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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

MECHANICAL ENGINEERING

Doctor of Philosophy

THE COMPOUNDING METHOD OF DETERMINING STRESS INTENSITY FACTORS
FOR CRACKS IN ENGINEERING STRUCTURES

by David Percy Rooke

In this thesis the compounding method for determining stress intensity
factors is developed and presented. The method enables stress intensity
factors to be evaluated for complex geometrical cracked configurations
with many boundaries from the factors for several simpler comfigurations
with one boundary only. It is based on an alternating technique in
which only the important interactions between boundaries are taken into
account. The method is applied to a wide range of structural configura-
tions which include cracks near other boundaries (eg edges, holes or
other cracks) cracks at the edges of loaded or unloaded holes, and

cracks near stiffeners.

The method is assessed by comparing 'compounded solutions' with known
solutions for several configurations. It is shown that the errors
resulting from the approximations in the compounding method are a func-—
tion of the number and type of boundaries near the crack. It is further
shown that these errors in stress intensity factors lead to uncertain-—
ties in residual strengths and fatigue lifetime which are within

engineering tolerances.



CHAPTER |

INTRODUCTION

Materials used in engineering structures often contain flaws or
crack-like defects, These may exist at either the manufacturing or the
fabricating stage or they may be initiated during service use, For
example flaws which do originate during the manufacturing processes are
often associated with impurities or second phase particles. Fabrication
processes such as drilling and welding can result in crack-like flaws,
for example at the edge of a drilled hole or at the edge of a weld. The
initial dimensions of these defects are usually small, perhaps even
microscopic. Under service conditions they may grow to macroscopic
dimensions and their presence may lead to a reduction in the static
strength of the structure, The growth may be caused by variable service
loads (fatigue), environmental attack (corrosion), or both. These two
factors may also cause new cracks to be initiated in the material, If
the static strength of the cracked structure (residual strength) falls

too low then failure can result under normal operating conditions.

Despite precautions failures do sometimes occur and some examples
of in-service and on~test failures have been collected by Kirkby] and
are shown in Figs 1.1 to 1.,18. A noticeable feature of the failures
shown is that many of the cracks originate from regions of stress con-
centration such as holes, cut-outs, changes of section, etc. This
feature is common to many crack problems and will be considered in

detail in subsequent chapters.

Cracks which have grown from holes are illustrated in Figs 1.1 to
1.5, 1.11, 1.14 to 1.18, 1In the components manufactured from thin-
section material, Figs 1,1 to 1,3, 1.14 and 1,15, the crack penetrates
through the thickness for most of the life and so, in practice, surface
observations would give an accurate estimate of crack-length. This is
not necessarily so for cracks in thick components such as shown in
Figs 1.4, 1,5, t.11, 1,16 to 1.18, Many of these cracks start in a
small area, often a region that has been subjected to fretting damage,
and do not grow through the thickness until the final failure of the
component occurs., Figs 1.1 and 1,2 illustrate how extensive damage due
to crack growth can occur in regions of multiple stress concentratioms,
eg a row of holes. Sometimes several cracks develop from multiple
origins, 2y from both sides of a hole as in Figs 1.4, 1.14 and 1.17,
from several holes in a row of holes as in Fig 1.1, from various posi-

tions round a uniform stress concentration as in Fig 1.13. Despite the



reinforcement around the cut—out shown in Fig 1.15, a crack occurred at

the maximum stress concentration at the corner of the cut-out.

Cracks which have started from regions of stress concentration
associated with changes in section thickness or re-entrant corners are
shown in Figs 1.6 to 1.9 and 1.13., In Figs 1.7 and 1.8 the crack
occurred at an abrupt change in thickness which involved a corner with
a small radius of curvature. Fig 1.9 shows a crack sta.ting from the
root of a circumferential groove and Fig 1.13 shows many cracks growing
from an area where there is a change in section thickness, a corner and

multiple grooves (ie screw threads).

Figs 1.10 and 1.12 show crack growth from pre—existing flaws. 1In
Fig 1.10 a flaw in the original extrusion developed into a crack which
grew through the thickness and caused a failure. In Fig 1.12 a weld

defect grew into a crack around the weld line leading to failure.

Various design philosophies have been developed for dealing with
the problem of loss of structural strength due to the initiation and
subsequent growth of cracks by fatigue. Chronologically the first was
the 'safe-life' design philosophy; this was developed in the years
1945-55, Safe-life design is based on the comncept that significant
fatigue damage will not develop during the service life of the component
or structure: if a crack is initiated, or is already present, it will
not grow enough to produce a significant reduction in strength. The
life for which this is true, for any given component, is calculated and
then checked by a suitable test programme; an appropriate safety factor
on the test-life is chosen; the factored life is known as the safe-life.
When the service life equals the safe-life the component is taken out of
service whether crack damage is evident or not. This philosophy can
lead to the inefficient replacement of components which are still safe

and would remain so for a long time.

In the early 1960s a more efficient philosophy known as 'fail-
safe' design was developed. With this philosophy a structure is
designed to have an adequate life free from significant fatigue damage,
but continued operation is permitted beyond the life at which such
damage may develop. Safety is incorporated into the fail-safe approach
by the proviso that any fatigue cracks that develop will be detected by
routine inspection procedures before they result in a dangerous reduc—
tion of the static strength of the structure. Two requirements are
necessary for this approach to be successful: they are to be able to

define a minimum crack size which will not go undetected at a routine



inspection and to be able to predict the growth of such a crack during
the time until the next inspection. The lengths of cracks detected by
straightforward inspection procedures will usually be measured in
centimetres rather than millimetres. Safety factors are introduced to
allow for variability in parameters, such as loading and material

properties, which affect the rate at which cracks grow.

In the early 1970s a third design philosophy was proposed, the
object of which was to design a 'damage-tolerant' structure. This
philosophy is similar to the fail-safe approach but goes further in that
consideration is given to crack growth from flaws which are assumed to
be present in the structure as manufactured. Such flaws may arise from
metallurgical imperfections in the material, or from manufacturing
faults. Examples of such imperfections have already been seen in
Figs 1.10 and 1.12, The size of flaws which are assumed to exist in
certain specified critical areas have dimensions between 0.1 mm and
1.5 mm. The implementation of the 'damage-tolerant' approach to a given
component depends on whether the component is classed as 'inspectable'
in the course of routine service inspections or 'non-inspectable'. For
instance the component in Fig 1.12 would be classed as inspectable and
that in Fig 1.10 as non—inspectable. For components that are inspectable
the procedures closely follow those used in fail-safe design. However,
in the case of non—inspectable parts it must be demonstrated that the
time for the crack to graw to failure, from the prescribed initial flaw,
is greater than the desired service life. Since, under service loading
conditions, most of the 1life of a cracked component is spent while the
crack is short it is necessary to be able to predict accurately the rate

of growth of these short cracks.

Thus it is clear that quantitative methods of assessing crack
growth and its effect on structural strength are needed in order to
ensure that optimum use is made of engineering structures, and that
reliability and safety are guaranteed under service conditions. Such
assessments are needed at all stages in the life of a component or

structure. They are needed:

(1) to assist in design;

(2) to assist in material selection;
(3) to devise inspection schedules;
(4) to plan maintenance procedures;

(5) to decide on repair or replacement.



Fracture mechanics, which depends on the assumption that ‘'crack-
behaviour' is governed by the stress—field at the tip, provides a basis
for quantifying both crack-growth and strength=reduction which may lead
to structural failure. The important parameter in fracture mechanics
is the stress intensity factor K since it is a measure of the magni-
tude of the stress occurring in the highly stressed region at the tip

of a crack in an elastic solid.

The linear elastic solution for the stress-~field around a crack
shows that the stress components Gij are always of the same form;
they are, in terms of the polar coordinates r, 8 from the tip (see

Fig 1.19),
K

cij(r,e) = fij(e) + 'other terms' . (1.1)

V21T

I1f the point (r,8) is sufficiently close to the tip, ie r < crack
length, the 'other terms' in the above equation are negligible compared
to the first term. The elastic solution predicts infinite stresses at
the crack tip (r = 0) which cannot occur in practice since there is
plastic flow in the highly stressed region near the tip. However, if

the region of plastic flow is small compared to the region over which
1

the r * term dominates the stress~field, it may be assumed that the
behaviour of the crack is determined by the elastic stress intensity
factor. This assumption forms the basis of linear elastic fracture

a

mechanics.

The constant K , the stress intensity factor, is a function of
the loading on the cracked configuration and of the size and shape of
the crack and other geometrical boundaries; it has the dimensions of
stress x /length. There are three distinct types of cracking modes
which are characterized by different symbols for the stress intensity
factor, these are illustrated in Fig 1.19. Mode I, characterized by KI
and known as the opening mode, is the most common mode found in practical
gsituations. Mode II, characterized by KII is known as the sliding mode
and mode III, characterized by Ki11 > is known as the tearing mode. The
stress intensity factor for each mode can be formally defined, as r

tends to zero along © = 0 , in terms of the stress components shown in

Fig 1.19, as follows:
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For most two-dimensional representations of straight-fronted
cracks the coordinate system (xl,xz,XB) in Fig 1.19 is a Cartesian system
(x,v,2) with the origin of coordinates translated to the crack centre
and the crack lies in the y = 0 plane with the front parallel to the
z axis. In some three-dimensional configurations with planar cracks
which have a curved crack-front the stress intensity factors vary with
position on the crack-front. In contrast to two-~dimensional configura-
tions the crack usually lies in the z = 0 plane of a Cartesian system
but the stress intensity factors must now be defined in terms of a local
coordinate system at the point under consideration; ) becomes the
outward normal to the crack-front, X, the normal to the plane of the

crack and Xq the tangent to the crack~front.

Fracture mechanics is widely used to describe many aspects of
crack behaviour, eg the onset of crack growth due to corrosion or
fatigue, the rate of growth due to corrosion or fatigue and the occur-—
rence of final failure. "Material constants such as KIscc , the value
of K at which stress corrosion cracking starts, and KIc , the value
of K at which plane strain failure occurs under a continuously increas-
ing load, have been measured for many materials. Crack growth laws have
been suggested to explain the strong dependence of the rate of growth of
a fatigue crack on the range AK over which the stress intensity factor
fluctuates. In order to apply these concepts and laws to a practical
situation it is necessary to know the stress intensity factor for the
particular configuration. Solutions for many configurations are now
available; many of them are recorded in the collections by Rooke and
Cartwrightz, Tada, Paris and Irwin3, and Siha. Most of the solutions are
applicable to linear, elastic, isotropic and homogeneous materials con-
taining stationary cracks although some solutions are for anisotropic
and bi-materials. The majority of the solutions are for two-dimensional

structures, as three—-dimensional problems are much more difficult to

solve,



In addition to the collected solutions many others are avail-
able, for instance, in the series of Special Technical Publications
(STP) published by the American Society for Testing Materials (ASTM),
in the series entitled 'Fracture' edited by H. Liebowitz5 and in the
series entitled 'Mechanics of Fracture' edited by G.C. Sih6. The
methods, both theoretical and experimental, of obtaining these solu-
tions have boen reviewed by Cartwright and Rooke7, Liebowitz (Vol II
of Ref 5), Sih (Vol I of Ref 6), and KobayashiS. Numerical methods

have also been reported recentlyg.

In practical problems, structural geometries and loadings are
often so complex (see Figs 1.1 to 1.18) that the available stress
intensity factor solutions are inadequate. Evaluation of the stress
intensity factor for the actual problem using standard methods may be
prohibitively expensive in both time and money. Thus there is a need
to develop simpler methods which will be cheap and easy-to-use even if
less accurate than most standard methods. Many simple methods have
been suggested; the more important omes have been reviewed and their

relative merits discussed by Rooke, Baratta and Cartwright .

Devising a simple method for solving a given problem depends first
on recognising what are the essential features of the problem and then
ensuring that the method takes due account of these features. Other
aspects of lesser importance can be dealt with in a more approximate
manner. However the approximate nature of these simple methods must be
recognised and the likely sources of error identified. Errors are
estimated by comparison with known solutions and the practical comse-

quences of using these approximations investigated.

As mentioned earlier, examination of many crack configurations
(see for example Figs 1.1 to 1.18) suggests that the two most important
features are stress concentrations at holes and notches, and other
boundaries such as edges. Cracks frequently start at or near stress
concentrations which dominate crack behaviour while the crack is short
that is during the majority of the fatigue lifetime. Stress concentra-
tions are usually characterized by a parameter called the stress
concentration factor, denoted by Kt . As the crack grows longer the
effect of the stress concentration on the crack—tip stress field
diminishes and the stress intensity factor approaches that for an
isolated crack, provided the crack tip does not approach any other

boundaries. These two limiting cases, short cracks and long cracks,



provide the asymptotes for a simple interpolation model used by

Rooke11 and described in detail in Chapter 2.

Because the results of the interpolation model are simple
analytical functions, they are very suitable for investigating the
consequences of using approximate stress analysis in fracture mechanics
calculations of residual strength and fatigue lifetimes. The results
of these calculations contain uncertainties which arise as a consequence
of errors in the stress intensity factor; these uncertainties are
examined in Chapter 2 where it is shown that they are no greater than
and often less than the uncertainties in crack sizes, service loads and
material properties. Although the simple interpolation model was used
in the study of the errors and their consequences the conclusions
reached are not restricted to that model. Any model which results in
errors of a similar magnitude in the stress intensity factor will lead
to uncertainties in the residual strength and the fatigue lifetime

similar to those calculated in Chapter 2.

In many real components, the above long crack limit may not be
appropriate because of the presence of other boundaries near the tip of
the crack. Where multiple boundaries are present, even short cracks at
one boundary may be affected by the presence of all the other bound-
aries. It is therefore necessary to develop a method to evaluate the
effects of all the boundaries on the crack. Such a method known as the
'compounding method' has ‘been developedlz. Its further development and
use to evaluate stress intensity factors for various crack configura-
tions forms the main topic of this thesis (Chapters 3 to 9). Only
opening-mode stress intensity factors are considered here, as they are
the most important in engineering structures, but the same principles

could be applied to the other modes.

In the compounding method the effect on the crack of each boundary
is considered separately, and these effects are then combined in a
simple manner. Thus complex geometric configurations can be built up
from relatively simple ones. Combining the effects of each boundary
depends on the principle of superposition with the addition of inter-
action effects between the separate boundaries. The compounding method
is developed using the iterative procedures of the Schwarz alternating
technique: the major terms in the iteration represent interactions
between the crack and the boundaries and the minor terms represent
boundary-boundary interactions. These latter interactions may or may

not be important; certain types of crack configurations for which they



are important are identified and methods of evaluating the effects
investigated. The compounding method is presented in terms of normal-—
ized stress intensity factors in order to make use of the many simple

solutions available in the Compendium of Stress Intensity Factors .

In Chapter 3 the theoretical development is described and the
method is applied to plane problems with a crack near boundaries of
different curvatures. Results for the stress incteasity factors are
compared with those obtained by other more accurate methods for some
test configurationsy it is shown that the differences arising from
ignoring boundary-boundary interactions are small (within normal
engineering tolerances) and that they are a function of the curvature
of the boundaries and the number of the boundaries. A formal procedure
is described for evaluating the boundary-boundary interactions by using

the Schwarz alternating technique.

In Chapter 4 compounding is applied to one or two cracks growing
from a hole near to other boundarieg, which may be the edges of a sheet
or other holes. The hole with the crack is considered to be unloaded,
Ze¢ no normal or shear forces acting on the perimeter of the hole. In
this configuration a boundary, namely the edge of the hole, crosses the
crack and it is necessary to introduce the concept of an 'equivalent
crack'. This crack replaces the original crack plus the hole; the
boundaries other than the hole are then considered to interact with the
equivalent crack and these effects are compounded. It is found that the
boundary-boundary interactions, Ze¢ between the hole and other boundaries,
are often important and must be taken into account when evaluating the
stress intensity factor. Since the stress concentration factor is the
dominant parameter at short crack lengths (see Chapter 2), this factor
is used as a basis for determining the magnitude of the boundary-

boundary effect.

Structural components frequently contain many holes, or cutouts,
and the holes are often arranged in periodic arrays, for instance a row
of fastener holes. The stress intensity factor for a crack at one of
the holes is increased by the presence of the other holes. Since
similar stress fields exist around each hole, it is likely that other
cracks will be initiated at other holes at about the same time during
the service life. Interactions with these other cracks will result in
further increases in the stress intensity factor of the original crack.
It is shown in Chapter 5 how the compounding method can be used to study
the effects of many cracks at the edges of the holes in a row of

unloaded holes.



In some structural components, loads are applied to the edges of
holes, eg pin-loaded lugs and lap joints, and some fastener holes are
loaded. 1In Chapter 6 the problem is considered of many cracks at the
edges of the holes in a row of loaded holes near a boundary. For these
types of configuration, a further development of the compounding theory
is required. This development which introduces the concept of the

'equivaleatr load' is described in Chapter 6.

Many structural components are made from large panels which are
reinforced at intervals with stiffeners. The stress intensity factor
for cracks in these panels, which often start at the rivets attaching
the stiffeners to the panel can also be obtained using the compounding
method if the stiffeners are treated as boundaries. In Chapter 7 it is
shown how the stress intensity factor of a crack at one of the stiff-
eners, broken or unbroken, in a stiffened sheet may be obtained. If the
stiffener actually crosses the crack, it is necessary to use the concept

of the 'equivalent crack' which was developed for cracks at holes.

Because of the periodic nature of stiffened sheet construction,
ie stiffeners are regularly spaced, cracks are likely to be initiated
at more than one stiffener as the stress fields will be similar at
similar locations. The stress intensity factor for any given crack will
be increased by the presence of other cracks, and since this will lead
to a reduction in the fatigue life of the structure, it must be con-
sidered in the original design and in the determination of inspection
and maintenance schedules. In Chapter 8 it is shown how compounding can
be used to obtain stress intensity factors when there are many cracks in

a periodically stiffened panel.

Since the importance of boundaries and their effects on cracks is
an essential part of the compounding method, and since it is quick and
cheap to use, it is an ideal tool for design studies. Chapter 9 con-
tains a design study in which it is shown that by arranging fastener
holes in two rows instead of ome, significant improvements can be
cbtained in the fatigue life-time c¢f a cracked component. Such studies
are necessary to design optimum structures subject to the requirements
of damage-tolerant specifications. Recently Brussat, Chiu, Rudd and
Creager13 have performed a reliability assessment of the use of the
compounding method in the damage tolerance analysis of reinforced
structural panels, They demonstrated that this simple analytical

approach produces predictions of fatigue lifetimes which agree with test
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results to an accuracy sufficient to justify its use in damage tolerant

design analysis.

In this thesis we identify the important structural features,
namely stress concentrations and boundaries, which affect the magnitude
of the stress intensity factor when the structure is cracked, and
develop approximate stress analysis methods which quantify the effects
of these features. It is shown that the uncertainties in calculated
values of residual static strength and fatigue lifetimes, due to the
approximate analysis, are acceptable in most engineering applications.
The methods can be used to plan reliable and safe inspection and main-
tenance procedures in existing aerospace structures, and they can be
used to design damage-tolerant components. The compounding method is
particularly useful in design since it isolates the effect of each
boundary in turn and therefore enables the important omes to be identi-
fied, While some emphasis has been placed on airframe components, the

methods are not limited to these applications.
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CHAPTER 2

ERRORS IN STRESS ANALYSIS AND THEIR EFFECTS11

Calculated values of stress intensity factors will contain errors
if approximate stress analysis techniques are used. The magnitude of
the errors can often be estimated, but their importance will depend on
the practical application. The commonest fracture mechanics applications
are the determination of residual strengths and fatigue lifetimes for
cracked structures, Errors in the stress intemsity factors will cause
uncertainties in these two important quantities. In this chapter
uncertainties that arise from using an approximate method of stress
analysis are evaluated and compared with those arising from other
sources. A particularly simple method of stress analysis was chosen in
order to facilitate the calculations of residual strength and fatigue
lifetime, but the conclusions are applicable to any method of stress

analysis that leads to similar errors in the stress intensity factors.

The successful application of the principles of fracture mechanics

to a practical problem requires a knowledge of the following:

(1) the crack size {(length, shape, etc);
(2) the stresses due to service loads;
(3) the stress intensity factor, at the tip of the crack;

(4) material properties (eg KIc’ KC, da/dN , etc).

These four items are known imperfectly. The uncertainties in items I, 2
and 4 are usually presented to the fracture mechanics analyst who must
then decide on what degree of accuracy is required in the evaluation of
the stress intensity factor. This section investigates the possibility
of using very simple and cheap approximations for the stress intensity
factor for cracks initiated at stress concentrations such as holes and
compares the possible errors introduced into a fracture mechanics

calculation with those due to the other uncertainties,

The measurement of crack length in practice is often difficult and
can result in inaccuracies which may be significant, particularly if the
crack is short. Access to the cracked component may be difficult; the
ends of the crack may be obscured by other parts of the structure or by
protective coatings; the crack length within the thickness of a compo=
nent may be different from that observed on the surface. It is not
possible to specify the likely inaccuracies in a general way, since they

will depend on the actual configuration,



The stresses in the uncracked structure may not be known
accurately, because the external loads are not known accurately, or
because the structural configuration is so complex that an accurate
stress analysis is not possible, or because residual stresses of unknown
magnitude may be locked in it as a result of overstraining during fabri-
cation. The uncertainties in external loads often arise because the
loads themselves are of a variable nature, eg gust loading on aircraft
wings, or wave loading. It is not possible to assess accurately what
the uncertainties in the stresses are, but it is likely that they will
be at least 10%Z over much of the structure and probably more in some
cases, Differences as large as 5:1 between the fatigue life established
by full-scale testing under anticipated service loads and the actual
service life have been measured (see, for example, Ref 14). Although
these results will include scatter in crack initiation they suggest that
actual service stresses may differ by more than 10% from the design
stresses. (The dependence of fatigue life or crack growth rate on the
stress intensity factor, which is proportional to the applied stress, is

discussed later.)

Although many stress intensity factors are now knowvnz“4 the one
appropriate to a given complex structural configuration is often not
known. The calculation of the necessary stress intemsity factor by
standard techniques may be very costly and time—consuming and may still
not be very accurate. There is thus a need for simple and cheap, even
if approximate, methods to obtain stress intensity factors which could
be used in parametric studies in preliminary design (parts of the final
design may require a more detailed analysis), and in the determination

of maintenance schedules for structures which may contain cracks.

Materials data books, for example Ref 15, show that, for what is
nominally the same material, the scatter in KIc and KC values may be
10Z or more; fatigue crack growth-rates, usually expressed in terms of
the increment in crack-length per stress—cycle d2/dN , may vary by a
factor of 2 or more for the same nominal test conditions. Further
uncertainties may arise because KC , the thin-section toughness para-
meter, depends not only on the material but also on the sheet thickness;
in fact it also depends on the crack-length, the specimen geometry and

the type of loading.

Most applications of fracture mechanics involve calculations of the
residual static strength, Ze the strength of a component which contains

a crack, and also calculations of the rate of growth of fatigue cracks.
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Simple methods of doing such calculations are discussed in this section.
Estimates of the errors due to using simplified expressions for the
stress intensity factors, are obtained by comparing the 'simplified
results' with accurate numerical results for some representative con-
figurations of cracks at the edges of holes, These errors are then
compared with those due to uncertainties in material properties and

structural stresses.

The simple expressions for stress intensity factors, derived in
section 2.1, consist of a combination of the two limiting cases, that
for the short crack and that for the long crack. Cracks are considered
"short' when the length is small compared to the hole-size and 'long'
when the length is large compared to the hole-size. The need to dis-
tinguish between 'short' cracks and 'long' cracks has been demonstrated
by Novak and Barsom16 for notched specimens used in fracture toughness
testing. The important parameter when the crack is short is the stress
concentration factor Kt (the ratio of the maximum stress to the
applied stress). The shape, size and position of the initial stress-
concentrator (hole, notch, etc) loses significance when the crack is

long; the total crack-length, including the hole, is now the controlling

parameter.

The geometric configurations studied represent some common prac—
tical problems concerned with cracks growing in the vicinity of stress
concentrations, Circulat holes in large sheets are considered first,
with either one crack (section 2.2.1) or two cracks (section 2.2.2) at
the edge of the hole; in both cases the sheet is loaded by uniform ten-
sile stresses remote from the hole. In section 2.2.3 two cracks at the
edges of elliptical holes of various eccentricities are considered sub-
ject to similar loading conditions. Since a common site for cracking is
the edge of pin-loaded holes and bolt—holes the effect of localized
loading at the edge of a cracked circular hole on the calculations of
residual strength and the growth times of fatigue cracks is studied in
section 2.2.4. A solution for cracks at the bore of a rotating disc is

obtained in section 2.2.5.

It is shown that errors resulting from the use of these simple
limits for stress intensity factors are of the same order as, or less
than, errors due to other uncertainties in a fracture mechanics calcu-
lation, Improvements in the prediction of residual strength and fatigue
growth~times can be made by considering the stress field in the uncracked

structure along the crack-site (specifically the stress at the tip or the



14

mean stress over the crack-site)., These improvements however require a
knowledge of the stress fields which are not as readily available as the

. 17 e .
stress concentration factors and are more difficult to obtain.

Thus these simple methods are often the only methods available for
use in a reasonable time and at a reasonable cost, although their use
will introduce additional errors into any fracture mechanics calcula-
tions. A knowledge of the magnitude of these additional errors, evalua-
ted in this chapter and a comparison with the other sources of error
will enable engineers and designers to decide whether the use of these

simplifications is acceptable in any given case.

2.1 Development of asymptotic stress analysis

A common site for cracks in engineering structures is the edge of
a filled hole (rivet hole or bolt hole, window, inspection hatch, etc)
where there is usually a high stress concentrationl. The most likely
site for a crack is at the edge of the hole where the maximum stress
Opax OCCUTS; the crack will usually extend in a direction perpendicular
to the applied tensile stress. The behaviour of a crack is controlled
by the opening mode stress intensity factor KI which can be written

in the following general form*:

K = Ys/mg (2.1)

where Y , called the geémetry factor, is a variable which is a function
of the specific cracked geometry, s 1is an applied stress, the form of
which will depend on the loading and £ 1is the crack-length measured
from the edge of the hole. Some general limiting values of Y can be
obtained from physical considerations, and these form the basis of an

approximate method of determining K .

It is usual to express the maximum stress O at the edge of the

hole in terms of an applied stress s and a stress concentration factor

Kt , thus

o = K s . (2.2)

The stress s takes different forms depending on the type of loading.
Cracks will initiate at the edge of a hole where the maximum stress

occurs. If the relevant dimension of the hole is D , Ze the 'diameter'

* The subscript I on Ky 1is omitted in the rest of this thesis as
only the opening mode is considered.
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of the hole parallel to the crack (see Fig 2.1), then a crack of length
9 1is considered short if 2 <D . In the limit as &/D > 0 , very
short cracks will experience a stress field similar to that experienced
by a similar crack at the edge of a sheet subjected to a uniform stress
of the same magnitude and direction as the maximum stress at the hole.

The stress intensity factor will therefore tend to that for an edge

craclr (Case 1.1.20 of Ref 2), e
lim {K} = 1.120_ /72 . (2.3)
2/D+0

From equations (2.1) to (2.3) it follows that the limiting value of Y

is given by
lim {¥} = 1.12%_ . (2.4)
%/D0

The tip of a very long crack (2/D - =) will be in a stress field
similar to that for an isolated crack whose length is equal to the
original length plus the width of the hole. If the length of the equi-
valent isolated crack is 2a , then for a single crack of length & at

the edge of a hole
2a = 2 +D , (2.5)

and for two collinear cracks of lengths 21 and 22 on opposite sides

of the hole -
22 = 4. +D+ g . (2.6)

1 2
The limiting value of K , when &/D 1is infinite, will depend on the

type of loading.

