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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING AND APPLIED SCIENCE 

ELECTRONICS

Master of Philosophy 

SPECIFICATION ISSUES AND VERIFICATION IN A 

PASCAL-LIKE LANGUAGE

by Hayri SAYI

The effectiveness of very complex, expensive and highly sensitive 

conyuter applications depends largely on the correctness of the 

software in use.

We have tried in this thesis to emphasise the role of the specifications 

as a first step in the design of the verifiable software products. Two 

techniques for writing formal specifications are described. One of them 

constructs an abstract state-machine, and the other defines an algebra 

by means of axioms. Extending an implementation language to accommodate 

specifications has also proven to be very useful to the verification process, 

giving birth to languages such as Gypsy and Euclid, both based on Pascal.

A sub-set of Pascal, called Pascal-Minus, was chosen, and a trans­

lator from it into the Functional Description Language (FDL) of the 

Department was developed, to check the conformity of the programs 

written in Pascal-Minus in relation to their specification in the form of 

Boolean expressions, using the existing facilities in the Department.

An example is given to illustrate the use and the capabilities 

of the system which can be extended to incorporate other control and 

specification constructs, thus increasing its power of expression.



1. INTRODUCTION

Ability to demonstrate in advance the correctness of a 

design is an important criterion for a discipline in order to be 

considered as a science. Today, nobody would start building a 

bridge before its design has been formally proven safe. But, this 

is more or less the way in which software production goes nowadays. 

Very' expensive and/or highly sensitive applications, whose complexity 

altogether largely surpasses the grasp of human intellect, are put into 

use before formally proving that their actual behaviour will meet the 

intents of the designers. The first American space probe to Venus 

(Mariner I) which had strayed from its original trajectory in June 1962 

and had to be destroyed because of an error in one of the guidance 

programs in its onboard computer, is such an example. Another major 

software failure which could end up in a nuclear holocaust was that 

of early warning sys^ms controlling nuclear missiles. (For a detailed 

review, see [GER7 6j .)

However, in the past decade or so, considerable effort has 

been devoted to the development of techniques for the systematic 

design of well-structured software. The term "structured 

programming" was first coined by K. W. Dijkstra [DIJ72 | to express 

a methodical attitude towards programming effort, that is the admission 

of the limitations of our power of comprehension at any one moment. 

This recognition can be used to our advantage if we divide the problem 

in hand into independently treatable parts } WIR71, WIR7 3 | . 

But, beside the unobvious task of recognising subproblems in a large 

system, each of these subproblems and/or their interrelations can 

still be too complex to be rnastered totally.

The measure of the complexity is the amount of information 

to be apprehended at any one moment, and this amount can be 

reduced via abstraction. Thus, by separating those attributes 

that are relevant in a given decomposition of the task from those 

that are not, we can end up witH intellectually manageable subtasks 

that we will call modules.
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After having emphasised the importance of program verifi­

cation, and examined the steps taken in that direction by means of 

modularity and abstraction, we can now look into the whole process 

of software development in this perspective.

At the beginning of the process is the concept we want our 

software to irr^lement. This concept can originate from our intuitive 

understanding of a problem or can be conveyed to us by means of an 

informal description. There can be many programs to implement it 

correctly, but their correctness can be stated only in infornaal terms. 

This is well away from proving formally that the irrplementation meets 

the original concept. What we need is a formal description of the 

concept which can be analysed for consistency, completeness and 

conformance with intuition. This formal description will be called 

a specification, and once it is proved that it captures the original 

concept correctly, the latter can be abandoned, taking us onto firmer 

ground than before, vis-a-vis program verification.

Obviously, through systematic decomposition and abstraction 

a modular specification will be produced ; giving way to a modular 

irr^lementation. At this stage, several layers can be inserted 

between the formal specification and its actual implementation, 

creating a hierarchy of abstractions.

At each step, the conformance of lower levels with the 

specifications at the immediately higher level must be proved. Thus, 

the whole proof issue is divided into several steps, by the systematic 

application of the methodology in a top-down mianner, hiding the lower 

level implementation information from the higher levels to which it is 

not relevant.

This program construction methodology is also helpful 

for the rest of the software development process. The effects of 

any subsequent change can easily be located, and because of the 

information hiding inside each module and at each level, only the 

concerned modules need to be modified. The specifications also 

provide a good means of documentation, conveying the intents of their 



designers in a precise and unambiguous way. Any residual 

ambiguity in the specifications would be uncovered during the 

analysis for consistency, completeness arid conformance with the 

high level concept, before starting its implementation. Proofs for 

each module can be carried out separately, assuming that the 

behaviour of other modules will conform to their specification. There 

is no need to wait until the entire program has been coded in order to 

proceed with the proof. On the contrary, the stepwise refinement 

process from the higher level specifications towards the lower 

level implementations is not a linear one i SWA 82 . Each refine­

ment will provide feedback to previous steps, helping them to evolve 

together. With this constructive approach to the software design ; 

decomposition, abstraction and their speciiication issues become 

a cornerstone to the whole process and the proof that the final product 

(i. e. executable code) _wiil meet its original concept is incorporated 

into the whole development process.

The next chapter will present three selected techniques 

to specify software objects which we found particularly irrportant 

and promising. One of them consists of writing implicit specifications 

by describing the states of an abstract (and not necessarily finite) 

state-machine. The second uses algebraic relations to define 

abstract data types. The third is an attempt to bridge the gap between 

specifications and their implementation.

The third chapter presents in detail the Pascal-Minus 

Project which adopts the third approach of the previous chapter.

Pascal-Minus is a sub-set of Pascal which permits insertion of 

assertions to state formally the intents of the designer for a given

implementation. Programs written in Pascal-Minus are translated

into the Functional Description 

to check them in relation to the 

assertions.

Language (FDL) of the Department 

specifications in the form of Boolean

In the last chapter an example will be given to illustrate

different points made in the preceding chapters.
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2. FORMAL SPECIFICATIONS OF DATA ABSTRACTIONS

In this chapter, three specification techniques will be 

introduced, illustrated with an example problem. One of them uses an 

abstract state machine model to describe its states and the state 

transformations that can be accomplished by the application of different 

operations on it. The second technique defines an algebra by means of 

axioms to describe the object of interest, thus requiring of its users 

greater mathematical sophistication than the first one. The third 

technique consists of extending an inr^lementation language by 

specification features, which can then be compiled together for both 

static (conpile-time) and dynamic (run-time) checks. A discussion 

will follow on the respective merits of each method and the problems 

experienced during their use.

2. 1 Description of the exanple problem

The user's requirements of a system are often quite 

difficult to formulate formally. They are usually described 

informally in a natural language, and can be unnecessarily wordy 

by going into the inqalementation details or incomplete by omitting 

sensitive information about the expected behaviour of the system 

under some conditions. It is not realistic to expect a text of 

several hundred pages to be consistent, conrplete and up-to-date. 

Even go, its very dimension surpasses the capacity of a human­

being to apprehend it in its totality. The necessity for concise, 

consistent and conplete formal specifications is beyond argument. 

The mere statement of this fact is important, but we still have to 

find the methodology based on a sound ground in order to be able to 

proceed to the necessary checks to guarantee the aforementioned 

properties.

We have taken our exarrple problem from everyday life : 

How to describe a lift controller. The user will call the lift 

from a certain floor, will wait for its arrival, will get in and push 

the button corresponding to the floor he/she wants to get to and will 
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expect the lift to stop at that floor. But, usually he/she will not 

be alone in using the lift and other users with different and probably 

contradictory wishes will interfere. If we want to avoid arguments 

between passengers about which direction it should got first, or simply 

make it more efficient both for the user's interest and the economy of 

energy/time, we should find a fair strategy to control it.

The same problem is encountered in the specification of a 
disc-handler. ^ HOA74, ABR79J The strategy, called 'lift 

algorithm', is to go in the sarnie direction until all demands in this 

direction are satisfied, and then revert to the opposite direction and 

so on. In this way, the demands are not satisfied on a first-come 

first-served basis, out depend on the actual position and moving 

direction of the system. Obviously, this is a cyclic, non-terminating 

activity, and we have found the task of formally specif ying the general 

problem difficult within a fixed discipline.

We will first introduce an algorithm in the form of 

equations which will form a basis for requirement specifications of 

the lift controller. We will try to stick to the identifier-names chosen 

to represent various properties of the system, in order to facilitate 

the comprehension of the specifications in different techniques. 

These following identifier names will be underlined.

The lift can be going^^, down or stopped. The calls are 

stored into a mem, indexed by the integer floor numbers, from/to 

which they are made. The lift is at floor loc. m^is the highest 

floor required, min is the corresponding floor in the opposite direction. 

spin keeps track of the direction of movement. (True if going upwards, 

otherwise false) arrived (i) becomes true when the lift gets to the floor 

i. By using them, we can write the following equations to describe 

the behaviour of the lift. We can see these equations as guarded 

commands, so whenever the expression on the left of zz.^ evaluates 

true, commands on the right of =:^ will be executed, irrespective 

of the order in which they appear. This is an apparently non- 

deterministic specification but as the guards are disjoint, there will 
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not be any non-deterministic choice between them at the time of 

execution. So we can rather see them as independent machines 

which execute the same instructions whenever their guard evaluates 

true. There can be only one machine executing at any one moment 

so that they can freely operate on the same data base without any 

need for the control of its access. The set of these independent 

machines forms a deterministic machine altogether. The equations 

are given in Table 1.

stopped and mem (loc) zz)^ open door ; not mem(loc);

stopped and not memfloc) and spin and max ^ loc z^ up; inc r erne nt loc; 

stopped and not mem(loc) and spin and max — loc and min .^ loc s^ not spin; 

stopped a^ no^mem(loc) and not spin and min ^ loc =^ down; decrement loc; 

stopped_a^ not mem(loc) and not spin and min = loc and max \ loc z^spin; 

not stopped and arrived (loc) and mem(loc) =y stopped;

^P ^nd arrived (loc) and no^rnem(loc) zz^ increment loc ; 

down^^ arrived (loc) and no^mem (loc) decrement loc ; 

otherwise c^ skip;

initially 

invariants

loc - 0 and stopped and spin ; 

max ^, loc and min Z loc;

Table 1. Lift Controller Specification

2. 2 Specifying by a Description of Abstract State Machine :

The ideas introduced in the first chapter about modularity 

and hierarchy of abstractions in structured programming are put into 

practice by this specification technique. Modules are machines 

at different levels in the hierarchy and lower level machines execute 

the specified function of higher level machines. At the top level 

is the machine, the behaviour of which we want to specify. As the 

implementation details are hidden by means of a hierarchy of 

abstractions, we can only observe the external behaviour of a 

machine, in other words the denomination of abstract machines.
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The external behaviour of a machine can be described by 

means of V-functions (Value functions) which return the value ofa 

state variable at the moment of their call, and of O-functions (Operation 

functions) which describe the state transformations by attributing new 

values to the V-functions in terms of their values before the transform- 

ation of the state by an O-function call and the function parameters. 

The set of possible V-function values of the machine defines its 

internal state-space and a particular set of values denotes one of its 

states. Each O-function call is a function, mapping a state of the state 

space to another one. This descriptive method was introduced by 
Parnas. F PAR72, PAR72a, PAR75 7 .

Each V-function specification contains a comment clause 

describing its result, a returns clause declaring the result type, an 

initially clause defining its initial value and an exceptions clause 

stating conditions under which the call will result with an error 

notification.

An O-function specification contains a comment clause 

describing the transformation accorrplished by its call, an exceptions 

clause as before, and an effects clause defining new values for each 

V-function.

Initially, exceptions and effects clauses are expressed 

in terms of assertions. The assertions in initially are in terms 

of module constants. For exceptions, the assertions are written 

in terms of constants and the values of V-functions before the call. 

In order to distinguish between the values of V-functions before 

and after the call, the former is quoted. For effects ^the 

assertions are written in terms of constants and V-function values, 

by assigning to the unquoted new values of V-functions, an expression 

containing quoted former values and constants. These assertions 

must hold upon exit from the O-function.

The specification methodology put forward by Robinson, 

Levitt, Neumann and Spitzen from the Stanford Research Institute 
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contains five distinct stages, [ ROB77, SPI78, ROB77a, ROU77j 

three of which use a formal specification language called 'SPECIAL'. 

We will briefly introduce these five stages.

Stage 1 Each module, with a list of its V- and O-functions 

is placed in a hierarchical ordering. The visibility of these functions 

at higher levels is decided at this stage.

Stage 2 Each module is formally specified as described 

before. The effects specifications of O-functions can be checked 

for self-consistency, as an inconsistent module specification will 

give way to an irr^lementation whose correctness cannot be proved. 

General properties of a module can be expressed in terms of global 

assertions which can be used as lemmas to sirr^lify the proof of a 

program that calls functions of the module. They are written in 

terms of V-functions of the module. Their proof can be carried out 

by showing that they are true for the initial values of V-functions and 

also after any sequence of O-function calls.

Stage 3 Decisions about how to represent the 

state of level_i in terms of the states of level i-1 are made. These 

will be expressed by defining surjective functions from a subset T' 

of the state space T of level i-1 to the state space S of level i. 

There can be several states at level i-1 which can map to a single 

state at level i. As a single state transformation at level i can 

be accomplished by a sequence of state transformations at level i-1, 

not all states of level i-1 have images at level i. These aspects will 

be illustrated during the specification of the lift controller by this 

method. V-function values of level i are expressed in terms of 

V-function values of level i-1. By substituting each V-function 

reference in the specification of level i by its instantiated mapping 

function expression, mapped specifications are obtained. These 

can be proved consistent in the same way as in stage 2. Thus, 

specifications of level i are transformed into assertions expressed 

in terms of only V-functions of level i-1. By using specifications of 

levels i and i-1, and the mapping functions, the correctness of the 

implementation of level i in terms of level i-1 can be checked. At 
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this stage several irr^ortant system properties can be stated and 

proved before any code is written.

Stage 4 Abstract programs using the functions of 

level i-1 and the control constructs of a programming language are 

written to inclement each of the functions of level i. A proof of 

correctness of these abstract programs with respect to the 

specifications of level i and to the mapping functions between levels 

i and i-1 must be given. This is accomplished by using an 
extension of Floyd's method [ FLO67j , axiomatizing the generation 

of verification conditions for programs calling O-functions. The 

input and output assertions for these abstract programs are derived 

from the mapped specifications.

Stage 5 Primitive functions of level O and of the 

abstract programming language used at stage 4 are translated 

into executable code. The communication mechanism between the 

levels must also be decided. The end product should behave in the 

same way as specified at the highest level by user's requirements, 

irrespective of the hidden behaviour of lower levels.

In this way, the highest level abstractions about "what 

is to be done?" are separated from the data representation and 

implementation problems corresponding to "how is this to be done?". 

The corrplexity to be dealt with at any level is reduced to an 

intellectually manageable size. A concise and easily understandable 

design is obtained, whose properties can be stated, even in the 

absence of proofs. The proof of a large program is divided into 

the proofs of several small programs whose properties are locally 

expressible at each level.

After having described the methodology, we can now 

apply it to the lift controller problem. Only the specification issues 

will be dealt with (Stages 1 to 3).

The state of the lift controller will be completely determined 
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by assigning a value to each of its state variables. These represent 

the location of the lift (l^cj, its status, i. e. going up, going down or 

stopped (move), the position of the door, i. e. closed or open, waiting 

calls (mem) and its next status (spin). Table 2 gives the 

specifications for the lift controller.

The initial state of the lift is described by the initially 

clause for each of its state variables. We can see that the lift is 

stopped at the ground floor with its door closed, and there is no 

waiting call.

The effects of a call, of its subsequent arrival to a new 

floor and of the opening of its door are described by the effects clause 

of the state transformations call, arrived and next respectively.

type Lift Controller - module

V-function loc

returns int e ger

initially

comment returns the level of the lift 

exceptions none

V-function move 

returns up, down, stoppedj 

initially stopped 

comment returns the status of the lift 

exceptions none

V-functions door 

returns 1 open, closed; 

initially closed 

comment returns the status of the lift-door 

exceptions none
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V-function mem (i:integer

returns boolean

initially W k (mem(k) = false)

comment returns true if floor i has been called, 

false otherwise

exceptions none

V-function spin

returns ^up.down, stopped^

initially stopped

comment returns the next status of the lift 

excep^^ns none

O-function call (i:integer)

comment insertion of a call for floor i

effects loc = 'loc'

\/ k (mem(k) ^j^k = i thentrue else 'mem'(k)) 

move = _if 'spin' = stoppedthen

j^i 'loc' then up

else id i ^ 'loc' then down 

else stopped

else 'move'

door = j^'spin' = stopped ar^i = 'loc* then open 

else closed

spin = J^'spin' = stopped then

_i^i^ 'loc' then up 

else if i / 'loc' then down 

else stopped 

else'spin'

O-function arrived (izinteger)

comment hardware signalling of the arrival to the 

floor i

effects loc = i
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O-function arrived (^integer) continued/....

Yk (mem (k) = j^k = i then false else 'mem' (k)) 

move = i^'mem' (i) then stopped else 'move' 

door = _i^'mem' (1) then open else closed 

spin = if 'mem' (i) then

i^'move' = up and gk:(k'>i and 'mem'(k)) 

then up

else

gk:(k<^i and 'mem'(k)) then down 

else

^ gk:(k^ iamd 'mem' (k)) then up

else stopped

else 'spin'

O-function next

comment 16s. after the opening of the door, this 

function is automatically called to close 

the door and assign the next status of the 

lift.

effects loc = 'loc'

Vk (mem(k) = ^k = loc tl^false el^'mem' (k)) 

move = ' spin'

door = closed

spin = 'spin'

Table 2. Specifications for the lift-controller

At this stage, we can write global assertions to express 

the general properties of the lift-controller, and prove them. As a 

security condition, the door should be closed while the lift is moving 

In terms of state variables at this level, that gives : 

Jmove 9^ stopped)^ (door = open)] = false. If we show that 

this assertion is true for the initial values of V^functions and that 

any sequence of O-function calls respects its truthfulness, we can
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be assured that this global assertion will never be violated 

during the whole life-time of the specified module. Initially, 

move = stopped and door = closed, so the assertion is true. 

After a transformation by the O-function call, if the door is open, 

then [('spin' = stopped) ^ (i = 'loc')] must be true, in which 

case move equals stopped, so the assertion is again true.

After a transformation by the O-function arrived, if the door is 

open, then 'mem' (i) must be true, in which case move equals stopped 

Finally, after a transformation by the O-function next, the door is 

closed. Now, we can be sure that in any conform implementation 

of these specifications, never will the door be open while the lift 

is moving.

