & n-=2. This is

a contradiction, since /\ is a spanning subgraph of{”(Tn_1), and
has (n-1)! vertices. Since <f12>%7(Tq_1) is identically labelled
to fYTn_1), a2 similar result holds for a hamiltonian circuit in
<12>P(Tn_1). We may choose the edge labelled W, to be
incident to CT1 by vertex transitivity. Hence as claimed there
is a hamiltonian circuit A2 in (12>F(Tn_1) containing the
edge {cr’, C75£U1} .

These arguments may now be repeated to construct circuits
1&2’3, [§3,4,..., an-1,n of length 4, and hamiltonian circuits
[33, [§4,..., [&n such that ékj,j+1 has an edge in common with
ij and ij+1 . Deleting these common edges gives a hamiltonian
circuit in P(Tn) containing the edges g%,..., €£_1 , and
hence containing the edges 51 and €2 . 0

Cordllary 44,2

Let Tn be the tree obtained by adding an edge {n-1, n}

to K Then {“‘(Tq) has a hamiltonian circuit containing

1,n-2.
any two distant edges of the graph labelled (n-1 n).
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Proof

This follows immediately from corollary 4.3.7 and
proposition 4.4.1. [

The next result in this section involves the lengthy
technical proof mentioned at the start of this section.

Theorem 4.4.3

If T6 is any tree on six vertices apart from K1,5 then
there is a hamiltonian circuit in!“(Té) containing any two
distant edges labelled (u v), where u is an end vertex of T6
adjacent to v.

Proof

The proof of this result is given in a series of lemmas.

Lemma 4.4.4

If T, is any tree on 4 vertices and u is an end vertex

4
of T4 adjacent to v, then FKT4) has a hamiltonian circuit
containing any two edges labelled (u v). (Note that the edges
labelled (u v) are not required to be distant.)
Proof of lemma 4.4.4
Without loss of generality, let the vertices of T4 be
1, 2, 3, 4 and let u =4 and v = 1, Let the two edges of

F(Tn) labelled (1 4) ve £, and £ As in the proof of

1 2°
proposition 4.4.71, any hamiltonian circuit in P(Tn) must
contain at least one edge labelled (1 4), so by symmetry,
we may assume that every hamiltonian circuit in f(Tn)
contains Ej. It remains to snhow that one of these hamiltonian
circuits also contains 6:2 .

There are two non-isomorphic trees on 4 vertices, namely

K and P,. These two cases must be considered separately.

1,3 4
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Case 1 T4 = K1,3 .

In this case, the hamiltonian circuit in fig. 4.4.3
contains 212 unless 82 is one of the edges §£' or g" .
In this case the circuit obtained by reflecting the circuit
in fig. 4.4.3 contains S‘V €' and £"', and hence contains
61 and €2 .

Figure 4.4.3

!
'
!
!

Case 2: T4 = P4

In this case, the hamiltonian circuit in fig. 4.4.4
contains gjvand €, unless €, is one of the edges &', g"
or §£*. As in case 1, the hamiltonian circuit obtained by
reflecting the hamiltonién circuit in fig. 4.4.4 in a
vertical axis contains 51, €', &£" and £*, and hence

contains 51 and €2 . This completes the proof of lemma

4~4o4-
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Figure 4.4.4

(14) E (14)

. 14

(14) é/li' e IEDS
!
!
;

Lemma 4.4.5

If T4 is any tree on 4 vertices and u is an end vertex

of T4 adjacent to v, and if gT and 'EQ are any two edges of

M(1,) lebelled (u v), then there are two circuits A, and ﬁxz
in F'(T4) such that 1): A1 and A\‘2 together span I—'(’I’4);
2):[31 and [&2 are disjoint ; and 3): 51 is an edge of ij

and 52 is an edge of Ag.

Proof
Again, the proof separates into two cases, T4 = K1,3 and
T = p ., As before, we assume that u = 4 and v = 1.
4 4
Case 1: T4 = K1’5

In this case, let [k1 and ZXZ be the circuits in fig. 4.4.5;
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Figure 4.4.5

FPigure 4.4.6
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Figure 4.4.7

Note : The graph in fig. 4.4.5 is identically labelled to
the graph in fig. 4.4.3, and the graphs in figs. 4.4.6 and
4.4.7 are identically labelled to the graph in fig. 4.4.4.
Then since 131 and LXZ together contain all the edges of
(T4) labelled (1 4), [§1 and 1&2 satisfy the hypotheses
of the lemma unless 5:2 = §' or £". However, in this case,
[L% and [Xé, the circuits obtained by reflecting 431 and [lz
in a vertical axis have the required properties.
Cage 2: T4 = P4. :
In this case, [&1 and sz, the circuits in fig. 4.4.6,

have the required properties unless 52 = £'. In this event,
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the circuits 1&1 and (\, in fig. 4.4.7 do have the required
properties.
This completes the proof of lemma 4.4.5. [J]

Lemma 4.4.6

If T, is any tree on 5 vertices-exeept K and if u is

5

any end vertex of T

1,4’
5 adjacent to v, and if 51 and Ejg are
any two edges of fYTS) labelled (u v), then there is a
hamiltonian circuit in P(TB) containing E‘I and €2 .
Proof

T5 can be either of the graphs in fig. 4.4.8. 1In the
first case, there are two possibilities for u up to isomorphism,
and in the second case, one. In each of these cases we will
assume without loss of generality that u = 5 and v = 2,
Note that T5 has another end vertex distance 3 or more from u.
In each case, we will assume that this new end vertex is 4, and
that the vertex adjacent to it is 1. The remaining vertex in
T5 will be 3.
Figure 4.4.8

G
©
Q
0

Let T4 be the tree obtained by deleting 5 from T5'

Since (51 and 52 are labelied (2 5), they must join cosets

of 84 in S5’

distant but not properly distant, or not distant. In the case

and hence they are either properly distant,

that they are not distant, 81 and 62 may both be edges in a
cireuit of length 4 in r(TS) with edges labelled (1 4) and (2 5).
Otherwise, they must lie in two distinct circuits of this type.

These four cases are illustrated in fig. 4.4.9.
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Figure 4.4.9
Case 1: 81 and 52 are properly distant.

() o)

(U (

Case 2: 1 and S are distant but not properly distant.

<11\> {12> <13>

81 and £, are not distant and

both lie in a circuit of length 4

with edges labelled (14) and (25).

{1 and 52 are not distant and
lie in different circuits of length 4

with edges labelled (14) and (25).

Note that all the vertices and edges in fig. 4.4.9 are distinct.
Case 1:

By proposition 4.2.5, there are edges 53 and 54 of rYT5)
labelled (25) such that £ joins <112>‘ to <13f> end £,
joins <f14f> to <(15\>,,where {i1, hyenes 15} ={1, 2,..., 51.
Each of the edges {1,..., 5:4 lies in a distinct circuit of

length 4, as shown in fig. Z2.4.,10.
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Figure 4.4.10

& i (1) {i5) Gy 4

For j = 192,00055 , <ij> 21"(1*4). By lemma 4.4.4 there

is a hamiltonian circuit in rKT4) containing any two edges
labelled (14). Hence for j = 2, 3, 4, there is a hamiltonian
circuit in.<iji> containing the two edges in fig. 4.4.10
labelled (14) . Similarly, there are hamiltonian circuits
in <11> and { iS> containing the (single) edge in fig. 4.4.10
lavelled (14). A hamiltonian circuit in F(TS) containing &,
and 52 is now obtained by taking the union of the hamiltonian
circuits in <fij>> 3 J = 1,000y 5y, »nd the four circuits of
length 4 in fig. 4.4.10, and deleting the edges labelled (14)
in fig. 4.4.10.
Case 2

In this case there exist edges 53 and Ef4 of FKT5) such
that £, joins <15> to <i4> , azd £, joins (14> to
(15 o where {i,, ig,ees 1} = §1, 2,000, 5¢ . The
remainder of the proof in this case is identical to the proof
of case 1.
Case 3

This case is now clearly a special case of case 1, for we
may choose an edge labelled (25) joining <:i5> to <i4>» and
proceed as before.
Case 4

Since <<i1>> ig identically lavelled to P(T there are

N
A/’
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two circuits qu and 1&2 of <ii1>> which are disjoint, span
the vertices of <'i{> , and are such that one of the edges

of <:i1:> labelled (14) in fig. 4.4.9 is 2n edge of [&1, while
the other is an edge of 232. As in the previous cases, there
is a hamjltonian circuit in <'i2>7 which contains the two
edges of <:12:> labelled (14) in fig. 4.4.9. Hence we have
the situation in fig. 4.4.711 .

Figure 4.4.11

G C

A careful examination of the hamiltonian circuits
constructed in the proof of lemma 4.4.4 shows that Z& , the
hailtonian circuit in <j12>> must contain at least 9 edges
lavelled (14). Hence there are another 7 edges labelled (14)

in addition to the two in fig. 4.4.11. These edges
" give 14 additional vertices of <:i2>> incident to edges oflx
labelled (14). By proposition 4.2.5 , there are (5—2)! = 6
edges of rKT5) joining <'i2>> to <1i1$> , and hence not all
the 14 vertices above can be Jjoined to <511:> by edges labelled
(25). However, if O is one of these 14 vertices, and C7(2 5)

is not a vetrex of <’i{> , then since 57(2 5) cannot ve a vertex
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of <f12>~ , it must be a vertex of <i5>> , where i5 # i1, i2.
The proof in this case is now completed in much the same way
ag the proof in case 1.

This completes the proof of lemma 4.4.6. []

I+ is now possible to prove theorem £4.4.3. There are
two cases to consider. We assume without loss of generality

that uw = 6 and v = 3., Since T6 2K there is an end vertex

1,5’
of T6 which ig distance % or more from 6. Let this vertex be
5 and let the vertex adjacent to it be 2.
Case 1: T, - {6} = Ky, -

In this case the result follows from coroliary 4.4.2.
Case 2: T6 - {6} % K1’4

The proof in this case proceeds in an identical way to
the proof of cases 1 and 2 of lemma 4.4.6,

This completes the proof of thecrem 4.4.3. O

Theorem 4.4.7

If T is any treeon n vertices such that T FK , and

1,n-1
if u is an end vertex of T adjacent ta v, and if 61 and €:2
are any two properly distant edges of (1) labelled (u v),
then there is a hamiltonian circuit in M(T) containing 8,1
and 6'2 .
Proof
Case 1t n = 7.

