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This thesis is devoted to developing methods for 
qualitative and numerical treatment of some two-point 
boundary value problems arising in submarine pipelines and risers. A general problem is formulated in this 
thesis based on rod theories.

The boundary value problems treated in this thesis 
are all associated with the following ordinary 
differential system, which is defined along a space curve in R^;
du/ds + se(u, s)u + £(u,s) = 0 (1)
and defined on the interval [L^, L2] and with various 
types of boundary conditions:
AiU(Li) + Bi_u(Li) = c 
(linear boundary condition)

"(Li)] = 0(nonlinear boundary condition)
fi[Li, L2; u^Li), u^Li)] :
(free boundary condition)

0

(2)

(3)

(4)

where A^, B^ are matrices in R^ % R6 ,are vectors in R^ and i = 1 or 2.
This thesis gives formulations of several practical 

pipeline problems and proves the existence and 
uniqueness of solutions.. An asymptotic solution is 
obtained by using singular perturbation method.

This thesis also describes methods for obtaining
discrete solutions for general forms of pipeline and
riser problems.
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1.1

CHAPTER 1 INTRODUCTION AND TERMINOLOGY

INTRODUCTION

Advancement of offshore technology towards deeper 
waters presents challenges for more accurate and more 
general tools for pipeline and riser analysis. Many 
papers have appeared on this subject (see, for example. 
Offshore Technology Conference Proceedings). The 
recent progress in numerical solution techniques, such 
as finite elements, has led to an increase in this 
literature. However, although analysis of pipelines 
and risers involves mathematically interesting and 
elegant problems, the majority of these works are 
restricted to the application of various numerical 
techniques to obtaining discrete approximations to the 
solution. Computer implementations of various finite 
element techniques count for much of the published 
literature. So far, no systematic and rational 
treatment of the overall problem is available. It 
seems that the lack of such a unified and rigorous 
approach has led to confusion and to Inconsistent 
formulations: in some cases, omission of some basic
mathematical tools has caused serious errors. The aim 
of this thesis is to bridge this gap by providing a 
general treatment of the fundamental problems of the 
subject.

As it is developed in this thesis, the subject can be 
seen as a "jigsaw puzzle" picture, consisting of the 
following main elements:

1. Rational mechanics of rod theories
2. Differential geometry of space curves
3. Solution of two-point boundary value problems for 

ordinary differential equations and application of 
functional analysis

4. Numerical methods for stiff boundary value problems



A clear understanding of the problems requires approach
from many directions, and it is usually essential to 
combine tools from all of the above fields in order to 
discover all the difficulties of the problems or see 
them in the right place of the picture. This thesis 
contains examples where interaction of methods from 
different fields provides a much better understanding 
than if the problem was treated with a method isolated 
in one field.

The subjects of rod theories and differential geometry 
of space curves provide the essential tools to lay a 
firm foundation for all of the problems arising in the 
analysis of slender bodies such as pipelines and 
risers. Fortunately, both of these subjects h^ye been 
studied in great detail in the past. Chapter 2 of this 
thesis gives the basics of these subjects essential for 
the study of the problems falling within the scope of 
this thesis. The principles of rod theories are based 
on the ideas described in the fundamental paper by 
Antman [5]. Chapter 2 also presents a generalized, 
abstract rod theory model, independent of the 
description of the strain and constitutive relations. 
Therefore, future theoretical developments or 
experimental findings such as [37] can easily be 
incorproated into the general formulation developed in 
that Chapter.

It is quite interesting to note that the engineering 
literature on pipelines and risers has almost 
completely ignored rod theory literature. As shown in
[27], some papers such as [1] contained serious 
omissions in equilibrium equations that have been known 
for at least a century. On the other hand, most of the 
engineering literature explicitly or implicitly rests 
on Kirchhoff' s Hypothesis in terms of the description of 
strain in the pipelines. It also seems that omission 
of tools of differential geometry has led many authors



to confusion in terms of twist. Many papers confuse 
the geometric torsion of a pipe axis with the torsion 
of the pipeline. Chapter 2 shows that these are not 
always related to each other.

Most pipeline and riser problems are eventually reduced 
to two-point boundary value problems on some one
dimensional Euclidean manifold in since a pipeline 
is characterized by a space curve, such as its axis, in 
the deformed state. Rod theory literature includes 
many interesting examples of studies of similar 
boundary value problems [3], [4]. However, with one 
exception (Plunkett [33]), the popular literature of 
the subject usually jumps very quickly to a discretized 
problem and its numerical solutions. Chapter 3 of this 
thesis, which transforms the problems into a form best 
suited for a qualitative study, exposes one of the 
basic features of the problems associated with slender 
bodies, namely that the occurrence of boundary layers 
in the solutions is one of the most essential points 
that must be well understood in order to develop 
effective solution methods. Chapter 3 gives 
alternatives to Plunkett's approach: an asymptotic 
approximation to the solution of the two-dimensional 
pipelaying problem is obtained by using a singular 
perturbation technique. Chapter 3 also gives proof of 
the existence of solution for the same problem, and 
finds a priori bounds which lead to estimates for the 
thickness of the boundary layers at both ends of the 
pipeline span. In order to complete the list of most 
useful methods that can be used to study similar 
two-point boundary value problems. Chapter 3 ends with 
a phase plane study of another two-dimensional pipeline 
problem.

Boundary layer behaviour of the solutions of pipeline 
and riser problems requires special numerical 
techniques. This type of problem corresponds to a



special class of problems in numerical analysis, the 
stiff differential equations. The requirements from a 
stiff method are outlined in Chapter 4. Any numerical 
method used for such problems should be able to resolve 
boundary layers and the numerical solutions should 
behave like the asymptotic solution when the parameters 
governing the stiffness of the problem is reduced. In 
the past decade, the numerical analysis literature of 
stiff differential equations has increased 
dramatically. A general review of literature on stiff 
methods is given in Chapter 4. In spite of the great 
successes of numerical analysts on the stiff methods 
for boundary value problems, the pipeline literature 
does not take account of such developments. Apart from 
a few reports of convergence problems [12], no paper 
contained a systematic treatment of the associated 
numerical difficulties; apart from [28], all known 
works used standard finite difference or global 
approximation (finite element) methods.

Indirectly related to the stiffness of the problem is 
the strong nonlinearity arising in large deformation 
problems. Chapter 4 develops various methods for 
converting the nonlinear problem into a sequence of 
linear problems. The theoretical basis of these 
methods and their interrelationships are also given in 
the same Chapter. Physical interpretation of some of 
these methods interestingly provides a new meaning for 
the popular relaxation methods. Several variations of 
the methods presented in Chapter 4 cover all the 
situations that may arise in practice. Therefore, we 
can say that this thesis provides iterative methods 
which can solve approximately most of the problems that 
may arise from pipelines and risers. Chapter 4 of this 
thesis also describes the application of a numerical 
solution technique, based on the ideas developed 
earlier in that Chapter, to the three-dimensional 
pipelaying problem. The conclusions of this thesis are



given in Chapter 5. This Chapter also describes 
several inconsistencies that appear quite frequently in 
the pipeline literature.

As is reflected in this introduction, in this thesis we 
have aimed to present detailed enough treatment of all 
the principal aspects of the boundary value problems 
that arise from pipelines and risers, so that it can 
serve as a source of analysis and solution techniques. 
However, it has not been intended to provide an 
exhaustive collection of solutions to all kinds of 
pipeline and riser problems. On the other hand, much 
attention is paid, throughout this thesis; to provide 
rigorous definitions for all the concepts used. We 
have also tried to give most general and rigorous 
arguments, usually by employing tools of functional 
analysis and linear algebra, rather than restricting 
ourselves to only formal and intuitive explanations.
By adopting this approach, we have tried to lay the 
principal foundations of the subject in a more 
consistent way. We also hope that, in this way, 
pipeline and riser problems will attract more 
functional analysts and numerical analysts, thus 
opening up new fields for research.

1.2 NOTATION AND BACKGROUND MATERIAL

With few exceptions, which are described below, 
standard notation is used throughout this thesis.
Since most of the basic material used in this thesis 
can be found in standard books, we did not attempt to 
make it self contained. However, the background 
material required is very briefly explained below. All 
notation is defined clearly as it appears in the text.

The equations of each Chapter are numbered separately, 
and any equation number refers to an equation within 
the same Chapter, unless stated otherwise. References 
are listed according to the alphabetical ordering of
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the last name of the author or editor, and a reference 
in the text is denoted by a bracketed number such as
[1]. Theorems quoted from other sources are typed with 
bold letters. References and figures are given at the 
end of the text in respective order.

1.2.1 Linear algebra and tensor calculus

Matrix algebra of linear transformations, coordinate 
geometry and vector analysis constitute the most 
popular tools used in this thesis. The vectors are 
represented by underlined characters, such as

Matrices are denoted by ordinary letters. However, in 
a matrix equation, R represents the column matrix that 
defines the vector R in the relevant coordinate 
system. The only exception to standard notation is 
that if:

n = [ni, ng, ng] and m = [m^, m2, m3] (2)

then

[n^ mj = [ni, n2, ng, m^, m2, m3] (3)

The same notation is also used for matrices.

Standard Einstein notation for the summation of 
repeated indices, such as:

R = Ri±i

is used throughout this thesis.

1.2.2 Functional analysis and differential equations

Notions from Banach spaces are regularly used in this 
thesis, as it is quite useful in differential 
equations. Various fixed point theorems are used.
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which are found in great detail in Smart [38]. Apart 
from some references on the numerical solutions, where 
weak solutions are almost a necessity, we have usually 
dealt with classical (strong) solutions of the boundary 
value problems studied. In this thesis, function 
spaces C^(R^) constitute most of the Banach or normed 
spaces used, where k shows the order of 
differentiability of the functions considered, n means 
functions from the real line R into Euclidean space R^, 
and m stands for the boundary conditions imposed.
Where there is no boundary condition imposed, m is 
omitted.

1.2.3 Differential geometry

In this thesis, we quite commonly refer to a vector 
field as a local coordinate system, defined on a one- 
dimensional Euclidean manifold consitituted by a space 
curve in r3. It can also be thought of as a coordinate 
curve of a curvilinear coordinate system in R^.
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CHAPTER 2 REVIEW OF ROD THEORIES AND GENERAL
FORMULATION

2.1 Rod theories - a historical account

2.2 Derivation of equilibrium equations

2.3 Geometric considerations

2.4 Generalization of one-dimensional rod 
theories

2.5 Construction of an optimized problem

2.6 Definition of a dimensionless problem

2.7 Numerical stiffness and boundary layers

2.8 Inscription of coordinate axes by Eulerian
angles

2.9 Formulation of some pipeline problems
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CHAPTER 2 REVIEW OF ROD THEORIES AND GENERAL
FORMULATION

2.1 ROD THEORIES - A HISTORICAL ACCOUNT

The rod theories have a long history of development 
which goes back to James Bernoulli. An extensive 
historical account of rod theories, up to 1788, is 
given by Truesdell [39]. A recent and more technical 
review of rod theory literature is given by Antman [5]

The common scope of rod theories is to provide a 
rational one-dimensional scheme for approximating the 
system of classical field equations of elasticity by 
representing the rod as a space curve (which we will 
call the characteristic curve), and for expressing 
approximate solutions along this curve. The majority 
of rod theories can be grouped under three headings:

1. Projection methods

In these methods, the three-dimensional material 
position field B(R) is uniquely defined (or 
approximated) via a projection function:

b(R; r(s), s) (1)

when the position of a space curve r(s), characterizing 
the rod (characteristic curve), is given. A well known 
example of this is Kirchhoff ' s Hypothesis , which 
requires plane cross-sections of the rod normal to the 
characteristic curve in the reference configuration to 
remain plane, undeformed and normal to the same 
characteristic curve in the arbitrary configuration.
It is also possible to regard the approximation of (1) 
as an exact expression of permissible forms of B.

10



2. Asymptotic methods

The construction of rod theories by the asymptotic 
expansion of the three-dimensional field equations of 
elasticity rests on a small parameter which usually 
reflects a measure of slenderness of the rod. By using 
this technique, the field equations are reduced to a 
sequence of one-dimensional equations which refer to a 
material reference curve (characteristic curve).

3. Director methods

In these methods, a rod is considered as a space curve 
attached to every point of which is a collection of 
direction vectors. These vectors are called directors, 
and they are susceptible to rotation and stretching 
independent of the deformation of the material 
reference curve (characteristic curve).

As far as the equilibrium equations are concerned, all 
three categories of theories lead basically to the same 
differential equations. The exact general equations 
that are needed to express the equilibrium of a bent 
and twisted rod were first given explicity by Clebsch
[10]. Love [30] gives the derivation of these 
equations on a special positive orthogonal triad 
containing the tangent of a curve characterizing the 
rod and one of the principal axes of geometrical 
inertia. In rod theory literature, this reference 
system is known as the 'principal torsion-flexure' 
axes. Later, a careful modern generalization of these 
equations was given by Ericksen and T^uesdell [15] for 
an arbitrary set of directors. Green [20] obtained 
these equations for the resultant forces and moments by 
integrating the three-dimensional equilibrium equations 
over a cross-section.

A simple derivation of these equations on a special 
orthonormal triad is given in [27]. However, the
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orthonormal system is kept more general than the 
principal torsion-flexure system in this latter paper. 
The details of this derivation are given in the next 
section.

The description of strain in a rod developed more 
slowly than the treatment of the stress. A clear 
analysis of strain in a rod, based on the concept of 
twist of the principal torsion-flexure axes, is given 
by 1^^^ [30]. There, twist is defined as the rate of 
rotation of the flexural axes along the tangent of the 
characteristic curve with respect to the arc length in 
the unstretched state. However, as remarked by 
Ericksen and Truesdell [15], this definition gives two 
different twists depending on which of the principal 
axes of inertia of the cross-section is selected as 
the base vector of the flexure reference system. In 
this respect, the asymptotic and director theories 
provide more consistent tools to describe the strain in 
a rod. The fundamental works on the description of 
strain in a rod are the papers by Hay [21] and Ericksen 
and Truesdell [15], on asymptotic methods and director 
theories respectively. Hay [21] employs a thickness 
parameter to obtain the asymptotic expansions of the 
strain field along the characterisitic curve and, by 
taking a five-parameter constitutive law, demonstrates 
the importance of some of the terms in the expansion 
obtained. Ericksen and Truesdell [15] give the 
kinematic description of strain, independent of 
constitutive relations, by using the displacement and 
deformations of the directors of the rod. They show 
that the lower order terms obtained by Hay [21] can be 
obtained by taking a special set of directors.

The work by Ericksen and Truesdell [15] was followed by 
a series of papers. However, if we ignore the rational 
mechanics side of these publications, most of them lead 
to the similar one-dimensional boundary-value problems.

12



apart from the constitutive relations which relate the 
macroscopic equilibrium to the internal deformation 
field in the rod, in a rather general sense. The 
review of these works and derivation of one-dimensional 
constitutive relations is not included in the scope of 
this thesis. In this thesis, in section 2.2, in order 
to construct a w^ll posed boundary value problem, we 
will postulate a general class of permissible 
constitutive laws by employing the embedding theory and 
differential geometry of space curves.

Although the general problem treated in this thesis can 
cover all slender rods with arbitrary cross-section, 
for the sake of simplicity and intuitive clearness of 
the arguments used, in the rest of this thesis, the 
term 'rod' will be replaced by the term 'pipe', which 
is sometimes used in a different context. However, the 
meaning of the word 'pipe' will be clear from the 
context. The pipe axis will represent the 
characteristic curve, unless explicitly stated 
otherwise. The term twist will be used to express both 
the geometric torsion of the characteristic curve and 
the twist of the local working coordinate system. The 
actual meaning will be clear from the context of the 
statement where it is used.

2.2 DERIVATION OF EQUILIBRIUM EQUATIONS

As shown in Figure 1, we adopt a right-handed, 
orthogonal coordinate system whose x-axis is tangential 
to the axis of the deformed pipe. The only requirement 
on the pipe axis is that there is a tangent defined at 
every point of it. By following sectional rod 
theories, we shall represent the stresses on any normal 
plane section of the deformed pipe by the resultant 
forces and moments acting on the pipe axis. The forces 
and moments will be denoted by the vectors N and M 
respectively.
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If we take the stretched length of the axis from the 
starting point as the independent parameter, then any 
pipe element defined by 0 < 8^ < 8 < 82 will have the 
force -NXS^) and the moment on the left hand
face. The vectors NX82) and will represent the
corresponding forces and moments on the right hand 
face. Let us take an orthogonal positive triad of unit 
base vectors f^, f^ and f^ to define a fixed XYZ 
cartesian coordinate system and let the triad e^, e^, 
e^ specify the xyz local reference frame at the point 
8. We can write any vector R in the forms:

R = rili or R = Rjej

and in particular

NX8) = Ni(8)e^, M(8) = Mi(8)ej (2)

where stands for the axial force while represents 
the torsional moment in the pipe. The derivative of 
the vector R can be written as:

dR/d8 = DR/D8 + X x R (3)

where D/D8 denotes differentiation of components in 
a moving system, and X is the vector specifying the 
rotation of this reference system, that is, if we write 
X = Xjej, X^ is the geometric torsion and X2 and X3 
represent the curvatures of the projection of the pipe 
axis on the xz and xy planes respectively. The sign 
*x' stands for the vectorial product. The equilibrium 
of forces acting on the pipe now gives:

DN/D8 + X X N + B = 0 (4)

where B denotes the external forces acting on the 
pipe. We can also derive the following moment 
equilibrium equation:

DM/D8 + X X M + ei x N + C (5)

14



where C denotes the external moments acting on the 
pipe. Equations (4) and (5) can be written in a more 
compact form by using matrix notation:

DU/D8 + + G = 0 (6)

where the vectors U and G denote the generalized 
internal and external forces respectively, that is

U = [Ni, Ng, Ng, Ml, Mg, Mg] (7)

G - [Bi, Bg, Bg, Cl, Cg, Cg] (8)

The matrix ^ can then be written in the explicit form
as follows:

D 0 

P D
(9)

where the skew symmetric submatrices D and P have the 
entries:

D
0
Xg 0 

-Xg Xi

X3 Xg 
-Xi

0
0
0

0
0
1

0

0
-1
0

J
(10)

(11)

and 0 stands for a 3 x 3 matrix having all zero 
entries.