We can also prove that, if the floor at which the lift is, 

has been called, then the lift must stop^ This can be expressed 

as : [(move / stopped)^ mem(loc)j = false, which again is 

true for the initial state, and any O-function call which finds it 

true, leaves it also true upon the execution of its transformation. 

In the same way, if there is a floor, other than that at which the 

lift IS, which has been called, then the lift must move at its next 

state. This gives Ri / loc) mem (i) (spin = stopped)] = fals

These three global properties give us enough confidence 

about the security and the fairness of the design, even before any 

line of code has been written. This is a very positive point about 

the method.

In order to illustrate the point about the mapped 

specifications which were mentioned in the description of the third 

stage of the method, we will go one level further down to give a 

specification of the memory as a lower level module. At this lowest 

level, we will hide the information about the number of floors serviced 

by the lift. This additional information will necessitate the insertion 

of^ceptions about the bounds of the memory. Table 3 gives the 

Specification of the module Memory.
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With the introduction of this module at level 1, the values 

of the ^function mem at level 2 can be expressed in terms of the 

V-function read at level 1. By substituting these new expressions 

into the O-function specifications at level 2, we obtain the mapped 

specifications. In the O-function call specification, the new value 

of the V-function mem will be expressed by :

\/k(read 

In the same way, in 

V-function mem will

(k) - effects of write (i, 

the O-function arrived, 

be :

true)).

the new value of the

V k (read (k) - effects-of write (i, false)).

That is, the effect of the transformation expressed by the O-function 

arrived, at level 2, on the value of the V-function mem, is implemented 

at level 1 by that of the O-functlon write on the value of the V-function 

read. The mapping function at the stage 4 of the implementl^ 

will be : mem (i) = read (i).

At this stage, we can again prove general properties 

of the lift controller, by using the supplementary Inforrmtion made 

available at this lowest level. As the exceptions clause expresses 

It, the lift IS not allowed to go under the ground floor, or over 

the highest floor (10 at this example), so we can prove that : 

(0 loc N) = true all the time.

-type Memory = module

N:integer = 10

V-function read (i:integer)

returns

initially

boolean

\/k (read (k) O.^i^N then false 

else undefined

comment returns value of ith element in

exceptions bounds : i / 0
memory

i )> Nor
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O-function write (i:integer, jzboolean) 

comment sets value of i^^ element in memory to j 

exceptions bounds : i <( 0 or 1^ N 

effects \/k (read (k) = if k = i then j 

else 'read' (k))

Table 3. Specifications of the module Memory

2.3 AlgebraicSpecifications

The idea of binding together the storage structures 

representing a type and its operations is not a new one. The class 

construct of SIMULA 67 ^DAH70j denotes a collection of such 

operations, without offering any representation - independent means 

for specifying the effect of the operations. An abstract data type 

specification is a unit wnich explicitly gives the properties of its 

values and operations. A relatively large class of implementations 

are then possiole. In this way, the specifications contain only the 

explicit relationships among the operations without going into the 

representationdetails.

Basically, one of the two main approaches has been 

adopted by different groups of researchers, although notational 

variations can exist within the same approach. One of these 

approaches is the axiomatic specifications of Hoare { HOA69, HOA72! 

which found its expression in the design of the programming language 

EUCLID i^LAM77, LON78 j . The second approach is the algebraic 

specifications method introduced by Guttag | GUT75, GUT77, GUT78, 

GUT78a, GUT80, GOG78, LIS75 j . An interactive system 

for specification and verification has been developed at the Information 

Sciences Institute of the University of Southern California. This 

system, called AFFIRM, checks data type specifications for 

consistency and completeness and carries out proofs based on these 

specifications j^MUS77, MUSSO, MUS 80a, GER79] . In the 

following, we will describe this second approach.
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An algebraic specification of an abstract type consists of 

three parts, of which, the first two, giving respectively syntactic 

and semantic specifications, are con^ulsory. The third part 

deals with restrictions, if there are any exception conditions.

The syntactic part gives the names, domains and ranges 

of the operations associated with the type. Each operation, whose 

range differs from the type of interest (TOI) is called an observer. 

Between the operations whose ranges are TOI, we can distinguish 

those which construct new values of the TOI (called constructors) 

and others (called extensions) whose result can be expressed in 

terms of constructors.

The semantic part is a set of axioms which defines the 

meaning of operations by stating the effect of a constructor on the 

values of the obiservers and the extensions. Only free variables, 

if - then - else expressions, boolean expressions and recursion can 

be found on the right hand side of the equations. In terms of the 

abstract state-niachine vocabulary, constructors are O-functions, 

observers are V-functions, and extensions are O-functions whose 

effect can be expressed in terms of other O-functions. An exarrple 

of algebraic specification is given in Table 4. for a set of integers 

not greater than 255.

type Set integer | 

syntax

new set : —Set

insert : Set X Integer —Set

has? : Set X Integer —^ Boolean

remove : Set X Integer —^ Set

semantics

declare s : Set ; i, i' : Integer

(1) has? (newset, i) = false

(2) has? (insert (s,i), i') =j^i = i' then true 

else has? (s, i')
continued overleaf/. . .
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(3) remove (newset, i) - newset

(4) remove (insert (s, 1), i') - if i - i' then remove (s, i') 

else insert(remove (s,P),D

restrictions

failure (insert, i)

Table 4. Algebraic Specifications for a set of integers 

not greater than 255.

We can immediately see from the example that newset and 

insert are constructors, Jm^? is an observer and remove is an 

extension. Any value of the TOI can be constructed starting from 

newset and only by the application of a sequence of insert operators. 

As this type is designed to denote sets which contain only integers 

not greater than 255, any attempt to insert an integer greater than 

255 will fail. The restrictions clause requires from the implementor 

to notify this failure.

An algebraic specification of the lift controller has been 

written (see Table 5) to enable us to compare this method with the 

previous abstract state-machine method. Two new observers, max 

and mm have been introduced to keep track of the highest and lowest 

floors inquired respectively. In this specification, new, call and 

arrived are constructors ; loc, mem, move, spin, max and min are 

observers ; and next is an extension (all the values of type Lift can 

be constructed without using the next operator). An asterisk appears 

before arrived and next in the syntactic specifications to indicate that 

these are hidden operators which cannot be called by the users of 

the type Lift. Their effect is as stated in Table 2 and does not 

concern the users of the type Lift.

We will prove by data induction a property of the type
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Lift as specified in Table 5. This property was assumed to be 

correct when we wrote the specifications, so its proof will not 

only increase our confidence in these specifications, but will also 

facilitate its comprehension by the readers who do not know that 

this assurr^tion was made.

type Lift

syntax

new : ——^ Xj i ft

Liftcall : Lift X Floor

^arrived: Lift X Floor —L i f t

loc : Lift —> Floor

mem: Lift X Floor —»"^true, falsej-

move: Lift —»^ np, down, s

Lift —> Floor

min : Lift . —-f Floor

spin : Lift —true, fals e )

mext: Lift Lift

toppedj'

semantics

declared: Lift ; fpf2 = Floor

(1) loc (new) = (^

(2) loc (call (1, tp) = loc (1)

(3) loc (arrived (1, fp) = f.

(4) mem (new, fj = false

(5) mem (call (1, fj, f^) = jd^f^ = f^ th^true ^mem (1, f.)

(6) mem (arrived (1, fp,f2) -21^2 " f^lh^ false e]^mem (l, 12)

(7) max (new) = -1

(8) max (call (1, f^)) = iLf^)^ max (1) th^L ei^max (1)

(9) max (arrived (1, f^ = if f^ = rnax (l)tl^ L - 1 else max (1) 

(lO)min (new) = fl
(11) min (call (1,1^)) = if f2 min (P ^th^ L e^^rnin (1)

(12) min (arrived (1, f^)) = if f^ = min (1) th^L f 1 else min (1) 

contd overleaf/..
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(13) spin (new) =true

(14) spin (call (1,1^^)) =_^min (1) naax (1) then 

If f. ^ loc (1) t hen true 

elsefalse

else spin(l)

(15) spin (arrived (1, f^) ^j^naem (1, fj then

if max (1) = f^ and nain' (1) / f. then false 

else

j^nain (1) = f^ and max (1) f, thentrue 

else spin (1) 

else spin (1)

(16) move (new) = stopped

(17) move (call (1, f^) = jf^min (1) max (1) th^ 

_i^f2\ loc (1) then up 

else

J^f^ / loc (1) then down 

elsestopped 

else move (1)

(18) move (arrived (l,fp) = i^mem (l, fjth^stopped 

else move (1)

(19) next (new) = new

(20) next (call (1, f^) = call (1, L)

(21) next (arrived (1, f^)) =_^mem (l,^)then

Jd spin (arrived (1, f^) and max (1) ^ h then 

call (1, naax(l)) 

else

^min (1) <(1^ tlm^call (1, nain (1)) 

else arrived (1, f.) 

elsel

Table 5. Algebraic specifications for a Lift Controller

The property to be proved is :

I^nain (1) / max (1) { s \/ f^ (mem (1, fj = false)
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It must be true for the constructors which do not take any argument. 

The only operator of this kind is new for which max (new) = -1, 

min (new) = +1 and mem (new, fj = false, so the equivalence relation 

is true. If we assume it to hold before an execution of the operation 

ca^ we must prove that it will still hold afterwards. The axiom 

5 tells us that after call there will at least be one f^ such that mem (1, f.) 

will be true. There can be four cases for min and max :

min

Before call

I min

After ca^

(1) = f2 (Axiom 8)

(1) unchanged (Axiom 11)

(b)
(1)

(1)

min

(1)

(1)

(d) (1) (1)
(1)

(1)

- f^ (Axiom 8)

= fj (Axiom 11)

unchanged (Axiom 8)

- f^ (Axiom 11)

unchanged (Axiom 8) 

unchanged (Axiom 11)

"I A

fl

I min

In all cases , we will end up with max (1) \ min (1), so 

that both sides of the equivalence relation will evaluate false. 

The equivalence is conserved by the application of the operation 

call.

We have to repeat the same reasoning for the last 

constructor arrived, which is a hidden operator. It is applied 

whenever the lift reaches a new floor on its movement, and we can 

see from the axiom 17 that the lift can only be put into movement 

by the application of ca^which introduces a new value true into mem. 

So we know that there is at least one f^ such that mem (1, f J will be 

true before the application of ar rived. As we assume that the 

equivalence relation holds before the application of arrived, we can 

say that max (1)^ min (1) will be true at that time. It can be proved 

that the case max (1) = min (1) denotes the situation in which there is 
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just one element true in mem corresponding to the next coming floor. 

In this case, after the application of arrived :

I max (1) = f^ - 1 (Axiom 9) 
= max (1) = min (1) ^min (1) = f^ + 1 (Axiom 12)

As the only element of mem which was true before the application, 
will become false (Axiom 6) ; f min (1) \ max (1) ] \/ f. (mem(l, fj = 

false) will hold after, keeping the equivalence relation true. It 

can also be proved that the case max (1) ^ min (1) denotes the situation 

in which there is an element true in mem which does not correspond 

to the next-coming floor. In this case, the application of arrived 

will leave that element true (Axiom 6), so we have to prove that the 

other side of the equivalence relation is also false :

Before arrived

max (1) \ min (1)

After arrived

max (1) min (1) (Axioms 9,12)

The only effect of arrived on max and mis can be incrementing min or 

decrementing max so that the relation "greater than" can only be 

transformed into "greater or equal" which concludes the proof.

2. 4 Programming Languages with Specification Facilities

The ability to describe the behaviour of a software product 

in terms of an abstract object, and to demonstrate its global properties 

by using only the formal specifications of that object, is a constructive 

approach to the whole software production process, with a deliberate 

en^hasis on the verification issues. However, the ' gap ' between 

the formal specifications and the final executable code can hamper the 

expected benefits of the approach, and all our efforts for producing 

and verifying the formal specifications can be put in jeopardy.

To avoid this pitfail, one can take a programming 

language and extend it, by incorporating into it the necessary 

features to the expression of specifications. This approach has
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given birth to GYPSY j<U\4B77 

HOL78, WOR79, WOR81] and 

only three of them. They are

, EUCLID 

SP-EUCLID

[LAM77, POP77, LON78 

rAND 7 81 , to mention

both based on PASCAL and allow for

the gradual refining of the specifications into an in^lementation

to be expressed in the framework of the language

The verification being the main concern for both of these 

projects, features of Pascal which made the verification difficult 

without adding much to its power of expression, were deleted 

altogether. These include functions and procedures as 

parameters, labels, GOTO statements, real numbers and, variable 

parameters for functions which now become pure mathematical 

functions without any side-effect. While-do and repeat-until loops 

of Pascal are replaced by a more general loop construct with 

specific exit points. In the following, we will concentrate on 

Euclid and give a specified implementation of the lift controller 

written in it.

A five-man committee was commissioned in 1976 to 

make minimal changes and extensions to Pascal in order to obtain 

a verifiable system programming language, with the proclaimed aim 

of transferring more and more of the work of producing a correct 

program, and verifying that it is consistent with its specification, 

from the programmer and the verifier (human or mechanical) to the 

language and its compiler" [pOP77] . This gave birth to Euclid.

The main atomic unit in Euclid is a module which brings 

together related types, variables and routines (procedures and 

functions) with initialization and finalization components that are 

executed whenever instances of the module are created or destroyed. 

In that respect, they can be seen as new-type-constructors with 

the advantages of abstract data types. The dual aspect of this is 

the information hiding achieved within a module, which enables 

a system-designer to build a hierarchical structure based on 

them. We will discuss that aspect more in detail later.
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Each module, which has its own local variables, types 

and routines declared within its body, can only use a name declared in 

another module if that name appears explicitly in its import-list as 

well as in the export-list of the module to which it belongs. If a 

variable name is imported (respectively exported) only for 

referencing without changing its value, a readonly clause must 

precede it in the in^ort-list (respectively export-list). A new 

assignment to a variable outside its own module can only be made, 

if and only if, its name appears, preceded with a var clause, both 

in the import-list of the module which wants to change its value, 

and in the export-list of the module to which it belongs.

The same rules apply to the routines (procedures or 

functions), which can only in^ort names local to their module or 

already irrported into it ; with the exception that the functions cannot 

import variables. Together with the restriction on variable 

parameters, the Euclid functions behave like mathematical functions. 

Thus, they can only have parameters preceded with a const clause 

in the parameter-list, or can only import names preceded with a 

readonly clause in their irrport-list. Procedures can have both 

call-by-value parameters (preceded with a const clause as for the 

functions) and call-by-reference parameters (preceded with a var 

clause in their parameter-list). They can also reference a name 

by importing it readonly or change its value by importing it var.

In this way, the interface between the modules becomes 

explicit and the conformance of the module bodies to these import- 

export rules can be checked at corrpile-time. For array indices 

within bounds and variant records, these checks will usually depend 

on dynamic information, although the conpiler can often use declared 

ranges or flow analysis to do partial checking. In these instances, 

the Euclid-compiler will generate legality assertions which must all 

be verified for the program to be legal , i. e. consistent with the 

language specification, with a defined meaning during the execution. 

These assertions take the form of Boolean expressions.



— 2 4 ~

The explicit control over the visibility of names in 

modules and routines is a very important issue, both at the design 

stage, to see directly the relationships between modules and 

routines , at the implementation stage, to hide the implementation 

details by not exporting them ; and at the maintenance-modifications 

stage, to locate easily the effects of a change in a module or routine 

on the other modules or routines. Although Euclid programs may 

tend to be longer on average than equivalent programs in other 

languages and thus take longer to write, the extra information 

supplied allows the Euclid compiler to do a much more comprehensive 

check, and provides a good means of documentation.

As we had stated at the beginning of this section, 

verification is the main concern behind the design of Euclid. 

Therefore, the language has syntactic means for including 

specifications and intermediate assertions. In Euclid, an assertion 

IS usually a Boolean expression, which is evaluated when the execution, 

reaches the point at which it appears. If the expression evaluates 

'true', then execution proceeds, otherwise a run-time halt occurs. 

Assertions written in a richer language, containing, for exarrpile, 

quantifiers and specification routines, can be bracketted as 

comments, to be submitted directly to the verifier. These will be 

proved either manually or mechanically by using the axiomatic 

method of Eloyd-Hoare f FLO67, H0A69, H0A737 . Thenroof 
p J 

rules for Euclid are given in { LON78 } .

Routines are specified by pre and post-assertions . 

The^re-assertion must evaluate 'true' at the point the routine is 

called, and the post-assertion at the point of return.

Modules are specified by a pre-assertion, an invariant- 

assertion, an abstraction function and specifications for exported 

routines and types. The invariant-assertion of a module must 

evaluate 'true' whenever an exported routine of the module is called 

and whenever it returns, thus maintaining the data integrity of the module.
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Moreover, assertions may be placed at any point in the 

flow of control, to express intermediate properties or loop invariants.

There is no provision for exception-handling in Euclid, 

as a verified program is expected not to cause a run-time software 

error, and recovery from unanticipated hardware failures, a non­

trivial task. Anticipated conditions must be dealt with using the 

normal constructs of the language.

In Euclid, a type declaration may have formal parameters, 

thus making the relationship among similar types to be made explicit 

in the program. Variant record definitions will use this facility, 

with the tag being one of the formal parameters. A module is a type 

constructor, several instances of which can be created by declaring 

names of that type. And finally, a type or routine declaration 

can be made visible in the whole module, by prefixing it with a 

pervasive clause. Names with a pervasive declaration need not 

be imported into other routines of the module.

In order to illustrate the specification means of Euclid, 

a specified implementation of the lift controller is given in Table 6. 

We can see that only the procedures Asked and Arrived are visible 

outside the module, which constitute the only interface with the 

'outside world',!, e. users and hardware. Whenever a new instance 

of type lift is created, all its local variables are initialised and it will 

wait in that initial state until a call is made from outside to the 

procedure Asked, to require it to go to a specific floor and open the 

doors. While it is moving, other calls can be received together 

with hardware signals (i. e. calls to the procedure Arrived) warning 

it of an arrival at the next floor in the direction of the movement. 

