Ship Science Report 109
Efficient multi-level adaption methods for
unstructured polyhedral computational meshes

A. M. Wright
S. R. Turnock
School of Engineering Sciences, University of Southampton

May 1999

Abstract

The definition of a computational mesh uniquely suited to a given model is a difficult
and time consuming process. Using spatial and flow property quality definitions a
method has been developed to adapt and optimise any given mesh. Through complex
data structures, efficient surface definition and statistical analysis efficient cellular
and interface manipulation routines are initiated. Cellular fission /fusion, nodal con-
vection and interface manipulation are detailed and benefits of the adaption listed.
The development of such techniques into a fully automated grid generation process
is discussed.

Contents

1 Introduction
1.1 Importance of mesh adaption
1.2 Methods and control of adaption

2 Literary review
21 Qontrol of adaption
2.9 Method of adaptiono

3 Grid quality definition
3.1 Error Analysis of Numerical Solution
3.2 FError distribution for current schemeo
3.3 Numerical study of low solver oo
331 Errorinducement o .o e c o e
3.3.2 ErroranalysiSo oo

4 Grid and Data Structure
4.1 Introduction o o i e e e e
4.2 Qeometrical Entities o 0o oo e s
4.3 Mesh Generation v« v o v vt o e e
4.3.1 Structured, unstructured and hybrid meshes
4.3.2 Cell centered and cell vertex schemes
4.4 Data Storage Approach
4.5 Data Structure Implementedo
4.5.1 Arbitrary celltopology
4.5.2 Hybrid memory structure
453 Entity fission and fusiono
4.6 SUIDATY . . .« « v o v e o e e e e e

5 Control volume splitting
5.1 Geometrical Entity Based Approach.
5.2 Geometrical Position Based Approach
5.3 Benefits of position based approach
54 Surface definitiono

6 Control volume merging
6.1 Initial method of merging control volumes
6.2 Influencesandeffects oo

7 Entity stretching and convection
8 Conclusions and future developments

References

14
14
14
15
16
22
22
26
26
31
31
31

34
34
37
40
40

42
42
43

44
47

49

Appendix - Data Structure

il

53

List of Figures

w0 b

o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26

Division of error for mesh size variationl 6
Face definition in local frame of reference 7
Types of facial distortion induced e e 9
Variation in average local error with mesh discretisation for 10% arc

RUIDP .« o v v o o v e e e e e e e e 12

Error in force for NACA 0012 foil at 8° with mesh density variation . 12
Relative importance of geometrical properties for all distorted mesh

SOIUBIONS & » « o v o o v e e e e e e e e e e e e e e 13
The basic geometrical entitieso 15
Physical and computational domains for structured grid topology . . 17
Grid structure for seven block DTMB Model 5415 grid 18
Unstructured grid for DTMB Model 5415 grid - .- 19
A surface and volume hybrid mesh for a turbine blade 21
CHIMERA mesh around NASA Space Shuttle geometry 21
A graphical representation of a stack and a list. 23
An example of a simple’ hash table 24
The representation of a simple tree structure 25
Cellular and control volume based meshes 27
Control volume face definitiono 28
Polygon control volumeo 28
Connectivity of geometricalmesh 29
Data structure of geometrical mesh 32
Tree data structure of flow solution nodes 33
Volumes with unacceptable quality in a mesh around a Wigley hullform 36
Adapted areas of Wigley hullformmesh 36
Volumes with extreme quality in the Wigley hullform mesh after

adaptationo 36
Effect of surface definition upon mesh adaption 41

Node and face definition«o 44

il

1 Introduction

1.1 Importance of mesh adaption

Due to the discrete modelling of physical continuum by computational methods,
there is inevitably some dependence of the solution upon the discrete positioning of
data points used.

The general trend i large scale CFD problems is to use fine grids as much as
possible to resolve physical flow features. Mesh independence is sought via using
finer and finer meshes until the solution no longer changes to any significant amount.
With complex three dimensional flow this can result in massive problems, both
in memory storage requirements and CPU time. This relatively crude method of
gaining mesh independence is due to the fact that meshes are arbitrarily generated,
with only the operators knowledge and experience dictating where points should
be concentrated. This method may also have undetected, underlying geometric
pathologies such as cellular twist that will introduce secondary mesh dependencies,
just as strong as those being removed [1].

Thus it can be reasonably concluded that the user should be removed from the
mesh definition; they should instead be carried out via a form of automated adaptive
process. Recent years have seen a rapid development of such processes, normally
based on some form of a posteriori error [2, 3, 4].

The major advantage of such methods over the arbitrary use of finer meshes is the
saving in resources, principally computational time and memory. With the adaption
of the computational mesh via quantifiably selected criteria, only the areas requiring
refinement are altered. Thus the number of geometrical entities is minimised for a
given solution accuracy, resulting in lower memory storage requirements and lower
CPU usage in the solution phase. In summary, mesh adaptation increases solution
efficiency for a given level of accuracy.

A second reason for the use of mesh adaptation, one that is often overlooked, is
in areas on complex geometry. Boundaries with large curvature in close proximity
of each other often lead to very poor geometrical grid quality. Such a distribution
of mesh points often causes numerical instabilities in the solution. Adaption of
the mesh, to better suit the point distribution to the given geometry, reduces such
instabilities and creates a better behaved solution.

1.2 Methods and control of adaption

The two main methods of grid adaptation in use are stretching and splitting, or
variations of either. The easiest method, stretching, relocates mesh points, clustering
them in areas of high flow gradients. Such methods have been used successfully for
a number of years [5, 6, 7], most often for supersonic applications where accurate
modelling of the shock wave is required. Advantages of this method are the lack of
creation or destruction of geometrical entities while a common problem is excessive

mesh movement, resulting in highly skewed grids.

Cellular splitting to gain greater resolution is more computationally expensive
than relocation of existing entities but avoids creating skew in the mesh. By avoiding
such geometrical issues, accuracy (particularly in viscous applications) is improved
and dissipative errors are reduced [8].

The instigation, and subsequent control, of mesh adaptation is normally achieved
by the use of a flow property gradient weighting function. Control volumes are con-
centrated in areas of high flow gradients, and removed from areas of low gradients.
More complicated and generalised schemes have been divised, such as that by Brack-
bill and Saltzman [9] which incorporates grid smoothness, orthogonality and volume
variation as well as the basic gradient weighting function.

The work presented in this report uses a mixture of methods to instigate the
mesh adaptation, both geometrical and flow solution based. The actual method of
adaption also varies, and is chosen according to the manner in which the geometrical
entity was selected. If flow gradients are too large control volumes will be split, where
as if a face has low planarity, its vertices will be moved to compensate. Thus the
method of adaption will be that best suited to the local problem.

Chapter 2 details previous work in the topic, highlighting problems encountered
and advantages of the various techniques. Chapters 3 and 4 detail the methods
used to control the adaption process and the underlying data structures that allow
the process to occur. Chapters 5 to 7 detail the algorithms used to achieve the
adaption process. Finally Chapter 8 concludes the work achieved and lists a number
of possible future developments.

2 Literary review

It is now commonly recognised that grid adaptation is a manner in which solution ac-
curacy can be improved (10, 11], without recourse to higher order numerical schemes.
Other uses of grid adaptation are to increase efficiency through mesh optimisation;
maintaining the same overall number of control volumes, but re-distributing them
to obtain the best possible solution {1]. The third possible use of grid adaptation is
within a multigrid scheme, where recursive sub-division of cells allows the different
grids to be created.

2.1 Control of adaption

There are three main ways in which a mesh can be adapted; an error estimator
function, geometric limitors or flow solution limitors.

Geometrical limitors have probably been in use for the greatest length of time in
some form. The general techniques used in unstructured mesh generation of advanc-
ing front and Delanay triangulation are geometrically controlled mesh adaptation
[12, 13], Since then more refined techniques have been utilised to increase mesh
quality, incorporating edge lengths, smoothness and domain boundary curvature
[7, 14, 15, 16, 17]. These methods are still relatively basic, being dependant upon
mesh element size in the main. Further developments, incorporating mesh orthog-
onality, are now being promoted by Jacquotte, McRae and Laflin, and Hassan and
Probert [18, Chapters 33-35], and the relative importance of cell alignment and skew
have been commented upon [18, Section 34.6].

The second method of controlling mesh adaption is error estimation. This is
where an estimate is obtained by the difference between the computed solution, con-
stant by element, and a reconstructed linear solution in order to provide a measure
of the grid quality; that is, the ability to correctly represent the flow characteristics.
The concept underlying this process is to have the error constant throughout the
domain, thus minimising the global error of the solution [1]. This method has been
used successfully by a number of parties [3, 4], however the major drawback of these
methods is that they do not correctly take account of the error due to non-uniform
grid spacing [11}. Another problem of this technique is the tendency to produce
isotropic meshes due to the underlying principle of making the length scale of the
elements the same in all directions. This method works satisfactorily for lows pos-
sessing large gradients in all directions, but not for highly directional flow features
such as wakes and vortices [1). Habashi et al {1] have more recently devised an error
estimator that eliminates most of these problems, but as yet only in two dimensions.

By far the most common method of controlling mesh adaption is the assessment
of local flow properties with respect to some predefined limit. Error estimator often
use flow properties to define the error, but not as the primary qualifier. Examples of
this technique most commonly use the local Mach number or density for compressible
flows [19] and pressure or velocity for low Mach number or incompressible flows {20,

21, 22, 23). Parthasarathy and Kallinderis [20, 21] utilise a cell tree data structure to
increase the efficiency of the solver, and allow both cell division and cell merging to
allow increased accuracy without increasing the problem size greatly. The advantage
of using the local flow gradients to control adaption is that it’s an easy to apply and
proven technique, however it can cause the grid to become highly non-uniform and
contain areas of poor geometrical grid quality.

2.2 Method of adaption

There are two key methods in use presently in order to optimise a given mesh; either
refinement of the mesh or redistribution of the mesh. Changing the solution method
to a higher order scheme has been used, but has no significant application in field
solvers for multi-dimensional problems as yet [18, Part IV].

Mesh refinement requires the addition (or removal) of data points locally in
regions of relatively large {or small respectively) error. Problems associated with
this method are increased computer time and storage as well as difficulties with the
data structure. Unstructured meshes are particularly suited to such a method [23].
Tree data structures remove many of the data handling problems [4, 21], and the
basic algorithms used during this operation lend themselves very easily to creating a
multigrid solution to further increase the efficiency of the solution. Cartesian meshes
have also been used successfully for mesh refinement [15], but “the method relies
on being able to cope with exceptions and is therefore more verbose”. In addition,
only two dimensional problems have been presented, which suggests that the level
of complexity of the algorithms required for realistic shapes will be much greater.

The second method of adapting a mesh is the redistribution of the data points.
In this approach points move from areas of relatively low error to areas of large
error, thus aiming for an equal distribution of error throughout the domain. The
most obvious advantages of this system are the ability to maintain the same mesh
connectivity and the lack of requirement to create and destroy entities. It is also
inherently possible to use structured grids, thereby utilising the efficiency of such
methods. Structured mesh adaption has been employed [6, 7, 14, 19] with good
results. An added benefit of this approach is that the grid speed can be mathemati-
cally defined simultaneously with the grid movement, thus increasing CPU efficiency
[19].

From the study of previous publications it has been concluded that both flow
and geometrical quality must be assessed to correctly assess grid quality. A further
conclusion is that mesh refinement and redistribution should be used simultaneously
to optimise the mesh.

3 Grid quality definition

Qualitative and quantitative measurement of the confidence level with which the
results of computational fluid dynamics (CFD) codes can be used has received in-
creasing levels of attention as numerical simulations become more commonly used
and depended upon within the design environment [24](25]. For a numerical simu-
lation to be used effectively and efficiently there must be a high degree of trust in
the quality of a given solution. Sources of error and uncertainty are numerous, but
one of the most commonly identified is that of the geometrical mesh.

To clarify the problem the definition of quality must first of all be stated.
“Quality” is “a distinctive attribute or faculty” or “the relative nature or kind or
character of a thing”, while “quality control” is a system for maintaining standards
.. against the specification” {26]. In this case the object is the discrete mesh, and the
acceptable levels are the accuracy of the final flow solution and the resources required
(be they time, computing facilities or technical ability) to gain that solution. Thus
a linking of the grids physical properties and the flows properties must be created.
From this a direct relationship between the grids physical characteristics and the
flows accuracy can be derived.

The spatial accuracy of a numerical solution is commonly termed the discreti-
sation error. Strictly speaking this term only covers the local truncation error from
the use of discrete piece-wise constant entities in the place of a continuous domain.
In two and three dimensional problems there is another possibility for error, closely
linked to the discretisation error of the numerical model, and often incorporated
within the generic grouping of grid errors. For this work such geometrical devi-
ations from orthogonal and equally spaced control volumes has been termed the
distortion error.