A simple approximation for the stress intensity factor can be
obtained using just these two limits. It is suggested that for 'short'

cracks the geometry factor Y 1is replaced by its limiting (&/D = 0)
value, and for 'long' cracks Y is replaced by its limiting (2/D = =)
value. The crack length at which the transition between 'short' and
'long' cracks occurs depends on the configuration; it will normally be
chosen so as to minimise the errors in the stress intensity factor over
the whole range of crack lengths. The transition crack length will be
a function of the local radius of curvature of the hole at the root of

the crack.
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2.1,1 Loading remote from the hole

If the hole and the crack are in a large sheet which is loaded
remote from the hole with a uniform uniaxial tensile stress o , acting
in a direction perpendicular to the crack, then in equations (2.1) and
(2.2)

s = ¢ (2.7)
and equation (2.4) for the short-—crack limit is unchanged. For this
loading, the limit of the stress intensity factor at very long crack-
lengths is that of an isolated crack of length 2a in a sheet uniformly

stressed at infinity, and is given by

lim {K} = o/ma , (2.8)
2/Dee

where a 1is given by equations (2.5) or (2.6). The limit for the

geometry factor Y is given by

lim {v} = [ . (2.9)
8/Deo
Simple expressions for the stress intensity factor can be obtained
by using equations (2.4) and (2.9) in equatiom (2.1); Y is given by

Y = 1.12}{t for 'short' cracks

and (2.10)

Y = -% for 'long' cracks.

2.1.2 Loading on the perimeter of the hole

If the hole is subjected to a temnsile force per unit thickness P
acting on its edge at right angles to the plane of the crack, then the
stress s in equations (2.1) and (2.2) is replaced by the 'bearing

stress' P/D and o becomes
max
e ® )

Equation (2.4) for the short crack limit is unchanged. For this loading
the limit of the stress intensity factor at very long crack-lengths is
that of an isolated crack of length 2a subjected to a force per unit
thickness P acting on the crack face perpendicular to the crack plane.
The distance between the point of application of P and the crack tip

(or tips) is the same as the perpendicular distance between the line of
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application of P and the crack tip (or tips) when the force was
applied at the edge of the hole. If the hole is symmetrical about the
line of application of P then, for one crack of length &, K is

given (Case 1.1.12, Ref 2) by

P R
lim {K{ = 5 (2.12)
ani} 2/raNR* 2

and, for two cracks of length 2 and 22, K is given (Case 1.1.12,

Ref 2) by
{ } p R+,Q,]
lim {K} = —— [z , (for the crack of length £,) (2.13)
RZ/Dém 2/ma R+ 2, 2

where R = D/2 . The limit for Y is given by

. _ R R
Jim - R (2.14)
for one crack, and
R+ ¢
lim 7} = —A= [ (2.15)
2, /D mvaly 2

for the crack of length 22 when there are two cracks.

Simple expressions for the stress intensity factors, for both one
and two cracks, can be obtained by using equations (2.4) and (2.14) or

(2.15) in equation (2.1); for one crack, Y 1is given by

Y = 1.12Kt for 'short' cracks

and (2.16)

__l 2 LIE TP |
Y = W\/K(K'Fl)(K"*Z) for "long' cracks

where A = £/R ;3 for two cracks, Y 1is given, for the crack of length

%, » by
ros l'lth for 'short' cracks
(2.17)
Y = —~ , .
W XZ(A24-1)(X2+;H rac)) for 'long' cracks

where ), = QI/R and X

! = QZ/R .

2



If a uniform pressure p acts on the upper surface of the hole,
then s 1s replaced by p 1in equations (2.1) and (2,2). Equations

(2.11) to (2.17) are still applicable with P/D replaced by p .

2.1.,3 Residual strength and fatigue crack growth calculations

The stress intensity factors derived above are used in two main
ways in fracture mechanics calculations: (i) to determine the residual
static strength of a cracked component and to compare the strength with
that required to withstand the most severe service loading with adequate
safety factors and (ii) to determine whether a cracked, but safe, compo-
nent will become unsafe due to crack growth under fatigue conditions.

The residual strength s, is obtained by equating the stress intensity

factor to the appropriate material constant KIc or Kc s g
K = YerWQ = KC . (2.18)

If S, is greater than the maximum service stress (safety factors may be
included) then the component has adequate strength. However cracks grow
longer under the common service conditioms of varying stress (fatigue);
in practical cases the function Y in equation (2.18) will be such that
an increase in crack-length £ results in a decrease in the strength

s_ . There will thus be a critical crack-length beyond which the crack

r
will grow rapidly and the component will become unsafe,

The rate of growth of cracks is determined by the stress intensity
factor. It is necessary to be able to calculate how long (how many
stress cycles) it will take for a crack to grow to an unsafe length.

The calculation of growth—times, usually expressed in terms of cycles

of applied stress, requires the knowledge of a crack growth law. A law
which is applicable to constant amplitude fatigue loading and which
relates the growth rate per fatigue cycle to the stress intensity factor
will be used in this thesis. For many materials crack growth in fatigue

. . 1 . .
can be approximately described by a power law 8; this can be written as

dg m
W - C(AK) (2.19)

where d&/dN 1is the increase in crack-length per cycle of stress, C
and m are constants (dependent on material) amd AK 1is the range of

stress intensity factor, which is defined as

AK = K -k . (2.20)
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where K and K . are respectively the maximum and minimum values
max min

of the stress intensity factor during a fatigue cycle. The number of

cycles AN required for a crack of initial length zi to reach a final

length 2 can be obtained by integrating equation (2.19); it is given

by

e
AN = —é—f ‘”m ) (2.21)
g, (8K
1

The initial crack~length Qi will depend on the actual application: it
should not be less than the smallest crack-length that can be reliably
detected using standard non-destructive inspection methods or it could
be an actual crack-length detected in a routine inspection; it might be
the largest flaw-size likely to result from a given manufacturing or
fabrication technique, a size which might therefore be adopted as a
standard length and specified by damage-tolerant design requirements.
The final crack-length Qf would be that length, less some safety
factor, at which rapid crack growth occurs and so the component can no

longer be guaranteed safe without either repair or replacement.

Typically the power m 1is in the range 2 to 4 for common airframe
alloys. Although the total life, for a given stress level, decreases
the greater m 1is, a larger proportion of the lifetime, Ze the majority
of the stress cycles, is .generally spent while the crack-length is close
to the lower limit Qi . The effect is more pronounced for small Qi
because AK 1is smaller and the crack grows more slowly. This
dependence of AN on m 1is illustrated in Fig 2.2 for the case of a
crack growing from a hole in a sheet subjected to a uniform uniaxial,
alternating tensile stress remote from the hole. The ratio ANL/ANR is
plotted as a function of L/R; ANL and ANR are the numbers of cycles
required for a crack to grow from an initial length of 0.0IR to a final
length of L and R respectively. These results were obtained using
the numerical solution of Tweed and Rooke19 for the AK values and inte-—
grating equation (2.21) numerically. From Fig 2.2 it can be seen that
ANL = O.SANR when L = 0.44R for m =1 , when L = 0.32R for m= 2,
when L = 0.16R for m =3 , and when L = 0,04R for m = 4 . 1In order
that full allowance can be made for short-crack behaviour in determining
AN the simple expressions used for K must be accurate at short crack-

lengths; otherwise damage-tolerant airframe designs may lead to struc-—

tural inefficiencies.
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The use of approximate expressions for Y in the calculation of
residual strengths and fatigue lifetimes introduces errors into the
results for these quantities. The magnitude of these errors is related
to the magnitude of the error in Y . If &Y is the error in Y etc,

then, from equation (2.18), the error in residual strength 5. is given

by

O (E.Iie-i_@_)_é.Y_ (2.22)
s, KC 2 2 Y °?

where all errors are considered small (ie |6Y/Y| <<1>. Equation (2.22)
shows that an error of +x%7 in Y produces an additional error of Fx7%
in S, -+ Thus an approximation which overestimates Y (Ze &Y > 0)

will tend towards a safe underestimate of the strength S, - The approx-—
imation suggested using the stress concentration factor Kt always over-—
estimates Y in the important short crack region; that is, it always

gives conservative estimates of residual strength.

The effect of errors in Y on fatigue lifetimes is more difficult
to quantify since the calculation of AN in equation (2.21) involves
integrating Y™ . Thus the results depend on the errors in Y over
the whole range of crack growth and also depend on the constant m .

The error in growth-rates depend on 6Y in a simple way since, from

equation (2.19), &(da/dN) 1is given by

-

s(a/dv) _ [eY, 6s, 1oL
dajan . m[Y TS T2 z] ' (2.23)

Thus an error of #x7 in Y introduces an additional bigger error of
+mx7 in the growth-rate. The effect of this increased error on AN is
mitigated by the fact that the larger m 1is, the more cycles are spent
at shorter crack lengths where the errors in Y will be less. Equation
(2.23) shows that an overestimate of Y will tend to overestimate

da/dN and hence tend to produce a conservative underestimate of the

lifetime; the Kt approximation does, in fact, always overestimate Y .

2.2 Applications of asymptotic stress analysis

Many cracks occur at the edges of filled holes, across which there
is little load transfer and these can be represented by cracks at the
edge of a circular hole (sections 2.2.1 and 2.2.2) or an elliptical hole
(section 2.2.3). The holes are considered to be in large sheets which
are loaded by uniform stresses remote from the cracks. Other cracks

occur at holes which are subjected to loads at the edge of the holes.
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Two extremes of loading are considered in section 2.2.4, namely, a
point load and a uniform pressure. Cracks can also occur at stress
concentrations in rotating machinery such as aero—engines. The case of
a crack at the bore of a rotating annular disc is considered in section

2.2.5; the loading consists of body forces due to the rotation.

Accurate numerical solutions for the stress intensity factors are
available for the configurations studied and are used as a basis for

comparison with the approximate solutions.

2.2.1 One crack from a circular hole - remote loading

The opening mode stress intensity factor for a crack of length ¢
at the edge of a circular hole of radius R (see Fig 2.3) can be

written, following equation (2.1), as
K = Yo/me (2.24)

where o 1is the applied uniaxial tensile stress remote from the crack
and Y 1is given by equation (2.10). For this configuration Kt =3

and 2a = 2R + & , therefore equation (2.10) becomes

Y = 3.36 for 'short' cracks
and (2.25)
Y = 355%—& for 'long' cracks.

The accurate results for Y obtained at discrete values of &/R by
Tweed and Rooke19 are shown in Fig 2.4 together with the two expressions
for Y given by equation (2.25). From this figure it can be seen that
the two expressions intersect at £/R = 0.092. The errors in Y are
minimised by changing from the short crack expression to the long crack
expression at this value of &/R ; for convenience in the crack growth
calculations the changeover point was chosen to be &/R = 0,1 . Thus

for this configuration Y 1is given by

Y = 3,36, 2/R < 0.1
and (2.26)
2R + ¢
Y = —_EE—— s /R > 0.1 .

The percentage differences between the values of Y obtained from
equation (2.26) and the accurate numerical results are shown in Fig 2.5;

the percentage differences are defined as
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difference (%) = Z8Pp_ mum 50 . (2.27)

Y
num
It can be seen that the maximum difference (~21%) occurs at the transi-—
tion point, &/R = 0.1 , but falls rapidly for both smaller and larger
values of 2/R . The effect on residual strength of these errors in Y

is given by equation (2.22).

An approximate value ANapp may be obtained from equation (2.21)
by substituting the appropriate form of equation (2.26) into the

expression for AK ,
AR = YaoVmL o, (2.28)

and substituting this into the integrand of equation (2.21). The result-
ing integrals are known and the solutions are given in Appendix A. An
accurate estimate ANnum may be obtained from equation (2.21) by using
the results of Tweed and Rooke19 and integrating numerically. The ratio
of AN /AN is shown in Fig 2.6 as a function of 2./R for an

app  num £
initial crack-length Qi = 0.0l1R and m = 2, 3, 4. It can be seen that
over most of the range (which includes all short cracks) this approxima-—

tion gives a 'safe' underestimate of AN ; the maximum underestimate is

~20%.

The errors in AN , due to using these approximations for the
stress intensity factor, ‘do not vary in a systematic manner as m
increases, This is because as m increases the smaller values of AK ,
7e¢ those for shorter cracks, dominate in the evaluation of AN (see
equation (2,21)); the errors in the K-approximation are smaller for
shorter cracks. Thus the magnitude of the errors will depend in a com—
plex way on both the initial and the final crack-length as well as on
m . From Fig 2.5 it can be seen that the maximum errors in K occur
at 2/R = 0.1 . Since for 2. > 0.1R the largest errors are not in
the range of integration in equation (2.21), and since for Qi < 0.IR
the dominating effect of growth at the shortest lengths will mitigate
the effects of the large errors at Zi = 0.IR , it follows that the most
inaccurate values of AN will be obtained when Zi ~0,IR . To
illustrate this AN has also been obtained for an initial crack-length
of 0.1R; the ratio ANapp/ANnum is shown in Fig 2.7. The errors, which
are larger for bigger values of m are greater than those for Zi/R =
0.01 (see Fig 2.6). For Zf/R 2 0.2 the error lies between *12% for
m= 2, 177 for m = 3, and 2257 for m = 4. For shorter cracks

(Zf/Ri< 0.35) AN 1is underestimated and for longer cracks overestimated.
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The initial growth between Zf/R = 0,1 and 0.2 is underestimated by

up to 607.

2,2.2 Two cracks from a circular hole - remote loading

In many practical cases there may be two cracks, one each side of
the hole, which may not be of equal length, Fig 2.8 shows this with two

cracks of length 2 and QB ; the crack—tips A and B have stress

A
intensity factors KA and KB respectively., The following analysis
considers tip B only for various values of the ratio QA/ZB . In

practice the longer crack is the more dangerous because it has the larger

. . 20 .
stress intemnsity factor™ , ze

K. > K if L. > 4 . (2.29)

The opening mode stress intensity factor for crack-tip B can be

written, following equation (2.1), as

KB = YBOVWZB , (2.30)
where ¢ 1is the applied uniaxial tensile stress remote from the crack
and now replaces s in equations (2.1) and (2.2) and YB is given by
equation (2,10) with appropriate expressions for Kt and a . The
stress concentration factor KtB at the edge of the hole opposite A
when by = O 1is a function of £, ; a curve of KtB vS L, derived
from the work of Tweed and Rooke20 is shown in Fig 2.9. The total crack-—

length 2a 1is given by

2a = Ly + 2R + ZB . (2.31)

Hence equation (2.10) becomes

= <
YB l'lz“tB for QB/R < 0.1
and RA R T QB (2.32)
YB = o for QB/R > 0.1 .
B
The transition at QB/R = 0,! was chosen to be close to the intersection

of the two curves as in the previous example (see section 2.2.1).

The percentage differences (as defined by equation (2.27) between

. . 0 .
the approximate values of YB and the numerical results are shown in

Fig 2.10 for QA/R = 0,0 and 1.0. Examination of the numerical results
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shows that for QA/R:< 1  the function YB/KtB is independent of ZA
over the range O <§£B/R < 0.! . Thus the percentage difference shown
in Fig 2.10, for zB/R=< 0.1 , is identical with that for a single crack
(QA = 0) shown in Fig 2.5. For QB/R > 0.1 the curve for QA/R =0 is
also identical with that shown in Fig 2.5. The maximum difference is
therefore again about 21Z at QB/R = 0.1 ;3 the maximum difference for
QA/R = 1.0 1is about 37 higher. Curves of QA/R > 1.0 have been omitted
since the concern is with QB >’ZA and therefore only values of

QB/R >'£A/R need be considered and it can be seen from Fig 2.10 that

differences are small (S47%) for ZB/R =1.0 .

For short cracks (ZB/R=< 0.1) the errors introduced into calcula-
tions of residual strength and growth—times by the use of these approxi-
mations for YB are the same as for a single crack from a circular
hole (section 2.2.1, Figs 2.6 and 2.7). For long cracks (ZB/R > 0.1) the
errors in the residual strength will depend on both RA/R and ZB/R
(see Fig 2.10). Initially (ZB/R=< 0.2) the errors will be a few per cent
larger but for RB/R 2 0.2 the errors will be less than those for the
single crack (lA/R = 0). The errors in growth-times for long cracks will
be dependent on both ZA/R and ZB/R but will not differ greatly from
those for a single crack (Figs 2.6 and 2.7). This is because the per-
centage differences in YB for QA/R # 0 are only a few per cent
different from those for ZA/R = () , and since they are sometimes larger
and sometimes smaller the effects will tend to cancel out if crack
growth extends beyond QB/R 2 0,2 . As in the single-crack case the

maximum errors will occur if the initial crack-length is about 0.IR.

2.2.3 Two cracks from an elliptical hole - remote loading

In order to demonstrate the wide applicability of the approxima-
tions suggested in the previous two sections (2.2.! and 2.2.2), the
problem of two equal-length cracks at the edge of an elliptical hole is
considered in this section. The two cracks of length & are at the
ends of one of the axes of the ellipse; the axis with the cracks is of
length 2c¢ and the other axis of length 2h . A uniform uniaxial
tensile stress o 1is applied at right angles to the crackline remote
from the hole (see Fig 2.11),. Newman21 has obtained stress intensity
factors as a function of crack-length for this configuration; he con-

sidered five values of h/c , viz 0.25, 0.5, 1.0, 2.0 and 4.0.

As before, the opening mode stress intensity factor can be written,

replacing s by ¢ 1in equation (2.1), as
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K = Yo/me , (2.33)

where Y 1is given by equation (2.10). The stress concentration factor

Kt on the c~axis for an uncracked ellipse is given by

c
Kt = 1 + Z-E . (2.34)

The total crack-length is given by
a = ¢+ 2 . (2.35)

In order to use equation (2.10) the transition point from 'short'
cracks to 'long' cracks is considered to be a function of the radius of

curvature p of the ellipse at the points from which the cracks origi-

nate., The parameter p 1is given by:

o = B (2.36)

In the previous sections, for cracks at the edge of circular holes, the
transition point was expressed in terms of the radius R of the hole.
For the case h/c =1 the ellipse becomes a circle and p = R , there-
fore to ensure that the transition occurs at the same place as in
sections 2.2.1 and 2.2.2 it is chosen to occur at ¢/o = 0.1 . Thus the

approximate expression for Y 1is given by

Y = 1.12Kt for /p < 0.1

and (2.37)

for 4/p > 0.1 .

The percentage differences (equation (2.27)) between the above
approximation and the numerical results21 are plotted in Fig 2.12 as a
function of 2/p for the different values of h/c . For &/p <O0.l
the differences are independent of h/c and identical to those for
cracks from circular holes (Figs 2.5 and 2.10). For &/p > 0.1 the
differences are a function of the ratio h/c . The maximum difference
occurs at &/p = 0.1 and increases as h/c decreases. In most
practical problems h/c 2 | , however if h/c 1is small, then
o(= hz/c) is small and practical values of &/p will probably be
greater than 0.!1. The error introduced intc the residual strength by

the use of these approximations is given by equation (2.22).
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Since the radius of curvature p varies as h/c varies, direct
comparison of crack growth—-times AN cannot easily be made if the
results are plotted as a function of &/p . For this reason crack
growth-times have been calculated, in terms of ¢/c , Ze the ratio of
the crack-length to the semi-axis of the ellipse. From the numerical
data available (NewmanZI) the smallest starting crack that can be con-
sidered is li = 0.02c . An approximate value ANapp may be obtained
in a similar way to that in section 2.2.1; again the necessary integrals
in equation (2.21) are known; the solutions are given in Appendix B. An
accurate estimate ANpym may be obtained from equation (2.21) by using
the results of Newman?! and by integrating numerically. The ratio

m
forms of the crack growth law (m = 2, 3 or 4 in equation (2.19)). Each

ANa p/ANnu is shown in Figs 2,13 to 2.15 assuming three different
graph contains curves for the different values of h/c ; the transition
from the short crack approximation (2/p < 0.1) to the long crack
approximation (&/p > 0.1) occurs at different values of lf/c on the

different curves because p 1is a function of h/c .

Comparison of Figs 2.13 to 2.15 show that the approximate growth-
times are predominantly conservative, Ze¢ safe, since the number of
stress cycles is underestimated, It can also be seen that the errors
tend to increase as m increases with a maximum of ~50% for h/c = 0.5
at m =4 and Zf/c = 0.04 . The errors shown are always a maximum
for h/c = 0.5 at the shortest crack-length shown; this is because the
starting crack-length of Ki = 0.02c 1is very close to the transition
point of &/p = 0.1 (Zi/c = (0,025) and the errors in the stress
intensity factor are a maximum. On average curves for the smallest
value of h/c (0.25) and the largest (4.0) show the least deviation
from unity which indicates that for both smaller and larger values of
h/c outside the range 0.25 to 4,0 the approximations used would be

even better,

2.2.4 One crack from a circular hole - local loading

Cracks can grow from holes which are subjected to loads at their
perimeters. Such holes frequently occur in structural components,
eg bolted joints, pin-loaded lugs. Approximations similar to those used
in the previous sections are applied to loaded holes in this section.
The configuration of an infinite sheet containing a circular hole with a
single radial crack at its edge is considered. The perimeter of the
hole is subjected to two types of loading, either a localized radial

force per unit thickness, P acting at right angles to the crack, or a
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uniform pressure p acting over a semicircular arc with the resultant
force per unit thickness (= 2pR) in the same direction as P (see
Fig 2.16a). 1In a real compeonent the loading would consist of a variable

pressure acting over part of the hole perimeter, rather than a force P
localized at one point.
The opening mode stress intensity factor for a crack of length ¢

at the edge of a circular hole, of radius R , subjected to local forces

(see Fig 2.16) can be written as in equation (2.1)

K = Ys/m2 (2.38)
where Y 1is given by equation (2.16). The 'stress' s takes different

forms depending on the loading on the hole: for a point force/unit
thickness P , s = P/2R ; for a uniform pressure p acting on half of
the hole perimeter s = p (see Fig 2.16a). The stress concentration
factor which appears in the short crack approximation in equation (2.16)
is given, for the force P , by Kt = 2/ , and for the pressure p ,

by Kt = 0.5 . The equivalent cracks for the long crack approximation

are shown in Fig 2.16b.

The approximate values of Y obtained from equation (2.16) can
be compared with accurate numerical values obtained by Tweed and Rookezo;
this is done in Fig 2.17 where the percentage differences, as defined in
equation (2.27) are plotted as a function of &/R for both the force P
and the pressure p . In order to minimise the errors involved in using
these approximations the transitions from the short crack to the long
crack expressions should occur at different values of /R for the two
force distributions. For the point load P the maximum difference is
~30% if the transition is at &/R = 0,15 , and for the pressure p the
maximum is ~45% if the transition is at 2/R = 0.25 . These maximum
differences are greater than those for remote loading (see Figs 2.5,
2,10 and 2.12) which are ~207. However differences greater than 207
occur only over small regions, viz from &/R = 0.1 to 0.2 for the force
P and from &/R = 0.1 to 0.5 for the pressure p . Outside these
regions the percentage differences are comparable to those for remote

loading. The errors introduced into the residual strength by the use of

these approximations will again be given by equation (2.22).

In order to simplify the calculations of AN the transition from
the short crack approximation to the long crack approximation was taken
at the same value of &/R , namely &/R = 0.2 , for both types of

loading. Equation (2.16) therefore becomes, for the force P ,
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Y = 2 for /R < 0.2
and (2.39)
1 2
Y = ?'\/K()\ " 1)(>\ " 2) for 2/R>0.2 s
and for the pressure p ,
Y = 0.56 for &/R < 0.2
and (2.40)

- 2
ro= %\/A(A T D) (r * 2) for &/R>0.2 .

An approximate value ANapp may be obtained in a similar way to
that in section 2.2.1; again the integrals appearing in equation (2.21)
are known and are given in Appendix C. An accurate estimate ANnum may
be obtained from equation (2.21) by the numerical integration of the
results of Tweed and Rookezo. Both AN and AN for &£./R = 0.0l

app num 1

have been calculated as a function of Zf/R for m= 2, 3 and 4.
Fig 2.18 shows the ratio of ANapp/ANnum for the force P and Fig 2.19
the same ratio for the pressure p . Figs 2.18 and 2.19 show that the
approximations are predominantly conservative, Ze safe, since the time
is underestimated for Qf/R=< 1.0 for a force P , and for Qf/R=< 3
for a pressure p . The errors are generally larger than those for a
crack at the edge of a hole in a sheet loaded remote from the crack (see
Fig 2.6). As in the case of remote loading errors would be at maximum
if the starting crack-length 2i occurred at the transition from the
short crack to the long crack approximation (see Figs 2.6 and 2.7).
However the maximum errors of ~507% are within the likely errors that
can result from material variations, Ze variatiomns of a factor of two or
more in crack growth-rates. The bigger errors at long cracks are due to
the fact that K decreases and hence da/dN decreases and therefore an
appreciable part of the fatigue life is spent while the cracks are long,
which is in contrast to the behaviour for remote loading. In practice
the presence of other boundaries would cause K to increase when the

crack-tip approached them.

2.2.,5 Cracks at the bore of a rotating annular disc

Cracks can sometimes arise in structures that have rotating compo-
nents such as turbine discs in aero-engines. In this section both one
and two cracks at the bore of a rotating annular disc are considered;

the disc has an inner radius of Ri and an outer radius of Ro and is
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rotating at an angular velocity w (see Fig 2.20a). This problem has
been studied by Grandt22 using a superposition technique with results

from a finite element analysis.

The approximations developed in the previous sections, based on
the short crack and long crack limits, can be used to derive a stress
intensity factor for this configuration. The behaviour of short cracks
will be controlled by the maximum stress, perpendicular to the crackline,

at the bore of the disc. In plane stress the maximum stress is given

(ef equation (2.3))

o = K.Pp (2.41)
_ 3+ v 2.2 5
where Py = 3 dw RO . (2.42)
and
2
R
3 (1 +v) i
K, = 2|l + 3y 5| - (2.43)
o)

where d 1is the material density and v 1is Poisson's ratio2 . The
long crack approximation is obtained by replacing the crack(s) plus the
hole by a single crack in a solid rotating disc of radius RO . In the
one-crack case the replacement crack is of length ZRi + & and is
located eccentrically in the disc (see Fig 2.20b). In the two—crack
case the replacement crack is of length ZRi + 22 and 1is located
centrally in the disc (see Fig 2,20b). The stress intensity factors for
both an eccentric and a central crack in a rotating solid disc were

obtained from Rooke and Tweed24.

The geometry factors Y are defined by equation (2.1) with s
replaced by Py - The values of Y obtained from both the short and
long crack approximations are shown in Fig 2.21 together with the results
of Grandtzz; the results were obtained for Ri/Ro = 0.5 and v = 0.3
The percentage differences, as defined in equation (2.27) are shown in
Fig 2.22 as a function of z/(RO-Ri) for both one and two cracks.

For one crack, Z/(RO-Ri)=< 0.8 , the differences lie between +87 and
-47 1if the tranmsition from the short crack to the long crack approxima-
tion occurs at 2/(RO-Ri) = 0.5 . In fact, the short crack approxima-
tion gives differences between +87% and -9% for 2/(RO-Ri)’< 0.7 . For
two cracks, 2/(RO-Ri)‘< 0.8 , the differences are larger, lying
between +137 and =197 if the transition occurs at 2/(RO-Ri) = 0.35 .,

The differences are positive for small cracks in both cases, hence
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estimates of both the residual strength and the crack growth-time AN
will be conservative. The percentage errors in residual strength from
using these approximations will be the same magnitude as the percentage
differences in Y shown in Fig 2.22., The numerical data available is
not sufficient for a detailed analysis of the likely errors in AN cal-
culations. However since the differences in Y for this configuration
are comparable, in particular are small at short crack-lengths, with
those for cracks at the edges of holes (see Figs 2.5, 2.10, 2,12 and
2.17) it follows that differences in growth-times will be comparable
with those for cracks at holes (see Figs 2.6 and 2.7, 2.13 to 2.15,
2.18 and 2.19). Thus for this configuration also the errors in a
fracture mechanics analysis introduced through using an approximate

stress analysis will in most cases be less than those due to other

sources.,

2.3 Discussion

The errors introduced into fracture mechanics analyses by using a
simple stress—analysis to calculate the stress intensity factor have
been quantified, for several cases of cracks at stress concentrations,
It is therefore now possible to compare these errors with those due to
other sources such as uncertainties in load or material variability and
to assess their relative importance in any given analysis. From the
results given it 1s seen that in many cases the uncertainties in static
residual strength and crack growth-times in fatigue, due to the approxi-
mate stress analysis, are less than those due to external sources. The
configurations considered contain few boundaries in the vicinity of the
crack, but the same techniques could be used where the crack interacts
with many boundaries, The problems of the crack interacting with each
of the boundaries separately would be solved using the approximate
stress analysis methods and the results combined using the compounding

method12 (see Chapters 3 to 9).

