SSSU 130
ISSN 0140 3818

An Evaulation of the RANS Method for the Prediction
of Steady Ship Rudder Performance Compared to
Wind Tunnel Measurements
Arthur Stuck, Stephen Turnock, Neil Bressloff
Ship Science Report No 130

January 2004



SSSU 130
ISSN 0140 3818

University
of Southampton

School of
Engineering Sciences

Ship Science

An Evaulation of the RANS Method for the Prediction
of Steady Ship Rudder Performance Compared to
Wind Tunnel Measurements
Arthur Stuck, Stephen Turneck, Neil Bressloff
Ship Science Report No 130

January 2004




Abstract

Using Reymnolds-Averaged Navier-Stokes (RANS) methods detailed investigations are carried
out, focussing on different cases of steady rudder flow. During the introducing two-dimensional
cases the hybrid meshing scheme is optimized for rudder use, and grid parameters are stud-
ied. Also the effect of solver settings and the capabilities of implemented turbulence models
are investigated. Two different verification strategies are applied and compared - eventually
concentrating on parametric grid independence studies, rather than using global systematic grid
refinement.

The three-dimensional investigation concentrates on the all-movable square tipped NACA0020
rudder tested within the large wind tunnel of the University of Southampton (3.5 - 2.5m). This
case is modeled in free stream as well as within the wind tunnel, using the Spalart-Allmaras and
the k-¢ RNG turbulence models. The numerical prediction of the tunne! blocking effect is inves-
tigated. In particular, the tip vortex flow with its effect on the rudder performance is studied
and how this is influenced by the numerical dicretization. Here the span-wise distribution of the
normal force coefficient is an informative tool. The three-dimensional grids consist of between
2-10% to 4.5 10% cells.

Verification studies are carried out and results are validated against experimental data as
far as available. Generally, the lift prediction turned out to show closer agreement with experi-
mental benchmark (within 10%) than the drag, which used to deviate more (within 30%). The
prediction of the tip vortex shows the expected characteristics; The tip peak in the span-wise
normal force distribution is found to be captured well.
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Nomenclature

Nbndr
Nehord
Thwake

Qsmmaggpg"e?;gsg

transformation matrix (from global to rudder fixed coordinate system)
rudder aspect ratio

drag coefficient (3D or 2D)

induced drag coefficient (only 3D)

frictional drag coefficient (3D or 2D)

viscous pressure drag coefficient (3D or 2D)

correction factor for grid extrapolation

lift coefficient (3D or 2D)

rudder chord length

normal force coefficient (2D)

pressure coefficient

experimental data

drag foree (3D or 2D)

induced drag force (3D)

frictional drag force (3D or 2D)

viscous pressure drag force (3D or 2D)

production of turbulent viscosity (Spalart-Allmaras turbulence model)
acceleration vector of free fall

kinetic energy (k-¢ turbulence model)

lift force (3D or 2D)

Mach number

normal force {2D)

number of nodes perpendicular to rudder surface within boundary mesh
chord-wise number of nodes

number of nodes along the wake extension of boundary mesh
estimated order of approximations

production of turbulence (k-¢ turbulence model)

theoretical order of approximations

pressure

reference pressure

Reynolds number

ratio of changes in grid dependent solutions

global grid refinement factor

computational results (simulation)

rudder span

time

uncertainty value

estimated grid dependent uncertainty
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Uso free stream velocity

o velocity components

Uy, Usp velocity components (tangential and normal)
Uy velocity within boundary layer

ut non-dimensional velocity within boundary layer
(L turbulent stress tensor

v velocity vector

g inlet velocity

T global coordinates

X0 location vector of rudder pivot

(z,¥,2) global coordinate system (in CFD models)
(',3/,2') rudder fixed coordinate system

Y. destruction of turbulent viscosity (Spalart-Allmaras turbulence model)
Yp wall distance within boundary layer

yt non-dimensional wall distance within boundary layer
Zfloor z-coordinate of tunnel floor

Zhis Zlo z-bounds of sectional rudder slices

Zroof z-coordinate of wind tunnel roof

Ztip z-coordinate of rudder tip

a angle of incidence

Ay R under-relaxation factor

r circulation

AX grid line distance

& error value

dpi boundary layer thickness

Y1) estimated grid dependent error

drE,G1 first order grid dependent error (Richardson extrapolation)
€ destruction of kinetic energy (k-€ turbulence model)
€ij difference between solution i and j

Cr x-vorticity

i molecular viscosity

J7m turbulent viscosity (eddy viscosity)

v kinematic viscosity

o

turbulent kinematic viscosity {Spalart-Allmaras turbulence model)
P fluid density

Tij viscous tension tensor
T wall friction
ép, pnp  scalar variable (own or neighbouring cell)

iv



Glossary

CFD
CPU
ITTC
NACA
quad
RANS
RNG
SIMPLE
SMR
tri

2D

3D

computational fluid dynamics

central processing unit

International Towing Tank Conference

National Advisory Committee for Aeronautics
quadrilateral

Reynolds Averaged Navier Stokes

Renormalization Group (k-¢ turbulence model variant)
Semi-Implicit Method for Pressure-Linked Equations
scaled mass residuals

triangular

two-dimensional

three-dimensional



Chapter 1

Introduction

1.1 Background

Airfoil and rudder flows are a traditionally well examined application of computational fluid
dynamics (CFD) - so a lot of different approaches have been applied in order to predict these
flows. Also many experiments have been conducted so that a large pool of experimental data is
available to validate the computational results.

Several experimental series have been carried out by Molland and Turnock, testing a wall
mounted NACA0020 spade rudder in the large 3.5m - 2.5m wind tunnel of the University of
Southampton [8}. This arrangement refers to rudders which are typically used for large com-
mercial vessels.

1.2 Goal and Procedure

The NACA0020 spade rudder, tested within the wind tunnel of the University of Southampton, is
the eventual 3D flow case selected for the RANS investigation. To obtain reliable solutions rather
than random results it is important to understand the influence of decisive CFD parameters.
Hence two-dimensional investigations are carried out in advance, focussing on two NACA0012
cases taken from literature. Then, preparing the final three-dimensional computations, 2D slices
of the considered 3D setup are investigated.

1.3 Rudder Performance

The steering moment, induced by the rudder force, traditionally provides the ability to control
the movements of a vessel. Hence it is one of the most important contributions to ship manoeu-
vering. In reality the rudder interacts with propeller, hull and possibly other hydrodynamically
influential parts — altogether forming a complex interaction system, which describes the manoeu-
vering characteristics of a vessel. In this work only the rudder is investigated, operating under
so-called free stream conditions without any influences from hull or propulsor. As experimental
studies cannot reproduce ideal free stream conditions the blocking effects, resulting from the
limited wind tunnel extensions, are considered here. '

Rudder performance is mainly valued on the base of the integral forces. The resulting vector
force acts at the centre of pressure. It is traditionally subdivided in two scalar components:
the drag, acting in free flow direction, and the lift, acting perpendicular to it. The following
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non-dimensional coefficients are standardized according to ITTC:

D
Ca= iz (11)
L
_ 1.

using the fluid density p, the projected rudder area Ag =s-¢ and the angle of incidence a. The
two-dimensional coefficients are described by lower case letters, made non-dimensional by the
rudder chord length ¢

d

4= UL (1.3)
I

@ UL (1-4)

The lift is mainly pressure dominated. The contribution originating from viscous skin friction
is mostly negligible.

The normal force is defined perpendicular to the rudder chord. Here only the 2D coefficient
is used — either in real two-dimensional cases or for thin sectional slices of the 3D spade rudder.

The normal force coefficient is n

o = 3eUE,

The drag force can be subdivided into three components: the frictional drag, the viscous
pressure drag, and the induced drag. The frictional drag results from the shear force acting
on the rudder surface. It is mainly a phenomenon of the diffusive boundary layer flow — its
non-dimensional coefficients are

(L5)

_ Dy
Gty = 15 Ao TE (1.6)
dr
= U, (1.7)

The viscous pressure drag results from boundary layer effects and viscous losses in the flow.
In contrast to ideal inviscid fluids, the pressure is unable to recover on the rear part of the
rudder resulting in pressure differences between leading and trailing edge regions. This effect is
growing at rising angles of incidence, finally ending up in extended detachments. Coeflicients
are defined as

Dy
4 - 1.8
dpv
4 e % .

The induced drag is restricted to three-dimensional cases and results from a limited span-
wise rudder extension. According to classical theory of the lifting line the infinite vortex leaves
the rudder at its free tip, and is washed downstream with the flow. This free vortex induces an
additional drag component, which also exists in ideal inviscid flow. Its non-dimensional form is

Dy

Cay = m

(1.10)



Chapter 2

Applied CFD Methods

2.1 Governing Equations

Fluid flow in general is described by the Navier-Stokes equations, consisting of the equations
of conservation for mass and momentum. According to Peric and Ferzinger [4] the differential
form for the conservation of momentum is

DV 1 8 [ (0w , Ous\]
Z g VUp+— — 4 21
Dt ¢ p p+6m,— v Bscj_'-aa:i @1
using the transport theorem for the substantive derivative:
D 8
— ==+ (V- 2.2
S =G (V) 22)
The scalar conservation of mass is described by
3p a‘uj
ol i atieer A | 2.
ot o 23)

The velocity vector V consists of the components 1u;, p represents the pressure and p the density
of the fluid. The kinematic viscosity is v, and g describes the acceleration vector of gravity. In
this work the flow is assumed to be steady and incompressible; The density is set constant —
therefore all time-dependent derivatives in the equations for momentum and continuity can be
neglected.

These equations form a set of coupled nonlinear vector equations which cannot be solved
analytically for practical applications — only a few solutions are known for academic problems.
For that reason numerical approaches are used as described in the following sections.

2.2 RANS Equations

By averaging the Navier-Stokes equations the instantaneous values are subdivided into a mean
and a fluctuating component: These are the Reynolds Averaged Navier-Stokes (RANS) equations
which are in their differential form for incompressible flow:

d (pus)
_ 4
B 0 (2.4)
(0p:) { \ ap |, 07y
. __m Ty 2.
o Tog PR TS T T By 25)
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They contain the viscous tensions

- _ { o; @_g_\
Ty =k 62:,-"_8:1:,-

(2.6)

In addition to the laminar stress these averaged equations contain turbulent stresses, described
by the turbulent stress tensor u;u;.. Thus, six new unknown variables are introduced, making
turbulence modeling necessary as they cannot be solved directly.

2.3 Turbulence Modeling

To solve the averaged Navier-Stokes equations the assumption of the eddy viscosity hypothesis
provides an additional relationship between the mean variables, some additional turbulence
parameters and the entries of the Reynolds tensor:

fu;  Ouj 2
_'u,';u; = Jit /6{1,‘3 —+ 3—3',‘::\ - gpéij k (27)

It contains the turbulent kinetic energy & = (usu;)/2. The eddy viscosity p: has a similar
effect to the diffusion of viscosity, but it is a feature of local turbulence, and assumes isentropic
turbulence. So the six entries of the Reynolds tensor are reduced to one scalar value p; — however,
further modeling is required to determine its value. For that reason zero, one and two equation
turbulence models are used. Here the one equation Spalart-Allmaras turbulence model and the
two-equation k-¢ models are applied as they are described in [1].

