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This thesis is concerned with the problem of variance components estimation

and its applications in sample surveys.

The MINQUE (minimum norm invariant quadratic unbiased estimator) was

proposed for a general variance components model, but its optimality requires

normality assumption and correct prior values. A sufficient condition for optimal-

ity is given in the thesis as an alternative condition to the normality assumption.

A necessary and sufficient condition is proved for MINQUE to be independent

of prior values and a simplified condition is given for the balanced analysis of

variance models.

There are several modified versions of MINQUE that yield nonnegative esti-

mates for the variance components. In this thesis the nonexistence of a nonneg-

ative minimum biased quadratic estimator across the parameter space is proved.

A nonnegative estimator, which has minimum variance among all the estimators

minimizing an upper bound of the bias function, is proposed. Numerical and

empirical studies are carried out and suggestions are made on the use of these

nonnegative estimators.

MINQUE is applied to estimate the interviewer's variance in a complex sample

survey and its efficiency is compared with some existing estimators. An optimal

design with a specified cost constraint is given and an unbiased estimator for the

variance of the estimator of the mean is derived.
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C h a p t e r 1

I N T R O D U C T I O N

1.1 The problem of estimation of variance com-

ponents

Since Fisher (1925) introduced the terms 'variance' and 'analysis of variance'

into the literature and implicitly emploj^ed variance components models several

variance components models and methods of estimating variance components

have been developed and used in many fields of statistics.

In a sample survey different operations are associated with different stages of

the survey process and it is impossible to avoid the occurrence of error in at least

some of the operations. For example, in the process of data collection there are

many potential sources of error:' the interviewers, respondents, nonrespondents,

and so forth. These errors affect the total variance of the survey estimators. In

large-scale surveys it is not uncommon that the contribution of interviewer's error

to total variance is larger than the contribution of sampling error (U. S. Bureau of

Census, 1979). In a survey using interviews the conventional method of estimating

the variance of the survey estimators which only takes sampling error into account

overestimates the accuracy of the survey. A variance components model should

be applied in this situation and estimation of important components such as the

interviewer's variance is needed.

In experimental design because of the complexity of experimental conditions

estimation of variance components is also needed. Many factors in the experi-

ment are random factors. They do not affect the biases of the treatment effects

but they affect the estimates of variance of the treatment effects and hence the

efficiency of the treatment effects. Since many optimality criteria in experimental
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design depend upon the variance of the treatment effects, estimation of variance

components may change the design. Searle (1971) gives examples of random

factors in the design of experiments.

The purpose of estimation of variance components is twofold. First, the esti-

mates of variance components give individual variance values for different error

sources which will help to identify the poorly performing stages in the operation.

Second, using the estimates of variance components we can obtain more accurate

estimates of the variances of desired estimators such as population means and

treatment effects.

The problems relating to the estimation of variance components are:

1. The construction of a proper variance components model.

This problem is closely related to the experience of previous operations and

the understanding of data. It is very important to use a proper model to start

the estimation. The emphasis of this thesis, however, is not on this problem.

In the next section we shall introduce some commonly used variance components

models. Throughout the thesis we assume that the model is predetermined before

we start the estimation.

2. The choice of an optimal estimator.

The choice of an optimal estimator is usually determined by the objectives of

the estimation, the optimality criteria and the structure of the data. We shall

introduce several estimators in the following sections and will investigate the

properties of some of these estimators.

1.2 Variance components models

In the early stage of the development of methods of estimating variance compo-

nents specific models such as the one-way random model and the two-way nested

random model were often used. For the convenience of theoretical work there is

a need for a general variance components model which will include these specific

models as special cases. Rao and Kleffe (1980) give a list of papers on the early

use of variance components models. We shall follow the notation of Rao and

Kleffe and call the following model the general variance components model:

y = X/3 + U 1 £ 1 + . . . + U * & , (1.1)

where y is an n x 1 vector containing the observed values, (3 is a p x 1 fixed effect

parameter vector, X is an n x p design matrix for the fixed effect, U,- is an n x p,-
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design matrix for the variance component, and £,- is ap , -x l random effect vector,

i = l,...,k.

The following assumptions are imposed on model (1.1):

= 0, i = l,...,k, (1.2)

= ^ % i = l, . . . ,fc, (1.3)

, & ) = 0, i,j = l,...,kti^j. (1.4)

We also assume that finite third and fourth moments exist for all random

variables and that the third and fourth moments are equal for all variables in a

given vector £;, i = 1, . . . , / ; .

Assumption (1.4) assumes no correlation between different variance compo-

nent vectors. Throughout the thesis whenever model (1.1) is used the above

assumptions are imposed. The associated statistical problems with model (1.1)

are:

1. Estimation of (3.

2. Estimation of of, i = 1 , . . . , k.

3. Prediction of £,-, i = 1,... ,k.

This thesis concentrates on dealing with the second problem: estimation of

<7?, i = 1,...,&.

In model (1.1) the vector y is determined by the observations from a survey

or an experiment, and X, U x , . . . , U^ are the design matrices for the fixed and

random effects. Different forms of design matrices will yield different models.

The earliest proposed and the most commonly used models are the analysis

of variance models (ANOVA models) which assume an overall mean for all the

observations and the numbering of the cells are in lexicographical order. Suppose

there are n random factors each at Sj levels. We use p = (P1P2 • • -Pn) to label a

cell, tp is the number of observations in each cell. There are two special classes

of ANOVA models, nested ANOVA models and crossed ANOVA models, which

are of particular interest.

An 72-way nested ANOVA model can be written as:

Pj = 1 , . . . , Sj, j — 1 , . . . , n, h — 1 , . . . , tp, where fi is the overall mean and
api-Pk 1S a random term with mean zero and variance o\, k = 1 , . . . , n, ePl...Pn/l is

the random error with mean zero and variance a\.
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A crossed n-way ANOVA model can be written as:

. . . . + a(»-i,»)
1 Pn-lPn

(1.6)

- u + a™ + a(2) + • • • + a{n) + a(12) + • • • + a("-1>n)

— p -t- api -r «P2 -t- -i- " P n -r «P l P 2 -r -r " P n _ l P n

Pj = 1 , . . . , S J , j = l , . . . , n , /i = l , . . . , i p .

where \x is the overall mean and the other terms are random factors.

Example 1.1:
A two-way nested ANOVA model:

where n is the overall mean, a,-, 6,-j and e,-̂ . are random terms with variance

components cr2, a\ and a\ respectively.

Example 1.2:

A two-way crossed model without interaction

Vijk - V + a{ -f bj + eijk,

where a,-, bj and e^k are random terms with variance components o\, o\ and a^

respectively.

Example 1.3:
Two-way crossed model with interaction:

where a,-, bj, Cij and e.-ĵ  are random terms with variance components o\, a%, a^

and a\ respectively. •

In practice we often need to know about more general fixed effects than an

overall mean. For instance, in a survey we may be interested in knowing the

subclass means. Hence the above ANOVA models are not adequate and another

class of models is needed. For the convenience of presenting the work we shall

call these models extended ANOVA models (E-ANOVA models) which are formed

by changing the overall mean in the ANOVA models into a subclass mean and

retaining all the corresponding random terms. The E-ANOVA models will include

the ANOVA models as special cases.

Example 1.4:
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An E-ANOVA model used in Chapter 6:

Vitjs — 'Hit i Ofj i

7 = 1 , . . . , / , t,j = 1,. .. , k, s = 1 , . . . , / , where -qlt is a fixed effect, byj and eytjs

are random terms with variance components a\ and a\ respectively. •

The E-ANOVA models are special cases of the general variance components

model (1.1) because the design matrices X and U,- for the E-ANOVA models

only have 0 and 1 as its elements and the element 1 appears only once in a row

of the design matrices. Many of the results obtained in this thesis are obtained

for the general variance components model (1.1), but the E-ANOVA models are

used extensively either to simplify the conditions or as examples of how to apply

the results.

A balanced data set is one in which there are equal numbers of observations

in all the subclasses which are formed by the various combinations of the factor's

levels. If there are unequal numbers of observations the data set is referred to as

unbalanced. A linear model fitted to a balanced data set will be called for short

a balanced model. A linear model fitted to an unbalanced data set will therefore

be called an unbalanced model.

1.3 Estimators of variance components

The choice of good estimators in statistics is sometimes subjective. Generally

speaking, there are two ways to obtain an estimator. One is by maximizing

or minimizing a function of the parameters. Examples of estimators obtained

this way are the maximum likelihood estimator (Section 1.3.2) and the restricted

maximum likelihood estimator (Section 1.3.3). Another way of obtaining an

estimator is by setting up some desired properties of the estimator as constraints

and solving the equation system to obtain the estimator. Examples are the BLUE

(Best Linear Unbiased Estimator) and the MIVQUE (Section 1.3.4).

Considering that we are estimating variance components which bear the prop-

erties of variance we may want our estimators to be:

1. invariant with respect to the fixed effect, i.e. the estimates of the variance

components will not change when the mean vector changes;

2. nonnegative;

3. unbiased;
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4. have minimum variance among all the unbiased estimators;

5. have minimum mean squared error among all estimators.

In the process of looking for good estimators we often need to limit the class of

the estimators in order to secure a solution to the problem. For example, we often

look for the best unbiased linear estimator for the mean factor. When estimating

variance components we can restrict ourselves to quadratic estimators.

Sometimes we cannot find an estimator which will satisfy all the requirements

we impose. Mathematically this is the situation when we have more equations

than unknowns and some of the equations are contradictory of others, hence there

will be no solutions to the equations. LaMotte (1973b) and Pukelsheim (1981)

show that there does not always exist an unbiased nonnegative estimator with

minimum variance, so the constraints 2 and 3 are not compatible. We have to

decide what objective is the most important one in the estimation and then adopt

suitable steps.

There are several types of estimators proposed in the literature. A brief

introduction to the major estimators is given below and an investigation of the

properties of some of the estimators is carried out in the following chapters.

1.3.1 The ANOVA estimator

The ANOVA estimator is the earliest estimator developed to estimate variance

components for the ANOVA models. The idea of ANOVA is to put various

sample sums of squares equal to their corresponding expected values and to solve

the resulting equations for the variance components.

Following the notation we used in section 1.2 on ANOVA models, let y... denote

the overall mean of the observations. We may partition the total sum of squares

ZXj/ni...nt — y...)2 into t nonnegative quadratic forms: Qi, Q2, • • • ,Qt such that:

Let fj represent the degree of freedom associated with the sums of squares Qj

and let Lj represent the expected value of Qj/fj. Then Lj is a linear function of

the variance components af, i.e. Lj = Yl™=\ Pw(j)aw- ANOVA is often put into

a table:
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Table 1.1: the analysis of variance table

source of

variation

sum of

squares

degree of expected

freedom mean squares

total Z(yni...nk-y...)2 h
due to A™ QI /i
due to AW Q2 f2 L2

due to error Qt ft Lt

We then solve the following equations for the variance components provided

they have a solution:

Notice only when t = k do the above equations yield unique solutions for

the erf. We use the solutions of the equations as the estimates of the variance

components.

Example 1.5:
Consider a one-way random model:

Wj = fi + a{ + e,-j i = l,...,m, j = 1 , . . . , n ,

where fi is the mean, a,- is a random term with variance cr̂ , e,-j is the random

error with variance a\. The ANOVA estimators for a\ and a\ are:

-i i

Now for m = 2, n = 3, the observed data values are:

1

2

1

19

25

2

17

5

3

15

15

total

51

45

96

mean

17

15

16

The standard one-way analysis of variance table gives:
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Source d.f.

Expected

S.S. M.S. mean squares

mean

classes

residual error

1

1

4

1536

6

208

1536

52 a2
e

total 1750

The two estimating equations are:

= 52;

which give estimates:

\ , * = ». D

Example 1.5 not only demonstrated how to use the ANOVA estimator but

also shows that the ANOVA estimator can take negative values.

The ANOVA estimators are usually derived using the analysis of variance

table. It is known that for balanced data the ANOVA estimator is unbiased.

There are various methods to extend the ANOVA estimator to unbalanced data,

see Searle (1971), but the unbiasedness property is not usually preserved. For

balanced data there have been studies on the optimality of the ANOVA estimator.

Graybill and Wortham (1956) used the concept of sufficient statistics to prove the

following theorem:

T h e o r e m 1.1 (Graybill and Wortham, 1956) If the subscript ni,...,n,k

in the analysis of variance model are such that the quantity

5Z(yn,...nfc - y . . f

can be partitioned into nonnegative quadratic forms Q\,...,Qt as indicated in

Table 1.1 such that

(a). Qj/Lj (i = 1,... ,t) are distributed independently as Chi-squares with /,•

degrees of freedom respectively,

(b). The Li are linearly independent linear function of the a2-, so that the

equations Qi/fi = L,- (i = 1 , . . . , t) have unique solutions for the a? (j = 1 , . . . , t),

then the uniformly best (minimum variance) unbiased estimator of any linear

function of the Lj is given by the same linear function of the Qj/fj.
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When conditions (a) and (b) are met then the ANOVA estimator is uniformly

the best unbiased estimator of the variance components.

For the balanced ANOVA models it is possible to partition the sum of squares

into nonnegative quadratic forms. If in addition normality is assumed for the

distribution of the data, then from Theorem 1.1 the ANOVA estimator is the

best unbiased estimator. Therefore the following three conditions are sufficient

for the optimality of the ANOVA estimator:

1. the model is an ANOVA model,

2. the data are normally distributed,

3. the data are balanced.

Graybill (1954) considered the optimality of ANOVA estimators without the

normal distribution assumption. He calculated the variance of a quadratic unbi-

ased estimator for a balanced two-way nested model and showed that the ANOVA

estimator has the minimum variance among all the quadratic unbiased estimators.

He extended his result to multi-way balanced nested ANOVA models.

Theorem 1.2 (Graybill, 1954) For balanced nested multi-way ANOVA model

(1.5) the ANOVA estimator is the best quadratic unbiased estimator of the vari-

ance components.

A closely related problem is the design problem for the ANOVA estimator.

Since there are various extensions for the ANOVA estimator to the unbalanced

data situations, there should be various design concerns associated with each

extension. Mukerjee and Huda (1988) considered the design problem for the

unweighted analysis of variance estimator following Searle (1971).

Theorem 1.3 (Mukerjee and Huda, 1988) / / (1) a crossed ANOVA

model is considered, (2) an unweighted analysis of variance estimator is used, (3)

the total number of observations is fixed, then a balanced design (equal observation

in each cell) is optimal.

The advantage of the ANOVA estimator is its simplicity for balanced ANOVA

models and its optimality under certain conditions. The disadvantage of the

ANOVA estimator is that it is only available for the ANOVA models and even

for ANOVA models the ANOVA estimator lacks optimality when dealing with

unbalanced data.
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1.3.2 The maximum likelihood estimator

The maximum likelihood estimation approach was proposed as early as the ANO-

VA estimator, but was neglected because of the difficulty in solving the likelihood

equations. Maximum likelihood (ML) estimators have become more popular re-

cently with the increasing power of computers.

In the literature when the ML approach is mentioned it means maximum

likelihood estimation for data coming from a normal distribution. No other forms

of distribution has been used by this approach. We shall therefore use the term

ML estimator meaning ML estimators for normally distributed data. Harville

(1977) gives a thorough review of the maximum likelihood (ML) and the restricted

maximum likelihood (REML) approach. The REML approach will be discussed

in the next subsection.

Consider the general variance components model (1.1). Since E(y) = X/3, let

V,- = UjU^, then V(y) = V = Yl\=\ afVi ls the variance components matrix of

the data vector y. Let 0 = (a\,... ,cr|)'. When the observed data is normally

distributed the log-likelihood function of model (1.1) is proportional to:

L(/3,0; y) = - \ log |V| - \{y - WV~\y - X/3). (1.7)

The ML estimators of f3 and 0 are the values /3o and 0o such that:

Usually in the ML approach we obtain the likelihood equations:

If /3o and 0O are the solutions to (1.8) and also

(3,Q

then (30 and 0 O are the maximum likelihood estimates of j3 and 0 .

Maximum likelihood estimators do not exist in some cases. The following

example is given by Rao and Kleffe (1980). It is a bit artificial because it has less

observations than the number of parameters.

Example 1.6:
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There are two random variables: yi = ^ + £1, 2/2 = ^ + £2, E(£i) = E(£2) = 0,

E(£i) = cr?, E{e\) = cr%, E(ei£2) = 0. The log-likelihood function of yx and y2 is:

The function L is unbounded because by choosing fi = yi and of —> 0 we can

make L arbitrarily large. But the likelihood equations give:

In fact these values do not maximize the likelihood function L because L

has its maximum at a boundary point. Thus the ML equations fail to provide

acceptable estimates. •

Example 1.6 shows that the solutions to the likelihood equations are not

necessarily the ML estimates. After solving the likelihood equations careful study

of the likelihood function is needed before accepting the solutions as the ML

estimates.

Considering the log-likelihood function (1.7) and the corresponding likelihood

equations (1.8), Hartley and Rao (1967) showed that the likelihood equations for

model (1.1) when y has a normal distribution are:

X'V~1Xf3 = X'V-V, (1-9)

(Tr V^V.-V-1^-) 0 = ((y - X ^ ' V ^ - V ^ y - X/3)) , (1.10)

where Tr A stands for the trace of matrix A, (Tr V"1 V,-V~1Vj) is a matrix with

the (i,i)th element equals to Tr V^V.-V^V,, and ((y - X/3)'V-1V iV-1(y - X/3))

is a vector with the zth element equal to (y - X/3)'V-1V iV-1(y - X/3).

Let Pv = X (X'V^X)" 1 X'V-1. Pv is a projection matrix into M(X) which

is the subspace generated by the column vectors of X and the inner product of

the space is defined as (x, y) = x'Vy where x and y are vectors in the space. We

can then rewrite (1.9) as:

(1.11)

Substituting (1.11) into the right hand side of (1.10) we have:

(Tr V^V.-V-1^-) 0 = (y'(I - PvO'V^V.V-^I - P v )y) - (1.12)
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Equations (1.11) and (1.12) do not solve/3 and 0 explicitly. Explicit solution

to the likelihood equations (1.11) and (1.12) means that the solution /30 and 0O do

not depend on the unknown parameters (3 and 0. As shown by Herbach (1959)

explicit solutions for 0 does not exist for the balanced two-way crossed model

with interaction. Szatrowski and Miller (1980) give a procedure for determining

whether or not the explicit ML estimator exists for balanced mixed models.

When there is no explicit ML estimator or when the data are unbalanced

iterative computing must be used to solve the maximum likelihood equations. So

far the properties of convergence and the speed of convergence of such iteration

have not been studied analytically.

Hartley and J. N. K. Rao (1967) considered the asymptotic property of 0

assuming 0 is the global maximum of the likelihood. Miller (1977) considered

the asymptotic property of the solutions to the likelihood equations. These au-

thors have assumed some conditions for the level of factors and the number of

observations so that situations as in Example 1.6 could not happen. Since the

large-sample properties of the estimators are not the emphasis of this thesis, we

shall not go into the details of asymptotic theory.

Example 1.7:

Consider a one-way balanced random model:

yij = [i + di + eij, i = l , . . . , m , j = l , . . . , n ,

where fi is the mean, a,- and e,j are random terms with variances a\ and o\

respectively.

The solutions to the likelihood equations are:

1
m

m -

yi. y

1

mn(n-l) £ g

With the data set given in Example 1.5 we have:

*l = -16^, °l = 52.

Since the variance component cannot be negative, b\ — —16| is not the ML

estimate of u\. Herbach (1959) studied the likelihood function of the one-way
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balanced model and concluded that if a negative value appears the ML estimate

should be zero and adjustment should also be made to o^, giving:

As we notice in Example 1.7, the ML estimate of o\ is different from the

ANOVA estimate given in Example 1.5. The a\ in Example 1.7 is biased. In the

following section we shall introduce the restricted maximum likelihood estimators

which is proposed to overcome the biasedness of the ML estimators.

1.3.3 The restricted maximum likelihood estimator

The restricted maximum likelihood estimator (REML) estimator was proposed

by Patterson and Thompson (1971, 1974). It is observed from the likelihood

equations (1.11) and (1.12) that the maximum likelihood estimate of 0 is a func-

tion of (I — Py)y and the ML estimate of /3 is a function of Pvy. Patterson and

Thompson suggested maximizing the likelihood function of Sy for the estimation

of 0 and the likelihood function of Qy for the estimation of (3 where Sy and

Qy are statistically independent and satisfy the conditions imposed by Patterson

and Thompson (1971):

(1). The matrix S is of rank n — t and Q is a matrix of rank t.

(2). The two parts are statistically independent, i.e. cov(Sy, Qy) = 0. This

condition is met if SVQ' = 0.

(3). The matrix S is chosen so that E(Sy) = 0, i.e. SX = 0.

(4). The matrix QX is of rank t.

Since Sy and Qy are statistically independent and Sy has expectation zero,

thus the likelihood function L' of Sy depends on 0 only, hence the likelihood

function of y can be decomposed into the sum of the likelihood functions of Sy

and Qy, i.e.

L(f3, 0 ; y) = L\0- Sy) + Z/'(/3, 0 ; Qy) (1.13)

In Patterson and Thompson (1971) they specified S = I — X(X'X)~1X / and

Q = X'V" 1 . The REML approach is thus specified to be the estimators derived

using the specific choices of S and Q. In deriving the likelihood functions of

Sy and Qy since SVS' and QVQ' are singular, the conventional form of log-

likelihood function is not applicable here. Patterson and Thompson (1971) have

developed a way of writing the log-likelihood functions of Sy and Qy.
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Since S2 = S, there exists an n x (n — t) matrix A such that A A' = S and
A'A = I. Now let B be an orthogonal matrix which diagonalizes A'VA, and let
P = AB, then

P'P = I, PP ' = S, P'VP = dzaflf(r1,...,rB_O,

hence

L'(0; Sy) = constant - \ log |P'VP| - iy'(SVS)-xy, (1.14)
ZJ ZJ

L"(f3, 0; Qy) = constant- i log IX'V^XI

- i ( y - X/3)'V-1X(X'V-1X)-1X'V-1(y - X/3).(1.15)

dL" , dU
-^— = 0 and T— = 0 give :

X'V^XP = X'V-xy, (1-16)

(TrRViRVj) 0 = (y'RV.-Ry), (1.17)

where R = V"1 (I - X(X'V-1X)-1X'V-1), (TrRV.RVj) is the matrix with the
(z, j)th element equals to TrRVjRV,- and (y'RV,Ry) is the vector with the ith.
element equal to y'RV^Ry.

It should be noticed that equation (1.16) for the REML estimate is the same
as equation (1.9), i.e. REML gives the same estimate as ML estimate for (3. But
equation (1.17) is different from equation (1.10). When the ML estimate does
not exist, i.e. the likelihood function L((3,0\y) is unbounded, then from (1.13),
either V or L" or both are unbounded. Thus either the REML of 0 or the REML
of (3 or the REML of both (3 and 0 do not exist. In other words, the REML
approach does not improve the chances for the existence of the REML estimate
over that of the ML estimate.

If equations (1.16) and (1.17) give explicit solutions for (3 and 0 then the
REML estimates of (3 and 0 are unbiased. For nested balanced ANOVA models
REML of 0 is identical to the ANOVA estimator. For unbalanced data REML
also requires iterative computing as in the case of ML. REML also has unknown
convergence properties.

It is not known if REML is robust to non-normal distributions. Since REML
is identical to the ANOVA estimator for balanced nested ANOVA models and
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the ANOVA estimator has optimality in this case regardless of the distribution

of data as shown in theorem 1.2, we suspect that REML is more robust than the

ML estimator.

It is a very inspiring idea of Patterson and Thompson to split the original

data into two independent data sets and maximize their corresponding likelihood

functions. Geometrically, the REML approach projects the maximum likelihood

function L(/3,0;y) into two orthogonal subspaces to obtain L'((3, ®;Sy) and

L"(/3, 0 ; Qy) each of which has a lower dimension. The REML approach results

in unbiasedness of the estimating equations. It would be interesting to see if we

can extend the REML approach to estimate moments higher than the second and

if the property of unbiasedness of the estimating equations is still preserved.

1.3.4 MIVQUE and MINQUE

MIVQUE stands for minimum variance invariant quadratic unbiased estimator

and MINQUE stands for minimum norm invariant quadratic unbiased estimator.

On the analogy of unbiased linear estimators for the means, Rao (1970, 1971a,

1971b, 1972) and LaMotte (1973) suggested using unbiased quadratic estimators

for the variance components. To find a quadratic estimator is to determine a

symmetric matrix A and use y'Ay as the estimator.

Consider the general variance components model (1.1).

Let U = [Ui, U 2 , . . . , Ujt], £ = [£1,^2J • • • i€'k\'i then the model can be written
as:

where E(y) = X/3, V(y) = V = £*=i <7,2UtU< = UAjU', where

We now define what we mean by invariance.

Definition 1.1 Assume E(y) = X/3 and y'Ay is a quadratic estimator of the

variance component J2i=i ft*7?- U

(y - X/3)'A(y - X/3) = y'Ay,

then y 'Ay is invariant to the value of (3.
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Throughout this thesis we shall say y'Ay is invariant for short if y'Ay is

invariant to the mean vector of y. We use the following lemmas and theorems to

state the main properties of a quadratic estimator and the properties of MIVQUE

and MINQUE.

Lemma 1.1 Consider the general variance components model (1.1). If and

only i /AX = 0, then y'Ay is an invariant quadratic estimator.

Proof: =» If AX = 0, then

(y - X/3)'A(y - X/3) = y'Ay - y'AX/3 - (3'X'Ay + /3'X' AX/3

hence y'Ay is invariant.

<= If y'Ay is invariant, then from Definition 1.1,

( y - X / 3 ) ' A ( y - X / 3 ) = y'Ay,

for any random vector y, i.e.

y'AX/3 + /3'X'Ay = /3'XAX/3.

From the randomness of y, the above equality holds only if AX = 0. •

Now we prove some lemmas for a more general model than model (l.l)

y = X/3 + U?7, ' (1.18)

where E(y) = X/3, E(v) = 0,

where Ar = YA=I Pit then model (1.1) becomes a special case of model (1.18) when

A6 = Ai.

Lemma 1.2 If model (1.18) is considered and AX = 0, then the expectation

of the quadratic estimator y'Ay is:

(1.19)
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where B = U'AU = (bij)NxN-

Proof: Since AX = 0, then

y'Ay = (y - X/3)'A(y - X/3) = TJ'U'AUT;
N N

Thus

E(y'Ay) =
i=i i=i »=i

The diagonal elements of B play an important role in expressing the expec-

tation and the variance of y'Ay and will be used later, so we give it a notation.

Let B denote the diagonal matrix with the diagonal elements equal to those of

B, i.e. if B = (bij)NxN, then B = diag(bn,..., bNN).

Corollary 1.1 If the general variance components model (1.1) is considered

and AX = 0, then the expectation of the quadratic estimator y 'Ay is:

Proof: Notice that model (1.1) is a special case of model (1.18) with A$ =

from Lemma 1.2,

where ^j=Pi_1+1 bjj is the partial summation of the diagonal elements of B. But

B = U'AU =

therefore

A f U a , . . . , ^ ] ,

which proves the corollary. •

Corollary 1.2 If the general variance components model (1.1) is considered

and AX = 0, then y'Ay is unbiased for J2^=i Qial */ and only if



Chapter 1 18

Proof: =>• If Tr AV, = <?,•, i = 1 , . . . , k, then from Corollary 1.1,

thus y'Ay is unbiased for 52i=i Qiaf-

4= If y'Ay is unbiased for Y^=i ?i°f J then from Corollary 1.1 we should have:

i = l t = l

The above equality holds for o~f > 0, i' = 1 , . . . , k, hence

Tr AV,- = qi, i = 1 , . . . , k. •

Now let

where 7,- = ~E(Tjf)/6f — 3. The following lemma considers the covariance between

two quadratic estimators.

Lemma 1.3 Consider model (1.18). Let A and N be symmetric matrices with

AX = 0 and NX = 0, B = U'AU, M = U'NU, then

(1.20)cov(y'Ay,y'Ny) = 2TrBA f lMA9 + TrBA 7 M.

Proof: Since AX = 0 and NX = 0,

y'Ay = Ty'U'AUTy = T]'BT),

y'Ny = T7'U'NUT7 = rj'Mri.

Let B = (bij)NxN, M = {mij)NxN, rj' = (771,.. .,TJN). Then

cov(y'Ay, y'Ny) = cov(r}'Brj,r]'Mri)

)
= c o v

c o v

(«"J)= (*.') (*,0
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bum* [E(vf) ~

(*.O

E
(*,0
()

= E *« E

because 7,- =

Now let

t - 3 . D

Ao =

it is noticed that A2 is a special case of A7. The following corollary gives the

variance of the quadratic estimator y'Ay.

Corollary 1.3 Consider the general variance components model (1.1). If

AX = 0, then the variance of the quadratic estimator y'Ay is:

V(y'Ay) = TrBA2B (1.21)

Proof: Since model (1.1) is a special case of model (1.18) with A$ = Ai,

A7 = A2, let A = N, the conclusion follows from (1.20). •

It can be seen from Corollary 1.3 that the variance of a quadratic estimator

y'Ay needs information up to the fourth moment of the distribution of y. How-

ever, if y comes from a normal distribution, then the kurtosis 7,- = 0, i = 1 , . . . , k,

hence A2 = 0, and then (1.21) reduces to:

V(y'Ay) = 2TrBA1BA1 .

