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TEE COMPOUNDING METHOD OF DETERMINING STRESS INTENSITY FACTORS 
FOR CRACKS IN ENGINEERING STRUCTURES 

by David Percy Rooke 

In this thesis the compounding method for determining stress intensity 

factors is developed and presented. The method enables stress intensity 

factors to be evaluated for complex geometrical cracked configurations 

with many boundaries from the factors for several simpler configurations 

with one boundary only. It is based on an alternating technique in 

which only the important interactions between boundaries are taken into 

account. The method is applied to a wide range of structural configura-

tions which include cracks near other boundaries {eg edges, holes or 

other cracks) cracks at the edges of loaded or unloaded holes, and 

cracks near stiffeners. 

The method is assessed by comparing 'compounded solutions' with known 

solutions for several configurations. It is shown that the errors 

resulting from the approximations in the compounding method are a func-

tion of the number and type of boundaries near the crack. It is further 

shown that these errors in stress intensity factors lead to uncertain-

ties in residual strengths and fatigue lifetime which are within 

engineering tolerances. 



CHAPTER 

INTRODUCTION 

Materials used in engineering structures often contain flaws or 

crack-like defects. These may exist at either the manufacturing or the 

fabricating stage or they may be initiated during service use. For 

example flaws which do originate during the manufacturing processes are 

often associated with impurities or second phase particles. Fabrication 

processes such as drilling and welding can result in crack-like flaws, 

for example at the edge of a drilled hole or at the edge of a weld. The 

initial dimensions of these defects are usually small, perhaps even 

microscopic. Under service conditions they may grow to macroscopic 

dimensions and their presence may lead to a reduction in the static 

strength of the structure. The growth may be caused by variable service 

loads (fatigue), environmental attack (corrosion), or both. These two 

factors may also cause new cracks to be initiated in the material. If 

the static strength of the cracked structure (residual strength) falls 

too low then failure can result under normal operating conditions. 

Despite precautions failures do sometimes occur and some examples 

of in-service and on-test failures have been collected by Kirkby' and 

are shown in Figs 1.1 to 1.18. A noticeable feature of the failures 

shown is that many of the cracks originate from regions of stress con-

centration such as holes, cut-outs, changes of section, etc. This 

feature is common to many crack problems and will be considered in 

detail in subsequent chapters. 

Cracks which have grown from holes are illustrated in Figs 1.1 to 

1.5, 1.11, 1.14 to 1.18. In the components manufactured from thin-

section material, Figs 1.1 to 1.3, 1.14 and 1.15, the crack penetrates 

through the thickness for most of the life and so, in practice, surface 

observations would give an accurate estimate of crack-length. This is 

not necessarily so for cracks in thick components such as shown in 

Figs 1.4, 1.5, 1.11, 1.16 to 1.18. Many of these cracks start in a 

small area, often a region that has been subjected to fretting damage, 

and do not grow through the thickness until the final failure of the 

component occurs. Figs 1.1 and 1,2 illustrate how extensive damage due 

to crack growth can occur in regions of multiple stress concentrations, 

Sff a row of holes. Sometimes several cracks develop from multiple 

origins, eg- from both sides of a hole as in Figs 1.4, 1.14 and 1.17, 

from several holes in a row of holes as in Fig 1.1, from various posi-

tions round a uniform stress concentration as in Fig 1.13. Despite the 



reinforcement around the cut-out shown in Fig 1.15, a crack occurred at 

the maximum stress concentration at the corner of the cut-out. 

Cracks which have started from regions of stress concentration 

associated with changes in section thickness or re-entrant corners are 

shown in Figs 1.6 to 1.9 and 1.13. In Figs 1.7 and 1.8 the crack 

occurred at an abrupt change in thickness which involved a corner with 

a small radius of curvature. Fig 1.9 shows a crack starting from the 

root of a circumferential groove and Fig 1.13 shows many cracks growing 

from an area where there is a change in section thickness, a corner and 

multiple grooves (ie screw threads). 

Figs 1.10 and 1.12 show crack growth from pre-existing flaws. In 

Fig 1.10 a flaw in the original extrusion developed into a crack which 

grew through the thickness and caused a failure. In Fig 1.12 a weld 

defect grew into a crack around the weld line leading to failure. 

Various design philosophies have been developed for dealing with 

the problem of loss of structural strength due to the initiation and 

subsequent growth of cracks by fatigue. Chronologically the first was 

the 'safe-life' design philosophy; this was developed in the years 

1945-55. Safe-life design is based on the concept that significant 

fatigue damage will not develop during the service life of the component 

or structure: if a crack is initiated, or is already present, it will 

not grow enough to produce a significant reduction in strength. The 

life for which this is true, for any given component, is calculated and 

then checked by a suitable test programme; an appropriate safety factor 

on the test-life is chosen; the factored life is known as the safe-life. 

When the service life equals the safe-life the component is taken out of 

service whether crack damage is evident or not. This philosophy can 

lead to the inefficient replacement of components which are still safe 

and would remain so for a long time. 

In the early 1960s a more efficient philosophy known as 'fail-

safe' design was developed. With this philosophy a structure is 

designed to have an adequate life free from significant fatigue damage, 

but continued operation is permitted beyond the life at which such 

damage may develop. Safety is incorporated into the fail-safe approach 

by the proviso that any fatigue cracks that develop will be detected by 

routine inspection procedures before they result in a dangerous reduc-

tion of the static strength of the structure. Two requirements are 

necessary for this approach to be successful: they are to be able to 

define a minimum crack size which will not go undetected at a routine 



inspection and to be able to predict the growth of such a crack during 

the time until the next inspection. The lengths of cracks detected by-

straightforward inspection procedures will usually be measured in 

centimetres rather than millimetres. Safety factors are introduced to 

allow for variability in parameters, such as loading and material 

properties, which affect the rate at which cracks grow. 

In the early 1970s a third design philosophy was proposed, the 

object of which was to design a 'damage-tolerant' structure. This 

philosophy is similar to the fail-safe approach but goes further in that 

consideration is given to crack growth from flaws which are assumed to 

be present in the structure as manufactured. Such flaws may arise from 

metallurgical imperfections in the material, or from manufacturing 

faults. Examples of such imperfections have already been seen in 

Figs 1.10 and 1.12. The size of flaws which are assumed to exist in 

certain specified critical areas have dimensions between 0.1 mm and 

1.5 mm. The implementation of the 'damage-tolerant' approach to a given 

component depends on whether the component is classed as 'inspectable' 

in the course of routine service inspections or 'non-inspectable'. For 

instance the component in Fig 1.12 would be classed as inspectable and 

that in Fig 1.10 as non-inspectable. For components that are inspectable 

the procedures closely follow those used in fail-safe design. However, 

in the case of non-inspectable parts it must be demonstrated that the 

time for the crack to graw to failure, from the prescribed initial flaw, 

is greater than the desired service life. Since, under service loading 

conditions, most of the life of a cracked component is spent while the 

crack is short it is necessary to be able to predict accurately the rate 

of growth of these short cracks . 

Thus it is clear that quantitative methods of assessing crack 

growth and its effect on structural strength are needed in order to 

ensure that optimum use is made of engineering structures, and that 

reliability and safety are guaranteed under service conditions. Such 

assessments are needed at all stages in the life of a component or 

structure. They are needed: 

(1) to assist in design; 

(2) to assist in material selection; 

(3) to devise inspection schedules; 

(4) to plan maintenance procedures; 

(5) to decide on repair or replacement. 



Fracture mechanics, which depends on the assumption that 'crack-

behaviour' is governed by the stress-field at the tip, provides a basis 

for quantifying both crack-growth and strength-reduction which may lead 

to structural failure. The important parameter in fracture mechanics 

is the stress intensity factor K since it is a measure of the magni-

tude of the stress occurring in the highly stressed region at the tip 

of a crack in an elastic solid. 

The linear elastic solution for the stress-field around a crack 

shows that the stress components are always of the same form; 

they are, in terms of the polar coordinates r, 0 from the tip (see 

Fig 1.19), 

a. . (r, 0) = — — f . , (0) + 'other terms ' . (1.1) 

If the point (r,0) is sufficiently close to the tip, ie r crack 

length, the 'other terms' in the above equation are negligible compared 

to the first term. The elastic solution predicts infinite stresses at 

the crack tip (r = 0) which cannot occur in practice since there is 

plastic flow in the highly stressed region near the tip. However, if 

the region of plastic flow is small compared to the region over which 

the r term dominates the stress-field, it may be assumed that the 

behaviour of the crack is determined by the elastic stress intensity 

factor. This assumption forms the basis of linear elastic fracture 

mechanics. 

The constant K , the stress intensity factor, is a function of 

the loading on the cracked configuration and of the size and shape of 

the crack and other geometrical boundaries; it has the dimensions of 

stress X /length. There are three distinct types of cracking modes 

which are characterized by different symbols for the stress intensity 

factor, these are illustrated in Fig !.i9. Mode I, characterized by 

and known as the opening mode, is the most common mode found in practical 

situations. Mode II, characterized by K is known as the sliding mode 

and mode III, characterized by , is known as the tearing mode. The 

stress intensity factor for each mode can be formally defined, as r 

tends to zero along 0 = 0 , in terms of the stress components shown in 

Fig 1.19, as follows: 



K = lim j/2nr o _(r,0)i 
r+0 ( ' 

K = lim j/2mr o_,(r,0)t 
r+0 ( ' 

= lim j/Iirr a22(r,0)j 
r-K) 

(1.2) 

For most two-dimensional representations of straight-fronted 

cracks the coordinate system (x^,x2»x2) in Fig 1.19 is a Cartesian system 

(x,y,z) with the origin of coordinates translated to the crack centre 

and the crack lies in the y = 0 plane with the front parallel to the 

z axis. In some three-dimensional configurations with planar cracks 

which have a curved crack-front the stress intensity factors vary with 

position on the crack-front. In contrast to two-dimensional configura-

tions the crack usually lies in the z = 0 plane of a Cartesian system 

but the stress intensity factors must now be defined in terms of a local 

coordinate system at the point under consideration; x^ becomes the 

outward normal to the crack-front, x^ the normal to the plane of the 

crack and the tangent to the crack-front. 

Fracture mechanics is widely used to describe many aspects of 

crack behaviour, eg the onset of crack growth due to corrosion or 

fatigue, the rate of growth due to corrosion or fatigue and the occur-

rence of final failure. "Material constants such as K_ , the value 
Iscc 

of K at which stress corrosion cracking starts, and K , the value 

of K at which plane strain failure occurs under a continuously increas-

ing load, have been measured for many materials. Crack growth laws have 

been suggested to explain the strong dependence of the rate of growth of 

a fatigue crack on the range AK over which the stress intensity factor 

fluctuates. In order to apply these concepts and laws to a practical 

situation it is necessary to know the stress intensity factor for the 

particular configuration. Solutions for many configurations are now 

available; many of them are recorded in the collections by Rooke and 

Cartwright^, Tada, Paris and Irwin^, and Sih^. Most of the solutions are 

applicable to linear, elastic, isotropic and homogeneous materials con-

taining stationary cracks although some solutions are for anisotropic 

and bi-materials. The majority of the solutions are for two-dimensional 

structures, as three-dimensional problems are much more difficult to 

solve. 



In addition to the collected solutions^ ^ many others are avail-

able, for instance, in the series of Special Technical Publications 

(STP) published by the American Society for Testing Materials (ASTM), 
5 

in the series entitled 'Fracture' edited by H. Liebowitz and in the 

series entitled 'Mechanics of Fracture' edited by G.C. Sih^. The 

methods, both theoretical and experimental, of obtaining these solu-
7 

tions have bean reviewed by Cartwright and Rooke , Liebowitz (Vol II 
of Ref 5), Sih (Vol I of Ref 6), and Kobayashi^. Numerical methods 

9 
have also been reported recently . 

In practical problems, structural geometries and loadings are 

often so complex (see Figs 1.1 to 1.18) that the available stress 

intensity factor solutions are inadequate. Evaluation of the stress 

intensity factor for the actual problem using standard methods may be 

prohibitively expensive in both time and money. Thus there is a need 

to develop simpler methods which will be cheap and easy-to-use even if 

less accurate than most standard methods. Many simple methods have 

been suggested; the more important ones have been reviewed and their 

relative merits discussed by Rooke, Baratta and Cartwright'^. 

Devising a simple method for solving a given problem depends first 

on recognising what are the essential features of the problem and then 

ensuring that the method takes due account of these features. Other 

aspects of lesser importance can be dealt with in a more approximate 

manner. However the approximate nature of these simple methods must be 

recognised and the likely sources of error identified. Errors are 

estimated by comparison with known solutions and the practical conse-

quences of using these approximations investigated. 

As mentioned earlier, examination of many crack configurations 

(see for example Figs 1.1 to 1.18) suggests that the two most important 

features are stress concentrations at holes and notches, and other 

boundaries such as edges. Cracks frequently start at or near stress 

concentrations which dominate crack behaviour while the crack is short 

that is during the majority of the fatigue lifetime. Stress concentra-

tions are usually characterized by a parameter called the stress 

Goncentvat'ion factor, denoted by . As the crack grows longer the 

effect of the stress concentration on the crack-tip stress field 

diminishes and the stress intensity factor approaches that for an 

isolated crack, provided the crack tip does not approach any other 

boundaries. These two limiting cases, short cracks and long cracks. 



provide the asymptotes for a simple interpolation model used by 

Rooke** and described in detail in Chapter 2. 

Because the results of the interpolation model are simple 

analytical functions, they are very suitable for investigating the 

consequences of using approximate stress analysis in fracture mechanics 

calculations of residual strength and fatigue lifetimes. The results 

of these calculations contain uncertainties which arise as a consequence 

of errors in the stress intensity factor; these uncertainties are 

examined in Chapter 2 where it is shown that they are no greater than 

and often less than the uncertainties in crack sizes, service loads and 

material properties. Although the simple interpolation model was used 

in the study of the errors and their consequences the conclusions 

reached are not restricted to that model. Any model which results in 

errors of a similar magnitude in the stress intensity, factor will lead 

to uncertainties in the residual strength and the fatigue lifetime 

similar to those calculated in Chapter 2. 

In many real components, the above long crack limit may not be 

appropriate because of the presence of other boundaries near the tip of 

the crack. Where multiple boundaries are present, even short cracks at 

one boundary may be affected by the presence of all the other bound-

aries. It is therefore necessary to develop a method to evaluate the 

effects of all the boundaries on the crack. Such a method known as the 
1 2 

'compounding method' has "been developed . Its further development and 

use to evaluate stress intensity factors for various crack configura-

tions forms the main topic of this thesis (Chapters 3 to 9)• Only 

opening-mode stress intensity factors are considered here, as they are 

the most important in engineering structures, but the same principles 

could be applied to the other modes. 

In the compounding method the effect on the crack of each boundary 

is considered separately, and these effects are then combined in a 

simple manner. Thus complex geometric configurations can be built up 

from relatively simple ones. Combining the effects of each boundary 

depends on the principle of superposition with the addition of inter-

action effects between the separate boundaries. The compounding method 

is developed using the iterative procedures of the Schwarz alternating 

technique: the major terms in the iteration represent interactions 

between the crack and the boundaries and the minor terms represent 

boundary-boundary interactions. These latter interactions may or may 

not be important; certain types of crack configurations for which they 



are important are identified and methods of evaluating the effects 

investigated. The compounding method is presented in terms of normal-

ized stress intensity factors in order to make use of the many simple 
2 

solutions available in the Compendium of Stress Intensity Factors . 

In Chapter 3 the theoretical development is described and the 

method is applied to plane problems with a crack near boundaries of 

different curvatures. Results for the stress inctnsity factors are 

compared with those obtained by other more accurate methods for some 

test configurations; it is shown that the differences arising from 

ignoring boundary-boundary interactions are small (within normal 

engineering tolerances) and that they are a function of the curvature 

of the boundaries and the number of the boundaries. A formal procedure 

is described for evaluating the boundary-boundary interactions by using 

the Schwarz alternating technique. 

In Chapter 4 compounding is applied to one or two cracks growing 

from a hole near to other boundaries, which may be the edges of a sheet 

or other holes. The hole with the crack is considered to be unloaded, 

i-e no normal or shear forces acting on the perimeter of the hole. In 

this configuration a boundary, namely the edge of the hole, crosses the 

crack and it is necessary to introduce the concept of an 'equivalent 

crack'. This crack replaces the original crack plus the hole; the 

boundaries other than the hole are then considered to interact with the 

equivalent crack and thes-e effects are compounded. It is found that the 

boundary-boundary interactions, ie between the hole and other boundaries, 

are often important and must be taken into account when evaluating the 

stress intensity factor. Since the stress aonaentvation factor is the 

dominant parameter at short crack lengths (see Chapter 2), this factor 

is used as a basis for determining the magnitude of the boundary-

boundary effect. 

Structural components frequently contain many holes, or cutouts, 

and the holes are often arranged in periodic arrays, for instance a row 

of fastener holes. The stress intensity factor for a crack at one of 

the holes is increased by the presence of the other holes. Since 

similar stress fields exist around each hole, it is likely that other 

cracks will be initiated at other holes at about the same time during 

the service life. Interactions with these other cracks will result in 

further increases in the stress intensity factor of the original crack. 

It is shown in Chapter 5 how the compounding method can be used to study 

the effects of many cracks at the edges of the holes in a row of 

unloaded holes. 



In some structural components, loads are applied to the edges of 

holes, eg pin-loaded lugs and lap joints, and some fastener holes are 

loaded. In Chapter 6 the problem is considered of many cracks at the 

edges of the holes in a row of loaded holes near a boundary. For these 

types of configuration, a further development of the compounding theory 

is required. This development which introduces the concept of the 

'equivalent load' is described in Chapter 6. 

Many structural components are made from large panels which are 

reinforced at intervals with stiffeners. The stress intensity factor 

for cracks in these panels, which often start at the rivets attaching 

the stiffeners to the panel can also be obtained using the compounding 

method if the stiffeners are treated as boundaries. In Chapter 7 it is 

shown how the stress intensity factor of a crack at one of the stiff-

eners, broken or unbroken, in a stiffened sheet may be obtained. If the 

stiffener actually crosses the crack, it is necessary to use the concept 

of the 'equivalent crack' which was developed for cracks at holes. 

Because of the periodic nature of stiffened sheet construction, 

ie stiffeners are regularly spaced, cracks are likely to be initiated 

at more than one stiffener as the stress fields will be similar at 

similar locations. The stress intensity factor for any given crack will 

be increased by the presence of other cracks, and since this will lead 

to a reduction in the fatigue life of the structure, it must be con-

sidered in the original design and in the determination of inspection 

and maintenance schedules. In Chapter 8 it is shown how compounding can 

be used to obtain stress intensity factors when there are many cracks in 

a periodically stiffened panel. 

Since the importance of boundaries and their effects on cracks is 

an essential part of the compounding method, and since it is quick and 

cheap to use, it is an ideal tool for design studies. Chapter 9 con-

tains a design study in which it is shown that by arranging fastener 

holes in two rows instead of one, significant improvements can be 

obtained in the fatigue life-time of a cracked component. Such studies 

are necessary to design optimum structures subject to the requirements 

of damage-tolerant specifications. Recently Brussat, Chiu, Rudd and 
13 

Creager have performed a reliability assessment of the use of the 

compounding method in the damage tolerance analysis of reinforced 

structural panels. They demonstrated that this simple analytical 

approach produces predictions of fatigue lifetimes which agree with test 



results to an accuracy sufficient to justify its use in damage tolerant 

design analysis. 

In this thesis we identify the important structural features, 

namely stress concentrations and boundaries, which affect the magnitude 

of the stress intensity factor when the structure is cracked, and 

develop approximate stress analysis methods which quantify the effects 

of these features. It is shown that the uncertainties in calculated 

values of residual static strength and fatigue lifetimes, due to the 

approximate analysis, are acceptable in most engineering applications. 

The methods can be used to plan reliable and safe inspection and main-

tenance procedures in existing aerospace structures, and they can be 

used to design damage-tolerant components. The compounding method is 

particularly useful in design since it isolates the effect of each 

boundary in turn and therefore enables the important ones to be identi-

fied. While some emphasis has been placed on airframe components, the 

methods are not limited to these applications. 
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CHAPTER 2 

,11 
ERaOBS IN STRESS ANALYSIS AND THEIR EFFECTS 

Calculated values of stress intensity factors will contain errors 

if approximate stress analysis techniques are used. The magnitude of 

the errors can often be estimated, but their importance will depend on 

the practical application. The commonest fracture mechanics applications 

are the determination of residual strengths and fatigue lifetimes for 

cracked structures. Errors in the stress intensity factors will cause 

uncertainties in these two important quantities. In this chapter 

uncertainties that arise from using an approximate method of stress 

analysis are evaluated and compared with those arising from other 

sources. A particularly simple method of stress analysis was chosen in 

order to facilitate the calculations of residual strength and fatigue 

lifetime, but the conclusions are applicable to any method of stress 

analysis that leads to similar errors in the stress intensity factors. 

The successful application of the principles of fracture mechanics 

to a practical problem requires a knowledge of the following: 

(1) the crack size (length, shape, etc); 

(2) the stresses due to service loads; 

(3) the stress intensity factor, at the tip of the crack; 

(4) material properties {eg , K^, d£/dN , etc). 

These four items are known imperfectly. The uncertainties in items I, 2 

and 4 are usually presented to the fracture mechanics analyst who must 

then decide on what degree of accuracy is required in the evaluation of 

the stress intensity factor. This section investigates the possibility 

of using very simple and cheap approximations for the stress intensity 

factor for cracks initiated at stress concentrations such as holes and 

compares the possible errors introduced into a fracture mechanics 

calculation with those due to the other uncertainties. 

The measurement of crack length in practice is often difficult and 

can result in inaccuracies which may be significant, particularly if the 

crack is short. Access to the cracked component may be difficult; the 

ends of the crack may be obscured by other parts of the structure or by 

protective coatings; the crack length within the thickness of a compo-

nent may be different from that observed on the surface. It is not 

possible to specify the likely inaccuracies in a general way, since they 

will depend on the actual configuration. 



The stresses in the uncracked structure may not be known 

accurately, because the external loads are not known accurately, or 

because the structural configuration is so complex that an accurate 

stress analysis is not possible, or because residual stresses of unknown 

magnitude may be locked in it as a result of overstraining during fabri-

cation. The uncertainties in external loads often arise because the 

loads themselves are of a variable nature, eg gust loading on aircraft 

wings, or wave loading. It is not possible to assess accurately what 

the uncertainties in the stresses are, but it is likely that they will 

be at least 10% over much of the structure and probably more in some 

cases. Differences as large as 5:1 between the fatigue life established 

by full-scale testing under anticipated service loads and the actual 

service life have been measured (see, for example, Ref 14), Although 

these results will include scatter in crack initiation they suggest that 

actual service stresses may differ by more than 10% from the design 

stresses. (The dependence of fatigue life or crack growth rate on the 

stress intensity factor, which is proportional to the applied stress, is 

discussed later.) 

2-4 

Although many stress intensity factors are now known the one 

appropriate to a given complex structural configuration is often not 

known. The calculation of the necessary stress intensity factor by 

standard techniques may be very costly and time-consuming and may still 

not be very accurate. There is thus a need for simple and cheap, even 

if approximate, methods to obtain stress intensity factors which could 

be used in parametric studies in preliminary design (parts of the final 

design may require a more detailed analysis), and in the determination 

of maintenance schedules for structures which may contain cracks. 
Materials data books, for example Ref 15, show that, for what is 

nominally the same material, the scatter in K_ and K values may be 
Ic c 

10% or more; fatigue crack growth-rates, usually expressed in terms of 

the increment in crack-length per stress-cycle d£/dN , may vary by a 

factor of 2 or more for the same nominal test conditions. Further 

uncertainties may arise because K , the thin-section toughness para-

meter, depends not only on the material but also on the sheet thickness; 

in fact it also depends on the crack-length, the specimen geometry and 

the type of loading. 

Most applications of fracture mechanics involve calculations of the 

residual static strength, -ie the strength of a component which contains 

a crack, and also calculations of the rate of growth of fatigue cracks. 
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Simple methods of doing such calculations are discussed in this section. 

Estimates of the errors due to using simplified expressions for the 

stress intensity factors, are obtained by comparing the 'simplified 

results' with accurate numerical results for some representative con-

figurations of cracks at the edges of holes. These errors are then 

compared with those due to uncertainties in material properties and 

structural stresses. 

The simple expressions for stress intensity factors, derived in 

section 2.1, consist of a combination of the two limiting cases, that 

for the short crack and that for the long crack. Cracks are considered 

'short' when the length is small compared to the hole-size and 'long' 

when the length is large compared to the hole-size. The need to dis-

tinguish between 'short' cracks and 'long' cracks has been demonstrated 

by Novak and Barsom*^ for notched specimens used in fracture toughness 

testing. The important parameter when the crack is short is the stress 

conaentrat'Lon factor ^ (the ratio of the maximum stress to the 

applied stress). The shape, size and position of the initial stress-

concentrator (hole, notch, etc) loses significance when the crack is 

long; the total crack-length, including the hole, is now the controlling 

parameter. 

The geometric configurations studied represent some common prac-

tical problems concerned with cracks growing in the vicinity of stress 

concentrations. Circulaf holes in large sheets are considered first, 

with either one crack (section 2.2.1) or two cracks (section 2.2.2) at 

the edge of the hole; in both cases the sheet is loaded by uniform ten-

sile stresses remote from the hole. In section 2.2.3 two cracks at the 

edges of elliptical holes of various eccentricities are considered sub-

ject to similar loading conditions. Since a common site for cracking is 

the edge of pin-loaded holes and bolt-holes the effect of localized 

loading at the edge of a cracked circular hole on the calculations of 

residual strength and the growth times of fatigue cracks is studied in 

section 2.2.4. A solution for cracks at the bore of a rotating disc is 

obtained in section 2.2.5. 

It is shown that errors resulting from the use of these simple 

limits for stress intensity factors are of the same order as, or less 

than, errors due to other uncertainties in a fracture mechanics calcu-

lation. Improvements in the prediction of residual strength and fatigue 

growth-times can be made by considering the stress field in the uncracked 

structure along the crack-site (specifically the stress at the tip or the 
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mean stress over the crack-site). These improvements however require a 

knowledge of the stress fields which are not as readily available as the 
17 

stress oor^centration factors and are more difficult to obtain. 

Thus these simple methods are often the only methods available for 

use in a reasonable time and at a reasonable cost, although their use 

will introduce additional errors into any fracture mechanics calcula-

tions. A knowledge of the magnitude of these additional errors, evalua-

ted in this chapter and a comparison with the other sources of error 

will enable engineers and designers to decide whether the use of these 

simplifications is acceptable in any given case. 

2.1 Development of asymptotic stress analysis 

A common site for cracks in engineering structures is the edge of 

a filled hole (rivet hole or bolt hole, window, inspection hatch, etc) 

where there is usually a high stress concentration'. The most likely 

site for a crack is at the edge of the hole where the maximum stress 

0 occurs; the crack will usually extend in a direction perpendicular 

to the applied tensile stress. The behaviour of a crack is controlled 

by the opening mode stress intensity factor K which can be written 

in the following general form*: 

K = (2.1) 

where Y , called the geometry factor, is a variable which is a function 

of the specific cracked geometry, s is an applied stress, the form of 

which will depend on the loading and £ is the crack-length measured 

from the edge of the hole. Some general limiting values of Y can be 

obtained from physical considerations, and these form the basis of an 

approximate method of determining K . 

It is usual to express the maximum stress a at the edge of the 
max 

hole in terms of an applied stress s and a stress ooncerLtr>atian factor 

, thus 

Omax = ' (2.2) 

The stress s takes different forms depending on the type of loading. 

Cracks will initiate at the edge of a hole where the maximum stress 

occurs. If the relevant dimension of the hole is D , fe the 'diameter' 

* The subscript I on Kj is omitted in the rest of this thesis as 
only the opening mode is considered. 



of the hole parallel to the crack (see Fig 2.1), then a crack of length 

i is considered short if £ D . In the limit as £/D ^ 0 , very 

short cracks will experience a stress field similar to that experienced 

by a similar crack at the edge of a sheet subjected to a uniform stress 

of the same magnitude and direction as the maximum stress at the hole. 

The stress intensity factor will therefore tend to that for an edge 

crack (Case 1,1.20 of Ref 2), ie 

lim ]k[ = 1 .12 o /ttT . (2.3) 
&/D+0 *** 

From equations (2.1) to (2.3) it follows that the limiting value of Y 

is given by 

lim {y} = 1.12X . (2.4) 

The tip of a very long crack (£/D will be in a stress field 

similar to that for an isolated crack whose length is equal to the 

original length plus the width of the hole. If the length of the equi-

valent isolated crack is 2a , then for a single crack of length £ at 

the edge of a hole 

2a = £ + D , (2.5) 

and for two collinear cracks of lengths £j and £ on opposite sides 

of the hole 

2a = £ J + D + £2 . (2.6) 

The limiting value of K , when £/D is infinite, will depend on the 

type of loading. 

A simple approximation for the stress intensity factor can be 

obtained using just these two limits. It is suggested that for 'short' 

cracks the geometry factor Y is replaced by its limiting (£/D = 0) 

value, and for 'long' cracks Y is replaced by its limiting (£/D = °°) 

value. The crack length at which the transition between 'short' and 

'long' cracks occurs depends on the configuration; it will normally be 

chosen so as to minimise the errors in the stress intensity factor over 

the whole range of crack lengths. The transition crack length will be 

a function of the local radius of curvature of the hole at the root of 

the crack. 
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2.1.1 Loading remote from the hole 

If the hole and the crack are in a large sheet which is loaded 

remote from the hole with a uniform uniaxial tensile stress a , acting 

in a direction perpendicular to the crack, then in equations (2.1) and 

( 2 . 2 ) 
s = a (2.7) 

and equation (2.4) for the short-crack limit is unchanged. For this 

loading, the limit of the stress intensity factor at very long crack-

lengths is that of an isolated crack of length 2a in a sheet uniformly 

stressed at infinity, and is given by 

lim |K[ = a/ira , (2.8) 

where a is given by equations (2.5) or (2.6). The limit for the 

geometry factor Y is given by 

lim |y[ = Iy . (2.9) 

Simple expressions for the stress intensity factor can be obtained 

by using equations (2.4) and (2.9) in equation (2.1); Y is given by 

and 

1 . 1 2# for 'short' cracks 

for 'long' cracks. 

(2.10) 

2.1.2 Loading on the perimeter of the hole 

If the hole is subjected to a tensile force per unit thickness P 

acting on its edge at right angles to the plane of the crack, then the 

stress s in equations (2.1) and (2.2) is replaced by the 'bearing 

stress' P/D and a becomes 
max 

Equation (2.4) for the short crack limit is unchanged. For this loading 

the limit of the stress intensity factor at very long crack-lengths is 

that of an isolated crack of length 2a subjected to a force per unit 

thickness P acting on the crack face perpendicular to the crack plane. 

The distance between the point of application of P and the crack tip 

(or tips) is the same as the perpendicular distance between the line of 
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application of P and the crack tip (or tips) when the force was 

applied at the edge of the hole. If the hole is symmetrical about the 

line of application of P then, for one crack of length i, K is 

given (Case 1.1.12, Ref 2) by 

and, for two cracks of length 2̂  and & , K is given (Case 1.1.12, 

Ref 2) by 

P 
lim |k| = — 7 = —- , (for the crack of length Z„ ) (2.13) 

where R = D/2 . The limit for Y is given by 

for one crack, and 

for the crack of length when there are two cracks. 