2.3.1 Standard k-¢ Turbulence Model

The standard k-¢ model is one of the most popular turbulence models. Based on the assumption
of the eddy viscosity, the additional turbulent viscosity is determined as

k2
R (2.8)

Two equations, one for the kinetic energy k, the other for its dissipation rate € have to be solved:

o, .8 B[ kN _m0k o o,
at (pk) + 6;::3; (pujk) - Ba:j Bscj (447 3223' + Pk ‘ué):r:k a.’Bk (29)

The second right-hand term of equation 2.9, describing the transport of k by fluctuation, has
already been modeled. Also the production term of k requires modeling:

(o | 0\ O

P = 2.10
k H 8:13_7' Bm; B:IZJ‘ ( )
The dissipation rate € can be obtained, solving the following transport equation:
0 dJ d Je € €?
o 2 (BN | P capt (2.11)

F P+ 3z, (wuje %

"~ 8z; o071 k
Cuy Cel, Ce2, Ok and T, are empirical coefficients defined within the solver. According to Date (3]
some of the major weaknesses of the k-¢ turbulence mode) for rudder and airfoil applications

are:
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e k¢ is known for over-predicting the turbulent kinetic energy, particulary in terms of bound-
ary layer flows in areas of stagnation, detachment and reattachment. In rudder and airfoil
application this affects the flow around leading and trailing edges.

o Flow separation is often under-predicted heavily by standard k-e. In terms of rudder flow
the prediction of viscous pressure drag cq,, and stall is often far from reality.

o If combined with wall functions (section 2.3.4), k-€ automatically inherits those weak-
nesses. Results are often made worse, particularly concerning stagnation, separation and
reattachment phenomena.

2.3.2 RNG k-¢ Turbulence Model

The RNG derivative of the standard k-¢ turbulence model includes additional statistical ap-
proaches to improve some of its weaknesses. Mainly small scale turbulence statistics are imple-
mented to modify the eddy viscosity hypothesis. The transport equations for k& and e contain
additional coefficients, as described in equation 2.12 and 2.13:

9 o .
5 Pk) + 3z, (pk) =
8 ( Ok\ _ o Ok L P o, O,

—— — 12
3.’L‘j ak'uamj (o4 317_1' * p‘a.’l:k 6:ch (2 )
d a , _ 8 [agp 9\ € €

- — ) — —— P = * - — . 1
at(pe) + 83;_? (puje 61‘,3 a,e amj + cel‘Pk k ce2p k (2 3)

Anyway, the RNG medification still suffers from the general assumptions of the eddy viscosity
hypothesis (equation 2.7) that it is based on.

2.3.3 Spalart-Allmaras Turbulence Model

Recently, the turbulence model proposed by Spalart and Allmaras has enjoyed a growing popu-
larity — particularly for turbulent airfoil applications. According to the solver documentation [1]
it calculates the eddy viscosity solving a modified transport equation for the turbulent kinematic
viscosity:

8 8,
E(PV) + 5;(9””1) =Gy +

. L\ 2
+ [—3% (ot o) 221+ Cune! - ]—Y., (214
G, is the production of turbulent viscosity, and Y, is its destruction occurring in the near-wall
region. o and ¢ are default constants defined within the solver. Rather than using equation 2.8
with the classical length scales, the turbulent viscosity is obtained by p: = p¥fu1 and a viscous
damping function f,y. Turbulent production and destruction are determined by applying further
modeling, based on the magnitude of vorticity.

Wall boundary conditions are simulated directly by calculating the wall shear stress from
equation 2.17 while the mesh is fine enough to resolve the laminar sub-layer. If this is not the
case wall functions are applied as described in section 2.3.4.
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2.3.4 Wall-functions

The no-slip wall boundary layer itself is multi-layered, consisting of a laminar sub-layer, a
viscous-turbulent layer and an outer layer dominated by turbulence. Resolving this complex
structure directly requires a very fine mesh and high computational resources. Instead, on the
base of experiments the following velocity profile is assumed close to the wall:

1
ut = - Iyt +C (2.15)

where typically x = 0.4 and C =5.5. The non-dimensional wall distance and wall shear stress
are given by equation 2.16 and 2.17, respectively.

gt = D [Tw (2.16)
v Vo

ut = 2 (2.17)
VTw/p
For 4+ > 11.63 the boundary layer is considered as turbulent, consequently equation 2.15 is
applied — however, it is recommended by Date [3] to keep the non-dimensional wall distance
between 30 < y* < 500. The finer the grid resolution within this interval, the better flow
gradients are resolved. Hence, he suggests to set the optimal y+ parameter close to the lower
bound of the proposed interval.
The assumptions made for the derivation of wall fumctions are not valid for stagnation and
separation points and in areas of detached flow — nevertheless they are applied here, making a
potentially major contribution to the modeling error.

2.4 Boundary Conditions

In order to solve the governing equations a complete description of the boundary conditions
of the solution domain is necessary. Those can be divided into Dirichlet and von Neumann
conditions. In the following descriptions are provided as far as they are of interest in this work.

Velocity Inlet

For the velocity inlet the velocity components ; and the turbulence variables k and ¢ or the
turbulent kinematic viscosity & are defined explicitly as Dirichlet conditions. To minimize their
disturbing influence on the flow field the inlet conditions are positioned distant from the rudder
itself. The inlet definition of the turbulence variables is less influential; Assuming free stream
inlets, those are defined by the small non-negative value 10~

No-slip Wall

The no-slip wall boundary condition assumes a zero wall-tangential velocity uz =0, additionally
setting the normal gradient of the normal velocity to zero:

() _
on wall

The applied turbulence models define the flow to be fully turbulent. An economic approach to

simulate the multi-layered no-slip walls are wall functions, described in section 2.3.4. Alterna-

tively it is possible to resolve these boundary layers directly by a non-dimensional wall distance
+

yt <1
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Slip Wall

The slip wall boundary condition only regards the convective displacement effect of a wall,
neglecting the wall friction. This boundary condition is realized, defining a zero shear stress on
the concerned wall. Thus, there are no viscous boundary layers, and there is no need for high
grid resolutions next to the walls.

Pressure Outlet

For the pressure outlet boundary condition the pressure itself is defined explicitly (Dirichlet
condition), while the other variables are described by a gradient (von Neumann conditions).
The pressure value is set relative to the operating pressure — in this case a zero difference.
Having defined the pressure, mass conservation is provided by the velocity-pressure correction.

2.5 Obtaining a Solution

In this work computations are carried out using the commercial flow solver Filuent ver. 6.0.20.
The following sections describe some of the crucial features of the numerical solution process,
referring to the solver documentation (11

2.5.1 Remarks on Discretization and Linearization

A finite volume approach is chosen to discretize the governing equations into algebraic ones.
This system of equations has to be linearized to be solved numerically. Throughout this work
only second order schemes are applied for the governing equations. According to Peric and
Ferzinger [4] they represent a good compromise between numerical effort and precision as long
as convergence can be obtained on the used grid.

2.5.2 Iteration Process
Elementary Solver Settings

Depending on the case the 2D or 3D solver is selected in Fluent. As only steady cases are
investigated all time dependent derivatives in the governing equations become zero. The segre-
gated solver is chosen, solving the equations sequentially. The solution procedure is based on
the following scheme:

1. Fluid properties are updated, based on the current solution.

2. The u;, Uy, and «, momentum equations are each solved in turmn using current values for
pressure and face mass fluxes, in order to update the velocity field.

3. Since the velocities obtained in Step 2 may not satisfy the continuity equation locally, a
“Poisson-type” equation for the pressure correction is derived from the continuity equation
and the linearized momentum equations. This pressure correction equation is then solved
to obtain the mecessary corrections to the pressure and velocity fields and the face mass
fluxes such that continuity is satisfied.

4. Transport-equations for scalar turbulence variables are solved using the previously updated
values of the other variables.

5. A check for convergence of the equation set is made.
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Throughout this work the SIMPLE pressure-velocity correction is applied. The cycle is repeated
until convergence is reached.

Scaled Residuals

The applied convergence criterion is based on the scaled mass residuals (SMR):

R = Y eetis 2| Sonh GnbPub + & — apdp|
> cens p lapdp|

¢ describes the mass flow rate for each cell and apny are the centre or neighbour coefficients.
Scaling is taken care of by the denominator — in case of the mass residual the largest absolute
value of the mass residual during the first five iterations is chosen. The solver documentation [1]
demands residuals to drop for at least three orders of magnitude — here, according to El Moc-
tar [7}, they are desired to drop for five orders to minimize the convergence error. For some of
the more complicated 3D cases also four orders are accepted. But as this is just an automatic
stopping criterion depending on the quality of the initial guess (which it is scaled by), conver-
gence is checked additionally for every single case on the base of force and residual convergence
behaviour.

(2.18)

Under-relaxation

The computed change A¢ from iteration to iteration of the flow variable is reduced by the
under-relaxation factor apg:
¢ = Poia + aUR AP (2.19)

By under-relaxation the iteration process can often be stabilized for the trade-off of a higher
computing time. By default @yRmess = AWRmom = 0.3 is used for the equations of mass and
momentum. As only second order schemes are applied they are reduced further in case of poor
convergence.

Multi-grid Methods

In order to reduce the required number of iterations and CPU time multi-grid methods are
used. Computations are carried out on different grid resolution levels. The method is based
upon the idea that the global (low-frequency) error, existing on a fine mesh, can be represented
on a coarse mesh — there it again becomes accessible as local (high-frequency) error and can be
corrected by the solver. The default coarsening and refinement cycles are applied: V for the
pressure and Flexible for the momentum equations. In Flerible the convergence behaviour on
the current grid level is recognized by an implemented logic that controls the further multi-grid
cycles. So it is determined flexibly when and how often each level is visited, whereas in the V
and W cycles the traversal pattern is defined explicitly.

Parallel Computation

As particularly the 3D cases require huge computational resources, the calculations are carried
out in parallel on the Iridis Beowulf cluster of the University of Southampton. It consists of
404 processors, has 192Gb of memory and 8.5Tb of loca) disk storage — in practice, resources
are limited as many users are working simnultaneously. For parallel computation the solution
domain has to be divided into several subdomains. This is taken care of by an automatic
partitioning algorithm, implemented in Fluent: The Bisect scheme is applied recursively to the
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parent domain and then to the child subdomains — every time splitting one domain into two.
Also uneven numbers of subdomains can be created if an uneven number of partitions is split
one more time than the rest. Due to a lack of time this work does not contain any parallelization
studies focussing on parallel efficiencies.

2.6 Verification and Validation Procedure

Estimating the quality of a numerical solution requires determination of the uncertainties of the
results, generally called verification study. Then, during the following validation process, results
are compared against any kind of benchmark, mostly experimental data.

In this work two different procedures are applied: Firstly, the verification method proposed
by Stern [10] is introduced, requiring systematical grid refinement in all dimensions. Secondly,
grid-independence studies focussing on single grid parameters are described. The latter approach
can be used more easily on unstructured hybrid grids — the first method is only applicable under
certain restrictions as described below.

2.6.1 Stern’s Methodology
Errors and Uncertainties

In order to estimate accuracy and quantify deviations a comparison between numerical results
and experimental data is necessary. As different sources of errors are involved a direct comparison
is not possible — a method of verification and validation is necessary to figure out and identify
the different types of errors. Both, experimental data D and computational results S suffer from
errors 8, which are statistically encapsuled by the uncertainty interval U/ in 95 cases out of
100. Generally, components of uncertainties are added by the ||Z||2 norm:

U2, =U}4+ U+ +U;
Error components, which can be estimated by sign and magnitude, simply are to be added:
éwt=61 +62+"'+5~n

Stern suggests dividing the simulation error 85 and uncertainty Ug into a modeling part dgus
(Uspr) and a numerical part dsn (Usn). The first consists of insufficiencies originating from
the mathematical description of the physical flow, simplified implementation and turbulence
modeling. The second originates from discretization, interpolation, rounding off and incomplete
iteration. The decisive idea is to declare the numerical error as grid dependent (so that it can be
accessed by grid convergence studies), whereas the modeling error is treated as grid independent.
Ideally, having estimated the mumerical error, the modeling error can be obtained by comparing
the experimental benchmark, the numerical solution and its grid dependent numerical error.
Stern’s procedure assumes some essential preconditions to determine the modeling error — some
are mentioned below:

¢ Reliable experimental data must be available, ideally providing own errors and uncertain-
ties.

e Only in case of asymptotic grid convergence the method can be carried out efficiently
based on three grids.
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o Here the iterative error, which is part of the numeric error, is neglected as it is demanded
that the SMR has dropped by at least four orders of magnitude. This is necessary since
the iterative error does not converge over grid refinement, though it is declared to be part
of the numerical error.

