~ UNIVERSITY
OF

- SOUTHAMPTON

T

|

S
¥

gl
muiml’

l
A

“

O

DEPARTMENT OF SHIP SCIENCE

FACULTY OF ENGINEERING

AND APPLIED SCIENCE

=

GENERATION: FLEXIMESH

/l
N.C. Rycroft and S.R. Turnock '
AN

"\ Ship Science Report 101

/
k - .. November 1997 .
- \~)) . 7

3-D Multiblock Grid Generation : Fleximesh

N.C.Rycroft, S.R.Turnock
Dept. of Ship Science,
University of Southampton.

November 7, 1997

Abstract

The success of field methods in computational fluid dynamics is dependent upon the quality of
the computational mesh used to represent the physical domain. This report details the theoretical
basis and method of use of a powerful multiblock grid generator. The approach allows complex
three-dimensional domains to be rapidly meshed whilst giving significant control over the local
quality of the grid. The program ‘Fleximesh’ produces a multiblock mesh of hexahedral ceils for
input to a range of flow solvers including those using unstructured data. Written in ANSI C it
utilises flexible data structures and dynamic memory allocation to maximize the potential problem

sive.

Ship Science Report No. 101

CONTENTS

Contents

1 Introduction

Mesh Construction

2.1 Introduction. e e e e
2.2 Node Definition e e e
23 EBEdgeDefinition
2.4 Face Definition e e
2.5 Block Object Definition e
2.6 Block Linking e

Spline Definition

3.1 Imtroduction. o e e
3.2 Cubic Spline Derivation
3.3 Parametric Cubic Splines oo
3.4 Line Point Distributions e e

Transfinite Interpolation

4.1 Introduction e e e e e e e e e e e e e e e e e e
T =") O T
4.3 Interior Interpolationso

Elliptical Refinement

.1 Introduction e e e e e e e e e e e e e e e
5.2 Discretisation of Poisson Equation oo oo
5.3 Source FUNCtIONS & . v o e e e e e e e e e e
5.4 Elliptical Refinement Solutions o s

Grid Singularities

Use of Fleximesh

7.1 Imtroduction. o e e o e e e e e e e e e e
7.2 Input File Preparation oo
7.3 Output FileFormat e

74 Using ‘Fleximesh’' e

o oo o e

10
10
10

13
13
13

15

17
17
17
18

21
21
21
22
23

27

CONTENTS

8 Case Study 1: NACA 0012 Wing

8.1 Imtroduction. e
8.2 Stage 1 : Simple Solid Wing Geometry L
8.3 Downstream Region
8.4 Wing Tip o o e e

9 Future Developments

10 Appendices
10.1 Parametric Cubic Spline Algorithmo
10.2 Transfinite Interpolation Algorithm oo
10.3 Elliptical Refinement Algorithm o oo
10.4 Surface Definition L e
10.5 NACA 0012 WingInput File o o oo o

34
34
34
34
37

43

LIST OF FIGURES

List of Figures

e oo =~ & gr R W b

| o5 N N T N I % T % N o B L% B L S o N o B I R T e e o e
[o & = T o L S N S = R == o o B = B o 4 R - L I o e

Grid Topologies e e e e e e e e
Geometrical Object Hierarchy L
Edge to Face Mapping L e
Edge to Face to Block Mappings
Spline Definition L. e
Line Distributions e e e
Transfinite Interpolation Domain Definition
Transfinite Interpolation of Simple Bound Regionsa
Transfinite Interpolation of Simple Bound Regionsb
Extension of Line Distributions into the Interior Using Transfinite Interpolation
Elliptical Refinement of a Square with Two Line Sources
Elliptical Refinement of Cube with a Point Source
Elliptical Refinement of Cube With Point and Line Sources
C-Grid Wrapped Around a NACA 0012 Aerofoil
Elliptically Refined Solution of Grid Around NACA 0012 Aerofoil
Computational Domains For Blocks Containing Various Degrees of Singularities
Cubic Singularity Exampleao
Cubic Singularity Examplebo oo o
Face to Block Mapping Input Definitions.
Grid and Block Structure for Blocks 0and 1. . . 0. . 0. o0 o000
Solid View of NACA 0012 Aerofoil without Wingtip
External Faces of Resultant Grid in Block 0 of NACA 0012 Wing
External Faces of Resultant Grid in Blocks 0 and 1 of NACA 0012 Wing
Grid and Block Structure for Blocks 0,1,2, and 3o 000
External Faces of Resultant Grid in Blocks 0,1,2, and 3 of NACA 0012 Wing
Final Grid And Block Structure Including Wing Tip
Wing Tip Detail for NACA 0012 Aerofoil
External Faces of Final Grid Around NACA 0012 Wing

Surface File Definition o v o e e e e e e e e e e e e

1 INTRODUCTION 5

1 Introduction

Popular fields methods such as: finite difference, finite element, and finite volume; require the physical
domain in which the problem is posed to be completely and wholly discretised. The accuracy of the
numerical solution is partly determined by the nature of the mesh used to represent the physical
domain. This is especially apparent within the Computational Fluid Dynamics (CFD) field, where
numerical errors, dependent upon the quality of the mesh, become visible in the flow solution. As
the sizes of the problems have increased, and the nature of the flows become more complex, the mesh
generation challenge has had to adapt to accomodate these developments.

Structured mesh generation is a popular and successful method of discretising domains. The method
is based upon a direct mapping from the physical domain to a computational domain. Boundary
points prescribed within the physical domain are used to interpolate the interior points within the
computational domain. The major advantage of structured meshes is that the implicit mapping inher-
ently stores the connectivity of the mesh maintaining low memory overheads. The way in which one
arranges the mapping is defined by the problem under investigation. Three strategies for generating
a mesh around an aerofoil section are shown in Figure{(1). The ‘C-Grid’ strategy generates a mesh
which follows the topology of the aerofoil and the flow within the domain, and is the best solution for
this geometry. The aerofoil surface is mapped onto a complete side of the computational domain using
the ‘O-Grid’ strategy. This simplifies boundary condition treatment, but does not allow the mesh to
conform to the natural flow. The ‘H-Grid’ can be exploited to model multiple body problems. By
imposing identical flow on the top and bottom boundaries the domain can be used to model a stack
of aerofoils.

This strategy has been utilized for turbine blade models. The method is restricted to cell topologies
which obey the mapping. Thus only quadrilaterals and hexahedra can be used for two and three
dimensional problems respectively. A restriction on the domain complexity which can be meshed
accurately is also imposed using this method.

Unstructured grid generation technigues refer to methods which use no implicit mapping to store the
connectivity of the mesh. The restrictions that structured generation techniques suffer from are thus
alleviated and the process becomes more versatile. Domains are not restricted in their complexity and
allow any cell topology to be used. Triangular or tetrahedral meshes are widely used for unstructured
meshes. Using the Bower-Watson algorithm [3] [11] a complex domain can be triangulated retaining
excellent, control over the mesh quality and distribution. This extra versatility allows more efficient
meshes to be produced reducing the effort required to solve a flow problem. The requirement to
store the connectivity of the mesh along with the coordinate data substantially increases the storage
requirements compared to those required for structured meshes.

Hybrid meshes are similar to unstructured meshes in that they use an identical method of data storage.
The only difference, in fact, is that hybrid meshes are constructed using more than one cell topology.
The advantage of this is that different cell topologies may be placed in regions of the flow regime
where they are most suited.

The multiblock technique is an powerful extension to structured mesh generation allowing larger,
more complex, and better quality meshes to be produced. Structured mesh techniques are applied
to sub-grids or ‘blocks’ which are then linked together to produce a much larger mesh. The blocks
remain structured, that is they map into a computational domain, however the resultant mesh does
not necessarily have to adhere to the same mapping.

This document describes the grid generation and refinement techniques used to create blocks and the
way in which the data is handled to provide an automatic block linking process. The possibility of
constructing blocks using different mesh generation techniques to produce Hybrid meshes 1s investi-
gated. This could be a major benefit for Reynolds Averaged Navier Stokes (RANS) calculations where

1 INTRODUCTION 6

a structured grid is preferred in regions where the viscous stresses are dominant and more efficient
unstructured grids are preferred in areas where convective fluxes become dominant.

The program, ‘Fleximesh’ is written in ANSI C utilizing the ability to create complex data structures
with great ease. Dynamic memory allocation is used to maximize the program versatility by not
constricting the amount of memory used in each generation stage. This allows the user the versatility to
maximize the memory use in regions where it is required, allowing very large meshes to be constructed
on local workstations.

The program has been developed as part of a PhD project aimed towards producing a three- dimen-
sional finite volume flow solver working with unstructured data types and able to cope with any cell
topology. Meshes produced using ‘Fleximesh’ have been successfully used in a finite volume scheme
solving the Euler equations.

Section 2 describes the block construction and introduces the geometrical objects used to describe and
generate the grid; Section 3 introduces cubic splines as a method of curve definition, and includes the
mathematical derivation of a cubic spline; Section 4 introduces and defines transfinite interpolation
as an efficient and accurate method of constructing interior points given the location of boundary
points in two and three dimensions; Section 5 describes elliptical refinement as a method of smoothing
and controlling grid quality; Section 7 describes the use of ‘Fleximesh’ including input and output
formats; Section 8 uses the NACA 0012 aerofoil geometry to demonstrate the abilities of ‘Fleximesh’;
and finally Section 9 concludes the report and introduces some future developments to 'Fleximesh’.

1 INTRODUCTION

Physical Domains Computational Domains
B A 5
R C
D
e S ——

D C
A f

Aerofoil Surface

C-Gnd
A B
C B
o
D A
D C
O—-Grid
C D
A B
| —
D C
B A
H-Gnd

Figure 1: Physical and Computational Domains for Three Grid Topologies

2 MESH CONSTRUCTION 8

2 Mesh Construction

2.1 Introduction

The Grid is produced by linking together a series of ‘sub-grids’ or ‘Blocks’ which are generated sepa-
rately. The key to the multiblock technique is the way in which the linking process is achieved such
that no mesh discrepencies occur. This section describes the approach used to generate each Block
separately whilst significantly simplifying the linking process.

Each Block is created using structured mesh generation techniques, using pre-defined boundary point
positions to interpolate interior points. The definition of the boundary points is not simple. Thus the
side points of a Block are generated using the same methods applied within a two-dimensional com-
putational domain. The sides are subsequently mapped onto the Block side. However the generation
of the sides requires the boundaries of the side to be defined. The generation of the boundary nodes
is achieved in stages using a hierarchy of Geometrical Objects. Nodes are defined as points in space.
Using these points or Nodes, Edges are defined by prescribing the Nodes which the Fdge connects.
Edges are used to define the sides of a Face and finally Faces are mapped onto the sides of a Block. The
generation of each of the Geometrical Objects allows the boundary points on a higher order object to
be defined. Thus the definition of points along an Edge allows the sides of a Face to be defined. These
boundary points are then used to generate the interior points of the Face which are subsequently used
to define boundary points on the sides of Blocks.

Nodes are the lowest ranking object and are defined by the user. All the subsequent objects can be
created in their most simplest state automatically. Thus it is possible to generate a three dimensional
Block by defining the eight Nodes which are the corner points of the Block. By defining how many
points are required along the Edges the number of points on the Faces and in the Blocks are determined.
The Object construction is achieved in two stages: the first being a mapping stage where a number
of previously defined lower ranking Objects are mapped onto the boundaries of the higher ranking
Object; and then a generation stage in which the boundary points are used in an interpolation routine
to construct the interior points. This Object is then ready to be mapped onto a higher ranking Object.
The only Object that this routine does not apply to is the Node which is the lowest ranking Object and
has to be explicitly defined by the user. The Geometrical Objects form a hierachial structure shown

in Figure(2).

2.2 Node Definition

The Node object is the lowest in the hierachial structure and contains coordinate data and a global
identification. These are the basic points in space which describe key positions on the physical geom-
etry and the block structure.