Simple expressions for the stress intensity factors, for both one 

and two cracks, can be obtained by using equations (2.4) and (2.14) or 

(2.15) in equation (2.1); for one crack, Y is given by 

Y = 1.12# for 'short' cracks 

and 
1 
'TT'J A.(X + 1) (A + 2) 

for 'long' cracks 

(2.16) 

where A = £/R ; for two cracks, Y is given, for the crack of length 

Y = 1.12 A! for 'short' cracks 

(2.17) 

2(X,+1) 
^ cracks 

where = 2^/R and X = &2/& -



If a uniform pressure p acts on the upper surface of the hole, 

then s is replaced by p in equations (2.1) and (2.2). Equations 

(2.11) to (2.17) are still applicable with P/D replaced by p . 

2.1.3 Residual strength and fatigue crack growth calculations 

The stress intensity factors derived above are used in two main 

ways in fracture mechanics calculations: (i) to determine the residual 

static strength of a cracked component and to compare the strength with 

that required to withstand the most severe service loading with adequate 

safety factors and (ii) to determine whether a cracked, but safe, compo-

nent will become unsafe due to crack growth under fatigue conditions. 

The residual strength s is obtained by equating the stress intensity 

factor to the appropriate material constant or , eg 

K = Ys /trT = K . (2.18) 
r c 

If s is greater than the maximum service stress (safety factors may be 

included) then the component has adequate strength. However cracks grow 

longer under the common service conditions of varying stress (fatigue); 

in practical cases the function Y in equation (2.18) will be such that 

an increase in crack-length £ results in a decrease in the strength 

s^ . There will thus be a critical crack-length beyond which the crack 

will grow rapidly and the component will become unsafe. 

The rate of growth of cracks is determined by the stress intensity 

factor. It is necessary to be able to calculate how long (how many 

stress cycles) it will take for a crack to grow to an unsafe length. 

The calculation of growth-times, usually expressed in terms of cycles 

of applied stress, requires the knowledge of a crack growth law. A law 

which is applicable to constant amplitude fatigue loading and which 

relates the growth rate per fatigue cycle to the stress intensity factor 

will be used in this thesis. For many materials crack growth in fatigue 
1 8 

can be approximately described by a power law ; this can be written as 

= C(AK)* (2.19) 

where dJl/dN is the increase in crack-length per cycle of stress, C 

and m are constants (dependent on material) and AK is the range of 

stress intensity factor, which is defined as 

AK = K - K . , (2.20) 
max min 



where K and K . are respectively the maximum and minimum values 
max m m 

of the stress intensity factor during a fatigue cycle. The number of 

cycles AN required for a crack of initial length to reach a final 

length can be obtained by integrating equation (2.19); it is given 

by 

^f 

AN = 1 . (2.21) 
C J (AK)* 

i 

The initial crack-length will depend on the actual application: it 

should not be less than the smallest crack-length that can be reliably 

detected using standard non-destructive inspection methods or it could 

be an actual crack-length detected in a routine inspection; it might be 

the largest flaw-size likely to result from a given manufacturing or 

fabrication technique, a size which might therefore be adopted as a 

standard length and specified by damage-tolerant design requirements. 

The final crack—length would be that length, less some safety 

factor, at which rapid crack growth occurs and so the component can no 

longer be guaranteed safe without either repair or replacement. 

Typically the power m is in the range 2 to 4 for common airframe 

alloys. Although the total life, for a given stress level, decreases 

the greater m is, a larger proportion of the lifetime, -Le the majority 

of the stress cycles, is generally spent while the crack-length is close 

to the lower limit . The effect is more pronounced for small 

because AK is smaller and the crack grows more slowly. This 

dependence of AN on m is illustrated in Fig 2.2 for the case of a 

crack growing from a hole in a sheet subjected to a uniform uniaxial, 

alternating tensile stress remote from the hole. The ratio AN^/AN^ is 

plotted as a function of L/R ; AN and AN„ are the numbers of cycles 
L rl 

required for a crack to grow from an initial length of O.OIR to a final 

length of L and R respectively. These results were obtained using 

the numerical solution of Tweed and Rooke'^ for the AK values and inte-

grating equation (2.21) numerically. From Fig 2.2 it can be seen that 

AN^ = 0.5AN when L = 0.44R for m = 1 , when L = 0.32R for m = 2 , 

when L = 0.16R for m = 3 , and when L = 0.04R for m = 4 . In order 

that full allowance can be made for short-crack behaviour in determining 

AN the simple expressions used for K must be accurate at short crack-

lengths; otherwise damage-tolerant airframe designs may lead to struc-

tural inefficiencies. 
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The use of approximate expressions for Y in the calculation of 

residual strengths and fatigue lifetimes introduces errors into the 

results for these quantities. The magnitude of these errors is related 

to the magnitude of the error in Y . If 6Y is the error in Y etc, 

then, from equation (2.18), the error in residual strength s is given 

by 

r \ c / 

where all errors are considered small |6Y/Y| ^ 1 j. Equation (2.22) 

shows that an error of +x% in Y produces an additional error of +x% 

in s . Thus an approximation which overestimates Y {-ie 6Y > 0) 

will tend towards a safe underestimate of the strength s . The approx-

imation suggested using the stress oonoentTation factor Z always over-

estimates Y in the important short crack region; that is, it always 

gives conservative estimates of residual strength. 

The effect of errors in Y on fatigue lifetimes is more difficult 

to quantify since the calculation of AN in equation (2.21) involves 

integrating Y ™ . Thus the results depend on the errors in Y over 

the whole range of crack growth and also depend on the constant m . 

The error in growth-rates depend on 5Y in a simple way since, from 

equation (2.19), 6(da/dN) is given by 

6(da/dN) 
da/dN 

m 
5Y , 6s , I 
Y s 2 & 

(2.23) 

Thus an error of ±x% in Y introduces an additional bigger error of 

±mx% in the growth-rate. The effect of this increased error on AN is 

mitigated by the fact that the larger m is, the more cycles are spent 

at shorter crack lengths where the errors in Y will be less. Equation 

(2.23) shows that an overestimate of Y will tend to overestimate 

da/dN and hence tend to produce a conservative underestimate of the 

lifetime; the approximation does, in fact, always overestimate Y . 

2.2 Applications of asymptotic stress analysis 

Many cracks occur at the edges of filled holes, across which there 

is little load transfer and these can be represented by cracks at the 

edge of a circular hole (sections 2.2.1 and 2.2.2) or an elliptical hole 

(section 2.2.3). The holes are considered to be in large sheets which 

are loaded by uniform stresses remote from the cracks. Other cracks 

occur at holes which are subjected to loads at the edge of the holes. 



Two extremes of loading are considered in section 2.2,4, namely, a 

point load and a uniform pressure. Cracks can also occur at stress 

concentrations in rotating machinery such as aero-engines. The case of 

a crack at the bore of a rotating annular disc is considered in section 

2.2.5; the loading consists of body forces due to the rotation. 

Accurate numerical solutions for the stress intensity factors are 

available for the configurations studied and are used as a basis for 

comparison with the approximate solutions. 

2.2.1 One crack from a circular hole - remote loading 

The opening mode stress intensity factor for a crack of length £ 

at the edge of a circular hole of radius R (see Fig 2.3) can be 

written, following equation (2.1), as 

K = Ya/iTi , (2.24) 

where a is the applied uniaxial tensile stress remote from the crack 

and Y is given by equation (2.10). For this configuration = 3 

and 2a = 2R + £ , therefore equation (2.10) becomes 

Y = 3.36 for 'short' cracks 

and 
2R + £ , ,. I , 
— 2 £ — for 'long cracks. 

(2.25) 

The accurate results for Y obtained at discrete values of £/R by 

Tweed and Rooke'^ are shown in Fig 2.4 together with the two expressions 

for Y given by equation (2,25). From this figure it can be seen that 

the two expressions intersect at £/R = 0.092. The errors in Y are 

minimised by changing from the short crack expression to the long crack 

expression at this value of £/R ; for convenience in the crack growth 

calculations the changeover point was chosen to be £/R =0.1 . Thus 

for this configuration Y is given by 

Y = 3.36 , &/R <0.1 

and 
2R + £ 

2£ 
£/R >0.1 

( 2 . 2 6 ) 

The percentage differences between the values of Y obtained from 

equation (2.26) and the accurate numerical results are shown in Fig 2.5; 

the percentage differences are defined as 
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Y - Y 
difference (%) = x 100 . (2.27) 

num 

It can be seen that the maximum difference (~21%) occurs at the transi-

tion point, £/R =0.1 , but falls rapidly for both smaller and larger 

values of £/R . The effect on residual strength of these errors in Y 

is given by equation (2.22). 

An approximate value AN may be obtained from equation (2.21) 
app 

by substituting the appropriate form of equation (2.26) into the 

expression for AK , 

AK = YAc/^r , (2.28) 

and substituting this into the integrand of equation (2.21). The result-

ing integrals are known and the solutions are given in Appendix A. An 

accurate estimate AN may be obtained from equation (2.21) by using 
I"™ 19 

the results of Tweed and Rooke and integrating numerically. The ratio 

of AN /AN is shown in Fig 2.6 as a function of 5,_/R for an 
app num ^ f 

initial crack-length = O.OIR and m = 2, 3, 4. It can be seen that 

over most of the range (which includes all short cracks) this approxima-

tion gives a 'safe' underestimate of AN ; the maximum underestimate is 

~20%. 

The errors in AN , due to using these approximations for the 

stress intensity factor, 'do not vary in a systematic manner as m 

increases. This is because as m increases the smaller values of AK , 

•le those for shorter cracks, dominate in the evaluation of AN (see 

equation (2.21)); the errors in the K-approximation are smaller for 

shorter cracks. Thus the magnitude of the errors will depend in a com-

plex way on both the initial and the final crack-length as well as on 

m . From Fig 2.5 it can be seen that the maximum errors in K occur 

at £/R =0.1 . Since for > O.IR the largest errors are not in 

the range of integration in equation (2.21), and since for £^ <0.1R 

the dominating effect of growth at the shortest lengths will mitigate 

the effects of the large errors at £^ — O.IR , it follows that the most 

inaccurate values of AN will be obtained when £. ~ O.IR . To 
1 

illustrate this AN has also been obtained for an initial crack-length 

of O.IR; the ratio AN /AN is shown in Fig 2.7. The errors, which 
app num ^ 

are larger for bigger values of m are greater than those for £./R = 

0.01 (see Fig 2.6). For £ /R ̂  0.2 the error lies between ±12% for 

m = 2, ±17% for m = 3, and ±25% for m = 4. For shorter cracks 

(£g/R ^ 0.35) AN is underestimated and for longer cracks overestimated. 
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The initial growth between & /R = 0.1 and 0.2 is underestimated by 

up to 60%. 

2.2.2 Two cracks from a circular hole - remote loading 

In many practical cases there may be two cracks, one each side of 

the hole, which may not be of equal length. Fig 2.8 shows this with two 

cracks of length 2 and & ; the crack-tips A and B have stress 

intensity factors K and respectively. The following analysis 

considers tip B only for various values of the ratio & /2g In 

practice the longer crack is the more dangerous because it has the larger 

stress intensity factor 
20 

if 
*'B ^ *A 

(2.29) 

The opening mode stress intensity factor for crack-tip B can be 

written, following equation (2.1), as 

K, = Y^a/rrl 
B 

(2.30) 

where a is the applied uniaxial tensile stress remote from the crack 

and now replaces s in equations (2.1) and (2.2) and Y is given by 

equation (2.10) with appropriate expressions for A! and a . The 

stress oonaentrat-Lon factor at the edge of the hole opposite A 

when £g = 0 is a function of ; a curve of vs , derived 

from the work of Tweed and Rooke^O is shown in Fig 2.9. The total crack-

length 2a is given by 

2a + 2R + & (2.31) 

Hence equation (2.10) becomes 

= 1.12% 

and 

tB 

&A + 2R + 

2&. 

for &_/R < 0.1 

for &g/R >0.1 . 

(2.32) 

The transition at & /R =0.1 was chosen to be close to the intersection 

of the two curves as in the previous example (see section 2.2.1). 

The percentage differences (as defined by equation (2.27) between 
20 

the approximate values of Y and the numerical results are shown in 

Fig 2.10 for 2^/R =0.0 and 1.0, Examination of the numerical results 
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shows that for &^yR ̂  1 the function is independent of & 

over the range 0 K & /R < 0 . 1 . Thus the percentage difference shown 

in Fig 2,10, for &g/R <0.1 , is identical with that for a single crack 

(£^ = 0) shown in Fig 2.5. For 2 /R >0.1 the curve for &^/R = 0 is 

also identical with that shown in Fig 2.5. The maximum difference is 

therefore again about 21% at & /R =0.1 ; the maximum difference for 

2 /R =1.0 is about 3% higher. Curves of &^/R > 1.0 have been omitted 

since the concern is with £g > and therefore only values of 

£g/R > 2^/R need be considered and it can be seen from Fig 2.10 that 

differences are small (< 4%) for £g/R ^ 1.0 . 

For short cracks (& /R <0.1) the errors introduced into calcula-

tions of residual strength and growth-times by the use of these approxi-

mations for Y are the same as for a single crack from a circular 

hole (section 2.2.1, Figs 2.6 and 2.7). For long cracks (£g/R>0.1) the 

errors in the residual strength will depend on both & /R and £g/R 

(see Fig 2.10), Initially (£g/R < 0.2) the errors will be a few per cent 

larger but for 2 /R > 0 . 2 the errors will be less than those for the 

single crack (2 /R = 0). The errors in growth-times for long cracks will 

be dependent on both £ /R and & /R but will not differ greatly from 

those for a single crack (Figs 2.6 and 2.7). This is because the per-

centage differences in Yg for 2 /R # 0 are only a few per cent 

different from those for 2^/R = 0 , and since they are sometimes larger 

and sometimes smaller the effects will tend to cancel out if crack 

growth extends beyond 2 /R > 0.2 . As in the single-crack case the 

maximum errors will occur if the initial crack-length is about O.IR. 

2.2.3 Two cracks from an elliptical hole - remote loading 

In order to demonstrate the wide applicability of the approxima-

tions suggested in the previous two sections (2.2.1 and 2.2.2), the 

problem of two equal-length cracks at the edge of an elliptical hole is 

considered in this section. The two cracks of length 2 are at the 

ends of one of the axes of the ellipse; the axis with the cracks is of 

length 2c and the other axis of length 2h . A uniform uniaxial 

tensile stress a is applied at right angles to the crackline remote 
21 

from the hole (see Fig 2.11). Newman has obtained stress intensity 

factors as a function of crack-length for this configuration; he con-

sidered five values of h/c , viz 0.25, 0.5, 1.0, 2.0 and 4.0. 

As before, the opening mode stress intensity factor can be written, 

replacing s by a in equation (2.1), as 
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K = Yo/nl , (2.33) 

where Y is given by equation (2.10). The stress ooncentrat'Lon factor 

on the c-axis for an uncracked ellipse is given by 

= 1 + 2 . (2.34) 

The total crack-length is given by 

a = c + 2 . (2.35) 

In order to use equation (2.10) the transition point from 'short' 

cracks to 'long' cracks is considered to be a function of the radius of 

curvature p of the ellipse at the points from which the cracks origi-

nate. The parameter p is given by: 

,2 

p = ' (2-36) 

In the previous sections, for cracks at the edge of circular holes, the 

transition point was expressed in terms of the radius R of the hole. 

For the case h/c = 1 the ellipse becomes a circle and p = R , there-

fore to ensure that the transition occurs at the same place as in 

sections 2.2.1 and 2.2.2 it is chosen to occur at £/p = 0.1 . Thus the 

approximate expression for Y is given by 

1.12% for 2/p <;0.1 
t 

and 

Y = t ^ for &/p > 0 . 1 

(2.37) 

The percentage differences (equation (2.27)) between the above 
21 

approximation and the numerical results are plotted in Fig 2.12 as a 

function of £/p for the different values of h/c . For £/p <0.1 

the differences are independent of h/c and identical to those for 

cracks from circular holes (Figs 2.5 and 2.10). For £/p > 0.1 the 

differences are a function of the ratio h/c . The maximum difference 

occurs at £/p = 0.1 and increases as h/c decreases. In most 

practical problems h/c ^ 1 , however if h/c is small, then 
2 

p(= h /c) is small and practical values of £ /p will probably be 

greater than 0.1. The error introduced into the residual strength by 

the use of these approximations is given by equation ( 2 . 2 2 ) . 
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Since the radius of curvature p varies as h/c varies, direct 

comparison of crack growth-times AN cannot easily be made if the 

results are plotted as a function of £/p . For this reason crack 

growth-times have been calculated, in terms of l/c , ie the ratio of 

the crack-length to the semi-axis of the ellipse. From the numerical 
21 

data available (Newman ) the smallest starting crack that can be con-

sidered is £. = 0.02c . An approximate value AN may be obtained 
1 app 

in a similar way to that in section 2.2.1; again the necessary integrals 

in equation (2.21) are known; the solutions are given in Appendix B. An 

accurate estimate AN^nm may be obtained from equation (2.21) by using 

the results of Newman^' and by integrating numerically. The ratio 
AN /AN is shown in Figs 2.13 to 2.15 assuming three different 

app num 

forms of the crack growth law (m = 2, 3 or 4 in equation (2.19)). Each 

graph contains curves for the different values of h/c ; the transition 

from the short crack approximation (&/p <0.1) to the long crack 

approximation (£/p >0.1) occurs at different values of £^/c on the 

different curves because p is a function of h/c . 

Comparison of Figs 2.13 to 2.15 show that the approximate growth-

times are predominantly conservative, -te safe, since the number of 

stress cycles is underestimated. It can also be seen that the errors 

tend to increase as m increases with a maximum of ~50% for h/c = 0.5 

at m = 4 and £j/c =0.04 . The errors shown are always a maximum 

for h/c = 0.5 at the shortest crack-length shown; this is because the 

starting crack-length of £^ = 0.02c is very close to the transition 

point of £/p = 0,1 {ijc = 0.025) and the errors in the stress 

intensity factor are a maximum. On average curves for the smallest 

value of h/c (0.25) and the largest (4.0) show the least deviation 

from unity which indicates that for both smaller and larger values of 

h/c outside the range 0.25 to 4,0 the approximations used would be 

even better. 

2.2.4 One crack from a circular hole - local loading 

Cracks can grow from holes which are subjected to loads at their 

perimeters. Such holes frequently occur in structural components, 

eg bolted joints, pin-loaded lugs. Approximations similar to those used 

in the previous sections are applied to loaded holes in this section. 

The configuration of an infinite sheet containing a circular hole with a 

single radial crack at its edge is considered. The perimeter of the 

hole is subjected to two types of loading, either a localized radial 

force per unit thickness, P acting at right angles to the crack, or a 
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uniform pressure p acting over a semicircular arc with the resultant 

force per unit thickness (= 2pR) in the same direction as P (see 

Fig 2.16a). In a real component the loading would consist of a variable 

pressure acting over part of the hole perimeter, rather than a force P 

localized at one point. 

The opening mode stress intensity factor for a crack of length £ 

at the edge of a circular hole, of radius R , subjected to local forces 

(see Fig 2.16) can be written as in equation (2.1) 

K = Ys/n2 (2.38) 

where Y is given by equation (2.16). The 'stress' s takes different 

forms depending on the loading on the hole: for a point force/unit 

thickness P , s = P/2R ; for a uniform pressure p acting on half of 

the hole perimeter s = p (see Fig 2.16a). The stress aonaentTat-ion 

factor which appears in the short crack approximation in equation (2.16) 

is given, for the force P , by 7̂  = 2/TT , and for the pressure p , 

by X = 0.5 . The equivalent cracks for the long crack approximation 

are shown in Fig 2.16b. 

The approximate values of Y obtained from equation (2.16) can 
20 

be compared with accurate numerical values obtained by Tweed and Rooke ; 

this is done in Fig 2.17 where the percentage differences, as defined in 

equation (2.27) are plotted as a function of £/R for both the force P 

and the pressure p . In order to minimise the errors involved in using 

these approximations the transitions from the short crack to the long 

crack expressions should occur at different values of £/R for the two 

force distributions. For the point load P the maximum difference is 

~30% if the transition is at £/R — 0.15 , and for the pressure p the 

maximum is ~45% if the transition is at £/R — 0.25 . These maximum 

differences are greater than those for remote loading (see Figs 2.5, 

2.10 and 2.12) which are ~20%. However differences greater than 20% 

occur only over small regions, viz from £/R = 0.1 to 0.2 for the force 

P and from £/R =0.1 to 0.5 for the pressure p . Outside these 

regions the percentage differences are comparable to those for remote 

loading. The errors introduced into the residual strength by the use of 

these approximations will again be given by equation (2.22). 

In order to simplify the calculations of AN the transition from 

the short crack approximation to the long crack approximation was taken 

at the same value of £/R , namely £/R =0.2 , for both types of 

loading. Equation (2.16) therefore becomes, for the force P , 
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and 

Y = 

Y 

2.24 

T^jA(X + 1)(X + 2) 

for 2/R < 0.2 

for £/R > 0.2 , 

> (2.39) 

and for the pressure p , 

0.56 

and 

X(X + 1)(X + 2) 

for 2/R <0.2 

for &/R > 0.2 . 

> (2.40) 

AN may be obtained in a similar way to 
app 

that in section 2.2.1; again the integrals appearing in equation (2.21) 

An approximate value 

in section 2.2.1; agai 

are known and are given in Appendix C. An accurate estimate AN 
num 

be obtained from equation (2.21) by the numerical integration of the 

aotn AJN ana AI 
num 

m = 2, 3 and 4. 

results of Tweed and Rooke^ AN and 
app 

for 

may 

0.01 
have been calculated as a function of l^/R for 

Fig 2.18 shows the ratio of AN /AN for the force P and Fig 2.19 
app num 

the same ratio for the pressure p . Figs 2.18 and 2.19 show that the 

approximations are predominantly conservative, t-e safe, since the time 

is underestimated for & /R < 1.0 for a force P , and for £^/R < 3 

for a pressure p . The errors are generally larger than those for a 

crack at the edge of a hole in a sheet loaded remote from the crack (see 

Fig 2.6). As in the case of remote loading errors would be at maximum 

if the starting crack-length occurred at the transition from the 

short crack to the long crack approximation (see Figs 2.6 and 2.7). 

However the maximum errors of ~50% are within the likely errors that 

can result from material variations, ie variations of a factor of two or 

more in crack growth-rates. The bigger errors at long cracks are due to 

the fact that K decreases and hence da/dN decreases and therefore an 

appreciable part of the fatigue life is spent while the cracks are long, 

which is in contrast to the behaviour for remote loading. In practice 

the presence of other boundaries would cause K to increase when the 

crack-tip approached them. 

2.2.5 Cracks at the bore of a rotating annular disc 

Cracks can sometimes arise in structures that have rotating compo-

nents such as turbine discs in aero-engines. In this section both one 

and two cracks at the bore of a rotating annular disc are considered; 

the disc has an inner radius of R^ and an outer radius of R^ and is 
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rotating at an angular velocity w (see Fig 2.20a). This problem has 
22 

been studied by Grandt using a superposition technique with results 

from a finite element analysis. 

The approximations developed in the previous sections, based on 

the short crack and long crack limits, can be used to derive a stress 

intensity factor for this configuration. The behaviour of short cracks 

will be controlled by the maximum stress, perpendicular to the crackline, 

at the bore of the disc. In plane stress the maximum stress is given 

(af equation (2.3)) 

(2.41) 
max 

where 

and 

K. = 2 1 + 
(1 + v) 
(3 + v) 

R: 

R 

(2.42) 

(2.43) 

23 

where d is the material density and v is Poisson's ratio . The 

long crack approximation is obtained by replacing the crack(s) plus the 
hole by a single crack in a solid rotating disc of radius R In the 

one-crack case the replacement crack is of length 2R^ + £ and is 

located eccentrically in the disc (see Fig 2.20b). In the two-crack 

case the replacement crack is of length 2R^ + 21 and is located 

centrally in the disc (see Fig 2.20b). The stress intensity factors for 

both an eccentric and a central crack in a rotating solid disc were 

obtained from Rooke and Tweed^^. 

The geometry factors Y are defined by equation (2.1) with s 

replaced by p 
0 

The values of Y obtained from both the short and 

long crack approximations are shown in Fig 2.21 together with the results 
22 

of Grandt ; the results were obtained for R./R = 0.5 and v = 0.3 . 
1 o 

The percentage differences, as defined in equation (2.27) are shown in 

Fig 2.22 as a function of &/(R -R^) for both one and two cracks. 

For one crack, £/(R^ - R^) < 0.8 , the differences lie between +8% and 

-4% if the transition from the short crack to the long crack approxima-

tion occurs at &/(R -R^) — 0.5 . In fact, the short crack approxima-

tion gives differences between +8% and -9% for &/(R -R^) K 0.7 . For 

two cracks, &/(R -R^) <0.8 , the differences are larger, lying 
between +13% and -19% if the transition occurs at &/(R -R^) 0.35 . 

The differences are positive for small cracks in both cases, hence 
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estimates of both the residual strength and the crack growth-time AN 

will be conservative. The percentage errors in residual strength from 

using these approximations will be the same magnitude as the percentage 

differences in Y shown in Fig 2.22. The numerical data available is 

not sufficient for a detailed analysis of the likely errors in AN cal-

culations. However since the differences in Y for this configuration 

are comparable, in particular are small at short crack-lengths, with 

those for cracks at the edges of holes (see Figs 2.5, 2.10, 2.12 and 

2.17) it follows that differences in growth-times will be comparable 

with those for cracks at holes (see Figs 2.6 and 2.7, 2.13 to 2.15, 

2.18 and 2.19). Thus for this configuration also the errors in a 

fracture mechanics analysis introduced through using an approximate 

stress analysis will in most cases be less than those due to other 

sources. 

2.3 Discussion 

The errors introduced into fracture mechanics analyses by using a 

simple stress-analysis to calculate the stress intensity factor have 

been quantified, for several cases of cracks at stress concentrations. 

It is therefore now possible to compare these errors with those due to 

other sources such as uncertainties in load or material variability and 

to assess their relative importance in any given analysis. From the 

results given it is seen that in many cases the uncertainties in static 

residual strength and crack growth-times in fatigue, due to the approxi-

mate stress analysis, are less than those due to external sources. The 

configurations considered contain few boundaries in the vicinity of the 

crack, but the same techniques could be used where the crack interacts 

with many boundaries. The problems of the crack interacting with each 

of the boundaries separately would be solved using the approximate 

stress analysis methods and the results combined using the compounding 
1 2 

method (see Chapters 3 to 9). 

The approximate method chosen consists of a combination of the 

asymptotic expressions for the 'short crack' and the 'long crack' limits. 

The short crack limit is controlled by the maximum stress at the point 

of initiation of the crack and this is usually characterized by the 

stress coMCgMtrattOM factor . The long crack limit is controlled by 

the overall length of the crack(s) plus hole. From a study of plots of 

these two expressions as a function of crack-length the optimum length 

for changing from one expression to the other can be chosen; this 

optimum value of the crack-length would be chosen so as to minimize the 

errors in the stress intensity factor. Errors could be further reduced 



by considering some form of interpolation between two limits. Interpo-
25 

lation between limits has been used by Benthem and Koiter to obtain 

accurate values of the stress intensity factor for some common test con-

figurations. The transition points used in this study were not necess-

arily the optimum points, but were chosen in order to facilitate compari-

son with existing numerical results. Dowling^^ has independently 

suggested that the intersection point of the two limiting functions 

should be used as a transition point. 

One particular advantage of the approximations chosen is that the 

stress intensity factor is overestimated at short crack-lengths and so 

the calculated residual strengths and growth-times AN are conservative. 

It is important that fracture mechanics analyses should be conservative 

since safety is paramount. However over-conservative design can result 

in unacceptable weight penalties so that it is also important that errors 

due to approximate analysis be as small as possible particularly when the 

cracks are small - the approximation satisfies these requirements. 

Errors at short crack-lengths could be further reduced by using the 

tip stress or the mean stress instead of the maximum stress*^. The tip 

stress is the stress at the site of the crack-tip in the uncracked body, 

and the mean stress is the average stress over the crack site in the 

uncracked body. Both these approximations have the disadvantages that 

the detailed stress distribution along the crack site must be known and 

that the results may not be conservative. For many configurations which 

are susceptible to cracking the stress aonoentvat'Lon factors are known, 

but the detailed stress field is not. The existence of residual stresses 

at the edges of holes can readily be included in the methods considered 

by including them in the definition of the maximum stress. 

The optimum position for the transition from the short crack 

approximation to the long crack approximation depends on the type of 

loading. For a crack of length £ at the edge of a hole of radius R , 

the optimum occurs at £/R — 0.1 for remote loading, at £/R — 0.15 

for localized loading on the perimeter of the hole and at £/R — 0.25 

for a pressurized hole. The difference between the approximate and the 

numerical stress intensity factors was greater for a hole with two 

cracks than for a hole with one crack in the case considered (remote 

loadings). The differences were larger for loads at the hole edge than 

for remote loading, although in all cases the largest differences 

(>10%) are confined to a narrow band near the transition from short 

cracks to long cracks. The errors in crack growth-times AN are a 
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function of the initial crack-length as well as the final crack-length; 

the errors are a maximum when the initial crack-length is close to the 

length at which the maximum error in the stress intensity factor occurs. 

The variations of the growth-times derived, assuming a power law 

dependence on K , from the numerical results are larger for loading at 

the hole than for remote loading. If the initial crack-length is one 

hundredth of the hole radius and the final crack-length up to five times 

the radius the variations are between -20% and +10% for remote loading 

(see Fig 2.6), between -20% and +50% for a localized force on the hole 

(see Fig 2.18) and between -25% and +40% for an internal pressure in the 

hole (see Fig 2.19). 

These variations will usually be less than the variations in the 

crack growth-rates due to uncertainties in both materials data and 

applied stresses. The approximate results are always conservative for 

the shorter cracks, ie if the final crack-length is less than 0.6R 

(m = 2,3) or less than 2R (m = 4) for remote loading, less than R 

(all m) for a localized force and less than 3R (all m) for an internal 

pressure. The dependence on m is not straightforward, but the errors 

are usually largest for m = 4 over the whole range of crack-length for 

remote loading and at long crack-lengths for loading at the edge of the 

hole. 

Examination of Fig 2.12 suggests that the radius of curvature of 

the ellipse p at the pdsition of the cracks takes the place of the 

radius of the circular hole in determining the transitions from 'short' 

to 'long' cracks, i e the transition occurs at £/p = 0.1 for all 

ellipses. The percentage differences in the normalized stress intensity 

factors near the transition increase as the ellipse becomes narrower 

(h/c decreasing). However very small values of h/c imply small values 

of p and practical crack-lengths £ will result in large values of 

2/p where the differences are small. The growth-times obtained for an 

initial crack-length of 0.02c and final lengths up to 1.4c are conserva-

tive over the whole range for h/c = 0.5, 1, 2 and 4; the results for 

h/c = 0.25 are slightly non-conservative (a few per cent) for £^/c ^ 

0.1 (see Figs 2.13 to 2.15). In general the variations from the 

numerical results increase as m increases; they are between +3% and 

-23% for m = 2 , +3% and -46% for m = 3 , and +4% and -54% for m = 4 . 

The largest errors are for h/c = 0.5 because ijc. = 0.02c for that 

ellipse corresponds to an initial crack-length very close to the tran-

sition between the short and long crack approximations. The errors are 
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smallest for the two extreme cases h/c = 4 and 0.25 - they will be 

smaller still for h/c > 4 and h/c < 0.25 . 

27 

Baratta and Neal have shown that the stress oonoentTation factor 

at a U-shaped notch is the same as that of an elliptical notch if the 

radius of curvature and the notch-length are the same; the stress field 

through which a crack would grow must therefore be very similar for the 

different notches. Therefore approximations based on for the stress 

intensity factor of short cracks will be similar in accuracy for both 

types of notches. For long cracks the type of the notch will be less 

important in determining K . The transition from 'short' to 'long' 

cracks will, again, be determined by the radius of curvature at the end 

of the notch. 