The approximate method chosen consists of a combination of the
asymptotic expressions for the 'short crack' and the 'long crack' limits,
The short crack limit is controlled by the maximum stress at the point
of initiation of the crack and this is usually characterized by the
stress concentration factor Kt . The long crack limit is controlled by
the overall length of the crack(s) plus hole. From a study of plots of
these two expressions as a function of crack-length the optimum length
for changing from one expression to the other can be chosen; this
optimum value of the crack-length would be chosen so as to minimize the

errors in the stress intensity factor. Errors could be further reduced
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by considering some form of interpolation between two limits. Interpo-
lation between limits has been used by Benthem and Koiter > to obtain
accurate values of the stress intensity factor for some common test con-
figurations. The transition points used in this study were not necess-—
arily the optimum points, but were chosen in order to facilitate compari-
son with existing numerical results. Dowling26 has independently
suggested that the intersection point of the two limiting funcrtions

should be used as a transition point.

One particular advantage of the approximations chosen is that the
stress intensity factor is overestimated at short crack-lengths and so
the calculated residual strengths and growth-times AN are conservative.
It is important that fracture mechanics analyses should be conservative
since safety is paramount. However over—conservative design can result
in unacceptable weight penalties so that it is also important that errors
due to approximate analysis be as small as possible particularly when the

cracks are small - the Kt approximation satisfies these requirements.

Errors at short crack—lengths could be further reduced by using the
tip stress or the mean stress instead of the maximum stresslo. The tip
stress is the stress at the site of the crack—tip in the uncracked body,
and the mean stress is the average stress over the crack site in the
uncracked body. Both these approximations have the disadvantages that
the detailed stress distribution along the crack site must be known and
that the results may not be conservative, For many configurations which
are susceptible to cracking the stress concentration factors are known,
but the detailed stress field is not. The existence of residual stresses

at the edges of holes can readily be included in the methods considered

by including them in the definition of the maximum stress.

The optimum position for the transition from the short crack
approximation to the long crack approximation depends on the type of
loading. For a crack of length & at the edge of a hole of radius R ,
the optimum occurs at &/R = 0.1 for remote loading, at &/R = 0.15
for localized loading on the perimeter of the hole and at £/R = 0.25
for a pressurized hole. The difference between the approximate and the
numerical stress intensity factors was greater for a hole with two
cracks than for a hole with one crack in the case considered (remote
loadings). The differences were larger for loads at the hole edge than
for remote loading, although in all cases the largest differences
(>107%) are confined to a narrow band near the transition from short

cracks to long cracks. The errors in crack growth—times AN are a
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function of the initial crack-length as well as the final crack-length;
the errors are a maximum when the initial crack-length is close to the
length at which the maximum error in the stress intensity factor occurs.
The variations of the growth-times derived, assuming a power law
dependence on K , from the numerical results are larger for loading at
the hole than for remote loading. If the initial crack-length is one
hundredth of the hole rzdius and the final crack-length up to five times
the radius the variations are between -20% and +10% for remote loading
(see Fig 2.6), between =207 and +50Z% for a localized force on the hole

(see Fig 2.18) and between -25%7 and +40% for an internal pressure in the

hole (see Fig 2.19).

These variations will usually be less than the variations in the
crack growth—-rates due to uncertainties in both materials data and
applied stresses., The approximate results are always conservative for
the shorter cracks, e if the final crack-length is less than 0.6R
(m = 2,3) or less than 2R (m = 4) for remote loading, less than R
(all m) for a localized force and less than 3R (all m) for an internal
pressure. The dependence on m 1is not straightforward, but the errors
are usually largest for m = 4 over the whole range of crack-length for
remote loading and at long crack-lengths for loading at the edge of the

hole,

Examination of Fig 2.12 suggests that the radius of curvature of
the ellipse p at the pdsition of the cracks takes the place of the
radius of the circular hole in determining the transitions from 'short'
to '"long' cracks, Ze the transition occurs at &/p = 0.1 for all
ellipses. The percentage differences in the normalized stress intensity
factors near the transition increase as the ellipse becomes narrower
(h/c decreasing). However very small values of h/c imply small values
of p and practical crack—%engths 2 will result in large values of
2/p where the differences are small. The growth-times obtained for an
initial crack-length of 0.02c and final lengths up to l.4c are conserva-
tive over the whole range for h/c = 0.5, 1, 2 and 4; the results for
h/c = 0.25 are slightly non-conservative (a few per cent) for zf/c >
0.1 (see Figs 2,13 to 2.15). 1In general the variations from the
numerical results increase as m 1increases; they are between +3% and
=-23% for m = 2, +3% and -46% for m = 3 , and +4% and =547 for m = 4 .
The largest errors are for h/c = 0.5 because zi/c = 0,02c for that
ellipse corresponds to an initial crack-length very close to the tran-

sition between the short and long crack approximations. The errors are
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smallest for the two extreme cases h/c = 4 and 0.25 - they will be

smaller still for h/ec >4 and h/c <0.25 .

Baratta and Nea127 have shown that the stress concentration factor
at a U~shaped notch is the same as that of an elliptical notch if the
radius of curvature and the notch-length are the same; the stress field
through which a crack would grow must therefore be very similar for the
different notches., Therefore approximations based on Kt for the stress
intensity factor of short cracks will be similar in accuracy for both
types of notches. For long cracks the type of the notch will be less
important in determining K . The transition from 'short' to 'long'
cracks will, again, be determined by the radius of curvature at the end

of the notch.

Recently, Murakami28 has calculated stress intensity factors for
cracks at semi-circular notches in the edge of strips subjected to
uniform stress. Comparison of his results with approximations obtained
using the method described here show errors of the same order as those
for a cracked hole (Fig 2.5). Thus the approximate methods suggested
here will produce useful engineering estimates of strength and fatigue
lifetimes for cracks from notches of differing geometries for which the

stress concentration factor is known.

In section 2.2.5 the approximate stress analysis used to derive
stress intensity factors.for cracks at the edge of holes in the absence
of other boundaries was applied to a rotating disc with one or two
cracks at the bore. For this configuration the geometry factor does not
decrease continuously as the crack-length increases, as in previous
sections, but decreases initially and then rises again because of the
interaction between the crack-tip and the outer boundary of the disc.
Despite the more complex behaviour of Y the simple stress analysis
gives a good approximation (see Fig 2.22) and would lead to reasonable
estimates of growth—times in fatigue. The short crack approximation
overestimates the stress intensity, hence calculations of residual

strength and growth-times AN will be conservative for short cracks,

2.4 Conclusions

() Structural components often contain stress concentrators, such
as holes and notches, at which cracks are initiated; approximate stress
intensity factors for these cracks can be obtained by a simple combina-

tion of the 'short crack' and 'long crack' limits.
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(2) The errors introduced due to the approximations are in general no

more than (and they are often less than) those due to the uncertainties

in service loads and material properties.

(3 Static strength calculations of components with short cracks are
always conservative, Ze they err on the side of safety; and because much
of the fatigue life of a component is spent while the cracks are short

the calculated lifetime is usually also conservative.

(4) These approximations are particularly applicable to damage-
tolerant design calculations which are concerned with short cracks; and

the built-in safety-factor will not incur excessive weight penalties
since the errors are small in this region.

(5) Any approximate method of stress analysis which results in errors
in stress intensity factors similar to those discussed in this chapter,

will be acceptable for most engineering applications.
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CHAPTER 3

CRACKS NEAR BOUNDARIES12

The tip of a growing crack is often close to structural boundaries
(see Figs 1,1 to 1.18) and this will influence the stress intensity
factor. In this chapter a method is developed which takes into account
the effects on the crack of nearby boundaries. Both the proximity to
the crack-tip and the shape of the boundary are important. The shape of
the boundary is described by the radius of curvature of that part of the
boundary which is nearest to the crack. Configurations in which the
boundary intersects the crack are considered in later chapters. Stress
intensity factors for many simple configurations are already availablezm4
but these configurations seldom model adequately real engineering
structures. The compounding method developed here is a quick and versa-
tile way of extending these solutions to other, more complex, configura-
tions for which the stress intensity factors are not known. An empirical
method which was used by Figge and Newmanzg, SmithBO and Liu” , is a

special case of compounding but its gemerality appears not to have been

realized or investigated,

In this chapter only two-dimensional configurations are considered.
Although, the method may also be used to obtain solutions to complex
three~dimensional configurations, applications are restricted by the
small number of ancillary solutions available for simple three-
dimensional configurations. The compounding method is developed, tested
against known solutions (section 3.2.1) and used to solve a previously

unsolved problem (section 3.2.2).

3.1 The compounding method

A configuration containing a crack may have several boundaries,
eg holes, other cracks or sheet edges; all these will influence the
stress intensity factor at the tip of the crack under consideration.
The principle of the compounding method presented here is to obtain a
solution for the stress intensity factor by separating the complex con-
figuration containing a crack into a number of simpler ancillary con-
figurations which have known solutions. Each ancillary configuration
will, usually, contain only one boundary which interacts with the crack.
The contributions to the final stress intensity factor are compounded
neglecting any effects due to boundary-boundary interaction. The error
term, due to neglecting these effects, is formally derived in

Appendix D.
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Consider the configuration shown in Fig 3.la containing a crack
near to a stress free boundary B1 ; the configuration is subjected to
an applied stress system SO on its boundary BO which is remote from
the crack. Let the stress intensity factor at one of the crack tips be
denoted by K1 . If the stress free boundary BI were absent from the
configuration, stresses S1 would occur at the site of B] ; the
stress intensity factor, in the absence of internal boundaries, is now
given by K (Fig 3.1b). The original configuration can be obtained by
the superposition of

(1) the cracked‘configuration with applied stress SO on BO

without an internal boundary (Fig 3.1b); and

(ii) the cracked configuration with zero stress on BO and —S]

on B} (see Fig 3.lc).
Thus the stress intensity K1 is given by

K, = I_<'+K7; (3.1)

* . . .
where K1 is the stress intensity factor when the only applied stress

is -S1 on B, . Similarly, for a second boundary, B2 say, the

stress intensity factor would be given by
- " R
K = K + K . (3.2)

If the two boundaries B1 and B2 are present together (Fig 3.2a), the
resultant stress intensity factor Kr is given by the superposition of

Fig 3.2b&c as _
K. = K+K (3.3)

%

where Ki is the stress intensity factor when the configuration has
zero stress on BO , and stresses -Sl and —82 on B1 and B2
respectively (Fig 3.2c).

If the two boundaries do not interact with each other then, by

.. x .
superposition, Kr i1s given by

K. K] + K, (3.4)

If they do interact there will be an extra term which is denoted by

Ke , e < i
Kr = K1 + KZ + Ke . (3.5)

by

Combining equations (3.1), (3.2), (3.3) and (3.5) gives

K = K. +K.-K+K . (3.6)
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Thus the stress intensity factor for a crack in a configuration with
multiple internal boundaries can be expressed in terms of stress
intensity factors derived from configurations with single internal
boundaries, apart from a correction term. In general for N Dboundaries

B (n=1,2,...,N), the resultant stress intensity factor is given by

n
N
12+Z‘<K - K +K
r n e
n=1

or > (3.7)

N
r I+Z(Qn'—l>+Qey
n=1

where Q denotes a normalized stress intensity factor+ such that

~
i

LD
1

Qr = Kr/K’ Qn = Kn/K and Qe = Ke/K 3 Qe is the correction term due
to the interaction of the N boundaries. If Qe can be estimated or
can be shown to be small (X1), then equation (3.7) can be used to build

up solutions to complex configurations from known simpler ones.

An empirical method, which has been usedzg—31 to obtain approxi-

mate stress intensity factors, states that in the case of two boundaries
Q. = Q] x Q2 . (3.8)

If we write Q1 =1 +a and Q2 =1+ 8, them o« and B8 are usually
less than unity. It follows from equation (3.8) that Qr is given by

Q = 1+a+ B+ aB . (3.9)

r

Equation (3.7) for two boundaries becomes

Qr = 1l +a+ B+ Qe . (3.10)

Thus equations (3.9) and (3.10) are the same but for a correction term

ag or Q and the empirical expression, equation (3.8) is seen to be a
special case of equation (3.7). If the correction term is small the two
methods will give virtually the same result, However, this will not be

so if o,B 21 , and the meaning of the term of 1is undefined.

¥ The function Q 1is a generalization of the geometry factor Y intro-

duced in Chapter 2; in some configurations Q could be identical to
Y , but this will not be so in general.
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The correction term Qe can be expressed formally using the
Schwarz alternating technique which has been described by Sokolnikoff32
and used to determine stress intensity factors by Smith, et a233 and

also used in papers by Kanazawa, et a134. The term Qe can be expected
to be small provided that the boundaries are not too close to each other.

A derivation of the correction term for the special case N =2 1is con-—

tained in Appendir D (Fig 3.3).

3.2 Application to plane sheets

In this section approximate compounded solutions are compared with
known solutions for three different types of boundary. These boundaries,
each characterized by different radii of curvature o , are (see section
3.2.,1) another crack (p = 0), a circular hole (p = hole radius) and a
straight edge (p = ). Boundaries with a large radius of curvature will

have an effect over a larger distance than boundaries with a small

radius.

The approximate formula, for N boundaries,

Qr = 1+Z(Qn-—1) (3.11)

is used to compound stress intensity factors for configurations with
known solutions and, by éomparison, it is shown that Qe (the term
omitted from equation (3.11)) is small (Ze <1). The magnitude of Qe
will depend on the number, nearness and shape of the boundaries. As
errors in Qr due to using equation (3.11) will increase as N

increases multiple boundaries are also considered.

In section 3.2.2 an approximate stress intensity factor is

obtained for a crack in a half-plane between a hole and the edge of the

half-plane.

3.2.1 Test solutions

The configurations shown in Figs 3.4 to 3.6 for which solutiomns
are known, are used as test cases to illustrate and assess the method.
These represent widely different boundary effects, namely a pair of
boundaries of infinite, finite or zero radius of curvature in the path

of Ehe crack.

Consider the configuration shown in Fig 3.4 for a crack located

eccentrically in a finite width sheet subjected to a uniaxial tensile
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stress. Fig 3.7 shows the appropriate ancillary configurations, for
which the stress intensity factors are given in Case 1.1.11, Ref 2. The
normalized stress intensity factors Qr for the crack in Fig 3.4 are

obtained by compounding from equation (3.11) with N =2 , Ze
Q. = Q +Q, -1 . (3.12)

For tip A in Fig 3.4, Q1 and Q2 are the normalized stress
intensity factors at the left hand tip in Fig 3.7a&b respectively and,
for tip B, QI and Q2 are the normalized stress intensity factors for
the right hand tip in Fig 3.7a&b respectively. Comparison of Figs 3.4
and 3.7 shows that we require ¢ =b and d = b1 + e : 1in this confi-
guration K = o/ma . Values of the opening mode normalized stress
intensity factor Qr (= KI/G/F5> obtained from equation (3.12) are
compared in Table 3.1 with the results given in Case 1.1.5, Ref 2 for

a/b < 0.7 and e/b1 = 0,0 and 0.8 .

Comparison of values of Ky/(ov¥ma) for an eccentric crack in

a finite width sheet subjected to a uniaxial tensile stress

e/b1 = 0.0 e/b1 = 0.8
a Tips A and B Tip A Tip B
b C C Case
Compounded I ﬁsi Compounded | isii Compounded 1.1.5
results (Ref 2) results (Ref 2) results (Ref 2)
0.0 1.000 1.000 1.000 1.000 1.000 1.000
0.1 1.005 1.005 1.003 1.003 1.002 1.003
0.2 1.020 1.021 1.011 1,014 1.009 1.012
0.3 1.047 1.05 1.03 1,03 1.02 1.03
0.4 1.09 1.10 1.05 1.07 1.04 1.05
0.5 1.15 1,18 1.09 1.11 1,06 1.08
0.6 1.23 1.29 1,15 1.19 1.08 1.11
0.7 1.34 1.48 1.24 1,30 1.11 1.15

In a similar manner solutions are obtained for configurations in
Figs 3.5 and 3.6; the required ancillary solutions were obtained from
Case 1.3.5 and Case 1.,2.2 in Ref 2., Compounded results for the test
case in Fig 3.5 (b/R = 1) and the test case in Fig 3.6 (middle crack of
three) are shown in Table 3.2 and compared with the solutions given in

Case 1,3.7 and Case 1.2.8 respectively in Ref 2,
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Table 3.2

Comparison of values of KI/(GVEE) for the configurations

in Figs 3.5 and 3.6

Fig 3.5 Fig 3.6
a (b/R = 1) (middle crack of three)
i
b Compounded Case 1.3.7 Compounded Case 1,2.8
results (Ref 2) results (Ref 2)

0.0 1.44 1.47 1.00 1.00
0.1 1.45 1.47 1.00 1.00
0.2 1.46 1.49 1.01 1.01
0.3 1.49 1.52 1.02 1.02
0.4 1.53 1.56 1.05 1.05
0.5 1.59 1.63 1.08 1,08
0.6 1.68 1.72 1,12 1.13
0.7 1.81 1.87 1.19 1.20
0.8 2.02 2.12 1.31 1.33
0.9 2,43 2.64 1.57 1.60

Errors in the stress intensity factors obtained for the configura-
tions in Figs 3.4 to 3.6 are summarized in Table 3.3 and indicate two
trends. Firstly errors increase as the crack-length increases relative
to the distance to a boundary. Secondly at a fixed crack-length errors
tend to increase with increasing boundary radius. Thus it appears that
for a/b wup to 0.8 the errors are probably <107 for straight bounda-
ries, <57 for circular boundaries (two radii apart) and 1.5% for other

crack boundaries.
Table 3.3

Percentage errors for the compounding method

Percentage error
a
b Straight boundaries Circular boundaries Crack boundaries
(Fig 3.4) (Fig 3.5) (Fig 3.6)

0.0 0.0 2.1 0.0

0.2 0.2 2.1 0.0

0.4 1.6 2.0 0.0

0.6 4.3 2.4 0.5

0.8 17.9 5.0 1.4

As an example of a solution to a problem involving more than two
boundaries, consider the configuration in Fig 3.6 with an odd number
(>3) of cracks., The factor Qr for the middle crack, with N =5, 7

and 11 in equation (3.11) can be compounded from the same ancillary
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solution, Case 1.,2.2, Ref 2, as was used for the three-crack problem.
The results are given in Table 3.4 and compared with the known solution
given in Case 1,2.8, Ref 2., It is seen that, at any fixed crack-length,
the errors increase with the number of cracks; this illustrates the
effect of the increasing interaction between boundaries which has not

been taken into account in equation (3.11).
Table 3.4

Comparison of values of KI/(O/FE) for the central crack

of an odd number of collinear cracks subjected to a
uniform tensile stress

5 cracks 7 cracks 11 cracks
2 Ca Ca Case
b Compounded i Zses Error | Compounded ) 2588 Error | Compounded 1.2.8 Error

results (Ref 2) A results (Ref 2) Z results (Ref 2) Z

0.0 1.00 1.00 0.0 1.00 1.00 0.0 1.00 1,00 0.0
0.2 1.01 1.0l 0.0 1.01 1.02 0.1 1.02 1.02 0.1
0.4 1.06 1.06 0.3 1.06 1.06 0.4 1.06 1.07 0.7
0.6 I.15 1.16 1.4 1.16 .17 1.4 1.16 1.19 2.0
0.8 1.36 1.41 4.1 1.37 1.46 5.8 1.38 1.49 7.3

It can therefore be concluded that the errors due to neglecting
boundary interactions are small (a few per cent). Such errors are

within the allowable tolerances for many engineering applications.

3.2.2 A solution for two different boundaries

-

No comparison solution is available for this problem of a crack
in the vicinity of a hole in a half-plane subjected to a uniaxial ten-
sile stress (Fig 3.8), but it illustrates how the relative effects of
boundaries can change as the distance from the crack-tip changes. The
ancillary solutions required for this problem are given in Cases 1.1.11
and 1.3.5 in Ref 2., Compounded stress intensity factors at both crack-
tips are shown in Fig 3.8 for R/b =1 ., Three ratios of the distance
between the crack and the straight boundary ¢ and the distance between
the crack and the hole b are considered, namely c¢/b = 0.5, | and 2.
For c¢/b = 0.5 the tip adjacent to the straight boundary (tip B) has a
higher stress intensity factor for short cracks (a/b <0.35). As a/b
increases the tip nearer to the hole (tip A) has the higher stress
intensity factor. This behaviour is due to the tip A entering the
highly stressed region in the vicinity of the hole whilst tip B,
although very close to the straight boundary, is for a/b > 0.35 in a
region of lower stress resulting in a lower stress intensity factor.

For the other values of <¢/b considered the crack-tip adjacent to the
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hole is more critical for all a/b . If the straight boundary is

remote from the hole (c¢/b = 2 say) the stress intensity factor for the
tip at B initially reduces slightly as a/b increases since the stress
field due to the hole is decreasing. For larger a/b the effect of the
straight boundary causes the stress intensity factor to increase. Con-
sideration of the errors estimated in section 3.2.1 suggests that this

solution is probably accurate to better than 107, Ze adequate for most

engineering purposes.

3.3 Discussion and conclusions

The compounding method has been shown (section 3.2) to produce
approximate stress intensity factors for cracks in the vicinity of
multiple boundaries in plane unstiffened sheets. The errors in the
approximations increase as the length of the crack increases, as the
number of boundaries increases, and as the radii of curvature of the
boundaries increase. This method can be used to solve many plane crack
problems, eg with the ancillary configurations used in section 3.2
approximate stress intensity factors can be determined for a crack
between holes of unequal radii unequally spaced on either side of the
crack and also any number of equal length, unequally spaced collinear
cracks. This latter configuration can be extended by using results in
Savin35 to any number of unequal length, unequally spaced collinear
cracks. Results for these ancillary configurations and many others

have been collected together and presented as curves of K/K by Rooke

and Cartwrightz.

The accuracy of the method is adequate for most engineering
applications: the errors in the stress intensity factors are of the same
order as those considered in Chapter 2, therefore the uncertainties in
fracture mechanics calculations (residual strength and fatigue lifetimes)
will be no more than and often less than those due to uncertainties in

loading or material properties.



43

CHAPTER 4

CRACK(S) AT AN UNLOADED HOLE36

With the advent of the damage tolerant design philosophy for air-
frames the assumption is made that small cracks exist at the start of
service life; this implies that, unless the growth behaviour of small
cracks can be predicted, over—conservative safety factors may have to be
used. This can mean either structural weight penalties or pessimistic
estimates of lifetimes and inspection intervals. Regions of high
stress, such as those at the edge of a hole or cut—-out are likely sites
for cracks. When these cracks are small the stress intensity factor
varies rapidly with crack-—length. Both this rapid variation and the
power law dependence (see Chapter 2) imply that a considerable fraction
of the fatigue life of a structure with a cracked hole is spent while
the crack is small. Hence the reliable estimation of lifetime requires

accurate estimation of stress intensity factors for short cracks.

Some stress intensity factors for simple configurations of cracks
at the edges of holes are available, however the solutions that are
needed in practice are usually for complex configurations having other
boundaries near the cracked hole, and these are not generally available.
The theory of compounding developed in the previous chapter is further
developed in this chapter and the method is used to calculate stress
intensity factors for cracks at the edges of holes. In the original
development of the compounding theory none of the boundaries crossed the
crack, However in this case the crack starts at a boundary, namely the
edge of the hole. A modification to the theory is needed and the con-

cept of the 'equivalent crack' is introduced in section 4.1.

It was shown in Chapter 3 that the compounding method gave accept-
able results for plane problems in which the interaction between the
boundaries had a negligible effect on the stress intensity factors.
However when a hole with a crack is near another boundary this inter—
action may not be negligible and a method of estimating its effect, by
using the known stress concentration factor for the uncracked configura-
tion, is presented in section 4.2. It will be seen that this is a power—
ful addition to the compounding technique since it ensures accuracy at

small crack-lengths.

The procedure is tested in section 4.3 by comparing the compounded
solution for two cracks of equal length at a central hole in a strip,

subjected to uniaxial tension remote from the crack, with a numerical
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solution given in Case 1.3.1, Ref 2; the differences between the solu-
tions are small (a few per cent). Solutions are obtained for two other
configurations in section 4.4, namely, a crack at the edge of a hole
located eccentrically in a strip and a crack at the edge of a hole near
another circular hole. 1In all cases opening mode stress intensity

factors (KI) are calculated.

It should be noted that the application of the compounding method
to cracks at the edges of holes requires not only the existence of
stress intensity factors for a few simple geometries to be known, but
also stress concentration factors for the original uncracked configura-

tions. Many stress concentration factors have been collected together

1
by Peterson 7.

4,1 Equivalent crack concept

If a boundary intersects the crack, eg the crack is at the edge of
a hole, the effects of the other boundaries cannot usually be evaluated
because there are unlikely to be solutioms to the ancillary configura-
tions. It is necessary to simplify the ancillary configurations by
replacing the crack and its intersecting boundary by an 'equivalent
crack'. This fictitious or equivalent crack is defined in terms of the
stress intensity factor of the original crack at the boundary in the
absence of all other boundaries, The location of the equivalent crack
with respect to the boundaries, is determined by reference to the

original configuration.

4,1,1 One crack at the edge of a circular hole

Let us consider a radial crack of length 2 at the edge of a
circular hole of radius R in a sheet subjected to a uniform uniaxial
tensile stress o remote from the hole., The stress acts in a direc-—
tion perpendicular to the crack. The hole is located between two
boundaries B, and B2 such that the distance, along the crackline,

1

from the centre of the hole to B1 is b1 , and to B2 is b2 (see

Fig 4.1).

In accordance with the procedures in the previous chapter for com-
pounding stress intensity factors, the above configuration is represented
by several simpler ancillary configurations., The first ancillary con-
figuration will be that of a radial crack at the edge of a hole in a
large sheet subjected to the remote stress ¢ acting perpendicular to

the crackline (see Fig 4.2a). Let the stress intensity factor of the
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crack in this configuration be KO . The normalized stress intensity

factor QO is defined by

KO _
QO = — K = g¥ma . (4.1
K

The configuration of the crack at the edge of the hole must be
simplified before the interactions between the crack tip and the
boundaries B1 and B2 can be evaluated since there are few ancillary
solutions for a crack at the edge of a hole in the presence of other
boundaries. It is therefore postulated that the hole/crack combination
can be replaced by an 'equivalent crack' for the purposes of evaluating
the effects of boundaries other than the hole. The interactions
between the boundaries and the tip A of the equivalent crack are

assumed to be the same as the interactions between the boundaries and

tip A of the original crack.

The equivalent crack is defined such that it has the same stress
intensity factor KO as the crack at the edge of the hole in the
absence of all boundaries. This implies the same crack-tip shape, since
the opening of the crack in the vicinity of the tip is proportiomnal to
the stress intensity factor. The distance of the tip of the equivalent
crack from the boundaries is determined (see later) by the distance of

the original tip from the boundaries.