2.3 Edge Definition

The Edge object is defined by two end Nodes. However this would restrict the nature of the Edge to be
a set of linear lines joining the end Nodes. The grid generator is a much more powerful tool if curves
can be mapped onto the Edge object, essential for the description of basic engineering shapes such as
aerofoils and ship hulls. Splines are used to provide an inexpensive yet accurate method for describing
complex curves. In order to construct the spline a number of construction points are required along
the curve. These points are not Nodes, rather a series of temporary coordinate locations. Once a
spline has been constructed through these points they become redundant and the spline provides the
means to generate the interior Nodes along the Edge. If no construction points are defined the new

2 MESH CONSTRUCTION

®
Node

T ®
Edge
Face

|
=

1/

Block

Qéﬁ

Grnid

Figure 2: Geometrical Object Hierarchy

2 MESH CONSTRUCTION 10

interior Nodes are constructed using linear interpolation between the two end Nodes. By allowing
the interior points along an Edge to be constructed using splines, the complexity of shapes which can
be represented increases. However, this is at the expense of increasing the amount of user defined
information required by the process.

2.4 Face Definition

The first stage of Face construction is the Edge to Face mapping. The mapping procedure requires
knowledge of how and where to place the Edge along the sides of the Face. The identity of the Edge
and the direction in which it lies on top of a particular side has to be defined. However, the mapping
does not restrict the number of Edges that map onto one side of the Face. Therefore any number
of Edges can be mapped onto a Face side as long as the identities of the Edges, the directions of
the mappings, and the order in which they occur along the Face side, are known. This increases the
complexity of the overall Block construction but allows much more versatility in the Block definition.
An Edge to Face mapping is described in Figure (3).

The second stage of the Face construction is the generation of the interior points. Once the defining
Edges have been mapped onto the sides of the Face correctly, the interior Nodes can be found using
two methods. In most cases Transfinite Interpolation, described in Section 4, is used to generate the
interior Nodes based upon the boundary point distributions. However there are cases where the Face
represents a complex surface which cannot be constructed through the transfinite interpolation of the
bounding curves. In such circumstances a surface can be defined using a series of splines across the
Face. As with the definition of Edges using splines, this process requires a list of construction points
for each spline. Each spline must have enough construction points to adequately define the curve they
are reconstructing, and there must be enough splines to accurately describe the curve of the surface
in the opposite direction. For a complex surface such as a wing tip this requires a large number of
construction points and thus this method of Face construction is only used when absolutely necessary.
The construction points for such a complex surface can be derived ,for example, from a surface panel
generator [9] or a ship lines code [1]. Usually the surface can be defined adequately using transfinite
interpolation of bounding curves. Construction points are reallocated along the construction splines.
The new curves are then used in an interpolation routine to construct the new interior Nodes. This
process can be followed in more detail in Section(10.4).

2.5 Block Object Definition

The Block object is described by the six Faces that make up the hexahedral domain that a Block
maps onto. It is possible to map more than one Face to a Block side using a system of ‘Patches’.
However the complexity of the initial input was deemed to be too complex without some sort of visual
aid and the singular mapping was retained. The mapping of Faces to the sides of the Block requires
three elements of information. As well as the direction of the Face on the Block side, each Face has
a relative rotation to produce a total of eight different mappings. Thus the identity, direction, and
position of the Face has to be defined for a correct mapping. Figure(4) shows the Edge to Face to
Block mappings indicating the origins of the Faces and Block.

2.6 Block Linking

There is no need for a physical Block linking process since it is accomplished automatically through
the unique identification system within the Geometrical Objects. Starting from the lowest ranking
object, the Node, each of the new Nodes created has a unique identification number. When each object
is used in a mapping procedure, the coordinates and the unique identification number are mapped

2 MESH CONSTRUCTION 11

Figure 3: Edge to Face Mapping

Figure 4: Edge to Face to Block Mappings

2 MESH CONSTRUCTION 12

onto the higher ranking object. Thus the Nodes at the ends of an Fdge retain the coordinates and
identification of the Nodes used to define the Edge, and similarly the Nodes along the sides of a Face
retain the coordinates and identifications of the Edges that were used to define the Face. The corner
Nodes of the Face will in fact retain the coordinates and identities of the Nodes used to define the
Fdges that define the Face. This results in the construction of a global list of Nodes which are never
replicated. Blocks can be defined using the same Faces. Thus the identities and coordinates of the
Nodes on adjoining Block sides are automatically equivalent. This is the major motivation towards
using this Geometrical Object hierarchy system within the grid generation process.

The output data format is a full unstructured data set. No inherent Node connectivity is assumed
and thus has to be stored along with the coordinate data. A full unstructured data set refers to
the inclusion of all geometrical objects such as nodes, edges, faces, and cells, in order to fully define
the connectivity of the grid. Obvious similarities can be made between the full unstructured data set
which is used as an output format and the way in which the Grid is initially defined. As a consequence
of using this data format, the extra connectivity information has to be generated within the generation
process. The Node construction has already been demonstrated and Nodes are obviously equivalent
to the node structure in the unstructured data set. However during an Fdge construction the edge
structure has now to be correctly formed. This is a simple case of defining an edge by the Nodes that
define it and allocate a unique identification to the structure. Both the edge and face structures have
to be generated during the Face construction. These structures can easily be defined from the two
dimensional array of Nodes on the Face. Similarly edge, face, and cell structures have to be defined
during the Block construction using the three dimensional array of Nodes. Thus the unstructured data
set 15 constructed as each of the geometrical objects is constructed.

3 SPLINE DEFINITION 13

3 Spline Definition

3.1 Introduction

Polynomials have been widely used to approximate other functions. However they suffer from the
following serious drawbacks:

e High Degree polynomials may oscillate strongly.
¢ Polynomial interpolation is very sensitive to the choice of interpolation points.

e If the function to be approximated is badly behaved anywhere, the the approximation is poor
everywhere.

The global dependence on local properties can be relieved by using a series of polynomial approxima-
tions. Splines combine a series of low order polynomials, to obtain a function which is as smooth as
possible without it being a global polynomial. The cubic spline has been utilized within the grid gen-
eration procedure to accurately model curves that may be found in engineering situations. A example
of such a curve is an aerofoil section which, using cubic splines, can be regenerated using relatively
few data points. The cubic spline fits a cubic polynomial between each set of defining data points.
The cubic splines are equal at the data points and the spline is thus continuous. If the gradient and
the curvature are also assumed to be continuous then the spline can be derived. Other choices of
curve representation such as Bezier curves are not as useful due to the non-direct mapping between
the defining points and the resultant curve.

3.2 Cubic Spline Derivation

If a set of data points is defined a unique cubic polynomial can be defined between each set of pomts.

([So(.ﬂ) T E [.’L‘g,.’L‘l]
S1(x) z € [z1,Z2]
S(zy={ (1)
L Sn—1 T e [mn—lsmn}

where S(z) is the cubic spline and S; are the cubic polynomials between each set of points [x;, Tiy1].
The cubic polynomials are equal at the defined end points and thus

S,;_l(m)zy,;zSi(:c), i=1,2,...,n—1 (2)

Since S; is a cubic polynomial over [z;, #;11], S; is a linear function and is therefore given by a straight
line between its end points.

i (@) = o)

Sy (z
($z‘+1 _ .’L‘) 4 2 (Tz+1)
Tl — Lj Tip1 — T4

(z —zi) (3)
If this is integrated twice an expression for S; is found.

S;’ («'Ez‘+1)
6(zir1 — =)

Si(z) = —%(m—_é)f(m,;ﬂ -z + (x — 2;)° + Clz — z;) + D(xit1 — T) (4)
6(zi41 — Ti)

3 SPLINE DEFINITION 14

] | | % | | i | | | | |

] I i | I I [[

* X Xi-1 5o Xisl *n-1 *n
Figure 5: Spline Definition

where C and D are constants of integration. The known values of S;{z;) and S;(x; ;1) can be used to
find the constants of integration.

c = (Yit1 _S;'($i+1)(ﬂ?i+1—ﬂ?z'))

Tirl — Ti 6
D = (Yi _ S; (@) (@i ~ -Ti)) (5)
Ziv1 — &g i
It is clear that if values of S; (o), S; (1), 5. (z9), ..y S; (Tn 1) are known then S(:I:) may be evaluated
for any z within the interval [zg, mn] In order to evaluate S; (zo), S; (z1), S; (:1:2) ey 8 (Zpoy) it

is assumed that the gradient is continuous along the spline. The gradlent S' (z)} can be found by
differentiating Equation(4) and a discrete function S:(x;) found by substituting z = ;.

! iyl — T Tiy1 — Ef ¢ Yi Yi+1
§i(g) = — L T gy T gt) — 6
i (i) 3 i (2i) 6 i (Tit1) Tirl — T + Tl — T (6)
and by substituting x = x;_,
' Ti 1 — Ti— 1 Yi—1 Wi
S; = —IS ; - + 7
o) = IS () + B () - g ™)
The two equations can be equated to find
(i —zic1) S (@io) + 2((@ip1 — 3) + @ig2 ~ 1)) S; (20) + (25 — 2im1)S; (map1) = (8)
6 6
ﬁ(yz+1 yi) — ——— (¥ ~ vi-1)
Ti41 — T — Ei-1
This equation is used for i=123,....n—1 and prov1des a system of n — 1 linear equations for

the n+ 1 unknowns S. (o), S; (:cl) (11;3), v S (). S; (zg) and S; (z5) are chosen arbxtrarlly to
complete the system of linear equatlons A ‘Natural Cubic Splme is found when S, (zp) = S; (za) = 0.
The resultant linear system of equations for 1 < ¢ < n — 1 with S (zo) = 5; ’(acn) = (is symmetric,
tridiagonal, diagonally dominant, and of the form

[uy By 1F M7 [W]
hl uo h.g M2 V2
h2 {2X] h3 ' — ' (9)
hn-3 Un 2 hn—2 My _o Va2
L hn—o tp-1 } L Mn_y i L Va-1 i

where h; = iy — i, w4 = 2 + hit), Vi = £ — 1) — 5ip(yi— % 1), and My = 5 ().

3 SPLINE DEFINITION 15

3.3 Parametric Cubic Splines

The cubic spline theory presented in the previous section describes a cubic spline function § as a
function of z. A more convenient method of constructing cubic splines is to use a parametric function
n(z,y, z) where 7 is a function of the distance along the curve. The function 5 is approximated by
calculating the linear distance between each of the discrete defining points.

i—1
n=y xﬂ%‘ﬂ —z3)? + (41 — ¥ + (241 — 25)° (10)
e

The parametric function can be normalized for values between 0 and 1 which provides a simple method
of defining new points along the spline. The parametric function is calculated for each of the defining
points using Equation(10). The cubic spline theory is now defined in terms of the new parameter. A
spline function is calculated such that z,y, and z values can be found for a value n with the spline
equations now in terms of and 7 = (z, y, 2)T.

hel

" S; (m) S; (is1)
S (n) = = (g —) + -y 11
2 (1) — m(n 1= 1) Fp—— (7 — m:) (11)
P S; (7:) 3 S; (1) 3~ 7
S; = —2" (i1 — + =y - ni)” + Ol —) + Dy — 12
i(n) 60 —) (Mi+1 —) 6071 — m)(") (n —m) + D(niy1 —n) (12)
& = Fort S () (misn —ms)
i1 — i 6
5o Fi_ Sim)0 - m) (13)
Nit1 — i 6

and the coefficients in Equation(9) become h; = mi41 — ni,ui = 2(hi + hip1), Vi = %(F,-H -7 —

%(ﬂ - Fi—l); andMi = S:(Th)

3.4 Line Point Distributions

The normalized parametric formulation of points distributed along a line enables a convenient method
of defining new positions for points along the length of the line. By defining a value of n a new z,¥, 2
position may be calculated either using the parametric cubic spline formulation or using simple linear
interpolation. Distributions between the values of 0 and 1 can be defined using various methods. Sine
and Cosine functions provide useful distributions due to their natural bounds. However these functions
cannot always provide the desired distribution along a line and complicated combinations have to be
applied. Alternative functions have been developed capable of providing versatile distributions using
simple inputs. One such function, developed by Roberts[6] and modified by Eiseman(8), is:

_ tonblgt 1)) ”

s=pn"+(1-p) (1 tanh g

where n* = _’7;_711;_1: a normalized parametric function and p and g are parameters which control the
distribution of points along a parametric series. p controls the slope of the distribution and q provides
a damping effect by forcing the function to become less linear. This function can provide a wide range
of versatile distributions by simply varying the values of p and q.