Without loss of generality, let u =7 aud let v = 4.
Let T' be the tree obtained by deleting w = 7 from T.
If 7 K1,5 then the result follows from corollary 4.4.2,

hence we assume that T! $ K1 oo
./

Since T # K1 6 ? there is an end vertex 6, say, of T
?

distance % or more from 7. Let the vertex of T adjacent to
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this vertex be 3. Since {5, 6} and {A, Z} are edges of T,
every vertex of fKT) is incident to edges labelled (3 6) and
(4 7).

Let E'; and £f2 be any two properly distant edges of [Y(T)
labelled (4 7). Each of these edges must lie in a circuit of
length 4 in [(T) with edges labelled (4 7) and (% 6), and
these circuits must be distinct, or 571 and 5'2 would not
be distant. Suppose that éfi ={f7i, Odi} for i =1, 2 .

Now consider the left cosets of S_. in 87 , and suppose

5
. \ . -

that @, €(3,, k) end that 07, €<1,p, for i =1,2.

Since 81 and 6:2 are properly distant, their end vertices
must lie in four different left cosets of S6 in S7, S0
the numbers 31, dos l1 and 12 are all distinct. Qi(B )
must lie in the sane left coset of S, in S as 6)., but it

6 7 i

will lie in a different coset of S. in 5. . Hence

_ 5 1
0.(36)e< 3, m;> where k, # m, for i =1, 2.

By the defininion of the symbol (f.,.>> , each of the numbers

hp ki’ 1i’ m, must lie between 1 and 7.
c 7 - Q" N . 9 N .
Let r1C [74 ij, Joo k1, k2, m, ij . If m2 # 31, s

then let r2 = m2. Otherwise, choose », in the same way as r1.
In g¢ither case, r.1 and r2-are well-defined and distinct.

By proposition 4.2.7 there is a circuit A of length 4
in [{T) with edges lavelled (3 6) and (4 7) with one vertex

in each of the cosets <j1, r1>, (31, r2> N <j2, r2> )

<ijz, r{> . This situation is illustrated in fig. 4.4.1%2.
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Pigure 4.4.12

Note that <3i’ r2>.could be the same coset as (ji, mit7
for i = 1, 2. All the other cosets in fig. 4.4.12 are
definitely distinct. Also, [k cannot have any vertices in
common with the circuits of length 4 containing £1 and €2 ,
for if it did it would be icdentical to one of them and would

join the wrong cosets of 86. Let the vertices of &\ be

| here 3 r . j T') is identicall
Ty, o Where T €<, > JIpN(T) s y
labelled to[(T'), and it is clear that §0,, ¢ ,(36)} anc

{TH » 2‘1 2} must correspond to distant edges in [(T'),
y 4

since they Join at least 3 cosets of S Hence there is a

5.
hamiltonian circuit in <<j1>!ﬂ(T'} containing 5?1’ e 1(36)}
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and {Tq, I 'FW, 2} . There is a similar hamiltonian
circuit in <j2>r'(T').

By revpeating the above arguments, The other cosets of 86
in S7 may be connected in a chain to </11> , the coset
containing Cf%. (In fact, these constructions are much easier
since no constraints are placed on the choice of ZS by the
new coset being added.)

The hamiltonian circuif is completed in the same way as
in the proof of lemma 4.4.6, case 1.

Case 2: n > 8

Now choose u =n and v = 4, As in case 1, if T' = T -{nj

is isomorphic to K1,n~2 then the result follows from

corollary 4.4.2, hence suppose thet T! #’K1 _—

g Ll
An inductive proof is used, so suppose that the theorem holds
for trees with n-1 vertices.

Since T ¥ KT there is an end vertex n-1, say, of T

yu=-1’
distance 3 ar more from n. Let n-1 be adajacent to 3 in T.
Note that by the induction hypothesis, there is a hauiltonian
circuit in [(T') containing any two properly distant edges

labelled (3 n-1).

Define Ei, (Di’ Cfi, Iy Xy

, 1. and m, as in case 1,
i i i

replacing 5, 6 end 7 by n-2, n-1 and n reséectively,»where
necessary. Now 51 and r, can both be chosen to be elements
of (n] - {'jj, 32’ k1, k2, m mz} , and T, 4 r,. This is
because [n] has at least 8 elements while the second set has
at most 6.

[X can now be chosen in the same way as in the previous

case, and the edges €€1, (31(5 n~1)} and{é’1’ 1 ?f19 2}

now correspond to properly distant edges of ['(T'), since



-144-

all the cosets in </j{> in a suitably.modified version of
fig. 4.4.12 are now distinct. The proof now continues in
the sane way as the proof of case 1.

This completes the proof of theorem 4.4.7. 0

Corollary 4.4.8

If G is any connected graph on 3 or more vertices then
(G) is hamiltonian.
Proof

By theorems 4.4.% and 4.4.7 , if G is a tree on 4 or more
vertices, then [(G) is hamiltonian. If G is a tree on 3

vertices, then G Q‘K1 > and rKG) 2 C, , which is of course
,

6
hamiltonian. If G is not a tree then G contains a spanning
tree T. [YT) is clearly a connected spanning subgraph of [(G)
which is hamiltonian by the above remarks. It follows

iumediately that [(G) is Lamiltonian. a

Corollary 4.4.9

If G is any graph with 3 or more vertices and without
isolsted vertices then [(G) is hamiltonian.
Proof

Each component of G must have at least 2 vertices, and .

if +the components of G are G, , G2,..., G, then by proposition

1
1.3.9, [(ag) £ F"(G1‘)xf"((}4)><...xf"((}k) . Also, since G, is
connected, F(Gi) has n,! vertices, where n, is the number of
vertices of Gi , for i =1, 2,..., k. BSince ni,Z.Z; ni! is

evell.

Lemma 4.4.10

If H and H' are path hemiltonian and have an even number

of vertices, then H x H' is hamiltonian.
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Proof of lemma

If H has 2m vertices and H' has 2m' vertices, then H X H!
has 4mm' vertices and sirnce H and H' contain hamiltonian paths,
H X E' contains the graph in fig. 4.4.1% as a spanning subgraph.

FPigure 4.4.17%

oana ERE Y

v

2a'=1

As shown, the subgraph in fig, 4.4.13 has a hamiltonian
circuit, and hence H X H' is hamiltonizn. [J

It immediately follows from the lemma that [7(G) is
hamiltonian. This completes the proof of corocllary 4.4.9. [J

The results in this chapter generalise a théofem of
J. Dénes, ( 8 , D 262), which in effect states that

F.(Kn) is path hamiltonian.
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CHAPTER 5 : EMBEDDINGS OF TRANSPOSITION GRAPHS

SECTION 5,1 : INTRODUCTION

Attention in this chapter is concentrated on two special
types. of embedding of transposition _raphs, the Cayley embedding
and the alternating embedding. In both cases, the main problem
considered here is that of finding the minimum genus of an
embedding of the appropriate type for each transposition graph.

Section 5.2 is an informal introduction to the general theory
of embeddings of graphs on (orientable) surfaces, and is intended
only to introduce those results needed in the next two sections.

Section 5.3 is concerned with embeddings of transposition
' graphs, and in particular, with Cayley embeddings of transposition
graphs. It is shown that +ne minimum genus of a Cayley embedding
of a transposition graph!ﬁ(G) is connected with the minimum order
of a product of all the transpositions in £2(G). This problem is
connected with a reléted problgm of M. Eden, but is not studied in
detail here. ‘

Alternating éﬁbeddings are examined in detail in section 5.4,
eand it is proved that the ainimum zenus »f an alternating
embedding of [(G) depends on how nearly L(G), the complement of
the line graph of G, is hamiltonian.- In particular, if f(G) is
hamiltonian, then [(G) has an alternating embedding whose genus
is the minimum possible genus for any embedding of P(G) This
is also the case 1f G contains no circuits of length 3 ..

Hamiltonian circuits in line graph complements are studied
in section 5.5. The main result is that if G has sufficiently
many (> 34) edges, then L(G) is hamiltonian iff G has no vertex

incident to more than half the edges of G, and each edge of G is
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independent of at least two others. This second condition

turns out to bhe relatively unimportant; only a rather small
familf of graphs with nén—hémiltonian line graph complements
satisfy the first condition but not the second. This result
means that almost all graphs have hamiltorian line graph
complements; It follows that the results in the previous
section establish tbe genera of almost all transposition graphs.
The only outétanding graphs [M(G) are those for vhich G contains
circuits of %ength three and.a vertex of very high degree, or
else G is small. Finding the genus of such transpositioﬂ graphs

appears to be a difficult problem.
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SECTICN 5.2: EMBEDDINGS OF GRAPHS ON SURFACES

This section is intended only to introéuce the basic
terminology and results of the theory of embeddings needed
in this chapter. It is not intended to be an introduction
to the subject; for this, the reader is advised to consult
the book 'Graphs, Groups and Surfaces' by A.T. White ( 15).

Following Biggs and White ( 4 p.103), a surface will
be defined as follows: -

Definition 5.2.1

A surface is a compact topological Spaéé which is
locally homeomorphic to the euclidean pl;ne Eé and which
has a consistent global orientation.

The wellgknoyn Classification Theorem for surfaces
imélies thét everi surface (as defined‘here) is homeomorphic

to a sphere with a number of handles attached.

Definition 5.2.2

The genus of a surf;ce is the number of handles which
must be attached to a sphere to make it homeomofﬁhic to the
surface. This is well-defined since the number of handles
is a topological invariant} that is, is preserved by
homeomorphisms. |

Definition 5.2.3

An embedding of a gravh G = (V,E) in a surface S‘is a
1-dimensional subset M(G,S) of 8 consisting of a number of
points corresponding to the vertices of G and a number of
lines corresponding to the edges of G. Two points of M
are Jjoined by a line of M iff the corresponding vertices of

G are joined by the corresponfing edgs . Also, two lines

[y

may only intersect at a point of M.
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Intuitively, an embedding of G is simply a drawing
of G on the surface.

Definition 5.2.4

A face of M(G,S) is 2 maximal connected subset of
S - M(G,S). In all but one of the embeddings which will
be considered in this chapter, every face will be simply-
connected, or homeomorphic to an open disc.

Thus a face may be fhought of as a region of the plane,
and a surface is obtained by glueing together a number of
faces along their edges. The glue lines form an embedding
of some graph in the surface.

Note that if scme face of an embedding is not simply
connected, then we may remove that face from S and obtain
a new surface by covering the holes with several simply-
connected faces. This procedure gives an embedding of the
same graph on a new surface which has a lower genus than the
origi nal one. Thus an embedding of a graph on a surface of
minimum possible genus has all its faces simply;cohneoted.