Now we have established the equivalent mathematical conditions for the sta-

tistical constraints of a quadratic estimator y'Ay:

1. invariant <-> AX = 0;
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2. unbiased <-> Tr AV,- = <?,-, i = I,... ,k;

3. minimum variance <-» A minimizes 2 T r B A i B A i + T r B A 2 B .

We can then define MIVQUE and MINQUE in terms of mathematical equa-

tions.

Definition 1.2 Consider the general variance components model (l-l)- If A.

is a symmetric matrix satisfying the following conditions:

AX = 0,
rp ATT" ' 1 /•» /i AQ\

A minimizes 2TrBAxBAi + TrBA2B,

then y 'Ay is the MIVQUE o/E*=i <Li°h

C. R. Rao (1973, p303) pointed out that a natural estimator of YL%=i Qi&i *s

, where

A =

Now let W,- = a,-U,-, W = [Wi|

n2

n P

It can be verified that if there exists

a symmetric matrix A such that W'AW = A, then A is the solution to the last

two constraints of (1.22). In practice, such an A does not always exist. Since the

proposed quadratic estimator is

y'Ay = £'W'AW£,

W ' A W — ARao (1973, p303) argued that by minimizing the norm

we make the difference between the proposed estimator y'Ay and the natural

estimator small according to a suitable chosen norm.

Rao (1973) proposed MINQUE for general forms of norm. In practice, the

solution of A is only found for the MINQUE using a Euclidean norm. In this

thesis we shall restrict ourselves to the MINQUE using the Euclidean norm,

therefore the term MINQUE used in the following context means MINQUE using

the Euclidean norm.

Definition 1.3 //A = (a then the Euclidean norm of A is defined as:

N N

i=l j=\
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We can therefore define MINQUE in terms of Euclidean norm.

When A is symmetric then || A |||;= Tr AA, hence

|| W'AW - A | | | = TrW'AWW'AW - 2Tr W'AWA + Tr AA.

Now since Tr AW,W,' = qi, i = 1 , . . . , k, from the unbiasedness requirement

we have

Tr W'AWA = TrAWAW'

J
k a?

Therefore

W'AW - A HI = TrW'AWW'AW - Tr A A

= TrAWW'AWW'-TrAA

I - | | A | | | .

Since || A \\% is a constant, minimizing || W'AW — A |||; is equivalent to

minimizing || AV |||;.

Definition 1.4 Consider the general variance components model (1-1). If a

symmetric matrix A satisfies:

AX = 0,

Tr AV- = q- i = 1 k (1 23)

A minimizes || AV | | | ,

then y'Ay is the MINQUE o/£?=i qio-f.

Theorem 1.4 (Rao, 1971b) Consider the general variance components model

(1.1), then the MINQUE o/E*=i fto? is y'AY, where

k

A = 2>RV,-R, (1.24)

R = V-1 - V-JX (X 'V-^ )" 1 X'V-1, (1.25)

and X( 's satisfy the following equations:
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j = i, . . . , * . (1.26)

A proof can be found in Rao (1973, p65).

Equations (1.24)—(1.26) will be referred in later chapters as the MINQUE

formulas or the MINQUE equations.

The existence of the MINQUE depends on that of the solutions to equation

(1.26). If the matrix (TrRV,RVj) is nonsingular, then there will be solutions for

the A,'s. Otherwise, there will be no MINQUE for the variance components.

MINQUE has its appeal in dealing with normally distributed data because it

is also the MIVQUE. The fact is proved in the following corollary.

Corollary 1.4 Consider model (1.1). If the data vector y is normally dis-

tributed with E(y) = XP, V(y) = E L i ^,?V,-, then the MINQUE of E?=i q{af is

also the MIVQUE of E L Wi-

Proof: If y is normally distributed, then the kurtosis of the distribution 7,- = 0,

and then A2 = 0. Hence

V(y'Ay) = 2TrBA 1BA 1 = 2 || BAi \\2
E= 2 || AV | | | ,

hence the MINQUE y'Ay of E?=i Wi is also the MIVQUE of E L i 9^,?-
D

The following lemma states the additivity of MINQUE.

Lemma 1.4 (Rao, 1970) / / Sx is the MINQUE of E t i ^a} and S2 of

t t i diaf, then Si + S2 is the MINQUE of EL i ( c ; + di)°l•E f c

The additivity property of MINQUE eases the task of estimating linear com-

binations of the variance components. It is sufficient to estimate each single

variance component and use these estimates to estimate the linear combinations.

Although MINQUE is not MIVQUE for distributions other than normal,

MINQUE has been used as an algorithm for any distribution, in the same way

as the ML estimator derived for the normal distribution has been used for other

distributions.

Looking at the MINQUE formulas (1.24)-(1.26), we notice that the computa-

tion of the matrix R uses V"1 , which is the inverse of the variance covariance of y,
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and hence requires the o?'s. Since the true values of the variance components are

never known, the computation of MINQUE requires prior values of the variance

components. As we shall show in Example 1.8 sometimes the of's cancel out and

therefore the MINQUE is a function of the data only. In Chapter 3 there will be

further investigations on the conditions for the of's to cancel out. In the situa-

tions where of's do not cancel out we are left with an infinite number of choices

for the prior values of the a? provided af > 0. MINQUE is not only a function

of the data but also a function of the predetermined prior values. Different prior

values then lead to different estimators. This is a very big disadvantage of the

MINQUE.

Two approaches have been used to 'overcome' this disadvantage of MINQUE.

Hartley, LaMotte and J. N. K. Rao (1978) have suggested a synthesis-based

MINQUE which assumes the prior value for the variance of the random error

to be 1, i.e. of = 1, and all the other prior values are chosen to be zero. The

MINQUE obtained using this specific set of prior values is called the synthesis-

based MINQUE. By using this specific set of prior values the variance covari-

ance matrix used in the MINQUE formulas (1.24)—(1.26) is the identity matrix,

hence the computation involved in deriving the MINQUE is greatly reduced.

The synthesis-based MINQUE has its appeal in computational simplicity. But

by gaining this simplicity we must trade off the optimality of MINQUE. Swallow

and Monahan (1984) carried out Monte Carlo comparisons of the existing estima-

tors for the one-way random model. Their results show that when o\fa\ > 1, the

synthesis-based MINQUE performs poorly even in mildly unbalanced cases. We

suggest in Chapter 3 that only when we can decide that MINQUE is independent

of the prior values, which can be examined using the necessary and sufficient

conditions given in Chapter 3, should the synthesis-based MINQUE be used. In

that case we are enjoying the computational simplicity without losing optimality

of the estimator.

When the of's do not cancel out in the computation of MINQUE the only

way that may lead to an unique estimate is by iterative computing, provided that

the process converges to a unique point from any starting point. The estimate

obtained from iterative computing will no longer be a quadratic function of the

data vector y although the estimating equation is a quadratic function of y, and

it also loses the properties of unbiasedness and minimum variance. As in the

discussions on ML and REML estimators there have been no systematic results

on the properties of the convergence. We virtually have no control over the speed
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of the convergence of the process and those who do iterative computing have to

rely on their 'good fortune' for the process to converge quickly to a stationary

point and also hope that this is the unique converging point.

The MINQUE formulas (1.24)—(1.26) result in the same estimating equations

as the REML equation for the estimation of variance components (1.17). To show

this, suppose we want to estimate 0 = (a\,..., crj?)' using MINQUE. We will have:

© = (*?,..., *2)'=(y'Aiy,...,y'Afcy)',

where A,- = £ ) = 1 A^RVjR, and \f] satisfy:

Let S = (Sij)kxk, where stJ = Tr RViRVy, and let t = (y'RViRy,..., y'RVfcRy)',
then the MINQUE of 0 can be written as

S 0 = t, (1.27)

or equivalently,

(TrRV.-RV,-)© = (y'RV.-Ry). (1.28)

Equation (1.28) gives the same estimating equation as (1.17) of REML. The

difference between MINQUE and REML is that MINQUE assumes that the equa-

tion (1.28) does not contain any unknown values of the variance components,

apart from 0 , because prior values are used in place of the variance compo-

nents. In other words MINQUE regards (1.28) as a conventional expression for a

estimator:

0 = (Tr RV.-RV,-)-1 (y'RV.-Ry).

and every term in the right hand side of the above equation does not contain

unknowns. The REML approach gives simultaneous estimates for /3 and the

variance components. Since the estimation of variance components in REML is

independent of the estimation of /3, equation (1.17) itself can be a estimating

equation. REML regards (1.17) as an estimating equation with all the variance

components involved in both sides of the equation being treated as unknowns.

Therefore iterative computing is a way of solving the equations and obtaining

estimates. Iterative computing gives both approaches the same result. But REML

will take it as its estimate while MINQUE regard it as a way of solving the
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problem of prior values. Hence iterative computation is more justified for the

REML approach than the MINQUE approach.

Example 1.8:

Swallow and Searle (1978) give explicit expressions for the MINQUE of a\

and <7g for the one-way unbalanced random model:

Vij = \i + a,- + e,-j, i = 1 , . . . , m, j = 1 , . . . , ni

where fi is the mean, at- and e,-j are random terms with variance components a\

and <jg. Let

Then the MINQUE of a\ and ae
2 are:

! ' (1-29)

j ^ (1.30)

where l^l = S11S22 — S^2-

When we use balanced data, i.e. n,- = n, the cr2 and o2
t will cancel out in

(1.29) and (1.30) and <r2 and <72 are identical to the ANOVA estimators given in

Example 1.5. When we use unbalanced data, a\ and a2 are functions of a\ and

cr2, we need to assign prior values to a\ and a2
t to obtain MINQUE estimates.

For the data set in Example 1.5 the MINQUE estimates are the same as the

ANOVA estimates:

a2
a = -15^, <re

2 = 52. •

Another disadvantage of MINQUE is that MINQUE can give negative esti-

mates for variance components.
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1.3.5 Goldstein's method

Goldstein (1986) observed that by writting the matrix (y — X/3)(y — X/3)' in

vector form we can transform the problem of quadratic estimation into that of

linear estimation.

First we state the well known result on least squares estimation. Suppose we

have a linear model:

y = X/3 + e (1.31)

where E(y) = X/3, V(y) = V, then if V does not contain unknown parameters

and if (X /V~1X)~1 exists, the best linear unbiased estimator (BLUE) of (3 is:

/3 = (X'V^X)"1 X T V - (1-32)

Variance is used as the optimality criterion. /3 has the minimum variance

among all linear unbiased estimators of (3.

To transform quadratic forms into linear forms we need the following definition

to allow matrices to be transformed into vectors.

Definition 1.5 Let A = (a,-j)nXn be a symmetric matrix and let vec(A) be a

vector formed by connecting each column of A., similarly let vech(A) be a vector

formed by connecting each column of the upper triangle of A, i.e.

vec(A) = (an ,o 2 i , . . . , ani,a12,..., ann)\

vech(A) = (an', «i2, «22, «i3, ̂ 23, «33, • • •, ann)'.

Now we assume that V(y) = V = / ( 0 ) , where V(y) is the variance covariance

matrix of y, 0 is a vector containing the unknown parameters and / is a linear

function in 0 .

For model (1.31) E ((y - X/3)(y - X/3)') = V, let

y* = vec((y - X/3)(y - X/3)'), V* = vec(V) = X*0 ,

where X* is the design matrix which relates y* to ©. From model (1.31) we can

generate another 'linear' model:

y* = X*0 + e*, (1.33)

where E(y*) = X*0 , and V(y*) = V"*. If (3 is known, then y* is a known vector,

then for model (1.33), the 'BLUE' of 0 is:
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0 = (x-'v^x*) ^''v-V
0 is linear in the form of y*, but since y* is a quadratic form of the original

data y, (1-34) in fact gives a quadratic estimator for the unknown parameter 0 .

Goldstein's method can not only be used for the estimation of variance com-

ponents, which is the case when 0 contains the variance components, but can

also be used to estimate a wider range of parameters involving higher moments

of the distributions provided the variance covariance matrix can be written as

linear function of such parameters. We shall discuss how Goldstein's method can

be used to estimate variance components later in this section.

We have assumed V is known in (1.32) and f3 is known in (1.34). In practice

both V and (3 will contain unknowns. Goldstein suggested combining (1.32) and

(1.34) to form a system of equations. Hence iterative computing can be used to

find simultaneous estimates for (3 and 0 .

Goldstein proved that in the situation where 0 contains variance components

his method is equivalent to maximum likelihood estimation.

Goldstein (1989) proposed another restricted version of his method which

is equivalent to the restricted maximum likelihood estimation approach in the

normal distribution case. Since the restricted version is parallel to the REML

method we discussed above, we shall restrict ourselves to discuss the method in

Goldstein (1986).

To show how Goldstein's method can be used to estimate variance components

from the general variance components model, we have to define the Kronecker

product of matrices which we shall also use in later chapters.

Definition 1.6 Let A be an mi x n\ matrix and B be an m2 x n2 matrix, then

the Kronecker product of A and B which we write as A (g) B is an mim2 x

matrix defined by:

a n B CLI2B . . . a l n i B

a2 iB a22B . . . a2n,B
A ® B =

_am i lB am,2B . . . a m i n i B

This definition is sometimes called the right Kronecker product of matrices.

Now we consider applying Goldstein's method to estimate variance compo-

nents. Recall the notations we used for the general variance components model

(1.1)
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Let V,- = U.-UJ, V = Ef=i<7,?Vt- and 0 = {a\,... ,a2
k)'. Following the no-

tations we introduced in this section, y* = vec((y — X/3)(y — X/3)'), and using

the concept of Kronecker product we can see that y* = (y — X/3) ® (y — X/3).

X* = (vecVi , . . . , vecVjt), i.e. X* is a matrix with the z'th column equal to

vecV,-. Then
k

V* = vec(V) = Y, <*i vec(Vt) = X*0 .
t=i

In (1.32) and (1.34) the only structure we need now is the variance covariance

matrix of y*, all the other terms are either design matrices or are known function

of design matrices.

V " = V ( y * ) = V ( ( y - X 0 ) ® ( y - X 0 ) )

= V (U£ ® UO = (U <g> U) V(£ ® 0 (U'® U')

where U = ( U i , . . . , U;t), which depends on the design matrices U; only, and

£ = (£(, ...,£[)'. We need to give an expression for V(£ ® £)•

To simplify the derivation of V(£ <E> £) we start to work with Y(JJ <S> TJ) where

I61 }
rj comes from model (1.18) with ~E(rj) = 0, V(T]) = ' •. . The general

variance components model will then be a special case of model (1.18) with

i P l

i.e. the variance components matrix of ^ is a patterned diagonal matrix.

On the diagonal of V(̂ 7 ® 77),

o?7.-+ 207,7 i = j

where ji = E(rji)/v? - 3.
Off the diagonal of V(rj ® 77)

l o ,
I I I — l,J — A . ,

otherwise.

Thus,
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20*

00

(1.35)

V(rj <g> 77) is a matrix the elements of which are functions of the variance

components and the kurtosis of the distribution of y. Imposing the patterns of

V(£) into V(T7 ® 77) we obtain V(£ ® £)> Hence V**.

From (1.32) and (1.34) substituting the matrices we obtained so far gives the

estimating equations. Notice that if y has a normal distribution then 7,- = 0 in the

expression for V(T7 ® 77), i = 1 , . . . , k. Then the estimating equations contain (3

and of only. Hence iterative computing can be used to solve the equation system.

When y does not have a normal distribution, then 7; ^ 0, and the estimating

equations in this case contain not only f3 and of, but also the kurtosis of the

distribution. It may be helpful to study the distribution of the data carefully

and specify the 7,- in V** so that the estimating equations only contain (3 and

of, hence iterative computing can be used. If no information on 7; is available,

we can use 7,- = 0, 1' = 1 , . . . , k, i.e. assume a normal distribution for the data

vector y and carry out the iterative computing on of.

Comparing (1.32) and (1.34) where V** is given by (1.35) with the ML es-

timating equations (1.9)—(1.10), the REML estimating equations (1.16)—(1.17),

and the MINQUE formulas (1.24)-(1.26), we notice that Goldstein's method is

the only estimating procedure which takes the kurtosis of the distribution into

consideration. In other words, Goldstein's method has an adjustment which al-

lows the distribution of y to vary while the other methods are all designed for the

normal distribution only. If the 7,'s we choose are not far from the true values of

the kurtosis, we expect the estimates given by Goldstein's method to be better

than all the estimators we have discussed so far.

Bradley (1973) proved the equivalence of maximum likelihood and weighted

least square estimates for a member of the exponential family with one parameter.

It will be interesting to investigate whether for a certain class of distributions

(exponential family or otherwise?) Goldstein's method is equivalent to maximum
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likelihood estimation. In that case, Goldstein's method will be an extension of

the maximum likelihood estimation to the non-normal case.

1.3.6 Nonnegative estimators

All the estimators we have introduced so far have the problem of giving negative

estimates.

Theoretically, ML and REML estimators should always be nonnegative be-

cause we can restrict the parameter space to be nonnegative. In practice what we

obtain is the solution to the likelihood equations which can be negative. When

a negative solution appears, we know that it is not the ML/REML estimate and

we need to look for another nonnegative estimate. Herbach (1959) showed that

for the balanced one-way random model if a negative value appears then zero

is the ML/REML estimate and modification is needed for the other estimates.

Such results need analytical investigation of the likelihood function. For other

models we do not have this result. Though it is a common practice to use zero as

the value of a variance component if the corresponding solution to the likelihood

equation is negative, this approach has not been justified except in the case of

the balanced one-way random model.

It is also a common practice to put the negative ANOVA or MINQUE es-

timates to zero. By doing so we change the original estimator into a new one

which will lose some of the optimality of the original estimator. For example, the

ANOVA and MINQUE estimators will be biased, so that minimum variance may

not be appropriate as an optimality criterion.

Several estimators have considered the constraint of nonnegativity.

J.N.K. Rao and Chaubey (1978) considered the problem of MINQUE having

negative estimates and modified the MINQUE formulas to construct a nonneg-

ative estimator. Since this estimator is biased and has a form very similar to

MINQUE, Rao and Chaubey called the estimator MINQE (MINQUE without

unbiasedness). MINQE was constructed by minimizing variance as MINQUE

did. It is nonnegative and has additivity. But since it is biased we can argue

that variance alone is not an appropriate optimality criterion. Another defi-

ciency of MINQE is that whenever a nonnegative unbiased estimator is possible,

for example, in the balanced ANOVA model case the ANOVA estimator for the

random error is nonnegative and unbiased, then MINQE may not coincide with

it. In other words, MINQE does not always give the 'best' possible nonnegative
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estimates.

Chaubey (1983) used the spectral decomposition approach and derived a new

nonnegative estimator, CMINQUE (the estimator closest to MINQUE). Instead

of using y'Ay as in MINQUE theory, Chaubey proposed to use the positive

eigenvalues and the corresponding eigenvectors of A to form a new nonnegative

matrix B. He then uses y'By as the CMINQUE estimator. This method is

very natural but is intuitive. CMINQUE coincides with MINQUE whenever

MINQUE is both nonnegative and unbiased. The deficiency of CMINQUE is that

its existence depends on MINQUE. When MINQUE does not exist, CMINQUE

does not exist.

Hartung (1981) proposed another nonnegative estimator which he called min-

imum biased MINQ. This estimator is constructed by first minimizing a function

of the bias and then minimizing the variance of a quadratic estimator. It is proved

in Chapter 4 that there does not exist a globally minimum biased estimator in

the whole parameter space. In this thesis Hartung's 'minimum biased MINQ'

will be referred to as 'Hartung's estimator'. Theoretically, Hartung's estimator

always exists. It will coincide with the nonnegative unbiased MINQUE if such

an estimator exists. Practically, we only managed to obtain explicit formulas for

the balanced nested ANOVA models.

In Chapter 4 another nonnegative estimator is proposed. It is derived by

minimizing an upper bound of the bias function of the estimator. It is therefore

called minimum range MINQ. In some sense it makes the bias small. This esti-

mator always exists. It is shown that this new estimator is Hartung's estimator

if the parameter 7 = 1. The explicit formulas to obtain minimum range MINQ

estimator for the balanced nested ANOVA models are given.

These estimators are constructed using different optimality criteria. It would

be desirable to assess their performance by statistical measures such as bias and

mean squared error. A numerical comparison for these nonnegative estimators is

carried out in Chapter 5. As expected none of the estimators has an overall better

performance than the others over the whole parameter space. The efficiencies of

these estimators vary greatly for different positions in the parameter space. Some

suggestions on the use of the estimators are given.
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1.3.7 Some other estimators

There are other estimators existing in the literature. There are many papers

on Bayesian estimators, see Tiao and Tan (1965, 1966), Tiao and Box (1967),

etc. Rather than considering any specific model this thesis is concerned with

estimating problems for a general class of models. There will be no discussion on

Bayesian estimators in this thesis.

Browne (1974) derived a generalized least squares estimator for the variance

components by minimizing a specially defined distance between the sample vari-

ance covariance matrix and the true variance covariance matrix in terms of vari-

ance components. This estimator has not received much attention in the literature

and will not be discussed in this thesis.

In this section we have introduced several estimators. This thesis is mainly

concerned with quadratic estimation of variance components, hence ML, REML

and Goldstein's method will not be further discussed. It is hoped that this section

gives a general review of the major methods available in the subject of estimation

of variance components.

1.4 Outline of thesis

This thesis can be divided into three parts.

1. Chapters 2 and 3 concern the quadratic unbiased estimator, MINQUE.

As mentioned in section 1.3.4 MINQUE has minimum variance only when the

following conditions are met:

(1). the data have a normal distribution;

(2). the prior values are correct values of the variance components.

Chapter 2 aims to weaken condition 1. We assume condition 2 holds and give

a sufficient condition for the model under which condition 1 is no more required

for MINQUE to have minimum variance. We also examine some models and

conclude that for some ANOVA and E-ANOVA models, MINQUE is MIVQUE

without the normality assumption.

Chapter 3 deals with the problem of prior values in the computation of

MINQUE. We give necessary and sufficient conditions for MINQUE to be in-

dependent of any prior values. Therefore any starting point will give the same

results after one round of iteration.
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2. Chapters 4 and 5 consider nonnegative estimators.

In Chapter 4 it is proved that there is no globally minimum biased nonnega-

tive estimator for variance components. We investigate the properties of several

existing estimators and propose another nonnegative estimator.

Since there is no one single estimator globally better than the others in the

whole parameter space, we report on numerical and empirical comparisons in

Chapter 5 and give recommendations on the use of these estimators.

3. Chapter 6 considers an application of variance components models in sample

surveys. In particular, we consider the problem of estimating the interviewer's

variance in a complex survey. After constructing a variance components model,

we choose MINQUE as the estimator and argue that this is a better estimator

than the previously used estimators. A design problem for the optimal number

of interpenetrated interviewers is also considered. An unbiased estimator is given

for the variance of the estimator of the population mean.



C h a p t e r 2

O P T I M A L I T Y C O N D I T I O N S

F O R M I N Q U E

In section 1.3.4, it is shown that the optimality of MINQUE needs the following

two assumptions:

1. the data are normally distributed;

2. the prior values are the true variance components values.

In practice both assumptions are very restrictive. In this chapter we shall

assume that assumption 2 holds and try to find other conditions to substitute

the condition of normality.

The notation used in this chapter follows that in Chapter 1.

2.1 Optimality conditions for MINQUE

To find the optimality conditions for MINQUE we need a theorem by C.R. Rao.

Theorem 2.1 (Rao, 1973, p317) A necessary and sufficient condition for an

unbiased estimator T of g(6) to have minimum variance at the value 6 = 60 is

that cov(T,f|#0) = 0 for every f such that E(f \9) = 0 provided that V(f |0O) < °o

and V(T|#o) < oo. All the other forms of unbiased minimum variance estimator

of g{9) differ from T only on a set of samples with probability measure zero.

To prove the major theorem in this chapter some results given by Rao in

matrix theory are needed. These results are presented in the form of lemmas.

Some of the proofs were outlined in Rao (1971a, 1971b). For completeness a proof

is given after each lemma.

34
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Recall model (1.1) as defined in Chapter 1,

y = X/3 + Ux& + U2& + • • • + Ufc£fc, (2.1)

where y is the nxl vector of observed values, f3 is the pxl vector of fixed effect
parameter, X is the nxp design matrix for the fixed effect, Ui, U2, • • •, U^ are
the nxpi, nxp2, • • •, nxpk design matrices for the variance components, £1, £25
• • •, £k are piXl, p2xl, • • -, p^xl vectors of variance components.

The following assumptions are imposed on model (2.1):

E(&)=0 i =

= 0 = 1,. . . , k,

(2.2)

(2.3)

(2.4)

The class of estimators we are considering is that of quadratic estimators.
Applying Theorem 2.1 to find the optimality conditions for MINQUE requires the
knowledge of the covariance between two quadratic estimators. The covariance of
two quadratic estimators for model (1.18) which includes model (2.1) as a special
case is given in Lemma 1.3. The following lemma gives the covariance of two
quadratic estimators for model (2.1).

Lemma 2.1 (Rao, 1971a) // model (2.1) is considered, X and U are the
design matrices defined in model (2.1) A, N are symmetric matrices with AX=0,
NX=0 ; then:

cov(y'Ay,y'Ny) = TrBA2M (2.5)

where B = U'AU, M = U'NU. B is the diagonal matrix with the diagonal
elements equal to those on the diagonal o/B. M is similarly defined as B.

where 7,- = E(£f)/af — 3 is the kurtosis of the distribution.
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Lemma 2.1 is a special case of Lemma 1.3 with Ag = Ai and A7 = A2. The

conclusion follows from Lemma 1.3.

Lemma 2.2 will be used in proving Lemma 2.3 and will not be directly used

in the proof of the main result.

Lemma 2.2 (Rao, 1971a) Let A; be an nxm; matrix of rank r,-, i = l , . . . , s ,

A be a symmetric positive definite matrix and (A(-AA,-)~ be a generalized inverse

of Aj-AA,-. //X2i=iri = n> and A(-AAj = 0 for i^j, then

A-1 = EUA.-(A:-AA,-)-A;..

Proof: Let B; = [A,-|0] be an n x n matrix and let C,- = A1//2Bi.

We have rank(B:) = rank(A,-) = r,- and rank(C,-) = rt- because A is positive

definite, thus nonsingular.
"AJAA,- 0"

j = [Ai|0]'A[A,|0] = = 0, if 1 + j .Now . . . . _ .

Let C = £ L i Q , since CJ-Cj- = 0, then rank(C)^= E i = i r a n k ( C . ) = n,
therefore C is a square nonsingular matrix.

Let D = E-=IA,-(A;.AA,-)-A;,

A;, A A,- o
0 0

(2.6)

Note that both C and A are nonsingular, thus from both sides of (2.6) we

have: D = A"1. •

The results in Lemma 2.3 and 2.4 will be used in the proof of Theorem 2.2.

Lemma 2.3 (Rao, 1971a) Given an nxm matrix X. of rank r and a symmet-

ric positive definite matrix V of order n, then there exists an nx(n — r) matrix

G of rank (n - r) such that: G'X = 0, G'VG = I, and GG' = R, where

R = V-1 - V-1X(X'V-1X)'1X/V-1.

Proof: From Rao (1973, p25) we know that rank(XX') = rank(X) = r.

Since V is nonsingular, rank(XX'V-1/2) = rank(XX') = r, thus XX'V"1/2

has zero as its eigenvalues with order n — r.
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Let /3i, . . . , (3n_r be the normalized orthogonal eigenvectors of XX'V"1 /2

corresponding to the eigenvalue zero, i.e. P\Pi — 1, P\Pj = 0, i^j-

Let a ; = V - 1 / 2 ^ , then:

= ftp, = 1, (2.7)

j = P'iPj = 0, for i ^ j . (2.8)

Further, XX'a,- = XX'V"1/2^,- = 0, i.e. a<XX' = 0, and so aJXX'a,- = 0,

thus

X'cti = 0. (2.9)

Let G = ( « ! , . . . , a n _ r ) , then from (2.7) and (2.8) we have G'VG = I.

Also from (2.9) we have X'G = 0, i.e. G'X = 0.

In Lemma 2.2 let A = I, Aj = V ^ G and A2 = V - ^ X , we have:

+ V- 1 / 2X(X'V- 1X)" 1X'V- 1 / 2 ,

therefore,

GG' = V- 1 - V- 1 X(X'V- 1 X)"X'V" 1 = R. •

Lemma 2.4 (Rao, 1971b) Let A and N be nxn symmetric matrices with

AX = 0, NX — 0, then there exist matrices C and D of order (n — r)x(n — r)

such that: A = GCG', N = GDG', where G is the matrix in Lemma 2.3.

Proof: Let C = G'VAVG, D = G'VNVG.

GCG' = GG'VAVGG'

= RVAVR

= [I - V-1X(X'V-1X)-1X']A[I - X(X'V-1X)-1X'V-1]

= A, (because AX = 0).

Similarly, GDG' = N. •

Lemma 2.5 Consider model (2.1). Let u,- be the jth column in the design

matrix U,-. / / A is a symmetric matrix, then:
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^ y = Ci, for i = 1 , . . . , k, j = 1 , . . . ,p,- (2.10)

is equivalent to:

UJAU,- = c-I, i = 1 , . . . , fc. (2.11)

where C{ is a constant which is fixed for all the columns in U,-.

Proof: Note u-,Au,v is the jth element on the diagonal of matrix Uj-AU,-, so

(2.10) is equivalent to (2.11). •

It is known from section 1.3.4 that MINQUE has optimality when the data

arise from a normal distribution. It is not known how well MINQUE performs if

the normality assumption is not valid. Theorem 2.2 is proved using theorem 2.1

of Rao and gives an alternative condition (2.14) for MINQUE's optimality.