Work carried out by Wright and Turnock [27] has assessed local numerical error
of a solution with respect to the local geometrical dimensions in terms of both dis-
cretisation and distortion error. Underlying discretisation error can be assessed and
removed by a grid dependency study, as suggested by Eca and Hoekstra [28],leaving
the distorting effect of the various geometrical properties. Polynomial curve fitting
or least squares error fitting can then be applied to link generic geometric trends to
the error estimation. This method has been applied to the flow solver described by
Wright and Turnock [29].

3.1 Error Analysis of Numerical Solution

In a one dimensional problem there are three distinct levels of error between the
physical reality and the numerical solution; the neglecting of physical parameters;
the error incurred in the representation of the physical world by a mathematical
equation; and the error of representing a continuous domain by a discrete numerical
mesh [30]. The order of accuracy of any scheme, both temporally and spatially,
can be defined from truncation error analysis, and the stability via Von Neumann

analysis or a similar method. This provides a discretisation error in terms of an
order of Az and At. Figure 1 graphically illustrates this breakdown of the error
into modelling assumptions and mis-representations, discretisation error and the
distortion error. As the grid becomes coarser the discretisation error increases and
so also can the distortion error. It must be noted that as with coarser meshes the
discretisation error will increase, but the distortion error may not, depending as
it does upon properties that are non-dimensional, and hence not dependant upon
cellular size. The current work deals only with a first order Euler code, but this
should work as an advantage, highlighting the effects of grid distortion that can
cause problems in higher order viscous solvers.

A

Discretisation
error

Error in solution

3 €ITor

= h.
hy

Figure 1: Division of error for mesh size variation

The dependence of a solution upon the discrete mesh has been further observed
and quantified, via forms of the Richardson extrapolation, as well as general dis-
cussion of the definitions of error and verification, by Stern et al [31} and Ega and
Hoekstra [28].As noted at the beginning of this Chapter, as well as this error due to
the use of discrete entities, the lack of orthogonality and planarity within the mesh
inserts another source of error. The majority of research concerning the topic of grid
quality has tended to be of a qualitative nature, rather than a quantitative nature,
and in total the topic has been given little theoretical definition.

2AE - AG -

2An

Figure 2: Face definition in local frame of reference

3.2 Error distribution for current scheme

The numerical scheme used in this work is an explicit upwinding scheme using
artificial compressibility on arbitrary shaped finite volumes. The control volumes
are m-faced, node centred polygons, and the faces are n-edged surfaces, defined
by triangular segments. Figures 17 and 18 shows a representation of the faces and
control volumes. More details about the scheme can be found in Wright and Turnock
[29].

By separating the computational algorithm into its individual procedures a dis-
cretisation error for the numerical model and a distortion error for the geometrical
entities involved can be determined. Table 1 lists the procedures in the algorithm,
and the numerical discretisation and geometrical distortion errors. Figure 2 details
the local frame of reference used for this analysis.

10119 UOIHIOISIP Pu® UOIJRSIRISIP JO Wmop Yealq T J[qEL

v3Es 0 A%U3¥0 mw s = 80V ADY 0 ﬁwa 7+ %20 =120 2J®]S 0} [BNPISAI UING
4U3V3 30 V3 (V)0 © 2 EQEO g =117 dagys swurg fedo]
¥3%5 30 ¥ 4, HW.H . Ay, _Jl.mw ﬁ”nw.ﬁ = ADYy [enpIsar AD
&Mwuomrth .umw uoam_w_umu x 43 (z7)0 0 2 A_Mbl_ﬁ._vmwzﬁﬂx+@bmum.% Xnp 20%]
ﬁn.rﬂbh\z x 93 - .Emu.%.m =y
IVLT + VIV 073 - My U K=y UOLEST}RIOSIP UTRTO(
0 - PP X = A0p
10110 10119

o1HI03s1(] WOLYeS[}RIISI(] uoryelado [eOIFRWSY IR uorjerodo wyyLIody

Figure 3: Types of facial distortion created to induce distortion errors in solution

3.3 Numerical study of flow solver
3.3.1 Error inducement

Discretisation errors and a number of distortion errors are present in any grid by
definition, but to analyse them in depth a range of values have to be obtained for
the same problem. A range of discretisation errors for both case studies {a 10% arc
hump in a channel and a NACA0012 foil at 8° angle of attack) were created by the
use of a range of mesh densities.

Distortion errors however have not been varied in the modelling and hence require
inducement and study. Three forms of distortion error have been devised that shall
be applied to the ‘base’ meshes used and for the discretisation error analysis. These
three types of movement are shown in Figure 3 and can be defined as:

Planar movement of the central node on a face The central node on a face
is moved in the direction of the face normal, thus increasing deviation from
planarity, altering face area and altering cell volume. Other face properties
will be altered to a minimal extent.

Misalignment of face normal with node to node vector All the nodes-on the
face are moved in a planar manner pivoting on the central node of the face.
Thus the face normal will change, and deviated further from the node to node
vector. All other face properties will have minimal variation, although faces
using the same nodes will move the said node in different directions, hence
causing a greater range of facial properties than initially desired.

Asymmetrical misalignment of face normal with node to node vector All
the nodes except the centre node on the face are moved, in the same direction,
in the plane of the face. This produces a ‘V’ shaped face. As a result the face
deviates from planarity as well as having the face skew altered. facial area and
cellular volume will also be affected.

3.3.2 Error analysis

The local error for each solution defined was calculated as the error in the pressure
value for each node of the mesh when compared to the pressure obtained for the
finest mesh . The average local error of the solution was therefore deemed to be the
average of this local pressure error. A global measure of error was deemed to be the
force upon a wall boundary of interest (the hump itself and the aerofoil for the two
respective case studies). The forces obtained were compared to the validation data,
and the error was deemed to be the difference.

The flow gradients of a given point were determined to be the average difference
of the flow properties at the point and the surrounding control volumes. Thus
average flow gradients could also be defined for a given mesh. Facial properties
were calculated for all faces of a mesh, and the average, maximum, minimum and
standard deviation for the mesh were determined.

In order to determine what relationship (if any) there is between a given param-
eter and the flow solution accuracy two methods of analysis were used. The average
error for a given solution was compared to the relevant solution flow gradients and
mesh geometrical properties on a global basis graphically. This highlighted overall
trends. The second method was to perform a least squares fit between the local error
and the local property, be it flow gradient or geometrical distortion). This second
method allows a comparison between local and global solutions, as well as creating
a template of the relative dependence of the solution upon the chosen parameters.
The additional use of the least squares fit is that any given solution will have a
combination of sources of error, hence a global analysis of the properties in isolation
will not provide the true relationship.

In an attempt to separate the error due to geometrical parameters from the
discretisation error, the ‘base’ solution error for each mesh density was removed from
the solution error of the distorted mesh leaving the error due to distortion. Where
average local errors for such meshes are listed it is the average of this difference in
erTors.

€EMESH — |EDISCRETISATION| + |EDISTORTION| (1)

Figure 4 shows that the local error in the mesh varies linearly with mesh dis-
cretisation, as would be expected of a first order spatial discretisation code. The
values ’tail off’ towards lower H, /H; values because the error results are taken with
respect to a finite solution (H,/H; = 1).

Figure 5 shows the convergence characteristics of the flow code for increased mesh
density, and indicates the necessity of a mesh dependence study to gain trustworthy
results as well as the variation of results with a mesh of the same density but
varying distortion. While the levels of distortion induced in these meshes was high,
it is evident that mesh distortion has a large influence upon the solutions accuracy.
Hence a purely mesh density based convergence study is insufficient to produce
results of high quality and repeatability.

10

Finally, the least squares fit presented in Figure 6, strongly suggests that facial
skew is by far the most important parameter to consider when reviewing solution
error for both irrotational and rotational flows. Facial aspect ratio and misalignment
of the face normal both vary with the mesh density, but the level of variance is only
apparent for aspect ratio at higher mesh densities. Facial deviation from planarity
has been defined as of much less importance for the hump flow than for the rotational
flow around the foil.

The numerical tests carried out have led to the conclusions that :

e pressure gradients alone provide a suitable definition of flow gradients, and are
more sensitive to solution error that velocity gradients;

¢ geometrical parameters do have a marked effect upon solution accuracy, more
5o at higher mesh densities;

e of the four geometrical parameters tested skew is the most important, with
aspect ratios, misalignment of normals and deviation from planarity being
influential in that order.

11

Average error at data points

1] 2 4 8 a Ul 12 14
Mesh size (H1/Hi)

Figure 4: Variation in average local error with mesh discretisation for 10% arc hump

0.3 5
0.25
0.2
0.15

0.1 4

0.05

HitH1

Figure 5: Error in force for NACA 0012 foil at 8° with mesh density variation

12

G "‘ M
i
TR - - D

s‘I REREN-— | [R
1|
Bl] B J

4
i
!

Coeflicient of | .

proportionality 3-

P / Hump, 18 x 5, 30%

Hump, 18 x 5, 45%

Mesh family
/ Hump, 118 x 30, 30%

: ‘ / NACA 0012, 343 x 25, 30%
Aspect ratio VT L
Misalignment i
of normal Deviation trem
Geometrical propernty planarity

Figure 6: Relative importance of geometrical properties for all distorted mesh solu-
tions

13

4 Grid and Data Structure

4.1 Introduction

As stated in Chapter 1 the physical domain must be discretised into finite volumes
to allow a computational solution to be derived. It has been decided that arbitrar-
ily shaped and sized control volumes will be the most efficient in the modelling of
complex marine structures hence an unstructured meshing approach is to be used.
In addition, the arbitrary nature of the entity topology and the allowance for adap-
tation requires a flexible and robust connectivity of the basic geometrical entities.
The fast and efficient searching of the grid relies heavily upon the underlying data
structure within which the geometrical entities are stored. Previous work {Rycroft
[10]) created a complete connectivity data structure and investigated manners of
improving efficiency of data storage, and it it this work that has been used as a
starting point. Topics investigated are which geometrical entities are required to be
defined, what level of connectivity is required between these entities and the manner
in which they are stored.

4.2 Geometrical Entities

The discretisation of the physical domain into a grid is a geometric transformation.
The methods used and the solutions obtained are entirely geometrical entities, thus
any measurement of this grid must be in terms of geometric definitions. The base
entities of a mesh, in order of hierarchy, are nodes, edges, faces and cells. That is,
the most basic entity is a node. A series of nodes together can create edges; a series
of edges defines a face; and a series of faces defines a cell. Figure 7 shows these four
entities Solutions are limited to a finite volume of space whose extents are defined
by specified bounding surfaces. It is within these surfaces that the grid needs to be
created.

The majority of CFD solvers operate from a Eulerian point of view (fixed co-
ordinate system with fluid moving through it), but a number operate within a La-
grangian framework (volume moving with the fluid) or a joint Lagrangian-Eulerian
scheme!. The result of such schemes is a velocity associated with the mesh entities.

liermed ALE - Arbitrary Lagrangian Eulerian

14

node face
@

edge

cell

Figure 7: The basic geometrical entities

It is important to note that for a numerical solution to be obtained the mesh
must adhere to the Global Conservation Law (GCL), which states that -

%/VdV:]SWSdS (2)

V - cell volume W - boundary velocity S - cell face area

This can be broken into two separate aspects, volume conservation and surface
area conservation. The volume conservation law (VCL) requires that the volumetric
increment of a moving cell must be equal to the sum of the changes along the
surfaces that enclose the volume, while the surface conservation law (SCL) states
that the cell volume must be closed by its surfaces. Contravention of the surface
conservation law will lead to a misrepresentation of the convective velocities and
numerical violation of the volume conservation will produce extra sources or sinks
in the physical media (Hindman [2], Demirdzic & Peri¢ [32]). Such violations of the
GCL place severe restrictions on the numerical solver.

4.3 Mesh Generation

When CFD began to be a recognised field of computational science a quarter of
a century ago it was expected that grid generation would be a “solved” problem,
with standardised solutions. However, the fact is that grid generation is a major
pacing item in regard to the widespread use of CFD in design applications [33).
Cosner in 1995 noted that “ a satisfactory grid can be developed to model nearly
any configuration of interest. The issues at present focus on operational concerns
such as ... quality” {34].

15

Traditional approaches to mesh generation, suitable for the application of finite
difference techniques, have focused on the generation of hexahedral meshes meshes
which conform to a transformation between Cartesian and Curvilinear co-ordinate
systems.