The equivalent crack is postulated to be an isolated crack of
length 2a' 1in a large sheet subjected to a uniform tensile stress o
acting remote from the crack and perpendicular to it; the length a'’

is determined by the condition that the stress intensity factor must be

equal to KO , e

K = g/ma' = K. . (4.2)

a' = Q2a . (4.3)
0
The equivalent crack must conform with certain physical limits if it is
to be an adequate replacement for the original crack: they are

(1) as the original crack-length £ tends to zero, the equivalent

crack-length a' must also tend to zero; and
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(ii) when the radius of the hole is small compared to the original
crack-length, the hole/crack combination behaves like an isolated

crack of total length a+R = a , and the equivalent crack must

do the same.

From equation (4.3) it follows that:

1im{a'} = a 1im{Qé} = & , (4.4)
20 20

since from Case 1.3.3, Ref 2, it follows that

lim{Q,} = 0 , (4.5)
20

therefore conditicn (i) above is satisfied. Also, from equation (4.3),

. . 2
1lim {2a't = 2a 1lim <Q = a |, (4.6)
a/R+m§ } a/R»m{ O}

since from Case 1.3.3, Ref 2, it follows that

linfo ) = o (4.7)

a-»R

therefore condition (i11i) is satisfied.

Thus, in order to evaluate the stress intensity factor for the
crack in Fig 4.1, solutions to the ancillary configurations shown in
Fig 4a—c are needed. The dimensions bf and bé shown in Fig 4.2b&c
are related to b, and b2 in the original configuration (Fig 4.1), by
considering the distance from tip A to the boundaries. The distance b{
in Fig 4.2b is determined by the condition that the distance from tip A

to the boundary B, , along the crackline, must be the same in the

1
ancillary configuration as in the original configuration. Comparison of

Figs 4.1 and 4.2b shows that

bl — a' = b - g . (4.8)

If a similar condition is used to determine bé , namely that the dis-

tance from tip A to boundary B2 should be the same, then

1 ) A
by + a —b2+a . (4.9)

However this condition can lead to overestimating the effect of B2 in

some circumstances. If 2a' > (a + R) , then the uncracked ligament
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between B, and the nearer tip B of the equivalent crack is less in

the ancilliry configuration than in the original if bé is determined
by equation (4.9). This would lead to an overestimate of the effect of
B2 on the stress intensity factor particularly if B2 is close to the
hole. To avoid this, equation (4.9) is used when 2a' < (a + R) and
the condition that the distance between tip B and boundary B, should

be the rame as the distance between the edge of the hole and B2 is

used when 2a' > (a + R) . This condition leads to
bé -a' = b, = R, 2a' > (a + R) . (4.10)
Since a' = Qéa , the three conditions can be written as:
b! = a' = b, - a all Q. ; ]
1 I ’ 0’
b' +a' = b. + a Q2<l(1+5)- S (4a1D)
2 2 ? 0 : a/’
2 R
LI S, - 1 —
by - a by =R Q0>2(]+a)' 3

The introduction of the equivalent crack leads to a modification
of the basic compounding formula given by equation (3.7) in the previous

chapter. The compounding equation becomes

. N
= LI
Kr KO + :E:(Kn KO) + Ke s (4.12)
n=1

where Ké is the stress intensity factor of the equivalent crack of
length 2a' in the presence of the nth boundary only. By normalizing
with respect to K as before, and by using equation (4.1), the

normalized resultant stress intensity factor becomes

e

X .
ﬂ

9, = Qi+ ) @ -Df+a (4.13)
n=1

K!
where Q; = EE = a . (4.14)
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4,1,2 Two equal~length cracks at the edge of a circular hole

In this section we consider two diametrically opposite radial
cracks of equal length 2 at the edge of a circular hole of radius R
in a sheet subjected to a uniform uniaxial tensile stress ¢ acting
remote from the hole in a direction perpendicular to the crackline.
There are two boundaries B1 and B2 in the vicinity of the hole (see
Fig 4.3). The first ancillary configuration is that of two diametrically
opposite radial cracks of equal length at the edge of a hole in a large
sheet with a uniform uniaxial tensile stress acting perpendicular to the
crackline remote from the hole. Let the stress intensity factor for
tip A be KO (the value for tip B will be the same in this case). The
other ancillary configurations required are the same as shown in

Fig 4.2b&c.

The equivalent crack is again of length 2a' and is given by

equation (4.3).

The equivalent crack satisfies the required physical limits:

lin{a'} = alim{Q(z)} - o0, (4.15)
20 20

since, from Case 1.3.3, Ref 2,

lim{Qy} = 0 , (4.16)
20
and
lim {Za'} = 2a lim {Qé} = 2a |, (4.17)
a/Rw a/Roo
since, from Case 1.3.3, Ref 2,
lim {QO} = 1 (4.18)

a /R

The distances b, and b2 are determined by similar conditions to

to those used in the previous section:

(1) tip A is the same distance from B, in both the ancillary con-

figurations and the original;
(ii) tip A is the same distance from B, 1in both configurations if
a' <a; or

(iii) tip B is the same distance from B, in both configurations if

a' > a .
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That is,
b! = a' = b1 -a , all QO
by +a' = b,+a , Qy <! > (4.19)
and
L IR -
b2 a b2 a , QO > . §

The compounding equations for determining the stress intensity

factors will again be given by equations (4.12) to (4.14).

4.1.3 Two unequal-length cracks at the edge of a circular hole

If the configuration described in the previous section has two
cracks of unequal lengths, ZA and ZB , at the edge of the hole (see
Fig 4.4), then the definition of the equivalent crack will depend on
which tip is under consideration., The different tips will have
different stress intensity factors. The first ancillary configuration
to be considered is that of the hole with two unequal cracks in a sheet
with a uniform uniaxial tensile stress o remote from the hole, acting
perpendicular to the crackline. Let the stress intensity factors at
tip A and tip B be KOA and K respectively. If tip A is the tip

0B
under consideration, then the equivalent crack—length aA is defined by

K
2 0A
LI : = —
ay ‘QOAa with QOA = s (4.20)
where 2a = a, +a, = 1, + i+ 2R . (4.21)
If tip B, then the equivalent crack=~length aé is defined by
a! = Q2 a with Q = EE~ (4.22)
B 0B 0B g ' ‘

The normalized stress intensity factors QOA and QOB have been
H

evaluated by Tweed and Rookezo. The crack-lengths a, and aé satisfy
the required physical limits at both long and short crack-lengths. The
distance from the centres of the equivalent cracks to the boundaries B1
and B in the ancillary configurations are determined by similar con-

2
ditions to those given in the previous section. Thus, for tip A
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by = BTy all Qog
bé + aA = b2 *a, QOA=< 1 > (4.23)
and
) b! - aA = b2 - ag Qoa >1 )
and “nr tip B
by -al = b, -a; , all Qpz |
b{ + aé = b, +*a; Qpp S ! > (4.24)
d
an b{ - aé = b1 “a | Qo3 >1 . )

The stress intensity factors are again determined from equations (4.12)

to (4.14) for either tip A or tip B.

4,2  Boundary-boundary interactions

In the plane problems considered in Chapter 3, it was shown that
boundary-boundary interaction effects were small, and that only small
errors resulted from neglecting Qe , the contribution to the stress
intensity factors arising from such effects. However for cracks at the
edges of holes near other boundaries this may not be the case, and Qe
in equation (4.13) may not be small. An indication of the likely
importance of Qe may bé obtained by considering the stress at the site
of the crack in the uncracked configuration. If the value of this stress
in the configuration with all the boundaries present is markedly
different from that with no boundaries, then boundary-boundary inter-
actions will be important. If they are important in the uncracked con~
figuration, then they will be important in the cracked configuration
also. For cracks at holes, the stress at the crack site is often
expressed in terms of the stress concentration factor Kt on the

boundary of the hole.

In Chapter 2 a close relationship was demonstrated between the
stress concentration factor in the uncracked configuration and the stress
intensity factor of short cracks. This relationship will be used here
to ensure that the calculation of Qe leads to accurate values of Qr
at short cracks. The contribution of Qe to Qr is less significant

as the crack-length increases.
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In the derivation of the compounding method in Chapter 3, the term
Qe was shown to arise because stresses induced on any one boundary site
by the presence of the other boundaries, were not allowed for. The
formal relationship between these stresses and Qe was described in
Appendix D using an alternating technique. In general the evaluation
of Qe , by such a technique, is too time—consuming and costly; there-
fore a simpler approximate procedure is developed in this section. The
unknown distribution of these stresses around the hole boundary is
replaced by two equal and opposite localized forces Pe acting, on the
hole perimeter, perpendicular to the crackline (see Fig 4.5). The magni-
tude of Pe is chosen so that the sum of the maximum tensile stresses
(Gmax) for all the ancillary configurations without cracks, is equal to
that in the real configuration without a crack. In general the maximum

stress occurs at the edge of the hole at the site of the crack.

In practice the magnitude of Pe is determined by considering the
limiting values of the stress intensity factors for small cracks. For
a short crack (length 2) at the edge of a hole (radius R) in the region
of maximum stress (Um X) the stress intensity factor (X) becomes, as

2 tends to zero+

lim {K} = 1.120__ /72 = 1.12K_o/7 (4.25)
max t
2/R>0
where 1.12 is the usual correction factor for a crack at a stress—free

edge, and Kt is the stress concentration factor. The limits are

determined for each stress intensity factor in the compounding equation

N
- LA
Kr = KO 1 + ZE:(QH Dy + Ke . (4.26)
n=1

The limiting values of Kr’ KO and Q; can be determined in terms of
known quantities and that of Ke can be expressed in terms of the

unknown force Pe .

For cracks at the edge of a hole in a large sheet subjected to a

uniaxial tensile stress ¢ the stress intensity factor (KO) becomes

T It is assumed that any other cracks that are present, will tend to zero
length at least as fast as the crack under consideration,
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lim {K )} = 1.12 x 30/m2 (4.27)
2/R>0
since ¢ = 30 . For cracks at the edge of a hole subjected to

max
localized forces Pe the stress intensity factor Ke becomes

2P
lim {K_} = 1.12 x == V71 (4.28)
2/R>0
since o = ZPe/(wR) . Because a' + 0 as 2 -+ 0 (Ze a/R + 1), it
follows that
O.T
Lim {K'} = lim{K'} = ol/ra' = =K, . (4.29)
2/R>0 " a'»0 o o

The stress oé is the stress at the centre of the crack site in the
uncracked ancillary configuration containing the nth boundary; it may

be written in terms of the applied stress o , as

g! = Méc s (4.30)

where M; is the magnification factor on the stress due to the presence
of the nth boundary a distance b; away. Mé may be greater or less

than unity,

Substitution of equations (4.27) to (4.30) into equation (4.26)

-

gives
X 2Pe
1 = ! — Wr—n,
SL};I—SO{K]:} 1.120vme<3 |1 + Z(Mn Dl +—=op - (4.31)
n=1

However the limiting value for the stress intensity factor (Kr) for

small cracks in the original configuration must be given by

lim {K_} = 1.12K o/72 (4.32)
2/R~>0

where K _  is the stress concentration factor in the original uncracked
configuration. Comparison of equations (4.31) and (4.32) show that, for

the two expressions to be equivalent, we must have

B 2Pe
r - [— e
311 + ZE:<MH 1)| + —r Kt . (4.33)
n=1



53

This determines Pe as

T

P, = 7 iRo (4.34)
N

where A = Kt - 311 + ZE:(M; - 1) . (4.,35)
n=1

In the special case when the only other boundaries are a pair of

straight edges, Ze a hole in a strip, M; =1 and

A = K -3 . (4.36)

In other cases Mé can be obtained from the stress distribution in the
uncracked ancillary configurations or from the stress intensity factors
for the ancillary configurations, since it follows from the definition

of Q; and equation (4.30) that

. 1 - 1
Lin farf = w . | (4.37)
a'+0

The function A introduced in equation (4.34) and defined in
(4.35) depends only on parameters of the uncracked configuration and
hence Pe which is propartional to A depends only on the uncracked
configuration. Thus the force Pe to be used in the calculation of Qe
is a constant for any given configuration, and does not depend on the
crack-length. In the special case of straight boundaries perpendicular
to the crackline, the function A is particularly easy to interpret;
it is, see equation (4.36), just the difference in the stress concentra-
tion factors at the edge of the hole with the other boundaries present
or absent. Thus the magnitude of Qe which is proportional to Pe is

determined by the stress concentration factors in the uncracked

configuration.

If the boundaries are not straight, equation (4.35) must be used

to determine the function A ; it can be written
N
= - - - . .38
A K, =3 BZ(Mn 1) (4.38)
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The first two terms are just the difference in the stress concentration
factors as before, but now A contains an extra term which will reduce
A if Mé is greater than unity: a reduction in A means a reduction
in Qe . The extra term arises because if the nth boundary is curved,
eg a hole, it will affect the stress distribution at the site of the
equivalent crack., When the contribution to the stress intensity factor
is calculated for the nth ancillary configuration it will include this
effect. This change in stress distribution is (see Appendix D) also the
source of the boundary-boundary interactions. Thus in the case of the
curved boundaries some of the contribution to Qr due to boundary-
boundary interactions may be automatically included in the terms Qé
and therefore the contributions from Qe will be less., This effect

will be demonstrated in later examples in this thesis,

The stress intensity factor for cracks at the edge of a circular
. . . 2
hole subjected to localized loads has been obtained by Tweed and Rooke %

Qe can be derived from their results which are given as K/YPO/FZ>
where p, = Pe/(ZR) ; thus

K X P V1o |
_:_?. = Q = ezR X . (4.39)
K € po/?z oVra

By using equation (4.34) in equation (4.39) we obtain

-

Q
= = %\/gg K ) (4.40)
po/w'TL

Plots of Qe/A as a function of a/R are shown in Fig 4.6 for a single

crack and for two equal-length cracks.

4.3 Test configuration: cracks at a central hole in a strip

In this section the stress intensity factor is evaluated for the
crack-tip A in the configuration shown in Fig 4.7. The compounding
method as modified in the two previous sections is used, and the

results are compared with known results given in Case 1.3.1, Ref 2.

Two radial cracks each of length ¢ are situated (see Fig 4.7) at
opposite ends of a diameter of a hole of radius R ; the distance between
the tips is 2a , and the hole is located centrally in a long strip, of
width 2b , such that the crackline is perpendicular to the strip axis.

The strip is subjected, remote from the cracks, to a uniform uniaxial
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tensile stress ¢ in the direction of its axis. The ancillary configu-
rations required are shown in Fig 4.8. The strip edge nearer to tip A
is B, , and the other edge is B_, (ef boundaries B, and B, in
section 4.I)+.

The resultant normalized stress intensity factor is calculated

from equation (4.13) which, for this case, becomes (n = 1)
= ! T —
Qr QO[H + Q_1 1} + Qe . (4.41)

where QO is the normalized stress intensity factor for two cracks at
the edge of a hole, in the absence of all other boundaries, and Q;I

are the normalized stress intensity factors for a crack of length 2a'
near to the edge of a uniformly stressed sheet; Q;l is for the
boundary nearer to the tip being considered (tip A in Fig 4.8) and Ql]
for the boundary farther away from the tip. It follows from equation
(4.19) that the distances b;l and bll from the centre of the equiva-

lent crack to the near boundary and to the far boundary respectively are

given by
b;l -a' = b-~-a , all QO
bl y+a' = b+a , Q, <1 r (4.42)
and
| I T -
bl a’ b-a , | QO >1 . J
The values of QL] are given in Case !.1.11, Ref 2, as a function of

a'/b+'1 . From equation (4.42) and the definition of the equivalent

crack it follows that

- -1
el RN U]
> (4.43)
: I -
SR L (]| B

T Labelling boundaries with positive and negative integers has been

introduced here, because it will be convenient when there are many
boundaries (see later) crossing the crackline on both sides of the

crack,
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The boundary-boundary interaction term Qe was obtained from
Fig 4.6; in this configuration A 1is (Kt - 3), since the other
boundaries are straight (see equation (4.36)). The values of Kt

b/R ratios used are tabulated in Table 4.1,

corresponding to the

Table 4.1

Stress concentration factors for a central hole
in a uniformly stressed strip

b/R 2.5 2

.24 3.47 3.74 4.32

The resultant stress intensity factor can now be obtained using

equation (4.41); the contribution to Qr is significant for

small values of b/R (at b/R = 2, Qe <§O.3Qr).
a/R .

from Qe
The results for Qr
a/R greater than

are plotted in Fig 4.9 as a function of For

the values shown a good approximation may be obtained by using the long
crack limit described in Chapter 2, Ze¢ replacing the cracked hole by a
and using the solution for a cracked strip (Case

b/R = 10 differ by less than 17 from

crack of length 2a
1.1.1, Ref 2). The results for

the results for b/R = » (72 an infinitely wide strip).

The cracked hole in a strip has been studied by Newman using a
collocation technique; his results are reported in Case 1.3.1, Ref 2,
The differences between the compounded Qr and Newman's results are

tabulated in Table 4.2,

Table 4.2

Qr values for two equal=length cracks at the edge of a central hole

in a uniformly stressed strip

a b/R = 4 b/R = 2

R Compound | Newman | 7 diff Compound Newman 7 diff
1.02 - - - 0.655 0.653 <1
1,04 0.661 0.659 <1 0.895 0.882 1
1.08 0.862 0.851 1 1.19 1.14 4
1.20 1.11 1.08 3 1.63 1.50 9
1.40 1.22 1,18 4 1.95 1.82 7
1.60 1.25 1.22 3 - - -
2.00 1,28 1.28 <1 - - -
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It can be seen from Table 4.2 that the differences between the two
solutions become larger as the hole radius increases. However even for
a hole with a diameter equal to half the strip-width (b/R = 2) the

maximum difference is less than 10%.

4.4  Other configurations

In this section two configurations will be considered in order to
further illustrate the equivalent crack concept, and the role of
boundary-boundary interactions. The two configurations are a radial
crack at the edge of a hole which is located off the centre line in a
strip, and a radial crack at the edge of a hole which is near another
hole in a large sheet (see Fig 4,10). The stress intensity factors are
calculated, using the compounding method, for these two configurations.
It is shown that for long cracks a good approximation to the stress
intensity factor may be obtained by using the long crack limit
(described in Chapter 2) modified by the presence of the extra

boundaries.

4.,4,1 Crack at an off-centre hole in a strip

A radial crack of length & (tip to hole—centre distance = a) is
situated (see Fig 4.10a) at the edge of a circular hole (radius R) in a
long strip of width 2b ; the centre of the hole is a distance b+1
from the nearer edge of the strip, and b_l from the farther edge. The
crack is perpendicular to the axis of the strip which is subjected to a

uniform uniaxial tensile stress ¢ remote from the crack. The ancillary

configurations required are shown in Fig 4.11.

The resultant normalized stress intensity factor is again given by
equation (4.41), where QO is the stress intensity factor for a single
radial crack at the edge of the hole, in the absence of all other
boundaries, and Qil are the same as before. It follows from equation
(4.11) that the distances bil and b:} , from the centre of the
equivalent crack to the near boundary and to the far boundary respect-

ively, are given by
LS . -
b+1 a b a , all QO

b!, +a' = b_; +a , 22' <a + R > (4.44)

and

bll -a' = b, -R , 2a' > a + R .
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The values of QL} are again given in Case 1.1.,11, Ref 2, as a function

of a'/b:_1 ; from equation (4.44) and the definition of the equivalent

crack-length, it follows that

-4 -
a' 2| T+l _ 2) B
A (1-9) all qQ,

- ~—1

' b_

'Ei,'— = Qé ———é-l- + (1 - Q(z)) s 2a' <a + R 5 > (4.45)
-1 L i

and

, b NE

a _ 2 -1 _(R _ ' .

b, = 9  a (a QO) > 2a >a R .

The derivation of Qe was given in section 4.2 and the values required
may be obtained from Fig 4.6 providing that the function & 1is known.
In this case, since other boundaries are straight, A 1is given by
equation (4.36) as (Kt - 3). The configurations studied in this
section are described by b/R =5 and b+1/R = 5, 4 and 3 with the

corresponding stress concentration factors, Kt = 3,14, 3,22 and 3.42.

The resultant stress intensity factor for this configuration can
now be obtained using equation (4.41); the contribution to Qr from
Qe is a maximum of (5% for b+1/R = 3, 6% for b+1/R = 4, and 4% for
b+1/R = 5, The results are plotted as Qr vs a/R in Fig 4.12, Also
included are results (dashed curve) obtained by assuming that the hole
plus crack can be replaced by a crack of length (a + R) the near tip of
which is the same distance from the boundary as the original tip. It
can be seen that this approximation, as expected (see Chapter 2),

approaches the compounded results at large values of a/R .

4.4.2 Crack at a hole near another hole

A radial crack of length # (tip to hole-centre distance = a) is
situated (see Fig 4.10b) at the edge cof a circular hole of radius R1
which is located near another hole of radius R2 ; the crack lies
between the holes along the line joining the centres which are a dis-
tance c¢ apart. The distance from the centre of the cracked hole to
the edge of the uncracked hole (boundary BI> is b, (b1 =c - RZ)' The
sheet containing the holes is subjected, remote from them, to a uniform
uniaxial tensile stress o acting in a direction perpendicular to the

crack. The ancillary configurations required are shown in Fig 4.13.
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The resultant normalized stress intensity factor is calculated from

equation (4.13) which becomes (N = 1)

Q. = Q@] *Q (4.46)

r

where QO is the normalized stress intensity factor for a radial crack
at the edge of a hole in an infinite sheet subjected to a uniform uni-
axial tensile stress, and Q{ is the normalized stress intensity factor
for the equivalent crack of length 2a' near a hole of radius R2 .

The distance between the centre of the crack and the edge of the hole is
b{ (see Fig 4.13). To ensure that the distance from the tip to the

boundary B is the same as in the original configuration, we need

b; - a' = b1 -a , (4.47)
-1
b
. a' 2 1 2
Ze o = QO = 1+ QO . (4.48)

The stress intensity factor for a crack near a hole in a uniformly

stressed sheet has been given by Isida (see Case 1.3.5, Ref 2). The

results depend upon the ratio Rz/c' (¢! = b{ + RZ) which is given by
R R, [b R}
2 L 2% 2 M
o —;{‘; F+Qp+ a] : (4.49)

The derivation of Qe was given in section 4.2 and the values required
may be obtained from Fig 4.6 provided that the function A 1is known.

In this case A 1s given by equation (4.35) as

b= K- 3M; , (4.50)

where M{ is the magnification factor on the applied stress as a dis-

tance cé from the centre of an uncracked hole of radius R2 ;3 it is

given23 by

M! = I + 1 ——2- +—§- —2— (4.5])

for this configuration, cé is the distance to the centre of the equiva-

lent crack when its length tends to zero; in other words (see Fig 4.13),
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c! = 1im{c'} = b, +R, - R, . (4.52)
0 Aot 1 2 1
The configurations considered in this report are for bl/RI = 4 , and
RZ/RI = 1, 5 and 10; the appropriate stress concentration factors and the

corresponding values of A are given in Table 4.3.

Table 4.3

Stress concentration factors for a circular hole near another hole
in a uniformly stressed sheet

1
RZ/RI My Kt A
1 1.037 3,02 -0.09
5 1.424 3.82 -0.45
10 1.821 5.10 -0.,36

Since A 1is negative the correction term Qe will be negative;
this is because the replacement of the original cracked hole by an
equivalent crack in the stress field modified by the second hole leads
to an overestimate of the stress intensity factor. [Qeg/Qr,S 3% for

R,/R =1, <127 for R,/R; =5, and $8% for R,/R; =10 .

1

The resultant stress intensity factor for this configuration can
now be obtained from equation (4.46). The results are plotted as Qr Vs
a/R1 in Fig 4.14. Also dincluded in Fig 4.14 are results (dashed curve)
obtained by using the 'long-crack' approximation developed in Chapter 2,
and allowing for the existence of another boundary, Ze by assuming that
the hole plus crack can be replaced by a crack of length (a+R), the
near tip of which is the same distance from the other hole as the
original tip., It can be seen that this approximation may be adequate

for long cracks (a/RIEjl.S), but as expected, is not suitable for short

cracks since it tends to the wrong limit.

4,5 Discussion and conclusions

The compounding technique for calculating approximate stress
intensity factors has been applied to cracks at the edge of circular
holes which interact with other boundaries. A systematic way is pre-
sented of calculating the effect of boundary-boundary interactions,
which had been neglected in Chapter 3. In the case of two equal length
cracks at the edge of a circular hole located centrally in a uniformly
stressed strip the compounded results can be compared with a known

numerical solution. This comparison (Table 4.2) shows two trends
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similar to those observed in Chapter 3; the probable errors in the com-
pounded solutions tend to increase as the crack—length increases and as
the boundaries become closer together. For practical configurationms the
errors are <107 and this is usually adequate for most engineering

applications,

Two new configurations of a radial crack at the edge of a hole
have been considered; in one case the hole iz located eccentrically in
a uniformly loaded strip, in the other case the hole is near another
hole in a uniformly stressed sheet. The approximation of replacing the
hole plus the crack by a crack of the same overall length can be made
for long cracks (a/R > 2.5 for the eccentric hole in a strip and
a/R > 1.5 for a cracked hole near another hole); it becomes unsatis-

factory for close boundaries (Fig 4.12).

The importance of accuracy for small cracks was discussed at the
beginning of this chapter in the context of damage-tolerant design
concepts. The modifications to the compounding techniques, developed
in this chapter, are particularly useful in this respect, since they
ensure that the errors in the stress intensity factor will be least
when the crack is small., This advantage arises from the use of the
stress concentration factor for the uncracked hole to ensure that the
solution has the correct asymptote as the crack-length tends to zero,
In the next chapter this powerful addition to the compounding technique
will be exploited further, to solve problems of cracks growing from

arrays of holes such as may occur in riveted structures.
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CHAPTER 5

CRACKS AT UNLOADED HOLES IN AN ARRAY OF HOLESBé’37

In this chapter the compounding method is applied to problems of
cracks at the edges of holes in a row of holes in a uniformly stressed
sheet. This configuration is representative of some airframe components.
For example, cracks may develop at a rivet hole in a longitudinal
stiffener in a pressure cabin, in which the major in-plane loading arises
from the hoop stress, with little in-plane load transfer through a rivet.
An analogous situation may arise in a wing skin in which a chordwise
crack may develop at a rib/skin fastener under wing bending fatigue
loads. Fatigue stresses which act in a direction perpendicular to the

row of holes will cause the cracks to grow along the line of holes.

In section 5.1, the configuration is considered of one or two
cracks at the edge of only one of the holes in a row of holes and it is
shown how compounding is used to obtain the stress intensity factor. In
practice, cracks may develop at the edge of more than one hole. There-
fore in section 5.2 a more general problem is considered of cracks at
each hole in a row of holes, The presence of additional cracks causes
the stress intensity factor to increase, thereby leading to an increase
in fatigue growth rates and a consequent reduction in fatigue lifetimes;

the magnitudes of these effects are examined in section 5.3.

In order to apply the compounding method to such configurations
the stress intensity factors are required for the following ancillary
configurations; an isolated hole with one or two cracks (Case 1.3.3,
Ref 2) and a crack near an isolated hole (Case 1.3.5, Ref 2). The
boundary-boundary interaction term is estimated in the way described in
section 4.2 and hence gives accurate solutions for short crack-lengths.
The importance of accuracy for short cracks lies in the fact that a
major portion of the structure's useful fatigue lifetime is spent when

the crack is short,

5.1 Crack(s) at one of the holes in a row of holes

The structural configuration studied in this section is that of a
row of holes, of radius R , in an infinite sheet uniformly stressed
remote from and perpendicular to the line of holes (see Fig 5.1). Two
configurations are considered, either one or two radial cracks at one of
the holes. In both cases the cracks are along the line of the holes
and a 1is the distance from the centre of the hole to the tip of the

crack, In order to calculate the effect of the other holes on the crack
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the hole plus the crack(s) must be replaced by an equivalent crack,

using the procedure developed in section 4.1,

If the holes on the side of tip A (Fig 5.1) are labelled
n = +1, +2 etc, and the holes on the other side labelled n = -1, =2
etc, then equation (4.13) for the normalized resultant stress intensity

factor for tip A becomes

Q =Q01+Z<Q'—1> +Q , n#0, (5.1

where QO is the normalized stress intensity factor for ome or two
cracks at the edge of a hole in the absence of all other boundaries, and

Q; is that for the equivalent crack in the presence of the nth boundary

(hole) only,

The boundary-boundary interaction may be obtained from values of
Qe/A , for a hole with one or two cracks, given in Fig 4.6. The
function A 1is given by equation (4.35), Thus the complete compound-

ing formula is given by

n=w =00 Q
- ' - to_ _&
Qr = QO 1 + Z(Qn D + Kt 31 + Z(Mn 1) (A) s (5.2)
T1===c0 n==—co

where the summations exclude n =0 .

