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This thesis is devoted to developing methods for
qualitative and numerical treatment of some two-point
boundary value problems arising in submarine pipelines
and risers. A general problem is formulated in this
thesis based on rod theories.

The boundary value problems treated in this thesis
are all associated with the following ordinary
differential system, which is defined along a space
curve in R3:

du/ds + &(u, s)u + g(u,s) = 0 (1)

and defined on the interval [Ly, Lo] and with various
types of boundary conditions:

Aju(Li) + Byju(Li) = ¢ (2)
(linear boundary condition)

£ilu(Ly), u(Li)] =0 (3)
(nonlinear boundary condition)

£i[Ly, Lg; u(Ly), w(lLi)] =0 (4)

(free boundary condition)

where @, Aj, Bj are matrices in R® x R6 and u, g, £fi, ¢
are vectors in R® and i = 1 or 2.

This thesis gives formulations of several practical
pipeline problems and proves the existence and
uniqueness of solutions. An asymptotic solution is
obtained by using singular perturbation method.

This thesis also describes methods for obtaining
discrete solutions for general forms of pipeline and
riser problems.
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CHAPTER 1 INTRODUCTION AND TERMINOLOGY

INTRODUCTION

Advancement of offshore technology towards deeper
waters presents challenges for more accurate and more
general tools for pipeline and riser analysis. Many
papers have appeared on this subject (see, for example,
Of fshore Technology Conference Proceedings). The
recent progress in numerical solution technigues, such
as finite elements, has led to an increase in this
literature. However, although analysis oﬁ pipelines
and risers involves mathematically interesting and
elegant problems, the majority of these works are
restricted to the application of various numerical
techniques to obtaining discrete approximations to the
solution. Computer implementations of various finite
element techniques count for much of the published
literature. So far, no systematic and rational
treatment of the overall problem is available. It
seems that the lack of such a unified and rigorous
approach has led to confusion and to inconsistent
formulations: in some cases, omission of some basic
mathematical tools has caused serious errors. The aim
of this thesis is to bridge this gap by providing a
general treatment of the fundamental problems of the

subject.

As it is developed in this thesis, the subject can be
seen as a "jigsaw puzzle" picture, consisting of the

following main elements:

1. Rational mechanics of rod theories

2. Differential geometry of space curves

3. Solution of two-point boundary value problems for
ordinary differential equations and application of
functional analysis

4. Numerical methods for stiff boundary value problems



A clear understanding of the problems requires approach
from many directions, and it is usually essential to
combine tools from all of the above fields in order to
discover all the difficulties of the problems or see
them in the right place of the picture. This thesis
contains examples where interaction of methods from
different fields provides a much better understanding
than if the problem was treated with a method isolated

in one field.

The subjects of rod theories and differential geometry
of space curves provide the essential tools to lay a
firm foundation for all of the problems afising in the
analysis of slender bodies such as pipelines and
risers. Fortunately, both of these subjects have been
studied in great detail in the past. Chapter 2 of this
thesis gives the basics of these subjects essential for
the study of the problems falling within the scope of
this thesis. The principles of rod theories are based
on the ideas described in the fundamental paper by
Antman [5]. Chapter 2 also presents a generalized,
abstract rod theory model, independent of the
description of the strain and constitutive relations.
Therefore, future theoretical developments or
experimental findings such as [37] can easily be
incorproated into the general formulation developed in
that Chapter.

It is quite interesting to note that the engineering
literature on pipelines and risers has almost
completely ignored rod theory literature. As shown in
[27], some papers such as [1] contained serious
omissions in equilibrium equations that have been known
for at least a century. On the other hand, most of the
engineering literature explicitly or implicitly rests
onKirchhoff'sHypothesis in terms of the description of
strain in the pipelines. It also seems that omission
of tools of differential geometry has led many authors



to confusion in terms of twist. Many papers confuse
the geometric torsion of a pipe axis with the torsion
of the pipeline. Chapter 2 shows that these are not
always related to each other.

Most pipeline and riser problems are eventually reduced
to two-point boundary value problems on some one-—
dimensional Euclidean manifold in R3, since a pipeline
is characterized by a space curve, such as its axis, in
the deformed state. Rod theory literature includes
many interesting examples of studies of similar
boundary value problems [3], [4]. However, with one
exception (Plunkett [33]), the popular liﬁerature of
the subject usually jumps very quickly to a discretized
problem and its numerical solutions. Chapter 3 of this
thesis, which transforms the problems into a form best
suited for a qualitative study, exposes one of the
basic features of the problems associated with slender
bodies, namely that the occurrence of boundary layers
in the solutions is one of the most essential points
that must be well understood in order to develop
effective solution methods. Chapter 3 gives
alternatives to Plunkett's approach: an asymptotic
approximation to the solution of the two-dimensional
pipelaying problem is obtained by using a singular
perturbation technique. Chapter 3 also gives proof of
the existence of solution for the same problem, and
finds a priori bounds which lead to estimates for the
thickness of the boundary layers at both ends of the
pipeline span. In order to complete the list of most
useful methods that can be used to study similar
two-point boundary value problems, Chapter 3 ends with
a phase plane study of another two-dimensional pipeline

problem.

Boundary layer behaviour of the solutions of pipeline
and riser problems requires special numerical

techniques. This type of problem corresponds to a



special class of problems in numerical analysis, the
stiff differential equations. The requirements from a
stiff method are outlined in Chapter 4. Any numerical
method used for such problems should be able to resolve
boundary layers and the numerical solutions should
behave like the asymptotic solution when the parameter €
governing the stiffness of the problem is reduced. In
the past decade, the numerical analysis literature of
stiff differential equations has increased
dramatically. A general review of literature on stiff
methods is given in Chapter 4. 1In spite of the great
successes of numerical analysts on the st@ff methods
for boundary value problems, the pipeline literature
does not take account of such developments. Apart from
a few reports of convergence problems [12], no paper
contained a systematic treatment of the associated
numerical difficulties; apart from [28], all known
works used standard finite difference or global

approximation (finite element) methods.

Indirectly related to the stiffness of the problem is
the strong nonlinearity arising in large deformation
problems. Chapter 4 develops various methods for
converting the nonlinear problem into a sequence of
linear problems. The theoretical basis of these
methods and their interrelationships are also given in
the same Chapter. Physical interpretation of some of
these methods interestingly provides a new meaning for
the popular relaxation methods. Several variations of
the methods presented in Chapter 4 cover all the
situations that may arise in practice. Therefore, we
can say that this thesis provides iterative methods
which can solve approximately most of the problems that
may arise from pipelines and risers. Chapter 4 of this
thesis also describes the application of a numerical
solution technique, based on the ideas developed
earlier in that Chapter, to the three-dimensional

pipelaying problem. The conclusions of this thesis are



1.2

given in Chapter 5. This Chapter also describes
several inconsistencies that appear quite frequently in
the pipeline literature.

As is reflected in this introduction, in this thesis we
have aimed to present detailed enough treatment of all
the principal aspects of the boundary value problems
that arise from pipelines and risers, so that it can
serve as a source of analysis and solution techniques.
However, it has not been intended to provide an
exhaustive collection of solutions to all kinds of
pipeline and riser problems. On the other hand, much
attention 1is paid, throughout this thesis, to provide
rigorous definitions for all the concepts used. We
have also tried to give most general and rigorous
arguments, usually by employing tools of functional
analysis and linear algebra, rather than restricting
ourselves to only formal and intuitive explanations.
By adopting this approach, we have tried to lay the
principal foundations of the subject in a more
consistent way. We also hope that, in this way,
pipeline and riser problems will attract more
functional analysts and numerical analysts, thus

opening up new fields for research.

NOTATION AND BACKGROUND MATERIAL

With few exceptions, which are described below,
standard notation is used throughout this thesis.

Since most of the basic material used in this thesis
can be found in standard books, we did not attempt to
make it self contained. ' However, the background
material required is very briefly explained below. All
notation is defined clearly as it appears in the text.

The equations of each Chapter are numbered separately,
and any equation number refers to an equation within
the same Chapter, unless stated otherwise. References
are listed according to the alphabetical ordering of



the last name of the author or editor, and a reference
in the text is denoted by a bracketed number such as

[1]. Theorems quoted from other sources are typed with
bold letters. References and figures are given at the

end of the text in respective order.

Linear algebra and tensor calculus

Matrix algebra of linear transformations, coordinate
geometry and vector analysis constitute the most
popular tools used in this thesis. The vectors are
represented by underlined characters, such as R.

Matrices are denoted by ordinary letters. However, in
a matrix equation, R represents the column matrix that
defines the vector R in the relevant coordinate
system. The only exception to standard notation is
that if:

n = [ng, ng, ng] and m = [my, my, m3] (2)
then
[E: _[P_] = [1’11, Nno, N3, my, my, mB] (3)

The same notation is also used for matrices.

Standard Einstein notation for the summation of

repeated indices, such as:

R = Rjej

is used throughout this thesis.

Functional analysis and differential equations

Notions from Banach spaces are regularly used in this
thesis, as it is quite useful in differential

equations. Various fixed point theorems are used,



1.2.3

which are found in great detail in Smart [38]. Apart
from some references on the numerical solutions, where
weak solutions are almost a necessity, we have usually
dealt with classical (strong) solutions of the boundary
value problems studied. In this thesis, function
spaces Cg(Rn) constitute most of the Banach or normed
spaces used, where k shows the order of
differentiability of the functions considered, n means
functions from the real line R into Euclidean space RD,
and m stands for the boundary conditions imposed.

Where there is no boundary condition imposed, m is

omitted.

Differential geometry

In this thesis, we quite commonly refer to a vector
field as a local coordinate system, defined on a one-
dimensional Euclidean manifold consitituted by a space
curve in R3. It can also be thought of as a coordinate
curve of a curvilinear coordinate system in R3.
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CHAPTER 2 REVIEW OF ROD THEORIES AND GENERAL

FORMULATION

ROD THEORIES ~ A HISTORICAL ACCOUNT

The rod theories have a long history of development
which goes back to James Bernoulli. An extensive
historical account of rod theories, up to 1788, is
given by Truesdell [39]. A recent and more technical

review of rod theory literature is given by Antman [5].

The common scope of rod theories is to provide a
rational one-dimensional scheme for appro%imating the
system of classical field equations of elasticity by
representing the rod as a space curve (which we will
call the characteristic curve), and for expressing
approximate solutions along this curve. The majority

of rod theories can be grouped under three headings:

1. Projection methods

In these methods, the three-~dimensional material
position field B(R) is uniquely defined (or

approximated) via a projection function:
b(R; r(s), s) (1)

when the position of a space curve r(s), characterizing
the rod (characteristic curve), is given. A well known
example of this isKirchhoff'sHypothesis, which
requires plane cross-sections of the rod normal to the
characteristic curve in the reference configuration to
remain plane, undeformed and normal to the same
characteristic curve in the arbitrary coafiguration.

It is also possible to regard the approximation of (1)

as an exact expression of permissible forms of B.
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2. Asymptotic methods

The construction of rod theories by the asymptotic
expansion of the three-dimensional field equations of
elasticity rests on a small parameter which usually
reflects a measure of slenderness of the rod. By using
this technique, the field equations are reduced to a
sequence of one-dimensional equations which refer to a

material reference curve (characteristic curve).

3. Director methods

In these methods, a rod is considered as 4 space curve
attached to every point of which is a collection of
direction vectors. These vectors are called directors,
and they are susceptible to rotation and stretching
independent of the deformation of the material

reference curve (characteristic curve).

As far as the equilibrium equations are concerned, all
three categories of theories lead basically to the same
differential equations. The exact general equations
that are needed to express the equilibrium of a bent
and twisted rod were first given explicity by Clebsch
[10]. Love [30] gives the derivation of these
equations on a special positive orthogonal triad
containing the tangent of a curve characterizing the
rod and one of the principal axes of geometrical
inertia. 1In rod theory literature, this reference
system is known as the 'principal torsion-flexure'
axes. Later, a careful modern generalization of these
equations was given by Ericksen and Truesdell [15] for
an arbitrary set of directors. Green [20] obtained
these equations for the resultant forces and moments by
integrating the three-dimensional equilibrium equations

over a cross-section.

A simple derivation of these equations on a special

orthonormal triad is given in [27]. However, the

- 11 - (wﬁwmmm'



orthonormal system is kept more general than the
principal torsion-flexure system in this latter paper.
The details of this derivation are given in the next

section.

The description of strain in a rod developed more
slowly than the treatment of the stress. A clear
analysis of strain in a rod, based on the concept of
twist of the principal torsion-flexure axes, is given
by Love [30]. There, twist is defined as the rate of
rotation of the flexural axes along the tangent of the
characteristic curve with respect to the arc length in
the unstretched state. However, as remarked by
Ericksen and Truesdell [15], this definition gives two
different twists depending on which of the principal
axes of inertia of the cross-section is selected as
the base vector of the flexure reference system. In
this respect, the asymptotic and director theories
provide more consistent tools to describe the strain in
a rod. The fundamental works on the description of
strain in a rod are the papers by Hay [21] and Ericksen
and Truesdell [15], on asymptotic methods and director
theories respectively. Hay [21] employs a thickness
parameter to obtain the asymptotic expansions of the
strain field along the characterisitic curve and, by
taking a five-parameter constitutive law, demonstrates
the importance of some of the terms in the expansion
obtained. Ericksen and Truesdell [15] give the
kinematic description of strain, independent of
constitutive relations, by using the displacement and
deformations of the directors of the rod. They show
that the lower order terms obtained by Hay [21] can be
obtained by taking a special set of directors.