The adoption of the finite volume and element methods have permitted tetra-
hedral, and more generally, polyhedral meshes to be utilised. The advantages of
such methods are the greater fiexibility that the mesh generation processes provide
over traditional techniques, and the increased automation that may be installed. In
addition, such unstructured meshes are intrinsically adaptive, a feature which has
been subsequently exploited to dynamically manipulate the mesh throughout the
solution process.

Recent advances in the construction of unstructured meshes, motivated by in-
creased geometrical flexibility and viscous fiow resolution, have lead towards hybrid
meshes, constructed using more than one cell topology .

4.3.1 Structured, unstructured and hybrid meshes

Structured Meshes Meshes in which the connectivity between geometrical entities
is implicit are termed structured meshes. This implicit connectivity is generated
by the direct transformation from the physical Cartesian domain (z,¥, z) and the
computational domain(é, j, k). The two main groups of meshes belonging to this
family are Cartesian and structured meshes.

Cartesian meshes are constructed directly in the physical space, with vertices
aligned with the Cartesian axes. The geometrics are identical for all cells, and do
not have to be discretely evaluated for each vertex, hence alleviating the need to
store co-ordinate data whilst permitting efficient solver algorithms. This method can
be expanded for complex geometries using a cut-cell approach, where the geometry
is superimposed on a Cartesian mesh. Cells intersecting the solid boundary are cut
and the region inside the geometry discarded. Clark et at [35] and Quirk [15] have
demonstrated the ability of this technique to accurately model flow over complex
shapes.

Structured meshes are produced by a transformation between the physical do-
main, described by Cartesian co-ordinates (z,y,z) and a computational domain,
described by the generalised curvi-linear co-ordinates (£, 7, (), where the boundaries
of both domains coincide. The transformation allows the introduction of localised
mesh clustering, such that the cells are non-regular in shape and orientation. This
in turn requires that vertex co-ordinate information is stored. The connectivity of
the mesh is however maintained uniformly. There are three basic topologies allowed
in such meshes; the ‘C’, ‘H’ and ‘O’ meshes. The type of mesh that conforms most
accurately with the physical domain tends to produce the best quality mesh. Figure
8 shows these meshes for the physical domain of an aerofoil.

The use of a singular transformation for complex, multi-object physical domains
result in unsatisfactory physical meshes typically containing highly skewed cells.

16

Physical domain ~ Computational domain
D c
— b
C
. A B
C Grid
Aerofoil surface
o \
A
A B
‘O Grid
D (o] D C
[PR
A A B
‘H* Grid

Figure 8: Physical and computational domains for structured grid topology

This considerably limits the complexity of the physical domain for which this method
may be used. The multi-block approach extends the structured method by decom-
posing the domain into a series of sub-domains, termed ‘blocks’. A structured mesh
can then be generated within each of these blocks in isolation, conforming to lo-
cal constraints only. The union of the blocks is not constrained by the physical
to computational domain transformation, but does require additional connectivity
constrains. Complex geometries can be modelled by decomposition and local mesh-
ing in this manner. An example of this is the work of Beddhu et al [36], which is
reproduced in Figure 9. The high quality mesh on the hull surface can clearly be
seen, but this density of mesh points upon the surface leads to an excess of data
points in the far field.

The union of the blocks in the flow solver may be achieved in one two ways.
The first is to ensure mesh consistence on the block faces, while the second does not
require mesh compatibility, but instead relies upon interpolation routines to com-
municate information between blocks. Smoothness across the block boundaries is
often a major hindrance upon overall grid quality. An increasingly popular solution
to this is to allow the blocks to overlap, and hence use the numerical interpolation

17

Figure 9: Grid structure for seven block DTMB Model 5415 grid. Reproduced with
permission from [36] Copyright ©1998 The Author

method of information transfer. Lin et al [37] and Masuko [38] are two examples of
the use of this method to model complex marine geometries. The drawback of such
methods is the presence of redundant data points and the complex interpolation
required between points if more than two meshes overlap at a give position [37].
A further alternative to these meshes are octree meshes where the initial mesh is

18

subdivided, in a binary fashion in the vacinity of interesting flow features. Such
methods do capture flow features more accurately while retaining a degree of the
efficiency and low memory requirements of structured meshes. However the user Is
still limited by the manner in which extra data points are added and the inclusion
of hanging nodes {18, Chp 21].

Unstructured Meshes

In unstructured meshes there is no implicit knowledge of the mesh connectivity.
The connectivity between geometrical entities is required to be explicit, resulting
in an increase of required memory and lowering in efficiency of data management.
These additional costs are balanced by a vast improvement in the flexibility of the
mesh and its ability to adapt. As a comparison to Figure 9, an unstructured mesh
for the same hull form is shown in Figure 10, again reprinted with permission (39].
The total number of elements in the mesh is approximately a third that that of the

;’A‘ !.r‘;‘i &)

A"A‘Pi AR
'Av“‘ i/ Q‘%‘%}?\r YRV
R
CRORVUARRER
VA

il
o

1
2
fi

T i
oL
e .

]

1
|

-
o
e’ LS

]

o’
S

e~

-~
o
e
< H

-

=
=1

AKNAR
"‘“’Avg‘ﬁﬁﬂ%i‘ﬂﬂimrﬁ;i‘
\/ W
_ N F it

AR

WY
VAN
Figure 10: Unstructured grid for DTMB Model 5415 grid. Reproduced with per-
mission from (39] Copyright ©1998 The Author

Unstructured meshes have become synonymous with triangular and tetrahedral
control volumes since their introduction. However, as the only definition of an
unstructured mesh is the lack of implicit connectivity, any topology of control volume
can be used.

The forms of creating tetrahedral unstructured meshes are amply detailed else-
where (see Rycroft [10]), and hence will not be discussed in this work.

The extra computational cost of the unstructured approach, as previously stated,
is present in two forms. Firstly there is the extra storage required for the explicit
connectivity between control volumes and geometrical entities, which is normally
achieved using matrices describing the mapping of a particular cell topology to its
vertices. Each matrix is thus a list of nodal identities or, vice-versa, a list of cells

19

to which a vertex is connected. The additional memory cost can therefore be taken
as the cost of these matrices. The ‘real’ cost however is much harder to clearly
define, and is to be expected to be smaller. The use of tetrahedral meshes, and
unstructured meshes in general, permits a much more efficient placement of points,
and will normally attain the same solution resolution for a lot fewer control volumes
or a higher resolution for the same solution degrees of freedom.

The second disadvantage of unstructured meshes is the increased data place-
ment/retrieval time, due to non-direct memory addressing (e.g. operating on a
vertex via the surrounding faces) and poor cache use. The inefficient cache use re-
sults from non-contiguous memory storage and non-optimisation of the algorithm
with respect to the hardware. In comparison, structured data is arranged in a man-
ner which can be exploited to maximise the efficiency of cache usage by grouping
the entities that will be accessed simultaneously.

An additional problem, with is often overlooked, concerns the solver implemen-
tation. The correct implementation of higher order algorithms requires an expansion
of the numerical stencil. The connectivity of a structured approach permits an easy
and natural extension of the present stencil. Such a stencil may not naturally be
switched to an unstructured mesh for which local interpolations are necessary, as a
rule, to reconstruct the technique. The data structure must accommodate searching
within the mesh such that adjacent geometrical entities may be identified at low
computational cost.

The final difficulty incurred with tetrahedral based volumes occurs in viscous
problems. Highly stretched cells are required to gain accurate resolution of the
viscous terms but the generation of such volumes is not easily attained. Indeed,
Aftosmis et al [40] state that there is no improvement in solution accuracy using
stretched triangulations over hexahedral elements and thus offer a much reduced
efficiency. The natural development from this is the use of hexahedral volumes in
areas of viscous flow and tetrahedra in the outer domain; a hybrid mesh.

Hybrid Meshes

Hybrid meshes are a sub-set of unstructured meshes and are defined through the
use of more than one cell topology. The use of mixed cell topology can improve
efficiency as a result of utilising cells with a sparser connectivity matrices compared
to tetrahedra and/or to optimise the cell topology with the low domain, as described
above. An example of type of mesh that can be created using such a method is shown
in Figure 11.

Weatherill [41] uses a combination of quadrilaterals and triangles to generate
meshes over complex 2D shapes. Unstructured ‘micro-blocks’ were either inserted
in areas of poor grid quality or structured blocks were embedded in to the global
mesh. Shaw and Peace [42] developed this approach for three dimensions, intro-
ducing pyramid volumes at the interface of hexahedra and tetrahedra. Sharov and
Nakahashi [43] use a tetrahedral background mesh as a basis for marching a trian-
gular front away from the structured mesh surfaces. The intersections of the two
regions are evaluated to form a non-overlapping mesh. Nakahashi and Kano, in a

20

more recent paper [44], have developed this method further by incorporating mesh
adaptation, using local gas density as the adaption criterion.

There is a form of crossover with multi-block meshes in hybrid meshes, with
separate areas utilising the most appropriate local gridding technique, and connect-
ing with other blocks at set boundaries. As with standard multi-block meshes,
over-lapping blocks can be used. An example of this is the work by Gomez [45]
on the modelling of the NASA space shuttle. Figure 12 illustrates the mesh that
Gomez created. As before though, costly interpolation routines are required in the
over-lapping regions.

Figure 11: A surface and volume hybrid mesh for a turbine blade. Reproduced with
permission from [18], Copyright ©1999 CRC Press

P tEHAN LMY il
oA T T T m

1L

[

Tt

At i
ViTd Pl
1 JI’_;I"{'TJ'[EI i!l [EENE H : I§
il ' i : i]
e : H}‘.,’.{i:'iﬁ'}“,} u| TR
'-rv-rE{._'f:- = :
; =
] /_— " - Fe o £
It " T— =
E oA g P
= Gt o F—
4 l”l T ;1~|-;T}~ﬁ ~ 11 M} '.”!z‘
%_L; T!"H“‘H‘T‘L!'rl:[{-.- 1 o R AR
MATER [EREWREEINE] il |i' 1l
ST l:]] 1] T <1|iL
JLE TR TR BARS 1L [__.j’fTL“_-l_‘ X

Figure 12: CHIMERA mesh around NASA Space Shuttle geometry. Reproduced
with permission from [45], Copyright ©1994 ATAA

21

4.3.2 Cell centered and cell vertex schemes

The most commonly used method of mesh generation is to store the state vector
information at the cell centre, as no extra geometrical construction and calculations
are required. The main disadvantage of such methods is that boundary conditions
require an extrapolation of the variables onto the boundary face. This causes an
extra computational cost and, more importantly, in areas of high flow gradients the
interpolation can introduce numerical inaccuracies.

When the flow variables are stored at the vertices of the mesh a larger flexibility of
control volume shape is possible; cells surrounding the vertex may be amalgamated,
creating overlapping control volumes, or a dual mesh can be created on top of the
original mesh. The second option is currently a more common approach (Rycroft
[10]). One of the advantages of the cell vertex approach is the accuracy with which
boundary condition values can be defined, due to the positioning of vertices on
the boundaries. A second advantage stems from the fact that loss of accuracy due
to skewed cells is higher for cell centred schemes than cell vertex schemes [46][47].
The derived conclusion of this is that non-uniform meshes would benefit from a cell
vertex scheme (Rycroft [10], page 58).

As accurate surface pressures are of prime importance in marine applications
(free surface deformation and hull resistance for example) and taking into account
the requirement of adaptable and robust meshes a cell vertex scheme has been
chosen in this work. This scheme will operate upon unstructured arbitrary control
volumes; that is each control volume will have an arbitrary number of faces and
be identified in an unstructured manner. Further details of this method of control
volume definition are detailed by Rycroft [10].

4.4 Data Storage Approach

The term date structure defines the relationships between the data items used by
the computer program - in this case the geometrical entities. The algorithm of the
program requires a variety of operations to be executed upon these entities and hence
the manner in which their storage is organised will greatly influence the efficiency
of the computer code as a whole. The decision to use a certain type of organisation
of data structure depends upon many factors but the most relevant are the type
of operations that are to be performed upon the data and the amount of computer
memory which is available [18, Chp 14].

There are essentially two forms of data storage; sequentially stored stacks or
linked lists where arbitrary sections of memory are joined by the storage of the
memory position of the following record. These two forms of storage can be used
to create linear lists, hash tables and tree structures. A graphical representation of
these two structures can be seen in Figure 13.