The ancillary configurations required for the evaluation of QO
and Q; are shown in Fig 5.2. Values for QO , for both one and two
cracks, are given in Case 1.3.3, Ref 2, and values of Q; in Case 1.3.5,
Ref 2. In order to evaluate Qé , the length of the equivalent crack
a' and the distances from the boundaries bé must be known. The
length of the equivalent crack is again given by equation (4.3) and bé

is obtained from equation (4.11), for one crack, as

bé ~a' = bn - a, all Q » ™ >0,
bl +al = b_+a, Qé<%(l+§>, a<0, 5 (5.3
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where bn = |n|b - R . For two cracks b; is obtained from equation
(4.19) as
bé -a' = bn -a, all QO , n>0, ]
b; +a' = bn + a, QO <1, n<0, ¢ (5.4)
b; -a' = bn - a , QO > 1, n<o0 . ]

The values of Kt required in order to calculate the boundary-
boundary interaction term are given in Table 5.1, for the values of

b/R studied in this section17.
Table 5.1

Stress concentration factors for a hole
in a periodic row of holes

b/R 3.0 3.5 4.0 5.0 10

K 3.92 3.44 3.24 3.10 3.01

The values of Mé are obtained from the limiting values of Q% accord-

ing to equation (4.37).

The resultant normalized stress intensity factor Qr can now be
obtained from equation (5.2); the results are plotted in Figs 5.3 and
5.4 for one and two cracks respectively. In both cases it was found
that (Qé - 1) was negligible for |n| > 2 and that Q, was small

(Ze Q, < 5% Qr)'

5.2 Cracks at every hole in a row of holes

In the previous section the compounding method was applied to the
problem of one or two cracks at the edge of a hole which is in a row of
holes in a uniformly stressed sheet36; the stress which acts in a direc-
tion perpendicular to the row of holes causes the cracks to grow along
the line of holes. This may occur in components having rows of rivet
holes, eg the fuselage or wing-skin of an aeroplane. When the holes are
periodically spaced as they frequently are, the stress fields at each
hole are similar and hence cracks may occur at several holes during
service life., These cracks will grow due to fatigue loads; the rate at
which any one grows will be influenced by the presence of the others. If
the cracks are collinear they will grow faster than similar isolated

cracks and hence the fatigue lifetime will be shortened.
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In this section the compounding method is used for calculating the
stress intensity factor for a crack at the edge of a hole in a row of
holes any number of which have cracks at the edges. The cracks are
collinear, lying along the line of the holes and perpendicular to the
principal stress direction. The solution to the general problem of
cracks of arbitrary length at the edges of holes of arbitrary diameter
is stated first, and then the stress intensity factors are determined
for the special case of a periodic configuration, Ze the cracks are all
the same length, the holes are all the same radius and spaced a uniform

distance apart.

In the configurations studied in this section, the stress intensity
factor Kr for the crack under consideration will be affected by the
presence both of the holes and of other cracks. In the previous section
only one hole had a crack at its edge; this hole/crack configuration
was replaced by an equivalent crack, and the contribution to Kr of
the interaction of this crack with the other holes was considered.
However, if the other holes have cracks at their edges there are
additional interactions between the equivalent crack and these other
cracks. In order to evaluate these interactions, each hole/crack con-—
figuration must, in turn, be replaced by an equivalent crack which
interacts with the original equivalent crack. In general the lengths

of the equivalent cracks will be all different.

5.2.1 General configuration of holes with cracks

The most general configuration of a row of holes each with two
cracks of unequal lengths is shown in Fig 5.5; the holes may have
different radii and may be unequally spaced along the row., The holes
are in a sheet which is subjected to a uniform uniaxial tensile stress
remote from the line of holes, and which acts in a direction perpendicu-
lar to the line of holes., Let the crack under consideration be the
right—-hand crack (tip A) at the edge of a hole of radius RO ; it is of
length RO,R and the left-hand crack at the same hole is of length
QO,L . The holes to the right of this hole are labelled with positive
integers such that the nth is of radius Rn and its left-hand crack is
of length zn,L and its right-hand crack of length zn’R . A corres-
ponding notation with negative integers is used for holes to the left

of the hole of radius RO . The distances of the left and right crack

i i i = + R and
tips from the centre of their hole are given by an,L gn,L 0
= + . oundin
an,R Qn,R Rn for all n In order to apply the comp g
method to this configuration, stress intensity factors for three

ancillary configurations are required. These are:
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(i) two cracks of unequal length at the edge of a hole in a

uniformly stressed sheet (see Fig 5.6);

(ii) a crack near a hole in a uniformly stressed sheet

(see Fig 5.7a&b);

(iii) two collinear cracks of unequal length in a uniformly

stressed sheet (see Fig 5.8a&b).

The first of these configurations has been studied by Tweed and Rookezo.
Results for the stress intensity factor for the second configuration are
available, Case 1.3.5, Ref 2, in a form suitable for use with the com-
pounding method; results for the third configuration, are available in

Case 1.2.3, Ref 2.

For the general configuration described in Fig 5.5, the resultant
stress intensity factor Kr for the right-hand crack (tip A) at the

edge of the hole of radius R. 1is given by:

0
n:oo n:oo
= L LL -
Kr KO + Z(Kn KO) + Z(Kn KO) + Ke s n#0, (5.5)
n=-ow T13==~c0
where K. = the stress intensity factor for tip A in Fig 5.6 in the

0
absence of all other boundaries; Ké = the stress intensity factor for

tip A of the equivalent crack of length 2a6 R ® in Fig 5.7a&b, near a
b4

hole of radius Rn 3 K; = the stress intensity factor for tip A of the
equivalent crack of length 2a6 R in Fig 5.8a&b, near another equivalent
b

. . .. ' . .
L (if n dis positive) or ZaH,R (if n 1is

negative) ; Ke = the contribution to the stress intensity factor because

crack of length 2a;
b

of the disturbance of the stress field caused by interactions between

the holes,

The equivalent crack-lengths in Figs 5.7 and 5.8 are defined,

according to the definitiomns in section 4.1, as follows:

T = - e N
UVWaO’R KO QOK , (5.6)
similarly
[T = = 7
¢ Tran,R Kn,R Qn,RK ’
and (5.7)
ovma’ = K = K N

n,L n,L Qn,L
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where Kn L is the stress intensity factor for the left—hand tip at the
3

hole of radius Rn in the absence of all other boundaries, Kn R is
-

for the right~hand crack, and K is the stress intensity factor for an

isolated crack of length ZaO R in a uniform tensile stress field of
3
o, e
K = o/ma . (5.8)
0,R

If equation (5.5) is normalized with respect to K , it becomes

n:oa n:m
Qr=QOI+Z(QI'1-1)+Z(Q;~1) + Q. , n#0, (5.9
n==—w ===~

= - L - [} no_on - o
where Qr Kr/K’ Qn Kn/KO’ Qn Kn/KO and Q, Ke/K . If only
one hole has cracks, then (Qg - 1) is zero for all n , and equation

(5.9) reduces to equation (5.1).

Values of QO’ Qn,L and Qn,R are given by Tweed and Rookezo.
In order to use the values of Q; given in Case 1.3.5, Ref 2, the dis-—
tances bb,n and b;,O between the centre of the equivalent crack
and the hole in Fig 5.7a&b must be defined. This is done by following
the principles laid down in section 4.1, and comparing the configura-

tions in Fig 5.5 and Fig 5.7a&b.

Thus equation (4.23) becomes:

> 1 - ' = -
for n 0 bO,n aO,R bO,n aO,R R all QO s
< t ' - < .10
and for n <0 bn,O + aO,R bn,O + ao’ , QO 1, » (5 )
' — 4! = - >
or bn,O aO,R bn,O aO,L ? QO b .

To obtain the values of Q; from Case 1.2.3, Ref 2 the distances
dé n and d; 0 between the centres of the two equivalent cracks in
b 2
Fig 5.8a& must be defined. Again the principles of section 4.1 are

followed and the configurations in Figs 5.5 and 5.8a&b compared to give,
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1 — ! . ' = — — > h

do,n T 20,8 T Zn,L %0,n " 20, " %n,L° all Q,, n-~0,

1 ! = — < <

dn,O + aO,R an’R bn,O + aO,R an,R . QO <1, n o0,
and

' _ -t - - - >

dn,0 T %0,8 T 2n,R 50,0 "%, "%, -1, nZ0.

veeees (5.11)

The final term Qe in equation (5.9) is obtained by assuming that
the effects of the boundary-boundary interactions can be approximated by
the effects of forces per unit thickness P acting on the hole of

radius R, ; this configuration is shown in Fig 5.9. The force P is

0
given by
n:oo
22 - x -3 4 o - 1) n£0, (5.12)
WROG t n ’ ’
ns=-—c

where Kt is the stress concentration factor at the edge of the hole in
the row of holes with no cracks and Mé is the magnification of the
stress a distance bé,n away from the nth hole in the absence of all
other holes and cracks (for details of the derivation see sectiom 4.2).
From equation (4.37) it follows that the value of Mé is equal to the

value of Q; as aé R tends to zero; it is assumed that other cracks
2

are negligible when aé R is small,
3

5.2.2 Periodic configuration of holes with cracks

In this section the special case is considered of a periodic array
of holes, namely, each hole has the same radius R and is at a fixed
distance b from its nearest neighbours; at each hole there are two
cracks of equal length. The configuration is shown in Fig 5.10 where
= a for all values of n .

Rn = R, bO,n = bn,O = |n|b and an,L = an,R

The resultant stress intensity factor is again given by equation

(5.5), but now KO

the edge of a hole in the absence of all cther boundaries; K; = the

= the stresg intensity factor for a pair of cracks at

stress intensity factor for tip A of the equivalent crack of length 2a'
near a hole of radius R ; Kg = the stress intensity factor for tip A
of the equivalent crack of length 2a' near another equivalent crack of
the same length; Ke = the contribution to the stress intensity factor
because of the disturbance of the stress field caused by interactions
between the holes. All the equivalent cracks are the same length 2a' ,

defined by



69

ov¥ra'l = KO 3 (5.13)
since '
Kn,R - Kn,L = KO ? (5.14)
it follows that
1 - ' = '
an,R an,L ag a . (5.15)

For the periodic configurarion the normalization factor K , the
stress intensity factor for an isolated crack of length 2a in a uni-

form tensile stress field of ¢ , is given by

K = o/ra . (5.16)

The normalized compounding equation is given by equation (5.9).

Values of QO are given by Tweed and Rookezo, Qé are given by
Case 1.3.5, Ref 2, and Q; by Case 1.2.3, Ref 2. The parameters
required for Q; are obtained from equation (5.10); for this periodic

configuration we have,

al = an , (5.17)
b! = nb - a(l - Q2> n>0
0,n 0 > ?
and (5.18)
v _ 2)1
bn,O lnlb + a (1 Q I n<0 .
The parameters required for Q; , in addition to a' , are
~
ar = nb—2a(l—QS) , all Q, ,n>0,
3
dI!lO = |n|b , QO<1, n<0, % (5.19)
v 2 _ ) <
dn,O In|b + 2a(QO 1), Q> 1, n<o0. )

Results for the stress intensity factor for a periodic array of holes
with equal length cracks have been obtained and are shown in Fig 5.11
for various values of b/R . Also shown for comparison is the
Westergaard solution (Case 1.2.8, Ref 2) for a periodic array of
collinear cracks with no holes (R = 0), It can be seen that the stress
intensity factor firstly increases rapidly from zero at the edge of the

hole and then approaches the curve for collinear cracks as the cracks
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lengthen. The deviation of Qr from the normalized stress intensity
factor for R = 0 is within #87 if the crack is more than 157 of the

radius, Ze a/R > 1.15, and a/b < 0.4 .

The stress intensity factor for a crack in the presence of other
cracks is larger than that for one of a pair of cracks at one of the
holes in a periodic array; and the effect increases as the length of
the crack increases. The results obtained above are compared in
Fig 5.12 with those for a pair of cracks obtained in the previous
section., The ratio of Km/Ks is plotted as a function of a/b for
various values of b/R ; Km and KS are respectively the stress
intensity factors for two cracks at each hole and for two cracks at ome
hole. Tt can be seen that K = becomes larger than K, as a/b
increases from zero and at large a/b , results for all b/R tend to

similar values,

5.3 Fatigue crack growth

The increase in stress intensity factor due to the presence of
many cracks leads to an increase in the rate at which the cracks will
grow under fatigue loadings. Since the rate at which cracks grow is
strongly dependent on the value of the stress intensity factor, small
increases in K can lead to large increases in rate. Hence a signifi-
cant shortening of the fatigue life of a structure can occur if many

cracks are present,

It is often assumed18 that the growth rate (da/dN) of a crack of
length 2a can be simply represented by a power dependence on the range

of the stress intensity factor (AK) applied to the cracked structure.

Thus
da

= I%
w C(AK) , (5.20)

where C and p are material constants and N 1is the number of cycles

of stress. The range of the stress intensity factor will be given by
AK = QAcVma (5.21)

where Ao 1is the range of applied stress.

It follows from equations (5.20) and (5.21) that the growth rate
for many cracks (da/dN)m in terms of that for just two cracks

(da/dN)S is given by
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(da/dN) Q. \’
m m
(da/dN)s - (QS> : (5.22)

The ratio (Qm/QS) of the normalized stress intensity factors is the same
as the ratio of Km/Ks plotted in Fig 5.12. As seen from equation
(5.22) the ratio of the rates depends on the value of p . Typically,
for aluminium alloys, p 1is between 2 and 4. Results for the

increased rate due to many cracks are shown in Fig 5.13 for p = 2, 3
and 4, and b/R = 8 ; this value of b/R 1is typical of many aerospace
riveted structures. It is seen from Fig 5.13 that the rate of growth
increases as both p and a/b increase. The rate for many cracks is
double that for just two cracks at a/b = 0.415 for p =2, at

a/b = 0.365 for p =3 and at a/b = 0.33 for p =4 ,

5.4 Discussion and conclusions

The compounding method isclates the effects of the component
boundaries and considers, in turn, how they each influence the stress
intensity factor., Which boundaries are important in affecting the
resultant stress intensity factor in the periodic configuration (see
section 5.2.2), depend on the length of the crack. For short cracks the
row of holes which determine the stress concentration factor Kt also

determines the stress intensity factor, since

lim{Kr}‘ = KtOVﬂ(a"R) = Ktc/;z . (5.23)

a-»R

The presence of the other cracks has only a small effect; at &/R = 0.0l
the effect is less than 10% of that due to the holes., But it becomes
more important as the cracks grow and at £/R = 0.1 the effect of the
other cracks is about equal to that of the holes. At longer crack-
lengths the effect of the other cracks dominates, particularly for
values of b/R commonly used in aerospace structures (e b/R = 8). The
effect of the boundary-boundary interaction through the term Qe was

negligible for all the configurations considered.

The formula, given in equation (5.5) for calculating Kr contains
two summations over all boundaries. In practice only boundaries close
to the crack significantly affect the stress intensity factor; for all
values of b/R , the only important boundaries are n = *1 and 0 = £2 .,
The contribution from n = *2 is usually about one—tenth of that due to
n = *1 , For the periodic configuration, Ke due to the interaction of

the holes is negligible; this is because of the use of the ancillary
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configuration of the equivalent crack near a neighbouring hole, takes

into account most of the stress disturbance due to the presence of the

holes.

For practical configurations (b/R > 8), the stress intensity

factor Kr for short cracks (&/R < 0.2) differs by less than 3% from

20

the value of K, for cracks at the edge of an isolated hole™ .

0
Fig 5.11 shows that Kr for 1c..z cracks (&/R > 0.2) differs by less
than 7% from the Westergaard solution K (Case 1,2.8, Ref 2). These
two limiting cases suggest a simple approximate procedure for estimat-

ing the stress intensity factor

K = KX 5 0 <a/R<0.2 .

(5.24)

and i
0.2 <a/R .
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It has been demonstrated in Chapter 2 that such approximations are
adequate for fatigue crack growth calculations in many engineering
applications. The tendency for K. to fall below K for a/b > 0.25
is probably due to an underestimate of Kr s it is shown in Chapter 3
that, in the simple case of collinear cracks, the compounding method

underestimates the resultant stress intensity factor.

It was seen in section 5.3 that the presence of many cracks can
significantly increase the rate of growth of a crack under fatigue
loadings. The largest increases occur for the largest values of p ,
the exponent in equation (5.20). Such increases can lead to large
reductions in fatigue life of a cracked structure. Thus with periodic
cracks, not only has the crack less distance to travel (half-way between

the holes) but it is travelling faster.

The results given in Figs 5.11 to 5.13 are for the special case of
holes of equal radius in a periodic array with two collinear cracks of
equal lengths at each hole. Stress intensity factors can also be calcu-
lated (see section 5.2.1) for the general case of collinear cracks of

unequal length at holes of unequal radius in a non=-periodic array.

Many aircraft components will have holes of equal size and in a
periodic array (eg row of rivet holes), but the cracks will be of
unequal length; with tensile loading remote from the cracks the longest

crack will have the largest stress intensity factor.
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CHAPTER 6

CRACKS AT LOADED HOLES

In the previous chapter the compounding method was used to
evaluate the stress intensity factor for cracks at the edge of unloaded
holes, arranged in a row. As well as unloaded holes in structures,
there are also many cases of loaded holes, eg pin-loaded lugs or
fastener holes where load is transmitted through the fastener to the
sheet., 1In this chapter the opening-mode stress intensity factor is
evaluated for two cracks at the edge of each loaded hole in a row of
fastener holes. The concept of the 'equivalent crack—-length', needed
in Chapters 4 and 5 to make it possible to calculate the effects of
boundaries on the stress intensity factor, is not appropriate for
cracks at loaded holes. A new concept of the 'equivalent load' will be

introduced and described in section 6.1 of this chapter.

In section 6.2 the opening-mode stress intensity factors are
obtained for two equal-length cracks at each hole in a periodic row of
holes; the holes are subjected to a uniform internal pressure. The
results are compared with those obtained by Parker38; the agreement is
good. A more complex configuration is studied in section 6.3, where the
row of holes is near a boundary and the pressure on the hole perimeter
is not uniform. In all cases considered in this chapter the loading on
the hole perimeter is symmetric about the diameter perpendicular to a

line joining the centres of the holes in a row.

6.1 Equivalent loading on crack

In the definition of the equivalent crack, given in equation
(4.2), the stress ¢ can be interpreted as a uniform pressure acting
on the crack faces. This follows from the fact that an isolated crack
of length 2a' subjected to a uniform internal pressure p has a

stress intensity factor given by
K = pv/ra' . (6.1)

Thus if the pressure p 1is equal to the stress o , then the stress
intensity factor is KO , the same as for the equivalent crack defined
by equation (4.2). For cracks growing from loaded holes, the definition
of the equivalent crack must contain information about both the loading
on the hole and the remote loading. In fact, if the loads on the hole
are in equilibrium, the remote stress o may be zero and equation (4.2)

is then clearly not applicable as a definition of a' .
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Three different loading cases are considered for two radial
cracks at the edge of a hole in a sheet. In section 6.1.1 the only
loads are self-equilibrated loads acting on the perimeter of the hole.
A case when the loads on the hole have a non-zero resultant is con-
sidered in section 6.1.2; the other boundaries are considered so remote
that the stress on them required to satisfy overall equilibrium is
negligible. Finally in section 6.1.3 the case is considered when the
boundary stresses are not negligible and must be included in the deter—

mination of the stress intensity factor.

It is necessary to redefine the equivalent crack when considering
cracks at loaded holes, so that known physical limits are reproduced.
A new concept of 'equivalent loads' acting on the faces of the equiva-
lent crack is introduced: the loaded hole and the original crack(s) are
replaced by an equivalent crack, of the same overall length as the
original crack(s) plus hole, but with equivalent loads acting at right
angles to the two crack faces. The loads (force per unit thickness)
are determined by the condition that the equivalent crack has the same
stress intensity factor KO as the original crack at the loaded hole in
the absence of all the other boundaries. The effect of these other

boundaries is then accounted for by the compcunding procedure.

6.1.1 Self-equilibrated loads on the perimeter of the hole

Consider a circular hole, defined in cylindrical polar coordinates
(r,8) by r =R, 0<6 <21 , which is loaded by a pressure p(8) , see
Fig 6.1; the pressure distribution is symmetrical about 6 = 0 , that is,
p(8) = p(-8) . Two radial cracks of length & are located at the edge
of the hole along 6 =0 and 9 = 7 respectively, so that the tip-to-
tip distance is 2a where a =R + & . Fig 6.1 also shows the equiva-
lent crack, which is an isolated crack of the same length 2a with two
opposing forces of equal magnitude P' acting perpendicular to the
crack at its centre. The force P' 1is defined by the condition given
above as

(6.2)

PV
yra KO ?
since the left-hand side of equation (6.2) is the stress intensity
factor of an isolated crack subjected to localized forces P'
The force P' has the following limiting values, as shown below:

lim{P'} = 0 and lim{P'} = P , (6.3)
20 L-e0



75

where P 1is the resultant force acting on one half of the hole peri-
meter, perpendicular to the crackline. This force results from the

pressure p(8) for 0<6 <7 ; it is given by
T
P = Rf;ﬂe) sin 6 d6 . (6.4)
0

The first limit in equation (6.3) follows directly from equation (6.2)
since P' « KO and since KO must be zero when there is no crack

(& = 0). Thus the equivalent crack becomes, when & = 0 , an unloaded
crack of length 2R . Since it is unloaded it will not interact with
the boundaries; therefore Kn will be zero for all values of n and
hence the resultant stress intensity factor Kr will be zero as

required.

When the crack is long (£ > R) the presence of the hole at the
centre of the crack has little effect on the value of the stress inten-
sity factor; its value tends towards that for a crack with two equal
and opposite forces P acting at the centre of the crack. Thus the
limiting value for the stress intensity factor KO for such a crack
is given by

= L (6.5)

where P 1is defined in equation (6.4). Comparison of equations (6.2)

and (6.5) leads to the second limit given in equation (6.3).

In the case of two cracks of unequal length at the edge of the
hole the equivalent load will depend on which crack tip is under con-
sideration, Consider a circular hole defined as before with a symmetri-
cal pressure distribution p(8) , but with two cracks of different
lengths located at the edge of the hole along 6 =0 and 6 =1
respectively., Let the crack with tip A be of length ZA from the edge
of the hole to the tip and the crack with tip B be of a length Ln

(see Fig 6.2). The tip—-to—tip distance is 2a where

2a = a, + a (6.6)

with a = L +R and a. = 4_+ R . (6.7)
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If tip A is the tip under consideration the equivalent crack is of
length 2a with two opposing forces of equal magnitude PA acting per-
pendicular to the crack at a distance a, from tip A and ag from

tip B. The stress intensity factor for tip A of the equivalent crack is

given, in Case 1.1.12, Ref 2, by

p' [a
B A [ B
K = = 2, . (6.8)

If this is to be equal to the stress intensity factor KoA of the

original tip A in the absence of all boundaries except the loaded hole,

a,
' - ——
PA KOAVﬂa 2 . (6.9)

For tip B the equivalent load Pé is determined in a similar manner,

ag
! = p—
PB KOB¢wa a, R (6.10)

where K4p 1s the stress intensity factor for tip B in the absence of

then it follows that

and is given by

all boundaries other than the loaded hole.

6.1.2 Resultant load on the perimeter: zero stress on sheet
boundary

If there is a resultant load on the perimeter of the hole, then
the two equivalent loads will not be equal in magnitude. Since, in this
case, the boundaries are far removed from the hole and hence large in
extent, the remote stresses required for equilibrium are small and will
not affect the stress intensity factor. Consider such a loaded hole with
two cracks of length & (tip-to-tip distance of 2a). The equivalent
crack is of length 2a with opposing forces of PI and Pé acting at

the centre. The stress intensity factor of such a crack is given by

P{ + Pé
K = —77%—_:— . (6.11)

Thus for the crack to be equivalent, it follows that the equivalent

loads are given by

1 ' = L1
P} + P} 2KO¢FE . (6.12)

The case for two cracks of unequal length at a hole with a resultant

load on its perimeter, can be treated in a similar way to that above for

a zero resultant.
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6.1.3 Resultant load on the perimeter: finite stress on sheet
boundary

If boundaries are not remote from the hole the stress intensity
factor will be affected by both the boundary stresses needed to balance
the resultant load on the hole perimeter and any externally applied
boundary stresses which exist. Both of these effects must be included

in KO and in the definition of the equivalent crack.

In general there will be an integral relationship, between the
resultant force on the hole and the boundary stresses - the integral of
the stresses around the boundary must balance the loads on the hole
perimeter. In the special case of a uniform normal stress o acting on

a boundary parallel to the cracks, this becomes

oW = P ., (6.13)

The significance of the length W will depend on the actual configura-
tion: for a loaded hole in a strip (see Fig 6.3a), W 1is the width of
the strip; for an infinite array of periodically spaced loaded holes

(see Fig 6.3b), W 1is the spacing between the hole centres.

In Chapters 4 and 5 the ancillary configuration for a crack at the
edge of a hole, used for the determination of KO , was obtained by
removing all other boundaries (cracks, holes and edges). The removal of
all these boundaries did mot alter the boundary conditions; in the case
of the loaded holes this may not be so. Consider the configurations in
Fig 6.3a&b. If -the boundaries are removed by letting W - « , then it
follows from equation (6.13) that o » 0 in order to maintain equili-
brium if the force P 1is held fixed. Thus in the limit the stress will
be too small to affect the stress intensity factor, and KO will be a
function of P and crack-length only. This ancillary configuration of
a crack at the edge of a hole with a single load P on its perimeter is
not therefore suitable for evaluating KO ; the uniform stress ¢ will
have a large effect on the stress intensity factor and must be included

in KO s, the major contribution to Kr .

It is necessary to consider ancillary configurations in which the
forces and stresses are symmetric about the crackline, so that both the
boundary forces and the boundary stresses are separately in equilibrium.
Removal of boundaries to obtain a configuration suitable for evaluating
KO does not now affect the boundary conditions. The opening mode stress

intensity factor for an asymmetric configuration can be obtained from a
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combination of symmetric configurations by applying the principle of
superposition. For instance, the stress intensity factor for the
asymmetric configuration shown in Fig 6.3a is the same if the force P
is replaced by two equal and opposite radial forces of P/2 acting on
opposite sides of the hole perpendicular to the crackline, and if the
tensile stress o at one end of the strip is replaced by tensile
stresses of ¢/2 at both ends of the strip. Similarly the forces P
and the stress o in the periodic configuration shown in Fig 6.3b would
be replaced by two equal and opposite forces P/2 on each hole and

stresses o¢/2 on the two boundaries remote from the holes.

The ancillary configuration required for the determination of KO
for these symmetric configurations is obtained by removing all
boundaries, as in Chapter 4, except the hole with the two cracks under
consideration. Thus the ancillary configuration contains two equal
length cracks at the edge of a hole with two equal and opposite radial
forces P/2 acting on the perimeter perpendicular to the crackline; the
hole is in a sheet which is subjected to a uniform tensile stress of
¢/2 acting perpendicular to the crackline remote from the hole. This
ancillary configuration, which contains no other boundaries, is shown in
Fig 6.3c. Since KO must be the same for both the symmetric and the

antisymmetric configurations, it follows that the same ancillary con-

figuration must be used.