The work by Ericksen and Truesdell [15] was followed by
a series of papers. However, if we ignore the rational
mechanics side of these publications, most of them lead
to the similar one-dimensional boundary-value problems,

- 192 -



apart from the constitutive relations which relate the
macroscopic equilibrium to the internal deformation
field in the rod, in a rather general sense. The
review of these works and derivation of one-dimensional
constitutive relations is not included in the scope of
this thesis. 1In this thesis, in section 2.2, in order
to construct a well posed boundary value problem, we
will postulate a general class of permissible
constitutive laws by employing the embedding theory and

differential geometry of space curves.

Although the general problem treated in this thesis can
cover all slender rods with arbitrary cross-section,
for the sake of simplicity and intuitive clearness of
the arguments used, in the rest of this thesis, the
term 'rod' will be replaced by the term 'pipe', which
is sometimes used in a different context. However, the
meaning of the word 'pipe' will be clear from the
context. The pipe axis will represent the
characteristic curve, unless explicitly stated
otherwise. The term twist will be used to express both
the geometric torsion of the characteristic curve and
the twist of the local working coordinate system. The
actual meaning will be clear from the context of the

statement where it is used.

DERIVATION OF EQUILIBRIUM EQUATIONS

As shown in Figure 1, we adopt a right-handed,
orthogonal coordinate system whose x-axis is tangential
to the axis of the deformed pipe. The only requirement
on the pipe axis is that there is a tangent defined at
every point of it. By following sectional rod
theories, we shall represent the stresses on any normal
plane section of the deformed pipe by the resultant
forces and moments acting on the pipe axis. The forces
and moments will be denoted by the vectors N and M

respectively.

- 13 =



If we take the stretched length of the axis from the
starting point as the independent parameter, then any
pipe element defined by 0 < 814 < 8§ < S will have the
force -N(Sy) and the moment -M(Sy) on the left hand
face. The vectors N(S9) and M(Sy) will represent the
corresponding forces and moments on the right hand
face. Let us take an orthogonal positive triad of unit
base vectors £y, fo and f5 to define a fixed XYZ
cartesian coordinate system and let the triad ey, eq,
eg specify the xyz local reference frame at the point
S. We can write any vector R in the forms:

R=rify or R = Riejy

and in particular
N(S) = Ni(S)ey, M(8) = Mj(S)ey (2)

where Nji stands for the axial force while Mj represents
the torsional moment in the pipe. The derivative of

the vector E can be written as:
dR/dS = DR/DS + X x R (3)

where D/DS denotes differentiation of components in

a moving system, and X is the vector specifying the
rotation of this reference system, that is, if we write
X = Xjei, X1 is the geometric torsion and X9 and Xg
represent the curvatures of the projection of the pipe
axis on the xz and xy planes respectively. The sign
'x' stands for the vectorial product. The equilibrium

of forces acting on the pipe now gives:
DN/DS + X x N+ B =0 (4)

where B denotes the external forces acting on the
pipe. We can also derive the following moment
equilibrium equation:

DM/DS + X x M+ e x N+ C =0 (3)

- 14 -



where C denotes the external moments acting on the
pipe. Equations (4) and (5) can be written in a more

compact form by using matrix notation:
DU/DS + KU + G = O (6)

where the vectors U and G denote the generalized

internal and external forces respectively, that is:

U

i

[Ny, Ng, N3, My, Mg, Ms] (7)

G

i

[B1, Bg, Bz, Cy, Coy, Cg] (8)

The matrix & can then be written in the explicit form

as follows:

where the skew symmetric submatrices D and P have the

entries:
)
0 ~-X3 X9
D=| X3 0 =Xy | (10)
~X9 X1 0
0 0 0
P=10 0 -1 ‘ (11)
1 0

and @ stands for a 3 x 3 matrix having all zero
entries.

The equations (4) and (5) are obtained without any
assumptions about the initial shape of the pipe. This
means that the derived equations also apply in the case
of initially curved pipes. This point will later be

exploited to quasilinearize the equilibrium equations.

- 15 -



2.3

GEOMETRIC CONSIDERATIONS

The base vectors e1, €p, €3 can be written as:

eq = alJ_f_J M J = l, 2, 3 (12)
where the matrix [aij] stands for the coordinate
transformation matrix between the fixed coordinate
system and the local coordinate system. It is clear
that ajj is the direction cosine between the local base

vector ¢4 and the fixed vector ;5.
Any vector:
R=rijf; = Riejy (13)

can then be written in both local and global coordinate
systems as:

R = ajjrye; = ajjRif; (14)

The body force terms B and C are usually expressed in a
fixed coordinate system and the components of these
forces in the local coordinates must then be obtained

by using the transformation:
By = aijbj and Cy = aijcj ; i=1, 2, 3 (15)

which introduces the direction cosines ajj of the base
vectors of the local coordinate system. We must
remember that the local system, which we have taken as
working coordinates in the derivation of the
equilibrium equations, is not completely arbitrary.
Along with the smoothness requirements, we have also
assumed that the vector e will remain tangential to

the pipe axis.

Therefore, for any point S on the pipe, the direction
cosines ajj must satisfy certain extra conditions as
well as orthonormality. The well known Serret-Frenet

- 16 -



equations, which express the derivatives of ajj in
terms of ajj and Xj, can be used to obtain such

conditions:

dalj/ds = ap4X3 - azjXo

i

dazj/dS agjXy - a15X3 j=1, 2, 3 (16)
daBj/dS = a13jXg - agjXy

The derivation of these equations is given in Love [30]
as a general theory of moving axes. They can be
obtained directly by using equation (3) as follows:

dfj/dS = D£5/DS + X x £5 = 0 (17)

GENERALIZATION OF ONE-DIMENSIONAL ROD THEORIES

The equilibrium equation (6) must be accompanied by
some constitutive relations to be able to pose a well
defined problem. But this requires, in general, a
three-dimensional description of the strain of the rod,
which in turn overrides the simplification obtained in
the equilibrium equation by integrating the stresses
over a cross-section. In order to obtain a similar
simplification in the description of the strain in a
pipe, further assumptions have to be utilized, such as
Kircﬁbff's Hypothesis. A recent survey of the various
strain theories is given by Antman [5]. For the
purpose of this thesis, we will assume only that the
local geometry of the pipe axis at any point can be
uniquely described when the internal forces and moments
are given. If we refer to a well known theorem of
differential geometry:

A curve is uniquely defined, except as to position and

orientation in space, when its curvature and its twist
are given as functions of its arclength (181,

- 17 -



we can see that this amounts to assuming the existence
of relations of the following type:

Qi(U, X, X0y =0 ; i=1, 2,3 (18)

where X, 50 are the rotation vectors corresponding to
the local reference system in the deformed and
undeformed states. This hypothesis, however, does not
influence the validity of the developed formulation: as
noted by Basset [8], the equilibrium equation (6)
corresponding to the actual position of the rod is
exact, and no question of approximation arises unless
we attempt to refer the equation to an undeformed
configuration. Naturally, equation (18) amounts to
some form of approximation of the strain field in the

rod.

In relation to equation (18), we have to clarify one
more important point which is essential for the
formulation developed in this thesis. One of the three
equations in (18) should be seen more as a kinematic
condition specifying a relation between rotation
vectors X and X0, rather than as a constitutive
relation. In fact, as shown in [15], twist of the rod
alone does not determine the geometric torsion of the
rod axis, or vice versa, and there may exist a shift
between them. Since we are working in a coordinate
system defined in accordance with the deformed
configuration of the rod, we can omit this extra
relation at this stage. It can later be used to
determine the convected position of any material
coordinate system described originally in accordance
with the undeformed rod configuration. In the same
way, the extension of the pipe axis can be determined
after the geometry of the deformed pipe axis and

internal forces have been calculated.
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In section 2.2, it was noted that the equilibrium
equation (6) also applies to naturally curved rods, but
this thesis is concerned only with the determination of
the equilibrium configurations of pipelines that are
normally straight in the undeformed state. Therefore,
without loss of generality, we can assume that:

and the two constitutive relations become:

Qi1(U, X) =0, Q(U, X) =0 _ (19)
Although the methods developed in the rest of this
thesis can be applied with equations (18), for the sake
of simplicity in description of the methods, the

following constitutive relations will be used to

replace equations (18):

QMy) =X3 ; 1=2, 3 (20)
where Q is a one-to-one function of Mj.

In order to obtain a consistent and well defined
problem, in analogy with classical elasticity, the
constitutive relation (20) is required to be invariant
of the reference frame selected. Therefore, if we make
a change of (cartesian) reference system such that:
aijMi = aiJMi ; =1, 2, 3 (21)

we must then have:

ajjXi = aijXi ; j=1, 2, 3 (22)

- 19 -



CONSTRUCTION OF AN OPTIMIZED PROBLEM

In equation (6), the internal force U is always
described in the local coordinate system. However, the
external or body force G is mostly given in a global
coordinate system. Therefore, the complexity of the
mathematical or numerical problem to be solved will
greatly depend both on the nature of the external or
body forces and on the choice of local coordinate
system. In general terms, the local coordinate system

should be constructed in such a way that:

a) coordinate transformation matrix between local and
global coordinates is bounded and has entries with

continuous and bounded partial derivatives
b) the rotation vector X is continuous

¢) the expression defining the vector X and the
coordinate transformation matrix is as simple as
possible, for computational purposes as well as for

ease of handling

Consequently, the selection of the local coordinate
system depends ultimately on the solution technique to
be adopted as well as on the specific problem to be
solved. Although there is no straightforward method
for constructing the best local coordinate system for a
given problem, a strong intuitive understanding of the
problem should assist in reducing the effort required.
The coordinate system described below is one of the
simplest to construct: it satisfies the requirements
set out above, and it is suitable for efficient

implementation of several numerical techniques [28].

Let f;, f5, f3 denote the base unit vectors of an
orthogonal reference frame XYZ. Let us define the
third base vector of the local reference frame by:

ez = (e1 x £9)/ley x fo] (23)

- 20 -



and the second base vector by:

€2 = &3 X g1 (24)

where 'x' again stands for the operation of vector

product.

Since the base vector €1 remalns tangential to the pipe
axis, the local coordinate system xyz is then well
defined. It is very easy to visualize the geometry of
this local reference system. Equation (23) states that
€3 remains parallel to the XZ plane of the global
reference frame, and the xy plane of the local system
then remains parallel to the Y axis of the global
reference frame. The description of this local
reference frame can be more easily accomplished by
using the following two angles, analogous to Eulerian
angles. Let us denote the first angle by © (the angle
between the x axis and the XZ plane of the global
frame), and the second by ¢ (the angle between the
projection of the x axis on the XZ plane and the X
axls). These angles and the relative positions of the
local and global reference systems are illustrated in

Figure 2.

The coordinate transformation matrix can now be written

explicitly as:

cos@cosd sin® cosOsind
-singQcosd coso -sinOsind (25)
-5inéd 0 cosd

The coordinate rotation vector:

X = Xjei (26)

can then be calculated from the following relations,

which are obtained from equation (16) as:
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1l

Xy = eq . deo/ds -$sing
1 £3 £2

il

Xo = ey . deg/ds = -bcoso (27)

Qe

X3 = eg . dey/ds =

where '.' stands for vectorial innner product, and '

denotes differentiation with respect to s.

It is interesting to note that we can also express X as
X = @Qes ~ ofo ) (28)
which can be obtained directly from Figure 2.

A closer look at the overall problem shows that the
introduction of this local reference frame permits a
dramatic decrease in both the number of variables and
the number of equations that must be handled. The
equilibrium equation (6) and the two constitutive
relations (20) comprise a well posed differential
system with eight unknown variables. This gives an
optimum formulation in the sense that eight variables
constitute the minimum set of variables required to
describe a pipe with a twist: six variables describe
the state of stress, and two Eulerian angles describe

the geometry of the pipe axis.

DEFINITION OF A DIMENSIONLESS PROBLEM

As shown in [27], further simplification can be
obtained by introducing dimensionless parameters to
represent the variables U and X(0,¢). Let T and L
denote some characteristic force and length parameters

réspectively. Then equation (86) is replaced by:

Du/Ds + a&(x)u + g(x) = 0 (29)
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where:

u = [N/T, M/LT] = [n, m] (30)

g = [B/T, C/LT] = [b, c] (31)
LD O

® = ‘ (32)
P LD

s = S/L (33)

X = LX ‘ (34)

The constitutive relation (20), as analagous to the

linear case, will be represented by:
q(my) = €x4 ; i=2, 3 (35)

where £ stands for the dimensionless pipe stiffness
parameter [27], which is:

€ = EI/TL2 (36)

NUMERICAL STIFFNESS AND BOUNDARY LAYERS

We will now describe the source of the main difficulty
associated with the numerical solution of thin rod
problems. Let u;y and us be two solutions of the
differential system (29). Then if u, is sufficiently
close to uy, by using the Jacobian matrizx J of the

system, we can write:
d(uy - ug)/ds = J(uy - Ug) (37)

By formally integrating this equation, we can easily
obtain [24]:

Uy - ug = Exp( %3[31(x)]dx> (38)
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As can be seen from equations (9) and (32), the
diagonal of the Jacobian matrix is dominated by skew
symmetric terms in the order of 1/e. This means that,
as 1/e gets larger, there will be some eigenvalues with
large real parts. However, if this is the case,
equation (38) shows that the distance between the
integral curves of equation (29) will change rapidly
near the boundary points, where the independent
variable has extreme values, as illustrated in Figure
3. In numerical analysis, a differential system with
widely separated eigenvalues is called a stiff system.
It is possible to use singular perturbation techniques
to find asymptotic approximations to solutions of such
problems [27]. The application of singular
perturbation techniques will be given in Chapter 3.

Because of the large distance between some eigenvalues
of the system (29), the Lipschitz coefficient of such a
system will be very large. Iterative Newton-Raphson
type methods will then require a very close starting
solution and will normally fail to converge unless a
good starting solution is known. Therefore, some
special techniques which do not rely on a good initial
estimate are required to handle the strong nonlinearity
embedded in @&. On the other hand, any numerical
technique to be used to solve such a problem should be
able to resolve steep boundary layers.

