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Gal has suggested the following scenario for a two-person game. An Infiltrator
starts at the first of an ordered set of p points. At discrete intervals of time
t = 1,2,... he chooses to move to one of the adjacent points or to stay where he
is. A Guard starts from any point and at each of the same intervals of time moves
to a point up to u points away. He then searches for the Infiltrator, detecting
him with probability (i if the players are at the same point, and with probability
zero otherwise. Neither player is aware of his opponent's moves unless detection
occurs. At the last of the p points the Infiltrator is safe from detection.

We look at a number of zero-sum games which are based on this scenario.
These include both infinite move games and-games in which the number of moves
is restricted by a time limit of n. The objective of the Infiltrator is either to
reach the last point undetected^ or just to evade the Guard. We show that the
infinite move games have mixed strategy solutions which can be constructed from
solutions to finite move games.

In addition, we study a further set of games in which the Infiltrator is also
safe from detection at the first point. His objective then is to reach the last point
undetected. In this context we extend the work of Lalley to a more general set
of points.

Some examples of optimal strategies are presented. Finally we discuss some
possible generalisations to other discrete infiltration games.
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C h a p t e r 1

I N T R O D U C T I O N

1.1 Search for an Infiltrator

On page 96 of the book Search games [31], Shmuel Gal poses the following prob-
lem:

"Assume that at time t = 0 an infiltrator enters the set Q through
a known point 0 on the boundary of Q, and for all i > 0 moves
inside Q. Suppose that the searcher has to defend a 'sensitive zone'
B C Q, so that he wishes to maximize the probability of capturing
the infiltrator before he reaches the boundary of B (the infiltrator has
the opposite goal). What are the optimal strategies of both players
in this game?"

This is the opening paragraph of a section which is entitled "Search for an Infil-
trator", in which Gal presents "some interesting unsolved problems which have
some resemblance to the princess and monster game". We shall leave the princess
and the monster until later. For the moment we concentrate on the infiltrator.
As it stands the above problem is very loosely formulated, and surely this is the
author's intention. The mechanics of both the players' movement and of capture
have not been formulated. They are left to the imagination of the interested
reader. Nevertheless, Gal does suggest one particular 'way-in' to the problem.

"A simpler, discrete problem with a similar flavor is the following.
The search set is an array of n ordered cells. At time t = 0, both
the searcher and the hider are located in cell number 1. At the end
of each time unit, the searcher can move to any cell with distance
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Introduction

not exceeding a certain integer k > 1, while the hider can only move

a distance of 1. Both players then stay at the chosen cell for the

next time unit. The probability of capture is p for each time unit in

which both players occupy the same cell (independently of previous

history) and zero otherwise. The hider wins in the case that he reaches

cell number n (in finite time) without getting captured, and loses

otherwise." (Search Games, pages 96-97.)

This 'simpler' problem is the subject of this work. We consider different ways in

which to approach this discrete one-dimensional problem. Later we discuss how

this can then be applied more widely to other discrete infiltration games.

For the rest of this chapter we attempt to provide some perspective by tracing

the developments that both allow and motivate us to tackle this problem. How-

ever, before leaving the particular source of the problem, we record one further

comment made by Gal in the general context of the problem of infiltration.

"It can be easily seen that . . . it is not a good policy for the hider

to move in a straight line using his maximal velocity. A policy which

does seem to be good for the hider is to move randomly for a certain

period of time and only then to use his maximal velocity." (op. cit.

page 98.)

We shall review this comment in the light of our investigations.

1.2 Search Theory

The beginnings of what has become known as Search Theory are to be found

during the second world war. The US Navy wanted to know how to go about

looking for enemy submarines. It was with this particular objective that their

Anti-Submarine Warfare Operations Group was formed. They successfully began

developing some practical ideas. In 1946, after the war had ended, one member

of the group, Bernard Koopman, produced a report on their conclusions which

he entitled 'Search and Screening' [43].

For a decade or so Search Theory seemed to attract little interest elsewhere.

Although Koopman did extend parts of the earlier work in three papers published

in 1956-57 [44, 45, 46], the bibliographies on Search Theory contain little material

earlier than the mid-1960's. Exceptions to this include extensions of Koopman's



Introduction

work by Charnes and Cooper [18], and de Guenin [23]. Slightly different is the

1959 work by Blachman [14] and Blachman and Proschan [15] on discrete prob-

lems involving multiple targets with unknown arrival times. From 1963 Search

Theory experienced a boom and by 1968 the selective bibliography of Dobbie

[24] listed 52 sources in connection with search. By 1980, an internal report by

Strumpfer [63] included over 400 books and articles related to Search Theory.

The slow start illustrated above does have an explanation. Koopman's original

report was classified until 1958!

Search Theory still has the same simple objectives with which it began. The

introduction to a recent special issue of the journal Naval Research Logistics on

Search Theory clearly states this.

"After several decades of subsequent development, search prob-

lems are still largely of the same form as in 1942: a single target is

lost, and the problem is to find it effectively with fixed resources."

[62]

The field of Search Theory is commonly split into four areas. Problems are

classified as either stationary or moving target, and either one or two-sided. The

first of these divisions is easily understood. The second is really a question of the

intelligence of the target. If it is assumed that the target has a known distribution,

or that it moves with some kind of random movement, then this is known as one-

sided search. If on the other hand, the target is assumed to have some intelligence

which it uses to make detection as hard as possible, this is known as a two-sided

search problem. It is of course the two-sided problems which have been considered

using the techniques of Games Theory. Thus problems of two-sided search are

known as Search Games. The target is then more correctly known as the evader,

and is designated no longer by 'it' but by 'he'. It is against the background of the

quarter of Search Theory known as mobile evader Search Games that our study

of infiltration games must begin. We attempt to sketch this background in the

following section.

Standard texts on Search Theory include those of Stone [61] (first published

in 1975, but with a 2nd edition in 1989), Washburn [66] and Haley and Stone

[35]. An extensive literature survey can also be found in Benkoski, Monticino and

Weisinger [11].
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1.3 Search Games

The two-sided game theoretical approach to search is outlined below. Some detail

is inevitable yet the principles are really simple. In fact, it has been suggested

that in Search Games,

"(the) 'hide and seek' games which we used to play in our child-

hood are formulated as mathematical problems" [20, page 33]

The theory of two-person zero-sum games is described in more detail in Chap-

ter 2. In Search Games the evader and the searcher are considered to be two play-

ers who choose a strategy for evasion and search respectively. These strategies are

then evaluated in some way and the effectiveness of the resulting search attempt

measured. It is assumed that both evader and searcher use the same measure of

effectiveness. Thus a 'good' result for one of them is always equally 'bad' for the

other. Therefore, given a strategy for each player, this measure of effectiveness

is some numerical quantity, called the payoff, which we may consider one player

gains and the other loses (or equivalently one pays to the other). We choose to

assume that whenever the payoff is positive then it is paid by the searcher to

the evader, although this choice is arbitrary. Thus, the evader's objective is to

maximise the payoff. He is then known as the maximiser. Similarly the searcher

is known as the minimiser.

There are several different possibilities for the payoff. It may be the time

required before the search is effective (which may, of course, be infinite if the

searcher cannot eventually ensure success). Similarly it may be the amount of

resources expended by the searcher before the search is effective. If there is doubt

about the certainty of eventual success, it may be the probability that the search

fails. Other payoffs which involve discounting the searcher's reward can also be

considered.

The strategies themselves may be many different things. Both time and space

may be either discrete or continuous. The search space can be one-dimensional

(a ship on a narrow channel), two-dimensional (a ship on the ocean), three-

dimensional (a submarine in the ocean), and so on. It may even be a graph.

When the problem is largely continuous it is often considered to be a Differential

Game (see the classic book by Isaacs [40] for these), so called because of the

differential equations used to define the players' motion. On the other hand,

when the problem is largely discrete, more combinatorics and probability theory

are usually required (see Geometric Games by Ruckle [59]).
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Finally, the detection process itself must be described. In Search Theory gen-

erally, it has often been assumed that there is an exponential detection function

which the searcher applies at different points in the search space. Thus, the

probability of detection decreases the further the evader is from the point of ap-

plication. In discrete space games it has often been assumed that the probability

of detection is one if the players simultaneously occupy the same state and zero

otherwise. However, more general frameworks are easy to imagine.

It seems that a large number of Search Games cluster around a relatively small

number of particular 'real-life' military problems. More examples will be noted

below, but one of the earliest and probably the most celebrated, is the Princess

and Monster Game. This is the game that Gal explicitly mentions (see section

1) in connection with games of infiltration. The game was first posed by Rufus

Isaacs as follows.

"The monster P searches for the princess E, the time required be-

ing the payoff. They are both in a totally dark room Q (of any shape),

but they are each cognizant of its boundary (possibly through small

light admitting perforations high in the walls). Capture means the

distance PE < r, a quantity small in comparison with the dimension

of Q. The monster, supposed highly intelligent, moves with simple

motion at a known speed. We permit the princess full freedom of

locomotion." [40, example 12.4.1, page 349]

Note that by simple motion here is meant motion with no other restriction except

that the speed is constant. A simpler version of this problem was also suggested

(op. cit. page 350) in which the players move on the boundary of a circle.

This problem was solved in the early 1970's by Alpern [1], Foreman [29] and

Zelikin [68]. A discrete version of the problem was also solved by Wilson [67].

Eventually, in 1979, Gal [30] solved the Princess and Monster Problem for any

convex multidimensional area.

In this work we are going to follow Gal's suggestion and adapt a discrete time

and discrete space approach to games of infiltration. We shall discuss discrete

Search Games a little below. It is Gal himself who has probably contributed

the most to the non-differential approach to continuous Search Games. His book

Search games [31] was the first complete work dedicated to the subject. This

includes (see Appendix 1, pages 181-188) an important result concerning the

existence of solutions to these problems (later extended by Alpern and Gal [2]).
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In 1989, this earlier work was updated with the publication of a survey [32] of

more recent developments in the field of continuous Search Games.

1.4 Discrete Games

It is obvious that we have been gradually narrowing down our field of vision. This

is the final stage. We consider the important contributions that have been made

in the area of discrete Search Games. An early problem to be considered here

was the Bomber-Battleship Duel, which like the Princess and Monster Game was

first formulated by Rufus Isaacs. The Bomber-Battleship Duel is the group name

of a collection of problems all of which involve a m move time-lag, where m is

some positive integer. Lee and Lee [51] describe the basic problem as follows.

"The minimizing player, called the ship, is constrained to move on

the integer lattice of the real line. In each time unit, it must move

either one unit distance to the left or one unit distance to the right.

The aim of the ship is to manoeuvre so as to minimize the probability

of being hit by a bomb. The maximising player, called the bomber, is

loaded with one bomb and it flies overhead trying to drop the bomb

on the ship. The bomber can observe the movement of the ship for as

long as he likes before dropping the bomb on any position. The main

source of difficulty is introduced by assuming the bomb takes m units

of time to reach the ship from the bomber. Thus the problem facing

the bomber is to anticipate some future position of the ship to drop

the bomb after observing all its past moves. The ship does not know

when or where the bomb is dropped until the bomb hits. The payoff

to the bomber is one if the bomb hits and zero otherwise." (page 867)

For m = 1 the game is trivial. The value is 1/2 and the following strategies

are optimal. The ship always moves left or right with equal probability. At any

time the bomber knows that the ship is at one of two locations. Thus, at any

time he drops the bomb on these locations with equal probability. For m = 2

the problem is non-trivial. It has been solved, using various different methods by

Dubins [26], Karlin [41], Isaacs and Karlin [38], Isaacs [39] and Fergusson [28].

The value is (3 - \/5)/2 ^ 0.38197. For m = 3 the problem is still open. The

game has been shown to have a value v and bounds on v have been extensively
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investigated by Matula [52], Bram [17] and Lee and Lee [51, 50]. Currently, the

sharpest bounds are 0.28648 < v < 0.2883686.

Other time lag games can also be included under the title of the Bomber-

Battleship Duel. Lee [48, 49], Sakaguchi [60] and Garnaev [33] have all introduced

the concept of a safe region to which the battleship should eventually move. This

work is considered in relation to games of infiltration in the following section.

Bernhard, Colomb and Papavassilopoulos [12] have considered a time-lag game

using stochastic formulations. Finally Baston and Bostock have considerd the

problem as a recursive game on both a finite [6, 8] and an infinite number of

states [10].

More recently Olsder and Papavassilopoulos [55] have initiated the study of

what are known as Searchlight Games (these are further developed in [56, 57]).

We decribe Searchlight Games by quoting from a recent article on the subject by

Baston and Bostock [9].

"In a Searchlight Game at least one of the two players has a search-

light which can be flashed a certain number of times within a given

time period. A flash of the searchlight illuminates a region of known

shape. The objective of a player with a searchlight is to catch his

opponent in the region at the time of the flash."

Both partnerships have concentrated upon Searchlight Games played on the dis-

crete boundary of a circle.

We leave both the Bomber-Battleship Duel and the Searchlight Games to

consider the literature that surrounds a problem most recently known as the

Flaming Datum problem. This may be described as follows. A helicopter (say)

attempts to detect or destroy a submarine that has recently revealed its position

by torpedoing a ship (the naming datum). The helicopter uses a dipping sonar

or an explosive device. The submarine's only defence is its ability to dive out of

sight of the helicopter.

The Flaming Datum problem has been appoached in a number of different

ways. The work by Meinardi [53] in 1964 is perhaps the earliest to consider. This

is a discrete one-dimensional version of the problem. Meinardi assumes that the

evader hides in a row of boxes. At each discrete time interval the searcher picks

a box and examines it. The probability of finding the evader when the correct

box is searched is equal to fi, where /x < 1. If the evader is not found he may

either move to a neighbouring box or remain in the same box, and the next stage
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is played. Importantly, both the searcher and the evader are aware of which box
the searcher examines. A limit is placed on the number of stages and thus the
game is finite. The payoff is the probability that the evader is found.

Another early formulation is that of Danskin [22]. Under the title 'A helicopter
versus submarine search game', he considers a two-dimensional version of the
Flaming Datum problem. In contrast to Meinardi he assumes that the evader
gains no useful information about what the searcher is doing. Thus he assumes
that the evader will not change his speed or his velocity once the game has
commenced.

In the book "Geometric games and applications" [59], Bill Ruckle considers a
range of different two-person zero-sum games. A considerable proportion of these
games are related to problems of search and also ambush. The Lattice Ambush
Game (pp. 34-37) and the Lattice Search Game (pp. 53-54) are particularly
relevant to us. The discrete one-dimensional formulation of Meinardi [53] can be
transferred to a lattice by considering the players to be the mobile occupants of
a space-time lattice. Ruckle's games do not cover probabilities of detection that
are less than one. If the searcher and the evader occupy the same point on the
lattice then the evader is found. We note, however, that even these simplified
problems are only partially solved by Ruckle. We are not aware that any further
progress has been made with them.

Baston and Bostock [7] also consider a one-dimensional game which is closely
related to the Flaming Datum problem. Their problem involves continuous mo-
tion and limits the number of searches (in fact these are anti-submarine bombs)
available to the searcher. Cheong [19] approximates the two-dimensional problem
by limiting to a finite number the mixed strategies available to the players. He
also provides some useful discussion on the Flaming Datum problem in general.

The most recent work explicitly addressed to the Flaming Datum problem is
that of Thomas and Washburn [65]. They model the two-dimensional problem
with a finite grid on which the players are assumed to be able to move without
restriction. Again it is assumed that both players are aware of the location and
time of all past searches. This work is presented as only a rough approximation
to the Flaming Datum problem due to the unrealistic motion of the players. Thus
it is considered to be a simplification of the restricted motion case.

It has become clear that the games above use different assumptions in mod-
elling the Flaming Datum problem. They approach it from different directions.
If we consider just the finite versions of the problem we can identify four partic-
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ular areas in which assumptions must be made. The first concerns the players'

motion. In order to be a realistic model, some speed restrictions seem to be

desirable for the players. However, as documented in Ruckle ([59] see especially

the pages referred to above) and admitted in Thomas and Washburn [65], so-

lutions are easier to come by when the motion is unrestricted. The second set

of assumptions concerns the detection probability. This could be a function not

only of current position and time, but also of the previous history of the game.

However, in order to get some results, the detection probability has been greatly

simplified. At times, as in Ruckle [59] it has even been taken to be uniformly

equal to one. Thirdly, there is the question of the initial position. The players

may start at known positions. Alternatively, the starting positions may be given

by two probability distributions which are known to both the players. In fact

it seems that the Flaming Datum problem implies that the evader must initially

give away his location (eg. by the sinking of a ship), and therefore a fixed starting

position might seem most appropriate. However, as some significant time period

may elapse before the searcher comes into effective range, this may be questioned.

The fourth, and perhaps the most significant, set of assumptions that are

made concern the players' 'knowledgeability'. This is a term which is used to

describe the information conditions which are present in a game. If, during the

course of a game, a player gains useful information about his opponent's position

(other than if detection occurs) then he is said to be knowledgeable in some

way. This information may be incomplete. For instance, the evader might realise

the searcher's position only when they are in the same state. The information

may also be delayed, as in the case of the Bomber-Battleship Duel. Most of the

work mentioned above assumes that at least one of the players is considerably

knowledgeable. Exceptions to this are Ruckle [59], Danskin [22], and Baston and

Bostock [7] (although in this last case, while it is initially assumed that neither

player is knowledgeable, it is also noted that the solution would be unchanged

if the evader were aware of his opponent's moves). Throughout this work we

shall assume that neither player is knowledgeable. Thinking of a situation with

a submarine and a helicopter, this does not seem unreasonable.

Finally we make note of the 'Cumulative Search Evasion Games' (CSEGs)

recently considered by Eagle and Washburn [27]. These games differ from all of

the above in the form of payoff which is assumed. They involve a cumulative score

which builds up over the (finite) period of the game. This may be, for example,

the number n, of meetings between the players. The conditions of movement
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are general enough to include all of the discrete games above. Note that, if

we relate this to the games in which there is a constant probability //, /z < 1, of

detection then the total probability of detection is given by l - ( l - / / ) n . Therefore

the framework of CSEGs could be adapted to the Flaming Datum problem as

well. However, the methods developed are admitted to be tailored specifically

to the cumulative form of payoff. They do remark that, if fi — (1 — e)"1 , then

1 — (1 — /i)n = 1 — e~l which is approximately equal to n when n is small. "So

CSEGs can be regarded as first order approximations to detection games" (page

496).

1.5 Infiltration and the Flaming Datum Prob-

lem

We conclude this chapter as we began it, with Gal's discrete infiltration problem.

We can now observe that although infiltration seems to be a relatively new area

of application, the underlying problems can be considered as generalisations of

the Flaming Datum problem. An extra factor is introduced. The evader has a

target which he can head for. If he gets there he is safe from detection. Note that

there are two different possibilities for the payoff. If the payoff remains as the

probability that the evader is not detected, then this is a true generalisation of

the Flaming Datum problem. Indeed, if the safe area is far away it may have no

effect on the optimal strategies for the game. On the other hand, if the payoff is

taken to be the probability that safety is reached, then this is a distinct problem.

When the time available is very large (or infinite) these distinct games may have

the same solutions. This question is taken- up again for some specific games in

later chapters.

Discrete games of infiltration^have received little attention. Lee [48, 49] and

Sakaguchi [60] have investigated games in which the evader moves on a line and

has a safe point or bunker which he must eventually get to. Garnaev [33] has dealt

with the similar situation where the evader moves on the infinite two-dimensional

integer grid with a general set of safe points. All of this work is based on the as-

sumption that the probability of detection is one (although, in compensation, we

note that they also limit the number of detections which the searcher is allowed

to make). Attempts have been made to consider an infiltration game involving a

probability of detection which may be less than one. Lalley [47] has futher sim-
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plified Gal's discrete problem by introducing another safe point where the evader
starts the game. Thus, the infiltrator can choose the timing of his infiltration
and remain undetected until he acts. This approach is discussed and generalised
in Chapter 5. For completeness we note also the author's own work [4, 5] on
infiltration games. This is also extended in Chapters 4 and 5. Finally Alpern [3]
has recently solved the infinite time 'safe base' game on any discrete graph. This
too is mentioned again in Chapter 5.



C h a p t e r 2

F O U N D A T I O N S

2.1 Introduction

In this chapter we begin the formal analysis. We start by reviewing some elemen-

tary concepts of two-person zero-sum game theory, particularly those of solution,

value and optimal strategy. In section 3 we turn to the particular games of

infiltration which we are going to study. Our first aim is to consider whether so-

lutions may be found for these games. To this end we try to use certain existence

theorems, or minimax theorems as they are known.

The definitions contained here are the foundations of all that follows. There-

fore in section 8 we discuss some variations on these definitions. This illustrates

the relative fragility of some of the properties of these games and also tests the

completeness of the set of currently known minimax theorems.

2.2 Two-Person Zero-Sum Games

We shall be very selective here. A good general introduction to Games Theory

can be found, for instance, in [64]. We shall restrict ourselves to two-person

zero-sum games and even then give only the bare essentials for our requirements.

Further eleboration will be provided when needed.

Definition 2.2.1 A two-person zero-sum game T is an ordered triple

where X and Y are sets, and f is a bounded real-valued function on X x Y the

Cartesian product of X and Y.

12
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Henceforth we shall refer to any two-person zero-sum game as simply a game.

The two players involved we label player I and player II. The sets X and Y are

known as the strategy sets of player I and player II respectively. The function /

is known as the payoff function. If x G X and y G Y then f(x, y) is the amount,

called the payoff or the payoff to player I, of some appropriate units of utility,

payed to player I (by player II). Thus, if we consider player I (resp. player II) to

be able to choose a strategy from his strategy set, he does so with the objective

of maximising (minimising) / . Thus player I and player II are sometimes called

the maximiser and the minimiser respectively.

Recall that the payoff function / is bounded. Then fixing x G X, for all

y £Y, f(x,y) > in( f(x,y). We call inf/(z,y) the minimum payoff guaranteed
y&Y yeY

by x. Similarly, for fixed y 6 Y, sup f(x,y) is the maximum payoff 'guaranteed'
xex

by y. We denote by v.(T) and v(T) the security levels for player I and player II
respectively which are given by v(T) = sup inf f(x, y) and v(T) = inf sup /(x, y).

xy£Y v^y x
Lemma 2.2.2 For all Y = (X, Y, f), v(Y) < v(Y).

Proof Clearly, for all x G X and y G Y, f(x,y) < supf(t,y). Thus inf/(a;,s) <
tex *ev

supf(t,y). As inf/(a:,s) is independent of y it is < inf supf(t,s) = v(T).
seY seY xFinally, v(T) is independent of x, and so vjT) = sup inf/( i ,s) < v(T). This

tex »6V
completes the proof.

Definition 2.2.3 Let V = (X, Y, f) be a game. V has a solution if v(T) = v(T).

This common value is then called the value of the game, or simply the value,

and is denoted by v(T).

Lemma 2.2.4 Let T = (X, Y, f) be a game with a solution. Then, for all t > 0,

there exists a pair (x£,y£) e X xY such that, for all (x,y) G X xY,

f(x,yc)-e<v{T)<f{xt,y) + e.

Proof Let e > 0. Then, as inf supf(x,y) = v(T), there exists yt G Y such that
ey x

supf(x,yc) < v{T) + e. Thus, for all x G X,
xex

f{x,yc)<supf(x,yi)<v{r) + 6.
xex

Similarly, there exists xc G X such that, for all y G Y,

f(xc,y)>Mf(xc,y)>v(T)-e.
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The strategies xt and yc are known as e-optimal strategies for player I and
player II respectively. For any game F which has a solution, v(T) is unique but
xe and yc need not be.

Definition 2.2.5 Let F = (X, Y, f) be a game with a solution. A strategy for
either player is optimal if, for all e > 0, it is e-optimal.