Theorem 2.2 Consider model (2.1). If a symmetric matrix A satisfies:

k

£ , (2.12)
t=i

where A,- 's satisfy:

£ A.- Tr RV.-RV,- = 9 i , j = 1 , . . . , k, (2.13)
! = 1

and

U J A U , - = c,-I, i = l , . . . , L (2.14)

where c,- is a constant related to the design matrix U,-, then

1. y'Ay is the MIVQUE of £f=1 q^f.

2. All the other forms of minimum variance estimator among the class of

invariant quadratic unbiased estimators differ from y'Ay only on a set of samples

with probability measure zero.

Proof: Since RX = GG'X = 0 from Lemma 2.3, then AX = Y^Li

0, so that y'Ay is invariant.

Also AV,- = J^Li AiRV.-RV,- = qh so TrAVj = q,, for j = l,...,k, thus

y'Ay is unbiased.

What we need to prove is that for any symmetric matrix N such that NX = 0,

and E(y'Ny) = 0, we have: cov(y'Ay, y'Ny) = 0, then from Theorem 2.1, we
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know that y 'Ay is the minimum variance estimator among all quadratic invariant

unbiased estimators.

From Lemma 2.4, we can write: A = GCG' and N = GDG' .

Denote the \th column of G'U by ct,-. Now

E(y'Ny) = E(y'GDG'y)

= Tr{(GDG')V}

= T r D G ' V G

= TrDG'UAiU 'G

= TrD[ct1? | . . . , | ocN)

«'**.

But E(y'Ny) = 0 for all a? implies

N
Tr D(5>,-a,-a;.)=0,

t = i

where N = YA=\PII
 vi a r e scalars with the following pattern:

Pi

e2lp

Ski Pk J

(2.15)

(2.16)

where £1? e 2 , . . . , e^ are arbitrary scalars.

From Lemma 2.1:

cov(y'Ay,y'Ny) = 2 Tr U ' A U A ^ ' N U A j + Tr U7AUA2U'NU. (2.17)

Note V = UAiU', A = GCG' , G'VG = I. Thus

Tr AUAxU'NUAiU' = Tr AVNV

= Tr GCG'VGDG'V

= Tr CD.
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Now, Tr U'AUA2U'NU = Tr (U'GCG'U)A2(U'GDG'U), and

U'GCG'U =

ct;

'ATJ

The diagonal form of U'GCG'U is

U'GCG'U =
a'2Cct2

Similarly,

U'GDG'U =

Since A2 =

TrU'AUA2U'NU

= Tr

, then

iV

t = i
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where

Therefore,

cov(y'Ay,y'Ny) = Tr D(2C

Pk J

N
(2.18)

t = i

Let Ni = E U i P - Since A = £?=1 A,- RVtR = £?=1 At- GG'ViGG', there-
fore,

where r,- has the pattern:

rjvJ

*-pi

A2I2-LP2

Suppose i = Em=i Pm + i, then a,- = G'u i t.
Since condition (2.14) is equivalent to condition (2.10), thus:

cc'.ccti = U ; G C G ' U J ( = u ; .Au j t = Cj.

Therefore (2.18) becomes:

N
cov(y'Ay,yNy) = Tr

where ?/>,- = 2r,- + <5iQ.

0i also has the pattern:

• P i

P2

•p* J

because r,-, <5,- and c,- have the pattern.
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Recalling that the assumption of N makes (2.15) hold for any choice of V{

which satisfies (2.16), we have:

cov(y'Ay,y'Ny) = 0.

Thus y'Ay has the minimum variance among all the invariant quadratic unbiased

estimators.

The second part of the theorem follows from theorem 2.1. •

From the proof of theorem 2.2, we should notice that condition (2.14) is a

sufficient condition.

Note that without condition (2.14), the quadratic estimator y'Ay given in

theorem 2.2 is the MINQUE of YA=\ 1iai- m t n e proof of theorem 2.2 we did

not use the fact that y'Ay minimizes the norm of a matrix. In Corollary 1.4

we have used the concept of Euclidean norm to prove that MINQUE achieves

minimum variance when data comes from a normal distribution . Now we give

an alternative proof using theorem 2.2.

Corollary 2.1 Consider model (2.1). If the data vector y is normally dis-

tributed with E(y) = X/3, V(y) = £ L i a?V,-, then the MINQUE y'Ay of

£*=i Wi is also a MIVQUE.

Proof: If y is normally distributed, then the kurtosis of the distribution 7,- = 0,

thus A2 = 0.

From (2.17),

cov(y'Ay,y'Ny) = 2Tr U'AUAjU'NUAi

= TrD(2C).

From (2.19) and the assumption on matrix N, we have:

cov(y'Ay,y'Ny) = 0.

From theorem 2.1 we know that y'Ay is the MIVQUE of £f=1 q{af. •

It is well known that MINQUE achieves optimality when the underlying dis-

tribution is normal. In theorem 2.2 we have proved that without the normality

assumption but with condition (2.14), MINQUE still has optimality.

The result of Theorem 2.2 gives us a new perspective of the MINQUE esti-

mator. Instead of making assumptions on the distribution of the data, we can
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examine the design matrices to see if they satisfy condition (2.14). If condition

(2.14) is satisfied, then MINQUE is MIVQUE.

In the following section we shall look at some classes of models and examine

if condition (2.14) is satisfied.

2.2 Models satisfying condition (2.14)

Theorem 2.2 gives a sufficient condition (2.14) for the MINQUE estimator to be

optimal. The question which follows is what kinds of model satisfy this condition,

if any.

Condition (2.14) can be examined for any specified model. We use a simple

model to demonstrate how to apply theorem 2.2 in practice.

Example 2.1

We consider if the MINQUE for a balanced one-way random model satisfies

condition (2.14). The model is

y t j = fi + at + e{j, i = l,2, j = 1 , 2 . (2.20)

The model can be written in matrix form:

y =

where the design matrices are:

1

X =
1

1

LU

1 0 0 0

0 1 0 0

0 0 1 0

Lo o o U

• l o -

l o
o l

Lo U

Now using the MINQUE formulas (1.24)-(1.26) to estimate a\, we can obtain

the MINQUE matrix A:

• 1 1 0 0"

1 1 0 0

0 0 1 1

L0 0 1 U

Now

1

1 1 1 1
1 1 1 1
1 1 1 1

Li 1 1 U

1
2

1
"5

1

2

'1

1
I •

2
1
2 J

r
i
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Hence UJAUi = \12.

Similarly, we can show that U'eAUe = 0. Therefore condition (2.14) is satis-

fied for the MINQUE a2
a, where

b\ is the best quadratic unbiased estimator of a2
a. •

The calculation involved in Example 2.1 can be shortened if we use Kronecker

products of matrices In and l n , where In is the identity matrix of order n and l n

is the n x 1 vector with all elements equal to 1, to express the design matrices of

the model.

Example 2.2
Using Kronecker products the design matrices in Example 2.1 can be written

as:

X = l4 , U 1 = I 2 ® 1 2 , Ue = I 2 ®I 2 . (2.21)

Let J n be the matrix of order n with all elements equal to 1, thus

v1 = u ^ ; = h ® J2, v e = u eu; = i2 ® i2.

The variance covariance matrix is

and the inverse of the variance covariance matrix can be written as:

The MINQUE matrix A for estimating a\ can then be calculated using the

MINQUE formulas (1.24) -(1.26) in terms of Kronecker products of matrices as:

Hence

Also

= I2

A = -

AUe =

4^4

, thus

u5

" 4 J

C
O

 
I 

00

.AX

3

8 2

i , -

^ -

® J2 —

2 <S) J 2 .

2 ^V
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^ e = 0.

Therefore condition (2.14) is satisfied for a\ which is y'Ay. y 'Ay is the best

quadratic unbiased estimator of a\. •

Graybill (1954) calculated the variance of the ANOVA estimator for a two-

way balanced nested analysis of variance model and proved that the ANOVA

estimator is the best quadratic unbiased estimator of the variance components and

he concluded that the result can be generalized to all balanced nested ANOVA

models. In Example 1.8 we have shown that for the one-way balanced model

the MINQUE of a\ and a\ are identical to the ANOVA estimators. Hence our

conclusions in Example 2.1 and 2.2 coincide with Graybill's result.

Rather than examining condition (2.14) for the specific models, as we did in

Example 2.1 and 2.2, we want to draw conclusions on all balanced E-ANOVA

models. Our conclusions in this section will extend Graybill's result to more

models as well as confirm his conclusions for the models he considered.

Condition (2.14) in theorem 2.2 is a condition to be examined for the MINQUE

estimator. The design matrices Ui, U 2 , . . . , U^ are known from the structure of

model, but the matrix A which is calculated from the MINQUE equations (1.24)-

(1.26) is a complicated function of the design matrices. To examine condition

(2.14) for balanced ANOVA and E-ANOVA models it is desirable to obtain the

matrix A or at least know the structure of A.

Looking at Example 2.2 we notice that the design matrices are Kronecker

products of I and l 's, and UJ-AU,- is a linear combination of Kronecker products

of I and J's, i = 1, 2. Since condition (2.14) does not require exact values of c,'s,

condition (2.14) is satisfied as long as "LF-AU; is a linear combination of Kronecker

products of I and J's.

Kurkjian and Zelen (1962), Zelen and Federer (1964) have developed a calculus

for the design matrices of balanced designs. We adopt their way of expressing

design matrices.

In the following we shall use ® to denote the Kronecker product of two ma-

trices and <S>£Li to denote the Kronecker products of m matrices, i.e.

1=1

Lemma 2.6 and 2.7 are established to investigate the structure of the MINQUE

matrix A.
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Before proceeding to the lemmas we state the following properties which we

shall use in later context. Property 1 can be found in Chapter 8 of Graybill (1983)

and the other properties can be easily verified.

Property 1: If B = ®?=1 B,, C = &™=1 C,-, then BC = (gyJl^B.-C,-).

Property 2: ImIm = Im, J m J m = mJm , ImJm = J m I m = Jm-

Property 3: l 'mIm lm = m, l ' m J m l m = m2.

Property 4: lm l 'm = Jm .

Property 5: If A = (ao-)nxn, then l 'Al = £?= 1 £j=i flu-

Property 6: Let Vx = ( 0 ^ 1 Vf1') <g> J/ , where

then VXJ =

In the simple example considered in Example 2.1 there are only two variance

components a\ and a\. If we consider a model with m random factors, we need

an index set to label the variance components and their corresponding design

matrices and express the variance covariance matrix of the model.

Suppose a model is chosen within the class of E-ANOVA models, so the design

matrices for the fixed effect and random effects are known. For the time being

we consider the design matrices for the random effects only.

Suppose there are rn random factors, each factor has s,- observations, i =

1 , . . . , m. We consider a balanced design and assume that the observation in each

cell has been replicated / times.

Definition 2.1 For a balanced ANOVA or E-ANOVA model with m factors,

let T be an 0, 1 m-digit set. Each element ofT is a m-digit number corresponding

to a random term in the model where the digit relates to the corresponding factor.

A digit equals 1 if that subscript is present in the model and 0 if the subscript is

absent.

Example 2.3

Consider model:

eijk, (2.22)
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where //,• is the fixed effect parameter, Si, 7,-j and e,jt are the random terms.

This model has two random factor at level I and J, respectively. Each observation

is replicated K times. According to Definition 2.1, T — {10,11}. •

In Section 1.2 we have described the ANOVA models and the E-ANOVA

models. Using the index set T we can write the balanced E-ANOVA models and

the balanced ANOVA models in matrix forms.

A balanced E-ANOVA model can be written as:

y = X/3 + £ Vx£x, (2.23)

where

where

r i S i , ;|*.- = i. ( 2 2 4 )
I if r. — ft

and

\i=i /

where

U f = I Si' * Xf = 1 ' (2.25)

In other words, the design matrices of a balanced E-ANOVA model can be

expressed as the Kronecker products of I and 1.

Particularly, if in the balanced E-ANOVA model, X = 1, then the model is a

balanced ANOVA model.

After defining the index set T we can obtain the Kronecker products expression

for the design matrices and the variance covariance matrix using T.

Since

where

hence the variance covariance matrix is:
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V = £ alVx + all. (2.27)
x&T

Example 2.4:

For the model considered in Example 2.3, since T = {10,11}, then the design

matrices for the random terms are:

Uio = 1/ ® l j ® IK, U H = 1/ ® Ij ® IK, Ue = IUK,

and the variance covariance matrix of y is

V = <J-|Q1/ ® J j ® J/< -\~ &-,-* 1/ ® I j ® J/^ + c

To obtain the structure of the MINQUE matrix A, it is necessary to obtain

the inverse of the variance covariance matrix V first. Corresponding to matrix

multiplication we define a multiplication for the elements of set T.

Definition 2.2 Define a multiplication * among the elements of set T. If

x = xix2. ..xmeT)y = yxy2.. .ym G T, then x * y - zxz2.. .zm, where z{ ~ x.-y,-,

i — 1 , . . . , m.

Definition 2.2 defines a unit by unit multiplication in the set T.

From Example 2.2 we suspect that for V = J2xeT aV^x + a^I, where Vx is a

Kronecker products of I's and J's, V"1 = ]T axYx + ^ - 1 . In other words V""1 has

the same structure as V. But since for

V = a2
el + a\ol ® J <g> J + a ^ J <g> I ® J,

V"1 = -—I + a i o l ® J <g> J + Q'oi J ® I ® J +

where Oio,a'oi and «oo are suitably determined, we realized that V"1 is not

necessarily indexed by the same index set T . Hence we introduce another index

set T* which is derived from T..

Definition 2.3 Let T* be the set containing all the products of elements in T

under the multiplication *.

Example 2.5:
Consider a two-way crossed random model:

fi + ai + bj + eijk, (2.28)
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2 = 1 , . . . , / , j = 1 , . . . , J, & = 1, ...,/<", where ^ is also the overall mean, a,- and

bj are the random terms, e,jt is the random error. Then T = {10,01}, according

to Definition 2.3, T* = {00,10,01}. •

Note that the element 00 is not included in T and it is the product of 10 and

01, hence it is in T*.

In Lemma 2.6 we need to solve equations by successive substitution, hence we

need to define an order in the set T*.

Definition 2.4 Define an order in set T*. If x = xix2.. .xm G T*, y =

2/i2/2- • -2/m € T*, we say x < y, if x{ < yit for i = 1 , . . . ,m. x < y, ifx <y, but

The order in T* is defined by comparing each digit of an element. For example,

we should have 00 < 10 < 11. We can also have 00 < 01 < 11, but there is no

order relation between 10 and 01.

Since each digit of the element of T* has only two choices: 0 and 1, we can

see that if x * y = z, then x > z, y > z. For example, 10 * 01 — 00, then 10 > 00,

01 > 00.

Lemma 2.6 establishes the structure of the inverse of the variance covariance

matrix of y for a balanced E-ANOVA model.

Lemma 2.6 If V = E r e r ^ V , + a2
el, where Yx is defined in (2.26), then

there exist a set of scalars ax> x € T*, such that

V-1 = £ axVx + 1/a2
el.

Proof: Let

From the commutative properties of matrices I and J stated in Property 2,

we know that V W = WV. We need to find ax such that V W = I, thus W is

v-1.
To make the index expression of the matrices easier in the following develop-

ment we make some definition to write matrix V using index set T*.
For x e T*, but x g T, define a\ = 0, thus we can write V = Ezgr* alV=c +
. Now
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ayVy £ ^ y. (2.29)

From the definition of V r and Vy in (2.26) and property 1, we know that:

where

'I..-,

<Si3a

if
if

if

, if

Xi = 1,

Xi - 1,

Xi = 0,

Xi = 0,

Vi

Vi

Vi

Vi

1
1 ?

= 0,

= 1)
= 0,

Let

^ S r(y) =

then

therefore,

Il'i-"

\ ff f\ E

w7here

Therefore (2.29) can be written as:

t = l

(2.30)

Putting the left side of (2.30) equal to I makes each coefficient of V2 equal to

zero. i.e.

sr(xy)
= 0 (2.31)
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(2.31) is the fundamental equation for solving az.

Note that T* is an ordered set. We can solve (2.31) by solving ctw first where

w is the largest element in T*. For example, w = 1 . . . 1, from (2.31) we have:

a2

thus

Generally, let w be the largest element of T*. Now i« = w * t« and this is the

only choice of the elements of T* whose product equal w. Since if there exist x

and y, x ^ to, or y ^ u>, but a; * y = to, then we should have x > w, y > w, this

contradicts the assumption that w is the largest element of T*.

From (2.31):

e a\ w T(W)T(W)

thus

— v . (2.32)

Suppose we have obtained ay such that y > z. Notice that if x * y = z, then

there are two situations for y: y = z and y > z. Split these two cases in (2.31)

we have:

^e 7?z r(x)r(z) x^±z T(

Solve for az from (2.33) we have:

t i , T(i)r(t/)
y>'

z G T*. (2.34)

Note that all CT2'S are known, and by our assumption ay for y > z are known

too, therefore az can be solved from (2.34).

Suppose that the variance components for the random error is always positive,

i.e. a\ > 0, then even if by our definition some of the a^: x € T* may be zero,

the denominator of (2.34) will always be greater than zero.
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With (2.32) and (2.34) we can solve for az by successive substitution.

Therefore W is V"1 , i.e.

1 Yl a*vx + -Li. •

Lemma 2.6 showed that the inverse matrix of the variance covariance matrix

of balanced design has a similar structure to the variance covariance matrix in the

sense that both V and V"1 can be expressed as linear combinations of Kronecker

products of matrices I and J.

We give an example on how to solve for V"1 .

Example 2.6:

Consider a two-way crossed random model:

Vijk = M + ai + fy + e.-jfc,

i = l , . . . , / , j = l , . . . , J , k = l,...,K.

Suppose a,- is a random term with variance a2, bj with a2 and e,-^ with a2.

The variance covariance matrix of the model is:

V = a2
al <g> J <g> J + a\ J <g> I <g> J + <re

2l.

Now T = {10, 01} and T" = {00,10, 01}. In our notation: a\Q = a\, a2
Q1 = a\,

and o"o0 = 0.

Notice that in this example both 10 and 01 are the largest elements according

to Definition 2.4.

First let w = 10, from (2.32) we have:

2
a ' io = , , 2

 a
7Tr 2 V (2.35)

a\ (ae
2 + JKal)

Next let i«=01, also from (2.32) we have:

Now using (2.34):

oo = - | ^ f + Ka\0a01 + Ku2
0law I j [a] + IJKo2

m + JKa2
w + IKo2

0l) ,

but <TQ0 = 0, o10 and aOi a r e known from (2.35) and (2.36), thus
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°° °li°l + JK°l + IK°l) I °l + JK°l °l + IK°l I
Hence we obtained:

V"1 = aooJ <S> J ® J + aiol ® J ® J + Q'oi J ® I ® J + (-r ) I .

where aoo5 c*io and aoi are given in the above formulas. It can be verified that

VV"1 = I. •

The MINQUE equations involve the multiplication of X and V"1 . We have

worked out the structure of V"1 in Lemma 2.6 and need to see if the MINQUE

matrix A for the balanced E-ANOVA model satisfies condition (2.14) of Theorem

2.2. Since X is a Kronecker product of I and l 's, and V"1 = YlxeT* axV x +

£ 1 , thus X'V-XX = Exer- axX'VxX + £ X ' X , where V , is given by (2.26).

From Property 3 we know that wherever X has 1, X'VZX is a constant number,

and hence the corresponding index digit of the elements in T* will disappear.

Following the idea of using T to index V, we define Tx to index X'V~aX.

Def in i t ion 2.5 Suppose x = x\...xm is a 0,1 m-digit number. T is the

set defined in Definition 2.1. If y G T, let (x * y)\x be the product of x and

y under * with all those digits where x,- is zero crossed out. Then define Tx =

{(x * y)\x \y € T} to be the projection of set T on x.

Example 2.7:

Consider a two-way balanced E-ANOVA model:

Vijk = fJ-i + di + bj + eijk, (2.38)

i = l , . . . , J , j' = 1 , . . . , J, k = 1 , . . . , K, where fii is a subclass mean, a,- and

bj are the random terms, e^^ is the random error. Then x = 10, T — {10, 01},

r, = {i AO/>} = {I,O}.
Now for the model considered here, we have: X = 1/ ® \j ® 1A', and from

Example 2.6, we know that

V"1 = OQOJ ® J ® J + aiol ® J ® J + aoi J % I ® J + - r l ,

where aOo,aio and QOI were given in (2.35)-(2.37). Hence from Property 3,

Xz-cr-i-v r2 r'2 T i /2 r'2 T I T rx T i T

V A = J A 000^/ + ^ A Qjol/ + J i i QoiJ/ H —1/

= \J2K2aw + ̂  ] I7 + (j2K2aQO + JA'o01) J/.
V erf / v
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Now we can also determine the structure of X'V : X using Tx. For y € Tx, if

y = 1, then Vy = I, if y = 0, then V = J. Thus Tx = {1,0} indicates that

where T\ and r2 are determined by 5,-, / , (JJQ, OQI and cr̂ . The result is confirmed

by the above calculation of X ' V - 1 X . •

Since Tx is a 0,1 set, we can have (Tx)* according to Definition 2.3. We can

also have (T*)x according to Definition 2.5.

From Property 1 and 2 we know that the multiplication of two Kronecker

products of I and J's will result in a Kronecker product of I and J. This fact will

be used in the proof of Lemma 2.7.

Looking back at Example 2.2 we noticed that the coefficients in the expression

of the MINQUE matrix A and UjAU,-, i = 1,2, are not important in examining

condition (2.14). It is the fact that A and UJ-AU,- are linear combinations of

the Kronecker products of I and J that ensures that condition (2.14) is satisfied.

In Lemma 2.7 we shall prove that the MINQUE matrix A for any balanced E-

ANOVA model is a linear combination of the Kronecker products of I and J.

Lemma 2.7 Consider the balanced E-ANOVA model. Let T be the set corre-

sponding to the random terms in the model, then if the MINQUE matrix A exists

for the model, then it has the following structure:

where tpy are functions of s,-, / , a^ and a2
e, and~Vy is given in (2.26).

Proof: The variance covariance matrix of a balanced E-ANOVA model is:

yeT

From Lemma 2.6 there exists a set of scalars ay, y € T*, such that

ae

Then from Definition 2.5, X'V *X can be indexed by (T*)x,

v ' v - J V — V^ T V 4- ° T-A. v -<v — y Ty v y -\- — x ,
ye(T')x

 ae
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where ry are functions of s,-, / , a2
y and o\ produced by the multiplications of X',

V" 1 and X, c is produced by X'X = cl.

Again from Lemma 2.6 there exists a set of scalars ry, y £ [(2r>*)x]*5 such that

Now from Property 4,

x(x'v-1x)-1x/ = Y, W + —xx'

Using Properties 1 and 2,

R = V-1-V-1X(X'V-1X)-1X'V-1

= E «yVy.

From the MINQUE formulas (1.24)-(1.26), if the MINQUE of E v e r

exists, then solutions of Ay's exist for the equations

AyTrRVyRVz =
yeT

Again from Property 1 and 2,

A =
y£T*u{x}

where vy, 6y, u>y and (py are functions of s,-, / , a^ and a^. Hence we proved the

lemma. •

Theorem 2.3 Consider a balanced E-ANOVA model. If the MINQUE matrix
A of HyeTiytf exists, then y'Ay is the MIVQUE of

Proof: We need to prove that condition (2.14) holds.

From Lemma 2.7, we know that

For a balanced E-ANOVA model the design matrix U^ is given by (2.25) which

is a Kronecker products of I and 1. From Properties 1 and 3 the multiplication
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of I does not change the MINQUE matrix A and the multiplication of 1 only

results in the change of coefficients in U^AUy, so U^AUy is still a Kronecker

product of I and J's, hence

where ?ry is function of s,-, / , cr^ and a\.

Therefore condition (2.14) is satisfied. From Theorem 2.2, y'Ay is the

MIVQUEof £<?^y
2 . •

yeT

In this section we have examined the balanced E-ANOVA models. If the

MINQUE matrix A exists, then condition (2.14) is satisfied for these models, and

then y'Ay is the best quadratic unbiased estimator of the variance component.

In Chapter 6 we derive an estimator for the interviewer's variance. If an

interpenetrated interview scheme is adopted for the survey, then the design is

balanced. Hence from Theorem 2.3 the estimator we derive is the minimum

variance invariant quadratic unbiased estimator of the interviewer's variance.

There are many situations in practice where the normality assumption is not

appropriate to make, e.g. data collected from a social survey and data collected

from an experiment with a small number of replications. If we can manage to

have a balanced design, then without the normality assumption Theorem 2.3

secures that the MINQUE y'Ay will still be MIVQUE.

Discussion 2.1 In Chapter 1 it is known that when data come from a nor-

mal distribution MINQUE is the best quadratic unbiased estimator of variance

components. Theorem 2.2 ensures for any model with design matrices satisfying

condition (2.14) MINQUE will be the best quadratic unbiased estimator. Partic-

ularly, for balanced E-ANOVA models it is proved in this section that balance is

an alternative condition to normality for the optimality of MINQUE. Our result

in this chapter extends the situations where MINQUE can be used as an optimal

estimator.

After the investigation on balanced E-ANOVA models, we now use a simple

unbalanced model to examine if condition (2.14) is satisfied. We shall only ex-

amine condition (2.14) at parameter values a\ = 1 and a\ — \ because of the

algebraic complexity involved in deriving an algebraic solution.

Example 2.8:
Consider a one-way unbalanced model:

ya = fi + a% + e{j i = 1,2,.?! = 1, 2, j2 = 1,2, 3.
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The design matrices are:

•y-

"1"
1

1

1

. 1 .

"1 0-
1 0

0 1

0 1

.0 1.

U,=Is

Now at parameter values a\ = 1 and G\ = 1, then from the MINQUE formulas

(1.24)-(1.26), we can obtain the MINQUE matrix A for the estimation of a\\

A =

0.062
0.062

-0.042

-0.042

-0.042

0.526

-0.474

-0.017

-0.017

-0.017

0.062
0.062

-0.042

-0.042

-0.042

-0.474

0.526

-0.017

-0.017

-0.017

-0.042
-0.042

0.028

0.028

0.028

-0.017

-0.017

0.678

-0.322

-0.322

-0.042
-0.042

0.028

0.028

0.028

-0.017

-0.017

-0.322

0.678

-0.322

-0.042
-0.042

0.028

0.028

0.028 _

-0.017 "

-0.017

-0.322

-0.322

0.678

+A2

where Ax = 2.065, A2 = -0.139.

Since U2 = I, hence U2AU2 = A, it can be seen that:

U'2AU2 = A =
O.O55I2 0

0 -O.O36I3

therefore condition (2.14) is not satisfied. But we can not conclude that y 'Ay

is not the best quadratic unbiased estimator of a2
a, because condition (2.14) is a

sufficient condition. •

Discussion 2.2 The investigation in this section seems to suggest that condi-

tion (2.14) is a condition on the balance of the design. We shall not carry out

further study on unbalanced designs because:

(1) When dealing with unbalanced designs we would lose the powerful expres-

sion of the Kronecker products of matrices. It is therefore impossible to examine

condition (2.14) generally;

(2) Condition (2.14) zs a sufficient condition, hence not satisfying condition

(2.14) does not necessarily mean that the MINQUE is not MIVQUE.
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Nelder (1965a, 1965b), Speed (1987), Speed and Bailey (1987) and Bailey

(1991) have worked on the analysis of randomized experiments. Although they

also considered the estimation of random effect parameters, their work differed

from the study in this chapter mainly in the following ways. First, they did not use

variance components models. Their emphasis was on the extension of the ANOVA

estimator {i.e. the splitting of the total sum of squares into sums of squares due to

different variances) to designs of experiments with different blocking structures.

C. R. Rao's MINQUE is derived for the general variance components model (1.1)

so that MINQUE is dependent on the assumption that model (1.1) holds. It is

not known if there exist some designs for which an appropriate model cannot be

expressed in the form of variance components models. In such cases MINQUE is

not available and the extension of ANOVA estimator is necessary.

Second, Nelder et aPs research focus is on the analysis of the randomized

designs, i.e. on developing methods to estimate the variance and covariance pa-

rameter, not on the optimality of the estimator they used. Speed (1987) wrote at

the end of his article:"We have not discussed any of the many questions, which

are both mathematically and statistically interesting, which arise when the ar-

ray of random variables has an anova." While in this chapter we considered the

optimality of MINQUE which can be regarded as an extension to the ANOVA

estimator through the framework of the general variance components model (1.1).

Speed and Bailey's work is an extension of Nelder (1965a, 1965b) to discuss

more blocking structures using algebraic notation. Here we give a brief compari-

son between Nelder's work and the study in this chapter.

Nelder (1965a) gave three forms for expressing the variance covariance matrix

V (see Nelder, 1965a, Appendix). In his analysis he only used the spectral

decompositional form for the variance covariance matrix V = X)f=1 &C,-, where

£t- is the eigenvalues of V and C; = p,p' , where pt- is the normalized orthogonal

eigenvector of V. Nelder (1965a) showed that when C; is a complete binary

set, i.e. Yli=i C,- = I, then we can have y'y = Yli=i(y'^iy)- ^n other words

the splitting of the total sum of squares to different sums of squares is possible.

By writing the variance covariance matrix in the spectral decomposition form

it is easy to see that V" 1 = X)?=i£:rlCt, though Nelder only used V"1 in the

likelihood interpretation of the ANOVA estimator. But it is difficult to see the

relationship between the variance components, of, and the eigenvalues £,• of V.