DESCRIPTION OF COORDINATE AXES BY EULERIAN ANGLES

In the case of a vanishing external moment C, equation
(5) becomes analogous to the equation of a spinning
top. In this analogy, M stands for the moment of the
momentum of the top, s represents time, and N is the
force acting on the pipe. The centre of gravity of the
top is located by the local unit vector 1. This
analogy is used in the study of the problem of elastica
[30]. We will now use this analogy to describe a
general material coordinate system which can also be

taken as the torsion flexure axes of the rod.
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As is done in rigid body dynamics, we will introduce
the three Eulerian angles 0, ¢, Y to describe the
geometry of the pipe axis or, more specifically, the
orientation of the torsion flexure axes of the pipe.
We will take © as the angle between the tangent vector
e1 to the pipe axis and the second base vector fo of
the global reference system. We then let ® represent
the angle which a plane parallel to these axes makes
with the fixed plane XY, and let ¥ represent the angle
between the principal plane xz of the flexure system
and the plane defined by XY coordinate axes. These
Eulerian angles are illustrated in Figure.4. We can
easily obtain the direction cosines of the vectors e1,
€9, €3, or the coordinate transformation matrix [aij],
by using this Figure, as follows:

ayq sindcoso (39)

I

aqo coso
a13 = sinOsin?d

91 = -sindcos¥ - cosOcosdsinV

It

ano sinGsiny

ag93 = cosdcos¥ - cosOsindsinV

agq = -sind¢sin¥+ cosBOcosdcosy
agg = —-sinodcosVy
agy = cosdsin¥y+ cosOsindcosy

The relations connecting do/ds, d&/ds, d¥/ds with the
rotation vector X can be easily obtained by using

Figure 4, or by using the equations:
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X1 3 - dgz/ds (40)

dg3/ds

il
fo
f

%2

il

x3 = eg . dej/ds

which are derived from equations (14). We can now
substitute the components of the vectors e;, €9, e3 as
described in equations (39) into equations (40), and

obtain:
Xy = -C0s0d -~ V¥ (41)
X9 = ~cos¥0 - sinOsin¥o

X3 = -sin¥0 + sinBcos¥?

If we recall the fundamental theorem of differential
geometry of space curves, which is stated in section
2.4, we can see that the three Eulerian angles ©, ¢, V¥
cannot be, in general, independent. So we can
introduce an additional constraint on the coordinate
system described by the three Eulerian angles. For

example, 1f we take:
cotan¥ = ~-sin6Gd®/0 (42)

the second component x9 of ‘the rotation vector x
vanishes and this means that the base vector eg is the
principal normal of the pipe axis at any s. Therefore,
equation (42) requires that the base vectors eq and eo
remain in the osculating plane of the pipe axis for
any s. If we take ¥ = 7/2 and replace @ by /2 - 0 ,
we then obtain the special coordinate system that is
constructed in section 2.5. Comparison of equations
(41) with (27) or equations (39) with (25) show how
much simplification it is possible to obtain by

choosing an appropriate coordinate system.
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Up to now we have dealt with the coordinate systems
that are defined in accordance with the deformed
geometry of the pipe. This enabled us to drop one of
the constitutive relations (15). However, if we wish
to determine the orientation of a material coordinate
system which 1s defined in accordance with the
undeformed geometry of the pipe, then we can impose
this constitutive equation as a constraint to define
the convected orientation of a material coordinate
system such as the flexure axes system. In the case of
a cylindrically symmetric and initially straight pipe,
the torsion-flexure system can be chosen to have no

twist in the undeformed state, that is:
x? = 0

We can then express this extra constitutive relation in
the dimensionless form:

qg(my) = x1 (43)
where gy stands for torsional constitutive law.

The converse of this is also true in the sense that if
we wish to refer to a material coordinate system which
is defined in the undeformed state of the~pipe, then
this coordinate system must be defined by three
geometric parameters, unlike the coordinate system
defined in section 2.5, which requires only two. This
provides one more piece of evidence for the optimality

of that coordinate system.

FORMULATION OF SOME PIPELINE PROBLEMS

Pipelaying in three dimensions

Final definition of any pipeline problem does not
become complete unless the body and external force term

g(x) (44)
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is described. 1In the case of pipelaying, this term
contains the weight, hydrostatic and drag forces due to
sea water movements such as currents. In order to
define these forces, we need to define the global
coordinates XYZ precisely. Let the X coordinate be
along the pipeline route on the seabed, and let Y point
vertically upward. If R is a position vector in this
coordinate system, we can describe the currents in the

sea as a vector field:

V(R) (45)

Then the dimensionless weight, hydrostatic and drag
forces become respectively:

-W/Tfo (46)
(YA/T)fo + d[(P/T)eq]/ds (47)
30C DIV - (V.ep)erllV - (V.ep)eq]/T (48)
where:

W = the unit dry weight of the pipe

P = the total hydrostatic pressure on an area A

equivalent to the pipe cross section
= the specific weight of sea water
= the density of sea water

the drag coefficient

O O o <
]

= external diameter of the pipe

However, defining a transformed force by:

t=n+ (P/T)ey (49)

and combining equation (46) with equation (47), we can

obtain

[(yA - W)/T]lfo (50)
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which is simply the submerged weight of the pipeline
and will be denoted by w. Now the internal force term

u in equation (29) will be:
u = [t, m] (51)

If we take L as the span length of the pipeline, then
the interval of definition for equation (29) will
become unity [0, 1]. Without loss of generality, we
can take s = 0 as the touch-down point on the seabed,
and s = 1 as the departure point on the laybarge
stinger. The actual length, LO, can 1ate? be

determined from:
10/L =1 - T jénl(s)ds]EA (52)

In order to complete the definition of a well posed
problem, we need to introduce eight boundary
conditions. In a typical pipelaying problem, due to

continuity requirements and by assuming that soil

behaves as an elastic medium at s = 0, we would have:
bltz + aqmg = 1 (53)
b2t3 + asmg = 1 (54)

where the coefficients a{, a9, by, bog depend on soil

properties and pipe flexural rigidity.

In terms of the coordinate system defined in section

2.6, we can also assume:

2 (0)

i
O

(55)

it

0(0) =0 (56)

where 0 1is the bottom slope. On the other hand, at

s = 1, we have:
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it
(e

mo (1) (87)

Il

m3(1) mo (58)
‘due to matching requirements ou the stinger. The
definition of the problem becomes complete with the

prescription of tension at the matching point s = 1
t1(1) = ty (59)
and the compatibility conditions [27]:

tan (1) = dTr[L fésin@(s)ds)/dx | (60)

which sets the geometric compatibility between the pipe

span and the stinger, where:
Y = I'(X)

describes the profile of the laybarge stinger.

Ideally, the boundary conditions (58) through (60)
should be replaced with the overbend analysis on the
stinger. In that case, the problem is generalized to a
multipoint boundary value problem. However, it is
possible to treat the sagbend and overbend of the pipe
span separately, and only bring them together at the
analysis stage. This type of approach allows a modular
and more general implementation of mixed numerical
techniques. A similar technique can be used to treat
the occurrence of plastic hinges in a pipe, as in the

case of a dry buckle during laying.

One of the main difficulties associated with the
pipelaying problem is the fact that one of the boundary
points 1s not known until the solution is found.
Therefore, the problem formulated above is a
free~boundary problem and the boundary point is defined
by the non-linear compatibility equation (60).
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Problems with external forces which depend on the path

of deformation

In many pipeline problems, the external forces acting
on the pipeline depend on the trajectory of each point
of the pipe axis. For example, a submarine pipeline
which 1s being towed on the seabed encounters
distributed friction forces which act along the tangent
of the path of each point on the pipe axis. Another
example is the off-bottom tow of submarine pipelines,
where the pipeline is kept on the sea bottom by means
of chains hanging down from the pipeline. 1In this
latter case, the chain would be forced to a position
tangential to the trajectory of the point that it is
connected to. In most of these examples, the path of
deformation depends on a parameter p, such as a lateral
pull force at the head of the pipeline.

The coordinate rotation vector x, which defines the
geometry of the pipeline, now depends also on p, and
constitutes a mapping

x(s, p) (61)

from R x R into R3, 1In the same way, the trajectory of
any point on the pipe axis is defined by a vector
R(s, p), which can be calculated by:

s
Ri(s, p) = fo aqidt (62)

Since the tangent to the trajectory of a point is
defined by the partial derivatives of the components of

’E(s, p) with respect to p, the equilibrium equation (4)

can now be written in dimensionless form as follows:
Dn/Ds + x x n + P[R]p, = 0 (63)

where P is usually a constant matrix and [R]p stands
for a tangent vector to the pipe axis at the point s.
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In the special case of P being a zero matrix, equation
(63) reduces to a homogeneous equation and the overall
equilibrium equation (29) reduces to the homogeneous

system:
Du/Ds + &u = 0 (64)

This means that no external moments act on the pipe,
and then equation (64) corresponds to a pipeline
deformed by end forces and moments only.

We should note that equation (63) is not an ordinary
differential equation, but a partial differential
equation, and the associated problem of determining the
path of deformation then becomes a Cauchy problem. The
initial condition is the shape of pipe for the initial

value of p.
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CHAPTER 3 APPLICATION OF SPECIAL METHODS TO SOME
SUBMARINE PIPELINE PROBLEMS

SOME OBSERVATIONS ON A SPECIAL CLASS OF PIPELINE
PROBLEMS

In this Chapter, several methods of nonlinear
differential eqﬁétions will be applied on an important
class of pipeline problems. For the sake of clarity of
the derivations and simplicity in illustration of the
techniques employed, the following linear constitutive

relation will be used throughout this Chapter:
my = €x3 ; 1 =2, 3 (1)

We will also assume that no external moment C acts on
the pipe. If we introduce the following notation:

X = x1e1 + x0 (2)
m = mpe; + mo (3)
n=nge; +200 b= ople; + B0 (4)

We can write the equilibrium equations (4) and (5) of
Chapter 2 on the different coordinate planes:

dny/dse; + x0 x n0 + pley = ¢ (5)
Dn®/DS + e1 x (x100 - n3x0) + B0 = o (6)
and

dmy/dsey = 0 (7)
eDx0/Ds + ey x (tx0 + 09 =0 (8)
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where:
T = Xj - my (9
Equation (7) implies that if no external torsional

moment is applied, the torsional moment in the pipe

remains constant. Therefore, if any torsional moment

is applied to one end of a pipe which has linear

constitutive relations, then a torsional moment with

the same magnitude and opposite direction must act on

the other end of the pipe, unless an external torsional

moment is being applied at some point along the pipe.

This enables us to drop one equation from the
differential system in equation (29) of Chapter 2.

If we use the coordinate system described in section
2.5, we can then rewrite equations (5), (6) and (8) in
terms of the angles © and ®:

ﬁl - £320sin0cosd + ecddcos20 + €00 + by =0 (10)
Ny + &sinng + nq0 + by = 0 (11)
Ny - sindng + njdcosd + bg = 0 (12)
ng = 8(@ésin6 - éoos@) - 10 (13)
ng = T6c0SO - €0 ’ (14)
where '’'' stands for the derivation with respect to the

variable s.

Equations (10) through (14) constitute the state
equations for the general pipeline problem with no
external moments on the pipe (which is assumed to have
linear constitutive relation (1)). A close look at

equation (10) reveals that it can be written as:
d(2ny + £202c0s20 + £202)/ds + 2by = O (15)
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From this, one can obtain the first integral as:

e202c0s20 + 202 + 2[n1 + [®by(x)dx] = z (16)
0
where z is a constant. This equation can also be
obtained by using the rigid body dynamics analogy as
shown in Love [30]. However, in equation (16), the
term corresponding to the contribution of the twist of
the rod does not appear, because the torsional moment
remains constant along the whole pipe. Note that this
result has been obtained without any reference to the
constitutive relation for the twist of the pipe. Thus
it is possible to use any nonlinear constitutive law
for the twist of the pipe. Equation (16) is analogous
to the energy of a spinning top in rigid body dynamics.

First integral of state equation in two dimensions

If we assume that no external or body force acts in the
direction of eg, and no external moment is applied on

the pipe, equation (29) of Chapter 2 can be written as:

Du/Ds + &u + g = 0 (17)
where:

u = [ng, ny, c0] (18)
g = [(g1cos@ + gosind + G1),

(-g15in0 +gocosd + Gg), 0] (19)

In this equation, Gy represents the components
described on the local coordinate system of the
dimensionless external force vector g, and g; denotes
the components on the fixed coordinate system, that is,

g has been decomposed into two parts as:

g = Giei + gifj | (20)
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The matrix @ now becomes:

0 -9 O
® = |9 0 0 (21)
0 0

We can now combine the first two scalar equations of
the system (17) in two different ways: the first way is
to multiply the first by cos® and the second by sin® ,
and combine them; the second way is to multiply the
first by sin® and the second by cos® , and combine
them. Eliminating the variable noy using the last

equation of the system (17), we can obtain:

d(nqcos0)/ds + ed(ésin@)/ds
= -(G1cos0 -~ Go9sin® + gy1) (22)

d(nysin0®)/ds - ed(écos )/ds
= ~(Gysing@ + Gocos0O + g9) (23)

By integrating both sides from O to s, we can obtain:

[nqcos0 + €Osin@lf = —Lf(Glcose ~ Gosin® + gy)dx (24)
” s s

[n1sin® - €0cos®]y = - [5(G1sin® + Ggcos® + go)dx  (25)

Since

S

L}cos@(x)dx = X(s) (26)
j:sin@(x)dx = Y(s) (27)

if we assume that Gy, g are constant, we can write:
. s
[n{cos 0 + EGSiHG]O = ~G1X + GoY - g1s (28)

s

[nysin 6 - e@cos@]o = =G1Y - GoX - gos (29)

- 37 -



These equations are the first integrals of the state
equations (10) through (14), and they simply express
the equilibrium along the coordinate axis X, Y of the

fixed reference system.