3 SPLINE DEFINITION

patgoezoo it 1 3 111 |
E A
P=0.00 =2,00 é | .| E_l_l._-i
Pal) =200 H S I S
E
5,:!1 %

Figure 6: Line Distributions. [5]

16

4 TRANSFINITE INTERPOLATION 17

4 Transfinite Interpolation

4.1 Introduction

Transfinite Interpolationf7] provides a method for linearly interpolating a region by specifying a con-
tintous mapping on all of the boundaries with an interpolation in the £ and # directions introduced in
the interior. Thus unlike conventional interpolation methods, the mappings on all of the boundaries
affect the interior interpolation.

4.2 Theory

Normalized parametric coordinates r and s are introduced in the £ and % directions. Intcrpolation
functions are then defined as :

(I)j(’r') Zéjr, j =O,].. ‘Ifk(s) = Jksa k={],1. (15)
where d;, =1if j=rand0if j Arand §s=1ifk=sand 0if k # 5.
Thus referring to Figure(7): &y =1, ®; =0 on AD; & =0, ®; =1 on BC; ¥ =0, ¥; = 1 on AB;
and ¥y = 1, ¥; =0 on CD. Interpolation in the r and s directions can be expressed as :

Z(r,5) = ®o(r)Zap(0,5) + ®1(r) Zpc(l, 5)

Zs(r,8) = Uo(5)Zap(r,0) + ¥1(s)Zcplr, 1) (16)
where Z4p, Zpe, Zap. Zep are continuous mappings between the {£,n) and (z,y) planes on the four
boundaries. Z.(r,s) and Z;(r, s) are the continuous mappings produced by interpolating between two
opposite boundaries. These are equivalent mappings used in the simplest interpolation routines. In

order to extend this method of to a two-dimensional interpolation a product interpolation is defined

as :
Zes(r,8) = Zp - Z (17)

This product interpolation is only compatible with the boundary functions at the four corners. To
obtain an exact matching along all of the boundaries of a two-dimensional domain it is necessary to
define a boolean sum interpolation:

Z(r,8) = Zy(r,s8) + Zs(r,8) — Zys(r, 5) (18)

This boolean sum interpolation is central to transfinite interpolation.

The interpolation is in practice accomplished in two stages. The first stage simply calculates the one
of the one-dimensional functions.

1
Z,(r,s) = Y B5(r) Zsld, 8) (19)
=0
where b indicates the appropriate boundary. The second stage completes equation (18).

1
Z(r,8) = Zp(r,s) + Z Uil(s)[Z(r k) — Zp(r, k)] (20)
k=0

Transfinite Interpolation can easily be extended to three dimensions by adding a natural third stage.

1
Z(Ta 5, t) = ZQ(T: 8, t) + z Q,‘(t)[Zb(’f‘, Sai) - Z2('r1 Sai)] (21)
i=0

where Zo(r, 5,1) is equivalent to Z(r, s).

4 TRANSFINITE INTERPOLATION 18

c {1,1)

D (0,1)

B (1,0Q)

A {0,0)

X

Figure 7: Transfinite Interpolation Domain Definition

4.3 Interior Interpolations

Transfinite interpolation uses continuous mappings specified along all boundaries in order to inter-
polate the interior mesh points. Thus the distributions along the Edges used to map onto the sides
of a Face determine the interior distribution. Similarly the Fece distributions determine the three-
dimensional mesh distribution. It is clear that the line distributions used to generate Edges, determine
the interior distributions on Faces and thus Blocks. The importance of the spline routine and line
distribution functions, now hecome apparent.

Figures(8,9) demonstrate the generation of interior points using the transfinite interpolation method.
Line distributions have been used to concentrate points along the boundaries. These distributions
have been extended into the interior through the interpolation routine. Figure(10) shows the effect of
using opposite line distributions along opposite boundaries. The distributions along the boundaries
are extended into the interior to produce a highly skewed mesh.

4 TRANSFINITE INTERPOLATION

Figure 8: Transfinite Interpolation of Simple Bound Regions.

Figure 9: Transfinite Interpolation of Simple Bound Regions Using Split Spline Option

19

4 TRANSFINITE INTERPOLATION

i

\
\
!
.

A\
\\\\\\‘
TR
\‘\\\\&\\\%\‘&.«.
1

KT
R

S
N
\

o)

a1y
i\
R
W

W
e

X
Sesmu

S

™

-~
D2
KR

S

.,
7
2%
-
(A

S
)

L7
A

'
&
9597
XI5
oo
ol
&
0
4;;:':.
K

Set N
=)
!

N
- “‘\\\\\\\\\\

=

Figure 10: Extension of Line Distributions into the Interior Using Transfinite Interpolation.

20

5 ELLIPTICAL REFINEMENT 21

5 Elliptical Refinement

5.1 Introduction

A linearly interpolated grid is often not of sufficient quality for some flow calculations where the grid
quality is paramount in the flow solution process. It is therefore necessary to refine the grid in order
to minimize errors in the fow code. This project includes an elliptical grid refinement module in an
attempt to improve the grid quality. Elliptical grid refinement uses the Poisson equation to smooth
the grid in the interior with Dirichlet fixed boundary points. The problem is solved in a generalized
coordinate space, constructed such thai a computational domain boundary coincides with a physical
boundary. The distorted physical space is mapped onto either a rectangular or hexahedral space
within the computational domain. The governing equations are transformed into and discretised in
the computational domain, such that the generalized coordinates become the independent variables.

5.2 Discretisation of Poisson Equation

53:_2+6_y~?+@ = P({,n,¢)

&n O™ &
a2 + a2 + 732 - Q& n.¢)
&¢ 8% 9%

where the sources P, Q, and R are known source functions used to control the distribution of points
within the grid. In the computational space Equation(22) transforms to

Q11Tee + QaaTy + QaaTee + 2earen + Q1aTee + Caaty) = —J(Pre + Qry + Rre) (23)

where r = (z,y,2)7, aij = ¥ ¥mi¥mj, and 75 is the ij* cofactor of the matrix

Tg In L
M=y vy ¥% (24)
2 2y 2

and .J is the determinate of the matrix M.

Equation(23) can be solved using an iterative method such as a Gauss-Siedel with a point ‘Successive
Over Relaxation’, or SOR, for solution acceleration. This is demonstrated for the two dimensional

equations below.

ayiTeg + Ty + 2(anarey) = —J*(Pre + Qry) (25)

where r = (z,y)7, and 4§ = 3 Ymi¥Ymj,» and vi; is the ¢ jt* cofactor of the matrix

w5] o

and J is the determinate of the matrix M.

Thus using the finite difference approximations below Equation(25) can be discretised.

re = (Tig1,j —Ti-15}/2

5 ELLIPTICAL REFINEMENT 22

Ty (rig+1 — Tij—1)/2

Tee = ('rz 1.3 — 2T13 +Tg+l,g)

oy = (Pigo1—2ri i+ riga)

Ten = (Tigij+1 — Tictg41, —Tit15-1F Ti15-1) (27)

Using these approximations the o coefﬁments and determinate J can be expressed as

Tt iz N2 (e s — i1)2
e e)
2 2
Tt — i o
gy = ($£)2+(y£)2: ((i,j+1 4 1,7 1) - (ya,J+l 4%,3 1))
alp = ~(Tcy + Yeyy)
_ {(($i+1,j —Hfi—l,j)) ((iﬂi,jﬂ —zij-1)Y | ((yi+1,j _yi—l,j)) (Yig+1 — Yig-1)
2 2 2 2
and
P = (gyy - oqve)

~ {($i+1,j - Sﬂil,j) (yz‘,jﬂ — Yij-1Y) _ (l‘z‘,j+1 — T 1\ { Yi+l.j — yi—l,j) }2
2 2 2 2

Using a Gauss Siedel iterative routine Equation(25) can be written in terms of a new value r**1 where
(n + 1) denotes a new psendo time level.

(n+1) _ 1

\Fe P — IR Y 4+ evonlr; i1 + 755 +
i 2(au+azg){ 11 (Fie1,j + Tir1g) + o2a(rig—1 + Tij+1)

@12 (Pig1,j41 = Tim141 — Titlj—1 + Tim1j-1) +

o (prieng —Tic15) | ATigi1 —Tig—1)
J2 P +Q

2 2
(28)
Equation(28) can be accelerated using a point Successive Over Relaxation Scheme (SOR).
(n+1) red
res = (1= A + AP (29)

where A is the acceleration factor and is typically A ~ 1.4. When a large number of sources are used
to distort the natural elliptical solution an Successive Under Relaxation Scheme can be used to help

convergence where typically A =~ 0.5.

5.3 Source Functions

The P, Q, and R functions can be any number of functions producing positive values within the
domain. However the functions most commonly used are based on the sum of exponential functions
from each source term. The following functions were found by Thompson et al.[10]:

PE,n.¢) = zazsgﬂﬁ &)exp(—clé — &)

=1

M
— 3 bnsgn(€ — Emeap[—dm{(€ — &m)? + (0 = 7m)* + (C = ¢m)* 7] (30)
m=1

5 ELLIPTICAL REFINEMENT 23

L
Q(&,m,¢) == _ aysgn(n — m)exp(—ciln — 1)
=1
M
- Z bmsgn(n — nm)ezp[—dm{(£ - {m)2 +(n— Tim)Q + (¢ - Cm)2}1/2] (31)
m—1

L
B(€n.¢) == aisgn(¢ — Gezp(—al¢ — G}

i=1

M
- Z bnsgn(C — Gn)exp[—dm{(§ — §m)2 +(n— Tt’m)2 + (¢ - Cm)z}lfg] (32)

m=1

where coefficients a;, by, ¢ and d,, are chosen such that the grid is clustered in the correct locations.
In Equations(30,31,32) L represents the total number of line sources in the £, n, and ¢ directions
respectively and M represents the total number of point sources. A set of coefficients a, b, ¢ and d
are entered in order to set dominance of the particular source.

The sgn function has the property:

sgn(z)=1 x>0
sgn{z}=0 z=0
sgn{z}=—1 z<0 : (33)

and ensures that points on both sides of the source are under an attractive force. The first term in
Equation(30) has the effect of moving £=constant lines towards the £ = ¢ line, and likewise the first
term in Equation{(31) has the effect of moving n=constant lines towards the = = line. The second
terms in both of the equations have the effect of attracting £=constant lines and np=constant lines
towards the point (£,1). The a coefficients act as a magnitude for the attraction term whereas the c
coefficient acts as a decay term determining the decay of the influence of the source. The effect of the
b and d coefficients is much the same acting only on the point sources.

5.4 Elliptical Refinement Solutions

Elliptical refinement can be used to smooth the mesh to improve the quality of the geometrical forms,
and also to help concentrate mesh points in regions of maximum flow gradients. In practice the former
will often require some mesh point concentration in order to maintain the interior point distributions
that result from transfinite interpolation. In fact, elliptical refinement is often a compensatory factor
for poor boundary distributions and thus to produce a good quality mesh it is necessary to re-distribute
Nodes along Edges and then smooth using elliptical refinement. The following Figures are designed to
show how much influence elliptical refinement can have over the interior Node distribution and how
it can be used to smooth the mesh over an aerofoil section, demonstrating some of the adverse effects
that this can create.

Figure(11) shows a square region with a linear distribution of Nodes along the Edges after elliptical
refinement, with two line sources and a point source. The distribution of the Nodes in the interior
has been attracted to both the line sources and the point source and is clearly very different from the
linear solution. This particular case is used to demonstrate the strong influence of the sources, and
not to produce a high guality mesh. The source terms have produced undesirable, highly skewed Celis
in the interior, and for this naturally orthogonal geometry the linear interpolation would produce the
best solution.