Two type definitions (i. e. Floor Type and Movement Type) are 

exported too, to avoid redundant declarations of the same type outside 

the module.
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const number Of Floors :=10;

var Lift:

module

imports (number Of Floors);

exports (Asked, Arrived, Floor Type, Movement Type);

invariant ((spin=:stopped =^move=stopped)a^

(move / stopped doors = closed) and

(move=up c^ max \ loc) amfl

(move=down z^ min loc));

pervasive type Floor Type = O. . number of Floors ;

pervasive type Movement Type =(up,down, stopped);

pervasive type Door Type = (open, closed);

var loc, max, minzFloor Type ;

vai" move, spin:Movement Type ;

var doors : Door Type ;

var memzarray Floor Type of Boolean;

pervasive procedure Open Doors =

imports (y^^doors, ya^mem, yauymove, readonly spin, readonly loc) 

2re(move = stopped au^mem(loc) au^ doors = closed);

post (n^ mem (loc) and doors = closed);

begin

doors:=open; wait 16s. ;doors:=closed;

mem(loc):=false;move: = spin;

en d Open Doors ;

procedure Asked (const floorzFlonr Type)=

imports (readonly loc, var move, var spin, var mem, var doors);

pre(true);

post (mem(floor));

begin

mem(floor):=true;

Jospin = stopped then

id floor \ loc then

begin

move:=up;spin:=up; 

end;
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else

_i^floor=loc then(3pen Doors;

else

begin

move: =down; spin: =down;

end:

if floor ^ max then max:=floor;

if floor / min then min:=floor;

end.Asked;

procedure Arrived-

imports (yajr loc, ya^move, var spin, var mem, var doors, 
number Of Floors);

pre(move / stopped and spin / stopped and doors - closed);

post (not mem (loc) and doors = closed);

begin

if move=up then loc:=loc+l;

else loc:=loc-l;

if mem (loc) then

begin

move:= stopped;

if (max=loc) and (min / loc) then spin:=down;

if (min^loc) and (max \ loc) then spin:=up;

^(max loc) and (min = loc) then spin: = stopped;

if max = loc then max: = ^;

if min = loc then min:=number Of Floors;

Open Doors;

end;

end Arrived;

initially

inserts (var loc, ya^max, yau^min, ya^move, var spin, 

var doors, var mem, number Of Floors);

begin
loc: = ^;max:=^; min:=number Of Floors;

move:-stopped; spin: = stopped; dooors:-closed;

for i in Floor Type

loop

mem(i):=false;

end loop;
end;

end module;
------------ Table 6. Lift controller as a Euclid module
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As it was anticipated at the beginning of this section, a 

Euclid module can be seen as an implementation of an abstract data 

type together with its specification: import, export and parameter lists, 

type and yay declarations of a module, representing a syntactic 

specification of the abstract data type, and, routine bodies together 

with initialization and finalization parts giving the semantics of it. 

This is the 'package' aspect of a module, putting together variable 

and type declarations and the operations which can be accomplished 

on them.

At the same time, only a limited number of variables, 

types and routines of a module are made available through its 

export-list to the 'outside world', hiding all the inpiementation 

details from outside. This aspect has important consequences for 

both software specification, implementation, verification and maintenance 

modifications processes .

At the specification level, Euclid modules make the top- 

down design approach both possible and natural. The concept 

to be specified at the highest level can be gradually refined through 

a hierarchy of modules. The obligation to specify explicitly the 

interface between modules, through import, export-lists, will 

force the designer to think carefully about the relationship between 

modules, even before their implementation has started. In this 

way, only the objects necessary to the interface will be made 

visible, abstracting from the implementation-choices about how a 

particular data object or an operation is going to be expressed in terms 

of a particular programming language construct. As it was 

explained in the first chapter, this is the only valid approach to the 

development of large software systems.

Once the top-down design based on modules has been 

conrileted, by stating explicitly the relationship between the 

modules through Import-export lists, and, by specifying the 

functionality of each module with ayre-assertion, an invariant- 

assertion, an abstraction-function and specifications for Its exported 

routines using ^re- andjoo^-assertions ; separate inqplementation 
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of each module and its routines can start. If a difficulty 

encountered during their implementation forces us to modify the initial 

structure of the software, the transparency of the interface between 

modules will facilitate the task by assisting us to locate easily 

the effects of a change on the overall structure. Implenrientation 

of each module can be done separately, by assuming about imported 

objects that their implementation will conform to their specification.

After a complete iirplementation in Euclid of all modules 

and their routines has been obtained, it can be compiled [HOL80 I 

to check for the conformance of the code to the rules about irr^ort- 

export lists as well as to the syntactic definition of the language. 

Whenever dynamic information is needed, as in array indices 

within bounds or variant records, the compiler will produce a 

legality assertion which must be verified afterwards. All pre-, post- 

invariant- and legality -assertions in the form of Boolean expressions 

are compiled too, and the code augmented with these assertions 

can be run for debugging. An assertion, which evaluates 'false' 

at the point of its execution, causes a run-time halt with a suitable 

message. Although testing cannot prove the correctness of a 

program, it can significantly reduce time and energy wasted in 

looking for proofs of programs still containing bugs. After a 

reasonable degree of confidence has been gained through debugging, 

proofs can be carried out by using the axiomatic method of Floyd- 

Hoare which will be examined in the next chapter.

During the maintenance-modifications phase, the modular 

structure of Euclid programs, together with their specification, 

facilitates comprehension and helps in localising the effects of a 

change. These effects are minimised by the information-hiding 

inside the modules, and a conrplete module body can be changed 

without affecting its environment, if its exported objects conserve 

the same functionality.
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2.5 Discussion

After having introduced three methods to specify, implement 

and prove software objects, we will discuss their relative merits 

and deficiencies.

The state-machine method of Parnas builds an abstract 

object by defining the effects of a state-transformation on the 

values of its state-variables. This is a non-procedural 

specification method, defining each operation separately in a 

static way with a reasonable degree of abstraction, and permitting 

the proof of global properties of the specified object before its 

implementation. The effects of a transformation are expressed 

in terms of simultaneous (possibly conditional) assignments to the 

state variables, leaving out all iteration and recursion possibilities, 

and thus necessitating introduction of several operations to 

express a succession of transformations.

In 197 8, an attenpt was made, by the TRW Defense and 

Space Systems Group, to extend Euclid to accommodate the state­

machine method, which gave birth to SP-EUCLID. This attempt 

was motivated by the necessity to verify that the operating system 

developed for the Defense Advanced Research Projects Agency 

(DARPA) was meeting Department of Defence security requirements. 

A more detailed analysis of the approach can be found in f AND78j .

Another atterrpt, by the Federal Systems Division of the

IBM Corporation, to use the concept of a state-machine as 

for specifying modules, was reported in ) SHASZj .

a basis

Although, the degree of abstraction and formalism, 

achieved by the non-constructive approach of the algebraic method, 

is higher than the one achieved by the first method, it is usually 

very difficult to find the characterising operations and to express 
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the relations between them in the algebraic model. Our own 

experience, and discussions with Dr. Guttag, have shown us 

that sooner or later one feels compelled to reason in terms of a 

model other than that of the algebraic specifications.

As the attempt to prove certain general properties of the 

specified model has shown us, the data induction of the algebraic 

method is much longer than proving global assertions in the state­

machine model. On the other hand, tools can be developed to 

assist in the design, irrylementation and verification of algebraic 

specifications.

It also emerges from the discussions in the literature 

that algebraic specifications are not appropriate for specifying 

all possible tasks. For exan^le, it might be impossible to find 

a finite representation of a type by operations and relations 

between them [MAJ?? I .

In all modesty, one can say that, for a given problem, 

a specification technique can prove to be less appropriate than 

the others. It is obvious for the example problem of this chapter 

that the description given in Table 1 is the simplest and the shortest 

of all, and therefore the easiest to comprehend. But the same 

formalism could be completely inadequate for a different problem. 

Although it is very tempting to 'compare' different techniques 

by applying them to the same problem, their respective evaluation 

should not exclusively be based upon that restricted experience.

The approach of unifying the means of specification and 

implementation, in the same notation, is obviously less formal 

than the others. But, it has the no less obvious advantage of 

bridging the gap between the formal specifications and their 

implementation by enabling us to express them both under the 

same formalism. They are also easier to write and to understand 

than in the first two methods. The possibility of using the compiler 

to do important checks about module interfaces cannot be under-



-32-

estimated. These reasons made possible the design, implementation 

and checking of a large piece of software (about 60000 source lines) 
in Euclid {^WOR811 . This is to corrqaare with the Delta 

Experiment in the algebraic method (roughly 1000 lines) which 
took 6-8 months j^GERTol .

The module construct of Euclid can be used both to 

create instances of abstract data types and to assist us in the design 

of large software systems in a top-down manner.

The advantages of unifying specification and implementation 

notations p-ushed us towards the third approach. The existence 

of a system capable of assisting in the verification process was also 

an important factor. These were the main reasons behind the 

Project Pascal-Minus which will be presented in the next chapter.

As for Gypsy and Euclid, we have chosen Pascal to 

start with, and eliminated features such as, procedures and functions 

as parameters, labels and GOTO statements, and real numbers 

which made the verification difficult.

The idea behind this project is to write specified 

implementations as in Euclid and to translate them into the 

Functional Description Language (FDL) to carry on the necessary 

checks about the conformance of the implementation in relation to 

the specifications written in the form of Boolean expressions.

The next chapter will present in detail our approach.
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3. PASCAL-MINUS PROJECT

In this chapter, after having explained our motivations 

in taking a particular subset of the programming language Pascal, 

which we call Pascal-Minus, and translating the programs written 

in that subset of Pascal into the Functional Description Language 

( FDL) of the analyzer currently being used at the Electronics 

Department of Southampton University, so that the pre-, post-assertions 

and the loop invariants introduced into the original Pascal-Minus 

program texts can be checked by proving the verification conditions 

generated by the analyzer, we will give a detailed description of the 

inr^lementation of our translator, together with a precise syntactical 

definition of both the input and the output languages, i. e. Pascal- 

Minus and the FDL respectively. We will also discuss the possible 

extensions to the system so that the initial Pascal-Minus can be 

enriched to Include more powerful control structures, thus enhancing 

its power of expression and conciseness without adding an excessive 

burden to the verification process.

3.1 Motivation :

In the preceding chapter, we have introduced three methods 

of specifying software objects, and discussed of their relative merits 

and shortcomings. After having written a complete set of consistent 

specifications, the next step consists of gradually refining them down 

to the executable code level. At this stage, we have in one hand 

the specifications which state formally, in one way or another, the 

original intents of the designer, and in the other hand the 

in^lementation in a programming language which is supposed to 

embody these original intentions. Obviously, the task is to 

prove that the latter performs what was intended by the former.

For this purpose, two logically equivalent techniques have 

been suggested and have found a large circulation since their 

formulation. They both use assertions to state what must be true 

of the variables at different points of a program. From the point of 
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view of program execution, these assertions are merely formal 

comments and no code is generated during the compilation.

The first approach, which is generally called "Floyd-Hoare 

Axiomatic Logic" FLO67, HOA69, HOA71, HOA72 j consists of 

writing rules of inference to denote the semantics of the programming 

language constructs. Beside the fact that these constitute a formal 

definition of the semantics of the programming language in hand, they 

can also be used to reason formally about the programs written in 

that particular language HOA73 ; .

Given a program with pre-, post-assertions and loop 

invariants, one can then start from the post-assertion, and using 

the rule of inference for each language construct, go in the opposite 

direction of the program execution until one reaches the beginning 

of the program. After each inference, a condition is generated 

which must be true at that point of the program, if the post-assertion, 

which states the expected properties of the program is to hold at the 

end. These conditions are called 'verification conditions' and 

the tool which generates them, starting from the post-assertion 

and using the rules of inference of that particular programming 

language, is called a 'verification condition generator'.

As an example, we can give the rules of inference for 

the 'assignment', 'compound', 'if and 'while' statements of 

Pascal ^OA73 J which are maintained in Pascal-Minus :

Assignment Statements :

Compound Statements :

P x:=y vP 
y c

P. H S . ; P. for i = 1. . . n 
1-1 L 1 ' 1_______________________  

P„ 'begin S ^; S-,;....; S endlp 
o ' “  1 z________n___ r n 

If Statements
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While Statements P B S ) P_______________
P . while B do S / P .— B 

s ---- — r A I

where : Pj^, Q are logical formulas describing properties of data ; 

P-^S > Q is an assertion which expresses that, if P

is true before the execution of S, then Q is true 

after the execution of S . If the execution of S does 

not terminate, it is also true.

Hj^, . . . , H^
^ is a rule of inference which states that

whenever H^, . . . . , H^ are true assertions, then 

H is also a true assertion ;

means substituting y for all free occurrences of 

X in P.

If one can prove all the verification conditions, then one can 

affirm that whenever this program is executed, with initial values 

for which the pre-assertion is true, and it does terminate, then the 

post-assertion will be true at the termination.

The second approach, called 'symbolic execution', simulates 

the execution of a program by maintaining a 'state vector' containing 

the symbolic values possessed by each program variable. For each 

path through the program, a 'path condition', which states in terms 

of symbolic values of program variables the condition under which 

this path can be executed, is recorded together with the actions 

accomplished along that path, allowing us to apprehend the input­

output relations established by the execution of that program (daNSZ!

Depending on the purposes of the analysis, the length of 

the paths can be fixed in advance or particular paths simulated 

by a judicious choice of symbolic values for some particularly 

important variables.

Both approaches are partly mechanizable, taking away from
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the humans the tedious and error-prone steps, and leaving them 

with the important strategic choices about the insertion of assertions 

at particular points of the program, deciding which paths to follow 

in particular or proving the verification conditions.

The Analyzer at the Electronics Department of Southanpton 

University adopts the second approach and, given an initial 'state 

vector' consisting of particular symbolic values for the program 

variables and a particular path, simulates the execution of that path 

either statement-by-statement or by using a reduced form of it.

The input language to the Analyzer is the FDL for which we 

will give a syntactical definition.

Our aim in undertaking the Pascal-Minus Project was to 

enable us to use the existing tools at the Department to analyse programs 

written in a sub-set of Pascal, made free from constructs which 

unnecessarily complicate the verification issues. Certain constructs 

have definitely been abandoned, others have provisionally been deleted 

from the initial subset to be added later on, once a skeletal system 

becomes operational. We shall now proceed to explain our choices 

which determined the actual form of Pascal-Minus.

3.2 Which Subset of Pascal?

Although Pascal has widely been accepted as a 'clean' 

programming language, it was not exempt from ambiguous and/or 

insecure features [HAB73, WIR75, WEL77j. Even its own 

designer was recommending the deletion of the GOTO statement. 

Much of the criticisms were directed against functions and procedures 

as parameters, array bounds, dangling references via pointers, 

variant records, labels and GOTO statements, and case statements. 

These criticisms were formulated from the stand-point of the users. 

When it came to define a programming language based on Pascal, 

with a priority to the program verification issues, then several 

language features were deleted to improve verifiability without undue 
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loss of power of expression. These included functions and 

procedures as parameters, labels and GOTO statements, real 

numbers, multi-dimensional arrays and input-output facilities, 
giving birth to EUCLID [uAM??, POP77, LON78, HOL78, WOR79, 

WOR81] .

In making our choices, we have taken into account these 

developments and definitely abandoned Pasal features which are not 

in EUCLID.

On top of that and in order to obtain pure functions without 

any s±de-effects, we do not allow Pascal-Minus functions to have 

call-by-reference parameters. Therefore a parameter list for a 

Pascal-Minus function cannot contain a 'VAR' clause.

We also wanted to replace each procedure call by its body 

after having assigned the actual values to the call-by-value parameters 

so that the procedural structure of Pascal programs could be 

transposed into the PDL by 'unwrapping' procedure calls. The same 

consideration applies to the function calls inside the expressions. 

Before a statement, containing an expression with a function call in 

It, is translated, the function body together with the assignment(s) 

to the function identifier is unwrapped. This obviously necessitates 

the forbidding of circular calls and recursive functions or procedures, 

in other words, the calT graph of the program to be translated must be 

acyclic.

To simplify the initial task of building an operational system, 

certain Pascal features have provisionally been deleted. Repeat- 

ur^ andjor loops are omitted, but the while-do loop is retained. 

This restriction does obviously not diminish the power of expression 

of the language. As it will be discussed under the 'extensions' 

heading, all these constructs will be replaced with a more general 

loop construct with specific exit points. With and case statements 

have also been deleted from Pascal-Minus.
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As for the predefined types and data-structures, only integer, 

boolean* character and scalar types are kept. The only constants 

belong to the defined scalar types. The pre-defined infix Pascal 

operators, 'or', 'and', 'mod' and 'integer division' are also kept. 

Appendix I gives the syntax diagrams for Pascal-Minus.

The Pascal-Minus Project consists of building a tree to 

represent all the declarations. All the attributes of these identifiers 

are kept in records pointed from the tree. Each procedure or function 

identiiier also possesses a pointer to its parameter list and another 

pointer to its body which is a linked list of statements. Once this 

tree is built, the whole or the parts of it can then be translated into 

the FDL in an interactive way with the user. The part of the 

translator dealing with that tree is essentially a syntax analyser, 

very siimlar in form to other commonly used syntax analysers for 

Pascal [PEM82, WIR81, AMMBl ] . Instead of generating P-code 

or assembly code or any other internal form, it generates a syntax 

tree which is then traversed to transform it into the FDL form. 

These points will be explained in detail under the heading 'Description 

of the Implementation'. Before doing that, we must now describe 

the FDL.

The FDL contains assignment, if-then-else and GOTO 

statements with labels. The only predefined types are integer and 

boolean. Predefined 'or', 'and' infix operators exist. There can 

only be one program body between 'START' and 'FINISH' clauses.

This last point necessitates the renaming of procedure 

and function parameters and local variables in order to distinguish 

them from the global variables, declared at the outermost program 

level, when the sub-programs will be unwrapped. Labels are 

unsigned integers.

Tnere exists extensions for Abstract Data Types, but these 

are not involved in the translation from Pascal-Minus.

In order to illustrate the translation issues, an exanyle 
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program written in Pascal-Minus and its translated form into the 

FDL can be found at Figure 1.

3. 3 Description of the Implementation :

The implementation is written in standard Pascal and makes 

just over 1500 lines. The main program PMINUS consists of calls 

to four procedures : COMPINIT, DECLARATIONPART, BODYPART 

and QUERY respectively, which we will describe in detail after an 

introduction to the data structures constructed and used by them. 

These four procedures are completely independent one from the other 

and intervene sequentially to perform their task.

COMPINIT initialises the whole system by filling the symbol­

buffer SYMBUF, by entering the predefined types 'integer', 'boolean' 

and 'character', together with two scalar values 'false' and 'true' 

of the predefined type 'boolean'. It also reads the main program 

heading and enters the program identifier, so that when the 

execution of COMPINIT terminates, the system is ready to receive 

all the declarations, the sub-program bodies and the main program 

body by calling DECLARATIONPART and BODYPART one after 

the other.