PIPELAYING PROBLEM IN TWO DIMENSIONS

If we assume that there are no hydrodynamic forces
acting on the pipe, then the only force acting on the
pipe, according to the formulation developed in section
2.9.1, is the submerged weight of the pipe as expressed
in equation (50) of Chapter 2, which can be written

simply as:

g = -wip (30)
or, in terms of the notation used in equation (20):

go = -W (31)

Therefore, equations (28) and (29) can now be written

as:

it

ti1coso + £0sin® t1(0) (32)

i

t1sin® - €OcosOd ws + €0(0) (33)

By choosing the value N{(0) as the scaling parameter T,

we can get:

t1(0) = 1 (34)
Let us also denote the integration constant by:

q = é(0> (35)

We can then combine equations (32) and (33) as follows:
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multiplying the first by cos® and the second by sino
gives:

€0 + (ws + €q)cos© -~ sin® = 0 (36)

and multiplying the first by sin® and the second by cosO

gives:
t1 - (Ws + €q)sin® - cosO = 0 (37)

A close look at equation (36) reveals that the tensile
force ny(s) is now decoupled from the parameter 0(s),

which describes the pipe geometry.

It is also interesting to note that the integral
[5le62(x) + 2t1(x)]dx (38)
0

is the variational integral of equations (36) and (37).
This means that any solution of the problem should
minimize the functional integral (38). Moreover, this
means that any solution of the problem should minimize
an energy functionalwhich is composed of the strain
energy invthe pipe excluding the stretching of the pipe
axis and the work done by a force, equivalent to the
axial force in the pipe, travelling along the pipe
axis. The integral form (38) can also be generalized

for the three-dimensional problem using equation (16).
We now have to recall the boundary condition expressed
for this problem in section 2.9. Since we are dealing
with a two-dimensional problem, we will only need the

following conditions:

At s = 0, we must have:

-b1€0(0) + a1e0(0) = 1 (39)

0(0) = 0q (40)
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and at s = 1, we must have:

mg (1) = mg (41)

t1(1) to (42)

Instead of imposing condition (39) on the differential
equation (36), let us now introduce a family of
equations by taking q as the free parameter in equation
(36). We will assume that for every condition of type
(39), we can find at least one q so that the final
solution satisfies this condition. On the other hand,
since we have already imposed condition (34) on the
axial force ty, we now have to determine w so that

equation (37) is satisfied at s = 1, that is:
t1(1) = (w + €g)sino(l) - cosO(l) = to o (43)

We can also avoid this equation by making w a free
parameter. Therefore, we can see equation (36) as a

two parameter family differential system.

We are then left with conditions (40) and (41), which
will be replaced by the following simplified

conditions:
0(0) = 0 (44)
O(1) = - p (45)

where p denotes the dimensionless stinger curvature at

the departure point.

Existence and uniqueness of the solution

Jet us now write the second order non-linear

differential equation (36) in the following form:
ed20/ds2 + f(s, O(s)) = 0 (46)

- 40 -



where:

f(s, 0(s)) = (ws + eq)cosO(s) - sinO(s) (47)
It is easy to see that

(1 - 206/w) < cosp < 1 (48)
(20/7) < sing < © (49)

hold on the interval [0, w/2]. This suggests that if

we define a new function F(s, 0) as follows

F(s, 0) = ws + €q if © <0
F(s, 0) = f(s, ©) if 0 <@ < 7/2
F(s, 0) = -1 it 0 > /2

then by using the inequalities (48) and (49), we can

show, for every s in [0, 1] and for every 0, that:

Fi(s, 0) < F(s, 0) < Fy(s, 0) (50)
where:

Fi(s, 0) = (1 - 26/m) (¥s + eq) - © (51)
Fo(s, 0) = (ws + eq) - 20/ (52)

This inequality (50) implies that for any pair 0y, Oy

we can write:
F(s,09) -~ F(S,@l)' < Fz(S,@z) - Fl(S,@l) (53)
which leads to the following simplified condition:

|F(s, 93) - F(s,01)| < K|0g - 0y] (54)
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where:
K= (w+ eq + 1) (55)

Therefore, we have proven that the function F(s, 0) is
Lipschitz continuous with constant K. Instead of
dealing with equation (46), it is preferable to deal

with the equation:
2 2 =
ed“0/ds¢ + F(s, 0) =0 (56)

Now, if we prove existence and uniquenessof a solution
for equation (56) with appropriate boundary conditions,
and if this solution remains in the interval [0, w/2],
then that solution is also the unique solution of the
differential equation (46) that remains in this

interval.

Let us now express the Sturm-Liouville problem defined
by equation (56) in an integral operator form by using

the following Green's functions:

G(t,s) = s(1-t)/¢ if0<s<t<1 (57)
G(t,s) = t(1l-s)/¢ if 0<t<s <1
H(t,s) = s/e | ifo<s<tz1 (58)
H(t,s) = t/e if dvf t<s <1

The solution of equation (56) with boundary conditions

0(0) = a, O(1) = A (59)

corresponds to the integral equation:

octy = f'G(t, s)F(s, 0)ds + (A - a)t + a (60)
0

which will be called the first boundary value problem.
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The solution of equation (56) with the two following
boundary conditions:

6(0) = b, do(1)/ds = B (61)
corresponds to the following integral equation:

1 =
o(t) = [OH<t, s)F(s, 9)ds + Bt + b (62)
which will be called the second boundary value problem.
We can easily obtain equation (56) from the integral
equations (80) and (62) by simply differentiating these

equations. We can write equations (60) and (61) in

operator form:

@
i

L[O] (63)

© = T[O] (64)

respectively, where:

I

1
L[ O] fOG(t, SYF(s, 0)ds + (A-a)t + a (65)

i

1
T{ 0] fo H(t, s)F(s, 0)ds + Bt + b (66)
Therefore, a solution 0(s) of equation (56) will be a
fixed point of either the operator T or the operator L,

depending on the boundary conditions being used.

We can now use the Banach fixed point theorem to prove
the existence and unigueness of the solution, as
described in [7]. Let us take the following norm on
the space CO[0, 1] of continuous functions on the unit
interval:

ollv = max[]o(t)|/v(t)] (67)
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where max[.] denotes the maximum on the compact
interval [0, 1], and v(t) is assumed to be a
continuous, positive function on [0, 1]. It is easy to

show that:
(1/vg) max 0] < || ol ¢ < (1/vy) max 0] (68)

for the supremum vg and infimum vi of the function

v(t) on the interval [0, 1]. Therefore, the norm ||. .

is equivalent to the maximum norm and the space

CO[O, 1] becomes a Banach space with this norm.
To be able to use the Banach fixed theorem, we have to
show that the operators L and T are contraction
mappings on CO[O, 1]. We can use equation (60) to
write:

1
L[65] - L[Oq] = &)G(t, s)[F(s, 05) - F(s, 01)]ds (69)
or by using the inequality (54):

1

|L[0g] - L[O¢]] < K [,G(t, s)|0g - O1]ds (70)

We can then write:

|L[05] - L[Oy]]
< K max[ [0y = 04]/v] G(t, s)v(s)ds (71)

Therefore we have:

I L[0g] - LI011ll v < Mlleg - 841l ¢ (72)
where:
M = K max [[JG(t, s)v(s)ds/v(t)] (73)

Now if we choose v(t) as a solution of
d2v/dt2 + kv(t) = 0 (74)
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then the function v(t) will satisfy equation (60), and

we can write:
V(t) = (1 - t)v(0) + tv(1) + k['G(t, s)v(s)ds (75)
0

Since v is positive on [0, 1], we have:

v(t) > k[la(t, $)yv(s)ds (76)
0

or

K/k > K max[L;G(t, s)v(s)ds/v(t)] ‘ (77)

Therefore, we must have:

M < K/k < 1 (78)
which means that k must satisfy:

K < k (79)
However, in order to optimize this inequality, that is,
to allow for largest K, we need to choose a function
v(s) such that the first two terms on the right hand
side of equation (75) will be as small as possible.

One such function satisfying this requirement, for

small enough § > 0, can be written as:
sin[n(t + 8§)/(1 + 28)] (80)

which means that

kK = m2/(1 + 268)2 (81)
and then
K < 12 (82)



We can repeat the same procedure for equation (62), and

obtain:

| Tlogl - Tlo1lllv < kljeg - 64l v (83)
where

k = K max[&;H(t{ s)v(s)ds/v(t)] (84)

In this case, instead of equation (75), we have to

cousider:

v(t) = v(0) + dv(l)/ds t + kL§H(t, s)v(s)ds (85)
and then the function (80) is substituted by:

sin{xw(t + 8§)/2(1 + &§)] (86)
Therefore, we must have:

K < 12/4 (87)

We can now summarize the results by rewriting the
inequalities (82) and (87) as follows:

(w + eq + 1) < 72 (88)
(w + eq + 1) < m2/4 (89)

respectively. More simply, we can state that for the

first boundary value problem (59), we must have:
(W + eq) < 72 -1 (90)
and for the second boundary value problem (61):
(w + eq) 2 7%/4 - 1 (91)

as the sufficient condition for the existence of a

unique solution for equation (56).
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3.2.2

A priori bounds for the solutions and thickness of

boundary layers

In this sub-section, we will use some comparison
theorems to obtain bounds for the solution of the
problem stated in the beginning of section 3.2, that
is, the second boundary value problem as defined in
sub-section 3.2.1. Now let us refer to one of the
basic comparison theorems given in [7] (see Chapter 5)

which can be stated as:

If all initial value problems have a unique solution on
the unit interval [0, 1], and solutions of the first
and second boundary value problems, as defined in the

previous sub-section, are unique, and if

d"-ol/ds2 + F(s,0y) 2 0 (92)
or
d*e,/ds? + F(s,0,) < O (93)

then the solution of the second boundary value problem
satisfies the following inequality:

01(s) < 0(s) < O9(s) (24)

on the open interval (0, 1). We can apply this theorem
to the solutions of the equations:

d20;/ds? + Fy(s, 01(s)) = O (95)
d205/ds? + Fo(s, Og(s)) = O (96)
to obtain bounds for the actual solutions 9(s). We

have shown in sub-section 3.2.1 that two boundary value
problems have unique solutions, and it is also easy to
show that the initial value problems have unique
solutions on [0, 1] since F is a Lipschitz function on
[0, 1]. (For an example, see Chapter 1 of [11].)
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Let us first consider equation (95):

£d209/ds2 + (ws + eq) - 205/T = O (97)
or
£d205/ds2 -~ (2/m)09 + (ws + e£q) = O (98)

whose general solution is:

O2(s) = Agexp(ks) + Boexp(-ks) + w(ws + €q)/2 (99)
where:
k = (2/em)l/2 (100)

which must satisfy:

09(0) = Ag + By + eqm/2 = 0 (101)

d05(1)/ds = k(Ag - Bg) + wn/2 = - p (102)

Therefore, we have:

Ao /el V2Ve + (w + 2p/m)Vn]/4V2 (103)

Bo ~-m/e[V2Ve + (w + 2p/m)YT + 4qve/V2]/4V2 (104)

This bound function gives boundary layers with
thickness (€ﬂ/2)1/2 at both ends of interval [0, 1].

The lower bound function G4 can be obtained by solving
equation (96), or:

£d20y/ds? - (1 - 20/m)(ws + €q) - O,= O (105)

or

ed20;/ds? - [2(ws + eq)/m + 1]6 + (ws + egq) = 0  (106)
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If we apply the transformation:
¢ = (en/2w)~1/ 3(2ws/m + 2eq/T + 1) (107)
to equation (61), we can obtain
d20,/d72 - 0 = z(5) (108)

The general solution of this equation can be written as
follows:

01(g) = AjAi(g) + ByBi(z) + m(ws + e€q)/2 + 0(e) (109)

where Ai, Bi are Airy's functions, and 0O(eg) represents
terms of order €. The exact meaning of this term will
be given in section 3.3. Equation (109) shows that the
lower bound for the solution has a boundary layer
thickness of (en/2)1/3 since the functions Ai and Bi
are non-oscillatory smooth functions on the positive

side of the real axis [2].

Therefore, we have found that the solutions of the
second boundary value problem will have boundary layers

of thickness § which is bounded by:
(en/2)1/2 < 5 < (em/2)1/3 (110)

The behaviour of the solution and the limiting
functions 01 and ©9 are illustrated in Figure 5, near

the point s = 0.

We can use the upper bound 09(s) for finding a
sufficient condition which will guarantee that the
solution to (56) will remain in the interval [0, 7/2]
so that the findings of section 3.2 will apply to
equation (46). A sufficient condition that will

guarantee this is written as:

o(s) < Oo(s) < m/2 (111)
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3.3

On [0, 1]. This requires that

m(ws + €q)/2 + 8(s) < 7/2 (112)

where §(s) is a function of order 0(Ve). Therefore, we

must have:

w < 1 - 0(Ve) . (113)

PERTURBATION SOLUTION IN TWO DIMENSIONS

As shown in [27], a regular perturbation scheme cannot
be used to obtain a solution to the second boundary
value problem stated in the beginning of this section:

ed20/ds? + (ws + eq)cos® - sin@ = 0 (114)
©(0) = 0, O(1) = - p (115)

because the limiting equation, when € = 0, does not in
general have a solution satisfying the given boundary
conditions. As it is convenient to use the Landau
order symbols to show the order of approximation in
perturbation problems, we will recall the following
definition:

Given two functiomns f(x, ¢) and g(x, €), we write:

f =0(g); if lim [f(x, €)/g(x, )| < B
>0

where B is a non-negative real number.

We will usually attach the domain [0, 1] to each such
relation when £ = 0(g) is correct for every x in the

domain [0, 1].