Even when a game has a solution, optimal strategies need not exist. However,
if x* G X and y* G Y are optimal, then for all (x,y) G X x Y, f(x,y*) <
f(x*,y*) < f(x*,y). Although x* and y* are not necessarily unique, the payoff
f(x*,y*) is, and satisfies f(x*,y*) = v(T). If X and Y are finite then it can be
proved that whenever the game F = (X, Y, / ) has a solution there exist optimal
strategies for both players.

When F = (X, Y, / ) does not have a solution it is common to consider the
extended game F*. Suitable cr-algebras are taken on X and Y. The extended
strategies are probability measures on the resulting measurable spaces. The ex-
tended payoff functions are integrals. We shall see this in practice later on in the
chapter. If X or Y is finite, then the extended game always has a solution.

Finally if there exist distinct x, x' G X such that, for all y £ Y, f(x'', y) >
f(x,y) then x is said to be dominated by x'. Similarly for y,y' G Y, if, for all
x G X, f{x,y') < f{x,y), then y dominates y'. It is clear that the removal
of a dominated maximiser strategy or a dominating minimiser strategy does not
affect the existence of a solution. Moreover, if the game does have a solution, this
does not change the value.

2.3 Strategies I

We now move on to the particular games of infiltration in which we are interested.
In this section and the next we introduce the strategy sets and the payoff functions
respectively. We define two different games which correspond to the different
payoffs mentioned in Chapter 1. In section 5 we begin to extend these games.

Both the games take place on a set of p states, and it is assumed that p > 2.
Let P = {1,2,... ,p} and P00 the set of all infinite sequences (sr), r = 1,2,..., in
P. We rename the players. In future, player I, will be known as the Infiltrator
and player II as the Guard. Thus the Infiltrator is to be the maximiser when
the payoff functions are denned. Both players are assumed to move in discrete
time among the states. So we consider their strategies to be elements of P°°. At
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each time, while the Infiltrator can only move between adjacent states (eg. from
state two to state one, two or three), the Guard can move between states up to
u states apart. Thus u is referred to as the speed of the Guard. We assume
that u > 1, for otherwise the problems are trivial.

Definition 2.3.1 The strategy sets, 1^ and Goo, for the Infiltrator and Guard
respectively are the subsets of P°° given as follows: If i G /<» then

I(a) h = 1,

I(b) |i r+1 — z'r| < 1 for all r > 1, and

I ( c ) tfi for some t > I, it = p then, for all r > t, ir = p.

If g G Gco then

G(a) gr < p for all r > I,

G(b) |<7r+i — 9r\ < u, for all r > 1.

Let us discuss this definition. A strategy for the Infiltrator is a sequence
i\,i-z, • • • where, for each n G IN, in is considered to be the state at which the In-
filtrator is located at the nth stage of the game. Similarly for a strategy <7i, <72, • • •
for the Guard. As detection cannot occur at state p, the target, we ban the
Guard from this state. The other conditions on the sets J^ and G^ derive from
the basic properties disussed in the opening chapter. At time one, the Infiltrator
is assumed to occupy the first state, and thus, for all i G I<x>, i\ = 1. The condi-
tions on adjacent terms of any element of 1^ or G^ correspond to the players'
speed restrictions. Condition I(c) does not ensure that the Infiltrator visits the
target. It just guarantees that, if he ever does, he stays there.

In the following section we define two different payoff functions, FIoo and Jloo,
thus completing the definition of two different games, T^ = (IooiGo^Iloo) and
foo = (loo, G^, ftoo)- At the end of the chapter there is a section in which we
examine some alternatives to these games which are obtained by defining different
strategy sets.

We now define a topology on P°° and hence on I^ and G^ and consider the
resulting topological spaces. In fact, we define a metric on P°°. Let IN* denote
the set IN U {oo}, and consider the two functions n and d defined on P°° x P°°
as follows: If x — x\, xi,. • • and y = yj, y2, • • • are both elements of P°° then

' J min{r|a;r ^ yr) if x ^ y

I oo it x = y.
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For all x,y e P°°, d(x,y) = ^(a;,?/)-1 where, by convention, l/oo = 0. Clearly,
for all x and y, 0 < d(x,y) < 1.

L e m m a 2.3.2 o? {5 a metric on P°°.

Proo f Let x,y,z denote three arbitrary elements of P03. If x = y then d(x,y) =

d(y,x) = 0, whereas, if x / ?/ then d(x,j/) = d(y,x) > 0.

It remains to show that </(z, y) + <f(?/, z) > d(x, z). If x and ?/ are equal then

this follows immediately. Therefore let us assume that they are distinct. As x

and y first differ at the (n(x,y))th term and y and z at the ((n(y, z))th term,

that x and z certainly cannot difFer before the first of these terms. Therefore

n(x,z) > mm {n(x,y),n(y,z)}, and so,

d(x,z) = n(x,z)~l

< (mm{n(x,y),n(y,z)})~1

= ma,x{d(x,y),d(y,z)}

< d(x,y) + d(y,z).

Hence we have shown that d is reflexive, symmetric and transitive. Therefore

it is a metric.

It can be seen from the above proof that the metric d is also what is known as

an ultrametric. A metric u on a set X in an u l t ramet r ic if, for all x,y,z 6 X,

u(x,z) < max{u(x,y),u(y,z)}. An ultrametric space has certain interesting

properties beyond those of other metric spaces. In particular, in an ultrametric

space (X,u) any e-ball, Be(x) = {x' 6 X\u(x',x) < t] is both open and closed.

Moreover, for all e > 0, x € X and any x' 6 Bc(x), Bt(x') = Bt{x). Some

additional properties of ultrametric spaces are to be found in Dieudonne [25]

(page 38, problem 4) and others in Bourbaki [16] (ex. 2.4 pages 227-228). It is

sufficient for us that d possesses the general properties common to all metrics.

As a metric, d induces a topology on every subset of P°°. In particular, we

denote by U and V the collections of all open subsets of 1^ and G^ respectively.

The topological spaces J = (I00M) a n d G = (Goo, V) are then referred to as the

players' s t ra tegy spaces.

Lemma 2.3.3 (P°°,d) is compact.
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Proo f As (P°°,d) is a metric space, it is compact if and only if every infinite set

Q C P°° has a limit point a G P°°• We construct such a limit point below.

First, for any Q C P°° and any finite sequence s1,s2,...,sn in P, let

Qsi,*! Sn = {q G Q \ qr = sr for all 1 < r < n} .

Let Q be an infinite subset of P°°. Observe that Q - (J Q3l. As this union

is finite there exists at least one value of si such that QSl is infinite. Let o\

denote the least such value.

Now suppose that ai,a2:- • . ,o"t is a finite sequence in P and that Qaua2,...,ak

is infinite. As above Qaua2 ak = [j Qauc2 <jk,sk+1 and there exists at

least one value of Sk+i such that Qauc2,...,<rk,sk+1 is infinite. Let <rk+i denote

the least such value.

Finally let a — o ^ , ^ , . . . , be the sequence which this procedure generates.

As each ak G P, a G P°°. Let e > 0 and r = [1/e]. As Bi/r(a) C\

Q — Qaua2t__,^T, there are an infinite number of points q G Q such that

q G Bi/r(a) C Bt(a). Therefore a is a limit point of Q. This completes the

proof.

Corollary 2.3.4 (Ioo,d) and (Goo,d) are both compact.

Proo f A closed subspace of a compact space is also compact. We show that both

(Ioo,d) and (G^d) are closed in (P°°,d).

Let s G P°° \ / o o , and then s must fail to satisfy at least one of the conditions

l(a), l(b) and l(c) of Definition 2.3.1. If si > 1 then, for all s' G B^s),

s[ — si > 1 and so s' G Pc o \ /c o . If, for some r, |s r + 1 — s r| > 1, then for all

s' G B_x_(s), s'r+1 - s'r > 1, and again s' G P°o\/0o- Finally, if there exist

q < t such that sq = p, but st < p, then for all s' G Bi_(s), s' £ loo- Therefore

P°°\ /0 O is open and so Too is closed. A similar argument shows that Goo 's also

closed.

Thus, by the previous lemma, 1^ and Goo are both closed subsets of a compact

space. This completes the proof.

Finally, let d* be the metric on the cartesian product /<„ x G^ given as follows:

If i,i' G loo and g,g' G G^ then

d*[(i,g),i.i',g')] = max {d(i,i'),d(g,g')} .
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It is well known that this, the product metric, gives rise to the standard product

topology on / ^ x Goo. The resulting topological space, denoted by I x G is called

the topological product of / and G. Note particularly that if, for all e > 0 and

(i,g) £ loo x Goo, B* [(i, <?)] denotes the e-ball around (i,g), then

The topological product is considered in greater detail in section 5.

2.4 Payoff Functions I

We define two payoff functions on the set 1^ x Goo- Let i £ 1^ and g £ Goo-

Both functions are based on the number of terms at which the sequences i and g

agree. They differ only in the ultimate objectives of the players. Whenever the

first payoff is used the Infiltrator is just trying to avoid detection. Whenever the

second is used he is trying to reach the target. If we assume that if the Infiltrator

reaches the target he does not subsequently leave it, then the achievement of the

second of these objectives also guarantees the achievement of the first. However

the converse does not hold.

We assume that if the players simultaneously occupy the same state, then the

Guard detects the Infiltrator with probability //, 0 < /i < 1. As it is easier to

work with the probability of a miss, let A = 1 — fi. Finally, let S be a set. If S is

finite then |,S| denotes the number of elements in 5". If 5" is infinite then | 5 | = oo.

Also, for all 0 < A < 1, by convention A°° = 0.

Definition 2.4.1 Let 1^ and G^ be the strategy sets given in Definition 2.3.1.

(a) For all (i,g) £ /oo x Goo the coincidence number , u>(i,g), is given by

w ( * , < 7 ) = \ { r 6 l N | i r = ^ } | .

(b) The detection function, IIoo : loo x Coo —> ̂  is given as follows: If i G loo

and g £ Goo, then

UO0(i,g) = X^3l

(c) The target function, 6 ^ : 7^ x G^ -> U is given as follows: If i £ / ^

and g £ Goo, then

/ noo(*\fl0 */, f°r some r £ IN, ir = p,
0 otherwise.
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Both IIoo and n ^ are bounded. Moreover, for all (i,g) £ /oo x Goo, flooihd) <

Noo(i,g)- We conclude this section by considering whether these functions are

continuous. We prove that, although neither is continuous, they are both semi-

continuous. First note that, for any function / : S -> T and V C T, f'1 (T) =

{s\f(s)eT}.

Definition 2.4.2 (Semicontinuity) Let T be a topological space. Let f be a

real-valued function on T.

(a) f is upper semicontinuous on T if, for all c e S , /~1((—co,c)) is open.

(b) f is lower semicontinuous on T if, for all c e S , / - 1 ( ( C , +OO)) is open.

If T is a metric space there are equivalent definitions of semicontinuity in

terms of convergent sequences. Note that, for any sequence (s r),

lim.Sr = lim (inf {sr | r > t}).
t—»oo

(a') f is upper semicontinuous on T, if for all convergent sequences £,- —-> t in T,

limfiu) < f(t).

(b1) f is lower semicontiiiuous on T, if for all convergent sequences ti —> t in T,

lim/ft) > fit)-

A function is continuous if and only if it is both upper and lower semicontinuous.

Recalling that I x G denotes the topological product of / and G, we consider the

semicontinuity of the functions IToo and fl^ on I x G.

Lemma 2.4.3 IToo is upper semicontinuous on I x G.

Proof Let (ir,gr) —>• (i,g) be a convergent sequence in / ^ x Goo. If u(i,g) =

oo then, as r —> oo, u(ir,gT) —> oo and so Uo0(i
T,gr) —>• 0. Therefore

limnoo(i r,5 r) = lim U^i^g') = 0 = n c o ( i , 5 ) . If u(i,g) < oo then there

exists t such that for all s > t, is ̂  gs. Thus, for all r sufficiently large that

d*[{iT,9T\{i,9)] < l/t, u(ir,gr) > to(i,g) and so IIoo^,^) < U^i.g).
Therefore Hmnoo(i'

r,5'7') < Uoo(i,g). This completes the proof.

Corollary 2.4.4 There exist i' £ 1^ and g' £ G^ such that rioo(i',<7) is not

lower semicontinuous on G^, and noo(i,5'/) is not lower semicontinuous on 1^.
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Proo f Let i ' = 1 , 1 , . . . , and let gr —• g be the convergent sequence in Goo such

that, for all r,
r terms

gr = l, 2 , 2 ^ . . , 2 , 1 , 1 , . . .

and so g = 1,2,2, — Considering the terms at which these different elements

of Goo meet i', we find that, for all r, u>(i',gr) = 00, but that u(i',g) = 1.

Therefore i iml loo^' ,g r) = l im Il^i',gr) = A°° < A1 = I Ioo^ ' , ^ . Hence,

1^00(2',^) is not lower semicontinuous on G^

Now let g' = 2 ,2 , . . . , and let ir —> i be the convergent sequence in 7^ such

that, for all r,

r terms

iT = 1,1,... , 1 , 2 , 3 , . . . , p , p , . . .

and so i = 1,1,.. . . In this case we find that, for all r, u>(ir,g') = 1, but

co(i,g') = 0. Therefore ijmU^,g') = l i m l l ^ t f ' ) = A1 < A0 = Yl^i^').

Hence, Tl^i^g') is not lower semicontinuous on 1^.

We have established this corollary for future reference. Either one of the

examples in the proof above is sufficient to show that TIoo is not continuous.

L e m m a 2.4.5 IToo is lower semicontinuous on 1^ x G^

Proo f Let (ir,gr) —> (i,g) be a convergent sequence in 1^ x Goo. If. for all

s, is < p, then, by definition of ftoo, U<x>{i,g) = 0. Therefore, it follows

immediately that l imf l c o ( i r ,5 ' r ) > 600(2,#). If there exists t such that it = p,

then, by Definition 2.3.1, for all s > t, is — p. Hence, for all r sufficiently large

that d*[(ir,gr),(i,g)] < 1/t, ir = i and to(ir,gr) = u>(i,g) < 00. Therefore,

]nnfloo(i
r,gr) = lim rioo(ir,^r) = Uoo(i,g). This completes the proof.

Corollary 2.4.6 For all i' € loo, Roo{i',g) is upper semicontinuous on Goo, but

there exists g' € Goo such that floods'') is not upper semicontinuous on 1^.

Proo f Fix i' G loo and let gr —> g be a convergent sequence in Goo- If. for all s, i'a <

p, then by definition of floo, for a" r . ^oo(i',9T) = 0 = Ti^i',g). Therefore

lim600(1',£r) = floo(i',g)- If there exists t such that i't = p then, for all

5 > t, i's = p. Hence, for all r sufficiently large that d(gr,g) < 1/t, u(i',gr) =

u(i',g). Therefore Urn fioo(^,5'r) = l im floo(i',gr) = ^ ^ ( t ' , ^ ) . Hence for all

i' €. loo, n<x>(i'ig) 's continuous on Goo and so also upper semicontinuous.
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To see that this does not hold the other way around, consider the first ex-

ample contained in the proof of Corollary 2.4.5. We deduce that, for all r,

n-oo{iT,g') = A but that as for all r, ir < p, tl^i^') = 0. Therefore

iimfloo{ir,g') = Mm il^ii^g') = A > 0 = flUhg')- Hence, tl^g1) is
not upper semicontinuous on 1^.

Definition 2.4.7 The detection game, Too, and the t a rge t game, foo, are

the game triples T^ = (J^, G^, n ^ ) and f«, = (/«,, Goo, ftoo) •

The games F ^ and F ^ do not, in general, have solutions. If A = 0 then the

Infiltrator can be immediately detected at state one, and so u(Foo) = u(foo) = 0.

Now suppose A > 0. For p = 3 the strategies i = 1,2,3, 3 , . . . and g = 1,2,2,...

are optimal in Too and u(foo) = A2. For p — 4 it can be seen, by considering

the security levels, that while ^(Foo) = 3i(f <») = A3, U(Foo) = A2 and u(f <») = A.

Thus neither game has a solution. This is clearly the case for all 0 < A < 1 and

P > 4-

2.5 Strategies II

Let us pause for a moment to recap and outline what we are going to do in the

next couple of sections. In section 3 we defined the strategy sets 1^ and Cx,.

The games F ^ and r M were then given as the ordered triples (7^, G^, IIoo) and

(/©a, Goo, iloo) respectively, where FIoo and IIoo were specified real-valued functions

on the set /oo x GOQ. In this section we start the construction of two further

games, F ^ and f^, to be known as the extended games. Intuitively, these are

the games derived from F ^ and F ^ when the players are permitted to randomize

their choice of strategy. This section defines what it means to randomize, and

denotes by Zoo and £/oo the sets of all such strategies for the Infiltrator and the

Guard respectively. In section 6 the real-valued functions 7 ^ and fr^ on Too x Goo

are defined as the expectations of IIoo and IToo respectively when the players use

strategies from the sets Joo and £oo. Finally, the extended games are given by

the ordered triples F ^ = (2oo,£oo,7Too) and F ^ = (Joo,£oo, TTOO)-

We now define what it means for the players to randomize. This involves us in

considering probability measures on suitable cr-algebras on the sets 1^ and Goo-

Let us first note some definitions.

Definition 2.5.1 Let X be a set. A collection A of subsets of X is a cr-algebra

on X if
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(a) XeA,

(b) AeA^ AC£A,

(c) Ai, A 2 , . . . <E A =>• U Aj € .4,

(d) A a ,A 2 , . . . € .4 =4> DAj € A.

As, for any infinite sequence (Aj) of subsets of X, H Aj = (U A / ) c , (b) and (c)

together imply (d). Similarly (b) and (d) together imply (c). If X is a set and

C is a collection of subsets of X, it can be shown that there is a a-algebra o~(C)

which is the smallest cr-algebra containing C. (The power set of X demonstrates

that there exists at least one a-algebra containing C. The intersection of any

collection of cr-algebras can be shown itself to be a cr-algebra . Hence let cr(C)

be the intersection of all cr-algebras containing C.) cr(C) is called the cr-algebra

generated by C. If X is a set and A is a u-algebra on X then the pair (X, A)

is called a measurable space.

Definition 2.5.2 Let (X,A) be a measurable space.

(i) A measure on A is a function /J, : A —> [0, +oo] that satisfies

(a) 0(0) = 0

(b) fi(L)Aj) = J2 ̂ (Aj) for every sequence (Aj) of disjoint elements of A.

(ii) A probability measure on A is a measure fi on A such that fi(X) = 1.

If (X, A) is a measurable space and // is a measure on A then the triple (X, A, ft)

is called a measure space. When fi is alsoa probability measure on A, (X, A, fi)

is known as a probability space.

In a moment we shall apply this to the sets /co and G^. First consider another

general idea which will be required later.

Definition 2.5.3 Le£ (Xi, ,4i) and (X2,A2) be measurable spaces. The a-algebra

A\ ® A2 on Xi x X2, known as the product of the <r-algebras Ai and A2,

is given by

Ai ®A2 = cr(Ai 0A2),

where Ai o A2 = {Ax x A2 [Ai G Ai, i = 1,2}.
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It is well known (see Cohn [21]) that, if (A'i,.4i,/^l) and (A'2,^2,/^2) are proba-

bility spaces, then there is a unique measure /^ 0 fi2 on A\ ® A2 such that, for

all Ai G Ai, i = 1,2

(/*i 0 ^2) Mi x A2) = /xi(Ai)/i2(A2) (2.1)

The measure /Xi 0/^2 is called the product of fii and fi2.

For our purposes this is all that we require to know about fii Q fi2. The full

theory proves the existence of the product measure not only for probability spaces

but for all measure spaces (Xi,Ai,fii) and (X2,A2, ^2) which are cr-finite (Note:

(X,A,n) is cr-finite if X is the union of a sequence {Aj} of elements of A such

that, for all j , fi(Aj) < +00). Moreover, it shows that the measure, under fiiQfi2,

of an arbitrary element E of Ai ® A2 is given by

(01 O/x2) (£) = / , / x 2 ( ^ 1 ) ^ i ( ^ 1 ) = I tn(Ex>)ii2(dx2),
Jx1 J X2

where, for all (xi,x2) G Ai x X2, EXl = {x2 € AT2|(a;i,a;2) G .5} and EX7 =

{xi G A'JKXX,a;2) G £^}. Further details about product measures can be found

in any work on Measure Theory. See, for example, Cohn [21], Billingsley [13],

who concentrates on probability measures, or the classic treatment by Halmos

[36]. The theory which we have developed here is not yet able to handle the

integrals given above. In the next section, given a measure space [X, A, ft) and a

[0,+00]-valued .4-measurable function / on A', we construct the integral f fdfi.

For the moment it is sufficient for us that the measure fii 0/x2 is uniquely defined

and satisfies equation (2.1).

We finally return to the strategy sets 1^ and Goo. Recall that back in section

3 we observed that the metric d on P°° induces the topologies U and V on 7^

and Goo respectively. The cr-algebras that we use are those generated by the open

subsets of the topolgical spaces {I00M) and (Goo,V). These are the cr-algebras

<y(U) and a(V). If T = (X,U) is any Hausdorff topological space, the cr-algebra

cr(U) is sometimes called the Borel <7-algebra of T. In this case the elements

of cr(U) are known as the Borel subsets of T.

This section ends with the definitions of the mixed strategy sets Too and Qoo.

Before this, however, consider the topological product of (I^M) and (Goo,V).

By definition, a subset W of 1^ x G«, is open under the product topology if, for

all w G W, there exist U G U and V G V such that w G U x V C W. If we

denote the collection of all such open sets by W, then the topological product

of (/oo,W) and (Goo,V) is denoted by (Zoo x Goo,W). Thus, in addition to the
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Borel a-algebras a(U) and cr(V) mentioned above, we can also consider the Borel

cr-algebra <r(W) of (1^ x G^, W).

Recalling Definition 2.5.3, we also deduce the existence of the cr-algebra a(U)®

<r(V). Therefore cr(W) and a(U) ® a(V) are both a-algebras on (/<*, x (?«,, W).

L e m m a 2.5.4 IfU, V and W denote the open subsets of the sets 1^, G&

loo x Goo respectively, then

cr(W)Ca(U)®o-(V).

Proo f The cr-algebra cr(W) on (7^ x Goo,W) is generated by the open subsets

of (7cc x GoojVV). By Definition 2.5.1(b), it is also generated by the closed

subsets. The Lemma is thus proved if we show that for every closed subset K

in (loo x Goo, W), K € <J(U) ® a(V).

We first deduce that as (I^^U) and (Goo,V) are compact spaces then, by

Tychonoff's Theorem, their topological product is also compact. Moreover, as

every closed subspace of a compact space is compact, K is compact too. We

now exploit the fact that every open covering of a compact space has a finite

subcovering.

For all n £ IN the collection of sets {B^n[k]\k G A'} is clearly an open

covering of K. Therefore, for all n, there exists a finite subset of K, {kj \j =

1,2,... ,mn}, such that the union

_/\ n ^^ I I J D I / /C •

J = l

contains K.

Recall that, for all e > Oandforall (i,g) e /ooXGoo, B* [(i,g)} = Bc(i)xBc(g),

and therefore B* [(i,g)} 6 cr(U) ® cr(V). Hence, as for all n, Kn is the union

of a finite collection of such sets, Kn £ cr(U) ® cr(V). For all n 6 IN neither

{jfcH | j — 1,2,... ,m n } nor Kn is necessarily unique. It remains to show, for

all possible choices of Ki,K2,..., that K = C\Kn- For then, by Definition

2.5.l(d), K e a(U) ® a(V) as required.