The equations (4) and (5) are obtained without any 
assumptions about the initial shape of the pipe. This 
means that the derived equations also apply in the case 
of initially curved pipes. This point will later be 
exploited to quasilinearize the equilibrium equations.
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2.3 GEOMETRIC CONSIDERATIONS

The base vectors _e j_, 62, eg can be written as:

j = 1, 2, 3 (12)

where the matrix stands for the coordinate
transformation matrix between the fixed coordinate 
system and the local coordinate system. It is clear 
that a^j is the direction cosine between the local base 
vector e^ and the fixed vector fj.

Any vector:

R = r^f^ = R^ei (13)

can then be written in both local and global coordinate 
systems as:

R (14)

The body force terms B and C are usually expressed in a 
fixed coordinate system and the components of these 
forces in the local coordinates must then be obtained 
by using the transformation:

Bi = a^jbj and Ci = &ijCj 1, 2, 3 (15)

which introduces the direction cosines a^j of the base 
vectors of the local coordinate system. We must 
remember that the local system, which we have taken as 
working coordinates in the derivation of the 
equilibrium equations, is not completely arbitrary. 
Along with the smoothness requirements, we have also 
assumed that the vector e^ will remain tangential to 
the pipe axis.

Therefore, for any point 8 on the pipe, the direction 
cosines a^j must satisfy certain extra conditions as 
well as orthonormality. The well known Serret-Prenet
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equations, which express the derivatives of a^j in 
terms of a^j and X^, can be used to obtain such 
conditions:

da^j/dS = agjXg - a3jX2

dagj/dS = agjXi - a^jXg ; j = 1, 2, 3 (16)

The derivation of these equations is given in Love [30] 
as a general theory of moving axes. They can be 
obtained directly by using equation (3) as follows:

dfj/d8 = Dfj/D8 + X X fj = 0 (17)

2.4 GENERALIZATION OF ONE-DIMENSIONAL ROD THEORIES

The equilibrium equation (6) must be accompanied by 
some constitutive relations to be able to pose a well 
defined problem. But this requires, in general, a 
three-dimensional description of the strain of the rod, 
which in turn overrides the simplification obtained in 
the equilibrium equation by integrating the stresses 
over a cross-section. In order to obtain a similar 
simplification in the description of the strain in a 
pipe^ further assumptions have to 1^2 utilized, such as 
Kirc^bff's Hypothesis. A recent survey of the various 
strain theories is given by Antman [5]. For the 
purpose of this thesis, we will assume only that the 
local geometry of the pipe axis at any point can be 
uniquely described when the internal forces and moments 
are given. If we refer to a well known theorem of 
differential geometry:

A curve is uniquely defined, except as to position and 
orientation in space, when its curvature and its twist 
are given as functions of its arclength [18],

17



we can see that this amounts to assuming the existence 
of relations of the following type:

Qi(U, X, X^) = 0 1, 2, 3 (18)

where X^ X^ are the rotation vectors corresponding to 
the local reference system in the deformed and 
undeformed states. This hypothesis, however, does not 
influence the validity of the developed formulation: as 
noted by Basset [8], the equilibrium equation (6) 
corresponding to the actual position of the rod is 
exact, and no question of approximation arises unless 
we attempt to refer the equation to an undeformed 
configuration. Naturally, equation (18) amounts to 
some form of approximation of the strain field in the 
rod.

In relation to equation (18), we have to clarify one 
more important point which is essential for the 
formulation developed in this thesis. One of the three 
equations in (18) should be seen more as a kinematic 
condition specifying a relation between rotation 
vectors X and X^, rather than as a constitutive 
relation. In fact, as shown in [15], twist of the rod 
alone does not determine the geometric torsion of the 
rod axis, or vice versa, and there may exist a shift 
between them. Since we are working in a coordinate 
system defined in accordance with the deformed 
configuration of the rod, we can omit this extra 
relation at this stage. It can later be used to 
determine the convected position of any material 
coordinate system described originally in accordance 
with the undeformed rod configuration. In the same 
way, the extension of the pipe axis can be determined 
after the geometry of the deformed pipe axis and 
internal forces have been calculated.

18



In section 2.2, it was noted that the equilibrium 
equation (6) also applies to naturally curved rods, but 
this thesis is concerned only with the determination of 
the equilibrium configurations of pipelines that are 
normally straight in the undeformed state. Therefore, 
without loss of generality, we can assume that:

X2 = 0, Xg = 0

and the two constitutive relations become

Ql(U, X^ = 0, X^ 0 (19)

Although the methods developed in the rest of this 
thesis can be applied with equations (18), for the sake 
of simplicity in description of the methods, the 
following constitutive relations will be used to 
replace equations (18):

Q(Mi) = Xj 2, 3 (20)

where Q is a one-to-one function of M^.

In order to obtain a consistent and well defined 
problem, in analogy with classical elasticity, the 
constitutive relation (20) is required to be invariant 
of the reference frame selected. Therefore, if we make 
a change of (cartesian) reference system such that:

aijMi = aijMi j = 1, 2, 3 (21)

we must then have:

j^i ^ijXi 1, 2, 3 (22)
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2.5 CONSTRUCTION OF AN OPTIMIZED PROBLEM

In equation (6), the internal force U is always 
described in the local coordinate system. However, the 
external or body force G is mostly given in a global 
coordinate system. Therefore, the complexity of the 
mathematical or numerical problem to be solved will 
greatly depend both on the nature of the external or 
body forces and on the choice of local coordinate 
system. In general terms, the local coordinate system 
should be constructed in such a way that:

a) coordinate transformation matrix between local and 
global coordinates is bounded and has entries with 
continuous and bounded partial derivatives

b) the rotation vector X is continuous

c) the expression defining the vector X and the 
coordinate transformation matrix is as simple as 
possible, for computational purposes as well as for 
ease of handling

Consequently, the selection of the local coordinate 
system depends ultimately on the solution technique to 
be adopted as well as on the specific problem to be 
solved. Although there is no straightforward method 
for constructing the best local coordinate system for a 
given problem, a strong intuitive understanding of t^s 
problem should assist in reducing the effort required. 
The coordinate system described below is one of the 
simplest to construct: it satisfies the requirements 
set out above, and it is suitable for efficient 
implementation of several numerical techniques [28].

Id' lu denote the base unit vectors of an 
orthogonal reference frame XYZ. Let us define the 
third base vector of the local reference frame by:

^ X f2)/|ei X fg (23)
20



and the second base vector by

eo = ec X ei
.. ^ ^ ...■■lllli jL. (24)

where 'x' again stands for the operation of vector 
product.

Since the base vector e^ remains tangential to the pipe 
axis, the local coordinate system xyz is then well 
defined. It is very easy to visualize the geometry of 
this local reference system. Equation (23) states that 

remains parallel to the XZ plane of the global 
reference frame, and the xy plane of the local system 
then remains parallel to the Y axis of the global 
reference frame. The description of this local 
reference frame can be more easily accomplished by 
using the following two angles, analogous to Eulerian 
angles. let us denote the first angle by 8 (the angle 
between the x axis and the XZ plane of the global 
frame), and the second by $ (the angle between the 
projection of the x axis on the XZ plane and the X 
axis). These angles and the relative positions of the 
local and global reference systems are illustrated in 
Figure 2.

The coordinate transformation matrix can now be written 
explicitly as:

cosQcos$
-sin0cos$
-sino

sin0
COS0
0

cos8sin$
-sin0sin$
cos$

(25)

The coordinate rotation vector

X = Xiej (26)

can then be calculated from the following relations, 
which are obtained frmn equation (16) as:
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~ eg . deg/ds = -|)Sin0

Xg = . de^/ds -$cosG (27)

X3 — @2 . d@^/ds — 0

where stands for vectorial innner product, and
denotes differentiation with respect to s,

It is interesting to note that we can also express X as

X = 06^ - 0f2 (28)

which can be obtained directly from Figure 2.

A closer look at the overall problem shows that the 
introduction of this local reference frame permits a 
dramatic decrease in both the number of variables and 
the number of equations that must be handled. The 
equilibrium equation (6) and the two constitutive 
relations (20) comprise a well posed differential 
system with eight unknown variables. This gives an 
optimum formulation in the sense that eight variables 
constitute the minimum set of variables required to 
describe a pipe with a twist: six variables describe 
the state of stress, and two Eulerian angles describe 
the geometry of the pipe axis.

2.6 DEFINITION OF A DIMENSIONLESS PROBLEM

As shown in [27], further simplification can be 
obtained by introducing dimensionless parameters to 
represent the variables U and XX0,$). Let T and L 
denote some characteristic force and length parameters 
respectively. Then equation (6) is replaced by:

Du/Ds + aKx)u + g(x) 0 (29)
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where

u = [N/T, M/LT] = [n, m]

g = (B/T, C/LT] = [b, c]

as
LD 0

P LD

s = 8/L

(30)

(31)

(32)

(33)

X = LX (34)

The constitutive relation (20), as analagous to the 
linear case, will be represented by:

qCm^) = EXi ; i = 2, 3 (35)

where E stands for the dimensionless pipe stiffness 
parameter [27], which is:

e = EI/TL^ (36)

2.7 NUMERICAL STIFFNESS AND BOUNDARY LAYERS

We will now describe the source of the main difficulty 
associated with the numerical solution of thin rod 
problems. Let Uj_ and U2 be two solutions of the 
differential system (29). Then if u^ is sufficiently
close to Uj_, by using the Jacobian matrix J of the 
system, we can write:

d(u^ - U2)/ds = J(u^ - ug) (37)

By formally integrating this equation, we can easily 
obtain [24]:

u^ _ U2 = Exp( ^J[u^(x)]dx)

- 23 -
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As can be seen from equations (9) and (32), the 
diagonal of the Jacobian matrix is dominated by skew 
symmetric terms in the order of l/e. This means that, 
as 1/E gets larger, there will be some eigenvalues with 
large real parts. However, if this is the case, 
equation (38) shows that the distance between the 
integral curves of equation (29) will change rapidly 
near the boundary points, where the independent 
variable has extreme values, as illustrated in Figure
3. In numerical analysis, a differential system with 
widely separated eigenvalues is called a stiff system. 
It is possible to use singular perturbation techniques 
to find asymptotic approximations to solutions of such 
problems [27]. The application of singular 
perturbation techniques will be given in Chapter 3.

Because of the large distance between some eigenvalues 
of the system (29), the Lipschitz coefficient of such a 
system will be very large. Iterative Newton-Raphson 
type methods will then require a very close starting 
solution and will normally fail to converge unless a 
good starting solution is known. Therefore, some 
special techniques which do not rely on a good initial 
estimate are required to handle the strong nonlinearity 
embedded in %. On the other hand, any numerical 
technique to be used to solve such a problem should be 
able to resolve steep boundary layers.

2.8 DESCRIPTION OF COORDINATE AXES BY EULERIAN ANGLES

In the case of a vanishing external moment C^ equation 
(5) becomes analogous to the equation of a spinning 
top. In this analogy, M stands for the moment of the 
momentum of the top, s represents time, and N is the 
force acting on the pipe. The centre of gravity of the 
top is located by the local unit vector e^. This 
analogy is used in the study of the problem of elastica 
[30]. We will now use this analogy to describe a 
general material coordinate system which can also be 
taken as the torsion flexure axes of the rod.
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As is done in rigid body dynamics, we will introduce 
the three Eulerian angles G, Y to describe the 
geometry of the pipe axis or, more specifically, the 
orientation of the torsion flexure axes of the pipe.
We will take G as the angle between the tangent vector 
e^ to the pipe axis and the second base vector f^ of 
the global reference system. We then let $ represent 
the angle which a plane parallel to these axes makes 
with the fixed plane XY, and let W represent the angle 
between the principal plane xz of the flexure system 
and the plane defined by xY coordinate axes. These 
Eulerian angles are illustrated in Figure.4. We can 
easily obtain the direction cosines of the vectors e^, 
±2* the coordinate transformation matrix [^ij],
by using this Figure, as follows:

- sin8cos$ (39)

ai2 = COS0

a^3 = sinGsin#

3-21 = -sin0cosW - cosQcos$sin¥

a 22 sinGsinY

a23 = cos$cosY - cosGsin$sinY

= -sin$sinY+ cosGcos$cosY

^32 " -sinGcosY

agg = cos0sinY+ cosGsin^cosY

The relations connecting dG/ds, d$/ds, dY/ds with the 
rotation vector X can be easily obtained by using 
Figure 4, or by using the equations:
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~ ®3 • de2/ds (40)

X2 = . deg/ds

X3 = 22 . de^/ds

which are derived from equations (14). We can now 
substitute the components of the vectors e^, 62, 
described in equations (39) into equations (40), and 
obtain:

XI -cosOO (41)

X2 -cosWG - sinOsinY#

X3 -sinYG + sinGcosY$

If we recall the fundamental theorem of differential 
geometry of space curves, which is stated in section 
2.4, we can see that the three Eulerian angles G, $, Y 
cannot be, in general, independent. 80 we can 
introduce an additional constraint on the coordinate 
system described by the three Eulerian angles. For 
example, if we take:

cotanY -sinG0/G (42)

the second component X2 of the rotation vector ^ 
vanishes and this means that the base vector 62 is the 
principal normal of the pipe axis at any s. Therefore 
equation (42) requires that the base vectors e^ and 62 
remain in the osculating plane of the pipe axis for 
any s. If we take Y = ^/2 and replace G by ^/2 - G , 
we then obtain the special coordinate system that is 
constructed in section 2.5. Comparison of equations
(41) with (27) or equations (39) with (25) show how 
much simplification it is possible to obtain by 
choosing an appropriate coordinate system.
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Up to now we have dealt with the coordinate systems 
that are defined in accordance with the deformed 
geometry of the pipe. This enabled ns to drop one of 
the constitutive relations (15). However, if we wish 
to determine the orientation of a material coordinate 
system which is defined in accordance with the 
undeformed geometry of the pipe, then we can impose 
this constitutive equation as a constraint to define 
the convected orientation of a material coordinate 
system such as the flexure axes system. In the case of 
a cylindrically symmetric and initially straight pipe, 
the torsion-flexure system can be chosen to have no 
twist in the undeformed state, that is:

X? 0

We can then express this extra constitutive relation in 
the dimensionless form:

qt(mi) = XI (43)

where q^ stands for torsional constitutive law.

The converse of this is also true in the sense that if 
we wish to refer to a material coordinate system which 
is defined in the undeformed state of the pipe, then 
this coordinate system must be defined by three 
geometric parameters, unlike the coordinate system 
defined in section 2.5, which requires only two. This 
provides one more piece of evidence for the optimality 
of that coordinate system.

2.9 FORMULATION OF SOME PIPELINE PROBLEMS

2.9.1 Pipelaying in three dimensions

Final definition of any pipeline problem does not 
become complete unless the body and external force term

(44)
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is described. In the case of pipelaying, this term 
contains the weight, hydrostatic and drag forces due to 
sea water movements such as currents. In order to 
define these forces, we need to define the global 
coordinates XYZ precisely. Let the X coordinate be 
along the pipeline route on the seabed, and let Y point 
vertically upward. If R is a position vector in this 
coordinate system, we can describe the currents in the 
sea as a vector field:

Y(R) (45)

Then the dimensionless weight, hydrostatic and drag 
forces become respectively:

-W/Tf2

(YA/T)f2 + d[(P/T)ei]/ds

ipCjjDjV - {V.ei)ei|[V - (V.ei)ei]/T

(46)

(47)

(48)

where

W =
P =

Y = 
P =

D =

the unit dry weight of the pipe
the total hydrostatic pressure on an area A
equivalent to the pipe cross section
the specific weight of sea water
the density of sea water
the drag coefficient
external diameter of the pipe

However, defining a transformed force by

t = n + (P/T)ei (49)

and combining equation (46) with equation (47), we can 
obtain

[(yA _ W)/T]f^ (50)
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which is simply the submerged weight of the pipeline 
and will be denoted by w. Now the internal force term 
u in equation (29) will be:

u = [t, m] (51)

If we take L as the span length of the pipeline, then 
the interval of definition for equation (29) will 
become unity [0, 1]. Without loss of generality, we 
can take s = 0 as the touch-down point on the seabed, 
and s = 1 as the departure point on the laybarge 
stinger. The actual length, 1,0, can later be 
determined from:

LO/L = 1 _ T[^ni(s)ds]EA (52)

In order to complete the definition of a well posed 
problem, we need to introduce eight boundary 
conditions. In a typical pipelaying problem, due to 
continuity requirements and by assuming that soil 
behaves as an elastic medium at s = 0, we would have:

b^tg + a^mg (53)

(54)

where the coefficients a^, a2, b^, b2 depend on soil 
properties and pipe flexural rigidity.

In terms of the coordinate system defined in section 
2.6, we can also assume:

$(0) = 0 (55)

0(0) = 0Q (56)

where Gg is the bottom slope. Cm the other hand, at 
s = 1, we have:
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^2(1) = 0 (57)

^3(1) = mg (58)

due to matching requirements on the stinger. The 
definition of the problem becomes complete with the 
prescription of tension at the matching point s = 1

ti(l) - tg (59)

and the compatibility conditions [27]

tan (1) = dr[L ^sin6(s)ds]/dX (60)

which sets the geometric compatibility between the pipe 
span and the stinger, where:

r(X)

describes the profile of the laybarge stinger.
Ideally, the boundary conditions (58) through (60) 
should be replaced with the overbend analysis on the 
stinger. In that case, the problem is generalized to a 
multipoint boundary value problem. However, it is 
possible to treat the sagbend and overbend of the pipe 
span separately, and only bring them together at the 
analysis stage. This type of approach allows a modular 
and more general implementation of mixed numerical 
techniques. A similar technique can be used to treat 
the occurrence of plastic hinges in a pipe, as in the 
case of a dry buckle during laying.