By using the principle of superposition KO may be determined from
two simpler configurations for which the stress intensity factors are
known. These two configurations are obtained from Fig 6.3c by consider-
ing the effect of the forces P/2 and the stresses o/2 separately.

Let K0 be the stress intensity factor for the ancillary configuration
when there are no forces acting (P = 0), and let KP be the stress

intensity factor when there are no stresses acting (o = 0); therefore

K. = K_+K . (6.14)
At long crack-lengths the effect of the hole on KO is negligible;

KP tends to the limit P/(2Vma) , and KU tends to the limit
oVma/2 . Therefore it follows that

. 1 P
i_l:i{KO} = -2—(7'?2 + 0/%_5) . (6.15)
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The above procedure for obtaining the ancillary configuration for
KO is not limited to the case of a localized load P on the hole
perimeter. The same arguments apply for any distribution of pressure
p(8) around the perimeter. The force P 1is now the resultant force
acting on the perimeter and is given by equation (6.4). The ancillary
configuration for KO will now have a distribution of pressure on the
perimeter of the hole given by p(8)/2 for 0 <6 <7 and p(-8)/2

for 0>6=2-1 .,

The equivalent crack is derived from the ancillary configuration
for KO by replacing the hole plus the cracks by a crack of length 2a ,
subjected to two opposing forces P'/2 , in a sheet subjected to a uni-
form tensile stress o'/2 acting, remote from the crack, in a direc-
tion perpendicular to the crack. Again, by using the principle of
superposition, the forces and stresses may be considered separately.
When the forces P'/2 act alone, the stress intensity factor is
P'/(2Yma) , and when the stresses ¢'/2 act alone, the stress intensity
factor is o'Vma/2 . The values of P' and o' are determined by the

condition that the stress intensity factor of the isolated equivalent

crack is KO , te

%<%+c'/ﬁ> - K, . (6.16)

For long crack-lengths, the comparison of equations (6.15) and
(6.16) shows that P' > P and o' - o . Since in the original con-
figuration P = oW 1in order to maintain equilibrium, it follows that,
in the ancillary configurations, equilibrium is maintained by P' = o'W .

'

This relationship between P' and o' combined with equation (6.16)

determines these two unknowns; thus

b (1 +f-?-) = K or o'/na (—W—+ 1) = Ky . (6.17)
In the above o' was considered as a remote stress. It may be
convenient for some configurations to comsider o' as a uniform
pressure acting on the crack faces - this is permissible since the stress
intensity factor of the equivalent crack is identical (see equation (6.1)).
The principle of superposition makes it possible to interpret the
equivalent crack in another way. Since the opening-mode stress intensity
factor for an isolated crack of length 2a , subjected to two equal and
opposite forces of magnitude P'/2 1is P'/(2V/7a) , and since that for

a similar crack subjected to a pressure of o'/2 is (¢'V7a)/2 , then it
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follows that the stress intensity factor for a crack subjected to both
loadings is the same as that given by equation (6.16). Thus the equiva-
lent crack may be interpreted as an isolated crack subjected to a uni-
form pressure ¢'/2 on its faces and two equal and opposite forces

P'/2 acting perpendicular to its faces at the centre of the crack.

This interpretation will be needed in one of the ancillary configura-

tions used in sectiomn 6.3.

6.2 Cracks at pressurized holes

In order to test procedures, outlined in the previous section,
for applying the compounding method to configurations with loaded holes,
the opening-mode stress intensity factor will be evaluated for a con-
figuration with a known solution38. The configuration consists of a
periodic row of internally pressurized holes, of radius R , spaced a
distance 2b apart. The pressure p 1is a radial pressure acting
uniformly on the perimeter of each hole. At the edge of each hole are
two cracks of equal length which lie along the line of centres; each
crack is of length & measured from the edge of the hole to the crack-
tip. The total distance between the tips of the two cracks at any one
hole is 2a (= 22 + 2R). Although all the crack tips have the same
value of the stress intensity factor in this configuration, it is con-
venient to consider a particular tip, namely the one labelled A in
Fig 6.4a&b. The hole associated with crack tip A is labelled n = 0 ;
holes on the same side as tip A are labelled with positive integers,

e n = +1, +2 etc, and holes on the other side with negative integers.

The compounding equation required for this configuration is the
modified version, based on equation (4.12). In this case KO is the
stress intensity factor for two diametrically opposite cracks of equal
length at the edge of a circular hole subjected to a uniform radial

pressure p . This configuration has been studied by Tweed and Rooke .

The equivaleﬁt crack is a crack of length 2a with two opposing

forces of magnitude P' acting perpendicular to the crack at its

centre. The equivalent load P' 1is given by equation (6.2). The inter-
actions of the equivalent crack with the other boundaries are evaluated
by first replacing each pressurized hole with its two cracks by another
equivalent crack of length 2a with forces P' acting on it. Since all
the holes are similar with similar loading and similar cracks it follows
that all the equivalent cracks will be similar. Thus the ancillary con-
figuration used in evaluating the effects of the boundaries on tip A is

a periodic set of loaded cracks spaced a distance 2b apart; each crack
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is subjected to two opposing forces P' acting perpendicular to the
crackline (see Fig 6.4b). The stress intemsity factor K' for this
configuration is given in Case 1.2.9, Ref 2, It follows that K' con-

tains all the contributions from every Ké in equation (4.12); in fact
| = | .
:E:(K Ky) K Ky s n#0. (6.18)

Therefore the compounding equation beccmes

K. = K'+K_ (6.19)

where K' dis a function of P' (= KOV?E).

Equation (6.19) can be written in terms of normalized stress
intensity factors Q . The normalizing comstant for K' is P'/Vma ,

that is the stress intensity factor for an isolated crack subjected to

two opposing forces of magnitude P' ., Thus

K' K' 6.20
t — - — °
Q P! Ta K h ( )

It follows that Q' is independent of P' since both K' and KO are

proportional to P' . Thus equation (6.19) becomes

= 1
K, = KQ' +K, . (6.21)

It is convenient to normalize equation (6.21) with respect to K , the

stress intensity factor for an isolated crack subjected to a uniform

pressure p on its faces, which is given by

K = p/ra . (6.22)

Thus equation (6.21) becomes

L
|

QOQ' *Q, (6.23)

where Q_ =K /K, Q; =K, /K and Q_ =K/K .
The contribution to Kr from the boundary-boundary interactions,

which are all included in Qe , is evaluated (see section 4.2) by
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considering the effect of two additional opposing forces of magnitude
Pe acting radially on the hole (n = 0) in a direction through its centre
and perpendicular to the crack. The forces Pe are determined by the

requirement that Kr approaches the correct limiting value as the crack-

length tends to zero, Ze

lim{K } = 1,120 Y7o (6.24)
r fee]
20 ,

where o_ 1is the maximum stress, which occurs at the edge of the hole
at the crack—-site in an infinite row of pressurized holes, and the
factor 1.12 is the usual free edge correction.
In order to consider the limiting behaviour of equation (6.21), the

following limits are required:.

1im{KO} = 1.1200/15 , (6.25)
20

where 9, is the maximum stress at the crack—site at the edge of amn

isolated pressurized hole;

. R
1im{Q"} = 1lim{Q"} = Q'(=) (6.26)
2»0* a+R{ } (b)

where Q'(R/b) 1is the normalized stress intensity factor for a crack in
an infinite row of collinear cracks of length 2R a distance 2b apart

subjected to two equal and opposite forces at the crack centre;

2P

1im{1<e} = 1.12 x — y7g (6.27)

20
where ZPe/(WR) is the maximum stress at the crack-site at the edge of
an isolated hole of radius R subjected to two opposing radial forces

Pe acting perpendicular to the crackline.

Substitution of equation (6.24) to (6.27) into equation (6.21)

gives
2P

o = GOQ'(§> + ﬂg . (6.28)

For a uniform pressure p in the holes, we have og =p and 0o

Ktp where Kt is the stress concentration factor!’/. Thus equation

(6.28) can be written



P = TTI2{p [Kt - Q'(%ﬂ : (6.29)

Since, for a uniform pressure acting on the hole perimeter, the resultant

force P is given by
P = 2pR , (6.30)

it follows from equation (6.25) that

-t e@)] -

Values of Qe can be obtained from Ref 20 where the normalized
stress intensity factor Ke/(pe/FE) has been evaluated; the bearing

pressure p_ is given by

(6.32)

We can write
Q = Ke = Ke [2 EZL
e pVma pe/ﬁl a \ 2Rp

where Pe/P is given by equation (6.31).

K P
e 2 e
(w)dz(‘p—) > (6.33)

It follows from eqdétions (6.23) and (6.33) that the smaller the

value of the ratio Pe/P , the smaller is the boundary-boundary con-—

tribution to Qr .

The normalized stress intensity factor Qr has been evaluated
from equation (6.23), with QO and Qe obtained from Ref 20 and Q{
from Case 1,2.9, Ref 2, for b/R = 10, 4 and 2. The results are com
pared with those obtained by Parker38. To facilitate comparison it is
convenient to plot Kr/(p/%z) = Qr/§7§ as a function of a/b ; the
comparison is shown in Fig 6.5. Over most of the range, the differences
are between 27 and 5%Z. The major differences, up to 8%, are at the
shortest crack-lengths. However at short crack-lengths Parker's method,
mapping collocation, is known to become increasingly inaccurate,
whereas the compounding method is constrained to approach known limits

at 2 =0 .,

The contribution to Qr from the boundary—-boundary interaction
term Qe increases as b/R decreases. The biggest contribution occurs

at the shortest crack-lengths. The ratio P./P given by equation (6.31)
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can be used to give a rough estimate of the maximum value of Qe/Qr .
For instance, at b/R = 10 we have Pe/P = 0.02 and Qe/Q < 0.03

at b/R = 4 we have Pe/P = 0.11 and Qe/Qr <0.12; at b/R =2 we
have Pe/P = 0.42 and Qe/Qr <0.33 .

6.3 Loaded holes near a boundary

In this section the opening-mode stress intensity factors are
evaluated for cracks at loaded holes which are close to a boundary (the
edge of the sheet). The holes are of radius R and are spaced a dis-
tance W apart in a row parallel to the edge of the sheet; the distance
from the edge of the sheet to the line of hole centres is h (see
Fig 6.6). Each hole is subjected to a distribution of pressure p(8) on
the side of the hole nearer to the boundary. Two cracks of equal
length are located at the edge of each hole along the line passing
through the hole centres. The cracks are of a length £ measured from
the edge of the hole, and the distance between crack tips at the same
hole is 2a (= 22 + 2R). The forces on the hole are balanced by a
uniform stress o acting remote from the holes in a direction perpen-

dicular to the cracks. In order to maintain equilibrium it follows that

oW = P (6.34)

where P 1is the resultant force on one hole due to the internal

pressure p(6) , and is given by equation (6.4).

If the two cracks at each hole (see Fig 6.6) are taken to lie along

6 =0 and 6 =7 respectively, then the pressure distribution used in
this section is given by

p(8) = P sin 9 , o<8e<nqg., (6.35)

Therefore the pressure is a maximum equal to p, at 8 = n/2 , ie the
point on the perimeter of the hole nearest to the edge of the sheet.

From equations (6.4) and (6.35) it follows that the resultant force P

acts along the line 6 = 7/2 , and is given by

m
P = _i Rpm . (6.36)

The compounding equation required to evaluate the opening-mode
stress intensity factor for the crack-tip labelled A in Fig 6.6 is given
by equation (4.12). The ancillary configurations required to evaluate
K., K and K! are shown in Fig 6.7a~c. The compounding equation

0’ 71 2
becomes
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K, = Kl' + Ké - Kyt KR, (6.37)

The ancillary configurations needed for the determination of KO
are derived from Fig 6.3c and are shown in Fig 6.7a, They are (i) two
equal length cracks at the edge of a hole which is subjected to a load-
ing P sin(8)/2° for 0<8 <7 and -P, sin(@)/Z, for 0>6 2 -1
(ii) two equal length cracks at the edge of a hole in a sheet that is
subjected to a uniform stress o/2 remote from the hole. The stress
intensity factors for both configurations were obtained using the method
of Tweed and Rookezog the loading function required for the pressure
distribution given by equation (6.35) is obtainable from Rooke and

Tweed 9.

The value of KI for the ancillary configuration shown in
Fig 6.7b is not directly available but can be obtained from known solu-
tions by using the principle of superposition. The stress intensity
factor Kil is known2 for an infinite array of equally spaced collinear
cracks of length 2a , each subjected to two equal and opposite forces
P' acting perpendicular to the crack faces. Also the stress intensity
factor K;z is known2 for an infinite array of equally spaced collinear
cracks of length 2a in an infinite sheet subjected to a uniform uni-
axial stress o' acting perpendicular to the line of cracks and remote
from them. The principle of superposition, illustrated in Fig 6.8,
leads to

KI = %(K{I + K;2> . (6.38)

The stress intensity factor Ké is not known for the ancillary
configuration shown in Fig 6.7c, but it can be obtained from known

solutions by a combination of compounding and superposition. By using
compounding as illustrated in Fig 6.9a, Ké can be expressed in terms

of KO and Ké , where Kﬁ is the stress intensity factor for the
equivalent crack located centrally parallel to the edges of a strip of

width 2h . Thus
1 = 1 1 .3
Ko z(Kh + KO) . (6.39)
Equation (6.39) omits the boundary-boundary interaction term Ké ; it
will be included with all the others into the Ke term given in
equation (6.37). The factor Kﬂ is not directly available, but can be
obtained from known2 results by application of the principle of super-

position. This is illustrated in Fig 6.9b and leads to
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Ké = Kél + Kéz H (6.40)
Kél is the stress intensity factor for a crack of length 2a located
centrally, parallel to the edges of a strip of width 2h , with the
crack subjected to two equal and opposite forces P'/2 acting perpen-
dicular to the faces at the centre of the crack; Kéz is the stress
intensity factor for a similar crack in a similar strip with the crack

subjected to a normal pressure o¢'/2 acting on its faces. The values

of Ké] and Kéz can be obtained from Ref 2.

Thus from equations (6.39) and (6.40) we have

Ky = J(K) +K), + Ky . (6.41)

Finally by substituting equation (6.38) and (6.41) into equation

(6.37), the compounding equation becomes

= 1 f 1 p ! —-
Kr 2(K11 + K12 + K21 + K22 KO) + Ke . (6.42)

It is convenient to write equation (6.42) in terms of normalized
stress intensity factors, because these are the functions given in Ref 2,
The functions required are
K )

= Ca 1.2, £ 2;
T FTE se 1:2.9, Ref 23

Q, = Py Case 1.2.8, Ref 2;
? (6.43)

Q21 = 572/ Case 1.1,10, Ref 2;

K!
_ 22
Q22 = STealT Case 1.1.6, Ref 2, )

Substitution for P' and o' in terms of KO from equation (6.17)

gives
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' —
. ) K11<1 + w) . ) K21(1 + w)
= , - ,
11 ZKO 21 KO
? (6.44)
! 1
Q Klz(l + (.0) Q _ Kzz(l -+ (.0)
= -4 = 22
where w = ma,/W . Substitution of equation (6.44) into equation (6.42)
gives
%
= 1 -1
Kr (1 +w> [Qll + lez + 2(Q21 + szz) 2(1 + (,L))] + Ke . (6.45)

Equation (6.45) can be normalized with respect to K , the stress inten-
sity factor, for an isolated crack of length 2a with a single force P

acting perpendicular to one face at its centre, where K is given by

P_ . (6.46)

The resultant normalized stress intensity factor Qr (= Kr/i) becomes

@ = 'K'IB%T)_ {Qll tuQpy Fa(Qy wQyy) =2l ‘”)] * Qe o (647
where QO = KO/E and Qé = Ke/i .

The only unknown function on the right—hand side of equation
(6.47) 1is Qe , the effect of boundary-boundary interactions. The pro-
cedure for evaluating Qe is similar to that used in section 6.2. The
contribution to Qr from these interactions is assumed to be equiva-
lent to the effect of two additional opposing forces of magnitude Pe
acting on the perimeter of the hole; these forces are determined by the

requirement that

timfe L = 1.120,/72 (6.48)
20

where o_ 1is the maximum stress at the crack site at the edge of a hole

in an infinite row of pressurized holes when £ =0 .

Equation (6.45) is the most appropriate form of Kr for examining

the limiting behaviour as 2% - 0 or, since a = R+ £ , as a > R .

The limits required are:
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lim{KO} = lim{K +K} = 1.12(0 +§9-)/%7i (6.49)
20 =0t P O

where % is the maximum stress at the crack site at the edge of an
isolated pressurized hole, and 30/2 1is the maximum stress at the edge

of an isolated unpressurized hole in a sheet subjected to a uniform

stress o/2 ;

2p
1im{1<} = L2 =2/, (6.50)
g0l ©
see equation (6.27);
: - R
11m{QH} = QH(W) ) (6.51)

a>R

where QII(R/W) is the value of Q11 for a periodic array of cracks of

length 2R subject to point forces;

lim{QIz} - le(%) , (6.52)

a-R

where QIZ(R/W) is the value of le for a periodic array of cracks of

length 2R subjected to a uniform stress;

lim{Qm} - QZI(%) ’ (6.53)

a-R

where QZI(R/h) is the value of QZ] for a crack of length 2R , sub-

jected to point forces, in a strip of height 2h ;

1im{Q22} = sz(%) g (6.54)

a-R

where Q22<R/h> is the value of sz for a crack of length 2R , sub-

jected to a uniform pressure, in a strip of height 2h .

Substitution of equations (6.48) to (6.54) in equation (6.45)

gives
_ 30 2Pe
o} = (00 + - qg(R) + = , (6.55)

where q(R) 1is given by
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Qll(%) * %’ sz('&%’)

* %[Qm(%) ¥ %713_ sz(%)} -

1
AR = TR

i
—
=
~

Equation (6.55) can be re-written as

2P o o, + (30/2)
e . :_(0 ) q@®) (6.57)

where P is the maximum pressure. Substitution of equations (6.34)

and (6.36) into equation (6.57) gives

P
e _ 2 _ (2 BWR)
+ - -3+ aw (6.58)
where K: = om/pm is the stress concentration factor at the edge of
one of the holes in Fig 6.6 when the cracks are absent, and co/pm =
2/m  (see Ref 39). The factor K'co can be obtained as a function of

R/W and R/h from the work of Mori4o’4].

Three configurations are studied in this report, namely R/W =
0.10, 0.15 and 0.20, with h/R = 3.0 . The values of R/W span the
practical range for arrays of fastener holes; the value of h/R 1is the
largest for which K: i; available. The values of K? for these con-—

figurations, and the ratios Pe/P are given in Table 6.1.

Table 6.1

Values of K? and Pe/P for h/R = 3.0

R/W ol P /P
t e
0.10 0.96 -0.043
0.15 0.99 -0.17
0.20 1.09 -0.26

With a knowledge of Pe/P , the contribution Qe can be

evaluated, It can be written
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~

Q =

o K
- :S s (6.59)
¢ K K

where ie is the limiting value of Ke as a » = , and 1is given by

Ke = 7?5 . (6.60)

Q = 2—=|— . (6.61)

. - . 20
The ratio Ke/Ke can be derived from the work of Rooke and Tweed .

We can write

K K
e _ e 1
= = "\ 57T )v A (6.62)
K 0 e
e
where the function in parentheses is evaluated in Ref 20 and
Py = Pe/(ZR) . Thus
foo o avarf e (6.63)
z 2R \p./n2 ? )
0
e
and therefore, from equations (6.61) and (6.63) we have
o - [ _fe \Te (6.64)
e R p /it ] P " ’

0

Equation (6.47) can now be evaluated to give the resultant
normalized stress intensity factor Qr as a function of crack-length
for the three configurations considered in this report. In practical
structures the load on the hole is often specified in terms of the
'bearing pressure’ oy (= P/(2R)). The normalized stress intensity

factor Qr can be written in terms of the bearing pressure, as

K K

r Ta r
Qr T P/ (2 ) (?T) Ob;ﬂa : (6.65)
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Fig 6.10 shows a plot of Kr/(obVEE) against 2a/W for R/W = 0.10,
0.15, and 0.20, with h/R = 3.0 . The curves are very steep for short
cracks, indicating that Kr increases rapidly from zero as the crack-

length increases from zero,

The contribution of Qe to Qr increases as R/W increases,
As in the case of the uniformly pressurized hole (see section 6.2), the
magnitude of Pe/P is a rough estimate of the maximum value of Qe/Qr .
At R/W =0.10 we have P_/P = -0.043 and |Qe/Qr[ <0.05 ;
at R/W = 0.15 we have Pe/P = =0.,17 and lQe/er;S 0.19 ; and at
R/W = 0.2 we have P_/P =-0.26 and [Q,/Q| $0.25 . For the same

hole spacing these values of Qe/Qr are larger than in the test con-

I

figuration (section 6.2). This is because the presence of the edge near
the holes introduces further boundary interactions into this

configuration.

6.4 Discussion and conclusions

It has been shown that a modification of the 'equivalent crack'
concept, introduced for cracks at unloaded holes allows the compounding
method to be extended to the calculation of the opening-mode stress
intensity factors for cracks at loaded holes. The method gave results
which agreed to within a few percent with those obtained by collocation
for the special case of cracks at the edges of holes in a row of
pressurized holes; and it has been used to obtain stress intensity
factors for cracks at the edges of holes in a row of fastener holes
near the edge of a sheet. A particular merit of this method is that
accurate values of the stress intensity factor are obtained for short

cracks where most of the life in fatigue is spent.

The geometric configurations considered in this report are
periodically spaced rows of loaded holes with two cracks of equal length
at each hole. The method is not limited, in principle, to periodic con-—
figurations, but may be limited by the lack of solutions for ancillary
configurations. In a practical case, only some of the holes may have
cracks, either one crack or two cracks of unequal length. In these
cases the equivalent cracks can still be determined (see section 6.1)
but the array of equivalent cracks is no longer periodic even if the
original array of holes was. Thus the ancillary configuration of a
periodic array of loaded cracks (Case 1.2.9, Ref 2) cannot be used to
calculate the actual interaction between cracks, although it could be

used to determine an upper bound to the interaction. In some instances
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approximate estimates of the interaction may be made using the follow-
ing ancillary configurations: two pressurized cracks of unequal length

(Case 1.2.3, Ref 2); one loaded and one unloaded crack of equal length
(Case 1.2.6, Ref 2).



93

CHAPTER 7

A CRACK IN A STIFFENED SHEET42

In this chapter the compounding method is extended to obtain
stress intensity factors for cracks in plane sheets having localized
line stiffeners (see Fig 7.la) - a geometrical configuration which
models the locally stiffened metal—-sheet construction widely used in
many aircraft structural components (see Fig 7.1b). There are two
cases to consider; if the component is made by integral machining or by
bonding of the stiffeners to the sheet then the stiffeners are attached
continuously along the sheet; or, if localized fasteners, eg rivets
(see Fig 7.la&b) are used then the attachment is at discrete points.

In both cases, known solutions for cracks in sheets with a single
stiffener are compounded to give approximate stress intensity factors

for cracks in sheets with many stiffeners.,

In order to make use of the compounding method, the stiffeners
are considered as boundaries, and crack interactions with stiffeners
are treated in the same way as crack interactions with boundaries were
in earlier chapters. Where a crack is crossed by a stiffener, as often
happens in practice, the crack plus the stiffener is replaced by an
'equivalent crack' as defined in Chapter 4. The accuracy of the method
is assessed by comparing the solutions for some configurations having
known results, see sectien 7.1, and the errors are shown to be small
(a few percent). The method is used to obtain a new solution for the
stress intensity factor for a crack located asymmetrically between two

stiffeners in a periodic set (see section 7.2).

7.1 Theory of compounding applied to stiffened sheets

In order to extend compounding methods to obtain stress intensity
factors for cracks in sheets with stiffeners, it is necessary to con~
sider the development of the basic method since stiffeners, regarded as
boundaries, are different from the boundaries previously considered.

In developing the compounding method each additional boundary introduced
was subjected to forces (usually of zero magnitude) which were indepen-—
dent of the crack shape or size. However the forces acting on stiffeners
exist because of the mismatch in displacements between the sheet and the
stiffener; this mismatch is due entirely to the presence of the crack in
the sheet and is a function of the shape and size of the crack. Thus

the effect, on the ecrack, of introducing an additional stiffener is

modified by the stiffeners already present with the result that
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boundary interactions are not necessarily negligible when the

boundaries are stiffeners. This interaction is small if the crack is
between stiffeners and may be ignored, but it must be taken into account
if a stiffener crosses the crack since the shape of the crack is then
much altered., The way in which this is taken into account is to use the

concept of the equivalent crack that was developed in Chapter 4.

Consider a sheet with a periodic array of stiffeners spaced a
distance b apart with a crack of length 2a (a <b) which is perpen-
dicular to the stiffemers; the crack is located either mid=-way between
two stiffeners (Fig 7.2a), or centred on a stiffener (Fig 7.2b). A uni-
axial tensile stress o 1is applied to the sheet remote from and per—
pendicular to the crack. In order to maintain strain compatibility
remote from the crack a stress of (EZ/EI)G is applied to each
stiffener; E1 and E2 are the Young's moduli of the sheet and stiff-
ener respectively. It is convenient to label the stiffeners Sn where
n are pogitive integers to the right of the crack and negative integers

to the left. The stiffener that crosses the crack in Fig 7.2b is

labelled SO .

In the case where the stiffener crosses the crack, the stress
intensity factor is K in the absence of all other boundaries except

0

SO . The equivalent crack of length 2a' 1is defined as in section

4.1.1, equations (4.1) to (4.3), that is

-

2

a' = Qa , (7.1)
%
where Q. = — (7.2)
O —
K
and
K = o/ma . (7.3

The effect of adding other stiffeners to the sheet containing the crack
2a is assumed to be the same as the effect of adding stiffeners to an
infinite sheet containing a crack of length 2a' . The distance from
the tips of the equivalent crack to the additional stiffeners are deter—
mined by similar conditions to those for a hole with two cracks, in a

row of holes, and are given by equations (5.4). Namely
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b; - a' = bn -a , all QO , n>0,
b!+a' = b +a , QO<1, a<0, > (7.4)
bé -a' = bn -a , QO >1, n<o0, )

where bn is the distance from the centre of the original crack to the
nth stiffener, and bé is the distance from the centre of the equiva-

lent crack to the nth stiffener.

7.2 Application to periodically stiffened sheets
643,44

Po has obtained the stress intensity factors for cracks
located in sheets with periodic arrays of riveted stiffeners (see also
Case 2.2.3, Ref 2); the rivets are spaced a distance h apart along

the stiffeners. The crackline is always perpendicular to the stiffeners
and passes through a rivet site at each stiffener. The cracks are
located either symmetrically between two stiffeners (unbroken, Case
2.2.3, Ref 2) or centred about a single stiffener (unbroken, Case 2.2.3,
Ref 2, or broken, Ref 44). The configurations are shown in Fig 7.2a&b
where the stiffeners are labelled with positive integers to the right
and negative integers to the left of the crack. The ancillary configu-
rations required are shown in Fig 7.3a&b; the stress intensity factors
for these configurations have been obtained by Bloom and Sanders ~.

For the crack located between two stiffeners the solution to the
ancillary configuration in Fig 7.3a only is required. In Fig 7.3a,

¢ 1is equal to a and d 1is equal to b/2 if no stiffeners cross the

crack, whereas c¢ 1is equal to a' and d 1is equal to bé if the

stiffener SO crosses the crack.

7.2,1 Test solutions

The first test configuration considered is that of a crack of
length 2a located symmetrically between two of the stiffeners a dis-
tance b apart. A tensile stress is applied to the sheet, remote from
and perpendicular to the crack, and a stress of (EZ/E])O is applied to
the stiffeners in order to maintain strain compatibility remote from the
crack. Because of symmetry only one tip of the crack (eg tip A in
Fig 7.2a) needs to be considered. If the normalized stress intensity
factor due to the nth stiffener is Qn then the compounding formula

follows from equation (3.7); it is
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n:oo

Q. = 1+ ZE:(QH - 1) + Qe > n#0. (7.5)

Ti==—0

Since no stiffeners cross the crack, the equivalent crack concept is not

required for this configuration.