Since this chapter is almost entirely concerned with
embeddings of this type, the restriction to simply-connected
faces is not a serious one. A nmore formal proof cf the
result sketched out above is given by J.W.T.Youngs,( 16 ).

With the restriction to simply-connected faces, the
following result holds:

Theorem 5.2.7

If M(G,S) is an embedding of G on S, and if M has v points
and e lines and f faces then v - e + f = 2 - 2g, where g is

the genus of 8.
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Proof
This result is very well-known. One proof of it may be
found in White ( 15, p.41). []

Theorem 5.2.2

If M(G,S) is an embedding of G in S, and M has e lines
and f faces, and if fi is the number of faces of M incident
+ 51

to i lines of M for i 2 3, then 2e = 3f3 + Af Feeo .

4 5
Note that a face of M incident to 1 or 2 lines of M(G,S) would
imply that G had a loocp or a multiple edge, contradicting the
fact that G is a graph.

Proof

Let EVi denote the set of all faces of M(G,S) incident to
i lines of M, so}EﬂiI = fi. If Fi e Eﬁi,'then Fi is incident
to i lines of M. (liote that Fi may be incident to the same
line twice; this must be counted twice.) Hence the faces in
ﬁﬁi are incident to a total of if, lines of M.

However, since S is locally homeomorphic to the plane,
each line of M is incident to two faces of M, agéih counting
multiplicities. Hence eguating the two different ways of
counting the total number of incidences between lines and
3 gt Sfste. ]

In fact, embeddings of graphs on surfaces can be defined

faces 5f M, 2e = 3f_ + 4f
in a purely algebraic way, using the idea of a rotation of a
graph. Consider a vertex v of a graph G, and suppose thet G

has an embedding M(G,S) in scme surface. For the sake of
convenience, each vertex of G will be considered to be identical
to its corresponding point in M. Suppose that v is adjacent to
Vyr Voseees Vy in G, so there are lines of M joining v to each

of these pointe in 8. Since S is an orientable surface by
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definition, it has a consistent global orientation. Starting
with one of the points: adjacent to v and following the
orientation around v, in turn, we reach all the other points
of M joined to v, and finally return to the first point.

This is illustrated in fig. 5.2.1.

Fisure 5.2.1

‘)orientation of §
£

Thus th: orientation of S induces a cyclic permutation
(v. v_ ... v_ ) of the vertices of G adjacent to v. Let
Ty To Tk
this permutation be e o Thus the embedding of G on S gives
rise to cyclic permutations E)v for every vertex v of G, where

Pv is a cyclic permutation of the vertices of G adjacent to v.

Definition 5.2.5

If G is a graph, then a rotation R of G is a family
R = {f’v} ve v(a) where E)v is a cyclic permutation of the
vertices adjacent to v.
 Clearly, by the above argument, each embedding M(G,S)
gives rise to a unique rotation of G, for a given orientation
of 8. It is not so obvious that each rotation of G gives a

distinct embedding of G, but this is the case.

Thus it suffices to

show that an embedding can be constructed for eash rotation of G.
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Given a rotation of G, R = {P v}" we first construct the
faces of the embedding. Let-{vo, v1§be any edge of G, and

let Y P v By definition, v, is a vertex of G adjacent

2

to v and is distinct from Vo provided v, has valency 2 or

17 1

more., Similarly, let v3 = VH EV' , YV, = v2f3v , and so on.
Since G is finite, this process must eventually start repeating
itself by reaching some vertex A of G such that v, —1€Dv =Y,
and V.E) = v,. (Of course, it could be the case that the

ilv, 1
cycle began to repeat in the middle, but this would contradict
the fact that each ev is a permutation, since there would be
two vertices v, and v. such that v. 6_ = V. and

i J i + J+2

vd eV' = ijz') This process gives & face of the embedding,
J+1

as shown in fig. 5.2.2.

Figure S5.2.2.

Note that the situation of a vertex of degree 1 is
illustrated in the figure. The orientation of the face 1is
given by the cycles at each vertex. The other face incident

X i3 » imil bs! i £ .
to {JO, v1} is constructed similiarly y going from v, to Vo

A1l the other faces of the embedding are constructed in a similar
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way to this. It remains to show that these faces fit together
properly to give a surface. Bach edge of G can only be
incident to two faces, as was shown overleaf, It is possible
for an edge to be incident tc fthe same face twice; an example
of this is the edge{?va, v4} in fig. 5.2.2. Thus the faces
may be glued together so that the vertices and edges meet
properly. This procedure gives a manifold §. Bach point of

S in the interior of a face clearly has a neighbourhood which
is locally homeomorphic to E2, so the interiors of the faces
arelocally flat. Each edge lies in two faces, so any point

in the interior of the edge lies in a neighbourhood which is
flat, as shown in fig. 5.2.3. PFinally, S is flat at the vertices
of G , as shown in fig. 5.2.4, so S is locally homeomorphic to
EQ.

Figure 5.2.3

Figure 5.2.4




The orientation of S is given by the orientation of each

face of 8. If this was not globally consistent, there would

be two adjacent faces of § with conficting orientations.

Suppose that this 1s the case: ' since the two faces are adjacent,
they must both be incident to some edge e of G. If é = {vo, v1}
then the two faces are shown in fig. 5.2.5.

Plgure 5.2.5

These faces fit together as shown in fig. 5.2.6, and
their orientations clearly agree. Thus S is orientable, and
hence is a surface.

Pigure 5.2.6
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Thus embeddings of graphé on surfaces can be defined
in terms of rotations of graphs. If an embedding of a graph
G is defined in this way, and R is a rotation of G, then the
embedding of G induced by R will be denoted by M'(G,R).

Definition 5.2.6

The genus of an embedding M'(G,R) is the genus of the
surface induced by R on which G is embedded.

Definition 5.2.7

The genus of a graph G is the minimum genus of any

embedding of G.



- 56..

SECTION S5.3%: CAYLEY EMBEDDINGS OF TRANSPOSITION GRAPHS

Note that the two types of embeddings of transposition
graphs described in this and the next section can both be
generalised to any Cayley gfaph. However, this involves
additional work which is not necessary for the purposes of
this chapter. Further details of these embeddings may be
found in White ( 15, p.78) and Biggs and White ( 4 , secticns
5.3y 5.6).

If ¢ is any vertex of a transposition graph [(G), then

the set of vertices of [(G) adjacent to €& is O w T Wpysenns

19
Cfajm where {aﬁ, OUZ,..., ajxn} = IZ(G). Thus any cyclic
permutation of the vertices adjacent to 07 will be of the form

(OO./ = (G"U—’r 0‘wr 6\’wr ), where {r1,..., rm} =
1 2 m

{ Tyoons m} . Regarding Qg es a permutation of V(['(G)),

if 90. : [T = 01T for all vertices TT of [(G), then

-1
Po = B (Wr1 W e wrm) €5+ It follows that if R
is any rotation of [(G), so R = { éky} where 6304 is a cyclic
permutation of the vertices adjacent to 07, then
-1 . L .
R = { 60_ 630'%_ 90-} , Where (->c_j(' is a cyclic permutation of
f2(G). Hence an embedding of [(G) can be defined by a se* of
cyc.ic permutations of {L(G). If an embedding of [(G) is
defined in this way, then it will be written as M*( [7(G), R¥),
_ . B . . " . . \
where R¥ = { G%Sb} and Géf is a cyclic permutation of f2(G)
for all vertices O of (G).
The simplest and most natural way to choose R* is to let
* = * * = (W O 5 i
R { 87} , where E;ﬂ ( ’ 5 ...(A)m),for all vertices
@ of (G). (Any cyclic permutation of QG) may be chosen

instead of (W W, ... UJm).)

1
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Definition 5.3.1

If M*¥( [7(G), R¥) is an embedding of this type then it

will be called a Cayley embedding of '(G). Note that if G

has m edges then there are (m-1)! Cayley embeddings of I"'(G).

Definition 5.3.2

The Cayley genus of a transposition graph, 3%(P(G)),
is the minimum genus of any Cayley embedding of [7(G).

Theorem 5.%.1

If M*¥(M(G), B*) is a Cayley embedding of '(G), and if

*: * *: LR I
R {Q 2}2 where 0 (Cbé1 qu2 Ckém), then every
face of M¥ is incident to mk edges of (G), where k is the

order of 77.=5*§ W, «--lo, as a permutation.
1 2 m
Proof

Consider a face P of M* incident to the edgefbﬁ ow, §
i

F is shown in fig. 5.3.1.

Figure 5.3%.1

¢ e g 0T
: 1
& W
“ry F p* !
* o s cw . ..
O/Wri DF 2 ~ Wr'm
wr‘ P-)(— * )/ I‘m
i1 -\\' e* /‘Q

O/ ,
U%icuri+16>5\<:;}%j—~c -

Hence T ‘is incident to the edge {CY ', O"odr1} , where
o' = oTT'. Sterting again from O'', ¥ is as in fig. 5.3.2.
Clearly, the sequence of vertices and edges only starts
repeating when 'ﬂ'j = 1, that is, when j = k by hypothesis.

Thus F is incident to mk edges of [(G). [
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Tigure 5.3%.2

Corollary 5.3%.2

If M*([*(G), R*) is a Cayley embedding of (G), then
M* has genus 1 + % IV(F‘(G))I{% -1 - %} , where k is as
define@ in theorem 5.3%.1 .
Proof

If g is the genus of M*, then by theorem 5.2.1,
g=14+ %ﬁ{e -V - f}', where v, e and f are respectively
the number of vertices.and edges of(G), and f is %he number of
faces of M*¥, If G has m edges then ['(3) is m-valent, and
hence @ ={%}v. By theorem 5.2.2 znd theorem 5.3.1,

2e = (mk)~fmk = mkf since every face of M* is incident to mk

2e _
mk = mk

[v(r(c))}in the formula for the

oy _

edges of ['(G). Hence f = V. The result now

4

follows by substuting v
genus of M*, [
Corollary 5.3%.3
1
¥ > 1+ Thvren] {2 - 2] .

Proof

This follows immediately from the fact that k 2 1 in the

formula proved in corollary 5.3.2. 4



-1590~

Note that in the equation in corosllary 5.%.2 there is
only one term which does not directly depend on G, namely k.
t is fairly easy to show that there exist graphs for which
k can take several different values. The sinaplest example
is to take G = C,, P, = ((12) (34) (23) (14)) and
P, = ((12) (23) (34) (14)). Then 7T, = (12)(34)(23)(14)
so 7T, = (13)(24) and 77, = (12)(23)(34)(14) = (243), and

hence k, = 2 and k2 = 3,

1
In section 1.2, definition 1.2.3, a graph G was defined to
be related to a pernutation ¢ if there exists a word W such
that G = G(W) and W = ¢ as a permutation. It is clear that
if 7T is defined as in the proof of theorem 5.3.1 %then G is
related to TT in this sense. It follows that the results of
éection 1.2 can be applied to find the genera of certain

Cayley embeddings.

