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UNIVERSITY OF SOUTHAMPTON
ABSTRACT
FACULTY OF ENGINEERING AND APPLIED SCIENCE
ELECTRONICS
Master of Philosophy
SPECIFICATION ISSUES AND VERIFICATION IN A
PASCAL-LIKE LANGUAGE
by Hayri SAYI

The effectiveness of very complex, expensive and highly sensitive
computer applications depends largely on the correctness of the

software in use.

We have tried in this thesis to emphasise the rble of the specifications
as a first step in the design of the verifiable software products. Two
techniques for writing formal specifications are described. One of them
constructs an abstract state-machine, and the other defines an algebra
by means of axioms. Extending an implementation language to accommodate
specifications has also proven to be very useful to the verification process,

giving birth to languages such as Gypsy and Euclid, both based on Pascal.

A sub-set of Pascal, called Pascal-Minus, was chosen, and a trans-
lator from it into the Functional Description Language (FDL) of the
Department was developed, to check the conformity of the programs
written in Pascal-Minus in relation to their specification in the form of

Boolean expressions, using the existing facilities in the Department.

An example is given to illustrate the use and the capabilities
of the system which can be extended to incorporate other control and

specification constructs, thus increasing its power of expression.



I. INTRODUCTION

Ability to demonstrate in advance the correctness of a
design is an important criterion for a discipline in order to be
considered as a science. Today, nobody would start building a
bridge before its design has been formally proven safe. But, this
is more or less the way in which software production goes nowadays.
Very expensive and/or highly sensitive applications, whose complexity
altogether largely surpasses the grasp of human intellect, are put into
use before formally proving that their actual behaviour will meet the
intents of the designers. The first American space probe to Venus
(Mariner I) which had strayed from its original trajectory in June 1962
and had to be destroyed because of an error in one of the guidance
programs in its onboard computer, is such an example. Another major
software failure which could end up in a nuclear holocaust was that
of early warning systems controlling nuclear missiles. (For a detailed

review, see hGER?é,,)

Ho wever, in the past decade or so, considerable effort has
been devoted to the development of techniques for the systematic
design of well-structured software. The term ”stzucturgrd
programming' was first coined by E. W. Dijkstra LDIJ?Z«;& to express
a methodical attitude towards programming effort, that is the admission
of the limitations of our power of comprehension at any one moment.
This recognition can be used to our advantagia if we divide the problem
in hand into independently treatable parts ;WIR?l, WIR?SJ .

But, beside the unobvious task of recognising subproblems in a large
system, each of these subproblems znd/or their interrelations can

still be too complex to be mastered totally.

The measure of the complexity is the amount of information
to be apprehended at any one moment, and this amount can be
reduced via abstraction. Thus, by separating those attributes
that are relevant in a given decomposition of the task from those
that are not, we can end up with intellectually manageable subtasks

that we will call modules.
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After having emphasised the importance of program verifi-
cation,and examined the steps taken in that direction by means of
modularity and abstraction, we can now look into the whole process

of software development in this perspective.

At the beginning of the process is the concept we want our
software to implement. This concept can originate from our intuitive
understanding of a problem or can be conveyed to us by means of an
informal description. There can be many programs to implement it
correctly, but their correctness can be stated only in informal terms.
This is well away from proving formally that the implementation meets
the original concept. What we need is a formal description of the
concept which can be analysed for consistency, completeness and
conformance with intuition. This formal description will be called
a specification, and once it is proved that it captures the original
concept correctly, the latter can be abandoned, taking us onto firmer

ground than before, vis-a-vis program verification.

Obviously, through systematic decomposition and abstraction,
a modular specification will be produced ; giving way to a modular
implementation. At this stage, several layers can be inserted
between the formal specification and its actual implementation,

creating a hierarchy of abstractions.

At each step, the conformance of lower levels with the
specifications at the immediately higher level must be proved. Thus,
the whole proof issue is divided into several steps, by the systematic
application of the methodology in a top-down manner, hiding the lower
level implementation information from the higher levels to which it is

not relevant.

This program construction methodology is also helpful
for the rest of the software development process. The effects of
any subsequent change can easily be located, and because of the
information hiding inside each module and at each level, only the
concerned modules need to be modified. The specifications also

provide a good means of documentation, conveying the intents of their
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designers in a precise and unambiguous way. Any residual
ambiguity in the specifications would be uncovered during the

analysis for consistency, completeness and conformance with the

high level concept, before starting its implementation. Proofs for
each module can be carried out separately, assuming that the
behaviour of other modules will conform to their specification. There
is no need to wait until the entire program has been coded in order to
proceed with the proof. On the contrary, the stepwise refinement
process from the higher level specifications towards the lower

level implementations is not a linear one iSWASZ; . Each refine-
ment will provide feedback to previous steps, helping them to evolve
together. With this constructive approach to the software design ;
decomposition, abstraction and their specification issues become

a cornerstone to the whole process and the proof that the final product
(i.e. executable code) will meet its original concept is incorporated

into the whole development process.

The next chapter will present three selected techniques
to specify software objects which we found particularly important
and promising. One of them consists of writing implicit specifications
by describing the states of an abstract (and not necessarily finite)
state-machine. The second uses algebraic relations to define
abstract data types. The third is an attempt to bridge the gap between

specifications and their implementation.

The third chapter presents in detail the Pascal-Minus
Project which adopts the third approach of the previous chapter.
Pascal-Minus is a sub-set of Pascal which permits insertion of
assertions to state formally the intents of the designer for a given
implementation. Programs written in Pascal-Minus are translated
into the Functional Description Language (FDL) of the Department
to check them in relation to the specifications in the form of Boolean

assertions.

In the last chapter, an example will be given to illustrate

different points made in the preceding chapters.



2. FORMAL SPECIFICATIONS OF DATA ABSTRACTIONS

In this chapter, three specification techniques will be
introduced, illustrated with an example problem. One of them uses an
abstract state machine model to describe its states and the state
transformations that can be accomplished by the application of different
operations on it. The second technique defines an algebra by means of
axioms to describe the object of interest, thus requiring of its users
greater mathematical sophistication than the first one. The third
technique consists of extending an implementation language by
specification features, which can then be compiled together for both
static (compile-time) and dynamic (run-time) checks. A discussion
will follow on the respective merits of each method and the problems

experienced during their use.
2.1 Description of the example problem

The user's requirements of a system are often quite
difficult to formulate formally. They are usually described
informally in a natural language, and can be unnecessarily wordy
by going into the implementation details or incomplete by omitting
sensitive information about the expected behaviour of the system
under some conditions. It is not realistic to expect a text of
several hundred pages to be consistent, complete and up-to-date.
Even so, its very dimension surpasses the capacity of a human-
being to apprehend it in its totality. The necessity for concise,
consistent and complete formal specifications is beyond argument.
The mere statement of this fact is important, but we still have to
find the methodology based on a sound ground in order to be able to
proceed to the necessary checks to guarantee the aforementioned

' properties.

We have taken our example problem from everyday life :
How to describe a lift controller. The user will call the lift
from a certain floor, will wait for its arrival, will get in and push

the button corresponding to the floor he/she wants to get to and will
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expect the lift to stop at that floor. But, usually he/she will not

be alone in using the lift and other users with different and probably
contradictory wishes will interfere. If we want to avoid arguments
between passengers about which direction it should got first, or simply
make it more efficient both for the user's interest and the economy of

energy/time, we should find a fair strategy to control it.

The same problem is encountered in the specification of a
disc-handler. [HOA74, ABR79J The strategy, called 'lift
algorithm', is to go in the same direction until all demands in this
direction are satisfied, and then revert to the opposite direction and
so on. In this way, the demands are not satisfied on a first-come
first-served basis, but depend on the actual position and moving
direction of the system. Obviously, this is a cyclic, non-terminating
activity, and we have found the task of formally specif ying the general

problem difficult within a fixed discipline.

We will first introduce an algorithm in the form of
equations which will form a basis for requirement specifications of
the lift controller.‘ We will try to stick to the identifier-names chosen
to represent various properties of the system, in order to facilitate
the comprehension of the specifications in different techniques.

These following identifier names will be underlined.

The lift can be going up, down or stopped. The calls are

stored into a mem, indexed by the integer floor numbers, from/to

which they are made. The lift is at floor loc. max is the highest

floor required, min is the corresponding floor in the opposite direction.
_Spin keeps track of the direction of movement. (True if going upwards,
otherwise false) arrived (i) becomes true when the lift gets to the floor
i. By using them, we can write the following equations to describe
the behaviour of the lift. We can see these equations as guarded
commands, so whenever the expression on the left of ==» evaluates
true, commands on the right of x> will be executed, irrespective
of the order in which they appear. This is an apparently non-

deterministic specification but as the guards are disjoint, there will
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not be any non-deterministic choice between them at the time of
execution. So we can rather see them as independent machines
which execute the same instructions whenever their guard evaluates
true. There can be only one machine executing at any one moment
so that they can freely operate on the same data base without any
need for the control of its access. The set of these independent
machines forms a deterministic machine altogether. The equations

are given in Table 1.

stopped and mem (loc) :::> open door ; not mem(loc);

stopped and not mem(loc)&g_gi spin and max > loc :_:> up; increment loc;
stopped and not mem(loc) and spin and max = loc and min \ loc = not spin;
stopped and not mem(loc) and not spin and min < loc ﬁ down; decrement loc;
stopped and not mem(loc) and not spin and min = loc and max :\ loc ::%f.\spin;
not stopped and arrived {loc) and mem(loc) :’::> stopped; { '

up and arrived (loc)_a_gg not mem(loc) 2} increment loc ;

down and arrived (loc) and not mem {loc) ::> decrement loc ;

otherwise 3> skiE;

initially loc = 0 and stopped and spin ;
s thidmmtmeiesmsniaoron. erotemi— [G——
invariants max 2 loc and min \é loc;

Table 1. Lift Controller Specification

2.2 Specifying by a Description of Abstract State Machine :

The ideas introduced in the first chapter about modularity
and hierarchy of abstractions in structured programming are put into
practice by this specification technique. Modules are machines
at different levels in the hierarchy and lower level machines execute
the specified function of higher level machines. At the top level
is the machine, the behaviour of which we want to specify. As the
implementation details are hidden by means of a hierarchy of
abstractions, we can only observe the external behaviour of a

machine, in other words the denomination of abstract machines.
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The external behaviour of a machine can be described by
means of V-functions (Value functions) which return the value of a
state variable at the moment of their call, and of O-functions (Operation
functions) which describe the state transformations by attributing new
values to the V-functions in terms of their values before the transform-
ation of the state by an O-function call and the function parameters.
The set of possible V-function values of the machine defines its
internal state-space and a particular set of values denotes one of its
states. Each O-function call is a function, mapping a state of the state-
space to another one. This descriptive method was introduced by

-7

Parnas. EPAR?Z, PAR72a, PAR?S»}! .
Each V-function specification contains a comment clause
describing its result, a returns clause declaring the result type, an
initially clause defining its initial value and an exceptions clause
stating conditions under which the call will result with an error

notification.

An O-function specification contains a comment clause
describing the transformation accomplished by its call, an exceptions
clause as before, and an effects clause defining new values for each

V-{function.

Initially, exceptions and effects clauses are expressed

in terms of assertions. The assertions in initially are in terms
of module constants. For exceptions, the assertions are written

in terms of constants and the values of V-functions before the call.

In order to distinguish between the values of V-functions before

and after the call, the former is quoted. For effects,the

assertions are written in terms of constants and V-function values,

by assigning to the unquoted new values of V-functions, an expression
containing quoted former values and constants. These assertions

must hold upon exit from the O-function.

The specification methodology put forward by Robinson,

Levitt, Neumann and Spitzen from the Stanford Research Institute
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r 7
contains five distinct stages, 'LROB77, SP178, ROB77a, ROU77|
three of which use a formal specification language called 'SPECIAL'.

We will briefly introduce these five stages.

Stage 1 Each module, with a list of its V- and O-functions,
is placed in a hierarchical ordering. The visibility of these functions

at higher levels is decided at this stage.

Stage 2 ‘Each module is formally specified as described
before. The effects specifications of O-functions can be checked
for self-consistency, as an inconsistent module specification will
give way to an implementation whose correctness cannot be proved.
General properties of a module can be expressed in terms of global
assertions which can be used as lemmas to simplify the proof of a
program that calls functions of the module. They are written in
terms of V-functions of the module. Their proof can be carried out
by showing that they are true for the initial values of V-functions and

also after any sequence of O-function calls.

Stage 3 Decisions about how to represent the
state of level 1 in terms of the states of level i-1 are made. These
will be expressed by defining surjective functions from a subset T!

of the state space T of level i-1 to the state space S of level i.

There can be several states at level i-1 which can map to a single
state at level 1. As a single state transformation at level i can

be accomplished by a sequence of state transformations at level i-1,
not all states of level i-1 have images at level i. These aspects will
be illustrated during the specification of the lift controller by this
method. V-function values of level i are expressed in terms of
V-function values of level i-l. By substituting each V-function
reference in the specification of level i by its instantiated mapping
function expression, mapped specifications are obtained. These
can be proved consistent in the same way as in stage 2. Thus,
specifications of level i are transformed into assertions expressed

in terms of only V-functions of level i-1. By using specifications of
levels i and i-1, and the mapping functions, the correctness of the

implementation of level i in terms of level i-1 can be checked. At



-9

this stage several important system properties can be stated and

proved before any code is written.

Stage 4 Abstract programs using the functions of
level i-1 and the control constructs of a programming language are
written to implement each of the functions of level i. A proof of
correctness of these abstract programs with respect to the

specifications of level i and to the mapping functions between levels

i and i-1 must be given. This is accomplished by using an
extension of Floyd's method {FLOG?_E » axiomatizing the generation
of verification conditions for programs calling O-functions. The

input and output assertions for these abstract programs are derived

from the mapped specifications.

Stage 5 Primitive functions of level O and of the
abstract programming language used at stage 4 are translated
into executable code. The communication mechanism between the
levels must also be decided. The end product should behave in the
same way as specified at the highest level by user's requirements,

irrespective of the hidden behaviour of lower levels.