Grid Extrapolation

As described above, a grid convergence study is required to extrapolate a grid independent
solution. At least three grids are necessary to estimate the convergence behaviour. Those have
to be refined for every coordinate direction, each time using the refinement factor

ik _ AX4
¢  AXp
AX 4 and AXp are the grid line distances for the base mesh and the refined one, respectively.
Grid convergence is estimated on the base of the ratio of changes in the solution:
T )
g2 Sz — 52
)23 describes the solutions on the fine (1), medium (2) and coarse (3) grid. The following
cases can be subdivided:

(2.20)

(2.21)

¢ Converging condition: 0 < Rg <1
e Oscillatory condition: Rg <0
o Diverging condition: 1 < Rg

According to the Richardson extrapolation described by Peric and Ferzinger [4] the first order
error of the fine grid
_ Em
drEC1 = ———Tga 1 (2.22)
describes the difference between the computation at high resolution and the grid independent
solution, neglecting all terms of higher order. r¢ is the grid refinement factor. The estimated
order of accuracy is defined as

In(e31 /€21)
Pry=— =7 2.23
e} nro (2.23)
A correction factor
Ce=TE =1 (2.24)
G = .
Tg“‘ -1

is introduced, using Py, for the theoretical order of the applied approximations. For Cg = 1 the
obtained solutions are within asymptotic range — in this case sign and magnitude of the error

dc1 = Cgdre1 (2.25)

and the uncertainty
Ua1 = |(1 - Cg) dre 61 (2.26)

can be estimated. For Cg > 1 equation 2.22 under-predicts the error, C¢ < 1 indicates its over-
prediction. If C¢ turns out to be far from one, a lack of confidence in equation 2.24 and 2.25 is
justified. Then only the uncertainty should by calculated from

Uc1 = |Cabreci|+ (1 — Ca) dreail (2.27)
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In practice, this procedure can only predict a grid independent solution in case of asymptotic grid
convergence. For oscillatory behaviour more results are necessary to resolve the grid dependent
oscillations and proof possible oscillatory convergence. This requires enormons grid generation
efforts, and eventually it is not clear if the plotted oscillations can be extrapolated reliably to
an grid independent solution.

2.6.2 Parametric Grid Independence Studies

An alternative to the procedure proposed by Stern are grid-independence studies, focussing on
single grid parameters. This approach is more flexible, especially, when it comes to complex grid
configurations. With respect to unstructured hybrid grids it is expected to be more practicable
and easier to apply. Furthermore, it does not suffer from any kind of restrictions, as those
necessary to apply Stern’s procedure.

The variation of single grid parameters is carried out in order to find a parameter indepen-
dent solution. In contrast to Stern’s procedure, here no grid extrapolation is carried out. The
procedure is rather regarded as a way of efficient grid optimization. Stern’s systematic refine-
ment approach often worsens the grid in certain areas where the global refinement factors are
unsuitable. By parametric studies the mesh can be accustomed flexibly, addressing the right
parameters. So it is possible to generate and optimize a mesh, avoiding useless wastage of cells.

2.7 Numerical Diffusion

Additionally to the physical diffusion the computation is prone to the so-called numerical diffu-
sion, manifesting by an increase of diffusive transport in the Navier-Stokes equations. Numerical
diffusion is caused by the finite approximations used for discretization of the Navier-Stokes equa-
tions. Especially low order schemes like first order upwind differences amplify this effect. It is
also increased by coarse grid resolutions — so areas of high gradients need appropriately refined
meshes.

The over-prediction of diffusive transport results in smeared flow fields of smoothed variable
distributions and flattened gradients. According to El Moctar [7], in case of airfoil and rudder
applications, the lift tends to be under-predicted by rising numerical diffusion. The drag, which
usually is one order of magnitude smaller, is affected strongly in most cases: Its viscous pressure
drag component ¢g,, is known to suffer from heavy over-prediction. The frictional drag cq,
normally is under-predicted at an increasing numerical diffusion.

2.8 Remarks on Grid Generation and Modeling

"The hybrid grids are generated in Cambit ver. 2.0.4. In 2D the outer mesh consists of either
triangles or unstructured quadrilaterals, the inner boundary mesh uses only quadrilateral cells
to resolve the boundary layer flow. The 3D grids are generated by the so-called Cooper tool.
This extrudes the 2D base grids into the third dimension, defining the 3D node distribution by
meshing the volume edges.

All rudder and airfoil cases work under steady state conditions and are regarded as incom-
pressible at Ma < 0.3. They are set up according to the Reynolds number provided by the
experimental cases. The 3D spade rudder (NACAQ020 at Re =8.0- 10°) is modeled s = 1.0m
in span and ¢ == 0.667m in chord. This refers to the original dimensions of the experimental
case. On behalf of comparability all cases are scaled to the same chord length. With the default
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fluid properties p = 1.225kg/m®, p = 1.4607kg/ms and v = /p the free stream velocity is

determined as
Re-v
vy =

: (2.28)

The rudder geometry is defined by a curve following the points of the analytic NACA thickness
distribution. The trailing edge is modeled as a sharp edge.

In the free stream cases the coordinate system {z, 3, z) is defined on the trailing edge with the
x-axis pointing downstream in the direction of the chord (figure B.11(a)). For the tunnel cases
the rudder is turned within the solution domain around the pivot at 0.3¢ from the leading edge.
The origin is defined on the point of the trailing edge at a = 0°, the x-axis pointing downstream
along the tunnel symmetry line. The {x,y, z) coordinate system is independent from the actual
angle of incidence, while the (z',3', z) system is rudder fixed (figure B.11(b)). The z-axis points
in span-wise direction towards the free tip, assuming the root of the rudder as the z = 0 plane.



Chapter 3

Two-dimensional Rudder Flows

For the initial investigations three flow cases of 2D NACA sections are selected from litera-
ture: Firstly, the NACA0012 at Re = 7.6 - 10° which has been investigated experimentally
by Michos [5]. This case is chosen as it provides 2D experimental data at a similar Reynolds
mumber to the 3D spade rudder, which is concentrated on later. Secondly, the NACAO0012 at
Re = 6.0 - 108 is selected from Abbott and v. Doenhoff [2] as it is one of the most reliable
and accepted two-dimensional cases in literature. Finally, a 2D slice of the 3D spade rudder
(NACA0020, Re = 8.0 - 10°%) is investigated in a brief parametric study: It focusses on single
grid parameters to prepare the following 3D cases which are based on this 2D mesh.

3.1 NACAO0012, Re =76-10°

At the beginning of the two-dimensional analysis 1t has been decided to investigate the capa-
bilities of the hybrid grids created in Gambit. A grid extrapolation is carried out following
Stern’s procedure (section 2.6.1). These convergence studies are normally conducted on struc-
tured grids, using systematic all-dimensional refinement. However, the extrapolation is applied
to hybrid grids here, under certain restrictions as described below. These studies are based on
the free stream NACAQ012 at Re = 7.6 - 10°, which has been experimentally investigated by
Michos [5]. The Spalart-Allmaras turbulence model is chosen due to its special capabilities of
resolving the boundary layers directly, without wall functions. Grid convergence studies are
carried out for the angles of incidence a = 0° and a = 10°.

3.1.1 Grid Generation and Boundaries

In a hybrid grid topology an *inner” C-grid of quadrilaterals enwraps the rudder, while the
" guter” mesh consists of unstructured triangles. In Gambit the boundary layer tool allows to
create a boundary mesh within an existing block topology. No extra block definition is necessary
in advance. The "inner” mesh is defined by the chord-wise node distribution, the number of
nodes perpendicular to the surface, a first spacing next to the wall and an expansion ratio.

A grid convergence study is carried out for this case, refining the mesh successively by
the global refinement factor /2 (section 2.6.1). Strictly speaking, this grid extrapolation is only
declared for structured grids which are to be refined systematically in every coordinate direction.
Here this procedure is applied to hybrid grids. It is directly applicable to the ”inner” boundary
layer mesh (C-grid) - the outer mesh of triangles has to be adjusted by the Size Function tool,
which is implemented in Gambit: It allows the definition of a first spacing and an expansion
ratio going out from any source geometry it is defined on. So the cell size can be controlled

13
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reasonably, whereas aspect ratio, cell alignment and the exact node positions are up to the
automatic meshing tool. For that reason "gystematic” grid refinement can only be realized in a
restrictive way outside of the boundary layer mesh. Therefore, the enwraping C-grid has to be
set up wide enough to cover the area of highest flow gradients. The thickness of the boundary
mesh is declared at least three times the corresponding thickness of a flat plate boundary layer.
This is necessary as the flow around a rudder is much more complex — deviating further, the
higher the angle of incidence. According to Munson and Young [9], the local thickness of the
0.99v, boundary layer in a turbulent flat plate flow is estimated by

0.37z

épL = W (3.1)

The non-dimensional wall distance is set to g+ < 1 for the coarse grid, adapting this parame-
ter according to the grid refinement procedure. The use of wall functions would have dominated
the convergence studies as results would have been way too sensitive to changes in yt.

The block-topology is shown in figure B.1(a) and B.1(b). Different from the other 2D cases,
here two extra blocks are necessary to get additional contro] over the wake mesh. The automatic
extension of the boundary mesh into the wake does not work appropriately in this case: By
default it extends with the same first spacing and expansion ratio in x-direction which are chosen
perpendicular to the rudder surface. ‘This works quite well in the other cases using wall functions
_ here it has to be modified as, without wall functions, the grid resolution perpendicular to the
rudder surface is unsuitable for the wake extension in x-direction. Therefore the extra blocks
on either side of the wake allow an independent meshing of the boundary mesh extension.

Except from not using wall functions for the no-slip walls, the boundary conditions are the
same as for the NACA0012 at Re = 6.0~ 108 (section 3.2.1). Again the angle of incidence is
defined by the inlet boundary conditions, instead of turning the rudder within the domain.

3.1.2 Verification and Validation

The grid refinement study is carried out in accordance with the procedure recommended by Stern
(section 2.6.1). Convergence is estimated on the base of the integral rudder forces. Investigated
are the zero-lift case at @ = (° and the pressure dominated case at a = 10°. The three grids
are refined successively by rq = V2. Some grid parameters are mentioned in table 3.1. As the

Teelts | coarse | medium fine
Tohord 100 141 200
Thwake 20 28 40
Nondr 43 64 90
S~ bndr | 10,800 21,623 | 43,200
3 total | 44,012 65,266 | 102,888

Table 3.1: Grid refinement, NACA0012, Re = 7.6- 10°

geometry is symmetric only the values for one side of the rudder are mentioned — the summations
are given for the whole domain.