One of the main difficulties associated with the 
pipelaying problem is the fact that one of the boundary 
points is not known until the solution is found. 
Therefore, the problem formulated above is a 
free-boundary problem and the boundary point is defined 
by the non-linear compatibility equation (60).
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2.9.2 Problems with external forces which depend on the path 
of deformation

In pipeline problems, the external forces acting
on the pipeline depend on the trajectory of each point 
of the pipe axis. For example, a submarine pipeline 
which is being towed on the seabed encounters 
distributed friction forces which act along the tangent 
of the path of each point on the pipe axis. Another 
example is the off-bottom tow of submarine pipelines, 
where the pipeline is kept on the sea bottom by means 
of chains hanging down from the pipeline. In this 
latter case, the chain would be forced to'a position 
tangential to the trajectory of the point that it is 
connected to. In most of these examples, the path of 
deformation depends on a parameter p, such as a lateral 
pull force at the head of the pipeline.

The coordinate rotation vector x^ which defines the 
geometry of the pipeline, now depends also on p, and 
constitutes a mapping

xYs, p) (61)

from R X R into R^. in the same way, the trajectory of 
any point on the pipe axis is defined by a vector 
R^s, p), which can be calculated by:

Ri(s, p) = I^a^^dt
0

(62)

Since the tangent to the trajectory of a point is 
defined by the partial derivatives of the components of 
R/s, p) with respect to p, the equilibrium equation (4) 
can now be written in dimensionless form as follows:

Dn/Ds + X X n + P[R]n = 0 (63)

where P is usually a constant matrix and [Rjp stands 
for a tangent vector to the pipe axis at the point s,
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In the special case of P being a zero matrix, equation 
(63) reduces to a homogeneous equation and the overall 
equilibrium equation (29) reduces to the homogeneous 
system:

Du/Ds + &u 0 (64)

This means that no external moments act on the pipe, 
and then equation (64) corresponds to a pipeline 
deformed by end forces and moments only.

We should note that equation (63) is not an ordinary 
differential equation, but a partial differential 
equation, and the associated problem of determining the 
path of deformation then becomes a Cauchy problem. The 
initial condition is the shape of pipe for the initial 
value of p.
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CHAPTER 3 APPLICATION OF SPECIAL METHODS TO SOME
SUBMARINE PIPELINE PROBLEMS

3.1 Some observations on a special class of 
pipeline problems

3.2 Pipelaying problems in two dimensions

3.3 Perturbation solution in two dimensions

3.4 Application of perturbation solutions

3.5 Qualitative behaviour of some pipeline 
problems
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3.1 SOME OBSERVATIONS ON A SPECIAL CLASS OF PIPELINE 
PROBLEMS

CHAPTER 3__APPLICATION OF SPECIAL METHODS TO SOME
SUBMARINE PIPELINE PROBLEMS

In this Chapter, several methods of nonlinear 
differential equations will be applied on an important 
class of pipeline problems. For the sake of clarity of 
the derivations and simplicity in illustration of the 
techniques employed, the following linear constitutive 
relation will be used throughout this Chapter:

mi = Ex^ ; i = 2, 3 (1)
We will also assume that no external moment C acts on 
the pipe. If we introduce the following notation:

X = x^e^ + X0

m = m^e^ + m0

n = n^e^ + n0 b = b^e^ + bO

(2)

(3)

(4)

we can write the equilibrium equations (4) and (5) of 
Chapter 2 on the different coordinate planes:

dn^/dse^ + x^ x n^ + b^e^ = 0 

DnO/DS + e^ x (x^nO - n^x^) + b^ = o
(5)

(6)
and

dmj_/dsej_ = o_

£ Dx0 / Ds + e j_ X ( T+ n^) = 0

(7)

(8)
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where

X — in 2 (9)

Equation (7) implies that if no external torsional 
moment is applied, the torsional moment in the pipe 
remains constant. Therefore, if any torsional moment 
is applied to one end of a pipe which has linear
constitutive relations, then a torsional moment with
the same magnitude and opposite direction must
the other end of the pipe, unless an external torsional
moment is being applied at &ame point along the pipe.

enables us to drc^ (uie equation from the 
differential system in equation (29) of Chapter 2.

If we u^e the coordinate system described in section 
2.5, we can then rewrite equations (5), (6) and (8) in 
terms of the angles Gand

n 2 - + e^^cos^G + eGG + b

ng + ^sinGng + n^G 

Ug - $sin0n2 + n^OcosG 

ng = e($GsinG _ 0cosG) _ ^G 

n2 = T$cos0 - eG

where ''' stands for the derivati 
variable s.

+ bi = 0 (10)

+ b2 = 0 (11)

+ bg = 0 (12)

(13)

(14)

with respect to the

Equations (10) through (14) constitute the state 
equations for the general pipeline problem with no 
external moments on the pipe (which is assumed to have 
linear constitutive relation (1)). A close look at 
equation (10) reveals that it can be written as:

d(2n2 + E^^^cos^Q + E^G^)/ds + 2b2 0 (15)
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From this, one can obtain the first integral as

e^^^cos^G + + 2[n2 + /^b^(x)dx]-2q2 (16)

where z is a constant. This equation can also be 
obtained by using the rigid body dynamics analogy as 
shown in Love [30]. However, in equation (16), the 
term corresponding to the contribution of the twist of 
the rod does not appear, because the torsional moment 
remains constant along the whole pipe. Note that this 
result has been obtained without any reference to the 
constitutive relation for the twist of the pipe. Thus 
it is possible to use any nonlinear constitutive law 
for the twist of the pipe. Equation (16) is analogous 
to the energy of a spinning top in rigid body dynamics.

3.1.1 First integral of state equation in two dimensions

If we assume that no external or body force acts in the 
direction of e^, and no external moment is applied on 
the pipe, equation (29) of Chapter 2 can be written as:

Du/Ds + mu + g 0 (17)

where

u = [n^, n2, eG] (18)

g = [(g^cosG + g2sinG + G^),
(-g^sinG +g2COsG + G2), 0] (19)

In this equation, G^ represents the components 
described on the local coordinate system of the 
dimensionless external force vector g, and g^ denotes 
the components on the fixed coordinate system, that is, 
g has been decomposed into two parts as:

Gi e1^1 gifILI (20)
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The matrix & now becomes:

ae
0
0
0

-0 0
0 0
1 0

(21)

We can now combine the first two scalar equations of 
the system (17) in two different ways: the first way is 
to multiply the first by cosG and the second by sinG , 
and combine them; the second way is to multiply the 
first by sinG and the second by cos0 , and combine 
them. Eliminating the variable n^ using the last 
equation of the system (17), we can obtain:

d(n^cosG)/ds + ed(GsinG)/ds 
= -(G^cosG - G2SinG + g^)

d(n2sin0)/ds - Ed(Gcos )/ds
~ ~(Gisin0 + G2C0S0 + §2)

(22)

(23)

By integrating both sides from 0 to s, we can obtain: 

[n^cose + cGsinGjo = -J^(GiCOsG- G2SinG + gi)dx (24)
" S -S[n^sinG- eGcosG]o = -jo(GisinG + G2COSG + g2)dx (25)

Since

(cosG(x)dx = X(s)
sJ[sin0(x)dx = Y(s)

(26)

(27)

if we assume that G^, g^ are constant, we can write

[n^cos0+ cGsinG] 

[n^sin0 - eGcos 0]

-Gj_X + G2Y — gj_s 

-G]_Y — G2X — g2S

(28)

(29)
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These equations are the first integrals of the state 
equations (10) through (14), and they simply express 
the equilibrium along the coordinate axis X, Y of the 
fixed reference system.

3.2 PIPELAYING PROBLEM IN TWO DIMENSIONS

If we assume that there are no hydrodynamic forces 
acting on the pipe, then the only force acting on the 
pipe, according to the formulation developed in section 
2.9.1, is the submerged weight of the pipe as expressed 
in equation (50) of Chapter 2, which can be written 
simply as:

& = -wf2 (30)

or, in terms of the notation used in equation (20)

g2 = -w (31)

Therefore, equations (28) and (29) can now be written 
as :

t^coso + eOsinG = t^(0)

tj_sin0 - eOcos© = ws + £0(0)

(32)

(33)

By choosing the value N2(0) as the scaling parameter T, 
we can get:

ti(0) = 1 (34)

Let us also denote the integration constant by

q = 0(0) (35)

We can then combine equations (32) and (33) as follows
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multiplying the first by cos8 and the second by sinG 
gives:

£0 + (ws + eq)cos0 - sinG = 0 (36)

and multiplying the first by sinG and the second by cosG 
gives:

(ws + Eq)sin0 COS0 0 (37)

A close look at equation (36) reveals that the tensile 
force n^(s) is now decoupled from the parameter 0(8), 
which describes the pipe geometry.

It is also interesting to note that the integral

^^[cG^^x) + 2t^(x)]dx
0

(38)

is the variational integral of equations (36) and (37). 
This means that any solution of the problem should 
minimize the functional integral (38). Moreover, this 
means that any solution of the problem should minimize 
an energy functional which is composed of the strain 
energy in the pipe excluding the stretching of the pipe 
axis and the work done by a force, equivalent to the 
axial force in the pipe, travelling along the pipe 
axis. The integral form (38) can also be generalized 
for the three-dimensional problem using equation (16).

We now have to recall the boundary condition expressed 
for this problem in section 2.9. Since we are dealing 
with a two-dimensional problem, we will only need the 
following conditions:

At s = 0, we must have:

-b^£0(O) + a^£0(O) = 1

0(0) = 00

(39)

(40)
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and at s = 1, we must have

mgCl) = mQ 

ti(l) = tQ

(41)

(42)

Instead of imposing condition (39) on the differential 
equation (36), let us now introduce a family of 
equations by taking q as the free parameter in equation 
(36). We will assume that for every condition of type 
(39), we can find at least one q so that the final 
solution satisfies this condition. On the other hand, 
since we have already imposed condition (34) on the 
axial force t^, we now have to determine w so that 
equation (37) is satisfied at s = 1, that is:

t^(l) = (w + eq)sinG(l) - cosG(l) = t 0 (43)

We can also avoid this equation by making w a free 
parameter. Therefore, we can see equation (36) as a 
two parameter family differential system.

We are then left with conditions (40) and (41), which 
will be replaced by the following simplified 
conditions:

0(0) = 0

0(1) = - p

(44)

(45)

where p denotes the dimensionless stinger curvature at 
the departure point.

3.2.1 Existence and uniqueness of the solution

Let us now write the second order non-linear 
differential equation (36) in the following form:

Ed^G/ds^ + f(s, 0(s)) = 0 (46)
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where

f(s, Q(s)) = (ws + Eq)cos0(s) - sin0(s)

It is easy to see that

(1 - 20/^) < cosG < 1

(28/^0 < sine < 0

(47)

(48)

(49)

hold on the interval [0, w/2]. This suggests that if 
we define a new function F(s, 0) as follows

F(s, 0) = ws + Eq if 0 < 0

F(s, 0) = f(s, 0) if 0 < 0 < w/2

F(s, 0) = -1 if 0 > ^/2

then by using the inequalities (48) and (49), we can 
show, for every s in [0, 1] and for every 0, that:

F^(s, 0) < F(s, 0) < F2(s, 0) (50)

where

F^(s, 0) = (1 - 20/^^ (ws + eq) _ 8

F2(s, 0) = (ws + Eq) - 20/^

(51)

(52)

This inequality (50) implies that for any pair 0^, 02 
we can write:

F(s,02) - F(S,0i) < F2(s,02) - Fi(s,0i) (53)

which leads to the following simplified condition:

F(s, 02) - F(s,0i)| < K|02 - @1 (54)
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where:

K = (w + eq + 1) (55)

Therefore, we have proven that the function F(s, 8) is 
Lipschitz continuous with constant K. Instead of 
dealing with equation (46), it is preferable to deal 
with the equation:

Ed^^/ds^ + F(s, G) = 0 (56)

Now, if we prove existence andimiiquenessof a solution 
for equation (56) with appropriate boundary conditions 
and if this solution remains in the interval [0, ^^2], 
then that solution is also the unique solution of the 
differential equation (46) that remains in this 
interval.

Let us now express the Sturm-Liouville problem defined 
by equation (56) in an integral operator form by using
the following Green's functions:

G(t,s) = s(l-t)/e ^^0<s<t<l (57)

G(t,s) = t(l-s)/e if0<t<s<l

H(t,s) = s/e if0<s<t<l (58)

H(t,s) = t/e ifO<t<s<l

The solution of equation (56) with boundary conditions

8(0) = a, 8(1) = A (59)

corresponds to the integral equation:

0(t) = I^G(t, s)F(s, G)ds + (A - a)t + a
0

(60)

which will be called the first boundary value problem,
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The solution of equation (56) with the two following 
boundary conditions:

8(0) = b, d0(l)/ds = B (61)

corresponds to the following integral equation

0(t) = f H(t, s)F(s, 8)ds + Bt + b (62)

which will be called the second boundary value problem.

We can easily obtain equation (56) from the integral 
equations (60) and (62) by simply differentiating these 
equations. We can write equations (60) and (61) in 
operator form:

0 = L[0]

0 = T[0]

(63)

(64)

respectively, where

L[G] = j G(t, s)F(s, 0)ds + (A-a)t + a

T[0] = f H(t, s)F(s, 0)ds + Bt + b

(65)

(66)

Therefore, a solution 0(s) of equation (56) will be a 
fixed point of either the operator T or the operator L, 
depending on the boundary conditions being used.

We can now use the Banach fixed point theorem to prove 
the existence and uniqueness of the solution, as 
described in [7]. Let us take the following norm on 
the space c8[0, 1] of continuous functions on the unit 
interval:

8||v = max[|0(t)|/v(t)] (67)
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where max[.] denotes the maximum on the compact 
Interval [0, 1], and v(t) is assumed to be a 
continuous, positive function on [0, 1]. It is easy to
show that;

(1/Vg) max |8| < || G|| ^ < (1/v^) max |8 (68)

for the supremum Vg and infimum v^ of the function 
v(t) on the interval [0, 1]. Therefore, the norm || 
is equivalent to the maximum norm and the space 
c6[0, 1] becomes a Banach space with this norm.

V

To be able to use the Banach fixed theorem, we have to 
show that the operators L and T are contraction 
mappings on C6[0, 1]. We can use equation (60) to
write:

LEGg] - L[Gi] = (^G(t, s)[F(s, Gg) _ F(s, 8i)]ds (69)

or by using the inequality (54):

L[02^ - L[0]_]| < K LG(t, s)|02 - 0]_lds (70)

We can then write

|L[02] - L[0i]|
< K max[|02 - 0il/v] f^G^t, s)v(s)ds (71)

Therefore we have:

LCOg] - L[Gi]|| V f M H02 _ Gill (72)

where:

M = K max [^^G(t, s)v(s)ds/v(t)] (73)

Now if we choose v(t) as a solution of

d^^v/dt^ + kv(t) = 0 (74)
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then the function v(t) will satisfy equation (60), and 
we can write:

v(t) = (1 - t)v(O) + tv(l) + kf^^(t, s)v(s)ds
0

Since v is positive on [0, 1], we have:

(75)

v(t) > sOv(s)ds
0

or

(76)

K/k > K max[^^G(t, s)v(s)ds/v(t) (77)

Therefore, we must have

M < K/k < 1 (78)

which means that k must satisfy

K < k (79)

However, in order to optimize this inequality, that is, 
to allow for largest K, we need to choose a function 
v(s) such that the first two terms on the right hand 
side of equation (75) will be as small as possible.
One such function satisfying this requirement, for 
small enough 5 > 0, can be written as:

sin[^^t + 6)/(l + 25)] (80)

which means that

k = ^^/(l + 25)2 (81)

and then

K < (82)
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We can repeat the same procedure for equation (62), and 
obtain:

II T[02] - T[0i|_] II y < k ||02 - 0j_|| V (83)

where

k = K max[(^H(t, s)v(s)ds/v(t)] (84)

In this case, instead of equation (75), we have to 
consider:

v(t) = v(0) + dv(l)/ds t + k(^H(t, s)v(s)ds (85)

and then the function (80) is substituted by;

sin[^(t + 6)/2(l + 6)] (86)

Therefore, we must have

K < ^^/4 (87)

We can now summarize the results by rewriting the 
inequalities (82) and (87) as follows:

(w + eq + 1) <

(w + eq + 1) <

(88)

(89)

respectively. More simply, we can state that for the 
first boundary value problem (59), we must have:

(w + eq) < - 1 (90)

and for the second boundary value problem (61):

(w + eq) < - 1 (91)

as the sufficient condition for the existence of a 
unique solution for equation (56).
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3.2.2 A priori bounds for the solutions and thickness of 
boundary layers

In this sub-section, we will use some comparison 
theorems to obtain bounds for the solution of the 
problem stated in the beginning of section 3.2, that 
is, the second boundary value problem as defined in 
sub-section 3.2,1. Now let us refer to one of the 
basic comparison theorems given in [7] (see Chapter 5) 
which can be stated as:

If all initial value problems have a unique solution on 
the unit interval [0, 1], and solutions of the first 
and second boundary value problems, as defined in the 
previous sub-section, are unique, and if

d^6^/ds^ + F(s,G,) (92)

or

d^Gm/ds^ + F(s,G^) < 0 (93)

then the solution of the second boundary value problem 
satisfies the following inequality:

0l(s) < G(s) < 02(s) (94)

on the open interval (0, 1). We can apply this theorem 
to the solutions of the equations:

d^0^/ds^ + Fi(8, 8i(s)) = 0

d^G2/ds^ + F2(s, 02(^)) "

(95)

(96)

to obtain bounds for the actual solutions 8(s). We 
have shown in sub-section 3.2.1 that two boundary value 
problems have unique solutions, and it is also easy to 
show that the initial value problems have unique 
solutions on [0, 1] since F is a Lipschitz function on 
[0, 1]. (For an example, see Chapter 1 of [11].)
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Let us first consider equation (95)

:d^^2/ds^ + (ws + Eq) - 282/^ = 0 (97)

or

Ed^G2/^^^ - (2/^^02 + (ws + eq) = 0

whose general solution is:

(98)

02(8) = A2exp(ks) + B2exp(-ks) + w(ws + ^4^/2 (99)

where:

k = (2/E^O^^^

which must satisfy:

(100)

02(0) - ^2 ^ ^2 ^ Eqw/2 = 0

d02(l)/ds = k(A2 - B2) + w^/2

(101)

(102)

Therefore, we have:

A2 = ^/E[/2/e + (w + 2p/w)/^]/4/2

B2 = -^/E[/2/E + (w + 2p/^)/^ + 4q/e//^]/4/^

(103)

(104)

This bound function gives boundary layers with 
thickness (G^Y2)l/^ at both ends of interval [0, 1].