Since MINQUE depends on the assumption of variance components models, I used

V = YLi=\ afVi m terms of the variance components of and the design matrices
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Ut- for the random effects (V,- = U.UJ). Adopting different ways of writing the

variance covariance matrix Nelder and I achieved different goals. Nelder (1965a)

showed when the splitting of the total sum of squares is possible, while I showed

that the optimality condition (2.14) is satisfied. The result proved in Lemma 2.6

does not directly follow from V"1 = YA=\ £,rlC{, because deriving the eigenvalues

and eigenvectors of V and converting them back into the form of V" 1 in Lemma

2.6 requires far more work than the proof of Lemma 2.6.

Nelder (1965a) considered null analysis of variance, i.e. he assumed an overall

mean for the data. The simple block structure he mentioned can be expressed as

balanced ANOVA models, although it is not known if the inverse is true.

Nelder (1965b) considered estimating treatment effect in the presence of ran-

dom effects. He assumed E(y) = X/3 without restriction on the design matrix X.

The class of designs he considered can be put into the form of model (1.1) and

therefore is larger than the class of balanced E-ANOVA models considered in Sec-

tion 2.2. But Nelder mainly considered the generalized least squares estimation

of (3 and he did not consider how to estimate the random effect parameters in

the presence of fixed effects. I restrict model (1.1) to balanced E-ANOVA models

because I want to show that within this class of models MINQUE is the optimal

estimator of variance components.

To summarize, Nelder, Speed and Bailey are extending the class of designs for

which the ANOVA estimator is available. While in this chapter I use balanced

E-ANOVA models to show that MINQUE is optimal to this class of models and

design.

2.3 Conclusions

The key result in this chapter is the proof of Theorem 2.2 which gives condition

(2.14) as an alternative sufficient condition for MINQUE to be MIVQUE without

a normality assumption. We examined balanced ANOVA and E-ANOVA models

and found that if the MINQUE y'Ay exists it satisfies condition (2.14), hence

the MINQUE y'Ay is MIVQUE without a normality assumption.

In the next chapter we shall look at the problem of prior values and find out

what kind of models can have estimators without using prior values.



C h a p t e r 3

C O N D I T I O N S F O R M I N Q U E

T O B E I N D E P E N D E N T O F

P R I O R VA LU E S

3.1 The problem of prior values in the computa-

tion of MINQUE

In section 1.3.4 it is shown that the MINQUE formulas (1.24)-(1.26) require the

inversion of the variance co variance matrix V = J2i=i °f V,- where the of's are the

unknown parameters. When using numeric computation to obtain the MINQUE

it is necessary to put numerical values for the of's which are called prior values.

One of the requirements for the optimality of MINQUE is that the prior values

are the true variance components values which are never known in practice. If we

calculate the MINQUE equation algebraically, as we did in Example 1.8, where

for the one way random model the MINQUE formulas for o\ and a\ are given, it

can be seen that when the data are balanced the prior values of a\ and a\ will

cancel out. In this case any prior values in the parameter space will lead us to

the same estimate. Due to the complication of the MINQUE formulas (1.24)-

(1.26) it is impossible and unrealistic to calculate the MINQUE of the variance

components algebraically for all the models. Therefore before commencing the

computation of MINQUE by the computer it is not known if the prior values will

cancel out. If we put arbitrary prior values into the MINQUE formulas and if the

prior values do not cancel out we will have different estimates by using different

prior values while estimating the same parameter from the same formula.

60
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In the literature there are two approaches proposed to solve the problem

of prior values. Hartley, Rao and LaMotte (1978) suggested a synthesis-based

MINQUE approach. They used a special set of prior values for all the models,

which is to let a2
e = 1 and all the other variance components a\ = 0. By using

these prior values in the MINQUE formulas they obtain estimates which they

called synthesis-based MINQUE. This approach uses the variance covariance ma-

trix V = I instead of V = Yli=i af^i m the computation, hence it reduced the

computation needed to derive the inverse of the variance covariance matrix. The

synthesis-based MINQUE is simple and easy to use, but usually the optimality

of MINQUE will not be preserved. In Chapter 6 we shall show that by using the

synthesis-based MINQUE approach the estimator derived only depends on one

part of the data set, and hence ignores the information contained in the other

part of the data set. The reason for using the specific set of prior values chosen

for the synthesis-based MINQUE has not yet been justified.

Another approach is to use iterative computing. The idea is to use an arbitrary

set of prior values to obtain the estimates from the MINQUE formulas and use

the estimates as a new set of prior values to obtain further estimates, then repeat

the procedure until the estimates obtained converge. If we regard the af on both

sides of the MINQUE equations as unknowns, the iterative computing approach

is actually seeking a numerical solution to the MINQUE equations. The problems

are: first, we do not know what optimality the estimates obtained from iterative

computing have; second, we do not know if MINQUE will always converge; Third,

the estimator is no longer quadratic.

Neither approach is completely satisfactory.

In Example 1.8 the variance components o\ and a\ were involved in the calcu-

lation of MINQUE and cancelled out at the end of the calculation,so in this case

MINQUE is independent of prior values and an analytic solution of MINQUE is

secured, therefore, in the computation different prior values will lead to the same

estimator.

In this chapter we investigate the conditions under which the prior values will

cancel out for the MINQUE of of, hence MINQUE will be independent of prior

values. If MINQUE is independent of prior values then we can use synthesis-

based MINQUE in the computation of MINQUE and ensure that the optimality

of MINQUE remains. If MINQUE is dependent on prior values it seems that

iterative computing is the only way of solving the problem.
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3.2 Two useful theorems

There are two theorems in Szatrowski (1980) which will be used to derive the

necessary and sufficient conditions for MINQUE to be independent of prior values.

Theorem 3.1 (Szatrowski, 1980) Let A and B be p x p symmetric pos-

itive definite matrices and let X be a p x r matrix of full rank, r < p. Then

(X'A^X^X'A-1 = (X'B^X^X'B-1 if and only if the columns of X are

linear combinations of r eigenvectors o /AB" 1 .

A proof can be found in Szatrowski (1980).

We need some definitions before stating the second theorem.

Definition 3.1 Let A be a symmetric p x p matrix. < A > is defined to be

a column vector consisting of the upper triangle of elements of A written in the

following order:

< A > = ( a n , «22, • • • , a-pp, c-12, a i 3 , . . . , a i p , a 23, • • •, app)

< A > is different from vec(A) and vech(A) defined in section 1.3.5 because

< A > puts the diagonal elements of A into the vector first and then inserts the

rows of the remainder of the upper triangle of A.

A characteristic of < A > is that < > transforms a diagonal matrix into a spe-

cial vectorform. If A = diag(aal, 0122, • • •, aPP), then < A > = ( a n , a22, • • •, aPP, 0 , . . . , 0)'.

vec(A) and vech(A) do not possess this property. < A > is useful in transform-

ing the variance of a quadratic estimator so that Theorem 3.1 can be used to find

the necessary and sufficient conditions for MINQUE to be independent of prior

values.

Definition 3.2 Let A be apxp symmetric matrix and let $(A) =< A >

* < A >' be a I P'P2
I* ' > x < P'P2

I" ' > symmetric matrix, where the multiplication of

the elements of < A > is defined as:

dij * au = dikCtji -f auctjk.

Both < A > and $(A) were first used by T. W. Anderson (1969) to study

the properties of variance covariance matrices.

According to Definition 3.2, a^i-kaij = a^aij + akjau = a,ik(iji + audjk, because

A is symmetric, so <fr(A) is symmetric.
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We use an example to demonstrate how $(A) is constructed from A.

Example 3.1:

Let A = a n a12

a 1 2
be a 2 x 2 symmetric matrix, from Definition 3.1,

< A > = (an , &225 012)'- From Definition 3.2,

* [ a n a22 012]

a n * an a n * a 2 2

2a n 2a\2 2anaX2

2a12a22

a 12 J

We can see that $(A) is symmetric from this example. Particularly, if ai2 = 0,

i.e. A is a diagonal matrix, then

2 a n 0 0

0 2a^2 0

0 0

. D

Generally, if A = diag(aXi, a2 2 , . . . , app), then

where i7i is a y P
2 ^

Particularly,
x

2a?,

matrix and its elements are determined by A.

2ln 0

0 Im

where ra = "("2

Theorem 3.2 uses the notation of

Theorem 3.2 (Szatrowski, 1980) / / £ is a -positive definite matrix, E and

F are p x p symmetric matrices, then
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Tr S^ES^F = 2 < E >' ^{S) < F > . (3.1)

A proof can be found in Anderson (1969).

3.3 Conditions for MINQUE to be independent

of prior values

In this section we consider the general variance components model (1.1).

Since MINQUE has additivity, it is sufficient to derive MINQUE estimators

for the a\ only and all the estimators for linear combinations of the variance

components in the form of YA=\ I&I c a n be derived correspondingly.

In section 1.3.4 we have derived equation (1.27) for the MINQUE of 0:

S 0 = t, (3.2)

where 0 = (a^,... ,al)', S = (sij)kxk, where s,-j = TrRV.-RVj, t = (t{)kxi,

where U = y'RV.Ry = TrRV.RC, C = yy'.

Now we want to use Theorem 3.2 to transform equation (3.2) into an equiva-

lent form which will enable us to use Theorem 3.1.

Let Pv = X(X/V-1X)~1X'V-1, then R = V - ^ I - P y ) . Then using Theorem

3.2

sij = TrRV.-RVj

= TrV- 1 ( I -P v )V i .V- 1 ( I -P y )V i

= 2 < ( I - P y ) V 1 > ' $ - 1 ( V ) < ( I - P v ) V ; > . (3.3)

Similarly,

U = Try'RV.Ry

= TrRV.-RC

= TrV-1(I-Py)V,-V-1(I-PV / )C

= 2 < ( I - P K ) V , > '$- : (V) < ( I - P y ) C > . (3.4)

Let X* = (< (I - Pv)Vi > , . . . ,< I - P^)Vfc >), i.e. let < (I - PK)V,- > be

the ith column of X*, then (3.2) can be written as:

(X''$-1(V)X*) 0 = X ' ^ - ^ V ) < (I - VV)C >, (3.5)

or equivalently,
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0 = (X*'$-1(V)X") X ' ^ - ^ V ) < (I - Py)C > . (3.6)

With the equivalent MINQUE equation (3.6), we can use Theorem 3.1 to
derive the necessary and sufficient conditions for the MINQUE of 0 to be inde-
pendent of prior values.

Theorem 3.3 The necessary and sufficient conditions for the MINQUE of &

to be independent of prior values of unknown parameters are:

1. X(X'V- 1 X)- 1 X'V- 1 = X(X'X)-1X / ;

2. each < (I — Py)V,- > can be expressed as linear combinations of k eigen-

vectors of $ ( V ) $ - J ( I ) , i = l,...,k.

Proof: =>• If the MINQUE of 0 is independent of prior values, any prior

values of the variance covariance matrix will lead to the MINQUE estimate of 0 .

Particularly, V = I will yield the same estimate.

Thus Pv = X(X'X)X' = P / , i.e. the first condition is satisfied and from

(3.6):

0 = (X*'$- 1 ( I )X*)" 1X*'$- 1 ( I )<(I-P / )C> . (3.7)

Since (3.6) and (3.7) give the same estimate and C = yy' where y is any data
vector, we should have:

(X"$-1(V)X*)~1X"$-1(V) = ( X ^ - ^ X ' ^ X * ' ^ - 1 ^ ) . (3.8)

Let A = $(V) and B = $(I) in Theorem 3.1, then if (3.8) holds, the
columns of X* are linear combinations of k eigenvectors of $(V)$~1(I). Note
that < (I — Py)V,- > is the zth column of X*, so the second condition is satisfied,
hence the two conditions are necessary.

4= Now assume the two conditions in the theorem are satisfied, then from
the first condition, we know that Py = P/ = X(X'X)X' which is independent of
prior values.

From the second condition we know that < (I — Py)V,- > is the linear combi-
nations of k eigenvectors of $(V)$ -1(I), then using theorem 3.1 (3.6) becomes:

0 = (X*'$-! (I)X-) "' X"^- 1 (I) < (I - P 7 )C> . (3.9)

Since
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C = yy', and P / = X(X'X)~1X', (3.9) does not contain any prior values of

the unknown parameters, so MINQUE of 0 is independent of prior values. Hence

we have proved that the conditions are sufficient.

Therefore the two conditions are necessary and sufficient. •

Note if the MINQUE of 0 is independent of prior values, it has the following

expression:

0 = (X^^OQX*)"1 X*'$-a(I) < (I - P/)C >,

where P7 = X(X'X)X'.
The necessary and sufficient conditions given in theorem 3.3 are very com-

plicated because the set of models we are considering is large. For balanced

E-ANOVA models the conditions can be simplified.

3.4 Simplified conditions for balanced E-ANOVA

models

In addition to the six properties of Kronecker products of ISt 's and JSi 's in Chapter

2 there are four more properties needed in this section. Properties 8, 9 and 10

can be found in Chapter 8 of Graybill (1983). Property 7 can be derived using

Property 1 in Chapter 2.

Property 7: If £,• is an eigenvector of A,- corresponding to the eigenvalue A,-,

i = l , . . . , m , then (g)^ & is an eigenvector of 0^ . x At- corresponding to the

eigenvalue Ylh=i ^i-

Property 8: If A and B are nonsingular matrices, then A ® B is nonsingular.

Generally, if A,- is nonsingular matrix, i = 1 , . . . , m, then ®^-j A,- is nonsingular.

Property 9: If A and B are matrices, a and b are scalars, then

ab(A®B) = (aA)<g>(HB).

Property 10: Let A be an mx x ni matrix of rank r\ and B be an m2 x n^

matrix of rank r2, then A ® B has rank

In a balanced E-ANOVA model defined in Section 1.2 the design matrices for

both fixed and random effects can be expressed as Kronecker products of I's and

l 's.
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For the one-way balanced random model:

yij = v + a,- + eij, i - 1 , . . . , m, j = 1 , . . . , n,

the design matrices are:

X = lm(g>ln, U i = I r o ® l n , U e = I m ® I n .

Thus Vi = Im ® J n , Ve = Im ® In , and the variance covariance matrix is:

V = a2
alm ® J n + <xe

2lm ® In .

Generally, assume a balanced E-ANOVA model is chosen and there are m — 1

factors each at S{ levels and each observation is replicated sn times, then the

design matrix for the fixed effect can be expressed by:

where

The design matrix corresponding to a2
x (x — X\... xm) is:

TT _

t = l

where

r i s , , i f x , -_ i ,

Hence

1=1

where

Vf = {Is" lfx' = 1' (3.12)

The variance covariance matrix is thus V =

Since the design matrices of balanced E-ANOVA models have this special

structure, we can use an orthogonal matrix to diagonalise the matrices required
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in the conditions of Theorem 3.3 and derive simpler conditions than those of

Theorem 3.3.

Now we choose the orthogonal matrix to be: Fn = (7ij)nxn, where

-y,-- = n~1'2 -jcos 27m-1 (i — l)(? — 1) + sin 27rn-1(i — l)(j — 1) \.

The columns of Fn are the n roots of unity. Example of Tn for n = 2 is:

1 1 1
1 - 1

For n = 3,

2 ^ 2 2 2
2_ y/3 1̂  i •v/3
2 2 2 ' 2 J

It can be verified that the columns of Fn are orthogonal eigenvectors of Jn

which is the matrix of order n with all elements equal to one. Fn is symmetric

and nonsingular.

Since In is the identity matrix of order n, it follows that the columns of Fn

are also the eigenvectors of In.

Note that the first column of Fn contains only l's and this column corresponds

to the only nonzero eigenvalue of J n , namely, n. The rest of the columns of J n

correspond to the zero eigenvalues of Jn , hence

•*• n"n.J- n —

n

0

j -» n*-n-*- n — *-w

Fn diagonalizes I and J given their eigenvalues on the diagonal.

Now let P = 0^-x FSi. Since the columns of FSi are eigenvectors of I5i and

3Sl, from Property 7 we know that the columns of P are eigenvectors of V,- and

V. P is useful because it diagonalizes X, V,- and V.

Now we prove that for balanced E-ANOVA models the first condition of The-

orem 3.3 is satisfied.

Theorem 3.4 For balanced E-ANOVA models,

X(X'V- 1 X)- 1 X'V- 1 = X(X'X)-XX'.
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Proof: Now for balanced E-ANOVA models the design matrix X is given by

(3.10): X = ®?=1X?', where

[I5 i , ifx,- = l,

Let B = (g£=1Bf\ where

' \ l a . , ifx,- = 0.

and let C = <g)?=1 Cf', where

From Property 8 we know that C is nonsingular.

Since FSi is orthogonal and symmetric,

771

BC= <g)B? <g> c ?= (g)(Bf'Cf).
\,=i / \,-=i / ,-=i

But

B t C ' - \ 1 . , . , ifx,- = 0,

thus Bf'Cf1 = X f , hence

BC = X. (3.13)

Since the columns of FSi are'eigenvectors of 3Si, lSi is the first column of FSi

and is therefore an eigenvector of Js., hence from Property 7 the columns of B

are eigenvectors of V. The number of columns of B is the same as the number of

columns of X, hence (3.13) means that the columns of X are linear combinations

of r eigenvectors of V, where r = rank(B) = rank(X).

From theorem 3.1, we have:

therefore

x(x'v-1x)-1x/v-1 = x(x'x)-ax'. •

Theorem 3.4 showed that all balanced E-ANOVA models satisfy the first con-

dition for MINQUE to be independent of prior values. The remaining task is to

simplify the second condition of Theorem 3.3 for the balanced E-ANOVA models.
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Since the symmetric orthogonal matrix P can transform V,- and the variance
covariance matrix V into diagonal forms containing the eigenvalues on the diag-
onal, we then use A0 = PAP to denote the diagonalised matrix of A by P. So
V° = PVP, (I - Pv)° = P(I - Pv)P, etc.

Using the diagonalised matrices and PP = I, we can transform the MINQUE
equation (3.2) into another form. Now

Sij = TrRV.RV,

= T r V - 1 ( I - P y ) V i V - 1 ( I - P v ) V i

^ - Pv)PPV tPPV- 1PP(I - P y )PPV J P

Similarly,

U = TrRV.RC

- PV/)PPV,PPV-1PP(I - PV )PPCP

P v l ^ ^ V 0 ) - ^ - Py)°PCP.

Let X*° = (< (I - Pv)°V° > , . . . ,< (I - Py)°V£ >).

Using Theorem 3.2 the MINQUE equation (3.2) can be written as:

0 = ( X ^ V ^ V ^ X * 0 ) " 1 X ^ V ^ V 0 ) < (I - Pv)°PCP > . (3.14)

Theorem 3.5 For the balanted E-ANOVA model, a necessary and sufficient

condition for the MINQUE of& = (erf,..., erf)' to be independent of prior values

is that < (I — Py)°V° >, i — 1 , . . . , k, can be expressed as linear combinations of

k eigenvectors of

Proof:

From Theorem 3.4 we know that for balanced E-ANOVA models,

Pv = X(X'X)-1X / = P 7 .

Hence condition 1 of Theorem 3.3 is satisfied.

Now substituting the MINQUE equation (3.6) used in the proof of Theorem

3.3 with the MINQUE equation (3.14) and following the same reasoning as in the

proof of Theorem 3.3, we can prove that condition 2 of Theorem 3.3 is satisfied.

Therefore this theorem is proved. •
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Now we use an example to demonstrate how Theorem 3.5 works.

Example 3.2
Consider a one way balanced model:

yij = n + cii + etj i = 1,2, j = 1,2.

Now we have X = 14 , V = cr?I4 + ajl2 <g> J 2 .

v-1 = ~i4 - cr: I 2®J 2 , X'V-1X =

Hence

= x(x'v-xx) 'x'v-1

— L , -

Now P / = X(X 'X) - 1 X / = i j 4 , therefore

3.4 for all balanced E-ANOVA models.

Now

= P / , as proved in Theorem

Therefore the diagonalised forms are:

and

1
0

• 0

1

0

• 0

0

1

0

0'

1

1

2

®

1

2

0
-

0.

'1

0
-

1.

0

0

0'

1

•

1
~~ 2

1

~ 4

2

0

'2

0

0

0
2
0

0'

0 ®
"2

0

0
0

0

0
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Hence

Now the diagonalised form of the variance covariance matrix is:

V° = o\

1J

r?

OJ

1°l + °l

^l

Therefore,

Tlf
<J7

0

^l +

Let T7i = (0, 0 ,1 ,0 , . . . , 0)' and 772 = (0,1,0,1,0, . . . , 0)'.

It can be verified that i]i and 772 are eigenvectors of $(V°)$~1(I). Now

<(I-Pv)°V°>=2r7l
7 l ,

From Theorem 3.5 for this model the MINQUEs of a\ and a\ are independent

of prior values. •

From Example 3.2 we can see that examining the condition in Theorem 3.5

requires a lot of algebraic calculations. The following lemmas are aimed to sim-

plify the condition in Theorem 3.5. Lemma 3.1 and Lemma 3.2 will be used in

the proof of Lemma 3.3.

Lemma 3.1 Let K— , and £ =

XIN J

, where A,- 's

are distinct nonzero real numbers, i = 1, . . . ,N, ifr) is an eigenvector of A, then

1. 77 is an eigenvector of £;

2. (77', 0)' is an eigenvector o
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Proof:

1. Since A.'s are the distinct eigenvalues of A, suppose 77 = (J7,-)ATXI is the

eigenvector corresponding to A,-, then

= A.-77 =

gives rjj — 0, for j ^ i. Hence 77 = ( 0 . . . 0 1 0 . . . 0 )'. Therefore

Hence 77 is an eigenvector of S.

2. Since

'2\\

\lN 0

0 I

thus
A?

0 E

As proved in part 1 77 is an eigenvector of S, hence (77', 0)' is an eigenvector

of ^ ( A ^ - V I ) . •

Using Lemma 3.1 we can focus our attention on the eigenvectors of A in order

to determine the eigenvectors of $(A)$~1(I) which is more complicated than A,

if A is a diagonal matrix.

Lemma 3.2 Let
0 ••PI

T2lp

•Pk J

where r,- ^ TJ, for i ^ j • then

are eigenvectors of both A and B.
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The lemma can be verified by showing A£,- = r;£,-, and B£, = r,£,-, where

Now we need to define another way of transforming a diagonal matrix into a

vector. The definition is very helpful in the proof of Lemma 3.3.

Definition 3.3 If A is apxp diagonal matrix, let d(A) be the vector containing

all the diagonal elements of A, i.e.

i / \ \ / ,-, V
ul J\ \ — 1^11) ^22) • • • 5 C^pp) •

Remember that < A > also transforms a matrix into a vector, the relationship

between < A > and d(A) for a diagonal matrix A is: < A > =

To make the proof of Lemma 3.3 easier we now investigate the properties of

(I-Pv)°andV?.
From Theorem 3.4 we know that for balanced E-ANOVA models Py =

X(X'X)"1X / , where X is given by (3.10). For a chosen design matrix X the

combination x — xx ... xm is determined. Recall the notation we used in Chapter

For example, if X = ISl ® 1$2 <S> 153, then x — 100, T(X) = ^J^^^ = s\.

The notation r(x) enables us to write: X'X = T^JI- In the above example,

X'X = a 2 S 3 I s l = £ 1 = T{

Hence (X'X)-1 = ^ 1 . Therefore

Pv = X(X'X)-1X/ =
r(x)

x f •• ,
\i=\

where

Since P =

'I,,., if a;,- = 1,

J5i, ifx,- = 0.

T{X)

Lt=i

Since FSi is the orthogonal matrix diagonalising JSi,

if X(f l . . - , = 1,

0
, if x{ = 0.
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Taking the coefficient ^ ^ into account and using Property 9, we have:

m

Po _ /O\ "nx>

where

Df' =

• 1

if r- — 1

, ifx,- = 0.

0 J

In the example we should have Pv = -^— IS1

•S2-S3

•S2

0 J

•S3

0 J
r 1

0 J 0 J

Since (I - P v ) ° = P(I - Py)P = I - P P y P = I - P ^ , and P ^ only has l's
and 0's on its diagonal, (I — Py)° only has 0's and l's on its diagonal.

Similarly, for the V,- given by (3.12) we can see that V° only has 77^'s and

0's on its diagonal, where i is the index of V,-.

Lemma 3.3 For balanced E-ANOVA models, the following two conditions are

equivalent:

1. each < (I—Py)°V° >, i = 1 , . . . , k, can be expressed as linear combinations

of k eigenvectors of ^ ( V 0 ) ^ " ^ ! ) .

2. (I — Py)°V° contains exactly k distinct linear independent nonzero combi-

nations of af 's.

Proof: 2 => 1

Assume that r l 5 . . . , r^ are the k distinct nonzero linear combination of erf's

contained on the diagonal of (I — Py)°V°.

Let £,- be the vector having 1 wherever (I — Py)°V° has r,- and 0 otherwise,
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From Lemma 3.2 we know that £,• is the eigenvector of (I — Py)°V° corre-

sponding to r,-, i = 1 , . . . , k. Since (I — Py)° only have l's and O's on its diagonal,

(I — Py)°V° has the same nonzero elements as V°. From Lemma 3.2 &'s are

eigenvectors of V°, i = 1 , . . . , k.

Since V = £,*=1 afVh then V° = £ ^ <T?V?,

( I - P v ) ° V ° = X ) ^ ( I - P v ) 0 V ? . (3.15)

From the investigation on (I — Py)° and V° before the lemma we know that

(I — Py)°V° can only have ^ and 0 on its diagonal. The equality in (3.15)

indicates that the elements of (I — Py)°V° are the coefficients of cr?'s which form

the combinations on the diagonal of (I —Py)°V°. In other words when a variance

component, say of, is present in a combination r,-, (I — Py)0V° must have ^ in

the same position as Tj on the diagonal of (I — Pv)°V°. Otherwise, (I — Py)°V°

must have zero.

We then have:

where
j(0 _ / 7&J' i f ai i s P r e s e n t i n r i '

J \ 0, otherwise.

Let 77; = (£,', 0)', then by Lemma 3.1 we know that 77; is the eigenvector of

* - 1 ^ ) . Since

(3-17)

then < (I — Py)0V° > can be expressed as linear combinations of TJ^S, i,j =

l,...,k.

Now Vfc = I, so a\ is present in all the nonzero linear combinations of a} in

(I -PvO°V°, therefore,
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In other words, all the k 77;'s are needed for expressing < ( I—PK)°V^ >, there-

fore, < (I — Pv)°V° > can be expressed as linear combinations of k eigenvectors

of ^ ( V 0 ) ^ - ^ ! ) .

1 =^2

Assume that (I — Pv)°V° contains m distinct combinations of erf's, m ^ k.

Then by the same reasoning as in part 1 of the proof, we can define £,• and 77,

so that 77,- is the eigenvectors of $(V 0 )$ - 1 ( I ) and

Therefore < (I — Py)°V° > can be expressed as a linear combinations of

m eigenvectors of $(V°)$~X(I), m 7̂  k. This contradicts condition 1, hence

(I —Pi/)°V° consists of exactly k linear independent nonzero combinations of the

<jt
2's. •

Example 3.3:
The construction of £; and 77,- in the proof of Lemma 3.3 can be demonstrated

by using the model in Example 3.2.

From Example 3.2 we know that

ro

1 J

hence
r 0

at

So there are two distinct nonzero combinations of a\ and a^, namely, TX = a\,

r2 = 2cr2 + a^, thus we define

& = (0,1,0,1)', £2 = (0,0,1,0)'.

It can be seen that £1 and £2 are eigenvectors of (I — Py)°V°, they are also

eigenvectors of V°.

With (I - Py)°V° and (I - Py)°V° given in Example 3.2, we can write:

d [(I - Pv0°V?] = (0,0,2,0)' = 26, (&S1* = 0, #> = 2),
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<*[(!• = (o, i, i, i)' = = i).[ ) ] ( )
Now let 771 = (£i,0)', 772 = (£2, 0)7, 771 and T72 are eigenvectors of

As shown in Example 3.2 we have:

< ( I - P y ) ° V ? > = 2 7 7 2 ,

1 (I).

< (I - Py)°V° >= 77x + 772.

So the MINQUEs of a\ and <j\ are independent of prior values. •

The next lemma establishes another equivalent condition for the second con-

dition in lemma 3.3, but we need some definitions before the lemma.

Let Vi , . . . , Vfc be row vectors corresponding to the random terms in a balanced

E-ANOVA model. The elements of v,- contain 0 and 1 only, v,- has 1 in the jth

element if the jth factor is present in the ith random term in the model and 0

otherwise. v1?...,Vfc will determine the random effect part of the model. Let

x = (xi,..., xn) be the row vector corresponding to the fixed effect term in the

E-ANOVA model and x is similarly defined as the v,-'s.

Example 3.4:

Two way crossed model with interaction:

Thus k = 4, vx

x = (0,0,0). •

Viji = fi + ai + bj + Cij + etji,

= l,...,I, j = 1 , . . . , J, / = 1,...,L.

(1,0,0), ,v2 = (0,1,0), v3 = (1,1,0) and v4 = (1,1,1).

Denote the k x n matrix v2 by W. The rows of W correspond to the

random effects in the model and the columns are indexed by the factors. We

notice that only balanced E-ANOVA models allow us to use the notation of W.

Define the vector multiplication as: x * v,- = (xju^, . . . , xnu,-n), which is a

Hadamard product of matrices, see Rao (1973, p30). Hence x * v,'s are vectors.