Figures(12,13) are used for the same purpose in the three dimensional case. The first depicts a cubic
region, elliptically refined with a source term at the centre of the cube. Again it clearly shows how

5 ELLIPTICAL REFINEMENT 24

g
7777 7&
FEL S 7

Figure 11: Elliptical Refinement of a Square with Two Line Sources at i=8 and j=8 of Strength=100,
and Damping=0.002 and a Point Source at i=12,j=12 of Strength=1200 and Damping=0.0001

the interior mesh Nodes have been attracted to the centroid of the cube. If further source terms are
added at the centres of all the Faces and additional line sources are added on all lines that intersect the
centroid then the effect is to attract the mesh Nodes onto the three dimensional cross which these lines
produce, with the attraction becoming more dominant as the distance from the centroid is reduced.

Figures(14) and (15) show the unrefined and refined solutions for the interior nodal positions on a two
dimensional C-Grid Face. Transfinite interpolation is used to cluster grid points near to the aerofoil
surface and near the trailing edge of the aerofoil which is where one would expect the highest flow
gradients. The elliptically refined solution shows how the transfinite solution can be grossly distorted
with often adverse effects without carefully choosing correct Edge distributions and using sources to
control and maintain the desired grid point distributions. The refinement procedure has distorted all
the clustering and although it has produced a smooth grid in the interior, the external boundary is
obviously highly skewed and distorted. This kind of adverse affect can be compensated for with the
combination of changing the Edge distributions to produce naturally orthogonal grids, and with the
addition of sources to help maintain these Edge distributions.

5 FELLIPTICAL REFINEMENT 25

Figure 12: Elliptical Refinement of Cube with a Point Source at ¢ =5,7 =5,k =5 of Strength=2000
and Damping—0.0001

Figure 13: Elliptical Refinement of Cube with a Point Source at the Centre of Each Face and at the
Centre of the Cube with Additional Line Sources on Lines that Intersect the Centroid.

5 ELLIPTICAL REFINEMENT

il
TH
I
(T

T
i

T

Jine G

o
N
XS %}}\\\“}ﬁ&m}\\m\uﬁl|||III

QS AT RIS Y
R
1]
H

"4, 7 I,';;z,;;;;gmmu rl.!li"."ltl'lf‘l]l}l'il}
g ’#m.; HRLIN
o
[/”ImIIIIHIJHHIHHIIIEI
“\“\IlllﬂﬂmI||II||||||

AR

e |¥mr

1]
Nt
S s
R

26

Figure 15: Elliptically Refined Solution With And Without Additional Sources

6 GRID SINGULARITIES 27

6 Grid Singularities

The multiblock method is a natural extension of the structured grid generation method enabling some
of the restrictions that a structured grid imposes to be overcome. However some physical objects
require a combination of grid topologies. The perfect example, and one which is demonstrated as a
case study, is that of the wing tip which is typically described using a C-Grid wrapped around both
the chord and the span of the wing. These topologies do not naturally join and produce a singularity,
resulting in faces with three sides and cells with four or five sides. A simple method of dealing with
these singularities within a flow solver is to accommodate edges with zero lengths. However some
discussion of how this is generated within the grid generator is necessary. The geometry hierarchy
enables us to define an Edge using the end Nodes. If an Edge is defined using only two identical
end Nodes this indicates a zero length Edge is to be produced. The grid generator constructs a list
of Nodes along the length of this Edge with the same coordinates and identities as the end Nodes.
No increments are made to the global Node count. Thus these Nodes are invisible replications of the
singular Node that the Edge is constructed from. This is necessary such that the interpolation routines
work on the Face. However the unstructured data sets are still constructed such that a number of
edges will be defined using the same Node as their defining Node but having unique identities. For a
truly unstructured data set this is incorrect but for a structured data set this will enable a flow solver
to identify singularities. A simple extension is planned to enable a complete unstructured data set to
be constructed, with edges defined by identical Nodes to be deleted, faces defined by three edges only
to de defined as triangles rather than quadrilaterals, and cells defined using less than six faces and or
non-quadrilateral faces to be defined as tetrahedra, prisms, or pyramids. This would incorporate the
singularity correctly within the unstructured data set.

To demonstrate the singularity feature Figures(16,17) depict the computational and physical domains
of a cube. The closest face if the cube is collapsed by allowing the Edges to be defined as zero length
Edges. The affect this has on the Faces of the cube are clearly visible with the final stage depicting
the Face as a point in physical space.

6 GRID SINGULARITIES 28

7 6 6 5
2 1
4 3
0 1 0 0

Stage | Stage 2
5 4 4 3
1 . 0
2 L
0 0 0 0
Stage 3 Stage 4

Figure 16: Computational Domains For Blocks Containing Various Degrees of Singularities

Figure 17: Stages 1 & 2 of Cubic Singularity Example

6 GRID SINGULARITIES

Figure 18: Stages 3 & 4 of Cubic Singularity Example

29

7 USE OF FLEXIMESH 30

7 Use of Fleximesh

7.1 Introduction

‘Fleximesh’ has been developed on and is executed on the Unix operating system. It is an interactive
command based program with no windows application. IHowever at each stage of the grid genera-
tion process ‘Fleximesh’ produces ‘.avs’ files which can be viewed using ‘Application Visualisation
System’ (AVS). All the geometrical and connectivity information that’s required is inputed from file.
‘Fleximesh’ constructs the basic linearly interpolated mesh which can then be refined or altered in-
teractively during execution. Once the refining options have been set a script file can be written and
‘Fleximesh’ may be executed in the background for convenience and speed. Flags can be set in the
command line to set the optimisation to memory or speed. The memory optimisation reduces the
memory usage during execution by writing to temporary files during execution to reduce the overall
memory usage.

7.2 Input File Preparation

The input file contains all the geometrical and connectivity information required to produce the basic
linearly interpolated grid. The format of the file is shown below:

string [Description of Grid File]
int [No. of Nodes] int [No. of Edges] int [No. of Faces] int [No. of Blocks]

string ['NODE’] int [ID] float [x coord.} float [y coord] float [z coord.]

string [EDGE’] int [ID] int [Node 0 ID] int [Node 1 ID] int [No. Def. Pts.] int [No. Res. Pts.] int [P] int [Q]
int [Def. Pt. ID] float [Def. pt. x coord.] float [Def. pt. y coord.] float [Def. pt. z coord]

string [{FACE'] int [ID] int {Boundary Condition ID]

string [‘SIDE?] int [Side ID] int [No. Edges] int [Edge ID] int [Edge Direction] - -

string [‘SIDE’] int [Side ID] int [No. Edges] int [Edge ID) int [Edge Direction] - - -

string [‘SIDE] int [Side 1D] int [No. Edges] int [Edge ID] int [Edge Direction] - - -

string [‘SIDE'] int [Side ID] int [No. Edges| int [Edge ID)] int [Edge Direction] - - -

string [SOURCES’] int [No. i Line Sources| int [No. j Line Sources] int [No. Pt. Sources]

string FI.SOURCES"] int [i location] float [strength of source] float [damping of source] - --

string '] SOURCES'] int [j location] float [strength of source} float [damping of source] - --

string ['P_SOURCES’| int [i location] int [j location] float [strength of source] float [damping of source] - -

string ['BLOCK’] int [ID]

string ['FACE'] int [Side ID] int [Face ID] int [Face Direction] int [Face Position]

string [‘FACE] int [Side ID] int [Fuee ID] int {Face Direction] int [Face Position]

string [[FACE'] int [Side ID] int [Face ID] int [Face Direction] int [Face Position]

string [[FACE] int [Side ID] int {Face ID] int {Face Direction] int [Face Position]

string [[FACE’] int [Side ID] int [Face ID] int [Face Direction] int [Face Position]

string [[FACE’] int [Side ID] int {Face ID] int [Face Direction] int [Face Position]

string [‘SOURCES] int [No. i Line Sources] int {No. j Line Sources] int [No. k Line Sources] int [No. Pt. Sources]
string [SOURCES"] int [i location] float [strength of source] float [damping of source] - --

string ['J.SOURCES] int [j location] float [strength of source] float [damping of source] - -

7 USE OF FLEXIMESH 31

string 'K _SOURCES’] int [k location] float [strength of source] float [damping of source] - - -
string ['P_SOURCES’] int [i location] int [j location] int [k location] float {strength of source] float [damping of source]

The relative position and direction of the Face to Block mapping is defined using an integer code.
Definitions of the codes are shown in Figure(19). The data file for the NACA0012 aerofoil is included
in Section(10.5) as an example.

3 3
Direction=0 Directicn=1
Position=0 Position=0
4 2 4 2
1 1
J T
L> i Lj
3 3
Direction=0 Direction=1
Position=1 Position=1
4 2 4 2
i
1 1
i
Y
]
;|
3 3
Direction=0 Directicon=1
Position=2 Position=2
4 2 4 2
1 i 1]
J i
3 3
Direction=0 Direction=1
Position=3 Position=3
4 2 4 2
-
1 1
]

Figure 19: Face to Block Mapping Input Definitions

7 USE OF FLEXIMESH 32

7.3 Output File Format

‘Fleximesh’ ontputs two files of different formats. The first is an AVS “.imp’ file or as labeled from
‘Fleximesh’, “.ucd’. This file format can be used to view the mesh or the external faces of the mesh
using AVS. It can also be used as a neutral format for input into other applications. The format
is well documented in the ‘Developers Guide’[2]. The second of the output formats is a complete
unstructured data set. The extension used for this format is ‘.flw’ or for a decomposed mesh suitable
for use in a distributed data application ‘.flwpp’ although this decomposition facility is not built into
‘Fleximesh’ at present. The file format is given below :

string [Grid Description]

int [No. of Nodes] int [No. of Edges] int [No. of Faces] int [No. of Cells]
int [Node ID] float [Node x coord.] float [Node y coord.] float [Node z coord]

int [Edge ID] int [Node 0 ID] int [Node 1 ID]
int [Face ID] int [Face Boundary ID] int [No. Edges] int [Edge ID] int [Edge Direction] - -

int [Cell ID] int {Cell Type] int {Face ID] int {Face Direction] - - -

7.4 Using ‘Fleximesh’

‘Fleximesh’ runs in a shell tool and is a prompt based program. The program is executed using the
command ‘Aeximesh’ from the command prompt. This command runs a script which executes the
main program named ‘Blockgen’. ‘Blockgen’ issues a set of prompts, the first of which is the name of
the input file.

As of yet, there is no windows application to aid the construction of the input file and the task remains
a non-trivial procedure. With the aid of this document, the case study, and examples included within
the archive file, the user should become familiar with the input file definition before attempting complex
grid constructions. It is recommended that a number of simple grids are constructed successfully before
a user attempts to tackle larger problems. Complex geometries are often meshed more successfully
when approached in stages of complexity. Only a limited number of bugs within the input file will be
spotted by the program, and it is this file which is the mosi likely source of error in the event of a
premature exit. It is also recommended that until a visual application has been developed that the
user adopt a historical approach using pen and paper to visualize and debug the input file. Input file
bugs reported as program bugs will not be appreciated.

‘Blockgen’ will automatically input the file and start the mesh construction. At the start of the
procedure ‘Blockgen’ sets up the Grid structure using the global number of Nodes, Edges, Faces,
and Cells. Each individual Geometrical Object is subsequently constructed starting with the lowest
ranking objects. Edges are constructed automatically with no option to alter the distribution of
points along the splines. Faces are initially constructed through an Edge to Face mapping, followed
by the construction of the internal Nodes through transfinite interpolation. A temporary file named

7 USE OF FLEXIMESH 33

‘face< face_id >.tmp’ is produced which can now be viewed using AVS. ‘Blockgen’ now prompts the
user for either continuation onto the next Face or alteration and/or refinement of the present Face.
If the Face is refined the maximum error for the iteration is displayed on the screen such that the
refinement process can be monitored. If convergence fails the cycle will repeat using a Successive Under
Relaxation parameter. In the event of divergence, the cycle will be terminated and the transfinite
interpolated solution will be maintained. It is possible to change the input file at this stage to try
and improve the solution. Following the completion of Face construction, ‘Blockgen’ continues onto
the Block construction. A similar procedure as that used for the Face construction is used. Faces
are initially mapped onto the sides of the Block followed by the interpolation of the interior Nodes.
Similar options exist for the refinement and alteration of the Block. Fach individual Block mesh may
be viewed using files ‘block< block_id >.tmp’. All temporary files are deleted at the completion of the
execution.