Stacks are one dimensional arrays of contiguous memory, and can be used to
associate data with a given index in a similar manner as the implicit location of

22

start

start ——=

end—

max

end

9

null

Figure 13: A graphical representation of a stack and linked list memory structure

data within a structured mesh. Stacks are however limited to one dimension and
can hence only be used to describe the information in a one dimensional list, such
as those of nodes. Links between separate stacks can be generated by storing the
stack indices of relevant geometrical entities. For example a face entity may store
the stack indices of the nodes that define its limits, thus allowing nodal data to be
accessed via the face. The number of stacks and the type of inter-links is clearly
prescribed by the type of data structure employed. Stacks store elements in a
contiguous memory location which lends itself to efficient memory cache use. The
main disadvantage of stacks is that they can not be manipulated easily, requiring a
global reset if the number of records exceeds the stack size. Stacks can be created
oversized, thus allowing growth and reduction in the number of records, but this
does create unused space, hence the range of allowable ratios of actual array size to
maximum array size tend to be critical. There is also the unavoidable global reset
of the list of records at some time in the process.

Linked lists are individual locations in memory which are linked, linearly or
non-linearly, by memory pointers. Each link in the list is treated individually, hence
the order of storage can be manipulated and individual links can be removed and
added. These manipulation operators can be achieved without changing the mem-
ory storage locations, the pointers are merely re-arranged. The clear advantage to
this system is its adaptability and ease and speed of manipulation. A disadvan-
tage is the inherent non-contiguous nature of the storage which often leads to a
reduction in the efficiency of cache management. In addition, if distributed memory
architectures are being considered, the complexity of partitioning the data structure
is substantially increased [10]. A third disadvantage, notable for large problems, is
that more memory space per record is required due to the memory address inclusion.

23

Figure 14: An example of a simple hash table, storing node ID connected to a
triangular element

The final disadvantage, and with the most serious implications for overall algorithm
efficiency, is that when global searches are initiated members of the list cannot be
accessed directly; the operator is required to trace a path through the entire list,
greatly reducing efficiency. This final consideration is often negated by the fact that
direct addressing is not needed in many practical applications.[18, Chp 14].

These two forms of storage can be used to create linear lists, hash tables or tree
structures. Linear lists are just that; one dimensional lists of data, most often in the
form of a stack. Hash tables allow searching to be efficiently accomplished upon a
list of data. For each given record the relevant entry in the table will contain all the
entities that meet the appropriate criterion. For example, on a two dimensional mesh
containing triangular elements, a hash table could be created that lists the nodes
on a faces, with the indexing value being the node with the lowest (numerical) ID.
The entry in the table will be the node ID, and the faces connected to that element
where it is the lowest ID would be listed in some manner, as shown in Figure 14.
There are many different forms and levels of complexity of such tables, and can be
made highly specific to a given situation, using both sequential stacks and linked
lists.

Tree structures are better suited for simple searches to ensure that an entity
exists and range searches to find all data with set limits. A tree is a finite set whose
elements are called nodes. The root node is the node from which all others can
be accessed, and a leaf node is one without any further sub-divisions. Figure 15
demonstrates such a structure. Binary trees are ones where each node is linked at
most to two branches, and are the most commonly used, but are by no means the
only type. A node may have as many branches as it requires; quadtrees have four
branches and octrees eight. These structures are often employed for two and three
dimensional decomposition of a domain. A tree can be created via the use of linked
lists or, in the case of an ordered tree, a stack. A binary tree will be equivalent to
a doubly linked list, with pointers to the children. It should be noted however that
pointers to parents can be employed equally as easily - the only disadvantage is the
extra memory storage requirements.

Tdeally for the final data structure used, a balance is sought which maintains the

24

Figure 15: The representation of a simple tree structure

versatility of the dynamic allocation found in linked lists with the efficiency of data
handling attained with stacks. Linear lists provide easily handled and retrieved data
lists, while hash tables and tree structures allow searches to be efficient, as well as
rapid sorting of the data. The case shown in Figure 14 shall be taken as an example.
If N is the total number of nodes in the mesh, F the number of faces, and R the
total number of records listed then -

e Memory requirements = NP + F(PTR + 2INT)
e Operations for search = O(1 + R/N)

e Operations for adding record = O(1)

where PTR and INT are the memory requirements for a pointer and integer
respectively. The average value of (R/N) is generally small - = 6 for a two dimen-
sional mesh. If the data was stored in an array however, with F entries, each of
which contain the three nodes that define the face, then -

e Memory requirements = F(3INT)
¢ Operations for search = O(3F)

e Operations for adding record = O(F)

For a linked list of the same structure as the array then the memory requirements
would increase to F(3INT + PTR) while the number of operations required for
adding a record would drop to O(1).

The hash table demonstrated is clearly more efficient at retrieving the correct
data but it is dedicated to only one type of search. Mode complex hash trees can have
increased generality and thus allow a greater number of searches to be undertaken,
but at the price of increased memory requirements.

25

4.5 Data Structure Implemented

The data structure implemented was developed from previous work within the
Fluid Structural Interaction Research Group at the University of Southampton (see
Rycroft [10], Turnock and Rycroft [48]). A cell vertex scheme has been utilised be-
cause of the increased accuracy in surface pressure modelling, as well as the fact that
non-uniform meshes benefit from a cell vertex scheme [10, page 58]. The previous
scheme has been proven to work for hybrid meshes of arbitrary topology but the
memory overhead was high (~ .600% with respect to a structured hexahedra mesh)
and parts of the data structure were redundant for large sections of the computa-
tional process. The level of geometrical information, the nature of the mesh, the
mesh connectivity and the nature of storage within the computer architecture have
all been considered in a drive to improve the efficiency of the structure.

4.5.1 Arbitrary cell topology

Mesh adaption, as required if an optimal grid is to be developed during the solution
phase, is one of the main drivers in the use of unstructured data types, and is often
intrinsic in the data structure used. Unfortunately the use of hybrid meshes, with
mixed cell topologies reduces the adaptive capabilities of the approach. Weatherill
[41), as well as Shaw and Peace [42], explicitly define a limited number of control
volume topologies for which their algorithms will operate successfully. This clearly
limits the adaption process such that adjacent cells conform to a set connectiv-
ity matrix. A significant problem, particularly for cell centred schemes, is that of
‘hanging nodes’. If a hexahedra and pyramid are adjacent to each other and the
hexahedra is split into eight smaller hexahedra, then there is a ‘hanging node’ on
the interface. This presents a disjoint in the mesh, where one control volume on
an interface uses the node, but the other does not. Fluxes evaluated on the four
adapted quadrilateral faces are not intrinsically equal to the flux through the base
of the pyramid, and this may lead to a lack of conservation.

Ideally a data structure should be able to process control volumes, regardless of
their topology. Rycroft [10] used the full range of geometrical entities, with complete
sequential connectivity between them. Because of this complete connectivity, the
ordering of individual elements by another entity was not important. As specified
previously 4.2 there are four basic entities from which a mesh is created - nodes,
edges, faces and cells - hence there were links from nodes to edges, from edges to
nodes and faces, from faces to edges and cells and from cells to faces.

Tt should be reiterated that the cells are not the control volumes used in the
solver, due to Rycroft’s use of a node centred scheme, rather they are the cells of
the initial mesh. The control volumes are created from the overlying node centred
dual mesh, as shown in Figure 16. It can therefore be observed that the cells are gen-
erally redundant during the solution phase, used only for overall connectivity. The
flow solver devised by Rycroft operated in an edge based algorithm, passing fluxes
between nodes, the edges of the cell centred mesh defining the interface between

26

Cell

Node based
contrel volume

Figure 16: Cellular mesh, with over lying node-centered control volume mesh

node based control volumes.

Entity definition For the present work it was decided to operate purely with
the overlying dual mesh. This decision was made because no justifiable benefit of
the cell centred mesh could be established. As a results, the interfaces of the control
volumes are actual faces of the mesh. Therefore it was decided that the flow solver
would operate using an face based algorithm.

With the use of pointers to the nodes lying either side of the face, as well as node
to node pointers edges have been made entirely redundant. The use of node to node
pointers also allows complete mesh connectivity, and the face to node pointers allow
spatial magnitudes to be defined. These two factors also result in cellular definition
to be superfluous. Hence the scheme devised has negated the requirement for edge
and cell definition. The only connectivity required is face to node and node to node.

Due to the unstructured nature of the data, and the arbitrary polyhedral shaping
of each control volume the algorithm utilises triangular faces (henceforth termed
subfaces) the union of which defines the faces of the control volume, as shown in
Figure 17. The face area is a summation of the triangular segment areas and the
facial normal is an area weighted average of the segment normals. This allows all
geometrical properties to be calculated and the flux terms to be evaluated.

From these faces control volumes can be created, with the Global Conservation
Law of surface area conservation being implicitly adhered to. The volume of the cells
can be calculated from the triangular face segments, in an extension of the facial area
calculation. Each triangular segment is defined as the base of a tetrahedron, with
the apex being the control volume data point (i.e. the grid node). The summation
of the volumes of these tetrahedra equals the volume of the cell. Figure 17 shows
the planar area of a triangular segment and the volume subtended to it from one of
the grid nodes adjacent to the face. It should be noted that this triangular segment
subtends the grid node on the other side of the face, and hence a tetrahedral volume

27

Figure 17

Figure 18: Polygon control volume

will have to be calculated for it as well.

If the mesh is constructed from a range of topologies there is no limit on the
number of faces connected to a given vertex. Thus the control volumes associated
with such a mesh may be complex polygons, as shown in Figure 18.

Mesh connectivity Because a cell vertex scheme has been chosen, the flux
to/from a control volume requires that the face know which control volumes it is
attached to.

To allow the construction of the face, and the calculations of areas and volumes,
the faces have a connection to the ‘construction’ nodes that define the limits of the
face. These construction nodes are in the position of cell and facial centres of the
initial mesh. Figure 19 details all these connections graphically.

The construction nodes in turn require connection to the grid nodes (hence forth
termed ow nodes) to allow correct interpolation of flow properties at boundaries but
more importantly to aid the local remeshing process, and the subsequent realloca-
tion of entity connections. In conjunction with this the flow nodes have connections
to adjacent flow nodes to ensure the geometrical Global Conservation Law is main-

28

tained throughout mesh adaptation as well as aiding the efficiency of the remesh
procedures.

- Flow solver node — onstruction node ®~ Face

Figure 19: Connectivity of geometrical mesh

If the mesh were to be stationary and not subject to re-meshing during the
solution then the node to node connections (including the construction node to
node connections) can be removed. This would leave only face to node pointers
defining the entire mesh connectivity.

Additional benefits of this structure are principally the ability to conduct a
number of global searches efficiently without extra hash tables being created. Other
benefits are the allowance for storage of extra information such as local geometrical
properties and the reduced logic requirements for implementing boundary conditions
due to the explicit inclusion of the face entity.

The in-house mesh generator FLEXIMESH, detailed in Ship Science Report 101,
[49] and by Rycroft [10] was altered to produce files of correct format in both ASCII
and binary format. Machine portable binary files were not generated due to the
developmental nature of the code and the relatively limited number of architectures
that the code was tested upon.

Memory requirements As an example to compare the varying levels of mem-
ory required by different approaches a structured mesh of hexahedra with N 3 points
shall be used. As before , PTR signifies the memory requirement of a pointer, INT

29

the memory space of an integer and FLT the memory for a float. The memory cost
of all three types is normally identical.

Structured mesh The only data requiring storage are the spatial co-ordinates of
the data points -

MEMORY = 3N3FLT

Unstructured hexahedra mesh In addition to the data point co-ordinates the
cell to node connectivity is also required -

MEMORY = 3N3FLT + 8(N — 1)*PTR
OVERHEAD = 8(N — 1)*PTR

Rycroft’s arbitrary topology mesh The complete connectivity list devised would
require each cell to list six faces, each one of those faces upon the cell to list
four edges and those edges to list two nodes (hence 6 x 4 x 2 connections)-

MEMORY = 3N3FLT + 48(N — 1)*PTR
OVERHEAD = 48(N — 1)3PTR
— 600% of standard unstructured mesh

New arbitrary topology mesh Because this mesh operates upon node centred
control volumes the equivalent mesh was deemed to be one with
(N — 1)% control volumes; this specifies ¥ 3 construction nodes and (N — 1)
flow solver nodes. Fach face will list six nodes (four construction nodes and
two flow solver nodes), each construction node will list the surrounding flow
solver nodes (eight construction nodes per control volume) and each flow solver
node will list the surrounding flow solver nodes. In addition to this the spatial
co-ordinates of the flow solver nodes will also be required -

MEMORY = (3N® + 3(N - 13 FLT
4 (6-3N(N ~1)2 + 8(N — 1)* +2- 3(N — 2)(N — 1)*)PTR
OVERHEAD = 3(N — 1)*FLT
+ (18N(N — 1) +8(N — 17 +6(N — 1)2(N - 2))PTR
~ 437.5% of standard unstructured mesh

While there is still a substantial memory overhead compared to a purely struc-
tured mesh ,~ 1167% assuming floats and pointers have the same memory cost,
there has been a clear improvement for the previous arbitrary topology structure. It
worth noting also that if the node to node connections are removed then the over-
head drops to 262.5% of the unstructured hexahedral mesh. This would be possible
if mesh adaptation were not required or if more complex search algorithms were
used during adaptation. As stated in Section 4.3.1, the true memory cost is likely
to be considerably lower.