Let

Wv =
x * v2

. X * Vfc
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W and Wjf are k x n matrices. The column vectors of W and Wjf can

multiply each other using the rule of the Hadamard product. A column vector is

said to be generated by the column vectors of W if it is a Hadamard product of

two or more column vectors of W. Let Z be the matrix containing all columns of

W and the columns generated by the columns of W. If W = \oc\,..., <xn], then

Z = , a * a 2 , • • • , <*n_i * c*n, c*i * a 2 * « 3 , • • •, «n]

TAX is similarly denned.

Definition 3.4
columns of Z —

The number of distinct nonzero columns generated by the

is defined as N{Z —

Example 3.5:

Continued from Example 3.4,

W =

• 1

0

1

.1

0

1

1

1

0"

0

0

1.

•o

0

0

.0

0
0

0

0

o-
0

0

0.

z =

0

1

1

1

0

0

0

1

0

0

1

1

0

0

0

1

0

0

0

1

ZA- = 0.

then N(Z - Zx) = 4. •

Example 3.5 demonstrated that Ar(Z — Zx) can be larger than the number of

columns of W and W x .

For balanced E-ANOVA models matrices W and Wjf are determined when a

model is chosen, hence N(Z — Zx) is known from a model without using design

matrices. The next lemma establishes another equivalence which will eventually

allow us to use N(Z — Zx) as an indicator of examining the necessary and sufficient

condition of Theorem 3.5.

The result of Lemma 3.4 will be used in proving Lemma 3.5.

Lemma 3.4 Let A, =

HN

be an N x N diagonal matrix, i —

1 , . . . , k, if A = 53i=i crfAi, then A can be written as

A = di
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where

A =
82 N

i.e. the ith row of A is

Proof: Since A = £f=1 <T?A,-,

A = G\

6 IN

, = 1 a{ on

Let 0 = (<7j,..., a|) ' , 5,- =

is the ith column of A. Then

, 8^)', i = 1,. . . , N, it can be seen that

A =
0'Si

= diag{0'(6u...,6N)}

= diag{0'A}

D

Lemma 3.5 For balanced E-ANOVA models, the following two conditions are

equivalent:

1. (I — Py)°V° contains exactly k distinct linear combinations of af 's;

2. N(Z - Zx) = k.

Proof: We want to show that the number of distinct linear combinations of af

is the same as N(Z — Zx), hence the equivalence.

The diagonal form of V,- is:

V? =
1 1

where dtj is a diagonal matrix of which the diagonal elements are either of

all 1 or all 0. Since the order of the matrix is known, a scalar d{} which is 1 or 0
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according to d, can represent d,^. For simplicity's reason we assume that <itj is

a scalar of 1 or 0. Hence,

V? =

Therefore,

V° = diag(l, din,

Also

po _

where x,- is a diagonal matrix of which the diagonal elements are either all 1 or

all 0. For the same reason as V? we use

P° —
A V —

1

xl

1

X v

Then

Xn-2di(n_2)r.

Since (I-Py)°V° = ELi ^ , ? ( V °- p v V °) 5 ^ Lemma 3.4, let A,- = V°-P°,V?,
then

)°V° = diag{(<71
2,...,a,2)(Z-ZA0},

where

d2(n_1} d2nd2{n_1} d2{n_2) .

dk
kn

4

xnd2n xn_id2(n_1) xnd2nxn_id2(n_1

(3.18)

<*!(„-„ ••• n j u

( " -2) • " "
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From (3.18) the number of distinct combinations of af is the same as the

number of the distinct columns of Z — Zx-

Hence we proved the theorem. •

Using the equivalent conditions in Lemma 3.3 and 3.5 we are able to derive

the following theorem using Theorem 3.5.

Theorem 3.6 For balanced E-ANOVA models, the necessary and sufficient

condition for MINQUE of 9 = (o~\,... ,o~l)' to be independent of prior values is

that N(Z - Zx) = k.

Now we demonstrate how to apply Theorem 3.6 in practice.

Example 3.6

Consider a one way random model:

yij = fi + a,- + e.-j i = 1 , . . . , / , j = 1 , . . . , J.

Now k = 2, x = (0,0). W =
1 0

1 1

0 0"

0 0 , z =
1

1

0

1

0

1
and Zx = 0, then N(Z - ZJC) = 2 = Jb, thus the MINQUE of a\ and a\ are

independent of prior values. •

This result confirms the result in Example 1.8 where Swallow and Searle calcu-

lated the MINQUEs of a\ and o\ explicitly and showed that they are independent

of prior values.

Corollary 3.1 For balanced nested ANOVA models, the MINQUE of a? 's are

independent of prior values.

Proof: In this case

W = v2

W A =

1 0 0

1 1 0

Li l l

0 0 . .

0 0 . .

01

0

J kxk

.0 0 . . . OJ

It is obvious that the generating of the columns of W will not creat new

columns, thus JV(W — Wjf) = k. From theorem 3.6 we prove the corollary. •
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Example 3.7
Consider two way crossed random model without interaction:

i = 1 , . . . , / , j = 1 , . . . , J, / = ! , . . . , £ .

Now k = 3
1
0

1

0
1

1

0'
0

1
, Wx =

0
0

0

0
0

0

0
0

0

' 1 0 0 0 0 0 0'

Z = 0 1 0 0 0 0 0

1 1 1 1 1 1 1

N(Z - Zx) = 3 = k.
From theorem 3.6 the MINQUE of a2

a, a
2 and G\ are independent of prior

values. •

Corollary 3.2 For balanced crossed ANOVA models without interaction, the

MINQUE of af's are independent of prior values.

Proof:
1 0

0 1
oi
0

Li 1 . . . l j

ro o ... o
o o ... o

Lo o ... o j

Therefore, A (̂Z — Zx) = k, from theorem 3.6, we proved the corollary. •

Example 3.8

Two way crossed random model with interaction:

i = 1 , . . . , / , j = 1 , . . . , J, / = 1,.. . ,L.

From Example 3.5 we know that A (̂Z — Zx) = 4 = k, then from theorem 3.6

the MINQUE of G\, of, a\ and a2
e are independent of prior values. •

The result in this section shows that MINQUE for balanced ANOVA mod-

els are independent of prior values. From Theorem 2.4 we know MINQUE for

balanced ANOVA models is MIVQUE. Therefore for general balanced ANOVA
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models we know that the MINQUE is identical to the ANOVA estimators. In

this sense MINQUE is an extension of the ANOVA estimator to the unbalanced

data cases.

Example 3.9

Interviewer's variance model (Biemer and Stokes, 1985). This model is used

in Chapter 6 for interpenetrated interview data:

7 = 1 , . . . , / , t

Now Jb = 2, x = (1,1,0,0) .

1 0 1

= 1, . . . , J, s =

W =
1 1 1 1 , wx =

1 0 0 0

1 1 0 0

It can be verified that N(Z - Zx) = 2 = k, so the MINQUE of a\ and a\ are

independent of prior values. •

In Chapter 6 the MINQUE formulas for a\ and a2 will be given and it can

then be confirmed that the formulas are independent of the prior values of o\ and

r l
Example 3.10

Consider a balanced E-ANOVA model:

Viji = y-i + bj + Cij + e,jj,

i = 1 , . . . , / , j = 1 , . . . , J, / = 1 , . . . , I ,

where //,• is the fixed effect parameter, bj, c,-j and e,-jj are random terms with

variances a2,

Now k = I

Z =

3, x

0

1

1

and <7g

1

1

1

(1,0

w =

0

0

1

respectively.

,0)

0

1

1

'0

1

1

0

0

1

1

1

1

0

0

1

0"

0

1_

0

0

1

Wx =
0

1

1

0

0

0

0

0

0

Zx =
o o o o o o o
1 0 0 0 0 0 0

l 0 0 0 0 0 0
Thus N(Z - Zx) = 3 = k.

Therefore from Theorem 3.6 we know that the MINQUE of (c^cr?,^) are

independent of the prior values. •
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Discussion 3.1 In Chapter 2 we have proved that all balanced E-ANOVA

models satisfy condition (2.14). In this section we derived that for balanced E-

ANOVA models N{Z — Zx) — k is the necessary and sufficient condition for the

MINQUE to be independent of prior values. Therefore combining the conclusions

in Chapter 2 and Chapter 3 we have the following conclusion: for any balanced

E-ANOVA model if N(Z - Zx) = k, then the MINQUE is the globally best

quadratic unbiased estimator of the variance components; If N{Z — Zx) ^ k,

then the MINQUE is the locally best quadratic unbiased estimator.

3.5 Conclusions

This chapter considered the problem of prior values in the computation of MIN-

QUE. For the general variance components models Theorem 3.3 gives necessary

and sufficient conditions for MINQUE to be independent of prior values .

For balanced E-ANOVA models the conditions can be greatly simplified. Us-

ing the simplified condition in theorem 3.6 it is proved that the MINQUE for all

balanced ANOVA models are independent of prior values.

When MINQUE is independent of prior values synthesis-based MINQUE can

be used to reduce the amount of computation and we are sure that the optimality

of MINQUE is preserved by the estimate.

When MINQUE does need prior values the only sensible thing to do seems

to be iterative computing. Further research is therefore needed to investigate the

convergence property of MINQUE. As we pointed out in Section 1.3.4 the iterative

MINQUE yields the same estimate as REML. Hence REML is an alternative

approach if iterative MINQUE is to be used.
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N O N N E G A T I V E B I A S E D

Q U A D R A T I C E S T I M A T O R S

4.1 The problem of negative estimates

In section 1.3.1 we have given Example 1.1 to show that the ANOVA estimator

sometimes gives negative estimates of variance components. By definition an es-

timate of a variance component should be always nonnegative. The maximum

likelihood and restricted maximum likelihood approach do not produce negative

estimates because the parameter space over which the maximum is sought is

restricted to the positive part of each axis. In practice it is common that the

solutions of the likelihood equations over the whole parameter space are taken to

be the ML or REML estimates without restricting the parameter space. Herbach

(1959) and Thompson (1962) investigated the properties of the maximum likeli-

hood function and the restricted maximum likelihood function for the balanced

one-way model and concluded that when a negative solution to the likelihood

equations appears, zero should be used as the estimate for that variance compo-

nent. There has been no such results for the general variance components model

in the literature.

Chapter 2 and Chapter 3 have been devoted to MINQUE which is derived

without the nonnegativity constraint. Ideally, we would like to use a quadratic

estimator y 'Ay which has the following properties:

1. y 'Ay is invariant,

2. y 'Ay is unbiased,

3. y 'Ay is nonnegative,

86
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4. The estimator has minimum variance,

4'. AV has minimum norm.

The MINQUE estimator satisfies 1, 2 and 4'. When the data come from a

normal distribution, 4 and 4' are equivalent.

A question arises: Can we impose constraint 2 on the MINQUE matrix A so

that we can obtain a nonnegative MINQUE which will satisfy 1-4? The answer

is: we can not except in some special cases.

LaMotte (1973) used a balanced ANOVA model to demonstrate that the only

variance component which can have an unbiased and nonnegative estimator is aj,

the variance of the random error term. Generally, Pukelsheim (1981) showed that

with a commutative quadratic subspace condition the concept of unbiasedness

and nonnegativity are incompatible. In general we should not expect that a

quadratic estimator y'Ay will satisfy constraints 1-4. In other words, if we want

nonnegative estimators of variance components, we have to drop the unbiasedness

constraint.

When a biased estimator is considered, the optimality criterion often used

in statistics is the mean squared error of the estimator. Suppose 9 is a biased

estimator of 9, then the mean squared error of 0 is:

MSE(0) = E{9 - Of = [E(0) - 0]2 + E [0 - E{9)]2 (4.1)

where the term U?(#) — 0\ is the bias of 9 and E \0 — E(9)\ is the variance of

9.

Sometimes it is impossible to'obtain an estimator satisfying certain constraints

and also minimizing the mean squared error. It is not known if there are any such

estimators for variance components. In the literature there are different non-

negative quadratic estimators of variance components using different optimality

criteria. I shall describe several existing approaches in the following sections.

4.2 Rao-Chaubey's MINQE

Rao and Chaubey (1978) proposed a modified MINQUE which is nonnegative and

biased, hence the estimator is called MINQE —MINQUE without unbiasedness.

Recall all the notation and assumptions for model (1.1). In section 1.3.4

we have shown that when y'Ay is an unbiased estimator of Yli=i &&?, then to

minimize || W'AW — A ||2 is equivalent to minimize Tr AVAV, where W =
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,-, and, | . . . , \<rk\Jk], V,- = U,U;, V -

A =

When a normal distribution can be assumed for the data vector y , Tr AVAV is

the variance of y'Ay, so with the unbiasedness constraint to minimize || W'AW —

A ||2 is equivalent to minimize V(y'Ay). Rao and Chaubey's modification is that

without the unbiasedness constraint the matrix A minimizing || W'AW — A ||2

is still used as the matrix to form the quadratic estimator. We now follow Rao

and Chaubey to derive such a matrix and then comment on their approach.

Lemma 4.1 Lei X and C benx n symmetric matrices, then TrXX —2TrXC

is minimized ? /X=C.

Proof: Let X = (rr,j)nxn, C = (c,-j)nXn, then

1=1 i=i t = i

— / J / J XijCji — / J xacn + 2 7 ., %ijcij-

Let L = Tr XX - 2 Tr XC, then

dL
dxu

gives xu = cu,i=:l,...,n.

dL

= 2xti - 2c,-,- = 0,

— 4 r • • — 4r- • — D

— 9 = l , . . . , n ,

4, i < j .

So L is minimized when X = C. •
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To derive the matrix which minimizes || W'AW — A ||2, we need to express

W ' A W — A |j2 in another form so that Lemma 4.1 can be used. Now

|| W'AW - A ||2 = Tr(W'AW - A)(W'AW - A)

= T r W ' A W W ' A W - 2 T r W ' A W A + TrAA (4.2)

Note

w w == X>2u,u;. = x>t
2v,- = v.

Let B = V1/2AV1/2, thus A = V"1 /2BV-1 /2 .

Let Q = I - V- 1 / 2X(X'V- 1X)- 1X'V- 1 / 2 .

Since AX = 0,

QBQ = QV1/2AV1/2Q

- V-1/2X(X'V-1X)-1X'} A {V1/2 - X(X!V-1X)-1X'V-1'2}

Therefore,

Tr W'AWW'AW - 2 Tr W'AWA

= TrBB-2TrBQV- 1 / 2WAW'V- 1 / 2Q.

Also

QV-l/2 = V -1 /2_ V

(4.3)

where R = V"1 - V"1X(X /V-1X)-1X /V-1.
Similarly, V~1/2Q = RV1/2, and

WAW' =

%*&% &*-

: ^ v < -
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From (4.2) and (4.3)

||W'AW-A||2 = TrBB-2TrBV/R(^^cr 1V 1)

= Tr BB - 2 Tr BV1/2 ( V ^-ofRV.R ) V1'2 + Tr AA.
\ti Pi J

(4.4)

Theorem 4.1 (Rao and Chaubey, 1978) The invariant nonnegative qua-

d r a t i c e s t i m a t o r y ' A y of Y l i = i Q i a f <H > ®i i = 1 , • • • , & , w h i c h m i n i m i z e s

|| W 'AW-A ||2 is given by

£ 5 . (4.5)

Note: Rao and Chaubey did not give a detailed proof for the above theorem.

Proof: Since RX = 0, from the form of (4.5) we know AX = 0, hence y'Ay is

invariant.

S i n c e ^crf > 0 , i = l,...,k,

k

y'Ay = E ^ Y
tiP

1=1 fi

> 0.

Hence y'Ay is nonnegative.

We then need to prove that A minimizes || W'AW — A ||2.

From (4.4) and using Lemma 4.1 we know that || W'AW — A ||2 is minimized

when

B = V1'2 (y ^a4

i.e.

when

Hence we prove the theorem. •

In practice we do not know of, so we have to choose prior values for the a?

in (4.5).
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It is easy to see from (4.5) that Rao and Chaubey's MINQE has additivity.

If y'Aiy is the MINQE of £*=1 g.cx?, and y'A2y is the MINQE of £*=1 ttaf,

then y'(A! + A2)y is the MINQE of E*=i(?i + *•>?•

Example 4.1:
Consider a balanced one way model:

yij - fi + a,- + e,j, i = l , . . . , m , j = l , . . . , n .

where // is the overall mean, a,- and e,j are random effects with variance o\ and

<7g, respectively.

Let aa and ae be the prior values of a\ and crj, and 7 = cna/ae, then the

MINQE of (j2 and a\ are:

1 m n -i

E Eta J2
^ ^

If we choose 7 = 1, then for the data set in Example 1.1, m = 2, n = 3,

^ = 0.5625, a2
e(M) = 34.75.

Notice that both a\ and a\ are different from the ANOVA estimates given in

Example 1.1. •

MINQE is built with || W'AW - A ||2 as its optimality criterion. Without

the unbiasedness constraint it is not known how || W'AW — A ||2 relates to the

usual statistical measures of optimality, namely, bias, variance and mean squared

error. The following example demonstrates that MINQE does not always possess

statistical optimality.

Example 4.2:
Consider the one way balanced model:

y^ = /j, -f a,- + e;j, i = 1 , . . . , m, j = 1 , . . . .n.

It is proved in section 2.2 that the ANOVA estimator a\ is the best quadratic

unbiased estimator for the above model:

1 ^ ^ ' ° (4.8)
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<7 is nonnegative and unbiased. For normally distributed data

From (4.7) the MINQE of a\ is:

m n 2 m.

Ego* - JO' + W K ^ F £<*• -

a + ae)
£ i } . (4.11)
n J

With normality assumption,

n

Now assume m = 10, n = 8, at cr̂  = cr̂  = 1, then

MSE(<re
2) = 0.02857.

For MINQE, it is usual to choose the prior values to be: aa = ae — 1. then:

bias (o-l{M)) = 0.01266, V fe(M)) = 0.02191.

Therefore, MSE(ore
2(M)) = 0.03457 > MSE(<7e

2).

We conclude that when mean squared error is used as the measure of opti-

mality for the estimators, MINQE does not give the best possible nonnegative

quadratic estimator. •

There are two unsatisfactory facts about MINQE. First, its optimality crite-

rion is not a well recognized statistical measure of optimality. There is a need to

compare MINQE with the other nonnegative estimators on a common statistical

measure, e.g. mean squared error. Second, if a nonnegative unbiased estimator

with minimum variance exists MINQE may not coincide with it.

4.3 Chaubey's CMINQUE

Chaubey (1983) proposed a nonnegative quadratic estimator of variance compo-

nents which is called CMINQUE (the estimator closest to MINQUE).
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Theorem 4.2 (Chaubey, 1983)

MINQUE matrix A and p i , . . . , p

eigenvectors, then D = SA,>O ̂

Let \i,...,\N be the eigenvalues of the

be the corresponding normalised orthogonal

P; z5 the nonnegative matrix minimizing

D A HI;, where \2
E is the Euclidean norm of a matrix.

Proof of this theorem can be found in Rao (1973), p63.

Chaubey called the nonnegative estimator y'Dy CMINQUE which can be

regarded as the truncated MINQUE using the spectral decomposition. It is easy

to see from theorem 4.2 that CMINQUE has additivity.

One explanation of CMINQUE's optimality criterion is the following:

bias(y'Dy) = [Tr(DV - AV)]2 = [Tr(D - A)V]2

n 2

Therefore the approach of minimizing || D — A ||2 has the effect of minimizing

the bias range in (4.13), hence in some sense makes the bias of the estimator

small.

Now we discuss a situation where the MINQUE matrix A and the variance

covariance matrix V have a common set of normalised orthogonal eigenvectors,

say, p 1 ? . . . , pjV. From lemma 2.7, we know that balanced ANOVA models satisfy

this assumption.

Let Ai , . . . , Ajv be the eigenvalues of MINQUE matrix A, r j , . . . , T>/ be those

of V.
N

Since A =
i-l

E(y'Ay) =
t = i

t ' = l

NowD=
A,>0

E(y'Dy) = TVDV=EA,-Trp,-P;.V
A,>0

(4.15)
A,>0 A,>0
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Since V is a nonnegative matrix, thus r,- > 0, z = 1 , . . . , iV.

From (4.14) and (4.15), we can see that:

E(y'Dy) > E(y'Ay).

This means that the CMINQUE gives estimates not less than the true values

of the variance components. In other words, CMINQUE always has nonnegative

bias. If a normal distribution is assumed for the data vector y, then:

V(y'Ay) = 2TrAVAV

N N

t=l j= l

t = l

Similarly,

V(y'Dy) = 2TrDVDV = 2 £ A2r2. (4.17)
A,>0

From (4.16) and (4.17) it is obvious that:

V(y'Dy) < V(y'Ay).

This means that CMINQUE has less variance than MINQUE. But since

CMINQUE is biased, its mean squared error may be greater than that of

MINQUE.

CMINQUE uses || D —A ||2 as its optimality criterion which is not a commonly

used statistical measure. When there exists a nonnegative unbiased MINQUE

estimator CMINQUE will coincide with it. Apart from the unclear role of the

optimality criterion it used, CMINQUE does not always exist. The existence of

CMINQUE depends on the existence of MINQUE.

Example 4.3:

Consider the one way balanced model:

y " • r̂ : II A- Cl • A- P • • 1 — 1 777 1 — 1 77

CMINQUE of <r2 is identical to the ANOVA estimator, and the CMINQUE

of cr2 is:
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1 m

m - i t.=1

For the data set given in Example 1.1,

al(C) = 2, al{C) = 52. D.

(4.18)

4.4 The nonexistence of a globally minimum bi-

ased nonnegative estimator

In section 4.1 it is shown that nonnegativity and unbiasedness are incompatible.

In section 4.2 and 4.3 two nonnegative estimators are introduced. They are mod-

ified forms of MINQUE. When comparing estimators, we ought to use a common

optimality measure to assess the performance of the estimators. For biased esti-

mators the most commonly used optimality criterion is the mean squared error.

An estimator with minimum mean squared error will be the best choice. How-

ever, in the problem of quadratic estimation of variance components, so far the

attempt to obtain an estimator with minimum mean squared error has failed and

we are left with two choices: (1) use some other measures for optimality, like the

CMINQUE in section 4.3, and hope by doing so the mean squared error is small;

(2) use bias and variance as separate optimality criteria.

The first choice leaves us with arbitrary numbers of possible optimality mea-

sures and no control on the mean squared error. It seems more sensible to use

the second choice and by controlling bias and variance of the estimator we gain

control over the mean squared error.

In the search for nonnegative quadratic estimators of variance components,

neither bias nor variance should be used alone as the optimality criterion, because

bias or variance alone cannot form enough constraints for an unique estimator and

there is also the risk of leaving one term in the mean squared error uncontrolled

while minimizing the other term.

To obtain a quadratic estimator of 5lf=i ?icr?; some possible constraints are:

1. invariance, AX = 0,

2. nonnegativity, x'Ax > 0, x ^ 0,

3. unbiasedness, £*=i <x?Tr AV =
4. minimum bias,

^ t
2 ( T r AV - q{) \ is minimized, (4.19)
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5. minimum variance, V(y'Ay) is minimized.

Different estimators are derived by using different combination of constraints

in different orders. For example, MINQUE is derived using (1,3,5) with normality

assumption, ft is known that (1,2,3,5) are too many contraints to obtain a matrix

solution in general, but (1,2,4) and (1,2,5) are too few constraints to obtain an

unique matrix solution. By giving up unbiasedness we can try to use (1,2,4,5) as

the set of constraints to derive a nonnegative estimator with some optimality.

Before we start the search for an estimator with constraints (1,2,4,5), we prove

a theorem which says that if an estimator satisfying constraints 2 and 4 exists, it

can only be a locally minimum biased estimator.

Theorem 4.3 Consider the general variance components model (1.1). If there

does not exist a nonnegative unbiased quadratic estimator for J2i=i Qia?> where

qi > 0, i — l,...,k, then there does not exist a nonnegative biased quadratic

estimator which achieves global minimum bias across the parameter space.

Proof: Let A be a symmetric matrix, and let PSD denote the set of all non-

negative symmetric matrices.

We know that:

bias(y'Ay) = E(y'Ay)
.;=!

Assume that there exists a nonnegative matrix A such that

bias(y'Ay) = min bias(y'Ay), at all parameter values.
AePSD

(4.20)

(4.20) is equivalent to:

• k -2

= min y
AePSD [ t

(4.21)

a] > 0 , i = l,...,k.

We shall find a particular set of values for the af, i = 1 , . . . , k, such that (4.21)

does not hold, thus proving the theorem.

Since there does not exist a nonnegative unbiased quadratic estimator of

Z)f=1 qicrf, the equations
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do not have a solution in PSD. In other words there exists at least one qj, such
that TrAV,- / qj.

Since V; = U.-UJ, then Tr V,- > 0, i = 1,.. . , k.

^-l, hence A0 ̂  A.Let A0 = f A +

For any x / 0 ,
,/ A o , , .._ - • • „ / 1

X A X ~ 2 X A X + 2 T r V J
x'x > 0,

So A0 G PSD.

<lj
J 2TvVj

TrVj

then
1
9(

Now at cr"f = 1 and of = 0, for i ̂  j ,

bias(y'A°y) =
T 2

<

Li=i
l , m

1 2

. 1 = 1

= bias(y'Ay).

This is contradictory to the assumption in (4.20). Therefore we proved the
theorem. •

To summarize, when deriving a quadratic estimator of the variance compo-
nents, we either have a nonnegative unbiased estimator or a locally nonnegative
minimum biased estimator.

4.5 Hartung's estimator

4.5.1 The estimator

Hartung (1981) attempted to look for minimum biased and minimum variance
estimators of variance components and he called the estimator "nonnegative min-
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imum biased invariant estimator". From theorem 4.3, we know that no nonneg-

ative estimator can achieve minimum bias globally across the parameter space,

therefore, in this thesis the estimator proposed by Hartung is referred as "Har-

tung's estimator".

Hartung's approach is first to look for the class of symmetric matrices which

satisfy constraints 1,2 and also minimize J2;=i(Tr AV,- — qi)2, and among this class

of matrices choose the unique matrix A which minimizes || A |||;.

To impose invariance on the estimator, Hartung used

W, = (I - XX+)V,(I - XX+),

where X + is the Moore-Penrose generalized inverse of X. So instead of working

with y ~ (X/3,£j=i ofV,-), we are working with y ~ (0,£*=1 <7,2W,).

After the transformation of matrix V, into W,-, Hartung's constraints on the

estimator are:

1. A is nonnegative,

2. A minimizes rCi=i(Tr AW; — g,-) ,

3. A minimizes || A ||2.

Any matrix A satisfying the above constraints with the order 1,2 and 3 is

the matrix defined as Hartung's estimator. In other words, Hartung's estimator

minimizes the measure in 2 with regards to all matrices satisfying 1 and then

minimizes the measure in 3 for all matrices satisfying 1 and 2. The order itself is

an important constraint because other orders of the same constraints may lead

to different estimators. For instance, if we use constraint 3 to follow constraint

1, we shall have a null matrix which is not of interest. We use A to denote a

matrix satisfying the constraints in the order 1, 2, 3 and y'Ay is then Hartung's

estimator.

Theorem 4.4 (Hartung, 1981) A always exists and is uniquely determined.

The proof can be found in Hartung (1981). The proof used the properties

of a closed convex cone in functional analysis, and Hartung went on to give his

estimator an analytical expression.

We need some notations to follow Hartung's development. Let A = (a,j)nXn,

then A + = (dfj)nxn, where

j aij if atj > 0

°'J' ~ \ 0 if a,-,- < 0.
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Theorem 4.5 (Hartung, 1981) Let {rn} be a positive nullsequence, i.e.

rn —> oo, when n —• 0. If An is the solution to the following equation:

An - (AB)+ + rl £ ( T r AnW.-)W,- + r*nAn = r ^ *W,-, (4.22)

i/ien Hartunq's estimation matrix is A = l imAn , arc<f Hartung's estimator is
n—>oo

y'Ay.

The proof is in Hartung (1981).

There are two difficulties in deriving Hartung's estimator for the general vari-

ance components model (1.1). The first is that the estimator depends on the

solution to (4.22) and (4.22) is not such a 'regular' function of An that explicit

analytical solution of An can be found. The second difficulty is that the ma-

trix used in Hartung's estimator is a limit of a sequence of matrices and may be

unobtainable in practice.

For a special class of models these two difficulties do not exist, because Har-

tung gives an explicit expression for his estimator in this case.

Some definitions and lemmas are needed before presenting Hartung's theorem.

Definition 4.1 Let W i , . . . , Wfc be symmetric matrices, and let £ be the sub-

space containing all the linear combinations o /Wi , . . . , Wfc, denoted as:

E = span[W1,...,WJt].

If for W ; , Wy € £ , implies W? € S and W ; W j = WjW,-, i ^ j , i,j = l,...,k,

then E is a commutative quadratic subspace.

L e m m a 4.2 (Seely, 1971) A necessary and sufficient condition for S to be

a k-dimensional commutative quadratic subspace is that there exist k pairwise

orthogonal projection matrices P , - , . . . , P^ to form a basis o / E .

If the basis of the subspace is given, then we can express the matrices Wi,
k

.. .,Wfc in terms of P i , . . . , P^ . Let W,- = ^ ^ { j P y , i = l , . . . , f c , then there

exists a nonsingular matrix $ = (</>,j), i,j = 1 , . . . , fc, such that W l 5 . . . , Wfc can

be determined by $ and P i , . . . , P^ .