Following the construction of all of the Geometrical Objects the Grid is written to the two output files
described in Section 7.3.

‘Fleximesh’ does allow some default values to be set. These include both the SOR and SUR parameters,
and convergence criteria. These can be stored in a file named ‘elliptic.default’, stored in the same
directory as the executable. However, if this file does not exist ‘Fleximesh’ uses a set of default values.

‘Fleximesh’ is able to run in two modes. The default mode optimises the execution for speed whereas
the second mode optimizes the execution for memory by placing some of the geometrical information
into temporary files during execution, to reduce the memory usage. Experience has shown that the
memory optimisation is rarely required due to the optimized data handling within the program.

A limited number of error messages are recorded in a log file name ‘blockgen.log’ which can be found
in the executable directory.

8 CASE STUDY 1: NACA 0012 WING 34

8 Case Study 1 : NACA 0012 Wing

8.1 Introduction

A three dimensional zero sweep wing constructed using the NACA 0012 aerofoil section is used as
a case study demonstrating the abilities of the grid generator to grid complex shapes. However this
case study does not test the generator to the extreme. In fact as will be seen, only eight Blocks are
used to generate the resultant grid. The only restriction on the number of geometrical objects that
can be defined are the size of available memory of the workstation and the input file complexity. It
should also be noted that the resultant grid is by no means a final solution for this geometry, rather
a demonstration of some of the main features of the grid generator.

8.2 Stage 1 : Simple Solid Wing Geometry

The first stage of the process is to deal with the main body of the wing without the tip geometry.
Figure(21) shows the an image of the geometry surface after the gridding process. However the grid
lines show the morphology of the aerofoil surface and give the good visual impression of the geometry.
The most common grid topology used for aerofoils is a C-Grid which wraps itself around the aerofoil
surface, thus producing a grid which follow the contours of the surface well. In this case the aerofoil
was split into an upper and lower surface to aid the construction process and two Blocks are produced
for the two surfaces. A domain is generated for each of the surfaces extending a distance of one and
a half chord lengths perpendicular to the chord and forming an arc around the leading edge, again
one and a half chord lengths from the leading edge. The grid would be extended much further for a
true solution and these lengths were chosen for easy grid visualisation. Figure(20) shows the defined
Nodes required to produce this domain, and the computational domain that the two Blocks map to.
It is clearly seen that more than one Edge has been used to define some Face sides and that although
there are two Edges that use Nodes zero and one in their definition, they are still distinct Edges using
different sets of construction points to define the spline which are used to generate the Nodes along
them. The two Edges refer to the upper and lower curves of the aerofoil section which both begin at
the trailing edge and end at the leading edge. This is true also for Edges defined using Nodes four and
five. Edge and Face definitions have not been entered onto the diagrams as they confuse the image.
However the data file should be referred to for a full understanding of these definitions.

Figure(22) shows the resultant grid created from Block zero. This covers the upper surface of the
aerofoil and extends along the span of the wing. Grid lines have been concentrated near to the aerofoil
surface as would be required in a flow solver. Concentrations have also been created near the trailing
and leading edge regions. The resultant grid with the inclusion of Block one is shown in Figure(23).

8.3 Downstream Region

The downstream region is easily created using two more Blocks. In fact the mapping from the physical
domain to the computational domain is much easier to visualize for the next two Blocks. The physical
domain is simply extended downstream by five chord lengths. Again the magnitude of the extension
has been reduced for ease of visualisation. The raw geometry and block structure are shown in
Figure(24) for the C-Grid with the addition of the new downstream region. Notice that the two new
Blocks share the Face defined by Nodes zero, four, fifteen, and fourteen. The directional and positional
information required to map this Face onto the two separate Blocks is different. The resultant Grid
is shown in Figure(25) which clearly shows the extension of the trailing edge concentration into the
wake region of the flow.

8 CASE STUDY 1: NACA 0012 WING

6 12 9 13 7
2 10 g 11
4 5 4
0 1 0

Figure 20: Block Structure in Physical and Computational Domains For Blocks 0 and 1.

35

36

NACA 0012 WING

8§ CASESTUDY 1:

Figure 21: Solid View of NACA 0012 Aerofoil without Wingtip.

A S S SA LR

Figure 22: External Faces of Resultant Grid in Block 0.

8 CASE STUDY 1: NACA 0012 WING 37

8.4 Wing Tip

The geometry that has been defined would generally be surrounded by a pseudo two dimensional flow
regime. A truly three dimensional flow is only achieved when the geometry becomes assymetric such
as when a wing tip is included. A simple wing tip geometry is constructed by generating arcs between
the upper and lower surfaces. However a C-Grid is now required to wrap around the span of the
wing as well as around the chord. These two topologies do not naturally meet and Grid singularities
are produced if this topology is followed. The advantages of including Grid singularities within the
G'rid are not expanded here since the case study is used as a demonstration of the capabilities of the
generator and not an appraisal of various grid generation strategies. The singularities consist of Edges
constructed from one Node thus producing Faces mapped onto a line.

8 CASE STUDY 1: NACA 0012 WING

Figure 23: External Faces of Resultant Grid in Blocks 0 and 1.

33

8 CASE STUDY 1: NACA 0012 WING

17

19

6 12 g 13 7
17 ‘ 19
18
16 2 10 8 11 3
15 4 5 4 15
A \
14
14 & 1 0
Same Face

Figure 24: Block Structure in Physical and Computational Domains for Blocks 0.1,2, and 3

39

8 CASE STUDY 1: NACA 0012 WING

Figure 25: External Faces of Resultant Grid in Blocks 0,1,2, and 3

40

8 CASE STUDY 1: NACA 0012 WING

17

15

19

14 0 1 0 14

41

Figure 26: Block Structure in Physical and Computational Domains of Final Grid Including Wing

Tip.

8 CASE STUDY 1: NACA 0012 WING

Figure 27: Wing Tip Detail for NACA 0012 Aerofoil

Figure 28: External Faces of Final Grid

42

9 FUTURE DEVELOPMENTS 43

9 Future Developments

‘Fleximesh’ has been developed as a versatile multiblock mesh generator. The use of customized
data structures enables the program to concentrate upon the construction of individual Geometrical
Objects. This allows the construction methods to be developed without the re-development of the
whole program. This has already been proved to work with the incorporation of an advanced cubic
spline algorithm into the main body of code with very little re-programming away from the spline
library. Further advancements are hoped to follow this same philosophy.

There are four areas in which future advancements are hoped to follow.

o C++:

The development of the code used ANSCI C. However the type of data structures used lend
themselves towards a more Object Orientated approach. The development is hoped to build
on the code philosophy used so far and to extend and improve it such that the Geometrical
Object construction techniques used within ‘Fleximesh’ could be linked to any grid generator
built within the department.

e Visualisation :

One of the main draw backs of ‘Fleximesh’ is the complex and timme consuming input file prepa-
ration required to construct complex meshes. 1t is hoped that the development of at least a
visualisation method will ease some of the difficulties that this stage presents.

o Surface Definition :

In order to describe and insert a complex surface within a large mesh, a rather complex additional
input file has to be constructed. The orientation of the Face has to accommodate the the way
in which the surface has been defined. The development of this facility shounld incorporate the
use of spline and bi-cubic patches in order to accurately and simply describe a complex surface.
The surface definition should not impose any restrictions upon the Face definition. A system
of ‘patches’ could be used to describe surfaces which could be mapped onto the surface of a
Face. ‘Patches’ could also help prescribe the necessary boundary conditions required for the
flow calculation.

e Variable Cell Types:

The most advanced future development is the inclusion of modules which are able to generate
meshes within Blocks using different cell types. This requires the use of different mesh generation
algorithms to generate the interior points of a Block. Some of these methods are well documented
and their implementation should not pose many difficulties. However, the real challenge is to
provide a versatile method to join Blocks constructed from different cell types. Joining Blocks
could be defined such that different cell topologies can become compatible. The automation of
the ‘Joining Block’ process is necessary such that the user does not have to define more complex
Blocks.

REFERENCES 44

References

[1] Shipshape user manual, 1991.

[2] Avs developer’s guide, 1993.

[3] Bowyer A. Computing dirichlet tessellations. The Computer Journal, 34(2):162-166, 1981.

{4] Press W.H. Teakolsky S.A. Vetterling W.T. Flannery B.P. Numerical Recipies in C. Press
Syndicate of University of Cambridge, 2 edition, 1992,

[5} Fletcher C.A.J. Computational Techniques for Fluid Mechanics, volume 2. Springer-Verlag, 1991.

[6] Roberts G.Q. Lecture Notes in Physics, volume 8. Springer, Berlin, 1971,

[7] Hall C.A. Gordon W.J. Construction of curvilinear co-ordinate systems and applications to mesh
generation. International Journal for Numerical Methods in Engineering, 7:461-477, 1973,

[8] Eiseman P.R. A multi-surface method of coordinate generation. Journal of Computational
Physics, 33:118-150, 1979.

[9] Turnock S.R. Prediction of Ship Rudder-Propeller Interaction Using Parallel Computations and
Wind Tunnel Tests. PhD thesis, University of Southampton, 1993.

[10] Mastin C.W. Thompson J.F., Thames F.C. Tomcat- a code for numerical generation of boundary-
fitted curvilinear coordinate systems on fields containing any number of arbitrary two-dimensional
bodies. Journal of Computational Physics, 24:274-302, 1977.

[11] Watson W.F. Computing the n-dimensional delaunay tessellation with application to voronoi

polytopes. The Computer Journal, 34(2):167-173, 1981.

10 APPENDICES 45

10 Appendices

10.1 Parametric Cubic Spline Algorithm

The algorithm used for the construction of cubic splines can be found in [4].

1. Calculate n; for 1 == 1,2,3,...,n using equation (10).
2. Solve Equation(9) for the set S; (n;);i=1,2,3,...,n— L.

3. Find a new set of 7; for ¢ = 1,2,3,...,m using an appropriate stretching function and where m
is the new desired number of points.

4. Calculate a new set of discrete points Si(7;) which adequately describe the shape of the curve
and give the desired point distribution along the line.

5. End.

10 APPENDICES

10.2 ‘Transfinite Interpolation Algorithm

2-D Algorithm

1. Fori=2toi=maxi-1:

(a) Calculate r4g and rgp using non-dimensional parameter function.

(b) For j=2toj=mazj—1:
i. Caleulate sap and spe using non-dimensional parameter function.
ii. Calculate :

G- (mazi—)
0 {mazj —1) 27 (maxj - 1)
&, ={1 - &)
=1 (mazi—1)
Yo= Tnami - 1)°8 T lmazi — 1) °*7
¥ =(1 - ¥}

iii. Caleulate
Zrs(r,8) = ®0%0Z(1,1) + B1¥0Z(mawi) T 1 V1 Z(mazimazs) + Po¥12(1,mazj)
iv. Calculate
Zp(r,8) = ®oZ1; + ®1Zomani;
Zs(r,8) = WoZi1 + ¥1Zi max;

v. Sum to find
Z(T: 3) = Zf(r: 3) + ZS(T:S) + ZTS(T: 5)
vi. End.
(c) End.