Let us now formally assume that the solution of our
boundary value problem is analytic in €. Then we can

write:

o(s, ) = ) eiei(s) (116)
1i=0
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If we substitute this expansion into the differential

equation (114), we obtain:

sw cosOqp - sin@p + 0(e) = O (117)
So we must have:

Op(s) = arctan(ws) (118)

This is the equation of a catenary. It may be seen as
the possible configuration of the pipeline with gzero
stiffness. This function Og(s) does not satisfy the
boundary conditions in general. So, we have to use a
singular perturbation technique to obtain an asymptotic
solution which will satisfy the boundary conditions.
The expansion given in equation (116) will be called
the outer expansion. To be able to obtain a correct
approximation near the boundary points s = 0, s = 1, we
will employ the method of coordinate stretching and use
the following transformations:

(1 - s)/Ye if s is close to 1 (119)

a4
Il

s/ Ve if s is close to O (120)

N
it

Let us start with the boundary point s = 1
corresponding to the departure point. By using the
following notation:

¥(n,ve) = o(s, g)-m (121)
where:
m = Qg(l) = arctan(w) (122)

is the slope at the departure point, we can obtain:

d2y/dn2 + (1 - Venm)w cos(¥ + m) + eqcos(¥ + m)
~ sin(v + m) = 0 (123)
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It should be noted that the derivative is taken here
with respect to the variable n. With the help of the

relations:

w cos(m) - sin(m) = O (124)
. 9. 3

w sin(m) + cos(m) = (1 + w“)= (125)

this equation can be written in the form:

d?¥/dn? - Ve (nw - Ye q) cos(¥ + m)
- (1 + w2y 2giny = 9 (126)

If the function ¥(n, ve) is assumed to be analytic in €,

then the leading term of the expansion:

¥(n, Ve) = ) el/zwi(n) (127)
i=0

must satisfy

d2¥g/dn2 - (1 + w2)1/2gin¥, = 0 (128)

together with the boundary condition at N = 0 and the
matching of the zeroth order inner and outer terms.

The boundary condition for ¥(n, vVe) at N= 0 is:

dy(0, Ve)/dn= Ye p (129)
so the zeroth order term mﬁst satisfy:

d¥5(0)/dn = 0 (130)

Matching of ¥45(n) to arctan(ws) by using van Dyke's
matching rule [42] gives:

WO + m = arctan(w) (131)

SO we have
¥y . =0 (132)
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The trivial solution, Yo = 0 for every n, satisfies
these conditions. The first order terms of the inner

expansion near s = 0 must then satisfy:

d2yq/dn2 —~ nw cos(m) - (1 + w2)1/2y, = ¢ (133)
or
d2¥1/dn2 - (1 + w2)1/2y; - quy(r + w2y1/2 = ¢ (134)

It is interesting to note that this equation is
analogous to the equation of a beam loaded with

distributed forces:

w/(l + w2)1/2 (135)
and under constant tension throughout:

(1 + w2y1l/2 (136)

In fact, this is equal to the dimensionless tension at
the upper end of the catenary and the distributed load
may be seen as the component of the body force w in the

perpendicular direction to the catenary end, because:
1/(1 + w2)1/2 = cos(m) : (137)

So we can attach a good physical significance to the
terms in the expansions. The first order terms may be
considered as a catenary approximation in the outer
region and a solution of a beam under tension in the
inner region. This can also be confirmed in the inner
region near s = 0, because there is no significant
difference between the regions near s = 0 and s = 1.
Let us now continue to obtain a solution for the first

order terms.

- 53 -



It is quite elementary to obtain the general solution

of this equation:

¥5 (n) = A; exp(-an) + A, exp(an) - wn/c" (138)
where:
o = (1 + w2yl/4 (139)

Now let us obtain inner expansion of zeroth order outer
terms. For this, we first take a Taylor expansion near
s = 1: '

@O(h,s) = Arctan(w) - Ve wn/(1 + w2) + 0(g) (140)
and we can then write:

0p(n) = m - n/ew/a® + 0(e) (141)
So by using Van Dykes matching rule, we must have:
Alexp(»a(l - 8)/Ve) + Azexp(a(l - s)/Ye) < 0(1) (142)
We also have the boundary condition at n = 0:

d ¥1(0)/dn = o ) (143)
or

—aB1 + alg - w/a% = 0 (144)

The constants Aj, As are obtained fromconditions (142)
and (144) as:

=4
It

1 = ~(p + w/a*)/a (145)

(146)

>
li
(]
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We can finally write the solution as:

Yl(n,/s) = —ve(p + w/a") exp(-an)/a

- wn /a4 (147)
or

¥(n,vYe) = -Ye(p + w/a*) exp(-an)/a

- (w/a%)/en + 0(e) (148)

Before going to higher order terms, we will first
repeat the same process for the inner expansion near

s = 0 which will be taken as:

o(z, Ye) = O(s, €) (149)
The differential equation will then become:

d20/dz? + Ye(wz + Veq)cosd - sind = 0 (150)
where the derivative is taken with respect to . Since
the outer solution Op(s) satisfies the boundary

condition for s = 0, we can omit the zeroth order term

and assume an expansion of the form:

o]

i/2
o(z, /o) = ] % (1) (151)
i=1
The first order term will then satisfy:
d261/dz2 + gw - @y = 0 (152)
which has a general solution:

®1(2) = Byexp(~7) + Bgexp(r) + wg (153)

The outer term has the following inner expansion near

this region:
0g(z) = Vewr + 0(e) (154)
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so we must have:

Biexp(-1/ve) + Bgexp(l/vVe) = 0O (155)
The boundary condition at ¢ = 0 is:

By + By = O (156)

We therefore have By = 0, Bg = 0, and as a result we

obtain:
®(z, Ve) = Vewr + 0(e) (157)

At this stage we have first order terms of two inner
and one outer expansions. If we observe that we can
use the idea of overlapping regions in the outer
region, we can see that inner expansions behave
similarly to the outer solution up to the same
exponential order in & and we can write a composite

expansion as follows:

O(s, €) = arctan(ws)
~Ve(p + w/a*) exp [-a(l-s)/ Ye]/a + O(e) (158)

We shall denote the right hand side terms (excluding
0(e)) by zy1 and call it first order asymptotic
approximation. It is easy to see that z; satisfies two

requirements of a singular asymptotic expansion:

1. It satisfies the boundary conditions and the
differential equation up to certain first order
terms.

2. z1(s, ) converges uniformly to the solution of the
limiting equation (in our case, it ceases to be a
differential equation) on any compact subdomain
(any closed subinterval) of the solution domain
[o, 17.
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The first one can be shown by direct computation and
substituting zy into the differential equation and
boundary conditions. The second follows from the fact
that:

exp(-an) (159)
behaves like:
exp(-a(l - s)/Ve) (160)

as € approaches zero and for any small § > 0 and any
interval [p, 1 - p], we can find small enough € such
that:

lexp(-a(l - s)//e)| < 6
as s in [p, 1 - p], for 0 < p < 1/2.
In principle, this process can be continued

indefinitely. In fact, the second order composite
expansion can be obtained as:

9(s, €) = zg(s, €) + 0(e3/2) (161)
where:
zz(s,e) = arctan(ws)

-(p + w/a") exp[-a(l-s)/Ve]{Ve/a +e[(1-5)%/¢
+(1l-s)/Yea + 1/a?]/4a"} -eq exp(-s/Ve)
-2ew’s/(1 + w?s2)5/2% + eq/(1 + w?s?)

(162)

The functions zj; or zy both have boundary layers of
thickness Ve, which naturally agrees with the findings

of section 3.2.
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APPLICATION OF PERTURBATION SOLUTIONS

The asymptotic solution obtained for the two-
dimensional pipelaying problem in section 3.3 can
provide accurate enough solutions for many practical
problems. However, the solutions provided by equations
(158) or (162) do not represent an explicit solution
for a given problem. These solutions are actually
parametrized by the parameters L and T, because the
dimensionless parameters €, w, p, can only be known
when the scaling parameters L and T are determined.
These parameters can be calculated by substituting
either equation (158) or equation (162) ;nto the
boundary conditions which were not imposed on the

singular perturbation problem:
(w + eq)sinz; (1) - coszi(l) = tg (163)
tan(1) = dr[L [ sinz;(s)ds]/dX (164)

for either i = 1 or 1 = 2. Equation (163) is
equivalent to equation (43). Equation (164) represents
the free-boundary condition (equation (60), Chapter 2).
The parameter q, however, must be determined by using
equation (39). Therefore, the problem is now reduced
to the simultaneous solution of three transcendental
equations for the parameters L, T, gq. As can be seen
from equation (162), the last parameter g does not
appear in the lower order terms. This means that the
term g and the associated boundary conditions (39) will
not come into the picture in any solution containing
terms with order lower than O0(e). Therefore, the
solution (158) can give an explicit solution of order
0(vYe), together with equations (163) and (164).

However, the parameter tg in equation (163) actually
corresponds to the tensile force Ty at the departure
point:

To = Ttg (165)
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and in order to determine To we have to analyse the
part of the pipeline from the point at which it touches
the laybarge stinger up to the tensioner where a
prescribed and constant tension is applied to the

pipe. Assuming that the pipe is completely guided
along this part, by the stinger and the ramp of the
laybarge, the pipe geometry can be prescribed by a
function T'(x).If we let p(s) represent the curvature of
the curve defined by I'(x) as a function of arc length
of the pipe axis s from the starting point of the
tensioners, then the equilibrium equation (17) would
reduce to the following energy functional:

[ep?(s)/2 + t1()10, = wh ' (166)

where s* is the length of pipe from the tensioners to
the departure point.

This equation is in complete analogy with equation
(38), and it can be seen as a conservation law
combining the strain energy of the pipe with the
potential energy change due to the effect of gravity.

An important consequence of equation (166) is that we
can now replace the unknown parameter Tp by the tension
at tensioners T*, which is one of the few parameters
prescribed in all normal pipelaying problems. It is
now possible to find an explicit solution by using
equations (43), (163), (164) and (166).

In order to devise an efficient solution method for
determining the parameters L and T, we need to have
good initial estimates and a proper domain of solutions
for the above-mentioned equations. Naturally, one of
the simplest approximations is obtained for the
limiting case ¢ = 0, which corresponds to the catenary
solution. Let us denote the corresponding values of
these two parameters by LO and TO0. It is obvious that

we have:

L9 < L and TO < T (167)
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This means that we can then take the solution domain as
(L0, L1 x [T9, Tgl. A simple and reliable way of
solving the parameters is to design a relaxation
algorithm which decouples them from each other, that
is, to fix one of the parameters (for example TO) while

trying to find a solution for the other.

If the following iteration process is inititated by the
catenary parameﬁers LO and TO, then the results will
obviously remain in the intervals [LO, L] and [70, Tol.

Step I . Use Lﬁ, TD as scaling parameters to
calculate €, w, p and solve L§¢1 from

equation (164)

Step II : Check lLﬁ+1 -~ LE|: if it is greater than a

specified accuracy, then set

and go back to Step I

Step III : If the sequence has converged to LP, then
find TP+l by using equations (166) and (164)

Step IV : Check if |TR*l - 70| jis less than a
specified accuracy. If not, set

and go back to step I

On the other hand, it is not difficult to see that the

sequences [L%] and [T1] are strictly monotonic, ie:

i i
Ljs1 > Lj (168)
and

i+l > i gng itl > 7l (169)
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for all values of i and j. Therefore, these Sequences
will converge to L and Tg respectively. The inequality
(168) can be proven by induction and using the fact
that if

i i
LY > L3g (170)
then

W3 > Wi (171)

In the same way, the inequality (169) can be shown to
hold, because if

T > 7i~-1 (172)
then
Li < i+l (173)

QUALITATIVE BEHAVIOUR OF SOME PIPELINE PROBLEMS

In this section we will treat a special case of the
problem described in section 2.9. In some cases,
relatively short lengths of submarine pipelines are
installed by fixing one end to a structure and
deflecting the other end to a prescribed location.
During this process, the pipeline is stabilized by
chains which can be repreéented by some distributed
forces R(s) acting on the pipeline. The corresponding
Cauchy problem, described in section 2.9, can be
parametrized by, for example, the distance between the
pipeline end and the target point (see Figure 6).
However, if we can assume that, at some stage during
the process, chains induce forces of magnitude r
perpendicular to the pipe axis, throughout the pipe
length (or, if the axial componment of R(s) 1is
negligible), then the state equations (28) and (29) can

be written as follows:



[nicos0 + e@sin@]g = 4+ rY (174)

[nysine - ebcosB]] = - rX (175)

As was done in section 3.2, we can transform these

equations back to local coordinates:

€0 - eqsin® -~ cos®

= + r(Xcos® + Ysino) (176)
ny - €gqcos® - sine = - r(Xsine® - Ycoso) (177)
where we have taken:
8(0) = 1/¢ (178)
0(0) =0 (179)

The condition (178) amounts to taking the shear force
No at the point s = 0 as the scaling parameter T. Then
by using equations (26) and (27), and integrating by

parts, we can obtain:

X0cos0 = - sinBcos0 + d[Xsino]/ds (180)

I

Y6sin® = + sindcos® - d[Ycoso]/ds (181)

With the help of equations (180) and (181), we can
obtain the first integral of equation (176):

e02/2 + eqcos® + sin® = r[Xsin® - YcosO] + ¢ (182)
where ¢ stands for the integration constant.

In the case of r = 0, equation (182) reduces to an

interesting autonomous differential equation:
£02/2 + ggcose + sing = c (183)

This equation corresponds to a pipeline being bent by

end forces and/or moments only, which is illustrated in
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Figure 6. The integration constant can be calculated
explicitly in terms of the bending moment mg at the

point s = 0:
c = mg/2 + 1 (184)

Since €q represents the dimensionless tensile force at

the same end s = 0 of the pipeline, we can write:

cotanf = eq
where B can be seen as the angle between the direction
of the force applied at the other end s = 1, and the X

axis of the global coordinates (see Figure 6).