When S is a commutative quadratic subspace, Hartung derived an explicit

estimator and the result is given in the following theorem.
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Theorem 4.6 (Hartung, 1981) / / W l 5 . . .,Wk forms a commutative quadra-

tic subspace and P 1 ? . . . , P^ is the basis for the subspace, then Hartung's estimator

°f Ei=i QiO-j is given by:

k

V ' A V — Y^ d- II P - v II2 / T r P -

where \\ ||2 denotes Euclidean norm of a matrix, and

!(TrP,)-1P i, (4.23)

where d = (d\,..., c?*)' is the unique solution to the following system:

minimize ($d — q)'($d — q), subject to : (4-24)

d € Rk
+, (4.25)

- q) G i?+, (4.26)

d '$ ' ($d - q) = 0, (4.27)

q = (q1,...,qk)'.

The proof can be found in Hartung (1981).

Although Theorem 4.6 gives explicit expressions for Hartung's estimator for

some models, the estimator depends on the solution d from (4.24)—(4.27). In the

following section we shall derive Hartung's estimator for balanced nested ANOVA

models.

4.5.2 Explicit formulae for Hartung's estimator for bal-

anced nested ANOVA models

In this section we shall prove that W l 5 . . . , W*. from balanced nested ANOVA

models form a commutative quadratic subspace and we shall derive the solution

to the system (4.24)—(4.27). Hence using Theorem 4.6 we can obtain explicit

formulae for Hartung's estimator.

A balanced nested ANOVA model can be written as:

Viii2-ik = /* + &i + &iia + \- &ii2...t-fc > ( 4 - 2 8 )
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where fi is the overall mean and £:i, £,-i:-2, . . . , £,-lt"2 ...,«* are the random terms

with variances aj, a\, ..., o\, respectively. We assume that each random factor

is at Si levels, Si > 1, i = 1, . . . , k.

We introduce some notations needed in the following derivation of estimators.
k

Let s = TTs,-, T(Z) = Si... Si, thus ^ r = 5!+i . . . Sk- s is the product of all

numbers of level and r(i) is the partial product of the numbers of level up to level

i.

The corresponding design matrices for model (4.28) are X = l s , U,- = ISl ®

• • • <8> Is,- <8> ls,-+i <S> • • • <8> lSfc- For simplicity, we use subscript i instead of Si

to denote a matrix of order 5,-, e.g. I,- is the identity matrix of order s,-, hence

V,- = I I (g) • • • <g) I{ (g) Jj- + 1 (g) • • • ® J/;.

It can be seen that X+ = -ls, I — XX+ = Is — -J s , therefore,

Wt- = (I-XX+)Vt(I-XX+)

s

= V ' " - 7 7 i ) J " * = 1.---^-- (4-29)

Now we look for a basis for the subspace spanned by W j , . . . , Wfc in (4.29).

Let J,- = -j-J,-, Kt- — I,- — J{, and let

Since

K.-J,- = (I, - -Ji)-3i = 0,
Si Si

it follows that P l 5 . . . ,Pfc are pairwise orthogonal matrices. Also note that P? =

P,-, i — 1 , . . . , k, so that P i , . . . , Pfc are projection matrices.

Now we prove that P i , . . . , P^ form the basis of the subspace spanned from

W l 5 . . . ,W* .

Lemma 4.3 Let P 1 ? . . . , P^ be defined as in (4.30), the following equality holds

for k > 2:

(4.31)
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Proof: We use PJ^ for the ith matrix defined in (4.30) with value k and
S W = S\ . . . Sf;-

We use mathematical induction to prove the lemma.
First, assume k = 2.

=

For i = 1,

the left hand side of (4.31) = Ii <g> J2 J i ® J2

= (Ii Ji)®J2

-si

£rP.-

For i = 2,

the left hand side of (4.31) = h ® I2 J i <g> J2
•Sl52

T T̂  T T !

= l j 0$ xV2 + I i (5) J 2

K 2 + K i <g> J 2

We have shown that (4.31) holds for k = 2.
Assume that when k = n, (4.31) holds.
Now let k = n + 1.
From (4.30) we have

p("+l) _ p(«) (o,

For i = 1,. . . , n,
the left hand side of (4.31)

= I i <g> • • • <8> I,- <g> J,-+i ® • • • 0 J n + i rrr J s
T ( I )

= Sn+1 U l ® • • • ® Ii ® J,-+i ® • • • ® J n —
I T(I)



Chapter 4 103

T(I)
r (Pi n ) + • • • + Pi n ) ) ® Jn+i (using assumption on k = n)

So (4.31) holds for i = 1 , . . . , n.

For i = n + 1,

Since In+1 = Kn + J + Jn + 1 , r(n + 1) = r(?i)sn+i,

the left hand side of (4.31)

1
= Ii

— Xi (x) • * •

rn ® i n + 1 -

[„ ® Kn + 1

r (n
- J i ® • • • (g) J n

[l (g) • • • ® In ® Jn+1 —
1

- J l ® Jn ® J
n + a

1
= P£+

1
1> + n i ®. . . (g>I n __J 1 J n > (g) J n +1

•n+1

= P

Therefore, for fc = n + 1, (4.31) holds.

Hence we proved the theorem. •

Lemma 4.4 For balanced nested ANOVA models, the subspace spanned by

W i , . . . , Wit is a commutative quadratic subspace.

Proof: From lemma 4.2 we need to show that P1 ? . . . ,Pfc forms a basis for

the subspace spanned by W,-. In other words, there exists a nonsingular matrix

$ = (<j>{j) such that Wt- = E?=i <PijVj-

From (4.29) we know that W,- = V,- — -^3S and from lemma 4.3 we know

that:

therefore,

7^) ° ••• °
T ( 2 ) T ( 2 ) • • • U

1 1 . . . 1.

It can be seen from (4.32) that $ is nonsingular. •

(4.32)
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Lemma 4.5 Let $ be defined in (4.32), and let q, be the ith column of the

identity matrix, then d = (0 , . . . , 0, d{, 0 , . . . , 0)' is the solution to system (4.24)—

(4.27), where

- 2 -
=i [T(r)

2 -

=1 Lr(r) =2 [T( r) -
r=fc-l [r(

Proof: It is obvious that d € i?+, so d satisfies (4.25).

Let A = $ '$ = (A^). Thus,

A =

Generally,

=2 Lr(r)

=2 [T(r) r=fc-l [r(r)
(4.33)

r=max(h,j)

thus for h < j , Xhi — A,-,- = Y^ -f-ri •

We want to show that d given in the lemma is the solution for (4.24)-(4.27~

Let d = (du ... , 4 ) ' be any vector satisfying (4.24)-(4.27),

- q.) = Ad - $'q,-

E k

.t'=i

T(i)

7(7) (4.34)

Since (4.25) and (4.26) require d £ Rk
+, $'($d - q,-) € #+, so (4.27) makes:

k

J=1

' k

= 0, h<i,

= 0, h> i.

(4.35)

(4.36)
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From (4.34) we know that if d — 0, then

hence d / 0 .

Since Xhj > 0, from (4.36) dh = 0, h > i.

Assume dw is the first nonzero value among d\,...,d{. Since d\ = ••• —

<i tu_1 = 0, and <i,+1 = • • • = dk = 0, from (4.35) we should have:

£ K^ - ^ T = t>Xw^ - 7 ^ T = 0- (4-37)
j= l v / j=w v '

From (4.33) we have:

therefore,

/ _, Awjdj = Xwwdw + Au)(u,+x
j=w

Substitute the above equality into (4.37):

dw + • • • + di

^ { ^ ^ ! j • (4.38)

Now since (4.27) holds for d,

- q,)'($d - q,-) = -qK$d - q,-)

(4.39)
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and dw = • • • = di_i = 0 will make the equality hold in (4.39), so dj = 0, j' ^ i

will minimize (4.24).

From (4.35) we have:

r « l
= o.

. i2"

But di ^ 0, hence

V \ 1^ r =i [r(r)J

We have proved that d is the solution to system (4.24)-(4.27). •

Now that we have obtained the solution d, we need to work out the other

terms in Theorem 4.6 to derive the explicit formulae for Hartung's estimator.

From the definition of P,- in (4.30) we know that

( ) ( l )

where y^...^... denotes the mean of yj1...jk over the dotted factors.

Theorem 4.7 For balanced nested ANOVA models, Hartung's estimator for

the ith variance component o~j is:

a? = — i— V . . . V ( y • .. - g . • ) 2 , (4.40)
1• * i j - = i

f 1 2 r 12

w;Aere A,- = [^jj , S,- = r(f - l)(s,- - 1), and C,- = Er=; [T^)J •

Proof: From Theorem 4.6 we know that

rf,-||P.yir/TrP,-.

We have derived the solution of d in Lemma 4.5 which gives

where

fcI - liiL
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Now TrP , = r(i)(l - j-) = r(t -- l)(s, - 1), and

| 2 _ S

Hence

which is (4.40). •

Example 4.4:

Consider the one way balanced model:

yij = // + a,- + e,-j, i = 1, . . . , m, j = 1,. . ., n.

Here si = 7n and S2 = n.
From (4.40), At = s\ = n2, Bx = (m - 1), d = 1 + n2, therefore,

1, B2 = m(n — 1) and C2 = 1, thus,

Notice that &l(H) is identical to the ANOVA estimator of a\.

For the data set in Example 1.1,

a2
a(H) = 1.8, ae

2(i/) = 52. D

After deriving Hartung's estimator for the balanced nested ANOVA mod-

els, we use the following example to demonstrate that for the balanced crossed

ANOVA models the set of matrices P,- defined in (4.30) is not the basis of the

subspace spanned by W i , . . . , W^.

Example 4.5

Consider the two way balanced crossed model without interaction:

fi + a{ + bj + eijk

i = 1 , . . . , 777, j = 1 , . . . , ??., k = 1 , . . . , / .
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Now for this model,

W2 = Jj

J3--Js,
m

J3 Js>
n

It can be seen that there does not exist ci, ci and c3 such that: W,- =

C1P1 + C2P2 + C3P3. But it can be verified that Wi , W 2 and W 3 satisfy Definition

4.1, hence they form a commutative quadratic subspace. Therefore, we have to

look for a new basis of the subspace for this model so that Theorem 4.6 can be

used to derive Hartung's estimator. •

4.5.3 Discussion of Hartung's estimator

By using the constraint on the bias to minimize X^L^Tr AV; — g,-)2, Hartung's

estimator can be uniquely determined. Theoretically Hartung's estimator is non-

negative and always exists which is an advantage over MINQUE. Whenever an

unbiased nonnegative estimator is possible Hartung's estimator is identical to the

estimator.

Practically we have only managed to give explicit formulae for Hartung's es-

timator for balanced nested ANOVA models. It remains a problem to make

Hartung's estimator computationally available for the general variance compo-

nents model (1.1) and this problem is the biggest obstacle to the use of Hartung's

estimator.

There are two other deficiencies for Hartung's estimator. First, Hartung's es-

timator does not possess additivity. Second, Hartung's estimator can be severely

biased when the true variance components values are considerably different.

Now I use an example to demonstrate the first point: Hartung's estimator

does not have additivity.

Consider a two way balanced nested ANOVA model:

yijk = n + a,- + bij + ei3k

i = l,...,r, i = 1 , . . . , 5 , k = l,...,t.

For this model the matrices A and $ are:

A = t2 + l t2 + 1
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'st

t
_ 1

0

t
1

0"

0

1

$ =

The vector d in (4.23) for o\ and of are:

si
d(a) = ,0 ,0

+ i2 + 1

If Hartung's estimator has additivity, then we expect Hartung's estimator for

+ cr? to be:

{=1

and di(a) + di{b) should satisfy (4.24)-(4.27), for q = (1,1,0)'.

Now we know that d(a) + d(6) = L 2 t 2^ 2 + 1 , TJTY^OJ , therefore,

and

{d(a) + d(6)}' $' {$ [d(a) + d(6)] - q} =
st2

s2t2

So obviously d(a) + d(6) does not satisfy (4.27), and hence it is not the solution

to (4.24)-(4.27).

Since Hartung's estimator is uniquely determined, therefore the estimator has

to be the one solved from system (4.24)-(4.27), hence a\ + a\ is not Hartung's

estimator for o\ + o\. This fact leads to the conclusion that Hartung's estimator

does not have additivity.

The second deficiency we have pointed out is that Hartung's estimator gives

severe bias when the true variance components are considerably different, e.g.

<J\ ̂ > CT2, or G\ <C Cg. We demonstrate this point with a numerical example.

Consider the one way balanced ANOVA model:

<n + eij, i = 1 , . . . , m, j = 1 , . . . , n.



Chapter 4 110

From (4.41) we know that Hartung's estimator of a\ is:

n2

The relative bias of Hartung's estimator is:

where 7 = o\la\.

Rao and Chaubey's MINQE of G\ is:

The relative bias of MINQE a\{M) is:

t»i • (-2tnT\\ (m - I)n(n7 + 1)
Rbias a*(M) = \ ' _ \ ' ~ 1,

where 7 = cr2/cr^, aa and ae are the prior values of o\ and cr2, respectively.

Now assume that 7 = 0.2, cr2 = 1, m = 10, and choose aa — 1 and ae = 1 to

be the prior values in a^(M). For n = 2,3,5,10, we calculate the relative biases

of the two estimators:

n
" 2 / L7'̂

I ) 1

0

2

.80

.40

1

0

3

.40

.35

0

0

5

.92

.25

0

0

10

.49

.12

Comparing with MINQE at the above parameter values Hartung's estimator

has a relatively large bias which will contribute to the mean squared error of the

estimator. This numerical result is an indication that Hartung's estimator has

severe bias when the true variance components are considerably different. The

numerical and Empirical studies in Chapter 5 support this view. The aim of the

next section is to find an estimator which overcomes this deficiency of Hartung's

estimator.

4.6 The minimum bias range MINQ estimator

4.6.1 The estimator

In the last section we have discussed Hartung's estimator and discovered that

Hartung's estimator does not have satisfactory performance when bias and mean
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squared error are used as the optimality criteria. The reason for the poor bias

performance is that one of the optimality criteria Hartung has used is that of

minimizing X^=1(Tr AVt- — qi)2, while the bias of the estimator y'Ay is:

thus Hartung's optimality criterion does not allow for the extremely unequal

variance components.

The estimator proposed in this section has only one difference from Hartung's

estimator: instead of using 52i=i(Tr AV; — qi)2 as the second constraint we use

Y^A=\ of (Tr AV; — qi)2 as the second constraint in solving for a nonnegative min-

imum norm estimator.

We can interpret the optimality criterion we have used as follows:

bias(y'Ay) = {l>t
2(Tr AV, - qi)\ < {][>? (Tr AV, - qA (^a2) ,

I i=l J U = l ) \i=l I

thus bias(y'Ay) lies in the range

The approach of minimizing J2i=i of (Tr AV,- — qi)2 is in fact minimizing the

range of the bias, hence putting a control on the bias and in some sense making

the bias small.

Theorem 4.8 There exists an unique symmetric and nonnegative matrix A

such that AX = 0, A minimizes YA=\ of (Tr AV; - qi)2 and || A \\2
E.

By changing the Euclidean norm used in Hartung's proof of Theorem 4.4 into

a weighted Euclidean norm we can obtain the proof of the above theorem.

Now let W, = (I - XX+)V,-(I - XX+), similar to Theorem 4.6, we have the
following theorem:

Theorem 4.9 / / W i , . . ., W& form a commutative quadratic subspace, then the

minimum bias range MINQ estimator y'Ay for £)f=i 1^1 zs 9^ven by:

i1(TrP l)-1P,, (4.43)
t=i
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where d = (d i , . . . , dk)' is the solution to the following system:

minimize (<&d — q)'A($d — q) subject to : (4.44)

d G R+, (4.45)

$'A($d-q)<E#$., (4.46)

d'$'A($d - q) = 0, (4.47)

where A = diag(af,..., a\)'.

The estimator is:

k
- 1y'Ay = Y,di || P,-y ||2 (TrP,-)"1. (4.48)

t ' = l

Proof: Let * = A J / 2$, g = Aa/2q.

Let M,- = cr.-W,-, thus

So P 1 ? . . . ,Pfc are the basis of E* spanned by Mi , . . . , M*.

If d is the solution to (4.44)-(4.47), then it is the solution to the following

system:

minimize (\Pd — g)'(\£d — g) subject to : (4.49)

d G R k
+ , (4.50)

g)G/2t, (4.51)

- g) = 0. (4.52)

From Theorem 4.6 we know that y'Ay given in (4.48) is Hartung's estimator

of J2i=i 9iafi where S* is spanned by Mi, .. . , Mi-

Recall the constraints for Hartung's estimator are:

1. A is nonnegative;

2. A minimizes £ L i ( T r AM,- - g{)
2;

3. A minimizes II A ||2.
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Since

£(Tr AM,- - 9i)
2 = £a2(Tr AW; - g,-)2,

i=i t=i

So we have:

2'. A minimizes YA=\ of(Tr AW; - qi)2.

Notice that 1, 2' and 3 are the constraints for the minimum bias range MINQ

estimator, so y'Ay is the minimum bias range MINQ estimator of X2;=i <Zt°f with

E being spanned by Wi , .. . , Wfc, hence we proved the theorem. •

Since wTe introduced the unknown variance components in the constraints

of the estimator, before we make further investigation to the properties of the

minimum bias range MINQ estimator for balanced nested ANOVA models, we

would like to answTer a question: Are we able to find an estimator with the global

minimum bias range in the parameter space? The answer is negative.

4.6.2 The nonexistence of a globally minimum bias range

MINQ estimator

T h e o r e m 4.10 For a balanced ANOVA model, if there is no nonnegative un-

biased estimator for J2^=iqiaf; qi > 0> * = 1, •..,&> then there does not exist

a nonnegative matrix which minimizes Yli=i °f(Tr AV; — qi)2 for all a2 > 0,

i = 1 , . . . , k.

Proof: Since there is no nonnegative unbiased estimator of X ;̂=i 9«°f > ?-e- there

is no nonnegative matrix A which is the solution of the equation:

Then there exists at least one j such that Tr AVj ^ qj.

When balanced ANOVA models are considered, Tr V,- = Tr V,-, i, j = 1 , . . . , k.

Assume that A is the nonnegative matrix minimizing Yli=i of (Tr AV,- — qi)2-

Let A0 = | A + 2T
?Jv I, A0 is nonnegative.

J2 <72(Tr A°V; - qi)
2 = y G2(- Tr AV, + ^ - qA2

t=i 1=1 z z

k
 9 r i l ^2

r2 \-(TvA\i-qi) + -{qj-q
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Tr AVi - g,-)2 + ^2> . ? ( f c ~ <?.)(Tr AV, - g,)

a*(qj _ g,.)2. (4.53)

Now we want to find specific values for cr2, . . . , a\ such that:

X>2(TrA°V,--g,)2 <X>2(TrAV,-g,-)2 . (4.54)«72(TrA0V,--g,)2<;"
t=i

From (4.53) we want:

\ AV, - g,) + i £ a?fo - g!)
2 < | E ^(Tr AV,- - ?If.

4 i=i 4 i=i

Equivalently we want:

E ^ , 2 {3(Tr AV,- - g,-)2 - 2(fc - ?,-)(Tr AV, - <?,) - (9i - ?!-)
2} > 0. (4.55)

t=i

Let af — 1, i ^ j , then (4.55) becomes:

E {3(Tr AV,- - qif - 2(gj - g,-)(Tr AV,- - 9i) - (gj - qi)
2} +

3(TrAV i -g j )
2o-j >0 - (4.56)

Thus we should have:

j - g,-)(Tr AV, - ,,-) - 3(Tr AV, - g,)2 E.w { } drfa- > ; = c
( )

Now let a'f = max(c + 1,1), then of > c and af > 0, such a choice of erf
will make (4.54) hold. That means the nonnegative estimator y'A°y has smaller

bias range than y'Ay and this is contradictory to the assumption of A. Hence

we proved the theorem. •

Theorem 4.10 shows that by adopting the bias range approach we can only

have local minimization not a global minimization in the parameter space.
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4.6.3 The formulae of the estimator for balanced nested

ANOVA models

Before the derivation of the formulae we need a lemma.

Lemma 4.6 Let <& be defined in (4.32), q,- is the ith column of the identity

matrix, d = (0 , . . . , 0, d,-, 0 , . . . , 0)' is the unique solution to (4.44)-(4.47) where

The proof follows from that of Lemma 4.5.

Theorem 4.11 For balanced nested ANOVA models, let A(i) — f^y] , B(i) —

r(i — l)(s,- — 1), Q,- be the prior values of of, i = 1 , . . . , k, then the minimum bias

range MINQ estimator of of is given by:

'2

T=iA{r)oiT

The derivation of the estimator is similar to that of Theorem 4.7.

Since the minimum bias range MINQ estimator needs prior values of of, dif-

ferent prior values produce different estimators. Particularly, a,- = 1, i'. = 1 , . . . , k

gives Hartung's estimator. Iterative computing can be used to obtain an unique

solution from (4.57), hence eliminating the uncertainty of the prior values. But

the properties of the iterative estimates are unknown.

Example 4.6:

For the one way balanced model,

yij = fi + ai + e,-j, i = 1 , . . . , m, j = 1 , . . . , n.

The minimum bias range MINQ estimator of a\ and o~\ are:
r)2r\ m
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<72(i?) is independent of prior values. By assuming aa = a\ and ae = a2 in

(4.58) and (4.59) we can solve a\{R) from (4.58) which is the iterative estimate

of a2
a:

- 2/ m = [ A = ^ r r S=i(y«-. - P..)2 - mna(B-i) £ £ i ^ i= i (^ i ~ &02> if A > o,
CTal J \ o , i f A < 0 .

Now we use the data set in Example 1.1 to derive estimates by choosing

different prior values for aa and ae.

Choose aa = ae = 1, we have Hartung's estimator:

Choose aa = 0.5, ae = 1, we have:

aa
2 = 1.64, a2 = 52.

Choose aa = l/2n = 1/6, ae = 1, we have:

<7a
2 = 1.20, ae

2 = 52.

Iterative computing starting with aa = 1 and ae = 1 gives:

The iterative computing starting from nonzero values of aa and ae can yield

nonzero solutions. For example, for the balanced one-way model:

y{j = ft + a{ + e,-j, i = 1,2, j = 1,2,3,

with data given:

1

2

1

19

24

2

17

4

3

18

14

mean

18

14

16

The ANOVA estimate of a\ is: al(A) = —8.83. But the iterative minimum

bias range MINQ estimate is a2
a(R) = 1.83.

The fact that the iterative minimum bias range MINQ estimator yields nonzero

solutions depends on the ratio:

,=1 2^j=l
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If .. Mif̂ 'C'n ''7V —« > —TT1
 I O then the estimate is positive. Otherwise, the

estimate is zero.

The following theorem gives the bias formula for the minimum bias range

MINQ estimator.

Theorem 4.12 For balanced nested ANOVA models, let ar be the prior value

ofa^, r = 1,...,&, the bias of the nonnegative minimum bias range MINQ

estimator a\ is:

bias(y'Aiy) = { H

Proof: From theorem 4.9, we know that:

The variance covariance matrix for the balanced nested ANOVA model is:

V = a\lx ® J 2 ® • • • <g) Jk + afLx ® I 2 ® J 3 ® • • • ® J i

+ • • • + ^ I i <8> I2 ® • • • ® Ifc-i ® It-

Using the equality in Lemma 4.3:

Since Px , . . . ,Pfc are pairwise orthogonal projection matrices and P,JS = 0,

i'• = 1 , . . . , k, we have:
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and

Now,

E(y'Ay) = TrA;V

* s )

Recall that

therefore,

E(y'A,y) =

So the bias of y'Ay is given in (4.60). •

We use the following numerical result to show that the minimum bias range

MINQ estimator can have less bias than Hartung's estimator.

Consider the one way balanced model:

yij = fi + a,i + e,j, i = 1 , . . . , m, j = 1 , . . . , n.

From Theorem 4.11, we can derive the relative bias of the estimator:

Rbias (altfj) "? ~ 7

Now if we choose 7 = j ^ , the bias of the two estimators are:

n

1

0

2

.80

.75

1

0

3

.40

.60

0

0

5

.92

.43

0

0

10

.49

.25

It can be seen that the bias has been reduced.

The next theorem gives a formula for the variance of the minimum bias range

MINQ estimator.

Theorem 4.13 For balanced nested ANOVA models, if a normal distribution

is assumed for the data vector y, ar is the prior value of a^, i = 1 , . . . , k, then,
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V(y'Ay) = '[-(l)J if™*™ (4.61)
r ( i - l ) ( a , - - l ) { E r * = , - a [ ] }

Proof: From Theorem 4.9,

From the proof of Theorem 4.12,

Thus
, u N 2

r
2 | P,-,

S ^

TrA;VA,-V = d] " ^ "

Since with normality assumption,

substituting the values of d{ from Lemma 4.6 we obtain (4.61). •

After showing that the bias of the minimum bias range MINQ estimator is
smaller than that of Hartung's estimator for the one-way balanced model at 7 =
O\I<J\ — 0.2, we now compare the mean squared errors of these two estimators.

From Theorem 4.12,

From Theorem 4.13 with normality assumption,
2

MSE (af (i)) = bias (*2(7)) + V (<T'M) .

We use a%(H) to denote Hartung's estimator which uses 7 = 1 and ^(^n) ^°
denote the range MINQ estimator using 7 = ^ , then the mean squared errors of
the two estimators are:
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n

1

0

2

.25

.31

1.

0.

3

74

50

1

0

5

.78

.68

1

0

10

.44

.81

We can see that the mean squared error of d'l(-) is smaller than that of

4.6.4 An investigation of the bias function

In section 4.6.1 we derived the minimum bias range MINQ estimator by mini-

mizing the range of the bias of the estimator. We showed that such an estimator

depends on prior values of the variance components. Now we use the one way

balanced random model to investigate the behaviour of the bias function of the

estimator.

The model we used is:

yij - fi + ai + et-j, i = 1 , . . . , m, j = 1 , . . . , n.

The minimum bias range MINQ estimator of a\ is:

where 7 is the prior value of 7 = cr^/a^.

We know that when 7 = 7 the upper bound of the bias range in section 4.6.1

is minimized.

Now the relative bias of d'K'j) is:

^ T I ) - (4-63)

It can be seen that when 7 = 7/n, Rbias(<5^(7)) = 0. In other words, when

7 = 7/n, the bias function is minimized to zero.

We used the one way model to demonstrate that when the true values of

variance components are used, the minimum bias range MINQ estimator does

not have minimum bias. In this specific example, 7 = 7/n leads to minimum

bias.
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4.6.5 Discussion of the estimator

The minimum bias range MINQ estimator preserved all the good properties of

Hartung's estimator. It always exists and is uniquely determined. One of the

optimality measures used to derive this estimator can be interpreted as an upper

bound of the bias function of the estimator, hence minimizing this upper bound

will prevent the bias from becoming unacceptably large. Unfortunately, it is

proved in section 4.6.2 that such an estimator can only have local optimality, not

global optimality. By choosing realistic prior values this estimator has smaller

bias than Hartung's estimator.

4.7 Conclusions

In this chapter nonnegative quadratic estimation of variance components is con-

sidered.

It is proved that in most cases unbiasedness and nonnegativity are incompati-

ble, so the estimators discussed in this chapter are usually biased. The optimality

criterion commonly used for biased estimators is the mean squared error. Due

to the difficulty of obtaining the estimator with minimum mean squared error,

there are attempts to use other optimality measures.

Rao and Chaubey's MINQE and Chaubey's CMINQUE built their optimality

criteria on the concept of 'closeness' to a matrix and it is not clear how these

criteria relate to the commonly used statistical measures, i.e. bias, variance and

mean squared error.

The constraints of invariance, nonnegativity and minimum variance are not

enough to determine a quadratic estimator and using these constraints also has

the risk of producing unacceptably large bias. It seems necessary to bring a

control on the bias term of the estimator. The first attempt is minimizing the bias

of the estimator while keeping the other constraints. This failed because of the

difficulty of obtaining a minimum biased estimator satisfying all the constraints.

It is also proved in this chapter that a nonnegative minimum biased estimator, if

obtained, can be only locally obtained, not globally.

The minimum bias range MINQ estimator is proposed in this chapter and it

includes Hartung's estimator as a special case. This estimator also attempts to

control the bias of the estimator and it actually minimizes an upper bound of

the bias function. We are able to obtain such an estimator. Formulae are given
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for the balanced nested ANOVA models. Unfortunately, it is proved that this

estimator also has local optimality and it does not achieve global optimality.

So far we have been unable to compare the estimators because they are built

with different optimality criteria and some of them only have local optimality.

In Chapter 5 numerical and empirical studies are carried out to compare these

estimators.
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C O M P A R I S O N S O F T H E

N O N N E G AT IV E

E S T IM AT O R S

In Chapter 4 several nonnegative estimators of variance components have been

derived. None of the estimators has been derived with the mean squared error

as the optimality criterion and some of them only have local optimality. In this

Chapter we intend to compare the estimators in terms of their bias and mean

squared error. We first compare the relative bias and efficiency of the estimators

numerically and then carry out an empirical study to compare the nonnegative

estimators with some commonly used approaches such as putting the negative

ANOVA estimates to zero and using the maximum likelihood estimator.

5.1 Numerical comparison

5.1.1 Model and estimators used in the comparison

We use the one way balanced model in the comparison:

ytj = n + ai + ei:j i = 1 , . . . , m, j = 1 , . . . , n, (5.1)

where y,j is the observed data, \i is the overall mean, a,- is the random term with

variance a2, e,j is the random term with variance o2
e.

We assume that y is normally distributed with mean [i and variance covariance

matrix V = a2
alm ® J n + <rllmn.