By definition, for all n 6 IN, K C Kn. Hence K C n Kn. To prove the reverse

inclusion, suppose that there exist Ki,K2,... and x G C\Kn such that x £ K.

As for all n € IN, x € A'n, it follows that for all n € IN there exists Jcfy € 7C

such that a; G 5 j / (fc^iw- Equivalently, for all n € IN, there exists k\?\ € A
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such that fcj"2) £ B*/n{
x)- Therefore, x is a limit point of K. However, K is

closed and contains all of its limit points. Thus x £ K leads to a contradiction.

Hence, for all x G n/ifn i x G K and so f)Kn C K. This then confirms that

K — C\Kn and thus completes the proof.

Definition 2.5.5 Let a(U) and <r(V) be the Borel a-algebras of the topological

spaces (/oo,£/) and (Goo, V) respectively. We define the extended strategy sets,
Zoo and Q<x>> for the Infiltrator and the Guard respectively by

(a) Zoo = {i | (/oojcr^), i) is a probability space } .

(b) Goo = {7 | (Goo,(7(V),7) is a probability space } .

We conclude by observing one particularly important property of the Borel

cr-algebras cr(U) and u(V).

L e m m a 2.5.6 The a-algebras cr(U) and cr(V) contain all the singleton subsets

of loo and Goo respectively.

Proo f The proof is identical for both cr(U) and cr(V). Let us do it for a{U).

Let i € Too. For all e > 0 the e-ball Bt{i) around i is open, and therefore

an element of a(U). Thus, from Definition 2.5.1 and as {i} = P) Bi/n(i), it
nG)N

follows that the singleton subset {i} is also an element of a(U).

We now see the intuition behind calling the sets 2^ and G^ the extensions

of /oo and Goo. For suppose i G /<» is any pure strategy for the Infiltrator. From

the preceeding lemma, {i} € cr{U) and hence, we can denote by //,• G ZQO the

unique probability measure on a(U) which satisfies m({i}) = 1. Intuitively, //,• is

the extended strategy that corresponds to the strategy i. In the same way, for

any g G Goo we can define \xg G ̂ 00 such that /xfl ({^}) = 1. Hence we think of

Zoo and Qoo as containing all the elements of 7^ and Goo and a whole lot more.

2.6 Payoff Functions II

Our aim in this section is to define the extended payoff functions 7Too and 7Too.

This requires a brief consideration of measurable functions in general and the

measurability of the functions IIoo and fioo in particular.
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Definition 2.6.1 Let (X, A) be a measurable space. A function f : X —• 3? is

, 4 - m e a s u r a b l e if, for every c G 3J, f~x ((—oo,c]) G A.

L e m m a 2.6.2 IIoo and I t ^ are both a(U) <g) a(V)-measurable on /<» x Goo-

Proo f This follows from the semicontinuity established by Lemmas 2.4.3 and 2.4.5.

Let c G 3£. First, as Tl^ is lower semicontinuous on /<» xGoo, then by definition,

n ^ ^ c , +oo)) is open. This set is the complement of ft^o
1((—oo,c]). As a(W)

is generated by the open sets, f t^1 (( —oo, c]) G <r(W).

Similarly, IIoo is upper semicontinuous on 1^ x Gco. Therefore for all d G 3?,

n ^ ( ( - o o , < 0 ) € WCo- (W) . As

it follows, from Definition 2.5.l(d) that I I ^ 1 ((-oo,c]) G a(W).

Finally by Lemma 2.5.4, a(W) C cr(ZY) ® cr(V). This completes the proof.

We have already seen that, for all i £ X^ and all 7 G £/<», there exists a unique

probability measure t©7, defined on o(JA)®o(y), which satisfies (iQ~f)(A x B) =

for all A G a{U) and all B G o"(V). Now that we have shown that both

and ftoo are o-(U) ®o(V)-measurable let us find an expression for the integrals

To avoid needless repitition in considering both n ^ and IIoo, let II : 1^ x

Goo —> 3? be any cr{U) ® cr(V)-measurable function which takes values only from

the set {A-7 | j — 0 , 1 , . . . , 00}. Recalling that, by convention, A°° = 0, clearly

both IIoo and IJoo satisfy these conditions.

Let us define, for each j = 0 , 1 , . . . , 00, the subset Aj of /«> x G^ given by

Ai = n-1

As IT has been assumed to take only the countable set of values given above, we

deduce that

^ o A * 1 ] ) u
It then follows that, as II is <r(U) ® a(V)-measurable, then Aj G cr(U) 0 a(V).

Therefore, for n = 0 , 1 , . . . , 00 we may define the non-negative simple function

nW : /oo x G^ -> {0, \> I j = 0 , 1 , . . . , n} as follows. For all (i, g) G /«, x (?«,,

i=o
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where, for all j , XA} is the characteristic function of the set Aj. Note that for all

(i,g) e / o o X G M TL[%,g) < H[1](i,g) < . . . and that l i m l l ^ ^ ) = U(i,g). For

all n, the integral / IIM d(c © 7) of IIM with respect to t 0 7 is defined to be

IIW d(i 0 7) = J J AJ (4 0
x G °° j=0

If (X, .4, //) is a measure space and / : X —> [0, +00] is a ,4-measurable func-

tion, then the integral f f dpi is defined in terms of integrals of simple functions

such as those considered above. If we let <S+ denote the set of all non-negative,

^4-measurable, simple functions defined on X, then we define

J f dpi = sup I / g dpi \ g e S+ and g < / j .

The monotone convergence theorem (see Cohn [21] section 2.4.1) implies that

if there exists a sequence /0 , / 1 , . . . of [0, +oo]-valued ^.-measurable simple func-

tions on X which satisfy

Jo{X) ^ Ji\x) _; • • • \^-L)

and

f(x) = lim fn(x) (2.3)
n—>oo

for all x G X, then $ f dpi — l i m / / n dpi.

[In fact, the monotone convergence theorem requires only that the two dis-

played equations above hold at almost every x in X. In other words, if we consider

X = {x e X\ (2.2) or (2.3) is false } then there exists A G A such that X C A

and pi(A) = 0.]

Thus returning to the function II : /<» x Goo —* [0, +00], we know that II is, by

assumption, cr(U) ® cr(V)-measurable and that the simple functions

satisfy both (2.2) and (2.3). As, in addition,

lim / IP71' dU 0 7 ) =
n—<-oo J

we deduce that

' ^00 X Gob

where, for j = 0 , 1 , . . . , Aj = U'1 (Xj).
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Definition 2.6.3 Let 11^ : 7^ x G^ -> ft and n ^ : /«, x G^ -» 3? 6e toe
functions given in Definition 2.4.1. Let 2^ andQ^ be the extended strategy sets,

given by Definition 2.5.5.

(a) The extended detection function Tr̂  : 1^ x Q^ -> ft is given by

7Too(i,7)= / n o o d ( t 0 7 ) (2.4)

/o r a// i G Xoo â <^ all 7 € £oo-

^J The extended target function x^ : T^ x Q^ —> 3J js ̂ iuen 6y

*oo(*,7)= / n M ^ 0 7) (2-5)

for all i £ Jco and all 7 € <?oo •

Fubini's Theorem allows us to rewrite the integrals above as repeated integrals.

Thus we can replace (2.4) by 7^(1,7) = JfHoo dt d-y and (2.5) by #00(^,7) =

fftl^didj.

Definition 2.6.4 The extended detection game, F^, and the extended tar-
get game, f^, are the game triples F ^ = ( J^ , £00,^00) and f ̂  = (Ioo-,Goc,^oo)-

2.7 The Existence of Solutions

We observed in the first half of the chapter that the basic games F ^ and F ^

do not necessarily have solutions. The motivation behind the second half of the

chapter has been the hope that the extended games F ^ and F ^ do have solutions.

We see below that our hopes are fulfilled. The existence of solutions to F ^ and

F ^ follows from one of the minimax theorems mentioned earlier. However, before

this theorem can be stated, there is one more property to define.

Definition 2.7.1 Let T = (X,U) be a Hausdorff topological space, and cr(U) the

Borel a-algebra on T. A measure fi on cr{U) is regular if

(a) for every compact subspace K ofT, n{K) < 00,

(b) for every S € o(U), n{S) = inf {//(J7) | S C U and U open),

(c) for every U tU (i(U) = sup {n(K) \ K C U and K compact).
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Theorem 2.7.2 (Glicksberg, 1950) Let X and Y be compact metric spaces,

and B(X) and B(Y) the sets of all regular probability measures on the Borel

algebras of X and Y respectively. Let f : X xY —> 3£.

(i) Iff is upper semicontinuous then

x'y) Mx) My) = J&) ; Z H/(x'y) Mx) My)'
(ii) If f is lower semicontinuous then

£ SUp I I f(xiy) Mx)Mv)= sup i n f f ( x , y )d^ ( x )du (y ) .

The two parts (i) and (n) are different versions of the same result. One is obtained

from the other by considering the function / ' = —/. For the proof see Glicksberg

[34].

Provided that we can show that the extended strategy sets contain only reg-

ular measures, we can apply Glicksberg's Theorem to the games F ^ and F ^ . In

fact, it is known that when a topological space is also a metric space all proba-

bility measures on the Borel cr-algebra are regular. This result can be found in

Parthasarathy [58] (Chapter II, section 1).

Theorem 2.7.3 The extended games F ^ and F ^ both have solutions. Moreover

there exists L* 6 T^ and 7* £ Goo such that C is optimal in F ^ and 7* is optimal

Proo f Consider F^ first. By Lemma 2.3.4 both {I^.U) and (Goo, V) are compact

metric spaces. By Lemma 2.4.3, IIoo is upper semicontinuous on 1^ x Goo-

Finally X^ and Q^ are precisely the sets of regular probability measures on

the Borel cr-algebras a(U) and cr(V) respectively. Therefore, by version (i)

of Glicksberg's Theorem, max inf 7roo(i,7) = inf sup 7Too(i,7) and so F^

has a solution. Moreover if 1* € Xoo is any extended strategy which satisfies

inf 7ro0(t'",7) = max inf ^00(4,7), then C is an optimal strategy for the

Infiltrator.

The solution of f^, and the existence of an optimal Guard strategy 7* € Goo is

almost identical. In this case we use the lower semicontinuity of TTQO (Lemma

2.4.5) and version (ii) of Glicksberg's Theorem.

Let us denote the value of these games by UQO and v^ respectively. As for all

loo and g G Goo, tl^i^) < U^i^), we immediately deduce that v^ < v^.
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2.8 Alternative Approaches

There are some questions that naturally arise from what we have done. Possibly

the most immediate is this: Are not the games T^ and f^ really the same? As

the game goes on is not the Infiltrator bound, eventually, to go to the target,

whether he has to or not? This question is put off until the next chapter. It is

really outside the scope of the current chapter. Our purpose here has been to

find whatever results we could concerning the existence of solutions and optimal

strategies. In this context there are still a couple of questions that remain.

One question concerns the extent of Theorem 2.7.3. We have proved that

both F ^ and f̂ , have solutions and that in each game one of the players has

an optimal strategy. Can we go on and prove that both players have optimal

strategies?

A second question relates to the choices we have made in the way we have

defined the games. By the strategy sets and the payoff functions we have used

we have affected the mathematical structure of the games. There were other

possibilities available to us. We decided to reject them. How do these decisions

affect the existence of solutions and the values of the games when solutions exist?

We tackle these questions together. As a first step let us question the partic-

ular minimax theorem we have used. In the literature there are many minimax

theorems. There are results which have supplemented and generalised Glicks-

berg's Theorem of 1950. Could we do better with another theorem? One of the

more recent results is that of Alpern and Gal [2]. They used the earlier theorem

of Kneser [42] to prove the following result.

Theorem 2.8.1 (Alpern /Gal , 1988) Let (X,A) be a measurable space and let

Y be a compact Hausdorff space. Let f : X x Y —» 3£ be a measurable function

which is bounded below and lower semicontinuous on Y for fixed i g l , Let M

be any convex set of probability measures on (X, ^4). Then

mm sup I I f(x,y) dn(x)dv(y) = sup min / / f(x,y) d^(x)du(y),

where B(Y) is the set of regular Borel probability measures on Y.

Letting X be a topological space with A its Borel algebra, and letting M be

equal to the set of regular Borel probability measures on {X, A), they obtain the

following generalisation of Glicksberg's Theorem. As before we give two versions

of the result.
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Corollary 2.8.2 (Alpern/Gal, 1988) Let X be a topological space and Y a

compact Hausdorff space, and let B(X) and B(Y) denote the sets of regular prob-

ability measures on the B orel a -algebras on X and Y respectively. Let f : XxY —> ' l ;*j

3£ be a measurable function. 1
! i !

(a) If I is bounded below and lower semicontinuous on Y for fixed x € X, then \ ,.

SUP f(x,y) d^(x)du(y) = sup min / / f(x,y) dfi(x)du(y).

(b) If f is bounded above and upper semicontinuous on Y for fixed x 6 X, then

inf / / f(x,y) du(x)dv(y) = inf max f(x,y)du(x)dv(y).max

<»,

The reader is referred to the original [2] for proof of both the theorem and the I

corollary. The corollary clearly follows immediately from the theorem once it has "

been established that B(X) is a convex set.

As Corollary 2.8.2 is a generalisation of Glicksberg's Theorem we could use it

to prove Theorem 2.7.3. However it gives us nothing more. If, for fixed i € loo,

IIoo was lower semicontinuous on G^, we could use Corollary 2.8.2(a) and deduce

the existence of an optimal Guard strategy for F ^ . Similarly, if for fixed g € Goo,

IToo was upper semicontinuous on 1^ we could use Corollary 2.8.2(b) to deduce

the existence of an optimal Infiltrator strategy for F^ . Unfortunately we have

shown (see Corollaries 2.4.4 and 2.4.6) that neither of these properties hold.

These optimal strategies may still exist. It is just that neither Glicksberg's

Theorem nor the Alpern/Gal result guarantees it. For the moment we leave this

question and look at the second problem mentioned. We have considered an

alternative minimax theorem. Let us now consider an alternative game.

Consider first our original target game FQO = Uoo, Coo, FiooJ. By definition of

Fioo it is no use for the Infiltrator to permanently stay away from the target. If

he does so the payoff is bound to be zero. Therefore let

4 = {i £ 7oo| for some t G IN, it = p) .

If i G /£o then there exists t such that, is — p if and only if s > t. Note that as

/ ' C P°°, (I'c^d) is a metric space. Now consider the new game ^7^, (?<

Lemma 2.8.3 Floo is continuous on 1'^ x
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Proo f Let (ir,gr) -+ (i,g) be a convergent sequence in 7^ x G^. As i e 7^

there exists t such that, for all s > t, ia = p. Thus for all r sufficiently

large that d*[(ir,gr), (i,g)} < \, ir = i and io(ir,gr) = u(i,g). Therefore '| fl

As ftoo is continuous on / ^ x G^ it can also be shown to be measurable. I

Therefore we can consider the resulting extended game ( J ^ , , ^ , 7^) where 2 ^ i

denotes the Borel probability measures on 7^. Our only difficulty is with the ; ;j
metric space (I'^d). >

1 i

Lemma 2.8.4 {I'^d) is not compact.
1-

P r o o f Recall that a metric space is compact if and only if every infinite subset has j j

a limit point. We shall give a subset of 7^ which has no limit point in 7^,. Let j !

(iT), r > 1 be the sequence in 7^ such that, for r > 1, [

r terms

ir =

In the larger set 7,30, this is a convergent sequence and the infinite set {ir\r > 1}

has a unique limit point i = 1 , 1 , . . . . As i £ 7^,, {iT\r > 1} has no limit point

in 7^ . Therefore 7^ is not compact.

This prevents us from using Glicksberg's Theorem on (Z^,, ̂ , n^). However

it does illustrate the strength of the Alpern/Gal result. From Corollary 2.8.2(a)

we deduce that (Z^, Qoo, n^) has a solution and that there is an optimal strategy

for the Guard. The value of this game is clearly the same as v^ and an optimal

strategy or e-optimal strategy here is also optimal and e-optimal in F^ . This

confirms our earlier conclusions concerning f^. Unfortunately, as 7^ is not

compact, it still does not guarantee the existence of an optimal strategy for the

Infiltrator.

There are other games that we can define which have the same solutions as F ^

or f^. There are alternatives for both the strategy sets and the payoff functions.

However it is not clear that any of these give us more details concerning the

solutions of r^> or F^ .

In summary, we have partially answered the questions posed at the start of

this section. We are unable, even using a recent more general minimax theorem,

to establish the existence of optimal strategies for both players. Neither do al-

ternative strategy sets or payoff functions seem to help in this. An example in a

later chapter will partly justify these conclusions.
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FIN IT E G A M E S

3.1 Introduction

Let us change our approach. We are still interested in F ^ and f̂ , and their

solutions. The previous chapter has shown that there are solutions to these

games, but not much else. We know that the values v^ and v^ exist, but what

are they?

It is this kind of question that leads us into the current chapter. Here we

study 'finite games' — that is, games on which we impose a finite time limit.

By deducing the properties of these games, especially as the time limit becomes

larger and larger, insights emerge into games without time limits. We arrange for

these to be none other than the infinite games F ^ and F^ .

3.2 Games with Time Limits

We define two sequences of games: the finite detection games Fj, F2, . . . , and the

finite target games f i, f 2, For n € IN, the games Fn and f n are equivalent to

the infinite games Too and f«, except that there is also a time limit n.

Definition 3.2.1 Let n € IN.

(i) The finite strategy sets, /„ and Gn, for the Infiltrator and the Guard respec-

tively, are the subsets of Pn given as follows. If i G In then

i(b) \ir+i - ir\ < 1 for all 1 < r <n, and

33
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i(c) if, for some t>l,it = p then for all r > t, ir = p.

Ifg€Gn then

g(a) gT < p for all r > 1,

g ( b ) \9r+i - gr\ < u, for all 1 < r <n.

(ii) The payoff functions, ITn,nn : /„ x Gn -» S, are given as follows. For all

(i,9) € /„ x Gn,

nn(i,g) = \"»(i>°\

where u)n(i,g) = \{r < n\ir = gr}\, and

^-n^^9) ifiT—pforsomer<n,
U otherwise.

(Hi) The finite detection game and the finite target game are the game
triples Tn = (/„,£„, IIn) andtn = (/„,£„, flnj respectively.

Before continuing, let us make a few observations which follow on immediately
from the definitions:

(i) For all n € IN and all (i,g) e /„ x Gn, tln(i,g) < Un(i,g).

(ii) For all n £ IN and i 6 In, then for 1 < r < n, ir < r. Hence, for all r, ir < n.
This implies (iii).

(iii) If n < p, then for all (i,g) € /„ x Gn, fln(i,g) = 0.

(iv) For all n > p, any strategy i 6 In such that ir < p for all r < n is dominated
in the game Fn by all strategies not of this form.

For all n € IN, In = Kn U Ln, where

Kn = {i 6 /n|there exists 1 < t < n such that ir = p <& r > t}

Ln = {i G /n|for all 1 < r < n, tr < p} ,

Kn is the set of Infiltrator strategies which visit the target at some time and then
settle there. Ln is the set of strategies which never visit the target. These sets
are disjoint. Clearly, if n <• p then Kn is empty and /„ = Ln. If n > p, every
element of Ln is dominated in the target game fn.
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What then of solutions to these games? If we recall, from section 2.1, our

earlier definition of solutions and optimal strategies, we may observe that, for

any n G IN, as /„ and Gn are both finite then Fn , say, has a solution if and only if

there exists a pair of strategies (i*,g*) G /„ x Gn such that, for all (i,g) G /„ x Gn,

In this case, v(Tn) = Un(i*,g*).

We saw above that, for all n,p € IN such that n < p, the function tln is

uniformly zero. Hence, for n < p, v(Tn) = 0 and all strategies are optimal.

We now show also that, if p = 2, then both Fn and f „ have solutions for all

n G IN. For suppose that, for all n G IN, the strategy pair (in,gn) G In x Gn is

given as follows:

(J.B B ) = f (1,1) forr = l,
y (2,1) for 1 < r < n.

Then, for all n G IN, Un(i
n,gn) = A, and, for all (i,g) G /„ x Gn, n n ( i ,^ n ) <

A < Un(i
n,g). Thus, for all n G IN, Tn has a solution, u(rn) = A, and (in,gn)

is optimal. Moreover, for all n G IN, and all (i,g) G /„ x Gn, fln(i,g
n) < A <

ITn(z
n,5f), and so Fn also has a solution, u(Fn) = nn(zn ,5n) = A and (i",5n) is

again optimal.

So much for when p = 2. We see in Chapter 4 that when p = 3 there is again

a simple solution for the target game (although not for the detection game).

However, for p > 4, no such general optimal strategies exist. It has long been

known, though, that in games with finite strategy sets solutions can be found by

introducing probability vectors. This is what we shall consider next.

Let n G IN. Then denote the set of all probabili ty vectors on /„ [resp. Gn]

by ln [Gn]. If t € !„ [7 € Gn], and i G In\g G <?„], then let c(i) [7(0)] denote

the probability, under 1 [7], that strategy i [g] is chosen. If for some 1 G ln and

i G In, t(0 > 0 then we say that i is a non-zero component of L.

Definition 3.2.2 Let n G IN. The nth extended finite detection game, is the

game triple
T* = CTn,£n,7rn),

where (a) the strategy sets ln and Qn are as given above, and (b) the payoff

function ?rn : J n x Qn -> 3? is given as follows: For all (4,7) G J n x Qn,
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Definition 3.2.3 Let n G IN. The nth extended finite target game, is the game
triple

where (a) the strategy sets ln and Qn are as given above, and (b) the payoff , :
function 7tn : In x Qn -> 3£ is given as follows: For all (i,-y) G J n x Qn,

For all n G IN, F* and f * are finite mat r ix games. Therefore by the Von : j

N e u m a n n min imax theorem [54], all of these games have a solution. Let vn and

vn deno te the values of F* and f * respectively. As In and Gn are finite, both .

games have opt imal strategies (not just e-optimal strategies) for each player. i

Recall , from above, t ha t if n < p then v(Tn) = 0. This implies t ha t , for all \ i

n < p , vn = 0 as well. On the other hand , if we define the Infiltrator s t ra tegy ''• ««J

i G In such t ha t ir = r for all 1 < r < p and p for all p < r < n, then I ensures

a payoff of at least A p - 1 in the game F*. So, for all n , vn > \p~l. Moreover, as

for all n and all (i,g) G In
 x G n , fln(z,<7) < IIn(z,5 r), it follows tha t vn > vn. In

fact, if for some n > p there exists an opt imal Infiltrator s t ra tegy for F* whose

non-zero components all visit the target , then vn = vn. For suppose i* G ln

satisfies L*(I) > 0 only if i is of the form ir = p for some r < n. Then , for all

g G Gn and all i G /n such tha t t*(i) > 0, fln(i,g) = FI^(z, ^ ) . Therefore, for all

7 G <?n, 7Tn(4*)7) = 7rn('-*,7) > un as i is opt imal in F*. This implies vn > vn and

hence they are equal.

In the next chapter we give some examples that show, for relatively small n,

no such optimal strategy exists in F*, and that, for all p > 3, vn < vn. However,

for sufficiently large n we find that vn and vn do get arbitrarily close. Before we

can prove this however, there are some other results that we require.

Lemma 3.2.4 (vn) is a decreasing sequence.

P r o o f Let 7 G Qn be an optimal strategy in F*, n > 1. Form 7* G Qn+1 by adding

an arbitrary (n + l ) th term to the end of each non-zero component of 7. Now,

for all i G / n + i . denote by i' the element of 7n obtained by removing the term

in+i- The longer the game goes on, the better are the Guard's chances of

detecting his opponent. Thus, for all i G 7n+i, irn+i(i,j*) < 7rn(i',7) < vn as

7 is optimal in F*. Therefore vn+i < vn.