28 

Recently, Murakami has calculated stress intensity factors for 

cracks at semi-circular notches in the edge of strips subjected to 

uniform stress. Comparison of his results with approximations obtained 

using the method described here show errors of the same order as those 

for a cracked hole (Fig 2.5). Thus the approximate methods suggested 

here will produce useful engineering estimates of strength and fatigue 

lifetimes for cracks from notches of differing geometries for which the 

stress coMCgMtrattOM factor is known. 

In section 2.2.5 the approximate stress analysis used to derive 

stress intensity factors for cracks at the edge of holes in the absence 

of other boundaries was applied to a rotating disc with one or two 

cracks at the bore. For this configuration the geometry factor does not 

decrease continuously as the crack-length increases, as in previous 

sections, but decreases initially and then rises again because of the 

interaction between the crack-tip and the outer boundary of the disc. 

Despite the more complex behaviour of Y the simple stress analysis 

gives a good approximation (see Fig 2.22) and would lead to reasonable 

estimates of growth-times in fatigue. The short crack approximation 

overestimates the stress intensity, hence calculations of residual 

strength and growth-times AN will be conservative for short cracks. 
2.4 Conclusions 

(1) Structural components often contain stress concentrators, such 

as holes and notches, at which cracks are initiated; approximate stress 

intensity factors for these cracks can be obtained by a simple combina-

tion of the 'short crack' and 'long crack' limits. 
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(2) The errors introduced due to the approximations are in general no 

more than (and they are often less than) those due to the uncertainties 

in service loads and material properties. 

(3) Static strength calculations of components with short cracks are 

always conservative, ig they err on the side of safety; and because much 

of the fatigue life of a component is spent while the cracks are short 

the calculated lifetime is usually also conservative. 

(4) These approximations are particularly applicable to damage-

tolerant design calculations which are concerned with short cracks; and 

the built-in safety-factor will not incur excessive weight penalties 

since the errors are small in this region. 

(5) Any approximate method of stress analysis which results in errors 

in stress intensity factors similar to those discussed in this chapter, 

will be acceptable for most engineering applications. 
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CHAPTER 3 

CRACKS NEAR BOUNDARIES^^ 

The tip of a growing crack is often close to structural boundaries 

(see Figs 1.1 to 1.18) and this will influence the stress intensity 

factor. In this chapter a method is developed which takes into account 

the effects on the ciack of nearby boundaries. Both the proximity to 

the crack-tip and the shape of the boundary are important. The shape of 

the boundary is described by the radius of curvature of that part of the 

boundary which is nearest to the crack. Configurations in which the 

boundary intersects the crack are considered in later chapters. Stress 
2-4 

intensity factors for many simple configurations are already available 

but these configurations seldom model adequately real engineering 

structures. The compounding method developed here is a quick and versa-

tile way of extending these solutions to other, more complex, configura-

tions for which the stress intensity factors are not known. An empirical 
29 30 . 31 

method which was used by Figge and Newman , Smith and Liu , is a 
special case of compounding but its generality appears not to have been 

realized or investigated. 

In this chapter only two-dimensional configurations are considered. 

Although, the method may also be used to obtain solutions to complex 

three-dimensional configurations, applications are restricted by the 

small number of ancillary solutions available for simple three-

dimensional configurations. The compounding method is developed, tested 

against known solutions (section 3.2.1) and used to solve a previously 

unsolved problem (section 3.2.2). 

3.1 The compounding method 

A configuration containing a crack may have several boundaries, 

eg holes, other cracks or sheet edges; all these will influence the 

stress intensity factor at the tip of the crack under consideration. 

The principle of the compounding method presented here is to obtain a 

solution for the stress intensity factor by separating the complex con-

figuration containing a crack into a number of simpler ancillary con-

figurations which have known solutions. Each ancillary configuration 

will, usually, contain only one boundary which interacts with the crack. 

The contributions to the final stress intensity factor are compounded 

neglecting any effects due to boundary-boundary interaction. The error 

term, due to neglecting these effects, is formally derived in 

Appendix D. 
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Consider the configuration shown in Fig 3.1a containing a crack 

near to a stress free boundary Bj ; the configuration is subjected to 

an applied stress system on its boundary which is remote from 

the crack. Let the stress intensity factor at one of the crack tips be 

denoted by Kj . If the stress free boundary B were absent from the 

configuration, stresses Sj would occur at the site of Bj ; the 

stress intensity factor, in the absence of internal boundaries, is now 

given by K (Fig 3.1b). The original configuration can be obtained by 

the superposition of 

(i) the cracked configuration with applied stress SQ on B^ 
without an internal boundary (Fig 3.1b); and 

(ii) the cracked configuration with zero stress on B_ and -S. 
on BJ (see Fig 3.1c). 

Thus the stress intensity is given by 

K| = K + K* (3.1) 

where K* is the stress intensity factor when the only applied stress 

is -S on Bj . Similarly, for a second boundary, say, the 

stress intensity factor would be given by 

K2 = K + K2 ' (3.2) 

If the two boundaries Bj and Bg are present together (Fig 3.2a), the 

resultant stress intensity factor K is given by the superposition of 

Fig 3.2b&c as 
K = K + K* (3.3) 
r r 

where K* is the stress intensity factor when the configuration has 

zero stress on B^ , and stresses -Sj and -S^ on Bj and B^ 

respectively (Fig 3.2c). 

If the two boundaries do not interact with each other then, by 

superposition, K* is given by 

K* = K* + K* . (3.4) 
r I 2 

If they do interact there will be an extra term which is denoted by 

K , 
G K* = K* + K* + K . (3.5) 

r 1 2 e 

Combining equations (3.1), (3.2), (3.3) and (3,5) gives 

K = K, + K_ - K + K . (3.6) 
r 1 2 e 
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Thus the stress intensity factor for a crack in a configuration with 

multiple internal boundaries can be expressed in terms of stress 

intensity factors derived from configurations with single internal 

boundaries, apart from a correction term. In general for N boundaries 

B (n = 1,2; ,N), the resultant stress intensity factor is given by 

N 

K = K + ) ( K - K ) + K 

n= 

or 
N 

n=l 

(3.7) 

« 

where Q denotes a normalized stress intensity factor such that 

K /K and Q = K /K ; Q is the correction term due 
n e e e 

to the interaction of the N boundaries. If Q can be estimated or 
e 

can be shown to be small (^1), then equation (3.7) can be used to build 

up solutions to complex configurations from known simpler ones. 

An empirical method, which has been used^^ ^^ to obtain approxi-

mate stress intensity factors, states that in the case of two boundaries 

(3.8) 

If we write Qj = 1 + a and = I + 6 , then a and g are usually 

less than unity. It follows from equation (3.8) that Q is given by 

Q = 1 + a + 
r 

+ (3.9) 

Equation (3.7) for two boundaries becomes 

1 + ct + 3 + Q (3.10) 

Thus equations (3.9) and (3.10) are the same but for a correction term 

ag or Q and the empirical expression, equation (3.8) is seen to be a 

special case of equation (3.7). If the correction term is small the two 

methods will give virtually the same result. However, this will not be 

so if a,3 ^ 1 , and the meaning of the term ag is undefined. 

The function Q is a generalization of the geometry factor Y intro-
duced in Chapter 2; in some configurations Q could be identical to 
Y , but this will not be so in general. 
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The correction term Q can be expressed formally using the 
^ . 3 2 

Schwarz alternating technique which has been described by Sokolnikoff 
33 

and used to determine stress intensity factors by Smith, et al and 

also used in papers by Kanazawa, et at . The term Q can be expected 

to be small provided that the boundaries are not too close to each other. 

A derivation of the correction term for the special case N = 2 is con-

tained in Appendix D (Fig 3.3). 

3.2 Application to plane sheets 

In this section approximate compounded solutions are compared with 

known solutions for three different types of boundary. These boundaries, 

each characterized by different radii of curvature p , are (see section 

3.2.1) another crack (p = 0), a circular hole (p = hole radius) and a 

straight edge (p = =°) . Boundaries with a large radius of curvature will 

have an effect over a larger distance than boundaries with a small 

radius. 

The approximate formula, for N boundaries. 

N 

Qp - 1 + - I) (3.11) 

n= 1 

is used to compound stress intensity factors for configurations with 

known solutions and, by comparison, it is shown that Q (the term 

omitted from equation (3.11)) is small (-ie ^1). The magnitude of Q 

will depend on the number, nearness and shape of the boundaries. As 

errors in Q due to using equation (3.11) will increase as N 

increases multiple boundaries are also considered. 

In section 3.2.2 an approximate stress intensity factor is 

obtained for a crack in a half-plane between a hole and the edge of the 

half-plane. 

3.2.1 Test solutions 

The configurations shown in Figs 3.4 to 3.6 for which solutions 

are known, are used as test cases to illustrate and assess the method. 

These represent widely different boundary effects, namely a pair of 

boundaries of infinite, finite or zero radius of curvature in the path 

of the crack. 

Consider the configuration shown in Fig 3.4 for a crack located 

eccentrically in a finite width sheet subjected to a uniaxial tensile 
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stress. Fig 3.7 shows the appropriate ancillary configurations, for 

which the stress intensity factors are given in Case 1.1.11, Ref 2. The 

normalized stress intensity factors Q for the crack in Fig 3.4 are 

obtained by compounding from equation (3.11) with N = 2 , ie 

Q, + Q, 

For tip A in Fig 3.4, 

1 . (3.12) 

and Q are the normalized stress 

intensity factors at the left hand tip in Fig 3.7a&b respectively and, 

for tip B, Qj and are the normalized stress intensity factors for 

the right hand tip in Fig 3.7a&b respectively. Comparison of Figs 3.4 

and 3.7 shows that we require c = b and d = bj + e : in this confi-

guration K = a/jra . Values of the opening mode normalized stress 

intensity factor K^/o/Ta^ obtained from equation (3.12) are 

compared in Table 3.1 with the results given in Case 1.1.5, Ref 2 for 

a/b ^ 0.7 and e/bj = 0.0 and 0.8 . 

Table 3.1 

Comparison of values of Kj/(a/ira) for an eccentric crack in 

a finite width sheet subjected to a uniaxial tensile stress 

e/b = 0.0 e/b] = 0.8 

a 
Tips A and B Tip A T ^ B 

b 
Compounded 

Case 
1 1 5 

Compounded 
Case 
1 1 5 

Compounded 
Case 
1 1 5 

results 
(Ref 2) 

results 
(Ref 2) 

results 
(Ref 2) 

0.0 1.000 1.000 1.000 1.000 1.000 1.000 
0.1 1.005 1.005 1.003 1.003 1.002 1.003 
0.2 1.020 1.021 1.011 1.014 1.009 1.012 
0.3 K047 1.05 1.03 1.03 1.02 1.03 
0.4 1.09 1.10 1.05 1.07 1.04 1.05 
0.5 1.15 1.18 K09 1.11 1.06 1.08 
0.6 1.23 1.29 ^15 1.19 1.08 IJl 
0.7 K34 1.48 1.24 1.30 1.11 1.15 

In a similar manner solutions are obtained for configurations in 

Figs 3.5 and 3.6; the required ancillary solutions were obtained from 

Case 1.3.5 and Case 1.2.2 in Ref 2. Compounded results for the test 

case in Fig 3.5 (b/R = 1) and the test case in Fig 3.6 (middle crack of 

three) are shown in Table 3.2 and compared with the solutions given in 

Case 1.3.7 and Case 1.2.8 respectively in Ref 2. 
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Table 3.2 

Comparison of values of Kj/Ca/rra) for the configurations 

in Figs 3.5 and 3.6 

Fig 3.5 Fig 3.6 

a 
(b/R = 1) (middle crack of three) 

b 
Compounded Case 1.3.7 Compounded 

1 
Case 1.2.8 

results (Ref 2) results (Ref 2) 

0.0 1.44 1.47 1.00 1.00 
0.1 1.45 1.47 1.00 1.00 
0.2 1.46 1.49 1.01 1.01 
0.3 1.49 1.52 1.02 1.02 
0.4 1.53 1.56 1.05 1.05 
0.5 1.59 1.63 1.08 1.08 
0.6 1.68 1.72 1.12 1.13 
0.7 1.81 1.87 1.19 1.20 
0.8 2.02 2.12 1 .31 1.33 
0.9 2.43 2.64 1.57 1.60 

Errors in the stress intensity factors obtained for the configura-

tions in Figs 3.4 to 3.6 are summarized in Table 3.3 and indicate two 

trends. Firstly errors increase as the crack-length increases relative 

to the distance to a boundary. Secondly at a fixed crack-length errors 

tend to increase with increasing boundary radius. Thus it appears that 

for a/b up to 0.8 the errors are probably <10% for straight bounda-

ries, <5% for circular boundaries (two radii apart) and 1.5% for other 

crack boundaries. 

Table 3.3 

Percentage errors for the compounding method 

Percentage error 

b Straight boundaries Circular boundaries Crack boundaries 
(Fig 3.4) (Fig 3.5) (Fig 3.6) 

0.0 0.0 2.1 0.0 
0.2 0.2 2.1 0.0 
0.4 1.6 2.0 0.0 
0.6 4.3 2.4 0.5 
0.8 17.9 5.0 1 .4 

As an example of a solution to a problem involving more than two 

boundaries, consider the configuration in Fig 3.6 with an odd number 

(>3) of cracks. The factor for the middle crack, with N = 5, 7 

and 11 in equation (3.11) can be compounded from the same ancillary 



solution, Case 1 .2,2, Ref 2, as was used for the three-crack problem. 

The results are given in Table 3.4 and compared with the known solution 

given in Case 1.2.8, Ref 2. It is seen that, at any fixed crack-length, 

the errors increase with the number of cracks; this illustrates the 

effect of the increasing interaction between boundaries which has not 

been taken into account in equation (3.11). 

Table 3.4 

Comparison of values of Kj/ (a/ira) for the central crack 

of an odd number of collinear cracks subjected to a 

uniform tensile stress 

5 cracks 7 cracks 1 1 cracks 

a 
b Compounded 

Case 
Error Compounded 

Case 
Error Compounded 

Case 
Error 

results 
(Ref 2) 

% results 
(Ref 2) 

% results (Ref 2) 
% 

0.0 1.00 L,00 0 .0 KOO 1.00 0 . 0 KOO KOO 0 .0 
0 .2 I .O I 1 .01 0 .0 1.01 1 .02 0.1 K02 1.02 0 .1 
0 .4 K 0 6 L 0 6 0 .3 1 .06 1 .06 0 . 4 L.06 U07 0 .7 
0 .6 I J 5 1.16 1 .4 1,16 1 J 7 1 .4 1 ^ 6 I U 9 2 .0 
0.8 1.36 I .41 4.1 K37 1.46 5 . 8 L 3 8 1.49 7.3 

It can therefore be concluded that the errors due to neglecting 

boundary interactions are small (a few per cent) . Such errors are 

within the allowable tolerances for many engineering applications. 

3.2.2 A solution for two different boundaries 

No comparison solution is available for this problem of a crack 

in the vicinity of a hole in a half-plane subjected to a uniaxial ten-

sile stress (Fig 3.8), but it illustrates how the relative effects of 

boundaries can change as the distance from the crack-tip changes. The 

ancillary solutions required for this problem are given in Cases 1.1.11 

and 1.3.5 in Ref 2. Compounded stress intensity factors at both crack-

tips are shown in Fig 3.8 for R/b = 1 . Three ratios of the distance 

between the crack and the straight boundary c and the distance between 

the crack and the hole b are considered, namely c/b =0.5, 1 and 2. 

For c/b =0.5 the tip adjacent to the straight boundary (tip B) has a 

higher stress intensity factor for short cracks (a/b <0.35). As a/b 

increases the tip nearer to the hole (tip A) has the higher stress 

intensity factor. This behaviour is due to the tip A entering the 

highly stressed region in the vicinity of the hole whilst tip B, 

although very close to the straight boundary, is for a/b > 0.35 in a 

region of lower stress resulting in a lower stress intensity factor. 

For the other values of c/b considered the crack-tip adjacent to the 



42 

hole is more critical for all a/b . If the straight boundary is 

remote from the hole (c/b = 2 say) the stress intensity factor for the 

tip at B initially reduces slightly as a/b increases since the stress 

field due to the hole is decreasing. For larger a/b the effect of the 

straight boundary causes the stress intensity factor to increase. Con-

sideration of the errors estimated in section 3.2.1 suggests that this 

solution is probably accurate to better than 10%, tg adequate for most 

engineering purposes. 

3,3 Discussion and conclusions 

The compounding method has been shown (section 3.2) to produce 

approximate stress intensity factors for cracks in the vicinity of 

multiple boundaries in plane unstiffened sheets. The errors in the 

approximations increase as the length of the crack increases, as the 

number of boundaries increases, and as the radii of curvature of the 

boundaries increase. This method can be used to solve many plane crack 

problems, eg with the ancillary configurations used in section 3.2 

approximate stress intensity factors can be determined for a crack 

between holes of unequal radii unequally spaced on either side of the 

crack and also any number of equal length, unequally spaced collinear 

cracks. This latter configuration can be extended by using results in 
35 

Savin to any number of unequal length, unequally spaced collinear 

cracks. Results for these ancillary configurations and many others 

have been collected together and presented as curves of K/K by Rooke 
2 

and Cartwright . 

The accuracy of the method is adequate for most engineering 

applications: the errors in the stress intensity factors are of the same 

order as those considered in Chapter 2, therefore the uncertainties in 

fracture mechanics calculations (residual strength and fatigue lifetimes) 

will be no more than and often less than those due to uncertainties in 

loading or material properties. 
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CHAPTER 4 

CRACK(S) AT AN UNLOADED HOLE^^ 

With the advent of the damage tolerant design philosophy for air-

frames the assumption is made that small cracks exist at the start of 

service life; this implies that, unless the growth behaviour of small 

cracks can be predicted, over-conservative safety factors may have to be 

used. This can mean either structural weight penalties or pessimistic 

estimates of lifetimes and inspection intervals. Regions of high 

stress, such as those at the edge of a hole or cut-out are likely sites 

for cracks. When these cracks are small the stress intensity factor 

varies rapidly with crack-length. Both this rapid variation and the 

power law dependence (see Chapter 2) imply that a considerable fraction 

of the fatigue life of a structure with a cracked hole is spent while 

the crack is small. Hence the reliable estimation of lifetime requires 

accurate estimation of stress intensity factors for short cracks. 

Some stress intensity factors for simple configurations of cracks 

at the edges of holes are available, however the solutions that are 

needed in practice are usually for complex configurations having other 

boundaries near the cracked hole, and these are not generally available. 

The theory of compounding developed in the previous chapter is further 

developed in this chapter and the method is used to calculate stress 

intensity factors for cracks at the edges of holes. In the original 

development of the compounding theory none of the boundaries crossed the 

crack. However in this case the crack starts at a boundary, namely the 

edge of the hole. A modification to the theory is needed and the con-

cept of the 'equivalent crack' is introduced in section 4.1. 

It was shown in Chapter 3 that the compounding method gave accept-

able results for plane problems in which the interaction between the 

boundaries had a negligible effect on the stress intensity factors. 

However when a hole with a crack is near another boundary this inter-

action may not be negligible and a method of estimating its effect, by 

using the known stress conaentrat-Lon factor for the uncracked configura-

tion, is presented in section 4.2. It will be seen that this is a power-

ful addition to the compounding technique since it ensures accuracy at 

small crack-lengths. 

The procedure is tested in section 4.3 by comparing the compounded 

solution for two cracks of equal length at a central hole in a strip, 

subjected to uniaxial tension remote from the crack, with a numerical 
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solution given in Case 1.3.1, Ref 2; the differences between the solu-

tions are small (a few per cent). Solutions are obtained for two other 

configurations in section 4.4, namely, a crack at the edge of a hole 

located eccentrically in a strip and a crack at the edge of a hole near 

another circular hole. In all cases opening mode stress intensity 

factors (K ) are calculated. 

It should be noted that the application of the compounding method 

to cracks at the edges of holes requires not only the existence of 

stress intensity factors for a few simple geometries to be known, but 

also stress aonoentration factors for the original uncracked configura-

tions. Many stress ooncentvat-Lon factors have been collected together 

1 7 
by Peterson 

4.1 Equivalent crack concept 

If a boundary intersects the crack, eg the crack is at the edge of 

a hole, the effects of the other boundaries cannot usually be evaluated 

because there are unlikely to be solutions to the ancillary configura-

tions. It is necessary to simplify the ancillary configurations by 

replacing the crack and its intersecting boundary by an 'equivalent 

crack'. This fictitious or equivalent crack is defined in terms of the 

stress intensity factor of the original crack at the boundary in the 

absence of all other boundaries. The location of the equivalent crack 

with respect to the boundaries, is determined by reference to the 

original configuration. 

4.1.1 One crack at the edge of a circular hole 

Let us consider a radial crack of length £ at the edge of a 

circular hole of radius R in a sheet subjected to a uniform uniaxial 

tensile stress a remote from the hole. The stress acts in a direc-

tion perpendicular to the crack. The hole is located between two 

boundaries Bj and such that the distance, along the crackline, 

from the centre of the hole to Bj is bj , and to B^ is b^ (see 

Fig 4.1). 

In accordance with the procedures in the previous chapter for com-

pounding stress intensity factors, the above configuration is represented 

by several simpler ancillary configurations. The first ancillary con-

figuration will be that of a radial crack at the edge of a hole in a 

large sheet subjected to the remote stress a acting perpendicular to 

the crackline (see Fig 4.2a). Let the stress intensity factor of the 
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crack in this configuration be K . The normalized stress intensity 

factor Q is defined by 

Q = — , K = a / r r a . ( 4 . 1 ) 
° K 

The configuration of the crack at the edge of the hole must be 

simplified before the interactions between the crack tip and the 

boundaries Bj and can be evaluated since there are few ancillary 

solutions for a crack at the edge of a hole in the presence of other 

boundaries. It is therefore postulated that the hole/crack combination 

can be replaced by an 'equivalent crack' for the purposes of evaluating 

the effects of boundaries other than the hole. The interactions 

between the boundaries and the tip A of the equivalent crack are 

assumed to be the same as the interactions between the boundaries and 

tip A of the original crack. 

The equivalent crack is defined such that it has the same stress 

intensity factor K as the crack at the edge of the hole in the 

absence of all boundaries. This implies the same crack-tip shape, since 

the opening of the crack in the vicinity of the tip is proportional to 

the stress intensity factor. The distance of the tip of the equivalent 

crack from the boundaries is determined (see later) by the distance of 

the original tip from the boundaries. 

The equivalent crack is postulated to be an isolated crack of 

length 2a' in a large sheet subjected to a uniform tensile stress a 

acting remote from the crack and perpendicular to it; the length a' 

is determined by the condition that the stress intensity factor must be 

equal to K , ie 

K = o/wa' = Kg (4.2) 

The combination of equations (4.1) and (4.2) leads to 

a' = Q^a . (4.3) 

The equivalent crack must conform with certain physical limits if it is 

to be an adequate replacement for the original crack; they are 

(i) as the original crack-length £ tends to zero, the equivalent 

crack-length a' must also tend to zero; and 
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(ii) when the radius of the hole is small compared to the original 

crack-length, the hole/crack combination behaves like an isolated 

crack of total length a + R — a , and the equivalent crack must 

do the same. 

From equation (4.3) it follows chat: 

limja'^ = a limlQ^i = C , (4.4) 

since from Case 1.3.3, Ref 2, it follows that 

lim]Q„| = 0 , (4.5) 
&-K) 

therefore condition (i) above is satisfied. Also, from equation (4.3), 

a , (4.6) lim |2a'| = 2a lim } 
a/R-x^ a/R-^ 

since from Case 1.3.3, Ref 2, it follows that 

therefore condition (ii) is satisfied. 

Thus, in order to evaluate the stress intensity factor for the 

crack in Fig 4.1, solutions to the ancillary configurations shown in 

Fig 4a-c are needed. The dimensions bj and b^ shown in Fig 4.2b&c 

are related to bj and b^ in the original configuration (Fig 4.1), by 

considering the distance from tip A to the boundaries. The distance b| 

in Fig 4.2b is determined by the condition that the distance from tip A 

to the boundary Bj , along the crackline, must be the same in the 

ancillary configuration as in the original configuration. Comparison of 

Figs 4.1 and 4.2b shows that 

bj - a' = bj - a . (4.8) 

If a similar condition is used to determine b^ , namely that the dis-

tance from tip A to boundary should be the same, then 

bg + a' = bg + a . (4.9) 

However this condition can lead to overestimating the effect of in 

some circumstances. If 2a' > (a + R) , then the uncracked ligament 
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between and the nearer tip of the equivalent crack is less in 

the ancillary configuration than in the original if bg is determined 

by equation (4.9). This would lead to an overestimate of the effect of 

on the stress intensity factor particularly if B^ is close to the 

hole. To avoid this, equation (4.9) is used when 2a' < (a + R) and 

the condition that the distance between tip B and boundary should 

be the same as the distance between the edge of the hole and B^ is 

used when 2a' > (a + R) . This condition leads to 

= b. R 2a' > (a + R) . (4.10) 

Since a' = Q a , the three conditions can be written as: 

b j' - a' = b J - a , 

b; + a' b, + a , 

b , - R , 

all q 
0 ' 

: (' ^ f) ' 

' ' o > K ' • 

> (4.11) 

The introduction of the equivalent crack leads to a modification 

of the basic compounding formula given by equation (3.7) in the previous 

chapter. The compounding equation becomes 

K ^0 + (4.12) 

where is the stress intensity factor of the equivalent crack of 

length 2a' in the presence of the nth boundary only. By normalizing 

with respect to K as before, and by using equation (4.1), the 

normalized resultant stress intensity factor becomes 

N 

1 
(Q' - 1) (4.13) 

where qa = 
K' 
n 

K' 
n 

o/na 

(4.14) 
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4.1.2 Two equal-length cracks at the edge of a circular hole 

In this section we consider two diametrically opposite radial 

cracks of equal length £ at the edge of a circular hole of radius R 

in a sheet subjected to a uniform uniaxial tensile stress a acting 

remote from the hole in a direction perpendicular to the crackline. 

There are two boundaries Bj and in the vicinity of the hole (see 

Fig 4.3). The first ancillary configuration is that of two diametrically 

opposite radial cracks of equal length at the edge of a hole in a large 

sheet with a uniform uniaxial tensile stress acting perpendicular to the 

crackline remote from the hole. Let the stress intensity factor for 

tip A be KQ (the value for tip B will be the same in this case). The 

other ancillary configurations required are the same as shown in 

Fig 4.2b&c. 

The equivalent crack is again of length 2a' and is given by 

equation (4.3). 

The equivalent crack satisfies the required physical limits: 

lim|a'[ = a limip^l = 0 , (4.15) 

since, from Case 1.3.3, Ref 2, 

limjQ [ = 0 , (4.16) 

and 

lim |2a'| = 2a lim IQq i = 2a 
a/R-^ a/R-^ 

(4.17) 

since, from Case 1.3.3, Ref 2, 

lim |Q [ 1 (4.18) 
a/R-x=o 

The distances bj and are determined by similar conditions to 

to those used in the previous section: 

(i) tip A is the same distance from Bj in both the ancillary con-

figurations and the original; 

(ii) tip A is the same distance from in both configurations if 

a' < a ; or 

(iii) tip B is the same distance from B„ in both configurations if 

a' > a . 
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and 

bj - a' b) - a , 

+ a' = bg + a , 

bg - a' = bg - a , 

all Q 0 

Q o > 

(4.19) 

The compounding equations for determining the stress intensity-

factors will again be given by equations (4.12) to (4.14). 

4.1.3 Two unequal-length cracks at the edge of a circular hole 

If the configuration described in the previous section has two 

cracks of unequal lengths, and , at the edge of the hole (see 

Fig 4.4), then the definition of the equivalent crack will depend on 

which tip is under consideration. The different tips will have 

different stress intensity factors. The first ancillary configuration 

to be considered is that of the hole with two unequal cracks in a sheet 

with a uniform uniaxial tensile stress a remote from the hole, acting 

perpendicular to the crackline. Let the stress intensity factors at 

tip A and tip B be K and K respectively. If tip A is the tip 
OA OB 

under consideration, then the equivalent crack-length is defined by 

"oa" 

K 
with 

OA 
'OA K 

(4.20) 

where 2a = a, + a^ 
A B 

£ . + £ _ + 2R 
A B 

(4.21) 

If tip B, then the equivalent crack-length a^ is defined by 

= QOB* with 'OB 

K 
OB 

K 
(4.22) 

The normalized stress intensity factors Qq^ and Q 

evaluated by Tweed and Rooke^^. The crack-lengths a' 
OB 

have been 

and satisfy 
A B 

the required physical limits at both long and short crack-lengths. The 

distance from the centres of the equivalent cracks to the boundaries B 

and B^ in the ancillary configurations are determined by similar con-

ditions to those given in the previous section. Thus, for tip A 
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and 

••I " "i " •'i " "A • 

4 + ''2* "A • 

QoA 

(QA 

(QA 

< 

> 

(4.23) 

and for tip 

and 

t; + *B = b, + ag , 

, 

all q OB 

Q O B ^ 

QOB ^ 

(4.24) 

The stress intensity factors are again determined from equations (4.12) 

to (4.14) for either tip A or tip B. 

4.2 Boundary-boundary interactions 

In the plane problems considered in Chapter 3, it was shown that 

boundary-boundary interaction effects were small, and that only small 

errors resulted from neglecting Q , the contribution to the stress 

intensity factors arising from such effects. However for cracks at the 

edges of holes near other boundaries this may not be the case, and Q 

in equation (4.13) may not be small. An indication of the likely 

importance of Q may be obtained by considering the stress at the site 

of the crack in the uncracked configuration. If the value of this stress 

in the configuration with all the boundaries present is markedly-

different from that with no boundaries, then boundary-boundary inter-

actions will be important. If they are important in the uncracked con-

figuration, then they will be important in the cracked configuration 

also. For cracks at holes, the stress at the crack site is often 

expressed in terms of the stress coMCgMtrattOM factor on the 

boundary of the hole. 

In Chapter 2 a close relationship was demonstrated between the 

stress concentration factor in the uncracked configuration and the stress 

intensity factor of short cracks. This relationship will be used here 

to ensure that the calculation of Q leads to accurate values of Q 

at short cracks. The contribution of 

as the crack-length increases. 

to Q is less significant 



In the derivation of the compounding method in Chapter 3, the term 

Q was shown to arise because stresses induced on any one boundary site 

by the presence of the other boundaries, were not allowed for. The 

formal relationship between these stresses and Q was described in 
e 

Appendix D using an alternating technique. In general the evaluation 

of Q , by such a technique, is too time-consuming and costly; there-

fore a simpler approximate procedure is developed in this section. The 

unknown distribution of these stresses around the hole boundary is 

replaced by two equal and opposite localized forces P acting, on the 

hole perimeter, perpendicular to the crackline (see Fig 4.5). The magni-

tude of P is chosen so that the sum of the maximum tensile stresses 

e 

^^max^ for all the ancillary configurations without cracks, is equal to 

that in the real configuration without a crack. In general the maximum 

stress occurs at the edge of the hole at the site of the crack. 