123
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We shall only compare the estimators for o\ because in most situations of vari-

ance components estimation the variance component in which we are interested

is a\. Besides, the ANOVA estimator for a\ is the best unbiased nonnegative

estimator and almost all the estimators in Chapter 4 are identical to the ANOVA

estimator of a\ except MINQE.

In Chapter 4 we have introduced MINQE and CMINQUE and derived the

minimum bias range MINQ estimator. MINQE and the minimum bias range

MINQ estimator need prior values. In practice we cannot know the true values

of the variance components so the first four estimators included in the tables are

either using fixed prior values (al(H), &l(-^), o-^(M)) or without prior values

(<r^(C)). The first estimator is Hartung's estimator &l(H) which is the minimum

bias range MINQ estimator with prior value 7 = 1 , where 7 = a2
ajo\. The

second estimator is the minimum bias range MINQ estimator o\{^) with prior

value 7 = -^. The third estimator is MINQE with prior values 7 = 1. The fourth

estimator is CMINQUE. These four estimators are usable in practice and are

therefore compared numerically. Since the nonnegative ML and REML estimators

depend on the data, they will be included in the empirical studies in the next

section.

We include another three estimators which need the true variance components

values for the purpose of comparing the effect of different prior values on the per-

formance of the estimators. The fifth and the sixth estimators are the minimum

bias range MINQ estimator with 7 = 7 and 7 = ^, respectively. From Chapter

4 we know that 7 = 2 will make the estimator have zero bias, so we exclude

<r^(^) from Table 5.1 where the relative bias of the estimators are listed. The last

estimator included is al(M-y) which is MINQE with prior value 7 = 7.

Taking the formulae we derived in Chapter 4 we have:

} . (5.3)

The relative bias of (7^(7) is:

With normality assumption,
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where 7 = aj/a2 and 7 is the prior value of 7. crl(H), ^Kj^), el(l) and a2
a{Z)

are derived from (5.2) by using prior values 7 = 1, ^ , 7 and ^, respectively.

From section 4.2 we derive the MINQE of o\:

n2a2

(5.6)

Rbias (<
ae)

2
(5.8)

with normality assumption,

v

where o;a and ae are the prior values for a\ and cr̂  respectively.

In the comparison we use crl(M) to denote the MINQE with aa = ae = 1,

al(M'y) with aa = 7 and ae = 1.

From section 4.3 the CMINQUE of a\ is:

1 m

i - - P..)2, (5-10)
t = l

bias (a2
a(C)) = £ , (5.11)

Rbias (<ra
2(C)) = — , (5.12)

717

with normality assumption,

where 7 = o\la2
e.

We use <T̂  = 1 and compare the estimators for different 7, the ratio of the

two variance components.
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Table 5.1 lists the relative biases of the estimators (crl(^) is absent because

it has zero bias). We use m = 10 for 7 = 0.2 and m = 100 for other 7. The left

two columns are the parameter values for 7 and n.

Table 5.2 shows the relative efficiencies of the estimators. We use the mean

squared error of each estimator over the variance of the ANOVA estimator of a\

as the measure of relative efficiency. The ANOVA estimator of a2
a is:

1 m 1 m n
•!• \ — v / _ - \ O J- V — i V — v _ \2

x ,=1

with normality assumption,

- ft.)'.

The parameter values of 7, m and n are chosen in the same way as in Table

5.1.

From Table 5.1 we can see that none of the first four estimators which are

independent of prior values have a reasonably small bias across the parameter

space, which confirms the conclusion of Theorem 4.3. When 7 is small Hartung's

estimator and CMINQUE have very large bias; when 7 is large 0^(5^) and a\(M)

have large bias.

(7^(7), which minimizes the upper bound of the bias function in section 4.6.1,

has a relatively larger bias than ^ ( ^ O when 7 < 1, and &l(H) when 7 > 1.

From Table 5.2 we can see that Hartung's estimator and CMINQUE are not

efficient when 7 < 1. ^l(j^) and crl(M) are not efficient when 7 > 1. ^a (^ ) a n ^

o'l(M) are much more efficient than the ANOVA estimator when 7 < 1. The

CMINQUE only does well when 7 is large.

^o(n)? which has zero bias, is more efficient than the ANOVA estimator.

MINQE with the true variance components values as its prior values has a very

poor performance when 7 < 1 comparing with the MINQE using prior value 1.

Since no single estimator in the comparison dominates the others, it is there-

fore necessary to study the prior information on the variance components before

choosing an estimator.

In practice it is common to use the ANOVA estimator and put the negative

estimate into zero if such estimate appears. How does this approach compare to

the first four estimators in Table 5.2? To answer this question we need a Monte

Carlo study.
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5.2 Empirical comparison

5.2.1 The estimators included in the comparison

We include the first four estimators in Table 5.2 because they are independent of

prior values. In addition we include five more estimators: a\{A), <5 (̂0), al(Aj^),

and al(R).
is the ANOVA estimator. <5̂ (0) is a modified ANOVA estimator which

puts the negative values to zero, i. e.

<5"̂ (0) is identical to the REML estimator for model (5.1).

&l(Aj£) is another modified ANOVA estimator which puts the negative

ANOVA estimates into the minimum bias range MINQ estimator with prior value

1 , [c

is the maximum likelihood estimator:

-L t—> / — \ o J-

If (5.16) gives negative value then 0 is the taken as the maximum likelihood

estimator of a\.

o\{K) is the iterative solution for the minimum bias range MINQ estimator

which is:

T^\ L,i=l\yt- ~ y..) - mn2(n-l) ^ t = l 2- j=lUtj ~ Vi.) , II A > U,

if A < 0.

is independent of prior values.

For each set of the parameter values listed on the left hand side of Table 5.3

and 5.4 we generate 1000 samples which are normally distributed with mean 1 and

variance covariance matrix V = a^Im ® 3n + cr^Imn. We calculate the estimates

using different estimators and list the relative biases and the relative efficiencies

calculated from the sample in Table 5.3 and Table 5.4. Again we use the mean

squared error of each estimate over the variance of the ANOVA estimator as the

measure of efficiency. We also include the numbers of negative ANOVA estimates

among the 1000 samples in the far right column of Table 5.4.
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5.2.2 Conclusions

From Table 5.3 we can see that Hartung's estimator and CMINQUE gave very

large bias when 7 is small. It can be noticed that in the table the minimum

bias range MINQ type estimators, o\(-^) and crl(H), have their minimum bias

at 7 = 0.5 when m and n are fixed. From (5.4) we know that crl(j^) achieves

the minimum bias at 7 = 0.5. crl(H) achieves the minimum bias range at 7 =

1. Therefore the column of c?l(H) in Table 5.3 demonstrated that crl{H) does

not necessarily minimize the bias while minimizing the upper bound of the bias

function. We calculated the standard errors for Table 5.3 and found that they

generally decrease when 7 increases, although they vary for different m and n.

For example at 7 = 0.5 the standard errors of the estimators are about 0.03. At

7 = 1.0 the standard errors are about 0.02. We shall not include a complete list

of standard errors for Table 5.3.

From Table 5.4 we concluded that Hartung's estimator and CMINQUE should

not be used when 7 is small. It is interesting to note that ^ (^7) and CT^(M) almost

dominate the ANOVA estimator across the parameter space and they should be

used when 7 < 1. The approach putting the negative ANOVA estimates to zero,

which is also the REML approach, produces smaller mean squared error than

the ANOVA estimator. Even smaller is the approach of putting the negative

ANOVA estimates into the minimum bias range MINQ estimate with 7 = —. The

maximum likelihood is quite good in this case. However, for the multi-way models

there is no theoretical result on the negative solutions to the likelihood equation,

it is not yet known what approach should be adopted when having negative

solutions from the maximum likelihood equation. The iterative minimum bias

range MINQ estimator is quite good and can be used when there is no prior

information available on a\ and a\.

To conclude when there is prior information available on both u\ and c^, we

can use Hartung's estimator, o ^ ^ ) or crl(M) in different situations. If <j\ > a^,

then Hartung's estimator should be used; If a\ < o\, then o\{^£) or crl(M) should

be used. When there is no information available on u\ and erf, we can use the

iterative minimum bias range MINQ estimator which does not need any prior

values. Alternatively, we can start with the ANOVA estimator and if a negative

value appears we can then change to use the minimum bias range MINQ estimator

with 7 = i which is nonnegative and better than putting the negative ANOVA

estimates into zero.
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Table 5.1: Numerical Comparison

The relative bias of the nonnegative estimators

Relative bias of a\ = lE(»2)-g?l. y = a2/a2

7

0.2

0.4

0.6

0.8

1.0

2.0

5.0

n
2
3
5
10

2
3
5
10

2
3
5
10

2
3
5
10

2
3
5
10

2
3
5
10

2
3
5
10

1.80
1.40
0.92
0.49

0.80
0.65
0.44
0.24

0.47
0.40
0.28
0.16

0.30
0.27
0.20
0.11

0.20
0.20
0.15
0.09

0.00
0.05
0.06
0.04

0.12
0.04
0.00
0.01

0.75
0.60
0.43
0.25

0.13
0.10
0.07
0.04

0.08
0.07
0.05
0.03

0.19
0.15
0.11
0.06

0.25
0.20
0.14
0.08

0.38
0.30
0.21
0.13

0.45
0.36
0.26
0.15

arl(M)
0.40
0.35
0.25
0.12

0.01
0.02
0.03
0.02

0.19
0.13
0.08
0.05

0.29
0.21
0.14
0.08

0.34
0.26
0.18
0.10

0.45
0.35
0.24
0.14

0.52
0.41
0.29
0.17

2.50
1.67
1.00
0.50

1.25
0.83
0.50
0.25

0.83
0.56
0.33
0.17

0.63
0.42
0.25
0.13

0.50
0.33
0.20
0.10

0.25
0.17
0.10
0.05

0.10
0.07
0.04
0.02

0.56
0.71
0.67
0.43

0.38
0.43
0.36
0.22

0.29
0.31
0.25
0.15

0.24
0.24
0.19
0.11

0.20
0.20
0.15
0.09

0.11
0.11
0.08
0.04

0.05
0.04
0.03
0.02

0.74
0.66
0.55
0.40

0.56
0.46
0.34
0.21

0.46
0.36
0.26
0.15

0.39
0.30
0.21
0.12

0.34
0.26
0.18
0.10

0.21
0.15
0.10
0.06

0.10
0.07
0.05
0.03
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Table 5.2: Numerical Comparison

The relative efficiency of the estimators

Relative efficiency e (^) = w / g ° > A , r 7 = *l/<rl

7

0.2

0.4

0.6

0.8

1.0

2.0

5.0

n
2
3
5
10

2
3
5
10

2
3
5
10

2
3
5
10

2
3
5
10

2
3
5
10

2
3
5
10

1.25
1.74
1.78

1.44

5.28

6.38

5.09

2.76

3.19

3.84

3.09

1.85

2.03

2.57

2.19

1.49

1.37

1.87

1.73

1.30

0.62

0.89

1.06

1.05

1.22

0.88

0.92

0.98

0.31

0.50

0.68

0.81

0.31

0.46

0.61

0.75

0.29

0.42

0.56

0.72

0.79

0.88

0.87

0.85

1.46

1.43

1.20

0.98

4.53

3.60

2.38

1.40

8.46

5.99

3.54

1.76

0.15

0.28

0.44

0.57

0.15

0.29

0.48

0.68

0.62

0.64

0.66

0.74

1.50

1.35

1.09

0.92

•• 2 . 4 7

2.09

1.51

1.08

6.36

4.73

2.90

1.56

11.00

7.47

4.19

1.97

2.26

2.35

2.01

1.48

2.47

10.19

6.33

2.97

9.32

6.88

4.03

2.01

7.26

5.07

2.95

1.61

5.86

3.97

2.36

1.41

2.87

1.99

1.41

1.11

1.40

1.19

1.07

1.02

*a(7)
0.21

0.63

1.13

1.26

1.40

3.08

3.64

2.47

1.47

2.55

2.58

1.76

1.43

2.15

2.04

1.46

1.37

1.87

1.73

1.30

1.14

1.29

1.21

1.08

0.99

1.04

1.03

1.01

0.06

0.12

0.24

0.44

0.15

0.27

0.43

0.64

0.25

0.39

0.55

0.73

0.33

0.48

0.63

0.79

0.40

0.55

0.69

0.83

0.62

0.73

0.82

0.91

0.82

0.88

0.92

0.96

a\ (My)
0.14

0.25

0.37

0.47

2.38

2.91

2.66

1.76

2.66

2.70

2.12

1.36

2.62

2.38

1.75

1.17

2.47

2.09

1.51

1.08

1.70

1.35

1.08

0.95

1.07

0.98

0.94

0.95
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Table 5.3: Empirical Comparison

The relative bias of the estimators

Relative bias of a\ — lE 'g° j~ g ° l . ^ — a\

7

0.1

0.2

0.5

1.0

2.0

5.0

m

10

50

25

50

25

50

25

50

25

50

25

n
2
3
5
10

2
3
5
10

2
3
5
10

2
3
5
10

2
3
5
10

2
3
5
10

°1{A)
0.51
0.37
0.18
0.09

0.62
0.41
0.25
0.22

0.62
0.44
0.26
0.22

0.64
0.47
0.28
0.23

0.66
0.49
0.29
0.24

0.69
0.51
0.31
0.24

0.55
0.17
0.02
0.04

0.41
0.36
0.24
0.22

0.56
0.43
0.26
0.22

0.62
0.46
0.28
0.23

0.65
0.49
0.29
0.24

0.69
0.51
0.31
0.24

a2
a(A±

1.38
0.83
0.36
0.06

0.01
0.15
0.19
0.21

0.43
0.38
0.26
0.22

0.57
0.45
0.28
0.23

0.64
0.49
0.29
0.24

0.68
0.51
0.31
0.24

) &\(ML)
0.19
0.10
0.21
0.22

0.45
0.40
0.27
0.27

0.58
0.45
0.28
0.26

0.63
0.48
0.30
0.27

0.67
0.50
0.31
0.27

0.69
0.53
0.32
0.27

1.70
1.38
1.02
0.60

0.46
0.37
0.26
0.08

0.30
0.25
0.18
0.18

0.56
0.47
0.34
0.27

0.70
0.59
0.42
0.31

0.79
0.66
0.48
0.34

3.32
2.56
1.72
0.91

1.34
1.05
0.69
0.29

0.12
0.12
0.10
0.02

0.30
0.21
0.11
0.13

0.52
0.38
0.22
0.19

0.67
0.49
0.29
0.22

i.2 ( T>\(TZ. I iX 1

2.07
1.86
1.43
0.82

0.65
0.71
0.56
0.25

0.11
0.02
0.06
0.03

0.38
0.23
0.12
0.13

0.53
0.37
0.21
0.18

0.64
0.46
0.27
0.21

*l(M)
1.16
1.00
0.77
0.43

0.27
0.26
0.20
0.03

0.39
0.31
0.22
0.22

0.62
0.51
0.37
0.30

0.74
0.62
0.45
0.35

0.82
0.69
0.50
0.37

4.39
2.96
1.83
0.92

1.92
1.28
0.76
0.30

0.40
0.24
0.14
0.01

0.13
0.12
0.08
0.12

0.40
0.31
0.19
0.18

0.58
0.44
0.27
0.21



Chapter 5 132

Table 5.4: Empirical Comparison

The relative efficiency of the estimators

Relative efficiency e(^) = (ffff<ff
v(ffffffvA)) •

7

0.1

0.2

0.5

1.0

2.0

5.0

m

10

50

25

50

25

50

25

50

25

50

25

n
2
3
5
10

2
3
5
10

2
3
5
10

2
3
5
10

2
3
5
10

2
3
5
10

0.45
0.53
0.70
0.87

0.58
0.82
0.96
1.00

0.83
0.96
0.99
1.00

0.93
0.99
1.00
1.00

0.97
1.00
1.00
1.00

0.99
1.00
1.00
1.00

0.46
0.50
0.58
0.72

0.35
0.53
0.82
0.97

0.60
0.83
0.97
1.00

0.81
0.94
0.99
1.00

0.92
0.98
1.00
1.00

0.98
1.00
1.00
1.00

) *1{ML)
0.31
0.37
0.54
0.73

0.57
0.82
0.96
1.02

0.84
0.97
0.99
1.03

0.94
0.99
1,00
1.03

0.98
1.00
1.00
1.03

1.00
1.00
1.00
1.03

0.41
0.67
0.95
1.11

0.28
0.44
0.57
0.60

0.23
0.35
0.50
0.69

0.54
0.64
0.71
0.87

0.80
0.87
0.88
1.01

1.00
1.03
0.99
1.10

&2a(H)
1.37
1.99
2.22
1.93

1.59
2.08
1.80
1.11

0.34
0.56
0.78
0.76

0.40
0.57
0.76
0.82

0.63
0.72
0.84
0.89

0.84
0.88
0.92
0.95

»2a{R)
0.99
1.49
1.86
1.78

0.88
1.41
1.51
1.05

0.53
0.66
0.83
0.78

0.63
0.70
0.83
0.83

0.77
0.81
0.89
0.90

0.90
0.91
0.95
0.95

al(M)
0.22
0.41
0.63
0.76

0.15
0.31
0.47
0.52

0.27
0.38
0.51
0.71

0.60
0.69
0.73
0.92

0.86
0.92
0.91
1.07

1.04
1.08
1.02
1.17

2.33
2.59
2.47
1.99

3.12
2.94
2.07
1.15

0.69
0.77
0.87
0.78

0.46
0.63
0.80
0.82

0.60
0.74
0.86
0.89

0.80
0.87
0.93
0.94

-no.
448
426
306
152

347
215
70
9

277
117
20
0

207
68
6
0

164
47
1
0

119
25
0
0



C h a p t e r 6

THE USE OF M I N Q U E IN

EST IM ATIO N O F

I N T E R V I E W E R ' S V A R I A N C E

IN C O M P L E X SURVEY

In previous chapters quadratic estimators of variance components, especially

MINQUE, have been considered. Properties of MINQUE have been discovered

and discussed. In this chapter we consider an example of the use of MINQUE in

practice. Particularly we consider using MINQUE to estimate the component of

variance due to interviewers in a complex survey.

A model-based approach is adopted in this chapter.

6.1 The need for variance components estimation

In this section we use a simple model to demonstrate the effect of failing to es-

t imate variance components which may be present when estimating the mean

parameter. Assume that there are m observers and that each records n,- observa-

tions on a random variable, y. ?/,•_,• is the j t h record by the ith observer. We may

use the following model:

yij = fi + eij, i = l , . . . , m , j = l , . . . ,n , - , (6.1)

where E(y,j) = fi, V(y,-j) = <?], and cov(e,j,£,•»_,-,) = 0, i,j ^ i',j'. We wish to

estimate // and V(/0-

133
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If in the process of observing y,-j there are random effects due to the observers,

then instead of having y,j, the true value, we have y*j recorded. We assume that

the measurement error structure is:

V*j = Vij + o.i + e*j, i = 1, • • •, m, j = 1 , . . . , ra,-, (6.2)

where a,- is the independent random effect of the z'th observer with E(a.) = 0 and

V(a,) = a\. We call a\ the component of variance due to observers. £*• is the

independent random error at each recording with E(e*j) = 0 and V(e*j) = o-*2.

The relationship between ?/*• and ji can be set up by combining (6.1) and

(6.2):

y*j = (i + cii + eij + e'j, i = 1 , . . . , m, j = 1 , . . . , n,-. (6.3)

It is usually impossible to estimate <72 and <r*2 separately from (6.3). Letting

e,-j = £,-j +£*_,-, then E(e,-j) = 0, and V(e,-j) = V(£tj +£*j) = <̂ e) (6-3) c a n t n e n ^e

rewritten as:

y*j = fi + at + dj, i = l , . . . , m , j = l,...,n,-. (6.4)

We shall employ model (6.4) for taking measurement errors into account. It

can be seen that it is possible to estimate a\ from model (6.4), but not cr2 and

a*2 separately.

Failing to include the measurement errors when they are present implies that

we are using the improper model,

y*j = fi + Eij, i = 1 , . . . , m, j = 1 , . . . , m. ( 6 . 5 )

w h e r e E ( £ t j ) = 0 , V ( £ f j ) = crj a n d c o v ( £ , - j , £ , - y ) = 0 , i,j ^ i',j'.

If there are measurement errors in observing the random samples, model (6.4)

is the correct model to use. Now we investigate the effect of using the improper

model (6.5) in this situation. Suppose that a generalized least squares estimator

is used to estimate fi, then under model (6.4):

A = ^ l W ' n ' ^ , (6.6)

where w; = , ,g{:—=•, y; = — 5~*?Li yf- and the variance of the estimator a is:

V(A) = ^ - • (6-7)
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If we ignore the measurement errors and use the generalized least squares

estimator to estimate /z from model (6.5), we have:

JY « = 1 i = l

and the variance of p, under model (6.5) is:

V(/i) = ^ , (6.9)

where N — YAL\ ni-
Comparing (6.6) and (6.8) it can be seen that because a\ > 0, 0 < u>,- < 1,

. . 1 A 1

i = 0, when n,- = n,

=̂  0, otherwise,

i.e. when there are equal observations the estimators of /J, under the two models

are identical. Otherwise, they yield different estimates. Comparing (6.7) and

(6.9) it can be seen that

>
because a\ = V(e,-j + £*_,-) > o\.

In the balanced data case where n,- = n, for i = 1 , . . . , m,

v w - v(W = ̂ ^ ^
mn m

It can be noted that when a\ is large V(£) can be very different from V(/i).

If we ignore the presence of measurement errors and adopt the standard text-

book formulas, then ^ is used to estimate V(/i), where S2 = j ^ J27Li H'jLiiVij ~

j/*)2. If model (6.5) is the correct model, then under model (6.5) E(̂ jjr) = 7^ =

V(/i), i-e. -JJ- is an unbiased estimator of V(/i). The problem is whether -^ is an

unbiased estimator of V(/i) under model (6.4).

With the assumption that model (6.4) is the correct model we see that:

N(N-l)
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hence
O2 '2 ]\J2

iV i V 2 ( i V l ) a '

which is not equal to V(A) of (6.7). The difference is

iv2 - E£x n?2 iv - E£x n? 2
° N*(N-1) a

N2 E ^ ( l - tvQjrii - 2) + JVE,"i(l - WJ)(N - nt-)

> o,
because for the estimation of a\ and u2, we assume n,- > 2.

In the balanced data case of Hi = n, for i'. = 1 , . . . , m,

/-S12, n — 1 oE' ) °
^- will underestimate V(/i) and the underestimation will be serious if a\ is

large. It can be seen that the bias of —• is due to the presence of a\.

We have demonstrated that by ignoring the measurement errors we will un-

derestimate the variance of the estimator of the mean, and hence overstate the

accuracy of estimation. Thus it is necessary to take measurement errors into ac-

count and to estimate the variance components due to the measurement errors.

By doing so it is hoped that we can then derive an unbiased estimator for the

variance of the estimator of the mean and we can also assess the performance

of the observers involved. In the next section we shall consider the estimation

of interviewer's variance in surveys as an example of this type of measurement

error.

6.2 Estimation of interviewer's variance in sur-

veys

In a complex survey there are usually many operators involved at different stages

of the survey, e.g. interviewers at the interview stage, coders at the data pro-

cessing stage, etc. These operators can bring measurement errors into the survey

and the contribution of these nonsampling errors to the total variance sometimes
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turns out to be larger than the contribution of sampling error. Hansen, Hurwitz

and Bershad (1959) developed a general survey error model to identify differ-

ent error sources and to measure their impact. Ignoring the measurement errors

and applying "standard textbook formulas" for the estimation of the variances

of survey estimates may lead to serious underestimation of the real variability,

as we showed in Section 6.1. Therefore it is necessary to estimate the variance

components due to different error sources. In this section we consider the estima-

tion of the effect of one error source only: namely the interviewer's component of

variance.

Consider a stratified multistage survey. It is only at the last stage that we use

interviewers and need to design an interview scheme. If there are I interviewers

available, select I groups of units from the last stage of the original survey such

that the ith group contains M; units.

Let II={ units contained in the / groups }.

In this chapter we shall treat II as our population and design an interview

scheme for II and estimate parameters relating to II. All conclusions will therefore

be conditional on the selection of IT. When we condition on IT the groups can be

considered as strata. But since IT is the last stage in the original survey design,

we can draw inference about the total population by estimation over the other

stages of the survey.

The survey design at the interview stage is: use simple random sampling to

choose mi units from the Mi units of each stratum. By conditioning on IT and

treating the / groups as strata the above design can be considered as a design

using stratified simple random sampling. A natural way to assign the interviewers

is to send the ith interviewer to the zth stratum to do the m,- interviews. We

wish to draw inference on each stratum and IT. Let y,-s be the result of the 5th

interview carried out by the zth interviewer in the ith stratum. Assume that the

interviewers have a systematic random effect on the interview and also a random

error is present at each interview. If we denote the true result of the interview

by rjis, then with an additive error structure we have:

Vis = Vis + bt + e*is, » = 1 , . . . , / , s = l , . . . ,m; , (6.10)

where 6t- is the random effect of the fth interviewer, with E{b{) = 0, V(&;) = &1-,

and e*B is the random error with E(£*s) = 0 and V(e*5) = <?*2.

Now assume that the true results of the interviews are random samples from a

distribution with E(t]is) = rji, V(r/,s) = c2(z), i-e. we assume that the true results
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of each stratum have a common mean and variance, then

Vis = r]i + eis, i = 1 , . . . , / , j = l , . . . ,m, - . (6.11)

The model relating y,s to ?;,• is:

Vis = rji + b{ + eis, i = 1 , . . . , / , s = l , . . . ,m , - , (6.12)

where e,-, = £,•,+£*, with E(e,-,) = E(eis) + E(e*J = 0, and V(e,-5) = V(e« + e*J =

— ??«) + ^ = CTe(0- Hence cr^i) is the sum of sampling errors from the

simple random sampling selection of the m,- units out of Mi units in each stratum

and the random errors in the recording of each interview.

We wish to estimate ?/,• and a\. However, in model (6.12) the stratum effect

rn and the random effect 6,- are confounded. It is impossible to estimate 77,- and

a\ from model (6.12). To break the confounding an interpenetration interview

scheme must be used.

6.3 Interpenetration interview scheme

Instead of assigning one interviewer to one stratum as in the interview scheme

considered in Section 6.2, we could assign k interviewers to one stratum, k > 2.

The most commonly used scheme is the pair interpenetration scheme where k = 2.

Let II be selected as in Section 6.2, group the strata into / nonoverlapping

blocks each containing k strata (assume that / = I/k is an integer). Assign k

interviewers to each block to share the interview workload in each of the strata

of the block. In this chapter we shall only consider equal workload among the

interviewers, i.e. each interviewer does £ of the interviews in each stratum. Un-

equal workload can be modeled, but the estimator of a\ will be more difficult to

derive.

The combination (7,2) is used to locate the 2th stratum in the 7th block and

(7, j ) locates the [(7 — l)k +j] th interviewer among the / interviewers available.

We assume each interviewer brings a systematic random effect 67J- to the interview

result, y-ytjs is the sth recorded interview result by the jth interviewer in the

(7, i)th stratum.

The model for the interviewer's random effect is:

+ b^j + e*ltjs, (6.13)
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7 = 1 , . . . , / , t,j = 1 , . . . , k, s = 1 , . . . , ,

where 7/7li7-a is the true value which should be recorded, b-,j is the random effect

of the [(7 — l)k + j]th interviewer and we assume that 67j is a random sample

from a distribution with E(6-yj) = 0, V(kyj) = o\, e*tJ-s is the random error in the

recording of the interview.

The model for the true mean of the stratum is:

Hence the model relating yytjs to r]lt is:

y-ttjs = Vit + b^j + eltjs, (6.15)

7 = 1 , . . . , / , t,j = l,...,k, s = l , . . . , - j p ,

and where e7tjs = eltjs + e*tjs.

It can be seen that by employing the interpenetration interview scheme the

confounding of 77,- and &,• in model (6.12) is broken in model (6.15). It is therefore

possible to estimate T]yt and a\ separately from model (6.15).

The disadvantage of adopting the interpenetration interview scheme in prac-

tice is that it is usually expensive. For instance, if the strata are selected with

geographical convenience, the interpenetration interview scheme sends each in-

terviewer into k different areas while the non-interpenetration interview scheme

sends one interviewer to one area only. Interpenetration interview scheme will

usually increase the cost of the survey.

In the next section we shall design our survey to use a partial interpenetration

interview scheme which can break the confounding of the stratum and the inter-

viewer's effects and is cheaper than a total interpenetration interview scheme.

6.4 Design of the survey and the model used

Let II be selected as in Section 6.2 and partitioned arbitrarily into L nonover-

lapping blocks, each containing k strata (assume L = I/k is an integer and

k > 2). Suppose the (7, £)th stratum contains Mlt units. We have two important

assumptions to make in the design of survey:

1. Use simple random sampling to choose m units from the (7, £)th stratum;

2. Select a random sample of / blocks from the L blocks.
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Apply two different interview allocation schemes to the selected / blocks and

the remaining L — I blocks, respectively.

Pattern 1 (applied to the selected / blocks):

Adopt an interpenetration interview scheme in these blocks. The k interview-

ers split the workload equally in each stratum of a block.

Assume that each interviewer carries out / interviews, / = y-

Pattern 2 (applied to the remaining L — I blocks):

Adopt non-interpenetration interview scheme. Allocate each interviewer to

each stratum in the block.

From Section 6.3 for the strata applied pattern 1 scheme we have:

y-ttjs — Vit + b~,j + e~ftjs, (6.16)

7 = 1 , . . . , / , t,j = l , . . . , f c , s = 1 , . . . , / .