Finite Games 37

L e m m a 3.2.5 (vn) is an increasing sequence.

Proo f We have already seen that, for n < p, vn = 0. Moreover, of course ;̂

vp>0 = Vp-i- Now let us assume that n > p and deduce that un + 1 > vn. ' ' ]

If L 6 Tn is optimal in F* then we may assume that every non-zero component

of i is not strictly dominated, and thus belongs to the set Kn. Thus every ,;

non-zero component of i has p as its last term. Now form t* e J n + 1 by adding

to each non-zero component of t an (n + l ) th term, also equal to p. Under ' -1

i*, if the Infiltrator is not detected he is certain to reach the target by time n. \

So, if for all g 6 Gn+i we denote by g' the element of Gn obtained when the

term gn+i is removed, then fn+1(i*,gr) = itn(i,g') > vn, as i is optimal. Hence [
~ > 7~) ' I

For all n G IN the functions IIn and lln take values only in the range [0,1].

Thus the sequences (vn) and (vn) are bounded by 0 and 1 respectively. Therefore,

as a consequence of the previous Lemmas, they are both convergent and we

denote their limits by vyim and vyim respectively. Observe that, as for all n > p,

vn > Ap-1 > 0, we can deduce that vnm > Ap-1 > 0.

At a later point, we shall prove that ui;m = Voo and vyim = v^. Before we can

tackle the first of these proofs, however, there is one key result which we must

verify. This is stated below as Lemma A. It will be proved shortly.

3.3 Results I

If t € 2"n, n < 00, and 5" is a subset of 7n, then i(S) = ^ c(s).
sES

L e m m a A For all e > 0 there exists n[e] > p and i[e] G ln[e] such that i[e] is

optimal in TVi and i[e] [Ln[c]J < e.

Let us discuss Lemma A a little. Intuitively, it says that provided you take a

suitably large time limit n, the game F* has an optimal Infiltrator strategy which

is almost certain to try and take him to the target. He virtually disregards the

possibility of avoiding detection by remaining 'at large' rather than by seeking

refuge. That means that the Infiltrator is almost playing as if he were in the game

f* instead of F*. In fact, as we shall see, this Lemma will enable us to deduce

that as n —y 00 the values of F* and f * lend to a common limit.

We prove Lemma A below. The basis of the argument is as follows: Suppose

the Infiltrator always insisted on using, with positive probability, some strategies
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which never take him to the target. In response the Guard could play as follows.

He chooses a game r ; whose value vn is close to t>Um and finds one of his optimal

strategies 7 in this game. He then chooses another game T*N, N » n, and takes

as his strategy in this game probability vector 7 which is constructed by using 7

until time n and thereafter visiting the states 1,2,..., p-1 in a random way. This

is an effective strategy. Whatever the Infiltrator does the Guard has ensured he

is detected with probability 1 - vn within the first n time units. Thus, during the

whole duration of the game T*N, the Infiltrator can avoid detection with no more

than probability vn. As n is sufficiently large, both vn and vN are arbitrarily close

to uijm and hence to each other. In particular, if during the whole of the game and

especially in the time between n and N, the Infiltrator remains at large, then, if

N is also sufficiently larger than n, then the Guard's random movements ensure

that the Infiltrator is almost certain to be detected.

In order to put this more rigorously we must start by considering a means by

which the Guard can move in a random way between the states. If u > p — 2,

where u is the speed of the Guard, then at each time the next state can truly be

chosen at random. However, for u < p — 2, the Guard's movement is restricted.

We give a method which the Guard can use for all u > 1.

Notation Let P' = P\{p}. Let a, be (P')2p~3 denote the sequences where, for

1 < r < 2p — 3, aT and bT are given by

{ 1 ifr = l,

ar = < r - 1 if 2 < r < p,

[ ( 2 p - l ) - r ifp<r < 2 p - 3 ,

and
r , if 1 < r < p,

( 2 p - 2 ) - r ifp<r<2p-3.

These sequences are set out adjacently, term by term, in the table below.

Observe that, thus defined, a and b are elements of both hp-3 and G2P-3. We are

only concerned with their use as Guard strategies.

r

aT

K

1

1

1

2

1

2

3

2

3

4

3

p-2

p-2

p-1

P-2

p-1

P

p-1

P-2

P+1
P-2

. . ,

2p-5

3

2p-4

3

2

2p-3

2

1

L e m m a 3 . 3 . 1 Let a,b € G2P-3 be given as above. Let s = S i , . . . , 5 2 p _ 3 £

(P')2p~3 satisfy \sr+1 - sr\ < 1 for all r > 1. Then, there exists t, 1 < t < 2p - 3

such that st = at or st = bt.

i f
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P r o o f Assume that, for all t £ [1,2p - 3], st ^ at and st ^ bt.

As ai = b\ = 1 it follows that si > 2. Let us suppose that, for some k,

and since for k + 1 < p - 1, afc+1 = A; and 6fc+i = jfc + 1, it follows that

> k + 2 = (k + 1) + 1. Therefore, by induction, for all k, 1 < k < p - 1,

However, if we take k = p-1, then this implies sp_i > p. As P' = { 1 , . . . , p -

1}, this contradicts 5 € (P')2p~3. Thus our assumption was false. There does

exist some t, 1 < t < 2p — 3, such that st = at or st = bt.

Now, using the previous Lemma, we shall show how for any Guard strategy

g G Gn, n < oo, a random movement can be added to the end of g. First another

piece of notation. If s' 6 (P') and 5" £ (P') are two sequences, then let

s' o s" e ( P ' ) k ' + k " b e t h e s e q u e n c e s \ , . . . , s'k,,s'{,..., s'{,,. W e refer t o s' o 5 " as

the concatenation of s' and 5".

Definition 3.3.2 (^-operators) (a) For all g £ Gn, ?i < 00, the strategy g £

Gn+P is given by

,^n — r + n } n < r < n + p .

O b s e r v e t h a t , for all g €. Gn, gn+p — 1.

f&J F o r a// ib £ IN, /e< C(ib) = { 5 1 o • • • o s k \ for all l<j< k, sJ ' = a or b ) .

Clearly C(k) C Gk(2p.3) and \C{k)\ ='2k.

(c) For all g £ Gn, n < 00, a?i(f fc £ IN, let C(g; k) = {50 c|c £ C(k)}.

Clearly C(g; k) C Gm(n;fc), where m(n; fc) = (n + p) + (2p - 3)k, and again

\C(g; k)\ = \C(k)\ - 2k which is independent of g and n.

(d) For all k £ IN, the 6-operator, 6k is a function on (J Gn, defined as follows:
n£lN

If g e Gn, n < 00, then 6k(g) is a vector on Gm(n;t) such that, for all

h £ Gm(n-k),

1 < k < p - 2, we know that sk > k + 1. From above, |s*+ 1 - sjt| < 1, | |

hence s^+i > Sk — 1 > k. However, as by assumption Sk+i ^ a,k+\ or

0 otherwise.
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Observe that £ (9k(g)) (h) = £ (ek(g))(h)= £ (1/2)*= 1, be-
>>eGm ( n . f c ) h£C(g;k) heC(g;k)

cause |C(5S fc)| = 2fc. Therefore fl^g) is a probability vector on Gm(n.k) and thus
an element of <7m(n.ifc). i jj

Recall that, for all n G IN, Ln C /„ is the set of Infiltrator strategies which i
never visit the target.

L e m m a 3.3.3 For all g G Gn, n < oo, a// fc G IN, and a// i G //m(n.jk),

( ( ) < f — J - j • i j

P r o o f Let i G -tm(n;fe)- From the definition above, [
i f

1 i
n T O ( n ; J k ) ( i , /») . (3.1)

) .J |

We shall consider the elements of this sum individually.

First, however, recall that, as i G £m(n;fc). f ° r all 1 < r < m(n;k), ir < p.

For all j = 1 , . . . , k, let tj = (n + p) + (2p — 3)(j — 1). Therefore, applying

Lemma 3.3.1 to the period [tj + 1 , . . . ,tj+\], we deduce there exists c3' = a or 6,

and not necessarily unique, such that the part of i which corresponds to this

period meets cJ at least once (In other words, for each j — l,...,k, if the

sequences itj+i, • • • , itJ+i
 a n c l c J i , . . . , cJ2P-3 are compared term by term, then

they coincide at least once) . The sequence g o c1 o • • • o ck is clearly an element

of C(g; k). Now we partition the elements of the set C(g; k) according to their

relationship to this particular element.

For z = 0 ,1 , . . . ,k, there exist(s) (k) .elements of C(g; k) of the form h =

g o s1 o • • • o sk where s-7 = c? for precisely z values of j . Moreover, for each

such h, u>m(n;k)(i,h), the number of times i and h meet, is equal to at least

z. Therefore IIm(n;fc)(z,/i) < Az. As z runs from 0 through k every element of

C(g;k) is accounted for. Therefore

This completes the proof.

One step remains before we can give a proof of Lemma A. We shall show how,

for any probability vector 7 G Qn, n G IN, random motion is added to 7. The
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following definition closely follows Definition 3.3.2. In particular, observe from

that, that for all k,n G IN if g,g' G Gn are distinct, then C(g; k) and C(g'\ k) are

disjoint subsets of Gm(n;k)-

Definition 3.3.4 (©-operators) For all k G IN, the Q-operator, Qk, is a func-

tion on Uneid3n, defined as follows: If 7 G Qn, n < oo, then 0jt(7) is a vector on

Gm(n;k) such that, for all h G Gm(n.k) then

0fc(7)) (fc) = { (WHg) if he C(g; k), for some g <E Gn

1 0 otherwise.

Recall that for all k € IN and all 5 G Gn, n < 00, |C(#;fc)| = 2k. Also, from

above, if g ^ 5', then C(flf, k) n C(y'; fc) = 0. Therefore, if 7 G <?„,

f E ^7(0)) = E 7(5) = 1

and so ©^(7) is a probability vector. Thus ©^(7) G Qm(n-,k)-

L e m m a 3.3.5 For all 7 G Qn, n < °°, a^ k G IN, and all i G

P r o o f This is just a corollary to the previous Lemma. By the above definition,

= E ( i E nmM(^) 7(9)
V h£C(g;k) )

*Vr»(n;Jfc) (*A(flO) 7 ^ ) f r o m equation [3.1],

(
—5—) 7(5) by Lemma 3.3.3

/ 1 + A\fc .
= as required.

v 2 ;
Finally, let us restate and prove Lemma A.

Lemma 3.3.6 (Lemma A) For all 0 < e < 1, there exists n[e] > p and i[e]

Jn[£] suc/i ^ a i i[e] i s optimal in r*[t] and i[e](Ln[t]) < e.



Vn-

Now suppose that i G Lm. Recalling that 7 = ©^(7) we can immediately apply

Lemma 3.3.5. Hence,

Finally, by assumption we know that i(Km) — 1 — i(Lm) < 1 — e and certainly

that i(Lm) < 1. Therefore, returning to'equation (3.2), we now have that

)

= Vm —
x\k'

evn — lVn —

For all n G IN, un > uirm > 0; moreover it was initially supposed that e > 0.

Thus tvn > S, where 8 is itself > 0. However, by taking suitably large values

' i
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Proo f We assume the result to be false and show that this leads to a contradiction.

Hence assume that there exists 0 < e < 1 such that, for all n > p, every i G In
which is optimal in T*n satisfies t(Ln) > e.

Take 7 G Qn to be an optimal Guard strategy in T*, for some n € IN. Then, for

some k e IN, let 7 = 6^(7). By definition of the ©-operator, 7 G Gm, where

m = m(n; k) > p. Now take any 1 G Tm which is optimal for the Infiltrator in

F^. As m > p then, by assumption, 1 satisfies i(Lm) > e. Let us now consider

the payoff 7rm(i, 7). ! ;|

We observed earlier that, for all n > p, the Infiltrator strategies for Tn which ; 'j

were not strictly dominated belonged to either Kn or Ln. Hence, we deduce

here that i(Km) + i-(Lm) = 1, and , 1
1 f
1

*m(h*()= J2 7Tm(»,7)t(0+ J2 7Tm(^7)i(0- (3-2) ,, ,

Suppose that i G Km. Let i' denote that element of / „ obtained by removing

the terms z n + i , i n + 2 , . . . , im from i. The longer the game goes on, the worse

are the Infiltrator's chances of staying undetected. Thus, as 7 is optimal in F*,

we deduce that
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of n and k, the expressions (vn — vm) (which is non-negative since m > n, and

(vn) is decreasing) and (i±A) can both be made arbitrarily small. Therefore,

there exist n and k such that 7rm(i,7) < vm. This contradicts the fact that i]

L is optimal in F^. Hence our original assumption was false. This proves the {

Lemma.

Lemma A enables us to prove two other important results, the first concerning

the infinite game F ^ . But, before approaching again the value of F ^ , we recall [ j

the strategy sets X^ and Q^. By Definition 2.5.5 these are the sets of probability

measures on the Borel-algebras on 1^ and G^ respectively. We now consider an !

important subset of each of these sets. V

A measure fi on a measurable space (X, A) is said to be discrete if there 1 |

are denumerably many points x,- £ X and scalars mt- £ [0, 00] such that, for ;

all A £ A, n{A) = J2xieAmi ( see Billingsley [13], page 134). It is clear that •- |

a discrete probability measure belonging to T^ or Q^ is a probability vector

on some denumerable subset of 1^ or (?„ respectively. These are the kind of

probability measures we shall now make use of.

There will be several occasions in the future on which these discrete measures

will be particularly important. In particular we encounter them when we extend

strategies from the finite games and use them in F ^ and F^ . It is these extensions

that must now be defined.

Definition 3.3.7 Let n < 00.

(a) Let i £ In. The extended strategy i £ /<» is given by

Note that, for all i', i" £ /„, 1V ?" & *' 7̂  »"•

(b) Let 1 £ ln, and let XL = {i £ /„ | t(i) > 0}. The function T: 1^-+$ is then

given as follows. For all i £ I^,

( i(j) if there exists j £ Xt such that ~j — i,

0 otherwise.

Note that I is a probability vector on 1^. Thus, by the discussion above,

T £ l o o -



Finite Games 44

(c) Let g G Gn and 7 G Gn. The extended strategies ~g G Goo and 7 G £00 are
defined as in (a) and (b) above.

Observe that we need not have defined 7 and ~g so precisely. It would be sufficient

for 7 and g to be any elements of 1,^ and Goo such that, for all 1 < r < n, 7r = ir

a n d ~gr — gr.

Theorem 3.3.8 v^ = vUm.

Proo f Let e G (0,1). By Lemma A, there exists n[e] > p and t[e] G ln[c] such that

i[e] is optimal in F*^ and i[e](Ln[£]) < e. Recall that the non-zero components

of i[e] cannot be strictly dominated. Therefore they are elements of either Kn[c]

or Ln[c]. Consequently, we deduce that, for all h G Gn[e],

[] M | |;

and hence, as E,eLnW nn[e](i,/i) t[e](i) < E.eLn[c] 4
e ](0 < e. t h a t

- e. (3.3)

Now let us consider the strategy t[e] € XQO, formed according to Definition

3.3.7(b). Also, for all g G Goo. let g' denote the element of Gn[t] obtained

when all of the terms except gi,- • • ,gn[c] a r e removed from g. We observe

that, for all k G Kn[c] which are non-zero components of t[e], k G /Cx>. ar|d

also w(fc,5r) = un[c](k,g'), and so IIoo^,^) = Un[c](k,g'). Therefore, for all

•6/00

> 5: n^i

by Definition 3.3.7(b),

— e from equation (3.3),

— e a s (un) decreases.

We now complete the proof by deducing the existence of a strategy 7 G £00

such that, for all i G /«,, ^00(1,7) ^ uiim + e. First we take 7 G ^ n to be
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optimal in F*, where n is sufficiently large to satisfy vn — vum < e- Then

define 7 G Goo according to Definition 3.3.7(c). Finally, for all i G 7^, let

i' = i i , . . . , i n . Clearly, for all i G 7^, ir^irf) < ^ ( ^ , 7 ) . Therefore, as 7 is •]
optimal in F*, '

1

This completes the proof.
1

Let us immediately move on to the next important result which stems from : '
Lemma A. ; j

T h e o r e m 3.3.9 uiim = vVm. 1

P r o o f Let e G (0,1). By Lemma A, there exists n[e] > p and t[e\ G Xn[t] such '

that i[e] is optimal in F*M and i[e](Ln[tj) < e. As in the previous proof (see [ j

equation (3.3)), we deduce that, for all g G Gn[£], "»l

Moreover, recall that for all n > p , if i G 7Cn and g G Gn . then the payoffs

Hn(i,g) and nn(z,g) are equal. Therefore, for all g G Gn[c],

Tln[c](i,g) i[e](i) changing the payoff function,
»6A'n[e]

> un[£] — e from aBove.

Hence vn[e] > vn[t] - e.

As (vn) and ({;„) are decreasing and increasing sequences respectively, we de-

duce that, for all e > 0, there exists n G IN such that vn — vn < e. It follows

from this that uUm - ui;m < 0. We already know that, for all n G IN, un < vn,

and hence that v\;m < vyim. This completes the proof.

It will be seen that, after considering Theorems 3.3.8 and 3.3.9 above, we are

just one link away from proving the chain of equalities
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3.4 Results II

We lack a proof that vum = VOQ. In order to prove this, there is again one

particularly important preliminary result. We shall distinguish this by giving

it the title Lemma B. The proof of Lemma B requires a construction by which

optimal Guard strategies from a sequence of finite games are combined to form

a strategy for the infinite game f ^ .

The following definition makes use of the notation associated with the 0- and

0-operators. The reader is referred to Definitions 3.3.2 and 3.3.4 for a reminder

of this.

Definition 3.4.1 (i/>- and ^-strategies) Let k £ IN.

(a) The sequence (tn), n > 0, is given as follows: t0 = 1 and for n > 1,

Observe that (in) is monotonic increasing.

(b) Let n £ IN. The ip-strategy, \jrk , is defined as follows: First take 7 £ Gtn^i t°

be any optimal strategy in F* , and form the strategy ©fc(7) G GT, where

T = m(in_i;fc) = tn. Then, recalling Definition 3.3.1 (b), let ^ £ Q^ be

given by T/V = ©/C(T) € £00 •

Thus, the strategy ?/>[."' £ £«, behaves like7 until time tn_i, then has a time

of random motion until time tn, and from then on is defined arbitrarily. Let

us denote the set of non-zero components of all the strategies ijrk , tp\. , . . .

by X. Observe that X is a countable subset of Goo-

(c) Let z £ IN. The ^-strategy, $k,z, is defined as follows: ^k,z is a vector on

X such that, if g £ X, then

Zn=l

Clearly ^k,z is a probability vector X. As X is a countable set, $k,z is a discrete

measure and hence an element of Goo-

Lemma 3.4.2 (Lemma B) For all e > 0 there exists i[e] £ Goo such that, for

all i £ loo,
Tr~(i.^\e\)<
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Proo f We show first that, for all i e 1^, and all k,n G IN, if $*,« is defined as

above, then

Let i G /oo- As we are looking at a target game rather than a detection game,

we may assume that at some time r € IN the Infiltrator reaches the target and

settles there. Thus ir = p if and only if r > r. One immediate consequence of

this is that, by Definition 2.4.1, 7Too(«,7) = 71-00(2,7) f ° r a " 7 € Goo- In order

to pinpoint the value of r relative to the sequence (tn), let s = min{r|* r > r } .

By Definition 2.3.1, r > p and hence 5 > 1. Thus we have that

to < • • • < ts_x <T < t s < t s + 1 < • •

To evaluate the required payofF, observe that, by Definition 3.4.1(c),

We now consider the individual payofFs Tfoo (Z, tpk ) in three cases, according to

whether n < , = or > s.

Suppose n < s, for then we deduce that tn < r. Thus, if we compare i with

the Guard strategy ip\?\ we see that the Infiltrator stays at large until after the

Guard's period of random motion. In other words, if we let i' £ hn denote the

sequence z ' i , . . . , itn, then r > tn implies that

As r > tn, then i ' € !-<„. Recall that, by Lemma 3.3.5, for all ; e Ltn,

*tn (i,©fc(7)) < (H A ) ' : - Therefore, for all n < s,

This completes the first case.

In fact, if z < s — 1, then this is the only case we need. It follows immediately

that ,

j
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and we are finished. So now assume that z > s. This forces us to consider the

other two cases mentioned above.

First let n = s. In this case we have that tn_i < r < tn, and so, if we

consider the Guard strategy ip]?\ then the Infiltrator reaches the target during

the Guard's period of random movement. Thus the Guard cannot guarantee

any probability of detecting the Infiltrator. The only upper bound for the payoff

that we deduce is

Now for the third case suppose that n > s. Thus r < tn_i < tn. Here, the

Infiltrator reaches that target by time tn_\ and we can thus exploit the fact

that ipk is formed from a strategy 7 which is optimal in f < n l • Hence, if we

let i" denote the sequence i l 5 . . . , i tn_j, we have

This completes the third case.

Therefore, reconstructing our original sum, we deduce that

•s-l / i , \ \ k z1 E
71 = 1

+ 1+
n=s+l

ZVyim

as required.

Finally, it is clear that for all e > 0, then, by taking k and z sufficiently large

and letting j[e] = ^k,z then, for all i G /oo.

<

Theorem 3.4.3 Uoo = thim.

Proo f After Lemma B, we need only show that, for all e > 0 there exists i[e] € Xo

such that, for all g € Goo.

) , 9) >
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First let i 6 Tn be any optimal strategy in f* , where n > p and is sufficiently

large to ensure that t>i;m — vn < e. Now, recalling Definition 3.3.7, let i[e] = 7.

As i is optimal we may assume that any non-zero component j is an element

of Kn, and thus J G /Co- In fact, if for all g G G^ we let g' E Gn denote

the sequence g1,...,gn, then clearly uj(J,g) = u>n(j,g'). Therefore, for all

9 e Goo,

"̂oo (i[e3>5) = *n(i<,g') > vn,

as i is optimal. As vn > vyim — e, the proof is complete.

Theorem 3.4.4 v^ = v^.

Proo f This is immediate from the last three Theorems.



C h a p t e r 4

E X A M P L E S

4.1 Introduction

In this chapter we take a break from the theory to look at some examples. When

p, the number of states, is small we can directly find both values and optimal or

e-optimal strategies. From these few examples certain important features emerge.

For example, we meet for the first time a type of Infiltrator strategy known as a

wait-and-run strategy.

We consider in turn the different games for p = 2, 3 and 4. In each section we

look at both the infinite games F ^ and F^ , and the finite games F* and f *. The

solutions vary with the value of u, the Guard's speed. In particular we describe

games with u = 1 as slow Guard games and those with u > p — 2 as fast Guard

games. In the earlier chapters the general theory has played down the role of the

parameters p, n, u and A. Here we find that the form of the solution depends on

their relative values. In general we have considered that p > 2 , « > 1 , O < A < 1

and 0 < n < oo. Now let us be more specific. As a start note that if A = 0 then

fi, the probability of detection, is one and so the Guard can detect the Infiltrator

immediately. Thus all the games are trivial. Throughout this chapter let us

assume that A > 0.

In considering examples we encounter finite matrix games. These are games

in which the strategy sets are finite and the extended strategy sets just proba-

bility vectors. It is conventional to denote these games by matrices in which the

rows and columns correspond to the strategies of the maximiser and minimiser

respectively. Let us illustrate this by looking at the detection game F* when

p z= 3, n = 3 and u > 1. The set 73 contains five elements which correspond

50
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to the rows of the matrix below. As p = 3 the Guard can only move between

states one and two and so |G3| = 23 = 8. However, as any element of G3 of the

form g = 2,g2,g3 dominates the element g' = I,g2,g3, we need only consider the

four strategies which start at state one. These correspond to the columns in the

matrix below.