The lower bound function 8^ can be obtained by solving 
equation (96), or:

Ed^02/ds^ - (1 - 20/^^(ws + Eq) - 0.= 0 (105)

or

Ed^O^/ds^ - [2(ws + Eq)/^ + 1]0, + (ws + Eq) = 0 (106)
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If we apply the transformation

= (e^/2w)-l/3(2ws/^ + 2Eq/^ + 1) (107)

to equation (61), we can obtain

d^G^/dC^ - = z(C) (108)

The general solution of this equation can be written as 
follows:

G^(S) = A^Ai(g) + B^Bi(S) + ^(ws + eq)/2 + 0(E) (109)

where Ai, Bi are Airy's functions, and 0(E) represents 
terms of order e. The exact meaning of this term will 
be given in section 3.3. Equation (109) shows that the 
lower bound for the solution has a boundary layer 
thickness of (E^Y2)l/3 since the functions Ai and Bi 
are non-oscillatory smooth functions on the positive 
side of the real axis [2].

Therefore, we have found that the solutions of the 
second boundary value problem will have boundary layers 
of thickness 5 which is bounded by:

(e^V2) 1/2 < 6 < (e^V2) 1/3 (110)

The behaviour of the solution and the limiting 
functions G^ and G2 are illustrated in Figure 5, near 
the point s = 0.

We can use the upper bound G2(s) for finding a 
sufficient condition which will guarantee that the 
solution to (56) will remain in the interval [0, ^/2] 
so that the findings of section 3.2 will apply to 
equation (46). A sufficient condition that will 
guarantee this is written as:

Q(s) < 62(2) < ^/2 (111)

49



On [0, 1]. This requires that

^(ws + Eq)/2 + 5(s) < ^/2 (112)

where 5(s) is a function of order 0(/e). Therefore, we 
must have:

w < 1 — 0(>/e) (113)

3.3 PERTURBATION SOLUTION IN TWO DIMENSIONS

As shown in [27], a regular perturbation scheme cannot 
be used to obtain a solution to the second boundary 
value problem stated in the beginning of this section:

ed^G/ds^ + (ws + eq)cos0 - sinG = 0 (114)

G(0) = 0, G(l) (115)

because the limiting equation, when E = 0, does not in 
general have a solution satisfying the given boundary 
conditions. As it is convenient to use the Landau 
order symbols to show the order of approximation in 
perturbation problems, we will recall the following 
definition:

Given two functions f(x, e) and g(x, e), we write:

f = 0(g); if lim |f(x, E)/g(x, E)| < B
e->0

where B is a non-negative real number.

We will usually attach the domain [0, 1] to each such 
relation when f = 0(g) is correct for every x in the
domain [0, 1].

Let us now formally assume that the solution of our 
boundary value problem is analytic in e. Then we can 
write:

G(s, e) = ^ e^G.(s) 
i=0

(116)
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If we substitute this expansion into the differential 
equation (114), we obtain:

sw cos8Q - sinGg + 0(E) = 0 (117)

8o we must have:

Go(s) = arctan(ws) (118)

This is the equation of a catenary. It may be seen as 
the possible configuration of the pipeline with zero 
stiffness. This function Go(s) does not satisfy the 
boundary conditions in general. 8o, we have to use a 
singular perturbation technique to obtain an asymptotic 
solution which will satisfy the boundary conditions.
The expansion given in equation (116) will be called 
the outer expansion. To be able to obtain a correct 
approximation near the boundary points s = 0, s = 1, we 
will employ the method of coordinate stretching and use 
the following transformations:

h — (1 — s)//£

; = S//E

if s is close to 1

if s is close to 0

(119)

(120)

Let us start with the boundary point s = 1 
corresponding to the departure point. By using the 
following notation:

Y(n,/E) = 0(8, E)-m (121)

where:

m = 8o(l) = arctan(w) (122)

is the slope at the departure point, we can obtain:

d^Y/dn^ + (1 - /En)w cos(W+ m) + Eqcos(W+ m)
- sin(T + m) = 0 (123)

51



It should be noted that the derivative Is taken here 
with respect to the variable n. With the help of the 
relations:

w cos(m) - sin(m) = 0

w sin(m) + cos(m) = (1 + w )

(124)

(125)

this equation can be written in the form:

- /e (r)w - /e q) cos(Y + m)
- (1 + )1/Sginf = 0 (126)

If the function W(n, /e) is assumed to be analytic in E, 
then the leading term of the expansion:

Y(n, /eO = E E^/^^.(n) 
i=0 ^

must satisfy

(127)

d^Yg/dn^ - (1 + w^)l/^sin^Q = 0 (128)

together with the boundary condition at h = 0 and the 
matching of the zeroth order inner and outer terms. 
The boundary condition for Y(n, /e) at h = 0 is:

dY{0, /E)/dn = /E p (129)

so the zeroth order term must satisfy:

dYo(0)/dn = 0 (130)

Matching of VQ(n) to arctan(ws) by using van Dyke's 
matching rule [42] gives:

Yq + m = arctan(w) (131)

so we have

Yo = 0 (132)
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The trivial solution, Yg = 0 for every n, satisfies 
these conditions. The first order terms of the inner 
expansion near s = 0 must then satisfy:

d^Yi/dn^ - nw cos(m) - (1 + = 0 (133)

or

d^Y^/dp^ - (1 + - riw/(l + w2^l/2 _ 0 (134)

It is interesting to note that this equation is 
analogous to the equation of a beam loaded with 
distributed forces:

w/(l + (135)

and under constant tension throughout

(1 + w2)1/2 (136)

In fact, this is equal to the dimensionless tension at 
the upper end of the catenary and the distributed load 
may be seen as the component of the body force w in the 
perpendicular direction to the catenary end, because:

1/(1 + w2)l/2 = cos(m) (137)

8o we can attach a good physical significance to the 
terms in the expansions. The first order terms may be 
considered as a catenary approximation in the outer 
region and a solution of a beam under tension in the 
inner region. This can also be confirmed in the inner 
region near s = 0, because there is no significant 
difference between the regions near s = 0 and s = 1. 
Let us now continue to obtain a solution for the first 
order terms.
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It is quite elementary to obtain the general solution 
of this equation:

^1 ^ ^1 + ^2 - wn/a (138)

where:

a = (1 + )1/4 (139)

let us obtain inner expansion of zeroth order outer 
terms. For this, we first take a Taylor expansion near 
s = 1:

0Q(h,e) = Arctan(w) - /e wq/(l + ) + 0(e) (140)

and we can then write

0Q(n) = m - n/ew/a** + 0(e) (141)

80 by using Van Dykes matching rule, we must have

A^exp(-a(l - s)//G) + Agexp^o^l - s)//e) ^ 0(1) (142)

We also have the boundary condition at q = 0

d T2(0)/dn (143)

or

-aAi + aA2 - w/a^ (144)

The constants A^, A2 &re obtained frcm conditions (142) 
and (144) as:

A, - -(p + w/a‘*)/a

Ag - 0

(145)

(146)
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We can finally write the solution as:

Y.(n,/E) = -/e(p + w/a"*) exp(-aii)/a 
- w^/a^ (147)

or

Y(n,/G) = -/e(p + w/a**) exp(-ari)/a 
- (w/a4)/En + 0(E) (148)

Before going to higher order terms, we will first 
repeat the same process for the inner expansion near 
s = 0 which will be taken as;

$(C, /e) = 0(s, e) (149)

The differential equation will then become

d2$/d;2 + /e(wC + /Eq)cos# - sinO = 0 (150)

where the derivative is taken with respect to C. Since 
the outer solution 0o(s) satisfies the boundary 
condition for s = 0, we can omit the zeroth order term 
and assume an expansion of the form:

$(;, /e) = ^ (c)i=l ^
The first order term will then satisfy

(151)

d^$^/d5^ + sw - 0^ = 0 (152)

which has a general solution

$l(5) = B^exp(-s) + B2exp(s) + w; (153)

The outer term has the following inner expansion near 
this region:

Go(C) = /ewS + 0(E) (154)
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so we must have

B^expC-l/Ze) + B2exp(l//e) = 0 (155)

The boundary condition at ^ = 0 is

Bi + B2 = 0 (156)

We therefore have B^ = 0, B2 = 0, and as a result we 
obtain:

$(C, /e) = /ews + 0(E) (157)

At this stage we have first order terms of two inner 
and one outer expansions. If we observe that we can 
use the idea of overlapping regions in the outer 
region, we can see that inner expansions behave 
similarly to the outer solution up to the same 
exponential order in e and we can write a composite 
expansion as follows:

0(s, e) = arctan(ws)
-/£(p + w/a**) exp [-a(l-s)/ /e]/a + 0(e) (158)

We shall denote the right hand side terms (excluding 
0(e)) by and call it first order asymptotic 
approximation. It is easy to see that z^ satisfies two 
requirements of a singular asymptotic expansion:

1. It satisfies the boundary conditions and the 
differential equation up to certain first order 
terms.

2. zi(s, e) converges uniformly to the solution of the 
limiting equation (in our case, it ceases to be a 
differential equation) on any compact subdomain 
(any closed subinterval) of the solution domain
[0, 1].

56 -



The first one can be shown by direct computation and 
substituting into the differential equation and 
boundary conditions. The second follows from the fact 
that:

exp(-an)

behaves like:

(159)

exp(-a(l - s)//E) (160)

as E approaches zero and for any small 5 > 0 and any 
interval [p, 1 - p], we can find small enough E such 
that:

|exp(-a(l - s)//E)| < 6

as s in [p, 1 - p], for 0 < p < 1/2.

In principle, this process can be continued 
indefinitely. In fact, the second order composite 
expansion can be obtained as:

0(S, E) = Z2(S, E) + 0(E3/2) (161)

where:

Z2(s,e) = arctan(ws)
-(p + w/a^) exp[-a(l-s)//e]{/E/a +E^Xl-s)^/E
+ (l-s)//ea + l/a^lMa**} -eq exp(-s//E) 
-2ew^s/(l + + £q/(l + w^s^)

(162)

The functions z^ or zg both have boundary layers of 
thickness /e, which naturally agrees with the findings 
of section 3.2.
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3.4 APPLICATION OF PERTURBATION SOLUTIONS

The asymptotic solution obtained for the two- 
dimensional pipelaying problem in section 3.3 can 
provide accurate enough solutions for many practical 
problems. However, the solutions provided by equations 
(158) or (162) do not represent an explicit solution 
for a given problem. These solutions are actually 
parametrized by the parameters L and T, because the 
dimensionless parameters e, w, p, can only be known 
when the scaling parameters L and T are determined. 
These parameters can be calculated by substituting 
either equation (158) or equation (162) into the 
boundary conditions which were not imposed on the 
singular perturbation problem:

(w + eq)slnz4(l) - coszi(l) = t0
tan(l) = dr[L^sinz^(s)ds]/dX

(163)

(164)

for either i = 1 or i = 2. Equation (163) is 
equivalent to equation (43). Equation (164) represents 
the free-boundary condition (equation (60), Chapter 2). 
The parameter q, however, must be determined by using 
equation (39). Therefore, the problem is now reduced 
to the simultaneous solution of three transcendental 
equations for the parameters L, T, q. As can be seen 
from equation (162), the last parameter q does not 
appear in the lower order terms. This means that the 
term q and the associated boundary conditions (39) will 
not come into the picture in any solution containing 
terms with order lower than 0(G). Therefore, the 
solution (158) can give an explicit solution of order 
0(/G), together with equations (163) and (164).

However, the parameter t^ in equation (163) actually 
corresponds to the tensile force Tg at the departure 
point:

Tr Tto (165)
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and in order to determine Tg we have to analyse the 
part of the pipeline from the point at which it touches 
the laybarge stinger up to the tensioner where a 
prescribed and constant tension is applied to the 
pipe. Assuming that the pipe is completely guided 
along this part, by the stinger and the ramp of the 
laybarge, the pipe geometry can be prescribed by a 
function r(x).If we let p(s) represent the curvature of 
the curve defined by r(x) as a function of arc length 
of the pipe axis s from the starting point of the 
tensioners, then the equilibrium equation (17) would 
reduce to the following energy functional:

[ep^(s)/2 + ti(s)]0^= wh (166)

where s* is the length of pipe from the tensioners to 
the departure point.

This equation is in complete analogy with equation 
(38), and it can be seen as a conservation law 
combining the strain energy of the pipe with tt^ 
potential energy change due to the effect of gravity.

An important consequence of equation (166) is that we 
can now replace the unknown parameter Tg by the tension 
at tensioners T*, which is one of the few parameters 
prescribed in all normal pipelaying problems. It is 
now possible to find an explicit solution by using 
equations (43), (163), (164) and (166).

In order to devise an efficient solution method for 
determining the parameters L and T, we need to have 
good initial estimates and a proper domain of solutions 
for the above-mentioned equations. Naturally, one of 
the simplest approximations is obtained for the 
limiting case e = 0, which corresponds to the catenary 
solution. Let us denote the corresponding values of 
these two parameters by and T^. It is obvious that 
we have:

LO < L and < Tg (167)
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This means that we can then take the solution domain as 
[L^, L] X [T^, T^]. A simple and reliable way of 
solving the parameters is to design a relaxation 
algorithm which decouples them from each other, that 
is, to fix one of the parameters (for example T^) while 
trying to find a solution for the other.

If the following iteration process is inititated by the 
catenary parameters and T^, then the results will 
obviously remain in the intervals [L^, L] and [T^, TQ].

Step I : Use L^, as scaling parameters to 
calculate c, w, p and solve from
equation (164)

Step II : Check - L^|: if it is greater than a
specified accuracy, then set

k k + 1

and go back to Step I

Step III

Step IV

If the sequence has converged to L^, then 
find T^+1 by using equations (166) and (164)

Check if |T^^^ - T^| is less than a 
specified accuracy. If not, set

n = n + 1

and go back to step I

On the other hand, it is not difficult to see that the 
sequences [L^] and [fi] are strictly monotonic, ie:

(168)

and

Li+1 > Li and Ti+i > Ti (169)
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for all values of i and j. Therefore, these sequences 
will converge to L and TQ respectively. The inequality 
(168) can be proven by induction and using the fact 
that if

(170)

then

W^ > Wj+l (171)

In the same way, the inequality (169) can be shown to 
hold, because if

'pi > 1

then

(172)

Li < Li+i (173)

3.5 QUALITATIVE BEHAVIOUR OF SOME PIPELINE PROBLEMS

In this section we will treat a special case of the 
problem described in section 2.9. In some cases, 
relatively short lengths of submarine pipelines are 
installed by fixing one end to a structure and 
deflecting the other end to a prescribed location. 
During this process, the pipeline is stabilized by 
chains which can be represented by some distributed 
forces R(s) acting on the pipeline. The corresponding 
Cauchy problem, described in section 2.9, can be 
parametrized by, for example, the distance between the 
pipeline end and the target point (see Figure 6). 
However, if we can assume that, at scxme stage during 
the process, chains induce forces of magnitude r 
perpendicular to the pipe axis, throughout the pipe 
length (or, if the axial componment of B^s) is 
negligible), then the state equations (28) and (29) can 
be written as follows:
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[rij^cosG + eGsinG]^ = + rY

[n^sinG - cGcosG] rX

(174)

(175)

As was done in section 3.2, we can transform these
equations back to local coordinates:

EG - eqsinG - cosG = + r(XcosG + YsinG) (176)

n^ - eqcosG - sinG = - r(XsinG - YcosG) (177)

where we have taken:

G(0) = l/c

G(0) = 0

(178)

(179)

The condition (178) amounts to taking the shear force 
N2 at the point s = 0 as the scaling parameter T. Then 
by using equations (26) and (27), and integrating by 
parts, we can obtain:

XGcosG = - sinGcosG + d[XsinG]/ds (180)

YQsinG = + sinGcosG - d[YcosQ]/ds (181)

With the help of equations (180) and (181), we can 
obtain the first integral of equation (176):

eQ^/2 + eqcosG + sinG = r[X5inG - YcosG] + c (182)

where c stands for the integration constant.