In practice the magnitude of P is determined by considering the 

limiting values of the stress intensity factors for small cracks. For 

a short crack (length £) at the edge of a hole (radius R) in the region 

of maximum stress (a ) the stress intensity factor (K) becomes, as 
max 

£ tends to zero 

lim |K[ = 1.12a /TTT = 1 . 12K a/rrX (4.25) 

where 1.12 is the usual correction factor for a crack at a stress-free 

edge, and is the stress factor. The limits are 

determined for each stress intensity factor in the compounding equation 

Kr = Ko 

N 

I ) 

n-1 

K . (4.26) 
e 

The limiting values of K , K_ and Q' can be determined in terms of 
G r 0 n 

known quantities and that of K can be expressed in terms of the 

unknown force P 

e 

For cracks at the edge of a hole in a large sheet subjected to a 

uniaxial tensile stress a the stress intensity factor (K ) becomes 

t 
It is assumed that any other cracks that are present, will tend to zero 
length at least as fast as the crack under consideration. 
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lim |K I = 1.12 X Sa/IRE 
A/R+0 

(4.27) 

since a = 3a . For cracks at the edge of a hole subjected to 
max 

localized forces P the stress intensity factor K becomes 
a e 

1 im IK [ = 1.12 X — — /uT 
2P 
e 

nR 
(4.28) 

since a = 2 P / ( T T R ) 
max e 

Because a' 0 as £ -̂  0 {ie a/R 1), it 

follows that 

lim ]k' [ = lim | K ' [ = 
m' n' , n' 

&/R-X) 
n a 

(4.29) 

The stress a' is the stress at the centre of the crack site in the 
n 

uncracked ancillary configuration containing the nth boundary; it may 

be written in terms of the applied stress a , as 

o' = M'o , 
n n ' 

(4.30) 

where is the magnification factor on the stress due to the presence 

of the nth boundary a distance b^ away. may be greater or less 

than unity. 

Substitution of equations (4.27) to (4.30) into equation (4.26) 

gives 

lim jK 2o/w&<3 

N 

i ' " a 
n=l 

1) 
2P 
e 

mRo 
(4.31) 

However the limiting value for the stress intensity factor (K ) for 

small cracks in the original configuration must be given by 

lim {K } 
2/R-K) 

I . I (4.32) 

is the stress coMCgMtrattOM factor in t±ie original uncracked 

configuration. Comparison of equations (4.31) and (4.32) show that, for 

the two expressions to be equivalent, we must have 

1 + 

N 

n=l 

1) 
2P 
e 

irRo 
K (4.33) 



This determines P as 
e 

53 

P = ^ A R a 
e I 

(4.34) 

where A = - 3 
t 

N 

1 + 1) (4.35) 

In the special case when the only other boundaries are a pair of 

straight edges, -Le a hole in a strip, M' = 1 and 

(4.36) 

In other cases M' can be obtained from the stress distribution in the 
n 

uncracked ancillary configurations or from the stress intensity factors 

for the ancillary configurations, since it follows from the definition 

of and equation (4.30) that 

l imjq'l = M' (4.37) 
a'-K) 

The function A introduced in equation (4.34) and defined in 

(4.35) depends only on parameters of the uncracked configuration and 

hence P which is proportional to A depends only on the uncracked 

configuration. Thus the force P to be used in the calculation of Q 
° e e 

is a constant for any given configuration, and does not depend on the 

crack-length. In the special case of straight boundaries perpendicular 

to the crackline, the function A is particularly easy to interpret; 

it is, see equation (4.36), just the difference in the stress oonoentva-

ticn factors at the edge of the hole with the other boundaries present 

or absent. Thus the magnitude of Q which is proportional to P^ is 

determined by the stress concentration factors in the uncracked 

configuration. 

If the boundaries are not straight, equation (4.35) must be used 

to determine the function A i it can be written 

A = 

iN 

1) (4.38) 
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The first two terms are just the difference in the stress aoncentrat-Lon 

factors as before, but now A contains an extra term which will reduce 

A if is greater than unity: a reduction in A means a reduction 

in Q . The extra term arises because if the nth boundary is curved, 

eg a hole, it will affect the stress distribution at the site of the 

equivalent crack. When the contribution to the stress intensity factor 

is calculated for the nth ancillary configuration it will include this 

effect. This change in stress distribution is (see Appendix D) also the 

source of the boundary-boundary interactions. Thus in the case of the 

curved boundaries some of the contribution to due to boundary-

boundary interactions may be automatically included in the terms 

and therefore the contributions from will be less. This effect 

will be demonstrated in later examples in this thesis. 

The stress intensity factor for cracks at the edge of a circular 

hole subjected to localized loads has been obtained by Tweed and Rooke 

can be derived from their results which are given as Ky^Pg/nTj 

where = P /(2R) ; thus 

20 

K 

K 

K 

Pg/Trl 

P 
e 
2R 

avira 

(4.39) 

By using equation (4.34) in equation (4.39) we obtain 

e 
A 

71 
4' 

K 
(4.40) 

Plots of Q /A as a function of a/R are shown in Fig 4.6 for a single 

crack and for two equal-length cracks. 

4.3 Test configuration: cracks at a central hole in a strip 

In this section the stress intensity factor is evaluated for the 

crack-tip A in the configuration shown in Fig 4.7. The compounding 

method as modified in the two previous sections is used, and the 

results are compared with known results given in Case 1.3.1, Ref 2. 

Two radial cracks each of length I are situated (see Fig 4.7) at 

opposite ends of a diameter of a hole of radius R ; the distance between 

the tips is 2a , and the hole is located centrally in a long strip, of 

width 2b , such that the crackline is perpendicular to the strip axis. 

The strip is subjected, remote from the cracks, to a uniform uniaxial 
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tensile stress a in the direction of its axis. The ancillary configu-

rations required are shown in Fig 4.8. The strip edge nearer to tip A 

is B . and the other edge is B , (af boundaries B, and B„ in 
+1 - 1 1 z 

section 4.1) . 

The resultant normalized stress intensity factor is calculated 

from equation (4.13) which, for this case, becomes (n = ±1) 

o;, + oil (4.41) 

where is the normalized stress intensity factor for two cracks at 

the edge of a hole, in the absence of all other boundaries, and Q|j 

are the normalized stress intensity factors for a crack of length 2a' 

near to the edge of a uniformly stressed sheet; ^ is for the 

boundary nearer to the tip being considered (tip A in Fig 4.8) and Q^j 

for the boundary farther away from the tip. It follows from equation 

(4.19) that the distances b' and b' from the centre of the equiva-
+ 1 — 1 

lent crack to the near boundary and to the far boundary respectively are 

given by 

^:i 
I _ b - a all Q 

1 
0 

and 

b', + a' = b + a , 

b ' - a l = b - a 
— 1 

Qo < 1 > (4.42) 

The values of are given in Case 1.1.11, Ref 2, as a function of 

a'/b^j , From equation (4.42) and the definition of the equivalent 

crack it follows that 

^ 1 
= Qr 

= Qr 

i - 0 - q o ) 

0 - q o ) 

-1 
(4.43) 

Labelling boundaries with positive and negative integers has been 
introduced here, because it will be convenient when there are many 
boundaries (see later) crossing the crackline on both sides of the 
crack. 
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The boundary-boundary interaction term Q was obtained from 

Fig 4.6; in this configuration A is (Z* 3) 

boundaries are straight (see equation (4.36)) 

since the other 

The values of 

corresponding to the b/R ratios used are tabulated in Table 4. 

Table 4.1 

Stress concentration, factors for a central hole 
in a uniformly stressed strip 

b/R 10 5 4 3 2.5 2 

^t 
3.03 3.14 3.24 3.47 3.74 4.32 

The resultant stress intensity factor can now be obtained using 

is significant fo 

The results for Q 

equation (4.41); the contribution to Q from 

2, <0.3Q^; small values of b/R (at b/R 

are plotted in Fig 4.9 as a function of a/R . For a/R greater than 

the values shown a good approximation may be obtained by using the long 

crack limit described in Chapter 2, ie replacing the cracked hole by a 

crack of length 2a and using the solution for a cracked strip (Case 

1.1.1, Ref 2). The results for b/R = 10 differ by less than 1% from 

the results for b/R = ™ (te an infinitely wide strip). 

The cracked hole in a strip has been studied by Newman using a 

collocation technique; his results are reported in Case 1.3.1, Ref 2. 

The differences between the compounded 

tabulated in Table 4.2. 

and Newman's results are 

Table 4.2 

Q values for two equal-length cracks at the edge of a central hole 

in a uniformly stressed strip 

a 
R 

b/R = 4 b/R = 2 
a 
R Compound Newman % diff Compound Newman % diff 

1.02 - — — 0.655 0.653 <1 
1.04 0.661 0.659 <1 0.895 0.882 1 
1.08 0.862 0.851 1 1.19 1.14 4 
1.20 1.11 1.08 3 1.63 1.50 9 
1.40 1.22 1.18 4 1.95 1.82 7 
1.60 1.25 1.22 3 - - — 

2.00 1.28 1.28 <1 - — 
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It can be seen from Table 4.2 that the differences between the two 

solutions become larger as the hole radius increases. However even for 

a hole with a diameter equal to half the strip-width (b/R = 2) the 

maximum difference is less than 10%. 

4.4 Other configurations 

In this section two configurations will be considered in order to 

further illustrate the equivalent crack concept, and the role of 

boundary-boundary interactions. The two configurations are a radial 

crack at the edge of a hole which is located off the centre line in a 

strip, and a radial crack at the edge of a hole which is near another 

hole in a large sheet (see Fig 4.10). The stress intensity factors are 

calculated, using the compounding method, for these two configurations. 

It is shown that for long cracks a good approximation to the stress 

intensity factor may be obtained by using the long crack limit 

(described in Chapter 2) modified by the presence of the extra 

boundaries. 

4.4.1 Crack at an off-centre hole in a strip 

A radial crack of length £ (tip to hole-centre distance = a) is 

situated (see Fig 4.10a) at the edge of a circular hole (radius R) in a 

long strip of width 2b ; the centre of the hole is a distance b_̂ j 

from the nearer edge of the strip, and b ^ from the farther edge. The 

crack is perpendicular to the axis of the strip which is subjected to a 

uniform uniaxial tensile stress a remote from the crack. The ancillary 

configurations required are shown in Fig 4.11. 

The resultant normalized stress intensity factor is again given by 

equation (4.41), where QQ is the stress intensity factor for a single 

radial crack at the edge of the hole, in the absence of all other 

boundaries, and are the same as before. It follows from equation 

(4.11) that the distances b' and b', , from the centre of the 
+ i — i 

equivalent crack to the near boundary and to the far boundary respect-

ively, are given by 

t;, - a' = - a , all Qg 

b^j + a' = b_j + a , 2a' < a + R 

and 

b', - a' = b , - R , 2a' > a + R . 
— i — 1 

(4.44) 
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The values of Q|j are again given in Case 1.1.11, Ref 2, as a function 

of a'/b|j ; from equation 

crack-length, it follows that 

of a'/b|j ; from equation (4.44) and the definition of the equivalent 

and 

bV 

'0 
+ 1 

- (' - o d 

^ (' - «o) 

- ( f - Qg) 

all Qg , 

2a' < a + R , > (4.45) 

2a' > a + R . 

The derivation of Q was given in section 4.2 and the values required 

may be obtained from Fig 4.6 providing that the function A is known. 

In this case, since other boundaries are straight, is given by 

equation (4.36) as (K - 3). The configurations studied in this 

section are described by b/R 5 and b ,/R 5, 4 and 3 with the 

corresponding stress concentration factors, X = 3.14, 3.22 and 3.42. 

The resultant stress intensity factor for this configuration can 

now be obtained using equation (4.41); the contribution to Q from 

Q is a maximum of 15% for b^^/R = 3, 6% for b^^/R = 4, and 4% for 

b^,/R = 5. 
+1 

The results are plotted as Q Vs a/R in Fig 4.12. Also 

included are results (dashed curve) obtained by assuming that the hole 

plus crack can be replaced by a crack of length (a + R) the near tip of 

which is the same distance from the boundary as the original tip. It 

can be seen that this approximation, as expected (see Chapter 2), 

approaches the compounded results at large values of a/R . 

4.4.2 Crack at a hole near another hole 

A radial crack of length £ (tip to hole-centre distance = a) is 

situated (see Fig 4.10b) at the edge of a circular hole of radius Rj 

which is located near another hole of radius R^ ; the crack lies 

between the holes along the line joining the centres which are a dis-

tance c apart. The distance from the centre of the cracked hole to 

the edge of the uncracked hole (boundary Bj) is bj (bj = c - R^). The 

sheet containing the holes is subjected, remote from them, to a uniform 

uniaxial tensile stress a acting in a direction perpendicular to the 

crack. The ancillary configurations required are shown in Fig 4.13. 
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The resultant normalized stress intensity factor is calculated from 

equation (4.13) which becomes (N = 1) 

Qr = QoQ; + Qe (4.46) 

where is the normalized stress intensity factor for a radial crack 

at the edge of a hole in an infinite sheet subjected to a uniform uni-

axial tensile stress, and Qj is the normalized stress intensity factor 

for the equivalent crack of length 2a' near a hole of radius . 

The distance between the centre of the crack and the edge of the hole is 

bj (see Fig 4.13). To ensure that the distance from the tip to the 

boundary B, is the same as in the original configuration, we need 

(4.47) 

a 
= Qr 1 + Qr 

— 1 

(4.48) 

The stress intensity factor for a crack near a hole in a uniformly 

stressed sheet has been given by Isida (see Case 1.3.5, Ref 2). The 

results depend upon the ratio R /c' (c' = bj + R ) which is given by 

R. 

T - ' + Qo + (4.49) 

Q was given in section 4.2 and the values required The derivation of 

may be obtained from Fig 4.6 provided that the function A 

In this case A is given by equation (4.35) as 

is known. 

A = % - 3M| (4.50) 

where Mj is the magnification factor on the applied stress as a dis-

tance c' from the centre of an uncracked hole of radius R„ ; it is 
23 u 

given by 

MI (4.51) 

for this configuration, c^ is the distance to the centre of the equiva-

lent crack when its length tends to zero; in other words (see Fig 4.13), 



60 

a'^0 
= b, + Rr R, (4.52) 

The configurations considered in this report are for bj/Rj = 4 , and 

Rg/R^ = 1, 5 and 10; the appropriate stress coMceMtrattOM factors and the 

corresponding values of A are given in Table 4.3. 

Table 4.3 

Stress conoentTation factors for a circular hole near another hole 
in a uniformly stressed sheet 

R^/R, M; A 

1 1.037 3.02 -0.09 
5 1.424 3.82 —0.45 
10 1.821 5.10 -0.36 

Since A is negative the correction term Q will be negative; 

this is because the replacement of the original cracked hole by an 

equivalent crack in the stress field modified by the second hole leads 

to an overestimate of the stress intensity factor. |Q |/Q_ < 3 % for 

R^/R, < I2Z for E^/R, 5, and < 8% for R /R̂  
r 

10 

The resultant stress intensity factor for this configuration can 

now be obtained from equation (4.46). The results are plotted as Q vs 

a/Rj in Fig 4.14. Also -included in Fig 4.14 are results (dashed curve) 

obtained by using the 'long-crack' approximation developed in Chapter 2, 

and allowing for the existence of another boundary, ie by assuming that 

the hole plus crack can be replaced by a crack of length (a + R), the 

near tip of which is the same distance from the other hole as the 

original tip. It can be seen that this approximation may be adequate 

for long cracks (a/Rj> 1.5), but as expected, is not suitable for short 

cracks since it tends to the wrong limit. 

4.5 Discussion and conclusions 

The compounding technique for calculating approximate stress 

intensity factors has been applied to cracks at the edge of circular 

holes which interact with other boundaries. A systematic way is pre-

sented of calculating the effect of boundary-boundary interactions, 

which had been neglected in Chapter 3. In the case of two equal length 

cracks at the edge of a circular hole located centrally in a uniformly 

stressed strip the compounded results can be compared with a known 

numerical solution. This comparison (Table 4.2) shows two trends 



similar to those observed in Chapter 3; the probable errors in the com-

pounded solutions tend to increase as the crack-length increases and as 

the boundaries become closer together. For practical configurations the 

errors are <10% and this is usually adequate for most engineering 

applications. 

Two new configurations of a radial crack at the edge of a hole 

have been considered; in one case the hole ic located eccentrically in 

a uniformly loaded strip, in the other case the hole is near another 

hole in a uniformly stressed sheet. The approximation of replacing the 

hole plus the crack by a crack of the same overall length can be made 

for long cracks (a/R >2.5 for the eccentric hole in a strip and 

a/R > 1.5 for a cracked hole near another hole); it becomes unsatis-

factory for close boundaries (Fig 4.12). 

The importance of accuracy for small cracks was discussed at the 

beginning of this chapter in the context of damage-tolerant design 

concepts. The modifications to the compounding techniques, developed 

in this chapter, are particularly useful in this respect, since they 

ensure that the errors in the stress intensity factor will be least 

when the crack is small. This advantage arises from the use of the 

stress conoentrat-ion factor for the uncracked hole to ensure that the 

solution has the correct asymptote as the crack-length tends to zero. 

In the next chapter this powerful addition to the compounding technique 

will be exploited further^ to solve problems of cracks growing from 

arrays of holes such as may occur in riveted structures. 
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CHAPTER 5 

CRACKS AT UNLOADED HOLES IN AN ARRAY OF HOLES^^'^^ 

In this chapter the compounding method is applied to problems of 

cracks at the edges of holes in a row of holes in a uniformly stressed 

sheet. This configuration is representative of some airframe components. 

For example, cracks may develop at a rivet hole in a longitudinal 

stiffener in a pressure cabin, in which the major in-plane loading arises 

from the hoop stress, with little in-plane load transfer through a rivet. 

An analogous situation may arise in a wing skin in which a chordwise 

crack may develop at a rib/skin fastener under wing bending fatigue 

loads. Fatigue stresses which act in a direction perpendicular to the 

row of holes will cause the cracks to grow along the line of holes. 

In section 5.1, the configuration is considered of one or two 

cracks at the edge of only one of the holes in a row of holes and it is 

shown how compounding is used to obtain the stress intensity factor. In 

practice, cracks may develop at the edge of more than one hole. There-

fore in section 5.2 a more general problem is considered of cracks at 

each hole in a row of holes. The presence of additional cracks causes 

the stress intensity factor to increase, thereby leading to an increase 

in fatigue growth rates and a consequent reduction in fatigue lifetimes; 

the magnitudes of these effects are examined in section 5.3. 

In order to apply the compounding method to such configurations 

the stress intensity factors are required for the following ancillary 

configurations; an isolated hole with one or two cracks (Case 1.3.3, 

Ref 2) and a crack near an isolated hole (Case 1.3.5, Ref 2). The 

boundary-boundary interaction term is estimated in the way described in 

section 4.2 and hence gives accurate solutions for short crack-lengths. 

The importance of accuracy for short cracks lies in the fact that a 

major portion of the structure's useful fatigue lifetime is spent when 

the crack is short. 

5.1 Crack(s) at one of the holes in a row of holes^^ 

The structural configuration studied in this section is that of a 

row of holes, of radius R , in an infinite sheet uniformly stressed 

remote from and perpendicular to the line of holes (see Fig 5.1). Two 

configurations are considered, either one or two radial cracks at one of 

the holes. In both cases the cracks are along the line of the holes 

and a is the distance from the centre of the hole to the tip of the 

crack. In order to calculate the effect of the other holes on the crack 
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the hole plus the crack(s) must be replaced by an equivalent crack, 

using the procedure developed in section 4.1. 

If the holes on the side of tip A (Fig 5.1) are labelled 

n = +1, +2 etc, and the holes on the other side labelled n = -1, -2 

etc, then equation (4.13) for the normalized resultant stress intensity 

factor for tip A becomes 

1 + 

n=oo 

1) 

n=-° 

+ Q. n f 0, (5.1) 

where is the normalized stress intensity factor for one or two 

cracks at the edge of a hole in the absence of all other boundaries, and 

is that for the equivalent crack in the presence of the nth boundary 

(hole) only. 

The boundary-boundary interaction may be obtained from values of 

Q /A , for a hole with one or two cracks, given in Fig 4.6. The 

function A is given by equation (4.35). Thus the complete compound-

ing formula is given by 

= Qr + ) (Q^ - K, 3 ] + (M' 
n 

\ 
- 1 ) 

n=-co 

(5.2) 

where the summations exclude n = 0 . 

The ancillary configurations required for the evaluation of QQ 

and are shown in Fig 5.2. Values for for both one and two 

cracks, are given in Case 1.3.3, Ref 2, and values of Q' in Case 1.3.5. 
n 

Ref 2. In order to evaluate , the length of the equivalent crack 

a' and the distances from the boundaries b' must be known. The 
n 

length of the equivalent crack is again given by equation (4.3) and b 

is obtained from equation (4.11), for one crack, as 

n 

b ' — a' 
n 

b - a 
n 

b' + a' = b + a , 
n n 

n 
R 

all Qg , n > 0 , 

"o " I ) • " < ° ' 

"o > K ' " f ) ' ' 

> (5.3) 
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where b = 
n 

(4.19) as 

n b R For two cracks b^ is obtained from equation 

b' - a' 
n 

b - a 
n 

b' + a' = b + a 
n n 

b ' - a ' = b - a , 
n n 

all Q Q , n > 0 , 

Qg < 1 , n < 0 , > 

Qg > 1 , n < 0 . 

(5.4) 

The values of required in order to calculate the boundary-

boundary interaction term are given in Table 5.1, for the values of 
1 7 

b/R studied in this section 

Table 5.1 

Stress conoenti'at'Lon factors for a hole 
in a periodic row of holes 

b/R 3.0 3.5 4.0 5.0 10 

3.92 3.44 3.24 3.10 3.01 

The values of M' are obtained from the limiting values of Q' accord-
n ° n 

ing to equation (4.37). 

The resultant normalized stress intensity factor Q can now be 

obtained from equation (5.2); the results are plotted in Figs 5.3 and 

5.4 for one and two cracks respectively. In both cases it was found 

that (Ql - 1) was negligible for |n| 
n 

> 2 and that Q was small 

(%^ < 5 % Q^). 

37 
5.2 Cracks at every hole in a row of holes" 

In the previous section the compounding method was applied to the 

problem of one or two cracks at the edge of a hole which is in a row of 

holes in a uniformly stressed sheet ; the stress which acts in a direc-

tion perpendicular to the row of holes causes the cracks to grow along 

the line of holes. This may occur in components having rows of rivet 

holes, eg the fuselage or wing-skin of an aeroplane. When the holes are 

periodically spaced as they frequently are, the stress fields at each 

hole are similar and hence cracks may occur at several holes during 

service life. These cracks will grow due to fatigue loads; the rate at 

which any one grows will be influenced by the presence of the others. If 

the cracks are collinear they will grow faster than similar isolated 

cracks and hence the fatigue lifetime will be shortened. 
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In this section the compounding method is used for calculating the 

stress intensity factor for a crack at the edge of a hole in a row of 

holes any number of which have cracks at the edges. The cracks are 

collinear, lying along the line of the holes and perpendicular to the 

principal stress direction. The solution to the general problem of 

cracks of arbitrary length at the edges of holes of arbitrary diameter 

is stated first, and then the stress intensity factors are determined 

for the special case of a periodic configuration, -te the cracks are all 

the same length, the holes are all the same radius and spaced a uniform 

distance apart. 

In the configurations studied in this section, the stress intensity 

factor K for the crack under consideration will be affected by the 

presence both of the holes and of other cracks. In the previous section 

only one hole had a crack at its edge; this hole/crack configuration 

was replaced by an equivalent crack, and the contribution to K of 

the interaction of this crack with the other holes was considered. 

However, if the other holes have cracks at their edges there are 

additional interactions between the equivalent crack and these other 

cracks. In order to evaluate these interactions, each hole/crack con-

figuration must, in turn, be replaced by an equivalent crack which 

interacts with the original equivalent crack. In general the lengths 

of the equivalent cracks will be all different. 

5.2.1 General configuration of holes with cracks 

The most general configuration of a row of holes each with two 

cracks of unequal lengths is shown in Fig 5.5; the holes may have 

different radii and may be unequally spaced along the row. The holes 

are in a sheet which is subjected to a uniform uniaxial tensile stress 

remote from the line of holes, and which acts in a direction perpendicu-

lar to the line of holes. Let the crack under consideration be the 

right-hand crack (tip A) at the edge of a hole of radius RQ ; it is of 

length and the left-hand crack at the same hole is of length 

&Q L ' holes to the right of this hole are labelled with positive 

integers such that the nth is of radius and its left-hand crack is 

of length £ and its right-hand crack of length £ . A corres-
n 5 i-J XI y -lA. 

ponding notation with negative integers is used for holes to the left 

of the hole of radius R . The distances of the left and right crack 

tips from the centre of their hole are given by a ^ = £ , + R and 
^ n,L n,L n 

a „ = £ „ + R for all n . In order to apply the compounding 
n,R n,R n 

method to this configuration, stress intensity factors for three 

ancillary configurations are required. These are; 
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(i) two cracks of unequal length at the edge of a hole in a 

uniformly stressed sheet (see Fig 5.6); 

(ii) a crack near a hole in a uniformly stressed sheet 

(see Fig 5.7a&b); 

(iii) two collinear cracks of unequal length in a uniformly 

stressed sheet (see Fig 5.8a&b). 

20 

The first of these configurations has been studied by Tweed and Rooke 

Results for the stress intensity factor for the second configuration are 

available. Case 1.3.5, Ref 2, in a form suitable for use with the com-

pounding method; results for the third configuration, are available in 

Case 1.2,3, Ref 2. 

For the general configuration described in Fig 5.5, the resultant 

stress intensity factor K for the right-hand crack (tip A) at the 

edge of the hole of radius is given by: 

Kr = KO + 

n ™ n=™ 

- Kg) + - Kg) + , n f 0 , (5 .5 ) 

n=-oo xi= 

where = the stress intensity factor for tip A in Fig 5.6 in the 

absence of all other boundaries; = the stress intensity factor for 

tip A of the equivalent crack of length 2a' , in Fig 5.7a&b, near a 

hole of radius R ; K" = the stress intensity factor for tip A of the 
n n 

equivalent crack of length 2a'̂  ̂  in Fig 5.8a&b, near another equivalent 

crack of length 2a' (if n is positive) or 2a' (if n is 
n y Ij Tl ) 

negative); K = the contribution to the stress intensity factor because 

of the disturbance of the stress field caused by interactions between 

the holes. 

The equivalent crack-lengths in Figs 5.7 and 5.8 are defined, 

according to the definitions in section 4.1, as follows: 

similarly 

and 

oVna' T = K _ = Q _ K 
n,L n,L n,L 

( 5 .7 ) 
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where 

hole of radius 

^ is the stress intensity factor for the left-hand tip at the 

R 
n 

in the absence of all other boundaries. 

for the right-hand crack, and 

isolated crack of length 2a 

-z-g 
0,R 

K 

K is the stress intensity factor for an 

in a uniform tensile stress field of 

0,R 
(5.8) 

If equation (5.5) is normalized with respect to K , it becomes 

n=° 

1 + ] ) + (q; 1) + Q. n ^ 0 (5.9) 

where Q = K /K, Q' = K'/K_, Q" = K"/K_ and Q = K /K . If only 
r r n n 0 n n 0 e e 

11 one hole has cracks, then (Q^ 

(5.9) reduces to equation (5.1) 

1) is zero for all n and equation 

20 
Values of Q , Q and Q are given by Tweed and Rooke 

U n 5 L n J K 
In order to use the values of given in Case 1.3.5, Ref 2, the dis-

tances b' and b' „ between the centre of the equivalent crack 
0,n n,0 

and the hole in Fig 5.7a&b must be defined. This is done by following 

the principles laid down in section 4.1, and comparing the configura-

tions in Fig 5.5 and Fig 5.7a&b. 
Thus equation (4.23) becomes: 

for n > 0 

and for n < 0 

or 

^^,n *6,R 

b' 
n, 0 * *0,R 

^n,0 *6,R 

t^,n *0,R ' 

^n,0 * *0,R ' 

= b 
n,0 0,L 

all Q 
0 ' 

Qg < 1 , ^ (5.10) 

Qo > ' 

To obtain the values of Q" from Case 1 .2.3, Ref 2 the distances 
n 

d' and d' _ between the centres of the two equivalent cracks in 
0,n n,0 

Fig 5.8a&b must be defined. Again the principles of section 4.1 are 

followed and the configurations in Figs 5.5 and 5.8a&b compared to give, 
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" *0,R *n,L ^0,n " *0,R " *n,L ' ^0 ' * ^ ° ' 

^n,0 * *0,R *n,R ^n,0 * *0,R " *n,R ' Qg < 1 , n < 0 , 
> 

and 

"n,0 "0,R "n,R ^O.n *0,L *n,R ' ^0 ^ ^ 

(5.11) 

The final term Q in equation (5.9) is obtained by assuming that 

the effects of the boundary-boundary interactions can be approximated by 

the effects of forces per unit thickness P acting on the hole of 

radius R ; this configuration is shown in Fig 5.9. The force P is 

given by 

"" n= 

X - 3 
nRgO t 

+ ) (MT - 1) , n f 0 , (5.12) 

where is the stress conoentvat-ion factor at the edge of the hole in 

the row of holes with no cracks and is the magnification of the 

stress a distance b' away from the nth hole in the absence of all 
0,n 

other holes and cracks (for details of the derivation see section 4.2). 

From equation (4.37) it follows that the value of is equal to the 

value of as a^ ^ tends to zero; it is assumed that other cracks 

are negligible when a^ is small. 

5.2.2 Periodic configuration of holes with cracks 

In this section the special case is considered of a periodic array 

of holes, namely, each hole has the same radius R and is at a fixed 

distance b from its nearest neighbours; at each hole there are two 

cracks of equal length. The configuration is shown in Fig 5.10 where 

R = R, b„ = b _ = Inlb and a _ = a „ = a for all values of n . 
n 0,n n,0 ' ' n,L n,R 

The resultant stress intensity factor is again given by equation 

(5.5), but now K = the stress intensity factor for a pair of cracks at 

the edge of a hole in the absence of all other boundaries; = the 

stress intensity factor for tip A of the equivalent crack of length 2a' 

near a hole of radius R ; = the stress intensity factor for tip A 

of the equivalent crack of length 2a' near another equivalent crack of 

the same length; K = the contribution to the stress intensity factor 

because of the disturbance of the stress field caused by interactions 

between the holes. All the equivalent cracks are the same length 2a' , 

defined by 
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since 

it follows that 

a/ira' = K ; 

*n,R *n,L ' 

n,R 
= a 

n,L 
a; = a' 

(5 .13) 

(5 .14) 

(5 .15) 

For the periodic configuration the normalization factor K , the 

stress intensity factor for an isolated crack of length 2a in a uni-

form tensile stress field of a , is given by 

K = a/na (5.16) 

The normalized compounding equation is given by equation (5.9) 

20 
Values of Q are given by Tweed and Rooke , 

Case 1.3.5, Ref 2, and Q" by Case 1.2.3, Ref 2. The parameters 

Q' are given by 

n 
required for Q' are obtained from equation (5.10); for this periodic 

n 
configuration we have. 

= Qo* (5.17) 

and 
^0,n 

b' 
n,0 

nb - - ^o) 

It + (' - « o ) 

n > 0 , 

n < 0 . 

(5.18) 

The parameters required for , in addition to a' , are 

n, 0 

d' 
n, 0 

nb - 2a 

n|b , 

n b + 2a 

(' - " o ) 

K - ' ) 

all Qg , n 0 

n < 0 , > (5.19) 

n 0 . 

Results for the stress intensity factor for a periodic array of holes 

with equal length cracks have been obtained and are shown in Fig 5.11 

for various values of b/R . Also shown for comparison is the 

Westergaard solution (Case 1.2.8, Ref 2) for a periodic array of 

collinear cracks with no holes (R = 0) . It can be seen that the stress 

intensity factor firstly increases rapidly from zero at the edge of the 

hole and then approaches the curve for collinear cracks as the cracks 
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lengthen. The deviation of Q from the normalized stress intensity 

factor for R = 0 is within ±8% if the crack is more than 15% of the 

radius, 'Le a/R > 1.15, and a/b <0.4 . 

The stress intensity factor for a crack in the presence of other 

cracks is larger than that for one of a pair of cracks at one of the 

holes in a periodic array; and the effect increases as the length of 

the crack increases. The results obtained above are compared in 

Fig 5.12 with those for a pair of cracks obtained in the previous 

section. The ratio of K /K is plotted as a function of a/b for 
m s 

various values of b/R : K and K are respectively the stress 
m s 

intensity factors for two cracks at each hole and for two cracks at one 

hole. It can be seen that K becomes larger than K as a/b 
m s 

increases from zero and at large a/b , results for all b/R tend to 

similar values. 