1,2,3

1,2,2

1,2,1

1,1,2

1,1,1

1
1
1

A
A
A2

A2

A3

1
1
2

A
A2

A
A3

A2

1
2
1

A2

A2

A3

A
A2

1
2
2

A2

A3

A2

A2

A

Moreover, the Infiltrator strategies 1,2,2 and 1,2,1 are both dominated by 1,2,3.

Intuitively this is because, if the Infiltrator moves to the state adjacent to the

target, he should move to the target on his next go. Thus we further reduce the

matrix to

1,

1,
1,

2,

1,

1,

3

2

1

1
1
1

A
A2

A3

1
1
2

A
A3

A2

1
2
1

A2

A
A2

1
2
2

A2

A2

A

The value can now be calculated to be 2A(1 + A)2/L, where L — 2(3 + A). The

probability distributions (2 + 2A, 2,2)/L and (1,1,2 + A, 2 + \)/L are optimal for

the Infiltrator and Guard respectively.

When a game is expressed as a matrix, it is common to refer to the rows

and columns as the pure strategies for the players. For n < oo, the sets of

pure strategies are In and Gn- In general, probability distributions on the pure

strategies are known as mixed strategies. Thus, for n < oo, the sets of mixed

strategies are ln and Qn. In fact, for the infinite games we shall also to refer to

/<*, and Goo as the sets of pure strategies and 1^ and £/«, as the sets of mixed

strategies.

This chapter is intended to give insight into the kind of strategies that are

often optimal. It also demonstrates some of the problems encountered in looking

for general solutions to these games.

LJ
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4.2 Two State Games

Lemma 4.2.1 If p = 2, then for all u > 1, 0 < A < 1, and n > 2,

Uco = Uoo = Vn = Vn = A.

P r o o f When p = 2 the Infiltrator starts in the state adjacent to the target. Clearly

it is optimal for him to move immediately to safety. The Guard can only stay

at state one. He has one chance to detect the Infiltrator. Hence the values of

the games are all A, the probability that the Infiltrator avoids detection on this

one occasion.

4.3 Three State Games

Once p > 2, the games T^, f^, r* and f* begin to develop different optimal

strategies and different values. However for p = 3 we can still deal with most of

them together.

Lemma 4.3.1 If p = 3, then for all u > 1, 0 < A < 1, and n > 3,

Uoo = £>oo = Vn = A 2
Vn

P r o o f Consider first the target games. The Infiltrator's optimal strategy is again

to move directly to the target. This leaves him open to detection on just

two occasions and hence guarantees a payoff of at least A2. The Guard plays

optimally by following the sequence 1,2,2,... for as long as the game lasts (till

the time limit if there is one, or forever otherwise). For, unless the Infiltrator

never goes to the target, in which case the payoff is zero, he must always meet

the sequence above at least twice. Thus the Guard ensures that the payoff is

no greater than A2. Hence, for n > 3, vn = Voo — A2. Finally, from Lemma

3.4.4, Voo — Ooo- This completes the proof.

We have just shown that v^, the value of the game F ^ , is A2. But now let

us consider the strategies in this game. It is again optimal for the Infiltrator to

head straight for the target, as this guarantees a payoff of at least A2. However,

as the Infiltrator need never move from state one, the Guard strategy 1,2,2,...

is not optimal here. In fact, as we now show, there is no optimal strategy for the

Guard.
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Let us suppose that there were an optimal strategy for the Guard. Of course

it need not be pure. However, to keep the payoff down to A2 against the Infil-

trator strategy 1,2,3,3,.. . , the Guard must start by visiting state one and then

state two. To also keep the payoff to A2 against 1,1,2,3,3,. . . , he must then

stay at state two at time 3. By considering all Infiltrator strategies of the form
9 terms

1 ,1 , . . . , 1,2,3, 3 . . . , where 9 > 1, we deduce that the Guard's only optimal strat-

egy must be the pure strategy 1,2,2, However, as we saw above, this fails to

restrict the payoff to A2 against the Infiltrator pure strategy 1,1, Therefore

we have a contradiction. There is no optimal strategy for the Guard.

Let e > 0 and we construct an e-optimal strategy as follows. At time 1 the

Guard moves to state one. At each time thereafter, independently of his previous

moves, he moves to state one with probability 8 and state two with probability r 1

1 — 8, where 0 < 8 « 1. If the Infiltrator stays at state one forever then he is <.J(

detected with probability one, since, as n —> 00, lim A(<5A + 1 — 8)n = 0. Moreover,

if he moves from state one, it is clearly best to do so immediately and then make

straight for the target. Thus, the Infiltrator reaches the target with probability at

most A [A(l — 8) + 8]. By taking 8 sufficiently small, this probability can be made

arbitrarily close to A2. In fact, if 8 < *_„, then this is an e-optimal strategy

for the Guard.

When p — 3, the only games we have not found solutions for are the finite

detection games. As these are finite they have both values and optimal mixed

strategies. For example, consider the game Fg. We saw in section 1 that this

game can be reduced to the matrix

1

1

1

,2

,1

,1

,3

,2

,1

1,1,1

A
A2

A3

1,1,2

A
A3

A2

1,2,1

A2

A
A2

1,2,2

A2

A2

A

Optimal strategies for the Infiltrator and Guard are given by the probability

distributions t = (2 + 2A,2,2)/L and 7 = (1,1,2 + A,2 + A)/L, where L = 2(3 +A).

The value v3 = 7r3(t,7) = 2A(1 + A)2/L.

For all 0 < A < 1, 2A(1 + A)2/I > A2. In fact we can see that, for all n G IN,

vn > v^ — \2. For suppose there exists t such that vt < A2. Any optimal

strategy for the Guard in T*. then ensures that the Infiltrator is detected with at

least probability 1 - vt > 1 - i>«x>- By arbitrarily extending one of these optimal

strategies we can construct a mixed strategy for F ^ which also ensures detection

1

i r
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with at least probability 1 - v^. However this would then be an optimal strategy
for the Guard. This is a contradiction for, as we have just proved, the Guard
has no optimal strategy in T^. Therefore, for all n <E IN, vn > v^. As, from the \ i
previous chapter, for all n, vn < v^ = u^, we also deduce that vn < vn.

Let us return to the matrix above. The pure strategies 1,2,3, 1,1,2 and
1,1,1 are examples of what are sometimes known as wait-and-run strategies ;

(we think it is Lalley [47] who is responsible for the first use of this title). In our
detection games, the set W of wait-and-run strategies is given as follows. For all :

n and p ; ;

9 terms
W = (TX^~A,2,3,...,p-l,p,p,...\ where 1 < Q < n }. j \

Under any wait-and-run strategy the Infiltrator waits for some time at state one
and then moves straight towards the target. He never retreats and never loiters, \ J
except at state one or the target. Iff? > n — p + 1, the wait-and-run strategy
ends up short of the target. Such a strategy is of no use in a target game but can
feature (as above) in an optimal strategy for a detection game. If we denote by
W the wait-and-run strategies for the target games, then if n > p

6 terms
VV = { i r C ~ 7 T , 2 , 3 , . . . , p - l , p , p , . . . | where 1 <0<n-p+l},

and if n < p then W is empty.
When p = 3 and n = 3 we have seen that we need only consider wait-and-run

strategies. If p = 3, this is the case for any n < 00. In general this is not so,
although, as we shall see, wait-and-run strategies occur frequently in the optimal
strategies of many games.

4.4 Four State Games

It is worth briefly considering what goes on when p = 4. We will look at just a
couple of the games. This is sufficient to illustrate some of the difficulties that
begin to arise. The first result is valid only when the Guard is at least twice as
fast as the Infiltrator. For the first time the Guard's speed affects the solution.
This is not suprising since, when p = 2 or 3 his speed (assuming he is no slower
than his opponent) is clearly unimportant. However, once p > 4, if u > 2 the
Guard may be able to exploit his ability to move between states one and three
without having to go via state two.
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time

1

2

3

4

> 5

one

w2wi

w2

state

two

ti>i

w2

three

w2

four

W2W\

state

1

time 2

3

4

> 5

one

9i9\

9*

two

9\

three

9i9\

9i9\

9i9\

The tables above give four pure strategies for the game f*, where 5 < n < 00,

under the assumption that u > 2. We consider the pure strategies W\ and w2 for

the Infiltrator, and g\ and g2 for the Guard. The notation emphasises that both

of the Infiltrator strategies are wait-and-run strategies. Observe that g2 requires

a Guard speed of at least 2, since it involves a jump from state one to state three.

Let w* € Xn and g* G Qn be the mixed strategies according to which each player

chooses one of his two pure strategies at random.

Lemma 4.4.1 If p = 4, then for all u > 2, 0 < A < 1 and n > 5,

X2

Vco = vn = y ( l + A)

and w* and g* are optimal strategies.

Proo f First consider the Guard's best replies if he knows that the Infiltrator is using

strategy 10*. If there is a best reply there must be at least one which is pure. It

is easiest to think as wx and w2 as two separate Infiltrators. Then let g € Gn

denote the Guard strategy 1,2,3,3,.... Under g, the Guard may detect w\ or

w2 at time 1, Wi at time 2 and at time 3, and w2 at time 4. Thereafter both

wi and w2 are safe at the target. As the Guard has precisely three chances

at detecting wlt and two at w2, tln{wi,g) = Xs and fln{w2,g) = A2. Thus

In fact, g is a best reply to w*. For suppose that the Guard uses a pure strategy

g which meets the path of one of w\ and w2 on n\ occasions, and the other on

n2 occasions. Thus n-i,n2 > 0 and, as, except at time 1 the Guard can meet

at most one of wi and w2 at a time, ^ + n2 < 5. Without loss of generality

we may assume that nx < 2. Therefore, for all 0 < A < 1,

I ;•
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> 0 as m < 2 and A < 1. | !

Now suppose that the Guard is known to be playing strategy g*. Note that ,

of course both elements of g* are best replies to w*. It is clear that whatever

route to the target the Infi l trator takes, he must cross the path of one of gx \ •'

and g2 at least three times, and the other at least twice. Hence, for any i G / „ , ; ;

ftn(i,g*) < | ( A 2 + A3 ) . This completes the proof.
i

Note that the pure strategy Wi represents an immediate dash to the target by j f

the Infiltrator. Taken alone, this ensures the Infiltrator a payoff of only A3 and '

so is not optimal. The Infiltrator increases his chances of success by varying the i- i

t im ing of his dash to safety. c""

Final ly, let us keep p = 4 and u > 2, and look a t the detect ion game F ^ .

By T h e o r e m 3.4.4 we know tha t v^ = v^ = -|(A2 + A3). Moreover it is clear

t h a t to*, as given above, is also opt imal in the detect ion game F ^ . However,

as t h e Infi l trator is not bound ever to move to the ta rge t , gr is not necessarily

o p t i m a l for the Guard . However, using the same technique as in the case p = 3,

we can a d a p t g* and obta in an e-optimal s t ra tegy for F*^. Let e > 0 and let 7*

b e t h e G u a r d s t ra tegy which is identical to g* for the first two t ime uni t s and

at each later time locates him, independently of his previous locations, at state

three with probability 1—28 and each of states one and two with probability

8, where 0 < 8 « 1/2. What is the Infiltrator's best reply to 7*? During the

first two time units, whatever he does, the Infiltrator remains undetected with

probability |(A + A2). But assuming he is still undetected, what should he do

next? As this is not a detection game he does not have to go to the target, but if

he never does then he is detected with probability one. If he does go, he should

do so immediately and then the final probability of avoiding detection is given by

I(A _f. A2) [(1 — 28)X + 28). By taking 8 sufficiently small, this probability can be

made arbitrarily close to \ (A2 + A3). In fact, if 8 < A2(1
C_A2), then 7* is e-optimal.

We conclude this section on p = 4 with a comment on the game f ^ when

u < 2. The Guard can no longer move directly between states one and three,

and so has no effective speed advantage over the Infiltrator. We have no solution

for this apparently simple problem. However we suggest that the Infiltrator can

exploit his opponent's limitations and that, if u < 2, v^ > -|(A2 + A3).
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The significance of the Guard's speed is clear. For fixed n, p and A, both vn

and vn are decreasing functions of u. The faster the Guard can move the less

chance the Infiltrator has of success. There are two values of u which we consider !

to be particularly important. When u = 1 the Guard and the Infiltrator have \ '

the same maximum speed, and we describe the Guard as a slow Guard. When

u > p — 2 the Guard can move between any of the p — 1 states in P', and he is a '•
fast Guard.

In these simple examples when p = 4 we have found that it is easier to find

solutions when there is a fast Guard. That this is not true in general is suggested ; j

by the partial solution for finite detection games obtained in Chapter 6. The

solution to be presented there is only valid when the Guard is slow. , [

Before leaving this discussion, let us return to the comment of Gal concerning 1

games of infiltration, which we quoted in the introduction. i 1

" It can be easily seen that . . . it is not a good policy for the hider

to move in a straight line using his maximal velocity. A policy which

does seem to be good for the hider is to move randomly for a certain

period of time and only then to use his maximal velocity." ([31], page

98)

For the linear problems which we are looking at we agree that it is not a good

policy for the Infiltrator simply to dash straight for the target. We suggest that,

especially when u = 1, a policy which does seem good is for the Infiltrator to

stay put for a variable period of time and only then to use his maximal velocity.

In section 6.4 there is an example of a game in which u = 1 and yet the unique

optimal strategy for the Infiltrator plays, with positive probability, a pure strategy

which moves out from state one only to return there later. We suggest, however,

that it is unusual to find that this method of 'losing oneself is optimal.
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S A F E B A S E G A M E S

5.1 Introduction

We shall consider an adaptation of our original problem. First recall the extended

target game F*, n < oo. This ought to be familiar to us by now. The game

involves p states, which we call states one, two, etc. up to p. The Infiltrator

starts at state one and, moving between adjacent states, has to make his way to

the target state p within a time limit of n. The Guard, who can move between

states which are up to u > 1 states apart, tries to prevent this by detecting the

Infiltrator before he can reach the target. If the two players occupy the same

state detection occurs with probability 1 — A, where 0 < A < 1, and if it does not

then neither of them is aware that it might have occurred. The full details of the

game F*, n < oo, are found in the previous chapters.

Now suppose that we add an extra state to the game. This is not simply any

other state, but a special base state, or state zero. In the adapted game, which

we shall denote by A*, the Infiltrator starts at state zero where he is safe from

detection. He chooses when to move from here and after he does so is located at

state one. The game then continues as before. The total time allowed for him

to reach the target, including whatever time he stays at the base, is still n. The

Guard is a aware that his opponent is starting from this safe base but he receives

no information when the Infiltrator moves to state one.

It was S.P.Lalley who first suggested the game A*. Therefore we shall refer to

it as the Lalley Game. In [47] he addresses the problem when the Guard's speed

u = 1. He finds the value of the game and gives an optimal strategy for each

player. In the following section we shall consider his work and suggest how it is

58
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possible to extend his conclusions.

For the rest of the chapter we give a generalisation of this safe base game.

We extend the state space. Instead of a line of states joining the base to the

target we consider there to be k > 1 such lines of different lengths. These lines

intersect only at the base and the target, therefore we think of them as k arcs

joining these states. The time limit n and the detection probability 1 — A are as

in the earlier games. We consider the Guard's mobility to be such that, at each

step, he can move between any two states (except the base and the target). We

refer to this as the K-Arc Game. The value of the game is found and a pair of

optimal strategies given. By looking at our results when k, the number of arcs, is

equal to 1 we have the solution to the Lalley Game A* when u, the speed of the

Guard is > p — 1. This can be compared with Lalley's solution for u = 1 given

earlier in the chapter.

5.2 The Lalley Game

Lalley has proposed a game which is different from that originally posed by Gal.

The ammendment he makes is to introduce a safe base state, or state zero where

the Infiltrator is to be found at time 0. The Infiltrator may leave the base at

any time after this and, when he does so, he moves to state one. The game

then continues as before. The objective of the Infiltrator is to reach the target

within the time limit n, without being detected by the Guard. Thus this is a

target game rather than a detection game. The Guard cannot move to the base

to detect the Infiltrator, neither is he told when he leaves the base. The other

parameters A, p and u are defined as in the original target game. A pure strategy

for the Infiltrator is a function / : { 0 , . . . , n } - t P U { 0 } such that 7(0) = 0 and,

for all t > 1, \I(t) — I(t — 1)| < 1. A pure strategy for the Guard is a function

G : { l , . . . , n } -» P\{p} such that, for all < > 2, \G{t) - G(t - 1)\ < 1. As the

there are only a finite number of states, and as the time limit is finite, the number

of pure strategies is finite. Each player chooses a probability vector over his set of

pure strategies. These probability vectors are known as mixed strategies. Lalley

himself calls this a 'One Dimensional Infiltration Game', we call it the Lalley

Game and denote it by A*.
In [47] Lalley considers only the case where the Guard's speed u = 1. Letting
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q and r be the unique integers which satisfy

p-2 = q(n-p + l) + r, where q > 0 and 0 < r < 7i - p + 1, (5.1)

he proves that u(A*) = l(n,p,\), where

l(n, p , A) = A*+2 ( r-—) + A^1 (l r-—) . (5.2)
\n-p + lj \ n-p+iJ

He gives a pair of optimal mixed strategies for A*. We shall discuss these strate-
gies bu t not give a complete proof.

T h e Infiltrator must reach the target to win. Start ing from the base he has p '• ;

s tates to travel and hence he can stay at the base until no later than t ime n — p .

The Infiltrator strategy X is defined as follows: A start ing t ime s is chosen at . '

r andom from the set { 1 , 2 , . . . , n — p + 1}. The Infiltrator waits at his base until i ;•

t ime s — 1, and then proceeds, full speed ahead, towards the target. The path of j ; >

X, X(t), 0 < t < n, is given by «•«(

{ 0 if 0 < t < 5,

t-s + 1 if a <t<s + p-2,

p ifs + p— 1 < t < n.

For each choice of s, X can clearly be called a wait-and-run strategy. Note

that here, however, that the Infiltrator waits at state zero and not at state one.

Note also that no two of these wait-and-run paths intersect except at the base or

the target. The mixed strategy X chooses each of these paths with probability
We shall prove that X ensures the Infiltrator a payoff of at least l(n,p, A).

Under X, if undetected, the Infiltrator reaches the target within the time limit.

Thus the Guard has n — 1 chances to detect the Infiltrator who is equally likely

to be on any one of n — p+1 non-intersecting paths. The following Lemma shows

that the Guard's best reply to X is to cover the wait-and-run paths as evenly as

possible. Note first that, by adding n — p+l to both sides, equation (5.1) can be

rewritten as

n-1 = (q + l)(n-p+l) + r where q > 0 and 0 < r < n - p + 1. (5.3)

Lemma 5.2.1 Let S be the set of all (n - p + \)-tuples (s i , s 2 , . . . ,sn_p+i) of

non-negative integers such that £s,- = n — 1. Then

(n-p+l

£ A" =
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Proo f If A = 0 the sum £A 5 ' is always zero and the result follows immediately.

Now let us suppose 0 < A < 1.

Let S' C S be the set of (n - p + l)-tuples ( s i , . . . ,s'n_p+1) such that there j

are r values of i for which sj = q + 2, while for the remainder s< = q + 1. For '

all ( s j , . . . , sn_p+1) € S', £ A* - rA?+2 + (n - p + 1 - r )A'+ 1 . We show that

S' is the set on which the minimum of £A S i is achieved.

Suppose that (s a , . . . ,sn_p+1) G 5 but £ 5'. As £>,- = n - 1 there exist j,k , ,

such that SJ - s^ > 2. Now let ( s i , . . . ,s'n_p+1) e S be given by s|- = s:- - 1

if z = j , s,- + 1 if i = A;, and s,- otherwise. Comparing the power series we : I

see that J2\s' -J2\< = (1 - A)(AS* - \S'J) > 0, since sk < Sj - 2 < s'j. ;

Hence ( s i , . . . ,sn_p+1) does not achieve the minimum of 52 ASl. This is so for j ',

all elements of S\S'. Hence the result follows. \

Therefore, against X, a best reply for the Guard meets r of the wait-and-run =•*(

paths q + 2 times and the remainder q-\-\ times. Thus X ensures a payoff greater

than or equal to

n — p + J

which, by (5.2) is equal to l(n,p,\).

Recall that, for the Guard, play really starts at time 1. By this time of course

the first wait-and-run strategy has already left the base. The Guard's optimal

strategy is made up of best replies to X. These particular best replies are all of a

type Lalley describes as 'orderly fallback' strategies. That means that the Guard

falls back from state one to state p — 1 in the following orderly manner: He uses

the path of the first wait-and-run strategy for either q + 1 or q + 2 time units,

then moves onto the second wait-and-run path, again for either q-\-1 or q + 2 time

units, and so on. Whether he spends q + 1 or q + 2 time units on a particular

path is not just chosen at random. In total he must spend q + 2 time units on r

of the wait-and-run paths and q + 1 on the remainder. Thus, the total duration

of this strategy is r(q + 2) + (n -p + 1 -r)(q + 1) = (q+l)(n-p+l) + r = n-1,
as required.

More rigorously, the mixed strategy Y is defined as follows: Let the random

variables £o,£i> • • • >£n-p be obtained by sampling without replacement from an

urn containing r balls marked q +1 and (n-p+l) — r balls marked q. The Guard

must occupy site x - 1 at time t = 1, retreat at full speed for £0 time units, wait
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one time unit, then retreat at full speed for 6 time units, wait one time unit etc.,
finally retreating at full speed for £n_p time units. In total this manoeuvre lasts
precisely 1 + fr+ 1 + 6 + ••• + ! + £n-P = n - 1 time units. The trajectory of Y is
somewhat complicated to write. For all 1 < t < n - 1, Y(t) - t - m, where m is

m—1 m

the unique integer 0 < m < n - p such that m + 1 + J2 & < t < m + 1 + J2 &•

Lalley shows that when Y is played against any Infiltrator strategy, the payoff
is at most /(n,p, A). We shall omit the proof of this; it may be found in [47]. Thus ; ;
l(n,w,X) is the value, and X and Y are optimal strategies.