In this way, the highest level abstractions about ""what
is to be done?'" are separated from the data representation and
implementation problems corresponding to "how is this to be done?'".
The complexity to be dealt with at any level is reduced to an
intellectually manageable size. A concise and easily understandable
design is obtained, whose properties can be stated, even in the
absence of proofs. The proof of a large program is divided into
the proofs of several small programs whose properties are locally

expressible at each level,
After having described the methodology, we can now
apply it to the lift controller problem. Only the specification issues

will be dealt with (Stages 1 to 3).

The state of the lift controller will be completely determined
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by assigning a value to each of its state variables. These represent
the location of the lift {loc), its status, i.e. going up, going down or
stopped (r_rlglf_e—), the position of the door, i.e. closed or open, waiting
calls {mem) and its next status (spin). Table 2 gives the

specifications for the 1ift controller.

The initial state of the lift is described by the initially
clause for each of its state variables. We can see that the lift is
stopped at the ground floor with its door closed, and there is no

waiting call.

The effects of a call, of its subsequent arrival to a new
floor and of the opening of its door are described by the effects clause

of the state transformations call, arrived and next respectively.

type Lift Controller = module

V-{function loc

returns integer
initially @

comment returns the level of the 1ift

exceptions none

V-function move
g {

returns ?up, down, stopped ;

initially stopped

comment returns the status of the lift

exceptions none

V-functions door
returns i’{iopen, closed}

initially closed

comment returns the status of the lift-door

exceptions none
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V-function mem (i:integer)
returns boolean
initially \vjk (mem(k) = false)
comment returns true if floor i has been called,
false otherwise

exceptions none

V-function spin

returns {iup,down, stopped}
initially stopped
comment returns the next status of the lift

exceptions none

O-function call (itinteger)
comment insertion of a call for floor i
effects loc = 'loc’
% k (mem(k) = if k =i then true else 'mem’(k))
move = if 'spin' = stopped then
if i > 'loc' then up

else _i_:fi < '1oc! then down

else stopped

else 'move!

door = 1if 'spin’ = stopped and i = 'loc’' then open
else closed
spin = if 'spin' = stopped then

if i ) 'loc' then up
else if i < "loc' then down
else stopped

else'spin’

O-function arrived (itinteger)
comment  hardware signalling of the arrival to the
floor i

effects loc =1
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O-function arrived (i:integer) continued/....

“v/k (mem (k) = if k = i then false else 'mem' (k))

move =  if 'mem' (i) then stopped else 'move’

door = Af 'mem' (i) then open else closed

spin = if 'mem' (i) then
if 'move' = up and 3k:(k>i and "mem'{k})
then up
else

if Fki(k {i and 'mem'(k)) then down

else

if Fk:(k> i and 'mem’' (k)) then up
else stopped

else '"spin'

O-function next

comment 16s. after the opening of the door, this

function is automatically called to close

the door and assign the next status of the

lift.
effects loc = 'loc?
‘V(k (mem(k) = if k = loc then false else 'mem' (k))
move = ‘spin'
door = closed
spin = 'spin'

Table 2. Specifications for the lift-controller

At this stage, we can write global assertions to express
the general properties of the lift-controller, and prove them. As a
security condition, the door should be closed while the lift is moving.
In terms of state variables at this level, that gives :
E(move # stopped) and (door = open)__& = false. If we show that

this assertion is true for the initial values of V-functions and that

any sequence of O-function calls respects its truthfulness, we can
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be assured that this global assertion will never be violated

during the whole life-time of the specified module. Initially,
move = stopped and door = closed, so the assertion is true.

After a transformation by the O-function call, if the door is open,
then [(’spin‘ = stopped) and (i = ’10(:'):} must be true, in which
case move equals stopped, so the assertion is again true.

After a transformation by the O-function arrived, if the door is
open, then 'mem' (i) must be true, in which case move equals stopped.
Finally, after a transformation by the O-function next, the door is
closed. Now, we can be sure that in any conform implementation
of these specifications, never will the door be open while the lift

is moving.

We can also prove that, if the floor at which the lift is,
has been called, then the 1lift must stop. This can be expressed

as : E(move # stopped) and mem (loc)i = false, which again is
true for the initial state, and any O-function call which finds it

true, leaves it also true upon the execution of its transformation.
In the same way, if there is a floor, other than that at which the
lift is, which has been called, then the lift must move at its next

state. This gives | (i # loc) A mem (i) A (spin = stopped) = false.

/

These three global properties give us enough confidence
about the security and the fairness of the design, even before any
line of code has been written. This is a very positive point about
the method.

In order to illustrate the point about the mapped
specifications which were mentioned in the description of the third
stage of the method, we will go one level further down to give a
specification of the memory as a lower level module. At this lowest

level, we will hide the information about the numbei‘ of floors serviced

by the lift. This additional information will necessitate the insertion
of exceptions about the bounds of the memory. Table 3 gives the

specification of the module Memory.
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With the introduction of this module at level 1, the values
of the V-function mem at level 2 can be expressed in terms of the
V-function read at level 1. By substituting these new expressions
into the O-function specifications at level 2, we obtain the mapped
specifications. In the O-function call specification, the new value

of the V-function mem will be expressed by :

\7’1 k (read (k) = effects of write (i, true)).
In the same way, in the O-function arrived, the new value of the

V-function mem will be :

\V!k (read (k) = effects-of write (i, false)).

That is, the effect of the transformation expressed by the O-function
arrived, at level 2, on the value of the V-function mem, is implemented
at level 1 by that of the O-function write on the value of the V-function
read. The mapping function at the stage 4 of the implementation

will be : mem (i) = read (i).

At this stage, we can again prove general properties
of the lift controller, by using the supplementary information made
available at this lowest level. As the exceptions clause expresses
it, the lift is not allowed to go under the ground floor, or over
the highest floor (10 at this example), so we can prove that :

(0 { Toc £ N = true all the time.

type Memory = module
10

V-function read (izinteger)

[}

N:integer

returns boolean
initially Yk (read (k) = if 0£i¢{ N then false
else undefined

comment returns value of ith element in memory

exceptions bounds : i< 0 or i > N
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O-function write (i:integer, j:boolean)

comment sets value of ith element in memory to j

exceptions bounds : i< 0 or i N
2Lt

effects Vk (read (k) = if k = i then j
else 'read' (k))

Table 3. Specifications of the module Memory

2.3 Algebraic Specifications

The idea of binding together the storage structures
representing a type and its operations is not a new one. The class
construct of SIMULA 67 {DAH?O} denotes a collection of such
operations, without offering any representation - independent means
for specifying the effect of the operations. An abstract data type
specification is a unit which explicitly gives the properties of its
values and operations. A relatively large class of implementations
are then possible. In this way, the specifications contain only the
explicit relationships among the operations without going into the

representation details.

Basically, one of the two main approaches has been
adopted by different groups of researchers, although notational
variations can exist within the same approach. One of these -
approaches is the axiomatic specifications of Hoare E?‘HOA(DQ HOA?Z%;
which found its expression m the design of the programming language
EUCLID ELAM?? LON78 § The second approach is the algebraic
specificatlons method introduced by Guttag {GUT?S, GUT77, GUT7S,
GUT78a, GUT80, GOG78, LIS75 | .  An interactive system
for specification and verification has been developed at the Information
Sciences Institute of the University of Southern California. This
system, called AFFIRM, checks data type specifications for
consistency and completeness and carries out proofs based on these
specifications LMUS 77, MUS 80, MUS 80a, GER?C)J . In the

following, we will describe this second approach.
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An algebraic specification of an abstract type consists of
three parts, of which, the first two, giving respectively syntactic
and semantic specifications, are compulsory. The third part

deals with restrictions, if there are any exception conditions.

The syntactic part gives the names, domains and ranges
of the operations associated with the type. FEach operation, whose

range differs from the type of interest (TOI) is called an observer.

Between the operations whose ranges are TOI, we can distinguish
those which construct new values of the TOI (called constructors)
and others (called extensions) whose result can be expressed in

terms of constructors.

The semantic part is a set of axioms which defines the
meaning of operations by stating the effect of a constructor on the
values of the observers and the extensions. Only free variables,
if - then - else expressions, boolean expressions and recursion can
be found on the right hand side of the equations. In terms of the
abstract state-machine vocabulary, constructors are O-functions,
observers are V-functions, and extensions are O-functions whose
effect can be expressed in terms of other O-functions. An example
of algebraic specification is given in Table 4. for a set of integers

not greater than 255.

%

!

tvpe Set %‘integer“ﬁ

syntax
new set : —3 Set
insert : Set X Integer —» Set
has? i  Set X Integer —» Boolean
remove : Set X Integer - Set

semantics
declare s : Set ; i, i' : Integer
(1) has? (newset,i) = false
(2) has? (insert (s, i), i) =if i = i' then true

else has? (s,1i') i
e continued overleaf/. ..
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(3) remove (newset, i) = newset
(4) remove (insert (s,1),i') = if i = i' then remove {s,i")

else insert {remove (s,i'), 1)

restrictions

i> 255 '—‘—:?)» failure (insert, i)

Table 4. Algebraic Specifications for a set of integers

not greater than 255.

We can immediately see from the example that newset and
insert are constructors, has? is an observer and remove is an
extension. Any value of the TOI can be constructed starting from
newset and only by the application of a sequence of insert operators.
As this type is designed to denote sets which contain only integers
not greater than 255, any attempt to insert an integer greater than

255 will f{ail. The restrictions clause requires from the implementor

to notify this failure.

An algebraic specification of the lift controller has been
written {(see Table 5) to enable us to compare this method with the
previous abstract state-machine method. Two new observers, max.
and min have been introduced to keep track of the highest and lowest
floors inquired respectively. In this specification, new, call and

arrived are constructors ; loc, mem, move, spin, max and min are

observers ; and next is an extension (all the values of type Lift can
be constructed without using the next operator). An asterisk appears

before arrived and next in the syntactic specifications to indicate that

these are hidden operators which cannot be called by the users of
the type Lift. Their effect is as stated in Table 2 and does not

concern the users of the type Lift.

We will prove by data induction a property of the type
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Lift as specified in Table 5. This property was assumed to be

correct when we wrote the specifications, so its proof will not

only increase our confidence in these specifications, but will also

facilitate its comprehension by the readers who do not know that

this assumption was made.

type Lift

syntax

new : i 1,ift
call Lift X Floor - Lift

*arrived: Lift X Floor —» 1ift

loc : Lift —>» Floor )

mem: Lift X Floor -——}{true, false}

move: Lift ﬂ{up, down, stopped}
max ! Lift ~>» Floor

min : Lift —» Floor

spin: Lift —> {true, false}
*next: Lift ey 111t

semantics

declare 1: Lift ; fl’ f2 : Floor

i
s,

loc (new) = ;;1

loc {call (1, fl)) = Joc (1)

loc (arrived (1, fl)) = fl

mem (new, fl) = false

mem {call (1, fl), fz) = _i_f_jz = fl then true else mem (I, fz)

mem (arrived (1, fl), fz) =Af £, = f then false else mem (l, f,)
max (new) = -1

max (call (1, fl)) = _i_)_f__f1> max (1) then f; else max (1)

max (arrived (l’fl) = if f; = max (1) then f; - lelse max (1)

) min {(new) = +1

) min (call (1, £)) = if £; {min (1) then £ else min (1)

) min (arrived (1, fl)) = _ll.f..*fl = min {1} then fl + 1 else min (1)

contd overleaf/..
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(13) spin (new) = true
(14) spin (call (l,fl)) = if min (1) > max (1) then
Af f } loc (1) then true
else false
else spin (1)
(15) spin (arrived (1, fl)) = if mem (1, f,) then
i max (1) = f; and min (1) { f, then false

else

if min (1) = £ and max (1)>fll}§£_true
else spin (1)
else spin (1)
(16) move (new) = stopped
(17) move {(call (1,fl)) = if min (1) > max (1) then

if £ \) loc (1) then up

else
ity loc (1) then down
else stopped

else move (1)

) then stopped

(18) move {arrived (1, fl)) = if mem (1, £,
(1)

else move
(19) next {new) = new
(20) next {call (l’fl)) = call (1,f1)

(21) next {arrived (1, fl)) = if mem (1, fl) then

if spin (arrived (1, fl)) and max (1) \:;» f, then
call (1, max (1))

&

eLse

if min (1) <f1 then call (1, min (1))

else arrived (I, fl)

else 1
Table 5. Algebraic specifications for a Lift Controller

The property to be proved is :

;rmn (1) > max (1) g = % f1 (mem (1, £f,) = false)

1
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It must be true for the constructors which do not take any argument.

The only operator of this kind is new for which max (new) = -1,
min (new) = +1 and mem (new, fl) = false, so the equivalence relation
is true. If we assume it to hold before an execution of the operation
call, we must prove that it will still hold afterwards. The axiom
5 tells us that after call there will at least be one fl such that mem (1, fl)
will be true. There can be four cases for min and max :

Before call After call

g’!’max (1) = fl (Axiom 8)

(a) fl >f min (1) A fl > max (1) 'T"> ‘{»min (1) unchanged (Axiom 11)

!’ﬁmax (1) = fl (Axiom 8)

(b) min (1)> £ > max (1) = me (1) = £, (Axiom 11)
=

S

.
{rmax (1) unchanged (Axiom 8)

x (1) unchanged (Axiom 8)

(c) fl < min (1) A THax (l);' fl min {1) = fl {Axiom 11)

' -
(d) fl\< max (1)/\ fl}'mm = {\rmn (1) unchanged (Axiom 11)

In all cases, we will end up with max <l)>éu min (1), so
that both sides of the equivalence relation will evaluate false.

The equivalence is conserved by the application of the operation

call.
We have to repeat the same reasoning for the last
constructor arrived, which is a hidden operator. It is applied

whenever the lift reaches a new floor on its movement, and we can
see from the axiom 17 that the 1ift can only be put into movement

by the application of call which introduces a new value true into mem.
So we know that there is at least one fl such that mem (I, fl) will be
true before the application of arrived. As we assume that the
equivalence relation holds before the application of arrived, we can
say that max (1)2; min (1) will be true at that time. It can be proved

that the case max (1) = min (1) denotes the situation in which there is
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just one element true in mem corresponding to the next coming floor.