3.3.1 Data Structures

COMPINIT and DECLARATIONPART build two main data 

structures. One of them is the tree which keeps record of each 

identifier together with all its relevant attributes. A main program 

variable, OUTERBLOCK, points to the root of that tree named 

IDENTIFIER. IDENTIFIER is a record with the following fields :

Name : Identifier-name in a packed array of eight 

characters ;

Narn^ : Renamed variable identifier by adding a 'i<V'

and an integer in the range of 1 to 99 corresponding
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f:i7i.Trr^f ACiiM!- ,Pi<;9TUi-):
IJfSIv

MODHLE:TiEVICE:

END:

fdCT; ON 
BEGIN

TF M 
ELSE

tesTNEMORY(mem:INTEGER):BOOLEAN

Epi = 1-^Efi then ■TEETriENOiv i ;=TRUE 
testhemory:=ealse

BEGTW {TEST?}
MODULE:=PASSIVE:
T1ME:=800;
wHiLE TTME(20^i; Du

U -_ 6 ! N
TiME::=TTKE + i :
IF TFSrMEMORYfTfME) THEN 

BEGIN

END
END

'-TYPE' CHAR:
E'- PROGRAM TEST?:

CONSTANT' PASSIVE,ACTIVE:UFUICE 
VAR'iABLE' MtII;ljLE:uEVlC[;

NOT ( TIME ( 2000 ) 
"THEN" -'GOTO-- 2: 
TIME:=TIME+1:
{ BEGIN FUNCTION TESTMEMO } 
MEM#I:=TIME;
"IF- NOT ( MEM#1 = 1400 ) 
'THEN' 'GOTO' 4; 
TESTMEMO##0:-=TRIJE;
-GOTO' 3;
4:TESTMEMO##0;=FALSE;
3:{ END FUNCTION TESTMEMO } 
'IF' NOT ( TESTMEMO##0 ) 
-THEN' 'GOTO' 5;
MuDuLE:=ACTIVE;
TIME:=2000;
5:'GOTO' 1:

Figure 1. A Pascal-Minus program and its translated form into the FDL
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to the static declaration level of the variable, 

a packed array of eleven characters.

Rlink, Llink : Pointers to the immediate right and left 

neighbours, pointing both to records of type 

IDENTIFIER in the tree.

Neg^ : Used only for procedure and function identifiers, 

their parameters and identifiers of an enumerated 

type, pointing to the rest of the list, in the order 

they appear in the parameter list or in the 

enumeration list ; ml for the last identifier or 

for a function or a procedure v/ithout parameter ;

Idtype : Pointer to the second structure which keeps 

record of the identifier types, nil for a procedure 

identifier ;

Variant fields :

Konst : Used only for identifiers belonging to an 

enumerated type, keeps their ordinal number ; 

{ For a declaration. Colour = (Red, Blue, White), 

Values is 0 for Red, 1 for Blue and 2 for White

Formalvars, Used for parameter identifiers and for variable 

Actu^Tv^^: identifiers local to a sub-program (i. e. function 

or procedure), Vlev keeps the static declaration 

level ;

:Pflev is the static declaration level of the sub­

program, and equals the Vlev of all its parameters 

and local variables ;

Firstvar points to the first parameter identifier 

in the tree, if there is any, otherwise to the first 
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declared local variable identifier ;

Bodi points to its body.

The second data structure, named STRUCTURE, is a record 

keeping the type information. For variables of standard type as 

'integer' and 'character' , there is a special pointer, INTPTR and 

CHARPTR respectively, and there is no need for any special entry 

to that record. For enumerated types, Fconst points to the first 

element in the enumeration list. _Nom_keeps the type-identifier 

in a packed array of eight characters, Noml_keeps the renamed type- 

identifier in a packed array of eleven characters, as for a variable 

identifier.

Display is a main program variable and plays the role of a 

stack for sub-programs. Whenever a new sub-program declaration 

is encountered, a new record is pushed into the array. Fname 

points to the first parameter or local variable identifier of the sub­

program. Pnam^ points to the sub-program identifier. Whenever 

a sub-program body ends, the record corresponding to that sub­

program IS popped. To p is the index to that array.

Dict is also a main program variable and consists of an 

array of pointers to a record of type IDENTIFIER. A new element 

IS entered to this array whenever a new sub-program declaration 

IS encountered. DICT[CH points to the main program identifier, 

the subsequent elements of the array point each to a different sub­

program identifier, in the order they appear in the program text. 

Therefore, there will be just one assignment to each element of the 

array during the whole lifetime of PMINUS . Level is the index to 

that array.

Symbuf is a packed array of IK characters, Symcursor is its 
index. ^buf stores the Pascal-Minus text input to The system, in 

its original form, and each time it is consumed, the procedure Readtext 

is called to fill it again, until the end of the input text.
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-^ °^ type ^Symbol is the last symbol read by the procedure 

Ins)mibo] which recognizes the different tokens of the language.

If the last symbol is an operator,Op stores its kind ; if it is an integer 

V^stores it ; if it is an identifier or a reserved word of the language 

^of type packed array of eight characters stores it.

Figure 2 shows the representation of names and their 

attributes for the program in Figure 1.

3. 3. 2 Building up a Dictionary of Names

DECLARATIONPART builds the whole IDENTIFIER tree. 

Depending on the existence of the different possible parts in the 

declaration-list being processed, it will call in turn procedures 

TYPEDECLARATION, VARDECLARATION or PROCDECLARATION 

until all the declaration-list is exhausted and a sub-program body or 

the main program body is encountered. DECLARATIONPART and 

BODYPART both use the well-known recursive descent technique, 

found in all one-pass Pascal compilers.

T y PE DE CLARATION will enter the new type identifier 

into the tree, by a call to the procedure ENTERID. As the only 

user defined types can be of enumerated kind, the procedure 

SIMPLETYPE will be called to process the enumeration list. Upon 

termination of the procedure SIMPLETYPE, new type definitions 

can be processed, if there is any, otherwise TYPEDECLARATION 

terminates.

SIMPLETYPE will create a record of type STRUCTURE 

and will enter all the identifiers in the enumeration list into the tree. 

Feon st of the newly created record will point to the first element of 

the enumeration list, and the elements of the enumeration list are 

linked together through next of each element entered to the tree. 

This procedure has a call-by-reference parameter which returns 

the pointer to the type information kept in STRUCTURE for the type 

identifier which has just been processed.
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VARDECLARATION enters the variable identifier into the 

tree by calling ENTERID as an actual variable, stores the static 

declaration level in Vlev, and calls the procedure SIMPLETYPE to 

get the pointer to the type information corresponding to its type 

identifier. This procedure will terminate after having processed 

all the variable identifiers.

PROCDECLARATION will enter, by calling the procedure 

ENTERID, the sub-program identifier into the tree, as well as 

into the stack Display and the array Pict . After that^it will call 

the procedure PARAMETERLIST to process the parameters of the 

sub-program, and for a function it will call the procedure SEARCHID 

to find the pointer to the type information corresponding to the result 

type identifier of the function. This result type pointer will be 

stored in Idtype corresponding to the function identifier.

PARAMETERLIST will enter the parameters and their 

respective types into the tree as in VARDECLARATION by calling 

ENTERID and SEARCHID. On top of that, it will make the difference 

between a call-by-value parameter and a call-by-reference parameter. 

For the latter, if it belongs to a function parameter-list, an error 

message (FUNCTIONS CANNOT HAVE VAR PARAMETERS) will be 

printed out. Next corresponding to the subprogram identifier will 

point to the first parameter identifier, if there is any, otherwise 

It will be ml. Next corresponding to each parameter identifier 

will point to the next parameter identifier in the parameter-list, 

otherwise it will be nil. This procedure will start by processing 

the left-parenthesis and will terminate by processing the right 

parenthesis.

After the last sub-program declaration will have been 

processed by the procedure PROCDECLARATION, the procedure 

DECLARATIONPART will terminate and that will cause a call 

to the procedure BODYPART from within the main program.
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3. 3. 3 Linking Names with Actions

BODYPART, which is the third procedure to be called 

from within the main program body, builds a linked chain of records 

of type PARSER. The first record of the chain, corresponding 

to the first statement of the body, is pointed to by Bodi belonging 

to its sub-program or program identifier, which is at the top of the 

stack Display.

Each statement record of type PARSER has the following 

fields:

Next^ : Pointer to a record of type PARSER, containing the 

next statement ;

Variant fields :

Assign, Stores an assignment or a procedure call state- 

Proced : ment. Identi points to the identifier being 

assigned in the first case, or to the identifier 

of the procedure being called in the second.

Expl points to the expression which is assigned 

to the identifier pointed by Identi in the first 

case, or to a list of expressions corresponding 

each to an actual value to be given to each of the 

formal parameters in the second case ;

Conpound : Indicates the beginning of a compound statement. 

CtrO points to the first corrpounded statement ;

Condstate. Stores an if-then-else statement.

Exp2 points to the boolean expression of the 

conditional statement.

Ctrl points to the statement-list following the 

'then' symbol.



Ct r 2 points to the statement-list following the 

'else' symbol, if any, otherwise it is nil ;

^^^2^^a^t^ Stores a while -do statement.

^^P^ points to the boolean expression of the 

repetitive statement.

Ctr3 points to the statement-list following the 

'do' symbol.

Expressions are kept in linked records of type EXPRES with the 

following fields :

Nexte : Pointer to a record of type EXPRES, 

containing the next token of the current 

expression ;

Variant fields :

: Keeps the unsigned integer number ;

For a variable or function identifier, idenp 

points to its record of type IDENTIFIER ; 

Op er : Keeps the operators in Ope ;

Subsymb: Keeps 'comma', 'left parenthesis', 'right 

parenthesis' and 'not' symbols in Sym .

BODYPART calls the procedure STATEMENT until the end 

of a body is encountered. Bodl field of the record corresponding to 

the sub-program or program identifier will point to the first 

statement of its body. Once the whole body is processed, the 

stack Display will be popped. If the stack is not yet en^ty, a new 

symbol will be read, and if it is not a 'begin' symbol, then the 

procedure BODYPART will terminate and the main program will 

call the procedure DECLARATIONPART again ; if it is a 'begin' 

symbol then the procedure BODYPART will keep on calling the 

procedure STATEMENT until the end of this new body. At the end
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o a body, after having popped the stack Display, if the stack becomes 

empty, that will mean that the main program body has just been 

processed and the processing has reached the end of the input text. 

In this case the procedure BODYPART will terminate and the main 

program will call the procedure QUERY to ask if the whole program 

or only a part of it has to be translated into the FDL.

STATEMENT will create a record of type PARSER, and

if the last symbol read was an identifier

SniARCHID to determine the point
will call the procedure

er to its record in the tree.
If It IS a procedure identifier, the tag-field ^ of the record which 

has just been created will be set to proced and the procedure CALL 

will be called to store the actual values to its parameters into a 

Cham of records of type EXPRES . If the identifier was a variable

or a function identifier, then the tag-field St

the procedure ASSIGNMENT will b
will be set to assign and

e called to stor
into a chain of records of type EXPRES.

was a 'begin' symbol, then St will be set to

e the expression

COMPOUNDSTATEMENT will be called

If the last symbol read 

compound and

S_^ will be set to condstat
if it was an 'if symbol, then

e and IFSTATEMENT will be called, if it

was a 'while' symbol, then St will be set to repstate and 

WHILESTATEMENT will be called.

CALL will create a chain of records of type EXPRES 

to store the actual values being assigned to the parameters. The 

first element of this chain of records will contain the left parenthesis 

by setting Sts tag-field H^to and the last element will contain 

the right parenthesis by setting its tag-field kin£to Rg. I„ between 

actual values separated by commas will be stored, by calling the 

procedure EXPRESSION, and a type check will be made for each 

actual value.

ASSIGNMENT will call the procedure EXPRESSION to 

store the expression into a chain of records of type EXPRES. Th, 

first record of the chain will be pointed to by Enpl of the Assign 

field. A type check between the identifier and the expression will 

be made.
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COMPOUNDSTATEMENT will call the procedure STATEMENT 

until the end of the compounded statement-list. A chain of records 

of type PARSER will be created for the whole compounded statement- 

list. The first record of the chain will be pointed to by CtrO of 

the Compound field.

lESTATEMENT will call the procedure EXPRESSION to 

create a chain of records of type EXPRES to store its boolean 

expression. The first record of the chain will be pointed to by 

ExgZ of the ^ndstate field. A type check will be made to see if the 

type of the expression is boolean. The procedure STATEMENT will 

be called to create a record for the statement following the 'then' 

symbol, and of the Condstate field will point to that record of 

type PARSER. If there is an 'else' clause, then the procedure 

STATEMENT will be called again to store the statement following 

the 'else' symbol and Ctr2 will point to that record, otherwise 

Ctr2 will be nil.

WHILESTATEMENT will call the procedure EXPRESSION 

to store its boolean expression. Exp3 of the Repstate field 

will point to the first record of that expression which must be 

of type boolean. After the type check, the procedure STATEMENT 

will be called to create a record of type PARSER for the statement 

following the do' symbol, and C^ of the Repstate field will point 

to that record.

EXPRESSION will call the procedure SIMPLEEXPRESSION, 

after which, if there is a relational operator, it will be stored in 

a record of type EXPRES, and that new record will be appended to 

the chain of records of the same type created by SIMPLEEXPRESSION ' 

then the procedure SIMPLEEXPRESSION will be called again to 

store the second half of the expression which will be appended at 

the end of the chain. A type check will be made to see if the 

comparison is possible between these two single expressions.

SIMPLEEXPRESSION will store the sign in a record of 
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type EXPRES, if there is a minus sign, then will call the procedure 

TERM. If signed and if the type of the term is not 'integer' then 

an error message will be printed out. If an 'addition', 'substractlon' 

or 'or' operator follows then it will be stored in a record of type 

EXPRES and appended at the end of the chain created by TERM 

and the procedure TERM will be called again to store the second 

operand, after which a check will be made to see if both operands 

are legal to the operator. Then the whole chain will become the 

first operand if another 'additive' operator follows, and the same 

will be repeated again until no 'additive' operator is left.

TERM will start by calling the procedure FACTOR. After 

that, as long as there is a 'multiplicative' operator (e.g. 'multiplication 

'integer division', 'modulo operation' or 'and' operation), it will be 

stored, the procedure TERM will be called and the two operands 

will be compared to see if they are both legal to the operator. 

Then the whole chain will become the first operand and the same 

will be repeated again until no 'multiplicative' operator is left.

FACTOR will create a record of type EXPRES and depending 

on the last symbol read will take different actions. If the last 

symbol read was an identifier, then the tag-field will be set to Iden, 

the procedure SEARCHID will be called to get the pointer to its 

record in the tree, and this pointer value will be assigned to idenp of 

the field iden, if it is a function identifier, then the procedure CALL 

will be called to store the actual values to its parameters in a chain 

of records of type EXPRES which will be appended to the first 

record created by FACTOR. If the last symbol was an unsigned 

integer, the tag-field kind will be set to Cst and the integer be 

stored in Cval. If the last symbol was a left parenthesis, then 

the tag-field kind will be set to Subsymb and the symbol be stored 

in Svm, The procedure EXPRESSION will be called to store the 

expression which follows in a chain of records of type EXPRES 

which will be appended to the record created by FACTOR. A record 

containing the closing right parenthesis will be appended to the end. 

If the last symbol read was a 'not' symbol, it will be stored and the
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procedure P'ACTOR will be called, to deal with the rest. After which 

a type check will be made to see that the last factor which was 

analysed was of type boolean.

That ends the description of the procedure BODYPART, and 

also of the whole data structures. The last procedure QUERY, 

which will be called by the main program, will use the data structures 

created so far, but will not create new data structures. It will 

translate them into a FDL text which can then be 

processed by the Analyzer.

3.3.4 Translation into FDL

Once the main program body of the input text has been 

processed by BODYPART, the main program calls QUERY to ask the 

user if the program or a sub-program of the input text is to be 

analysed. The user types in the identifier of the program or a 

sub-program. Ohly the first eight characters of this identifier 

are read, and if the identifier has less than eight characters, 

a blank character must be typed in after the last character. 

QUERY then looks into the array DICT to find if the identifier is 

in the dictionary. If the identifier is pointed to from one of the 

DICT entries, then its translation is performed by calling the 

procedure FLOWCHART. If the identifier is not in DICT, then a 

message (NAME NOT FOUND IN DICT) is printed out, and the user 

IS asked again if another program or sub-program is to be analysed. 

This process is repeated until the user answers 'THATSALL'.

FLOWCHART prints out 'TITLE' PROGRAM/PROCEDURE/ 

FUNCTION (one of these) <(identifier^ ; and then declares standard 

type 'character' and standard infix operators 'modulo' and 'integer 

division', by printing out : .

'TYPE' CHAR ;

'INFIX' MOD (INTEGER, INTEGER):INTEGER ; 

'INFIX' DIVdNTEGER, IN TEGER):INTEGER;
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The procedure DECLARE is then called, to print out the 

declarations of all the identifiers which are visible at the level 

requested by the user. After the control returns from the procedure 

DECLARE, the line 'START' will be printed out and the procedure 

TRANSLATE will be called to translate into the FDL the body of the 

program or sub-program asked by the user. After the return of 

control from the procedure TRANSLATE, the line 'FINISH' will 

be printed out to indicate the end of the body, and at this point the 

procedure FLOWCHART terminates. The fact that the procedures 

DECLARATIONPART and BODYPART were independent one from the 

other, each with its own data structures, has enabled us to have 

two independent procedures DECLARE and TRANSLATE to deal with 

the translation into the FLL of the declarations, 

and program or sub-program bodies respectively.

DECLARE needs to find the scope corresponding to the 

program or sub-program to be analysed. If the main program is to 

be analysed, all the identifiers can be used by successive calls to 

the nested sub-programs, therefore they all must be declared. 