From Section (6.2) for the strata applied pattern 2 scheme we have

V-yti — V-yt + b-ft + e 7 ( 5 , (6-17)

7 = / + 1 , . . . , L , t = l , . . . , k , s = l , . . . , m .

We shall assume that

Therefore of (7, i) is the sum of sampling errors from the selection of the m

units in the survey and random errors caused by the recording of each interview.

We shall show that if we estimate rjlt with the generalized least squares estimator

and estimate a\ with MINQUE it is sufficient to estimate 0^(7, £) and derive

an unbiased estimator for V(^7t)- Therefore there is no need to estimate the

sampling errors and the random errors consisted in v\(~f,t) separately.

Models (6.16) and (6.17) can be written in matrix forms as:

y = Xrj + U6b + E E U ^ e 7 t , (6-18)
7=1t=i

where X is the design matrix for the fixed effect, U& for the interviewer's effect,

XJ-yt for the errors, also:

E(b) = 0,
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Now we arrange the data vector y in such an order that the interpenetrated

data come first and the non-interpenetration data follow. Within each data set

the data are written in lexicographical order, then (6.18) can be rewritten as:

y(i)

1(2)

0

0

(I)'

(2)
o

o
u< 2 ) . -y= l t = l

(6.19)

where y^\ TJ^1), b^1) and e ^ are the parameters for the data set of design pattern

1, y(2\ rj(2\ h^ and ê 2) are those of design pattern 2. X^1) and U^ are design

matrices for pattern 1, X^2^ and Uj are design matrices for pattern 2. U7(

is design matrix for the error term, 7 = 1 , . . . , L, t = 1 , . . . , k. Throughout this

chapter we shall use superscripts 1 and 2 to denote parameters for interpenetrated

data set and non-interpenetrated data set, respectively, and use subscripts to

denote the order of the design matrices in the model.

The design matrices are:

1/, Ul2) = IL_/

0.

where Im is the [(7 — l)k -f t]ih submatrix of order m.

The variance covariance matrix of y is:

(6.20)
7=1t=\

where

and

V(D

V(2)_

® J/ , V<2) = IL_,

7 = 1 , . . . , L , t =
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The task here is to estimate a\ efficiently and find the optimal design for the

estimator used. In the following section we shall introduce the existing estimators

in the literature and then use MINQUE in section 6.6.

6.5 Fellegi's estimator and Biemer and Stokes' es-

timators

Fellegi (1974) considered an interpenetration interview scheme for the case of

k — 2 in the design of survey in section 6.4 and proposed an unbiased estimator

of interviewer's variance. The estimator is a linear combination of two estimators

where the first estimator used the interpenetrated data set only and the second

estimator is derived using the whole data set. Fellegi speculated that the two

estimators are independent of each other hence the composite estimator will be

more efficient than either of the two estimators used alone.

Biemer and Stokes (1985) extended Fellegi's estimators from a pairwise in-

terpenetration scheme into / groups of k interviewer assignments for multistage

survey designs. The survey design in section 6.4 follows from Biemer and Stokes'

set up. Biemer and Stokes proved that with a normality assumption the two

estimators of Fellegi are independent and they proposed to use the variances of

the estimators as the wreights in the linear combination of the twro estimators to

form a composite estimator so that the composite estimator will be more efficient

than either of the two estimators used alone.

Biemer and Stokes considered model (6.18) which is equivalent to model

(6.19). Since the variance covariance matrix of y shown in (6.20) is complicated,

Biemer and Stokes used the synthesis-based MINQUE, i.e. in the calculation of

R = V- 1 - V" 1 X(X'V- 1 X)- 1 X'V- 1 they used V = I instead of the true vari-

ance covariance matrix. By using V = I the derivation of a quadratic estimator

from MINQUE equations is greatly simplified. Biemer and Stokes found that the

estimator depends only on the interpenetrated data set. The estimator is:

1
a2

b(BSl) =
/ [k(m - 2) + 1]

7 =1 j = i

771
 7 =1 ( = 1 j= l 5=1

(6.21)

where a dot in place of a subscript denotes summing over that subscript and

where g™ = yW/km, $#). = y^Jm, j#> = y^Jm.



Chapter 6 143

The variance of a2(BSl) is:

+ [(fe 2k + l ) / ] 2[(fern - 2k + l ) m / ] 2 1 ^ I A: - 1

k I2 k

Lt=i
(6.22)

If <72(7,0 = a2
e, 7 = 1 , . . . , l,t = 1 , . . . , k, then

m

Since this estimator only depends on the interpenetrated data set, Biemer and

Stokes give a second estimator which depends on the whole data set:

i L k - , 1 k

*2(BS2) =
J f c - 1 •=/+l t=\ l 7=1 i=l

(6.24)

The composite estimator proposed by Biemer and Stokes is:

a2
b(BS) = aa2

b{BSl) + (1 - a)a2
b{BS2), (6.25)

where

With a normality assumption Biemer and Stokes proved that a\(BSl) and

ab
2(BS2) are independent, and hence ab(BS) has smaller variance than either of

a^(BSl) or &2{BS2).

a2(BSl), al(BS2) and a2(BS) are unbiased estimators of a2 and that is

the only optimality claimed for these estimators. A problem remains for the

improvement of efficiency of a2(BS) over a2(BSl) and a2(BS2), because the

weight a in (6.25) uses the variances of a2(BSl) and a2(BS2) which involve

the unknown variance components a2 and a2(f,t). So in practice &2(BS) is

unreachable. Putting an arbitrary weight in (6.25) would not necessarily lead to

an improvement of efficiency.

Suppose we use an arbitrary value w, w ^ 0,1, in (6.25) to form the composite

estimator of Biemer and Stokes,

&2(BS) = wa2(BSl) + (1 - w)a2(BS2).
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Also assuming normality for y, then since a2(BSl) and a2(BS2) are indepen-

dent of each other,

V (a2
b(BS)) =w2V (tfiBSl)) + (1 - wf V (&1{BS2)) .

When

V Uk(BSlj) < I V

V (<72(BS)) > V (&2(BSl)), i.e. the composite estimator is less efficient than

the first estimator used alone.

When

V (°2
b{BSl)) > l-(1~w) V(a2(BS2)) ,

V (cr2(BS)) > Y (a2(BS2)), i.e. the composite estimator is less efficient than

the second estimator used alone.

6.6 The use of MINQUE

Ideally if we obtain the MINQUE for model (6.18) it will be the best quadratic

unbiased estimator for a2 under the normality assumption, hence it will be at

least as efficient as the composite estimator of Biemer and Stokes. With the

complexity of the variance covariance matrix V of (6.20) it is very difficult to

derive the MINQUE of a2 algebraically. It is also very difficult to assign prior

values for the a2 and 0^(7, t) apart from a2 = 0, 0^(7, t) = 1 chosen by Biemer

and Stokes, because the number of variance components (which is Lk + 1) is very

large.

Instead of using the simplified estimator of a2 as Biemer and Stokes did we use

a simplified model of (6.18) by assuming cr2{l, t) = a2, 7 = 1 , . . . , L, t — 1 , . . . , k.

This assumption is true when the strata are homogeneous. We use the following

model:

y = X77 + U6b + e (6.26)

where E(b) = 0, V(b) = a2ILk, E(e) = 0, V(e) = a2ILkm.

The design matrices for the variance components are:
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where u [ 1 } = I , <g> lk ® lk ® 1 / , U[2 ) - IL_; ® lk ® l m ,

where U*1) = I / fcm, ~ e v_ .,

We use MINQUE to estimate cr2 and a\.

Theorem 6.1 If model (6.26) is used, the MINQUE of a2
b is:

' Lk{m-\) '

L k m-, L k m

:i-sS.)!-^ E EE^-sS!)'
-i I k k f

''* 7 =1 t=l j= l s=l '"• 7=/+l i=l 5=1

Proof: The variance covariance matrix of y in model (6.26) is

V =

where

J / + a2
ellkm,

Let A = mal + cr2, then from MINQUE formulas:

R = v-1 - v-1x(x/v-1x)-1x'v-1

where

Ukm Jk

Ifc ® Jm
fc<7?A"

-1 _ v^^x^x'^v^'x^^x'^v^"
1 , ,
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R ( 2 ) V ( 2 ) R ( 2 ) = Q

b

0

_
R V e R =

= ±.ilkm - - 2 - 1 , ® I, ® Ik

0

6

So we should have:

q i =
7=1i=i

7=1 i=l j=l 5=1

( 1 )

2 zv^j
-1 i,

Ji E

e— . 7=1 j=l

L k m

4=1 s = l

Let

have:

, r12 = TrRV6RVe, r22 = TrRVeRVe . Then we can

Til =
lk2f2(k -

A2

A2 '
Lk(m - 1) lkf(k -

T2 2 =

From the MINQUE equations we must solve:

+ A2T12 = 1

+ A2T22 = 0
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for Ai and A2.

Solving the above equations:

r22

Tl2
A 2 = - •

where $ = Lk(m - 1) - l(k - 1). From the MINQUE formula,

a2
b = A iy'RV6Ry + A2y'RVeRy

= Ai^i + A2g2,

which is (6.27). •

From (6.27) it is obvious that a\ depends on both interpenetrated and non-

interpenetrated data. From section 1.3.4 we know that when normality is assumed

then <J2 is the best quadratic unbiased estimator of a\ for model (6.26).

Theorem 6.2 / / model (6.26) is used, then with the normality assumption the

variance of a\ given in (6.27) is:

Lk(m - 1)
m2 [Lk(m - 1) - I (Is - 1)]

Proof: From the proof of Theorem 6.1 we know that

a\ = y'[A1RV6R + A2RVeR]y
def

(6.28)

With the normality assumption we know from section 1.3.4 V(<3f) = 2 Tr AVAV,
where V is the variance covariance matrix of y for model (6.26).

A =

def

0

0

0

0

R(2)y(2)R(2)

Now

• I*

Lk(m - 1)
Im2(k - 1)

1/ <8> J f c m ,

I{L_l)km
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hence

lk(k -

Im2(k -
9. . . 1

+ /(Jfc-1) e '

TrA(2)V (2)A (2)V (2) =

Therefore,

V(<T2) = 2TrAVAV

+ 2 Tr

= (6.28). •

Theorem 6.3 If model (6.26) is used and no distribution assumption is made,

then the variance of <72 given by (6.27) is:

, . 2 , 2Lk(m-l)
4 , ^ / T 2 / T 2

e I ( k l ) b eIm(k-l)

4 1 ^ 4
b Jk lm3[Lk{m-l)-l(k-l)}2 e

where ji, and 7e are the kurtoses of the random terms.

(6.29)

Proof: From section 1.3.4 we know that without the normality assumption,

V(<72) =.2Tr AVAV + TrBA 2 B,

where B = U'AU, and

0
U =

A , =

o
I 0"

0 I.

7e7e-lLfcm J

B =
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Now
1 1 L(m-l)T

i i = 0.
Therefore,

T P A » X
TrBA 2B = -

and adding this term to (6.28) we obtain (6.29). •

So far we have given the MINQUE of o\ and the variance of the estimator for

model (6.26). Since the model we should use in general is model (6.18), we ought

to know how efficient of is compared to Biemer and Stokes' estimators if model

(6.18) is the correct model to use.

Model (6.26) is a special case of model (6.18) when all the strata are homoge-

neous, for then of (7,^) = of, 7 = 1 , . . . , L, t = 1 , . . . , k. If in addition, normality

is assumed for the distribution of y, then of of (6.27) is the best quadratic unbi-

ased estimator of of. Since of (.SSI), of (-B52) and of (55) are all in quadratic

forms, hence of is at least as efficient as any of the three estimators.

When the assumption of (7, t) = of is not appropriate, we need to compare

of with Biemer and Stokes' estimators. In the following we shall argue that the

first estimator of Biemer and Stokes, of (J3,Sl), is less preferred than of of (6.27).

Comparing b\{BSX) and of .yields an interesting question: for a model with

complicated random error structure is it better to use a simplified estimator

(synthesis-based MINQUE a%(BSl)) than using a simplified random error struc-

ture for the model and the optimal estimator (of)? I suspect the answer is neg-

ative.

One disadvantage of of (551), which is the synthesis-based MINQUE, is that

when 0^(7,i) — a\ model (6.18) then reduces to model (6.26), and a\{BS\) is

not identical to the MINQUE of for model (6.26). If normality is assumed for

y then of is the best quadratic unbiased estimator of of which means that of is

more efficient than of (.SSI). So of dominates a%(BSl) when 0^(7,2) = of.

It is necessary to compare the two estimators when of (7, t) ^ of. Since model

(6.18) is a complicated model we use a simple model to demonstrate that in this

simple case of is better than a%(BSl)

Suppose we have a one way random model:
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yij = fi + a,- + et-j, z = 1,2, j = 1,2.

where V(a) = (7^I2 ® J2 ,

(6.30)

V(e) =

a n d <Tj ̂  (T| .

The variance covariance matrix of y is:

V = a% ® J2

The first estimator o\ = y'Aay is the synthesis-based MINQUE for model
(6.21), i.e. use V = I in the derivation of R.

R = I - X(X'X)-aX' = I4 - - J4-

Now for model (6.30) we know:

1
'J2 0

0 J2

Therefore,

oj

1R = I 2 ®J 2 - - J 4 ,

1 J

RV2R =

RV3R =

I 2 - | J 2 0

r | J 2 0
0 h-\

Let A = (T,J)3X3, where Tij = TrRV,RVj, then

'4 1 1

A = 44

4 4 J
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1
4

- 1

- 1 - 1
4 0

0 4

So we have Aa

Aa =

| , A2 = A3 = - J . From the MINQUE formula:

1 R + A2RV2R+A3RV3R

(6.31)

The second estimator, a\ = y'A ay, is the MINQUE for a simplified model of

(6.30):

ytJ = y. + a,- + etj, t = 1,2, i = 1,2,

where V(a) = a2
al2 ® J2, V(e) = ae

2l4.

Model (6.32) is equivalent to assuming a\ — a\ in model (6.30).

(6.32)

Aa = - j
4

J2 - i j4- (6-33)

Now assume that y in model (6.30) has a normal distribution with variance

covariance matrix V, then

V(a2
a) = 2Tr A a VA a V = 2 || A a V

Using Aa in (6.31) we have:

<+°i
16

<7g
16

16

16 16

16

4

16

4

d
4

and V ( ^ ) = 2Tr A a VA a V = 2 || A aV | | | , using Aa in (6.33):

A a V =

Since the Euclidean norm || Ĥ  is the sum of squares of all elements in a matrix

and:
3(2<7a

2 + a2) ^ 2aa
2 + a\ 3(2a2 + a2) > 2a2

16 8 16 8
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A a V | | | , > | | A a V | | | . Hence

Straight inequality holds in the above formula when all the variance compo-

nents are positive.

So in this simple model we have demonstrated that the synthesis-based MINQUE

a\ for the correct model is less preferred than the MINQUE a\ for the simpli-

fied model by using an equal random error assumption. We suspect that the

conclusion holds for more complicated models such as (6.18).

With normality assumption the comparisons between al(BS), al(BSl), al(BS2)

and al are presented in the following table:

al > al(BS)
al > al(BSl)
al > al(BS2)

For model (6.30)

al > al(BSl)

For other models

?

— °1{BS) means that of is at least as efficient as al(BS), and a\ >

means that al is more efficient than al(BSl). The comparisons of the

estimators without normality assumption are not available.

To summarize when the strata are roughly homogeneous and the data have a

normal distribution of is preferred to Biemer and Stokes' estimators. When the

strata are not homogeneous we suspect that <3f is more efficient than al(BSl)

used alone.

6.7 Optimal design for a2

In this section we consider the optimal design using a\ as the estimator of al for

model (6.26) with a cost constraint and we assume that the data vector y has

a normal distribution. We use the same cost constraint as that considered by

Biemer and Stokes.

Assume that the total number of strata, / = Lk, is fixed. Also assume that

interpenetration of a block containing k strata will increase the usual cost of

interviewing by a factor of yk. Further assume that in each stratum the increase

in cost is fixed, i.e. Ao = j^(y/k — 1) is fixed. We want to find the values of k,

the number of interpenetrated interviewers, and /, the number of blocks using

the interpenetration scheme, such that V(of) is a minimum.
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Substitute L = £, / = •#««- = ffi> into (6.28), then
*' ' ~ vTb-T ~ Iryl-T)

2k{y/k-\) / ( m - 1 )

(6.34)

V(<3f) is in the order of \/X and is monotonically increasing from k = 2. Hence

V(<3f) achieves a minimum when k = 2. Correspondingly, / = -7^1 > which may

not be an integer. Now let k = 2 in (6.28), then

V(a6
2) = - ( I(m ~ 0 j 4 + lC T2 a2 + a 4 J _ (6 35)

V(<5"f) in (6.35) is monotonically decreasing when / increases, hence we should

choose / = I £_x Aoj + 1 where [ ] denotes the integer part of a real number.

Hence for model (6.26) with normality assumption the pair interpenetration

scheme is optimal for a\ with the specific cost constraint used in this section, and

the corresponding optimal choice of the number of blocks being interpenetrated

For the parameter values used by Biemer and Stokes in their empirical study,

L = 700, Ao = 0.05, then / = [84.5] + 1 = 85, i.e. 85 out of 700 blocks should

be selected to carry pairwise interpenetrated interviews with this specific cost

constraint.

In Biemer and Stokes (1985) they concluded that if al(BSl) is used alone

then k = 2 is the optimal choice. If a%(BS2) is used alone, then k should be

chosen as large as possible. They suggested for the composite estimator a%(BS)

the design problem should be addressed empirically.

6.8 Estimator of the variance of the estimator of
the mean

In this section we shall derive an unbiased estimator for the variance of the

estimator of the mean using a\ and a\ while b\ is given by (6.27) and b\ is given

in the following theorem.

Theorem 6.4 If model (6.26) is used, the MINQUE of a\ is:
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L k m I k I
. v~̂  v~̂  V~V (2) -(2)\2 V~~* \~v^i"(1) ~W \2 I (a Qa\

7=l+l (=1 1=1 7=1 J = l J

The derivation of a\ is similar to that of a\ in theorem 6.1 and hence is

omitted.

For model (6.26) we use the least squares estimator to estimate rj which

contains the population mean for each stratum, then

i} = (X'V~1X)~1X'V~1y = y, (6.37)

where y = (y74) and

{ p7t.., if (7,^) is in the selected / blocks,

y7t., if (7, i) is the remaining L — I blocks.

fj is the vector containing the estimated mean of each stratum.

We are interested to draw inference about II, the population considered in

Section 6.2. Suppose p'r) is the parameter in II which we want to estimate. If

p = 1, then p'77 is the total of II. If p = - = ^ — ^ 15 then p't] is the mean of

n.
We use p'rj — p'rj to estimate p'77.

From the discussion on a\(i,i) in Section 6.4 we know that sampling errors

are included in 0^(7, i). The variance of p't) can then be expressed in terms of

(JL and err.

then

V(P 'i7|n) = p'V(77)p
^ 2 / k L k

s~"~ v ^ 2
/ J / y Pit

1=1+1 i=l

2 /

+ T E
k 7=1

y = i

k

1=1

t'=l
"* 7=1 4=1

Since a\ of (6.27) and a\ of (6.36) are unbiased estimators of a\ and cr̂ ,
respectively, thus

^ f f ^ ^ 'O (6-38)f
7=1 < = 1 ^ 7 = i , = 1 1-1+1 f=l

y = i t'=i
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is unbiased for V(p'f7|n). From (6.38) we can see that V(p'^|n) has used the

estimates of the interviewer's variance and the random error. In the above for-

mulas we used |IT to denote that the derivation is conditional on the selection of

n.
As we pointed out in Section 6.2 estimation in this chapter is conditional on

the selection of IT. Inference can be made by standard survey estimation to the

total population from which II is selected because there are no more measurement

errors involved. As Hartley and Rao (1978) have shown we can use:

v

where En and Vn are the expectation and variance over the selection of IT in

the original survey design. Hence classical sample survey theory can be used to

estimate V(p'rj) for the total population.

6.9 Conclusions

In this chapter we applied variance components estimation to estimate inter-

viewer's variance in surveys.

We build a model by assuming homogeneity of the variances within strata

and derived the MINQUE estimator for the interviewer's variance. If normality

is the distribution of the data this MINQUE estimator is the best quadratic unbi-

ased estimator for the interviewer's variance and therefore is at least as efficient

as Biemer and Stokes' estimators. We also showed that with a specified cost

constraint the pair interpenetration scheme is optimal for the MINQUE estima-

tor and derived the optimal number of blocks taking interpenetrated interviews.

Using the MINQUE estimate of interviewer's variance we derived an unbiased

estimator for the variance of the estimator of the mean.

When the strata are not homogeneous we suspect that the estimator we de-

rived in section 6.6 is still more efficient than Biemer and Stokes' first estimator.

Our suspicion is supported by the investigation on a simple model in Section 6.6.

More research is needed to compare the estimators in this case.
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C O N C L U S I O N S A N D

R E C O M M E N D A T I O N S F O R

F U T U R E R E S E A R C H

7.1 Summary of conclusions

In this thesis we considered quadratic estimators of linear combinations of vari-

ance components and the properties of the estimators.

Chapters 2 and 3 investigated the properties of MINQUE, which was proposed

for the general variance components model (1.1). MINQUE is unbiased, but it is

known that its optimality requires the following two assumptions:

(1) The data have a normal distribution;

(2) The prior values are correct values of the variance components.

MINQUE under these two assumptions gives the best locally quadratic unbi-

ased estimators of variance components. In practice these two assumptions are

very restrictive. We often cannot assume that the data collected from a survey

or an experiment have a normal distribution. Furthermore, the correct values of

the variance components are never known to us. Chapters 2 and 3 are aimed

at weakening the two assumptions and hence widening the optimality area of

MINQUE.

In Chapter 2 we proved a sufficient condition for the design matrices of the

variance components model (1.1) so that the MINQUE will be the best quadratic

unbiased estimator without assuming a normal distribution for the data. A

class of models fitted to balanced data is shown to satisfy the condition, hence

156
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MINQUE for these models is optimal without assumption (1).

In Chapter 3 we proved a necessary and sufficient condition for MINQUE to be

independent of prior values. The condition is simplified for the balanced extended

analysis of variance models. If MINQUE achieves optimality and satisfies the

condition in Chapter 3, it will be the globally best quadratic unbiased estimator.

We have shown that there are models and designs satisfying the conditions

in both Chapters 2 and 3, therefore the MINQUE used for these models is the

globally best quadratic unbiased estimator without satisfying assumptions (1)

and (2).

Instead of the two well-known assumptions, we can have two alternative as-

sumptions:

(1)' The design matrices of the model satisfy condition (2.14);

(2)' The design matrices of the model satisfy the conditions in Theorem 3.3.

We use the following table to summarize how by using (1)' and/or (2)' as

alternative assumptions, the optimality area of MINQUE is widened.

Assumptions

(1) (2)

(1)' (2)

(1) (2)'
(1)' (2)'

Optimality of MINQUE
(quadratic unbiased)

locally best

locally best

globally best

globally best

result comes from

Rao (1971a,b)

Chapter 2

Chapter 3

Chapters 2 and 3

Chapters 4 and 5 concentrate on obtaining nonnegative quadratic estima-

tors. After investigating the properties of some existing nonnegative estimators:

MINQE, CMINQUE and Hartung's estimator, we proved the nonexistence of a

globally minimum biased nonnegative estimator across the parameter space. A

modified version of Hartung's estimator, the minimum bias range MINQ esti-

mator, is proposed which has the minimum variance among all the estimators

minimizing an upper bound of the bias function. Such an estimator needs prior

values. Iterative computing can be used to obtain an estimate independent of

prior values.

Numerical and empirical comparisons are presented in Chapter 5. It can be

seen that none of the estimators dominates any other throughout the parameter

space. Suggestions are made on the use of these estimators.
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Chapter 6 applied MINQUE in a complex survey to estimate the interviewer's

variance. After setting up the model we applied MINQUE to a simplified model

and obtained an estimator for the interviewer's variance. We suspect that our

estimator is more efficient than Biemer-Stokes' synthesis-based MINQUE applied

to the full model. In the case of homogeneous strata our suspicion is true.

A design problem with a specified cost constraint is solved and an unbiased

estimator is given for the variance of the estimator of the population mean.

This thesis has proved that MINQUE can be applied with optimality to more

situations than those known before. MINQUE can be modified in various ways to

form nonnegative estimators. When used in practice MINQUE is quite efficient

compared to some existing estimators.

In the next section we shall give recommendations for some areas where future

research is needed.

7.2 Recommendations for future research

There are several problems directly related to the ones considered in this thesis.

(1) In Theorem 3.3 we gave the necessary and sufficient conditions for the

MINQUE to be independent of prior values. We have simplified the conditions for

balanced E-ANOVA models. When considering the general variance components

model (1.1) more work is needed to make the conditions in Theorem 3.3 checkable

by computer, so that assumptions (1)' and (2)' can be easily verified.

(2) In Chapters 4 and 5 we have shown that none of the nonnegative estimators

considered dominates the others throughout the parameter space. There is a need

to set up a reasonable global measure of efficiency, rather than the mean squared

error at individual parameter values that we used in Chapters 4 and 5, to compare

the estimators. Some estimators may be more favourable than the others under

a new measure.

(3) It will be interesting to apply MINQUE to complex surveys with more

error sources than the two error sources considered in Chapter 6 and see if the

MINQUE is still efficient. The MINQUE algorithm is straightforward to extend

to more error sources. The problem with many error sources is that the variance

covariance matrix is very complicated if computed algebraically, and has a very

large order if computed numerically.

(4) In Section 1.3.5 we have introduced Goldstein's method for the estimation
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of variance components. Goldstein has proved that his method is equivalent to

the maximum likelihood estimator with a normal distribution assumption. Since

the equivalence of maximum likelihood and weighted least squares estimates for

a member of the exponential family with one parameter is established, it will

be interesting to see if Goldstein's method is equivalent to maximum likelihood

estimation for a certain class of distributions. In that case Goldstein's method

will be an extension of the maximum likelihood estimation to more distributions.

(5) Herbach (1959) derived the maximum likelihood estimators for the one-

way balanced model. More research is necessary to study the likelihood (restricted

likelihood) functions for more models and see how to deal with the negative

solutions to the likelihood equations.

There are some problem areas where estimation of variance components is

concerned.

(1) Optimal designs for the estimation of variance components.

Apart from the result of Mukerjee and Huda (1988) stated in Theorem 1.3 for

the unweighted analysis of variance estimator, there have been no results on the

optimal designs for the various estimators of variance components, e.g. MINQUE,

ML and REML.

(2) Prediction of random variables and small area estimation.

In Section 1.2 we discussed some problems associated with the general variance

components models such as:

(i) The estimation of (3;

(ii) The estimation of of, i = 1 , . . . , k;

(iii) Prediction of £,-, i'. = 1 , . . . , k.

Problem (i) has been widely addressed and problem (ii) is the concern of this

thesis. Problem (iii) is closely related to problems (i) and (ii).

Now consider a simpler variance components model than model (1.1):

a + d, (7.1)

where Y is the observed data vector, (3 is the fixed effect parameter, a and d are

random variables with E(a) = E(d) = 0, V(a) = A and V(d) = D.

If the task is to predict y = X/3 + a, Harville (1976) proved that when A and

D are known and mean squared error is used as the optimality criterion the best

linear unbiased estimator of y is:

y = Xfr + A(A + D)-a(Y - X/3), (7.2)
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where

/3 = (X'(A + D ) " ^ ) " 1 X'(A + D)-XY. (7.3)

In the simplest case of matrices A and D, A = cr^I, D = crjl, then j3 is the

least square estimator,

J3 = (X'X)-aX'Y, (7.4)

and

(7.5)2(
o ' d

The problem is that in practice both a\ and a\ are not known. It seems

reasonable to estimate a\ and a\ first and use a\ and u\ in (7.5).

(*). The problem is what kind of estimators a\ and a\ in (7.5) will make

prediction of y optimal?

We can use the MINQUE a\ and a\ in (7.5), but they cannot make the

predictor y in (7.5) optimal, as demonstrated by Peixoto and Harville (1986).

One explanation for the failure of MINQUE in this situation is that MINQUE

is required to be optimal when estimating linear combinations of the variance

components while the variance components appearing in (7.5) are the ratio of the

variance components.

So far there has been no answer to the problem (*).

The demand for small area estimation has increased recently. Sample surveys

usually provide efficient estimators for the totals of large domain. Small area

estimation is desired when estimation is required for subdivision of the population

and when the standard errors for the sample survey estimator are unacceptably

large for the subdivision. Harville (1985) pointed out that all the existing methods

for small area estimation, namely, Bayes approach, empirical Bayes approach and

regression model approach, can be derived from the variance components model

approach.

Suppose y is the desired n x 1 vector to be estimated, and X is the n x p

matrix containing the auxiliary information. We can write the model:

y = X/3 + a, (7.6)

where (3 is the p x l regression coefficient vector to be estimated, a is the random

error term with E(a) = 0 and V(a) = A, A is an n x n matrix.

Suppose the observed data vector Y has a measurement error in y, that is:
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Y = y + d, (7.7)

where E(d) = 0, V(d) = D and D is an n x n matrix.

Now combining (7.6) and (7.7) we obtain a variance components model:

Y = X/3 + a + d,

which is identical to model (7.1). The small area estimation of y is then identical

to the problem of prediction of random variables, hence an optimal estimator for

small area estimator depends on the answer to (*).
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