5.3 Fatigue crack growth 

The increase in stress intensity factor due to the presence of 

many cracks leads to an increase in the rate at which the cracks will 

grow under fatigue loadings. Since the rate at which cracks grow is 

strongly dependent on the value of the stress intensity factor, small 

increases in K can lead to large increases in rate. Hence a signifi-

cant shortening of the fatigue life of a structure can occur if many 

cracks are present. 

It is often assumed'^ that the growth rate (da/dN) of a crack of 

length 2a can be simply represented by a power dependence on the range 

of the stress intensity factor (AK) applied to the cracked structure. 

Thus 

= C(AK)P , (5 .20) 

where C and p are material constants and N is the number of cycles 

of stress. The range of the stress intensity factor will be given by 

AK = Q6o/^a , (5.21) 

where Aa is the range of applied stress. 

It follows from equations (5.20) and (5.21) that the growth rate 

for many cracks (da/dN) in terms of that for just two cracks 

(da/dN) is given by 
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(da/dN) /Q \P 

(da/dN) 
= 7̂ ^ I . (5.22) 

The ratio (Q /Q ) of the normalized stress intensity factors is the same 

as the ratio of K /K plotted in Fig 5.12. As seen from equation 

(5.22) the ratio of the rates depends on the value of p . Typically, 

for aluminium alloys, p is between 2 and 4. Results for the 

increased rate due to many cracks are shown in Fig 5,13 for p = 2, 3 

and 4, and b/R = 8 ; this value of b/R is typical of many aerospace 

riveted structures. It is seen from Fig 5.13 that the rate of growth 

increases as both p and a/b increase. The rate for many cracks is 

double that for just two cracks at a/b = 0.415 for p = 2 , at 

a/b = 0.365 for p = 3 and at a/b = 0.33 for p = 4 . 

5.4 Discussion and conclusions 

The compounding method isolates the effects of the component 

boundaries and considers, in turn, how they each influence the stress 

intensity factor. Which boundaries are important in affecting the 

resultant stress intensity factor in the periodic configuration (see 

section 5.2.2), depend on the length of the crack. For short cracks the 

row of holes which determine the stress oonoentvat'ion factor X also 

determines the stress intensity factor, since 

limjK } = Z a/IT (a - R) = Z a/iiT . (5.23) 
a+R ^ t 

The presence of the other cracks has only a small effect; at £/R = 0.01 

the effect is less than 10% of that due to the holes. But it becomes 

more important as the cracks grow and at £/R = 0.1 the effect of the 

other cracks is about equal to that of the holes. At longer crack-

lengths the effect of the other cracks dominates, particularly for 

values of b/R commonly used in aerospace structures {ie b/R ^ 8). The 

effect of the boundary-boundary interaction through the term Q was 

negligible for all the configurations considered. 

The formula, given in equation (5.5) for calculating K contains 

two summations over all boundaries. In practice only boundaries close 

to the crack significantly affect the stress intensity factor; for all 

values of b/R , the only important boundaries are n = ±1 and n = ±2 . 

The contribution from n = ±2 is usually about one-tenth of that due to 

n = ±1 . For the periodic configuration, K due to the interaction of 

the holes is negligible; this is because of the use of the ancillary 
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configuration of the equivalent crack near a neighbouring hole, takes 

into account most of the stress disturbance due to the presence of the 

holes. 

For practical configurations (b/R > 8), the stress intensity 

factor K for short cracks (£/R <0.2) differs by less than 3% from 
^ 20 

the value of K for cracks at the edge of an isolated hole 

Fig 5.11 shows that K for ioi.g cracks (&/R > 0.2) differs by less 

than 7% from the Westergaard solution K (Case 1.2.8, Ref 2). These 

two limiting cases suggest a simple approximate procedure for estimat-

ing the stress intensity factor 

= IC , 0 <a/R. < 0.2 

and ,2 > (5.24) 

= alb tan^-^j I , 0.2 < a/R 

It has been demonstrated in Chapter 2 that such approximations are 

adequate for fatigue crack growth calculations in many engineering 

applications. The tendency for K to fall below for a/b >0.25 

is probably due to an underestimate of K ; it is shown in Chapter 3 

that, in the simple case of collinear cracks, the compounding method 

underestimates the resultant stress intensity factor. 

It was seen in section 5.3 that the presence of many cracks can 

significantly increase the rate of growth of a crack under fatigue 

loadings. The largest increases occur for the largest values of p , 

the exponent in equation (5.20). Such increases can lead to large 

reductions in fatigue life of a cracked structure. Thus with periodic 

cracks, not only has the crack less distance to travel (half-way between 

the holes) but it is travelling faster. 

The results given in Figs 5.11 to 5.13 are for the special case of 

holes of equal radius in a periodic array with two collinear cracks of 

equal lengths at each hole. Stress intensity factors can also be calcu-

lated (see section 5.2.1) for the general case of collinear cracks of 

unequal length at holes of unequal radius in a non-periodic array. 

Many aircraft components will have holes of equal size and in a 

periodic array {eg row of rivet holes), but the cracks will be of 

unequal length; with tensile loading remote from the cracks the longest 

crack will have the largest stress intensity factor. 
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CHAPTER 6 

CRACKS AT LOADED HOLES 

In the previous chapter the compounding method was used to 

evaluate the stress intensity factor for cracks at the edge of unloaded 

holes, arranged in a row. As well as unloaded holes in structures, 

there are also many cases of loaded holes, eg pin-loaded lugs or 

fastener holes where load is transmitted through the fastener to the 

sheet. In this chapter the opening-mode stress intensity factor is 

evaluated for two cracks at the edge of each loaded hole in a row of 

fastener holes. The concept of the 'equivalent crack-length', needed 

in Chapters 4 and 5 to make it possible to calculate the effects of 

boundaries on the stress intensity factor, is not appropriate for 

cracks at loaded holes. A new concept of the 'equivalent load' will be 

introduced and described in section 6.1 of this chapter. 

In section 6.2 the opening-mode stress intensity factors are 

obtained for two equal-length cracks at each hole in a periodic row of 

holes; the holes are subjected to a uniform internal pressure. The 
38 

results are compared with those obtained by Parker ; the agreement is 

good. A more complex configuration is studied in section 6.3, where the 

row of holes is near a boundary and the pressure on the hole perimeter 

is not uniform. In all cases considered in this chapter the loading on 

the hole perimeter is symmetric about the diameter perpendicular to a 

line joining the centres of the holes in a row. 

6.1 Equivalent loading on crack 

In the definition of the equivalent crack, given in equation 

(4.2), the stress a can be interpreted as a uniform pressure acting 

on the crack faces. This follows from the fact that an isolated crack 

of length 2a' subjected to a uniform internal pressure p has a 

stress intensity factor given by 

K = p /ira' . (6.1) 

Thus if the pressure p is equal to the stress o , then the stress 

intensity factor is K , the same as for the equivalent crack defined 

by equation (4.2). For cracks growing from loaded holes, the definition 

of the equivalent crack must contain information about both the loading 

on the hole and the remote loading. In fact, if the loads on the hole 

are in equilibrium, the remote stress a may be zero and equation (4.2) 

is then clearly not applicable as a definition of a' . 



74 

Three different loading cases are considered for two radial 

cracks at the edge of a hole in a sheet. In section 6.1.1 the only 

loads are self-equilibrated loads acting on the perimeter of the hole. 

A case when the loads on the hole have a non-zero resultant is con-

sidered in section 6.1.2; the other boundaries are considered so remote 

that the stress on them required to satisfy overall equilibrium is 

negligible. Finally in section 6.1.3 the case is considered when the 

boundary stresses are not negligible and must be included in the deter-

mination of the stress intensity factor. 

It is necessary to redefine the equivalent crack when considering 

cracks at loaded holes, so that known physical limits are reproduced. 

A new concept of 'equivalent loads' acting on the faces of the equiva-

lent crack is introduced: the loaded hole and the original crack(s) are 

replaced by an equivalent crack, of the same overall length as the 

original crack(s) plus hole, but with equivalent loads acting at right 

angles to the two crack faces. The loads (force per unit thickness) 

are determined by the condition that the equivalent crack has the same 

stress intensity factor K as the original crack at the loaded hole in 

the absence of all the other boundaries. The effect of these other 

boundaries is then accounted for by the compounding procedure. 

6.1.1 Self-equilibrated loads on the perimeter of the hole 

Consider a circular hole, defined in cylindrical polar coordinates 

(r,6) by r = R, 0 6 <'2n , which is loaded by a pressure p(6) , see 

Fig 6.1; the pressure distribution is symmetrical about 9 = 0 , that is, 

p(9) = p(-0) . Two radial cracks of length £ are located at the edge 

of the hole along 9 = 0 and 6 = IT respectively, so that the tip-to-

tip distance is 2a where a = R + £ . Fig 6.1 also shows the equiva-

lent crack, which is an isolated crack of the same length 2a with two 

opposing forces of equal magnitude P' acting perpendicular to the 

crack at its centre. The force P' is defined by the condition given 

above as 

= ^0 ' 

since the left-hand side of equation (6,2) is the stress intensity 

factor of an isolated crack subjected to localized forces P' . 

The force P' has the following limiting values, as shown below: 

limjp'l = 0 and lim|P'| = P , (6.3) 

2^0 
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where P is the resultant force acting on one half of the hole peri-

meter, perpendicular to the crackline. This force results from the 

pressure p(8) for 0 ̂  6 < IT ; it is given by 

TT 

P = Rj^pCe) sin 8 d8 . (6.4) 

0 

The first limit in equation (6.3) follows directly from equation (6.2) 

since P' ^ and since K must be zero when there is no crack 

(& = 0). Thus the equivalent crack becomes, when £ = 0 , an unloaded 

crack of length 2R . Since it is unloaded it will not interact with 

the boundaries; therefore K will be zero for all values of n and 

hence the resultant stress intensity factor K will be zero as 
r 

required. 

When the crack is long (£ ̂  R) the presence of the hole at the 

centre of the crack has little effect on the value of the stress inten-

sity factor; its value tends towards that for a crack with two equal 

and opposite forces P acting at the centre of the crack. Thus the 

limiting value for the stress intensity factor for such a crack 

is given by 

where P is defined in equation (6.4). Comparison of equations (6.2) 

and (6.5) leads to the second limit given in equation (6.3). 

In the case of two cracks of unequal length at the edge of the 

hole the equivalent load will depend on which crack tip is under con-

sideration. Consider a circular hole defined as before with a symmetri-

cal pressure distribution p(6) , but with two cracks of different 

lengths located at the edge of the hole along 6 = 0 and 9 = ir 

respectively. Let the crack with tip A be of length £ from the edge 

of the hole to the tip and the crack with tip B be of a length & 

(see Fig 6.2). The tip-to-tip distance is 2a where 

2a = + Eg (6.6) 

with a = + R and a = & + R . (6.7) 

A A D D 
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If tip A is the tip under consideration the equivalent crack is of 

length 2a with two opposing forces of equal inagnitude acting per-

pendicular to the crack at a distance a from tip A and a from 

tip B. The stress intensity factor for tip A of the equivalent crack is 

given, in Case 1.1.12, Ref 2, by 

K = - . (6.8) 

If this is to be equal to the stress intensity factor Kq^ of the 

original tip A in the absence of all boundaries except the loaded hole, 

then it follows that 
I a* 

(6.9) 

For tip B the equivalent load P' is determined in a similar manner, 
D 

and is given by 

Pg = , (6.10) 

where KQ^ is the stress intensity factor for tip B in the absence of 

all boundaries other than the loaded hole. 

5.1.2 Resultant load on the perimeter: zero stress on sheet 
boundary 

If there is a resultant load on the perimeter of the hole, then 

the two equivalent loads will not be equal in magnitude. Since, in this 

case, the boundaries are far removed from the hole and hence large in 

extent, the remote stresses required for equilibrium are small and will 

not affect the stress intensity factor. Consider such a loaded hole with 

two cracks of length £ (tip-to-tip distance of 2a). The equivalent 

crack is of length 2a with opposing forces of P| and P^ acting at 

the centre. The stress intensity factor of such a crack is given by 

p; + 
K = _ y— . (6.11) 

2/713 

Thus for the crack to be equivalent, it follows that the equivalent 

loads are given by 

P| + P^ = 2K /Fa . (6.12) 

The case for two cracks of unequal length at a hole with a resultant 

load on its perimeter, can be treated in a similar way to that above for 

a zero resultant. 
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6.1.3 Resultant load on the perimeter; finite stress on sheet 
boundary 

If boundaries are not remote from the hole the stress intensity 

factor will be affected by both the boundary stresses needed to balance 

the resultant load on the hole perimeter and any externally applied 

boundary stresses which exist. Both of these effects must be included 

in KQ and in the definition of the equivalent crack. 

In general there will be an integral relationship, between the 

resultant force on the hole and the boundary stresses - the integral of 

the stresses around the boundary must balance the loads on the hole 

perimeter. In the special case of a uniform normal stress a acting on 

a boundary parallel to the cracks, this becomes 

oW = P (6.13) 

The significance of the length W will depend on the actual configura-

tion: for a loaded hole in a strip (see Fig 6.3a), W is the width of 

the strip; for an infinite array of periodically spaced loaded holes 

(see Fig 6.3b), W is the spacing between the hole centres. 

In Chapters 4 and 5 the ancillary configuration for a crack at the 

edge of a hole, used for the determination of K , was obtained by 

removing all other boundaries (cracks, holes and edges). The removal of 

all these boundaries did -not alter the boundary conditions; in the case 

of the loaded holes this may not be so. Consider the configurations in 

Fig 6.3a&b. If the boundaries are removed by letting W , then it 

follows from equation (6.13) that a ^ 0 in order to maintain equili-

brium if the force P is held fixed. Thus in the limit the stress will 

be too small to affect the stress intensity factor, and K will be a 

function of P and crack-length only. This ancillary configuration of 

a crack at the edge of a hole with a single load P on its perimeter is 

not therefore suitable for evaluating ; the uniform stress a will 

have a large effect on the stress intensity factor and must be included 

in KQ , the major contribution to K . 

It is necessary to consider ancillary configurations in which the 

forces and stresses are symmetric about the crackline, so that both the 

boundary forces and the boundary stresses are separately in equilibrium. 

Removal of boundaries to obtain a configuration suitable for evaluating 

K does not now affect the boundary conditions. The opening mode stress 

intensity factor for an asymmetric configuration can be obtained from a 
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combination of symmetric configurations by applying the principle of 

superposition. For instance, the stress intensity factor for the 

asymmetric configuration shown in Fig 6.3a is the same if the force P 

is replaced by two equal and opposite radial forces of P/2 acting on 

opposite sides of the hole perpendicular to the crackline, and if the 

tensile stress a at one end of the strip is replaced by tensile 

stresses of o/2 at both ends of the strip. Similarly the forces P 

and the stress a in the periodic configuration shown in Fig 6.3b would 

be replaced by two equal and opposite forces P/2 on each hole and 

stresses a/2 on the two boundaries remote from the holes. 

The ancillary configuration required for the determination of K 

for these symmetric configurations is obtained by removing all 

boundaries, as in Chapter 4, except the hole with the two cracks under 

consideration. Thus the ancillary configuration contains two equal 

length cracks at the edge of a hole with two equal and opposite radial 

forces P/2 acting on the perimeter perpendicular to the crackline; the 

hole is in a sheet which is subjected to a uniform tensile stress of 

a/2 acting perpendicular to the crackline remote from the hole. This 

ancillary configuration, which contains no other boundaries, is shown in 

Fig 6.3c. Since K must be the same for both the symmetric and the 

antisymmetric configurations, it follows that the same ancillary con-

figuration must be used. 

By using the principle of superposition K may be determined from 

two simpler configurations for which the stress intensity factors are 

known. These two configurations are obtained from Fig 6.3c by consider-

ing the effect of the forces P/2 and the stresses a/2 separately. 

Let K be the stress intensity factor for the ancillary configuration 

when there are no forces acting (P = 0), and let Kp be the stress 

intensity factor when there are no stresses acting (a = 0); therefore 

K_ = + K . (6.14) 
0 F a 

At long crack-lengths the effect of the hole on is negligible; 

Kp tends to the limit P/ (Z/ira) , and tends to the limit 

a/tra/Z . Therefore it follows that 

- 1 ( v f i ^ l i m | K „ > = — I " 7 ^ + a / r r a ] . ( 6 . 1 5 ) 
a-Ko 
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The above procedure for obtaining the ancillary configuration for 

KQ is not limited to the case of a localized load P on the hole 

perimeter. The same arguments apply for any distribution of pressure 

p(8) around the perimeter. The force P is now the resultant force 

acting on the perimeter and is given by equation (6.4). The ancillary 

configuration for K will now have a distribution of pressure on the 

perimeter of the hole given by p(9)/2 for 0 < 0 < IT and p(-6)/2 

for 0 > 6 ̂  -TT . 

The equivalent crack is derived from the ancillary configuration 

for KQ by replacing the hole plus the cracks by a crack of length 2a . 

subjected to two opposing forces P'/2 , in a sheet subjected to a uni-

form tensile stress o'/2 acting, remote from the crack, in a direc-

tion perpendicular to the crack. Again, by using the principle of 

superposition, the forces and stresses may be considered separately. 

When the forces P'/2 act alone, the stress intensity factor is 

P'/(2v4ra) , and when the stresses o'/2 act alone, the stress intensity 

factor is o'/ira/2 . The values of P' and a' are determined by the 

condition that the stress intensity factor of the isolated equivalent 

crack is K , tg 

+ = ^0 ' 

For long crack-lengths, the comparison of equations (6.15) and 

(6.16) shows that P' ^ P and o ' ^ o . Since in the original con-

figuration P = aW in order to maintain equilibrium, it follows that, 

in the ancillary configurations, equilibrium is maintained by P' = a'W . 

This relationship between P' and a' combined with equation (6.16) 

determines these two unknowns; thus 

In the above a ' was considered as a remote stress. It may be 

convenient for some configurations to consider a ' as a uniform 

pressure acting on the crack faces - this is permissible since the stress 

intensity factor of the equivalent crack is identical (see equation (6.1)). 

The principle of superposition makes it possible to interpret the 

equivalent crack in another way. Since the opening-mode stress intensity 

factor for an isolated crack of length 2a , subjected to two equal and 

opposite forces of magnitude P'/2 is P'/(2/na) , and since that for 

a similar crack subjected to a pressure of a'/2 is (o' /rra) / 2 , then it 
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follows that the stress intensity factor for a crack subjected to both 

loadings is the same as that given by equation (6.16). Thus the equiva-

lent crack may be interpreted as an isolated crack subjected to a uni-

form pressure a'/2 on its faces and two equal and opposite forces 

P'/2 acting perpendicular to its faces at the centre of the crack. 

This interpretation will be needed in one of the ancillary configura-

tions used in section 6.3. 

6.2 Cracks at pressurized holes 

In order to test procedures, outlined in the previous section, 

for applying the compounding method to configurations with loaded holes, 

the opening-mode stress intensity factor will be evaluated for a con-
38 

figuration with a known solution . The configuration consists of a 

periodic row of internally pressurized holes, of radius R , spaced a 

distance 2b apart. The pressure p is a radial pressure acting 

uniformly on the perimeter of each hole. At the edge of each hole are 

two cracks of equal length which lie along the line of centres; each 

crack is of length £ measured from the edge of the hole to the crack-

tip. The total distance between the tips of the two cracks at any one 

hole is 2a (= 2£ + 2R). Although all the crack tips have the same 

value of the stress intensity factor in this configuration, it is con-

venient to consider a particular tip, namely the one labelled A in 

Fig 6.4a&b. The hole associated with crack tip A is labelled n = 0 ; 

holes on the same side as tip A are labelled with positive integers, 

te n = +1, +2 etc, and holes on the other side with negative integers. 

The compounding equation required for this configuration is the 

modified version, based on equation (4.12). In this case K is the 

stress intensity factor for two diametrically opposite cracks of equal 

length at the edge of a circular hole subjected to a uniform radial 
20 

pressure p . This configuration has been studied by Tweed and Rooke 

The equivalent crack is a crack of length 2a with two opposing 

forces of magnitude P' acting perpendicular to the crack at its 

centre. The equivalent load P' is given by equation (6.2). The inter-

actions of the equivalent crack with the other boundaries are evaluated 

by first replacing each pressurized hole with its two cracks by another 

equivalent crack of length 2a with forces P' acting on it. Since all 

the holes are similar with similar loading and similar cracks it follows 

that all the equivalent cracks will be similar. Thus the ancillary con-

figuration used in evaluating the effects of the boundaries on tip A is 

a periodic set of loaded cracks spaced a distance 2b apart; each crack 



is subjected to two opposing forces P' acting perpendicular to the 

crackline (see Fig 6.4b). The stress intensity factor K' for this 

configuration is given in Case 1.2.9, Ref 2. It follows that K' con-

tains all the contributions from every in equation (4.12); in fact 

n=°= 

I 
K 

K„) = K' - Kr n ^ 0 (6.18) 

Therefore the compounding equation becomes 

K = K' + K 
r e 

(6.19) 

where K' is a function of P' (= Kg/rra) . 

Equation (6.19) can be written in terms of normalized stress 

intensity factors Q • The normalizing constant for K' is P' //ira , 

that is the stress intensity factor for an isolated crack subjected to 

two opposing forces of magnitude P' . Thus 

Q ' = K' 
P' tra K 

(6.20) 
0 

It follows that Q' is independent of P 

proportional to P' . Thus equation (6.19) becomes 

since both K' and are 

Kr = KoQ' + Ke (6.21) 

It is convenient to normalize equation (6.21) with respect to K , the 

stress intensity factor for an isolated crack subjected to a uniform 

pressure p on its faces, which is given by 

K j/im (6.22) 

Thus equation (6.21) becomes 

Qr = QoQ' + Qe (6.23) 

where = K^/K, = K^/K and K /K . 
e 

The contribution to from the boundary-boundary interactions, 

which are all included in Q , is evaluated (see section 4.2) by 
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considering the effect of two additional opposing forces of magnitude 

P acting radially on the hole (n = 0 ) in a direction through its centre 

and perpendicular to the crack. The forces P are determined by the 

requirement that K approaches the correct limiting value as the crack-

length tends to zero, ie 

lim^K I = 1.12a /ttZ , (6.24) 

where is the maximum stress, which occurs at the edge of the hole 

at the crack-site in an infinite row of pressurized holes, and the 

factor 1.12 is the usual free edge correction. 

In order to consider the limiting behaviour of equation (6.21), the 

following limits are required: 

lim<K I = 1 .120 /irX (6.25) 

where is the maximum stress at the crack-site at the edge of an 

isolated pressurized hole; 

lim|Q'[ = limjQ'l = Q'(^) , (6.26) 
4^4 a+R 

where Q'(R/b) is the normalized stress intensity factor for a crack in 

an infinite row of collinear cracks of length 2R a distance 2b apart 

subjected to two equal and opposite forces at the crack centre; 

/ t 2P 
lim<K > = 1.12 X — — /ttT , (6.27) 

where 2P /(ttR) is the maximum stress at the crack-site at the edge of 

an isolated hole of radius R subjected to two opposing radial forces 

P acting perpendicular to the crackline. 

Substitution of equation (6.24) to (6.27) into equation (6.21) 

gives 

a 

For a uniform pressure p in the holes, we have og = p and 

where X is the 

(6.28) can be written 

where X is the stress coMCgMtratioM f a c t o r ^ 7 . Thus equation 



83 

- . (6.29) 

Since, for a uniform pressure acting on the hole perimeter, the resultant 

force P is given by 

P = 2pR , (6.30) 

it follows from equation (6.25) that 

P 
e 2 

4 "t 4 ! ) (6.31) 

Values of Q can be obtained from Ref 20 where the normalized 

stress intensity factor K^/ (p^/rFI) has been evaluated; the bearing 

pressure p is given by 
e 

Pe = 

We can write 

(p (2Rp) (p P ) ' 
(6.33) 

where P /P is given by equation (6,31). 

It follows from equations (6.23) and (6.33) that the smaller the 

value of the ratio P /P , the smaller is the boundary-boundary con-

tribution to Q . 

The normalized stress intensity factor Q has been evaluated 

from equation (6.23), with and obtained from Ref 20 and Q| 

from Case 1.2.9, Ref 2, for b/R = 10, 4 and 2. The results are com-
38 

pared with those obtained by Parker . To facilitate comparison it is 

convenient to plot K /(p/rrY) = Q^/a/£ as a function of a/b ; the 

comparison is shown in Fig 6.5. Over most of the range, the differences 

are between 2% and 5%. The major differences, up to 8%, are at the 

shortest crack-lengths. However at short crack-lengths Parker's method, 

mapping collocation, is known to become increasingly inaccurate, 

whereas the compounding method is constrained to approach known limits 

at 2 = 0 . 

The contribution to from the boundary-boundary interaction 

term Q increases as b/R decreases. The biggest contribution occurs 

at the shortest crack-lengths. The ratio P /P given by equation (6.31) 
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can be used to give a rough estimate of the maximum value of Q /Q^ . 

For instance, at b/R = 10 we have P^yP = 0.02 and Q /Q <0.03 ; 

at b/R = 4 we have P /P = 0.11 and Q /Q <0.12 ; at b/R = 2 we 

have P /P = 0.42 and Q /Q <0.33 . 
e e r ~ 

6.3 Loaded holes near a boundary 

In this section the opening-mode stress intensity factors are 

evaluated for cracks at loaded holes which are close to a boundary (the 

edge of the sheet). The holes are of radius R and are spaced a dis-

tance W apart in a row parallel to the edge of the sheet; the distance 

from the edge of the sheet to the line of hole centres is h (see 

Fig 6.6). Each hole is subjected to a distribution of pressure p(8) on 

the side of the hole nearer to the boundary. Two cracks of equal 

length are located at the edge of each hole along the line passing 

through the hole centres. The cracks are of a length £ measured from 

the edge of the hole, and the distance between crack tips at the same 

hole is 2a (= 22 + 2R). The forces on the hole are balanced by a 

uniform stress o acting remote from the holes in a direction perpen-

dicular to the cracks. In order to maintain equilibrium it follows that 

aW = P (6.34) 

where P is the resultant force on one hole due to the internal 

pressure p(8) , and is given by equation (6.4). 

If the two cracks at each hole (see Fig 6.6) are taken to lie along 

6 = 0 and 6 = it respectively, then the pressure distribution used in 

this section is given by 

p(0) = p sin 9 , 0 < 6 ̂  IT . (6.35) 

Therefore the pressure is a maximum equal to p at 0 = tt/2 , ie the 
m 

point on the perimeter of the hole nearest to the edge of the sheet. 

From equations (6.4) and (6.35) it follows that the resultant force P 

acts along the line 9 = tt/2 , and is given by 

P = ^ Rp . (6.36) 
z m 

The compounding equation required to evaluate the opening-mode 

stress intensity factor for the crack-tip labelled A in Fig 6.6 is given 

by equation (4.12). The ancillary configurations required to evaluate 

KQ, KJ and are shown in Fig 6.7a-c. The compounding equation 

becomes 
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Kp = + K2 " ^0 + Ke ' (6.37) 

The ancillary configurations needed for the determination of K 

are derived from Fig 6.3c and are shown in Fig 6.7a. They are (i) two 

equal length cracks at the edge of a hole which is subjected to a load-

ing sin(8y2 for 0<S8 sinCGV^^ for 0 > 8 ; 

(ii) two equal length cracks at the edge of a hole in a sheet that is 

subjected to a uniform stress a/2 remote from the hole. The stress 

intensity factors for both configurations were obtained using the method 
20 

of Tweed and Rooke ; the loading function required for the pressure 

distribution given by equation (6.35) is obtainable from Rooke and 

Tweed^^. 

The value of Kj for the ancillary configuration shown in 

Fig 6.7b is not directly available but can be obtained from known solu-

tions by using the principle of superposition. The stress intensity 
2 

factor K|^ is known for an infinite array of equally spaced collinear 

cracks of length 2a , each subjected to two equal and opposite forces 

P' acting perpendicular to the crack faces. Also the stress intensity 
2 

factor K| is known for an infinite array of equally spaced collinear 

cracks of length 2a in an infinite sheet subjected to a uniform uni-

axial stress a' acting perpendicular to the line of cracks and remote 

from them. The principle of superposition, illustrated in Fig 6.8, 

leads to 

K| = a(K|| + . (6.38) 

The stress intensity factor is not known for the ancillary 

configuration shown in Fig 6.7c, but it can be obtained from known 

solutions by a combination of compounding and superposition. By using 

compounding as illustrated in Fig 6.9a, can be expressed in terms 

of KQ and , where is the stress intensity factor for the 

equivalent crack located centrally parallel to the edges of a strip of 

width 2h . Thus 

^2 " *(^h * ^0) ' (6.39) 

Equation (6.39) omits the boundary-boundary interaction term ; it 

will be included with all the others into the term given in 

equation (6.37). The factor KJ is not directly available, but can be 
2 

obtained from known results by application of the principle of super-

position. This is illustrated in Fig 6.9b and leads to 
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= (6.40) 

is the stress intensity factor for a crack of length 2a located 

centrally, parallel to the edges of a strip of width 2h , with the 

crack subjected to two equal and opposite forces P'/2 acting perpen-

dicular to the faces at the centre of the crack; is the stress 

intensity factor for a similar crack in a similar strip with the crack 

subjected to a normal pressure o'/2 acting on its faces. The values 

of K^j and can be obtained from Ref 2. 

Thus from equations (6.39) and (6.40) we have 

K' - HK', + K'j + V . (6.41) 

Finally by substituting equation (6.38) and (6,41) into equation 

(6.37), the compounding equation becomes 

\ * Kj; + K^, + - V + . (6.42) 

It is convenient to write equation (6.42) in terms of normalized 

stress intensity factors, because these are the functions given in Ref 2. 

The functions required are 

• 1 2 

"21 

"22 

S i 

12 

^21 
P' / (2/7Ta) 

a' /Fa/2 

Case 1.2.9, Ref 2; 

Case 1.2.8, Ref 2; 

Case 1.1.10, Ref 2; 

Case 1.1.6, Ref 2. 

> (6.43) 

J 

Substitution for P' and a' in terms of K from equation (6.17) 

;ives 
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'1 1 

' 1 2 

K|,(l + w) 

2X1 

KjgCl + w) 

2wKl 

<21 

<22 

K2](l + w) _ 

+ w) 

w K_ 

> (6.44) 

where w = ira/W . Substitution of equation (6.44) into equation (6.42) 

gives 

K. 
K 

0 
( 1 + w ) Q,] + wQ^2 + &(Q2] * ^^22^ " + K (6.45) 

Equation (6.45) can be normalized with respect to K , the stress inten-

sity factor, for an isolated crack of length 2a with a single force P 

acting perpendicular to one face at its centre, where K is given by 

K = 
2/iTa 

(6.46) 

The resultant normalized stress intensity factor Q (= K /K) becomes 
r r 

"0 
( 1 + w ) • 1 1 22' 

( 1 + w ) (6.47) 

where Q = K^/K and QJ = K /K . 

The only unknown function on the right-hand side of equation 

(6.47) is Q , the effect of boundary-boundary interactions. The pro-

cedure for evaluating Q is similar to that used in section 6.2. The 

contribution to Q from these interactions is assumed to be equiva-

lent to the effect of two additional opposing forces of magnitude P 

acting on the perimeter of the hole; these forces are determined by the 

requirement that 

lim^K I = 1.12a /FY (6.48) 

where o is the maximum stress at the crack site at the edge of a hole 

in an infinite row of pressurized holes when £ = 0 . 

Equation (6.45) is the most appropriate form of K for examining 

the limiting behaviour as £ -> 0 or, since a = R + £ , a s a - ^ R . 