In the case of r = 0, equation (182) reduces to an 
interesting autonomous differential equation:

EQ^/2 + eqcosG + sinG = c (183)

This equation corresponds to a pipeline being bent by 
end forces and/or moments only, which is illustrated in

“ 62 —



Figure 6. The integration constant can be calculated 
explicitly in terms of the bending moment m^ at the 
point s = 0:

mQ/2 + 1 (184)

Since eq represents the dimensionless tensile force at 
the same end s = 0 of the pipeline, we can write:

cotanf eq

where 8 can be seen as the angle between the direction 
of the force applied at the other end s = 1, and the X 
axis of the global coordinates (see Figure 6).

We can rewrite equation (183) in the following form:

8 = (±2/e)l/2/[±h(c, $; 6)]^/^ (185)

where:

h(c, 8; 8) cotan8sin6 - cos8 (186)

The phase diagram of this equation is shown in Figure 
7. The position of the 8 axis naturally depends on the 
values of the parameters c, 8, e. Since any possible 
geometry must remain in the regions where 8 takes only 
real values, in most cases the angle 8 has to be a 
bounded function. However, if mQ is taken large 
enough, the solution would jump to outer continuous 
branches and the pipeline would assume a spiralling 
geometry.

The phase diagram shown in Figure 7 resembles the phase 
diagram of a physical pendulum which can be seen as an 
extension of the spinning top analogy. This analogy 
suggests the following (see Davis [13]):

s = (e/2)l/2j®[h(c, 0; t)]-l/2dt (187)
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which gives us the inverse of the required solution

8 = DL(s) (188)

If we take the scaling parameter L as the length of the 
pipeline, then s remains in the interval [0, 1], and 
the inverse of the function DL must satisfy

1 > DL-1(0) (189)

or we must have

(2/e)l/2 > j^[h(c, B; t)]-l/2dt (190)

If we can find a majorant function H bounding the 
function h from above, then we can write:

(2/e)l/2 > /®[H(c, B; t)]-l/^^t (191)

If we restrict ourselves to the interval [0, w/2] and 
B f ^/2, we can easily obtain such a majorant function 
as:

H(c, B; t) = c - cotanB(2t/^) - (1 - 2t/^^ (192)

this gives:

(2/e)l/2 > (2/3k)[(k0 + mo/2)3/2 _ (m§/2)3/2] (193)

where

2(1 - cotanB)/^ (194)

The inequality (193) can be used to predict the 
deflection angle 8(1) or to approximate the solution 
DL. Bishop and Drucker [9] obtained the exact solution 
of this problem for the special case of B = ^/2, in 
terms of Jacobi elliptic functions. It is possible to 
extend this solution by using numerical quadrature 
techniques for any value of B.

64



4.1 Heuristic development of a continuation 
technique and a formal application of 
Ficken's theorem

4.2 Newton's method and quasilinearization

4.3 Review of numerical methods for stiff 
problems

4.4 Construction of a numerical algorithm for 
the three-dimensional pipelaying problem

CHAPTER 4 LINEARIZATION AND GENERAL NUMERICAL SOLUTION
TECHNIQUES

65



4.1 HEURISTIC DEVELOPMENT OF A CONTINUATION TECHNIQUE AND A 
FORMAL APPLICATION OF FICKEN'S THEOREM

The equilibrium equation (6) derived in Chapter 2 is 
also valid for naturally curved rods. Therefore, for a 
prescribed pipe geometry x^s), we can rewrite the 
dimensionless equilibrium equations (29) in operator 
form:

CHAPTER 4 LINEARIZATION AND GENERAL NUMERICAL SOLUTION
TECHNIQUES

L[x][u] -&(x) (1)

where L[x] is a linear operator on the space C^(R^) of 
continuously differentiable functions on R^. At this 
point, we assume that there exists a bounded, 
continuous inverse ir^Ex] of L[x]. We can then write:

u [x][-g(x)] (2)

This operator equation actually determines the internal 
forces in the pipe if the final deformed geometry of 
the pipe is defined by the function x/s). Therefore, 
it is possible to see L and L"1 as operators mapping 
from C^(R^) x cl(R^) into cl(R^).

The initial geometry, x^, of the pipe can be found 
simply by subtracting the deflection of the pipe

x^ = X

where gx is solved using the constitutive relations 
(26), or more specifically by:

^Xm2) = -G$cosG

a(^3) =

(3)

(4)
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Let us denote this operation by

X = 0(n) (5)

If the deflection vector x(s) is equal to x^(s), the 
initial undeformed geometry of the pipe would be 
represented by a straight line. This means that x is 
then the desired solution x+(s) of the equilibrium 
configuration of the pipe. Therefore, the problem is 
equivalent to determining the fixed point x+ of the 
following operator equation:

g(L-l[x][-&(%)]) = X (6)

which we will denote by:

F(x; 1/E) (7)

where l/e represents the dependence of this functional 
operator on the pipe stiffness parameter e. Let us now 
define a one parameter t family of functionals by:

Ft(5) = t/e) (8)

from R X C^(R^) into C^(R^). Then the fixed points of 
this family:

Ft(^^(s)) = x^(s) (9)

define a continuous curve in the function space C^CR^)

It is obvious that:

x^(s) = 0 (10)

xi(s) = x*(s) (11)

If we can determine the curve drawn by x^ between t = 0 
and t = 1, then the solution of the problem can be
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constructed by following the curve, starting from the 
trivial point Thus we must construct a sequence:

0 = to < ti < t2 < tn < < 1

such that

(12)

will be the starting solution for finding the next 
fixed point:

i+1
)

i+l 3t (13)
i+1

The fixed point of this equation can now be found by 
using a Newton-Raphson type method if t^ is chosen 
close enough to t^+^.

It is quite easy to attach a physical meaning to this 
abstract process. By replacing e in the functional 
operator F by the ratio e/t, we introduce a relaxation 
factor which corresponds to changing the dimensionless 
flexural rigidity e of the pipe as a free parameter. 
This amounts to relaxing the pipe in a step-by-step 
manner from the undeformed position to its equilibrium 
position. Therefore, if 11 . || denotes some energy norm, 
we can see that the sequence:

(s)
i

(14)

has a monotonic ascend property, and we have:

0 = II (s)|| < II X (s)1 ^n .< II x*(s)|| (15)

The task is now to show that the sequence t^ reaches 
unity in a finite number of steps. It is important
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here to notice that proof of the existence of such a 
finite sequence is equivalent to proof of the existence 
of a solution. Therefore, we have developed a 
constructive existence proof and we can attach an 
intuitive meaning to the process of construction of the 
solution.

We will now give the outline of the proof of Ficken's
theorem [17]. Let

DFt(x^[z] (16)

be the Frechet derivative of the operator F^Cx^ at the
point X. Let us assume that

Ft (5o) = Ft(x^ = x
0

(17)

We now start with the following identity:

DFt (xo)[z] = -Ft(50 + Z) + 3 + DFt (18)
0 0

where we write x as x^ + % for ^ = 5 - 5^- Then we can 
write:

2 = DFt^(xo)[-Ft(x:o + y) + DF^ (Za)[Z] + ZU
0 0

(19)

or

Z = DFt^(50)[Ft (50 + Z) - Ftdo + Z) + y 
0 0

+ DFt (xo)[Z] - Ft (50 + z) + Ft (x^^] 
0 0 0

(20)

Due to the definition of DFt(xo), we can conclude:

% = DFt^(xo)[Ft (50 + Y) - Ft(50 + Z) + ZJ (21)
0 0
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or

Z = H(to, xg; t, (22)

where H can be made a contraction mapping if t is taken 
close enough to t^. We can then obtain the required 
result by applying a fixed point theorem.

One of the important side effects of Ficken's work [17] 
is the proof of the existence of a uniform step size 
between t and tg. However, calculation of the step 
size involves determination of several bounds and 
continuity constants which are either ve^y difficult to 
obtain or too conservative to be of any use in 
practice. Therefore, an adaptive step size search 
algorithm is inore practicable from the viewpoints of 
both implementation and numerical efficiency.

4.1.1 Continuation theorems and selection of the continuation 
parameter

Several continuation theorems have been proven with 
different requirements on the mapping P^. A short 
survey of continuation theorems is given by Smart [38]. 
Most of the continuation theorems are based on the 
idea that if the mapping F^ is continuous on [0, 1] x B 
where B is a connected closed set in C0(R3), and if F^ 
has no fixed point on the boundary 3B, then the fixed 
points cannot escape from B through 3B. The first 
major continuation theorem is referred to as the 
Leray-Schauder Theorem [38]. However, the application 
of this theorem seems to be very difficult, as it 
requires tools from the topological degree theory (for 
example, see [40]).

As in Ficken's work [17], several new theorems have now 
been introduced with stronger conditions which are
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easier to establish. Several theorems of this kind are
given in Smart [38]. One of these theorems is quite 
similar to Ficken's theorem, but is easier to state:

If M is a closed convex subset of a normed space B, and 
if Dt(x) is a continuous mapping of M x [0, 1] into a 
compact subset of B such that:

a) U^(3M) is a subset of M

b) has no fixed point on 3M x [0, 1] 

then has no fixed point in M.

Although this theorem seems to be easier to apply than 
Ficken's theorem, the condition that F^ must map closed 
sets into compact sets is not easy to prove for our 
operator F^(x^ on

By taking the maximum norm on c0(R3), we can make it a
Banach space. On the other hand, we know that:

Fo(x) = 0 (23)

for any x in c0(R3). Therefore, if the conditions of 
the theorem are satisfied, say for the closed ball B^ 
in C^(r^), where:

Fi(o) (24)

then either we must be able to reach the fixed point 
inside B^, or we hit the boundary 3B^ of the closed 
ball for a t* less than unity. However, since F^ 
stands for F(x^ t+Ze), we have found fixed points of 
the operator F for all e from E* = E/t* to infinity. 
The only time this argument can be obstructed is when 
the function x ceases to be in C^(R^) due to a 
singularity or if the function has a
discontinuity.
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The continuation technique described above seems to be 
quite reliable, as it always has a starting solution 
(see Konuk [28]):

0 (25)

However, if we can find a continuation parameter T and 
a corresponding f which has a fixed point x^ for 
T = 0, and if x is close to the fixed point x^ of 
f^(x^, then the implementation of such a continuation 
technique would be relatively more efficient. Now let 
us define:

f(x; Te) (26)

where the operator f denotes the operator defined by 
equation (6). If we recall the results of sections 3.2 
and 3.3, we can see the operator f as the singular 
perturbation of the operator f. The starting point x^ 
of the operator fQ is simply the zeroth order solution 
from section 3.2, and x^ describes the geometry of the 
pipeline if it has no stiffness. That is, xq is the 
catenary solution. Therefore, if we use the 
continuation operator f to find the fixed point x^ 
of the operator f which is the solution x* of our 
problem, we can expect to move from the fixed point x^ 
towards the solution x^ more quickly than with the 
previous method, and the direction of travel would be 
the opposite of that technique. That is, we would move 
inward towards the origin. Unfortunately, the most 
important shortcoming of this latter technique is that 
fq does not always possess a fixed point as in the case 
of a pipeline problem with very low tensile force at 
the barge end.

4.2 NEWTON'S METHOD AND QUASILINEARIZATION

In this section, we develop a method of solving the 
differential equations introduced in Chapters 2 and 3, 
based on abstract Newton's method. Newton's method and
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its certain modification are, at the present time, 
among the few methods which can be applied in practice 
to actually obtaining the solution of a nonlinear 
functional equation. In fact, most methods of 
linearization can be seen as a realization of the 
abstract Newton method applied to a certain mapping on 
some Banach space. Great credit for the development of 
this method goes to Kantorovich, and his most general 
results are translated into English by Feinstein [41]. 
In this section, we will develop one realization of the 
Newton method, and give an outline of the application 
of the results, later, we will extend Newton's method 
to bridge the gap between the methods such as 
quasilinearization, continuation and imbedding.

Suppose that we have a operator P which maps some open 
sets B of a Banach space E into itself. Let us choose 
an arbitrary element ZQ of B. Assuming that P has a 
continuous Frechet derivative DP, then we can replace 
the identity:

P[zo] = P[zo] - P[z*] (27)

by the expression:

P[zo] = DP(zo)[zo - z*] (28)

where z* is the desired root of the operator P. That 
is:

P[z+] = 0 (29)

Consequently, we can expect that the solution z of the 
equation:

DP(zo)[zo - z] = P[zo] (30)

will be close to z*. Since this equation is a linear 
operator equation, its solution can be found more 
easily than the original equation (29). By continuing
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this process, we can obtain the sequence [z^
satisfying:

^n+1 "n DP(Zn)-l[P[zn]] ; n = 0, 1, 2,.... (31)

Generally speaking, one expects that this sequence [z^] 
converges to the solution z* of the operator P.

One of the most easy to apply versions of the 
Kantorovich theorems given in [41] can be stated as 
follows: Let P be defined as the mapping of the open 
set B of a Banach space E into E, and let P have a 
continuous second Prechet derivative D^P in the closed 
ball:

Bg = [z : II z - zO ^ < r]

where r satisfies the conditions shown below.
Moreover, suppose that:

a. II DP(zO)-l|| < N

b. II P[z0] II < k

c. II D2p(z)|| < K

for any z in the ball BQ. Now if 

h = KM^k < 1/2 (32)

and

r > rg = [1 - (1 - 2h)l/2]Mk/h (33)

then Newton's method defined by the process (31) is 
convergent to the solution z* of the operator equation 
(29), satisfying:

z* - z^ll < rg (34)
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Furthermore, if, for h < 1/2,

r < ri = [1 + (1 - 2h)l/2]Mk/h (35)

or, for h = 1/2,

r < ri (36)

the solution z* will be unique in the ball Bg. The 
rate of convergence of the process is given by the 
inequality:

II z* - z^ll < k[(2h)2/2]n/h ; n = 0, 1, 2.... (37)

Let us now rewrite our operator equation (1) in the
following form:

P[x, uj = L[xJ[uJ + g(x) (38)

It is easy to obtain the Frechet derivative of the 
operator P:

DP(x, u^[v] = Dv/Ds + J(x^ n^v (39)

where J denotes the Jacobian of the vector as
defined in Chapter 2. Therefore, we have:

J(x, u) = m(x) + dK(x, u) (40)

where:

dae = + [gii] (41)
0 A(n)

0 A(m)

The matrix A(r) for any vector ^ in can be written

A(r)
0 ^^2^3 xggrg
0 -^12^3 ^33^1 - ̂13^3
0 xi2r2 - X22ri Xi3r2

(42)
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where x^j represents the partial derivative of the 
component x^ of the rotation vector:

j = (3x^/3mj) (43)

The entries g^j of the second matrix on the right hand 
side of equation (41) stand for the Jacobian of the 
external force vector g:

Sij = (agi/axk^(3xk/3mj) (44)

We can now easily write equation (31) explicitly for 
our operator:

D(un+1 _ ^nu^)/D8 + J(x^, u^)(un rh\/nn+l u^)
+ Du^/Ds + aKx^)u^ + g(x^) = 0 ; n = 0, 1, 2.. (45)

where, as in equation (5), x^ of the nth iteration is 
determined by using:

rn x^ 1 - ^(u^) (46)

Now, making use of equation (40), we can simplify (45)

DuH+I/ds + [5e(x^) + (ke(x^, u^)]u^^l
+ - da{x^\ u^)]u^ + g(x^0 = 0 (47)

The starting solution u^ for the Newton process defined 
by equations (45) or (47) can ideally be the solution 
of the following operator equation:

P[0, UQ] = 0 (48)

which corresponds to the internal forces to maintain 
equilibrium if the deformed pipeline geometry is a 
straight line.

Before we give the outline of the application of the 
Kantorovich theorem, let us point out a very useful 
observation on equation (47). If we look at equation
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(42) carefully, we see that, due to the definition of 
dimensionless constitutive relations in Chapter 2, the 
matrices A(n) and A(m) contain only terms of order e. 
Therefore, if we assume that the terms defined in 
equation (44) are also of order e, or that they vanish, 
then we can approximate (47) by the following ordinary 
successive approximation method:

Dun+lypg + ^i(x^)u^^l + = 0 ; n = 0, 1, 2.. (49)

As will be discussed in the following section, this 
equation provides a very simple and efficient method of 
solution for the problems with small s.

In differential equations, the method developed (47), 
based on the Newton method, is known as 
quasilinearization, and proof of convergence of this 
method for boundary value problems is given by Roberts 
and Shipman [36]. In order to use the Kantorovich 
theorem, stated in the beginning of this section, they 
take the Banach space Cq(R®) of continuously 
differentiable functions satisfying the homogeneous 
boundary conditions, and tl^sy let the operator P 
Co(R^) into C^(RG) of continuous functions. That 
result can easily be extended to general two-point 
boundary value problems by using the simple 
transformation:

u [ci(b - 8) - C2(s - a)] (50)

where the vectors c^ and c^ are selected so that the 
boundary conditions are satisfied at the ends of the 
interval of definition [a, b] for the problem. They 
equip the space Cq(R®) with the following norm:

uJI = maxi[maxg[u^] + Xmaxg[|du^/ds|]] (51)

where maxi[ ] denotes the maximum of the six components 
of u^ and maxg stands for the maximum on the interval 
[a, b]. In the same way, the space c0(R6) of external
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force functions gX5) is given the following norm:

II & max4[max_[lgi|]] (52)

Then the operator norms can easily be obtained as
nII J ^ = maxg[max^ % ^ij]
j=l

II Q ^ = maxs[^ ^ % Q^j]
k=li=lj=l

n = 6

n = 6

(53)

(54)

for the linear operator J (for example, the first 
Frechet derivative J of P) and the multilinear operator 
Q (for example, the second Frechet derivative D^P of 
P), respectively. The parameter X used in the 
definition (51) is determined so that the two 
conditions (35) or (36) can easily be satisfied.