In this case, after the application of arrived :

(max (1) =£ -1 (Axiom 9)

f, = max (1) = min (1) => . _ ! :

1 v min (1) = £+ 1 (Axiom 12)
As the only element of mem which was true before the application,
will become false {Axiom 6) ; Zmln (1) > max (I)IA\?Jfl (mem(l, f,) =
false) will hold after, keeping the equivalence relation true. It
can also be proved that the case max (1) \» min (1) denotes the situation
in which there is an element true in mem which does not correspond
to the next-coming floor. In this case, the application of arrived
will leave that element true (Axiom 6), so we have to prove that the

other side of the equivalence relation is also false :

Before arrived After arrived
max (1) > min (1) == max (1) % min (1) (Axioms 9,12)

The only effect of arrived on max and min can be incrementing min or

decrementing max so that the relation ''greater than' can only be

transformed into ''greater or equal'' which concludes the proof.

2.4 Programming Languages with Specification Facilities

The ability to describe the behaviour of a software product
in terms of an abstract object, and to demonstrate its global properties
by using only the formal specifications of that object, is a constructive
approach to the whole software production process, with a deliberate
emphasis on the verification issues. However, the 'gap ' between
the formal specifications and the final executable code can hamper the
expected benefits of the approach, and all our efforts for producing

and verifying the formal specifications can be put in jeopardy.

To avoid this pitfall, one can take a programming
language and extend it, by incorporating into it the necessary

features to the expression of specifications. This approach has
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given birth to GYPSY [AMB??] » EUCLID [LAM??, POP77, LONT7S,
HOL78, WOR79, WORSl| and SP-EUCLID [AND78] , to mention
only three of them. They are both based on PASCAL and allow for
the gradual refining of the specifications into an implementation

to be expressed in the framework of the language.

The verification being the main concern for both of these
projects, features of Pascal which made the verification difficult
without adding much to its power of expression, were deleted
altogether. These include functions and procedures as
parameters, labels, GOTO statements, real numbers and, variable
parameters for functions which now become pure mathematical

functions without any side-effect. While-do and repeat-until loops

of Pascal are replaced by a more general loop construct with
specific exit points. In the following, we will concentrate on
Euclid and give a specified implementation of the lift controller

written in it.

A five-man committee was commissioned in 1976 to
make minimal changes and extensions to Pascal in order to obtain
a verifiable system programming language, with the proclaimed aim
of "transferring more and more of the work of producing a correct
program, and verifying that it is consistent with its specification,
from the programmer and the verifier (human or mechanical) to the

- ~
language and its compiler" éPOP??j . This gave birth to Euclid.

The main atomic unit in Euclid is a module which brings
together related types, variables and routines (procedures and
functions) with initialization and finalization components that are
executed whenever instances of the module are created or destroved.
In that respect, they can be seen as new-type-constructors with
the advantages of abstract data types. The dual aspect of this is
the information hiding achieved within a module, which enables
a system-designer to build a hierarchical structure based on

them. We will discuss that aspect more in detail later.
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Each module, which has its own local variables, types
and routines declared within its body, can only use a name declared in
another module if that name appears explicitly in its import-list as
well as in the export-list of the module to which it belongs. 1If a
variable name is imported (respectively exported) only for
referencing without changing its value, a readonly clause must
precede it in the import-list (respectively export-list). A new
assignment to a variable outside its own module can only be made,
if and only if, its name appears, preceded with a var clause, both
in the import-list of the module which wants to change its value,

and in the export-list of the module to which it belongs.

The same rules apply to the routines (procedures or
functions), which can only import names local to their module or
already imported into it ; with the exception that the functions cannot
import variables. To gether with the restriction on variable
parameters, the Euclid functions behave like mathematical functions.
Thus, they can only have parameters preceded with a const clause
in the parameter-list, or can only import names preceded with a
readonly clause in their import-list. Procedures can have both
call-by-value parameters (preceded with a const clause as for the

functions) and call-by-reference parameters (preceded with a var

clause in their parameter-list). They can also reference a name

by importing it readonly or change its value by importing it var,

In this way, the interface between the modules becomes
explicit and the conformance of the module bodies to these import-
export rules can be checked at compile-time. For array indices
within bounds and variant records, these checks will usually depend
on dynamic information, although the compiler can often use declared
ranges or flow analysis to do partial checking. In these instances,

the Euclid-compiler will generate legality assertions which must all

be verified for the program to be legal, i.e. consistent with the
language specification, with a defined meaning during the execution.

These assertions take the form of Boolean expressions.
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The explicit control over the visibility of names in
modules and routines is a very important issue, both at the design
stage, to see directly the relationships between modules and
routines ; at the implementation stage, to hide the implementation
details by not exporting them ; and at the maintenance-modifications
stage, to locate easily the effects of a change in a module or routine
on the other modules or routines. Although Euclid programs may
tend to be longer on average than equivalent programs in other
languages and thus take longer to write, the extra information
supplied allows the Euclid compiler to do a much more comprehensive

check, and provides a good means of documentation.

As we had stated at the beginning of this section,
verification is the main concern behind the design of Euclid.
Therefore, the language has syntactic means for including
specifications and intermediate assertions. In Euclid, an assertion
is usually a Boolean expression, which is evaluated when the execution,
reaches the point at which it appears. If the expression evaluates
'true', then execution proceeds, otherwise a run-time halt occurs.
Assertions written in a richer language, containing, for example,
quantifiers and specification routines, can be bracketted as
comments, to be submitted directly to the verifier. These will be
proved either manually or mechanically by using the axiomatic
method of Floyd-Hoare |FLO67, HOA69, HOAT3] .  The proof

. . . r N T
rules for Euclid are given in | LON78 ;

Routines are specified by pre and post-assertions .

The pre-assertion must evaluate 'true' at the point the routine is

called, and the post-assertion at the point of return.

Modules are specified by a pre-assertion, an invariant-
assertion, an abstraction function and specifications for exported
routines and types. The invariant-assertion of a module must
evaluate 'true' whenever an exported routine of the module is called

and whenever it returns, thus maintaining the data integrity of the module.
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Moreover, assertions may be placed at any point in the

flow of control, to express intermediate properties or loop invariants.

There is no provision for exception-handling in Euclid,
as a verified programis expected not to cause a run-time software
error, and recovery from unanticipated hardware failures, a non-
trivial task. Anticipated conditions must be dealt with using the

normal constructs of the language.

In Euclid, a type declaration may have formal parameters,
thus making the relationship among similar types to be made explicit
in the program. Variant record definitions will use this facility,
with the tag being one of the formal parameters. A module is a type
constructor, several instances of which can be created by declaring
names of that type. And finally, a type or routine declaration
can be made visible in the whole module, by prefixing it with a
pervasive clause. Names with a pervasive declaration need not

be imported into other routines of the module.

In order to illustrate the specification means of Euclid,
a specified implementation of the lift controller is given in Table 6.
We can see that only the procedures Asked and Arrived are visible
outside the module, which constitute the only interface with the
‘outside world',i. e. users and hardware. Whenever a new instance
of type lift is created, all its local variables are initialised and it will
wait in that initial state until a call is made from outside to the
procedure Asked, to require it to go to a specific floor and open the
doors. While it is moving, other calls can be received together
with hardware signals (i. e. calls to the procedure Arrived) warning
it of an arrival at the next floor in the direction of the movement.
Two type definitions (i.e. Floor Type and Movement Type) are
exported too, to avoid redundant declarations of the same type outside

the module.



~-26-

const number Of Floors :=10;

var Lift:

module

imports {(number Of Floors);

exports (Asked, Arrived, Floor Type, Movement Type);

invariant ((spin=stopped '::> move=stopped) and
(move # stopped = doors = closed) and
(move=up = max > loc) and
(move=down :§ min \ loc));

pervasive type Floor Type = O.. number of Floors ;

pervasive type Movement Type =(up, down, stopped);

pervasive type Door Type = (open, closed);

var loc, max, min:Floor Type ;

var move, spin:Movement Type ;

var doors : Door Type ;

var mem:array Floor Type of Boolean;

pervasive procedure Open Doors=

imports (var doors, var mem, var move, readonly spin, readonly loc);

pre{move = stopped and mem(loc) and doors = closed);

post (not mem (loc) and doors = closed);
doors:=open; \_x_zix_i:c_‘lés. ;doors:=closed;
mem(loc)::false;move::spin;

end Open Doors ;

procedure Asked (const floor:Floor Type)=
imports {readonly loc, var move, var spin, var mem, var doors)
preltrue);
post {mem{floor));

>

begin
mem(floor):=true;

if spin=stopped then
if floor > loc then

begin

move:=up;spin:=up;

end;
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else

if floor=loc then Open Doors;
else
move:=down; spin:=down;
end;
if floor > max then max:=floor;
if floor < min then min:=floor;

end Asked;

procedure Arrived=

imports (var loc, var move, var spin, var mem, var doors,
number Of Floors);

pre(move ¥ stopped and spin # stopped and doors = closed);
post (not mem (loc) and doors = closed);

begin

if move=up then loc:=loc+l;

else loc:=loc-1;
if mem (loc) then
move:= stopped;
if {max=loc) and (min loc) then spin:=down;
if (min=loc) and (max > loc) then spin:=up;
ifﬁ_(max <= loc) and {min > = loc) then spin:=stopped;
if max = loc mmax::@;

if min = loc then min:=number Of Floors;

Open Doors;

end;

end Arrived;

initially
imports (var loc, var max, var min, var move, var spin,

var doors, var mem, number Of Floors);

begin

.:fﬁf . . @ ’ ins = -
loc:=4/; max:=J; min:=number Of Floors;
move:=stopped; spin:=stopp‘ed; dooors:=closed;
for i in Floor Type

loop

mem(i):=false;
end loop;

end;

end module; ‘
T Table 6. Lift controller as a Euclid module



~-28-

As it was anticipated at the beginning of this section, a
Euclid module can be seen as an implementation of an abstract data
type together with its specification: import, export and parameter lists,

type and var declarations of a module, representing a syntactic

specification of the abstract data type, and, routine bodies together
with initialization and finalization parts giving the semantics of it.
This is the 'package' aspect of a module, putting together variable
and type declarations and the operations which can be accomplished

on them.

At the same time, only a limited number of variables,
types and routines of a module are made available through its
export-list to the 'outside world’, hiding all the implementation
details from outside. This aspect has important consequences for
both software specification, implementation, verification and maintenance-

modifications processes .

At the specification level, Euclid modules make the top-
down design approach both possible and natural. The concept
to be specified at the highest level can be gradually refined through
a hierarchy of modules. The obligation to specify explicitly the
interface between modules, through import, export-lists, will
force the designer to think carefully about the relationship between
modules, even before their implementation has started. In this
way, only the objects necessary to the interface will be made
visible, abstracting from the implementation-choices about how a
particular data object or an operation is going to be expressed in terms
of a particular programming language construct. As it was
explained in the first chapter, this is the only valid approach to the

development of large software systems.

Once the top-down design based on modules has been
completed, by stating explicitly the relationship between the
modules through import-export lists, and, by specifying the
functionality of each module with a pre-assertion, an invariant-
assertion, an abstraction-function and specifications for its exported

routines using pre- and post-assertions ; separate implementation



of each module and its routines can start. If a difficulty

encountered during their implementation forces us to modify the initial
structure of the software, the transparency of the interface between
modules will facilitate the task by assisting us to locate easily

the effects of a change on the overall structure. Implementation

of each module can be done separately, by assuming about imported

objects that their implementation will conform to their specification.

After a complete implementation in Euclid of all modules
and their routines has been obtained, it can be compiled EHOL80£
to check for the conformance of the code to the rules about import-
export lists as well as to the syntactic definition of the language.
Whenever dynamic information is needed, as in array indices
within bounds or variant records, the compiler will produce a
legality assertion which must be verified afterwards. All pre-, post-
invariant- and legality-assertions in the form of Boolean expressions
are compiled too, and the code augmented with these assertions
can be run for debugging. An assertion, which evaluates 'false'
at the point of its execution, causes a run-time halt with a suitable
message. Although testing cannot prove the correctness of a
program, it can significantly reduce time and energy wasted in
looking for proofs of programs still containing bugs. After a
reasonable degree of confidence has been gained through debugging,
proofs can be carried out by using the axiomatic method of Floyd-

Hoare which will be examined in the next chapter.

During the maintenance-modifications phase, the modular
structure of Euclid programs, together with their specification,
facilitates comprehension and helps in localising the effects of a
change. These effects are minimised by the information-hiding
inside the modules, and a complete module body can be changed
without affecting its environment, if its exported objects conserve

the same functionality.
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2.5 Discussion

After having introduced three methods to specify, implement
and prove software objects, we will discuss their relative merits

and deficiencies.

The state-machine method of Parnas builds an abstract
object by defining the effects of a state-transformation on the
values of its state-variables. This is a non-procedural
specification method, defining each operation separately in a
static way with a reasonable degree of abstraction, and permitting
the proof of global properties of the specified object before its
implementation. The effects of a transformation are expressed
in terms of simultaneous (possibly conditional) assignments to the
state variables, leaving out all iteration and recursion possibilities,
and thus necessitating introduction of several operations to

express a succession of transformations.

In 1978, an attempt was made, by the TRW Defense and
Space Systems Group, to extend Euclid to accommodate the state-
machine method, which gave birth to SP-EUCLID. This attempt
was motivated by the necessity to verify that the operating system
developed for the Defense Advanced Research Projects Agency
(DARPA) was meeting Department of Defence security requirements.
A more detailed analysis of the approach can be found in E:AND?S;

Another attempt, by the Federal Systems Division of the

IBM Corporation, to use the concept of a state-machine as a basis

for specifying modules, was reported in 1 SHA8Z§2

Although, the degree of abstraction and formalism,
achieved by the non-constructive approach of the algebraic method,
is higher than the one achieved by the first method, it is usually

very difficult to find the characterising operations and to express
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the relations between them in the algebraic model. Our own
experience, and discussions with Dr. Guttag, have shown us
that sooner or later one feels compelled to reason in terms of a

model other than that of the algebraic specifications.

As the attempt to prove certain general properties of the
specified model has shown us, the data induction of the algebraic
method is much longer than proving global assertions in the state-
machine model. On the other hand, tools can be developed to
assist in the design, implementation and verification of algebraic

specifications.

It also emerges from the discussions in the literature
that algebraic specifications are not appropriate for specifying
all possible tasks. For example, it might be impossible to find
a finite representation of a type by operations and relations
between them {I\iAJ??;: .