The values of Qn which contribute most to Qr come from the
nearest pair of stiffeners (n = %1); the contribution from the next pair
of stiffeners (n = *2) is negligible over most of the range of a/b , the
maximum being <17 at a/b = 0.45 . Contributions from all other
stiffeners (]n] >’2) have been neglected. The results43 for the
periodic configuration are plotted as functions of a/b for various
h/b values and various values of a stiffness parameter in Case 2.2.3,
Ref 2. The stiffness parameter s , is the ratio of the stiffness of the

stiffener to that of the sheet, Ze

g = 2 (7.6)

where A 1is the cross sectional area of the stiffener and t the

43,44
oe

thickness of the sheet. P uses the stiffness parameter u which

is given by
— . (7.7)

The values of Qn for the ancillary configurations have been obtained
as functions of a/b for various values of h/a and the parameter A

which is defined as

2E1at
A = (7.8)
AE2
and which can be written in terms of s as
2 fa
- £/2 7.
A s(b> X (7.9)

In the equivalent crack configuration a' replaces a and X'
replaces X for the contribution from the stiffeners which do not cross

the cracks; X' 1is given by
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A (3 QA - (7.10)

Bloom and Sander545 show that, for the values of A and a/h over
the range of a/b considered here, the results for Qn (n = %1, £2) are
indistinguishable from those for continuously attached stiffeners
(a/h = =) obtained by Greif and Sander546. Since more data are avail-
able on continuously attached stiffeners, curves of Qn for both n >0

and n <0 were obtained from the work of Greif and Sanders reported in

Case 2.1.3, Ref 2.

Compounded results for the normalized opening-mode stress intensity
factor (Qr = KI/(G/?E)) have been obtained from equation (7.5), neglecting
Qe , and they are compared, in Table 7.! with those from Case 2,2.3,

Ref 2, for the configuration with 0.0 < a/b < 0.45 , for s = 1,0 and
h/b = 1/12 . The differences which are a measure of Qe , are very
small (< 17%) and are no greater than the possible inaccuracies in read-
ing the graphical geixigs{&ﬁgggaéiiiiirinces will be even less for
smaller values ofﬁih/b since the effect of the stiffener decreases in

both cases. The value of s = 1,0 was chosen since it is about the
maximum value of s in aircraft applications
Table 7.1

Comparison of values of K/(cha) for a crack located symmetrically
between two stiffeners in a periodically stiffened sheet

(s = 1.0, hw/b = 1/12)
a/b Compounded Case 2.2.3
results (Ref 2)

0.00 1.00 1.00
0.10 0.98 0.99
0.20 0.96 0.96
0.30 6.92 0.92
0.40 0.82 0.81
0.45 0.72 0.72
0.50 stiffener site

The next test configuration considered is that of a crack of
length 2a located symmetrically about one of the stiffeners in a
periodic array spaced a distance b apart (see Fig 7.2b). The stiffener
across the crack can be either unbroken43 or broken44. The resultant

normalized stress intensity factor is given by equation (5.1), that is



n#0. (7.11)

where Q; is the normalized stress intensity factor for the equivalent
crack in the presence of the nth stiffener only, The summation term
contains the effects of stiffeners which do not cross the crack and
which are spaced a distance b apart, except for the two nearest the
crack which are a distance (b_"_1 + bll) apart. The term in square
brackets has the same form as the right-hand side of equation (7.5)
without Qe ;3 1t was evaluated in the same manner and QO for both
broken and unbroken stiffeners, was obtained from the work of Bloom and

Sanders reported in Case 2.2.1, Ref 2. The results, neglecting Qe ,
for the opening-mode stress intensity factor for s = 1.0 for both the
unbroken central stiffener (h/b = 1/12) and the broken central
stiffener (h/b = 1/6) are shown in Table 7.2. The maximum difference
between the compounded solutions and the numerical solutions due to
Poe43’44 is 57 for 0.25 <a/b <0.90 , thus neglecting Qe introduces

only small errors into Qr .
Table 7.2

Comparison of values of KI/<O/;§) for a crack located

symmetrically about the central stiffener in a

periodically stiffened sheet (s = 1.0)
Central stiffener Central stiffener
a unbroken (h/b = 1/12) broken (h/b = 1/6)
b Compounded Case 2.2.3 Compounded Ref 44
results (Ref 2) results
0.25 0.67 0.68 1.72 1.78
0.50 0.66 0.67 1.32 1.36
0.75 0.64 0.65 1,11 1.12
0.90 0.56 0.59 0.91 0.91
1.00 next stiffener

The above configurations have also been studied for the case when
the stiffeners are continuously attached to the sheet. The results are
indistinguishable within the approximations used from those for riveted
stiffeners except when the crack is very close to the stiffenmer, Ze the
distance between the crack tip and the stiffener is <h. Too few
results are available, for the ancillary configuration when the crack
tip is close to the stiffener, to enable this region to be investigated

fully.
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7.2.2 New solution

In this section the solution is derived for a crack which is
located asymmetrically between two continuously attached stiffeners in a
periodically stiffened sheet. A stress ¢ 1is applied to the sheet
remote from and perpendicular to the crack; in order to maintain strain
compatibility a stress (EZ/El)O is applied to the stiffener remote from
the crack., The stiffeners to the right of the crack are labelled with
positive integers (+n) and those to the left with negative integers (-n);
the distance from the centre of the crack to the nth stiffener to the
right is b+n and the distance to the nth stiffener to the left is b_
This configuration is shown in Fig 7.4a; the required ancillary con-
figuration is shown in Fig 7.4b. The distance d from the centre of
the crack to the stiffener in the ancillary configuration is b+n for
the stiffeners on the right and b—n for stiffeners on the left of the

crack. If the stiffeners are a distance b apart then

b+n + b—n = (2n - )b 3 n=1,2,..,°. (7.12)
The resultant normalized stress intensity factor is given in
equation (7.5). Because of the asymmetry the two tips will have
different stress intensity factors. The contributions from each
stiffener (Q+n or Q—n) for the tip under consideration can be obtained
from Case 2.1.3, Ref 2. The results, for s = 1,0, for both tips are
shown in Fig 7.5; KI/(O/;E) is plotted as a function of a/b for

various values of b+l/b .

7.3 Discussion and conclusions

The compounding method has been applied to crack problems in
periodically stiffened sheets; use of the equivalent crack concept is
necessary if a stiffener crosses the crack. The errors in the stress
intensity factors, caused by neglecting boundary-boundary interactionms,
increase as the crack-length increases and as the relative stiffness of
the stiffener to that of the sheet increases. The maximum error for a
wide range of crack—lengths and stiffness ratios is a few per cent
(Tables 7.1 and 7.2) which is within normal engineering tolerances. The
compounding method can be extended readily to other configuratioms, but
direct application to some other stiffener configurations may be
limited by the lack of data for the required ancillary configurations.
For example data are required on small cracks near stiffeners (the

difference between continuously attached and riveted stiffeners would
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be important) and on cracks which are located asymmetrically behind a
single stiffener.

An important comnsequence of the use of the compounding is that it
is now necessary to have data for simple ancillary configurations only.
The importance of design parameters such as distribution of stiffeners,

relative stiffnesses, type of attachment, flexibility of rivets and

sheet curvature can be studied using & simple structure with a single

Results for a structure with many stiffeners can be com-
The method of compounding

stiffener.
pounded from those for the gimple structure.
can be applied to problems with both plane boundaries and stiffeners,

eg a crack in the vicinity of a cut-out in a sheet with many stiffeners.
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CHAPTER 8

MANY CRACKS IN A STIFFENED SHEET47

A common structural element used in airframes is the stiffened
panel - a large sheet onto which stiffening elements are fastened at
regular intervals. Because of the periodicity of the stiffeners and
fasteners it is likely that simultaneous (or nearly simultaneous) initia-
tion of cracks may occur at different stiffeners. Multiple cracking of
this sort is more damaging than a single crack since it leads to greater
reductions in both the strength and fatigue 1ife cf the structure, The
most dangerous configuration is when the cracks are collinear, since the
growth of the cracks may result in them linking up to form a single
long crack leading to early failure., Stress intensity factors are known
for many stiffened configurations with a single crack, but none are

available if more than one crack is present,

The compounding method was shown in Chapter 7, to be applicable to
problems involving single cracks in stiffened sheets. In this chapter,
the compounding meﬁhod is used to derive a stress intensity factor for
a crack in a collinear array of cracks which are centred about adjacent
stiffeners., The theory is developed in section 8.1 for cracks of
arbitrary length at arbitrarily spaced stiffeners. The specific
application to periodically stiffened sheets with periodic collinear
cracks is considered in section 8.2. Results for the stress intensity
factor are presented and compared with those for single cracks in
order to estimate the effects of multiple cracking on residual strength

and on the growth of fatigue cracks.

8.1 Development of theory

An array of collinear cracks at stiffeners in a stressed sheet
is shown in Fig 8.1, where Sn is the nth stiffener of Young's modulus
En and cross-sectional area Aj, 2an is the length of the crack which
i

is symmetrica1+ about Sn and the bay-width bm n is the distance
3

between the mth and the nth stiffeners (Sm and Sn). The central
stiffener is labelled SO , and the other stiffeners Sn are to the

right of SO if n>0 and to the left is n <0 . The stiffeners

are riveted onto the sheet with a distance h between adjacent rivets.

The uniform stress in the sheet, of Young's modulus E , is o and

T The method can be readily extended to consider non-symmetrical cracks
in a similar way to that in section 5.2.1 for cracks at holes.
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strain compatibility is maintained between the stiffeners and the sheet
remote from the cracks. The crack tip under consideration in this
analysis is the right-hand tip (labelled A in the figures) of the crack

of length ZaO which is centred about the stiffener SO .

In order to use the compounding procedure, stress intensity factors
for three ancillary configurations for cracks in a sheet subjected to a

remote stress o are required. They are:

(a) a single crack centred about a single stiffener in a sheet con-

taining no other cracks or stiffeners (Fig 8.2);

(b) a single crack at a distance from a single stiffener in a sheet

containing no other cracks or stiffeners (Fig 8.3);

() two collinear cracks a distance apart in an unstiffened sheet

containing no other cracks (Fig 8.4).

The three ancillary configurations represent the interaction
between the crack (original length ZaO) and (a) the central stiffener

SO , (b) the other stiffeners Sn , and (¢) the other cracks (original

length 2an). Stress intensity factor solutions for these three con-

figurations are known and are available in Ref 2.

Fig 8.2 shows a crack of length Zao centred about and perpen-

dicular to a stiffener SO in a sheet subjected to a uniform stress o

remote from a crack and parallel to the stiffener. The stress in the
stiffener, remote from the crack, is GEO/E in order to ensure strain
compatibility. The stress intensity factor for this configuration is
KO and the normalized stress intensity factor is QO ; they are
related by

Ky = Quovma, = QOﬁO , (8.1)

where EO is the stress intensity factor for an isolated crack of

length 2a in a sheet subjected to a uniform stress ¢ remote from

0
the crack.

Values of QO , for the stiffener SO broken or unbroken, are

given in Case 2.2.1, Ref 2, where QO is plotted as a function of aO/h
for various values of A , a measure of the relative stiffnesses of the
sheet and the stiffener and h 1is the rivet pitch. The parameter A

is given by
2a_ tE
. (8.2)

A0F0
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where t 1s the thickness of the sheet. Values of QO are available
only for A > 0.5 ; for smaller values of X , <e short crack-lengths
or small values of E/EO , results obtained for a crack in a periodi-~
cally stiffened sheet may be used (Case 2.2.3, Ref 2 for unbroken SO ,
and Ref 44 for a broken SO). The parameters required to use these

results are ao/b, h/b and s (or u). These are obtained from the

a a
mege (—}{4)(%) , (8.3)

following relationships:

a
sh = :z—gQ (8.4)
and
= S -
U T+ 3 (8.5)

The smallest value of h/b must be chosen from the results
available and substituted into equation (8.3) to give aO/b and hence

s from equation (8.4) and u from equation (8.5).

In order to calculate the effects of the crack of length 2a0
interacting with the other stiffeners and cracks it is necessary to
replace the crack and stiffener S by an equivalent crack. The length

0

of the equivalent crack 2a6 is determined in the same way as in the

previous chapter (see also Fig 8.2b), that is,

al = QéaO . (8.6)

0
Fig 8.3 shows two possible configurations of a crack of length
2a! whose centre is a distance b/ (n>0) or b' (n <0) from a
0 0,n n,0
stiffener Sn in a sheet subjected to a uniform stress ¢ remote from
the crack and parallel to the stiffener. The stress in the stiffener,
remote from the crack, is cEn/E in order to ensure strain compati-
bility. If the stress intensity factor for the equivalent crack in

this configuration is K;n then the normalized stress intensity factor

' . .
an is defined by

K! = Ql o/fmal = Q! Quovma, = Q

sn sn?' g QOKO ' (8.7)

v
sn
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The values of Q;n are obtained from Case 2.2.2, Ref 2, the dis-

tances b/ or bé shown in Fig 8.3 are determined from the condi-

O,n ,0
tion that the distance from the appropriate tip of the crack to the
stiffener must be the same in the ancillary configuration as in the
original configuration (see Chapter 4); they are given by equation

. ] = [ = 1 . . . <
(5.10) with aO,R aO,L ag - In stiffener configurations, QO 1
if s, is unbroken, and Q, > 1 if Sy is broken.

The normalized stress intensity factor Q;n (called KI/KO) is

plotted in Ref 2 as a function of a/b for various values of a/h and

A . In this determination a 1is a'! and b is b/ or b 5
0 O,n n,0
h is the rivet spacing and X 1is given by
ZaétE
Vo= o5 . (8.8)
nn

Results given in Case 2.2.2, Ref 2, show that an for a given value of
A 1is almost independent of aé/h for the small values of aé/bé’n
which will usually be required. For aé/bé’n < 0.5 results for con-
tinuously attached stiffeners (aé/h = «) must be used; they are given in

Case 2.1.3, Ref 2,

The interaction between the crack of length 2aO and the other
cracks is considered by replacing each crack and stiffener pair by an
equivalent crack of lengéh 2ag (= 2Qian); Qn is the normalized stress
intensity factor for the crack of length Zan centred about the
stiffener Sn in the absence of all other cracks and stiffeners.

Fig 8.4 shows the two possible configurations of a crack of length Zaé s
whose centre is a distance dé,n (n > 0) or d;,O (n < 0) from the
centre of a crack of length ZaA , in a sheet subjected to a uniform
stress ¢ remote from and perpendicular to the cracks. If the stress

intensity factor for the equivalent crack Zaé in this configuration

is Kén then the normalized stress intensity factor Qén is defined

by
! ' svmal = ! K . 8.
Kcn anu 0 anQOKO (8.9)
The values of Qén are obtained from Case 1.2.3, Ref 2. The dis-
tances dé L °F dé 0 shown in Fig 8.4 are determined from the condi-
3 3

tion that the distance between the appropriate tips of the two cracks
being considered should be the same in the ancillary configurations as

in the original configuration {(see Chapter 4); they are given by
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3 .1 : . ot - T 1 ='='.T
equation (5.11) with aO,R aO,L ay and an,R an,L a he

factors Qn (n # 0) are less than unity since Sn is unbroken.

The resultant stress intensity factor K for the crack of length

2a 1in the original configuration is given by

= 1=°
= 1 - ! -— 1N
K. = Kj+ Z(KSn KO)+ Z(KCn KO)+Ke , n#0. (8.17M
n=—w =m0

The first summation represents the interactions between the equivalent

crack (Zaé) and all the stiffeners except S the second summation

0’
represents the interactions between the equivalent crack (2a6) and all

the other equivalent cracks (23;). The final term Ke represents any

contribution to Kr due to interactions between the various stiffeners.
This term would be difficult to evaluate, but the comparisons with known
solutions in Chapter 7, suggest that the contribution would be small and
it was therefore neglected in these calculations. The normalized stress

intensity factor Qr (= Kr/iO) is obtained from equation (8.10) as

n=w =
Q. = Q4|+ Z(Q;n—1)+ Z(Qén—l) , n#0. (8.1D)
n=-« n=—

-

Thus Qr has been expressed in terms of the known quantities QO’ Qén’
H
an .

8.2 Periodically stiffened sheets

To illustrate the effects of collinear cracks the special case is
considered of an array of equally-spaced, identical stiffeners with
equal=-length cracks centred on each stiffener. The stress intensity
factor is derived for the crack centred about the stiffener SO , which
may be broken or umbroken at the crackline. All the other stiffeners
= b,

S (n # 0) are unbroken. In this configuration a = a, bn,n+1

En = Es and An = As for all =n .
The expression given in equation (8.10) for the stress intensity

factor can be simplified in this configuration. If KP is the stress

intensity factor for a single crack centred about a stiffener in a

periodic array of stiffness, then it follows from Chapter 7 that
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n=x

= ' -
KP KO+ Z(Ksn KO) s n#0 . (8.12)

n=—x

where an error term of order Ke has been omitted. The factor KP is
known; Case 2.2.3, Ref 2, applies if the stiffener associated with the
crack is unbroken, Ref 44 applies if the stiffener is broken. Thus

equation (8.11) becomes

n-_-.-oo

Q = QP+QOZ(QQH-1) , n#0. (8.13)

==

where QP = KP/E , the values of the Q's required for equation (8.13)

are obtained as follows:

(1) QP from Case 2.2.3, Ref 2, for SO unbroken,

(i1) QP from Ref 44, for SO broken,

(11i1) QO from Case 2.2.1, Ref 2.
{?VB Qz&; “?POV@; {:Ciié’ 2"2»23} %F? 2o
Values of Qr have been obtained from equation (8.13) for s =1

and h/b = 1/12 , where s 1is the ratio of the stiffness of the
stiffener to that of a sheet of width b and thickness t . The

values of s and h/b chosen are the same as used in Chapter 7, and
they represent the stiffest stiffener with the smallest rivet spacing
likely to be used in airframe construction; such stiffeners will

result in the biggest deviation of the stress intensity factor from that
for a crack in an unstiffened sheet. Results for the opening mode
stress intensity factor for many cracks in a stiffened sheet are plotted
in Fig 8.5 for both SO unbroken and SO broken; for comparison QP )
the normalized stress intensity factor for a single crack in a periodi-
cally stiffened sheet, is also plotted. From Fig 8.5 it can be seen
that multiple cracking causes the stress intensity factor to increase.
This increase is small (<5%) for cracks less than about a quarter of
the bay-width, but increases as the cracks become longer; at a/b = 0.45

the increase is ~357 if SO is unbroken and ~257 if SO is broken.

The effects of many cracks on the rate of fatigue crack growth are
more significant because of the power-law dependence (see also section

5.3) the growth-rate per cycle da/dN approximates to

da P
ca |
& < K (8.14)
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where p 1s typically in the range 2 to 4 depending on the material,
These effects are illustrated in Fig 8.6 for SO unbroken, and Fig 8.7
for SO broken; the ratioc of the crack growth—rate for many cracks
(da/dN)m to that for a single crack (da/dN)s is plotted as a function
of a/b . It can be seen that the effects become more pronounced as p
increases and are more significant at longer crack-lengths; for a crack
a quarter of a bay-width the growth-rate is increased by ~207 for both
SO broken and unbroken when p = 4 . For a/b = 0.45 the growth-rate
is more than doubled for SO broken and more than tripled for SO

unbroken when p = &4
8.3 Conclusions
(1) The compounding method can be used to calculate stress intensity

factors for many collinear cracks in stiffened sheets.

(2) The presence of many cracks increases the stress intensity factor

particularly for long cracks.

(3> This increase in the stress intensity factor results in an

increased growth-rate of the cracks and hence a reduced lifetime in

fatigue.
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CHAPTER 9

DESIGN STUDY - CRACKS AT A DOUBLE ROW OF HOLE848

In Chapters 5 and 8 it was shown that the presence of many cracks
can be much more damaging than just a single crack, since the increased
stress intensity factor results in an increased growth-rate and hence a
reduced fatigue lifetime. Iz particular growth-rates may be increased
by a factor of two or more when many cracks are present at the edges of

the holes in a row of holes.

A typical configuration of this type, used in airframe construc-
tion, is a row of fastener holes, and one or more of these may have a
crack at its edge at some time during its service life. In the damage-
tolerant specification49 it is assumed that there are cracks at the
edge of each hole at the start of service life. It is further assumed
that the distance from the edge of the hole to the crack tip is 1.25 mm
at one of the holes, and is 0.125 mm at all the other holes. These
crack sizes are used in the model configurations studied in this
chapter, where the possibility is examined of reducing the deleterious
effects of multiple cracks by arranging the holes in two parallel rows
instead of in a single row, the number of holes being kept constant. It
is found that the stress intensity factor and hence the crack growth-
rate are reduced; and there is a greater reduction in K as the separa-
tion between the two rows is increased. The subsequent improvement in
lifetime, Ze the number of stress cycles required for a crack to grow
to a given size, depends on both the initial crack-length assumed and

the final length.

9.1 Evaluation of the stress intensity factor

A typical geometry for a double row of fastener holes is shown in
Fig 9.1. Holes of radius R are spaced a distance 2b apart in each

row and the rows are a distance h apart,

The holes in one row are located symmetrically with respect to the
holes in the other row, so that if h 1is reduced to zero there is only
one row of holes and the distance between adjacent holes becomes b .
Let a uniform tensile stress o be applied remote from the holes in a
direction perpendicular to the parallel rows. It is assumed that each
hole has two cracks at its edge, one on either side of the diameter per—
pendicular to the direction of the applied stress, that is the cracks

lie along two parallel lines through the hole centres. The total
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crack-length from tip to tip is 2a , the distance from the edge of the

hole to the tip is £ (= a - R).

The assumption regarding the position of the cracks is a reasonable
one for a single row of holes, since cracks will tend to grow from the
regions of maximum stress concentration which occur at the ends of the
diameter which is perpendicular to the stress direction. For two rows
of holes the position of the maximum stress is offset round the peri-
meter towards the adjacent row. However, for the value of the hole-
spacing analysed in this chapter (b/R = 8) the offset is small; it is
therefore a reasonable approximation to assume that the cracks will
still lie along the lines through the hole centres. This is discussed

more fully in section 9.3.

Because of the symmetry, the opening-mode stress intensity factor
is the same for all crack-tips; however, it is convenient to consider
one particular tip, labelled A in Fig 9.l1. It is also convenient to
label the hole with tip A by n = 0 . Holes on the same side as tip A
are labelled n = +1, +2, ... 1in sequence and holes on the other side
n=-1, -2, ... (see Fig 9.1). Only opening-mode stress intensity

factors will be considered in this chapter (see section 9.3).

The resultant stress intensity factor Kr is again given by

equation (5.5) as

-

1= n:oo
- t oo "o ol
Kr KO + Z (Kn KO) + Z (Kn KO) + Ke 5 n#0, (9.1)
T} == =0 ="
where K_ = the stress intensity factor for a pair of cracks at the edge

0
of a hole in the absence of all other boundaries; Kg = the stress

intensity factor for tip A of the equivalent crack of length 2a' near
a hole of radius R ; K; = the stress intensity factor for tip A of
the equivalent crack of length 2a' near another equivalent crack of
the same length; Ke = the contribution to the stress intensity factor
owing to the disturbance of the stress field caused by interactions

between the holes.

The equivalent half crack-length a' required in evaluating K;

and K; is defined as before (see section 4.1) by

g¥ma' = K . 9.2
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Equation (9.1) can be normalized with respect to K , the stress
intensity factor for an isolated crack of length 2a in an infinite
sheet subjected to a uniform uniaxial tensile stress ¢ remote from

the crack; since K 1is given by

'K = o/ma , (9.3)
equation (9.1) becomes
= n=e
Q. = Qyfl + Z(Q;—1)+ Z(Qg—1)+Qe, n#0, (9.4)
n=—co n=-w

= e = e 1o 1! ] = K .
where Qr Kr/K, QO KO/K, Qn Kn/KO, Qn KH/KO and Qe Ke/K

Values of QO are given by Rooke and Cartwright (Case 1.3.3 of
Ref 2). The values of Qé and Q; depend upon whether n 1is odd or
eveny; if n 1is odd the boundaries are in the other row and hence not
on the line of the crack; if n 1is even the boundaries are in the same
row and on the line of the crack. For odd values of n the ancillary
configurations needed for the compounding method are shown in Fig 9.2a-d

and those for even values of n are shown in Fig 9.3a-d.

Values of Q% for n odd are not known for the two ancillary
configurations shown in Fig 9.2a&b. However results in Chapter 5, for
b/R = 8 , indicate that (Q; - 1) for non-zero values of h will be
negligible: for h = 0 , a single row of holes, (Q; - 1) €1 for all
crack—lengths, the maximum contribution to Qr being ~2%7 at a/b ~ 0.5.
For h>0, <ze two rows of holes the contribution of Qé will be
less. Values of Q; for n odd are given in Case 1.2.4 of Ref 2 for

the two ancillary configurations shown in Fig 9.2c&d.

The distances b b' d! and d' shown in Fig 9.2 are
S °0,n> "n,0” “0,n n,0 &

determined (see section 4.1) by the conditions that the appropriate dis-—

tances between boundaries are the same in the ancillary configurations

as they are in the original configuration. Thus we obtain

2) , 2> 0

i
B
o

I
0]
T
1
L

o

1
bO,n

(9.5)

b, = Ln!b-aJ(I—QOM , 2 <0



and

1 = - - 2) >
dO,n nb Za(l QO 5 n 0
1 - < .
dn’o Inlb , n <0, Q <1, 7 (9.6)
and
1 = 2.. )
4! tn1b+2a(QO 1, n<o0, Q>1. |

Values of Qé for n even are given in Case 1.3.5 in Ref 2 for
the ancillary configurations shown in Fig 9.3a&b. Since holes in the
same row are spaced a distance 2b apart, it follows that bé,n/R and
b',O/R are approximately equal to 2b/R . Results in Chapter 5 show
that (Q; - 1) is negligible for these values of bé,n/R . Values of
Q; for n even are given in Case 1.2,2 in Ref 2 for the ancillary
configurations shown in Fig 9.3c&d. At crack-lengths a/b < 0.4 the

contribution to Qr is negligible, at longer crack-lengths the contri-

ion is a . r io r ! ! 4! and
bution is few per cent. The expressions fo bO,n’ bn,O’ 0,n

dé o are given by equations (9.5) and (9.6) with b replaced by 2b .
3

For a single row of holes with b/R =8 , it was shown in
Chapter 5 that Qe makes a negligible contribution to Qr . For two

parallel rows of holes, the stress concentration factor Kt , which
determines Qe will be less (see Peterson17). 1t therefore follows
that Qe is negligible for the configuration considered here. Thus the
normalized resultant stress intemsity factor can be evaluated from the

following form of equation (9.4):
= " " 1 "o .
Qr Qo[d+] + Q—I + Q+2 + Q_2 3] . 9.7)

The contributions from boundaries with |n| > 2 are all negligible.

Results for Qr (= Kr/(c/?é)) are plotted in Fig 9.4 as a function
of a/b for h/R = 2 and 4 , together with the results for multiple

cracks in a single row of holes (h/R = 0), obtained in Chapter 5.

It can be seen that the stress intensity factor is less when the
holes are in two parallel rows; and that K decreases as the separation
of the rows is increased. This reduction in K is more significant
for long cracks than for short cracks, for instance going from h/R =0
to h/R = 4 gives reductions of 33% at a/b = 0.45 , of 127 at
a/b = 0.35 and of 4% at a/b = 0.25 .