Proposition 5.3.4

A transpositior graph [(G) has a Cayley genus of
1 +% [v(n(e))l{g‘— - 2} iff G maps to the identity (i.e. G
is related to (1) in the sense of definition 1.2.3).
Proof

As in corollary 5.3.3, the result holds iff there is a

cyclic permutation of 2(G), p= (CU,l w, ... Cum) such that

2

ww G Vo~ . : = .
| Woee oWy las order 1, iff (L, W,... .00 (1), iff G

maps to the identity . (O

Among the graphs mapping to the identity are Kn;

m

n ¥ 0, 1 mod 4, and the vheel graphs W ; n 2 % defined in
section 1.2 . For most graphs which do not map to the
identity, the Cayley genus of their transposition graph is

hard to establish, However, if the graph is a tree, this is
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not the case.

Proposition 5.3.5

If T is a tree on n vertices then the Ceyley genus of
(D) is 1+£3-21—1i(n2-3n-2) .
Proof

By corollary 1.2.9, if T is related to O then O’ is an
n~cycle, which has order n. Thus whatever cyclic permutation
@ of CL(G) is chosen, its ordern k = n. The result follows
after some algebraic manipulation of the expression in
corollary 5.3.2. [

A similar result holds for the Cayley genus of [(G) if
G is a forest. However, the statement of the more general
result is rather messy siace it hes to take into account
the orders of the comporents of G, and involves their
least common multiple. The proof is no more difficult,

however.
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SECTION 5.4: ALTERNATING EMBEDDINGS OF TRANSPOSITION GRAPHS

If G is any graph, then by proposition 1.3.6, [Y(G) is
2 bipartite graph, and a bipartition for [(G) is V(") = A U B,
where A is the set of even permutations in V(™) and B is the
set of odd permutations in V(7).

Definition 5.4.1

An embedding M([(G), BR*) of M(G) which is defined in terms
of a set of cyclic permutations of 1(G) is alternating if R¥* =
{PO{&} o-c V(r(G)) satisfies the following condition:
there exists a cyclic permmtation (D* of SL(G) such that
Pge = O* for all O'€4 =nd Dp = e*"" for all g"€3B, where
A and B are defined as above.

Definition 5.4.2

The alternating genus aza(F(G)) of a transposition graph
FKG) is the smallest genus of any alternating embedding of the
graph.

Example: Let G be the graph in fig. 5.4.1; then the embedding
in fig. 5.4.2 is an alternating embedding of r(é).b The cyclic
permutation of {1(G) is E>* = ((12) (34) (56)).

Figure 5.4.1

Since there are (m-1)! cyclic permutations of [(G), where
m is the number of edzes of G, there are (m-1)! alternating
embeddings of [(G). However, vairs of these embeddings are
simply mirror images of one another, corresponding to inter-

changing e * and 6*31 in definition 5.4.1.
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Figure 5.4.2

r(e):

— orientation

(34) (34)

(12)

The even vertices of [(G) are coloured white and the odd
vertices are coloured black. The orientation of the surface
is as shown in the figure.

Theorem 5.4.1

Let M([(G), R*¥) be an alternating embedding of M(G) and

let p* = (Cu1 w ‘e UJm) be the cyclic permutation of fL(G)

5 ¢
in definition 5.4.71. Then each face of M is incident to either
4 of 6 edges of T(G), and if A is a circuit of [(G) bordering
a face of M then [X is one of the graphs in fig. 5.4.3.

Figure 5.4.3
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Proof
Let O° be any vertex of M(G) and consider the two faces
of M incident to the edge {OJ, CVCUi} ; let these faces be F1

and FZ' Either O or o‘a)i is an even permutation, eo suppose

without loss of generality that O is even. Then F1 ard F9 are

ags in fig. 5.4.4.

Fizure 5.4.4

= ing { O¥% = ;
Concentrating on Fg, ukg'? = QJi+1 ,

. -
* - 1
Uui+1€ Uui , S0 the edge labels of F

and hence

5 are ag shown in

5 _
. 5 = ] [V v =
fig. 5.4.4. 1If (cuitui+1) (1), then O " icui+1 Tu,

and hence F2 is bounded by four sdges, which form a subgraph of

[(G) isomorvhic to the first graph in fig. 5.4.3.

Ww e w ow )3 - y N
£ ( A i+1) # (1), then ( s i+1) (1), and in a sinilaz
way, F, is bounded by six edges which form a subgraph of r(a)
iscomorphic to the seccnd greph in fig. 5.4.3. Clearly, a similar
result helds for F,. 0

1
Corollary 5.4.2

1f M((G), R*) is an alternating embedding of [(G) and if
(?* is the cyclic permutation of S¥G), and g* = (fAJ1 002 ceo U/m)
then X(M) =1 + v EQG ’ {4m -k - 12} s where k is the number
1spositions i ) h t 2 =
of transposition CUi in L(G) such that <Cuibui+1) 1,

(subscripts mod m).
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Proof
Every vertex of [(G) is incident to m faces of M, and by
theorem 5.4.1 and by the definition of k, k of these faces are
incident to 4 edges of ['(G) while the remaining m-k are incident
to 6 edges of [Y(G). If f, is the number of faces of M incident

4

!
to 4 edges of ['(G) +then clearly, f4 = k'v Z‘G , Since each

such face of M is incident to 4 vertices. Similarly,

fo = (m—k)’V z G)) ! . If f is the total number of faces of M,

then f = f4 + f6, by theorem 5.4.1. The resul®t now follows
by algebraic manipulation of Buler's formula (theorem 5.2.1).

Corcllary 5.4.3

y (P(eyy = 1 o [EEEDT

This fecllows from corollary 5.4.2 and the fact that kS o, O

If G is any graph with at least one edgé, then L(G) will
denote the complement of the line graph of G, or the line graph
complement of G.

Theorem 5.4.4

Let r 2 O be the smallest number of edges which must be added
to L(G) to make it hamiltonianj; then
Z(a(rKG)) =1 + ingéglll(Bm +r - 12)
Proof
We first show that [(G) has an alternatinzg embedding with
this genus, then show that it has no zlternating embedding with
a smaller genus.
Note that the vertices of L(G) are the edges of G.
Now-suppose that by adding r edges %o L(G) we obtain a hamiltonian

clircuit eqfv e.™~... Alem»u & Then r of these vertices are

2 (.

not adjacent in‘f(G), and the remaining k = (m-r) are adjacent,
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by the definition of r.

For i = 1,.0., m , let “ﬁ.ézfl(G) be the transposition
corresponding to e, - If e, v 8y in E(G), then e is non-
incident to €1 0 and hence UJi and LLG+1 are disjoint
transpositions, so (Luib91+1)2 = (1). Similarly, if eiqb €1
then (, W, )7 = (1).

Now define a cyclic permutation P*'of £(6) vy

p* = ((,U1 W, W, ... u%g, and let M([’(G)) be the alternating

3
embedding of M(G) defined by €>*. By corollary 5.4.2,

B(M) = Lyig%glll (4m - k - 12), where k is the number of
transpositiong CUiE (L (G) such that ((A&Cb&+1)2 = (1).
However, by ths above argument, this is the number of vertices

e, of (&) such that e, M e, 4+ There are (m~r) such vertices,

hence Yy (M) = ing%glli (3m + » - 12).

If there were an alternating smtedding of [(G) with a
smaller genus than M, then it would follow by reversing the
above argument that L(G) could be made hamiltonian 3y the addition
of fewer than r edges, contradicting the definition‘of T.
Hence the result holds. E]
Note that a particular consequence of this result is that
if L(G) is hamiltonian, then the alternating genus of [(G)

attains the bound of corollary 5.4.3.
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Theorem 5.4.5

If G is a bipartite graph and M1 and Mg are embeddings of G

such thet £] 3 £3 and £5 = 0 for all m » 8, where £J is the
number of faces of M, incident to j edges, then 27(M1)$’3/(M2).
Proof

If fi is the total number of faces of Mi’ then

£, = f4 + f6 and
4 10
2 f2+ f2+ f2+f2+ e e

since G is bipartite and ff =0 if m » 8,

If G has v vertices and e edges then by theorem 5:242,

= ¢4 6
= 4f1+ 6f1

6 6 _ ~2,.4 4y 4 .8 5 .10

£ - £, = 3(f1 - f2) + 3 £, + 3 £+ ees
By theorem 5.2.17,

) = ym) = (1+5(e-v=£)) - (1+He=-v-1))

1

2(f1 - £,)

%( (ff - £3) + (f6 S NP S A S

2
8 2,10
2 + LK Y )

f

]

6 8 10
= 4fg+ 6f2 + 8f2 + 1Of2 + .o » and hence

H

H]

*3

]

1 1 - 1
2( 3(f f )+ 3 f

2 0 siace fi > fg . |
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Corollary 5.4.6

If G is a graph such that I(G) is hamiltonian, then

y(M(e)) = 1+ LLEENT (o g

Proof

By theorem 5.4.4, ['(G) has an alternating embedding such
that every face of the embedding is incident to 4 edges of I7(G),
since f(G) is hamiltonian., By theorem 5.4.5, this is a minimum
genus embedding for '(G). The formula follows from that of
theorem 5.4.4 with r = 0.7 [J
Example: if G is the graph with 2n vertices and n disjoint edges
{1, 2}, {3, 4},..., {on-1, 2n} tnen P(c) 2 Q, the n-cube, with
o™ vertices. Also, L(G) ¥ K , which is 2 hamiltonian graph.
Hence by corollary 5.4.6, D/(Qn) =1 + zn‘f(n - 4) .

Graphs .G for which L(G) is hamiltonian are studied in the
féllowing section, and the following result is proved:
If G is a graph with n »yertices ana w) 34 edges, then L(G) is
hamiltoniarn iff G has no vertex v with degree d(v) > %, ard every
edge of G is non-incident to at least twobothers; In fact, this
second condition is almost redundant.

Since large gzraphs with one wvertex incident to more than
half thz edges are relatively rare, corollary 5.4.6 gives the
genus of almost all transposition grapks. Some of the remaining

graphs are covered by the next result.