The limits required are: 



lim/K I = lim& + K !" = 1 .12 + 4r) (6.49) 
Of p of \ 0 2/ 

where is the maximum stress at the crack site at the edge of an 

isolated pressurized hole, and 3a/2 is the maximum stress at the edge 

of an isolated unpressurized hole in a sheet subjected to a uniform 

stress a/2 ; 

, I 2P 
limjK I = 1.12 , (6.50) 

see equation (6.27); 

• "lid) • (5.5 0 

where Q ^(R/W) is the value of Qjj for a periodic array of cracks of 

length 2R subject to point forces; 

= q | 2 ( # ) ' (5.52) 
a-»R 

where is the value of Q^ ̂  for a periodic array of cracks of 

length 2R subjected to a uniform stress; 

^^^^92]} 92l(h) ' (6.53) 

where Q2j(R/h) is the value of Q ^ for a crack of length 2R , sub-

jected to point forces, in a strip of height 2h ; 

Um{Q22} - Qjjd) . (5.54) 

where 0^2(R/h) is the value of for a crack of length 2R , sub-

jected to a uniform pressure, in a strip of height 2h . 

Substitution of equations (6.48) to (6.54) in equation (6.45) 

gives 

2P 
+ '^^)q(a) + , (6.55) 

where q(R) is given by 
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q(R) = 
+ (nRAO + i t q i z t i ) 

'21 ( ! ) ^ f ^22(1) 
2R\| 
W /I 

(6.56) 

Equation (6.55) can be re-written as 

2P 0. (oq + (3a/2)) 

wRp 
q(R) 

m • m • m 
(6.57) 

where p is the maximum pressure. Substitution of equations (6.34) 
• m 

and (6.36) into equation (6.57) gives 

P 
= + 4 f ) q(R) (6.58) 

where X = o /p is the stress concentration factor at the edge of 
t ™ m 

one of the holes in Fig 6.6 when the cracks are absent, and o^/p 

2/n (see Ref 39). The factor # 
0 m 

can be obtained as a function of 
40,41 

R/W and R/h from the work of Mori 

Three configurations are studied in this report, namely R/W = 

0.10, 0.15 and 0.20, with h/R =3.0 . The values of R/W span the 

practical range for arrays of fastener holes; the value of h/R is the 

largest for which is available. The values of for these con-

figurations, and the ratios P /P are given in Table 6.1. 

Table 6.1 

Values of and P /P for h/R = 3.0 

R/W P /P R/W P /P R/W 
t e 

0.10 0.96 -0.043 
0J5 0.99 -0.17 
0.20 K09 -0.26 

With a knowledge of P /P , the contribution can be 

evaluated. It can be written 
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K K /K 
Q = , (6.59) 

K K \K 

where is the limiting value of K as a , and is given by 

P 
K = -7=Sr . (6.60) 
e /ma 

Substitution of equations (6.46) and (6.60) into equation (6.59) gives 

(6.61) 

20 
The ratio K /K can be derived from the work of Rooke and Tweed 

e e 
We can write 

K / K 

0 * ^ ( j P_//WE ' (6.62) P 
K ~ y^o 
e 

where the function in parentheses is evaluated in Ref 20 and 

Pq = '2 J (2R) . Thus 

(6.63) ^e Tr/aY I ^e 

e . ^ 

and therefore, from equations (6.61) and (6.63) we have 

Equation (6.47) can now be evaluated to give the resultant 

normalized stress intensity factor Q as a function of crack-length 

for the three configurations considered in this report. In practical 

structures the load on the hole is often specified in terms of the 

'bearing pressure' (= P/(2R)). The normalized stress intensity 

factor Q can be written in terms of the bearing pressure, as 

Of P/(2/Wa) ( R ) a^/Wa ' 
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Fig 6.10 shows a plot of K /(o^/Fa) against 2a/W for R/W = 0.10, 

0.15, and 0.20, with h/R = 3.0 . The curves are steep for short 

cracks, indicating that K increases rapidly from zero as the crack-

length increases from zero. 

The contribution of Q to increases as R/W increases. 

As in the case of the uniformly pressurized hole (see section 6.2), the 

magnitude of P /P is a rough estimate of the maximum value of Q^/Q^ . 

At R/W = 0.10 we have P /P = -0.043 and IQ^/Qrl ^0.05 ; 

at R/W = 0.15 we have P /P = -0.17 and | Q / Q ^ I ̂ 0.19 ; and at 

R/W = 0.2 we have P /P = -0.26 and |Q /Q^| <0.25 . For the same 

hole spacing these values of Q /Q^ are larger than in the test con-

figuration (section 6.2). This is because the presence of the edge near 

the holes introduces further boundary interactions into this 

configuration. 

6.4 Discussion and conclusions 

It has been shown that a modification of the 'equivalent crack' 

concept, introduced for cracks at unloaded holes allows the compounding 

method to be extended to the calculation of the opening-mode stress 

intensity factors for cracks at loaded holes. The method gave results 

which agreed to within a few percent with those obtained by collocation 

for the special case of cracks at the edges of holes in a row of 

pressurized holes; and it has been used to obtain stress intensity 

factors for cracks at the edges of holes in a row of fastener holes 

near the edge of a sheet. A particular merit of this method is that 

accurate values of the stress intensity factor are obtained for short 

cracks where most of the life in fatigue is spent. 

The geometric configurations considered in this report are 

periodically spaced rows of loaded holes with two cracks of equal length 

at each hole. The method is not limited, in principle, to periodic con-

figurations, but may be limited by the lack of solutions for ancillary 

configurations. In a practical case, only some of the holes may have 

cracks, either one crack or two cracks of unequal length. In these 

cases the equivalent cracks can still be determined (see section 6.1) 

but the array of equivalent cracks is no longer periodic even if the 

original array of holes was. Thus the ancillary configuration of a 

periodic array of loaded cracks (Case 1,2.9, Ref 2) cannot be used to 

calculate the actual interaction between cracks, although it could be 

used to determine an upper bound to the interaction. In some instances 
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approximate estimates of the interaction may be made using the follow-

ing ancillary configurations: two pressurized cracks of unequal length 

(Case 1.2.3, Ref 2); one loaded and one unloaded crack of equal length 

(Case 1.2.6, Ref 2). 
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CHAPTER 7 

42 
A CRACK IN A STIFFENED SHEET 

In this chapter the compounding method is extended to obtain 

stress intensity factors for cracks in plane sheets having localized 

line stiffeners (see Fig 7.1a) - a geometrical configuration which 

models the locally stiffened metal-sheet construction widely used in 

many aircraft structural components (see Fig 7.1b). There are two 

cases to consider; if the component is made by integral machining or by 

bonding of the stiffeners to the sheet then the stiffeners are attached 

continuously along the sheet; or, if localized fasteners, eg rivets 

(see Fig 7.1a&b) are used then the attachment is at discrete points. 

In both cases, known solutions for cracks in sheets with a single 

stiffener are compounded to give approximate stress intensity factors 

for cracks in sheets with many stiffeners. 

In order to make use of the compounding method, the stiffeners 

are considered as boundaries, and crack interactions with stiffeners 

are treated in the same way as crack interactions with boundaries were 

in earlier chapters. Where a crack is crossed by a stiffener, as often 

happens in practice, the crack plus the stiffener is replaced by an 

'equivalent crack' as defined in Chapter 4. The accuracy of the method 

is assessed by comparing the solutions for some configurations having 

known results, see section 7.1, and the errors are shown to be small 

(a few percent). The method is used to obtain a new solution for the 

stress intensity factor for a crack located asymmetrically between two 

stiffeners in a periodic set (see section 7.2) . 

7.1 Theory of compounding applied to stiffened sheets 

In order to extend compounding methods to obtain stress intensity 

factors for cracks in sheets with stiffeners, it is necessary to con-

sider the development of the basic method since stiffeners, regarded as 

boundaries, are different from the boundaries previously considered. 

In developing the compounding method each additional boundary introduced 

was subjected to forces (usually of zero magnitude) which were indepen-

dent of the crack shape or size. However the forces acting on stiffeners 

exist because of the mismatch in displacements between the sheet and the 

stiffener; this mismatch is due entirely to the presence of the crack in 

the sheet and is a function of the shape and size of the crack. Thus 

the effect, on the crack, of introducing an additional stiffener is 

modified by the stiffeners already present with the result that 
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boundary interactions are not necessarily negligible when the 

boundaries are stiffeners. This interaction is small if the crack is 

between stiffeners and may be ignored, but it must be taken into account 

if a stiffener crosses the crack since the shape of the crack is then 

much altered. The way in which this is taken into account is to use the 

concept of the equivalent crack that was developed in Chapter 4. 

Consider a sheet with a periodic array of stiffeners spaced a 

distance b apart with a crack of length 2a (a < b) which is perpen-

dicular to the stiffeners; the crack is located either mid-way between 

two stiffeners (Fig 7.2a), or centred on a stiffener (Fig 7.2b). A uni-

axial tensile stress a is applied to the sheet remote from and per-

pendicular to the crack. In order to maintain strain compatibility 

remote from the crack a stress of (E^/Epa is applied to each 

stiffener; E^ and E^ are the Young's moduli of the sheet and stiff-

ener respectively. It is convenient to label the stiffeners where 

n are positive integers to the right of the crack and negative integers 

to the left. The stiffener that crosses the crack in Fig 7.2b is 

labelled . 

In the case where the stiffener crosses the crack, the stress 

intensity factor is K in the absence of all other boundaries except 

S . The equivalent crack of length 2a' is defined as in section 

4.1.1, equations (4.1) to (4,3), that is 

f = Qo* , (7.1) 

Kn 

where Q = — (7.2) '0 

and 
K 

K = a/ira . (7.3) 

The effect of adding other stiffeners to the sheet containing the crack 

2a is assumed to be the same as the effect of adding stiffeners to an 

infinite sheet containing a crack of length 2a' . The distance from 

the tips of the equivalent crack to the additional stiffeners are deter-

mined by similar conditions to those for a hole with two cracks, in a 

row of holes, and are given by equations (5.4). Namely 
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- a' = B - a , all Q Q J n > 0 , 

+ a' = b + a , Q < I , n < 0 , ^ (7.4) 

b ^ - a ' = b ^ - a , Q Q > 1 , n < 0 , 

where b is the distance from the centre of the original crack to the 

nth stiffener, and b' is the distance from the centre of the equiva-
n 

lent crack to the nth stiffener. 

7.2 Application to periodically stiffened sheets 

has obtained the stress intensity factors for cracks 

located in sheets with periodic arrays of riveted stiffeners (see also 

Case 2.2.3, Ref 2); the rivets are spaced a distance h apart along 

the stiffeners. The crackline is always perpendicular to the stiffeners 

and passes through a rivet site at each stiffener. The cracks are 

located either symmetrically between two stiffeners (unbroken. Case 

2.2.3, Ref 2) or centred about a single stiffener (unbroken, Case 2.2.3, 

Ref 2, or broken, Ref 44). The configurations are shown in Fig 7.2a&b 

where the stiffeners are labelled with positive integers to the right 

and negative integers to the left of the crack. The ancillary configu-

rations required are shown in Fig 7.3a&b; the stress intensity factors 

for these configurations have been obtained by Bloom and Sanders 

For the crack located between two stiffeners the solution to the 

ancillary configuration in Fig 7.3a only is required. In Fig 7.3a, 

c is equal to a and d is equal to b/2 if no stiffeners cross the 

crack, whereas c is equal to a' and d is equal to b^ if the 

stiffener crosses the crack. 

7.2.1 Test solutions 

The first test configuration considered is that of a crack of 

length 2a located symmetrically between two of the stiffeners a dis-

tance b apart. A tensile stress is applied to the sheet, remote from 

and perpendicular to the crack, and a stress of (E /Ej)o is applied to 

the stiffeners in order to maintain strain compatibility remote from the 

crack. Because of symmetry only one tip of the crack {eg tip A in 

Fig 7.2a) needs to be considered. If the normalized stress intensity 

factor due to the nth stiffener is then the compounding formula 

follows from equation (3.7); it is 
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n=™ 
" ' * / ^ ° 

n=-° 

Since no stiffeners cross the crack, the equivalent crack concept is not 

required for this configuration. 

The values of Q which contribute most to Q come from the 
n r 

nearest pair of stiffeners (n = ±1); the contribution from the next pair 

of stiffeners (n = ±2) is negligible over most of the range of a/b , the 

maximum being <1% at a/b = 0.45 . Contributions from all other 

stiffeners ^|n| > zj have been neglected. The results^^ for the 

periodic configuration are plotted as functions of a/b for various 

h/b values and various values of a stiffness parameter in Case 2.2.3, 

Ref 2. The stiffness parameter s , is the ratio of the stiffness of the 

stiffener to that of the sheet, ie 

AE 
s = (7.6) 

where A is the cross sectional area of the stiffener and t the 

thickness of the sheet. uses the stiffness parameter y which 

is given by 

u - . (7.7) 

The values of Q for the ancillary configurations have been obtained 

as functions of a/b for various values of h/a and the parameter X 

which is defined as 

2E,at 
X = ^ (7.8) 

and which can be written in terms of s as 

^ = 7 (w) ' (7.9) 

In the equivalent crack configuration a' replaces a and A' 

replaces X for the contribution from the stiffeners which do not cross 

the cracks; A' is given by 
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A' ( t ) (7.10) 

Bloom and Sanders^^ show that, for the values of X and a/h over 

the range of a/b considered here, the results for Q (n = ±1, ±2) are 

indistinguishable from those for continuously attached stiffeners 

(a/h = =) obtained by Greif and Sanders . Since more data are avail-

able on continuously attached stiffeners, curves of Q for both n > 0 
^n 

and n < 0 were obtained from the work of Greif and Sanders reported in 

Case 2.1 .3, Ref 2. 

Compounded results for the normalized opening-mode stress intensity 

factor ^^a/irahave been obtained from equation (7.5), neglecting 

Q , and they are compared, in Table 7.1 with those from Case 2.2.3, 

Ref 2, for the configuration with 0.0 ^ a/b ^ 0.45 , for s = 1.0 and 

h/b = 1/12 . The differences which are a measure of , are very 

small (< 1%) and are no greater than the possible inaccuracies in read-

ing the graphical results. The differences will be even less for 
S qrd larger of 

smaller values of^ h/b since the effect of the stiffener decreases in 

both cases. The value of s = 1.0 was chosen since it is about the 

maximum value of s in aircraft applications 

Table 7.1 

Comparison of values of K/(o/ira ) for a crack located symmetrically 
between two stiffeners in a periodically stiffened sheet 

h/b = 1/12) 

a/b 
Compounded 
results 

Case 2.2.3 
(Ref 2) 

0.00 1.00 1.00 
0.10 0.98 0.99 
0.20 0.96 0.96 
0.30 0.92 0.92 
0.40 0.82 0.81 
0.45 0.72 0.72 
0.50 stiffener site 

The next test configuration considered is that of a crack of 

length 2a located symmetrically about one of the stiffeners in a 

periodic array spaced a distance b apart (see Fig 7.2b). The stiffener 

across the crack can be either unbroken^^ or broken^^. The resultant 

normalized stress intensity factor is given by equation (5.1), that is 
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= Qr 

n=oo 

1) Qg , n 0 . (7.11) 

where is the normalized stress intensity factor for the equivalent 

crack in the presence of the nth stiffener only. The summation term 

contains the effects of stiffeners which do not cross the crack and 

which are spaced a distance b apart, except for the two nearest the 

crack which are a distance + b'j) apart. The term in square 

brackets has the same form as the right-hand side of equation (7.5) 

without ; it was evaluated in the same manner and for both 

broken and unbroken stiffeners, was obtained from the work of Bloom and 

Sanders reported in Case 2.2.1, Ref 2. The results, neglecting Q , 

for the opening-mode stress intensity factor for s = 1.0 for both the 

unbroken central stiffener (h/b = 1/12) and the broken central 

stiffener (h/b = 1/6) are shown in Table 7.2. The maximum difference 

between the compounded solutions and the numerical solutions due to 

Poe43,44 for 0.25 < 

only small errors into Q 

Poe^^'^^ is 5% for 0.25 < a/b <0.90 , thus neglecting Q introduces 

Table 7.2 

Comparison of values of for a crack located 

symmetrically about the central stiffener in a 

periodically stiffened sheet (s = 1.0) 

a 
b 

Central stiffener 
unbroken (h/b = 1/12) 

Central stiffener 
broken (h/b = 1/6) 

a 
b Compounded 

results 
Case 2.2.3 
(Ref 2) 

Compounded 
results 

Ref 44 

0.25 
0.50 
0.75 
0.90 
1.00 

0.67 
0.66 
0.64 
0.56 

0.68 
0.67 
0.65 
0.59 

next St 

1.72 
1.32 
1.11 
0.91 

iffener 

1.78 
1.36 
1 .12 
0.91 

The above configurations have also been studied for the case when 

the stiffeners are continuously attached to the sheet. The results are 

indistinguishable within the approximations used from those for riveted 

stiffeners except when the crack is very close to the stiffener, te the 

distance between the crack tip and the stiffener is <h. Too few 

results are available, for the ancillary configuration when the crack 

tip is close to the stiffener, to enable this region to be investigated 

fully. 
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7.2.2 New solution 

In this section the solution is derived for a crack which is 

located asymmetrically between two continuously attached stiffeners in a 

periodically stiffened sheet. A stress a is applied to the sheet 

remote from and perpendicular to the crack; in order to maintain strain 

compatibility a stress (E /Ej)o is applied to the stiffener remote from 

the crack. The stiffeners to the right of the crack are labelled with 

positive integers (+n) and those to the left with negative integers (-n); 

the distance from the centre of the crack to the nth stiffener to the 

right is b and the distance to the nth stiffener to the left is b 
+n -n 

This configuration is shown in Fig 7.4a; the required ancillary con-

figuration is shown in Fig 7.4b. The distance d from the centre of 

the crack to the stiffener in the ancillary configuration is b for 

the stiffeners on the right and b for stiffeners on the left of the 
o -n 

crack. If the stiffeners are a distance b apart then 

b_̂ ^ + b_^ = (2n - l)b ; n = 1 ,2,. . . ,=°. (7.12) 

The resultant normalized stress intensity factor is given in 

equation (7.5). Because of the asymmetry the two tips will have 

different stress intensity factors. The contributions from each 

stiffener (Q or Q ) for the tip under consideration can be obtained 
+n -n ^ 

from Case 2.1.3, Ref 2. The results, for s = 1.0, for both tips are 

shown in Fig 7.5; K^/(a/ira) is plotted as a function of a/b for 

various values of b^^/b . 

7.3 Discussion and conclusions 

The compounding method has been applied to crack problems in 

periodically stiffened sheets; use of the equivalent crack concept is 

necessary if a stiffener crosses the crack. The errors in the stress 

intensity factors, caused by neglecting boundary-boundary interactions, 

increase as the crack-length increases and as the relative stiffness of 

the stiffener to that of the sheet increases. The maximum error for a 

wide range of crack-lengths and stiffness ratios is a few per cent 

(Tables 7.1 and 7.2) which is within normal engineering tolerances. The 

compounding method can be extended readily to other configurations, but 

direct application to some other stiffener configurations may be 

limited by the lack of data for the required ancillary configurations. 

For example data are required on small cracks near stiffeners (the 

difference between continuously attached and riveted stiffeners would 
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be important) and on cracks which are located asymmetrically behind a 

single stiffener. 

An important consequence of the use of the compounding is that it 

is now necessary to have data for simple ancillary configurations only. 

The importance of design parameters such as distribution of stiffeners, 

relative stiffnesses, type of attachment, flexibility of rivets and 

sheet curvature can be studied using a simple structure with a single 

stiffener. Results for a structure with many stiffeners can be com-

pounded from those for the simple structure. The method of compounding 

can be applied to problems with both plane boundaries and stiffeners, 

eg a crack in the vicinity of a cut-out in a sheet with many stiffeners. 



CHAPTER 8 

MANY CRACKS IN A STIFFENED SHEET*^ 

A common structural element used in airframes is the stiffened 

panel - a large sheet onto which stiffening elements are fastened at 

regular intervals. Because of the periodicity of the stiffeners and 

fasteners it is likely that simultaneous (or nearly simultaneous) initia-

tion of cracks may occur at different stiffeners. Multiple cracking of 

this sort is more damaging than a single crack since it leads to greater 

reductions in both the strength and fatigue life of the structure. The 

most dangerous configuration is when the cracks are collinear, since the 

growth of the cracks may result in them linking up to form a single 

long crack leading to early failure. Stress intensity factors are known 

for many stiffened configurations with a single crack, but none are 

available if more than one crack is present. 

The compounding method was shown in Chapter 7, to be applicable to 

problems involving single cracks in stiffened sheets. In this chapter, 

the compounding method is used to derive a stress intensity factor for 

a crack in a collinear array of cracks which are centred about adjacent 

stiffeners. The theory is developed in section 8.1 for cracks of 

arbitrary length at arbitrarily spaced stiffeners. The specific 

application to periodically stiffened sheets with periodic collinear 

cracks is considered in section 8.2. Results for the stress intensity 

factor are presented and compared with those for single cracks in 

order to estimate the effects of multiple cracking on residual strength 

and on the growth of fatigue cracks. 

8.1 Development of theory 

An array of collinear cracks at stiffeners in a stressed sheet 

is shown in Fig 8.1, where S is the nth stiffener of Young's modulus 

E and cross-sectional area A , 2a is the length of the crack which 
n n' n * 
is symmetrical about S and the bay-width b is the distance 

n m, n 
between the mth and the nth stiffeners (S and S ). The central 

m n 
stiffener is labelled S. , and the other stiffeners S are to the 

0 n 

right of S if n > 0 and to the left is n < 0 . The stiffeners 

are riveted onto the sheet with a distance h between adjacent rivets. 

The uniform stress in the sheet, of Young's modulus E , is a and 

The method can be readily extended to consider non-symmetrical cracks 
in a similar way to that in section 5.2.1 for cracks at holes. 



102 

strain compatibility is maintained between the stiffeners and the sheet 

remote from the cracks. The crack tip under consideration in this 

analysis is the right-hand tip (labelled A in the figures) of the crack 

of length Za^ which is centred about the stiffener . 

In order to use the compounding procedure, stress intensity factors 

for three ancillary configurations for cracks in a sheet subjected to a 

remote stress a are required. They are: 

(a) a single crack centred about a single stiffener in a sheet con-

taining no other cracks or stiffeners (Fig 8.2); 

(b) a single crack at a distance from a single stiffener in a sheet 

containing no other cracks or stiffeners (Fig 8.3); 

(c) two collinear cracks a distance apart in an unstiffened sheet 

containing no other cracks (Fig 8.4). 

The three ancillary configurations represent the interaction 

between the crack (original length 23^) and (a) the central stiffener 

SQ , (b) the other stiffeners S , and (c) the other cracks (original 

length 2a ). Stress intensity factor solutions for these three con-

figurations are known and are available in Ref 2. 

Fig 8.2 shows a crack of length 2a centred about and perpen-

dicular to a stiffener S in a sheet subjected to a uniform stress a 

remote from a crack and parallel to the stiffener. The stress in the 

stiffener, remote from the crack, is oEg/E in order to ensure strain 

compatibility. The stress intensity factor for this configuration is 

K and the normalized stress intensity factor is QQ ; they are 

related by 

^0 • v - ^ = V o • 

where is the stress intensity factor for an isolated crack of 

length 2a in a sheet subjected to a uniform stress a remote from 

the crack. 

Values of Q , for the stiffener SQ broken or unbroken, are 

given in Case 2.2.1, Ref 2, where is plotted as a function of a^/h 

for various values of X , a measure of the relative stiffnesses of the 

sheet and the stiffener and h is the rivet pitch. The parameter X 

is given by 
2a tE 
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where is the thickness of the sheet. Values of Q are available 

only for X > 0.5 ; for smaller values of 

or small values of E/E 

0 
X , -ie short crack-lengths 

0 
, results obtained for a crack in a period!-

11 o 1 9 "Pz-̂-P O -f ii-nT-(r"nlrOT*l R ̂  cally stiffened sheet may be used (Case 2.2.3, Ref 2 for unbroken S 

and Ref 44 for a broken 

results are a /b, h/b and 

following relationships: 

The parameters required to use these 

(or u) . These are obtained from the 

= m (8.3) 

sA. (8.4) 

and 

1 + s 
(8.5) 

The smallest value of h/b must be chosen from the results 

available and substituted into equation (8.3) to give a^/b and hence 

s from equation (8.4) and u from equation (8.5). 

In order to calculate the effects of the crack of length 2a 

interacting with the other stiffeners and cracks it is necessary to 

replace the crack and stiffener by an equivalent crack. The length 

of the equivalent crack 2a^ is determined in the same way as in the 

previous chapter (see also Fig 8.2b), that is. 

"o • 
(8 .6 ) 

Fig 8.3 shows two possible configurations of a crack of length 

2a' whose centre is a distance b' (n>0) or b' „ (n < 0) from a 
u u,n n,u 

stiffener S in a sheet subjected to a uniform stress a remote from 
n 

the crack and parallel to the stiffener. The stress in the stiffener, 

remote from the crack, is aE /E in order to ensure strain compati-

bility. If the stress intensity factor for the equivalent crack in 

this configuration is K' then the normalized stress intensity factor sn 
Q' is defined by 
sn ^ 

K' = Q' a/ma' 
sn sn 0 

(8.7) 
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The values of are obtained from Case 2.2.2, Ref 2, the dis-

tances b' or b' „ shown in Fig 8.3 are determined from the condi-
0,n n,0 

tion that the distance from the appropriate tip of the crack to the 

stiffener must be the same in the ancillary configuration as in the 

original configuration (see Chapter 4); they are given by equation 

(5.10) with &Q R ^ &o L " ^0 " stiffener configurations, QQ < 1 

if SQ is unbroken, and > 1 if S is broken. 

The normalized stress intensity factor Q' (called K^/K_) is 
sn I 0 

plotted in Ref 2 as a function of a/b for various values of a/h and 

^ cLiKi u is or b^^o , 

h is the rivet spacing and X is given by 

2a'tE 

^ - t v • (s-s) 
n n 

Results given in Case 2.2.2, Ref 2, show that Q for a given value of 

A is almost independent of a^/h for the small values of a^/bg ^ 

which will usually be required. For a'/b' < 0.5 results for con-
0 0,n 

tinuously attached stiffeners (a^/h = =°) must be used; they are given in 

Case 2.1.3, Ref 2. 

The interaction between the crack of length 2a and the other 

cracks is considered by replacing each crack and stiffener pair by an 

equivalent crack of length 2a^ 2Q^a^j; is the normalized stress 

intensity factor for the crack of length 2a centred about the 

stiffener S in the absence of all other cracks and stiffeners. 
n 

Fig 8.4 shows the two possible configurations of a crack of length 2a^ , 

whose centre is a distance d' (n > 0) or d' _ (n < 0) from the 
0,n n,0 

centre of a crack of length 2a^ , in a sheet subjected to a uniform 

stress a remote from and perpendicular to the cracks. If the stress 

intensity factor for the equivalent crack la^ in this configuration 
is K' then the normalized stress intensity factor Q' is defined 

cn cn 
by 

''cn = ' '̂ cn'̂ Ô O ' <8.9) 

The values of Q' are obtained from Case 1.2.3, Ref 2. The dis-
cn 

tances d' or d' shown in Fig 8.4 are determined from the condi-
0,n n,0 

tion that the distance between the appropriate tips of the two cracks 

being considered should be the same in the ancillary configurations as 

in Che original configuration (see Chapter 4); are given by 
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equation (5.11) with a' = a' = a' and a' = a' = a' . The 
0,R 0,L 0 n,R n,L n 

factors Q (n f 0) are less than unity since S is unbroken. 

The resultant stress intensity factor K for the crack of length 

2a in the original configuration is given by 

n==o n=°° 

N=-CO n=-™ 

The first summation represents the interactions between the equivalent 

crack (Za^) and all the stiffeners except ; the second summation 

represents the interactions between the equivalent crack (Za^) and all 

the other equivalent cracks (2a/). The final term K represents any 

contribution to K due to interactions between the various stiffeners, 
r 

This term would be difficult to evaluate, but the comparisons with known 

solutions in Chapter 7, suggest that the contribution would be small and 

it was therefore neglected in these calculations. The normalized stress 

intensity factor (= K^/K^) is obtained from equation (8.10) as 

" % 
1̂  = —CO 'Q = —CO 

1) n f 0 . (8.11) 

Thus Q has been expressed in terms of the known quantities QQ, 

' 

8.2 Periodically stiffened sheets 

To illustrate the effects of collinear cracks the special case is 

considered of an array of equally-spaced, identical stiffeners with 

equal-length cracks centred on each stiffener. The stress intensity 

factor is derived for the crack centred about the stiffener S , which 

may be broken or unbroken at the crackline. All the other stiffeners 

S (n f 0) are unbroken. In this configuration a = a, b = b, 
n ri n y ri * i 

E = E and A = A for all n . 

n s n s 

The expression given in equation (8.10) for the stress intensity 

factor can be simplified in this configuration. If is the stress 

intensity factor for a single crack centred about a stiffener in a 

periodic array of stiffness, then it follows from Chapter 7 that 
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Kp = Kg + - Kg) , n f 0 . (8.12) 

];̂=—CO 

where an error term of order K has been omitted. The factor Kp is 

known; Case 2.2.3, Ref 2, applies if the stiffener associated with the 

crack is unbroken, Ref 44 applies if the stiffener is broken. Thus 

equation (8.11) becomes 

n= 

Qr = Qp + So / ^ 0 ' 

n=-° 

where Q = Kp/K , the values of the Q's required for equation (8.13) 

are obtained as follows: 

(i) Qp from Case 2.2.3, Ref 2, for unbroken, 

(ii) Qp from Ref 44, for broken, 

(iii) Q from Case 2.2.1, Ref 2. 

Values of have been obtained from equation (8.13) for s = 1 

and h/b = 1/12 , where s is the ratio of the stiffness of the 

stiffener to that of a sheet of width b and thickness t . The 

values of s and h/b chosen are the same as used in Chapter 7, and 

they represent the stiffast stiffener with the smallest rivet spacing 

likely to be used in airframe construction; such stiffeners will 

result in the biggest deviation of the stress intensity factor from that 

for a crack in an unstiffened sheet. Results for the opening mode 

stress intensity factor for many cracks in a stiffened sheet are plotted 

in Fig 8.5 for both unbroken and broken; for comparison Qp , 

the normalized stress intensity factor for a single crack in a periodi-

cally stiffened sheet, is also plotted. From Fig 8.5 it can be seen 

that multiple cracking causes the stress intensity factor to increase. 

This increase is small (<5%) for cracks less than about a quarter of 

the bay-width, but increases as the cracks become longer; at a/b = 0.45 

the increase is ~35% if S is unbroken and ~25% if is broken. 

The effects of many cracks on the rate of fatigue crack growth are 

more significant because of the power-law dependence (see also section 

5.3) the growth-rate per cycle da/dN approximates to 

^ , (8.14) 
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where p is typically in the range 2 to 4 depending on the material. 

These effects are illustrated in Fig 8.6 for S unbroken, and Fig 8.7 

for S broken; the ratio of the crack growth-rate for many cracks 

(da/dN)^ to that for a single crack (da/dN)^ is plotted as a function 

of a/b . It can be seen that the effects become more pronounced as p 

increases and are more significant at longer crack-lengths; for a crack 

a quarter of a bay-width the growth-rate is increased by ~20% for both 

S broken and unbroken when p = 4 . For a/b = 0.45 the growth-rate 

is more than doubled for broken and more than tripled for 

unbroken when p = 4 . 

8.3 Conclusions 

(1) The compounding method can be used to calculate stress intensity 

factors for many collinear cracks in stiffened sheets. 

(2) The presence of many cracks increases the stress intensity factor 

particularly for long cracks. 