4.2.1 Relation between continuation method and imbedding and 
extension of Newton's method

Let us now consider the following functional 
differential equation:

DsDtu(s, t) + J(xXs, t), u^s, t))Dtu
+ P[xO, uO] = 0 (55)

where Dg, represent the derivatives with respect to 
s and t respectively, and t denotes a second 
independent variable. Let us also assume that the 
solution of (55) satisfies the initial condition:

u^s, 0) = u^(s), x(s, 0) = x^(s)0, (56)

However, as shown in [14], if P satisfies some 
smoothness conditions, then (55) has a unique solution 
satisfying:

P[x(s, t), u^s, t)] = (1 - t)P[xO, uO] (57)

for all t in [0, 1]. Therefore, x/s, 1) and u(s, 1)

78



are solutions x^(s) and n^(s) of equation (38). The 
operator P defined by (57) on the functions from R x R 
into R^ and R^ respectively can now be seen as the 
continuation operator. Unfortunately, unlike the 
continuation parameters introduced in section 4.1, the 
parameter t cannot be easily obtained with a physcial 
meaning. However, the assertation that (57) is 
equivalent to equation (55) is quite significant, first 
because equation (55) is a partial differential 
equation that could be obtained by using imbedding 
techniques, and second because, as will be shown below, 
Newton's method can be seen as a special approximation 
to equation (55), therefore generating a connection to 
quasilinearization methods.

Let us assume that we can obtain a solution for the 
initial value problem (55) by using a numerical 
technique such as the method of lines described in
[24]. In this way, we obtain an approximation:

ul(s) = u^s, 1), 2: (s) = xXs, 1) (58)

If we denote the numerical integration operation by H, 
we can then write:

[x^(s), ui(s))] = H[xO(s), u^(s)],0, (59)

If we use the numerical integration operator H 
iteratively, we can obtain a sequence [x^(s), u^(s)] of 
successive approximations:

[x^^l(s), u^+l(s)] = H[x^(s), u^(s)] ;n = 0,1,2,. (60)in+l

We can expect that this sequence will converge to the 
solutions x^(s), u^(s) of the basic problem defined by 
equation (38), In fact, if we use the most explicit 
difference scheme to find D^u^ that is, Euler's 
difference scheme, with step length h = 1:

D^uXs, t) = u^^l(s) - u^(s) (61)
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then equation (55) would reduce to equation (45), and 
the scheme defined by equation (60) is therefore 
equivalent to Newton's method. As we have seen earlier 
in this section, Newton's scheme converges 
quadratically. This can mean that although Euler's 
difference scheme is a crude first order approximation, 
the integration process H leads to a good approximation 
xl(s) = x(s, 1) and ul(s) = u(s, 1). However, this 
depends on the closeness of the initial guess x^ and u^ 
to the solutions, and Newton's method may fail to 
converge if this starting solution is not close enough 
to the solution. This failure can be interpreted as 
the unstable behaviour of Euler's difference scheme 
when applied to the initial value problem (55). This 
observation leads Den Heijer [14] to use highly stable 
integration procedures for solving problems like (55) 
instead of very accurate ones. In the same way, by 
using the imbedding equation (55) and stable 
integration procedures, we can find schemes to replace 
our nonlinear problem with sequence of linear 
problems converging to our original problem.

It is also sometimes possible to combine several 
methods to obtain more desirable techniques. For 
example, we can use the continuation techniques 
described in section 4.1 in conduction with Newton's 
method as explained in this section.

4.3 REVIEW OF NUMERICAL METHODS FOR STIFF PROBLEMS

Finding a solution to the operator equation (1) in the 
infinite dimensional function spaces is a very 
difficult task. However, if the problem can be 
approximated by an operator on some finite dimensional 
spaces, then some numerical technique can be used to 
obtain explicit solutions. This process of reducing 
the problem to a finite dimensional problem is called 
discretization. It usually involves construction of a 
finite dimensional space E to represent the solution
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and trial spaces (which are cl(RG) in our case), and of 
a new representation Lg of the operator L in this 
finite dimensional space. The following diagram 
illustrates the discretization process:

L
(c1(r6), II . i! ) ^ (c1(r6), II . II ) (62)

Lg
(E , II . n ) ^ (E , II . n )

The method of definition of the approximation (that is, 
the definition of the norm || . || ) also forms a part of 
the proper definition of the discretized problem.

Since the solution of our problem is a vector valued 
function of a real variable, its discretized form has 
to be defined on some finite dimensional real Euclidean 
space R . Generally, a discrete problem can be defined 
in two ways.

a. Pointwise approximation

The real interval [0, 1] (on which our problem is 
assumed to be defined) is replaced by a finite sequence 
[s^ : 0 < i < N], and the value of the solution u at 
each s^ is pointwise approximated. This category 
includes all finite difference methods.

b. Global approximation

The solution u is approximated by a linear combination 
of some functions [v^ : 0 < i < N] defined on the 
interval [0, 1], which are usually taken as the basis 
functions for finite dimensional solution or trial 
spaces. Finite element methods fall into this 
category.

However, this classification does not provide a rigid
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separation, and several methods can be seen as 
belonging to both of these two groups.

The requirements on the definition of approximation and 
the norm || . ^ are set in such a way that the solution 
of the discretized problem converges to the solution of 
the actual problem. These requirements for general 
numerical methods can be found in many numerical 
analysis books dealing with differential equations, 
such as [24]. The main aim of this Chapter is to s^aw 
why the numerical solution of the problem studied in 
this thesis requires special attention, and to describe 
the desired features for numerical methods that suit 
best for our problem.

4.3.1 Failure of standard numerical methods

Let us now recall the differential equation (98) of 
Chapter 3, whose solution majorates the solution of the 
two-dimensional pipelaying problem. Let us take the 
first boundary value problem for the homogeneous 
equation which can easily be transformed into the 
following form:

ed^y/dx^ - y = 0 (63)

with the conditions

y(0) = 1, y(i) = 1 (64)

The solution of this problem can be written as:

y(x) = [exp((-2x + l)/2/E) + exp((2x - l)/2/G)]/
[exp(l/2/G) + exp(-l/2/e)] (65)

which can be rewritten, for any h > 0, as

y(x) = [d(-2^ + + d(2x - l)/2h]y
[dl/^h + j-l/2h^ (66)
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where:

d = exp(h//e) (67)

If we replace the differential equation (63) by the 
difference equation:

(yi+1 - 2yi + yi_i)/h^ -y^ = 0 ; 
i = 1, 2,...,N - 1 (68)

with the conditions

yo = 1, = 1 (69)

we can obtain the following discrete solution:

y. = [c-i+N/2 + ci-N/2]/[cN/: + c-^^2 (70)

where:

c = (1 + h2/2e) + [(1 + h2/2e)^ - l]l/^ (71)

It is easy to see that the solutions (70) and (66) are 
of the same form.

Let us now investigate the behaviour of the discrete 
solution (70) for two conditions, for h <</e and for 
h >> /e. If h << /e, the accuracy of approximation y^ 
is quite good as:

id 0[(h//e)3] (72)

On the other hand, when e is reduced to zero while 
keeping h constant, that is, for h >> /e, we have:

h^/E + 2 - e/h^ + . (73)

and therefore we obtain:

lim[y^] = 0£->0 i = 1, 2,
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which is the limiting solution of the problem (63). 
However, in this case, the accuracy of approximation 
gets poorer as e gets smaller, since the rate of decay 
of the boundary layer of the discrete solution is not 
consistent with that of the actual solution:

d = exp(-h/E) << e (75)

This accuracy cannot be improved unless h is taken to 
be of order e in the boundary layer regions.

It should also be noted that, as illustrated by several 
examples by Hemker [22], condition (74) is not always 
satisfied, and in those cases the accuracy of the 
approximation degenerates throughout the interval 
[0, 1] as E gets smaller. Therefore, application of a 
standard numerical technique to a stiff problem either 
leads to inaccurate representation of the solution for 
small values of stiffness parameter e, and/or boundary 
layers in the solution are not properly resolved.

4.3.2 Norms of approximation and desirable features of stiff 
methods

Let us define a partition on the interval [0, 1]:

I = [s^ : 0 = SQ < S2 < S2 < ... < s = 1 (76)

and let us write:

h = mini[(Si+i - s^) ; i = 0, 1, 2, ..., N - 1] (77)

Then the following norms, which are quite commonly used 
for pointwise approximation, can be defined:

u - V
NI'k = [I iM(Si) - Vi|k]l/k 
i=l (78)

or in particular:

M - Z^ll I'O = maxi[|uXsi) - v^j]
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where v represents the discrete solution defined on“Ithe partition I, and gives its value at s^. It is 
sometimes useful to replace this norm by the following

u
N[I (hi|u(Si) - v;|)k]l/k
i=l

(80)

We should emphasize here that these norms depend 
crucially on the choice of the partition I which is a 
part of the definition of the numerical problem.

For measuring the accuracy of the global methods, the 
following integral norms are commonly used:

u V 0'2 Yg) . (u - Vg)ds] 1/2 (81)

or:

Y - Y n 0,0 = maxi[maxg|ui - v^|] (82)

where v^ is the approximating function taken from the 
finite dimensional space E.

If a good global approximation of the solution is 
required throughout the interval [0, 1], then the norm II . Ho'O is best suited. However, if the 
representation of boundary layer is not so important as 
long as the accuracy of the solution is not affected in 
the rest, then || . ^0,2 can be used.

In the case of pointwise approximations, in order to 
decide on the accuracy of approximation, especially on 
certain parts of [0, 1], the partition I must be chosen 
accordingly, and the norm || . would be best to
achieve this objective. This means that the structure 
of a pointwise method would greatly depend on the 
selection of the partition I.

The definitions listed below give the basic 
requirements for stiff methods:
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Definition: A numerical approximation is called 
pointwise exact on a grid I if:

M - 2 H 1,1 = 0 (83)

Definition: A method is said to be uniformly e-
convergent of order p if there exist constants b, K 
independent of e-, such that:

sup II - Ye^ill 1,0 - KhP (84)

if E remains in the interval [0, b]

Definition: A method is called consistent with the 
reduced problem on the interval [5, 1 - 5] if:

^13 ^E,I = MO (85)

for 0 < 5 < 1/2.

These properties can be obtained in several ways. 
However, the actual choice of method depends on the 
problem being solved. Sometimes it is quite difficult 
to prove that a given method satisfies these 
requirements, or the converse.

The most potential techniques in both categories of the 
discretization methods are based on exponential 
fitting. In the case of finite differences, an 
exponentially fitted difference operator can be written 
as:

Un +1 - Mn - h[(l - XXln+i + \ln] (86)

for a differential equation of the form:

Du/Ds = fXu^ s) (87)
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which corresponds to:

f(u, s) seu - g (88)

In our problem. The parameter A is selected so that 
the numerical approximation u is made pointwise exact 
according to the definition given above. However, it 
should always be chosen less than 1/2 in order to 
satisfy some stability requirements (see [24]).

In the case of global methods, where the problem is 
defined by utilizing Sobolev norms:

M - Ygll = [(u - Vg, u - Vg)k]l/2 (87)

where:

(w, z^k = I [/^Diw^Diz^s] 
i=0 "

the solution u satisfies:

(90)

(91)

for all V in E, where L corresponds to our linear 
operator L[x], but is now defined on some finite 
dimensional subspace E of some Sobolev spaces 
containing cl(R6). A detailed study of this method for 
stiff two point boundary value problems is given by 
Hemker [24]. However, in order to obtain uniform 
G-convergence, Hemker [24] develops a class of 
exponentially fitted spaces with base functions 
behaving like exponential functions. He illustrates 
the poor performance of the classical global techniques 
compared to exponentially fitted techniques.
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4.3.3 Selection of a code and available codes for numerical
solution of two point boundary value problems

The selection of a discretization method is one of the 
most important steps in obtaining a numerical solution 
for a certain problem. Unfortunately, there is no 
straightforward guide for selection of the best method 
for a given problem. The question involves a number of 
practical considerations, such as:

- efficiency

- ease of implementation

- reliability

- flexibility

- modularity

as well as theoretical considerations such as order of 
accuracy of approximations and stability of the 
process. Usually the answer to this question is found 
by finding a compromise between available computer 
resources and effort to implement the method. In many 
cases, certain aspects or difficulties can only be 
solved by experimentation. In the case of two-point 
boundary value problems, the comparison of suitable 
methods mostly rests on the matter of efficiency since 
the normal advantages of flexibility and modularity of 
global methods in approximation of complicated regions 
for field problems is not valid in the case of one
dimensional problems. Therefore, there is no clear 
advantage in selecting finite element like methods.

In the past decade, numerical analysis literature on 
stiff methods has shown a dramatic explosion. Many 
algorithms have appeared in several conferences [6, 16, 
19, 23, 25, 35, 43]. Two conferences [23, 43]
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especially were dedicated to methods for stiff 
problems. In [43], Willoughby gives an extensive 
historical review of stiff problems and methods. The 
most recent biography of the subject can be found in
[19], which also gives the source of several computer 
codes for two point boundary value problems. Some of 
these codes were tested by Pereyra in [6]. One of the 
simple and well.tested algorithms, initially developed 
by Pereyra, has been presented in a joint paper by 
Lentini and Pereyra [29]. This technique is actually 
based on an adaptive mesh generation algorithm. The 
boundary layers are resolved by refining the grid 
points as becomes necessary and the accuracy of 
approximation is controlled by using deferred 
corrections. The latest version of the program PA8VAR 
based on this algorithm is presented by Pereyra in 
[19]. In [22], Hemker gives a program based on an 
exponentially fitted weighted residual method.
However, adaptibility of a general purpose code such as 
PA8VAR is far superior to programs such as the one 
given by Hemker [22], although efficiency of the 
exponentially fitted methods can be quite high for 
problems with steep boundary layers.

4.4 CONSTRUCTION OF A NUMERICAL ALGORITHM FOR THE THREE- 
DIMENSIONAL PIPELAYING PROBLEM

The pipelaying problem formulated in section 2.9 
demonstrates most of the typical difficulties 
associated with pipeline and riser problems. On one 
hand, strong geometrical nonlinearity, due to the 
dependence of the external forces on the solution, 
makes it very difficult to set up the final state 
equations. On the other hand, the nonlinear free 
boundary condition (60) given in section 2.9 means that 
the scaling parameters L, T have to be added to the 
problem as additional unknowns. In general, there are 
two principal ways to obtain a numerical solution for a
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nonlinear problem: either the problem is first fully 
stated, and then a Newton-like method is used to solve 
the nonlinear discrete equations; or Newton's method is 
first used to linearize the problem, and then a 
discrete model of this linearized problem is 
constructed. At the end, one obtains a linear discrete 
problem on a finite dimensional Euclidean space R^, 
whose solution is fairly straightforward to compute. 
Keeping in mind the difficulties of the pipelaying 
problem, as stated above, one can see that the latter 
method (linearizing the problem first and discretizing 
it in the second step) is much easier to implement than 
the other method. It is also quite easy to incorporate 
the method of continuation in this method^

The basic features of an algorithm designed in 
accordance with this method are shown in Figure 8, 
more detailed description is given below.

A

Step I Initialize the starting value for the
continuation parameter by taking 1^= 1/N for 
a given N. Initialize a starting geometry by 
taking XQ(s) = 0 on [0, 1]. Set the 
parameter Lg = NL^, where is the span
length of the catenary solution (if it does 
not exist, take as the water depth). Take 
TQ = T*, which corresponds to the tension at 
the tensioner.

Step II Generate a grid distribution

Ik = [0 = Si < S2 < 8k = 1]

by using the inverse of the asymptotic 
solution zi(s) obtained in Chapter 3.

Step III Calculate the external forces by using the 
geometry defined by xi(s), transformation 
matrix [&mn]i* ^he scaling parameters
and T 1 ■

90



step IV Set up the system matrix of the discretized 
problem corresponding to the operator (1) by 
using Keller's mid-point scheme [22] (see 
Figure 9), and incorporate it in the overall 
system matrix if another part of the pipeline 
is to be analysed (such as overbend etc). 
Solve the resulting linear system for 
internal forces u^y

Step V Calculate the corresponding components of 
by using and constitutive relations 
defined in Chapter 2. Also calculate the 
angles

Step Via Check if Xi+1 - lill I 0 is less than a 
given accuracy: if not,jump to Step VII

VIb Check if X
increment X^+2

i = 1: if so, go to EXIT; if not
Xi + 1/N

Step VII If it is required (can be switched on or off) 
use Newton's method (47) successively to 
obtain improved new estimate x^+l(s) for the 
geometry of the pipe.

Step VIII Obtain a new transformation matrix [a.mnli+1 
by integrating equation (16) of Chapter 2.

a stiff initial value integrator for this 
purpose. In order to improve the stability 
of the scheme orthonormalize [a^^]^ at each 
grid point s^.

Step IX Obtain a new by using the new gemetry
detailed by x^+^ and angles Gi, and
compatibility condition (60) of Chapter 2. 
Analyse overbend either to obtain or
prepare discrete system matrix for the 
overbend to be incorporated into the overall 
system matrix.
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step X Increment i = i + 1 and if i is not greater 
than a given i^ax, So to Step III.

It should be noted that nil the entities used here 
actually contain now k components, that is, for 
example, u^ stands now for a matrix of n x k (n = 5) 
containing k times the vector u defined at each s^.
The matrix [a^nli now denotes a matrix of n x n x k, 
that is, a collection of n x n matrices defined at each 
Sjj_, Scalar variables such as 0j_ or $ are represented 
by k dimensional vectors. Therefore, the problem is 
now defined in a finite dimensional space x 
assuming no torsional moment is applied along the 
length of the pipeline.

4.4.1 Practical features of the pipelaying algorithm

The important features of the algorithm described above 
can be listed as follows:

1. It does not require a complicated mesh generation 
algorithm. Instead, the grid distribution is 
generated by using the information obtained from 
the asymptotic solution obtained in Chapter 3.