In all modesty, one can say that, for a given problem,
a specification technique can prove to be less appropriate than
the others. It is obvious for the example problem of this chapter
that the description given in Table 1 is the simplest and the shortest
of all, and therefore the easiest to comprehend. But the same
formalism could be completely inadequate for a different problem.
Although it is very tempting to 'compare! different techniques
by applying them to the sarme problem, their respective evaluation

should not exclusively be based upon that restricted experience.

The approach of unifying the means of specification and
implementation, in the same notation, is obviously less formal
than the others. But, it has the no less obvious advantage of
bridging the gap between the formal specifications and their
implementation by enabling us to express them both under the
same formalism. They are also easier to write and to understand
than in the first two methods. The possibility of using the compiler

to do important checks about module interfaces cannot be under-
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estimated. These reasons made possible the design, implementation
and checking of a large piece of software (about 60000 source lines)
in Euclid [WORSI] . This is to compare with the Delta

Experiment in the algebraic method (roughly 1000 lines) which

took 6-8 months [GER79] .

The module construct of Euclid can be used both to
create instances of abstract data types and to assist us in the design

of large software systems in a top-down manner.

The advantages of unifying specification and implementation
notations pushed us towards the third approach. The existence
of a system capable of assisting in the verification process was also
an important factor. These were the main reasons behind the

Project Pascal-Minus which will be presented in the next chapter.

As for Gypsy and Euclid, we have chosen Pascal to
start with, and eliminated features such as, procedures and functions
as parameters, labels and GOTO statements, and real numbers

which made the verification difficult.

The idea behind this project is to write specified
implementations as in Euclid and to translate them into the
Functional Description Language (FDL) to carry on the necessary
checks about the conformance of the implementation in relation to
the specifications written in the form of Boolean expressions.

The next chapter will present in detail our approach.
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3. PASCAL-MINUS PROJECT

In this chapter, after having explained our motivations
in taking a particular subset of the programming language Pascal,
which we call Pascal-Minus, and translating the programs written
in that subset of Pascal into the Functional Description Language
(FDL) of the analyzer currently being used at the Electronics
Department of Southampton University, so that the pre-, post-assertions
and the loop invariants introduced into the original Pascal-Minus
program texts can be checked by proving the verification conditions
generated by the analyzer, we will give a detailed description of the
implementation of our translator, together with a precise syntactical
definition of both the input and the output languages, i.e. Pascal-
Minus and the FDL respectively. We will also discuss the possible
extensions to the system so that the initial Pascal-Minus can be
enriched to include more powerful control structures, thus enhancing
its power of expression and conciseness without adding an excessive

burden to the verification process.

3.1 Motivation :

In the preceding chapter, we have introduced three methods
of specifying software objects, and discussed of their relative merits
and shortcomings. After having written a complete set of consistent
specifications, the next step consists of gradually refining them down
to the executable code level. At this stage, we have in one hand
the specifications which state formally, in one way or another, the
original intents of the designer, and in the other hand the
implementation in a programming language which is supposed to
embody these original intentions. Obviously, the task is to

prove that the latter performs what was intended by the former.

For this purpose, two logically equivalent techniques have
been suggested and have found a large circulation since their
formulation. They both use assertions to state what must be true

of the variables at different points of a program. From the point of
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view of program execution, these assertions are merely formal

comments and no code is generated during the compilation.

The first approach, which is generally called "Floyd-Hoare
Axiomatic Logic" FLO67, HOA69, HOA7l, HOA72 | consists of
writing rules of in}erence to denote the semantics of the programming
language constructs. Beside the fact that these constitute a formal
definition of the semantics of the programming language in hand, they
can also be used to reason formallX about the programs written in
that particular language 'HOA73

Given a program with pre-, post-assertions and loop
invariants, one can then start from the post-assertion, and using
the rule of inference for each language construct, go in the opposite
direction of the program execution until one reaches the beginning
of the program. After each inference, a condition is generated
which must be true at that point of the program, if the post-assertion,
which states the expected properties of the program is to hold at the
end. These conditions are called 'verification conditions' and
the tool which generates them, starting from the post-assertion
and using the rules of inference of that par ticular programming

language, is called a 'verification condition generator',

As an example, we can give the rules of inference for
the 'assignment’, 'compound', 'if' and 'while' statements of

5 =¥
Pascal §HOA73_j which are maintained in Pascal-Minus :

Assignment Statements : PY { XSy P
C P
.0
Compound Statements : P. 13 S;+P; fori=1l..n
R X : 1
Po_v begin Sl’SZ" o s ,Sn endIPn
M coA
If Statements - P, B ‘hslf: Q, P,—B \‘\.S 25 Q

P{iB then Sl else SZ}Q
C N

PABS:Q, P,—B2Q

P if B then S| Q

-

-
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While Statements s P B S'}\f P
P . while B do Sr p,\"“sB

~

where : Pi, Q are logical formulas describing properties of data ;
P;S} Q is an assertion which expresses that, if P
is true before the execution of S, then Q is true
after the execution of S. If the execution of S does

not terminate, it is also true.

Hl’ e ¥ 5 Hn
p— is a rule of inference which states that
whenever Hl’ cowise % g Hn are true assertions, then

H is also a true assertion ;

Pyx means substituting y for all free occurrences of

x in P.

If one can prove all the verification conditions, then one can
affirm that whenever this program is executed, with initial values
for which the pre-assertion is true, and it does terminate, then the

post-assertion will be true at the termination.

The second approach, called 'symbolic execution', simulates
the execution of a program by maintaining a 'state vector' containing
the symbolic values possessed by each program variable. For each
path through the program, a 'path condition', which states in terms
of symbolic values of program variables the condition under which
this path can be executed, is recorded together with the actions
accomplished along that path, allowing us to apprehend the input- _
output relations established by the execution of that program [DANSZ_i ;

Depending on the purposes of the analysis, the length of
the paths can be fixed in advance or particular paths simulated
by a judicious choice of symbolic values for some particularly

important variables.

Both approaches are partly mechanizable, taking away from
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the humans the tedious and error-prone steps, and leaving them
with the important strategic choices about the insertion of assertions
at particular points of the program, deciding which paths to follow

in particular or proving the verification conditions.

The Analyzer at the Electronics Department of Southanpton
University adopts the second approach and, given an initial 'state
vector' consisting of particular symbolic values for the program
variables and a particular path, simulates the execution of that path

either statement-by-statement or by using a reduced form of it.

The input language to the Analyzer is the FDL for which we

will give a syntactical definition.

Our aim in undertaking the Pascal-Minus Project was to
enable us to use the existing tools at the Department to analyse programs
written in a sub-set of Pascal, made free from constructs which
unnecessarily complicate the verification issues. Certain constructs
have definitely been abandoned, others have provisionally been deleted
from the initial subset to be added later on, once a skeletal system
becomes operational. We shall now proceed to explain our choices

which determined the actual form of Pascal-Minus.
3.2 Which Subset of Pascal?

Although Pascal has widely been accepted as a 'clean'
programming language, it was not exempt from ambiguous and /or
insecure features EHAB?B, WIR75, WEL77 . Even its own
designer was recommending the deletion of the GOTO statement.

Much of the criticisms were directed against functions and procedures
as parameters, array bounds, dangling references via pointers,
variant records, labels and GOTO statements, and case statements.
These criticisms were formulated from the stand-point of the users.
When it came to define a programming language based on Pascal,

with a priority to the program verification issues, then several

language features were deleted to improve verifiability without undue



~-37-

loss of power of expression. These included functions and
procedures as parameters, labels and GOTO statements, real
numbers, multi-dimensional arrays and input~output facilities,
giving birth to EUCLID [LANI??, POP77, LON78, HOL78, WORT79,
WORS1] .

In making our choices, we have taken into account these
developments and definitely abandoned Pasal features which are not
in EUCLID,

On top of that and in order to obtain pure functions without
any side-effects, we do not allow Pascal-Minus functions to have
call-by-reference parameters. Therefore a parameter list for a

Pascal-Minus function cannot contain a 'VAR! clause.

We also wanted to replace each procedure call by its body
after having assigned the actual values to the call-by-value parameters,
so that the procedural structure of Pascal programs could be
transposed into the FDL by 'unwrapping' procedure calls. The same
consideration applies to the function calls inside the expressions.
Before a statement, containing an expression with a function call in
it, is translated, the function body together with the assignment(s)
to the function identifier is unwrapped.  This obviously necessitates
the forbidding of circular calls and recursive functions or procedures,
in other words, the call graph of the program to be translated must be

acyclic.

To simplify the initial task of building an operational system,
certain Pascal features have provisionally been deleted. Repeat-
until and for loops are omitted, but the while-do loop is retained.
This restriction does obviously not diminish the power of expression
of the language. As it will be discussed under the ‘extensions'
heading, all these constructs will be replaced with a more general

loop construct with specific exit points. With and case statements

have also been deleted from Pascal-Minus.
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As for the predefined types and data-structures, only integer,
boolean, character and scalar types are kept. The only constants
belong to the defined scalar types. The pre-defined infix Pascal
H

operators, 'or', 'and', 'mod' and 'integer division'! are also kept.

Appendix I gives the syntax diagrams for Pascal-Minus.

The Pascal-Minus Project consists of building a tree to
represent all the declarations. All the attributes of these identifiers
are kept in records pointed from the tree. Each procedure or function
identifier also possesses a pointer to its parameter list and another
pointer to its body which is a linked list of statements. Once this
tree is built, the whole or the parts of it can then be translated into
the FDL in an interactive way with the user. The part of the
translator dealing with that tree is essentially a syntax analyser,
very smfular in form to other commonly used syntax analysers for
Pascal LPEMSZ WIRS8IL, AMl\/[Sl - Instead of generating P-code
or assembly code or any other mternal form, it generates a syntax
tree which is then traversed to transform it into the FDL form.

These points will be explained in detail under the heading 'Description
of the Implementation’. Before doing that, we must now describe
the FDL.

The FDL contains assignment, if-then-else and GOTO

statements with labels. The only predefined types are integer and
boolean. Predefined 'or', 'and' infix operators exist. There can

only be one program body between 'START' and 'FINISH' clauses.

This last point necessitates the renaming of procedure
and function parameters and local variables in order to distinguish
them from the global variables, declared at the outermost program
level, when the sub- -programs will be unwrapped. Labels are

unsigned integers.

There exists extensions for Abstract Data Types, but these

are not involved in the translation from Pascal-Minus.

In order to illustrate the translation issues, an example
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program written in Pascal-Minus and its translated form into the

FDL can be found at Figure 1.

3.3 Description of the Implementation :

The implementation is written in standard Pascal and makes
just over 1500 lines. The main program PMINUS consists of calls
to four procedures : COMPINIT, DECLARATIONPART, BODYPART
and QUERY respectively, which we will describe in detail after an
introduction to the data structures constructed and used by them.
These four procedures are completely independent one from the other

and intervene sequentially to perform their task.

COMPINIT initialises the whole system by {illing the symbol-
buffer SYMBUF, by entering the predefined types 'integer', 'boolean'
and 'character', together with two scalar values 'false’ and 'true'
of the predefined type 'boolean'. It also reads the main program
heading and enters the program identifier, so that when the
execution of COMPINIT terminates, the system is ready to receive
all the declarations, the sub-program bodies and the main program
body by calling DECLARATIONPART and BODYPART one after

the other.

3.3.1 Data Structures

COMPINIT and DECLARATIONPART build two main data
structures. One of them is the tree which keeps record of each
identifier together with all its relevant attributes. A main program
variable, OUTERBLOCK, points to the root of that tree named
IDENTIFIER. IDENTIFIER is a record with the following fields :

Name : Identifier-name in a packed array of eight
characters ;
Name 1 : Renamed variable identifier by adding a '##'

and an integer in the range of 1 to 99 corresponding
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A Pascal-Minus program and itstranslated form into the FDL

Figure 1.



_41-

to the static declaration level of the variable,

a packed array of eleven characters.
Rlink, Llink : Pointers to the immediate right and left
neighbours, pointing both to records of type

IDENTIFIER in the tree.

Next : Used only for procedure and function identifiers,

their parameters and identifiers of an enumerated
type, pointing to the rest of the list, in the order
they appear in the parameter list or in the
enumeration list ; nil for the last identifier or

for a function or a procedure without parameter ;

Idtype i Pointer to the second structure which keeps
D e

record of the identifier types, nil for a procedure

identifier ;
Variant fields :
Konst ¢ Used only for identifiers belonging to an

enumerated type, keeps their ordinal number ;
-{( For a declaration, Colour = (Red, Blue, White),
Values is 0 for Red, 1 for Blue and 2 for White

Formalvars, Used for parameter identifiers and for variable
Actualvars : identifiers local to a sub-program (i. e. function
or procedure), Vlev keeps the static declaration

level ;

Proc, Func :Pflev is the static declaration level of the sub-

program, and equals the Vliev of all its parameters

and local variables ;

Firstvar points to the first parameter identifier

in the tree, if there is any, otherwise to the first
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declared local variable identifier ;

Bodi points to its body.

The second data structure, named STRUCTURE, is a record
keeping the type information. For variables of standard type as
'integer' and 'character', there is a special pointer, INTPTR and

CHARPTR respectively, and there is no need for any special entry

to that record. For enumerated types, Fconst points to the first
element in the enumeration list. Nom keeps the type-identifier

in a packed array of eight characters, Noml keeps the renamed type-
identifier in a packed array of eleven characters, as for a variable

identifier.

Display is a main program variable and plays the rdle of a

stack for sub-programs. Whenever a new sub-program declaration
is encountered, a new record is pushed into the array. Fname

points to the first parameter or local variable identifier of the sub-
program. Pname points to the sub-program identifier. Whenever
a sub-program body ends, the record corresponding to that sub-

program is popped. Top is the index to that array.

Dict is also a main program variable and consists of an
array of pointers to a record of type IDENTIFIER. A new element
is entered to this array whenever a new sub-program declaration
is encountered. DICTEO} points to the main program identifier,
the subsequent elements of the array point each to a different sub-
program identifier, in the order they appear in the program text.
Therefore, there will be just one assignment to each element of the
array during the whole lifetime of PMINUS . Level is the index to

that array.

Symbuf is a packed array of 1K characters, Symcursor is its
index. Symbuf stores the Pascal-Minus text input to the system, in
2ymbul P y

its original form, and each time it is consumed, the procedure Readtext

is called to fill it again, until the end of the input text.
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Sy of type Symbol is the last symbol read by the procedure
Insymbol which recognizes the different tokens of the language.
If the last symbol is an operator,Op stores its kind ; if it is an integer,
Val stores it ; if it is an identifier or a reserved word of the language,

Id of type packed array of eight characters stores it.