The variable and type declarations at the main program level are both 

visible inside the whole program, making it necessary to translate 

them in any case. But we have to make a distinction between the 

call-by-value parameters and the local variables of the sub-programs 

in one hand, and the call-by-reference parameters of the sub-programs 

in the other. If the main-program is to be analysed, all the former 

must be translated after having renamed them to avoid name-clashes ; 

the latter need not be translated, as each time a sub-program call 

is made, only one of the former or a main program variable can be 

passed as a call-by-reference parameter. We can illustrate these 

points with the following example :

PROGRAM ALPHAdNPUT, OUTPUT);

TYPE ^type declaratiors^;

VAR AHNTEGER^B: BOOLEAN C:CHAR ; 
/Subprograms^ ;
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PROCEDURE BETA(A:INTEGER;VAR D:BOOLEAN):

VAR K:INTEGER ;DELTA: BOOLEAN ;
^Subprograms^;

PROCEDURE THETA(L:INTEGER ; VAR DUMMY : BOOLEAN) ; 

BEGIN

statements

END ;

BEGIN(*BETA*) 

^statementsS;

THETA (K+2*A, D) 

<^tatement4^ ;

THETA(A,DELTA)

END(*BETA*):

<(^sub
-programs

BEGIN(*ALPHA*)

^tatemen

BETA(A+2*ORD(C), B):

^statementZ

ENp(*ALPHA*).

If the user asks for ALPHA to be analysed, all the variable 

and type declarations at the level of ALPHA must be translated. 

As we want to unwrap the sub-programs at the point of their call, 

their local variables and call-by-value parameters need also be 

translated, as only their body will use these identifiers, their value 

at the end of the body being of no interest. On the other hand, call- 

by-reference parameters will be able to change the value of the 

parameters or local variables of the other sub-programs or even 

the variables of the main program. Therefore, if we declare and 

assign to them the actual parameter at the point of the call, as we do 

for the call-by-value parameters, we will have to re-assign the value 

of each call-by-reference parameter back to the corresponding actual 

parameter, at the end of the called sub-program. Leaving aside 

for the moment the issue of renaming, we can illustrate this point 

as follows from the PROGRAM ALPHA example :
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The call THEuTA(A/:/l, DELTA i^l) in the procedure BETA would 

give

L/^ 2:=Ai^l ;

DUMMY#2:=DEL TA/:ifl ;
<(body of THETA\ ;

DE LTA /5^1:=DUMMY#T(2 ;

Two assignments and one declaration can be saved, for 

each call-by-reference parameter, if we decide to use DELTA?^! 

in the body of THETA, which would give :

LAi^2:=Ait:^l ;

^body of THETA using DELTAi^l^ ;

We have adopted this solution, avoiding the unnecessary declarations 

and assignments which would have 'littered' the translated FDL text.

Leaving aside the declaration of standard 'character' type 

and 'mod', 'integer division' infix operators, we can give the 

translation of ALPHA into the EDL :

'TITLE'PROGRAM ALPHA;

'TYPE* ^type declarations \ ;

'VARIABLE' AHNTEGER ;

'VARIABLE' B-BOOLEAN ;

'VARIABLE' C:CHAR:

VARIABLE' A^LINTEGER ; {^call-by-value parameter A of BETAl 

'VARIABLE' KT^LINTEGER ;

'VARIABLE' DELTA^l: BOOLEAN ; "^local variables of BETAj"

VARIABLE'Li^2:INTEGER ; [call-by-value parameter L of THETA^

....... ..... (declarations of variables of other sub-programs)

{nested in ALPHAj'

'START'
<^statementl^;

A^l:=Af2*ORD(C) ; {translation of BETA (Af2*ORD(C), B)start^^
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Li^2:=K/#l+2*A/:^l

L^2:=AA^1 ;

{uses B instead of its call-by-reference parameter 

{translation of THE:TA(Kf2*A,D) starts here) 

{uses B instead of its call-by-reference parameter)

{uses B instead of its call-by-reference parameter^ 

{transl ation of THETA(A, DELTA)starts her^ 

[uses DELTA#1 instead of its call-by-referenc^ 

[parameter DUMMY)

'FINISH'

We still have not explained yet how to deal with the function 

calls inside the expressions. Obviously, the same considerations 

as for the procedure calls apply to them, with the simplification 

that functions cannot have call-by-reference parameters in Pascal- 

Minus, avoiding the side-effects inside them. But, there is one major 

complication which is that several calls to the same function can be 

made in a single expression. So, if we want to expand the function 

body for each instance of these calls, at each instantiation, a different 

name must be given to the function identifier, in order to enable us 

to use them later in the expression. This problem is solved, by 

counting the maximal number of times a function identifier can appear 

in a single expression, and by declaring them as variables with a

' ending. In this way a maximal number of 10 

instantiations of the same function in a single expression can be 

dealt with. The expression

A:=ADD(B,ADD(C, D))*100;

would be translated as : 
(^function body ADD with actual parameters C, D and the result 

being assigned to ADDA^i^o);

^function body ADD with actual parameters B, ADDi^A^ and the 

result being assigned to ADD /f

A:=ADD# 7^1*100 ;

That ends the explanation of the functioning of DECLARE for the case
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the main program of the input Pascal-Minus text is to be translated.

3.3.5 Translating Sub-Routines Separately

If the user asks for a sub-program to be translated, we have 

to find the scope at that level. As ah example, if the sub-program 

to be translated is BETA, not only we have to declare the type and 

variable definitions of the main program ALPHA and, all the call-by- 

value parameters and local variables of all the sub-programs between 

the heading of ALPHA and BETA, we also have to declare all the 

call-by-value parameters and local variables starting from the heading 

of BETA and ending when we meet the body of BETA. To this end 

DECLARE calls the procedure TRAVERSE to determine this depth, 

after which all the declarations between the main program heading 

and the dep^are translated except for the call-by-reference parameters

As for the call-by-reference parameters, although none of 

them need be declared if the main program is to be analysed, in the 

case of a sub-program, its own call-by-reference parameters, as 

well as those of other sub-programs which contain the sub-program 

to be analysed, must be declared after having been renamed. As 

an example, we can take the case of THETA being asked for analysis. 

That would give the following translation into the FDL:

'TITLE' PROCEDURE THETA ;

'TYPE' ^type declarations of ALPHA\

'VARIABLE' AHNTEGER ;

'VARIABLE'S: BOOLEAN;

'VARIABLE' C:CHAR;

'VARIABLE ' Ai^LINTEGER ;

'VARIABLE' DmzBOOLEAN;

'VARIABLE'Ki^l zINTEGER :

'VARIABLE' DELTA BOOLEAN ;

'VARIABLE' L^2:INTEGER:

'VARIABLE' DUMMY#2: BOOLEAN;

'START'

^statement 5^; ^this statement could use any of the declared variables^ 

'FINISH'
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This is exactly how the procedure DECLARE, proceeds. After 

having found the depth, by calling the procedure TRAVERS E^declared 

all the variable and type definitions of the naain program and, all the 

call-by-value parameters and local variables of the sub-programs 

that can be reached from the level of analysis by calling the procedure 

ACTVARS, it will also declare the function identifiers from 

within ACTVARS by calling the procedure COUNTEXP to count the 

maximal number of occurrences of a function identifier in a single 

expression for a given depth, as explained above.

After which, depending on the level of analysis, the call-by- 

reference parameters of the sub-program being analysed will be 

declared by calling the procedure FORMVARS. As explained above, 

if the sub-program being analysed is nested in other sub-programs, 

their call-by-reference parameters must be declared as well. This 

is checked by calling the procedure IS IN and the necessary call-by- 

reference parameters are declared by calling the procedure FORMVARS 

again. That ends the description of the functioning of the procedure 

DECLARE.

3. 3. 6 Translation of Each Statement

The last stage consists of translating the body of the program 

or sub-program into the FDL. This is done by calling 

TRANSLATE from within FLOWCHART.

As it has already been explained in the description of 

BODYPART, Pascal-Minus possesses five kinds of statement, 

namely : assignment, procedure call, conpound, conditional (if-then- 

else) and repetitive (while - do) . We have to describe now, how each 

of these is going to be translated into the FDL, by traversing the tree 

constructed by BODYPART.

For an assignment statement, the procedure CHECKEXP will 

be called to see if there is a function call in the expression. If the 

procedure CHECKEXP finds a function call, it will then call the 
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procedure PFCALL to assign the actual values to the formal parameters 

of the function. At that point, the procedure CHECKl will be called 

to see if the actual values contain any function calls, and if there is 

any, to translate them by calling the procedure PFCALL from within 

the procedure CHECKL After this check, the actual values to the 

call-by-value parameters will be assigned by printing out an 

assignment statement in the FDL text, ,and for the call-by-reference 

parameters, they will be renamed after the name of the actual parameter 

being passed in the call. Once the parameter-passing mechanism 

used in a compiler has been ’mimicked' for all the parameters, the 

procedure PFCALL will call the procedure TRANSLATE to translate 

the function body into the FDL and the result-value will be assigned 

to an identifier of kind :

<(^function identifier truncated to eight characters^ /::^ ^ ^digi^

as explained above. It is that identifier which will be used in the 

expression in place of the function call. Once all the function calls 

will have been translated by the help of the procedure PFCALL, the 

original assignment will be copied out with its function instantiations 

without changing the structure of the expression. This is due to the 

fact that Pascal-Minus and FDL both have the same syntax for 

assignments and expressions.

For a procedure call, the procedure PFCALL will be 

called to 'mimic' the parameter-passing mechanism and to 'unwrap' 

its body. If this procedure call is the last statement in a statement­

list, to avoid putting more than one label at the end of the translation 

of the procedure-call, the label which would have been put at the end 

of the statement-list, will be passed to the procedure PFCALL. This 

label is in Endlab and there is a flag attached to ut (Towrite) to 

determine if it is to be written. If at the end of the procedure body, 

this label is used and printed out, then Towrite will be set to 'false' 

to avoid printing it again after returning from the procedure PFCALL. 

The same mechanism will be used for statements possessing 

statement-lists as their part.
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For a corrpound statement, all that has to be done is to 

pass the CtrO pointing to the first statement in the list, together with 

Endlab, to the procedure TRANSLATE again.

For a conditional statement, its boolean expression must 

be checked by calling the procedure CHECKEXP, in the same way 

as for the expression of the assignment statement. After which, 

the following translation is made :

IFXcondition^ THEN (statement^ ; 

will become :

'IF' NOT ( <^condition^ )

'THEN' 'GOTO' O^ ;

Statement 1\:

In the same way,

IF ^condition^ THEN <^statementl\ ELSE 

will become :

'IF' NOT ( condition \ )

'THEN' 'GOTO' o< ;

^statement 1 \ ;

'GOTO' B ;

()(: ^statement

Statement 2

To control the production and the printing of the labels, two 

procedures ENDLABEL and PRINTLAB are used. In this way 

only the strict minimal number of labels are produced and each 

label is printed (as one expects it) only once.

For a repetitive (while-do) statement, we have to start 

by labelling the current line, if it has not already been made. The 

boolean variable ^beled keeps record of this fact together with Lbl 

which has the value of the last printed label. After that, its 

boolean expression must be checked by calling the procedure CHECKEXP 
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in the same way as for the assignment or conditional statements.

WHILE condition^ DO ^statemen^ ;

will be translated as : 

o(:'IF'NOT( ^condition\ )

'THEN' 'GOTO' 6 ;

^statement\ ;

'GOTO'o^;

If there is any function call in the (^conditionS , this 

must be evaluated each time the loop will be executed. To that 

effect, o( is printed first, and the procedure CHECKEXP called 

to 'unwrap' the function calls inside the ^expression^ starting 

from the label C)( . The following exanple illustrates this point :

WHILE ADD(A, B)^O DO ^statement\ ; 

will be translated as :

function body ADD with actual parameters A, B 

result being assigned to ADD /:?( Af o\:
and the

'IF' NOT (ADD ^^0^0)

'THEN' 'GOTO' 
^statement \; 

'GOTO' o( ;

After all the statements belonging to the body of the program 

or sub-program will be translated, the control will return to QUERY 

again as explained above.

3.4 Extensions :

As we had already anticipated, the Pascal-Minus language 

and its translator into the FDL, the Program PMINUS are open to 

extensions.

For practical reasons, one may want to introduce other 
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control structures from Pascal, or, new and morepowerful constructs 

can be added. We will give hereafter a few examples.

The introduction of repeat-until andj^-do loops can 

easily be done without necessitating big changes to the data or 

program structure of PMINUS. The statement

REPEAT ^statements UNTIL 

could be translated as :

expression

)( : ^statements ;

'IF' NOT ^expres sion

'THEN' 'GOTO'cX:

Or the statement FOR V:=E1TOE2 DO 

could be translated as :

"^statement

V:=E1;

O(: 'IF'V^ E2 'THEN' 'GOTO' 

^statementS;

V:=SUCC(V);

GOTO'0(;

The statement FOR VwEl DOWNTO E2 DO ^statemefitS ; 

could be translated as :

V:=E1;

(K : 'IF' V^E2 'THEN' 'GOTO' ^; 

^statementS;

V:=PRED(V);

'GOTO'O<;

To introduce these two constructs, the only change to the 

data structures should be made to the records of type PARSER. 

These would become :
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STATEMENTKIND=(ASSIGN, PROCED, COMPOUND, CONDSTATE,

WHILELOOP, REPEATLOOP, FOR LOOP);

PARSER=RECORD

NEXTR:CTR;

CASE STzSTATEMENTKIND OF

ASSIGN, PROCED:(IDENTI:CTP;EXP1:EXP):

COMPOUND:(CTRO:CTR):

CONDSTATE :(EXP2:EXP;CTR1, CTR2:CTR);

WHILELOOP, REPEATLOOP:(EXP3:EXP;CTR3:CTR) ;

FORLOOP:(UP: BOOLE AN;EXP4, EXP5:EXP; CTR4: CTR)

END ;

Obviously for a repeat-loop , as for a while-loop , Exp2 

will point to the boolean expression, and Ctr3 to the first statement 

of the statement-list contained in the loop.

For a fo^loop, will be 'true' if the index is to be 

incremented at each execution of the loop, 'false' otherwise. 

Fxp4 will point to El and Exp5 to E2 of the above exan^le.

C^ will point to the first statement of the statement list contained 

in the loop. Two procedures REPEATLOOPB and FORLOOPB must 

be written to be inserted into STATEMENT to deal with these loop 

constructs, just as it was done for while - do loop construct.

It is also possible to replace all these loop constructs 

with just one general loop construct with multiple exits | DAN82| .

This would give :

loop
(^statement-listl\

endldop

^select-statement\;

One or more statements in the (statement-list 1)> could have the form :
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expression I ? then exit

select - statement cons ist of :

select
^labell 

<^abel:^ 

other

'stateme

statement-o

end select ;

Any of the statements at the right of sign can be an exit 

statement as theloop statements may be nested.

If this approach were adopted, the while-do, repeat-until

and fo^d^ loops could be replaced as follows :

WHILE ^expressions DO state ( statement

would become :

LOOP
IF NOT ^expression'^ THEN EXIT LABI ; 

^statementl\

ENDLOOP; 

SELECT 
LABI =^ ^tatement^ 

ENDSELECT;

REPEAT (^statement 1^ UNTIL \^expression\ ; (^statementZ^ ; 

would become :

LOOP
^statementl\ ;

IF ^expression\ THEN EXIT LABI 

ENDLOOP;

SELECT
LABI =^ ^tatementz'^ 

ENDSELECT;
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FOR Vz-El TO (respectively DOWNTO) E2 DO <^statement\ ;

/ statement^ 

would become:

V:=E1;

IjCDC)]:'

IF V ^ (re spectively^ )E2 THEN EXIT LABI ; 

^statementl\;

V:=SUCC (respectively PRED)(V) ;

ENDLOOP:

SELECT
LABl:^ ^statement zS

ENDSELECT ;

The general loop construct could be translated into the 

Flowchart Language as :

'IF' 'GOTO' LABI ;

'IF' ^expH^THEN' 'GOTO' LABN ; 

pother statements\;

'GOTO' cK;

LABI; ^statementl\;

'GOTO' B ;

LABN: ^statementN\ ;

There is a strong case against the use of the 'GOTO' 

statement, especially from the verification point of view, but systems 

dealing with asynchronous events and interrupts may still need it, 

therefore it can be added into the Pascal-Minus and the users asked 

to be very careful about the choice to insert it in their prograzns. 

As the 'GOTO' statement exists in the FDL its 

translation would be straightforward. The records of type 

PARSER, dealing with the statements could have an additional
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statcmentkind, with a field to store the label to which a jurr^ must 

be made. Each statement would also need a label field, thus 

PARSER becoming :

PARSER=RECORD

NEXTR:CTR;LB:INTEGER;

CASE ST: STATEMENTKIND OF

GOTOSTATE :(LBJ:INTEGER)

END;

with the STATEMENTKIND=(ASSIGN, . . , GOTOSTATE);

would contain the label of the statement being stored in this 

actual record, and LBJ would contain the label of the statement 

to which a junp must be made. A procedure GOTOSTATEMENT 

would be added in STATEMENT.
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4. VERIFYING A PASCAL-MINUS PROGRAM

To illustrate different points made in the preceding chapters, 

a program in Pascal-Minus was written, and translated into the 

FDL by using the program PMINUS described in the previous 

chapter. The program BURNERCONTROLLER and its translated 

form can be found in Appendix II.

The program written in Pascal-Minus gives a high-level 

description of a burner-controller, together with assertions in 

the form of Boolean expressions which must hold whenever the 

execution reaches them.

The example system controls the timing and the re-ignition

of a gas-burner. The user enters through a keypad, the period 

during which heating is

off-time). The user

required (on-time^ heating-period 7

can also turn the heating on or off outside

the required heating-period by pressing manual-on/manual-off 

key s.

Once the system decides that the burner should be on, 

it goes through an ignition phase. If successful, it remains in 

this state until the end of the required heating-period, otherwise 

it locks out all further attempts at re-ignition from timed and 

manually setting-on, until the 'reset lock-out' switch has been 

depressed. If after a successful ignition phase, the flanre goes 

out, then a new ignition phase starts to keep it on during the whole 

heating-period.

Only five successive re-ignition attempts can be made, 

by turning on both the burner-valve and the spark ignition relays. 

If a flame is detected, then the spark-drive is turned-off, leaving 

the burner-relay on, otherwise both relays will be turned off 

before another attempt is made.

The system needs the time of day to decide for the 
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required heating-period. The function REALTIME returns it, 

for being assigned to the variable real. NEWKEY and FLAME 

are also interface functions, returning the information about the 

existence of a new entry from the keypad, and, about the flame 

being on or off, respectively. The procedure IO is called to deal 

with the entries to the system from the keypad.

As the implementation is expected to be done oh a micro­

processor, regular checks are made to assure that, first of all, 

the area of the memory reserved for the actual program has not 

been.overwritten, and that the sum of time variables (i. e. real, on 

and off ) equals an updated checksum. These checks are done by 

calling the functions PROGMEM and UPDATED respectively. 