30

4.5.2 Hybrid memory structure

In conjunction with the development of the basic data structure, and inter- connec-
tivity, code development has concentrated on determining the most efficient manner
of accessing the data. A combination of one dimensional lists of data (stacks) and
non-contiguous linked lists have been utilised with memory pointers to produce a
structure that allows efficient access to data as well as minimising memory Over-
heads. The manner of accessing the data structure is shown in Figure 20. Memory
pointers are denoted by arrows, and stacks by segmented boxes. It should be noted
that the stack of memory allocated to storing facial data is over-sized, to allow for
the creation and destruction of faces during grid adaptation without costly global
reallocation.

The use of linked lists for the storage of all entities was deemed to be essential
when considering the level and regularity of adaptation to be undertaken. The faces
and nodes have also been given direct access from the array of pointers for ease
of use. Direct access to the faces is required during the solver algorithm {which is
facial based) and direct access of the nodes greatly benefits the remeshing process
as described in Chapter 5. The construction nodes never require sufficient direct
access to warrant a stack of pointers. The vast majority of construction node use is
via the faces, which point directly to the node in question.

4.5.3 Entity fission and fusion

A generic tree data structure has been devised for the flow node section of the data
structure to allow flow solver node creation and destruction by remeshing. As a
node is split, it is 'deactivated’ (denoted by the graphical representation of a node
being covered), and pointers to its ‘children’ created. These children are not direct
members of the stack accessed by the overall grid structure, but via the parent node.
Figure 21 demonstrates how this process can be repeated for several ‘generations’ of
children. Faces do not need this structure, they are merely maintained in the linear
linked list, with new faces added to the end, or removed as necessary.

4.6 Summary

Structured mesh generation requires complex manipulation in order to mesh realistic
geometrical configurations, such as geometrical singularities and diverse geometrical
features. Triangular based unstructured meshes enable efficient mesh construction
but lack do not provide sufficiently accurate solutions for viscous flow regimes. Hy-
brid meshes overcome such problems by the use of different control volume topologies
in different domain zones. These meshes however reduce the inherent adaptability
of unstructured meshes via the restriction of cell types. The approach chosen for
this work is the use of arbitrary polyhedral volume definition which incorporates the
benefits of a hybrid mesh with the adaptability of an unstructured mesh.

31

seaned

Figure 20: Data structure of geometrical mesh

32

Figure 21: Tree data structure of flow solution nodes

A node based control volume approach has been adopted because of the impor-
tance of surface pressure definition in marine fluid flows. In order to accommmodate
the arbitrary polyhedra a data structure has been created that defines the mesh via
geometrical entity definition and connectivity. This structure is 37% more efficient
with memory use than previous such structures.

Increased ease of adaptation has been accommodated by storing entities in linked
lists and using a tree structure to allow rapid cellular fission and fusion. Direct
accessing of the node and face entities is achieved via the use of stacks of pointer to
the linked lists.

Finally the underlying surfaces have been fully defined with bi-cubic spline
patches, allowing accurate surface definition during successive mesh adaptations.

33

5 Control volume splitting

The reason for splitting a control volume is to lower the truncation error created
due to the discretisation. As truncation error grows, so also do the flow property
differentials between adjacent control volumes. Thus the control of this method has
been chosen to be the local flow properties, namely pressure.

5.1 Geometrical Entity Based Approach

The first approach to splitting an arbitrary polyhedral was based upon selecting a
face that was to be split, and then finding a face connected to the first face in the
correct direction. This process was continued until a path had been traced around
the control volume faces. The selected faces were then split via defining the number
of sides, and entities reconnected to define two control volumes. Algorithm 1 details
briefly each main step in the process. The process was set inside a loop containing
all the volumes requiring splitting.

Algorithm 1

e DEFINE CUTTING PLANE NORMAL
e DEFINE EDCGE THAT IS TANGENTIAL TQO CUTTING NORMAL

1. FIND THE FACES THAT ARE CONNECTED TO THAT EDGE
2. IF MORE THAN 2 FACES IN LIST DEFINE ARRANGEMENT
3. WHILE NEW EDGE 1S NOT ORIGINAL EDGE

(A) DEFINE EDGE OPPOSITE CURRENT EDGE

(B) FIND OTHER FACE(S) ATTACHED TO NEW EDGB

(c) IF MORE THAN 2 FACES IN LIST DEFINE ARRANGEMENT
(D} MAKE THE NEW EDGE THE CURRENT EDGE

e FFOR EACH FACE IN CUTTING LIST

1. DEFINE CORNERS OF FACE
9. DEFINE MID-POINT OF SIDE UPON WHICH CUTTING EDGE EXISTS
3. CREATION OF CHILD FACES

(o) DEFINE NUMBER OF SUBFACES ON ORIGINAL FACE = BOTH CHILD
FACES WILL HAVE SAME NUMBER OF SUBFACES

(B) ASSESS ORDER OF EDGES ON FACES = INSERT NEW NODES IN
CORRECT PLACE

4. ENSURE NEW NODES AND EDGES ARE NOT REPEATED ON OTHER FACES
TO BE CUT

34

e RESETTING CONSTRUCTION NODES

e RESETTING NODE TO NODE CONNECTIONS

This method met with some success, and proved to work for most cases for a number
of levels of adaption. A example of this was the adaptation of the mesh around a
Wigley hull form, as detailed in Wright {50].

Figure 22 show the volumes of unacceptable mesh quality, as defined by geo-
metrical calculations before any flow solution calculations have occurred. As can be
seen, in this multi-block style generated mesh that geometrical variance is closely
linked to the block-to-block geometry. Figure 23 shows the adapted control volumes
and subsequent control volumes created (most have been split); the number of con-
trol volumes falling short of the required standard fell from 368 (3.2% of the initial
total of 11448 control volumes) initially to just 96 within one level of adaptation. It
should be noted that because of the present simplified manner of cell fusion (merely
re-joining children of the same parent) the grid can not be made any more coarse
than the initial grid. However, with the convection of flow solver nodes, the initial
volumes in the extremities of the domain will, over time, develop an equivalent grid
with very sparse meshing in the corners of the domain and dense node clustering
in areas of interest. These areas tend to be the zones of high geometrical curvature
and high flow property gradients. The volumes of grid quality outside the set limits
after one level of refinement can be seen in Figure 24; clearly the volumes of low
geometrical quality have been reduced.

Table 2 confirms this visual interpretation with numerical values. The standard
deviation has significantly dropped, as has the maximum (relating to low quality).

Mesh Minimum | Mean | Maximum | Std Deviation
Initial 0.034614 | 1.21657 | 6.946052 1.003025
Adapted | 0.034614 | 1.21376 4.926340 0.917516

Table 2: Grid quality of Wigley hullform mesh before and after adaptation

However, problems start to appear with this algorithm due to the arbitrary
nature of the control volumes and the allowance by the algorithm for the production
of polyhedral volumes. Particular areas of concern were those of defining edge sides
and corners; a generic definition of a ‘corner’ that would operate for a polygonal face
proved troublesome for example. As entities become more and more abstracted from
regular, symmetric shapes the algorithm has greater and greater difficulty splitting
the faces in a symmetric manner, and the path which is ‘traced’ around the control
volume does not necessarily meet with the starting point. Indeed, after ten levels of
adaptation the algorithm became insufficient and broke down, leaving un-connected
construction nodes and faces. Attempts were made to cover such exceptions but
the code became extremely protracted, and it was felt that as arbitrary polyhedrals

35

Volumes of 1nmuficient
yrid guallty

Figure 23: Adapted areas of Wigley hullform mesh

wmg of losufficient
rid quality
iy
—— N, - N

Glumas. owerl
hisirfyid qml‘ll’.’l’[

Figure 24: Volumes with extreme quality in the Wigley hullform mesh after adap-
tation

36

were to be allowed there would always, eventually, be some case that exceeded the
algorithm. Hence it was been decided that a more arbitrary splitting technique was
required.

5.2 Geometrical Position Based Approach

The preferred algorithm was based upon the concept of a splitting plane. This passes
through the volumetric centroid of the control volume, with its normal being defined
by the geometrical grid quality algorithm. All the edges on each face attached to
the control volume are checked to see if they pass through the plane. This produces
a list of faces to be split, and the style in which they require splitting. Because
of the non-reliance upon geometrical entity orientation this algorithm is reliable for
successive generations of control volumes and degeneration of the volume topology.
Algorithm 2 details each main step in the process for splitting one control volume.
As with the entity based algorithm detailed in Section 5.1, the process will be set
inside a loop, containing all the volumes requiring splitting.

Algorithm 2

DEFINE CUTTING PLANE NORMAL

DEFINE VOLUMETRIC CENTROID OF VOLUME AS POINT ON CUTTING PLANE

IF (NODE ON BOUNDARY) => REPLACE FLOW NODE WITH A CONSTRUCTION
NODE

¢ COLLECT FACES AND EDGES TO BE CUT

1. FOR ALL FACES ATTACHED TO CONTROL VOLUME

(A) FOR ALL INTERNAL EDGES ON FACE

— Ir (EDGE CROSSES CUTTING PLANE) = PLACE FACE AND
EDGE IN CUTTING LISTS

(B) FOR ALL EXTERNAL EDGES ON FACE

— IF (EDGE CROSSES CUTTING PLANE} = PLACE FACE AND
EDGE IN CUTTING LISTS

(¢) IF (NO EDGES CROSS CUTTING PLANE) = DETERMINE WHICH SIDE
OF PLANE FACE 1S AND PLACE IN LIST A OR LIST B

¢ ORDER EDGES AND LINK FACES

1. COUNT FACES AND EDGES
2. MARK START AND FINISH MARK FOR FACE IN EDGE LIST

3. LIST REPEAT EDGES (ALL EXTERNAL EDGES MUST BE LISTED BY TWO
FACES)

37

4. CHECK {AND MARK) PARALLEL CUT FACES

(A) IF ALL SPLITTING NODES ARE PRE-EXISTING
(B) IF ALL SPLITTING NODES ARE EXTERNAL

(c) IFr NODES ARE JOINED TOGETHER IN ONE CONTINUQUS CHAIN
= MARK FACE AS TO BE A PARALLEL CUT

o IF (NUMBER OF FACES > STACK S$I1ZE) => RESET FACE POINTER STACK

s SPLIT THE EDGES

— NORMALISED POSITION OF CUTTING PLANE, X, CROSSES EDGE AT -

1. 0.0 < X < 0.25 = USE FIRST NODE
2. 0.25 < X < 0.75 = CREATE NEW NODE
3. 0.75 < X < 1.0 = USE SECOND NODE

e RESET THE ORIGINAL FACES AND SPAWN NEW FACE. FOR EACH FACE
1. DETERMINE WHICH SIDE OF CUTTING PLANE ALL CONSTRUCTION

NODES LIE; PLACE IN APPROPRIATE LIST (LIST A AND LIST B)

2. IF (FACE ON BOUNDARY & OPEN) = ADD FLOW NODE REPLACEMENT
CONSTRUCTION NODE TO APPROPRIATE LIST

3. IF (FACE IS INTERNAL & ENCLOSED) = REMOVE CENTRAL CONSTRUC-
TION NODE FROM APPROPRIATE LIST

4. ADD SPLITTING NODES FOR FACE TO BOTH LISTS
5. PLACE NODES IN ORDER

(o) DEFINE ANGLE OF NODE WITH RESPECT TO FIRST NODE IN LIST
(B) SORT LIST OF NODES FOR ANGLE = 0 — 27

6. IF (NUMBER OF CONSTRUCTION NODES IN LIST > 4) ADD CENTRAL
NODE

7. TRANSFER ALL INFORMATION INTO FACE STRUCTURE. ORIGINAL
FACE RECONSTRUCTED FROM LIST A, NEW FACE CREATED FROM LIST
B

e RESET TAIL OF CONSTRUCTION NODE LIST

MARK FIRST CONSTRUCTION NODE IN LIST

RESET BEGINNING OF LIST TC SECOND MEMBER

PLACE FIRST MEMBER AT END OF LIST

SET THIS TO BE THE END OF THE LIST, NOT A LOOPED LIST

AN ol

STORE THE ID OF THE CONSTRUCTION NODE FOR USE BY THE NEW
DATA NODE

38

6. RESET GLOBAL ID OF CONSTRUCTION NODE

e SPAWN THE NEW FLOW NODE

b 8B

SET UP NEW MEMORY FOR CHILD FLOW NODES
DEFINE CHARACTERISTIC LENGTH OF CONTROL VOLUME

COUNT NUMBER OF EXTERNAL FACES

IF (NUMBER OF EXTERNAL FACES = 0) =
NEW NODE POSITION = CENTROID OF NEW VOLUME

IF (NUMBER OF EXTERNAL FACES = 1) =
NEW NODE POSITION = CENTROID OF NEW EXTERNAL FACE

(a)
(8)

(c)

. Ir (NUMBER OF EXTERNAL FACES > 2) =

FIND COMMON CONSTRUCTION NODES
I (NUMBER OF COMMON NODES = 1) =
CONVERT CONSTRUCTION NODE TO FLOW NODE

IF (NUMBER OF COMMON NODES = 2) =

MAKE FLOW NODE i WAY BETWEEN NODES

IF (NUMBER OF COMMON NODES = 3) =>

CONVERT CONSTRUCTION NODE CLOSEST TO AVERAGE POSITION
REMOVE CONVERTED CONSTRUCTION NODE FROM LIST OF CON-
STRUCTION NODES DEFINING FACE IF REQUIRED

REORDER NODES ON FACES

1. PLACE NODES IN ORDER WITH RESPECT TO FLOW NODE

MAKE SPLITTING FACE

1.