Figure 2 shows the representation of names and their

attributes for the program in Figure l.

3.3.2 Building up a Dictionary of Names

DECLARATIONPART builds the whole IDENTIFIER tree.
Depending on the existence of the different possible parts in the
declaration-list being processed, it will call in turn procedures
TYPEDECLARATION, VARDECLARATION or PROCDECLARATION
until all the declaration-list is exhausted and a sub-program body or
the main program body is encountered. DECLARATIONPART and
BODYPART both use the well-known recursive descent technique,

found in all one-pass Pascal compilers.

TYPEDECLARATION will enter the new type identifier
into the tree, by a call to the procedure ENTERID. As the only
user defined types can be of enumerated kind, the procedure
SIMPLETYPE will be called to process the enumeration list. Upon
termination of the procedure SIMPLETYPE, new type definitions
can be processed, if there is any, otherwise TYPEDECLARATION

terminates.

SIMPLETYPE will create a record of type STRUCTURE
and will enter all the identifiers in the enumeration list into the tree.
Fconst of the newly created record will point to the first element of
the enumeration list, and the elements of the enumeration list are
linked together through next of each element entered to the tree.
This procedure has a call-by-reference parameter which returns
the pointer to the type information kept in STRUCTURE for the type

identifier which has just been processed.
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VARDECLARATION enters the variable identifier into the
tree by calling ENTERID as an actual variable, stores the static
declaration level in Vlev, and calls the procedure SIMPLETYPE to
get the pointer to the type information corresponding to its type
identifier. This procedure will terminate after having processed

all the variable identifiers.

PROCDECLARATION will enter, by calling the procedure
ENTERID, the sub-program identifier into the tree, as well as
into the stack Display and the array Dict . After that,it will call
the procedure PARAME TERLIST to process the parameters of the
sub-program, and for a function it will call the procedure SEARCHID
to find the pointer to the type information corresponding to the result
type identifier of the function. This result type pointer will be

stored in Idtype corresponding to the function identifier.

PARAMETERLIST will enter the parameters and their
respective types into the tree as in VARDECLARATION by calling
ENTERID and SEARCHID. On top of that, it will make the difference
between a call-by-value parameter and a call-by-reference parameter.
For the latter, if it belongs to a function parameter-list, an error
message (FUNCTIONS CANNOT HAVE VAR PARAMETERS) will be
printed out. Next corresponding to the subprogram identifier will
point to the first parameter identifier, if there is any, otherwise
it will be nil. Next corresponding to each parameter identifier
will point to the next parameter identifier in the parameter-list,
otherwise it will be nil. This procedure will start by processing
the left-parenthesis and will terminate by processing the right

parenthesis.

After the last sub-program declaration will have been
processed by the procedure PROCDECLARATION, the procedure
DECLARATIONPART will terminate and that will cause a call
to the procedure BODYPART from within the main program.
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3.3.3 Linking Names with Actions

BODYPART, which is the third procedure to be called
from within the main program body, builds a linked chain of records
of type PARSER. The first record of the chain, corresponding
to the first statement of the body, is pointed to by Bodi belonging

to its sub-program or program identifier, which is at the top of the

stack DisElaX .

Each statement record of type PARSER has the following
fields:

Nextr : Pointer to a record of type PARSER, containing the

next statement ;

Variant fields :

Assign, Stores an assignment or a procedure call state-
Proced : ment. Identi points to the identifier being

assigned in the first case, or to the identifier

of the procedure being called in the second.

Expl points to the expression which is assigned
to the identifier pointed by Identi in the first

case, or to a list of expressions corresponding
each to an actual value to be given to each of the

formal parameters in the second case ;

Compound : Indicates the beginning of a compound statement.

Ctr0 points to the first compounded statement ;

Condstate: Stores an£~}£§_rl—e_l_§§_ statement,
Exp2 points to the boolean expression of the
conditional statement.
Ctrl points to the statement-list following the

'then' symbol.



Ctr 2 points to the statement-list following the

‘else' symbol, if any, otherwise it is nil ;

Repstate: Stores a while~do statement.
Exp3 points to the boolean expression of the
B T —
repetitive statement.
Ctr3 points to the statement-list following the

'do' symbol.

Expressions are kept in linked records of type EXPRES with the
following fields :

Nexte : Pointer to a record of type EXPRES,
containing the next token of the current
expression ;

Variant fields :

Cst : Keeps the unsigned integer number :

Iden : For a variable or function identifier, ideng
points to its record of type IDENTIFIER
Oper : Keeps the operators in Ope ;
p I p p
Subsymb: Keeps 'comma', 'left parenthesis!', 'right

parenthesis' and 'not' symbols in Sym .

- BODYPART calls the procedure STATEMENT until the end
of a body is encountered. Bodi field of the record corresponding to
the sub-program or program identifier will point to the first
statement of its body. Once the whole body is processed, the
stack Display will be popped. If the stack is not vet empty, a new
symbol will be read, and if it is not a 'begin' symbol, then the
procedure BODYPART will terminate and the main program will
call the procedure DECLARATIONPART again ; if it is a 'begin’
symbol then the procedure BODYPART will keep on calling the
procedure STATEMENT until the end of this new body. At the end
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of a body, after having popped the stack Display, if the stack becomes
empty, that will mean that the main program body has just been
processed and the processing has reached the end of the input text.

In this case the procedure BODYPART will terminate and the main
program will call the procedure QUERY to ask if the whole program
or only a part of it has to be translated into the FDL,

STATEMENT will create a record of type PARSER, and
if the last symbol read was an identifier, will call the procedure
SEARCHID to determine the pointer to its record in the tree.
If it is a procedure identifier, the tag-field St of the record which
has just been created will be set to proced and the procedure CALL
will be called to store the actual values to its parameters into a
chain of records of type EXPRES, If the identifier was a variable
or a function identifier, then the tag-field St will be set to assign and
the procedure ASSIGNMENT will be called to store the expression
into a chain of records of type EXPRES. If the last symbol read
was a 'begin' symbol, then St will be set to compound and
COMPOUNDSTATEMENT will be called, if it was an 'if! symbol, then
St will be set to condstate and IFSTATEMENT will be called, if it
was a 'while' symbol, then St will be set to repstate and
WHILESTATEMENT will be called.

CALL will create a chain of records of type EXPRES
to store the actual values being assigned to the parameters. The
first element of this chain of records will contain the left parenthesis
by setting its tag-field kind to Lp, and the last element will contain
the right parenthesis by setting its tag-field kind to Rp. In between,
actual values separated by commas will be stored, by calling the
procedure EXPRESSION, and a type check will be made for each

actual value.

ASSIGNMENT will call the procedure EXPRESSION to
store the expression into a chain of records of type EXPRES. The
first record of the chain will be pointed to by Expl of the Assign
field. A type check between the identifier and the expression will

be made.
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COMPOUNDSTATEMENT will call the procedure STATEMENT
until the end of the compounded statement-list. A chain of records
of type PARSER will be created for the whole compounded statement-

list.  The first record of the chain will be pointed to by Ctr0 of

the ComEound field.

IFPSTATEMENT will call the procedure EXPRESSION to
create a chain of records of type EXPRES to store its boolean
expression, The first record of the chain will be pointed to by
Exp2 of the Condstate field. A type check will be made to see if the
type of the expression is boolean. The procedure STATEMENT will
be called to create a record for the statement following the 'then'
symbol, and EE.I;I_ of the Condstate field will point to that record of
type PARSER, If there is an 'else' clause, then the procedure
STATEMENT will be called again to store the statement following
the 'else' symbol and Ctr2 will point to that record, otherwise

Ctr2 will be nil.

WHILESTATEMENT will call the procedure EXPRESSION
to store its boolean expression. Exp3 of the Repstate field
will point to the first record of that expression which must be
of type boolean. Alter the type check, the procedure STATEMENT
will be called to create a record of type PARSER for the statement
following the 'do! symbol, and Ctr3 of the Repstate field will point

to that record.

EXPRESSION will call the procedure SIMPLEEXPRESSION,
after which, if there is a relational operator, it will be stored in
a record of type EXPRES, and that new record will be appended to
the chain of records of the same type created by SIMPLEEXPRESSION ;
then the procedure SIMPLEEXP RESSION will be called again to
store the second half of the expression which will be appended at
the end of the chain. A type check will be made to see if the

comparison is possible between these two simple expressions.

SIMPLEEXPRESSION will store the sign in a record of
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type EXPRES, if there is a minus sign, then will call the procedure
TERM, If signed and if the type of the term is not 'integer' then

an error message will be printed out. If an 'addition', 'substraction’
or 'or' operator follows then it will be stored in a record of type
EXPRES and appended at the end of the chain created by TERM

and the procedure TERM will be called again to store the second
operand, after which a check will be made to see if both operands

are legal to the operator. Then the whole chain will become the
first operand if another 'additive' operator follows, and the same

will be repeated again until no 'additive' operator is left.

TERM will start by calling the procedure FACTOR, After
that, as long as there is a 'multiplicative’ operator {e.g. 'multiplication'
'integer division', 'modulo operation' or 'and’ operation), it will be
stored, the procedure TERM will be called and the two operands
will be compared to see if they are both legal to the operator.

Then the whole chain will become the first operand and the same

will be repeated again until no 'multiplicative’ operator is left.

FACTOR will create a record of type EXPRES and depending
on the last symbol read will take different actions. If the last
symbol read was an identifier, then the tag-field will be set to Iden,
the procedure SEARCHID will be called to get the pointer to its
record in the tree, and this pointer value will be assigned to idenp of
the field iden, if it is a function identifier, then the procedure CALL
will be called to store the actual values to its parameters in a chain
of records of type EXPRES which will be appended to the first
record created by FACTOR. If the last symbol was an unsigned
integer, the tag-field kind will be set to Cst and the integer be
stored in Cval. If the last symbol was a left parenthesis, then
the tag-field kind will be set to Subsymb and the symbol be stored
in Sym. The procedure EXPRESSION will be called to store the
expression which follows in a chain of records of type EXPRES
which will be appended to the record created by FACTOR. A record
containing the closing right parenthesis will be appended to the end.

1f the last symbol read was a 'not! symbol, it will be stored and the



procedure FACTOR will be called to deal with the rest. After which
a type check will be made to see that the last factor which was

analysed was of type boolean.

That ends the description of the procedure BODYPART, and
also of the whole data structures. The last procedure QUERY,
which will be called by the main program, will use the data structures
created so far, but will not create new data structures. It will
translate them into a FDL text which can then be

processed by the Analyzer.
3.3.4 Translation into FDL

Once the main program body of the input text has been
processed by BODYPART, the main program calls QUERY to ask the
user if the program or a sub-program of the input text is to be
analysed. The user types in the identifier of the program or a
sub-program. Only the first eight characters of this identifier
are read, and if the identifier has less than eight characters,

a 'blank' character must be typed in after the last character.
QUERY then looks into the array DICT to find if the identifier is

in the dictionary. If the identifier is pointed to from one of the
DICT entries, then its translation is performed by calling the
procedure FLOWCHART. If the identifier is not in DICT, then a
message (NAME NOT FOUND IN DICT) is printed out, and the user
is asked again if another program or sub-programis to be analysed.

This process is repeated until the user answers "THATSALL?®.

FLOWCHART prints out 'TITLE" PROGRAM/PROCEDURE/
FUNCTION (one of these) <identifier> ; and then declares standard
type 'character' and standard infix operators 'modulo' and 'integer

division', by printing out :

'"TYPE' CHAR ;
'INFIX' MOD (INTEGER, INTEGER):INTEGER ;
'INFIX' DIV(IINTEGER, IN TEGER):INTEGER.
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The procedure DECLARE is then called, to print out the
declarations of all the identifiers which are visible at the level
requested by the user. After the control returns from the procedure
DECLARE, the line 'START' will be printed out and the procedure
TRANSLATE will be called to translate into the FDL the body of the
program or sub-program asked by the user. After the return of
control from the procedure TRANSLATE, the line '"FINIS H' will

be printed out to indicate the end of the body, and at this point the
procedure FLOWCHART terminates. The fact that the procedures
DECLARATIONPART and BODYPART were independent one from the
other, each with its own data structures, has enabled us to have

two independent procedures DECLARE and TRANSLATE to deal with
the translation into the FLL of the declarations,

and program or sub-program bodies respectively.

DECLARE needs to find the scope corresponding to the
program or sub-program to be analysed. If the main programis to
be analysed, all the identifiers can be used by successive calls to
the nested sub-programs, therefore they all must be declared.

The variable and type declarations at the main pr'ogram level are both
visible inside the whole program, making it necessary to translate
them in any case. But we have to make a distinction between the
call-by-value parameters and the local variables of the sub-programs
in one hand, and the call-by-reference parameters of the sub-programs
in the other. If the main-program is to be analysed, all the former
must be translated after having renamed them to avoid name-clashes ;
the latter need not be translated, as each time a sub-program call

is made, only one of the former or a main program variable can be
passed as a call-by-reference parameter. We can illustrate these

points with the following example :

PROGRAM ALPHA(INPUT, OUTPUT);
TYPE <type declarations>;
VAR A:INTEGER}B: BOOLEAN ; C:CHAR ;

<Subprograms> ;
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PROCEDURE BETA(A:INTEGER; VAR D:BOOLE AN);
VAR K:INTEGER ;DELTA: BOOLEAN ;

<Subprograms> ;
PROCEDURE THETA(L:INTEGER ; VAR DUMMY : BOOLEAN) ;
BEGIN
< statement5>
END ;
BEGIN{(*BE TA*)

<statement3>;

THETA (K+2*A, D) ;
<statement4> ;

THETA(A, DELTA)
END(*BETA*);

<sub—programs> ;

BEGIN(*ALPHA )

<statementl>;

BETA(A+2%0ORD(G), B):

<stat ement2>

END(*ALPHA%),

If the user asks for ALPHA to be analysed, all the variable
and type declarations at the level of ALPHA must be translated.
As we want to unwrap the sub-programs at the point of their call,
their local variables and call-by-value parameters need also be
translated, as only their body will use these identifiers, their value
at the end of the body being of no interest. On the other hand, call-
by-reference parameters will be able to change the value of the
parameters or local variables of the other sub-programs or even
the variables of the main program. Therefore, if we declare and
assign to them the actual parameter at the point of the call, as we do
for the call-by-value parameters, we will have to re-assign the value
of each call-by-reference parameter back to the corresponding actual
parameter, at the end of the called sub-program. Leaving aside
for the moment the issue of renaming, we can illustrate this point

as follows from the PROGRAM ALPHA example :
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The call THETA(A#1, DELTA ##1) in the procedure BETA would

give

L 2:=A#1 ;

DUMMY #2:=DELTA#1 ;
{body of THETA ;
DELTA #1:=DUMMY#2 ;

Two assignments and one declaration can be saved, for
each call-by-reference parameter, if we decide to use DEL TAFI]
in the body of THETA, which would give :

LFE2:=AFF] ;
<body of THETA using DEL TA##1 > ;

We have adopted this solution, avoiding the unnecessary declarations

and assignments which would have 'littered’ the translated FDL text.