In the a = 0° case convergence is estimated on the base of drag prediction. For a = 10°
lift and drag predictions are taken into consideration (table 3.2). As the scaled residuals have
dropped between four to five orders of magnitude the numerical error is neglected. Forces tend
to converge earlier as observed during the calculations. According to Stern grid convergence is
reached for Rg < 1, which is obtained for both drag cases at o = 0° and « = 10°. Concerning
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coarse | medium | fine

a=0° | ¢cg-100 1.22 127 1.33
a=10°| eq- 100 2.53 268 2.72
C 1.013 1.019 | 0.996

Table 3.2: Rudder performance over grid refinement, NACA0012, Re = 7.6 - 10°

the lift prediction at o = 10° the convergence behaviour is oscillating. More grids would be
necessary to get a closer view of the oscillation and determine its bounds. This is regarded
as rather uneconomic, exceeding the limits of this work. However, it is possible to go through
the first steps of Stern’s procedure as described in section 2.6.1. The theoretical order of the
method is Py, = 2 as second order schemes are applied for all variables. Results are presented
in table 3.3.

a=0° a=10°

Cd Cd aQ
Rc 0.938 | 0.267 [ -3.492
Fo 0.184 | 3.814 -
Spe,cn - 100 | -0.937 | -1.454 -
Cq 0.066 | 2.750 -
Ue - 100 - | 0.065 -

Table 3.3: Grid extrapolation, NACA0012, Re =17.6- 10°

At this point the procedure hardly seems to be able to give reliable information about the
convergence process and the quality of the numerical solution. For a = 0° the correction factor
Cg = 0.066 turns out to be that far from one that it does not seem to make sense to calculate the
uncertainty with it. The lift prediction at o = 10° does not even converge over grid refinement.
For the drag the correction factor Cg = 975 is also far from one — anyway, it is decided to
continue the procedure and calculate an uncertainty value Ug for that case. But the very small
value hardly seems to be realistic, considering the level of confidence corresponding to Cg = 2.75.

In terms of lift prediction results are not that far from experimental benchmark (table 3.4),
which comes with an experimental uncertainty of 10%. Here it seems to be more comprehensive
to take a look at the development of the chord-wise pressure distribution, rather than judging
on the base of force convergence according to Stern’s procedure. Figure B.2 shows the chord-

a=10° a =10°

€d d €
CFD | 0.0133 | 0.0272 | 0.996
exp. 0.0080 | 0.0310 | 0.950
A %) 66.0 | -12.2 4.9

Table 3.4: Comparison against experimental benchmark, NACA0012, Re = 7.6 10%, fine mesh

wise pressure distribution for the different grid resolutions. Astonishingly, there are hardly any
differences around the pressure and suction peak. But it can be observed that the fine grid
slightly predicts less pressure along the pressure side and more along the suction side, resulting
in a smaller integral lift force. The highest local deviations between the individual resolutions
are observed around the trailing edge, where the finer grids predict a small suction peak. This
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has not been expected and does hardly seem to be realistic. Potentially the high aspect ratio of
the first cell layers on the rudder surface due to the fine boundary resolution (y+ < 1) causes
numerical problems. Cells of high aspect ratio tend to decouple the conservation equations,
falsifying the results, and causing convergence problems. Particularly if the flow is not one-
dimensional anymore, as assumed along boundary layers, cel] alignment relative to the direction
of the flow becomes more important. E.g. areas of detachment and stagnation do not have this
dominating direction of the boundary layer flow anymore, and calculations can become more
sensitive to cell aspect ratios in these areas.

3.1.3 Discussion of Praocedure

In this test case Stern’s grid extrapolation procedure is applied to hybrid grids — which does not
directly correspond to the refinement approach demanded by the theory. However, the area of
highest gradients around the rudder is systematically refinable and also the outer area can be
adjusted. But potentially the poor results of the grid extrapolations are also caused by other
reasons. At first, it seems to be rather crude to verify a convergence process cn the base of three
values. Easily a so-called convergence could be interpreted, though in reality the three values
are part of an oscillation process, or they are just a sort of random behaviour pretending to be
convergent. The other way round an oscillatory behaviour which is convergent could be titled
as divergent, if the wrong values were selected. So the higher the complexity of the case, and
the more single effects (which could be affected differently by the refinement) are superposed,
the harder it becomes to recognize convergence behaviour by this procedure. Individual effects,
e.g. the local suction peak at the trailing edge, can easily spoil the convergence, interpreted
on the base of the integral forces. Here the procedure which might have worked in case of a
flat plate flow does not. In terms of the integral lift, which is pressure dominated, it seems to
be more comprehensive to decide on the base of the pressure distribution whether or not grid
convergence is satisfactory.

In this work the global grid refinement procedure does not prove a proper tool as it already
fails in 2D application. Furthermore, the effort of resolving the boundary layers without wall
functions is immense and increases the grid-size heavily. It also worsens a lot of problems
connected to the hybrid meshing scheme: The high aspect ratio of cells in the boundary mesh
makes it harder to connect the outer mesh, particularly in the wake. With respect to the
following 3D investigation at a very similar Reynolds number this scheme brings even more
disadvantages: High aspect ratios of the boundary cells are expected to be even more critical in
3D application. The free tip would cause further difficulties as its boundary layer could hardly
be meshed without wall functions by the applied Cooper scheme (compare 3D meshing scheme,
section 4.2.2). A mixture of different boundary treatments would be necessary — then again cell
geometry around the tip would become rather inhomogeneous and the computation of the 3D
flow around the tip would suffer from high cell aspect ratios.

Due to these problems wall functions are applied in the following cases. Grids are optimized
focussing on individual parameters, rather than by one global grid refinement study. Here the
combination of meshing scheme and verification approach has turned out to be insufficient for
this special application.

3.2 NACAO0012, Re = 6.0- 10°

This case, experimentally investigated by Abbott and v. Doenhoff [2], is one of the most
comprehensive two-dimensional airfoil studies in literature. Experiments have been conducted at



CHAPTER 3. TWO-DIMENSIONAL RUDDER FLOWS 17

a relatively high Reynolds number, compared to the other cases, about one order of magnitude
higher. Hence, this case is less critical in terms of laminar-turbulent transition and provides
good conditions to estimate the quality of the numerical results.

3.2.1 Grid Generation and Boundaries

Initially, hybrid grids are generated using triangular cells (¢ri) for the outer mesh and quadri-
lateral cells {quad) for the boundary mesh next to the rudder (figure B.3, left). It is observed
that the number of cells can be reduced significantly by changing to an outer mesh, consisting
of unstructured quads (right). So the transition from the boundary mesh to the unstructured
outer mesh can be realized in a smoother way. Firstly, cell topology in and outside the boundary
layer is the same, and secondly, the quad meshing scheme seems to be able to adapt the as-
pect ratio of the outer cells gradually to that of their neighbours, located within the structured
boundary layers. The latter capability has a crucial advantage over the triangular cells: Espe-
cially triangular cells suffer from skewness, the more their shape deviates from the equilateral
optimum. Connecting triangular cells to a boundary mesh of quads often requires extensive cell
refinement to reduce skewness — though such grid resolution has not been intended originally.
An example is given in figure B.3. At the end of the extension of the boundary layer mesh, cell
aspect ratios grow as the expansion ratio is greater than one. The tri scheme tries to connect
Jow-skewed cells at the intersection, which automatically ends up in very fine grid resolutions.
Similar problems occur every time the quadrilateral boundary layer cells have high aspect ratios
at the intersection of inner and outer mesh. The unstructured quad scheme can cope with that
problem more easily, saving lots of cells in those areas.

An advantage of unstructured over structured meshing becomes clear in the outer mesh,
distant from the rudder: The numerous useless cells, which are a consequence of matching
structured meshing, can be avoided while cell aspect-ratios remain small at the same time.
Additionally, solver convergence and the quality of the finite discretization benefit from the
almost square shape of the majority of the unstructured guads.

Both, tri and quad grids, use identical boundary layer meshes and are controlled by mostly
the same Size Functions. A survey of the main grid parameters is given in table 3.5.

bndr. mesh outer mesh | total mesh

Mehord Mhndr  Meells Teells Ticells
tri 200 50 | 25,000 69,278 94,278
quad 200 50 | 25,000 39,925 64,925

Table 3.5: Hybrid grid, NACAQ012, Re = 6.0- 10°

Following Date’s recommendations [3], the outer boundaries are Jocated 15¢ away from the
profile in both dimensions. As many angles of incidence are to be investigated, it is decided to
vary the boundary conditions, rather than turning the rudder within the solution domain — this
way only one grid has to be created. A velocity inlet is modeled on both upwind edges, while
downstream pressure outlets are assumed. For a = 0° pressure outlets are declared on the edges
either side of the rudder. Its surfaces are defined as no-slip walls. A more detailed description
of the individual boundary conditions is given in section 2.4.

According to Date’s investigations, calculations are carried out using the k-¢ RNG turbulence
model. His RNG calculations of the same case have shown better results than the standard k-
¢ calculations did, especially, with respect to Lift prediction at higher angles of incidence —
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though stall prediction was still poor. Thus the RNG model is chosen, not at least on behalf of
comparability.

3.2.2 Results and Discussion

This discussion is based on the results of the guad mesh, which is believed to be superior in
this case. With respect to the later 3D computations its ability of economical meshing is highly
appreciated.

Convergence

At first, convergence behaviour is investigated to ensure numerically converged solutions. The
automatic stopping criterion is defined by SMR < 10~% while computations are Jimited to 2000
outer iterations. A reliable, almost monotonous convergence behaviour is observed up to an
angle of incidence of a < 15°. For a = 10° the convergence history is plotted in figure B.4. The
computation is carried out on a single node, using the solver settings described in section 2.5.2.
In case of the tri grids the convergence process takes little longer, as more cells are involved.
The fact that each triangular cell consists of one forth less faces can obviously not compensate
for the bigger grid size.

For higher angles of incidence convergence behaviour worsens and tends to become oscilla-
tory — but as long as the SMR drops for four orders of magnitude and lift and drag converge
reasonably, the results are accepted. An example is given for the a = 15° case (figure B.11):
According to the history of SM R and forces , convergence is still judged to be sufficient, though
it is not that straight-forward as for a = 10°.

Turbulence Modeling and Wall Functions

Calculations are carried out using the k-¢ RNG turbulence model and wall-functions for the near-
wall boundary layers. Though the considered range of incidence is restricted, the turbulence
dependent contribution to the modeling error rises, the higher the angle of incidence. As only
one grid has to cover all calculations, a compromise is to be found for the non-dimensional
wall distance y*. Its behaviour over the angle of incidence « is shown in figure B.6. Due to
stagnation and separation it can be observed that the wall-functions fail, as the flow on the rear
suction side decelerates; y' tends to zero, leaving the interval it has originally been restricted
to. Anyway, the assumptions made for wall functions and the k-e turbulence model are invalid
for points of separation and stagnation, and for areas of detachment (Peric and Ferzinger [4]),
partly explaining the deviations at higher angles of incidence.

Integral Forces

Generally, the lift prediction shows a good correlation with experimental and numerical data it
is compared against. As described above, only converged data is taken into consideration, so
results are plotted for a < 15°. The lift curve shows the same development as Date’s results do;
But, compared against experimental benchmark, it shows higher over-prediction than Date’s
results do at small angles {(a < 10°), while for a > 10° it comes closer to the measurements,
showing less under-prediction.

The drag shows constant over-prediction of the same quality but of higher quantity than
Date’s results. For a < 6° it comes close to experimental benchmark. Here results can probably
profit from the effect that due to numerical diffusion (section 2.7) the viscous pressure drag
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¢4, increases about one order of magnitude more than the frictional drag cg; decreases (El
Moctar {7]). For small angles the latter dominates, and both effects compensate each other.
At higher angles both components are of almost the same value, and from that point on the
total drag is over-predicted heavily. For higher angles ¢4, is almost constant, while ¢z, grows
rapidly. The effect of laminar-turbulent transition is believed to be of low influence here, as
for Re = 6- 108 the transition length is shorter than for the cases of lower Reynolds numbers.
Selected results are given in table 3.6, comparing the prediction of both meshing schemes and
their deviation from experimental data.

tri quad
a Cq o Acg Aqg Cd ] Acg Ag
] [ RN [ | %] %]
0 | 0.0086 | 0.0000 | 11.1 -1 0.0086 | 0.0000 | 111 -
6 - - - -| 00121 | 06408 [ 10.3 | 73
10 | 0.0190 | 1.0527 | 17.8 | 5.27 | 0.0201 | 1.0284 246 | 2.8

Table 3.6: Grid dependent deviation from measurements, NACAO0012, Re = 6.0 10°

Pressure Distribution

The chord-wise pressure distribution is examined at & = 8° and compared against Date’s results
(figure B.8). Most sensitive are the areas of highest gradients, especially around the leading
edge, where the grid has to be resolved sufficiently. Generally, the distribution matches well,
only the chord-wise cell distribution around the leading edge could have been refined little further
(Rehora = 200). But as the suction peak is very sharp, its impact on the integral forces, which
are matching well for the regarded angle of incidence, is limited. The grid-resolution around the
trailing edge seems to be adequate.