We note that Lalley's solutions can be extended. He states that the speed of ;

the Guard u = 1. However, nowhere is this required. The Infiltrator strategy X
i!

is just as effective against a Guard of any speed u > 1. We shall return to this i '
point at the end of the chapter.

u
5.3 The K-Arc Game
For the remainder of this chapter we consider in detail the K-Arc Game. This is a
generalisation of the Lalley Game that we have just discussed. The K-Arc Game
retains the notion of a safe base state where the Infiltrator is initially located,
but the arrangement of the states is more complex. It is simplest to consider the
states as vertices of a graph F, in which every vertex is joined by a single edge
to all the other vertices to which, from there, the Infiltrator can move next. F
is made up of two distinguished vertices which are joined by k non-intersecting
paths of varying vertex length. These distinguished vertices are the base and the
target and are denoted by v^ and VB respectively. The objective of the Infiltrator
is to reach the target within the time limit n, undetected by the Guard. The
speed of the Guard, u, is considered to be great enough for him to move freely
between the vertices. He has no chance of detecting his opponent at either the
base or the target. Therefore VA and VB are excluded from his playing space. As
in the other games we have considered, if the players simultaneously occupy the
same vertex then detection occurs with probability 1 — A, 0 < A < 1. If detection
does not occur then neither player realises that it could have done. We give a
rigorous analysis of this game. It is a finite game and so is guaranteed to have
a solution in terms of probability vectors. The value of the game is found and
compared to that of the Lalley Game. Optimal strategies are also found.
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5.4 The Model

For the rest of this chapter let F denote a graph made up of k > 1 non-intersecting
vertex paths joining the base and the target. We shall abuse the notation by also
using F to refer to the target game which is played on this graph.

arc a

ama

arc e

We need to introduce some more notation. Let us define

V, the set of vertices of F;

V = V\{VA,VB} , the set of interior vertices;

A, the set of discrete disjoint paths between v^ and VB, the arcs of F, which we
consider to have a fixed arbitrary order;

ma, where a 6 A, the length of arc a, ie the number of interior vertices on arc

a;

m—Yi ma = \V\, the total number of interior vertices;
aeA

vaj, where a € A and j € {1,.. .,ma}, the jih interior vertex on arc a, ordered
from base to target;

To = {0,1, . . . , n}, the universal time set, which we consider to be chronolog-

ically ordered;

T = { l , . . . , n - 1}, the real time set.
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A pure strategy for the Infiltrator is a function I, I : To -+ V, such that
7(0) = vA and, for t = 1,2,..., n, I(t) is a vertex adjacent to or equal to I(t - 1).
A pure strategy for the Guard is a function J, J : T -> V. Note that here there
is no restriction on the speed of the Guard. He can move between any interior
vertices. We have restricted the codomain of J to exclude vA and vB since they
are safe for the Infiltrator. Similarly we have restricted the domain to exclude
t = 0 and t = n since initially the Infiltrator is safe, and at the end of the game,
if the Infiltrator is still at large in V, then he has failed in his objective and so,
in either case, the Guard's position is immaterial. Let / and J be pure strategies
for the Infiltrator and the Guard respectively. We say that 7 and J meet if there
exists a t £ T such that I(t) = J(t). The total number of meetings is sometimes
denoted by u>(7, J). The payoff E(I, J) when these strategies are played is then
given by E(I, J) = A^7-7).

The sets of pure strategies are finite. Each player chooses a probability distri-
bution on his pure strategies. These probability distributions are known as mixed
strategies. If 7* and J* are mixed strategies E(I*, J*), the payoff when 7* and
J* are played, is the expected value of A"̂ 7'"7) under the joint distribution of 7*
and J*.

To avoid trivial situations we assume that every arc has at least one interior
point. Further, if T were to contain any arcs of length greater than n — 1 then
the Infiltrator would be unable to use these arcs to reach the target within the
time limit. Therefore we make the following assumption.

A(0) For all a G A, 1 < ma < n - 1. '

5.5 Infiltrator Strategies

We consider only those Infiltrator pure strategies which are not dominated. Thus

we assume that

A(i) The Infiltrator will never return to the base once he has left it.

A(ii) The Infiltrator will never leave the target once he has reached it.

A(iii) The Infiltrator will never move to a vertex from which he would have no
chance of reaching the. target within the time limit.
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One result of A(i) and A(ii) is that we may restrict our attention to those pure

Infiltrator strategies which use precisely one arc to reach the target. Furthermore,

for any 7, we can define s(I) and t(I), to be the last base time and first target
time, respectively so that, for 0 < t < n,

ju\ _ J VA i f a n d o n ly ^ t < S(I),
[ vB if and only if t > t(I).

Between s(I) and t(I) the path of the Infiltrator is certain to be along a single

arc a. However, just how he travels along a is uncertain. He may move straight

from the base to the target, he may loiter along the way, he may even retreat at

times. We shall give an optimal strategy which is made up of only pure strategies

in which he does the first of these things. As in the Lalley Game we shall see

that the Infiltrator waits and then dashes. In the K-Arc Game however he can

vary not only the timing but also the route of his dash.

Let us introduce the set of pure strategies which we will use to construct

an optimal strategy. For a € A, and r (E { l , . . . , n — ma}, the wait-and-run
s t ra tegy, 7QT, is given by

{ VA 0 < t < T,

Va(t_T+1) T <t < T + ma,

vB T + mQ <t <n.
Under IQT the Infiltrator waits at base until t = r — 1, and then proceeds full

speed ahead, along arc a, towards the target, arriving at t = r + mQ. Thus

•5 (7aT) = T - 1 and t (IaT) = T + ma.

Let W denote the set of all wait-and-run strategies, and w the number of

elements in W. Then w = Y^ n — ma = kn — m. Note the similarity between
a£A

these strategies and those given for the Lalley Game in section 2.

Later it will be useful to have an ordering < on W, and so we introduce

this here. Let W = {Wi, . . . , Ww} be the ordered set of wait-and-run strategies,

satisfying the following: W < W" if and only if either

(i) i{W) < t{W"), or

(ii) t(W) = t(W"), and s(W) < s{W"), or

(iii) t(W) = t(W"), s(W')'= s(W"), and the arc corresponding to W precedes

the arc corresponding to W" in the ordering of A.
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For all 1 <j <w, there exists a <E A and 1 < i < n - ma such that Wj = Iai.
Suppose that Wj, is another wait-and-run strategy on arc a, but that Wj, leaves
the base before Wj. Thus Wj, = Iai,, where 1 < i' < i - 1. We deduce from this
that if Wj = Iai then i < j .

It is immediate that, for all 1 < j < w, t(Wj) < t(Wj+i). However, if
t(Wj) < t(Wj+i) then, we can also deduce that t(Wj+1) = t(Wj)+l. For otherwise
there would be another wait-and-run strategy along the same arc as Wj which
would come between Wj and WJ+1 in the ordering. Thus, for all 1 < j < w,
t(Wj) < t{Wj+1) < t(Wj) + 1, a n d h e n c e t(Wj) > t(Ww) -(w-j) = n-w + j

since the last wait-and-run path must reach the target right at the time limit n.
Finally, we denote by 7* the mixed strategy for the Infiltrator which chooses

pure strategy I with probability 1/iu if 7 G W, and with probability zero other-
wise. Let J be any pure strategy for the guard. The payoff when the Infiltrator
and the Guard use strategies I* and J respectively is given by

w j

where u(Wj, J) is the number of meetings between Wj and J.
Before giving our first result let z = [(n — l)/w\, where [ J denotes the floor

function, and

/(n, „,, A) = X^ (^-zyX>(l + z-lZ±y (5.4)

Note here that, with z as defined above,

n — 1 = wz + (n — 1 — wz), where z > 0 and 0 < n — 1 — wz < w. (5.5)

Lemma 5.5.1 For all pure Guard strategies J, E(I',J) > f(n,w,\).

P r o o f Let 1 < j < w. If the Infiltrator travels along path Wj, and if he is not

detected along the way, then he reaches the target by time n. Thus, if the

Infiltrator uses strategy I", the Guard has at most n — 1 opportunities to detect

him. Moreover, since the paths of any two of the wait-and-run strategies meet

only at the base and the target, at each of his opportunities the Guard can

meet at most one element of W.

Clearly if J is a best reply to I* then J will meet an element of W at each

of the times l , . . . , n - 1. Thus, if we let Uj = w(W,-, J) , J^Uj = n - l and
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E(I*,J) = ( l / i o ) ^ A w \ Comparing Lemma 5.2.1 we see that this expression
1 = 1

is minimized by taking the CJ.'S to be as equal as possible. Thus, as n — 1 =

wz + (n - 1 - wz) and 0 < n - 1 - wz < w, E(I*,J) is minimized when

n — 1 — wz of the w.'s are equal to z + 1, and the remainder equal to 2.

Therefore, for all J,

E(I*, J) > - [(n - 1 - u^)A2+1 + (w - n + 1 + ti>*)A*] = /(n, w, A).

This f(n,w,X) turns out to be the value of the game. However finding an • ;

optimal strategy for the Guard is much more complicated. It is not clear from

the proof above whether there exist best replies of the form mentioned. It is i

not immediately obvious that the Guard will be able to meet n — 1 — wz of the •

wait-and-run paths z + 1 times and the remainder z times. All we have done is j, j

shown that he can do no better than this. '••I

In the three following sections we shall show that such best replies do exist.

Depending on the properties of graph F, we find different examples of best replies

to /* which are pure. These examples are then combined to construct optimal

mixed strategies for the Guard.

5.6 Guard Strategies I

We shall now split the problem down into three cases. First we compare w, the

number of wait-and-run strategies, with n, the time limit. The first case arises

when w < n and we shall consider this shortly. The other cases arise when w > n,

and we will look at these in the following sections.

CASE A : F satisfies w < n.

Note from the definition of z that w < n if and only if z > 1. Therefore, for

all graphs F which belong to Case A, z > 1.

In both this case and the next we use the following general method: First

consider the Infiltrator to be restricted to only pure strategies which are wait-

and-run strategies. Find a Guard's optimal strategy in this case. Finally show

that this strategy is also optimal if the Infiltrator is no longer restricted to wait-

and-run strategies.
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The first result here does not involve the Guard at all. However it is fun-

damental to the strategies he uses. It concerns the times at which the different

wait-and-run strategies are to be found 'at large' on the interior vertices of F.

Lemma 5.6.1 Let F belong to Case A and let (tj) be a sequence of w elements

ofT such that h < t2 < • • • < tw. Then, for all 1 <j <w, s(Wj) < tj < t(Wj).

Proo f First observe that, as (tj) is a strictly increasing sequence of integers between

1 and n - 1, then 1 < tx < t2 - 1 < t3 - 2 < . . . < tw - (w - 1) < n - w.

Thus, for all 1 < j < w, j < tj < n — w + (j — 1).

Now consider Wj, where I < j < w. Recalling the ordering of W we saw

earlier that Wj = Iai where a e A and 1 < i < j. We also observed that

t(Wj) > n — w -f j > n — w + (j — 1). Therefore, we have that

s(Wj) = s ( I Q i ) = i - K i < j < t j < n - w + ( j - l ) < t ( W j ) .

This completes the proof.

Corollary 5.6.2 Let F belong to Case A and let (tj) be a sequence ofw elements

ofT such that t\ < t2 < • • • < tw. Then there exists a pure Guard strategy J such

that, for all j = 1 , . . . , w, J meets Wj at time tj.

Proo f This follows from the Lemma above. Construct J as follows: Let f £ T.

If there exists 1 < j < w such that t = tj then let J(t) = Wj(t). Otherwise

choose J(t) arbitrarily on V.

Corollary 5.6.3 Let F belong to Case A and let (<J1)), (<$2)) and (t\z)), j =

l,...,w, be z sequences, each ofw elements ofT, such that t['<•••< t[z' <

... < ^(!) < . . . < tiz). Then there exists a pure Guard strategy J which, for all

j = l,...,w, meets Wj at times ty\ tf\ . . . , ty.

Proo f Construct J as follows: Let t £ T. If there exist 1 < j < w and 1 < r < z

such that t = t^p then let J(t) = Wj(t). Otherwise choose J(t) arbitrarily on

V.

We can now begin the construction of special sets of pure strategies for the

Guard. These sets, analogous to the set of wait-and-run strategies for the In-

filtrator, will form the basis of optimal mixed strategies for the Guard when F

belongs to Case A. In general, we will use Corollary 5.6.3 to construct particular
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Guard strategies each of which meets each Wj, j = 1 , . . . ,w, z times as above,

and so has 0 < (n — 1) — wz < w opportunities for additional meetings. We refer

to these as basic meetings and spare meetings respectively. Thus we construct

these pure Guard from two parts, a 'basic' part and a 'spare' part. The basic

part of one of these strategies meets each Wj precisely z times, while the spare

part meets some of them an additional time.

For any integer q let a(q) be the unique integer such that a(q) is equal to q

modulo w, and 0 < a(q) < w. Finally, recall that, as z - [(n - l)/w\, then

0 < n — 1 — wz < w.

Definition 5.6.4 Let 1 < i < w. The spare time set, A{ C T, is given by

A{ — {a(i), a(i + 1 ) , . . . , a(i + n — 2 — wz)} .

If z = (n — 1)1 w, Aj is empty by convention.

If qi,...,qw are consecutive integers then a(qi),... ,a(qw) are all distinct,

therefore, as n — 1 — wz < w, for all 1 < i < w, \A{\ = n — 1 — wz. Thus

A';, the complement of A{ in T, contains precisely wz elements, which, when they

are put in order, we denote by

n{l) < ... < a{z) < ...< a(1) < < a{z)

We now define a total of w pure strategies for the Guard. The paths of these

pure strategies are given according to which wait-and-run strategies they meet

along the way. For all 1 < i < w the basic part of the strategy is defined on A\

and the spare part on A{. Note that if t € A\ then t - a\^ where I < j <w and

1 < k < z. Similarly if t € A{ then 1 < t < w. Recall also that, for 1 < t < w,

s(Wt) < t < t(Wt), and so, at time t, the wait-and-run strategy Wt is somewhere

'at large' among the interior vertices. Therefore from Corollary 5.6.3 we deduce

the existence of the following pure strategies.

Definition 5.6.5 Let 1 < i < w. The pure Guard strategy J,- is defined as

follows:

[ Wt(t) otherwise.

Let 1 < i < w. We refer to Ji\A\, the restriction of J{ to domain A'{, as

the basic part of J,- and to Ji\A{ as the spare part. Finally, recall our earlier
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definition of the mixed strategy /*. Now let J* denote the mixed strategy for the

Guard which chooses the pure strategy J with probability l/w if J = Ju ..., Jw,

and with probability zero otherwise. ">

Suppose that / is any pure strategy for the Infiltrator. Recalling that u(I, J) ' i

denotes the number of meetings between I and J, the payoff when the Infiltrator '

and the Guard use strategies / and J* respectively is E (I, J*) = — ̂  A"^7"7'). ,

We now consider the payoff when one of these Guard strategies Ji,... ,JW \s

played against one of the wait-and-run strategies W\,..., Ww. For all 1 < i, j < w :

we calculate u(Wj,Ji) by considering separately how many times Wj meets the : ,

two different parts of J,-.

Lemma 5.6.6 Let T belong to Case A and let 1 < j < w. The wait-and-run i '

strategy Wj meets (i) the basic part of each of the Ji's exactly z times, and (ii)

the spare part of exactly n — 1 — wz of the Ji's exactly once, and the spare part i il

of the rest not at all.

Proo f (i) Let 1 < i,j < w. The basic part of J,- meets Wj if and only if, for

some t 6 A\, Ji(t) = Wj(t). By Definition 5.6.5, this occurs at the z times

(ii) Let 1 < i,j < w. Then, by Definition 5.6.5, Wj meets the spare part of Jt-

if and only if j is in the spare time set of J,-, that is if

j € A{ = {a(i),..., a(i + [n — 2 — wz})}.

To deduce for which i this is so, first note that if n — 1 — wz — 0 then each

Ai is empty and so trivially j belongs to none of them. If, on the other hand,

n — i _ wz > 0, then by definition of Ai, we see that j G Ai if and only if

i £ {a(j - [n - 2 - wz]),..., a(j - 1), G ( ; ) } .

S j n c e j _ [n _ 2 — wz},...,j are n — 1 — wz consecutive integers and as

n _ i _ wz < Wi it follows that a(j - [n - 2 - wz}),..., a(j) are all distinct.

Therefore j appears in A{ precisely once for exactly n - 1 -wz values of i, and

not at all for the remaining values of i.

Corollary 5.6.7 Let 1 < j < w, and consider the wait-and-run strategy Wj.

w — n + 1 + wz if UJ = z,

\{i\u(Wj,Ji)=uj}\ = \ n-l-wz i/w = 2 + 1,

0 otherwise.
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Proof Follows immediately from the Lemma above.

Therefore, for all 1 < j < u>,

E(Wj, J*) = i [(n - 1 - wz)Xz+1 + (w - n + 1 + wz)Xz] = f(n, w, A).

We have already proved that, for all pure strategies J for the Guard, £(/*, J) >
f(n,w,X). Hence, if the Infiltrator is restricted to only wait-and-run strategies,
J* is an optimal strategy for the Guard and the value of this restricted game is
f(n,w,X).

We now need to broaden our sights again to consider the behaviour of the J,'s
when they are played against any pure Infiltrator strategy /, not necessarily of
the wait-and-run type. In order to do this we look again at the general form of /.
We can describe the path of / according to which wait-and-run paths it meets.

First however recall the assumptions A(i), A(ii) and A(iii) which we assume
to apply to any pure strategy /. We deduce that, for all 0 < t < n there exists
g(t), 1 < g(t) < w, such that I(t) = Wg^(t). Moreover, as distinct wait-and-run
strategies coincide only at the base and the target, then for all s(I) < t < t(I),
g(t) is unique. We now extend g by determining that, for all 0 < t < s(7),

g(t) = g(s(I) + 1), while for all t(I) < t < n, g(t) = g (t(I) - 1). Thus, for
all t E To, at time t, I is on the path of the wait-and-run strategy Wg(ty This
function g provides the link from the set of all pure Infiltrator strategies back
into the smaller set of wait-and-run strategies.

It is clear that, while he is strictly between the base and the target, the Infil-
trator can move from the path of one wait-and-run strategy to another. However
there is an important restriction on this due to the limitation on the Infiltrator's
speed. While he is strictly between the base and the target, he is unable, except
by moving to the target, to move onto a wait-and-run path that left the base
before the one he is currently on. This idea is developed below in terms of the
function g and the ordering < on W.

Lemma 5.6.8 Let I he a pure strategy for the Infiltrator. Then the function g

is monotonic increasing.

Proo f This holds trivially for t in the domains [1,5(7) + 1] and [t(I) - l ,n ] , as g

is constant in these intervals.

Consider now the position of the Infiltrator at some time t E [s(I) + l,t(I)-l),

and the three choices of move he may have. Firstly he may advance to the next
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vertex and, in so doing, stay on the wait-and-run path he is already on. In

this case g(t + 1) = g(t). Alternatively, providing that to do so is consistent

with assumptions A(i) and A(iii), he may either loiter where he is, or retreat,

and in both of these cases, by failing to advance, he will move himself off the

wait-and-run path Ws(t) that he is currently on, and onto a new path. Thus

g(t + 1) ^ g(t). As this new path reaches the target strictly later than Wg(t),

it follows from the ordering <, that g(t + 1) > g(t). Thus, for all 1 < t < n,

We can now extend Lemma 5.6.6 by showing the effectiveness of the strategies

J\, • • •, Jw against any pure Infiltrator strategy.

L e m m a 5.6.9 Let T belong to Case A. Let I be any pure Infiltrator strategy. I

meets (i) the basic part of each J,- at least z times, and (ii) the spare parts of at

least n — 1 — wz of the J,- 's at least once.

P r o o f (i) Let 1 < i < w. By Lemma 5.6.6(i), the basic part of J , meets every

Wj precisely z times. For 1 < j < w, let Sj and tj denote respectively

the times of the first and last meeting beteen the basic part of J,- and the

wait-and-run strategy Wj. By Definition 5.6.5, SJ — a\j and tj — a\j, and

si < h < s2 < t2 < • • • < sw < tw. Note that, for all j, tj > jz > j.

Now let / be any pure Infiltrator strategy. At time t(I) — 1, the path of / has

yet to reach the target but does so on the next move. Therefore, for some

a e A,
I(t(I)-l) = vama=Wgm_1)(t(I)-l).

As the basic part of J,- and Wfl(t(/)_i) meet z times up to and including the

time that Ws(<(/)_i) reaches vQma, it follows that ^(t(/)_i) < t(I) - 1. Thus, if

we let 6 = m in {x G T0\tg(x) < x], then 0 < 0 < t(I) - 1.

Thus, at time 0, I is following the wait-and-run strategy Wg^ and, by this

time, the basic part of Jt- and Wg^ have already met z times. Now let <f>,

0 < (j) < 6, denote the time at which / first joins the path of Wg(0). There are

two possibilities. If <f> > 0, then, by Lemma 5.6.8, g((f> - 1) < g{<j>), and so, as

4> - 1 < 0 it follows that </> - 1 < tg{4>_x) < sg(<f>) = sg{g). If <p = 0 then trivially

4> < sg(0). So, in either case <f> < sg($). and we deduce that / joins the path

of Wg(B) before the basic part of J,- and Wg(B) meet for the first time. Hence

it is certain that, throughout the interval [cf>,0], I is on the path of Wg(O) and

hence meets the basic part of J,- exactly z times.
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(ii) Let 1 < j < w. By Lemma 5.6.6(u), the wait-and-run strategy Wj is met

exactly once by the spare parts of exactly n - 1 - wz of the J.-'s. Moreover, by

Definition 5.6.5, these meetings all take place at time j.

Now consider the pure Infiltrator strategy / , and note that as g(n — 1) < w <

n — 1, we can define ip to be the least t e To such that g(t) < t. Thus, at time

ij), I is on the path of Wg^) and since g(ip) < tp, by this time Wg^) has already

met the spare parts of n - 1 - wz of the J.'s. Let £, 0 < £ < tp, denote the

time at which I first joined Wg^y Again there are two possibilities. If £ > 0,

then g(£ - 1) < g(£) and since £ - 1 < V. t ~ K §U ~ l) < 9(0 = g(*l>).
If £ = 0, then trivially £ < g(ip). So, in either case, as £ < g(ip), we deduce

that / joined the path of Wg^ before Wg^ had met the spare parts of the

n — 1 — wz of the J,'s. Hence in the interval [£, ?/>] / must meet the spare parts

of all n — 1 — wz of the J,'s which Wg^ meets. The result then follows.

Corollary 5.6.10 Let I be any pure Infiltrator strategy.

n — 1 — t«2 ij u = z + 1.

Proo f Follows immediately from the Lemma above when the basic parts and the

spare parts of J 1 ? . . . , Jw are reassembled.

Therefore, for all pure Infiltrator strategies 7,

£ ( / , J') < - [(n - 1 - wz)Xz+1 + (w - n + 1 + iwz)A*] = / (n , u;, A).

This, together with Lemma 5.5.1 allows us to state without further proof the

conclusion to Case A.

Lemma 5.6.11 Let V belong to Case A. The strategies I* and J* are optimal

for the Infiltrator and the Guard and v(T) = f(n,w, A).

5.7 Guard Strategies II

We turn our attention to what happens when, w, the number cf wait-and-run

strategies is greater than or equal to the time limit n. In a moment we shall

proceed in a manner similar to that of Case A and construct another set of w

pure strategies for the Guard analogous to JX,...,JW. This approach depends
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on an application of Lemma 5.6.1 to a subgraph of F and hence puts another

condition on F. This situation is covered in the current section under the title

Case B. The final possibility is considered in the following section and this is Case

C.

When k, the number of arcs, is equal to one, then w — n — ma < n, and

hence F belongs to Case A. Therefore, if F does not belong to Case A we may

assume that k > 2. In both of the following cases we shall obtain the value of F

by deleting one or more arcs from F and studying the resulting subgraphs.

Suppose k > 2. If a G A we denote by FQ the subgraph obtained by removing

all the interior vertices vQi,...,vama from graph F. Recalling our earlier con-

vention, let F a also denote the game which is played on this subgraph when the

parameters A and n are left unchanged. Observe also that, if F satisfies assump-

tion A(0), then so too will TQ. Moreover, any pure strategy in Va will also be a

pure strategy in F.

Let a € A. We shall partition W, the set of wait-and-run strategies, according

to whether its elements use arc a or not. Denote by 0. — {Q\, fi2, • • •, Qn-ma } the

set of wait-and-run strategies which do use arc a to reach the target. We assume

that Q is ordered by <, and hence, for all 1 < i < n — ma, O, = 7at-. Similarly, if

wa — w — (n — ma) is the number of wait-and-run strategies which remain, and

so do not use arc a, denote this set by 0 = {©1, 02> • • •, 9tua}. Again we assume

that 0 is ordered by <. 0 is the set of wait-and-run strategies for the game Ta.

CASE B :

(i) F satisfies w > n.

(ii) There exists a E A such tha t wa < n.

For all a, (3 € A, if ma < mp then wa < wp. Thus, without loss of generality

we may assume that a is an arc of minimum vertex length.