Corollary 5.4.7

If G is a graph with no circuits of lergth 3, then
F(E)) =1 + Lﬁ%ﬂl‘. (Zm + ¢ - 12) .
Proof

Let M' be any embedding of F(G}, and consider the faces of

M*' incidsnt to some vertex ©F of rKG). Suppose ithat M' is defined
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in terms of some rotation R¥* of (G), and that
eo*/ = (W1 Wz ) Wm>’ Whel‘e Q(G) = {w1, w2,4‘.’ wm} .
Then the faces of M! incident to Cr/are as shown in fig. 5.4.5.

Pigure 5.4.5

Suppose that one of these faces Fi is incident to 4 edges
of (G), and let & te the'subgraph of T(G) incident to F..
Since AT 04, then G(A) is isomorphic to one of the grapas in
fig. 5.4.6, by theorem 2.2.8. However, by proposition 2.2.6,
G(A) € G, so G(A) ¢ K3' Hence (W, and CL€+1 are disloint
transpositions, so (UJiCU. )2 = (1) .

i+1

Figure 5.4.6

i e,
i+

Suppose that k is the largest rumber of faces of size 4 of M!
to which any vertex of [(G) is incident, and suppose that ©° is

incident to k faces of M' of size 4. PFor each such face,

(w, W, )2 =(1), so there are at least k elements (W, & {2(G)
i i41 4 i

such that (oui(;3+1)2 = (1). It follows that there are at least

k vertices e, of E(G) such that e, Mo g Hence by adding at
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most m-k edges Ze } to L(G), we obtain a hamiltonian

3 %341 |
circuit in L(G). Hence the alternating embedding M of ["(G)
generated by this hamiltonian circuit has at least k circuits

of length 4 incident to each vertex of [(G). Thus this
alternating embedding M has more faces of size 4 than M!',

and hence by the argument of theorem 5.4.5, M has a smaller

genus than M'. It follows that at least one minimum genus
embedding of [(G) is alternating, and the result follows

from theorem 5.4.4. [7

Thus the genus of a transposition graph [{(G) has been
established for all graphs G such that either G hss no circuit
of length 3 or L(G) is hamiltonian. Further, in both these
cases, at least one minimum genus embedding is alternating.

This is not necessarily the cese for the £emaining transposition
graphs; several examples will be given of transposition graphs
['(G) for which y(I'(G))< KAKP(G))‘ Howéver, such embeddings

are normally very difficult to construct, and it can be even
harder to prove tha% such an embedding is minimum genus.

For the remainder of this section, we will establish the
genus of all but one of the transposition graphs with at most
24 vertices. For the exceptional graph, there are itwo possible
values for the genus.

It is easy to check that if ['(G) is a transposition graph
with 24 or fewer vertices, then G is one of the graphs in fig.
5.4.7. This requires only corollary 1.2.2 and a list of small
graphs. The line graph comnlements of these graphs are shown
in fig., 5.4.8. The dotted lines in some of these graphs indicate
the smallest set of edges which must be added to make the graph

hamiltonian.
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FPigure 5.4.7
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Figure 5.4.8
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Theorem 5.4.8

The genus of[ﬁ(Gi) is 0 if i =1, 2, 4, 5 or 10,
1if i =7, 8 or 11, and 3 if 1 = 12.
Proof

For all these velues of i, Gi has no circuits of length 3,
so the genus of FKGi) is given by corollary 5.4.7. The value
of r for each of these graphs is given by the number of dotted
edges in fig. 5.4.8. 0
Theorem 5.4.9

Y((5)) =1, ¥(M(Gg)) =2 and y(I(Gy5)) =4 .

Proof

Two general lemmas are useful in proving this result:
Lemma 1

The genus of a graph is equal to the sum of the genera of
its components.
Proof of lemma 1

This is a corollary to the following theorem of Battle,
Harary, Kodama and Youngs ( 1 ): The genus of a’gfaph is equal
to the sum of the genera of its blocks (maximal 2-connected
subgraphs). [J
Lemma 2

If B €G, then y(H) y(G).
Proof of lemma 2

This is obvious, since any embedding of G on a surface

automatically gives an embedding of H on the same surface. [J

It is easy to check that by theorem 5.4.4, ZQ(FKG3>) 1,

ZaKrKGé)) = 2 and 5@$FKG15)) = 4, giving upper bounds for

the genera of these three graphs. However, F(G3) &K , which

343
is a well-known non-planar graph, so Z(P(GB)) 2> 1. It follows
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thet };(F’(GB)) -
By proposition 1.3.9, P(Gé) = P(Kz)x Tﬂ(KB) and
M6, 5) = Mg, )X M(E,) X M(&;).  Now ['(K,) ¥ K, and M(xy) & K;

(4
andr‘(c13)_K2xK2xK =C, X K .

3,3 3,3 3,3
Hence F(Gé) is spanned by two disjoint subgraphs isomorphic to

S0 F(Gé) 4 K, X K

KB’3 and F(G13) is spanned by four such subgraphs.
It follows from the two lemmas that g(r‘(Gé)); 1+ 1 =2,
and a/(rﬂ(sﬂ)) 21+ 1+ 1+ 1=14. The result now follows
since 3(F‘(G6))\< b’a("’(%)) = 2, and zy(r‘(c;13))\<ga(r‘(g13)) = 4. ]
Theorem 5.4.710
y(Meg)) = 4 ana y((c,)) = 7.

Proof

This result is proved by producing special embeddings for
each of these graphs. The values of the genera of the two
graphs stated above are both less than the alternating genera,
namely 5 and 10. Hence the special embeddings are not alter-
nating embeddings. The two embeddings are of minimum genus
since all faces of the embeddings are of size 4.’ ihe embedding
of P(G9) is shown in fig. 5.4.9, and that of P(Gﬁ) in fig.
5¢4.10. The genera of the two embeddings can be computed using
Euler's formula (theorem 5.2.1). [

This leaves only G remaining. The following result will

14
only be proved in outline since 1t is rather messy and does not

completely solve the problem.

Theorem 5.4.11

(P(G )) = 5 or 6.
Proof
If F(G14) had an embedding with all faces of size 4, then

this would be a minimum genus embedding by theorem 5.4.5, and
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Figure 5.4.9

KEY

Edge labels: a = (12), b = (13), ¢ = (23), d = (45), e = (67).
Vertex labels: 1 = (1), 2 = (12), 3 = (123), 4 = (23),

= (132), 6 = (13), 7 = (45), 8 = (12)(45), 9 = (123)(45),
(23)(45), 11 = (132)(45), 12 = (13)(45), 13 = (45)(67),
(12)(45)(67), 15 = (123)(45)(67), 16 = (23)(45)(67),

= (132)(45)(67), 18 = (13)(45)(67), 19 = (67), 20 = (12)(67),
= (123)(67), 22 = (23)(67), 23 = (132)(67), 24 = (13)(67).

10

]

14

Il



-175=

Figure 5.4.10

KEY

BEdge labels: a = (12), b = (13), ¢ = (14), d = (23), e = (34),

f = (24). Iote that some of the edge labels have been omitted
to improve clarity. They)can be computed from the vertices.

Vertex labels: 1 = (1), 2 = (12), 3 = (13), 4 = (14), 5 = (23),

6 = (34), 7 =(24), 8 =1(123), 9 = (132), 10 = (124), 11 = (142),

12 = (134), 13 = (143), 14 = (234), 15 = (243), 16 = (12)(34),
17 = (13)(24), 18 = (14)(23), 19 = (1234), 20 = (1243),
21 = (1324), 22 = (1342), 23 = (1423), 24 = (143%2).
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this embedding would have genus 4. Hence 3(F(G14)) > 4.

Further, if (G has no such embedding then 5(FKG14)) 7 5

14)
By considering a vertex ofl”(G14) in such an embedding, and
by examining all possible rotations of the edges incident to
this vertex, it can be shown in each case that the embedding
contains a Moebius strip and is hence non-orientable. In fact,
the number of possible rotations is made small by symmetry and
by the constraint that all five faces incident to the vertex
have size 4. This 'establisthes' the lower bound for the genus.
Since G is a subgraph of C—1

14 5
fig. 5.4.10 contains an embedding of (G

, the embedding of P(GTB) in
14), which can be found
by deleting 2ll the edges of r‘(c-ﬁ) labelled (3% 4). This
procedure enlarges some of the faces, and in fact one of the
faces is not simply-connected. This face can be removed and
replaced by two simply-connected faces, giving an embedding of
F(G14) on a surface of genus 6. The face which is not simpiy—

connected is shown in fig. 5.4.11. a

Figure 5.4.11

Note: the dotted edges are ‘the deleted edges labelled (3 4).

(142) -q<:4)

(1423) (14)(23)
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SECTION 5.5: HAMILTONTAN CIRCUITS IN LINE GRAPH COMPLEMENTS

In section.5.4 it was shown that there is a close connection
between the genus of a transposition graph [(G) and the
existence »f a hamiltonian circuit in f(G), the line graph
complement of G. In this section the existence of suéh circuits
is investigated, and a simple necessary and sufficient condition
for L(G) to be hamiltonian (provided G has m 3 34 edges) is
proved. The proof of this result depends on Chvital's theorem
on forcibly hamiltonian degree sequences,( 6 ).

Definition 5.5.1

A graph G is normal if it satisfies the following two
conditions:
N1 : Each edge of G is non-incident to at least two others.
N2 ; If G has m edges, then»each vertex of G is inéident to
at most % edges of G.

Proposition 5.5.1

Conditions N1 and N2 are equivalent to conditions N1' and
N2, where N1' is as follows:
N1' ¢ G is not isomorphic to the graph in fig. 5.5.1 for any
values of k and 1, and for any way of attaching e' to the rest
of the graph in such a way that e is non~incident to e'.

Figure 5.5.1
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Proof

We show that G satisfies N2 but not N1 iff G is isomorphic
to the graph in fig. 5.5.1; that is, (N2 A =N1) iff -N1'.
For then we nave (N1 A N2) iff ((W1wv -N2)A N2) iff
(a(N2 A aN1) A N2) iff (a(-N1') A N2) iff (N1'A N2), where
-, A and Vv denote the logical operations not, and and or
respectively.

If G satisfies N2 but not N1, then it has some edge e, say,
incident to all or all but one of the remaining edges of G.
Let e = {u, v} , and if there is an edge of G not incident to e,
let it be e' = {x, v} .

Suppose first that there is no such edge e', so every
other edge of G is incident to either uw or v. There are m-1
such edges, so if k are incident to u, then m=-1-k are incident
to v. Hence d(u) + d(v) = (k + 1) + (m=1=k + 1) = m+1 > 2.% .
Hence either u or v has degree )-% , contradicting the
assertion that G satisfies N2. Hence there is an edge e' of G
not incident to e. All the remaining m-2 édgeé of G are
incident to u or v, so by a similar argument to the one above,
both u and v have degree % . It is clear that G must be the
graph in fig. 5.5.1.