We can rewrite equation (183) in the following form:

6 = (x2/e)1/2/[2n(c, g; 0)11/2 (185)
where:
h(c, B; ©) = ¢ - cotanBsin® - cosO (1886)

The phase diagram of this equation is shown in Figure
7. The position of the 0 axis naturally depends on the
values of the parameters ¢, B, €. Since any possible
geometry must remain in the regions where 0 takes only
real values, in most cases the angle © has to be a
bounded function. However, if mg is taken large
enough, the solution would jump to outer continuous
branches and the pipeline would assume a spiralling

geometry.

The phase diagram shown in Figure 7 resembles the phase
diagram of a physical pendulum which can be seen as an
extension of the spinning top analogy. This analogy
suggests the following (see Davis [13]):

s = (e/2)1/2[2[n(e, 8; t)]-1/2a¢ (187)
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which gives us the inverse of the required solution

© = DL(s) (188)
If we take the scaling parameter L as the length of the
pipeline, then s remains in the interval [0, 1], and
the inverse of the function DL must satisfy

1 > pL~1(g) - (189)
or we must have

(2/€)1/2 > [F(nce, 8; t)]-1/2at (190)

If we can find a majorant function H bounding the
function h from above, then we can write:

(2/e)1/2 > [OrHce, 8; t)1-1/2at (191)
If we restrict ourselves to the interval [0, w/2] and

B # m/2, we can easily obtain such a majorant function
as:

H(c, B; t) = ¢ - cotanB(2t/m) - (1 - 2t/m) (192)

this gives:

(2/e)1/2 > (2/3k)[ (k0 + m3/2)3/2 — (mZ/2)3/2] (193)
where
k = 2(1 - cotanB)/m (194)

The inequality (193) can be used to predict the
deflection angle O(1l) or to approximate the solution
DL. Bishop and Drucker [9] obtained the exact solution
of this problem for the special case of 8 = 7/2, in
terms of Jacobi elliptic functions. It is possible to
extend this solution by using numerical quadrature
techniques for any value of B.
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CHAPTER 4 LINEARIZATION AND GENERAL NUMERICAL SOLUTION
TECHNIQUES

4.1 Heuristic development of a continuation
technique and a formal application of
Ficken's theorem

4.2 Newton's method and quasilinearization

4.3 Review of numerical methods for stiff
problems

4.4 Construction of a numerical algorithm for

the three-dimensional pipelaying problem
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CHAPTER 4 LINEARIZATION AND GENERAL NUMERICAL SOLUTION
TECHNIQUES

HEURISTIC DEVELOPMENT OF A CONTINUATION TECHNIQUE AND A
FORMAL APPLICATION OF FICKEN'S THEOREM

The equilibrium equation (6) derived in Chapter 2 is
also valid for naturally curved rods. Therefore, for a
prescribed pipe geometry x(s), we can rewrite the
dimensionless equilibrium equations (29) in operator

form:

Lix][u]l = -g(x) - (1)

where L{x] is a linear operator on the space Cl(RG) of
continuously differentiable functions on R®. At this
point, we assume that there exists a bounded,

continuous inverse L‘l[i] of L[x]. We can then write:
u=L-1[x][-g(x)] (2)
This operator equation actually determines the internal
forces in the pipe if the final deformed geometry of
the pipe is defined by the function x(s). Therefore,

it is possible to see L and L-1 as operators mapping
from CO(R3) x c1(Rr®) into cl(grb).

The initial geometry, EO,_of the pipe can be found
simply by subtracting the deflection of the pipe

x0 = x - sx

where §x is solved using the constitutive relations
(26), or more specifically by:

gq(mp) = -gdcoso (3)

Il
m
©

q(m3) (4)
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Let us denote this operation by:

X = Q(u) (35)

If the deflection vector x(s) is equal to x0(s), the
initial undeformed geometry of the pipe would be
represented by a straight line. This means that X is
then the desired solution x*(s) of the equilibrium
configuration of the pipe. Therefore, the problem is
equivalent to determining the fixed point x* of the

following operator equation:

2-x][-g(x)]) = x ' (6)
which we will denote by:

F(x; 1/e) = x (7)
where 1/e¢ represents the dependence of this functional

operator on the pipe stiffness parameter ¢. Let us now

define a one parameter t family of functionals Fy by:
Fe(x) = F(x; t/e) (8)

from R x CO(R3) into CO(R3). Then the fixed points of
this family:

Fe(x¢(s)) = x¢(s) ¢ (9
define a continuous curve in the function space Cl(RS).

It is obvious that:

it
O

xo(s) (10)

i

x1(s) X*(s) (11)

If we can determine the curve drawn by X+ between t = 0
and t = 1, then the solution of the problem can be
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constructed by following the curve, starting from the

trivial point xp. Thus we must construct a sequence:

O=to<t1<t2< ....... < tp <eeeennn <1

such that

Xt . (12)
i

will be the starting solution for finding the next
fixed point:

Ft (%t ) = Xt (13)
i+1 i+1 i+1

The fixed point of this equation can now be found by

using a Néwton~Raphson type method if t; is chosen

close enough to tij;q.

It is quite easy to attach a physical meaning to this
abstract process. By replacing € in the functional
operator F by the ratio €/t, we introduce a relaxation
factor which corresponds to changing the dimensionless
flexural rigidity € of the pipe as a free parameter.
This amounts to relaxing the pipe in a step-by-step
manner from the undeformed position to its equilibrium
position. Therefore, if {i.fldenotes some energy norm,

we can see that the sequence:

Xt (s) (14)
i

has a monotonic ascend property, and we have:

0 = sttl(s)]! slixg ol <onn < A xx(s) | (15)
n

The task 1s now to show that the sequence t; reaches

unity in a finite number of steps. It is important
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here to notice that proof of the existence of such a
finite sequence is equivalent to proof of the existence
of a solution. Therefore, we have developed a
constructive existence proof and we can attach an
intuitive meaning to the process of construction of the

solution.

We will now give the outline of the proof of Ficken's
theorem [17]. Let

DF¢(x)[y] (16)

be the Frechet derivative of the operator‘Ft(z) at the
point x. Let us assume that

Ft (%0) = %9 and Fe(x) = x (17)
0

We now start with the following identity:

DFy (x0)[y] = -Fy(xg + y) + x + DF¢ (x0)[y] (18)
0 0

where we write x as x9 + y for y = x - x5. Then we can

write:

Y = DFE (x0)[-Fi(xg + ¥) + DF¢ (x0)[y] + x] (19)
0 0

or

-1
y = DF¢ (20)[Fy (%0 + ¥) = Fe(xp + ¥y) + ¥
0 0

+ DF¢ (x0)[y] - F¢ (%0 + ¥) + Fi (x0)] (20)
0 0 0

Due to the definition of DFy(xy), we can conclude:

Y = Dy (x0)[Fy (X0 + ¥) - Fi(xo + ¥) + ¥ (21)
0 0
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or

¥y = H(tg, X095 t, ¥) (22)

where H can be made a contraction mapping if t is taken
close enough to tg. We can then obtain the required
result by applying a fixed point theorem.

One of the important side effects of Ficken's work [17]
is the proof of the existence of a uniform step size
between t and tg. However, calculation of the step
size involves determination of several bounds and
continuity constants which are either very difficult to
obtain or too conservative to be of any use in
practice. Therefore, an adaptive step size search
algorithm is more practicable from the viewpoints of

both implementation and numerical efficiency.

Continuation theorems and selection of the continuation

parameter

Several continuation theorems have been proven with
different requirements on the mapping Ft. A short
survey of continuation theorems is given by Smart [38].
Most of the continuation theorems are based on the
idea that if the mapping Fi is continuous on [0, 1] x B
where B is a connected closed set in CO(R3), and if Fy
has no fixed point on the boundary 8B, then the fixed
points cannot escape from B through 38B. The first
major continuation theorem is referred to as the
Leray-Schauder Theorem [38]. However, the application
of this theorem seems to be very difficult, as it
requires tools from the topological degree theory (for
example, see [40]).

As in Ficken's work [17], several new theorems have now

been introduced with stronger conditions which are
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easier to establish. Several theorems of this kind are
given in Smart [38]. One of these theorems is quite
similar to Ficken's theorem, but is easier to state:

If M is a closed convex subset of a normed space B, and
if Uy(x) is a continuous mapping of M x [0, 1] into a
compact subset of B such that:

a) Ug(3M) is a subset of M
b) Ut has no fixed point on 34 x [0, 1]
then Uy has no fixed point in M.

Although this theorem seems to be easier to apply than
Ficken's theorem, the condition that Fy must map closed
sets into compact sets is not easy to prove for our

operator F{(x) on CO(RB).

By taking the maximum norm on CO(R3), we can make it a

Banach space. On the other hand, we know that:
Fo(x) =0 (23)

for any x in CO(R3). Therefore, if the conditions of
the theorem are satisfied, say for the closed ball B,
in Co(r3), where:

r = || Fi(o) | (24)

then either we must be able to reach the fixed point
inside By, or we hit the boundary 3B, of the closed
ball for a t* less than unity. However, since F¢
stands for F(x, t*/¢), we have found fixed points of
the operator F for all & from €* = g/t* to infinity.
The only time this argument can be obstructed is when
the function x ceases to be in CO(RS) due to a
singularity or if the function g(x) has a
discontinuity.
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The continuation technique described above seems to be
quite reliable, as it always has a starting solution
(see Konuk [28]):

x=0 (25)

However, if we can find a continuation parameter T and

a corresponding f which has a fixed point xg for

T
T = 0, and if x is close to the fixed point xq of
£1(x), then the implementation of such a continuation
technique would be relatively more efficient. Now let

us define:
£.(2) = £(x; Te) (26)

where the operator f denotes the operator defined by
equation (6). If we recall the results of sections 3.2
and 3.3, we can see the operator fT as the singular
perturbation of the operator f. The starting point p.%
of the operator fg is simply the zeroth order solution
from section 3.2, and X describes the geometry of the
pipeline if it has no stiffness. That is, xg is the
catenary solution. Therefore, if we use the

continuation operator f, to find the fixed point xq

of the operator £ whichTis the solution x* of our
problem, we can expect to move from the fixed point X0
towards the solution x* more quickly than with the
previous method, and the direction of travel would be
the opposite of that techﬁique. That is, we would move
inward towards the origin. Unfortunately, the most
important shortcoming of this latter technique is that
fo does not always possess a fixed point as in the case
of a pipeline problem with very low tensile force at

the barge end.

NEWTON'S METHOD AND QUASILINEARIZATION

In this section, we develop a method of solving the
differential equations introduced in Chapters 2 and 3,
based on abstract Newton's method. Newton's method and
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its certain modification are, at the present time,
among the few methods which can be applied in practice
to actually obtaining the solution of a nonlinear
functional equation. In fact, most methods of
linearization can be seen as a realization of the
abstract Newton method applied to a certain mapping on
some Banach space. Great credit for the development of
this method goes to Kantorovich, and his most general
results are translated into English by Feinstein [41].
In this section, we will develop one realization of the
Newton method, and give an outline of the application
of the results. Later, we will extend Newton's method
to bridge the gap between the methods such as

quasilinearization, continuation and imbedding.

Suppose that we have a operator P which maps some open
sets B of a Banach space E into itself. Let us choose
an arbitrary element zg of B. Assuming that P has a
continuous Frechet derivative DP, then we can replace
the identity:

Plzgl = Plzg] - P[z*] (27)
by the expression:
Plzg] = DP(zg)lzg - z*] (28)

where z* is the desired root of the operator P. That

is:
Plz*] = 0 (29)

Consequently, we can expect that the solution z of the

equation:

DP(zg)[zg - z] = Plzg] (30)
will be close to z*. Since this equation is a linear
operator equation, its solution can be found more

easily than the original equation (29). By continuing

- 73 -



this process, we can obtain the sequence [z,]
satisfying:

Zn+l = 2Zp - DP(zy)~1[P{zy]] ; n =0, 1, 2,..... (31)

Generally speaking, one expects that this sequence [z4]

converges to the solution z* of the operator P.

One of the most“easy to apply versions of the
Kantorovich theorems given in [41] can be stated as
follows: Let P be defined as the mapping of the open
set B of a Banach space E into E, and let P have a

continuous second Frechet derivative D2p in the closed
ball:

Bo=[z: [[2-20] <l

where r satisfies the conditions shown below.

Moreover, suppose that:
a. || DP(z0)-1|| < N

b. [| P[2z0] || <k

c. [[D?p(z)]| <K

for any z in the ball Bg. Now if

h = KM2k < 1/2 - (32)
and
r >rg=[1~- (1 - 2n)1/2]uk/n (33)

then Newton's method defined by the process (31) is
convergent to the solutionm z* of the operator equation

(29), satisfying:
| 2% - 20]] < rg (34)

- 74 -



Furthermore, if, for h < 1/2,
r<ry=[1+(1-2n)1/21mk/n (35)
or, for h = 1/2,

r <ry (36)

the solution z* ‘will be unique in the ball Bg. The
rate of convergence of the process is given by the
inequality:

I} z* - 28] < k[(2n)2/2]%/h ; n =0, 1, 2,.... (37)

Let us now rewrite our operator equation (1) in the
following form:

Pl[x, u] = L{x][ul] + g(x) (38)

It is easy to obtain the Frechet derivative of the
operator P:

DP(x, u)[v] = Dv/Ds + J(x, u)v (39)

where J denotes the Jacobian of the vector ®&(x)u, as
defined in Chapter 2. Therefore, we have:

J(x, u) = &(x) + de(x, u) (40)
where:
¢ A(n)
de = + [gi5] (41)
9  A(m)

The matrix A(r) for any vector r in R3 can be written:

0  xgorj3 X33T9
A(z) =| 0 =-xy9r3 X33T1 — X13T3 (42)
0 Xqorg - Xg9T1  X13T9
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where X j represents the partial derivative of the
component xj of the rotation vector:

Xij = (9%4/3m5) (43)

The entries 813 of the second matrix on the right hand
side of equation (41) stand for the Jacobian of the
external force vector g:

gij = (381/3xxk) (3xK/3my) (44)

We can now easily write equation (31) explicitly for

our operator:

D(uP*1 - uly/ps + J(xP, ul)(ud*l - un)

+ Dul/Ds + a(xM)ul + g(x®) =0 ; n=0, 1, 2.. (45)

where, as in equation (5), x% of the nth iteration is

determined by using:

xn = xn—1 _ .Q.(P_n) (46)

Now, making use of equation (40), we can simplify (45):

Dp_n“"l/Ds + [£(§n) + dai‘(}in: En)]grﬁl
+ [e(x") - de(x?, u®)Jul + g(x") =0 (47)

The starting solution EO for the Newton process defined
by equations (45) or (47) can ideally be the solution
of the following operator equation:

P[0, ugl = O (48)

which corresponds to the internal forces to maintain
equilibrium if the deformed pipeline geometry is a
straight line.