2. Step V enables the user to define his own 
constitutive relations - linear or nonlinear.

3. Step IX is actually equivalent to a multiplexing 
technique where a discretized version of overbend 
or other components of the pipeline can be built 
into the matrix of the overall system. This idea 
can be extended to include plastic hinges due to a 
local failure of the pipeline when the bending 
moment exceeds a certain limit.

4. It makes it possible to switch on or off both 
continuation and Newton's methods, thus enabling
the user to optimize usage of his computer
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resources and control convergence in the case of 
very stubborn problems.

5. This algorithm does not require any starting 
solution.

6. As can be seen from Figure 9, the matrix of the 
discretized problem is highly sparse, and can 
therefore be placed in a small core size computer. 
It is also possible to use a transfer matrix method 
to minimize the core requirements.

7. The algorithm has to converge to the f^ght solution 
due to Steps V and VI.

A core wise version of this algorithm is implemented in 
order to demonstrate that the problem can be solved 
with very limited computer resources. Figure 10 gives 
the intermediate and final geometries of the pipeline 
span during laying for successive values of the 
continuation parameter X. As can be seen, the 
algorithm converges fairly quickly to the solution. 
Figure 11 shows the comparison of the numerical 
solution obtained by this algorithm with the singular 
perturbation solution. As can be seen, the boundary 
layers are resolved more effectively than the 
asymptotic approximations. A detailed set of results 
and the required input data (prepared in a form 
compatible with an interpreter which was designed as a 
user interface for a mathematical software package for 
pipeline and riser problems) are also given in the 
Appendix. Those data correspond to the parameters of 
the 36 inch Ninian Field pipeline laid in the northern 
North Sea [34].
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CHAPTER 5 CONCLUSIONS CRITICISM OF EXISTING
LITERATURE

5.1 Conclusions

5.2 Inconsistencies in the implementation of
numerical methods
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CHAPTER 5 CONCLUSIONS AND CRITICISM OF EXISTING
LITERATURE

5.1 CONCLUSIONS

As is seen from the developments in Chapter 2, great 
unification is obtained by taking the stress as a basis 
of formulation, rather than the strain. Although this 
may seem to lead to considerable simplification, 
nevertheless the task of description (or approximation) 
of the three-dimensional strain field in terms of the 
geometry of a space curve still constitutes a difficult 
step on the way to the final result. The reduction of 
the problem from R^ into a one-dimensional Euclidean 
manifold is not so trivial if a significant improvement 
is to be obtained over Kirchoff's Hypothesis. The area 
of applicablity of the results obtained in this thesis 
will be significantly enlarged parallel to developments 
in this direction.

Apart from this point, the formulation developed in 
Chapter 2 represents the ultimate limit of one
dimensional rod theories. However, it is important to 
stress the fact that we have considerably deviated from 
classical elasticity in order to obtain the general 
results obtained in that Chapter. The essential 
component of such a formulation is basically 
differential geometry of space curves.

The results of Chapter 3 reveal some interesting
relationships between intuitive concepts and 
mathematical notions. This not only enabled us to use 
the results of functional analysis to prove the 
existence and uniqueness of solutions, but also brought 
a clearer understanding of certain aspects of the 
problems connected with boundary layers in the 
solutions. It is important to note that the methods 
used in Chapter 3, as well as the results obtained 
there, can be applied to similar problems arising from 
pipelines or risers.
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In Chapter 4, we have aimed to develop a firm 
mathematical footing for the numerical solution of 
general pipeline and riser problems. In this way, we 
have been able to clarify the interaction or relation 
between the discretization and linearizatioin steps and 
to attach a mathematical meaning to several intuitive 
methods which are presented in Chapter 4 in their most 
general form. One of the side products of Chapter 4 is 
that we have laid the principles of some constructive 
existence proofs. Although the proofs are not all 
completed in this thesis, we have raised the problem to 
a level where it can be picked up by a functional 
analyst without requiring any knowledge of the physical 
problem.

Chapter 4 also reveals the shortcomings of widely used 
classical numerical techniques when they are applied to 
some pipeline problems. We have illustrated in Chapter 
4 that, by using the information about the qualitative 
behaviour of solutions obtained in Chapter 3, it is 
quite easy to develop stiff numerical solution 
techniques for pipeline problems. We have also 
demonstrated that the reliability and efficiency of any 
numerical solution technique can be greatly enhanced by 
choosing an optimal linearization method.

5.2 INCONSISTENCIES IN THE IMPLEMENTATION OF NUMERICAL 
METHODS

5.2.1 Inconsistent linearizations

It is quite important not to confuse the two different 
steps, linearization and discretization, as this can 
lead to inconsistent approximations. One of the common 
practices adopted by pipeline and riser literature is 
to combine linearization with discretization in one 
step. While doing this, some of the papers reduce the 
equilibrium equations into the following form

Du/Ds + $Pu + ^ 0 (1)
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where is a constant matrix which corresponds to a 
prescribed geometry x^(s). This procedure was 
sometimes supported by an intuitive argument that if 
the grid points are taken close enough (or if the 
finite elements are taken small enough) then the 
discrete equations can be replaced with some 
approximate equations that correspond to a linearized 
problem. This procedure is usually induced by the 
difficulty in describing the geometry of a space 
curve. Although for example Oran [31] admittedly 
states what his assumptions actually amount to, his 
results were quite commonly used to obtain discretized 
formulations of pipeline and riser problems [32], [34], 
However, in spite of the fact that the problems that 
they treat involve large geometry changes, they do not 
seem to be aware of this discrepancy; it actually 
corresponds to approximating the problem by another 
rather than finding approximate solutions for the 
actual problem.

5.2.2 Consequence of usage of non-stiff numerical methods

In Chapter 4, we have illustrated the importance of 
selection of an appropriate stiff numerical method for 
a pipeline problem. We have also given criteria 
required for stiff methods in that Chapter. However, 
in pipeline literature, it is quite common to use 
uniformly distributed meshes with classical finite 
difference or finite element methods. These methods 
normally lead to incorrect representation of boundary 
layers. As can be seen from Figure 3, this inaccuracy 
in the boundary layers then forces the outer solutions 
to a different outer integral curve, thus resulting in 
a shift in the solution. Therefore, the solutions 
obtained by such methods do not converge to the 
limiting solution of the problem as e gets smaller and 
so the condition of uniform-e-convergence is not 
satisfied.
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5.2.3 A simple test criterion for three-dimensional pipeline 
problems

One of the other points that reveals Inconsistencies in 
the solution of three-dimensional pipeline and riser 
problems is the change of torsional moment along the 
pipe or riser span when linear constitutive relations 
are used. If we^recall the proposition proven in 
section 3.1, the torsional moment should remain 
constant along the span length if there is no external 
torsional moment applied on the pipeline or riser.
This point is usually related with the selection of the 
matrix in equation (1) if the problem is replaced by 
an approximation, as described in section 5.2.1. Since 
this proposition does not necessarily hold for any 
matrix selected, the results obtained may violate 
the statement of that proposition.

It seems that this criterion is not usually applied in 
the pipeline literature, and a number of programs, 
which were developed for the pipeline industry (such as 
the one referred to in [34]), seem not to satisfy this 
requirement.
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FIGURE 1 LOCAL COORDINATES



FIGURE 2 ILLUSTRATION OF LOCAL AND GLOBAL COORDINATES



FIGURE 3 ILLUSTRATIOlSr OF BEHAVIOUR OF SOLUTIONS
OF STIFF DIFFERENTIAL SYSTEMS



FIGURE 4 ILLUSTRATION OT EULERTAN COORDINATES



FIGURE 5 ILLUSTRATION OF BOUNDARY LAYER AT s = 0



FIGURE 6 ILLUSTRATION OF DEFLECTION OF A PIPELINE BY
END-FORCES ONLY



FIGURE 7 PHASE DIAGRAM OF THE EQUATION
£0^ = 2(c - cotang sinQ - cos0)



FIGURE 8 FLOWCHART OF THE TREX PROGRAM



* Boundary conditions
or interface relations

*
1-p 0 +p^ 1-"'3

1-P 0■"] ]""3 +p'
0■^2 1-p 1-^2 +p^

-1/2 -p

+ 1/2

-1/2 +p

H/2 +x +p

1
■^3

1
""2 2+P 2

-^3

2“P -L 2
-^1

1
"L

2-P -"-2
2+P

-1/2 2-P 1 -1/2 2+P 2
-^1

+ 1/2 +4 -p' + 1/2 +p'

-1/2 +p"-' -x^-'

+ 1/2 +x^-'

-P -"3 ""2

*'3 -P

n- 1 n-1
'^2 -P

-1/2

+ 1/2

Boundary conditions 
or interface relations

-1/2

+ 1/2

FIGURE 9 STRUCTURE OP THE DISCRETE SYSTEM MATRIX
CORRESPONDING TO THE SAGBEND IN THE
PIPELAYING PROBLEM



FIGURE 10 GRAPHICAL OUTPUT FROM THE PIPELAYING
STRESS ANALYSIS PROGRAM TREX, WITH
INTERMEDTATE' ANT) FINAL RESULTS



FIGURE 11 COMPARISON OF PIPELIT^ GEOMETRIES OBTAINED BY
SINGULAR PERTURBATION AND BY A NUMERICAL METHOD
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SAMPLE INPUT FOR THE PROGRAM TREX

FILENAME: TREXIN/SEPTEMBER 1977: SAMPLE INPUT FILE 
FOR PROGRAM TREX

STATUS ON THE FILE: ICL1907/METRIC, BRITISH/TREXIA 
CONTENTS: 8 BLOCKS/IN RESPECTIVE ORDER
^PROJECT DESCRIPTION*-----------------------------

= PH.D THESIS 
= NINIAN FIELD MAIN LINE 
= I.KONUK 
= 10.11.1978

PROJECT DESCRIPTION 
PROJECT NAME- 
AUTHORIZED USERS 
EXPIRES ON
*PIPE DATA*----BLOCK NB=1-----
1 7

1- OUTSIDE DIAMETER
2- DRY WEIGHT
3- WALL THICKNESS
4- COAT THICKNESS
5- CONCRETE THICKNESS
6- DRAG COEFFICIENT
7- SKIN FRICTION COEFFICIENT

*BARGE DATA*---BLOCK NB=2------------
1 12

1- TENSION
2- STERN RADIUS
3- X-POSITION OF BARGE
4- Z-POSITION OF BARGE
5- PIPE/BARGE BEARING
6- BARGE TRIM
7- TORSION ON THE PIPE
8- ESTIMATED SAGBEND
9- BARGE SIDEWAYS DIS.
10- FREEBOARD
11- ESTIMATED UPPER LENGTH
12- STERN LENGTH

*CABLE DATA*--- BLOCK NB=3------
1 7

1- DRY WEIGHT OF CABLE
2- SUBMERGED WEIGHT
3- WEIGHT OF A/R HEAD
4- LENGTH OF A/R HEAD
5- WINCH FOOTAGE
6- BARGE MOVEMENT:A/R
7- HORIZONTAL DI.:A/R

*MATERIAL DATA*-BLOCK NB=4------
1 6

1- CONCRET SP. WEIGHT
2- STEEL SP.WEIGHT
3- COAT SP. WEIGHT
4- YOUNG S MODULUS
5- SHEAR MODULUS
6- YIELD STRESS

0.9144
984.997
19.50E-3
3.75E-3
65.0E-3
1.2
0.

60. E3 
228.6 
0.0 
0.0
0.
2.
20000.0
700.
0.
13.2
550. 
155.0

22.34
19.44
0.
0.
0.
0.
0.

2723.
7850.
1442.
2.1E10
8.9E5
4.574E7

(M,FT)
(KG/M,LB/FT) 
(M,FT)
(M,FT)
(M,FT)

(KG,LB 
(M,FT)
(M,FT)
(M,FT)
DEGREES
DEGREES
(KG-M,LB-FT)
(M,FT)
(M,FT)

(NOT USED)
(KG/M,LB/FT) 
(KG/M,LB/FT) 
(KG,LB) 
(M,FT)
(M,FT)
(M,FT)
(M,FT)

(KG/M3,LB/FT3)
(KG/M3,LB/FT3)
(KG/M3,LB/FT3)
(KG/M2,LB/FT2)
(KG/M2,LB/FT2)
(KG/M2,LB/FT2)



(M,FT)
(M,FT)
(KG/M3,LB/FT3)

♦ENVIRONMENTAL DATA*K NB=5-----1 9
150. 1-WATER DEPTH AT OR.
150. 2-WATER DEPTH AT BA
1025. 3-WATER SPEC. WEIGHT
2000. 4-DAMPING COEFF. ----
0. 5-SOIL SPRING CONSTANT -----
0. 6-BOTTOM FRICTION COEF. ----
0.0 7-BOTTOM SLOPE ----
0.0000 8-BOTTOM PROFILE CURVATURE(1/M,1/FT)9.81 9-ACCELERATION OF GRAVITY
♦SYSTEM PARAMETERS^CK NB=6--------------------1 151 1-PROGRAM USED (1,2,3)4 2-MODE OF PROGRAM (1,2,ETC)3 3-TYPE OF INPUT DATA (1,2)45 4-NO OF ITERATIONS (1-50)3 5-ACCURACY EXPONENT (-1,6)2 6-UNIT SYSTEM (1-BR,2-MET)2 7-INPUT FILE UNITS (1,2,3-SI)
33 8-NO OF GRIDS (3-21)2 9-DEBUG MODE CHOOSEN
3 10-TEST 1, NORMAL 0, INTERACTIVE -1.18 11-STEP LENGTH DURING MN CONVERGENCE.75 12-SPEED OF DE-STIFFENING IN 3RD DIM.8 13-NUMBER OF VALUES IN CURRENTS ARRAY2 14-PLOT SWITCH:(1 OFF ,2 ON)7 15-ROLLER SWITCH
♦CURRENT DATA^ BLOCK NB-71 8
0. 0. 1.5
10. 0. 1.2525. 0. 1.0
40. 0. 0.8
50. 0. 0.75
75. 0. 0.50125. 0. 0.
135. 0. -0.50
♦EXECUTE^

END OF INPUT FILE-



SAMPLE OUTPUT FROM THE PROGRAM TREX

Pliniil'AM :TPhX1A DATE ; 29/09/77
MNITS :i;FTRir PAGE: 1

ffPIPF DATA;#
OUTSIDE DIANFTEK = 0.014 METFR
DRY WEIGHT = 9H4.9U7 KG/M
W«Ll THICKNESS = 0.010 M E T E P
CHAT THICKNESS = 0.0U4 meter

concrete thickness = 0.065 METED
DRAG COEFFICIENT = 1.200
SKIN FRICTION coefficient = 0.000

aeAR^t data##
TFNS ION = 60000.0 KG
STFRN RAMP RADIOS = 22H.6 METFR
X-POSITION OF BARGE = 0.0 METFR
/-POSITION OF BARGE = 0.0 METER
pipf/bahce bearing differ. = 0.0 degrees •
BARGE TRIM = 2.0 degrees

TORSION or the pipf fnd = ZuOuO.0 KG-M
eSTiriATED SAGBFND LENGTH = 700.0 METER
BARGE SIDEWAYS displacement = 0.0 meter

F P E F n 0 A R 0 = 13.2 METER

#CA8I E DATA##
DRY weight OF CABLE = 27.34 KG/M
SUBMERGED WEIGHT OF CABLE = 10.44 KG/M
WEIGHT OF A/R HEAD = D.OO KG
lfngth of A/R head = 0.00 meter

WINCH FUOTAGF = 0.0 meter

barge movement (A/R) = 0.0 METER
HORIZONTAL DI. (A/R) = 0.0 METER

PROGRAM ITPEXIA DATE : 29/09/77
UNITS :l;FTRIC PAGE : 2

##MATFRIAL PRUPERTIFS##
CONCRETE SPECIFIC WEIGHT = 2723.00 KG/M3
STEFL SPECIFIC WEIGHT = 7650.00 KG/M3
COAT SPECIFIC weight = 1442.00 KG/M3
YOUNG S MODULUS = 0.21E 11 KG/M7
SHEAR MODULUS = U.o'RE 06 KG/M?
Y I E1 D STRESS = U.46E 08 KG/M?