Conversely, if G is isomorphic to the graph in fig. 5.5.1,
then it is obvious that G satisfies 2 but not N1. L]

The significance of this result is that only a very small
family of graphs satisfies N1 but not N2. The significance of
N1 and N2 themselves is that they are the necessary and sufficient

conditions for a graph with more than 34 edges to have a

hamiltonian line graph complement.
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Theorem 5.5.2

If G is a graph with m » 34 edges, then L(G) is hamiltonian
iff G is normal.

The proof of this result is rather complicated and takes up
almost all of this section. The first stage of the proof is to
prove the 'worst' case, where G has a vertex with degree % , The
maximum possible degree for G to be normal. In fact, this is
fairly easy to prove using Chvétal's theorem. This result is
then generalised to graphs with a vertex of degree 2[%] - 4.
For graphs with maximum degree [%] - 5 or less, the result is
proved by another method.

Proof

Lemma 5.5.3 (Chvital)

If G is a graph on n vertices and G has degree sequence
d(v1).$'d(v2)~5 cee $’d(vn), and for each i < % either
(i) d(vi) 2 i+ 1 or (ii): d(vn_i) > n-i holds, then G is.
hamiltonian. O

Lemma 5.5.4 (Chvétal)

If G is a bipartite graph on 2n vertices with a bipartition
v(G) = U v U' where |U] = |U') =n, and if U =fu,, uy,..., un§

where d(u1

<L d(u2)<... gd(un) and U' = Zu', Whyeoos uﬁg
<

)
where d(u%) d(ué)fi... gd(uﬁ), and for each i < n, either
d(ui) 2 i+ 1 or d(uljl_i) >n -1+ 1, then G is hamiltonian., O
Proofs of these results may be found in Chvétal( & ). 1In fact,

the second result is a simple corollary of the first.

Lemma 5.5.5

If G is a graeph with n vertices and has a vertex v such that
d(v) )'% , and G ~ {v} is hamiltonian, then G is hamiltonian.
Proof of lemma 5.5.5

G - {V} has n - 1 vertices, so v is adjacent to more than
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half of its vertices. Hence v is adjacent to two consecutive
vertices in the namiltonian circuit in G - {j},u and u', say.
Deleting the edge {u, u'} and inserting the edges [u, v} and
fur, v} gives a hamiltonian circuit in G. [J

Lemma 5.5.6

If G is a hamiltonian graph, then there is no non-empty set
of vertices V' ¢ V(G) such that G - V' has more than [V']
connected components.
Proof

G contains a spanning circuit C. Deleting one vertex from
C clearly leaves a connected graph. Deleting a further vertex
leaves either a path, or two disjoint paths. It is clear that
deleting k vertices from C leaves at most k disjoint components.
G will certainly have no more components than C after these
deletions, so the result holds. O .

Using these lemmas it is now possible to prove half of
theorem 5.5.2 .

Theorem 5.5.2 (first half)

If G is a graph such that L(G) is hamiltonian then G
is normal.
Proof

BEach vertex of L(G) must have degree 2 or more for a circuit
to pass through it. Hence each edge of G must be non-incident

to at least two others. Hence G satisfies 1.

I
2

edges are all incident to one another and hence are all non-

If some vertex of G is incident to k > = edges, then these
adjacent vertices of L(G). Let E' denote the set of edges of G not
incident to this vertex. Then |E'l =m - k < % . Considering

these edges as vertices of L(G), L(G) - E' consists of k mutually
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non-adjacent vertices, and hence has k >|E'| components. This
contradicts the hypothesis that L(G) is hamiltonian, by lemma
5.5.6. Hence G has no such vertex and G satisfies N2. Hence

G is normal. [J

Notice that this half of the proof is trivial, depending on
only one straightforward lemma. It is very surprising that
such weak conditions as N1 and N2 should turn out to be
gsufficient conditions for a graph to have a hamiltonian line
-graph complement, provided it has sufficiently many edges.

Lemma 5.5.7

If G is a graph with n vertices and m edges, and G has a
vertex v with degree d(v) = k = % , ard k » 6, then L(G) is
hamiltonian.

Proof

Let E be the set of edges of G incident to v, and let E!

be the set of edges not incidenf to v, so |El = [E']= k.

Let E = §e1’ €y eeey ek} and let E' = {e', eé,..., ei} .

Let:H be the bipartite graph with vertex set E(G) and with

an edge {e, e'} iff e € B, e' € BE' and e is not incident to e!
in G. H is clearly a subgraph of E(G), and if H is hamiltonian
then L(G) is also. Thus we suppose that H is not hamiltonian.

If d(e) is the degree of e as a vertex of H, and if
d(e,l> < d(ez)g...sd(ek) and d(e,']) < d(eé)é...{ d(el'{)
then by lemma 5.5.4, since by assumption H is not hamiltonian,
there is some i < k such that d(ei) < i and d(e£~i) < k-i.

If e' € E' then e' is not incident to v so e' is incident
to at most two edges in E. Hence d(e'),} k=2 for all e' € B'.
Hence k—i&d(eimi)bk-Z, so i £2, and i = 1 or 2.

If i = 1, then d(e1) < 1. Now e, is not adjacent in L(G)

1

to any e € E, since they are both incident to v in G. Hence
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" every edge of H incident to e, is also an edge of L(G).

1

It follows that e, has degree £ 1 in L(G), and hence N1 does

1
not hold for G, giving a contradiction. Thus i = 2. In this
case, d(e1) = d(ez) = 2 and d(el'{__z) > k-2.
Now partition E' into four sets:
B'(e1, 82> = {e' €E' :e'~e ande' ~e,inH } ,
E'(e1) = {e' € E':e'~e ande'd e, } ,
E'(ez) = {e' € E' : e'~ e, and e' ¥ e1} ,
E'(.) = {e' € E' : e' L e, and e' A e2} .
Also, let fE'(e1, ez)[zﬂa, [E'(ei)[ = b, for i =1, 2 and
B () =c .
There is at most one element of ﬁ(.) since at most one edge of

G in E!' can be incident to both e, and e.. Hence c¢ S 1.

1 2
Also, d(ei) = a + bi’ so a + b1 = a + b2 = 2,
Finally, k = a + b1 + b2 + C
€ (a + b1) + (a + b2) +c

It follows that if k 26 then L(G) is hamiltonian. []
Before extending this result to graphs G with maximum degree

iess than % 1t is necessary to deal with an exceptional family

of graphs with maximum degree % -1

Lemma 5.5.8

If G is isomorphic to the graph in fig. 5.5.2 then E(G)
is hamiltonian, provided k 2 4
Proof

Let e = {u, v}, a; ={u, uig, bi =§v, vi§ s 1= 1,004, ky
c:{x1, yT}and d ={x2, y2} . Let 4 = {ai} and let B = {bi}

In f(G), each vertex a; is adjacent to at least k-1 vertices
of B, and if a, ~ b, and a, ~ b, then i, = i, . Similar facts

i, J i, J 1 2

hold for each vertex bj .
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Figure 5.5.2

v O\

\\\‘ , 7
\\0 Vk d

In fig. 5.5.2, all the vertices u, are distinct from one
another, as are the vertices Ve Also, all the edges are distinect
from one another, and X4 Yys Xp9 ¥, arve distinct from u and v.

By the argument on the previous page, the subgranh of E(G)
induced by the vertices in A and B contains K;,k , the graph

consisting of K with k mutually disjoint edges removed, as

k,k
a spanning subgraph.
Kz,k is a hamiltonian, edge-transitive graph and hence it
contains a hamiltonian circuit containing any given edge,
provided k ) 3.
Also, in L(G), e ~vc and e ~ d, and c and d may oce adjacent
to certain vertices in A and B. Hence E(G) containé a spanning

subgraph isomorphic to the graph in fiz., 5.5.3.

Figure 5.5.3
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Now ¢ is incident to at most 2 edges of A in G, and hence
¢ is adjacent to at least k=2 vertices of A in L(G). But k » 4,
so ¢ is adjacent to at least 2 vertices of A, Similarly, d is
adjacent to at least 2 vertices of B., Hence there is an edge

. *

{ai, bj}ln the subgraph isomorphic to Kk,k such that ai’V c
and b, ~ d in L(G).

A hamiltonian circuit in L(G) is found by choosing a

» 3 0 . » * 3 - -
hamiltonian circuit in Kk,k containing the edge {éi’ Dj} ,
deleting this edge and adding the edges {ai, c} ,{c, e} ’
fe, df and {q, bj} . O

Lemma 5.5.9

If G is a normal graph with m edges and maximal degree
k =n - a, where n = [%] y & 20 1if m is odd, a 2 1 if m is even,
and n'z,Za + 9, and if u is a vertex of degree k, then there is
some edge e' of G which is not incident to u, and is incident %o
at most n - 1 other edges of G.
Proof

Let v be a vertex of G such that 1 = d(v) 2 d(v') for all
vertices v' # u. Thus v has the second highest degree of all
vertices of G.

Let B(u) be the set of edzes of G incident to u, and let
E(v) be similarly defined. Let E(u,v) = E(u) U B(v), let
Et(u) = B(G) - E(u), znd let B'(u,v) = E(G) - E(u,v).

Now [B(u,v)| = [E(w)] + [E(v)| - [(B(u)n B(v)) , and
there is at most one edge incident to both u and v.
Hence k + 1 - 1 < EB(u,v) <k +1

Also, m = 20 or 22 + 1, and |E'(u,v)| = m - }E(u,v)[ ,

so if m = 2n + 1, then substituting k = n - a we obtain

et

n+a - + 1 QflE'(u,v)f~§ n+a=1+2, and if m = 2n then
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n+a-1 5’/E'(u,v)/<{ n+a=1+1.

If m = 2n + 1, then since 1 k=n - a, E'(u,v) > 0.
If m=2n, thena 21, sol1§k=n-2a<mn+ a, so in either
case, E'(u,v) is non- empty. ZLet e'& E'(u,v).

Since e' is not incident to u, e' is incident to at most
two edges in E(u). Also, e' is clearly incident to at most
[E*(u,v)l-ledges in B'(u,v) . Finally, e' is incident to at most
two edges in E(v). Hence wherﬁer m is odd or even, e' is
incident to at most 4+IE'(uqv)[—1 other edges of G, and taking
the largest upper bound for [E'(u,v), e' is incident to at most
4 +(n+a-1+2)-1=n4+a=-1+5 other edges of G.
Hence the result holds unless 1 S a + 5, which we now suppose
to be the case.