If the check on the program memory fails, a PROGRAM-LED 

is turned on ; if the sum of real, on and off does not equal the 

updated checksum, a DATA-LED is turned on, blocking the system 

until a new power-on-reset.

Similarly, five successive ignition failures will cause an 

IGNITION-LED which can only be eliminated by a reset-lockout.

If none of these faults occur, the assertion 

NOT(PROGRAM-LED OR DATA-LED OR IGNITION-LED) 

will hold. In that case, the function REQUIRED will be called 

to decide if heating is required. If it is required and the g^ 

active with flame on, then no action is taken, otherwise the 

procedure IGNITE will be called for a new attempt at re-ignition. 

If five unsuccessful attempts had already been made, then ah 

IGNITION-LED is turned on.

After the termination of the procedure IGNITE, the assertion 
jNOT(PROGRAM.LED OR DATA-LED) AND

(IGNITION-LED AND ATTEMPT = 5 and GAS=PASSIVE OR 

NOT(IGNITION-LED)AND (FLAME AND ATTEMPTED OR 

GAS=PASSIVEANDATTEMPt\o))] 

will hold. It must be noticed that GAS=PASSIVE::^NOT FLAME,
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as one could not expect to find the flame on without turning the 

burner-relay on (i.e. gas:=active). Whenever the flame is 

ol^ained, attempt will be put to 0, therefore the assertion 

FLAME =^ GAS=ACTIVEANDATTEMPT  = O] will always 

hold.

The program BURNERCONTROLLER is then input to the 

program PMINUS described in the previous chapter to obtain its 

translation into the FUL (See in Appendix II). The FDLtext is 

first reduced by putting together program nodes which are not 

essential to the proof, keeping only the nodes at which we want a 

property of the system to hold. After that reduction is done by 

the existing facilities in the Department, the reduced form, (which 

can be seen in Appendix II) is symbolicly executed, as it was 

anticipated at the beginning of the previous chapter.

The symbolic execution is done step by step on the 

reduced text, starting from the node 1. Input values could have 

been separately assigned to the program variables at the beginning 

of the symbolic execution to simulate particular paths, but our 

inrgilementation was already containing an initialization procedure 

to that purpose, and, the procedure IO which deals with the keyboard, 

together with the function REQUIRED, were not expanded in order 

to keep our interest focused on the main function (i. e. ignition 

when necessary) together with security checks. We will 

concentrate on the ignition phase to check, that an attempt at the 

re-ignition is made whenever heating is required ; that after an 

igmtion failure the burner-relay is turned off (i. e. gas:=passive): 

that after five consecutive failures, the IGNITION-LED is turned 

on: that no further ignition attempts will be made before the reset­

lockout; that while gas is active and heating required, if the flame 

goes off, a new ignition attempt will be made; and that whenever 

heating is no longer required, gas will be turned off.

These checks are made, by following the traversal conditions 
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given by the symbolic execution, to find out that the assertion 

at that point in the original Pascal-Minus program will hold for 

the corresponding path function values.

As an exarr^le, we can see (Appendix III), at pathlength 

4 for node 6, which corresponds to the line 70 in the original 

Pascal-Minus program, that if an ignition atten^t fails^gas is turned 

off and the number of unsuccessful atten^ts incremented. The next 

traversal condition expresses the case in which the ignition- 

attempt was successful, keeping the gas on, and the number of 

unsuccessful attempts at 0.

These checks are made on all the executable paths given 

by the symbolic execution to make it sure that all assertions 

inserted into the Pascal-Minus program will hold whenever the 

execution reaches them. Some of these paths, together with the 

point reached by the execution in the Pascal-Minus program and 

the assertion attached to that point, are given in Appendix III.

Obviously, other specified Pascal-Minus programs must 

be checked in the way described above, in order to be able to 

evaluate fully its use and potentialities.



-70-

RKFERKNCKS AND BIBLIOGRAPHY

For a more detailed and annotated bibliography, see pp. 243-271 in
r
^YEH77!

and pp. 269-319 in [YEH77a|.

ABR79I ABRIAL, J. R.; SCHUMAN, S.A. ; MEYER, B.

L J. ri
'Specification Language' in |^CK8(^

tAMB77| AMBLER, A. L. etal.

'GYPSY: A Language for Specification and Inr^lementation

of Verifiable Programs'

Proc. ACM Conf, on Language Design for Reliable

Software, SIGPLAN Notices, pp 1-10, Mar. 1977.

lAMMSl! AMMANN, 'The Zurich Implementation', in i^BAR81l

!AND78 ANDERSON, E.R.; BELZ, F.C. ; BLUM,E.K.

'Extending an Implementation Language to a Specification 

Language'

Lecture Notes in Computer Science, Vol. 75, pp. 385-424 

1979.

IBAN77I BANATRE, M.; COUVERT, A.; HERMAN, D. ; RAYNAL, M.
L J

'Types Abstraits et Objets Conserves' 

IRISA-Rennes, Sept. 1977.

|BAN78| BANATRE, M.; COURVERT,A. ; HERMAN, D,: RAYNAL, M.

'Types Abstraits et Pluralite de Leurs Representations a 

I'Execution'

IRISA-Rennes, Feb. 1978.

|BAN81 BANATRE, M.; COUVERT, A.: HERMAN, D. ; RAYNAL,M.

'An Experience in Implementing Abstract Data Types'

Software-Practice and Experience, Vol. 11, pp. 315-320, 1981.

r
mAR81| BARRON, D.W. (Ed.)

'Pascal - The Language and its Implementation'

John Wiley and Sons Ltd. , 1981.



-71-

BEN80j BENTLEY, J. L. ; SHAW, M.

An Alphard Specification of a Correct and Efficient 

Transformation on Data Structures'

IEEE Trans.on Software Eng., Vol.SE-6, pp. 572-584,

Nov. 1980.

BERSlj BERNSTEIN, A.J.;ENSOR,J. R.

'A Modula Based Language Supporting Hierarchical

Development and Verification'

Software-Practice and Experience, Vol. 11, pp. 237-255, 1981

}BERT79| BERT, D.

'La Programmation Gen^rique-Construction de Logiciel, 

Specification Algebrique et Verification'

Th^se, University Scientifique et Medicale de Grenoble, 

June 1979.

r 1
iBLI81| BLIKLE, A.J.

'On the Development of Correct Specified Programs' 

IEEE Trans, on Software Eng. , Vol. SE-7, pp. 519-527, 

Sept. 1981.

^UR77j BURSTALL, R.M.; GOGUEN, J. A.

'Putting Theories Together to Make Specifications' 

Proc. 5th Int. Joint Conf, on Artificial Int., pp. 1045-1058, 

Aug. 1977.

CAR8OI CARRE, B. A.

'Software Validation', in Advanced Techniques for Micro­

processor Systems, edited by F. K. HANNA, Peter 

Peregrinus, 1980.

CLI81j CLINT, M.

'On the Use of History Variables'

Actainformatica, Vol. 16, pp. 15-30, 1981.



-72-

DAH7 0 DAHL, O. J. ; MYHRHAUG, B. ; NYGAARD, K.

'The SIMULA 67 Common Base Language'

Norwegian Confuting Centre, Oslo, Norway, 1968.

|pAN82j DANNENBERG, R. B. ; ERNST, G. W.

'Formal Program Verification Using Symbolic Execution* 

IEEE Trans, on Software Eng. , VoLSE-8, pp. 43-52, 

Jan. 1982.

[DAR76j DARLINGTON, J.; BURSTALL, R.M.

'ASystem which Automatically Improves Programs' 

Acta Informatica, Vol. 6, pp. 41-60, 1976.

}DAR8pl DARLINGTON, J.

'The Synthesis of Iirplementations for Abstract Data Types' 

Dept, of Comp, and Control, Imperial College, London, 

CCD-80/4, Jan. 1980.

[DEM8(^ DEMUYNCK, M.: CHENUT, S.; NERSON,J.M.

'Systeme Zaide d'Aide a la Specification' 

EDF-GDF, France.

^IJ68j DIJKSTRA, E.W.

'A Constructive Approach to the Problem of Program 

Correctness'

BIT, Vol. 8, pp. 174-186, 1968.

^IJ72| DIJKSTRA, E. W.

'Notes on Structured Programming' in'Structured Programming' 

Academic Press, N. Y. 1972.

lpiJ76j DIJKSTRA, E.W.

'A Discipline of Programming'

Prentice-Hall, 1976.

[ERN8(H ERNST, G. W. ; OGDEN, W. F.

'Specification of Abstract Data Types in MODULA' 

ACM Trans, on Prog. Lang, and Systems, Vo 1. 2, pp. 522-543, 

Oct. 1980.



-73-

|FLO67] FLOYD, R. W.

'Assigning Meanings to Programs'

Proc.Syny. in Applied Math. , Vol. 19, pp. 19-32, 1967.

tFLON79 FLON, L.;MISRA,J.

'A Unified Approach to the Specification and Verification 

ofAbstract Data Types'

Conf, on the Spec, of Reliable Software, Cambridge, 

April 1979.

j^FRA78j FRANCEZ, N.; PNUFLI, A.

'A Proof Method for Cyclic Programs'

Actalnformatica, Vol. 9, pp. 133-157, 1978.

{GAN81I GANNON,}.; McMULLIN, P.; HAMLET, R.

'Data-Abstraction In^lementation, Specification and Testing' 

ACM Trans. onProg. Lang, and Systems, Vol. 3, pp. 211-223, 

July 1981.

iGER76} GERHART, S.L. ; YELOWITZ, L.

'Observations of Fallibility in Applications of Modern 

Programming Methodologies'

IEEE Trans, on Software Eng. , Vol. SE-2, pp. 195-207, 

Sept. 1976.

|GER79j GERHART, S.L.; WILE, D.S.

'Preliminary Report on the DELTA Experiment : 

Specification and Verification of a Multiple-User File 

Updating Module'

Conf, on the Spec, of Reliable Software, Cambridge, 

April 1979.

GOG78j GOGUEN, J. A.

'Some Design Principles and Theory for OBJ-O, A Language 

to Express and Execute Algebraic Specifications of Programs 

Lecture Notes in Corr^uter Science, Vol. 75, Springer 

Verlag, 1979.



-74-

|GRE77l GREIF,I.

'A Language for Formal Problem Specification' 

Comm. ACM, Vol. 20, pp. 931-935, Dec. 1977.

GUT7^ GUTTAG, J. V.

The Specification and Application to Programming of 

Abstract Data Types'

Ph. D. Thesis, Comp. Syst. Res. Group, Tech. Rep.

CoRG-59, Dept. Comp. Sci. , University of Toronto, 1975.

r 1
mUT77; GUTTAG, J. V.

'Abstract Data Types and the Development of Data Structures' 

Comm. ACM, Vol. 20, pp. 396-404, June 1977.

[GUT78J GUTTAG,J.V.; HORNING, J.J.

'The Algebraic Specification of Abstract Data Types'

Actainformatica, Vol. 10, pp. 27-52, 1978.

pUT78aj GUTTAG, J. V.; HOROWITZ, E.; MUSSER, D.R.

Abstract Data Types and Software Validation'

Comm. ACM, Vol. 21, pp. 1048-1064, Dec. 1978.

|GUT80j GUTTAG, J. V.

'Notes on Type Abstraction (Version 2)'

IEEE Trans, on Software Eng. , Vol.SE.6, pp. 13-23,

Jan. 1980.

^UT80^ GUTTAG, J. V. ; HORNING, J. J.

Formal Specification as a Design Tool'

Conf. Proc. of7thACMSymp. on Principles of Prog.

Languages, Jan. 1980.

r 7
|HAB73| HABERMANN, A. N.

'Critical Comments on the Programming Language PASCAL' 

Actainformatica, Vol. 3, pp. 47-57, 1973.



-75-

[HOA69] HOARE, C. A. R.

'An Axiomatic Basis for Computer Programming’

Comm. ACM, Vol. 12, pp. 576-583, Oct. 1969.

IHOA71J HOARE, C. A. R.

'Proof of a Program : FIND'

Comm. ACM, Vol. 14, pp. 39-45, Jan. 1971.

I H0A72 I HO/llRJZ, C. A. R.
L U

'Proof of Correctness of Data Representations'

Acta Informatica, Vol. 1, pp. 271-281, 1972.

|HOA73j HOARE, C.A.R.; WIRTH, N.

An Axiomatic Definition of the Programming Language

PASCAL'

Acta Informatica, Vol. 2, pp.335-355,1973.

jHOL78; HOLT.R. C.; WORTMAN, D.B.; CORDY, J. R.; CROWE, D.R.

'The Euclid Language ; A Progress Report'

Proc, of ACM National Conf., Washington, Dec. 1978.

^HOL80J HOLT, R. C.: WORTMAN, D. B.; CORDY, J. R.;

CROWE, D. R.; GRIGGS, I. H.

'The Toronto Euclid Compiler'

University of To ronto and 1. P. Sharp Associates Ltd. ,

Jan. 1980.

I^HOUSC^ HOUSE, R.

'Comments on Program Specification and Testing' 

Comm. ACM, Vol. 23, pp. 324-331, June 1980.

HUE80j HUET,G.

'A Complete Proof of Correctness of the Knuth-Bendix

Completion Algorithm'

INRIA, Rapport de Recherche No. 25, July 1980.



-76-

iHUESoj HUKT, G.

L
, 'Proofs by Induction in Kquational Theories with 

Constructors'

INRIA, Rapport de Recherche No. 28, Aug. 1980.

r 1
^UESObj HUIuT, G.

'Confluent Reductions : Abstract Properties and 

Applications to Term Rewriting Systems'

Journal of the ACM, Vol. 27, pp. 797-821, Oct. 1980.

{JEN75{ JENSEN, K.; WIRTH, N.

'PASCATj2U_sei^_Mamial_aiid_Re2ort^ 

Springer-Verlag, Berlin 1975.

iKNU70| KNUTH, D.E.; BENDIX, P.B.

'Sirrple Word Problems in UniversaTAlgebras' 

in 'Computational Problems in Abstract Algebra' 

edited by J. LEECH, Pergamon Press, 1970.

|LAM77! LAMPSON, B. W. etal.

'Report on the Programming Language Euclid' 

SIGPLAN Notices, Vol. 12, Feb. 1977.

LEV78| LEVITT, K.N.; ROBINSON, L. ; HOROWITZ, E. ;

LISKOV, B.

'Formal Methods in Programming - When Will They Be 

Practical? '

Proc. National Con^uter Conf. , pp. 665-668, 1978.

r _
I LIS 75 { LISKOV, B.H. ; ZILLES, S.N.

'Specification Techniques for Data Abstractions' 

IEEE Trans, on Software Eng. , Vol.SE-1, pp. 7-19, 

March 197 5.

[LIS79j LISKOV, B.H. ; SNYDER, A.

'Exception Handling in CLU'

IEEE Trans, on Software Eng., Vol. SE-5, pp. 546-558, 

Nov. 1979.



-77-

LIS 801

r 1
|LON78 
L j,

|MAJ77l

|MAJ79|

lMCK80{

r 1
(MEY79i

|MILL76'

MUS 771

MUS 80 i

LISKOV, B.H.

'Modular Program Construction Using Abstractions' 

in 'Abstract Software Specifications', edited by U. Bj^rner, 

Springer Verlag, pp. 354-389.

LONDON, R. L. et al.

'Proof Rules for the Programming Language Euclid' 

Actainformatica, Vol. 10, pp. 1-26, 1978.

MAJSTER, M.E.

'Limits of the "Algebraic" Specification of Abstract Data

T yp e s'

SIGPLAN Notices, Vol. 12, pp. 37-42, Oct. 1977.

MAJSTER, M.E.

'Data Types, Abstract Data Types and Their Specification

Problem'

Theoretical Computer Science, Vol. 8, pp. 89-127, 1979.

McKEAG, R. M. ; MACNAGHTEN, A. M.

On the Construction of Programs'

Cambridge University Press, 1980.

MEYER, B. ; DEMUYNCK, M.

'Specification Languages : A Critical Survey and Proposal'

EDP, Prance, Sept. 1979.

MILLEN, J.K.

'Security Kernel Validation in Practice'

Comm. ACM. Vol. 19, pp. 243-250, May 1976.

MUSSER, D. R.

A Data Type Verification System Based on Rewrite Rules' 

Proc. 6th Texas Conf, on Corr^.Syst. , Austin, Nov. 1977.

MUSSER, D. R.

'Abstract Data Type Specification in the AFFIRM System' 

IEEE Trans, on Software Eng. , Vol. SE-6, pp. 24-32, Jan. 1980.



-78-

I^MUS 80aj MUSSER, D. R.

'On Proving Inductive Properties of Abstract Data Types 

Proc. 7th ACM Syrrp. on Principles of Prog. Lang. , 

Jan. 1980.

|NOR81I NORI, K. V. etal.

r'Pascal-P Irr^lementation Notes' in BAR81j .

jPAR72| PARNAS , D. L.

A Technique for Software Module Specification with 

Exanr^les'

Conun. ACM, Vol.15, pp. 330-336, May 1972.

r
|PAR72a! PARNAS, D.L.

On the Criteria to be Used in Decomposing Systems into 

Modules'

Conun. ACM, Vol. 15, pp. 1053-1058, Dec. 1972.

^PAR75J PARNAS, D.L. ; SIEWIOREK, D.P.

'Use of the Concept of Transparency in the Design of 

Hierarchically Structured Systems',

Co nun. ACM, Vol. 18, pp. 401-408, July 1975.

{pEM82; PEMBERTON

'Pascal Implementation'

Ellis Horwood, 1982.

|^POP77{ POPEK, G.J. etal.

'Notes on the Design of Euclid'

SIGPLAN Notices, Vol. 12, pp. 11-18, March 1977.

|^PRY7^ PRYWES, N. S .; PNUELI, A. ; SHASTRY, S.

'Use of a Nonprocedural Specification Language and 

Associated Program Generator in Software Development' 

ACM Trans, on Prog. Lang, and Systems, Vol. 1, pp. 196- 

217, Oct. 1979.



-79-

I I
IRKM76IL J. REM, M

'Associons and the Closure Statement'

MC Tract 76, Mathematical Centre, Amsterdam, Oct. 1976.

|REM81| REM. M.

'Associons : A Program Notation with Tuples Instead of 

Variables'

ACM Trans, on Prog. Lang, and Systems, Vol. 3, pp. 251-262, 

Julyl981.

[ROB7'^ ROBINSON, L. ; LEVITT, K.N.

'Proof Techniques for Hierarchically Structured Programs'

Comm. ACM, Vol. 20, pp. 271-283, April 1977.