AENVIRONriENTAI. DATAA
WATFR DEPTH AT URlGIfJ = 150.0 METER
WATFH DEPTH AT BARGE = 150.0 METER
WATFR SPECIFIC W FIG H T = 0.102E 04 KG/M3
DAMPING COF F F I C I E'lT = O.ZQOE 04
soil STIFFNESS coefficient = O.OCOE 00
BOTTOM friction coefficifnt = O.OOOF 00
BOTTOM SLOPE = O.OOOE 00
BOTTOM PROFILE CUVATI'RF = 0.0 0 0 E 0 0 M-1
accflaration uf Gravity = 0.081E 01 M/SBC2

^SYSTEM PARANFTERS;#
program used = 1
MODF OF program USED = 4
TYPF OF iNPOT data (1,/) = 3
NUMBER OF ITFR.ATI'INS ALLOWFT = i*5
accuracy exponent reouihed = 3
UNIT SYSTEM :^-MET,1-BR,3-SI = 2
INPUT FILE UNIT SvSTFM = 2
NUMBER OF GRIDS RFOUIRFD = 33



P wi’oh An : TP FXl A 
n I T S ::; r T R 1 r

»CUPPLNT HATArt
IJATKi.' nKPTIi Ot L-X VK L-7

.■IbTtP I’/SFO M / 5 t 0
1 0 . t) '1 0.0 0 1 .50
? 10. on 0.0 0 1.25
3 0.0 0 1.00
4 40.00 0.00 0 . <;0
S 4C . 00 0.0 0 0.75
A 75.00 0.00 0. 50
7 175.00 0.0 0 1'. 0 0
A 155.00 0.00 -O.50

PkOiiKAM rTRPy^A 
' IN T T r. : t. F ' T R I C

THF CiFUN'FTRY of THfc PlPF:

TTFRATK'N N'.'MSeR= STIFFNESS P A R A I'l F T E K = 0.1 0 / 5 F - 0 1

DTftFCTION CUSINFR:
r.R I 0 11 1? 1 5 .il 22 23 31 32 33

1 1.00 O.Oi) (1 . oo 11 .Oil 1.00 0.00 0. no 0.00 1 .00
2 1.00 0 . oo II . oO -0.00 1.00 -o.no -0.00 n.oc 1.00
3 1 . 00 0.0(1 0.0 0 -0.00 1 .90 - 0.0 0 -0.00 0.00 1.00
4 1 . 00 0.00 0 . II 0 -0 . Oil 1 .00 -O.Ou -tl . 9 0 0.00 1 . 00
b 1 .00 0.00 0.0 0 -0.0 0 1 .00 -0. Oo -0 . oo O.Ou 1.00
6 1 .00 0.01 II. on -0.01 1 .00 -0.00 -0.00 0.00 1 .00
7 1 .00 0.02 0 . '10 -0.(2 1 . oO -0.00 -0.0 0- 0.0 0 1.00

1 .00 0.0 5 .1.00 -0.03 1.00 -0.00 -0.00 O.Ou 1 .00
V 1. on 0.0 5 n. 00 -0.0 5 1.00 - 0.0 0 -0.00 O.Ou 1 .00

1 0 1 .00 0.0/ 0.0 0 -0.0/ 1 .00 -0.00 -0.00 O.oo 1.00
1 1 0.09 0.10 II. 00 -0.1 0 0.9 9 -0.00 -0 . no (1. no 1 .on
12 0.99 0.15 .1. (lO -0.13 0.9 9 -0. 'OU - 0.0 0 0.0(1 1.00
1 5 0.98 0.1 / 0. '10 -0.1/ . 9 8 -0.00 -0.00 0.0 0 1.00
1 4 0.98 0.22 (I. 'lO -0.22 0.9 8 -0.00 -0.00 O.OU 1 . 00
1 b 0.96 0.2/ .1.111 -0.27 (.96 -0.no -0.01 o.oo 1 .00
1 6 0.95 0. 52 n.uO -0.32 9.9 3 -0.00 -0.00 0.0(1 1 .00
1 7 0.9 5 0.37 0.0 0 -0.37 0.9 3 -0.00 -0.00 0.0(.' 1 . 00

0.91 0.42 -0. Ill -0.42 0 . 1 0.0 0 0.01 o.oo 1 .00
19 0.89 0. 4o -11. Ill - 0 . 4 6 9.8" 0.01 0.02 O '. 0 0 1 . 00
2 0 0.87 0.49 - (1.0 2 -II . 4 9 0. o 7 0.01 0.03 O.Ou 1 .00
21 0.85 0.52 -0.04 -0.52 0.86 0.02 0.04 O.Ou 1.00
22 0.84 0.54 - 0 ^ U A -0.34 0.84 0.03 0.0 6 O.Ou 1.00
23 0.85 0.5 5 -11 , nr> -0.55 0.8 4 0.0 4 0.07 O.Ou 1 . 00
24 0.83 0.55 -'i.'i? -0.3 5 0.8 5 0.0 5 1) . 09 O.OU 1.00
2b 0.85 0.35 -,l _ l|9 -0. SS 0.8 5 0.06 0.1 0 0.00 0.99
26 0.8 5 0.35 -11.10 -0.54 0.84 0.06 0.11 O.Ou 0.99
27 0.84 0.3 4 -'1.1 0 -0.53 0.84 0.0/ 0.12 O.OU 0.90
?H 0.85 0.32 -'1.11 -0.32 0.83 0.0/ 0.13 0. 0 0 0.90
2V 0.86 0.30 -0.11 -0.30 0 . o6 0.07 0.13 O.OU 0.99
^0 0.86 0.49 -9.12 - 0 . 4 8 0.87 0.06 0.13 0 . ou 0.99
n 0.87 0.48 -0.12 -0.47 0.8 8 0.06 0.13 O.Ou 0.99
V 0.88 0.4/ -0.12 - 0 . 4 6 0.88 0.06 0.13 O.Ou 0.99
3.5 0.88 0.4 f) -0.12 -0.46 0.89 0.06 0.13 O.OU 0.99

DATE: 29/09/77 
PAGE: 3

DATE: 20/09/77 
DACE: 4



: 1 0 F X 4 1 OATE : 26/09/77
' 1M1 r : i 8 T F I r PAGE : b

C'M)oi)TNflTfS :
*• (j 0 I n * * X * * * 7 * *• r t; M V 1 * *■011^''?* *rup\/’)*

1 LTl^ ''hT\-v ' i b T [• K
1 1 .0(i;i /I. '' 1)') . On<) 0 . 01 0 o.oiio 11.000
/ .51" 0 . 1 0 n . O'lO -0. Ooo -0. 040 3 , nl A
$ .27" 0. 0.0"') -0. Ob'O -O.'O'lO 0.062
U 7 .571 n. 00 7 0 . lull -0 . OgO -O.oni 3,T3S
s 1 s . 1 04 0 . ri f'. 0'' 0 -0. 0 0 0 -0.042 o,2px
t 1' .47" 0. '\,3 r\ j) a Cl Ogn -0.043 0.334
7 7^ .4X4 0 . 1 7 0 0.0 1 -0. ll'jo - 0, 0 11 3 0,46 6
n 4' .12.1 0. 4,: 6 0.914 --0. 'Jon -0.04/ 0.336
V b J .4"4 0. U 1 0.0')(' -0. 90 0 -0.310 3.653

1(1 (jf .502 1. 72 5 0.010 -0. Ool -0.013 0.730
11 i\1 . 2 0 5 >i *) 4 0.0 3 H -0 . 902 -0.018 0.824
1 2 ‘V X .1505 5. '■'72 0,0/0 -0. 00 5 -0."25 0.HH1
1 .5 11/ . 4o' 7. "nS 0.124 -0 . 005 -0.0/6 0.020
1 i. 1 j7 .557 12. 01 7 203 -0. d 0 3 -O.025 0.659
1 5 1 .ov.% 17. 3^4 0.512 -0. 001 -0.^ii4 0.^40
16 1 «1 .70.1 24. 346 0.42 6 0. 01 0 0.030 O.vpi
17 2.JS . 5 52 15. 060 0.4" 5 0. Ojn 0.0 76 O.PiXH
1 1 2/7 , A C 4 W 3 . o/.n 0 . 4 *. 3 '). 0 0 2 0.127 0.054
1 ^ 26' .212 55. 4 io 0.225 0. OV 3 0.1X1 0.764 *
?n 26'-' . 6 o 7 6 3 . 9 02 -0.192 0. 1 52 0.2^4 0.8/8
21 2«7 .552 74. 250 -0 , .3uO 0 . 1 7'' 0.2X2 0.571
22 Tu.l .517 .44. 1 .Hi -1.612 0. 205 0 . X14 0.440
2 5 51 7 .722 "5. 522 -2.367 0. 224 0.740 0.279
26 55' .660 1"2. 1 1 2 -5.627. 0. 229 0.144 0.0X6
25 54, .144 1 I'V . .55 5 -4.74l 0. 216 0.324 -0.140
26 552 . .56.1 116. 6(J1 -3,831 0. i';5 0.29X -0.595
2 7 5o1 .275 122. 5 71 - 6.4 g 3 0. 163 0.255 -0.670
?M 3c X .665 127. 155 -7.2.30 0 . 121 0.1 48 -0.03 3
2V 575 .15/ 150. 8 -H,677 0. 08? 0.140 -1.226
50 5HO .GcO 1 ^3. 7(,7 . 333 0. 048 0.085 -1.4c3
51 5a' .625 155. 745 -0,811 0. 022 0.040 -1.660
52 565 .775 156. < uO -Id. nil 0. 005 '1.010 -1.7X2
5 5 566 .492 157. 2 81 -10.147 9 . 000 0.0"0 -1.X24

p 57 n u PAM TkFX4A DATE : 2^/09/77
" MTS i.rTR 10 PAGE: 6

niSTRtHUTlON (IF fdscFs:

nonv pnwrF n i s T;< i wui i nu AND M F r) r IJ T LF^^TOS
X - L 0 C A L Y-1 OCA L Z-LOCAL ELFUFnt OISTANCb

K G / r- K f, / f' K G / METEP MFTLF
1 n.ooob (1 0 - <1,4 c 7 F 02 O.OlJl'b CO ..Ol'IOb on ".joui'F '10
2-0.157t- 02 -0.9425 i'2 -0.540b-11 ') .2457F "1 1). Xl V"E oO
5-0.250b- 01 -n.v^p'E i;2 - 0./8 4 F- 0 H .40652 ')1 0.5276 4 01
4-0.114b UO -).4&7E 02 - 0.74 6 K - C 6 0 .5755b 'll 4./371F 01
5-0.547b CO -0.942b 0 2 -D.220K-94 0 . 75 71 b 01 0.1519b c,;
6 - 0 . 1 31 00 -0.942b U2 -0.288b-C^ 1' .OOO'^F '11 9.2 04X4 0.2
7-0.160b 01 -0.4&pb 0 2 -0.255b-o2 0 .1045b 92 0.29 4''b 0 2
«-0.2h1b Cl -".942b 02 - U . 1 j 4 b - (J 1 ■} .1229b 9 2 0.401 54 '.'2
9-0.440b 01 - 0.6 4 1 b 02 -0.5',7b-cl Ij .1502b 02 9.52424 02

1 0-U . GcO t 01 -O.V^OE 02 -0.21 Ob 0 0 0 .1556b 92 9.66544 0?
11 - 0 . 4 4 E 01 -0.952b 0 2 -0.0.2 61 OO .1720b "2 " . nlV'F 1,2
12-0.127b 02 -0.9 54b 0 2 -0.1"94 cl . 1 8H4F 02 9.99194 u2
15-0.165b n?. -O.v/Ay 0 2 -0.4691 cl V .204X4 9 2 9 . 1 1 7' 4 9 5
14-0.207b f, ? - T . V 1 0 ^ 0 2 -0.116b C2 0 .2211b 0 2 9.1 5 o 4 F 0 5
15-0.2521 0? -O.vnKE 0 2 -0.^46F 0“' 0 . 2 575), 02 9.16054 95
16-0.iOOE 1}^ -6.Xv3b 02 -O.oj^b-gl 0 .25 59b 1)2 0.1843F \J'S
17-U.?4XF 1)2 -■l.K76h 0 2 (1.4541 O') 0 . 2 5 59 b '12 '1.2 0'/7F 'j5
1rt-0.5t ('2 - 0 , H s 6 F 0 2 0.216) 01 0 .2575b '1? 9.2551 F 0 5
1V-U.43^t 02 -0.xIXb 02 0.5551 Cl 0 .2211b 02 9.256X4 u5
? 0 - 0.4f. 5 L 0 2 -0.521'. '0 2 0.109b "2 u .2045b ')2 '1 . 4 .5'.|9 E 0 5
?1-0.4xKb U 2 - n . 3 f) 6 t 0 2 0.1605 C2 . 1 2X4F. 9? 9.50146 95
22-0.506b 02 -l.7"bb 0 2 0.251b (.2 ',1 .17204 "2 9.52024 05
25-6.517b 0 2 -0,7 ' 7 b 0 2 0.510C c 2 .1336F "2 9.JX74E i'5
24-0.525b fi2 -0./x4b "2 0.5,114 f;2 0 .1562b •>? 0.5559b 05
75-0.522b 0 2 -0./X4F 0 2 0.4.21b o2 (.1 .1229b "2 9.366' b 95
?6-U.blAk C2 -0.7;.,,Mb .J2 (' . 52"b C2 11 .1065b "2 9.376,4 i<5
27-0.5o5t 02 -0.7"5l "2 0.614b C 2 .0 380 (. "1 ''.3X9' F i;5
,?n-. 4411 U 2 - 0,2,114 b 0 2 0.797b 0? . /X/1 P "1 9.59X6) 0 5
? V - 0 . ^ 76 l 02 - . 1 . ." 1 5 ( o2 0.765) 02 p .5755b 91 ".4O6/F 05
3 0 -U. 46 01 (2 -O.H/,/" ('2 0 . bo5) (2 0 . 40,6 5b 01 0.4120b 0 ?
■; 1 - 0.4 4 51 02 -0.2. ,>9b "2 0/'I 6) .. 2 11 . L 4 5 7 ) 9 1 '1.41 alb 95
^^-0.4 54e 0 2 -0.655b 02 0 . '' 46) c 2 0 ."190b uO 3.4lc'.!if, IJ i

5 - 0.4 3 6 t o2 -".,2-.St 0 2 ('.''56b ,2 (1 . OO'lOt 'll) 9.41 "54 C5



program :TPEX4A DATE: 29/09/77
ii'ji rs :r ETRir DAGb : 7

THE IWTFKNAL FORCES I M Tilt PIPE

AXIAL ^HFAPY SHKARZ MOMbNTY MUMENTZ TOTAL stress
KG KG KG-M KG-M K6/M2

1-O.OHSE 05-U.577E 04-0.2^7F 02 0.0 OOF 01) U.OOUF 00 -0.7075 07
?-n.9«5E 0 5 - U . 5 1 9 E 04-0.2‘-'7F 02-0.24tf 02 U.42MF 0 4 -0.7noE 07
^-0.9«5E 05-0.467b U4-0.2U7F 02-0.1025 03 0.188E 05 -0.7535 07
4-0.O85E 05-0.4618 04-1).2"6f 02-0.2435 03 0.3645 05 -0.8355 07
5-0.<Jfi5E 05-0.4166 04-U.300F 02-U.4645 Oi 0.6155 0 5 -O.^G4E 07
6-0.985E 05-0.364E 04-0.305F 02-O . 7Hf.F 03 0.6035 G5 -0.1145 OH
7-0.984F 05-0.306E 04-0.315F 02-U.123E 04 0.171 E 06 -0.1355 08
8-0.982E 05-0.253E 04-0.332E 02-0.183F 04 0.1515 06 -0.1585 OH
9-0.977F 05-O.2OOE 04-o.356t 02-O.261F 04 0.1785 06 -0.180b 08
10-0.«70E 05-0.151E 04-U.386F 02-0.361E 04 0.2035 06 -0.19Qb 08
11-0.957E 0 5 - 0.1 0 8 E 04-0.3''4F 02-0.4805 04 0.223F 06 -0.215b 08
12-0.O37E 05-0./08E 03-U.281F OZ-U.CO^F 04 0.2385 06 -0.227E 08
13-O.909E 05-0.362E 03 0.194F 02-U.7005 04 0.Z4QF 06 -0.235b 08
14-0.869E 05-0.127E 03 O.160F 0 5-0.6065 04 0.2545 06 -0.2366 08
15-0.816E 05 0.O58E 02 0.374F 03-0.1165 04 0.2545 06 -0.23X6 OH
16-0.746E 05 0.261E 03 0.496F 03 0.ii15E 04 0.2505 06 -0.233F 08
17-0.662E 05 0.477E 03 0.545F 03 0.204E 05 0.2405 06 -0.2246 08
1H-0.5o3E 05 0.O73E 03 0.608E 03 0.343E 05 0.2255 06 -0.2126 08
19-0.4606 05 0.9036 03 0.6575 03 0.4885 05 0.2078 06 -0.1676 08
20-0.557E 05 0.120E 04 0.6635 03 0.031E 05 0.1835 06 -0.1806 08
21-0.255E 05 0.161E 04 0.602E 03 0.7565 05 0.155E 06 -0.1616 08
22-0.156E 05 0.216E 04 0.45HE 03 0.8565 OS 0 . 1 1 6 F 06 -0.1365 08
25-0.6405 04 U.288E 04 0.219F 03 0.6185 ns 0.7545 05 -0.1156 08
24 0.206E 04 0.5806 04-0.104F 03 0.6275 05 0.232F 05 -0.6656 07
25 0.9o9E 04 0.4O4F 04-0.473F 03 0.887F 05- 0.5785 05 -0 50E 07
26 0.163E 05 0.626E 04-0.867F 03 0.8025 05- 0.1075 06 0.1256 08
27 0.219E 05 0.773E 04-0.13uE 04 0.6815 05- 0.1815 0 6 0.1756 08
2A 0,2656 05 0.«?6F 0 4 - 0.1 6 0 E 04 0.534F 05- 0.2585 06 0.2346 OH
29 0.500E 05 0.1O8E 05-0.240F 04 0.377F 05- 0.3325 06 0.2946 08
30 0.326E 05 0.121E 05-0.285E 04 0.2265 05- 0.367F 06 0.3486 08
31 0.343E 05 0.132E 05-O.321E 04 0.107F OS- 0.44NC 06 0.392E 0 8
32 0.3538 05 0.138E 05-0.343F 04 U.278F 04- U.482F 06 0.420b 08
33 0.357E 05 0.141E 05-0.3515 04 O.OOOE 00- 0.4635 06 n.430b 08

PROGRAM :TP6X4A DATE : 29/09/77
UNITS :MFTRIC PAGE: 8

THE summary of THF results:

PIPE LENOtH = 416.34 meter
LFNTGH UN S7FRM = 1 ( 2.22 meter
SLOPE AT DEPAKTURF = 27.62 BEOREES
DEPTH AT PFPArTU'RF = 137.29 meter
BARGE OFF-SET (Z) = -23.28 METER
BARGE BEARING = 7.68 OF (.REFS
MAXIMUM STRESS = 0.430F OK KG/M2
BARGE ORIGIN (X) = 483.52 MFTER

*THF END *

PROGRAM DEVELOPED RY I.KONUK

DFPAWTMtNT UF MATHEMATICS
SOUTHAMPTON university

FF8FOARY 16 77 Ft.GLAHO.