COLLECT ALL SPLITTING NODES

2. PLACE NODES IN ORDER

3. IF (NUMBER OF CONSTRUCTION NODES > 4) = MAKE CENTRAL
CONSTRUCTION NODE

RESET $TATUS OF FLOW NODES

1. FLAG PARENT AS DEAD
2. FLAG CHILDREN AS ALIVE

RESET THE GEOMETRICAL ENTITY LINKING

1.
2.
3.
4. RESET FLOW NODE TO FLOW NODE LINKS

RESET FACE TO FLOW NODE LINKS
COUNT NUMBER OF CONSTRUCTION NODES ATTACHED TO FLOW NODES
RESET CONSTRUCTION NODE TO FLOW NODE LINKS

39

5.3 Benefits of position based approach

This new algorithm has the advantage of only working upon the edge and node
entities, not on the face as a whole. This reduces the number of possible situations
greatly; an edge has direction, yet contains only two nodes, while a face can have
any number of nodes great than three to define it, hence creating an infinite number
of combinations. '

The other major improvement of this algorithm is the use of placing the nodes in
order by angle. Previous algorithms tried to maintain the existing node connectivity
and ordering but this caused a great number of problems and produced verbose
coding. Instead the use of a list containing the required construction nodes, and
then sorting the list by angle has proven to be eflicient in both length and complexity
of code as well as CPU usage. The only variable in this method is the selection of
a point that is defined as being the origin. It is for this reason that the reordering
occurs twice. To define the place of the new flow node the construction nodes have to
be in order, but the final order of the nodes can only be specified once the flow node
position is declared. Thus the first sort places the construction nodes in cyclical
order, and the second sort organises them with respect to the flow node.

To date the algorithm has proven robust and efficient, solving both two dimen-
sional and three dimensional problems. Indeed, more problems have been encoun-
tered with auxiliary routines, such as grid quality definitions, after adaption than
with the control volume splitting routines themselves. Validation and verification
of the algorithm are on going.

5.4 Surface definition

Because the underlying concept of control volume splitting is increased accuracy for
a given solution time, there is also the requirement for the geometrical definition
to have similar accuracy. As Figure 25 shows, without knowledge of the underlying
boundary surface definition boundary degradation will occur.

To maintain an accurate definition of the surface a separate definition was stored
in bi-cubic spline patch form. The position of any entity upon the surface is defined
by a unique ID and local parametric positions.

40

Before adaption

Without surface definition With underlying surface definition

Figure 25: Effect of surface definition upon mesh adaption

41

6 Control volume merging

The reasons for merging control volumes together are the exact opposite of splitting
a volume; the local error is appreciably less than the norm of the local error over
the domain. This means that the solution is being inefficient; the increased accu-
racy in this area will be negated by the surrounding lower accuracy and hence the
CPU resources required for the area are being squandered. As with the control of
the volume splitting, local flow properties have been utilised. When the pressure
differential between two adjacent control volumes falls below a set limit (adjusted
to the required accuracy level), then they are merged together.

6.1 Initial method of merging control volumes

To date the method of merging control volumes together is limited to those volumes
that have previously been split from the same parent. While this is limiting, if
the initial mesh is suitably coarse then it should not be restricting to the solution
efficiency. The basic premise of the approach is to go back a level of the flow node
tree data structure, flagging the children as dead, and the parent as alive. The code
has been set up to allow eight levels of the tree to be in existence at any one time.
Due to the use of a linked list within the tree structure a parent flow node may have
more than two children. Hence one or more levels of children can be removed, and
the link reset to the required level of children, if deemed necessary. Algorithm 3
details the approach used to merge volumes. As with the splitting algorithm, this
will be placed inside a loop that contains all instances of merging required.

Algorithm 3
e FIND ALL CONTROL VOLUMES OF THE SAME PARENT AND GENERATION
e RESET STATUS OF FLOW NODES AND FACES

1. FLAG CHILDREN AS DEAD
2. FLAG PARENT AS ALIVE
3. FLAG SPLITTING FACES AS DEAD

e RESET THE GEOMETRICAL ENTITY LINKING

1. RESET FACE TO FLOW NODE LINKS, ALL POINTING TO PARENT NODE

2. RESET CONSTRUCTION TO FLOW NODE LINKS, ALL POINTING TO PAR-
ENT NODE

3. RESET FLOW NODE TO FLOW NODE LINKS, ALL POINTING TO PARENT
NODE

As with the splitting algorithm, validation and verification is an on going task
but results to date are encouraging.

42

6.2 Influences and effects

The most noticeable effect control volume merging has upon a solution is its con-
vergence time. This can be reduced drastically, for the same accuracy of solution,
by merging of control volumes in the far field.

It is would noting that efficiency improvement is not linear due to the mainte-
nance of the present face structure; this results in more than one face between two
adjacent control volumes. An algorithm to merge such groups of faces are being de-
veloped, but, as with the destruction of levels of the flow node tree, the instances of
use is a subject of development. If faces are merged at the same time as the control
volumes, then memory and solution time CPU are decreased but mesh adaptation
CPU time is increased. The most efficient balance between merging faces and leaving
the current structure is case dependant and not resolved as yet.

An important point to be noted about this methodology is that because of the
allowance for more than one face between adjoining control volumes, and the in-
herent subdivision of the control volumes into tetrahedra, the problem of hanging
~ nodes and subsequent loss of conservation are negated [10, page21].

43

7 Entity stretching and convection

While the redistribution of mesh nodes has been used to improve solution accuracy
via re-location to areas of high flow gradients, it has been decided that the volume
splitting and merging detailed in Chapters 5 and 6 will provide sufficient flexibility
and range for accuracy requirements. Instead node redistribution has been used
to improve solution convergence rates and stability. This has been achieved by
redistributing the construction nodes according to the local grid quality assessment.

As listed in Chapter 3, skew, aspect ratio, deviation from planarity and misalign-
ment of the normal are all assessed and combined, weighted with respect to Figure
6, to define the local geometrical grid quality. This quality rating has been given a
limitor, and if a given volume has a value greater than this limit then two processes
are initiated.

The first approach to improving the geometrical quality of the mesh is a move-
ment of faces to improve orthogonality, hence lowering facial skew and misalignment
of the normals. The second process involves movement of individual construction
nodes to increase planarity. Algorithms 4 and 5 detail these two processes. Figure
26 shows a representation of a face, and details the labelling of entities.

Edge construction node

Figure 26: Node and face definition

44

Algorithm 4

¢ DEFINE FACE NORMAL (TERMED 7if)
e DEFINE FLOW NODE TO FLOW NODE VECTOR {TERMED NN)

e DEFINE VECTOR A, PASSING THROUGH BASE CONSTRUCTION NODE, DE-
FINED AS A=np X NN

e MOVE CONSTRUCTION NODES OF FACE, ROTATED ABOUT VECTOR A, UNTIL
np = NN

Algorithm 5

¢ DEFINE FACE NORMAL, nip

e USING LEAST SQUARES FIT, MOVE BASE CONSTRUCTION NOPE TO MIN-
IMISED DEVIATION FROM PLANARITY

e REDEFINE FACE NORMAL, iy

¢ MOVE EACH OF THE EDGE CONSTRUCTION NODES T(O BRING IT INTO PLANE
=4 Pﬂew = Folg + (Opold ‘ n}") ﬂ_:p

Tt can be observed that the relevant node movement to make one face planar
may not be the correct movement to make a co-joining face also planar. However,
provided the planes are not the same, they will cross and with the introduction of
third plane a unique point that lies on all three planes can be found. In theory more
than three plane can have a unique co-located point, but it is not a mathematical
certainty. Thus when moving around the faces attached to a given control volume a
variation of Algorithm 5 is used. Due to the developmental nature of the work and
in aid of robustness, only the combination of two faces at any one given time are
going to be considered. Algorithm 6 details the manner in which the node adjoining
two faces is moved. For nodes attached to three or more faces, an iterative process is
used, where the second face becomes the first and the next face becomes the second,
until all the faces are considered. ’

Initial studies using these algorithms have quantifiably improved the grid quality.
As yet the algorithms have not been used within a fully converged flow solution
model, but studies are on-going and results to date are promising.

45

Algorithm 6

DEFINE THE BASE NODE POSITION AS C
DEFINE ORIGINAL NODE POSITION, P, AS p°
DEFINE 1** FACE NORMAL, n}

Al=(C - P°

5= Al.nl,

P! = P°+§'nl,

DEFINE 27 FACE NORMAL, nk
A2=C- P!

§2 = A nd

P?=P!+ 521{%‘

NEW NODE POSITION, Ppey, = P2

46

8 Conclusions and future developments

To improve numerical flow solutions without increasing the complexity of the math-
ematical model a method of mesh adaption has been devised. This has required
developments in the data structure employed (in both definition and computer im-
plementation) and the manner in which the mesh adaption has been implemented.

In order to fully utilise the available types of adaption an unstructured, arbitrary
polyhedral control volume data structure has been created. This allows a more
structured mesh in those areas that benefit from it and unstructured meshing in
areas of complex geometry and in the far field where mesh degeneration allows
increased efficiency of CPU usage. In order to accommodate this structure the
geometrical entities are defined separately and linked via a connectivity list. This is
a development of previous work [10], but the efficiency of memory storage has been
improved by a factor of 1.4.

The geometrical entities have been stored in the computer memory using a range
of data structured to allow easy access while maintaining a good level of flexibility.
A tree data structure has been used for the flow node geometrical structure to
allow control volume splitting and merging easily, as well as inherently allowing the
expansion into multigrid solutions.

Mesh quality has been defined via the measurement of geometrical and flow
properties, and analysed by least squares fitting. Pressure differential across volumes
is used to control cell splitting and merging while a combination of the geometrical
properties is used to control mesh orthogonality and planarity.

Algorithms are detailed for splitting and merging arbitrary polyhedral control
volumes, and the requirement for a fully defined underlying surface definition is
noted. Algorithms to remove deviation from planarity and improve orthogonality
are also detailed, and the problem of how to locate a node joined to more than three
faces to improve planarity is approached.

There are presently three areas that are being developed to increase the capa-
bilities of the code.

Validation and verification : The primary goal at present is to conclude vali-
dation of the algorithms and verification of the computational code. There
are still a number of cases, incorporating geometrical singularities and com-
plex three dimensionally curved surface intersections, that have not been fully
studied.

Incorporation of code within flow solver : The framework to incorporate the
computational algorithms within the flow solver (detailed by Wright and Turnock
[20]) is present, but as yet no adapted solutions have been gained. This is
purely due to the on-going verification work.

Multigrid solutions : Once the adaption algorithms are incorporated success-
fully within the flow solver they shall be used to create multiple levels of finer

47

meshes to allow increased efficiency via the use of multigrid techniques. This
is seen as a relatively straight forward piece of work; the most complex section
will be the correct transference of information between levels of the mesh while

maintaining conservation of mass, momentum and energy.

48

References

1]

2]

1l

[5]

[6]

[7]

8]

19]

[10]

[11]

[12]

[13]

[14]

W. G. Habashi, J. Dompierre, Y. Bourgault, M. Fortin, and M. G. Vallet. “Cer-
tifiable Computational Fluid Dynamics Through Mesh Optimization”. AIAA
Journal, 36(5):703-711, May 1998.

R. G. Hindman. “Generalized coordinate forms of governing fluid equations
and associated geometrically induced errors”. AITAA Journal, 20:1359, 1982.