As in Case A we start by supposing that the Infiltrator is restricted to only

wait-and-run strategies. We are concerned with the number of times that the

Guard can meet the different elements of W. Since, in this case, w > n he may

be unable to meet them all. We can no longer apply Lemma 5.6.1 or its corollaries

directly to the graph F. However, thanks to condition (ii), there is a subgraph

TQ to which Lemma 5.6.1 may be applied.
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Hence suppose that 5 ' e T contains the wa elements, s[,s'2,... ,s'Wa. Then

there exists a pure Guard strategy J, for the game TQ, such that, for all 1 < j <
wa, J(s'j) = ©j(-Sj). Moreover, of course, J is also a pure strategy for the full

game T. In this way we proceed to construct pure Guard strategies in the full

game which are composed of basic parts which meet each element of 0 , and spare

parts which meet some of the elements of Q, as well.

For any integer q let b(q) be the unique integer such that b(q) is equal to q

mod n — ma and 1 < b(q) < n — ma.

Definition 5.7.1 For 1 < i < n - ma, we define the spare time set, Bi C T,

as
Bi = {b(i), b(i + 1), . . . , b{i + n - 2 - wa)}.

If wQ = n — 1, then by convention, for all i, B{ is empty.

If qi,..., qn-ma are consecutive integers, then 6(gi), . . . , b(qn_ma) are all distinct.

Therefore, as n - 1 — wa < w — wa = n — mo, for all 1 < i < n — ma, | 5 , | =

n — 1 — wa. Thus B[, the complement of Bi in T, has wa elements, which we

denote by

0 < bn < • • • < blWa < n.

Let us now give a defintion which is analogous to that of the pure strategies

J i , . . . , Jw in the previous section.

Definition 5.7.2 Let 1 < i < n — ma. The pure Guard strategy Ki is defined as

follows:

K.(t) = !Qj(t) z/< = ^ e i ? . ' '
10,t(t) otherwise.

Let 1 < i < n — ma. We refer to Ki\B[ and K{\Bi as the basic and spare parts of

Ki respectively.

We now consider the payoff when one of the Infiltrator wait-and-run strategies

Wi,..., Ww is played against one of these Guard strategies Ku ..., Kn-ma- As

in Case A we calculate u>(Wj,Ki) by considering separately the basic part and

the spare part of Ki.

Lemma 5.7.3 Let 1 < j < w, and consider the wait-and-run strategy Wj.

(i) IfWj G Q, then Wj meets the basic part of each of the Ki's exactly once, and

the spare part of none of them.
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(ii) / / Wj £ fl, then Wj meets the basic part of none of the K{ 's, and the spare

part of exactly n — 1 — wa of them precisely once.

Proo f (i) Let Wj = Qx, 1 < x < wa. Qx does not meet the spare part of any :

of the Ki's simply because, for t £ Bi, by Definition 5.7.2, Ki(t) is defined

only on the elements of Cl = W\Q. For fixed 1 < i < n - ma, now consider

the basic part of K{. The basic part of K{ meets 0 * if and only if there exists

t £ Bi such that Ki(t) = Qx(t). By Definition 5.7.2, this happens at precisely ; :

t = bix, and at no other value of t.

(ii) Let Wj = ny, 1 < y < n — mQ. This time Vty does not meet the basic part

of any of the Ki's because, by Definition 5.7.2, for t e Bi', I<i(t) is defined only

on the elements of 0 = W\Q.. Now consider for which i € { 1 , . . . ,n — ma}, J

fly meets the spare part of A',-. By Definition 5.7.2, the necessary and sufficient ',

condition for this is that y £ Bi, that is ; J

y e { b ( i ) , b(i + l ) , . . . , b ( i + n - 2 - w a ) } .

To deduce for which i this holds, first note that if n — 1 — wa = 0, then each

Bi is empty, and so trivially j belongs to none of them. If, on the other hand,

n — 1 — wa > 0, then by definition of the Bi's, it can be seen that j £ Bi if

and only if

Since j — [n — 2—wa ] , . . . ,j are n — 1 — wa consecutive integers, and n — 1 — wa =

n — 1— w + (n — ma) < n — mQ, it follows that b(j — [n — 2 — wa]),..., b(j)

are all distinct. Therefore j appears in Bi precisely once for exactly n — 1 — wa

values of i, and not at all for the remaining n — ma — (n — 1 — wa) = w — n + 1

values of i.

Having introduced these n — ma K^s, we now produce another wa pure strate-

gies for the Guard which brings the total to w, and allows us to construct the

mixed strategy M*, which plays them all with equal probability. This time we

reverse the order of things. These Guard strategies are guaranteed, in their basic

parts to meet all of the elements of fi, and in their spare parts to meet some of

the elements of 0 .

For any integer q let c(q) denote the unique integer such that c(q) is equal to

q mod wa and 1 < c(q) < wa.



Safe Base Games 77

Definition 5.7.4 For 1 < i < wa, we define the spare time set, C< C T, as

d = {c(i), c(i + 1) , . . . , c(i + mQ - 2)} ,

Ifma = 1, then by convention, for all i, d is empty.

If q1,..., qWa are consecutive integers then c(qi),..., c(qWa) are all distinct. There-

fore, a s m t t - l < wa, \d\ = 7710,-1. Thus C-, the complement of Q in T, contains

n — ma elements, which we denote by

0 < en < ... < cl(n_ma) < n.

Definition 5.7.5 Let 1 < i < wa. We define the pure strategy for the Guard,

L{, as follows:

\ Qt(t) otherwise.

Let 1 < i < wa. We refer to L{\C[ and L,-|C,- as the basic part and spare part of

L{ respectively.

L e m m a 5.7.6 Let 1 < j < w, and consider the wait-and-run strategy Wj.

(i) / / Wj G 0 , then Wj meets the basic part of none of the Li's, and the spare

part of exactly ma — 1 of them precisely once.

(ii) / / Wj G Q, then Wj meets the basic part of each of the Li's, and the spare

part of none.

Proo f This proof is almost identical to that of Lemma 5.7.3, and hence we omit

it.

From Definitions 5.7.2 and 5.7.5 we have a total of w different pure Guard

strategies, namely K\,..., Kn-ma and Lu... LWa. Let us arbitrarily rename them

M i , . . . , Mw. Then M* is the mixed strategy for the Guard which chooses pure

strategy J with probability \/w if J = Mi,...,Mw, and with probability zero

otherwise. Combining Lemma 5.7.3 and Lemma 5.7.6, we have the following

result.

Lemma 5.7.7 Let 1 < j < w, then consider the wait-and-run strategy Wj.

w — n + 1 if u> = 0,

\{i\u(WhMi)=u}\ = { 72-1 ifu = l,

0 otherwise.
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Proo f Determine first whether Wj belongs to 0 or to ft. If Wj <E 0 , then by

Lemma 5.7.3(z) and Lemma 5.7.6(z), Wj meets the basic parts of every one of

the n — mQ Ki's precisely once, and the spare parts of exactly ma - 1 of the

Li's precisely once, but nothing else. Since (n - ma) + (ma — 1) = n - 1, the

result follows.

Similarly, if Wj G ft, then by Lemma 5.7.3(n) and Lemma 5.7.6(n), Wj meets

the spare parts of exactly n - 1 - wa of the Ki's precisely once, and the basic

parts of every one of the wa Li's precisely once, but nothing else. Again, as

(n — 1 — wQ) + wa = n — 1, this completes the proof.

Suppose F belongs to Case B. It follows from above that, for all 1 < j < w,

E (Wj, M") = - [(n - 1)A + (w - n + 1)].
w

Recall from Lemma 5.5.1 that, for all J , E(I*,J) > f(n,w,\). However, from

equation (5.4), as w > n then z = 0, and so f(n,w,\) — A f 1 ^ ) + (l — ̂ jjp)-

Hence, if the Infiltrator is restricted to wait-and-run strategies, /* and M* are

optimal and the value of the game is / (n , w, A).

Finally it remains to see what happens when we take away this restriction on

the Infiltrator.

Lemma 5.7.8 Let I be any pure strategy for the Infiltrator. Then

Proo f Relate / to the set W of wait-and-run strategies using the function g which

we defined in the previous section. Consider whether the path of / uses arc a or

a different arc. In either case the result follows from Lemma 5.7.7 in the same

way that, in the previous section, Lemma 5.6.9 and Corollary 5.6.10 follow from

Lemma 5.6.6 and Corollary 5.6.7. To avoid twice repeating, almost identically,

the proof of Lemma 5.6.9. we omit the details.

Therefore, for any / , E{I,M*) < {\/w) [(n - 1)A + [w - n + 1)]. This brings

us to the conclusion of Case B.

Lemma 5.7.9 Let T belong to Case B. Then I* and M* are optimal strategies

for the Infiltrator and the Guard, and v(T) = f(n,w, A).
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P r o o f If F belongs to Case B, then z = 0 and so, from equation (5.4), f(n, w, A) =

(l/w) [(n - 1)A + (w - n + 1)]. Now let (/, J) be any pair of pure strategies.

From Lemma 5.5.1 and above, it follows that

M*) < (l/w) {(n -l)\ + (w-n + 1)] < E(F, J).

This completes the proof.

5.8 Guard Strategies III

In the previous section we started to look at those games in which w, the number

of wait-and-run strategies, is greater than or equal to n, the time limit. In Case B

we examined what happens when, for at least one of the subgraphs FQ, wa < n,

where wQ = zu — (n — ma). We now consider the final possibility.

CASE C :

(i) F satisfies w > n.

(ii) For all a G A, wa > n

The consequence of (i) and (ii) is that we are unable to use Lemma 5.5.1 to

directly study the behaviour of either F itself, or any of the games Ta. Hence we

must adopt another approach, but one which will allow us to build upon what

we already know from the previous sections. We first recall that if k, the number

of arcs in F, is 1, then w(= n — m)< n, and so F belongs to Case A. Similarly,

if k = 2, and F consists of the two arcs a a'nd /3, either again w < n, or w > n

and wa(= n — mp)< n, and so F belongs to either Case A or Case B. Hence, if F

belongs to Case C we may assume that k > 3.

It transpires that the value of a graph belonging to Case C is the same as for

one from Case A or B. We shall use induction on the number of arcs to prove

this, and to determine the form of an optimal strategy N* for the Guard. /*,

the uniform mixed strategy on W, the set of Wait-and- Run strategies, again

turns out to be optimal for the Infiltrator. Unlike J* and M* from Cases A and

B, which are both composed of precisely w components and which are readily

found in any particular game, N* will not be given explicitly. The form of N*

is constructed through the induction as the graph F is built up arc by arc. The
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reader may, by repeating the procedure given in the inductive argument, construct

N* for any game belonging to Case C. However the intricacy of this procedure

sharply contrasts with the ease in which J* or M* may be constructed for a

graph belonging to either of the other two cases. It is conjectured that an optimal

strategy for the Guard of a more direct form, analogous to J* and A/*, does exist.

If this is so, it has eluded our attempts at detection.

Let us now consider the inductive hypothesis.

Hypothesis P*., k G IN : Let F be a graph on k arcs which belongs to
Case C. Then there exist /i(F) 6 IN such that //(r)|(Jfc - 1)!, and wfi(T)
pure Guard strategies Ni,N? ... ,Nwli(r)i which are not neccessarily all
distinct, such that, for any Infiltrator pure strategy 7,

In other words, inducing multiplicities if they are not all distinct, the Infil-

trator must meet at least {n — l)/i(F) of these wfi(T) Guard strategies. If, for

all k 6 IN, Pk holds then, letting N* denote the mixed strategy which chooses

at random between the -/V,-'s, we can show that, for all / , E(I,N*) < f(n,w,X).

We shall return to this once we have verified the hypothesis. The fact that fi(T)

divides (k — 1)! is not, in fact, essential to the induction that follows. It is included

simply to give the reader some idea of an upper bound on the number of pure

Guard strategies required.

We consider first a graph F which belongs to Case C, and for which k — 3.

Label the three arcs of F as a, j3 and 7. We delete arc a and consider the game

Ta. Note that Fa must satisfy the conditions for Case B in section 7. Hence

there are wa pure Guard strategies, say A/f,..., M%a, which make up an optimal

strategy in Ta. By applying Lemma 5.7.8 to TQ, any pure Infiltrator strategy in

F a meets at least n - 1 of these Mf's.

We repeat this procedure with the games Tp and F7 . Thus we deduce the

existence of the pure Guard strategies Mi,...,M^ and M?,...,M^, which

make up his optimal strategies in the games F^ and F7 respectively. Therefore

there exist a total of wa + wp + w1 = 2w pure Guard strategies, say 7V1?..., N2w,

not necessarily distinct, which may be played in F. We show that these strategies

satisfy the conditions of the hypothesis Pk when k = 3.

First note that we have /x(F) = 2, and so, since k = 3, fi(T)\(k - 1)!. Now

we must check that the other condition of the inductive hypothesis is satisfied.

LJ
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If we let / be any pure Infiltrator strategy, then, relabelling the arcs if necessary,

we may assume that / uses arc a. Then, by the same argument as used above,

we deduce that / meets at least n — 1 of the M^'s and at least n — 1 of the
1

Mf's, giving a total of at least 2(n - 1) of the JV,-'s, thus ensuring the inductive

hypothesis is satisfied. Therefore, for k = 3, Pk does hold and /z(F) = 2 .

Now assume that, for some K > 3, PK holds. Then consider the proposition

PK+I- Therefore we we take a game F, belonging to Case C, and which is played

on K + 1 arcs. Let a be an arc of F, and look at the game F a . This is a game

which is played on K arcs. Since wa > n, Ta belongs to either Case B or to Case

C.

If Ta belongs to Case B, then there exist the wa pure Guard strategies

given by applying Definition 5.7.2 and Definition 5.7.5 to the game FQ, such that, : I

by Lemma 5.7.8, every pure Infiltrator strategy in F a meets at least n — 1 of the

Mfs. If, on the other hand, F a belongs to Case C, then since Ta has K arcs

and as we are assuming that Pk holds for k = K, we may immediately apply the

inductive hypothesis to Ta.

Hence, it follows that, in either case, there are wQ/.i.(Ta) not neccessarily dis-

tinct pure Guard strategies for FQ,

where fi(Ta)\(K — 1)!, and such that any pure Infiltrator strategy in F a meets,

counting multiplicities, at least fi(Ta)(n — 1) of the 7V"'s.

Note that these TVf's, originally defined as pure Guard strategies in the game

F a , may also be used in the full game F. Hence, corresponding to each arc a € A,

we have wa^(TQ) pure Guard strategies for F, where, for each a € A, fJ.(Ta)

divides {K - 1)1

Now let v denote the lowest common multiple of the /x(Fa)'s as a varies in A.

Note that v must also divide (K - 1)!. If, for all a G A, we count all of the TVf's

exactly i//fi(Ta) times, then altogether we have wfi(T) not necessarily distinct

pure Guard strategies for F, say

where

( ^ I = v E w° =
aeA
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and so /i(T) = vK, and hence //(]?) divides K\.

We check that these iV.'s satisfy PK+1. Let / be any pure strategy for the

Infiltrator. Recall that / uses precisely one arc to cross from base to target, and

denote this arc by 07. Note that 7, a pure strategy in the game F is also a pure

strategy in each of the games TQ, providing a ^ a/, and so we deduce from above

that, counting multiplicities, / meets at least ^ (i///x(ra))/x(ro)(ra - 1) =

t/K(n - 1) of the iV.'s.

Thus, we have shown that if, for some K > 3, PK holds, then PK+i also holds.

Therefore, since we have proved that P3 holds, it follows, by induction that Pk

holds for all k > 3.

Let N* be the mixed strategy for the Guard which choses the pure strategy

J with probability l/wfi(T) if J = jVj, . . . , NWfl^r), and with probability zero

otherwise. It then follows that, for all / ,

= - [ ( n
w

We can now conclude Case C.

Lemma 5.8.1 Let T belong to Case C. Then I* and N* are optimal strategies

for the Infiltrator and the Guard, and v(T) = f(n,w,\).

Proo f If F belongs to Case C then z = 0. Hence, from equation (5.4), / ( n , w, A) =

(1/w) [(n — 1)A + (w — n + 1)]. Now let (7, J) be any pair of pure strategies.

Then, from Lemma 5.5.1 and above E(I,N*) < f(n,w,\) < E{I\J). This

completes the proof.

NOTE: The reader may have observed that this induction need not have started

at k = 3. It has already been noted that, for k = 1 or 2, the set of games

belonging to Case C is in fact empty, and so Pk is satisfied vacuously. However,

by starting the induction from k = 3 and including the direct verification of P3,

insight is given into the process of constructing the iV.'s which would otherwise

have been lacking.
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5.9 The Solution

By considering Cases A, B and C we have completed our analysis of all non-trivial

games F. To bring our conclusions together, we make one final definition. ; '

Definition 5.9.1 Let T be a K-Arc Game. We define G*, a mixed strategy for

the Guard in T, as follows.

{ </* if F belongs to Case A,

M* if F belongs to Case B, '

N* if F belongs to Case C. ,

Theorem 5.9.2 Let F be a K-Arc Game. Then G* arid I* are optimal strategies

for the Guard and the Infiltrator respectively, and the value of the game is given

by v(T) - v(n,w,\). ' ;
P r o o f Follows directly from Lemmas 5.6.11, 5.7.9 and 5.8.1. '• I

We now draw attention to some of the consequences of this theorem. The first

point to be noted is that the value of the game, v(T), does not depend on the

exact form of the graph F. Of course, F must consist of k disjoint arcs joining VA

and VB, but the actual distribution of the vertices on the arcs is not of importance

to the value of the game. All games played on graphs consisting of k arcs and m

interior vertices, provided that there are between one and n — 1 interior vertices

on each arc, have the same value.

Consider also the situation where the number of interior vertices, m > 1, is

fixed although k may vary. It can be shown that v(T) is here minimised if k = 1

and maximised if k — m. These instances correspond to the two cases in which

the Guard can exploit his superior freedom of movement to the greatest and least

advantage respectively.

Now, for a fixed graph F, with k > 1, we consider what happens as the time

limit, n, becomes very large. In all of the cases considered earlier, the value tends

to A(l/fc) + (1 - l/k).

If the time limit is actually dispensed with, we must note that F is now an

infinite game. In this case an optimal strategy for the Guard is simply, at each

time, to choose at random an arc, and to occupy the first interior vertex on that

arc. An e-optimal strategy for the Infiltrator is to use the optimal strategy /* in

the finite game covered above when there is a time limit n(e), where

(m-fe)(l-A) , m
n ^ ^ + 7-
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The value of the infinite game is A(l/fc) + (1 - 1/Jfc) = 1 - (1 - A)/Jb.

Alpern [3] has generalised this result concerning infinite move games. He

shows, by invoking Menger's Theorem ([37], theorem 5.9), that for any finite • ']

connected graph with two vertices distinguished as the base and the target, the ;

infinite move infiltration game has a solution in mixed strategies. He shows that,

if k is interpreted as the number of elements in the smallest set which separates

the base and the target (sometimes known as the 'min cut'), then the value is

still equal to 1 — (1 — X)/k • ]

Finally, let us move from an arbitrary graph back to the simple line. Let

k = 1 and consider how the solution above compares to that of the Lalley Game

A*. If k = 1, then w = n — ma < n and hence the game belongs to Case A. In

fact, when k — 1, the optimal strategies /* and J* correspond precisely to the J

strategies X and Y given by Lalley. Unfortunately, the different approaches used

obscure this correspondence. We show, however, that both solutions yield the

same value.

When F consists of only one arc a, then as w = n — ma, we deduce that

v{T) = )
n — ma J \ n — m

Xz

— maj \ n — mc

where y = n — 1 — z(n — m a) , or equivalently ma — 1 = (z — l)(n — ma) + y.

Now observe that, to compare the K-Arc Game when there is a single arc

with the Lalley Game, we have to relate the notation by noting that ma = p — 1,

and as p — 2 = q(n — p + 1) + r, then y = r and z = q + 1. Thus, in the notation

of section 2, we see that v(Y) is equal to

[ / i) [
\n + p-lj V n-p

which is precisely the value of the Lalley Game when u = 1.

This equality is somewhat surprising. The K-Arc Game has a Guard with no

speed restriction. The Lalley Game with u = 1 has a Guard who is no faster

than the Infiltrator. Yet, when k = 1 the values of these games are the same.

When the players are playing on just the single arc, the Guard's speed advantage

is of no use to him at all. In fact we deduced this earlier when we noted that in

Lalley's solution there is no point at which the Infiltrator exploits his opponent's

speed restriction. The alternative solution we have found here gives independent

confirmation of this.



C h a p t e r 6

S L O W G U A R D D E T E C T I O N

6.1 Introduction

We now consider the game F*, n < oo. By constructing a mixed Guard strategy

7* G Qn we obtain an upper bound on the value of the game which, providing

p > 3, is independent of p. Moreover, by constructing a mixed Infiltrator strategy

i* £ Tn we show that, when the speed of the Guard u = 1, then for certain values

of the parameters A and n, this upper bound is equal to the value.

Later we consider an example which shows what happens when the conditions

mentioned above no longer hold and the value is strictly less than our upper

bound.

Throughout this chapter it is to be assumed that u = 1.

6.2 An Upper Bound for the Value

We assume that n > 3, and that 3 < p < oo. Other than this we are not

presently interested in their values. It is unimportant whether n < p, or n > p.

We construct a mixed Guard strategy for the game F*.

Definition 6.2.1 Let n > 3 and 3 < p < oo.

(i) For j = 0 , . . . , n — 1, the pure Guard strategy /iJ £ Gn is given by

1,1,2,2, ,2 ifj = O,

1,2,2,2, ,2 ifj = n-l,

1,2,2,... , 2 , 1 , . . . , 1 otherwise,

j terms

85
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(ii) The vector q = (qQ,..., qn_t) is given

1 j = 0,
1 + A j = \,

. < (1 + A) '-1 - A j = n - l ,

n - 2

where An = + A)r.
r=0

n - 1

Since AnJ2 Qj = 1 + (1 + A) + (1 + A)1 + • • • + (1 + A)"~2 - A = An, it follows

that q is a probability vector.

(in) The mixed strategy 7* £ Qn is given by

qj if there exists j such that g = /iJ,

0 otherwise.

As we shall need to refer to this information easily we illustrate 7* by means

of the table below.

(2<9

n

n

j

0

1

2

3

9

<

—

n

2

1

- 2 )

1,

1,

1,

1,

1,

1,

1,

1,

2,

2,

2,

2 ,

9

2 ,

2,

hi

2 , 2 , . . .

1 , 1 , . . .

2 , 1 , 1 , . . .

2 , 2 , 1 , 1 , . . .

2 , . . . , 2 , 1 , 1 , . . . '

terms

2 , . . .

2 , . . .

. . . , 2

. . . , 1

. . . , 1

. . . , 1

. . . , 1

. . 2 1

. . . , 2

Jxyi /N 1/ T

1

1 + A

(1 + A)1

(1 + A)2

(1 + A)'-'

(1 + A)"-3

(1 + A ) " - 2 - A

Before continuing let us explain a piece of notation. Let s be a sequence

with n terms. I f l < 9 < n — 1, then it is conventional that the notation
9 terms

s = sx,.. ' . ,5i", 5 2 , . . . means that the first 9 terms are equal to S\, the next term is

52 and the other terms can be anything. When 9 = n — 1 there are no other terms.
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Similarly, \i 9 = n the above notation simply denotes the constant sequence
• S i , . . . , s i .

Remember that we are interested in the game F*, 3 < n < oo. Let us think
about the Infiltrator's strategies in this game if it is assumed that the Guard
plays strategy 7*. Under 7" the Guard is always to be found at either state one
or state two. Therefore, if the Infiltrator ever moves to state two, it is best for
him to immediately move on and never to return to state two. The best pure
strategies to play in reply to 7* are all of the form

0 terms
a: = 1 ,1 , . . . , 1,2,3, . . . , where 1 < 0 < n, and, if t > 6 + 1, xt > 2.