For any end vertex v' of e', d(v') £ d(v) € a + 5 since
e' is not inecident to u. Hence e' is incident to at most
2(a + 5 -1) = 2a + 8 £ n-1 other edges of G, since by hypothesis
n »2a + 9. Hence the result holds. [

tad

Lemma 5.5.10

If G is a normal graph with ﬁ edges and maximum degree
n - a, where a2 0 and n = [%J and n 7 2a + 9, then L(G)
is hamiltonian. '
Proof

The proof is by induction on a.
If a = 0 and 2 = 2n , then n 2 9 2 6 and the result follows
by lemma 5.5.7 .

If a = 0 and m = 2n+1 then consider the edge e' whose
existence was proved in lemma 5.5.9. If G' = G = {et}is a

normal graph then it has maximum degree n and 2n edges, and

n )9 26, so L(G') is hamiltonian by lemma 5.5.7. Also, e
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is incident to at most n-1 edges of G so 1t is adjacent to
at least n vertices of L(G). Hence L(G) is hamiltonian by
lemma 5.5.5 .

If G' is not normal, then either it has some vertex w, say,
with degre=s d(w) > n or some edge e, say, incident to all but
one of the otlher edges of G: (If e were incident to all the
other edges, then it would be incident to all but one of the
edges of G, contradictinévthe fact that G is normal.)

However, i1f w has degree » n+1 in G*', then it has degree
n+1 »r more in G, contradicting the hypothesis that G has
naximum degree < n. Also, if G* has an elge e incident to
all but one edges of G' then since G' satisfies corndition N2,
G' is the graph in fig. 5.5.7. Also, e!' cannot be incident to
e since G is normal, so G is isomorphic to the graph in fig.
5.5.2, which is hamiltonian by lemma 5.5.8.

Now suppose that the result is true for all a Se and

0°
let a = ag + 1 . Suppcse first that m = 2n. By lemma 5.5.9
there is an edge e' € E'(u) incident to at most ﬂ—1.other
edges of G. Now G' = G - {e'} has 2n - 1 = 2(n = 1) + 1 edges
and maximum degreen -~ a =(n-1) - (a - 1) =(n - 1) = ay
Also, n 2> 2a + @, hence (n =~ 1) > 2a + 8 = 2(a - 1) + 10 Z2ay + 9.
Finally, G' is normal, since each edge of G is incident %o =zt

most 2(n - a -~ 1) other edges cof G, and hence is non-incidernt to

at least (2n - 1) = (2n - 2a - 2) = 2a + 1.2 3 edges of G. It

follows that each edge of G' is non-incident to at least 3 - 1 = 2

edges of G'. Hence by “the induction hypothesis, L(G') is

hemiltonian, and hence L(G) is hamiltonian by lemma 5.5.5.
Finally, if m = 2n + 1, then G' = G = {e[} has 2n edges

and maximum degree n - a. By a similar argument -to the one above,
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G' is normal. Hence E(G') is hamiltonian by the arguments for
m=2n . It follows that L{G) is hamiltonian. This completes
the proof of lemma 5.5.10 .

Lemma 5.5.11

If G is a normal graph with m 2 34 edges and maximum degree
n -a , where n = [%} and a2 X 4, then L(G) is hamiltonian.
Proof

If v 2 34 thenn 2 17 = 8 + 9 » 2a + 9. Hence the result

follows immediately from lemma 5.5.10. ]

Definition 5.5.2

N

1f G1 and G2 are graphs, then the sum of G1 and G,, G1 + G2 s

is any graph which is obtained by identifying a number of pairs

v,y V, of vertices, where v, é V(Gi) for i =1, 2 .

1’
b % = Y = t )
For example, if G1 K1,3 and G2 K1’4 hen G1 + G2 could be

any of the graphs in fig. 5.5.4, as well as other possible graphs.

Figure 5.5.4 Some possibilities for K + K1

1,3 4"

This definition is needed in the procf cf theorem 5.5.2 in
the case where G has no vertices with degree 2’[%] - 4. The

following general lerma is also needed.
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Lemma 5.5.12

If G ig a graph with at least 6 vertices, with no isolated
vertices, and with nco three mutually non-incident edges, then

G = K1,m 5 K1,m + K1,n R K1,m + K3 or is the graph consisting

of two disjoint copies of K3 .
Proof
‘Note that all these graphs do have the required properties.
Thg‘proof consiste of showing that there are no other such graphs.
Suppose that G has ¢ components. No component consists only
of an isolated vertex, so if ¢ » %, then G contains three
mutually disjoint edges. Hence ¢ 2. If ¢ = 2, then if one of.
these components contains two disjoint edges, then taking any edge
from the second component gives three mutually disjoint edges .
Hence every e&ge in each component of G is incident to every

other edge. Thus each component of G is eithexr K3 or K1 o feorx
H

some value of m. Hence the result holds if G has 2 components.
The remaining possibility is that G has one component, and is
connected. Let u be a vertex of maximum degree in G, and let

¢(u) = d. 1If G'=G—{aj=K3 or X then & = K or

1,m 1,6 ¥ 3

K1 4 + K1 o and the result follows. Hence we assume that G!
LI ] b2

contains a pair of non-incident edges e1 = {uj, v1}and
e, = {uz, vz} . If d(u) 2 5, then there is some vertex v of G

adjacent to u which is distinct from u v u v But then

170 T2 T2t

e = {u, V} y €4 and e, are rutually distinct. Hence d(u).g 4.

If d(u) = 4, then by the same argument, u nust be adjacent

v Hence the graph in figz.

to each of the vertices u1, v 5t

17 Spo
5:5.5 is a subgraph of G. G is connected and has six vertices,

so at least one of uj,..., D is adjacent to zome other vertex

v of G. By symmetry, this vertex may be taken to be 1.
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Figure 5.5.5

u1q\\\\\ 2
e e

~
£

N
.

1 Y2
But in this case, {v, u1}, {v1, u}, and {uz, Vg} form a set
of three mutually disjoint edges in G.

If d(u) = 3, then u is adjacent to three of the vertices
Uy gevey Voo Let u, be the vertex not adjacent to u. Then

G contains the graph in fig. 5.5.6 as a subgraph.

Figure 5.5.6

-5

G is connected and has at least six vertices so there is

another vertex of G adjacent to one of Uyy ooy Vo oo There are

essentially three possibilities: v ~ Uysy Voo, OF VAr v

2 1 °

If v~ u,, then the same three edges as in the case d(u) = 4

are mutually disjoint . If v ~u, then {v, uz}, {v2, u}and

fv1, u1}are mutually disjoint . Pinally, if v ~, then G contains
the graph in fig. 5.5.7. If G has no other vertices or edges

then G = X, . + K; . If G has another edge not incident to
?

.v;

’ then it is easy to see that in every possible case G contains

three mutually disjoint edges. If G has a number of oéther edges
incident only to v, then G = K + K, for some m.
1 1,m 3

Thie completes the proof of lemma 5.5.12 . [J
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Figure 5.5.7

Lemma 5.5.13

If G is normal and has m 2> 34 edges and has maximum degree
n - a where n = [%} and a » 5, then L(G) is hamiltonian.
Proof

The proof of this lemma is rather long, so to make it more
readablﬁ it has been split into a number of shorter sublemmas.

Suppose that G is a graph satisfying the hypotheses of
lemma 5.5.13, and that L(G) is not hamiltonian. Then by the
contrapositive of lemma 5.5.% there is some set of edges
E' < E(G) suck that each edge e' € E' is independent of at

m

most K other edges of G, where k = ('] < 5 Let H be the

al

subgraph of G induced by the ‘edges in E'.

The following sublenmas describe the structure of H.
Sublemma 1

H hatg no three mutually disjoint edges
Proof of sublemma -1

Suppose that e%, eé, and e% are mutually disjioint edges
of G and are all elements of BE'. Partition E(G) into the
following subsets:
B={e o es o)
E(ei) =.{e: e 1s incident to ei but not to the other two cdges

in E1 } s 1=1, 2, 3,

E(ei, eﬁ) = {e : e is incident to e, and e but not to the third

edge in E1 }
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E(.) = {e : e is not incident to any edge in E1}.
Note that since the edges in E1 are mutually disjoint, no edge
of G can be incident tc all three of them.
— il 1 [} — I |
Let lE(ei){~ d,, let Ib(ei, ej)f = bi,j and let |E(.)] = ¢ .
FPigure 5.5.8 shows that there are at most 4 edges incident to
both e! and es y 80 by 3 < 4.

3
Figure 5.5.8

—n e e

Now e% is non-incident to eé , e% ’
E(eé), E(eé), E(e!, e%) and E(.). Hence el is adjacent to

vertices of L(G). Similarly,

and to each edge in

2 + d2 + d3 + b2,3 + C

1 e b P
d(eg) =2 +d, + d3 o s+ 0 and

L .
d(ea) =2+d, +d, +D PR

1
However, d(e!) Kk <2 and m =3 +d +d, +d, +b

B o

3
Hence 2m = 5 + 2d1 + 2d2 + 2d3 + 2b + 2b + b

3 1 ]
) + d(el) + d(eB) + b1’2 + b1,3 + bg’3

+ 4 + 4 + 4 -0, maximising evsry term
but the last, and asinimising c.
Hence simplify:ng this expression, m < 24 < 34, which contradicts
the hypothesis that m 3 34. U
Hence by lemma 5.5.712, H has less than 6 vertices or else

H=X + K , K + K, or K, + K, , or H =K
0

1,m 1,10 1,m 3 3 1,m "
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Sublemma 2

If H¢K or K, then k = [E'|2 5 -~ 2 .
1, 3 2
Proof

If H is not isomorphic to one of these grapas then H

nust contain two disjoint edges e; and e . Partition E(G)

as B(G) = B(.) u E(e%)lJ E(eé)LJ E(e%, eé) , where B(.) is the set

of edges of G incident to nsither e; nor eé y and so on.

Let d, = ]E(ei)) for i = 1, 2, let ¢ = [E(.)| and let
b= [B(e!, e})] . As before, b 4.

Hence in L(G), d(e%) =1+4d, +c and d(eé) =1 +d, +c.

Also, since e! € E, d(ei)-S k.

Thus m = ¢ + d1 + d2 + b + 2

Ko2e + d) + dy + 4+ 2= d(e’) + d(e') + 4

1
L2k + 4.
Hence the result follows.

Sublemma 3

frrudion RS 2
4 -
If HE K1,r for some r,then k,)»z j .
Proof

Let u be the vertex of degree r in H, and partition E(G)
as follows: E(G) = E'U E, UE, , where E' is as alweys the
set of edges generating H , E1 is the set of edges of G incident
to u but rot in E', and E9 is the set of edges not incident to u.
Note that E' and E2 are disjoint sets since every edge in E' is
incident to u by hypothesis. Let ]E1{= b and let {Ezf = C 3
iE'! = k by definition.