Leaving aside the declaration of standard 'character' type
and 'mod', 'integer division' infix operators, we can give the

translation of ALPHA into the FDIL :

'"TITLE'PROGRAM ALPHA;

'"TYPE' <type declarations>;

'"VARIABLE' A:INTEGER ;

'"VARIABLE' B:BOOLEAN ;

'"VARIABLE' C:CHAR ;

'"VARIABLE' A#1:INTEGER ; {calla«by-value parameter A of BETA}
'"VARIABLE' KH#L:INTEGER ;

'"VARIABLE' DELTA#1: BOOLEAN : L1o<:al variables of BE TA :
’VARIABLE’L#Z INTEGER ; s(call by-value parameter L of THETP}
............ fdeclaratlons of varlables of other sub- programs*

{ne sted in ALPHA_}

'START!
<statementl>; N
AF1:=A+2*0ORDI(C) ; {translation of BETA (A+2%ORD(C), B)starts?
L P
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<statement3>; {uses B instead of its call-by-reference parameter D}
LF2: =K 142%AFF] ; ﬁtranslation of THETA(K+2*A, D) starts here}
<statement5>; { uses B instead of its call- by- reference parameter}

7 DUMMY;
<sta‘cement4>; {uses B instead of its call- by-reference parameter Djr
LE2:=AF {transl ation of THETA(A, DELTA)starts herel
<statement5>; iuses DELTA##1 instead of its call- by - reference}

?‘parameter DUI\/H\/IYJ
<statement2>;
'"FINISH'
We still have not explained yet how to deal with the function
calls inside the expressions. Obviously, the same considerations

as for the procedure calls apply to them, with the simplification

that functions cannot have call-by-reference parameters in Pascal-
Minus, avoiding the side-effects inside them. But, there is one major
complication which is that several calls to the same function can be
made in a single expression. So, if we want to expand the function
body for each instance of these calls, at each instantiation, a different
name must be given to the function identifier, in order to enable us

to use them later in the expression. This problem is solved, by
counting the maximal number of times a function identifier can appear
in a single expression, and by declaring them as variables with a
"HH <d1g1t> ending. In this way a maximal number of 10
instantations of the same function in a single expression can be

dealt with. The expression

A:=ADD(B, ADD(C, D))*100;

would be translated as :

<function body ADD with actual parameters C, D and the result
being assigned to ADD##O>;

<function body ADD with actual parameters B, ADD##-0 and the
result being assigned to ADD #f #l> ;

A:=ADDH #1%100 ;

That ends the explanation of the functioning of DECLARE for the case



the main program of the input Pascal-Minus text is to be translated.
3.3.5 Translating Sub-Routines Separately

If the user asks for a sub-programto be translated, we have
to find the scope at that level. As an exarple, if the sub-program
to be translated is BETA, not only we have to declare the type and
variable definitions of the main program ALPHA and, all the call-by-
value parameters and local variables of all the sub-programs between
the heading of ALPHA and BETA, we also have to declare all the
call-by-value parameters and local variables starting from the heading
of BETA and ending when we meet the body of BETA. To this end
DECLARE calls the procedure TRAVERS F to determine this depth,
after which all the declarations between the main program heading

and the depth are translated except for the call-by-reference parameters.

As for the call-by-reference parameters, although none of
themneed be declared if the main programis to be analysed, in the
case of a sub-program, its own call-by-reference parameters, as
well as those of other sub-programs which contain the sub-program
to be analysed, must be declared after having been renamed. As
an example, we can take the case of THETA being asked for analysis.

That would give the following transdation into the FDL:

'TITLE' PROCEDURE. THETA :
'"TYPE' <type declarations of ALPHA>;
'"VARIABLE' A:INTEGER ;
'"VARIABLE' B:BOOLEAN ;
'"VARIABLE' C:CHAR;
'"VARIABLE ' A#1:INTEGER ;
'"VARIABLE' D#1: BOOLEAN ;
'"VARIABLE'K#1 :INTEGER :
'"VARIABLE' DELTA #1:BOOLEAN ;
'"VARIABLE' L##2:INTEGER;
'"VARIABLE' DUMMY #2: BOOLEAN:
'START!'
[ \ )
<statement 5>; ﬁkthls statement could use any of the declared varlablesj
'FINIS H!
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This is exactly how the procedure DECLARE proceeds. After

having found the depth, by calling the procedure TRAVERSE ,declared
all the variable and type definitions of the main program and, all the
call-by-value parameters and local variables of the sub-programs
that can be reached from the level of analysis by calling the procedure
ACTVARS, it will also declare the function identifiers from

within ACTVARS by calling the procedure COUNTEXP to count the
maximal number of occurrences of a function identifier in a single

expression for a given depth, as explained above.

After which, depending on the level of analysis, the call-by-
reference parameters of the sub-prcgram being analysed will be
declared by calling the procedure FORMVARS, As explained above,
if the sub-program being analysed is nested in other sub-programs,
their call-by-reference parameters must be declared as well. This
is checked by calling the procedure ISIN and the necessary call-by-
reference parameters are declared by calling the procedure FORMVARS
again. That ends the description of the functioning of the procedure
DECLARE.,

3.3.6 Translation of Each Statement

The last stage consists of translating the body of the program
or sub-program into the FDL, This is done by calling
TRANSLATE from within FLOWCHART.

As it has already been explained in the description of
BODYPART, Pascal-Minus possesses five kinds of statement,

namely : assignment, procedure call, compound, conditional {if-then-

else) and repetitive (while-do) . We have to describe now, how each

of these is going to be translated into the FDL, by traversing the tree
constructed by BODYPART.

For an assignment statement, the procedure CHECKEXP will
be called to see if there is a function call in the expression. If the

procedure CHECKEXP finds a function call, it will then call the
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procedure PFCALL to assign the actual values to the formal parameters
of the function. At that point, the procedure CHECKI will be called

to see if the actual values contain any function calls, and if there is
any, to translate them by calling the procedure PFCALL from within

the procedure CHECKI. After this check, the actual values to the
call-by-value parameters will be assigned by printing out an

assignment statement in the FDIL, text. ,and for the call-by-reference
parameters, they will be renamed after the name of the actual parameter
being passed in the call. Once the parameter-passing mechanism
used in a compiler has been 'mimicked' for all the parameters, the
procedure PFCALL will call the procedure TRANSLATE to translate
the function body into the FDL and the result-value will be assigned

to an identifier of kind :
<function identifier truncated to eight characters> = A <digit\/\
p ’

as explained above. It is that identifier which will be used in the
expression in place of the function call. Once all the function calls
will have been translated by the help of the procedure PFCALL, the
original assignment will be copied out with its function instantiations
without changing the structure of the expression. This is due to the
fact that Pascal-Minus and FDL both have the same syntax for

assignments and expressions.

For a procedure call, the procedure PFCALL will be
called to 'mimic' the parameter-passing mechanism and to 'unwrap'
its body. If this procedure call is the last statement in a statement-
list, to avoid putting more than one label at the end of the translation
of the procedure-call, the label which would have been put at the end
of the statement-list, will be passed to the procedure PFCALL, This
label is in Endlab and there is a flag attached to it (Towrite) to
determine if it is to be written. If at the end of the procedure body,
this label is used and printed out, then Towrite will be set to 'false!
to avoid printing it again after returning from the procedure PFCALL.
The same mechanism will be used for statements possessing

statement-lists as their part,
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For a compound statement, all that has to be done is to
pass the Ctr0O pointing to the first statement in the list, together with

Endlab, to the procedure TRANSLATE again.

For a conditional statement, its boolean expression must
be checked by calling the procedure CHECKEXP, in the same way
as for the expression of the assignment statement. After which,

the following translation is made :

IF <condition> THEN <statement1> ;
will become :
1TF' NOT ( condition» )
'"THEN' 'GOTO! o{ ;
<statement l>;
 :

In the same way,

IF <condition> THEN <statementl> ELSE <statement z\
will become :

"TF' NOT | <condition > )

"THEN' '"GOTO' X :

<statement l> ;

'GOTO!' B ;

f
X <statement 2> ;

To control the production and the printing of the labels, two
procedures ENDLABEL and PRINTLAB are used. In this way,
only the strict minimal number of labels are produced and each

label is printed (as one expects it) only once.

For a repetitive (while—__c_l_s_)) statement, we have to start
by labelling the current line, if it has not already been made. The
boolean variable Labeled keeps record of this fact together with Lbl

which has the value of the last printed label. After that, its
boolean expression must be checked by calling the procedure CHECKEXP,
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in the same way as for the assignment or conditional statements.

WHILE <condition> DO <statement> ;

will be translated as :
o :'IF' NOT ( <condition> )
'"THEN' 'GOTO! %;

<statement> ;

'GOTO" & ;

If there is any function call in the {fcondition> , this
must be evaluated each time the loop will be executed. To that
effect, C’{ is printed first, and the procedure CHECKEXP called
to 'unwrap' the function calls inside the <expression> starting

from the label &. The following example illustrates this point :

WHILE ADD(A,B)>O DO (statement » ;
will be translated as :
X : <function body ADD with actual parameters A, B and the
result being assigned to ADD # & O>;
'IF' NOT (ADD # # O ) O) ?
"THEN' 'GOTO! ? ;

<statement> 5

'GOTO' & ;
?:

After all the statements belonging to the body of the program
or sub-program will be translated, the control will return to QUERY

again as explained above.
3.4 Extensions :

As we had already anticipated, the Pascal-Minus language
and its translator into the FDL, the Program PMINUS are open to

extensions.

For practical reasons, one may want to introduce other
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control structures from Pascal,

can be added.

or, new and morepowerful constructs

We will give hereafter a few examples,

The introduction of repeat-until and for-do loops can

easily be done without necessitating big changes to the data or

program structure of PMINUS, The statement

3

REPEAT <statement>UNTIL <expression>‘
could be translated as :

O(: <statement> ;

"IF' NOT <expression>

'THEN' 'GOTO' X ;

Or the statement FOR Vi=EITOEZ2 DO <statement>;
could be translated as :
V:i=El;
K: 'IF'V S E2 "THEN! 'GOTO' B ;
<statement>;
V:=SUCC(V);
'GOTO'"o;
B

i

The statement FOR V:=El DOWNTO E2 DO <statement> :
could be translated as :

V:=EIl;

K : '1F' v{ E2 'THEN' 'GOTO' 8;
<statement>; t
V:=PRED(V);

'GOTO' X ;
B

{

To introduce these two constructs, the only change to the

data structures should be made to the records of type PARSER.
These would become :
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STATEMEN TKIND=(ASSIGN, PROCED, COMPOUND, CONDSTATE,
WHILELOOP, REPEATLOOP, FOR LOOP):

PARSER=RECORD

NEXTR:CTR;

CASE ST:STATEMENTKIND OF

ASSIGN, PROCED:(IDENTL:CTP;EXPL:EXP);
COMPOUND:(CTRO:CTR);

CONDSTATE :(EXP2:EXP;CTRI, CTR2:CTR);
WHILELOOP, REPEATLOOP:(EXP3:EXP;CTR3:CTR) ;
FORLOOP:(UP: BOOLEAN;EXP4, EXP5:EXP;CTR4:CTR)

END ;

Obviously for a repeat-loop, as for a while-loop , Exp2
will point to the boolean expression, and Ctr3 to the first statement

of the statement-list contained in the loop.

For a for-loop, up will be "true' if the index is to be
incremented at each execution of the loop, 'false' otherwise.
Exp4 will point to El and Exp5 to E2 of the above example.
Ctr4 will point to the first statement of the statement list contained
in the loop. Two procedures REPEATLOOPB and FORLOOPB must
be written to be inserted into STATEMENT to deal with these loop

constructs, just as it was done for while-do loop construct.

It is also possible to replace all these loop constructs

-

with just one general loop construct with multiple exits }DANBZ& .

i.

This would give :

looB ,
<statement- listl > '

endlooE
<s elect- statement};

One or more statements in the (statement~list 1> could have the form:
i
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if <expr6531on I/ then exit <\label I>,

The <select~statement> would consist of :
select

<labell > ::><étatgmentl> ;

<lab-ell> :; <state.ment1> ;

other <stat ment-other
e :% e p

end select ;

Any of the statements at the right of ’:}‘ sign can be an exit

statement as the loop statements may be nested.

If this approach were adopted, the while-do, repeat-until

and for-do loops could be replaced as follows :

WHILE <expression> DO <fstatementl>; <statement2>;
would become :
LOOP
1F NOT { expression » THEN EXIT LABI ;
<statementl>
ENDLOOP;
SELECT

ILABI ':.";> <stateme nt2>

ENDSELECT 3

TN a 4 \\ . ) "\ .
REPEAT <statement l> UNTIL \expressmn/ ; \statementzf,, ;

would become :

LOOP

<statementl> ;

IF <expression> THEN EXIT LABI
ENDLOOP;
SELECT

LABL = <statement2>

ENDSELECT ;
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FOR V:=El TO (respectively DOWNTO) E2 DG «;;:statement> ;
<ﬂstatement2>
would become:
V:i=El ;
LOOP
IF V> (respectively{: JE2 THEN EXIT LABI ;
<statementl>;
V:=SUCC (respectively PRED)(V) ;
ENDLOOP;
SELECT
LABl% {fs’catement 2>
ENDSELECT ;

The general loop construct could be translated into the

Flowchart Language as :

s
Q<: {\statements> 5
E <expl> 'THEN' 'GOTO' LABI ;

1F' {expN>'THEN' 'GOTO' LABN
\/other statements>;

'GOTO! &X;

LABIL: <statementl>;

'C%OTO' & ;

3
¢

3

LABN: <statementN> ;

|

There is a strong case against the use of the 'GOTO!
statement, especially from the verification point of view, but systems
dealing with asynchronous events and interrupts may still need it,
therefore it can be added into the Pascal-Minus and the users asked
to be very careful about the choice to insert it in their programs.