A. llinca, R. Camarero, J. Y. Trepanier, and M. Reggio. “Error estimator and
adaptive moving grids for finite volumes schemes”. AIAA Journal, 33(11):2058-
2065, November 1995.

J. Oliger and X. Zhu. “Stability and error estimation for component adaptive
grid methods”. Applied Numerical Mathematics, 20:407-426, 1996.

A. Lawal. “adaptive grid method for convection-diffusion equations”. Int. J.
Heat Mass Transfer, 33(8):1633-1641, August 1990.

Y. Tu and J. F. Thompson. “Three-dimensional solution-adaptive grid genera-
tion on composite configurations”. ATAA Journal, 20(12):2025-2027, December
1991.

1. H. Kwon and H. K. Jeong. “Solution-adaptive grid generation for compress-
ible flow”. Computers and Fluids, 25(6):551-560, June 1996.

Y. Kallinderis. “A finite volume Navier-Stokes algorithm for adaptive grids”.
International Journal of Numerical Methods in fluids, 15:193-217, 1992.

J. U. Brackbill and J. S. Saltzman. “Adaptive zoning for Singular Problems in
Two Dimensions”. Journal of Computational Physics, 46(2):342-368, 1982.

N. C. Rycroft. “An adaptive three dimensional, finite volume, Euler solver for
distributed architecture using arbitrary polyhedral cells”. PhD thesis, University
of Southampton, 1998.

N. K. Yamaleev. “Minimization of the Truncation Error by Grid Adaption”.
ICASE Report 99-46, NASA, November 1999.

A. Bowyer. “Computing Dirichlet tessellations”. The Computer Journal,
24(2):162-166, 1981.

D. F. Watson. “Computing the n-dimensional Delaunay tessellation with ap-
plication to Voronoi polytopes”. The Computer Journal, 24(2):167-172, 1981.

P. R. Eiseman. “Alternating direction adaptive grid generation”. AIAA Jour-
nal, 23(4):551-560, April 1985.

49

[15] J. J. Quirk. “An alternative to unstructured grids for computing gas dynamic
flows around arbitrarily complex two-dimensional bodies”. Computers and Flu-

ids, 23(1):125-142, 1994.

[16] C. Ozturan. © Worst case complexity of parallel triangular mesh refinement by
longest edge bisection”. ICASE Report 96-56, NASA, 1996.

[17] A. Rassineux. “Generation and optimisation of tetrahedral meshes by advancing
front technique”. International Journal for numerical Methods in Engineering,
41:651-674, 1998.

[18] J. F. Thompson, B. K. Soni, and N. P. Weatherill, editors. “Handbook of Grid
Generation”. CRC Press, 1999. ISBN 0-8493-2687-7.

[19] C.B. Allen. “Grid adaptation for unsteady flow computations”. Proc Institution
of Mechanical Engineers, 211, 1997.

[20j V. Parthasarathy and Y. Kallinderis. “New multigrid approach for three-
dimensional unstructured, adaptive grids”. AIAA Journal, 32(5):956-963, May
1994.

[21] V. Parthasarathy and Y. Kallinderis. “Directional viscous multigrid using adap-
tive prismatic meshes”. ATAA Journal, 33(1):69-78, January 1995.

[22] D.J. Mavriplis. “Multigrid solution strategies for adaptive meshing problems”.
ICASE Report 95-14, NASA, 1995. '

[23] K. Riemslagh and E. Dick. “A multigrid method with unstructured adaptive
grids for steady Euler equations”. Journal of Computational and Applied Math-
ematics, 67:73-93, 1996.

[24] Various. “Special section: Credible Computational Fluid Dynamics simula-
tions”. AIAA Journal, 36(5):665-764, 1998.

[25] P. J. Roache. “Quantification of uncertainty in Computational Fluid Dynam-
ics”. In Annual Review of Fluid Mechanics, volume 29, pages 123-160, 1997.

[26] D. Thompson, editor. “The 9% Concise Ozford Dictionary of Current English”.
BCA, by arrangment with Oxford University Press, 1996. ISBN 0-000000-
091299.

[27] A. M. Wright and S. R. Turnock. “Techniques for assessing the flow and spa-
tial quality of arbitrary 3D computational meshes”. Ship Science Report 108,
Department of Ship Science, University of Southampton, 1999.

(28] L. Ega and M. Hoekstra. “On the Numerical Verification of Ship Stern Flow
Calculations”. In Technical papers of 1st MARNET CFD Workshop, CIMNE
Barcelona, November 1999,

50

[29]

(30]

31]

[32]

[33]

[34]

[37]

[38]

[39]

A. M. Wright and S. R. Turnock. “Convective cell approach for solving in-
compressible Euler flows: Explicit flux vector splitting scheme using artificial
compressibility”. Ship Science Report 117, Department of Ship Science, Uni-
versity of Southampton, 1999.

S. R. Turnock. “Interpretation of CFD results for use in ship hyrdodynamic
design”. In Proceedings of The International CFD Conference (CFD 99), June
1999. Ulsteinvik, Norway.

F. Stern, R. V. Wilson, H. W. Coleman, and E. G. Paterson. “Verification and
Validation of CFD Simulations”. In Proceedings of 3rd ASME/JSME Joint
Fluids Engineering Conference, July 1999. Paper no FEDSM99-6913.

I. Demirdzic and M. Perié. “Space conservation law in finite volume calculations
of fluid flow”. Int. Journal of Numerical Methods in Fluids, 8:1037, 1988.

J. F. Thompson. “A Reflection on Grid Generation in the 90s: Trends, Needs
and Influences”, 1996. http://www.ERC.MsState. Edu/ joe/gridconf/.

R. R. Cosner. “Future Requirements in Surface Modelling and Grid Genera-
tion”. In Proceedings of the Surface Modelling, Grid Generation and Related
Issues in Computational Fluid Dynamics Workshop, NASA Conference Pub-
lication 3291, page 751, NASA Lewis Research Centre, Cleveland, OH, May
1995.

D. K. Clark, M. D. Salas, and H. A. Haasan. “Euler calculations for multiele-
ment airfoils using cartesian grids”. AIAA Journal, 24:353-359, 1987.

M. Beddhu, M. Y. Jiang, D. L. Whitfield, L. K. Taylor, and A. Arabshahi.
“«CFD validation of the free surface flow around DTMB Model 5415 using
Reynolds Averaged Navier-Stokes Equations”. In Proceedings of Third Osaka
colloquium on advanced CFD applications to ship flow and hull form design,
pages 373-393, May 1998.

C. W. Lin, S. Percival, and L. Fisher. “Viscous flow computations on an ap-
pended ship by Chimera RANS scheme”. In Proceedings of Third Osaka collo-
quium on advanced CFD applications to ship flow and hull form design, pages
161-180, May 1998.

A. Masuko. “Numerical simulation of viscous flow for complex geometries us-
ing overlapped grid method”. In Proceedings of Third Osaka colloguium on
advanced CFD applications to ship flow and hull form design, pages 181-197,
May 1998.

C. Yang and R. Lohner. “Fully nonlinear ship wave calculation using unstruc-
tured grid and parallel computing”. In Proceedings of Third Osaka colloquium

51

[40]

[41]

[42]

[43]

j44]

[45]

[46]

[47]

(48]

[49]

[50]

on advanced CFD applications to ship flow and hull form design, pages 125-150,
May 1998.

M. Aftosmis, D. Gaitonde, and T. S. Tavares. “Behaviour of linear reconstruc-
tion techniques on unstructured meshes”. AIAA Journal, 33(11):2038-2049,
1995.

N. P. Weatherill. “Mixed structured-unstructured meshes for aerodynamic flow
simulation”. Aeronautical Journal, 94(934):111-123, 1990.

7. A. Shaw and A. J. Peace. “The modelling of aerodynamic flows by solution
of the Euler Equations on mixed polyhedral grids”. International Journal of
Numerical Methods in Engineering, 35:2003-2029, 1992.

D. Sharov and K. Nakahashi. “Hybrid prismatic/tetrahedral grid generation
for viscous flow applications”. AIAA Journal, 36(2):157-162, 1998.

S Kano and K. Nakahashi. “Flow Computationa Around Delta Wings Using
Unstructured Hybrid Grids”. Journal of Aircraft, 36(2):374-379, March 1999.

R. J. Gomez and E. C. Ma. AJAA paper 94-1859-CP, 1994. Presented at 12th
Applied Aerodynamics Conference, Colarado Springs.

E. Turkel. “Accuracy of schemes with non-uniform meshes for compressible
fluid-flows”. Applied numerical Mathematics, 2(6):529-550, 1986.

R. C. Swanson and R. Radespiel. “Cell Centered and Cell Vertex Multigrid
Schemes for the Navier-Stokes Equations”. AIAA Journal, 29(5):697-703, May
1991.

N. C. Rycroft and S. R. Turnock. “Hybrid cell finite volume Euler solutions
of flow around a main-jib sail using an IBM SP2”. In Proceedings of Parallel
CFD 97, Manchester, May 1997.

N. C. Rycroft and S. R. Turnock. “3-D Multiblock Grid Generator;
FLEXIMESH”. Ship Science Report 101, Department of Ship Science, Uni-
versity of Southampton, 1997.

A. M. Wright. “Automated adaptation of spatial grids for flow solutions around
marine bodies of complex geometry”, 1999. Submitted for transference from
the degree of Master of Philosophy to Doctor of Philosophy.

52

Appendix

Data Structure

/% CODE NAME=> eric */
/% FILE celldatad.h */
/* VERSION 1.0 */

/% version control introduced 29/3/99 AMW */
/% This header file contain references to the C library header
files and also has the basic data structure types */

#ifndef CELLDATA1_H
#define CELLDATA1_H

typedef struct{
double x, ¥;
} cooxrd2D;

typedef struct{
double x, y, Z;
} coord3D;

typedef struct{
double density;
double u, v, w;
double pressure;
double energy;

} State;

typedef struct{
double mass;
double u_mom;
double v_mom,;
double w_mom;
} State_vector;

typedef struct{
State_vector F;
State_vector G;
State_vector H;
} Flux;

53

typedef struct{
double mass;

double u_mom, Vv_mom;
double energy;

} State_vector_2D;

typedef struct{
double mass;

double u_mom, v_mom;
} State_vector_Z2Da;

#tendif

/* CODE NAME=> eric */
/* FILE celldataB.h */
/* VERSION 1.1 =/

/* version control introduced 29/3/99 AMW */
/* SECOND LEVEL OF DATA TYPES USED IN CELL GENERATION AND MANIPULATION */

#ifndef CELLDATA2_H
#define CELLDATA2_H

/* The individual members of the data types shall be described and
their relevance specified

TYPE MEMBER DESCRIPTION

Node

int globallD Global ID, to be used in domain comstruction during
parallel processing

int boundaryID Identifies the boundary condition of the node -

INTERNAL O

PRESSURE 2

INFLOW 4

OUTFLOW 8

SOLID_WET_FIXED 16

SOLID_WET_MOVE 32

SOLID_DRY_FIXED 64

SOLID_DRY_MOVE 128

FREE_SURFACE 256

PERIODIC 512

54

int 1inkID Used within free surface code, to link entity to underlying
surface definition

coord coords The nodes placement in physical space
coord velocity The nodes cartesian velocity wrt a stationary point
double volume The volume of the surrounding control volume

NOT ACTIVE -state properties pointer to the flow properties at the node
during the current timestep/iteration

NOT ACTIVE -state_vector residuals pointer to the flow conservative vector
residuals at current iteration/timestep

int noNodes Number of nodes that the node conmects to
NodePTR *nodes Array of pointers to adjoining nodes (double pointer)

int on_off For binary tree structure, specifying whither node 1is
active or not, in current iteration

NodePTR childPTR For binary tree, pointing to children of current node
NodePTR parentPTR For binary tree, pointing to parent of current node

NodePTR nextPTR Pointer to next node in list of current generation of nodes

Face

int globallD Global ID, to be used in domain construction during
parallel processing

int boundaryID Identifies the boundary conditiom of the face - (all
stored in surfdata.h)

INTERNAL O

PRESSURE 2

INFLOW 4

QUTFLOW 8

SOLID_WET_FIXED 16

SOLID_WET_MOVE 32

SOLID_DRY_FIXED 64

SOLID_DRY_MOVE 128

FREE_SURFACE 256

PERIODIC 512

int noNodes Number of nodes that the face connects to

NodePTR *nodes Array of pointers to vertex nodes (double pointer)