3.3 NACAO0020, Re =8.0-10°

Preparing the three-dimensional investigation, in 2D some parametric grid independence studies
are conducted in advance. Focussing on a 2D slice of the 3D spade rudder, the base grid for the
later 3D Gooper mesh is to be optimized. This kind of parametric study is labour intensive —
but particularly with respect to the following 3D cases it is important to mesh economically.

Again a hybrid meshing scheme is applied. Due to the experiences of the former cases,
the unstructured gquad scheme is nsed. This investigation is carried out for the a = 10° angle
of incidence. The chord-wise and layer-wise parametric grid studies are conducted in a kind
of iteration loop, always assuming the best value for the other parameter, which has been
determined before.

3.3.1 Chord-wise Grid Study

The first parameter to be investigated is the chord-wise cell distribution. Parameter convergence
is valued by the integral lift and drag coefficients. The chord-wise number of nodes n.chora is
counted only for one side, so the overall number around the whole rudder has twice the value.
In figure B.14(a) the lift shows monotonous convergence, while the drag seems to be fluctuating
- however, the four calculated values are not able to resolve the drag convergence process fine
enough, which might be oscillating. As the lift gradient decreases distinctly and the drag matches



CHAPTER 3. TWO-DIMENSIONAL RUDDER FLOWS 20

the value which is eventually obtained by nchora = 200, Nchora = 125 is chosen for the following
investigations. Anyway, the differences in lift and drag are less than 1%, so it is believed to have
resolved the flow sufficiently by this parameter.

3.3.2 Layer-wise Study of Boundary Mesh

The layer-wise study of the boundary layer mesh focusses on the node distribution perpendicular
to the rudder surface. It has an impact on the solution in two ways: The boundary layer mesh
uses the same expansion ratio perpendicular to the rudder surface as for its extension into
the wake, going out from the trailing edge. Firstly, this reduces one degree of freedom — but
secondly, it ensures that cells at the outer corners of the wake-extension are almost square
(figure B.12(c)). This eases the unstructured meshing around these corners effectively. As
mentjoned earlier, large cell aspect ratios of the structured boundary layers are to be avoided.
The adjoining unstructured mesh tries to connect cells of small aspect ratio, which antomatically
causes an unevenness in the mesh close to the rudder. It also limits the thickness of the boundary
mesh, as a wide structured boundary mesh automatically means higher aspect ratios in its outer
layers. However, the thickness of the boundary layer mesh is defined three times the thickness of
the corresponding flat plate boundary layer 5p1 (equation 3.1). The first cell size is optimized
according to the non-dimensional wall distance yt. A brief study has been conducted to find a
proper value to cover the whole range of incidence, similarly as explained in section 3.2.2. Having
defined the first spacing, the layer-wise number of nodes npngr is varied perpendicular to the
surface, adapting the expansion factor. As shown in figure B.15 lift and drag show asymptotic
convergence over such refinement. Npnar = 25 is regarded the best compromise between accuracy
and grid size — however, as 3D calculations have already been undertaken at %pagr = 20, the
latter value is chosen. This convergence level also seems to be acceptable, keeping in mind that
variation over the plotted interval is very small: approx. 1.5% in drag and 0.5% in lift, so that
the flow seems to be resolved properly by this parameter.

3.3.3 Comparison of Boundary Conditions

The 3D NACA0020 has been tested within the large wind-tunnel of the University of Southamp-
ton, which is 2.5m in height and 3.5m in width. The rudder is ¢ = 0.667m in chord and s = 1m
in span, so that a certain blocking effect, increasing at higher angles of incidence, is expected:
The actual wind tunnel velocity {dynamic pressure) is measured upstream of the rudder to con-
trol the required velocity. To round the rudder geometry within the wind-tunnel the flow is
perturbed, channeled and accelerated. Additionally the boundary layers, growing out from the
tunnel walls, cut the cross-section, and the flow is accelerated further. Compared against the
3D case, the 2D slice will over-predict the blocking effect (the free tip vortex decreases pressure
differences between pressure and suction side and decreases the 3D lift). Thus the blocking effect
can be studied efficiently in 2D as tendencies are expected to be over-predicted - but generally
the 3D case should show the same behaviour.

For this investigation a grid of neera = 129 and 7ippgr = 20 has been chosen, based on the
earlier results. Firstly, the rudder is modeled in free stream conditions, using the same boundary
conditions as described in section 3.2.2.

In the next case the rudder profile is located within a horizontal section of the 3D tunnel.
To change the angle of incidence this time the rudder has to be turned, instead of adjusting the
inlet boundary conditions. Defining a slip wall on the tunnel walls the skin friction is neglected,
while only the convective displacement effect of these walls is taken into consideration.
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Finally, these walls are set to no-slip walls, which is expected to accelerate the flow even
further. The mesh is shown in figure B.9. The thickness of the boundary layers in CFD has to
match the real thickness in the model-tests. As no measurements are available, the thickness
is estimated by the lift reduction recognisable on the span-wise lift distribution of the 3D mea-
surements: This curve decreases at the root of the rudder, where it works in reduced velocity
within the boundary layer of the tunnel floor. This way a boundary layer thickness on the
tunnel walls § & 100mm is estimated at the position of the rudder. Equation 3.1 associates a
flat plate length of z = 9.67c ~ 10¢ with that thickness. This upstream length seems to provide
a realistic boundary layer thickness at the x-coordinate of trailing edge, and is regarded as to be
long enough to minimize the influence of the inlet boundary condition. Figure B.10 shows the
development of the 0.99yg contour line on the tunnel walls. On the rudder surfaces this line does
not represent the thickness of the local boundary layer, but it is recognizable that the pressure
field of the rudder influences the development of the contour lines on the tunnel walls. On the
base of the contour plot B.10 the thickness of the 0.99v boundary layer is estimated & = 90mm
on the tunnel walls at the x-coordinate of trailing edge. So the CFD boundary layer seems to
match the thickness of the physical boundary layer.

As presented in figure B.16(a), the lift increases slightly when the tunnel is modeled. Intro-
ducing the no-slip conditions on the side-walls of the tunnel this effect becomes little stronger.
Differences are growing the higher the angle of incidence — at a = 20° calculations predict the
lift in the tunnel to be relatively lower than in free stream, which seems to be non-physical.
This is traced back to worsening convergence and the failure of wall functions.

The drag dependence on the boundary conditions is not predicted in the expected way. The
relationship between the slip and the no-slip tunnel cases seems to be realistic but, compared
to free stream, the drag within the tunnel is predicted relatively lower, which seems to be
nonphysical. This observation might be explained by the different ways of modeling the angle of
incidence. Altering the angle by changing the boundary conditions means to apply only one grid
— consequently the wake mesh is always the same, independently from the angle of incidence.
Turning the rudder within the tunnel means using different meshes for every angle of incidence.
The wake refinement is done by Size Functions, attached to the tunnel symmetry-line. For
a # 0° this is different from the direction of the chord, carrying the refining Size Functions in
free stream. Though the expansion ratio is close to one, and the wake is refined generously this
is expected to cause the problem. Details of the tunnel mesh are presented in figure B.12 — the
different strategies in grid generation and the corresponding coordinate systems for the tunnel
and free stream cases are shown in figure B.11(a) and B.11(b). Except from this difference both
cases are set up identically, using the same boundary mesh and Size Functions. But as the
drag prediction is very sensitive, slight differences in the wake mesh might be decisive. This
guess is backed by the fact that the differences mainly result from pressure-drag cd,,- The
viscous part ¢g, only shows little differences and reacts on tunnel blocking in the expected way
(figure B.16(b)}. This issue is worth further investigation, .g. on a constant mesh — but would
exceed the available time. Instead, the pressure distributions of free stream and tunnel case are
plotted and compared in figure B.18. Differences can mainly be observed along the first half
of the chord — particularly the suction peak is more developed in the accelerated tunnel flow.
Along the aft part (in the area of the main grid differences) pressure differences caused by tunnel
blocking and the different grid generation approaches seem to be negligible.
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3.3.4 Comparison of Turbulence Models

Here the standard k-¢, the k-¢ RNG and the Spalart-Allmaras turbulence models are compared
and results are plotted in figure B.17(a). For lower angles of incidence k-¢ predicts the highest
lift, followed by k-¢ RNG and Spalart-Allmaras. At higher angles Spalart-Allmaras is the only
one capable of predicting a major decrease in 1ift due to detachments. This is also confirmed by
the prediction of flow fields at o = 15° (figure B.13): Spalart-Allmaras predicts detachments of
negative velocity gradients at 0.61c from the leading edge. For the same case k-€ and its RNG
modification do hardly show any negative velocity gradients on the rear suction side — the flow
only stagnates without detaching.

The drag prediction at small angles is the highest for k-¢, followed by Spalart-Allmaras and
RNG, lying relatively close to each other. Then again, at higher angles of incidence, Spalart-
Allmaras is the only model predicting detachments of larger extends, resulting in a rapid increase
of drag.

3.3.5 Results

This 2D study is carried out in order to find an economic way of meshing, and to give a better
understanding of the two-dimensional case before the 3D spade rudder is investigated. As no
experimental benchmark is available for the 2D slice it is only possible to compare the results
of the parametric studies against each other. Eventually the following conclusions are drawn:

e In chord-wise direction nehord = 125 nodes (on each rudder side) seem to be sufficient to
resolve the flow appropriately. Lift and drag show a good level of convergence.

e The study of node distribution in the boundary layer mesh, perpendicular to the rudder
surface and along the wake extension, shows asymptotic convergence. The optimum is
assumed at ngngr = 25 nodes.

e A tunnel biocking effect can be observed in the 2D results. Lift prediction is affected by
convective displacement and diffusive skin friction of the tunnel walls - both increasing the
lift. The drag behaviour, which turned out to be highly sensitive, cannot be interpreted
that easily. Further investigation is recommended to figure out its dependencies in detail.

¢ At small angles of incidence predictions of the different turbulence models are very sim-
ilar. For higher angles the Spalart-Allmaras turbulence model is the only one predicting
detachment of larger extents.



Chapter 4

Three-dimensional Rudder Flows

4.1 Description of Experimental Flow Case

This flow case is one of the wind-tunnel setups investigated by Molland and Turnock [8]. Here
the all-movable spade-rudder No. 2 (described by Turnock [11]), operating in free stream (i-e.
without propeller), is selected. It consists of a NACA0020 profile, is rectangular in planform
and has a square tip. Its root is mounted to the floor of the wind tunnel. The model has a chord
length of ¢ = 0.667m and extends s = 1.0m in span-wise direction. To trigger turbulent flow, a
roughness strip of 0.15mm is glued on either side of the rudder, 0.05¢ behind the leading edge.