[ROB77^ ROBINSON, L.; LEVITT, K.N..; NEUMANN, P.G. :

SAXENA, A. R.

'A Formal iVkthodo^ogy for the Design of Operating System 

Software' in|YEH771

|ROS73j ROSEN, B.K.

'Tree-Manipulating Systems and Church-Russer Theorems' 

Journal of the ACM, Vol. 20, pp. 160-187, Jan. 1973.

r
|_ROS77. ROSS, D. T.

Guest Editorial Reflections on Requirements'

IEEE Trans, on Software Eng. , Vol. SE-3, pp. 2-34,

Jan. 1977.

|^ROU77J ROUBINE, O. ; ROBINSON, L.

'SPECIAL Reference Manual'

Stanford Research Institute, Tech. Rep. CSL-45, Jan. 1977.

[SAY82] SAYI, H.

From Abstract Specifications to Programs : A Distributed 

A^^roach'

Mini-Thesis, Dept, of Electronics, University of Southampton 

Marchl982.



-80-

SHA79I SHAW, A.C.

'Software Specification Languages Based on Regular 

Expressions'

ETH, Institut fiir Informatik, Zurich, nr. 31, June 1979

[sHASzj SHANKAR, K.S.

'A Functional Approach to Module Verification', 

IEEE Trans, on Software Eng., Vol.SE-8, pp. 147-160, 

March 1982.

|SPI78j SPITZEN, J.M. ; LEVITT, K. N. ; ROBINSON, L.

'An Exarr^le of Hierarchical Design and Proof, 

Comm. ACM. Vol. 21, pp. 1064-1075, Dec. 1978.

{SUF81} SUFRIN, B.

Formal Specification of a Display Editor' 

Oxford University, PRG-21, June 1981.

^SWA82j SWARTOUT, W.; BALZER, R.

'On the Inevitable Intertwining of Specification and 

Implementation'

Comm. ACM, Vol. 25, pp. 438-440, July 1982.

r 1
|TAK8C^ TAKAHASHI, H.

An Automatic-Controller Description Language' 

IEEE Trans.on Software Eng., Vol. SE-6, pp. 53-64 

Jan. 1980.

lTEN77i TENNENT, R. D.

'On a New Approach to Representation Independent Data 

Classes'

Actainformatica, Vol. 8, pp. 315-324, 1977.

WAL80j WALKER, B. J. ; KEMMERER, R. A. ; POPEK, G.

'Specification and Verification of the UCLA Unix Security 

Kernel'

Comm. ACM. Vol. 23, pp. 118-131, Feb. 1980.



-81-

{WEL77j WELSH, J. : SNEERINGER, W.J. ; HOARE, C.A. R.

'Ambiguities and Insecurities in PASCAL'

Software-Practice and Experience, Vol. 7, pp. 685-696 

1977.

r 1
[WlL81j WILE, D.S.

'Type Transformations'

IEEE Trans, on Software Eng., Vol. SE-7, pp. 32-39, 

Jan. 1981.

|WIR71 i WIRTH, N.

'Program Development by Stepwise Refinement'

Comm. ACM, Vol. 14, pp. 221-227, April 1971.

|WIR71al WIRTH, N.

'The Programming Language PASCAL'

ActaInformatica, Vol.l, pp. 35-63, 1971.

}WIR71bj WIRTH, N.

'The Design of a PASCAL Compiler'

Software-Practice and Experience, Vol.l, pp. 309-333, 

1971.

|WIR73i WIRTH, N.

'Systematic Programming'

Prentice-Hall, 1973.

|WIR74| WIRTH, N.

'On the Corr^osition of Well-Structured Programs' 

Confuting Surveys, Vol. 6, pp. 247-259, Dec. 1974.

|WIR75; WIRTH, N.

'An Assessment of the Programming Language PASCAL' 

IEEE Trans, on Software Eng., Vol. SE-1, pp. 192-198, 

June 197 5.



-82-

[wiR81
WIRTH, N.

'Pascal-S : A Subset and its Implementation* 

in BAR81 .

r 1
|WOR79| WORTMAN, D. B.

'On Legality Assertions in KUCLID'

IEEE Trans, on Software Eng. , Vol. SE-5, pp. 359-367, 

July 1979.

(WORSli WORTMAN, D.B. ; CORDY, J. R.

'Early Experiences with EUCLID'

Proc. Int. Conf, on Software Eng. , San Diego, March 1981.

pVUL76j WULF, W.A. ; LONDON, R. L.; SHAW, M.

An Introduction to the Construction and Verification of

Alphard Programs'

IEEE Trans, on Software Eng., Vol.SE-2, pp. 253-265,

Dec. 1976.

jWUR81: WURGES, H.

'A Specification Technique Based on Predicate Transformers' 

Acta informatica, Vol.15, pp. 425-445, 1981.

_YEH77j YEH, R. T.

'Current Trends in Programming Methodology' 

Vol. 1, 'Software Specification and Design', 1977.

|^YEH77a9 Vol. 2, 'Program Validation', 1977.

^YEH78^ Vol. 4, 'Data Structuring', 1978.

Prentice-Hall.



-83-

APPENDIX I

SYNTAX DIAGRAMS FOR PASCAL-MINUS



-84-



-85-



-86-

U v^ SI Q



-87-

APPENDIX II

BURNER-CONTROLLER IN PASCAL-MINUS

1 PROGRAM SURNERCOfURuLLtRdNPlJT. OUTpliT) :

7 TYPE
4 KEY)3nARjj=Ui9,Ii1 ,IC. IC .li4,15.06,1?, Li8, Iiy, RlOCK , EREAL . EijfJ.
T. LOflli.rtOfLMCiEEj:
6 [:EVIL;E=(ACTIVE,PASSIVE):

OFF.

8 VAR
9 KEY,STATUS:KEYBOARIi:

10 GAS,SPARK,MANUALiIiEVICE:
11 ' OP,PRESSES:BnOLEAfU
12 REAL ,OM,nPE.SThpLAY.CHECi:SSM.AP'rFf-iPT: TWTn-,Eiv-
13 '
14
1!-3 ELINCTION NEUKEYigOOLEAri:
16 PEG IN
17 ENH:
19
19 FUNCTION FLAME.-ROOLEAN:
20 PEG IN
21 END:

23 EijNCTION PROGNEri: BOOLEAN :
24 BEGIN
25 END:

27
29 function TSTTNEri:BufjLEAN:
2? BEGIN
3:3 < 13TIMELi:::< (UN< = REaI_) AND (REAL <=iiFE 1) 0;< .}
31 < (IOFFTONI ANU ((CiN<=PE4L) OR 'REAL
32 END:

54

OPPl)) :p

i^Li!^Ci ION 4uDi'A.B:TNTEGEP) rlNTEGER:
56 I'AP SUM: integer;

< A <= 2354 A'Ti 5 <= 235? 7
39 BEGIN
59 SUM:= A MOB 1«0 + B MOS 100:
40 11: SUM > 59 THEN SUM: =3IJrt + 40:
41 SiJM :-5UN'H: A SIV lOu-f-B SIU 1 g,? ) *: fii?:
42 IF SUN "' 2354 THEfj SUN: =SiJH-2400:
43 ADri:=SLlrt

END: { ASD <= 235? }
45
46 FUNCTION SEALTTflE: INTEGER:
4 7

LIT r ,

50 FUNCTION b,-'L.ATEC: INTEGER:
BEGIrj

C iiFS4TES:=4riri(REAL.AIiy(nN,nFFi ) "y 
END:

continued overle
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^'5 FUNCTTON RFQHTREDrKOQLkAN:
56 BlEGIrJ
57 { TF ISTTNED THEN T
jR { HEC'IN REfjuIniEri: = TPiJE: HiMHtiL ; =!-'6551Vi" Er<Ti i-
59 { ELSE }
69 r IF MANUFL=ACTiyE THEN REnil 7 EEri; ^TFi ir >
61 < ELSE FE9LlIR£ri: = FflLSE >
62

6-4 PRCCEDUFt IGi'siTTE:
< N'uT ( l-"■Rn5l"^'4f1-LF■fl (jF [14TA-LELI HR IH.NTTIOfj-LEB 0l\ ELfinE ) >

66 DEGIk
67 II- AffEnET < 5 THEN
6C BEGIN
6? GAS: = ACTTyE; SPARK : =ACTIVE;
^0 IF '^OT (PLAME) THEN BEGIN GAS:=!:'ASSTVE: ATTEhPT:=AT'TEMPT+i FN'i
71 ELSE ATTEhpT;=a:
"2 { Pi.AHE '=.' (GAS=ACTTVE) AfJIi fATTEMPT={ii }
77 SPAPK;=PASSIVE
7-4 END
75 ELSE DISP!,AY: = "45iI {IGNITTAfJ-LFA A^li < ■ G^^A^F'^g^TUlF 1 ;y
76 END; -r NAT ( PR'OGR'AM-LETi CH? riATA-LED ) AND >
^-2 I iGNlTION-LEU AMD ATTEh|:'=5 ANA GAS = rASSIVE OR I
;8 < riOT ICMITION-led AND (FlAmE AHD ATlEMPTry ap GAS:::Fa53IUF AND ATTEPPT/a?) T

Qy r’pariFiinpE TiiFMaEF:
61 BEGIN
62 GASr^FAsgTtJE: SFari; ! = PASSiyE:
85 attfnpT;-?: MANijAE ::=PiggTUF
64 END:
85
66 PRACEDHRE INITIALIZE:
97 -C NOT PPOOPAM-LED }
89 BEGIN
8'j' KEAL:=800: ON; = 1000: niFF! = i49R: nw-FriiRijHrzAi;;;!' n
9;, ST6T!JS:=FFFAL: PRESSED:=FAtSE: ljP: = TRliE: Ti.iRMriFF
'" kk'D: { NiiT ■'F'R'iiGl-i'Ai't-i.Eij OR BiATA-LEA AND vAti:::RA

VA PRtjCEiiJSE NCSEILOLiiOUT:
*''4i -( NUi irH-lOSRAri-LEi' Ol-'' DhTA-EEB) ANA f hfAS-F'AFST'JF'1 ';■
P6 BEATN '
F'"' niqPL4Y: = 6,:AL: STATAS:=FRFA._: 
98 FPESSED :-FAL9E; attf,>iC''7 .--^
''F' -I NOT ( PPniTh'AM-Lrri np {igT,-l-l_Fij a;. TigfJTTinrj-! th i -v 

i3fi END:
1 0 I

continued overleaf
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1 5"2 
1073 
1 04 
105 
1 06 
1 07 
1 08 
1 Sy 
110 
111 
112 
113 
114 
115 
1 16 
1 1 7 
118 
1 1?

121 
•I 22 
123 
124 
1 25 
1 26 
127 
128 
1 2?
1 30 
131 
132 
133 
134
1 3'3 
136
137 
1 38
1 39 
1 40 
141 
142 
143 
1 4 4 
145 
146 
1 47 
1 49 
1 49 
150 
151
i 52 
153 
154 
1 55 
1 56

1 5ft 

■! 5ft
AS 

1 A 1 

1 A2 
1 63

pROrEPURE inHCKEYPnAPfi);
{ NOT ( PROGRAh-LEri OP nATA-LE? 89 InNTTiflN-; FTi .< 't

PROCFPijRF SHIFTPISPLAY:
BEGIN

DISPL4Y; = (riISPLAY-(PTSPLAY LTV 1000)*1000)$10:
IF K = P9 THEN DfSPLAY:=f!lSPLAYi9
ELSE

IF X=ii8 THEN rHSPLAY:=TiTSPI_AY+8 
ELSE

IF K = D7 THEN 9IFPlAY:=DIS8LAYa?
ELSE

IP K:=n6 THFN DISPLAY :=rii<;PLAY + 6
ELSE

IP i' = 95 THEN iiISPL4Y:=DT9PL4Y + 5
ELSE

IF K = Dj; THEM PT SPLAY: =9TSPL4Y'i4
ELSF

Ti- i< = ri3 "PEN 9ISALAV::z9TftPi_,AY^3
ELSE

TF i;:::-i2 TWIEN [ITSPLAY : =91SPi.AY■(• 2
ELSE

TF i/x91 TNEn 9TS!:'L4Y:=9I5F'L4Yi-1
END:

BEGIN
IF iLzFfti’AL) OP :;H-F9eJi 99 ;l=;-0FF; THi-N

PEG IN
9T4Tii5r=F: DFFftSEii^zTPHF;
TF ;/ = FFFiL 3*^3^ 3 I SLAV ; -F:FAL
ELSE

IF iL:EGfi then 9ISPl4Y;=0N
ELSE

7F i? = F!lFF THiE'- 7,ISP!.At :::riFF 
fnb

ELSE
IF i!< = 90' np Ii/ = ril) OR (L = D2) HF: 'ii-D31 9P fli = Li4; iiiP iiL^DGi OR 

;:; = L!6) UN iK = Li,-; OR (K^DgI OP = i HEN
IP PPESSEB Th!E^ SftIi"T9T9PL4Y 

LENTiEv NEiJ DIGIT FpnH iijf ivifinr OF DISRLAYI
ELSE DT5PL4Y:=2403 <E PPfiR ; pT GI i AhT PivECFriFii iJi'TH F! ifjfjT Tufj-kEY')-

ELSE
IF F:2LOA9 then 

BEGIN
IF PRESSED 4145 I BlftPi LY < 71161S 1 THiEfj

PEGIN
IF STATLIS^EPEAL then PFAL: = DISRLAY 
ELSE

IF 5T4i9S = F0N then On i^^BISPlAY 
ELSE

IF STA'riiS = EOFF THEN OFi-: =PI SPLAY :
DT5PL4i':=RFAL: ST4TUS: = F!vfA! ;
CftECKSLii;:^! PEAL-tON-nEFi Hnf! 2400

END
ELSE riT5RLAV;=2403: TERROR : ILLEGAL LLiApTNG ATTEMPT} 
PPF5SED!=P4L5E

END

TF then manual :-ACTTVF
else

TP LN^flOTF iHEr.' nANOALi^-PASSIVL
END: < NOT ( FRORFAN-LEI. UP FiATA-LEG HR TiAN'7 ■ FN-i Fpi ) y

continued overleaf
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165
166
1 67 
16«
169
1 7fl
171
172
177

I 25
176

178
1 79 
' 01?
1 Si

1 812

1 3.^.

188
1 89

1 9g
1 91

1 93
’ 9 4
1 9j
1 96
197
1 9S
1 99
2?g

202
203
204
205
206 
liy7
208

2ig

Pil'DCEIilJh'E T0LiN6iflYn.<:!<rYsriA|;'r!) ;
BEOIn
El-Jri;

yEGINYHURfJERCONTPOLLEP^
{ ALL UARIABLES UNDEFINED '}

IF NOT (PROGMEM) THFi-i HTSPL4Y:-2':i00 I PROGRAM-LED )-

{ NOT PROGRAM-LED }
BEGIN

INTTIALIZE; { ALL VARIABLES INITIALTSEH }
UHILE UP no

< NOT ( RROGRAri-LEIi OS DATA-laD ? '}
5EGifi

real : =PEAL : :m£ : CHECLOLii ::=uL'GATlL :
IF niS'-'LAY <4- 74'42 'i-iE^

-■ N07 ( PROGRAM-LFl! HR DATA-LED OS IGNITION-LED i }

07'40, av.^pi-al ;
T- ('EOUIRED THEfJ

C ISTTMFri 09 ' M4NUAL:=A0IIl'E ) ?
1 h ( G A 6 — ^'. ' i V h ' H i'l iJ hi H,” E i 6' E *'1 -4714 f- :-* 7 ; — ,1
:'LSF TGfITTi;

< FL4NE f 019 = 40 77';h ) ANII ! flT74i,;:' Tze l 7
ELSE'

r" GAS=r,.;T'!yiE TUFL

'IF NEUKEY THEN inniiMMYi'i/EYl

I NOTiF'C'OGRiiii-LEii OR D4TA-LED) }

C NnT(pR(iGPAn-i. ED OP DATA-LED) AND IGNlTlON-uED I-
TF NFUifpY AND H;'FY = RL'jCK) TWRN

RESFTLOCKOUT {NnTii:'RnGRAM-LE'D OR DATA-LED OR IGNITION-LED)
L NDT(PROGRAM-LEn OP DATA-LLU? }

IF CHECKSUM F; UrDATED THEN
{ NOT(PROGRAM-LED) AND BATA-LED :1
BEGIN

DISPLAY:=24mi: GAS:=PASSIVE: !JP:=i:^i9r f DATA-LITD '7 
END

END
I NOT ( PROGRAM-LED ) AND DATA-LED T

END
{ P,ROGRAM-LEIi OR DATA-LED 'F

ErjrifKHh'U
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'TITLE' PROGRAM-.E1URNERCO; 
'TYPE' device;
'CONSTANT' PASSIVE,ACT IVE:DEV ice; 
'TYPE' keyboard;
' CONSTANT' EREAL,RLOCK:KEYBOARD;
'VARIABLE' ATTEMPT:integer;
'VARIABLE' checksum:integer;
'VARIABLE' display:integer;
'VARIABLE' FLAMEttO:BOOLEANj
'VARIABLE' ga5:device;
'VARIABLE' key;keybdard;
'VARIABLE' manual:device;
'VARIABLE' neukey*1:o:boolean;
'VARIABLE' off;integer;
'VARIABLE' on:integer;
'VARIABLE' PRESSED:boolean;
'VARIABLE' PROGMEM**O:boolean;
'VARIABLE' REAL:integer;
'VARIABLE' REALTIHEttO:INTEGER;
'VARIABLE' REBUIREDttO:BOOLEAN;
'VARIABLE' SPARKtDEVICE;
'VARIABLE' STATUStKEYBOARD;
'VARIABLE' up;boolean;
'VARIABLE' UPDATEDt*O;integer;
'VARIABLE' k*15:keyboard;

< 1} 'START'
< 2} ' IF ' PROGMEMttO 

'THEN"GOTO' 2;
< 3} display:= 2400;
< 4} 'GOTO' 1;
< 5} 2 :real:= 300;
< 6} on:= 1000;
< 7} off:= 1400;

8} checksum:= soo;
< 9} digplay:= 900;
< 10} status:=ereal;

11} pressed:=false;
12} UP:=TRUE;
13} GAS:=PASSIVE;
14} SPARK:=PASSIVE;

< 15} ATTEMPT:: 0;
< 16> MANUAL:=PASSIVE;

17} 3 :'IF' NOT (UP) 
'THEN''GOTO' i;

18} real:=realtime**o;
19} CHECKSUM:=UPDATED**0;

-c 20} 'IF'DISPLAY= 2402
'THEN"GOTO' 5;

21} DISPLAY:=REAL;
{ 223" 'IF' NOT <REC:UIRED**O) 

'THEN"GOTO' 7:
{ 23} 'IF'FLAME**0 AND

(GAS=ACTIVE) 
'THEN''GOTO' 3!