Consider the number of incidences in G between edges in E'
and edgeg in E2, and let tais nuwsber be s, say. Every edge in

E' is by definition non-ircident to at most k edges of Ep, 50

it is incident to at least c-k edges of E,. Hence s o k(c=k) .
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Since m=Db + ¢ + k, s 2 k(o - 2k - b).
However, each edge e2 é E2 is not incident to u and hernce
ig incident to at most 2 edges which are incident to u.

Since every edge in E' is incident to u, it follows that e,

is incident to at most 2 edges of E'., EHence s < 2¢, and
after substituting for ¢, s < 2(m -~ k -~ b). Combining this with

the first inequality gives k{m - 2k -~ ) < 2(m - ¥ - b), and

after some algebra, we have (k - 2)(m - b).g‘2k2 - 2k .

Note that if k = 2 then this inequality holdes. This case

must be considered separately. First suppose that k 2 3.

Note that b + k é'% - 5 gince b + k is the degree of u

which is at most % - 5. Substituting in the previous
inequality, we have

. o]
(k = 2)(m - (% -5 =-k)) &< (k -2)(m - b) & 2k - 2k,

Afterfurther manipulation, this gives

2(x° - 5% + 10) 8

N2k - 6 + 8 since k > 3 so TE—%—§S-<§ 1.
1. -

i

Hence if k 2 3, then k 2

SE

If ¥ = 2, then let E' ={e', eé}amd partition E(G) as before

in this proof. Also, partition E2 as follows:

B, = Ez(.) U Eg(e%) U EQ(eé) U Eg(e;, eé) , where Eé(,) is the

s¢t of edges in E2 incident +to neither e% nor e} ,

Let |B,(.)] = d,, {Eg(ei)Jz dy s !Ez(eé){z 45 and |E,(e!, eé)1= a.

and so on.

Then ¢ = a1 + d2 + d3 + d4

Also, the degrees of e% and el in f(G) are given by

2
3 £ 2, and d(eé) =d, + 4, , since k § 2.

Finally, d, < 1 since only one edge not incident to u may be

4

incident ! ', = .
ncident fo both 91 and e2 Hence ¢ d1 + d2 + d3 4 d4

<
A\ 2d1 + d2 + d3 + d4

J ’ o
a(e1) =d, +d
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However, G is normal so at least half of its ecges are not
incident to u. Hence ¢ 2,% , so m £ 10, which contradicts
the hypothesis that m > 34. Hence k # 2.

This leaves only the case k = 13 but if this is the case
then G has an edge which is non--incident to at most one other
edge of G. This contradicts the fact that G is normal.

This completes the proof of sublemma 3. [J

Sublemma 4

X..

B¢ 5
Proof

If H = K; then B' = {é', el

can be incident to all three edges in E', since they form a

e%'} . No edge of G not in E'

subgraph isomorphic to K5 by hypothesis. Also, no edge of G

can e incident to only one of them, for the same reason.

Hence E(G) may be partitioned as

E(G) = B'v E(e!, eé) u E(e';’eé)(J E(e%, e%) U E(.)

where B(.) is the set of edges of G incident to none of the edges

fal

of E', Efe!, eé) is the set of edges incident to e! and e! but

1 2
not to e!, and so on. Let |E(e!, e!){ =D, ., and let [EB(.)[= c.
3 1773 1,3
The degree of e} in (G) is given by d(e%) = b, 5+ © < 3.
i !
Similar formulae nold for e}l aud e% .
Also, m = 3 + b1,2 + b2,5 + 103’1 + C

3+ 3¢ + b1,2 + b2,3 + b3’1

<3 o+ d(e%) + d(eé) + d(e%)~§ 12.

This contradicts the fact that m }.34 by hypothesis.

Sublemma 5

H has some vertex incident to at least .y edges of H.

4
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Proof of sublemma 5

By sublemma 1 and lemma £.5.12, H = K1 - Koy
9+ /

K K K
1,r * K1,s’ 1,r T Sy K3 T B3

By sublemma 2, H = K, _ or K; or hes k 2 % - 2215 7 6
b

X or H has < 5§ vertices.

-

vertices. Thus H = K + K , K + K3 or X

1,1 1,8 1y2 1,1

By sublemmas % and 4, in each of these cases, H has at
least 5 - 2 edges. |

In each of the remaiﬁing cases, the central vertex of the
(larger) star is incident to more than half the edges of H.
The result follows. [J

With these sublemmas it is poggible to prove lemma 5.5.13.
Proof of lewma 5.5.13

By sublemma 5, H has some vertex wu incident to at least
% ~ 1 edges of G. Let E'(u) be the set of edges of E' incident
to u, let E(u) be the remaiﬁing edges of G incident to u, and

let E¥ be the set of all edges of G not incident to u. Note

1
.

b

that E¥ will contain edges in E' and in E -
Let fE'(u)(: b, |B(u)/= ¢ and |E*| = d. The following equations
all hold:

(1): b ),% - 1 by sublemma 5

(2): © +¢c € n=-a, wheren

Nee

[I.;i} and a > 5 by hypothesis ;
(3): b+ c+d=m;

(4}: a5

(5): m 2 34
(6): c 2 0.

3

ee

Let e be the edge in E'(u) incident to the fewest edges in E*,
and let s be the number of such edges. Since e € E', e 1s non-
incident to at most k edges of G, so d - s ka, since e is mon-

incident only to edges in E¥., However, d = m - b - ¢

0
O
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b+ cCc+ 8 m - k., Also, k <’% so k 67{%}-— 1 and

[ﬁ'il] (7).

?;
” 2

b+ c + s

Now consider the number of incidences between E'(u) and E¥;
this gives the inequality 2d > bs ...(8) , since each edge of E¥
is incident to at most 2 edges of E'(u), and each edge of E'(u)
is incident to at least s edges of E*, by the definition of s.
(2) and (7) imply ¢ 2 2 + 1

26 by (4).

(3) and (8) imply that 2(m = b -~ c) » bs , but by (7),
b + ¢ 2~{%] + 1 - s, hence
2(m - ([g‘-]+ 1-8))22m=-1b=c)y bs
}rﬂ - 1] s by (1).
- Hence 2( {%} -1 + s)}%ﬁ-_ s .

If m is odd, then 2{%} =m+ 1, som + 25 = 1 7 =2

el
hence m < SS__41 c¢ince s 2 6 by an earlier inequality.
Hence m £ 12 + gé%fz <12 + %i = 34.

Since m is odd, we conclude that m.S 3%, which contradicts

equation (5).

If m is even then 2'{%} =m, som+ 25 = 2 7 %5 -,
After some manipulation this gives m £ 12 + §92—3$12 + %Q. = 72,

Again this contradicts the hypothesis that m 3, 34.

This completes the proof of lemma 5.5.13. [

Theorem 5.5.2 now follows from this result and from lemma 5.5.711. [J
The proof of theorem 5.5.2 is very complicated, particularly

the second half. However, the proof does not involve any

particularly advanced ideas. The majJor weakness of the result

is the value of m which must be assumed, namely m 2 34. This

seems to be the smallest value of m whi?h can be obtained by

the present method of proof, but it is probably far larger then



is necessary. A number of examples are known of small graphs
which are normal but do not have hamiltonian line grazh
complements. The largest of these has 10 edges, namely KS.
It is conjectured that this is the largest normal graph
which does not have a hamiltonian line graph complement.
The 'canonical'! graphs are listed below. A number of other
graphs can be obtained by modifying these graphs to produce
further exanmples.

Pigure 5.5.9 Canonical normal graphs with non-hamiltonian LGC's.

0 o<
I>— B
<>

v.
o—————0
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Figure 5.5.9 (continued)

G

o

The third canonical graph, for example, can be modified to give
the graphs in fig. 5,5.10, and two others.

Figure 5.5.10

L
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The line graph complement of each of the graphs in fig.
5.5.10 is a spanniag subgraph of the third line graph complement
in fig. 5.5.9 and cannot be hamiltonian.

An exhsustive search has beern made of all graphs with 8 or
fewer edges but no further graphs were found. Numerous graphs
with 9 or more edges have beén examined, but so far no examples
apart from K5 have been found. It is tentatively conjectured
that there are no other graphs apart from those mentioned above
which are normal but do not have hamiltonian line graph complements.
This conjecture is supported by the exhaustive search of small
graphs, zn unsuccessful search for likely counter-examples,
the (fairly simple) propositions that all normal trees and all

nernal regular graphs except K. have hami.tonian line graph

P
complements, Finally, it would be appropriate for K5 to be the
largest sxceptional graph, since its line graph complement is
Petersen's graph, an exceptional graph in other contexts.
Heowever much it i1z improved, the present proof could not
prove this conjecture. The prodf of lemmsa 5.5.1% is QseIess
for graphs with 21 or fewer edges since there exist normal
graphs with hamiltonian line graph complements which have sets
of edges E' with x % edges , each of which has velency k or

less in E(G). The largest known example 1is K7, where E' can be

any set of 10 edées.
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APPENDIX 1: A LIST OF TRANSPOSITION GRAPHS ON AT MOST 24 VERTICES

There are 15 graphs’Gi s i=1, 2,..., 15 such that P(Gi) has
at most 24 vertices. These graphs are all shown in fig. 5.4.7.
The notation of fig. 5.4.7 will also be used in this section.
Transposition graphs which may be found elsewhere in thishthesis
will not be duplicated in thié appendix. The graphs to which this
'remark applies are[ﬁ(G1), which may be found in fig. 2.2.9,
r(e,), (fig. 1:3.1), ['(65), (fie. 2.2.13), I(c,), (fig. 5.4.2),
M(ey), (fige 1.308), [(Gy0), (Fige 4.2.1), 1(6y,), (fie. 4.3.1)
and (G, ), (fig. 3.4.3) .
Me):
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I'"(G7):
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rn(G13):

The drawings of F1G14) and FKG15) on the following page
show the two graphs drawn on the torus, but with a number of
lines crossing. This gives a more 'natural' picture of the
graph than is possible drawing it in the plane. To make this
convention more reasonable, those hexagons containing three
intersecting lines may be regarded as cross-caps. Thus the
drawings may be regarded as non-orientable embeddings of

FKG14) and W(G15). This idea can be generalised.
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(G, ):

Mo,
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