Before we give the outline of the application of the
Kantorovich theorem, let us point out a very useful

observation on equation (47). If we look at equation
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(42) carefully, we see that, due to the definition of
dimensionless constitutive relations in Chapter 2, the
matrices A(n) and A(m) contain only terms of order €.
Therefore, if we assume that the terms 21 j defined in
equation (44) are also of order €, or that they wvanish,
then we can approximate (47) by the following ordinary

successive approximation method:
Dultl/Ds + @(x®)uPtl + g(x®) =0 ; n =0, 1, 2.. (49)

As will be discussed in the following section, this
equation provides a very simple and efficient method of
solution for the problems with small €.

In differential equations, the method developed (47),
based on the Newton method, is known as
quasilinearization, and proof of convergence of this
method for boundary value problems is given by Roberts
and Shipman [36]. 1In order to use the Kantorovich
theorem, stated in the beginning of this section, they
take the Banach space C%(RG) of continuously
differentiable functions satisfying the homogeneous
boundary conditions, and they let the operator P map
C%(R6) into CO(R®) of continuous functions. That
result can easily be extended to general two-point
boundary value problems by using the simple

transformation:
z=u- [c1(b - 8) - co(s - a)] (50)

where the vectors cy and co are selected so that the
boundary conditions are satisfied at the ends of the
interval of definition [a, b] for the problem. They
equip the space CO(RG) with the following norm:

| u]l = maxjlmaxgluy] + amaxg[|duj/ds]|]] (51)

where max;[ ] denotes the maximum of the six components
of u, and maxg stands for the maximum on the interval
[a, b]. 1In the same way, the space CO(R6) of external
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force functions g(x) is given the following norm:

|| & || = maxjlmaxgl|g;|]] (52)

Then the operator norms can easily be obtained as:

n
|| 31| = maxglmax; } 1J13) ; n=6 (53)
J:
8 h g
1Qf =maxgl} } 1 Qi3] ; n=6 (54)
K=1i=13=1

for the linear operator J (for example, the first
Frechet derivative J of P) and the multilinear operator
Q (for example, the second Frechet derivative D2P of
P), respectively. The parameter A used in the
definition (51) is determined so that the two

conditions (35) or (36) can easily be satisfied.

Relation between continuation method and imbedding and

extension of Newton's method

Let us now consider the following functional

differential equation:

DgDtu(s, t) + J(x(s, t), u(s, t))Dtu
+ P[x0, u0] =0 (55)

where Dg, Dt represent the derivatives with respect to
s and t respectively, and t denotes a second
independent variable. Let us also assume that the

solution of (55) satisfies the initial condition:

u(s, 0) = u9¢s), x(s, 0) = x0¢s) (56)

However, as shown in [14], if P satisfies some
smoothness conditions, then (55) has a unique solution

satisfying:
Plx(s, t), u(s, t)] = (1 - t)P[x0, u0] (57)

for all t in [0, 1]. Therefore, x(s, 1) and u(s, 1)
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are solutions x*(s) and u*(s) of equation (38). The
operator P defined by (57) on the functions from R x R
into R3 and RS respectively can now be seen as the
continuation operator. Unfortunately, unlike the
continuation parameters introduced in section 4.1, the
parameter t cannot be easily obtained with a physcial
meaning. However, the assertation that (57) is
equivalent to equation (55) is quite significant, first
because equation (55) is a partial differential
equation that could be obtained by using imbedding
techniques, and second because, as will be shown below,
Newton's method can be seen as a special approximation
to equation (55), therefore generating a qonnection to

quasilinearization methods.

Let us assume that we can obtain a solution for the
initial value problem (55) by using a numerical
technique such as the method of lines described in

[24]. In this way, we obtain an approximation:
ul(s) = u(s, 1), xl(s) = x(s, 1) (58)

If we denote the numerical integration operation by H,

we can then write:
[x1(s), ul(s))1 = H[xO(s), uO(s)] (59)

If we use the numerical integration operator H
iteratively, we can obtain a sequence [xP(s), u?(s)] of

successive approximations:
[x0*1(s), ul*l(s)] = H[xP(s), ul(s)] ;n = 0,1,2,. (60)

We can expect that this sequence will converge to the
solutions x*(s), u*(s) of the basic problem defined by
equation (38). In fact, if we use the most explicit
difference scheme to find Diu, that is, Euler's

difference scheme, with step length h = 1:

Diu(s, t) = ul*l(s) - ul(s) (61)
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then equation” (55) would reduce to equation (45), and
the scheme defined by equation (60) is therefore
equivalent to Newton's method. As we have seen earlier
in this section, Newton's scheme converges
quadratically. This can mean that although Euler's
difference scheme is a crude first order approximation,
the integration process H leads to a good approximation
x1(s) = x(s, 1) and ul(s) = u(s, 1). However, this
depends on the closeness of the initial guess x0 and u0
to the solutions, and Newton's method may fail to
converge if this starting solution is not close enough
to the solution. This failure can be interpreted as
the unstable behaviour of Euler's difference scheme
when applied to the initial value problem (55). This
observation leads Den Heijer [14] to use highly stable
integration procedures for solving problems like (55)
instead of very accurate ones. In the same way, by
using the imbedding equation (55) and stable
integration procedures, we can find schemes to replace
our nonlinear problem with sequence of linear

problems converging to our original problen.

It is also sometimes possible to combine several
methods to obtain more desirable techniques. For
example, we can use the continuation techniques
described in section 4.1 in conjuction with Newton's

method as explained in this section.

REVIEW OF NUMERICAL METHODS FOR STIFF PROBLEMS

Finding a solution to the operator equation (1) in the
infinite dimensional function spaces is a very
difficult task. However, if the problem can be
approximated by an operator on some finite dimensional
spaces, then some numerical technique can be used to
obtain explicit solutions. This process of reducing
the problem to a finite dimensional problem is called
discretization. It usually involves construction of a

finite dimensional space E to represent the solution

- 80 -



and trial spaces (which are Cl(R®) in our case), and of
a new representation LE of the operator L in this
finite dimensional space. The following diagram
illustrates the discretization process:

L
clrd, | .11y - (clerby, 1l .11 (62)
¥ ¥
‘ Ly
(E by - (E T

The method of definition of the approximation (that is,
the definition of the norm || . || ) also forms a part of
the proper definition of the discretized problem.

Since the solution of our problem is a vector valued
function of a real variable, its discretized form has
to be defined on some finite dimensional real Euclidean
space Rk. Generally, a discrete problem can be defined
in two ways.

a. Pointwise approximation

The real interval [0, 1] (on whiech our problem is
assumed to be defined) is replaced by a finite sequence
[s4 :.O <1i< N], and the value of the solution u at
each s; is pointwise approximated. This category

includes all finite difference methods.

b. Global approximation

The solution u is approximated by a linear combination
of some functions [vj : 0 <i < N] defined on the
interval [0, 1], which are usually taken as the basis
functions for finite dimensional solution or trial
spaces. Finite element methods fall into this

category.

However, this classification does not provide a rigid
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separation, and several methods can be seen as

belonging to both of these two groups.

The requirements on the definition of approximation and
the norm || . ]| are set in such a way that the solution
of the discretized problem converges to the solution of
the actual problem. These requirements for general
numerical methods can be found in many numerical
analysis books dealing with differential equations,
such as [24]. The main aim of this Chapter is to show
why the numerical solution of the problem studied in
this thesis requires special attention, and to describe
the desired features for numerical methods that suit

best for our problem.

Failure of standard numerical methods

Let us now recall the differential equation (98) of
Chapter 3, whose solution majorates the solution of the
two-dimensional pipelaying problem. Let us take the
first boundary value problem for the homogeneous
equation which can easily be transformed into the

following form:

ed?y/dx2 - y = 0 (63)
with the conditions:

y(0) =1, y(1) =1 (64)
The solution of this problem can be written as:

y(x) = [exp((-2x + 1)/2/¢) + exp((2x - 1)/2/e)1/
[exp(1/2/¢) + exp(-1/2/¢)] (65)

which can be rewritten, for any h > 0, as:

y(xy = [a-2x + 1)/2h , 4(2x - 1)/2hy,
[al/2h 4 4-1/2h (66)
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where:
d = exp(h/Ve) (67)

If we replace the differential equation (63) by the

difference equation:

(Yis1 - 2Yi + ¥i~1)/h2 -y; = 0 ;
i=1,2,...,N=-1 (68)

with the conditions:
yvo =1, y =1 (69)

we can obtain the following discrete solution:

yi = [C~i+N/2 + Ci—N/Q]/[CN/Z + C_N/2] (70)
where:
c = (1 + h2%/2¢) + [(1 + h2/2¢)2 - 1]1/2 (71)

It is easy to see that the solutions (70) and (66) are

of the same form.

Let us now investigate the behaviour of the discrete
solution (70) for two conditions, for h <</e and for
h >> ye. If h << /e, the accuracy of approximation Vi

is quite good as:

ld - ¢| = 0[(h/ve)3] (72)

On the other hand, when € is reduced to zero while

keeping h constant, that is, for h >> Ve, we have:
c =h2/e + 2 - ¢/h2 + ... (73)
and therefore we obtain:

lim{yy]1 =0 ; 1 =1, 2,....,N -1 (74)
g0



which is the limiting solution of the problem (63).
However, in this case, the accuracy of approximation
getls poorer as € gets smaller, since the rate of decay
of the boundary layer of the discrete solution is not

consistent with that of the actual solution:
d = exp(-h/g) << e (75)

This accuracy cannot be improved unless h is taken to
be of order € in the boundary layer regions.

It should also be noted that, as illustrated by several
examples by Hemker [22], condition (74) is not always
satisfied, and in those cases the accurac§ of the
approximation degenerates throughout the interval

[0, 1] as € gets smaller. Therefore, application of a
standard numerical technique to a stiff problem either
leads to inaccurate representation of the solution for
small values of stiffness parameter e, and/or boundary

layers in the solution are not properly resolved.

Norms of approximation and desirable features of stiff

methods

Let us define a partition on the interval [0, 17]:
I =[sg :0==50<8S] <S89 < «os < Sy = 1] (76)
and let us write:

h = ming{(s441 - sy) ; 1 =0,1, 2, ..., N-1] (77)

Then the following norms, which are quite commonly used

for pointwise approximation, can be defined:
N
lu-v | k=10 lu(sy) - vi|KJV/E (78)
1 i=1
or in particular:

fu - v || 1,0 = maxillulsi) - vil] (79)
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where Yy represents the discrete solution defined on
the partition I, and v gives its value at sy. It is
sometimes useful to replace this norm by the following:

N
o - vl B =1} (b lutsy) - vy |hkj/k (80)
l:
We should emphasize here that these norms depend
crucially on the choice of the partition I which is a

part of the definition of the numerical problem.

For measuring the accuracy of the global methods, the

following integral norms are commonly used:

. .
o -v o2 = [fga-xy « (u-ydsl/? (81)
or:

lu-v1] 0,0 = maxj[maxgluy - vil] (82)
where v, is the approximating function taken from the

E
finite dimensional space E.

If a good global approximation of the solution is

required throughout the interval [0, 1], then the norm

l

representation of boundary layer is not so important as

. 0,0 is best suited. However, if the

long as the accuracy of the solution is not affected in
the rest, then || . ||g,9 can be used.

In the case of pointwise approximations, in order to
decide on the accuracy of approximation, especially on
certain parts of [0, 1], the partition I must be chosen
accordingly, and the norm || . ||} ,o would be best to
achieve this objective. This means that the structure
of a pointwise method would greatly depend on the

selection of the partition I.

The definitions listed below give the basic

requirements for stiff methods:

- 85 -



Definition: A numerical approximation Vi is called

pointwise exact on a grid I if:

Hu-vll 1,0 =0 (83)

Definition: A method is said to be uniformly € -

convergent of order p if there exist constants b, K

independent of e, such that:
supllu_ - v, 1l 1,0 £ K0P (84)
if € remains in the interval [0, b].

Definition: A method is called consistent with the

reduced problem on the interval [§, 1 - 8] if:

lim v, ;= ug (85)

for 0 < & < 1/2.

These properties can be obtained in several ways.
However, the actual choice of method depends on the
problem being solved. Sometimes it is quite difficult
to prove that a given method satisfies these

requirements, or the converse.

The most potential techniques in both categories of the
discretization methods are based on exponential
fitting. In the case of finite differences, an
exponentially fitted difference operator can be written
as:

Unil = Unp = h[(1 - Mfpyq + iy (86)

for a differential equation of the form:

Du/Ds = £(u, s) (87)
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which corresponds to:

f(u, s) = -=u - g (88)
in our problem. The parameter X is selected so that
the numerical approximation u 1is made pointwise exact
according to the definition given above. However, it
should always be chosen less than 1/2 in order to
satisfy some stability requirements (see [24]).