The experiments have been conducted within the large wind tunnel of the University of
Southampton, which has a cross section of 3.5m - 2 5m. Horizontally the boundaries are located
1.75m from the chord, while the free tip has a vertical clearance of 1.5m. The free stream
velocity within the tunnel of vy = 20m/s refers to Re =8.0-10°%

4.2 3D Grid Generation

4.2.1 Development of 3D Grid Generation Strategy

At the beginning it is concentrated on conventional hybrid meshing schemes — i.e. encapsulating
the rudder in a boundary layer mesh of hexahedra which is connected to an outer grid of
tetrahedra. It is observed that the two-dimensional difficulties of connecting the structured
boundary layers to the outer anstructured mesh even become worse in 3D. Additionally, new
difficulties arise since the quadrilateral base faces of the cells within the structured boundary
layers tend to have large aspect ratios, particularly along the rudder edges.

Instead, to make use of the quasi-two-dimensional span-wise geometry and fiow, it is decided
to set up a prismatic cell structure by expanding the 2D base grid from the root towards the tip
of the rudder. Along the span-wise z-direction an expansion ratio is defined. Cells are clustered
near the tip to catch the tip vortex and next to the root (tunnel floor) to resolve the viscous
boundary layer. Beyond the tip, for z > 2z = 1.0m, the prisms are extruded a little further
into the solution domain. Thus a change of meshing schemes in areas of difficult geometry, like
the emerging tip edges, can be avoided. The rest of the domain is meshed by an unstructured,
tetrahedral scheme.

Alternatively, the prismatic cell topology is applied throughout the whole sclution domain.
This brings a loss of freedom for Jocal cell-clustering on the one hand — on the other hand,
the difficult transition from prisms to tetrahedra can be avoided altogether. During the grid
generation process it is observed that the fully prismatic grids can manage with even less cells
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than grids of changing structure can: The latter is strongly affected by cell skewness in the
transition area, which locally requires finer grid resolution again. Mostly the saved cells in the
outer areas are more than compensated. Hence, in case of this relatively simple geometry, it is
regarded as most efficient to apply the Cooper meshing scheme throughout the whole domain.
Not at least grids are simplified essentially, making preprocessing easier and faster.

4.2.2 Applied 3D Grids

As described before, the Cooper scheme is applied throughout the whole solution domain. The
2D grid, optimized in section 3.3, is used as a base mesh to be extruded. In order to investigate
the 3D wind tunnel blocking, the rudder is modeled within the tunnel as well as in the free
stream. This also matches with the 2D procedure so that comparisons can be drawn. The final
grid topologies are shown in figure C.1 for the tunnel and free stream boundaries. The rudder is
enwraped in one block, extending from the base z = Zfioor = 0 to the tip z = 24p = 1m. Beyond
the tip plane, for z > 2up, the adjacent block leaves a hollow, which is filled up by two inner
blocks, replacing the rudder. The subdivision of this inlay is provided on behalf of meshing as
described later. Every block is meshed by prisms using the Cooper tool. All block interfaces are
matched.

The parameters for the two-dimensional base grids are already available, as determined in
section 3.3. For the three-dimensional case it is necessary to refine the grid around the tip with
respect to the tip vortex and next to root, which is mounted to a no-slip wall. This requires
expansion ratios going out from the tip in high and low z-direction, and from the root of the
rudder (tunnel floor). Some grid parameters are mentioned in table 4.1.

Tnodes free stream | wind tunnel
base mesh 20,420 18,970
main tip mesh 1,830 1,785
aft tip mesh 186 193
z-distribution (z1e0r - - - Ztip) 30 80
z-distribution (ztip - . . Zroof) 60 50
> total 2,979,760 2,565,000

Table 4.1: 3D grids, NACA0020, Re = 8.0-10°

In 3D also the tip face of the rudder has to be meshed. It is subdivided into two faces,
serving as base faces for the inner blocks. Here the advantage of unstructured meshing can be
exploited as shown in figure C.3. Along the larger front face of the tip a boundary layer mesh is
created, adjacent to the outer boundary layer mesh. This provides a smooth transition from the
outer mesh, across the outer boundary layer mesh, across the inner boundary layer mesh, to the
interior area. The inside is filled up by unstructured quadrilaterals. The aft triangle is defined
as an extra block and meshed separately. Here cell aspect ratios of the adjacent outer mesh
are relatively small so that a smooth transition, without an inner boundary layer mesh, can be
realized. Within structured C-grids especially this aft part of the tip face causes problems of
high cell skewness.



CHAPTER 4. THREE-DIMENSIONAL RUDDER FLOWS 25

4.3 Boundary Conditions

Free Stream

In the free stream case any disturbing influences of the boundaries are to be minimized. Follow-
ing recommendations of Chan and El Moctar 6], the boundaries are located ten chord-length
horizontally and six chord-length vertically away from the rudder. A velocity inlet is applied,
defining the angle of incidence by the velocity components of the flow. As in 2D, only one mesh
covers the whole range of incidence. Downstream a pressure outlet is defined. The side faces
are set to velocity inlet or pressure outlet, assuming the same definitions of flow variables as
for the upstream inlet and the downstream outlet, respectively. For the zero angle of incidence
both side faces are defined as pressure outlets. The ground face (z = 0), the rudder is attached
to, is set to a no-slip wall. Its viscous boundary layer is modeled by wall functions, using a
non-dimensional wall distance y+ & 40. The top of the domain is modeled as a pressure outlet.
The rudder surfaces are no-slip walls.

Wind Tunnel

For the tunnel case the solution domain extends 10c up- and downstream, going out from the
trailing edge. The upstream length of the domain also affects the thickness of the boundary layers
on the tunnel walls. As described during the 2D study in section 3.3.3, it is tuned according to
equation 3.1. The dimensions of the tunnel cross-section is described in section 4.1. Its floor
2 = 0 and side-walls are modeled as no-slip walls with y* = 40. The tunnel roof is defined as a
slip wall — this saves resources as the viscous boundary layer on the wall is neglected and does
not need resolution. Upstream a velocity inlet is defined, downstream a pressure outlet. The
angle of incidence is realized by turning the rudder — hence, the direction of the inlet velocity is
constant for all tunnel cases. Figure C.2 shows a plot of the 3D wind tunnel mesh.

4.4 Convergence

For the three-dimensional investigation the automatic convergence criterion is defined by the
SMR, dropping for four orders of magnitude. Here again the SMR criterion causes a numerical
overhead as forces converge much earlier - figure C.4 shows the convergence histories for the
free stream case at a = 10°, using the k-¢ RNG turbulence model. Generally, 3D results are
judged to be converged as long as the SMR. drops for about four orders of magnitude and forces
show reasonable convergence, which is proved for every individual case. As this work does not
particularly focus on optimization of computational efforts no comparisons of parallel efficiencies
are drawn.

4.5 Verification and Validation

4.5.1 3D Grid Refinement Study

The Cooper scheme, applied to extrude the 2D base mesh, allows an independent refinement
study of node distribution in z-direction. Parameter convergence is estimated on the base of the
integral rudder forces as well as on the span-wise distribution of the normal force coefficient.
Especially the tip flow, which is particularly three-dimensional, is expected to be sensitive to
the span-wise node distribution. This short investigation is based on three free stream grids,
successively increasing the number of nodes in z-direction by +/2, while the first cell size for the
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non-dimensional wall distance y* is kept constant at z = Zfieor =
are identical to the standard 2D free stream cases.

The z-refinement study is carried out using the
prediction of lift and drag seems to be quite independent from the variation in span-wise node
distribution, the way it is carried out here (table 4.2).

k-¢ RNG turbulence model at & = 10°. The

coarse medium fine exp.
Toodes 99 140 198 -
Tnodes,tot || 2,106,252 2,979,760 | 4,241,520 -
Ca 0.0545 0.0540 0.0542 || 0.0440
G 0.5280 0.5304 0.5288 || 0.5107
A, |%] +23.8 +22.8 +23.2 -
Ac, (%) +34 +3.9 13.6 -

Table 4.2: Grid parameters and results of z-refinement study, NACA0020, Re = 8.0- 10°

0 and z = 2zp = Ilm. The

Also the span-wise plot of the normal force coefficient (figure C.6) hardly shows any dif-
ferences. While the first cell sizes are kept constant, only the expansion ratios in z-direction
profit from the increasing number of nodes. Apparently these ratios are sufficiently small, as the
results are almost constant. Except from the non-dimensional wall distance 3+, the first cell size
is also kept constant on behalf of cell geometry around the tip. The constant cell size provides
a homogeneous, almost cubic cell shape around the tip, and ensures numerical coupling of the
governing equations. With respect to computations at higher angles of incidence the medium
grid is selected for the following calculations.

4.5.2 Integral Forces

Calenlstions are carried out for free stream and tunnel boundary conditions. Both cases are
investigated using the k-¢ RNG and the Spalart-Allmaras turbulence meodel. Results are plotted
in figure C.5.

Lift

The lift prediction (figure C.5) qualitatively captures the blocking effect of the modeled wind
tunnel — hence, the lift increases due to an increasing effective Reynolds number. This behaviour
can be observed for both turbulence models. Generally, the k-¢ RNG computations predict a
higher lift than the corresponding Spalart-Allmaras cases do. One more time it is noticed that
the latter turbulence model tends to predict a decrease in lift earlier. Over the considered
range of incidence the tunnel case, which geometrically comes closest to the real experimental
case, over-predicts the lift. Therefore, the closer agreement between the free stream and the
experimental curves is explained by the superposition of two countereffects: The lower free
stream velocity decreases the lift relatively, which is compensated by the tendency of over-
predicting the lift. This over-estimation is observed for both turbulence models — it has already
been noticed during the 2D investigations of the NACAQ012 at Re = 6.0 10° (particularly at
small angles) in section 3.2, and is also confirmed by Date’s studies of the same case {3]. This
stands in contrast to the general observation of lift under-prediction, influenced by numerical
diffusion.
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Drag

It is noticed (figure C.5) that the tunnel drag is predicted higher than in free stream. In 3D
the increase in frictional and viscous pressure drag due to blocking is expected to be partly
compensated by a reduced induced drag: Compared to the free stream case the closer tunnel
roof restricts the tip flow, and with it the drag component induced by the tip vortex.

For low angles of incidence Spalart-Allmaras calculates the higher drag, at a = 10° both
turbulence models almost calculate the same values and for a = 20° Spalart-Allmaras predicts
the higher drag again. At a = 20° results are dominated by the different predictions of the
viscous pressure drag as Spalart-Allmaras can cope with detached flow much better than k-€
does. Generally, the over-prediction of drag is relatively higher and less sensitive to changes in
boundaries and turbulence modeling than it is the case for the lift. It must be kept in mind that
the pressure drag is caused by small differences in the pressure-field — additionally to modeling
errors it is highly sensitive to numerical errors.

4.5.3 Normal Force Distribution

The span-wise distribution of the normal force coefficient ¢,, ;) is determined using an integration
code, which is briefly introduced in appendix A. The coefficient is determined for thin sectional
rudder slices, plotted over the rudder span (figure C.7). At the root ¢,(;) is reduced as the
rudder acts within the boundary layer of the tunnel floor — next to the tip it is affected by the
tip vortex. Closer to the tip behind the local minimum ¢, (,) rises again, almost reaching the
maximum normal force. Beyond this peak it drops rapidly. For growing circulation at higher
angles of incidence the ¢, () peak becomes wider and rather blunt.

Figure C.6 and C.8 demonstrate how the ¢, (;) prediction depends on turbulence modeling.
Generally, the lift is predicted smaller by Spalart-Allmaras, but particularly the tip peak only
reaches half the k-¢ RNG height.

The influence of boundary modeling on the tip peak (figure C.8) shows the expected be-
haviour. While the normal force distribution over most of the span is higher for the tunnel case,
its tip peak is predicted lower than in free stream. This shows that moving the tunnel roof closer
to the tip slightly decreases the development of the tip vortex. Moving the roof closer and closer
towards the tip would ideally end up in a 213 case, which should not show any free tip vortex.