IN CELL CENTRED SCHEME ONLY

Cell int globallD Global ID, to be used in domain construction during parallel

99

processing
int celltype integer defining the type of cell-

celltype = O -> 3D hexahedral
celltype = 1 -> 3D tetrahedral
celltype = 2 —> 3D pyramid
celltype = 3 —> 3D prism
celltype = 4 -> 2D trapezoid

coord3D centre The centre of the cell
FacePTR *faces Array of pointers to surrounding faces (double pointer)
NodePTR *nodes Array of pointers to vertex nodes (double pointer)

/* used for the 2D euler solver */
typedef struct
{int globallD;
coord2D coords;
State properties;
} NodeB;

JH mm e o —-m oS */
/* this is the structured used in the main flow solver itself */
struct node
{int globallD, boundaryID, linkID;
/4 m====== %/
double volume; /* do we need this? */
double time_step;
coord3D coords;
coord3D velocity;
/¥ s====== */
. int noNodes;
struct node **joined_to;
/4 s====== x/
int on_off;
struct node *nextPTR;
struct node *childPTR;
struct node *parentPTR;

};

typedef struct node Node;
typedef Node *NodePTR;

56

#tdefine OPEN_FACE 1
#define CLOSED_FACE 0O

class Face{

// friend ;

public:

Face();

void set_face ID(int, int);
void set face_nodes(int, NodePTRx*);
double area();

double internal_face_area();
double external_face_area();
coord3D centroid();

class Vector mnormal();
double ARQ);

int no_subfaces();
int no_edges();

int open_or_closed();
NodePTR base_node();

int start_node();
int finish_node();

NodePTR next_node(int);

int globalID, boundaryID;
int noNodes;
NodePTR *node;

/% ======= %/

class Face *nextPTR;

};

typedef Face *FacePTR;

typedef struct
{int noNodes;

57

int total_noNodes;
int noFaces;
int Face_space;
int noConstructNodes;
NodePTR #*node;
NodePTR Cnode;
FacePTR *face;

} N_Grid;

st
/* used in the cell centred (hence ’cc’) grid */

struct cc_node

{int globallD, boundaryID, linkID;
int noNodes;
double volume;
struct cc_node **node;

coord3D coords;

};

typedef struct cc_node CC_Node;
typedef CC_Node *CC_NodePTR;

J¥ mm— oo oo — s
struct cc_face
{int globallD, boundaryID;
int noNodes;
int mnoCells;
CC_NodePTR *node;
struct cell *x*cell;

+

typedef struct cc_face CC_Face;
typedef CC_Face *CC_FacePTR;

J# ——m e mm oo oo m o

struct cell

58

{int globallD, celltype;
int noNcdes, noFaces;
CC_NodePTR *node;

CC_FacePTR *face;
};

typedef struct cell Cell;
typedef Cell *CellPTR;

J# — e m e e oSS oS oo omm oo */
typedef struct
{int noNodes;
int noFaces;
int noCells;
Cell *cell;
CC_Face *face;
CC_Node =*node;
} C_Grid;

#endif
// source code for geometrical class structure manipulation
#include "./universal.h"

Face::Face()
{globalID = LOOSE;
boundaryID = LOOSE;
noNodes = 0;

node = NULL;

}

void Face::set_face_ID(int global, int boundary)

{

globallD = global;
boundaryID = boundary;
}

double Face::area()

59

{double area;

if (boundaryID == INTERNAL)
area = internal_face_area();
else
area = external_face_area();

return(area) ;

}

double Face::internal_face_area()
{int i;

double area, projected_4;
coord3D base;

Vector 0A, OB;

Vector vector_A[10];

Vector face_normal;

// calc the area of each of the faces surrounding the node,
// as well as the normal of the face
for (i = 0; i < no_subfaces(); i ++){

// set up the 2 face edge vectors
0A = Dist_2_point(base_node()->coords, node[3 + i]l->coords);
DB = Dist_2_point(base_node()->coords, node[4 + i]->coords);

// calc the area and sub face normal
vector_A[i] = Cross_product(0A, OB);
vector_A[i] = scale_vector(0.5, vector_A[li]);

// and calculate the face normal as a weighted average of the sub-face areas
face normal = Vect_sum(face_normal, vector_A[i]);

}
face _normal.normalise();

//now set the area, taking only the normal component
area = 0.

for (i =
projected_A

[

0;
0: i < no_subfaces(); i ++)}{
fabs(Dot_product(face_normal, vector_A[i]));

area = area + projected_A;

60

return{area);

}

double Face::external_face_area()

{int 1i;

double area, projected_A;

Vector 0A, 0B;

Vector vector A[10]1; // this was previously dynamically set, but 10
// should be more than twice the nessecary

Vector face_normal;

// calc the area of each of the faces surrounding the node, as well as
// the normal of the face
for (i = 0; i < no_subfaces(}; 1 ++){

// get the principle sides of the triangular sub-faces
0A = Dist_2_point(base_node()->coords, node[2 + i]->coords);
0B = Dist_2_point(base_node()->coords, node[3 + i]->coords);

// calc the area and sub face normal
vector_A[i] = Cross_product(0OA, 0B);
vector A[i] = scale_vector(0.5, vector_A[il);

// and calculate the face normal as a weighted average of the sub-face areas
face normal = Vect_sum(face_normal, vector_A[il);

}
face_normal.normalise();

//now set the area, taking only the normal component
area = 0.

for (i =
projected_A

0;
0; < no_subfaces(); 1 ++)}{
fabs(Dot_product(face_normal, vector_A[i]));

-

area = area + projected_A;

}

returnf{area);

61

coord3D Face::centroid()
{int 1i;

double area, sub_areaf20];

coord3D centroid, sub_centroid([20];
Vector 0OA, OB, temp;

if (no_subfaces() > 20){
fprintf(stderr,"MEMDRY FRROR - more than 20 subfaces; insufficient memory
space to calc face.centroid()\n");
exit(1);

}

for (i = 0; i < no_subfaces(); i ++}{

// get the principle sides of the triangular sub-faces
if (boundaryID == INTERNAL){
0A = Dist_2_point(base_node()->coords, node[3 + i]->coords);
OB = Dist_2_point(base_node()->coords, node[4 + i]->coords);
sub_centroid[i]l.x = (1.0/3.0)*(base_node()->coords.x
+ node [3+i]->coords.x
+ node [4+i]->coords.x);
(1.0/3.0)*(base_node()->coords.y
+ node[3+i]l->coords.y
+ node [4+i]->coords.y);
(1.0/3.0)*(base_node()->coords.z
+ node{3+il->coords.z
+ node[4+i]->coords.z);

sub_centroid[i].y

sub_centroid[i] .z

}
else{
0A = Dist_2_point{(base_node()->coords, node[2 + i]->coords);
0B = Dist_2_point(base_node()->coords, node[3 + i]l->coords);
sub_centroid[i].x = (1.0/3.0)*(base_node()}->coords.x
+ node[2+i]->coords.x
+ node[3+i]->coords.x);
sub_centroid[i].y = (1.0/3.0)*(base_node()->coords.y

62

+ node[2+i]->coords.y

+ node[3+i]->coords.y);
sub_centroid[i].z = (1.0/3.0)*(base_node()->coords.z

+ node[2+i)->coords.z

+ node[3+i]->coords.z);

}

// calc the area
temp = Cross_product (0A, OB);
temp = scale_vector(0.5, temp)
sub_areali] = temp.magnitude();

¥

area = 0.0;
centroid.x = centroid.y = centroid.z = 0.0;

for (i = 0; i < no_subfaces(); i ++){
area += sub_areaf[i];

centroid.x += (sub_areal[i]*sub_centroid[i].x);
centroid.y += (sub_area[il*sub_centroid[i].y);
centroid.z += (sub_area[il*sub_centroid[i].z);

}

centroid.x /= area;
centroid.y /= area;
centroid.z /= area;

return{centroid) ;

¥

Vector Face::normal()
{int i, start;
coord3D base;
Vector the_normal;
Vector OA, OB;

63

]

Vector vector_A;

the normal.set_vector(0.0, 0.0, 0.0);
if (boundaryID == INTERNAL){
base = node[2]~>coords;

start = 4;

}

else{

base = node[0]->coords;
start = 3;

¥

// calc the area of each of the faces surrounding the node, as well as the
// normal of the face

for (i = 0; i < no_subfaces(}; i ++){

// get the principle sides of the triangular sub-faces
0A = Dist_2_point(base, node[start - 1 + i]->coords);
0B = Dist_2_point(base, node[start + i]->coords);

// the cross product gives a vector of twice the area in the
// direction of the normal
vector_A = Cross_product(0A, OB);

// these area weighted normals can be summed and normalised
the normal = Vect_sum(the_normal, vector_A);

¥
the_normal.normalise();

return(the_normal);

}

/* Define the face aspect ratio (AR) as the average of the
aspect ratios of all the subfaces. */
/* The subface aspect ratio is taken to be the area of the
subface divided by half the chord squared */
/* ie AR = A / 0.5c72 from A = 0.5sc and AR = s/c */

double Face::AR()
{int i;

64

double AR, subface_AR, subface_area;
Vector OA, OB, AB;

AR = 0.0;
for (i = 0; i < no_subfaces(); i ++){

if (boundaryID == INTERNAL){

OA = Dist_2_point(base_node()->coords, node[3 + i]->coords);
0B = Dist_2_point(base_node()—>coords, node[4 + i]->coords);
AB = Dist_2_point(node[3 + i]->coords, node[4 + i]->coords);
}
else{
0A = Dist_2_point(base_node()->coords, node[2 + i]->coords);
0B = Dist_2_point(base_node()->coords, node[3 + i]->coords);
AB = Dist_2_point(node[2 + il->coords, node[3 + i]l->coords);
}

subface area = 0.5%(Cross_product(04, OB) .magnitude());
subface_AR = subface_area/(0.5*%SQR(AB.magnitude()));

if (subface_AR < 1)
subface AR = 1.0/subface_AR;

AR += subface_AR;
}

AR #*= 1.0/no_subfaces();

return(AR);

}

int Face::open_or_closed()
{int answer;

if (INTERNAL == boundaryID){
if (node[3]->globallD == node[noNodes-1]->globallD)
answer = CLOSED_FACE;
else
answer = OPEN_FACE;

65

}
else{
if (node[2]->globallD == nodel noNodes-1]->globallD)}

answer = CLOSED_FACE;

else
answer = OPEN_FACE;
}
return(answver);
}

NodePTR Face: :base_node()
{NodePTR answer;

if (boundaryID == INTERNAL)
answer = node[2];

else
answer = nodel[0];

return{answer) ;

}

int Face::no_subfaces()
{int answer;

if (boundaryID == INTERNAL)
answer = noNodes - 4;

else
answer = nolNodes — 3;

return(answver) ;

}

// this routine gives the number of external edges on the face
int Face::no_edges()
{int answer;

if (INTERNAL == boundaryID){

if (node[3]->globallD == node[noNodes-1]->globalID) // enclosed face

66

answer = noNodes - 4;

else

ansver = noNodes - 2;

} // end of internal face

else{

if (node[2])->globalID == nodel noNodes-1 1->globallD)
answer = noNodes - 3;

else

answer = noNodes — 1;
}

return{answer) ;

}

// the first node on the external edge of the face - mot necessarily
// the first comstruction node

int Face::start_node()

{int start;

if (INTERNAL == boundaryID){
if (node[3]->globalID == node[noNodes-1]->globallD) // enclosed face
start = 3;
else
start = 2;
} // end of intermal face
else{
if (node[2]->globalID == node[noNodes-1]1->globallD) // enclosed face
start = 2;

clse

start = 0;

}
return(start);
}

// and the last node defining the extents of the face. If the face
// is enclosed, then the repeated node is referenced at START

int Face::finish_node()

{int finish;

if (INTERNAL == boundaryID)}{
if (node[3]->globallD == node[noNodes-1]->globaliD){ // enclosed face
finish = noNodes - 1;

}

67

else{

finish = noNodes;

}

} // end of internal face
else{

if (node[2]->globalID == node[noNodes-1 1->globalID){
finish = noNodes — 1;

}

else{

finish = noNodes,

}

¥

return(finish) ;

}

// Sends back the next mode on the edge of the face. Not a great

// piece of coding; there are possibilities for a mess passing thu’
NodePTR Face: :next_node(int current)

{int X;

NodePTR answer;

X = current + 1;

if (current == noNodes-1){
if (INTERNAL boundaryID){
if (node[3] == nodel[noNodes-1]) // enclosed face
X =4;
else
X = 2;
}
else{ // boundary face
if (node[2] == node[noNodes-1]) // enclosed face
X = 3;
else
X =90;
}
}

Il
1]

if (current == 0){
if (boundaryID != INTERNAL)

X =2;
else
exit(2);

68

}
answer = node[X];

return{answer) ;

3

69