As the '"GOTO! statement exists in the FBL ; its
translation would be straightforward. The records of type

PARSER, dealing with the statements could have an additional
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statementkind, with a field to store the label to which a jump must

be made. Each statement would also need a label field, thus

PARSER becoming :

PARSER=RECORD
NEXTR:CTR;LB:INTEGER;
CASE ST: STATEMENTKIND OF

GOTOSTATE :(LBJ:INTEGER)
END:;

with the STATEMENTKIND=(ASSIGN, .. » GOTOSTATE);

LB would contain the label of the statement being stored in this

actual record, and LBJ would contain the label of the statement
to which a jump must be made. A procedure GOTOSTATEMENT
would be added in STATEMENT.,
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4. VERIFYING A PASCAL-MINUS PROGRAM

To illustrate different points made in the preceding chapters,
a program in Pascal-Minus was written, and translated into the
FDL by using the program PMINUS described in the previous
chapter. The program BURNERCONTROLLER and its translated

form can be found in Appendix II,

The program written in Pascal-Minus gives a high-level
description of a burner-controller, together with assertions in
the form of Boolean expressions which must hold whenever the

execution reaches them.

The example system controls the timing and the re-ignition
of a gas-burner. The user enters through a keypad, the period
during which heating is required (on-time \: heating- period \x;:
off-time). The user can also turn the heating on or off outside
the required heating-period by pressing manual-on/manual-off

keys.

Once the system decides that the burner should be on,
it goes through an ignition phase. If successful, it remains in
this state until the end of the required heating-period, otherwise
it locks out all further attempts at re-ignition from timed and
manually setting-on, until the 'reset lock-out' switch has been
depressed. If after a successful ignition phase, the flame goes
out, then a new ignition phase starts to keep it on during the whole

heating-period.

Only five successive re-ignition attempts can be made,
by turning on both the burner-valve and the spark ignition relays.
If a flame is detected, then the spark-drive is turned-off, leaving
the burner-relay on, otherwise both relays will be turned off

before another attempt is made.

The system needs the time of day to decide for the
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required heating-period. The function REALTIME returns it,

for being assigned to the variable real. NEWKEY and FLAME
are also interface functions, returning the information about the
existence of a new entry from the keypad, and, about the flame
being on or off, respectively. The procedure IO is called to deal

with the entries to the system from the keypad.

As the implementation is expected to be done on a micro-
processor, regular checks are made to assure that, first of all,
the area of the memory reserved for the actual program has not
been overwritten, and that the sum of time variables (i.e. _:r:_e_é_l_, on
and_g_fi) equals an updated checksum. These checks are done by
calling the functions PROGMEM and UPDATED respectively.

If the check on the program memory fails, a PROGRAM-LED
is turned on ; if the sum of real, on and off does not equal the
updated checksum, a DATA-LED is turned on, blocking the system

until a new power-on-reset.

Similarly, five successive ignition failures will cause an

IGNITION-LED which can only be eliminated by a reset-lockout.

~ If none of these faults occur, the assertion -
{ NOT(PROGRAM-LED OR DATA-LED OR IGNITION-LED) ¢
wMiH hold. In that case, the function REQUIRED will be callied
to decide if heating is required. If it is required and the gas
active with flame on, then no action is taken, otherwise the
procedure IGNITE will be called for a new attempt at re-igntion.
If five unsuccessful attempts had already been made, then an

IGNITION-LED is turned on.

After the termination of the procedure IGNITE, the assertion

NOT(PROGRAM-LED OR DATA-LED) AND

A3

(IGNITION-LED AND ATTEMPT=5 and GAS =PASSIVE OR
NOT(IGNITION-LED)AND (FLAME AND ATTEMPT=0 OR

GAS=PASSIVE AND ATTEMPT » 0)) {
J "
will hold. It must be noticed that GAS=PASSIVE = NOT FLAME,
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as one could not expect to find the flame on without turning the
burner-relay on (i.e. gas:=active). Whenever the flame is
obtained, attempt will be put to 0, therefore the assertion

FLAME =) GAS=ACTIVE AND ATTEMPT:O} will always
hold.

The program BURNERCONTROLLER is then input to the
program PMINUS described in the previous chapter to obtain its
translation into the FDL (See in Appendix II). The FDL text is
first reduced by putting together program nodes which are not
essential to the proof, keeping only the nodes at which we want a
property of the system to hold. After that reduction is done by
the existing facilities in the Department, the reduced form, {which
can be seen in Appendix II) is symbolicly executed, as it was

anticipated at the beginning of the previous chapter.

The symbolic execution is done step by step on the
reduced text, starting from the node 1. Input values could have
been separately assigned to the program variables at the beginning
of the symbolic execution to simulate particular paths, but our
implementation was already containing an initialization procedure
to that purpose, and, the procedure IO which deals with the keyboard,
together with the function REQUIRED, were not expanded in order
to keep our interest focused on the main function (i. e. ignition
when necessary) together with security checks. We will
concentrate on the ignition phase to check, that an attempt at the
re-ignition is made whenever heating is required ; that after an
igotion failure the burner-relay is turned off (i.e. gas:=passive);
that after five consecutive failures, the IGNITION-LED is turned
on; that no further ignition attempts will be made before the reset-
lockout; that while gas is active and heating required, if the flame
goes off, a new ignition attempt will be made; and that whenever

heating is no longer required, gas will be turned off.

These checks are made, by following the traversal conditions,
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given by the symbolic execution, to find out that the assertion
at that point in the original Pascal-Minus program will hold for

the corresponding path function values.

As an example, we can see (Appendix III), at pathlength
4 for node 6, which corresponds to the line 70 in the original
Pascal-Minus program, that if an ignition attempt fails,gas is turned
off and the number of unsuccessful attempts incremented. The next
traversal condition expresses the case in which the ignition-
attempt was successful, keeping the gas on, and the number of

unsuccessful attempts at 0.

These checks are made on all the executable paths given
by the symbolic execution to make it sure that all assertions
inserted into the Pascal-Minus program will hold whenever the
execution reaches them. Some of these paths, together with the
point reached by the execution in the Pascal-Minus program and

the assertion attached to that point, are given in Appendix III,

Obviously, other specified Pascal-Minus programs must
be checked in the way described above, in order to be able to

evaluate fully its use and potentialities.
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TITLE’ FROGRAM.BURNERCO;
TYFE’ DEVICE;

TYFE’ KEYEOARD:

CONSTANT’ EREALSRLOCKIKEYEDARD;

VARIARLE’ ATTEMFTIINTEGERS?

"VARIARLE’ CHECKSUM:INTEGER?

’

VARIABLE’ DISFLAY!INTEGERS:
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oo, 90 00

VARIABLE’ MANUALIDEVICE;
VARIARLE’ NEWKEY##0:BOOLEAN;
VARIABLE’ OFF!INTEGER;
VARIAKLE” ON:INTEGER?
VARIAEBLE’ FRESSED:ROOLEAN;
VARIABLE’ FROGMEM#¥#0:EBOOLEANS
VARIABLE’ REAL:!INTEGER;
VARIABRLE’ REALTIME##0!INTEGERS
VARIAERLE’ REQUIRED#%#0:EOOLEAN7/
VARIAEBLE’ SFARKIDEVICE}
VARIAEBLE’ STATUS!KEYROARD;
VARIABLE’ UF!EOOLEAN;
VARIAELE’ UFDATED#$0!INTEGER?
VARIABLE’ K#1S:I!KEYEOARDS

“START”
*IF’PROGMEME#0
“THEN’‘GOTO’ 2
DISFLAY:= 24003

‘GOTO" 1%
REAL:I= 800;
ONI= 10003

OFFi= 14003
CHECKSUM:= 8003
DISPLAY:= 3007
STATUS!=EREAL;
FRESSED:=FALSE;
UF:=TRUE
GAS:=FASSIVE;
SFARK:=FASSIVE;
ATTENFTI= 07
MANUAL ! =FASSIVES
“IF‘ NOT (UF)
’THEN’ /GOTO’ 1}
REAL:=REALTIHE#$05
CHECKSUM:=UFDATED#$$0;5
*IF’DISFLAY= 2402
“THEN’‘G0TO’ 57
DISFLAY:=REAL;
“IF’ NOT (REQUIRED#%0)
*THEN’ *G0OTO’ 73
‘IF/FLAME$$#0 AND
(GAS=ACTIVE)
THEN’“GOTO’ 83
‘IF’ATTEMPT>= 5
*THEN’’G0TO’ 105
GAS:=ACTIVE;
SFARK:=ACTIVE;
‘IFFLAME$$0
*THEN’“GOTO’ 12
GAS:=FASSIVEj
ATTEMFT:= 1+ATTEMFT;
‘60T0’ 13;
ATTEMFTI= 0j
SFARK:=FASSIVES
‘G0OTO’ €5
DISFLAY:= 2402;
‘60T0’ 14;
“IF*GAS<>ACTIVE
"THEN “GOTO" 143
GAS:=FASSIVE ;
SFARK:=FASSIVE S
ATTEMFTI= 03
MANUAL : =FASSIVE;
“IF’ NOT (NEWKEY##0}
‘THEN’’6OTO’ &3
KN$1S5:=KEY}
G0OTO’ 153
"IF’ NOT (NEWKEY$#G:
OR (KEY:>RLOCK)
‘THEN’ 'GOTO’ 153
DISFLAY:=REAL;
STATUS I =EREALS
FRESSED:=FALSE;
ATTEHFT:= 0j
*IF *CHECKSUM=UFDATED#40
‘THEN’GOTO’ 43
DISFLAY:= 24017
UFi=FALSE};
6OTO’ 17
‘60T0" 3;

VFINISH”

FASSIVE,ACTIVE:DEVICES

BURNER-

CONTROLLER IN FDL



*TITLE
*TYFE’

*CONSTANT”
*TYPE’
*CONSTANT’
“UARIABLE’

VAR

"VARIAELE’
‘VARIABLE’
“VARIAERLE"
‘VARIABLE"
‘VARIAERLE”
‘VARIABLE”
‘VARIABLE’
"VARIABLE”
‘VARIABLE”
‘VARIABLE”
‘VARIABLE”
‘VARIABLE”
"VARIABLE’
"VARIABLE"
‘VARIAELE’
‘VARIARBRLE”
‘VARIABLE’
‘VARIARLE’

“IF

*START’

<92

FROGRAM_EURNERCO;
DEVICEd
FASSIVE,ACTIVEIDEVICE;
KEYBOARD
EREAL,RLOCK:KEYBOARD?
ATTEMFT:INTEGERS
CHECKSUM: INTEGER; !
DISFLAY:INTEGER;
FLAME#30 :ROOLEAN}
GAS:IDEVICE;
KEYIKEYEOARD
MANUALIDEVICE:
NEWKEY#40:HOOLEAN
OFF:INTEGER;
ON:INTEGERS
FRESSEL:BOOLEANS
FROGMEM##0:EOOLEAN}
REALIINTEGERS
REALTIME##0:INTEGERS
REQUIRED##0:HOOLEANS
SFARKIDEVICE;
STATUS!KEYROARD:
UF:EOOLEAN}
UFDATED##0 INTEGER
K#15:KEYROARD

IARLE"

’ NOT (FROGHMEM#%0)

‘THEN’

‘ELSE”

DISFLAY:=
‘GOTO0’ 1

2400 2

9 NODES

‘IF'PRCGMENM$%0
THEN'

{ 17> 3

$OIF’

“MAF
ATTENPT:= 03
CHECKSUM:= 800;
DISFLAY!= 800;
GAS:=FASSIVE;}
MANUAL {=FASSIVE:
QFF = 1400;
ONi= 1000}
FRESSED:=FALSE;
REAL!= 800;
SFARKI=FASSIVE;
STATUS:=EREAL;
UF:=TRUE?

‘ENDY &

‘GOTO" 33

NOT (UF)

"THEN’’GOTO’ 1
‘ELSE’
“IF’UFP AND

(DISFLAY= 2402)

‘THEN"’

‘MAF
CHECKSUM:=UFDATED%%0}
REAL{=REALTIME#405

‘END’ &

‘GOTO0” S

‘ELSE’
“IF’UFP AND

(DISFLAY<> 2402) AND
NOT (REQUIRED##0)

’THEN'

‘MAF’
CHECKSUM:=UFDATED#40;
DISFLAY!=REALTIME#%#0;
REAL{=REALTIME#%#0;

“ENDY &

‘G0T0’ 7

‘ELSE"

*IF

OR

“UF AND

(DISFLAY<> 2402) AND
REQUIRED#30 AND
NOT (FLAMEE$0)
(ATTEMFTS)

UF ANL
(DISFLAY<> 2402)
REQUIFEDN#40 AND
(GAS--ACTIVE: AND
(ATTEMFT<S)

AND

AND

‘THEN

“MAF’
CHECKSUMI=UFDATEDN$40;
DISFLAY!=REALTIME®40}
GAS:=ACTIVE;
REAL{=REALTIMF440;
SFARKI=ACTIVE;

‘END”

continued

BURNER-CONTROLLER
IN FDL REDUCED TO

overleaf



{ 34>

{ 41>

{ 44>

{ 492}

I

74

14

wu

1S

1

.