{ 24} 'IF'ATTEMPT>= 5 
'THEN''GOTO' lO;

25} gas:=active;
26} spark:=active;

{ 27} 'IF'FLAMEttO 
'THEN''GOTO' 12;

{ 28} GA5::PASSIVE;
{ 29} attempt;: ifattempt;
{ 30} 'GOTO' 13;

31} 12 (ATTEMPT): O;
13 :SPARK:=passive;

33} 'GOTO' 8;
-c 34} 10 (display;: 2402;

3 ('GOTO' 14;
36} 7 ('IF'GASOACTIVE

'THEN''GOTO' 14;
37} ga3(=passive;
38} spark(=passive;
39} attempt;:, o;
40} manual(=passive;
41} 14 ('IF' NOT (NEUKEYttO) 

'THEN''GOTO' 6;
< 42} K415:=KEY;
< 43} 6 ('GOTO' 15;
{ 44} 5 :'IF' NOT (NEWKEYtfO) 

OR (KEYORLOCK) 
"THEN''GOTO' 15;

45} DISPLAY::REAL;
y 46} STATUS:=EREAL;
{ 4 7} PRESSED::FALSE;

43} ATTEMPT;: o;
{ 49} 15 :'IF'CHECKSUM=UPDATEDt«O 

■THEN-'GOTO' 4;
< 50} display;: 2401;

51} UP;=FALSE;
'GOTO' i;

53} 4 :'GOTO' 3;
54 ; 1 :'FINISH'

BURNER­

CONTROLLER IN FDL
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'TITLE' PROGRAM.BURNERCO; 
'TYPE' device;
'CONSTANT' PASSIVE.active:device; 
'TYPE' keyboard;
'CONSTANT' 
'VARIABLE' 
'VARIABLE' 
'VARIABLE' 
'VARIABLE' 
'VARIABLE' 
'VARIABLE' 
'VARIABLE' 
'VARIABLE' 
'VARIABLE' 
'VARIABLE' 
'VARIABLE' 
'VARIABLE' 
'VARIABLE' 
'VARIABLE' 
'VARIABLE' 
'VARIABLE' 
'VARIABLE' 
'VARIABLE' 
'VARIABLE' 
'VARIABLE'

EREAL,RLOCK:KEYBOARD;
ATTEMPT:INTEGER;
CHECKSUM:INTEGER;
DISPLAY:INTEGER: 
FLAME**O:BOOLEAN;
GAS:DEVICE;
KEY:KEYBOARD:
MANUAL:DEVICE= 
NEWKEY**O:BOOLEAN;
OFF:INTEGER: 
ON:INTEGER;
PRESSED:BOOLEAN:
PROGMEM*$O:BOOLEAN;
REAL:INTEGER;
REALTIME**O:INTEGER: 
REQUIRED**O:BOOLEAN; 
SPARK:DEVICE;
STATUS:KEYBOARD;
UP:BOOLEAN;
UPDATED*$O:INTEGER: 
K*15:KEYBOARD:

{ i>
< 2>

< 17>

'START'
'IF' NOt (PROGMEM*#O)
'THEN'

DISPLAY:: 2400 &
'GOTO' 1

'ELSE'
'IF'PR0GMEM**0
'THEN'

' MAP '
ATTEMPT:' 0:
CHECKSUM:' 800:
DISPLAY:' 800:
GAS:'PASSIVE;
MANUAL:=PASSIVE;
OFF:= 1400;
on:= looo;
pressed:'FALSE;
real;= boo;
SPARK:'Passive; 
status:=ereal; 
UP:'TRUE;

'END' X
'GOTO' 3;

3 :'IF' NOT (UP)
'THEN"GOTO' 1
'ELSE'
'IF'UP AND

(DISPLAY' 2402)
'THEN'

'MAP'
CHECKSUM:=UPDATED**O: 
REAL:=REALTIME4*0;

'END' %
'GOTO' 5

'ELSE'
'IF'UP AND

(DISPLAYO 2402) AND 
NOT (REQUIRED**O)

'THEN'
'MAP'

CHECKSUM:=UPDATED**0: 
DISPLAY:=REALTIME**O; 
REAL:'REALTIME$*0:

'END' X
'GOTO' 7

'ELSE'
'IF'UP' AND

(DISPLAYO 2402) AND
REQUIREDttO AND

NOT (FLAME*to) AND 
(ATTEMPKS)

OR UP AND
(DISPLAYO 2402) AND
REOUIPEDttO AND
(DAS<-ACTIVE) AND
< ATTEMPK.O)

' THEN
' MAP '

CHECKSUM:'UPDATEDtto; 
display:'REALTIMEttv; 
gas:'ACTive;
REAL:'REALTIMFttO;
spark:=actiue;

' END '

BURNER-CONTROLLER

IN FDL REDUCED TO

9 NODES

continued overleaf
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'ELSE' 
'IF'UF AND

(DISPLAYO 2402) AND 
REQUIREDttO AND 
FLAMEttO AND 
(GAS=ACTIVE) 

'THEN'
'MAP'

CHECKSUM:=UPDATED*+0 
DISPLAY:=REALTIME**O 
REAL:=REALTIhEt*O;

'END' X 
'GOTO' 14 

'ELSE' 
'IF'UP AND

(DISPLAYO 2402) AND 
REQUIREDttO AND

NOT (FLAMEttO) AND 
(ATTEMPT>= 5) 

OR UP AND
(DISPLAYO 2402) AND 
REQUIRED**O AND 
(gasoactive) and 
(ATTEMPT;>= 5) 

'THEN' 
'MAP'

CHECKSUM:=UPDATEDttO 
display:= 2402;
REAL:=REALTIHEt*O;

'END' 8

: 27>
'GOTO' 14;

'IF' NOT (FLAME140) 
'THEN'

' MAP ' 
ATTEMPT:= 1+attempt; 
GAS:=PASSIVE; 
spark:=passive;

'END' 8
'GOTO' 14

'ELSE' 
'IF'FLAMEttO 
'THEN' 

'MAP'
hTtempt:= o;
spark:=pa3sive;

'END' 8
'GOTO' 14;

56> 7 :'IF'GAS<>ACTIVE 
'THEN''G0T0' 14 
'ELSE'
'IF'GAS=ACTIUE 
'THEN' 

'MAP ' 
attempt:= o; 
GAS:=PASSIVE; 
MANUAL:=PASSIVE; 
SPARK:=PASSIVE;

'END' X 
'GOTO' 14;

41> 14 :'IF' NOT (NEUKEYttO) 
'THEN"G0T0' 15 
'ELSE'
'IF'NEUKEYttO 
'THEN'

K*15;=KEY X 
'GOTO' 15;

44> 5 :'IF' NOT (NEUKEYttO) 
OR (KEYORLOCK)

'THEN' 'GOTO' 15 
'ELSE'
'IF'NEUKEYttO AND 

(KEY=RL0CK)
'THEN'

'MAP'
ATTEMPT:= o; 
DISPLAY:=REAL;
PRESSED:=FALSE: 
STATUS:=EREAL;

'END' X
'GOTO' 15:

49> 15 : ' IF ' CHECKSUM ' .>UPIiATr Dt*o 
'THEN'

' MAP '
DIS r L A Y:= 24 01: 
UP:=FAL5E;

'END' X
'GOTO' 1

'ELSE'
'IF'CHECKSUM-UPDATEDttO 
'THEN''G0T0' 3;

54> 1 : 'FINISH'
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APPENDIX III

BURNER-CONTROLLER S YMBOLICLY EXECUTED, WITH 

CORRESPONDING LINE NUMBERS AND ASSERTIONS IN THE 

ORIGINAL PROGRAM

DEPARTMENT OF ELECTRONICS, 
SPADE SYMBOLIC EXECUTION,

UNIVERSITY OF SOUTHAMPTON,

PATHLENGTH 1 -------------------------

NODE 2 PATH 1 (PREDECESSOR 1 PATH 1)

traversal condition :
TRUE

PATH'FUNCTION : 
UNIT FUNCTION

3 PATH 1 (PREDECESSOR 2 PATH 1

traversal condition : Li/I.
NOT ( NOT (PROGHEMttO ) ',

PATH FUNCTION *
ATTEMPT := ()
CHECKSUMI= SO0
DISPLAY:= SOO
gas:^PASSIVE
MANUAL:=PASSIVE
off:= 1400
on:= 1000
P R E S S E D : ~ F A L S E
real:- 800
SPARK : --PASSIVE
STATUS :=: ERE AL
UP : - TRUE

'lODE 9 PATH 1 (PREDECESSOR

TRAVERSAL CONDITION :
NOT (PROGMEM*tO)

PATH FUNCTION :
display:-: 2400

2 PATH 1)
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F'h'iTHLENGTH

NODE 4 PATH 1 (PREDECESSOR 3 PATH 1)

TRAVERSAL CONDITION : L'li/IC. 69
NOT ( NOT (PROGMEMtiO)) AND 

(TRUE AND
( 8000 2402) AND
R E 0 UIR E D f j: 0 A N D

NOT (FLAMEttO) AND
( 0< 5)

OR TRUE AND
( 8000 2402) AND
REQUIREDftO AND
(PASSIVEOACTIVE) AND
( 0< 5)) 

PATH FUNCTION : 
ATTEMPT;= 0 
checksuh:=ufdated»»o 

_  DISPLAY:=:REALTIriE»»O 
GAS :=ACTiyE: 
MANUAL:=PASSIVE 
OrF::.^ 1400 
on:= 1000 
PRESSED OI-AL5E 
REAL:=REALTIME»tO 
SPARK:=ACT IVE 
STATUS;=EREAL 
UP : =TRUF.

^o IpSCARANi 

% b AO LTD 
lAuniriv-L

NODE 5 PATH 1 (PREDECESSOR 5 RATH 1)

TRAVERSAL CONDITION : Lu.AC 'Lj 1

NOT ( NOT (PR0GMEMfr11:0) ) AND
TRUE AND
( SOOO 2402) AND

NOT (REOUIRED»»O )
PATH FUNCTION : H U

ATTEMPT:= 0
CHECKSUM :=UPDATED*:|:O
DISPLAYIzzREALTIMEtfO
GAS;=PASSIVE vS-
MANUAL: = PAss:[yE:
off:= 1400 1 Gt M T'T T‘^; \ L
ONO 100 0
PRESSED;=FAL5E
REAL:=REALTIME»tO
SPARKOPASSIVE
STATUS:=EREAL
UP ; = TRUE
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PATHLENGTH 4 ------------------------------------------------

NOriE 6 PATH 1 (PREDECESSOR 4 PATH 1)

TRAVERSAL
NOT (

CONDITION : L'lVie. 70

NOT ( PROGMEM* j:0 ) ) AND
(TRUE AND
( 3000 :>4C2/ AND 
k E Q UIR E)) * * 0 A N D

NOT (FLAME**O) AND 
( 0< 5)

OR TRUE AND
( 8000 2402) AND
REQUIRED**O AND 
(PASSIVEOACTIVE) AND 
( 0< 5)) AND 

NOT (FLAMEtfO) 
PATH FUNCTION :

ATTEMPT:= If 0
CHECKSUM :=UPDATED:|:$O 
DISPLAY;=REALT IMEt :||: 0 
GAS :=P ASS IVE: 
MANUAL:=PASSIVE 
0 F F:= 1400 
ONO 1000 
P'RESSED ( - FALSE 
REAL:^REALTTMEttO 
SPARR OF ASS IVE 
status:::'ERF AL 
UPO-TRUE

TRAVERSAL. CONDITION : 
not ( NOT (PROGMFM:||:*' 

(TRUE AND 
( SOO-::::?. 2402) AND 
REQUIREn:|l:»O AND

NOT (FLAHE:3::B:0 > AND 
( 0< 5.)

OR TRUE AND
( 800<;.: 2402) AND 
REQUIRED**O AND 
(PASSIVEOACTIVE) AND 
( 0< 5)) AND

NOT ( NOT (FLAMEffO)) :'ATU CHktr'rTnii #
ATTEMPT:= 0
CHECKSUM:=UPDATED**O 
DISPLAY:=REALTIME*»O 
GAS:=ACTIVE 
MANUAL:=PASSIVE
OFF:= 1400
0 N:= 1000
PRESSED:=FALSE
REAL:=REALTIME**O
a F' A R k * — F' A S S I V E 
STATUS:=EREAL 
UP;=TRUE
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PATHLENGTH
NODE S PATH 1 (PREDECESSOR 6 PATH 1)

TRAVERSAL CONDITION : L^hC 
NOT ( NOT (PROGMEM**oh

(TRUE ANH
( 8000 24 02) AND
REQUIREDtfO AND

NOT (FL.AMElt^10 ) AN.Li
( 0< 5)

OR TRUE AND
( 8000 2402) AND

R E Q UIR E D $ * 0 A N D
(PASSIVEOACTIVE) ANH
( 0:: 5)) AND

NOT (FLAME**0) AND 
NOT (NEWKEY+fO)

PATH FUNCTION :
ATTEMPT;= If 0
CHECKSUM:=UPDATED+f0 
DISPLAY:=REALTIME*$O 
GAS:=PASSIVE
MANUAL:=PASSIVE
OFF:= 1400
0N:= 1000
PRESSED:=FALSE
REAL : ^REALTIHL" il:j:O
SPARK:=PASSIVE
STATUS ;=::EREAL 
UPOTRUE

NOT ( NOT (PR00MEri4:lj:0) 
(true: and 
( 3000 2402) AND 
R E Q UIR £ D # i: 0 A N D

NOT (FLAMEttO) ANH 
( 0< 5)

OR TRUE AND

AND d

( 8000 2402) AND
REQUIRED»*O AND
(PASSIVE ACTIVE) AND
( 0< 5)) AND

NOT ( NOT (FLAME^ttO) ) AND
NOT (NEWKEYt+0)

PATH FUNCTION :
ATTEMPT;= 0
CHECKSUM:=UPDATEDt{0
DISPLAY:=REALTIME*$0 
GAS:=ACTIVE
MANUAL : =-'PASSI VE

dOT(PEOA£.ALl.LLr)

CK. DatA-LO)^
off:= 1400
on:= 1000
PRESSED : =FAL.SE"
REAL:=REALTIMEt#O
SPARK:=PASS IVE
STATUS:=EREAL
UP: =true:
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----- PATHLENGTH

40DE 3 PATH 1 (PREDECESSOR S PATH 1)

TRAVERSAL CONDITION : (llrCU^h LlClf

NOT ( NOT (PROGMEMttO)) AND -J
(TRUE AND
( 8000 2402) AND
REOUIREDitO AND

NOT (FLAMEftO) ANH
( 0< 5)

OR TRUE AND
( 8000 2402) AND
REQUIREDBtO AND
(PASSIVEOACTIVE) AND
( 0< 5)) AND
NOT (FLAME$$O) AND
NOT (NEWKEY+tO) AND

( UPDATEDj:^O=^LJPDATEri»l:O )
PATH FUNCTION :

ATTEMPTS 1+ 0
CHECKSUM :=UPDATED-iN:O
DISPLAYOREALTIME»»0
GA3OPASSIVE
MANUALOPASSIVE
OFF:= 1400
ONO 1000
PRESSED OFALSE
REAL;=REALTIMEj:»O
SPARK OPASS IVE
STATUS;REPEAL
UP OTRUE

TRAVERSAL CONDITION : O'/^C'^OV (tlifCuO Li/E '/-1
NOT ( NOT (PR0GMEM4j:0) ) AND " J '

(TRUE AND
< 3000 2402) AND
REGUI REDtiO AND

NOT (FL..AME»:BO) AND
( 0< 5)

OR TRUE AND
( 8000 2402) AND
REQUIRED$*O AND
(PASSIVEOACTIVE) AND
( 0< 5)) AND

NOT ( NOT (FLAMEt-H^O) ) AND
NOT (NEWKEY'-fr'tO) ANO

(UPDATED»tO = UPDATEjj4-t'O ) 
PATH FUNCTION : 

ATTEMPTS 0 
CHECKSUM ::::UPDATED4-40 
display: =:REAL.TIME/M.O 
GAS:=--ACTIVE 
MANUAL:=PASSIVE 
OFF;= 1400 
on:= 1000 
PRESSED:=FAL3E 
REAL : =REALTIME»tO 
SPARK:=PASS IVE 
STATUS :::=EREAL 
UP : =TRIJE
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NODE PATH 3 (PREDECESSOR S PATH 1)

TRAVERSAL CONDITION :
NOT ( NOT (PROGMEMttO f) AND 

(TRUE AND 
( 8000 2402) AND
REDUIRED4tO AND 

NOT (FLAME^tO) AND 
( 0< 5)

OR TRUE AND
( 8000 2402) AND
REOUIRED$$O AND 
(PASSIVEOACTIVE) AND 
( 0< 5)) AND 

NOT (FLAMEttO) AND 
NOT (NEWKEYttO) AND 

( U F' DATE D * 10 ::U P D A T E D j: :B' 0 )
PATH FUNCTION :

ATTEMPT:= If 0
CHECKSUM OUPDATED H O
display:^: 2401 '^DAItA-L-L b
UAS:::=PASSIVE "
r'lANUAL : = P ASS IVE
U'OO 14 00
ONO 10 00
PRESSEDOFALSE
REAL : =:REALTIMEf *0
SPARK:=PASSIVE
SIATUS:=EREAL
UP::: FALSE:

NODE 3 PATH (PRf:DECES 8 PAIH 2)

TRAVERSAL CONDITION : " -rO 
NOT( NOT (PROGMEMNoh'^AND

TRUE AND
( 800<::: 2402) AND

NOT (REGUIREDt:l:0) AND
(PASSIVEOACTIVE) AND

NOT (NEWKEY#$0) AND
(UPDATED**O=UPDATED$$O)

PATH FUNCTION :

tFcg/;

ATTEMPT:= 0
CHECKSUM:=UPDATED**O 
DISPLAY:=REALTIMEtfO 
GAS:=PASSIVE
MANUAL:=PASSIVE
OFF:= 1400
0N:= 1000

r

r

PRESSED:=FALSE 
REAL:=REALTIME$*O 
SPARK:=PASSIVE
STATUS:=EREAL 
UP:=TRUE