4.5.4 Fields of Pressure and Vorticity

Confirming the results of the previous sections, plots of the pressure fields and tip-vortices help
giving a more detailed view of the solutions. The vortex-plots (figure C.11) display a selected
iso-surface of x-vorticity (here {; = %-'iy“ - %E; = —500) as well as the geometrical rudder surfaces.
The plots are coloured according to the distribution of the pressure coefficient ¢;.

At @ = 0° the vortices separate from the trailing edge and on either side of the tip. They are
simply caused by the displacement effect of the rudder. The plot for & = 10° shows the reunion
of the suction and pressure side vortices to one tip vortex behind the rudder. At a = 20° the
vortices grow large due to the higher circulation ' ~ a. They are also predicted to unite earlier
in the wake.

In figure C.9 slices at characteristic span-wise positions are selected to plot the chord-wise
distribution of the pressure coefficient ¢,: the maximum lift position, the local minimum before
the tip and the tip maximum itself; Additionally, the 2D distribution is provided. Compared to
the 2D case, the tip flow reduces pressure differences the closer it comes to the tip. Up to the
z-position of the local minimum the curves are simply flattening. Beyond this minimum the tip
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vortex smoothes the chord-wise pressure distribution, equalizing particularly the suction side. At
the tip maximum the suction side reaches two maxima: the leading edge peak and another one
at z/c = 0.5. The second rather flat maximum, caused by the induced velocity of the tip vortex,
makes up most of the ¢, (;) peak in the span-wise plot. Comparing the pressure distributions on
the rudder surfaces (figure C.10) and the development of the tip vortices (figure C.11}, it becomes
clear how the pressure field on the suction side is influenced by the tip vortex, converging in
negative z-direction. It finally leaves the rudder, uniting with the vortex of the pressure side,
which is of very limited influence on the tip peak in the ¢, () distribution. This can also be
observed in the chord-wise pressure plot for the maximum ¢ position (figure C.9).

4.6 Results and Discussion

Grid Independence

Having optimized the base grid during the 2D investigation, grid independence of the Cooper
mesh in z-direction is proved in an additional 3D independence study. Here again it must be
kept in mind that the free stream and the tunnel grids are generated by different strategies —
so the angle of incidence is modeled either turning the rudder or the inlet boundary conditions.
As in 2D this causes slight grid differences, additionally to the intended variation of boundary
conditions. This has already been investigated in 2D and described in section 3.3.3.

Boundary Modeling

In 3D, boundary modeling of free stream and wind tunnel cases shows the expected effect.
The tunnel blocking increases lift and drag prediction, compared against free stream. But
for both turbulence models the total deviations of rudder performances from the experimental
measurements grow, if the tunnel is modeled. That indicates that the close correlation between
the free stream calculation and experimental data are just a superposition of multiple effects,
compensating each other — the computations can only be regarded as exact as the prediction
of the tunnel case. As demonstrated by the span-wise ¢y (z) distribution, the CFD blocking
prediction also affects the tip vortex.

Turbulence Modeling

Also for the 3D investigations turbulence modeling plays quite an important role. Particularly
the Spalart-Allmaras lift prediction comes much closer to experimental benchmark than k-c RNG
does. Drag prediction does not match that well — here both turbulence models predict similar
values of relatively high deviation. The tip vortex prediction is quite sensitive to turbulence
modeling, so k-¢ RNG predicts it more developed than Spalart-Allmaras as observed in the
vortex plots as well as in the ¢, . distribution. Generally, the 3D cases are not as sensitive to
the numerical capability of predicting separation and detachment as the 2D calculations are —
the tip flow compensates the pressure differences on either side of the rudder, so that the 3D
stall is reduced relatively compared against 2D.
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Conclusions and Summary

This documentation tries to give a detailed description of the conducted RANS simulations — at
the same time it tries to show the development of the project in a way of finding an appropriate
approach to treat the 3D rudder-tunne] geometry most efficiently. This optimization process has
been continuing throughout the whole work. At this place the conclusion is drawing a line where
some of the most interesting results should be presented and particularly emphasized — rather
than giving a complete summary of the provisional results. So it is tried to make some final
statements and comparisons, taking into consideration exemplary features and results, observed
during the whole project.

5.1 Grid Generation Procedure

In terms of grid generation the 2D calculations are a sort of preparation with the goal of finding
a proper method to handle the 3D cases. At the beginning the NACA0012 case at Re =7.6- 10°
is meshed, using traditional hybrid grids. No wall functions are applied, requiring very fine
boundary layer resolutions. This case revealed the difficulties of this approach, consequently the
later cases used boundary layers. The NACA0012 case at Re = 6.0- 10% applies unstructured
triangular and quadrilateral schemes for the outer mesh, finding the latter to be the more efficient
one.

The two-dimensional NACA0020 case at Re = 8.0 - 10° is set up to optimize the 2D grid
with respect to the final 3D calculations: The unstructured Cooper meshing tool is found to
be an appropriate grid generation approach: It provides reasonable control over the mesh by
its parameters, creating good-natured prismatic cell geometries. The Cooper scheme can be re-
garded as a compromise between unstructured and structured grids, extruding the unstructured
base grids into the third dimension in a "structured” way. Strictly speaking, of course, it must
be classified as unstructured. It is emphasized one more time that the base grids, consisting
of quadrilateral cells, are regarded as more suitable to create the 3D Cooper meshes from. So
the only-hexahedral hybrid grids are more homogeneous than the volume grids consisting of a
triangular based outer mesh.

5.2 Verification Procedure

Not only the meshing scheme has been adapted and optimized to the special demands — also the
verification procedure has changed with it. The procedure proposed by Stern, based on three
systematically refined grid resolutions, turned out to be inappropriate in this case - particularly
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without wall functions. Instead, the verification based on parametric grid independence studies,
carried out independently from each other, proved to be more flexible. It allows not only to
investigate parameter independence but also to develop an economical way of meshing. This
approach is applied for the later two- and three-dimensional calculations.

5.3 Influences on Validation

5.3.1 Turbulence Modeling and Numerical Diffusion

Turbulence modeling plays quite an important role in this work, in some cases its influence even
dominates the solutions. The k-¢ RNG and Spalart-Allmaras models are applied throughout
this work, some of the earlier calculations also use the standard k-e model.

Lift

For the 2D NACAQ020 at Re = 8- 10° k-¢ RNG tends to predict a greater lift than Spalart-
Allmaras does. Particularly at & > 15° only the latter one calculates negative lift gradients and
detachments of larger extents. Similar results are obtained in 3D, only that detachments are of
lesser extents — hence, differences at higher angles of incidence are smaller.

For the 2D NACA0012 at Re = 6- 105 only k-¢ RNG is applied. Particularly for small angles
the lift tends to slight over-prediction as in Date’s results [3]. It is assumed that the k-¢ RNG
turbulence model over-estimates the lift here, as in case of the 3D NACAO0020, while generally
it is under-predicted with a growing numerical diffusion. So it is expected that both effects
compensate each other, bringing the computations closer to the experimental results.

Drag

For small angles of incidence the 3D drag prediction by k-¢ RNG turned out to be greater than
by Spalart-Allmaras. At o > 15° this changes due to larger separation predicted by Spalart-
Allmaras.

For the 2D NACA0020 it can be observed that both turbulence models almost calculate the
same frictional drag component cg,, the greater value is determined by k-¢ RNG. Basically this
drag component tends to be under-predicted by numerical diffusion.

The viscous pressure drag cq,, §rows with the angle of incidence due to separation, and there-
fore is predicted higher by Spalart-Allmaras. Throughout most of this work the drag generally
tends to be over-predicted. For rather blunt profiles (like the NACA0020) the dominating vis-
cous pressure drag is generally over-predicted by numerical diffusion. For the slender NACA0012
at Re — 6 106 this can be observed at o # 0°, when the influence of viscous pressure drag in-
creases. This trend is additionally supported by the influence of k-¢ RNG, also over-estimating
the drag (over the concerned range of incidence).

Tip Vortex

The prediction of the tip vortex is observed to be very semsitive to turbulence modeling. So
Spalart-Allmaras predicts it to be smaller than k-¢ RNG does. This can be observed in the vortex
and pressure plots as well as in the span-wise distribution of the normal force coefficient. It also
affects the integral lift and drag forces, and assimilates the turbulence dependent differences
in 2D and 3D performances: The k-¢ RNG lift decreases relatively in 3D as the tip vortex
and flow are predicted in larger extends than by Spalart-Allmaras. In terms of drag prediction
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the bigger tip vortex, predicted by k-¢ RNG, causes an increasing induced drag, compared to
Spalart-Allmaras. These 3D trends act against the turbulence dependent differences observed
in 2D. Thus in 3D differences, depending on turbulence modeling, appear smaller than they do
in 2D.

5.3.2 Boundary Conditions

The simulation is able to capture most of the blocking effects caused by the limited extension
of the wind tunnel solution domain. Results have already been discussed during the two- and
three-dimensional investigations, showing an increasing integral lifc due to tunnel blocking. Also
the drag is affected, but it must be kept in mind that the results are influenced by different grid
generation approaches, used to model the angle of incidence. Particularly the prediction of
the pressure drag component cq,, is affected, which is very sensitive to slight changes in the
pressure field. It is believed to affect especially the 2D cases, as dynamic pressure differences are
more distinct than in 3D. Ideally, if the grid resolution is sufficient in all areas, results should
show independence from these differences. This issue is not investigated further than done in
section 3.3.3 due to a lack of time, but it is worth a closer look as certain grid imperfections are
indicated.

It is also possible to identify a 3D blocking effect on the tip vortex. Compared to free stream,
the tip peak in the span-wise normal force distribution is reduced for the tunnel case, though
the rest of the normal force curve ¢, ;) increases. This can be explained by the tunnel sidewalls
and roof restricting the development of the tip vortex.

5.3.3 Further Imperfections in the Computational Solutions

The CFD models can only represent the physics to a limited extent. Besides the mentioned
numerical and modeling errors there are other deficiencies in describing reality, some of them
are mentioned here: '

Laminar-turbulent transition is neglected during this work. Instead the flow is assumed to
be turbulent throughout the whole solution domain. This is expected to increase drag prediction
slightly, as skin-friction along the laminar onset is over-estimated. Also possible effects of laminar
detachment, which particularly model tests are prone to, are neglected.

To minimize the disturbing influence of the boundaries in the free stream cases, the recom-
mendations from literature are followed, but a certain level of disturbance will surely remain.
Also for the tunnel cases the boundary conditions are just a simplified model. E.g. the velocity
profile of the tunnel inlet is simply implemented as a homogeneous velocity field of constant
turbulence, which is put far enough to minimize its impact again. Also the fan will have a
disturbing effect in reality, so that the real boundary conditions differ from the simplified CFD
model. But additionally to the difficulties in modeling, there is a lack of information about the
flow which is to be modeled: No real measurements of boundary layers or inlet velocity profiles
are available, so the CFD model would have to be based on assumptions and simplifications,
anyway.

Like the flow case also the geometry is simplified. The trailing edge of the rudder is assumed
to be sharp. Additionally the gap at the root of the rudder and its turbulence triggers are
neglected.
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5.4 Critics and possible Improvements

To understand the unexpected prediction of the blocking effect on the viscous pressure drag ¢4,
(section 3.3.3) it is recommended to investigate the free stream case by the same grid generation
approach used for the tunnel — i.e. turning the rudder within the domain. Comparison of these
results could prove grid dependence.

For future investigations of the NACAQ020 at Re = 8.0 - 10° it is also recommended to
spend little more cells besides the rear boundary layer mesh of the rudder. Such refinement
especially seems to be of interest with Tespect to perturbations and detachments at higher
angles of incidence. This has not been discovered by the grid refinement studies as the angle
of incidence has been set constant to o = 10°. Possibly this could also affect the prediction of
viscous pressure drag cq,,. Also the 2D grids of the NACA0012 cases could need some more
cells on both sides of the central wake. Again, this could improve the results for higher angles
of incidence, as the direction of the free stream does not match with the direction of the wake
mesh for o # 0°.