In the case of global methods, where the problem is
defined by utilizing Sobolev norms:

lu - vpll = [(u-vp, u-v.)Klt/2 (87)
where:
k 1 .
(v, 2)x = ] [[;D'w.Dlzds] (90)
i=0
the solution u satisfies:
(Llugl, ¥p), + (8 ¥p)y = 0 (91)

for all Yo in E, where L corresponds to our linear
operator L[x], but is now defined on some finite
dimensional subspace E of some Sobolev spaces
containing 01(36). A detailed study of this method for
stiff two point boundary value problems is given by
Hemker [24]. However, in order to obtain uniform
e-convergence, Hemker [24] develops a class of
exponentially fitted spaces with base functions
behaving like exponential functions. He illustrates
the poor performance of the classical global techniques
compared to exponentially fitted techniques.
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Selection of a code and available codes for numerical

solution of two point boundary value problems

The selection of a discretization method is one of the
most important steps in obtaining a numerical solution
for a certain problem. Unfortunately, there is no
straightforward guide for selection of the best method
for a given problem. The question involves a number of

practical considerations, such as:
- efficiency

- ease of implementation

- reliability

- flexibility

~ modularity

as well as theoretical considerations such as order of
accuracy of approximations and stability of the
process. Usually the answer to this question is found
by finding a compromise between available computer
resources and effort to implement the method. In many
cases, certain aspects or difficulties can only be
solved by experimentation. In the case of two-point
boundary value problems, the comparison of suitable
methods mostly rests on the matter of efficiency since
the normal advantages of flexibility and modularity of
global methods in approximation of complicated regions
for field problems is not valid in the case of one-
dimensional problems. Therefore, there is no clear

advantage in selecting finite element like methods.

In the past decade, numerical analysis literature on
stiff methods has shown a dramatic explosion. Many
algorithms have appeared in several conferences [6, 16,
19, 23, 25, 35, 43]. Two conferences [23, 43]
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especially were dedicated to methods for stiff
problems. In [43], Willoughby gives an extensive
historical review of stiff problems and methods. The
most recent biography of the subject can be found in
[19], which also gives the source of several computer
codes for two point boundary value problems. Some of
these codes were tested by Pereyra in [6]. One of the
simple and well tested algorithms, initially developed
by Pereyra, has been presented in a joint paper by
Lentini and Pereyra [29]. This technique is actually
based on an adaptive mesh generation algorithm. The
boundary layers are resolved by refining the grid
points as becomes necessary and the accuracy of
approximation is controlled by using deferred
corrections. The latest version of the program PASVAR
based on this algorithm is presented by Pereyra in
[19]. 1In [22], Hemker gives a program based on an
exponentially fitted weighted residual method.
However, adaptibility of a general purpose code such as
PASVAR is far superior to programs such as the one
given by Hemker [22], although efficiency of the
exponentially fitted methods can be guite high for
problems with steep boundary layers.

CONSTRUCTION OF A NUMERICAL ALGORITHM FOR THE THREE-
DIMENSIONAL PIPELAYING PROBLEM

The pipelayving problem formulated in section 2.9
demonstrates most of the typical difficulties
associated with pipeline and riser problems. On one
hand, strong geometrical nonlinearity, due to the
dependence of the external forces on the solution,
makes it very difficult to set up the final state
equations. On the other hand, the nonlinear free
boundary condition (60) given in section 2.9 means that
the scaling parameters L, T have to be added to the
problem as additional unknowns. In general, there are

two principal ways to obtain a numerical solution for a
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nonlinear problem: either the problem is first fully
stated, and then a Newton-like method is used to solve
the nonlinear discrete equations; or Newton's method is
first used to linearize the problem, and then a
discrete model of this linearized problem is
constructed. At the end, one obtains a linear discrete
problem on a finite dimensional Euclidean space RRI,
whose solution is fairly straightforward to compute.
Keeping in mind -the difficulties of the pipelaying
problem, as stated above, one can see that the latter
method (linearizing the problem first and discretizing
it in the second step) is much easier to implement than
the other method. It is also quite easy to incorporate

the method of continuation in this method.

The basic features of an algorithm designed in
accordance with this method are shown in Figure 8. A

more detailed description is given below.

Step I Initialize the starting value for the
continuation parameter by taking M3= 1/N for
a given N. Initialize a starting geometry by
taking xp(s) = 0 on [0, 1]. Set the
parameter Ly = NLO, where LO is the span
length of the catenary solution (if it does
not exist, take 1.0 as the water depth). Take
Tog = T*, which corresponds to the tension at
the tensioner.

Step II Generate a grid distribution:
Ix = [0 =81 < s9 < ... < g = 1]

by using the inverse of the asymptotic

solution zy(s) obtained in Chapter 3.

Step III Calculate the external forces by using the
geometry defined by x;(s), transformation
matrix [app]i, and the scaling parameters Ly
and Ty.
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Step IV

Step V

Step Via

VI

Step VII

Step VIII

Step IX

Set up the system matrix of the discretized
problem corresponding to the operator (1) by
using Keller's mid-point scheme [22] (see
Figure 9), and incorporate it in the overall
system matrix if another part of the pipeline
is to be analysed (such as overbend etc).
Solve the resulting linear system for

internal forces uj.

Calculate the corresponding components of Xip1
by using uj and constitutive relations

defined in Chapter 2. Also calculate the
angles 03, 04.

Check if || x3,1 - xi]l ?,O is less than a
given accuracy: if not, jump to Step VII

Check 1if Xy = 1: if so, go to EXIT; if not
increment Aj47 = Ay + 1/N

If it is required (can be switched on or off)
use Newton's method (47) successively to
obtain improved new estimate xi4+1(s) for the

geometry of the pipe.

Obtain a new transformation matrix [am,li+i
by integrating equation (16) of Chapter 2.
Use a stiff initial value integrator for this
purpose. In order to improve the stability
of the scheme orthonormalize [ap,]; at each

grid point sj.

Obtain a new Lj41 by using the new gemetry
detailed by xj4+; and angles 04, ¢i, and
compatibility condition (60) of Chapter 2.
Analyse overbend either to obtain Tj4+q or
prepare discrete system matrix for the
overbend to be incorporated into the overall

system matrix.
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Step X Increment i = i1 + 1 and if i is not greater
than a given ipyy, go to Step III.

It should be noted that all the entities used here
actually contain now k components, that is, for
example, uy stands now for a matrix of n x k (n = 5)
containing k times the vector u defined at each S .
The matrix [aypp]; now denotes a matrix of n x n x k,
that is, a collection of n x n matrices defined at each
sj. Scalar variables such as 05 or ¢; are represented
by k dimensional vectors. Therefore, the problem is
now defined in a finite dimensional space RSk x R5k,
assuming no torsional moment is applied along the
length of the pipeline.

Practical features of the pipelaying algorithm

The important features of the algorithm described above
can be listed as follows:

1. It does not require a complicated mesh generation
algorithm. Instead, the grid distribution is
generated by using the information obtained from
the asymptotic solution obtained in Chapter 3.

2. Step V enables the user to define his own

constitutive relations - linear or nonlinear.

3. Step IX is actually equivalent to a multiplexing
technique where a discretized version of overbend
or other components of the pipeline can be built
into the matrix of the overall system. This idea
can be extended to include plastic hinges due to a
local failure of the pipeline when the bending

moment exceeds a certain limit.

4. It makes it possible to switch on or off both
continuation and Newton's methods, thus enabling

the user to optimize usage of his computer
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resources and control convergence in the case of
very stubborn problems.

5. This algorithm does not require any starting

solution.

6. As can be seen from Figure 9, the matrix of the
discretized problem is highly sparse, and can
therefore be placed in a small core size computer.
It is also possible to use a transfer matrix method

to minimize the core requirements.

7. The algorithm has to converge to the right solution
due to Steps V and VI.

A core wise version of this algorithm is implemented in
order to demonstrate that the problem can be solved
with very limited computer resources. Figure 10 gives
the intermediate and final geometries of the pipeline
span during laying for successive values of the
continuation parameter A. As can be seen, the
algorithm converges fairly quickly to the solution.
Figure 11 shows the comparison of the numerical
solution obtained by this algorithm with the singular
perturbation solution. As can be seen, the boundary
layers are resolved more effectively than the
asymptotic approximations. A detailed set of results
and the required input data (prepared in a form
compatible with an interpreter which was designed as a
user interface for a mathematical software package for
pipeline and riser problems) are also given in the
Appendix. Those data correspond to the parameters of
the 36 inch Ninian Field pipeline laid in the northern
North Sea [34].
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CHAPTER 5 CONCLUSIONS AND CRITICISM OF EXISTING
LITERATURE

5,1 Conclusions

5.2 Inconsistencies in the implementation of

numerical methods
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CHAPTER 5 CONCLUSIONS AND CRITICISM OF EXISTING
LITERATURE

CONCLUSIONS

As 1s seen from the developments in Chapter 2, great
unification is obtained by taking the stress as a basis
of formulation, rather than the strain. Although this
may seem to leaé to considerable simplification,
nevertheless the task of description (or approximation)
of the three-dimensional strain field in terms of the
geometry of a space curve still constitutes a difficult
step on the way to the final result. The reduction of
the problem from R3 into a one-dimensional Euclidean
manifold is not so trivial if a significant improvement
is to be obtained over Kirchoff's Hypothesis. The area
of applicablity of the results obtained in this thesis
will be significantly enlarged parallel to developments

in this direction.

Apart from this point, the formulation developed in
Chapter 2 represents the ultimate limit of one-
dimensional rod theories. However, it is important to
stress the fact that we have considerably deviated from
classical elasticity in order to obtain the general
results obtained in that Chapter. The essential
component of such a formulation is basically
differential geometry of space curves.

The results of Chapter 3 reveal some interesting
relationships between intuitive concepts and
mathematical notions. This not only enabled us to use
the results of functional analysis to prove the
existence and uniqueness of solutions, but also brought
a clearer understanding of certain aspects of the
problems connected with boundary layers in the
solutions. It is important to note that the methods
used in Chapter 3, as well as the results obtained
there, can be applied to similar problems arising from

pipelines or risers.
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5.2

In Chapter 4, we have aimed to develop a firm
mathematical footing for the numerical solution of
general pipeline and riser problems. 1In this way, we
have been able to clarify the interaction or relation
between the discretization and linearizatioin steps and
to attach a mathematical meaning to several intuitive
methods which are presented in Chapter 4 in their most
general form. One of the side products of Chapter 4 is
that we have laid the principles of some constructive
existence proofs. Although the proofs are not all
completed in this thesis, we have raised the problem to
a level where it can be picked up by a functional
analyst without requiring any knowledge of the physical
problem.

Chapter 4 also reveals the shortcomings of widely used
classical numerical techniques when they are applied to
some pipeline problems. We have illustrated in Chapter
4 that, by using the information about the qualitative
behaviour of solutions obtained in Chapter 3, it is
quite easy to develop stiff numerical solution
techniques for pipeline problems. We have also
demonstrated that the reliability and efficiency of any
numerical solution technique can be greatly enhanced by

choosing an optimal linearization method.

INCONSISTENCIES IN THE IMPLEMENTATION OF NUMERICAL

METHODS

Inconsistent linearizations

It is quite important not to confuse the two different
steps, linearization and discretization, as this can
lead to inconsistent approximations. One of the common
practices adopted by pipeline and riser literature is
to combine linearization with discretization in one
step. While doing this, some of the papers reduce the
equilibrium equations into the following form

Du/Ds + &0u + g = 0 (1)
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where &0 is a constant matrix which corresponds to a
prescribed geometry go(s). This procedure was
sometimes supported by an intuitive argument that if
the grid points are taken close enough (or if the
finite elements are taken small enough) then the
discrete equations can be replaced with some
approximate equations that correspond to a linearized
problem. This procedure is usually induced by the
difficulty in déscribing the geometry of a space
curve. Although for example Oran [31] admittedly
states what his assumptions actually amount to, his
results were quite commonly used to obtain discretized
formulations of pipeline and riser problems [32], [34].
However, in spite of the fact that the problems that
they treat involve large geometry changes, they do not
seem to be aware of this discrepancy; it actually
corresponds to approximating the problem by another
rather than finding approximate solutions for the

actual problem.

Consequence of usage of non-stiff numerical methods

In Chapter 4, we have illustrated the importance of
selection of an appropriate stiff numerical method for
a pipeline problem. We have also given criteria
required for stiff methods in that Chapter. However,
in pipeline literature, it is quite common to use
uniformly distributed meshes with classical finite
difference or finite element methods. These methods
normally lead to incorrect representation of boundary
layers. As can be seen from Figure 3, this inaccuracy
in the boundary layers then forces the outer solutions
to a different outer integral curve, thus resulting in
a shift in the solution. Therefore, the solutions
obtained by such methods do not converge to the
limiting solution of the problem as € gets smaller and
so the condition of uniform-e-convergence is not
satisfied,
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5.2.3

A simple test criterion for three-—dimensional pipeline

problems

One of the other points that reveals inconsistencies in
the solution of three-dimensional pipeline and riser
problems is the change of torsional moment along the
pipe or riser span when linear constitutive relations
are used. If we recall the proposition proven in
section 3.1, the torsional moment should remain
constant along the span length if there is no external
torsional moment applied on the pipeline or riser.

This point is usually related with the selection of the
matrix &9 in equation (1) if the problem is replaced by
an approximation, as described in section 5.2.1. Since
this proposition does not necessarily hold for any
matrix &0 selected, the results obtained may violate

the statement of that proposition.

It seems that this criterion is not usually applied in
the pipeline literature, and a number of programs,

which were developed for the pipeline industry (such as
the one referred to in [34]), seem not to satisfy this

requirement.
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