2. End.

46

10 APPENDICES

3-D Algorithm

1. Fori=2toi=maxi—1:
{(a) For j=2to j=mazj—1:
i. Fork=2tok=mazk—1:

47

A. Caleulate rag,roa,sr5,8J K fLk,and ;5 using non-dimensional parameter function.

e« A Z(1,jmaxk}

o C:Z(1,j1)

e E: Z(maxij.maxk)
s G : Z(maxi,j,1)

e I:7Z(1,1,maxk)

o J:Z(il,1)

e K : Z(i,maxj,1)

e L : Z(i,maxj,maxk)

B. Calculate :

C. Calculate corner terms :

P (k—1) (mazk — k)
°= Tmazk — 1) *F " (mazk—1) ¢
P =(1- dg)
 (k=1) (mazk — k)
Fo= {(mazk — 1) szt (maxk — 1) Ik
I, = (1 — ‘I’o)
__G-1 (mazj — j)
o= (mazj—1) bLi (mazj — 1)
Ql :(1 —_ Qo)

ert(rz 8, t)zq’U\IJOQUZ(l‘l,l) + lbD‘I’{)QlZ(l.l.rﬂ.ow::k) +

D. Calculate edge terms :
& 1.5 terms

e 1.t terms

e st terms

E. Calculate

F. Sum to find

G. End.
i1. End.
(b) End
2, End.

‘iO\I’lQDZ(],marj,l) + ¢(}‘I’IQLZ(1,maa:j.mazk) +
1000 Z(mazin,) + L1 %01 Zimazit,maxk) +
& LI’1Q(]Z(rm:lzi.ma.:lrj.]) + ‘Pl\plﬂlz(mari,mazj.maz:k)
(34)

Zrs(r, 8, i) I(Po‘I-’[)Z(l‘l‘k) + @D‘ylz(l.muzj.k)

@, ‘I’UZ(mari,l,k) + @lwlz(mami.mamj‘k)

Zei(r. 5, 8) =800 Z11,5,1) + Rof21Z(1 j.mazk)

QIQOZ(muzi.j,l) + (ﬁlﬂl Z(muzi.j,ma:r:k)

Zaoi(r, 5,8) =Wl Z¢i1,1) + $olli 25 1,mazk)

q"lQOZ(i,man,l) + ‘IIIQIZ(i,ma:vj.mazk)

Zo(r,8,t) = 921 ;1 + P1Zmarijk
Zo(r,8,t) =¥oZirk + V1 Z; mazik
Zu(r,8,t) = Qi + NZijmazk

Z{r, s,y =Z;(r,8,t) + Zs(r,8,8) + Ze(r, 8, 8) +

Zrs(r 5, 8) + Zr(r 8,8) + Zge(r,8,0) +
ngg(r,s,t)

10 APPENDICES

48

10.3 Elliptical Refinement Algorithm

R

Do :

Input Grid Boundaries.

Input Convergence Limit AFymie.

Set count = 0. -
Set AF = 1.1 # AFpimas

Set (Average)” = AFtimiz.

Set (Average)” ™! = 1.1 * (dverage)™.

(a) AF=0.0

(b) Fori=2toi=mazi—1:

(¢)
(d)

(e)
)
(8)
(h)

i. Forj=2tof=mazxj—1:
A Fork=2tok=mack—1:
¢ Calculate ay; Coefficients.
o Calculate J.
e Calculate P, €, and R Source Terms.
¢ Calculate New Point F:*j}c from Equation (29) where F‘f’;"f is found from the three dimensional
equivalent of equation {27).
e Calculate 67 = 77 . — 7770
e If 67 > A7 AF = §7.

B. End.
ii. End.
End.
Fori=2toi=mart—1:

i. For j=2toj=maxj—1:
A. Fork=2tok=mazk—1:

¢ Re-initialize pseudo time level : 7%, , = F:‘f,i
B. End.
ii. End
End.
Update Error History. History[count] = AF.

Update Count count = count + 1.
If count = 10
i. Set (Average)™™' = (Average)™.
ii. Set (Average)” = 5 ¥ .o, History[i]-
iii. Set count =0

While AF > Aftimic and (Average)™ < (Average)™ .

10 APPENDICES 49

10.4 Surface Definition

‘Fleximesh’ includes a facility to allow complex surfaces to be approximated using a series of cubic
splines. This facility becomes essential when the bounding curves of a Face are not adequate to
construct the interior surface. The use of this module should be restricted to the representation of
complex surfaces as the nature of the module at present complicates the initial grid description.

The module is recognized when an extra line is added to the Face description in the input file. The Fece
description format is altered such that it includes a link to a separate file which includes information
required to construct the surface.

string [[FACE’] int [ID] int [Boundary Condition ID]

string [‘SIDE’] int [Side ID] int [No. FEdges] int [Edge ID] int [Edge Direction] - - -
string ['SIDE’} int [Side ID] int [No. Edges) int [Edge ID)] int [Edge Direction] - - -
string ['SIDE’] int [Side ID] int [No. Fdges] int [Edge ID] int [Edge Direction] - - -
string [‘SIDE’] int [Side ID] int [No. Fdges] int [Edge ID] int [Edge Direction] - --

string [‘FILE] string [surface file name] string [[SOURCES’] int [No. i Line Sources] int [No. j Line Sources] int [No. Pt.
Sources]

string ['1.SOURCES’] int [i location] float [strength of source| float {damping of source] - - -
string [*]_SOURCES'] int [j location] float [strength of source] float [damping of source] - --

string [‘P.SOURCES’] int [i location] int [j location| float [strength of source] float [damping of source] - -

The surface file contains the information required to construct splines across the Face. The splines are
used to construct a new set of points which are then used to construct splines in the opposite direction.
The second set of splines are used to interpolate a new set of points in the opposite direction resulting
in a new set of points representing the surface. The number of points prescribed in the surface file
must be adequate to describe the curvature of the surface in both directions. The format of the surface
file is described below.

int [no. initial splines] int [no. required pts. in £ dir.] int {no. required pts. in ¢ dir]
string [[{DISTRIBUTION'] int [Side ID] float {P] float [Q]

string ['DISTRIBUTION'] int [Side ID] float [P] float {Q]

string [[DISTRIBUTION int [Side 1D] float [P] float [Q]

string [[DISTRIBUTION'] int (Side ID] float [P] float [Q]

int [Spline ID] int [no. spline pts.]

int [Spline pt. TD] float [pt. x coord.] float [pt. v coord.] float [pt. 2 coord.]

int [Spline pt. ID] float [pt. x coord.] float [pt. y coord.] float [pt. 2 coord]

int [Spline pt. ID] float [pt. x coord.} float [pt. y coord.] float [pt. z coord.]

int. [Spline ID] int [ne. spline pts.]
int [Spline pt. ID] float [pt. x coord.] float {pt. y coord.] float [pt. z coord.]

int [Spline ID] int [no. spline pts.]
int [Spline pt. D] float [pt. x coord.] Hoat [pt. y coord.] fioat [pt. z coord }

10 APPENDICES 50

Each initial spline musi describe the curvature of the Face between sides 3 and 1. This requirement
complicates the description of a Face as splines maybe simpler to describe in one direction rather than
another. This implies that the description of the surface has to be taken into account before the Face
is defined in order to find the simplest surface definition. The description of the splines in relation to
the Face definition is shown in Figure(29).

Side2 Sgp-1)

Side |

Figure 29: Surface File Definition

10

APPENDICES

10.5 NACA 0012 Wing Input File

naca0012.dat :

Naca0012 Case Study Input File

23 &
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
EDGE
1.

OO~k 0NN~ O
COOoC OO Qo OO0

el el el
=~ DN b WO

BOR R e
M= O W W
OO0 00 O0OOCOO0OO0O000QCCCo

[~
w

Wb ;N0
1
L]

0 34

OOOOOOO’OW
1
[y
[3;]
(=]
(=)

W3Ok Wk RO

.036470 1.426580 0.00000
.036470 -1.426580 0.00000
.036470 1.426580 5.00000
.036470 -1.426580 5.00000
0.0 0.0

e i i e
W= O
O N = ;om0 0O O

- O
(S

5.0
0.0
5.0

[y
~l

1.5 0.
1.6 5.
0 -1,

[y
=]

[y
=]
L e]

20
21 0.0 -1.5

22 0.036470 0.0 -1.426580
00126 33 -0.1 -3.5
00.00.0

o

0
0
0
0
.0
Y
0
0

.95 -0.00807 0.0

-0.01448
-0.02623
-0.03664
.04563
-0.05294
-0.05803
-0.06002

00O C oo OO0
OO0 C O Qoo

.25 -0.05941 0.

0
.2 -0.05737 ¢.0
.18 -0.0565945 ¢
.16 -0.064286 ¢
.15 -0.063450 ¢
.14 -0.052238 0.
0
0
0
0
0

coocooD

.12 -0.048734
.1 -0.04683 0.
.08 -0,042924
.075 -0.04200
.06 -0.,038235 0.
.05 -0.03555 0.0
.04 -0.032152 0.0

.025 -0.02615 0.0

.02 -0.023501 0.0
.0125 -0.01894 0.0

.0 0.0 0.0

10126 33 -0.1 -3.5

c o

0

.0 0.0 6.0

.95 0.00807 0.0
.9 0.01448 0.0
.8 0.02623 0.0
.7 0.03664 0.0
.6 0.04563 0.0

10 APPENDICES

5 0.05294 0.0
.4 0.05803 0.0
3 0.06002 0.0
25 0.05941 0.
.2 0.06737 0.
.18 0.055945
.16 0.054286
.15 0.053450
.14 0.052238
.12 0.049734
.1 0.04683 0.
.08 0.042924
.075 0.04200
.06 0.038235
.05 0.03555 0.0
.04 0.032152 0.0
.025 0.02615 0.0
.02 0.023501 0.0
.0125 0.01894 0.0
0 0.00.0

W~ >,
o000

—
=]
OOOOOOOOOOOOOOOO'
[=3R =3 =B« Nl

o

-0
.0

OOOOOOOOOOO

[x2]
(=
[#]
)

01.0 0.0
11.01.5

01.01.5

10.51.5

2 0.405810 1.497040
3 0.218930 1.473430
4 0.036470 1.426580
EDGE 4 0 3 2 40 0.1
01.00.00.0
11.0-1,50.0

EDGE 5 4 b 26 33 -0.1

0 1.0 0.0 5.0

1 0.95 -0.00807 5.0

2 0.9 -0.01448 5.0

3 0.8 -0.02623 5.0

4 0.7 -0.03664 5.0

5 0.6 -0.04563 5.0

6 0.5 -0.05294 5.0

7 0.4 -0.05803 5.0

8 0.3 -0.06002 5.0

9 0.25 -0.06941 5.0
10 0.2 -0.05737 5.0
11 0.18 -0.055945 5.0
12 0.16 -0.054286 5.0
13 0.15 -0.053450 5.0
14 0.14 -0.052238 5.0
15 0.12 -0.049734 5.0
16 0.1 -0.04683 5.0
17 0.08 -0.042924 5.0
18 0.075 -0.04200 5.0
19 ¢.06 -0.038236 5.0
20 0.05 -0.03555 5.0
21 0.04 -0.032152 5.0
22 0.025 -0.02615 5.0
23 0.02 -0.023501 6.0
24 0.0125 -0.01894 5.0
25 0.0 0.0 5.0

EDGE 6 4 &5 26 33 -0.1 -3.5

¢ 1.0 0.0 5.0

1 0.95 0.00807 5.0
2 0.9 0.01448 5.0
3 0.8 0.02623 5.0

2 02240 0.1 3.