(3) This increase in the stress intensity factor results in an 

increased growth-rate of the cracks and hence a reduced lifetime in 

fatigue. 
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CHAPTER 9 

48 
DESIGN STUDY - CRACKS AT A DOUBLE ROW OF HOLES 

I n C h a p t e r s 5 and 8 i t was shown t h a t t h e p r e s e n c e of many c r a c k s 

c a n b e much more damag ing t h a n j u s t a s i n g l e c r a c k , s i n c e t h e i n c r e a s e d 

s t r e s s i n t e n s i t y f a c t o r r e s u l t s i n an i n c r e a s e d g r o w t h - r a t e and h e n c e a 

r e d u c e d f a t i g u e l i f e t i m e . I r . p a r t i c u l a r g r o w t h - r a t e s may b e i n c r e a s e d 

by a f a c t o r of two o r more when many c r a c k s a r e p r e s e n t a t t h e e d g e s of 

t h e h o l e s i n a row of h o l e s . 

A t y p i c a l c o n f i g u r a t i o n of t h i s t y p e , u s e d i n a i r f r a m e c o n s t r u c -

t i o n , i s a row of f a s t e n e r h o l e s , and one o r m o r e of t h e s e may h a v e a 

c r a c k a t i t s e d g e a t some t i m e d u r i n g i t s s e r v i c e l i f e . In t h e d a m a g e -
49 

t o l e r a n t s p e c i f i c a t i o n i t i s assumed t h a t t h e r e a r e c r a c k s a t t h e 

edge of e a c h h o l e a t t h e s t a r t of s e r v i c e l i f e . I t i s f u r t h e r a ssumed 

t h a t t h e d i s t a n c e f r o m t h e e d g e of t h e h o l e t o t h e c r a c k t i p i s 1 . 2 5 mm 

a t one of t h e h o l e s , and i s 0 . 1 2 5 mm a t a l l t h e o t h e r h o l e s . T h e s e 

c r a c k s i z e s a r e u s e d i n t h e mode l c o n f i g u r a t i o n s s t u d i e d i n t h i s 

c h a p t e r , w h e r e t h e p o s s i b i l i t y i s examined of r e d u c i n g t h e d e l e t e r i o u s 

e f f e c t s of m u l t i p l e c r a c k s by a r r a n g i n g t h e h o l e s i n two p a r a l l e l rows 

i n s t e a d of i n a s i n g l e row , t h e number of h o l e s b e i n g k e p t c o n s t a n t . I t 

i s f o u n d t h a t t h e s t r e s s i n t e n s i t y f a c t o r and h e n c e t h e c r a c k g r o w t h -

r a t e a r e r e d u c e d ; and t h e r e i s a g r e a t e r r e d u c t i o n i n K a s t h e s e p a r a -

t i o n b e t w e e n t h e two r o w s i s i n c r e a s e d . The s u b s e q u e n t improvemen t i n 

l i f e t i m e , i-e t h e number of s t r e s s c y c l e s r e q u i r e d f o r a c r a c k t o grow 

t o a g i v e n s i z e , d e p e n d s on b o t h t h e i n i t i a l c r a c k - l e n g t h assumed and 

t h e f i n a l l e n g t h . 

9 . 1 E v a l u a t i o n of t h e s t r e s s i n t e n s i t y f a c t o r 

A t y p i c a l g e o m e t r y f o r a d o u b l e row of f a s t e n e r h o l e s i s shown i n 

F i g 9 . 1 . H o l e s of r a d i u s R a r e s p a c e d a d i s t a n c e 2b a p a r t i n e a c h 

row and t h e rows a r e a d i s t a n c e h a p a r t . 

The h o l e s i n one row a r e l o c a t e d s y m m e t r i c a l l y w i t h r e s p e c t t o t h e 

h o l e s i n t h e o t h e r row, so t h a t i f h i s r e d u c e d t o z e r o t h e r e i s o n l y 

one row of h o l e s and t h e d i s t a n c e b e t w e e n a d j a c e n t h o l e s becomes b . 

L e t a u n i f o r m t e n s i l e s t r e s s a b e a p p l i e d r e m o t e f r o m t h e h o l e s i n a 

d i r e c t i o n p e r p e n d i c u l a r t o t h e p a r a l l e l r o w s . I t i s assumed t h a t e a c h 

h o l e h a s two c r a c k s a t i t s e d g e , one on e i t h e r s i d e of t h e d i a m e t e r p e r -

p e n d i c u l a r t o t h e d i r e c t i o n of t h e a p p l i e d s t r e s s , t h a t i s t h e c r a c k s 

l i e a l o n g two p a r a l l e l l i n e s t h r o u g h t h e h o l e c e n t r e s . The t o t a l 
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c r a c k - l e n g t h f r o m t i p t o t i p i s 2a , t h e d i s t a n c e f r o m t h e e d g e o f t h e 

h o l e t o t h e t i p i s £ ( = a - R ) . 

T h e a s s u m p t i o n r e g a r d i n g t h e p o s i t i o n o f t h e c r a c k s i s a r e a s o n a b l e 

o n e f o r a s i n g l e r o w o f h o l e s , s i n c e c r a c k s w i l l t e n d t o g r o w f r o m t h e 

r e g i o n s of maximum s t r e s s c o n c e n t r a t i o n w h i c h o c c u r a t t h e e n d s of t h e 

d i a m e t e r w h i c h i s p e r p e n d i c u l a r t o t h e s t r e s s d i r e c t i o n . F o r two r o w s 

o f h o l e s t h e p o s i t i o n o f t h e maximum s t r e s s i s o f f s e t r o u n d t h e p e r i -

m e t e r t o w a r d s t h e a d j a c e n t r o w . H o w e v e r , f o r t h e v a l u e of t h e h o l e -

s p a c i n g a n a l y s e d i n t h i s c h a p t e r ( b / R = 8) t h e o f f s e t i s s m a l l ; i t i s 

t h e r e f o r e a r e a s o n a b l e a p p r o x i m a t i o n t o a s s u m e t h a t t h e c r a c k s w i l l 

s t i l l l i e a l o n g t h e l i n e s t h r o u g h t h e h o l e c e n t r e s . T h i s i s d i s c u s s e d 

m o r e f u l l y i n s e c t i o n 9 . 3 . 

B e c a u s e o f t h e s y m m e t r y , t h e o p e n i n g - m o d e s t r e s s i n t e n s i t y f a c t o r 

i s t h e same f o r a l l c r a c k - t i p s ; h o w e v e r , i t i s c o n v e n i e n t t o c o n s i d e r 

o n e p a r t i c u l a r t i p , l a b e l l e d A i n F i g 9 . 1 . I t i s a l s o c o n v e n i e n t t o 

l a b e l t h e h o l e w i t h t i p A b y n = 0 . H o l e s o n t h e same s i d e a s t i p A 

a r e l a b e l l e d n = + 1 , + 2 , . . . i n s e q u e n c e a n d h o l e s o n t h e o t h e r s i d e 

n = - 1 , - 2 , . . . ( s e e F i g 9 . 1 ) . O n l y o p e n i n g - m o d e s t r e s s i n t e n s i t y 

f a c t o r s w i l l b e c o n s i d e r e d i n t h i s c h a p t e r ( s e e s e c t i o n 9 . 3 ) . 

The r e s u l t a n t s t r e s s i n t e n s i t y f a c t o r K i s a g a i n g i v e n by 

e q u a t i o n ( 5 . 5 ) a s 

n=^ 

kf = kg + ^ (k; - kg) + - kg) + , n f 0 , (9.1) 

Q=s—cx) -Qsr—CO 

w h e r e = t h e s t r e s s i n t e n s i t y f a c t o r f o r a p a i r o f c r a c k s a t t h e e d g e 

o f a h o l e i n t h e a b s e n c e o f a l l o t h e r b o u n d a r i e s ; K ' = t h e s t r e s s 
n 

i n t e n s i t y f a c t o r f o r t i p A o f t h e e q u i v a l e n t c r a c k of l e n g t h 2 a ' n e a r 

a h o l e o f r a d i u s R ; = t h e s t r e s s i n t e n s i t y f a c t o r f o r t i p A of 

t h e e q u i v a l e n t c r a c k o f l e n g t h 2 a ' n e a r a n o t h e r e q u i v a l e n t c r a c k of 

t h e same l e n g t h ; K = t h e c o n t r i b u t i o n t o t h e s t r e s s i n t e n s i t y f a c t o r 

o w i n g t o t h e d i s t u r b a n c e of t h e s t r e s s f i e l d c a u s e d b y i n t e r a c t i o n s 

b e t w e e n t h e h o l e s . 

T h e e q u i v a l e n t h a l f c r a c k - l e n g t h a ' r e q u i r e d i n e v a l u a t i n g K ' 
n 

a n d i s d e f i n e d a s b e f o r e ( s e e s e c t i o n 4 . 1 ) b y 

Kg . (9.2) 
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E q u a t i o n ( 9 . 1 ) c a n b e n o r m a l i z e d w i t h r e s p e c t t o K , t h e s t r e s s 

i n t e n s i t y f a c t o r f o r a n i s o l a t e d c r a c k of l e n g t h 2a i n an i n f i n i t e 

s h e e t s u b j e c t e d t o a u n i f o r m u n i a x i a l t e n s i l e s t r e s s o r e m o t e f r o m 

t h e c r a c k ; s i n c e K i s g i v e n by 

k = , (9.3) 

e q u a t i o n ( 9 . 1 ) becomes 

qr = qo 

n=« 

^ ( q ; - ,) + 1) 

n= 

+ qg , 0 , (9.4) 

w h e r e Q k^/k. k„/k, q; - kyk„. q ; - k^/kg and - k^/k . 

V a l u e s of Q a r e g i v e n by Rooke and C a r f w r i g h t (Case 1 . 3 . 3 of 

Ref 2) . The v a l u e s of and depend u p o n w h e t h e r n i s odd o r 

e v e n ; i f n i s odd t h e b o u n d a r i e s a r e i n t h e o t h e r row and h e n c e n o t 

on t h e l i n e of t h e c r a c k ; i f n i s e v e n t h e b o u n d a r i e s a r e i n t h e same 

row and on t h e l i n e of t h e c r a c k . F o r odd v a l u e s of n t h e a n c i l l a r y 

c o n f i g u r a t i o n s n e e d e d f o r t h e compound ing m e t h o d a r e shown i n F i g 9 . 2 a - d 

and t h o s e f o r even v a l u e s o f n a r e shown i n F i g 9 . 3 a - d . 

V a l u e s of f o r n odd a r e n o t known f o r t h e two a n c i l l a r y 

c o n f i g u r a t i o n s shown i n F i g 9 . 2 a & b . However r e s u l t s i n C h a p t e r 5 , f o r 

b / R = 8 , i n d i c a t e t h a t CQ^ ~ 1) f o r n o n - z e r o v a l u e s of h w i l l be 

0 , a s i n g l e row of h o l e s , (Q^ - 1) n e g l i g i b l e : f o r h 

c r a c k - l e n g t h s , t h e maximum c o n t r i b u t i o n t o Q 

f o r a l l 

b e i n g ~2% a t a / b ~ 0 . 5 , 

Fo r h > 0 , t e two rows of h o l e s t h e c o n t r i b u t i o n of Q' w i l l b e 
n 

l e s s . V a l u e s of f o r n odd a r e g i v e n i n C a s e 1 . 2 . 4 of Ref 2 f o r 

t h e two a n c i l l a r y c o n f i g u r a t i o n s shown i n F i g 9 . 2 c & d . 

The d i s t a n c e s b ' b ' 
0 , n ' n , 0 ' 0 , n 

and d ' 
n , 0 

shown i n F i g 9 . 2 a r e 

d e t e r m i n e d ( s e e s e c t i o n 4 . 1 ) by t h e c o n d i t i o n s t h a t t h e a p p r o p r i a t e d i s -

t a n c e s b e t w e e n b o u n d a r i e s a r e t h e same i n t h e a n c i l l a r y c o n f i g u r a t i o n s 

a s t h e y a r e i n t h e o r i g i n a l c o n f i g u r a t i o n . T h u s we o b t a i n 

bo,n nb - - Qg) , 

(' -

in b - a 

n > 0 

n < 0 

(9.5) 
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and 

d' = nb - 2a 
0,n 

( ' - " o ) ' " > ° 

and 

^ n O ^ ' n < 0 , Q g ^ l , ^ (9.6) 

4^,0 = + 2a (qZ - ]) , n < 0 , > 1 . 

V a l u e s o f f o r n e v e n a r e g i v e n i n C a s e 1 . 3 . 5 i n Ref 2 f o r 

t h e a n c i l l a r y c o n f i g u r a t i o n s shown i n F i g 9 . 3 a & b . S i n c e h o l e s i n t h e 

same row a r e s p a c e d a d i s t a n c e 2b a p a r t , i t f o l l o w s t h a t ^ / R a n d 

b^ Q /R a r e a p p r o x i m a t e l y e q u a l t o 2b /R . R e s u l t s i n C h a p t e r 5 show 

t h a t (Q^ - 1) i s n e g l i g i b l e f o r t h e s e v a l u e s o f b ^ ^ / R . V a l u e s of 

f o r n e v e n a r e g i v e n i n Case 1 . 2 . 2 i n Re f 2 f o r t h e a n c i l l a r y 

c o n f i g u r a t i o n s shown i n F i g 9 . 3 c & d . At c r a c k - l e n g t h s a / b < 0 . 4 t h e 

c o n t r i b u t i o n t o Q i s n e g l i g i b l e , a t l o n g e r c r a c k - l e n g t h s t h e c o n t r i -

b u t i o n i s a f e w p e r c e n t . The e x p r e s s i o n s f o r b ' , b ' d ' and 

^ ^ 0 , n n , 0 0 , n 
d ^ g a r e g i v e n by e q u a t i o n s ( 9 . 5 ) and ( 9 . 6 ) w i t h b r e p l a c e d by 2b . 

F o r a s i n g l e row of h o l e s w i t h b / R = 8 , i t was shown i n 

C h a p t e r 5 t h a t Q makes a n e g l i g i b l e c o n t r i b u t i o n t o . F o r two 

p a r a l l e l r o w s of h o l e s , t h e s t r e s s conaentrat-ion f a c t o r K , w h i c h 
I 7 

d e t e r m i n e s w i l l b e l e s s ( s e e P e t e r s o n ) . I t t h e r e f o r e f o l l o w s 

t h a t Q i s n e g l i g i b l e f o r t h e c o n f i g u r a t i o n c o n s i d e r e d h e r e . Thus t h e 

n o r m a l i z e d r e s u l t a n t s t r e s s i n t e n s i t y f a c t o r c a n b e e v a l u a t e d f r o m t h e 

f o l l o w i n g f o r m of e q u a t i o n ( 9 . 4 ) : 

qr = qo q;, + + 4^2 - 3 (9.7) 

The c o n t r i b u t i o n s f r o m b o u n d a r i e s w i t h | n | > 2 a r e a l l n e g l i g i b l e . 

R e s u l t s f o r (= ( a / r r a ) ) a r e p l o t t e d i n F i g 9 . 4 a s a f u n c t i o n 

of a / b f o r h / R = 2 and 4 , t o g e t h e r w i t h t h e r e s u l t s f o r m u l t i p l e 

c r a c k s i n a s i n g l e row of h o l e s ( h / R = 0 ) , o b t a i n e d i n C h a p t e r 5 . 

I t c a n b e s e e n t h a t t h e s t r e s s i n t e n s i t y f a c t o r i s l e s s when t h e 

h o l e s a r e i n two p a r a l l e l r o w s ; and t h a t K d e c r e a s e s a s t h e s e p a r a t i o n 

of t h e rows i s i n c r e a s e d . T h i s r e d u c t i o n i n K i s m o r e s i g n i f i c a n t 

f o r l o n g c r a c k s t h a n f o r s h o r t c r a c k s , f o r i n s t a n c e g o i n g f r o m h / R = 0 

t o h / R = 4 g i v e s r e d u c t i o n s of 33% a t a / b = 0 . 4 5 , of 12% a t 

a / b = 0 . 3 5 and of 4% a t a / b = 0 . 2 5 . 
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I n C h a p t e r 5 t h e s t r e s s i n t e n s i t y f a c t o r (K say) was o b t a i n e d 

f o r a p a i r of c r a c k s a t a s i n g l e h o l e i n an o t h e r w i s e u n c r a c k e d row of 

h o l e s p e r i o d i c a l l y s p a c e d a d i s t a n c e b a p a r t ; i n t h e same c h a p t e r i t 

was s e e n t h a t , f o r c r a c k s of e q u a l l e n g t h s a t a l l t h e h o l e s , t h e s t r e s s 

i n t e n s i t y f a c t o r (K^ s a y ) was g r e a t e r t h a n by up t o a f a c t o r of 2 . 

However , F i g 9 . 4 shows t h a t K c a n be r e d u c e d b y a r r a n g i n g t h e h o l e s 

i n t o two p a r a l l e l r o w s . I n f a c t , f o r l a r g e s e p a r a t i o n s , K a p p r o a c h e s 

a l i m i t , f o r s h o r t c r a c k s , w h i c h i s l e s s t h a n . T h i s l i m i t i n g v a l u e 

of K i s t h e s t r e s s i n t e n s i t y f a c t o r f o r two c r a c k s a t e v e r y h o l e i n a 

row of h o l e s p e r i o d i c a l l y s p a c e d a d i s t a n c e 2b a p a r t . However , f o r 

t h e v a l u e o f b / R u s e d i n t h i s c h a p t e r , t h e d i f f e r e n c e b e t w e e n K and 

t h e l i m i t i n g v a l u e of K i s s m a l l ( ~ l - 2 % ) a n d of t h e same o r d e r a s 

t h e a c c u r a c y of t h e Q-terms i n e q u a t i o n ( 9 . 7 ) . C u r v e s of K /K 

a g a i n s t a / b , f o r h / b = 0 , 2 and 4 , a r e shown i n F i g 9 . 5 ; i t i s s e e n 

t h a t f o r h / b = 4 , K e x c e e d s K by l e s s t h a n 10% f o r a l l c r a c k -
m s 

l e n g t h s . 

9 . 2 Growth of f a t i g u e c r a c k s 

B e c a u s e t h e s t r e s s i n t e n s i t y f a c t o r i s d e c r e a s e d by h a v i n g a 

d o u b l e row of h o l e s , t h e r a t e a t w h i c h c r a c k s g r o w when t h e component i s 

s u b j e c t e d t o f a t i g u e l o a d i n g s w i l l a l s o be r e d u c e d . Thus t h e t i m e f o r 

t h e c r a c k t o grow f r o m some i n i t i a l s i z e a^ t o a f i n a l s i z e a^ w i l l 

i n c r e a s e w i t h t h e row s p a c i n g h •. Two v a l u e s o f au/b a r e c o n s i d e r e d 

i n t h i s c h a p t e r , t h e y correspond t o t h e maximum a n d minimum f l a w s i z e s 
49 

assumed i n t h e d a m a g e - t o l e r a n t s p e c i f i c a t i o n 

9 . 2 . 1 R a t e s of c r a c k g r o w t h 

The r a t e of g r o w t h of f a t i g u e c r a c k s i s c o n t r o l l e d by t h e r a n g e 
of t h e a p p l i e d s t r e s s i n t e n s i t y f a c t o r AK (= K - K . ) . P a r i s 

^ max m m 

showed t h a t f o r s i m p l e l o a d i n g s , t h e g r o w t h o f f a t i g u e c r a c k s c o u l d 

b e d e s c r i b e d by a power l a w , name ly 
= c(ak)p , (9.8) 

w h e r e da /dN i s t h e i n c r e a s e i n c r a c k - l e n g t h p e r c y c l e of s t r e s s , and 

C and p a r e c o n s t a n t s ( s e e s e c t i o n 5 . 3 ) . 

F o r t h e h i g h - s t r e n g t h a l u m i n i u m a l l o y s u s e d i n a e r o s p a c e , p is 

a b o u t 3 . I n o r d e r t o e s t i m a t e t h e v a r i a t i o n o f g r o w t h - r a t e w i t h s t r e s s 

i n t e n s i t y f a c t o r , i t w i l l b e assumed t h a t p = 3 . 
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S i n c e AK c a n be w r i t t e n a s 

AK = QAa/ira ( 9 . 9 ) 

w h e r e Aa i s t h e r a n g e of a p p l i e d s t r e s s , i t f o l l o w s t h a t 

= C(AoVn^^ (Q/a)P . (9.10) 

I f (da/dN) i s t h e c r a c k g r o w t h - r a t e f o r two c r a c k s of l e n g t h a a t 

the edge of each hole in a double row and (da/dN) Chat for two cracks 

a l s o of l e n g t h a a t t h e e d g e of j u s t one h o l e i n a s i n g l e row, t h e n i t 

f o l l o w s f r o m e q u a t i o n ( 9 . 1 0 ) t h a t 

(da/dN) 
m 

(da/dN) 
s 

(9.11) 

w h e r e Q i s t h e n o r m a l i z e d s t r e s s i n t e n s i t y f a c t o r f o r m u l t i p l e c r a c k s 

i n a d o u b l e row of h o l e s , and t h a t f o r two s i m i l a r c r a c k s a t one of 

t h e h o l e s i n a s i n g l e row of h o l e s . 

The r a t i o of g r o w t h - r a t e s g i v e n by e q u a t i o n (9.11) w i t h p = 3 i s 

p l o t t e d i n F i g 9 . 6 a s a f u n c t i o n of a / b f o r h / R = 0 , 2 and 4 . I t i s 

s e e n t h a t t h e e f f e c t of m u l t i p l e c r a c k s on t h e g r o w t h - r a t e i s r e d u c e d by 

a r r a n g i n g t h e h o l e s i n two r o w s . F o r h / r = 4 t h e c r a c k g r o w t h - r a t e 

( d a / d N ) ^ i s w i t h i n 30% of (da/dN) f o r a l l c r a c k - l e n g t h s . F o r 

m u l t i p l e c r a c k s i n a s i n g l e row of h o l e s ( h / R = 0) , t h e r a t i o of t h e 

c r a c k g r o w t h - r a t e s i s much g r e a t e r , 1 . 5 a t a / b = 0 . 3 and 2 . 5 a t 

a / b — 0 . 4 . 

9 . 2 . 2 F a t i g u e l i f e t i m e s 

The v a l u e of t h e f a t i g u e l i f e t i m e AN^^ , d e f i n e d a s t h e number 

of c y c l e s of s t r e s s f o r a c r a c k t o grow f r o m a n i n i t i a l l e n g t h a^ t o a 

f i n a l l e n g t h a , p r o v i d e s a m e a s u r e of t h e s a f e t y and s e r v i c e a b i l i t y 

of a c r a c k e d a i r f r a m e s t r u c t u r a l c o m p o n e n t . T h e l i f e t i m e ANU^ i s 

g i v e n , f r o m e q u a t i o n ( 9 . 8 ) , by 

i 
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w h i c h can b e combined w i t h e q u a t i o n ( 9 . 1 0 ) t o g i v e 

c(aa/;)p j (q/a)p 
AN.^ = ! f — . (9.13) 

a. 
1 

I t i s c o n v e n i e n t t o w r i t e e q u a t i o n ( 9 . 1 3 ) i n t e r m s of t h e d i m e n s i o n l e s s 

v a r i a b l e a (= a / b ) ; t h u s 

AN.^ = Nn ; — (9.14) 
if 0 

a. 
1 

(q/a) 

w h e r e a . = a . / b , = a ^ / b , and 
1 i f f 

NL = 2 . (9.15) 
0 

c(aovnto^ 

I n o r d e r t o e s t i m a t e t h e i n c r e a s e i n l i f e t i m e o b t a i n e d by a r r a n g -

i n g t h e h o l e s i n two r o w s , a s i m p l e p e r i o d i c c o n f i g u r a t i o n was s t u d i e d , 

h a v i n g two c r a c k s of t h e same l e n g t h , , e i t h e r 1 . 2 5 mm o r 0 . 1 2 5 mm, 

a t e v e r y h o l e ; t h e s e two v a l u e s a r e t h e same a s t h e maximum and minimum 

f l a w s i z e s of t h e d a m a g e - t o l e r a n t s p e c i f i c a t i o n ^ ^ . L i f e t i m e s c o u l d b e 

c a l c u l a t e d f o r c r a c k s o f a r b i t r a r y l e n g t h s a t d i f f e r e n t h o l e s , b u t a 

s t e p - b y - s t e p p r o c e d u r e wou ld be n e e d e d ( s e e s e c t i o n 9 . 3 ) . 

I f t h e row of h o l e s i s a row of f a s t e n e r h o l e s t h e n a t y p i c a l 

d i a m e t e r of t h e h o l e s f o r an a i r c r a f t s t r u c t u r e would be ~ 6 mm. The 

r a t i o of t h e l e n g t h (= a ^ - R ) t o t h e r a d i u s w i t h be e i t h e r ~ 0 . 4 f o r 

t h e l a r g e r c r a c k of ~ 0 . 0 4 f o r t h e s m a l l e r c r a c k . S i n c e 

° = f = f / l • ^ l ) / l ' 

i t f o l l o w s t h a t = 0 . 1 8 o r 0 . 1 3 . With t h e s e v a l u e s of t h e 

i n t e g r a l i n e q u a t i o n ( 9 . 1 4 ) was e v a l u a t e d n u m e r i c a l l y , f o r p = 3 , a s a 

f u n c t i o n of . The r e s u l t s a r e shown i n F i g 9 . 7 f o r h / R = 0 , 2 a n d 

4 when a l l t h e h o l e s h a v e c r a c k s and f o r h = 0 when o n l y one of t h e 

h o l e s h a s c r a c k s . I t c a n b e s e e n t h a t t h e r e i s a s i g n i f i c a n t i n c r e a s e 

i n l i f e t i m e f r o m h a v i n g two rows of h o l e s . H o w e v e r , more a r e a may be 

n e e d e d i f t h e f a s t e n e r s a r e i n a d o u b l e row a n d d e s i g n i n g f o r l o n g e r 

l i f e may c a r r y a w e i g h t p e n a l t y . 



The l i f e t i m e d e p e n d s on b o t h and a ^ . B e c a u s e g r o w t h i s 

d e s c r i b e d by a s i m p l e p o w e r - l a w , m o s t of t h e l i f e t i m e of a f a t i g u e c r a c k 

i s s p e n t w h i l e t h e c r a c k i s s h o r t , a ~ a^ • When a^ i s s m a l l , t h e 

s t r e s s i n t e n s i t y f a c t o r i s n o t v e r y s e n s i t i v e t o t h e a c t u a l p o s i t i o n of 

t h e b o u n d a r i e s ; t h u s , t h e b e n e f i t s o f a r r a n g i n g t h e h o l e s i n two r o w s 

w i l l be l e s s f o r s m a l l a . t h a n f o r l a r g e a . . T h e s e e f f e c t s a r e 
1 1 

shown i n F i g 9 . 8 w h e r e t h e r a t i o (AN) / ( A N ) ^ i s p l o t t e d a s a f u n c t i o n 

of a ^ / b f o r t h e two v a l u e s of a ^ / b and h / R = 0 , 2 and 4 : (AN)^ i s 

t h e l i f e t i m e f o r two c r a c k s a t e v e r y h o l e a n d (AN) i s t h e l i f e t i m e 

f o r two c r a c k s a t o n e h o l e o n l y i n a s i n g l e r o w of h o l e s . F o r h / R = 0 , 

m u l t i p l e c r a c k s r e d u c e t h e l i f e t i m e f o r a ^ / b = 0 . 1 3 by b e t w e e n 5% and 

24% o v e r t h e r a n g e a ^ / b ^ 0 . 4 5 ; f o r a d o u b l e row of h o l e s ( h / R = 4 ) , 

t h e r e d u c t i o n i s l e s s t h a n 10% o v e r t h e same r a n g e of a ^ / b . F o r 

a ^ / b = 0 . 1 8 t h e r e d u c t i o n i n l i f e t i m e c a u s e d b y m u l t i p l e c r a c k s i n a 

s i n g l e row ( h / R = 0) i s b e t w e e n 17% a n d 35%; f o r a d o u b l e row of h o l e s 

( h / R = 4 ) , t h e r e d u c t i o n i s b e t w e e n 9% and 18%. The r e g i o n w h e r e 
(AN) /(AN) > 1 o c c u r s b e c a u s e K c a n b e l e s s t h a n K f o r l a r g e 

m s m s 
v a l u e s of h / R and s m a l l c r a c k - l e n g t h s ( s e e s e c t i o n 9 . 1 ) . 

9 . 3 D i s c u s s i o n 

The mode l c o n f i g u r a t i o n s s t u d i e d i n t h i s c h a p t e r a r e s i m p l i f i e d 

r e p r e s e n t a t i o n s o f p r a c t i c a l c r a c k c o n f i g u r a t i o n s a t a d o u b l e row of 

h o l e s . 

The m a j o r s i m p l i f i c a t i o n s a r e : 

( a ) t h e n e g l e c t i n g of a n y e f f e c t s on t h e r a t e o r d i r e c t i o n of c r a c k 

g r o w t h d u e t o t h e s l i d i n g - m o d e s t r e s s i n t e n s i t y f a c t o r ; 

(b ) t h e d i r e c t i o n of c r a c k g r o w t h i n e a c h r o w of h o l e s i s a l o n g t h e 

l i n e t h r o u g h t h e c e n t r e s o f t h e h o l e s ; 

( c ) a l l t h e c r a c k s h a v e t h e same l e n g t h ; 

(d) t h e g r o w t h of c r a c k s i n f a t i g u e i s d e s c r i b e d by a s i m p l e power 

l a w ( s e e e q u a t i o n ( 9 . 8 ) ) , w i t h t h e p o w e r p = 3 ; 

The c o n s e q u e n c e s o f t h e s e s i m p l i f y i n g a s s u m p t i o n s a r e now d i s c u s s e d i n 

m o r e d e t a i l . 

( a ) The c a l c u l a t i o n s i n s e c t i o n s 9 . 1 and 9 . 2 r e f e r t o o p e n i n g mode 

s t r e s s i n t e n s i t y f a c t o r s K o n l y . B e c a u s e t h e c o n f i g u r a t i o n i s n o t 

s y m m e t r i c a b o u t e i t h e r row of h o l e s , t h e r e i s a n o n - z e r o c o n t r i b u t i o n 

t o t h e s l i d i n g mode s t r e s s i n t e n s i t y f a c t o r . The m a g n i t u d e of 

c a n be o b t a i n e d f r o m t h e r e s u l t s f o r t h e a n c i l l a r y c o n f i g u r a t i o n 
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shown i n F i g 9 .2c&d of two p a r a l l e l o f f - s e t c r a c k s ( s e e Case 1 . 2 . 4 i n 

Ref 2 ) . From t h e s e r e s u l t s i t f o l l o w s t h a t , f o r t h e c o n f i g u r a t i o n s 

s t u d i e d i n t h i s c h a p t e r , ^ h e n c e t h e e f f e c t s of t h e 

s l i d i n g mode s t r e s s i n t e n s i t y f a c t o r a r e u n l i k e l y t o be s i g n i f i c a n t . 

(b ) B e c a u s e of t h e r e d u c t i o n i n symmet ry d u e t o h a v i n g two rows of 

h o l e s , t h e maximum s t r e s s c o n c e n t r a t i o n a t e a c h h o l e i s no l o n g e r a t 

t h e e n d s o f t h e d i a m e t e r w h i c h l i e s a l o n g t h e l i n e of t h e c e n t r e s of 

t h e h o l e s . I t i s d i s p l a c e d r o u n d t h e p e r i m e t e r of t h e h o l e t o w a r d s t h e 

n e i g h b o u r i n g row ( s e e P e t e r s o n ' ^ ) ; i n p r i n c i p l e , t h i s may c a u s e t h e 

c r a c k t o d e v i a t e f r o m t h e p a t h a s sumed i n t h i s c h a p t e r . Howeve r , f o r 

t h e c o n f i g u r a t i o n s c o n s i d e r e d t h e d e v i a t i o n s a r e s m a l l and c a n be 

n e g l e c t e d . 