In the 3D grid refinement study it has become obvious that a finer resolution in z-direction
is of negligible influence using this grid generation approach (wall functions on the whole surface
of the rudder, including the tip). For further investigations it is estimated that the changes,
recommended for the base grid, would finally result in a 3D mesh of about 4...5 - 10°% cells.

Furthermore, it is recommended to model the laminar-turbulent transition around the leading
edge. Within Fluent it is possible to define the flow to be either laminar or turbulent on
individual blocks. So the laminar onset could be modeled on an extra block around the leading
edge, ending at the position of the turbulence trigger.



Appendix A

Determination of Span-wise Pressure
Distribution

A.1 Sectional Pressure Integration

A custom-made code is necessary to determine the span-wise distribution of the sectional normal
force coefficient ¢, (). To calculate the resultant sectional pressure force the pressure coefficient
ep = (p—po)/(p/2vE) is integrated over thin rudder slices of the thickness Az. Its projection,
perpendicular to the chord, is the normal force coefficient ¢, (), which is calculated and plotted
over the span. The integration is carried out for very thin slices of z, < z < zp;, rather than
for real 2D sections, as the code must cope with unstructured grids.

A rudder fixed coordinate system is chosen for the pressure integration. In the free stream
cases the rudder chord always runs parallel to the x-axis of the CFD coordinate system (z, y, 2)
(figure B.11(a)) — hence, the integration can be carried out directly. For the tunnel cases a
coordinate transformation becomes necessary as for a # (0° the CFD coordinate system (z,y, )
deviates from the rudder fixed system (z’,7/,z) (figure B.11(b)}. The pivot is the point of
maximal thickness, 0.3¢ distant from the leading edge. The transformation reads

X' = A (x ~ Xo) — X (A1)
with

cosa sina 0
A=| —sina cosa O
0 0 1

Both translation vectors are

0.7c
0

The trapezium integration-scheme, which is applied here, is of second order like the discretization
and interpolation schemes used in the solver.

~ [+ o

¢~ St g g ) (A2)
i=1

, ~ Ty o

¢~ Y la oy )] (a3)
i=1
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During the integration all nodes, allocated on one slice, are projected to a rudder section of
constant z-coordinate. This z-location of the quasi-section is determined by

A
7 ay Zi=1 (A.4)
T

Having carried out the integration, the span-wise coefficients are re-transformed to the original
coordinate system, perpendicular to the free stream direction:

Ca cosa sina 0 c
g | =| —sina cosa 0 ¢ (A.5)
Cs 0 0 1 c:’z

The normal force coefficient is determined by

Cn = Ceosa + CgSina (A.6)

A.2 F90 Integration Code

The Fortran 90 code requires an input file of the ¢, distribution on the rudder surfaces. Addi-
tionally, the thin rudder slices need to be defined by their z-bounds. The following scheme tries
to give a brief description of the integration code:

1. Pick out the nodes {coordinates and ¢, values} for individual rudder slices.
2. Size nodes for each slice in chord-wise direction.
3. Calculate ¢; and ¢, for each slice, integrating ¢, in the rudder fixed coordinate system.

4. Calculate the integral lift coefficient ¢; by span-wise integration of ¢;(,. This value is
compared against the 3D rudder lift coefficient to prove correctness and accuracy of the
code.
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program sortout
¢ Integration of pressure-coeff around slices of NACA0020

implicit none

integer i,j,k,1,nmtchl,nmtch2, nvarl,nvar2, nspan
doubleprecision alpha,alphabm,fl,fd, fx, fx1, fx2,fy,fyl, fy2,

1 zloact,zhiact,sumz, fdint, flint,cn

doubleprecision, dimension(1:100) :: zhi,zlo,fdk, flk, zcl
doubleprecision, dimension{1:500) :: xlsl,ylsl,zlsl,plsl,
1 xls2,yls2,zls2,pls2

doubleprecision, dimension(1:25000) :: x1,yl,zl1l,pl,x2,y2,22,p2

open(30,file="geom in.txt"')
open({40,file='press_inl.txt'}
open(50, file="press_out.txt'}
open{60, file='clz_out.txt'}
open{70, file='cnz_out.txtc'}

write{*,#*) 'nspan, alpha, nvarl, nvar2?'
read{*,*) nspan,alpha,nvarl,nvar2
read{(30,*} ({zlo{i),zhi{i})},i=1,nspan)
alphabm=alpha/180.%3.14159265

2]

Reading data file

first pressure side (1), second suction side (2)
call subread{nvarl,xl,v1l,zl,pl}
call subread{nvarz,x2,y2,z2,p2)

n

9}

Outer loop for each spanwise positien
do 5 1=1,nspan
zhiact=zhi {1}
zloact=zlo (1}
fx1=0. ! reset for integration
£x2=0.
fyl=0.
fy2=0.
sumz=0.

¢ Sorting values by rising x-cooridinate
call subsort {nvarl,nmtchl,x1,yl,zl,pl,x1sl,ylsl,zlsl,plsi,
i zhiact,zloact,alphabm)
call subsort{nvar2,nmtch2,x2,y2,22,p2,x1s2,yls2,21s52,pls2,
1 =zhiact,zloact,alphabm)

Figure A.1: Fortran 90: Main program sortout, Page 1
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c
c Sectional integration of pressure-coeffitients
do 120 i=2,nmtchl
fyl={plsl{i)+plsl(i-1))/2*{x1s1(i)-x1s1(i-1))+£fyl ! no correction
fx1=-{plsi{i) +plsl(i-1)}) /2*{ylsl(i)-ylsl{i-1))+fx1 ! neg. correction
120 continue
do 122 i=1,nmtchl
122 sumz-z}sl{i}+sumz
do 125 i=2,nmtch2
fy2=-(pls2{i)+pls2{i-1)) /2*{x1ls2{i)-x1s2(i-1))+fy2 ! neg. correction
fx2=(pls2{i)+pls2{i-1)) /2*(y)s2{i}-yls2{i-1})+fx2 ! no correction
125 continue
do 127 i=1,nmtch2
127 sumz=zlsg2 (i) +sumz
zcl (1) =sumz/ {(nmtchl+nmtch2)
C
fx=fx1+fx2
fy=fyl+fy2
c .
fd=+fx*cos {alphabm) +fy*sin (alphabm) ! Transf. in lift and drag-coo's
fl=-fx*sin{alphabm) +£y*cos (alphabm)
£1=£1/0.667 ! Dimensional coefficients
fd=fd/0.667
cn=£1*cos {alphabm)} +£d*sin (alphabm}
fdk (1) =£fd
flk {1} =£f1
c
c QOutput
write(50,160) ‘'pressure side,
1 z = *,zlo(l},*...',2hi{l)," =zcl=',zclil)
write({5Q,*} ' z, x, p'
write(50,150) ((zls1{i),x1si(i},plsi(i})),i=1,nmtchl}
write{50,160) ‘suction side, z = ',zlo{l),'...',2hi{l)
write{50,6*) * z, X, !
write(50,150) {{zls2{i),xls2(i},pls2{i)),i=1, nmtch2)
c
write{50,170) 'Lift= ',fl,° Drag= ', fd
write{60,*) zlsl{1), £l
write(70,*} zlsl(1), cn
write(*,170) 'Lift= ',fl,' Drag= ',fd,' nx/side=',nmtchl
5 gontinue
c
¢ Final Integration Control
do 140 1=2,nspan
fdint={fdk{1) +fdk{(1-1)) /2% {2cl(1}-2cl(1l-1})+Edint
flint=(flk{1}+flk(1-1)) /2% (zcl(1)-2zcl(1-1})+flint
140 continue
c
write(50,*}) ‘ecd _ctr=', fdint,* cl_ctr=',flint
150 format (3(f7.4," "))
160 format (2(a,f6.4))
170 format (2{a,£8.5),a, i4)

close (30)
close{40)
cloae {50}
close (60)
close (70)
end

Figure A.2: Fortran 90: Main program sertout, Page 2
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subroutine subread{nvar,x.y.Z.p)

implicit none
integer i,nvar

doubleprecision, dimension{1:25000} :: x,¥,Z,p
doubleprecision, dimension{1:500) :: xmtch, ymtch, zmtch, pmtch,xls,yls,
1 zls,pls

character {len=1) varl,var2,var3,var4

c

¢ read coordinate and pressure data
read(40,%) varl
read{40,*} ((x({i)}),i=1,nvar)
read (40, *) var2
read (40,*) ((y{i)),i=1,nvar)
read(40,*) var3
read(40,*) ({(z(i}},i=1,nvar)
read {40, *) vard
read{40,*) ((p(i})},i=1,nvar)

end subroutine subread

x-coordinates
y-coordinates
z-coordinates

pressure values

Figure A.3: Fortran 90: Subroutine subread
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nnao=-—

subroutine subsort{nvar,nmtch,x,¥.2z,p.x1s,yls,zls,pls,
1 zhi,zlo,alphabm)
implicit none

integer 1i,j,nvar,nmtch,idxsor
doubleprecision zhi,zlo,sortx,alphabm
doubleprecision, dimension(1:25000) :: X,¥,Z,P
doubleprecision, dimension{1:500} :: xmtch, ymtch, zmtch, pmtch,xl1s,
1 yls,zls,pls

Search for matching z-coordinates

j=0

do 50 i=1,nvar

if((z (1) .ge.zlo) .and. {z(i).le.zhi}) then
i=j+1

xmtch () =x(1i)

ymech{j) =y (i)

Coordinate transformation into wing-fixed system

50

xmtch(j):(cos(alphabm)*(x(i)+0.467)+5in(alphabm)*y(i})—0.467
ymtch(j]:-sin(alphabm)*(x(i)+0.467)+cos{alphabm)*y(i)
zmtch (j) =z {i)

pmtch(j}=p(i)

endif

continue

nmtch=7j ! Number of matching data sets found

Sorting the quadrils by rising x

110

100

do 100 j=1,nmtch
sortx=xmtch{j)
idxsor=j

do 110 i=1,nmtch

if {xmtch({i) .1t .sortx} then
gsortx=xmtch (i)
idxsor=i

endif

continue

x1s (i) =xmtch {idxsor)
yls(j) =ymtch{idxsor)
zls{j)=zmtch{idxsor)
pls{j)=pmtch{idxsor)
xmtch {idxsor)=1.e9
continue

end subroutine subsort

Figure A.4: Fortran 90: Subroutine subsort
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Figures of Two-dimensional Flow
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(a) Block topology, total domain

{b) Block topology and boundary layer mesh, medium

(c) Hybrid mesh, medium, total domain

Figure B.1: Hybrid mesh schemes for NACA0012, Re = 7.6 - 10°
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(b) Convergence of forces
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{(a) Free stream
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Figure B.11: Coordinate systems for NACA0020, Re = 8.0 10°
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(a) Mesh around whole profile
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Figure B.12: Hybrid quad grids, NACA0020, Re =8.0 - 10°
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(b) Spalart-Allmnaras

Figure B.13: Prediction of velocity field depending on turbulence modeling, trailing edge of
NACA0020, Re = 8.0- 10°, a = 15°
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(a) Free stream

{b) Wind tunnel

Figure C.1: Block topology, NACA0020, Re = 8.0- 10°
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(a) Tip mesh, whole rudder

1

(b) Tip mesh, trailing edge

Figure C.3: Slices of 3D grid at z = zp, NACA0020, Re = 8.0- 10°
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(b) @ = 10°, front view

(d) & = 20°, front view

Figure C.11: Tip vortex development, NACA0020, Re = 8.0- 10°, k-¢e RNG
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