Ww o 0o

Q

0.0
0.0
EDGE 3 210 5 21 0.3 4.0
0.0
0.0

[o T o= I |

52

10 APPENDICES

4 0.7 0.03664 5.0

5 0.6 0.04563 5.0

6 0.5 0.05294 5.0

7 0.4 0.06803 5.0

8 0.3 0.06002 5.0

9 0.25 0.05941 5.0
10 0.2 0.05737 5.0
11 0.18 0.055945 5.0
12 0.16 0.054286 5.0
13 0.15 0.053450 5.0
14 0.14 0.052238 5.0
15 0.12 0.049734 5.0
16 0.1 0.04683 5.0
17 0.08 0.042924 5.0
18 0.075 0.04200 5.0
19 0.06 0.038235 5.0
20 0.05 0.03555 5.0
21 0.04 0.032152 5.0
22 0.026 0.02615 5.0
23 0.02 0.023501 5.0
24 0.0125 0.01894 5.0
25 0.0 0.0 5.0

EDGE 7 4 6 2 40 0.1 3.0
01

m

=

[2]

=3

o]
Y. T

-
o1 o8

05810 1.497040 5.
18930 1.473430 5.
4 0.036470 1.426580 5.
EDGE 9 4 7 2 40 0.1 3.
01.00.05.0
11.0-1.55.0

01.0
10.5
2 0.4
30.2

o o O O

EDGE 10 0 4 2 10 1.0 0.1
01.00.00.0
11.00.05.0

EDGE 11 37 2 10 1.0 0.1
01.0 -1.5 0.0
1:.01565.0

EDGE 12 2 6 2 10 1.0 0.1
01.01.5 0.0
11.01.55.0

EDGE 13 3 11 5 21 0.3 4.0

01.6 -1.5 0.0
10.56-1.50.0

2 0.405810 -1.497040 0.0
3 0.218930 -1.473430 0.0
4 0.036470 -1.426580 0.0
EDGE 14 7 13 5 21 0.3 4.0
01.0 -1.56 5.0
10.5-1.55.0

2 0.405810 -1.497040
3 0.218930 -1.473430
4 0.036470 -1.426580
EDGE 15 1 8 2 40 0.1
00.00.00.0
1-1.00.00.0

EDGE 16 6 9 2 40 0.1 3.0
00.00.05.0

1-1.0 0.05.0

EDGE 17 8 9 2 10 1.0 0.1

W ¢ o, ¢
S OO0

10 APPENDICES

EDGE 18 1 5
00.00.00.
10.00.05.
EDGE 19 10 8 11 13 1.8 2.
0 0.036470 1.426580 0.0

1

W00 N3 T W N

-0.
-0.
.456140
.593450
.713530
. 814460
. 894660
. 952870
.988170C

138670
303740

10 -1.0 0.0 0.
EDGE 20 11 8 11 13 1.
0 0.036470 -1.426580

1

oo~ ;M Wk

.138670
.303740
.456140
.593450
.713530
.814460
. 894660
.952870
.988170

2
0
0

1
1
1
1
0
0.
0
0
0
0

-1.
-1.
-1.

10 1.0 0.1

.357240
. 266490
.166770
.026820
.881680

722630

.552190
.373030
. 188000

0

357240
2664290
165770
.026820
.881680
. 722630
552190
.373030
. 188000

10 -1.0 0.0 0.0

EDGE 21 12 9 11 13 1.8 2.0

o]

[=I =R« NelolNaeNel
[= =l elelNeNaelNeNe]

OO0 0 0C oo 000
OO0 00O o000

0 0.036470 1.426580 5.0

1 ~0.138870 1.357240
2 -0.303740 1.266490
3 -0.456140 1.155770
4 -0.593450 1.026820
5 -0.713530 0.881680
6 -0.814460 0.722630
7 -0.894660 0.552190
§ -0.952870 0.373030
9 -0.988170 0.188000
10 -1.0 0.0 5.0

EDGE 22 13 9 11 13 1.
0 0.036470 -1.426580
1 -0.138670 -1.357240
2 -0.303740 -1.266490
3 -0.456140 -1.155770
4 -0.593450 -1.026820
5 -0.713530 -0.881680
6 -0.814460 -0.722630
7 -0.894660 -0.552190
8 -0.952870 -0.373030
9 -0.988170 -0.188000
10 -1.0 0.0 0.0

EDGE 23 3 18 2 30 0.1
01.0-1.5 0.0

1 5.0 -1.50.0

EDGE 24 7 19 2 30 0.1
01.0 -1.55.0
15.0-1.55.0

EDGE 25 0 14 2 30 0.1
¢ 1.0 0.0 0.0
15.00.00.0

EDGE 26 4 15 2 30 0.1
0 1.0 0.05.0

1 5.0 0.05.0

EDGE 27 2 16 2 30 0.1

o)

N ;e o,
DO OO0 Qoo

cyohaon ool -
OO0 o000 O 0o

[4%)
o

54

10 APPENDICES

01.01.50.0
1501.50.0
28 6 17 2 30 0.1 3.0
01.01.55.0
15.01.55.0

EDGE

EDGE
0 5.0

29 14 18 2 40 0.1 3.

0.0 0.0

156.0-1.5 0.0
EDGE 30 14 16 2 40 0.1 3.0

0 5.0
15.0

0.0 0.0
-1.5 0.0

EDGE 31 15 19 2 40 0.1 3.0

0 5.0
i5.0
EDGE
0 5.0
15.0
EDGE
0 5.0
15.0
EDGE
Q5.0
15.0
EDGE
0 5.0
15.0

0.0 5.0
-1.5 5.0

32 15 17 2 40 0.1 3.0

0.0 5.0
1.5 5.0
33 16 17
1.6 0.0
1.6 5.0
34 14 15
0.0 0.0
0.0 5.0
35 18 19
-1.5 0.0
-1.5 5.0

2 10

2 10

2 10

1.0 0.1

1.0 0.1

1.0 0.1

EDGE 36 22 8 11 13 1.8 2.0

0 0.036470 0.0 -t.

1 -0.

0~ e WA
|
o

10 -1
EDGE
0 1.0
10.5

.303740
.456140
.593450
.713530
.814460
.B94660
.952870
.988170

138670

SO0 0000000
o CcC OO0 000o0
1
(=]

b
-

.0 0.0
37 20 22
0.0 -1.56
0.0 -1.5

1

1
jary

1 '
o o= =

[]

426580

.357240
. 266490
.185770
. 026820
.881680
. 722630
.552180
.373030
. 188000

0.3 4.0

2 0.405810 0.0 -1.497040
3 0.218930 0.0 -1.473430
4 0.036470 0.0 -1.426580
38 20 2 15 10 1.¢ 0.1

EDGE
1.

W o~ O
P e e e

ccooooovooo
e -0 OO0 000

el el e
WO
e e

]
[~}
[7]
™

(S
[E T
Lo on B e |

coooo

.0 -1.5
188000
.373030
.552190
. 722630
.881680
.026820
.15577¢
. 266490
.357240

.5 -0.
.5 0.0

-1.
-1
-1
-1
-1
-1.
-1.
-1.
-0.

188

5

497040
.473430
.426580
.357240

266490
185770
026820
881690

1.426580 -0.722630
1.473430 -0.552190
1.497040 -0.373030
1
1

39 20 3 15 10 1.0 0.1

0 -1.

-0.
-0.188000 -1.5
-0.

5

373030 -1.497040

10

APPENDICES

3 1.0 -0.552190 -1.473430

4 1.0 -0.722630 -1.426580

5 1.0 -0.881680 -1.357240

6 1.0 -1.026820 -1.266490

7 1.0 -1.155770 -1.155770

8 1.0 -1.266490 -1.026820

9 1.0 -1.357240 -0.881690

10 1.0 -1.426580 -0.722630
11 1.0 -1.473430 -0.552190
12 1.0 -1.487040 -0.373030
13 1.0 -1.5 -0.188

14 1.0 -1.5 0.0

EDGE

40 0 20 2 40 0.1 3.0

01.0 0.00.0
11.0 0.0 -1.5

EDGE

41 14 21 2 40 0.1 3.0

065.0 0.0 0.0
16.00.0-1.5

EDGE 42 21 16 15 10 1.0 0.1
05.00.0-1.56

1 5.0 0.188000 -1.5

2 5.0 0.373030 -1.497040
3 5.0 0.552190 -1.473430
4 5.0 0.722630 -1.426580
5 5.0 0.881680 -1.3567240
6 5.0 1.026820 -1.266490
7 5.0 1.155770 -1.1556770
8 5.0 1.266490 -1.026820
9 5.0 1.357240 -0.881680
10 5.0 1.426580 -0.722630
11 5.0 1.473430 -0.552190
12 5.0 1.497040 -0.373030
13 5.0 1.5 -0.188

14 5.0 1.5 0.0

EDGE 43 21 18 15 10 1.0 O.

5.

W o~ e W=D
cnonognonan N

= -

1
1
EDG

a
1
2
3
4

[IS IS J IS I £ B B

0
0
0
0
.0
.0 -0.881680 -1.3567240
0
0
0
0

0.0 -1.5

-0.188000 -1.5
-0.373030 -1.497040
-0.552190 -1.473430
-0.722630 -1.426580

-1.026820 -1.266490
-1.155770 -1.1858770
-1.266490 -1.026820
-1.357240 -0.8816%80
0 -1.426580 -0.722630
0 -1.473430 -0.552190
0 -1.497040 -0.373030
0 -1.5 -0.188

0 -1.5 0.0

44 20 21 2 30 0.1 3.0

¢1.00.0-1.5
15.00.0-1.5

EDGE 45 8 8 2 10 1.0 0.1
0-1.0 0.0 0.0

1-1.0 0.0 0.0

EDGE 46 11 2 10 1.0 0.1

0 0.0 0.00.0
10.00.00.0

EDGE 47 0 0 2 10 1.0 0.1
01.00.00.0

11.0 0.0 0.0

EDGE 48 14 14 2 10 1.0 0.1

05.00.00.0

56

10 APPENDICES

15.00.00.0

EDGE 49 0 1 26 33 -0.1 -3.5
01.00.00.0

1 0.95 0.0 -0.00807

2 0.5 0.0 -0.01448

3 0.8 0.0 -0.02623

4 0.7 0.0 -0.03664

5 0.6 0.0 -0.04563

6 0.5 0.0 -0.05294

7 0.4 0.0 -0.05803

8 0.3 0.0 -0.06002

9 0.25 0.0 -0.05941
10 0.2 0.0 -0.05737
11 ¢.18 0.0 -0.055945%
12 0.16 0.0 -0.054286
13 0.15 0.0 -0.053450
14 ¢.14 0.0 -0.052238
15 ¢.12 0.0 -0.049734
16 0.1 0.0 -0.04683
17 0.08 0.0 -0.042924
18 0.075 0.0 -0.04200
19 0.06 0.0 -0.038235
20 0.05 0.0 -0.035b5
21 0.04 0.0 -0.032152
22 0.025 0.0 -0.02615
23 0.02 0.0 -0.023501
24 0.0125 0.0 -0.01894
25 0.0 0.0 0.0

FACE 0 O

SIDE 0 1 1 0

SIDE 1 1 16 O

SIDE 2 21913 1
SIDE 3121

SOURCES 2 1 0

I_SOURCES 0 200 0.15 32 900 0.2
J_SOURCES 0 800 0.18

FACE 1 O

SIDE
SIDE
SIDE
SIDE
FACE
SIDE
SIDE
SIDE
SIDE 3 16 1
SOURCES 0 0 O
FACE 3 Q

SIDE 0 1 10 1t
SIDE1 120

SIDE 2 1 12 0
SIDE 3171
SOURCES 0 0 O
FACE 4 0

SIDE 0 1 10 0
SIDE1 160

SIDE 2 1 18 1
SIDE 3111
SOURCES 0 0 O
FACE 5 O

SIDE0 230190
SIDE 1 1 17 0
SIDE 2 221181
SIDE 3 112 1

18 0
16 0
17 1
151

B O N W RO
R =

[T B

1
0
0210

10 APPENDICES

SOURCES 0 0 0O
FACE 6 O
SIDEO 101
SIDE 1 140
SIDE 2 213 0
SIDE 31151
SOURCES 0 0 O
FACE 7 O

SIDE 0 1 10 0
SIDE1 190
SIDE 2111 1
SIDE 3141
SOURCES 0 0 0
FACE 8 ©
SIDE 0 1
SIDE 1 1
SIDE 2 11
SIDE 3141
SOURCES 0 0 0
FACE 9 ©

SIDE 0 1 18 0
SIDE 1 1 5 1
SIDE 2 1 10 1
SIDE 31090
SOURCES 0 0 O
FACE 10 0
SIDE 0 2 20
SIDE 1 1 11
SIDE 2 2 14
SIDE 3 1 17
SOURCES 0 0
FACE 11 0
SIDE 0 1 25 O
SIDE 1 1 29
SIDE 21 23 1
SIDE 3141
SOURCES O 0 O
FACE 12 0
SIDE 0 1 34
SIDE 1 1 31
SIDE 2 1 35
SIDE 3 1 29
SOURCES O O
FACE 13 0
SIDE 0 1 26
SIDE1 190
SIDE 2 1 24 ©
SIDE 3 1 31
SOURCES © ©
FACE 14 0O
SIDE 0 1 10
SIDE 1 1 26
SIDE 2 1 34
SIDE 3 1 25
SOURCES 0 0
FACE 15 0
SIDE 0 1 23
SIDE 1 1 35
SIDE 2 1 24
SIDE 3 1 11
SOURCES O O
FACE 16 0
SIDE 0 1 25 1
SIDE 112290

i6 0
11

QRO O

=3

- [N O R Rk OO

o

(=2 = I =]