I t m i g h t b e t h o u g h t t h a t c r a c k s w i l l b e i n i t i a t e d and grow t o w a r d s 

e a c h o t h e r a l o n g t h e l i n e j o i n i n g t h e c e n t r e s o f two a d j a c e n t h o l e s , o n e 

i n e a c h r o w . T h a t i s t h e c r a c k s w i l l t e n d t o g r o w a t a n a n g l e of 

9 = ± t a n ' ( h / b ) r a t h e r t h a n i n t h e a s sumed d i r e c t i o n a t r i g h t a n g l e s t o 

t h e a p p l i e d s t r e s s . F o r t h e v a l u e s of h / b = 2 and 4 , t h e a n g l e s 9 

a r e a p p r o x i m a t e l y 15° and 3 0 ° . The r e s u l t a n t s t r e s s i n t e n s i t y f a c t o r 

K f o r t h i s c o n f i g u r a t i o n c a n b e o b t a i n e d f o r r e s u l t s f r o m t h e f o l l o w -

i n g a n c i l l a r y c o n f i g u r a t i o n s : 

( i ) a r a d i a l c r a c k a t t h e e d g e of a c i r c u l a r h o l e i n a s h e e t 

s u b j e c t e d t o a u n i f o r m u n i a x i a l t e n s i l e s t r e s s r e m o t e f r o m and a t 

an a r b i t r a r y a n g l e ' t o t h e c r a c k (Tweed a n d R o o k e ^ ^ ) ; 

( i i ) a c r a c k i n t h e v i c i n i t y o f a h o l e i n a s h e e t s u b j e c t e d t o 

t h e same r e m o t e s t r e s s ( C a s e 1 . 3 . 5 , Ref 2 ) ; 

( i i i ) a c r a c k c o l l i n e a r w i t h a n o t h e r c r a c k i n a s h e e t s u b j e c t e d 

t o t h e same r e m o t e s t r e s s ( C a s e 1 . 2 . 2 , R e f 2 ) . 

I n o r d e r t o o b t a i n r e s u l t s f o r a n c i l l a r y c o n f i g u r a t i o n s ( i i ) and ( i i i ) 

t h e a p p l i e d s t r e s s m u s t b e r e s o l v e d i n t o b o t h n o r m a l and s h e a r compo-

n e n t s p a r a l l e l and p e r p e n d i c u l a r t o t h e c r a c k . 

F o r t h i s c o n f i g u r a t i o n w i t h b / R = 8 c a l c u l a t i o n s show t h a t t h e 

s t r e s s i n t e n s i t y f a c t o r i s a l w a y s l e s s ( 1 0 - 5 0 % ) t h a n t h a t f o r c r a c k s 

p e r p e n d i c u l a r t o t h e d i r e c t i o n of t h e a p p l i e d s t r e s s . I t i s u n l i k e l y , 

s i n c e t h e maximum s t r e s s o c c u r s a t 0 — 0 t h a t c r a c k s w i l l b e i n i t i a t e d 

a t a n a n g l e 0 much d i f f e r e n t f r o m z e r o , b u t , i f c r a c k s do o c c u r , t h e y 

w i l l g row much more s l o w l y . 

The s l i d i n g mode s t r e s s i n t e n s i t y f a c t o r i s a g a i n much 

s m a l l e r t h a n . 
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( c ) The r e q u i r e m e n t of t h e d a m a g e - t o l e r a n t s p e c i f i c a t i o n i s t o 

a s s u m e o n e l o n g c r a c k ( 1 . 2 5 mm) and a l l t h e r e s t s h o r t ( 0 . 1 2 5 mm). T h i s 

c o u l d b e s t u d i e d u s i n g t h e a b o v e m e t h o d s b u t w i t h some l o s s of a c c u r a c y 

b e c a u s e s o l u t i o n s a r e n o t y e t a v a i l a b l e f o r a l l of t h e r e q u i r e d 

a n c i l l a r y c o n f i g u r a t i o n s " ^ . In o r d e r t o c a l c u l a t e t h e l i f e t i m e , a s t e p -

b y - s t e p p r o c e d u r e m u s t b e u s e d a s c r a c k s of d i f f e r e n t l e n g t h s grow a t 

d i f f e r e n t r a t e s . To f a c i l i t a t e t h e c a l c u l a t i o n s , a mode l c o n f i g u r a t i o n 

w i t h a l l t h e c r a c k s t h e same l e n g t h h a s b e e n s t u d i e d i n t h i s c h a p t e r . 

H o w e v e r , i t c a n b e shown t h a t K f o r t h e m o d e l c o n f i g u r a t i o n i s 

g r e a t e r t h a n t h a t f o r t h e c o n f i g u r a t i o n s p e c i f i e d i n Ref 4 9 . The l o n g 

c r a c k (£^ = 1 . 2 5 mm) h a s t h e l a r g e s t s t r e s s i n t e n s i t y f a c t o r . I f i t s 

t i p - t o - t i p l e n g t h i s 2a , t h e n f o r a g i v e n v a l u e of a / b t h e d i s t a n c e 

f r o m e i t h e r t i p of t h e l o n g c r a c k t o t h e n e a r e r t i p s of t h e s m a l l e r 

c r a c k s (£^ = 0 . 1 2 5 mm) i s g r e a t e r t h a n i n t h e m o d e l c o n f i g u r a t i o n 

( 2 = 1 . 2 5 f o r a l l c r a c k s ) . Hence t h e c o n t r i b u t i o n of t h e s m a l l e r 

c r a c k s t o K f o r t h e l o n g c r a c k i s l e s s , a n d t h e l i m i t i n g v a l u e of 
K a s h / R i n c r e a s e s , i s l e s s t h a n K ( s e e s e c t i o n 9 . 1 ) f o r a much 

m s 

l a r g e r r a n g e of a / b . Thus t h e s t r e s s i n t e n s i t y f a c t o r f o r t h e l o n g e r 

c r a c k i s l e s s f o r a l l v a l u e s of a / b t h a n i f t h e c r a c k s w e r e a l l t h e 

same l e n g t h , and h e n c e t h e c r a c k g r o w t h - r a t e s w i l l b e l e s s and t h e l i f e -

t i m e s m o r e . 

(d ) The f a t i g u e c a l c u l a t i o n s w e r e d o n e a s s u m i n g a s i m p l e d e p e n d e n c e of 

t h e c r a c k g r o w t h - r a t e on t h e s t r e s s i n t e n s i t y f a c t o r and no l o a d i n t e r -

a c t i o n e f f e c t s . The c a l c u l a t i o n s c a n s t i l l b e d o n e e v e n when l o a d 

i n t e r a c t i o n e f f e c t s a r e p r e s e n t p r o v i d e d t h e c r a c k g r o w t h - r a t e c a n 

s t i l l b e e x p r e s s e d a s a f u n c t i o n of t h e s t r e s s i n t e n s i t y f a c t o r . The 

s i m p l e p o w e r - l a w u s e d a s sumed t h a t t h e p o w e r p = 3 . I f p > 3 t h e 

p e r c e n t a g e i n c r e a s e of l i f e t i m e t h a t r e s u l t s f r o m h a v i n g two r o w s of 

h o l e s , w o u l d t h e r e f o r e b e g r e a t e r t h a n t h o s e c a l c u l a t e d f o r p = 3 . 

S i n c e t h e m a g n i t u d e of t h e e f f e c t s on l i f e t i m e i n c r e a s e s a s t h e i n i t i a l 

c r a c k - l e n g t h i n c r e a s e s , i t f o l l o w s t h a t s u c h e f f e c t s become i n c r e a s i n g l y 

i m p o r t a n t i n t h e c a l c u l a t i o n of i n s p e c t i o n i n t e r v a l s a s t h e componen t 

n e a r s t h e end of i t s l i f e . 

( e ) B o u n d a r y - b o u n d a r y i n t e r a c t i o n s a r e n e g l i g i b l e f o r t h e d o u b l e row 

of h o l e s and t h e r e f o r e t h e t e r m Q i s n e g l i g i b l e i n t h e c a l c u l a t i o n of 

* The m a j o r a n c i l l a r y c o n f i g u r a t i o n of two c r a c k s o f u n e q u a l l e n g t h a t 
t h e e d g e o f a h o l e h a s b e e n o b t a i n e d by Tweed a n d Rooke^O; b u t two 
p a r a l l e l o f f s e t c r a c k s of u n e q u a l l e n g t h h a s n o t , a l t h o u g h two 
c o l l i n e a r c r a c k s of u n e q u a l l e n g t h h a s ( s e e C a s e 1 . 2 . 3 i n Ref 2 ) . 



t h e n o r m a l i z e d s t r e s s i n t e n s i t y f a c t o r . The t e r m Q was f o u n d t o b e 
e 

n e g l i g i b l e ( s e e s e c t i o n 5 . 4 ) f o r a s i n g l e row o f h o l e s ; i t w i l l be e v e n 

s m a l l e r f o r t h e d o u b l e row a s t h e s t r e s s eonoervtvation f a c t o r i s less* . 

9 . 4 C o n c l u s i o n s 

(1) A r r a n g i n g f a s t e n e r h o l e s i n two rows i n s t e a d of one r e d u c e s s t r e s s 

i n t e n s i t y f a c t o r s when t h e h o l e s a r e c r a c k e d . T h i s r e s u l t s i n s l o w e r 

f a t i g u e c r a c k g r o w t h and l o n g e r l i f e t i m e s . 

(2) The b e n e f i t s of h a v i n g two rows of h o l e s a r e s m a l l w h i l e t h e 

c r a c k s r e m a i n s m a l l , b u t i f d a m a g e - t o l e r a n t r e q u i r e m e n t s impose a l a r g e 

i n i t i a l c r a c k - l e n g t h , t h e n t h e b e n e f i t s a r e s u b s t a n t i a l . 
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CONCLUDING REMARKS 

I n t h i s t h e s i s a me thod c a l l e d c o m p o u n d i n g was d e v e l o p e d f o r 

o b t a i n i n g s t r e s s i n t e n s i t y f a c t o r s f o r c r a c k s i n complex g e o m e t r i c a l 

c o n f i g u r a t i o n s r e p r e s e n t i n g e n g i n e e r i n g s t r u c t u r a l c o m p o n e n t s . The 

e m p h a s i s was i u d e v e l o p i n g a method w h i c h i s q u i c k and e a s y t o u s e , and 

t h e r e f o r e n o t c o s t l y : s u c h a me thod i s , of n e c e s s i t y , a p p r o x i m a t e . The 

e r r o r s a r i s i n g f r o m t h e u s e o f s u c h a p p r o x i m a t i o n s i n t h e f r a c t u r e 

m e c h a n i c s c a l c u l a t i o n s of f a t i g u e l i f e t i m e s a n d r e s i d u a l s t r e n g t h of 

c r a c k e d s t r u c t u r e s w e r e i n v e s t i g a t e d , by u s i n g a s i m p l e a s y m p t o t i c 

m e t h o d ; t h u s t h e d e g r e e of a p p r o x i m a t i o n w h i c h p r o d u c e s a c c e p t a b l e 

e r r o r s , t g w i t h i n e n g i n e e r i n g t o l e r a n c e s , was d e t e r m i n e d . T h e s e e r r o r 

l e v e l s were a d o p t e d a s a g u i d e i n d e v e l o p i n g t h e compounding method t o 

t h e r e q u i r e d a c c u r a c y . 

I t was shown how t h e me thod i s u s e d t o b u i l d up t h e s t r e s s 

i n t e n s i t y f a c t o r s o l u t i o n s f o r a g e o m e t r i c a l l y c o m p l e x , c r a c k e d c o n -

f i g u r a t i o n w i t h many b o u n d a r i e s f r o m t h e s o l u t i o n s f o r s e v e r a l s i m p l e 

c r a c k e d c o n f i g u r a t i o n s . An a d v a n t a g e of t h i s p r o c e d u r e i s t h a t t h e 

b o u n d a r i e s w h i c h a r e l i k e l y t o be i m p o r t a n t d e s i g n f e a t u r e s , a r e 

r e a d i l y i d e n t i f i e d . The v e r s a t i l i t y of t h e c o m p o u n d i n g method was 

d e m o n s t r a t e d by a p p l y i n g i t t o s e v e r a l common s t r u c t u r a l c o n f i g u r a t i o n s 

i n c l u d i n g c r a c k s a t r o w s . o f h o l e s , l o a d e d and u n l o a d e d , and c r a c k s i n 

r e i n f o r c e d s t r u c t u r e s . 

The m e t h o d , i s p a r t i c u l a r l y s u i t a b l e f o r d e s i g n s t u d i e s of damage 

t o l e r a n t s t r u c t u r e s and t h e c a l c u l a t i o n of f a t i g u e l i f e t i m e s ; t h e c o n -

f i g u r a t i o n s s t u d i e d i n t h i s t h e s i s , a l t h o u g h o n l y t w o - d i m e n s i o n a l , a r e 

a p p r o p r i a t e f o r many d e s i g n p r o b l e m s . I n p r i n c i p l e t h e compound ing 

method c a n be a p p l i e d t o t h r e e - d i m e n s i o n a l p r o b l e m s , b u t many more 

s t r e s s i n t e n s i t y f a c t o r s o l u t i o n s t o s i m p l e t h r e e - d i m e n s i o n a l c o n f i g u r a -

t i o n s a r e r e q u i r e d b e f o r e i t c a n be w i d e l y u s e d . However many t h r e e -

d i m e n s i o n a l c o n f i g u r a t i o n s c a n be m o d e l l e d by a t w o - d i m e n s i o n a l c o n -

f i g u r a t i o n w h i c h r e t a i n s t h e e s s e n t i a l b o u n d a r y f e a t u r e s and w h i c h w i l l 

g i v e c o n s e r v a t i v e e s t i m a t e s of r e s i d u a l s t r e n g t h and f a t i g u e l i f e t i m e s . 
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APPENDIX A 

EVALUATION OF GROWTH-TIME INTEGRALS FOR A CIRCULAR HOLE 

(See s e c t i o n s 2 . 2 . 1 and 2 . 2 . 2 ) 

The number of c y c l e s AN r e q u i r e d f o r a c r a c k of i n i t i a l l e n g t h 

t o r e a c h a f i n a l l e n g t h i s g i v e n , by e q u a t i o n ( 2 . 2 1 ) , a s 

i 

F o r a c r a c k of l e n g t h £ a t t h e edge of a c i r c u l a r h o l e of r a d i u s R 

t h e s t r e s s i n t e n s i t y f a c t o r r a n g e AK i s g i v e n b y 

AK = YAo/nl ; (A-2) 

t h e g e o m e t r y f a c t o r Y i s g i v e n , by e q u a t i o n ( 2 . 2 6 ) , a s 

Y = 3.36 , &/R<0.1 , 1 

(A-3) 

T h e r e f o r e f o r £ j / R < 0 . 1 , e q u a t i o n (A-1) b e c o m e s 

^f 

AN = [ , (A-4) 
C(3.36Aa/n)* / 

i 

and f o r £ ^ / R ^ 0 . I , e q u a t i o n (A-1) becomes 

n 
AN - . (A-5) 

C(Ao/7) ^ (2 + 2R) 
i 

The i n t e g r a l i n (A-4) i s known; t h e s p e c i f i c i n t e g r a l s r e q u i r e d f o r 

t h i s a p p l i c a t i o n a r e a s f o l l o w s : 



A p p e n d i x A , 2 1 

for m = 2 

f o r m = 3 

and f o r m = 4 

£ 
£. 
l 

d2 
,3/2 

£. 
1 

I n 

= 2 
(72- ' 

/j 

a 

> 

J 

( A - 6 ) 

S u b s t i t u t i o n of x = £ + 2R i n t o t h e i n t e g r a n d i n e q u a t i o n (A-5) g i v e s 

an = 
2-/2 r _dx_ 

C ( A O / ^ ) ° \ 

i 

(A-7) 

w h e r e x . = £ . + 2R and x^ = £ , + 2R . The f o r m of t h e i n t e g r a l i n 
1 1 f f 

e q u a t i o n (A-7) i s i d e n t i c a l w i t h t h o s e g i v e n i n e q u a t i o n ( A - 6 ) . 

By c o m b i n i n g e q u a t i o n s (A-4) and (A-5) t h e v a l u e of AN c a n b e 

c a l c u l a t e d f o r a n y £^ a n d £^ 
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APPENDIX B 

EVALUATION OF GROWTH-TIME INTEGRALS FOR AN ELLIPTICAL HOLE 

(See s e c t i o n 2 . 2 . 3 ) 

F o r c r a c k s a t t h e edge of a n e l l i p t i c a l h o l e t h e e q u a t i o n s 

r e q u i r e d t o c a l c u l a t e AN a r e ( s e e A p p e n d i x A) a s f o l l o w s : 

AN 

£. 
1 

(AK) 
m 

(B-1) 

AK = YAa/rrT , 

and 

].12 + 2 

Y = 
2 + c 

2/R < 0.1 

&/R > 0.1 

(B-2) 

^ (B-3) 

T h e r e f o r e f o r £ ^ / R < 0 . 1 e q u a t i o n (B-1) b e c o m e s 

AN = 

1 .1 2 ̂1 + 2 j AavV 

d£ 
m J 0/2 

(B-4) 

and f o r £^ /R > 0 . 1 e q u a t i o n (B-1) becomes 

AN 
1 

C(Aa/n)™ J (& + c) 

i 

d£ 
m/ 2 

(B-5) 

The i n t e g r a l i n e q u a t i o n (B-4) i s i d e n t i c a l t o t h a t i n e q u a t i o n (A-4) 

and t h e i n t e g r a l i n e q u a t i o n (B-5) i s t h e same a s t h e i n t e g r a l i n 

e q u a t i o n (A-5) i f 2R i s r e p l a c e d by c . T h u s t h e s o l u t i o n s g i v e n i n 

e q u a t i o n (A-6) a r e a p p l i c a b l e t o t h i s c a s e and t h e r e f o r e AN f o r any 

v a l u e s of £^ and c a n be c a l c u l a t e d by c o m b i n i n g e q u a t i o n s (B-4) 

and (B-5). 
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APPENDIX C 

EVALUATION OF GEOWTH-TIME INTEGRALS FOR A LOADED CIRCULAR HOLE 

( S e e s e c t i o n 2 . 2 . 4 ) 

F o r a c r a c k a t t h e e d g e of a h o l e , l o a d e d e i t h e r by a f o r c e P o r 

a p r e s s u r e p , t h e e q u a t i o n s r e q u i r e d t o c a l c u l a t e AN a r e ( s e e 

A p p e n d i x A) a s f o l l o w s : 

AN 
di 

£. 
1 

(AK) 
m 

(C-1 ) 

and 

AK = YAs/irZ (C-2) 

w h e r e s i s a s t r e s s e q u a l t o e i t h e r P/C2R) o r p . The f u n c t i o n Y 

i s g i v e n by 

Y =. 1 .1 

and 

Tj\j X(A + 1)(X + 2) 

f o r £ /R ^ 0 . 2 

f o r i / R > 0 . 2 

> (C-3) 

F o r s h o r t c r a c k s , £ ^ / R < 0 . 2 , . s u b s t i t u t i o n of e q u a t i o n (C-3) 

i n t o e q u a t i o n (C-2) and e q u a t i o n (C-2) i n t o ( C - 1 ) l e a d s t o i n t e g r a l s 

i d e n t i c a l t o t h o s e i n e q u a t i o n (A-4) i n A p p e n d i x A; t h e s o l u t i o n s of t h e 

i n t e g r a l s a r e g i v e n i n e q u a t i o n s ( A - 6 ) . Fo r l o n g c r a c k s , £ ^ / R ^ 0 . 2 , 

e q u a t i o n (C-1) becomes 

m 
( C - 4 ) 

where 
m 

(x + 1)(x + 2) 
m/2 

dX (C-5) 

with X. = £./R and = X_/R . 
1 1 f f 

The integrals I are, for m = 2, 3 and 4, given by 

(C-6 ) 
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X +3X + 2 _ 
8 64 

(2X + 3 ) A ^ + 3X+ 2 

+ T28 2 A ^ + 3A + 2 + 2X + 3 

X. 
1 

(C-7) 

+ 21^ + 1:^2 + (C-8) 

By c o m b i n i n g t h e s h o r t - c r a c k and t h e l o n g - c r a c k e x p r e s s i o n s , AN may b e 

c a l c u l a t e d f o r a n y v a l u e s of £ . and 
i f 
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appendix d 

evaluation of boundary-boundary interactions 

(See s e c t i o n 3 . 1 ) 

C o n s i d e r a r e g i o n c o n t a i n i n g a c r a c k n e a r t o two s t r e s s f r e e 

b o u n d a r i e s Bj and B^ ; t h e r e g i o n i s s u b j e c t e d t o an a p p l i e d s t r e s s 

s y s t e m on i t s b o u n d a r y B^ w h i c h i s r e m o t e f r o m t h e c r a c k . T h i s 

c a n be o b t a i n e d u s i n g s u p e r p o s i t i o n a s shown i n F i g 3 . 2 . To o b t a i n t h e 

s t r e s s i n t e n s i t y f a c t o r f o r t h e c o n f i g u r a t i o n i n F i g 3 . 2 c u s e i s made of 

t h e s o l u t i o n f o r a r e g i o n c o n t a i n i n g a c r a c k n e a r a s i n g l e i n t e r n a l 

b o u n d a r y B s u b j e c t e d t o an a r b i t r a r y p o i n t f o r c e F ; t h e r e g i o n 

b e i n g b o u n d e d , r e m o t e f r o m t h e c r a c k , by an e x t e r n a l b o u n d a r y B^ . 

I f B becomes B^ and d i s t r i b u t e d p o i n t f o r c e s F = - S j d t j a r e 

i n t r o d u c e d , d t j b e i n g a l e n g t h of a r c a l o n g Bj , t h e s t r e s s i n t e n s i t y 

f a c t o r o b t a i n e d i s K* ( F i g 3 . 3 a ) . S i m i l a r l y , i f B becomes B^ and 

F = -S dCg t h e s t r e s s i n t e n s i t y f a c t o r o b t a i n e d i s (Fig 3 . 3 b ) . 

The f i r s t s t a g e i n o b t a i n i n g t h e s t r e s s i n t e n s i t y f a c t o r when b o t h 

b o u n d a r i e s a r e p r e s e n t comes f r o m s u p e r i m p o s i n g F i g 3 . 2 a & b . T h i s g i v e s 

a s t r e s s i n t e n s i t y f a c t o r of K* + K* b u t a d d i t i o n a l p e r t u r b a t i o n 

s t r e s s e s (ASj)^ and (AS^) j a r e i n t r o d u c e d o n b o u n d a r i e s Bj and B^ 

r e s p e c t i v e l y ( F i g 3 . 3 c ) . The s t r e s s e s (AS w h i c h o c c u r a t t h e s i t e 

of b o u n d a r y Bj r e s u l t f r o m i n t r o d u c i n g b o u n d a r y B^ and t h e s t r e s s e s 

(ASg)J w h i c h o c c u r a t t h e s i t e of b o u n d a r y B^ r e s u l t f r o m i n t r o d u c i n g 

b o u n d a r y Bj . T h e s e p e r t u r b a t i o n s t r e s s e s (AS ) | , n = 1 , 2 , a r e 

c a n c e l l e d by s u p e r i m p o s i n g t h e p o i n t f o r c e c o n f i g u r a t i o n , w i t h 

F = - ( A S j ) j d t j and - ( A S 2 ) j d t 2 on Bj and B^ r e s p e c t i v e l y , on t o 

t h e c o n f i g u r a t i o n i n F i g 3 . 2 c w h i c h g i v e s a s t r e s s i n t e n s i t y f a c t o r of 

+ K* + (AK|) + (AK^)] and leaves reduced stresses (AS|)2 and 

(AS2)2 on B| and respectively (Fig 3.3d). T̂ iis alternating 

s e q u e n c e may b e c o n t i n u e d u n t i l a t t h e j t h s t a g e t h e s t r e s s e s ( A S ^ ) j , 

n = 1 , 2 , a r e a s s m a l l a s r e q u i r e d . I n t h e l i m i t t h e r e s u l t a n t s t r e s s 

i n t e n s i t y f a c t o r K* i s g i v e n by 

k* = k* + k* + ^}^{(ak]). + (ak2)j} . (d-1) 

j = 1 

On s u b s t i t u t i n g e q u a t i o n s ( 3 . 1 ) t o ( 3 , 3 ) i n t o e q u a t i o n (D-1) t h e n o r m a l -

i z e d s t r e s s i n t e n s i t y f a c t o r w i t h N = 2 b e c o m e s , f o r t h e c o n f i g u r a t i o n 

in Fig 3.2a, 
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Qr = Q] + Qg - I + / i(AQ,); + (AQ^):> . (D-2) 

j = l 

C o m p a r i s o n of e q u a t i o n (D-2) w i t h e q u a t i o n ( 3 . 7 ) (N = 2) shows t h a t Q 

i s t h e summat ion t e r m . Thus i f (AS^)^ , n = 1 , 2 , c an be e v a l u a t e d t h e n 

so c a n t h e i n t e r a c t i o n t e r m Q . The sum of t h e t e r m s g i v i n g w i l l 

be s m a l l e r t h a n and Q b e c a u s e i t d e p e n d s o n l y on t h e p e r t u r b a -

t i o n s t r e s s e s (AS ). , n = 1,2, w h i c h a r i s e f r o m t h e i n t e r a c t i o n 

b e t w e e n t h e two b o u n d a r i e s . 
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Fig 2.1 Crack a t the edge of an a r b i t r a r i l y shaped hole 

Fig 2.2 Ratio of crack growth-times f o r an i n i t i a l 
crack length of 0.01 R 
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Fig 2.4 The geometry f a c t o r Y fo r a crack a t the edge of a c i r c u l a r 
hole: remote t e n s i l e s t r e s s 
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Fig 2.6 Ratio of growth-times fo r a crack a t the edge of a c i r c u l a r 
hole - remote loading (&^/R = 0.01) 
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Fig 2.7 Ratio of growth-times f o r a crack a t the edge of a c i r c u l a r 
hole - remote loading (&^/R = 0.1) 
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Fig 2.8 Two cracks at the edge of a c i rcu lar hole 
in a uniformly s t ressed sheet 

Fig 2.9 Stress concentration fac tor at B 
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Fig 2.10 Percentage d i f f e rences between approximate and numerical solut ions 
fo r the s t r e s s i n t e n s i t y f ac to r for a doubly cracked hole - remote 
loading 
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Fig 2.71 Two cracks at the edge of an e l l i p t i c a l 
hole in a uniformly stressed sheet 
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Fig 2.13 Ratio of growth-times f o r two cracks a t the edges of an 
e l l i p t i c a l hole - remote loading (&^/c = 0.02, m = 2) 
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Fig 2.14 Ratio of growth-times f o r two cracks a t the edges of an 
e l l i p t i c a l hole - remote loading (&^/c = 0.02, m = 3) 
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Fig 2,15 Ratio of growth-time fo r two cracks a t the edges of an 
e l l i p t i c a l hole - remote loading (£^/c = 0 .02, m = 4) 
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Fig 2.16a Crack at a hole subjected to e i t h e r a local ised 
force P or a pressure p 
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Fig 2.16b Equivalent cracks for long-crack approximation 
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Fig 2.18 Ratio of growth-times f o r a crack a t the edge of a c i r c u l a r 
hole - force P a t the hole (&^/R = 0.01) 
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Fig 2.19 Ratio of growth-times fo r a crack a t the edge of a c i r c u l a r 
hole - pressure p in the hole (&^/R = 0.01) 
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Fig 2.20a Crack(s) at the bore of a rotat ing disc 
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Fig 2.20b Equivalent crack f o r long crack approximation 



156 

A.5 

^ . 0 

3 . 5 

3 . 0 

2.5 

Grandt ' s r e s u l t s 

Short c r a c k s 

Long c r a c k s 

Two c racks 

One c racks 

2.0 
One and two 

c r a c k s 

0.1 0.2 0.3 O.A 0.5 0.6 0.7 0 .8 

f / ( R o - R ) 

0.9 

Fig 2.21 The geometry factor Y for a crack at the bore 
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disc (Ri/Ro = 0 .5 , V = 0.3) 
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Fig 3.1 Superposition f o r a crack near one in terna l 
boundary 

Fig 3.2 Superposition for a crack near two internal 
boundaries 
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Fig 3.3 Stages in the Schwarz alternating technique 
for a crack near two boundaries 
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Fig 3.4 Eccentric crack in a f i n i t e width sheet 
subjected to a uniaxial t e n s i l e s t re s s 

F i g 3 .5 Crack between two holes in an i n f i n i t e 
sheet subjected to a uniaxial t e n s i l e 
s t r e s s 
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Fig 3.6 Odd number of coTlinear cracks in an 
i n f i n i t e sheet subjected to a un iax ia l 
t e n s i l e s t r e s s 
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Fig 3.7 Crack near the edge of a half plane subjected 
to a uniform tens i l e s tress ; anc i l lary 
configuration for Fig 45 (d ^ic) 
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Fig 3.8 Stress intensi ty factors for a crack in 
the v i c in i ty of a hole in a ha l f plane 
subjected to a uniaxial t e n s i l e s t res s 
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Fig 4.1 Radial crack at the edge of a c ircular hole between 
two boundaries 
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Fig 4.2 Ancillary configurations for a radial crack at the edge of a 
circular hole between two boundaries 
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Fig 4.3 Two equal-length radial cracks at the edge of a circular hole 
between two boundaries 
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Fig 4.4 Two unequal-length radial cracks at the edge of a c ircular hole 

between two boundaries 
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Fig 4.5 Localized radial 
perpendicular to 

forces acting on the hole perimeter, 
the crackline 
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Fig 4.6 Correction to normalized stress intensity factors due to 
boundary"boundary i n t e r ac t i ons 
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Fig 4.7 Two radial cracks at the edge of a hole in a uniformly 
stressed s tr ip 
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Fig 4.9 Normalized stress intensi ty factor for cracks at a hole 
in the centre of a s tr ip 
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Fig 4.10a Radial crack at the edge of a c i rcu lar hole near one edge 
of a s tr ip 
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Fig 4.10b Radial crack at the edge of a c i rcu lar hole near another 
circular hole 
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Fig 4.13 Ancil lary conf igura t ions fo r a radial crack a t the edge of a 
c i r c u l a r hole near another c i r c u l a r hole 
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Fig 4.14 Normalized s t r e s s i n t e n s i t y f a c t o r f o r a radia l crack a t the edge 
of a c i r c u l a r hole near another c i r c u l a r hole 
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Fig 5.1 One or two rad ia l cracks a t the edge of a hole in a row of holes 
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Fig 5.4 Normalized s t r e s s i n t ens i t y f a c t o r f o r two cracks a t a hole 
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Fig 5.6 Two cracks at the edge of a c ircu lar hole: n = 0 

a n > 0 

1 1 

b n < 0 t I 

R. A 

^ ^ eg y 

^ 0,R 3 0,R 

I I 0 
Fig 5.7a&b Crack near a circular hole: n ^ 0 



182 

a n > 0 t t t 
° o , n 

A 

1 i 1 
* 0 , R ^ O.R 

1 i 1 
^ n,L 

a 

* ' n ^ 

b n < 0 t f t 0 

n,o 

/ ^ / 

n,R * n , R 

1 1 

3 0 ,R * O.R 

Fig 5.8a&b Two col l inear cracks: n ^ 0 

Fig 5.9 Two cracks at the edge of a circular ho le : point loads 
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periodic array of holes 
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Fig 6.3a Loaded hole in f in i te -width s tr ip 

Fig 6.3b Periodic array of loaded holes in i n f i n i t e sheet 
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Fig 6.6 Row of loaded holes with cracks near a boundary 
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