112

In Chapter 5 the stress intensity factor (KS say) was obtained
for a pair of cracks at a single hole in an otherwise uncracked row of
holes periodically spaced a distance b apart; in the same chapter it
was seen that, for cracks of equal lengths at all the holes, the stress
intensity factor (Km say) was greater than KS by up to a factor of 2.
However, Fig 9.4 shows that Km can be reduced by arranging the holes
into two parallel rows. In fact, for large separations, Km approaches
a limit, for short cracks, which is less than Ks . This limiting value
of Km is the stress intemsity factor for two cracks at every hole in a
row of holes periodically spaced a distance 2b apart. However, for
the value of b/R wused in this chapter, the difference between KS and
the limiting value of Km is small (~1-2%) and of the same order as
the accuracy of the Q-terms in equation (9.7). Curves of Km/KS
against a/b , for h/b =0, 2 and 4, are shown in Fig 9.5; it is seen
that for h/b = 4, K exceeds Ks by less than 10% for all crack-
lengths.

9.2 Growth of fatigue cracks

Because the stress intensity factor is decreased by having a
double row of holes, the rate at which cracks grow when the component is
subjected to fatigue loadings will also be reduced. Thus the time for
the crack to grow from some initial size a; to a final size ag will
increase with the row spacing h . Two values of ai/b are considered
in this chapter, they correspond to the maximum and minimum flaw sizes

. f e . 4
assumed in the damage-tolerant specification 9.

9.2.1 Rates of crack growth

The rate of growth of fatigue cracks is controlled by the range
of the applied stress intensity factor AK (= K - K ., ). Paris

18 max min
showed that for simple loadings, the growth of fatigue cracks could

be described by a power law, namely

da

- p
= - C(AK) s (9.8)

where da/dN 1is the increase in crack-length per cycle of stress, and

C and p are constants (see section 5.3).

For the high-strength aluminium alloys used in aerospace, p 1is
about 3. In order to estimate the variation of growth-rate with stress

intensity factor, it will be assumed that p = 3 .
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Since AK can be written as
AK = QhoVma (9.9)

where Ao 1is the range of applied stress, it follows that

%% = clo/mP (/P . (9.10)
If (da/dN)m is the crack growth-rate for two cracks of length a at

the edge of each hole in a double row and (da/dN)S that for two cracks
also of length a at the edge of just ome hole in a single row, then it

follows from equation (9.10) that

(da/dN) Q \P
—-a——/a*ﬁ'j’lg = =2 . (9.11)
(da 5 Q./

where Qm is the normalized stress intensity factor for multiple cracks
in a double row of holes, and QS that for two similar cracks at one of

the holes in a single row of holes.

The ratio of growth-rates given by equation (9.11) with p =3 1is
plotted in Fig 9.6 as a function of a/b for h/R =0, 2 and 4. It is
seen that the effect of multiple cracks on the growth-rate is reduced by
arranging the holes in two rows. For h/r = 4 the crack growth-rate
(da/dN)m is within 307 of (da/dN)S for all crack-lengths., For
multiple cracks in a single row of holes (h/R = 0), the ratio of the
crack growth-rates is much greater, 1.5 at a/b = 0.3 and 2.5 at

a/b = 0.4.

9.2.2 Fatigue lifetimes

The value of the fatigue lifetime ANif , defined as the number

of cycles of stress for a crack to grow from an initial length a;, toa

final length a_. , provides a measure of the safety and serviceability

£
of a cracked airframe structural component. The lifetime ANif is

given, from equation (9.8), by

BN:g =

of -

a

[ dap , (9.12)
A (&K)

1
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which can be combined with equation (9.10) to give

8¢

AN, = ! [ da ) (9.13)
* claavm® J (/AP

i

It is convenient to write equation (9.13) in terms of the dimensionless

variable o (= a/b); thus

£

N, = N / do (9.14)

(Q/a)P
a.
i
where o, = ai/b, ap = af/b, and
N, - - (9.15)
C(AOV?E)p

In order to estimate the increase in lifetime obtained by arrang-
ing the holes in two rows, a simple periodic configuration was studied,
having two cracks of the same length, zi , either 1.25 mm or 0.125 mm,
at every hole; these two values are the same as the maximum and minimum
flaw sizes of the damage-tolerant specification49. Lifetimes could be
calculated for cracks of arbitrary lengths at different holes, but a

step-by-step procedure would be needed (see section 9.3).

If the row of holes is a row of fastener holes then a typical
diameter of the holes for an aircraft structure would be ~6 mm. The
ratio of the length Qi (= ai-—R) to the radius with be either ~0.4 for

the larger crack of ~0.04 for the smaller crack. Since

- 2 _ 2a/b _ £)/b
@ = = = R/R <1+R>/R R (9.16)

it follows that a, = 0.18 or 0.13 . With these values of o, the
integral in equation (9.14) was evaluated numerically, for p =3 , as a
function of G o The results are shown in Fig 9.7 for h/R = 0, 2 and
4 when all the holes have cracks and for h = 0O when only one of the
holes has cracks. It can be seen that there is a significant increase
in lifetime from having two rows of holes. However, more area may be
needed if the fasteners are in a double row and designing for longer

life may carry a weight penalty.
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The lifetime depends on both a; and az . Because growth is
described by a simple power-law, most of the lifetime of a fatigue crack
is spent while the crack is short, a ~a; . When a; is small, the
stress intensity factor is not very sensitive to the actual position of
the boundaries; thus, the benefits of arranging the holes in two rows
will be less for small a; than for large a, . These effects are
shown in Fig 9.8 where the ratio (AN)m/(AN)S is plotted as a function
of af/b for the two values of ai/b and h/R = 0, 2 and 4: (AN)m is
the lifetime for two cracks at every hole and (AN)S is the lifetime
for two cracks at one hole only in a single row of holes. For h/R =0,
multiple cracks reduce the lifetime for ai/b = 0.13 by between 5% and
247 over the range af/b=< 0.45 ; for a double row of holes (h/R = 4),
the reduction is less than 107 over the same range of af/b . For
ai/b = 0,18 the reduction in lifetime caused by multiple cracks in a
single row (h/R = 0) is between 177 and 35%; for a double row of holes
(h/R'= 4), the reduction is between 97 and 187%. The region where
(AN)m/(AN)S > 1 occurs because Km can be less than KS for large

values of h/R and small crack-lengths (see section 9.1).

9.3 Discussion
The model configurations studied in this chapter are simplified
representations of practical crack configurations at a double row of

holes.
The major simplificdations are:

(a) the neglecting of any effects on the rate or direction of crack

growth due to the sliding-mode stress intensity factor;

(b)) the direction of crack growth in each row of holes is along the

line through the centres of the holes;
(c) all the cracks have the same length;

(d) the growth of cracks in fatigue is described by a simple power

law (see equation (9.8)), with the power p = 3 ;

The consequences of these simplifying assumptions are now discussed in

more detail,

(a) The calculations in sections 9.! and 9.2 refer to opening mode
stress intensity factors KI only. Because the configuration is not
symmetric about either row of holes, there is a non-zero contribution
to the sliding mode stress intensity factor KII . The magnitude of

KII can be obtained from the results for the ancillary configuration
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shown in Fig 9.2c&d of two parallel off-set cracks (see Case 1.2.4 in
Ref 2). From these results it follows that, for the configurations
studied in this chapter, 1KII{ <§KI , and hence the effects of the

sliding mode stress intensity factor are unlikely to be significant.

(b) Because of the reduction in symmetry due to having two rows of
holes, the maximum stress concentration at each hole is no longer at
the ends of the diameter which lies along the line of tlie centres of
the holes, It is displaced round the perimeter of the hole towards the
neighbouring row (see Peterson17); in principle, this may cause the
crack to deviate from the path assumed in this chapter. However, for

the configurations considered the deviations are small and can be

neglected.

It might be thought that cracks will be initiated and grow towards
each other along the line joining the centres of two adjacent holes, omne
in each row. That is the cracks will tend to grow at an angle of
6 = % tan—l(h/b) rather than in the assumed direction at right angles to
the applied stress. For the values of h/b = 2 and 4 , the angles ©
are approximately 15° and 30°. The resultant stress intensity factor
K_ for this configuration can be obtained for results from the follow-

r
ing ancillary configurations:

(1) a radial crack at the edge of a circular hole in a sheet
subjected to a uniform uniaxial tensile stress remote from and at

an arbitrary angle ‘to the crack (Tweed and Rookeso);

(ii) a crack in the vicinity of a hole in a sheet subjected to

the same remote stress (Case 1.3.5, Ref 2);

(iii) a crack collinear with another crack in a sheet subjected

to the same remote stress (Case 1.2.2, Ref 2).

In order to obtain results for ancillary configurations (ii) and (iii)
the applied stress must be resolved into both normal and shear compo-

nents parallel and perpendicular to the crack.

For this configuration with b/R = 8 calculations show that the
stress intensity factor is always less (10-507) than that for cracks
perpendicular to the direction of the applied stress. It is unlikely,
since the maximum stress occurs at © = 0 that cracks will be initiated
at an angle 6 much different from zero, but, if cracks do occur, they

will grow much more slowly.

The sliding mode stress intensity factor KII is again much

smaller than KI
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(e) The requirement of the damage-tolerant specification49 is to
assume one long crack (1.25 mm) and all the rest short (0.125 mm). This
could be studied using the above methods but with some loss of accuracy
because solutions are not yet available for all of the required
ancillary configurations*. In order to calculate the lifetime, a step-
by-step procedure must be used as cracks of different lengths grow at
different rates. To facilitate the calculations, a model configuration
with all the cracks the same length has been studied in this chapter.
However, it can be shown that Kr for the model configuration is
greater than that for the configuration specified in Ref 49. The long
crack (Qi = 1.25 mm) has the largest stress intensity factor. If its
tip—to~tip length is 2a , then for a given value of a/b the distance
from either tip of the long crack to the nearer tips of the smaller
cracks (Qi = 0,125 mm) is greater than in the model configuration

(zi = 1,25 for all cracks). Hence the contribution of the smaller
cracks to Kr for the long crack is less, and the limiting value of

Km as h/R increases, is less than KS (see section 9.1) for a much
larger range of a/b . Thus the stress intensity factor for the longer
crack is less for all values of a/b than if the cracks were all the

same length, and hence the crack growth-rates will be less and the life-

times more,

(d) The fatigue calculations were done assuming a simple dependence of
the crack growth-rate on the stress intensity factor and no load inter-
action effects, The calculations can still be done even when load
interaction effects are present provided the crack growth-rate can

still be expressed as a function of the stress intensity factor. The
simple power—law used assumed that the power p =3 . If p >3 the
percentage increase of lifetime that results from having two rows of
holes, would therefore be greater than those calculated for p = 3 .
Since the magnitude of the effects on lifetime increases as the initial
crack-length increases, it follows that such effects become increasingly
important in the calculation of inspection intervals as the component

nears the end of its life.

(e) Boundary-boundary interactions are negligible for the double row

of holes and therefore the term Qe is negligible in the calculation of

T The major ancillary configuration of two cracks of unequal length at
the edge of a hole has been obtained by Tweed and Rookezo; but two
parallel offset cracks of unequal length has not, although two
collinear cracks of unequal length has (see Case 1.2.3 in Ref 2).
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the normalized stress intensity factor. The term Q, was found to be
negligible (see section 5.4) for a single row of holes; it will be even

smaller for the double row as the stress concentration factor is less .

9.4 Conclusions

(H Arranging fastener holes in two rows instead of one reduces stress
intensity factors when the holes are cracked. This results in slower

fatigue crack growth and longer lifetimes,

(2) The benefits of having two rows of holes are small while the
cracks remain small, but if damage-tolerant requirements impose a large

initial crack-length, then the benefits are substantial.
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CHAPTER 10

CONCLUDING REMARKS

In this thesis a method called compounding was developed for
obtaining stress intensity factors for cracks in complex geometrical
configurations representing engineering structural components. The
emphasis was i. developing a method which is quick and easy to use, and
therefore not costly: such a method is, of necessity, approximate. The
errors arising from the use of such approximations in the fracture
mechanics calculations of fatigue lifetimes and residual strength of
cracked structures were investigated, by using a simple asymptotic
method; thus the degree of approximation which produces acceptable
errors, Ze¢ within engineering tolerances, was determined. These error
levels were adopted as a guide in developing the compounding method to

the required accuracy.

It was shown how the method is used to build up the stress
intensity factor solutions for a geometrically complex, cracked con-—
figuration with many boundaries from the solutions for several simple
cracked configurations. An advantage of this procedure is that the
boundaries which are likely to be important design features, are
readily identified. The versatility of the compounding method was
demonstrated by applying it to several common structural configurations
including cracks at rows.of holes, loaded and unloaded, and cracks in

reinforced structures.

The method, is particularly suitable for design studies of damage
tolerant structures and the calculation of fatigue lifetimes; the con-
figurations studied in this thesis, although only two-dimensional, are
appropriate for many design problems. In principle the compounding
method can be applied to three-dimensional problems, but many more
stress intensity factor solutions to simple three-dimensional configura-
tions are required before it can be widely used. However many three-—
dimensional configurations can be modelled by a two-dimensicnal con-
figuration which retains the essential boundary features and which will

give conservative estimates of residual strength and fatigue lifetimes.
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APPENDIX A

EVALUATION OF GROWTH-TIME INTEGRALS FOR A CIRCULAR HOLE

(See sections 2.2.1 and 2.2.2)

The number of cycles AN required for a crack of initial length

Zi to reach a final length zf is given, by equation (2.21), as

L

AN = —é—j. dgm . (A-1)
N (AK)
1

For a crack of length £ at the edge of a circular hole of radius R

the stress intensity factor range AK 1is given by
MK = YAo/me (A-2)

the geometry factor Y 1is given, by equation (2.26), as

Y = 3.36 , /R < 0.1,
(A-3)
2R + 2
= S >0.1 .
Y o s 2/R > 0.1
Therefore for Zf/R=< 0.1 , equation (A-1) becomes
zf
AN = 1 - ./ i§2 > (A-4)
C(3.36A0vT) g
i
and for Zi/R 2 0.1 , equation (A-1) becomes
2
£
m/2
R d2 — (A-5)
C(Aovm) (2 + 2R)

2.
1

The integral in (A-4) is known; the specific integrals required for

this application are as follows:
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for m = 2

for m= 3

? (A-6)

and for m =4

22 & %)

2

f

/ av _ (1 _ 1)
e

/

Substitution of x = 2+ 2R into the integrand in equation (A-5) gives

X
£
m/ 2
R
Clao/m™ I x
i
where X, = Qi-+2R and kf = Zf-+2R . The form of the integral in

equation (A-7) is identical with those given in equation (A-6).

By combining equations (A-4) and (A-5) the value of AN can be

calculated for any Qi and Zf .
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APPENDIX B

EVALUATION OF GROWTH-TIME INTEGRALS FOR AN ELLIPTICAL HOLE

(See section 2.2.3)

For cracks at the edge of an elliptical hole the equations

required to calculate AN are (see Appendix A) as follows:

A
o = -é-[ S (3-1)
(2K)
i
AK = YAoVmL (B=2)
and
Y = 1.12(1+2-§] , /R<0.1,
(B-3)
Y = Q‘ZC , 2R > 0.1 .
Therefore for zf/R=< 0.1 equation (B-1) becomes
2.
i
1 dg
AN = - o~ f 2573 (B-4)
0[1.12(1 + 2 E—)Ao/ﬂ 2
and for Qi/RA>’O.1 equation (B-1) becomes
e
AN = ! ~ [ dz =7 (B-5)
C(AcvT) o e+

1

The integral in equation (B-4) is identical to that in equation (A-4)
and the integral in equation (B-5) is the same as the integral in
equation (A-5) if 2R 1is replaced by ¢ . Thus the solutions given in
equation (A-6) are applicable to this case and therefore AN for any
values of Qi and ¢_. can be calculated by combining equations (B-4)

£
and (B-5),
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APPENDIX C

EVALUATION OF GROWTH-TIME INTEGRALS FOR A LOADED CIRCULAR HOLE

(See section 2.2.4)

For a crack at the edge of a hole, loaded either by a force P or
a pressure p , the equations required to calculate AN are (see
Appendix A) as follows:
o
o= [ Lo, (c-1)
g, (K
i
and
0K = Yasvme o, (C-2)
where s 1s a stress equal to either P/(2R) or p . The function Y
is given by
Y = 1.12Kt for 2/R <0.2
and (C=3)
y = L 2 for /R > 0.2 .
Al AL+ 1) (A + 2)

For short cracks,

Qf/R=< 0.2 , substitution of equation (C-3)

into equation (C-2) and equation (C-2) into (C~1) leads to integrals

identical to those in equation (A-4) in Appendix A; the solutions of the

integrals are given in equations (A-6).

equation (C-1) becomes

For long cracks, li/R = 0.2 ,

I 1 m -
= — [, et C_
ON C (As 2) Im ? (C-4)
A
£ m/2
where = [[(x+ (L + 2)] dx (C-5)
X,
i
with A, = 4,/R and X_ = A_/R .
i 1 f £
The integrals Im are, for m = 2, 3 and 4, given by
&
A3 3%2 kf
= P e C_6
I, Tt T+ 20 (C-6)
A
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2
I, = [(3—%313—6—35>(2x+3>/x2+3x+2

3
* 178 1n[2 x2+3x+2+zx+3] (C=7)
AL
1
A
5 4 3 £
I P S )\ 13x 2 _
14 = [———+—-—2—+ 3 + 6 +4>} . (C-8)
A

i

By combining the short—crack and the long-crack expressions, AN may be

calculated for any values of zi and Qf
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APPENDIX D

EVALUATION OF BOUNDARY-BOUNDARY INTERACTIONS

(See section 3.1)

Consider a region containing a crack near to two stress free
boundaries B1 and B2 ; the region is subjected to an applied stress

o ©on its boundary BO which is remote from the crack. This

can be obtained using superposition as shown in Fig 3.2. To obtain the

system S

stress intensity factor for the configuration in Fig 3.2¢ use is made of
the solution for a region containing a crack near a single internal
boundary B subjected to an arbitrary point force F ; the region

being bounded, remote from the crack, by an external boundary BO .

If B becomes B, and distributed point forces F = -S dt, are

1771
introduced, dt1 being a length of arc along Bl , the stress intensity
factor obtained is K? (Fig 3.3a). Similarly, if B becomes B2 and

F = —Szdt2 the stress intensity factor obtained is K; (Fig 3.3b).

The first stage in obtaining the stress intensity factor when both
boundaries are present comes from superimposing Fig 3.2a&b. This gives
a stress intensity factor of KT + Kz but additional perturbation
stresses (ASI)1 and <ASZ)1 are introduced on boundaries B, and B2
respectively (Fig 3.3c). The stresses (ASI)1 which occur at the site
of boundary B1 result from introducing boundary B2 and the stresses
(ASZ)l which occur at the site of boundary B2 result from introducing

boundary B These perturbation stresses (ASn)1 , n=1,2, are

=
cancelled by superimposing the point force configuration, with
F = —(AS'I)Idt1 and —(ASZ)IdtZ on B] and B2 respectively, on to
the configuration in Fig 3.2c which gives a stress intensity factor of
% *

K1 + K2 + (AKI)I + (AKZ)1 and leaves reduced stresses <ASI)2 and

(ASZ)2 on B1 and B2 respectively (Fig 3.3d). This alternating

sequence may be continued until at the jth stage the stresses (ASn)j s

n = 1,2, are as small as required. In the limit the resultant stress

intensity factor Ki is given by

x  _ * % -
KD = K| + K+ Z{(AK])J. + (AKz)j} . (-1
j=1

On substituting equations (3.1) to (3.3) into equation (D-1) the normal-
ized stress intensity factor with N = 2 becomes, for the configuration

in Fig 3.2a,
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Q. = Q +Q, -1+ Z{(ij E (qu)j} : (D-2)

j=1

Comparison of equation (D-2) with equation (3.7) (N = 2) shows that Qe
is the summation term. Thus if (ASn)j s 0 = 1,2, can be evaluated then
so can the interaction term Qe . The sum of the terms giving Qe will
be smaller than Q1 and Q2 because it depends only on the perturba-
tion stresses (ASn)j , 0 = 1,2, which arise from the interaction

between the two boundaries.
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Fig 1.7 In service failure - half axle clamp

Fig 1.8 In service failure - undercarriage torque link
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Fig1.9 1In service failure - nose-wheeling casting




Fig1.10 In service failure - helicopter rotor blade extrusion
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Fig 1.19 Crack coordinate system and modes of
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Fig 2.1 Crack at the edge of an arbitrarily shaped hole
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2a

Fig 2.3 Crack at the edge of a hole in a uniformly
stressed sheet
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hole in a uniformly stressed sheet
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Fig 2.16a Crack at a hole subjected to either a localised
force P or a pressure p
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Fig 2.16b Equivalent cracks for Tong-crack approximation
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Fig 2.20a Crack(s) at the bore of a rotating disc

Fig 2.20b Equivalent crack for long crack approximation
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Fig 2.21 The geometry factor Y for a crack at the bore
of a rotating disc <R1'/RO = 0.5, v = 0.3)
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Fig 2.22 Percentage differences between approximate and
numerical solutions for the stress intensity
factor for a crack at the bore of a rotating
disc <R1/RO = 0.5, v = 0.3)
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Fig 3.1 Superposition for a crack near one internal

boundary
So ) So
Bo Bo Bo
‘Sq "52
-—_ = + _ a
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Fig 3.2 Superposition for a crack near two internal
‘ boundaries
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Fig 3.3 Stages in the Schwarz alternating technique
for a crack near two boundaries
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Fig 3.4 Eccentric crack ih a finite width sheet
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Fig 3.5 Crack between two holes in an infinite
sheet subjected to a uniaxial tensile
stress
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2b

Fig 3.6 0dd number of collinear cracks in an
infinite sheet subjected to a uniaxial
tensile stress

o

I

Fig 3.7 Crack near the edge of a half plane subjected
to a uniform tensile stress; ancillary
configuration for Fig 45(d > ¢)
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20 I I I I I

Fig 3.8 Stress intensity factors for a crack in
the vicinity of a hole in a half plane
subjected to a uniaxial tensile stress



163

Fig 4.1

Radial crack at the edge of a circular hole between
two boundaries
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Fig 4.2 Ancillary configurations for a radial crack at the edge of a
circular hole between two boundaries



Fig 4.3 Two equal-length radial cracks at the edge of a circular hole
between two boundaries

b2 by

2a

R

Fig 4.4 Two unequal-length radial cracks at the edge of a circular hole
- between two boundaries
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Fig 4.5 Localized radial forces acting on the hole perimeter,
perpendicular to the crackline
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Fig 4.6 Correction to normalized stress intensity factors due to
boundary-boundary interactions
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Fig 4.7 Two radial cracks at the edge of a hole in a uniformly
stressed strip
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Fig 4.8 Ancillary configurations for two radial cracks at the edge
of a circular hole in the middle of a strip
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Fig 4.9 Normalized stress intensity factor for cracks at a hole
in the centre of a strip
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tiye

Fig 4.10a Radial crack at the edge of a circular hole near one edge
of a strip

Fig 4.10b Radial crack at the edge of a circular hole near another
circular hole
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Fig 4.12 Normalized stress intensity factor for a radial crack at
edge of a circular hole near one edge of a strip
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Fig 4,13 Ancillary configurations for a radial crack at the edge of a
circular hole near another circular hole
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Fig 4,14 Normalized stress intensity factor for a radial crack at the edge

of a circular hole near another circular hole
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Fig 5.1 One or two radial cracks at the edge of a hole in a row of holes
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Fig 5.2 Ancillary configurations for one or two radial cracks at the
edge of a hole in a row of holes
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Fig 5.3 Normalized stress intensity factor for one crack at a hole
in a row of holes
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Fig 5.4 Normalized stress intensity factor for two cracks at a hole
in a row of holes
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Fig 5.5 Cracks at the edges of holes in a linear array
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Fig 5.6 Two cracks at the edge of a circular hole: n =0
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Fig 5.7a&b Crack near a circular hole: n # O
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Fig 5.8a&b Two collinear cracks: n # 0
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Fig 5.9 Two cracks at the edge of a circular hole: point loads
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Fig 5F10 Equal-length cracks at the edges of holes in a periodic array
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Fig 5.11 Normalized stress intensity factor for equal cracks at a
periodic array of holes
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Km Km = K for two cracks at each hole
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Fig 5.12 Comparison of stress intensity factors for cracks at holes in a
periodic array
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6.0 I T T I
Sgilgﬁgfﬂ (da/dN)n1== growth -rate for two cracks at each hole
(da/dN)

; (da/dN)s = growth-rate for two cracks at one hole
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Fig 5.13 Comparison of crack growth-rates for cracks at holes in a
periodic array
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Fig 6.1 The equivalent load for symmetric cracks and symmetric Toading
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Fig 6.2 The equivalent loads for asymmetric cracks and symmetric loading
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Fig 6.3a Loaded hole in finite-width strip

Fig 6.3b Periodic array of loaded holes in infinite sheet

og/2 =— P/2 P/2 —=0/2

Fig 6.3c Ancillary configuration for KO
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Fig 6.4a Periodic array of pressurized holes with equal~length cracks
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Fig 6.4b Ancillary configuration of equivalent cracks (P' = K./ra )
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Fig 6.5 Stress intensity factors for cracks at internally pressurized holes
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Fig 6.6 Row of loaded holes with cracks near a boundary
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Ki=Kp

Fig 6.7a Ancillary configurations for KO
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Fig 6.7b Ancillary configuration for K]
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Fig 6.7c Ancillary configuration for Ké
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Fig 6.8 Superposition of opening-mode stress intensity factor for K
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Fig 7.1a Model stiffened sheet

Fig 7.1b A typical stiffened aircraft structure
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Fig 7.2a Crack located symmetrically between two of the riveted
stiffeners in a periodically stiffened sheet
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Fig 7.2b Crack located symmetrically about one of the riveted
stiffeners in a periodically stiffened sheet
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Fig 7.3a Crack near a single riveted stiffener (ancillary configuration
for Fig 7.2aéb)
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Fig 7.3b Crack located symmetrically about a single riveted
stiffener (ancillary configuration for Fig 7.2b)
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Fig 7.4a Crack Tocated asymmetrically between two of the
stiffeners in a periodically stiffened sheet

3
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Fig 7.4b Crack near a single stiffener (ancillary configuration
for Fig 7.4a)
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Fig 7.5 Normalized stress intensity factors for a crack located asymmetrically between
two of the stiffeners in a periodically stiffened sheet
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Collinear cracks in a stiffened sheet
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Fig 8.2a Crack centred about a stiffener S

Fig 8.2b The equivalent crack
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Sn



204

a n>o
, dd,n
A
/ /
ag aj a}
o
o
b n<o T T T
dn g
A
e - - -
aj aj a  ag

Fig 8.4a&b Crack near another crack
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Stiffener Sgq broken
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Multiple cracks
Single crack
I |- Stiffener S, Multiple cracks
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Single crack
1 { ! !
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Fig 8.5 Stress intensity factors for single and multiple cracks

in a periodically stiffened sheet
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Fig 8,6 Effect of multiple cracks on growth-rates of a crack in a
stiffened sheet - central stiffener unbroken
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Fig 8,7 Effect of multiple cracks on growth-rates of a crack in a
stiffened sheet - central stiffener broken
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a) n: odd, positive b) n:odd, negative
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Fig 9.2a-d Ancillary configurations for odd values of n
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a) n:even, positive b) n:even, negative
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Fig 9.3a-d Ancillary configurations for even values of n
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Fig 9.4 Effect of row separation on the resultant stress intensity factors
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Fig 9.5 Comparison of stress intensity factors for cracks at holes

in a single or double row
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(9-3) : growth-rate for two cracks at each
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(da) : growth-rate for two cracks at one
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Fig 9.6 Comparison of growth-rates for cracks at holes in a single
or double row (da/dN « (4K)3)
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Fig 9.7 Fatiqgue lifetimes (da/dN « (aK)3)
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Fig 9.8 Comparison of fatigue lifetimes (da/dN « (aK)3)

¢i¢g