(= N = =]

200

13 1

22 0

10 APPENDICES

SIDE 21 27 0
SIDE 31 30 1
SOURCES ¢ 0 ©
FACE 17 0
SIDE 0 1 26
SIDE 1 1 32
SIDE 2 1 28
SIDE 3171
SOURCES ¢ 0 O
FACE 18 O
SIDE 0 1 34
SIDE 1 1 30
SIDE 2 1 33
SIDE 3171
SOURCES 0 O O
FACE 19 0
SIDE 0 1 27
SIDE 1 1 12
SIDE 2 1 28
SIDE 3 1 33
SQURCES & O
FACE 20 ©
SIDE 0 1 25
SIDE 1 1 41
SIDE 2 1 44
SIDE 3 1 40
SQURCES 0 O
FACE 21 0
SIDE 0 1 48
SIDE 1 1 29
SIDE 2 1 43
SIDE 3 1 41
SQURCES © ©
FACE 22 0O
SIDE 0 1 47
SIDE 1 1 40
SIDE 2 1 39
SIDE 3 1 41
SOURCES O ©
FACE 23 0
SIDE O 1 47
SIDE 1 1 25
SIDE 2 1 48
SIDE 3 1 25
SOURCES 0 O
FACE 24 0O
SIDE © 1 44
SIDE 1 1 43
SIDE 2 1 23
SIDE 2 1 39
SOURCES 0 O
FACE 25 O
SIDE 01 49 1
SIDE 1 1 40 0
SIDE 2 2 37 0
1
0

0
0
1

1
0
g

D O Q- [= I B o B] D = O (= N L~ =] D OO e

(=3 =~

SIDE 3 1 15
SOURCES 0 O
FACE 26 0
SIDE 0 1 46 0
SIDE 11 15 0
SIDE 2 1 45 0
SIDE 3 1 16 1
SOURCES 0 0 0
FACE 27 ©

36 0

10 APPENDICES

SIDE 0 1 46 1

SIDE 1101

SIDE 2 1 47 0

SIDE 31 49 0

FILE face27surface.dat

SOURCES 0 © 0O

FACE 28 ©

SIDE O 2 36

SIDE 1 1 39

SIDE 2 2 13

SIDE 3 1 45

SOURCES © ©

FACE 29 ¢

SIDE 0 1 47

SIDE 1 1 40
3
2

O = OO
]
o
(=]

[= =]

SIDE 2 1 38 0

SIDE 3 1 1

SOURCES 0 0 O

FACE 30 0

SIDE 0 1 47 1

SIDE1 110

SIDE 2 1 46 0

SIDE 31 49 1

FILE face30surface.dat

SOURCES 0 0 O

FACE 31 0

SIDE ¢ 2 37

SIDE 1 1 45

SIDE 2 2 19

SIDE 3 1 38

SOURCES 0 O

FACE 32 0

SIPE 0 1 48 0

SIDE 1 1 41 ¢

SIDE 2 1 42 ¢
1
o]

36 0

1

(=2 N =~
w

SIPE 3 1 30
SOURCES 0 0
FACE 33 0
SIDE 0 1 44 1
SIDE 11 38 0
SIDE 2 1 27 O
SIDE 3 1 42 1
SOURCES O O O
BLOCK 0O
FACE 0 6 O
FACE 1 7 0
FACE2 80
FACE 311
FACE 4 9 0
FACES5 10 0 0
SOURCES 0 0 O
BLOCK 1
FACEQ 0O

oW o oo

FACE &
SOURCES ¢ 0 0 O
BLOCK 2

FACEOQO 11 0 0
FACE 1 12 0 0
FACE 21300
FACE3 713

10 APPENDICES 61

FACE 4 14 0 0
FACE 5 15 0 0
SOURCES 0 0 0
BLOCK 3
FACE 0 16 0 O
FACE1 313
FACE 2 17
FACE 3 18
FACE 4 14
FACE & 19
SOURCES 0
BLOCK 4
FACE
FACE
FACE
FACE 3 22
FACE 4 23
FACE 5 24
SOURCES 0O
BLOCK b
FACE 0 25 0
FACE 1 22 1
FACE 26 13
FACE 3 26 0 O
FACE 4 27 0 O
FACES 28 0 0
SOURCE 0 0 0 0
BLOCK 6
FACE 0
FACE 1
FACE 2
FACE 3
4
5

0

CcC o QO C
O - OO

20
21
11

Wk e O
OO0 C o o0
OO0 C O Wwoo

W o

FACE
FACE
SOURCES O
BLOCK 7
FACE 0 20 1
FACE 1 29 1
FACE 2 16 1
FACE 3 32 0
1
0
0

SO OO

FACE 4 23
FACE 5 33
SOURCES 0O

OO - O Wwww

face27surface.dat :

26 10 33

DISTRIBUTION O 1.0 0.1
DISTRIBUTION 1 -0.1 -3.5
DISTRIBUTION 2 1.0 0.1
DISTRIBUTION 3 -0.1 -3.5

03
0 1.0 0.0 0.0

11.0 0.0 0.0

2 1.0 0.0 0.0

13

0 0.95 0.0 -0.00807

1 0.95 -0.00570635 -0.00570635
2 0.95 -0.00807 0.0

23

0 0.9 0.0 -0.01448

1 0.9 -0.0102389 -0.0102389

10 APPENDICES

.9 -0.01448 0.0

.8 0.0 -0.02623
.8 -0.0185474 -0.0185474
.8 -0.02623 0.0

.7 0.0 -0.03664
.7 -0.0259083 -0.0259083
.7 -0.03664 0.0

.6 0.0 -0.04563
.6 -0.0322652 -0.0322652
.6 -0.04563 0.0

0.0 -0.05294
.5 -0.0374342 -0.0374342
.5 -0.05294 0.0

.4 0.0 -0.05803
4 =0.0410334 -0.0410334
4 -0.05803 0.0

3 0.0 -0.06002
.3 -0.0425505 -0.04256505
.3 -0.06002 0.0

.25 0.0 -0.05941
.25 -0.0420092 -0.0420092
.25 -0.0694t 0.0

03

N - O ONRLROONRERO-NINFOCORN=SOOSDUTINFECOCHRNEOWN
OOOWOOO&)_(D_OO&OOOWOOOWOODWOOOOJO
[4]

[y

.2 0.0 -0.05737
.2 -0.0405667 -0.0405667
.2 -0.05737 0.0

O oo

3

18 0.0 -0.055945
-0.039559 -0.039559
.18 -0.055945 0.0

N = O N O
[N

o QO
-
o

0 0.16 0.0 -0.054286
1 Q.16 -0.0383859 -0.0383859
2 0.16 -0.054286 0.0

0 0.15 0.0 -0.05345
1 0.15 -0.0377948 -0.0377948
2 0.15 -0.05345 0.0

14 3

0 0.14 0.0 -0.052238

1 0.14 -0.0369378 -0.0369378
2 0.14 -0.052238 0.0

15 3

0 0.12 0.0 -0.049734

1 0.12 ~0.0351672 -0.0351672
2 0.12 -0.049734 0.0

16 3

0 0.10.0 -0.04683

1 0.1 -0.0331138 -0.0331138
2 0.1 -0.04683 0.0

17 3

0 0.08 0.0 -0.042924

1 0.08 -0.0303518 -0.0303518
2 0.08 -0.042924 0.0

18 3

0 0.075 0.0 -0.04200

1 0.075 -0.0296984 -0.0256984

62

10 APPENDICES 63

2 0.075 -0.04200 0.0

19 3

0 0.06 0.0 -0.038235

1 0.06 -0.0270362 -0.0270362
2 0.06 -0.038235 0.0

20 3

0 0.050 0.0 -0.03555

1 0.050 -0.0251376 -0.02561376
2 0.050 -0.03555 0.0

13

0.04 0.0 -0.032152

0.04 -0.0227348 -0.0227348
0.04 -0.032152 0.0

A = O N

223

¢ 0.025 0.0 -0.02615

1 0.025 -0.0184908 -0.0184908
2 0.025 -0.02615 0.0

23 3

0 0.02 0.0 -0,023501

1 0.02 -0.0166177 -0.0166177
2 0.02 -0.023501 0.0

24 3

0 0.0125 0.0 -0.01894

1 ©.0125 -0.0133926 -0.01330826
2 0.0125 -0.01894 0.0

25 3

0 0.0 0.0 0.0
10.00.00.0
2 0.00.00.0

face3(surface.dat :

26 10 33

DISTRIBUTION 0 1.0 0.1

DISTRIBUTION 1 -0.1 -3.5

DISTRIBUTION 2 1.0 0.1

DISTRIBUTION 3 -0.1 -3.5
3

(=B B o]
o oo
coo
o o Q
5 oo

.95 0.0 -0.00807
.95 0.00570635 -0.00570635
.95 0.00807 0.0

.9 0.0 -0.01448
.0102389 -0.0102389
.9 0.01448 0.0

w
(=]

.0 -0.02623
.8 0.0185474 -0.01856474
.8 0.02623 0.0

.7 0.0 -0.03664
.7 0.0259083 -0.0259083
.7 0.03664 0.0

.6 0.0 -0.04563
.6 0.0322652 -0.0322652
6 0.04563 0.0

OGN R OANN O BRNEROIOWNESEORNBDROO=NFEOO
OO WO O O0OWOoOOoOOoOWOoOaoOo WO OOIWOoOoOOoOwIErrEr#P
<

5 0.0 -0.05204

10 APPENDICES

.5 0.0374342 -0.0374342
.5 0.05294 0.0

.4 0.0 -0.05803
.0410334 -0.0410334
-4 0.05803 0.0

S
o

.3 0.0 -0.06002
.3 0.0425505 -0.04255056
.3 0.06002 0.0

.25 0.0 -0.05941

.25 0.0420092 -0.0420092
.25 0.05941 0.0

1¢ 3

B o= O W OR e OO0 = O N
S OO WO OO0 WO oo wWwo o

0.2 0.0 -0.05737
0.2 0.0405667 -0.0405667
0.2 0.06737 0.0

18 0.0 -0.055945
8 0.039559 -0.039559
8 0.055945 0.0

0 0.16 0.0 -0.054286
1 0.16 0.0383859 -0.0383859
2 0.16 0.054286 0.0

0 0.15 0.0 -0.06345
1 0.15 0.0377948 -0.0377948
2 0.15 0.05345 0.0

0 0.14 0.0 -0.052238
1 0.14 ©.0369378 —0.0369378
2 0.14 ©.052238 0.0

¢ 0.12 0.0 -0.049734
1 0.12 0.0351672 -0.0351672
2 0.12 0.049734 0.0

-0.04683
331138 -0.0331138
4683 0.0

CRT
c oo
RN
ocoo
oo o

.0 -0.042924
.0303518 -0.0303518
.042924 0.0

B = O
o O o
888
OOO

.0 -0.04200
.02969384 -0.0296984
.04200 0.0

M e O
o oo
o o Q
=
;oo
o O O

-0.038235
270362 -0.0270362
38235 0.0

N O
oo o
588
OOO
OOO

50 0.0 -0.035556
50 0.0251376 -0.0251376
50 0.03555 0.0

OOO
OOO

0.04 0.0 -0.032152
0.04 0.0227348 -0.0227348
0.04 0.032152 0.0

0 0.026 0.0 -0.02615

64

10 APPENDICES

1 0.025 0.0184908 -0.0184908
2 0.025 0.02615 0.0

23 3

0 0.02 0.0 -0.023501

1 0.02 0.0166177 -0.0166177

2 0.02 0.02350t 0.0

24 3

0 0.0125 0.0 -0.018%4

1 0.0125 0.0133926 -0.0133526
2 0.0125 0.01894 0.0

25 3

0 0.0 0.00.0
10.00.00.0
2 0.0 0.0 0.0

65