295 _

‘ELSE”
‘IF’UF AND

(DISFLAY<> 2402) AND
REQUIRED##0 AND
FLAME$#40 AND
(GAS=ACTIVE)

"THEN"

IHAF-I
CHECKSUM!=UFDATEL&%0;
DISFLAY!=REALTIME#%0;
REAL:!=REALTINME$$0;

‘END’ 8

‘GOTO0 14

‘ELSE”’
"IF“UF AND

(DISFLAY<> 2402) AND
REQUIRED##0 AND

NOT (FLAME#%#0) AND
(ATTEMFT>= 9)

OR UF AND

(DISFLAY<S 2402) AND
REQUIRED#%#0 AND
(GAS<>ACTIVE) aAND
(ATTEMFT>= S)

"THEN’

“‘MAF
CHECKSUM:=UFDATED$40;
DISFLAY:= 2402
REAL:=REALTINE#40;

"END’ &

‘THEN"’

GOTO’ 143
“IF’ NOT (FLAMNE$20)
‘MAF -’

ATTEMFTI= 1+ATTEMFPT
GAS!=FASSIVE};
SFARKI=FASSIVE;
‘ENDY 8
‘GOT0’ 14

‘ELSE”’
"IF'FLAME#%0
‘THEN’

" MAF !
ATTEMPT:= 0
SPARK:=FA3SIVE;

TENDC 2

‘GOTO’ 143

¢+ “IF"GAS>ACTIVE
‘THEN’’GOTO’ 14
“ELSE”’

"IF "GAS=ACTIVE
‘THEN'

‘MAF”
ATTEMFT!= 0
GASI=FASSIVE;
MANUAL | =FPASSIVE;
SFARNI=FASSIVE;

‘END’ 8

‘GOTO” 145

¢ 7IF’ NOT (NEWKEY#20)
‘THEN’’GOTO’ 19
‘ELSE’

"IF'NEWKEY##0

‘THEN'

K#15:=KEY &
‘GOTO0’ 1S5

$7IF’ NOT (NEWNEY#%0)

(KEY<>RLOCK)

"THEN’‘GOTO0’ 15
“ELSE
"IF/NEWKEY#30 AND

(KNEY=RLOCK)

"THEN'

‘MAF’
ATTEMPT!= 05
DISFLAY!=REALS
FRESSED:!=FALSE:
STATUS:!=EREAL

‘END”’ 8

‘GOT0" 153

$IF'CHECKSUM- ~UFDATE 240
‘THEN"

‘MAF’
DISFLAYI= 24013
UFi=FALSE;
‘END’ 8
‘6070’ 1

"ELSE”
"IF'CHECKSUM=UFDATED#40
‘THEN’’GOTO’ 33

FINISH’
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APPENDIX III

BURNER-CONTROLLER SYMBOLICLY EXECUTED, WITH

CORRES PONDING LINE NUMBERS AND ASSERTIONS IN THE
ORIGINAL PROGRAM

DEFARTHMENT OF ELECTRONICS, UNIVERSITY OF SOUTHAMFTON.
SFADE SYMEOLIC EXECUTION.

————————————————————————— FATHLENGTH = 1 —mmm e

NOLDE 2 FATH 1 (FREDECESSOR 1 FATH 1)

TRAVERSAL CONDITION
TRUE

FATH FUNCTION
UNIT FUNCTION

—————————————————————————— FATHLENGTH = 2 meemmm e

NOLE 3 FATH 1 (FRELECESSOR 2 FATH 13

; g
TRAVERSAL CONDITION ¢ Line lTFT
NOT { NOT (FROGHMEM%20))

FATH FUNCTION :
ATTEMFTI= O
CHECKSUM:= 800
DISFLAY:= 80
GAS!=FASSIVE
MAMUAL ¢ =FASSTIVE
OFF:= 1400
ONt= 1000
FRESSED!=FALSE
REAL:= 800
SFARK:=FASSIVE
STETUS =EREAL
UP:=TRUE

~
o
~

NOLDE ? FATH 1 (FREDECESS0R 2 FATH 1)

| iR 2P 3
TRAVERSAL CONDITION ¢ L_}ﬂ; 195
NOT (FROGMEM%40) N
FATH FUNCTION @ ~ \
SE fezs 9 ) P s .0 s
DISFLAY?!= 2400 Z_Vﬁkiw&#‘\\~i-biaj



NOLE

NODE

4 FATH 1

=
7t

TRAVERSAL CONDITION ¢

FATH 1

TRAVERSAL CONDITIOM
N

Y5

FAOTHLENGTH &

(FREIECESSOR 2 FATH 1>

L'Me 69
NOT ¢ NOT (FROGMEM#£0)) ANI
(TRUE AND
( 800« 2302 ANL
REQUIREDI#$#0 AND
NOT (FLAMEZ30) AND
( 0« S)
OR TRUE AND
{ 800> 2402) AND
REQUIREL#30 AND
(FASSIVE«<>*ACTIVE) AN
( 0 S5))

FATH FUNCTION @

ATTENFT!= 0 !
CHECKSUM:=UFDATEL$40 .
DISFLAY:=REALTIME$%0 355 B e
GAS:=ACTIVE 0k DA
MANUAL $ =FASSTVE

OFFi= 1400 ]

as - ' \ I
£ \ 1 . .
— - LV AR { { } ) g
OMi= 1000 “/ )\

FRESSED ! =FalL3SE N
REALI=REALTIME#+0

SFERKI=ACTIVE

STATUS ! =EREAL

UFI=TRUE

(FREDECESSOR & FATH 12

> / f‘ A
Live 194
OT ( NOT (FROGMEM##0)) aND

TRUE AND

C 800<x 2402) AND
NCT (REGUIRED#%0)

=

FATH FUNCTION ¢ \§Qr7-,;r,p SRR
ATTEMFT!= 0 1AL \f&xhq\Ab}—_\h/
CHECKSUM:!=UFDATED#%0
DISFLAY!=REALTIME$#0 W OWATF A T e A
GASI=FASSIVE Ivi\ L AR L.tD '\,\
MANUAL :=FASSIVE 2§ P fommmiicr v KX )
OFFt= 1400 ~aNITIC N-L1D )¢

ONt= 1000
FREEEED!=FALSE
REALI=REALTIME#%0
SFARK!=FASSIVE
STATUS ! =EREAL
UF$=TRUE
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———————————————————————— FATHLENGTH 4 —ctemmme e

NOLE 6 FATH 1 (FREDECESSOR 4 FATH 13

TRAVERSAL CONDITION L_\me.tg()

NOT ( NOT (FROGMEM220)) AND

(TRUE AND

( 800« 2402) AND

REQUIREN##0 AN

NOT (FLAME$##0: anD

( 0% 5)
OR TRUE AND

( 800<: 2402) AND

REQUIRED##0 ANI

(FASS IUE *ACTIVE) AND

¢ 0< 5)) AND

NOT (FLAME#%0)

FATH FUNCTION ¢

ATTEMFT = 1+ 0
CHECKSUM ! =UFDATEDN#40 o
DISFLAY:=REALTIMEE#0 ANT
GAS:=PASSIVE — oo i
MANUAL $ =FASSIVE A M >4t
OFFi= 1400 -

~— L")
>
E o ]
-
)
’

UF$=TRUE
.
TRAVERSAL CONDITION 3 e 11
NOT ( NOT (FROGMEMEE0)) AN

(TRUE AND

{ 800> 2402) AND

REQUIREDH#ED AND

NOT (FLAMEZ$0) anl

{ 0% 5)

OR TRUE AN

( 800<> 2402 AND

REQUIRED4#0 AN

{(FASSIVE<>ACTIVE: aND

( 0« 5)) HNU

NOT ¢ NOT (FLAME$$0))

FATH FUNCTION ¢ ~

ATTEMFT = 0 1FLAME <__>
CHECKSUM:=UFDATED#40 LR L £ =
DISFLAY:=REALTIMER$0 P
GASI=ACTIVE L EAS= L T \
MANUAL :=FASSIVE ) . .
OFFt= 1400
ON:= 1000 ATTE MPT- (j\ ¢
PREauED’-FALbE ~
REAL=REALTIMER£0
SFARK!=FASSIVE
5TATUS:=EREAL
UF ¢ =TRUE

A \
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————————————————————————— FATHLENGTH 5§  —wemmommmmem oo

FATH 1 (FREDECESEOR S FAaTH 1)

TRAVERSAL CONDITION LA\C “;,# (Echwch Ldm-Yf)
NOT ¢ NOT (FROGMEM#%0)) ANT -
(TRUE AND
( 800> 2402) AND
EQUIREDEHC AND
NOT (FLAME#$0) AND
¢ 0% 5
OR TRUE AND
( 800<> 2402) AND
REQUIRED##0 AND
(FASSIVE>ACTIVE) AND
{ 0« Z)) AND
NOT (FLAME#30) AND
NOT (NEWKEY##0) R
FATH FUNCTION o .
ATTENFT:= 14 0 ] NOT (
CHECKSUM!=UFDATED#$0
NISFLAY:=REALTIMES®O 0 ) A
GAS:=FASSIVE K DATA - |
MANUAL ¢ =FASSIVE s
OFF!= 1400
ONi= 1000
FRESSED!=FALS
hrﬁL'—FFAI7IME&#U
SFARK:=FASSIVE
STATUS ; =EREAL
UF $=TRUE
| L fis i \ 4.
TRAVERSAL CONDITION : L. o JJ-,'<J%rCuGu Leivic
NOT ( NOT (FROSHENSEO)Y AND <
(TRUE AND
( 800<r 2402) AND
REQUIREDEE0 AND
NOT (FLAHE#%0) AN
¢ 0 )
OR TRUE AND
( 800<> 2402) AND
REQUIRED##0 AND
(FASSIVE<>ACTIVE) AND
¢ 0% S)) AND
NOT ( NOT (FLAME##0)) AND
NOT (NEWKEY4#0)

FATH FUNCTION ¢ F i o
ATTEMFT = 0 ‘1”0T1¥’ﬁ GRA K—lii}

CHECKSUM:!=UFLATEDH#0 o

DISFLAY:=REALTIME$%0 vy N AT o\ A4

GAS:=ACTIVE Ok DATA-LL )> \

MANUAL ! =FASSIVE S

OFF:= 1400

ONi= 1000

FRESSED ! =FALSE

REAL {=REALTIME &40

SFARK:=FASSIVE

STATUS:=EREAL

UF:=TRUE
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————————————————————————— FATHLENGTH B oo A A G

NODE 3 FATH 1 (FREDECESSOR 8 FATH 1)

TRAVERSAL CONDITION : _ﬂuc 207 ( “rCuah Lwe F¢ )

NOT ¢ NOT (FROGMEME20)) ANI
(TRUE AND
( B00<» 2402) AND
REQUIRED£$0 AND
NOT (FLAME#30) ANID
( 0< )

OR TRUE AND
( 800<» 2402) AND
REQUIRED#$0 AND
(FASSIVE<»ACTIVE) AND
¢ 0< 53) AND
NOT (FLAME#20) AND
NOT (NEWKEY$#0) AND
(UFDATED##0=UFDATED#%0)

FATH FUNCTION @ co

ATTEMFT:= 1+ 0 1 NCT PRCGR A LD
CHECKSUM ¢ =UFDATED##0 © T U RURAM LD
DISFLAY!=REALTIME#%0 , A
BAS:=FASSIVE (R DAT«"—\_- LEDY ¢
MANUAL :=FASSIVE /]
OFF:= 1400

OMi= 1000

FRESSED :=FALSE
REAL $=REALTIME4#0
SFARK:=FASSIVE
STATUS:=EREAL

UF ! =TRUE

_:. ’}/“, ‘r‘, , 7 12\1
TRAVERSAL CONDITION ¢ =i <O ({ura cby Ui
NOT ¢ NOT (FROGMEME#0)) AND 3
(TRUE. AND
( 800> 2402) AND
REGUIRED®3%0 AND
NOT (FLAME#403 AND
( 02 )
OR TRUE AND
( B800<: 2402 AND
REQUIRED$%0 ANl
(FASSIVE<>ACTIVE) AND
( 0< S)) AND
NOT ( NOT (FLAMEE®0)) AND
NOT (NEWKEY#$0) AND
(UFDATED#$0=UFDATEN#%0)
FATH FUNCTION ¢ (\r /
ATTEMFT:= 0 NOT (PECG ;;‘g
CHECKSUM:=UFDATED#%0 i ”T'\ KGR, K\"’ e
DISFLAY:=REALTIME®#0
GAS!=ACTIVE 0k DATA_] \
MANUAL $=FASSIVE ' LeD) S
OFF:= 1400
ON:= 1000
FRESSED:=FALSE
REAL:=REALTIME£%0
SFARK!=FASSIVE
STATUS ¢ =EREAL
UF :=TRUE
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MNOLE @ FatH 3 (FRELECESSOR g FATH 1)
} ‘/';\ /\ | . ,‘FQ
TRAVERSAL CONDITION ¢ Liac <( 5 (th rcqu Lines lffy
MOT ¢ NOT (FROGMEM#£0)) AND )

“L \
(CTRUE AN 70 1%@)
¢ 800<x 2402) AND )
REQUIRED#40 AND
NOT (FLAME$%0) AND
( 04 5)
OR TRUE AND
{ 800«> 2402) AND
PEQUIPFD##O AND
FASSIVE<»ACTIVE) AND
( Oad B nND
NOT (FLAME#$0) AND

NOT (NEWKEY##0) ANI : . =8 B
(UFLATED##0<-UFDATEDS40) Wogrergh acis b
FATH FUNCTION : .

ﬁTT'W°T’” 1 L8
CHECREUM i =UFDATEDESR O f\l
DLSFLAY:= 2401 1 UA
st =FASSIVE -
SANUAL I =RASSIVE
fiek o= 13400
(= 1000
FRESEED =FaLSE
MEAL t=REALTIMEEE0
SFAREKs=PASSIVE
GTRTUSI=EREAL
Ut =FaLsk

f

-
I T

NODE 3 PATH 2 (FREDECESSOK g pary . 2)
TRAVERSAL CONDITION : _; .- J¢77 ( Hrcu b L
NOT ¢ NOT (FROGHEME$0)) AND Jr

TRUE AND
( BOO<» 2402) AND
NOT (REGUIKED4#0) AND
(FASSIVE«>ACTIVE) AND
NOT (NEWKEY$#£0) ANI

(UFDATED%#40= UFEATED##O'
FATH FUNCTION

ATTEMFT:= © {

CHECKSUM:=UFDATED®#%0 1&&'(\‘ '\ C" \X\—Z. 1Y)
DISFLAY!=REALTIME#%0
GAS:=FASSIVE AF WA L AE;
MANUAL ¢ =FASSIVE TRt B F A T
OFFt= 1400 :
ON:= 1000
FRESSED:=FALSE
REAL:=REALTIME#40
SFARK:=FASSIVE
STATUS:=EREAL

UF ¢ =TRUE

| .,
g}
fons
e