Let us suppose Xn C In is the set of all pure strategies of this form.

Lemma 6.2.2 For all n > 3, 3 < p < 00 and x <E Xn,

Proo f Let x 6 Xn. By definition of 7*, we can decompose the payoff as

i=o
= £ qj

j=o

9 terms

Now as x = 1 , 1 , . . . , 1,2,3,... as above, then we consider separately the cases

0 = 1, 2 < $ < n - 1, and 0 = n. If 9 = 1, x = 1,2,3,. . . , so w n ( i , hj), the

number of meetings between x and hj, is 1 if j = 0, and 2 otherwise. Therefore

A + A2
n - l

If 2 < 0 < n- 1, then

u>n(x, h3) =

3 j = 0,
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and so

9-1

3=2

n - 1

j=e
0 - 1

= A3 + X6-1 + A" + A6"1

- A 3

3=2

= A3 + Xs-1 +Xe + X6-1 (-

6-2

A

= A3 + A5-1 + A9 + A(l + A)9-1 - A9-1 (1 + A) + A(l + A)""1

- A(l + A)*"1 - A3

Finally, if 9 = n, then u>(x, h>) = 2 if j = 0, and 7z — j otherwise. Therefore

An7rn(x,*y*)

= A2 + A"-a(l + A) + £ An-''(1 + A)^-1 + A [(1 + A)n"2 - A]
3=2

2 + A""1 + An + A""1= A2 + A""1 + An + A A)"-2-A

^ A ^ A T A T y i

j=2 V A /

( 1

i

A J ( I ± A ) - 1

= A2 + A71"1 + A" + A2(l + A)71"2 - A " - 1 ^ + A) + A(l + A)"-2 - A2

= (A + A2)(l + A)""2

C o r o l l a r y 6.2.3 For all 3 < p < oo and n >3,vn<
An

Proof We noted above that any best reply to 7* which is pure must be contained in

Xn. Thus, from the previous Lemma, for all i e In, Anvn(i,i*) < A(l + A)"-1

and soun < X{1 + X)"'1/An.
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6.3 An Equalising Strategy

We shall now construct a mixed strategy C which equalises against / i ° , . . . , /i""1.

That is, for all 0 < j < n - 1, AnTrn(i*,hj) = A(l + A)""1. In addition i* gives

the same payoff against any Guard strategy that never moves beyond state two.

In the particular case that A(l + A)n~2 < 1, such strategies are the best replies

against t*, and i* and 7* are then optimal.

Definition 6.3.1 Let n < 00 and 2 < p < 00.

(i) For j = 1 , . . . ,n the jth. wait-and-run strategy, tw-3 G In, is the sequence

j terms

(ii) The vector p = (pi,... ,pn) is given by

( 1 + A ) 7 1 - ^ - 1 1 < j < n - l ,

n-2

where An = 1 + ^ ( 1 + A)r.
r=0

n

Observe that v ln^P i = 1 + 1 + (1 + A)1 + h (1 + A)"~2 = An, and so p

is a probability vector.

m,) TAe mixed strategy 1* G Jn is defined by

J Pi if there exists j such that i = *uJ,
t, {ij — < _

I 0 otherwise.

Note that, for n — p + 1 < j < n, u;-7 does not make it to the target. These

strategies would be no good in the target game but are useful here because the
n

Infiltrator does not have to reach the target. As n —•* 00, ^ J Pj ~* 0 a n d so
j=n-p+2

these strategies become increasingly less important. We illustrate C by means of

the table on the following page.

Let us now consider the Guard's best replies to C. There must be a best reply

which is pure so we shall concentrate on how different members of Gn perform

against 1*. We observe immediately that, if g € Gn is a best reply then, as the
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Infiltrator is known to start at state one, gx = 1. Now consider the situation if

we take a Guard strategy which only ever visits states one and two.

j

1

2

9

(1 < 9 < n - 1)

n

1 , 2 , 3 , . . . , p , p , . . . . . . , p

1 , 1 , 2 , 3 , . . . , p , p , , p

1 , 1 , . . . , 1 , 2 , 3 , . . . • • - , £

5 t e r m s

1 , 1 , . - . , 1 , 2

1 , 1 , • • • , !

A y Tl'

(1 + A)"-2

(1 + A)"-3

(1 + A)"-*"1

1

1

Lemma 6.3.2 If g e Gn satisfies gx = 1 and, for all 2 < t < n, gt = 1 or 2,

Proo f We shall use two approaches here according to whether g ends at state

one or state two. If gn — 1, then by a sequence of identical steps we find

that, against i*. g gives the same payoff as the strategy 1 , 1 , . . . , 1. Similarly, if

gn = 2, g gives the same payoff as the strategy 1, 2 , 2 , . . . , 2. Our first step is

to show that these two strategies both give a payoff of A(l + A)""1 /An against

i*.

Let h71'1 = 1,2, 2 , . . . , 2 (note this is consistent with how hn~l was given earlier

in Definition 6.2.1). The payoff 7rn(i*, h
n~l) depends upon how many times

hn~l meets each of the wait-and-run strategies iw1 , . . . , wn. Clearly hn~l meets

all of them once at state one and then each of to 1 , . . . , wn~x a second time at

state two. Therefore

= A2 (1 + A ) n - 2 + (1 + A ) n - 3 + .-. + l ] + A
"(l + A)-1-!! , ,

L (1 + A) - 1

Similarly if hn = 1 , 1 , . . . , 1. then for 1 < j < n, wB(to'', hn) = j. Therefore
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, n - 1 1

n - l
I - A )

Now suppose that g G Gn is any Guard strategy which satisfies gx = I, gn =2

and, for all 1 < t < n, gt < 2. There must exist a last time r at which g is

at state one. Note that 1 < r < n — 1. If r = 1, then g = / i " " 1 , so suppose

that r > 2. Representing the path of g during the period [r, n] by bullets • we

illustrate this in the diagram below. Note that the diagonal arrows represent

the paths of some of the wait-and-run strategies.

state
n - l

time

Now compare to this the strategy h £ Gn which is the same as g except

that hr = 2. The path of h is represented by circles o in the diagram above.

Comparing how many times g and h meet the different wait-and-run strategies

observe that, although h meets wr~1 once more than does g, because of spend-

ing one time unit less at state one, it meets each of u / , u / + 1 , . . . , wn once less.

Therefore

un{w\g) - 1 r <j <n.

Moreover if up to time r — 1, g visits state one on (j> occasions, then

= n.
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Therefore

= An2^P:
3=1

-+0-A-)
n - 1

-f A)"-^-1

+ (l-A-)

= (l-A)A*

= (l-A)A'

= 0.

n-r-l

r--A E'
j=0

(1 + A)n- r - A-
(1 + A) - 1

- I I

Thus by repeated application of this step we deduce that for any g which

starts at state one and ends at state two, AnTrn(i*,g) — Anirn(t*, / i""1) =

A(l + A)""1 , where ^ n - 1 is the Guard strategy which moves immediately to

state two and then stays there.

Now suppose that g G Gn is any Guard strategy which satisfies gi = 1, gn = 1

and, for all 1 < t < n, gt < 2. If g never visits state two then g = hn. Suppose

that it does and hence there is a last time r such that gT = 2. Observe that

2 < r < n — 1. The path of g during the period [r, n] is represented by bullets

on the diagram below.

state

time

Compare with this the strategy h € Gn which is the same as g except that

hT = 1. The path of h is represented by circles. Observe that here

= { Un{w\g) - 1 J = r - 1,
un(w\g) + 1 r < j <n.
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Moreover, if, up to time r - 1, g visits state one on <f> occasions then

<f> + (j — r) r < j <n.

Therefore

n \^n{l*,g) ~ 7Tn(i*,/l)]
n

= An J2 Pj

"1- A

= (l-A)A'

= (l-A)A*

= 0.

n - 1
- A)

n - l

-(1 + A)— + (1 + A)—1 E ( J-
J=T

+ A7W

- ( 1 + X)n~r + (1 + A)r
( , \n—r

1+^/ i \n—r

Thus, by repeated application of this step we deduce that for any g which starts

and ends at state one, Anxn(L*,g) = AnTrn(i,*, h
n) = A(l + A)""1 , where hn is

the pure Guard strategy which always stays at state one. This completes the

proof.

We have shown that all Guard strategies which start at state one and then

move only between states one and two yield the same payoff against i*. We shall

now see that if A satisfies A(l + A)n~2 < 1, these are the only pure strategies

which are best replies to i*. Recall again that for any g £ Gn to be a best reply

it must at least satisfy gx = 1.

Lemma 6.3.3 Let A satisfy A(l + A)n~2 < 1. Let g € Gn, 5-1 = 1 and suppose

there exists 3 < t < n such that gt > 3. Then there exists h £ Gn such that

hi — I, for all t, ht = 1 or 2, and Trn(t*,g) — 7Tn(i*, h) > 0.

Proof Suppose g € Gn is a strategy which moves beyond state two. There are two

steps which we use to gradually improve g and eventually arrive at the strategy

h required. Considering the path of g drawn with bullets on the diagram below,
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the first step flattens the bumps in the path and the second reduces the slope

of the final ascent. The improved path h is represented by the circles.

state

two

one

time

1 2 n — 1 n

First suppose the Guard strategy g moves beyond state two towards the target,

but at some time later takes a backward step.

Thus, there exist 2 < 6 < p — 1 and 6 + 1 < r < s < n such that in the period

[r — 1, s], the path of g is given by

9t =
9 * = r - l ,

6 -f 1 otherwise.

Now compare this with the strategy h which is the same as g except that, for

r < t < s — 1, ht = 6. The paths of g and h, in the interval [r — 1,5], are

represented on the diagram below by the bullets and circles respectively.

state

time

r — 1 r
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It is obvious that, for j outside the interval [r — 6,s — 9], g and h meet the

path of strategy u>J at precisely the same times. In fact, we deduce that

( Uniw^g)-! j - r - 9 ,

ujn(w
j,g) + l j = 3-6,

un{w\g) otherwise.

Finally we note that if, before time r, the strategy g spends <j> units of time at

state one, then un{w
r~e,g) > (f> + 2 whereas un{w

s~e, g) = (f>.

So, comparing how g and h perform against i* we see that

n-s+B-lA)

a s r > 3 and s<n,

> 0 since A(l+A)"- 3 < A(l+A)"- 2 < 1.

Secondly, suppose that the Guard strategy g makes a move beyond state two

towards the target but this time never subsequently takes a backward step.

Thus gn — 9, where 9 > 3. Moreover there exists a time r, 9 < r < n at which

g first arrives at state 9.

Thus, in the period [r — l ,n ] ,

' 9 - 1 t = r - l ,

state

9t =
9 : otherwise.

wr-e+1wr-8+2 n-6+2

time
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In the diagram above the path of g is represented by the bullets. Now compare

g with the strategy h which is the same as g except that, for r < t < n,

ht = 6 — 1. The path of h is represented by circles. Considering the times at

which g and h meet the wait-and-run strategies we deduce that

f un(w>,g)-l j = r - 0 + l ,

un(w
j,h) = J un(wi,g) + l j = n-9 + 2,

[ u>n(wi,g) otherwise.

Moreover, if the strategy g spends precisely (j> units of time at state one, then

u>n(w
T-e+1, g) > </> + 2 whereas un(w

n-8+2, g) = <f>. Therefore

*-3— l j \ ^"H^ /1 _i \ \w—T-\-0—2 î  (i \ "\ \ ^* ̂  1 _L W
I / \ I I ~p / \ 1 ~T" I I — / \ I/\ 11 |~ /A I

= (1 - A)A*(1 + A)5"3 [-A(l + A)n-r+1 + l]

> (1 — A)A (1 + A) ~~ —A(l + A)n~ + 1 as r > 6 > 3,

> 0 as A(l + A)"-2 < 1.

Finally suppose that g is any pure Guard strategy which starts at state one but

subsequently moves beyond state two. Repeated application of the two steps

above produces a strategy h 6 Gn such that h\ — 1, for all t, ht = 1 or 2, and

Theorem 6.3.4 Let n > 3, 3 < p < oo and A(l + A)"-2 < 1. Then t* and 7*

are optimal in Tn and vn = A(l + A)n~a/yln.

Proo f Follows immediately from Lemmas 6.2.2, 6.3.2 and 6.3.3.

6.4 When Wait-and-Run is Not Good Enough

Ifn = 3, 3 < p < o o and u = 1, the game F* is represented by the matrix below,

with the rows and columns representing the pure strategies for the Infiltrator

and the Guard respectively (only non-dominating Guard strategies are included).

Note that entry 1,2,3* is available to the Guard if and only if p > 3.
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1,2,3

1,2,2
1,2,1

1,1,2

1,1,1

1,2,3*

A3

A2

A2

A
A

1,2,2

A2

A3

A2

A2

A

1,2,1

A2

A2

A3

A
A2

1,1,2

A
A2

A
A3

A2

1,1,1

A
A
A2

A2

A3

From above, if A(l + A) < 1, then the probability distributions i* = (1 +
A,0,0,1,1)/A3 and 7* = (0,1,1 + A, 1, 0)/A3 are optimal for the Infiltrator and
Guard respectively, and v3 = A(l + A)2/' A3. This could be checked on the matrix
above. Now let us consider what happens when A(l + A) > 1.

If p = 3 and A(l + A) > 1, then t* and 7* are still optimal. Again this can be
checked manually above. It is, in fact, a consequence of Lemma 6.3.2, since the
Guard can only move between states one and two.

However, if p > 3 and A(l + A) > 1 the solution is different. There is a strategy
for both players which is an equalising strategy. Let

i = 7 = ( l - 2 a - 2 / ? , a , <*,£,/?)

where a = (A2 + A - 1)/(5A2 + 8A - 1) and 0 = (A2 + 2A)/(5A2 + 8A - 1). Then
it can be verified above that, for all (i,g) G/3X G3, ^3(2,7) = 7^(4,7) = 7(3(1,g),
and thus

, (A5 + 4A4 + 5A3 + 2A2)
7) = (5A2 + 8A-1) •

For all A > [yfl - l ) /2 « 0.618, A(l + A) > 1 and it can be shown that,
as given above, v3 < A(l + X)2/A3. Hence 7*, as defined in section 2, is no
longer optimal for the Guard. Also the equalizing strategy given above involves
the Infiltrator playing more than just wait-and-run strategies. In fact, if he is
restricted to only probability distributions over the set of wait-and-run strategies,
it is the strategy (2 + A, 0,0,1 + A, l + A)/(4 + 3A) which is optimal for both players.
The value v3 of this restricted game is (2A + 2A2 + 2A3 + A4)/(4 + 3A). For all
A such that A(l + A) > 1, v3 < v3. Therefore in the original, unrestricted game
it is not optimal for the Infiltrator to use only probability distributions over the
wait-and-run strategies.

When the Infiltrator can restrict his attention to wait-and-run strategies he
is dealing with a subset of his strategies which can be easily ordered. It seems
unsurprising that in some of these cases optimal strategies can be found which
follow some sort of pattern. One example of this has been given in this chapter.
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6.5 One More Detection Game

The previous sections can be used in one more way. Observe that if A — 0 then

the condition A(l + A)n~2 < 1 is satisfied for all n > 2. This corresponds to

the game in which the probability of a miss is zero. In this case, as the Guard

may immediately detect the Infiltrator at state one, the value of all target and

detection games is zero.

But what if the Guard is unable to make this initial detection? We consider

the game which is identical to the slow Guard detection game except that the

Infiltrator cannot be detected until time 2. We shall show that, provided A

satisfies A(l + A)n~2 < 1, the mixed strategies t* and 7* are still optimal and the

value of this game is (1 + \)n~l/An.

Repeating the order in which we approached the original problem, consider

the Guard first. Define the mixed strategy 7* according to Definition 6.2.1. Note

that again the best replies to 7* are all contained in Xn and that the equivalent

to Lemma 6.2.2 is that against 7*, for all x G Xn, the payoff is (1 + A)n~1/An

(Note the absence of the multiplier A which corresponded to the probability of a

miss at time 1).

Now consider again the Infiltrator strategy 1* as given by Definition 6.3.1. We

need no longer assume that a best reply to 1* must start at state one. However, as

at time 2 the Guard should be at either state one or two, we can follow through

the proof of Lemma 6.3.2. We deduce that for all g £ Gn which satisfies gt = 1 or

2 for 2 < t < n, the payoff against t* is (1 + \)n~^ / An. Finally we must consider

how 1* performs against any g G Gn. From above we can assume that g2 = 1 o r

2. Following the proof of Lemma 6.3.3 we deduce that providing A(l + A)n~2 < 1,

the best replies to 1* which are pure are all of the type described above. This

completes the proof that in this amended game when A(l + A)n~2 < 1, L* and 7*

are still optimal and the value is (1 + A)""1 / 'An.

In particular this gives the solution to the game when A = 0. This is non-

trivial and the value is l /n . In this case the optimal strategies t* and 7* involve

the players choosing randomly between their respective sets of n pure strategies.

Finally, this adapted game with A = 0 can also be studied when there is a fast

Guard. It seems likely that, providing n and p are not too small, the Guard can

ensure a payoff lower then l /n . However the solutions to these games are more

complex. For example, consider the adapted game when A = 0, n — 4 and p > 4.

Note that the Guard might as well start from state one. Moreover if at
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time 2 he searches state two there is no point in him searching state three

next time. Omitting these and other dominating pure strategies for the Guard,

the game matrix is given below. The value of this game is ^ . An optimal

strategy for the Infiltrator is (2,0,1,2,1,0,1,2,2,2,2,4,4)/23 and for the Guard

(0,1,2, 0, 0,1,0,2,2,1,0,2,2,2,4,4)/23. Of course ± < \.

1,2,3,4
1,2,3,3
1,2,3,2
1,2,2,3
1,2,2,2
1,2,2,1
1,2,1,2
1,2,1,1
1,1,2,3
1,1,2,2
1,1,2,1
1,1,1,2
1,1,1,1

1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0

1
1
1
2
1
1
0
1
0
1

0
0
0
0
0
0
0

1
1
1
3
1
0
1
0
1
1
0
0
0
0
0
0
0

1
1
1
4
0
1
1
1
1
1

0
0
0
0
0
0
0

1
1
2
1
1
1
1
0
0
0
1
0
0
0
0
0
0

1
1
2
2
1
1
0
0
0
0
0
1
0
0
0
0
0

1
1
2
3
1
0
1
0
0
0
1
1
0
0
0
0
0

1
1
2
4
0
1
1
0
0
0
1
1
0
0
0
0
0

1
1
3
1
0
0
0
1
1
0
1
0
0
0
0
0
0

1
1
3
2
0
0
0
1
0
1
0
1
0
0
0
0
0

1
1
3
3
0
0
0
0
1
1

1
1
0
0
0
0
0

1
2
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0

1
2
1
2
0
0
0
0
0
0
0
0
1
0
1
0
0

1
2
1
3
0
0
0
0
0
0
0
0
0
1
1
0
0

1
2
2
1
0
0
0
0
0
0
0
0
0
0
0
1
0

1
2
2
2
0
0
0
0
0
0
0
0
0
0
0
0
1

Jj
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C O N C L U S I O N S

7.1 Recapitulation

In this final chapter we discuss possible extensions of this work on discrete prob-

lems of infiltration. We consider some further conclusions which can be drawn

from the present work, and some areas for further research. First, however, we

recap on the results we have found so far.

In Chapters 2,3,4 and 6 we have concentrated on particular discrete infil-

tration games which are played on the line. In Chapter 2 we defined infinite

games in which there was no restriction on the number of moves made by the

players. We considered two payoffs, the probability of reaching the target and

the probability of remaining undetected. Thus, we started with two basic games

— a target game and a detection game. Theorem 2.7.3 showed that both of these

games have solutions in terms of mixed strategies. Moreover, it was also shown

that in each game, at least one of the playets has an optimal strategy.

In Chapter 3 we considered an alternative approach to the games defined the

chapter before. We denned two further sets of games in which there is a limit

on the number of moves. As these games are finite they were known to possess

mixed strategy solutions. By considering the properties of these games as the

time limit tends to infinity, we deduced information about the original infinite

games. Hence, in Theorem 3.4.4, we deduced that the infinite target game and

the infinite detection game have the same value. We also showed that e-optimal

strategies for these games could be obtained from optimal strategies for the finite

games.

In Chapters 4 and 6 we attempted to illustrate some of the features of solutions

100
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to certain finite and infinite games. In particular, in Chapter 4, we found that,

in some infinite detection games, there does not exist an optimal mixed strategy

for the Guard. Also, providing the number of states is at least three and the

probability of detection is less than one, the value of a finite target game is strictly

less than that of the finite detection game with the same time limit. It was also

demonstrated how important are the speed of the Guard, u, and the probability

of a miss, A. The form of the solutions could change considerably at certain

threshold values of these parameters. In this chapter wait-and-run strategies were

also encountered for the first time. We found that, while these pure strategies

play an important role in many optimal strategies for the Infiltrator, sometimes

other pure strategies are also required. In Chapter 6 we gave a partial solution

for finite detection games.

In Chapter 5 we considered an adaptation of the discrete infiltration problems. ' j

A safe point was introduced from which the Infiltrator then started. In this J !i

case it only made sense to consider the probability of reaching the target. In

a detection game the Infiltrator could just stay put forever. Discussing Lalley's

work in this area, we extended his conclusions and solved a generalisation of the

problem on k > 1 discrete arcs. It was illustrated that the addition of a safe base

considerably simplified the problem on the line. For example, the Guard's speed

no longer affects the value. It is of no use to him to have any speed advantage

over the Infiltrator. Moreover, in these safe base games, we also demonstrated

the sufficiency for the Infiltrator of mixed strategies which are composed only of

wait-and-run strategies.

7.2 Generalisations

There are clearly many directions in which generalisations could be made. We

shall concentrate on some of those in which both time and space remain discrete,

and in which the players gain no useful information about one another's moves.

As mentioned in the introduction, to change these assumptions would lead us

into a completely different set of problems, some of which were discussed there.

We are going to briefly discuss some extensions that can be made in the following

areas of the problem: the playing space, the detection probability, and the initial

conditions.

We have concentrated upon the discrete line. Although in Chapter 5 we have

looked at a safe base game on several arcs, this is the only time on which we
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have moved away from the linear problems. There are several reasons for this.

Perhaps the most influential has been the richness of this apparently simple set

of problems. We have had a desire to find the values for some of these games and

get at least some idea of what optimal or e-optimal strategies would look like.

Hence the solutions given in Chapter 4 and Chapter 6 are tailored particularly to

these linear problems. Another reason for looking so closely at the line has been

to keep things as simple as possible. At times our notation has been cumbersome

enough. It was felt that to present the basic ideas of Chapter 2 and Chapter 3

any more generally would only have made matters worse.

However, it does seem likely that these basic ideas can be appropriated for

a wider range of discrete search problems. Consider the following infinite move

situation. Let P be any finite set of states. For every state v G P, let P j be

the set of states to which the Infiltrator can move from state v, and P^ the

analogous set for the Guard. A pure strategy for the Infiltrator could be defined

as an infinite sequence [iT) £ P°° which satisfies, for all r > 1, iT+\ € P/r, and

some other conditions relating to starting position and rules about reaching the

target. Likewise for the Guard. The Infiltrator could start at any distinguished

state, and have a general set S of target states. The details are not in themselves

important, although, as we have seen, it takes very little to affect the compactness

of a strategy space. Suppose that it were possible to define a pair of compact

strategy spaces and an appropriate semicontinuous payoff function. It would then

follow from Glicksberg [34] or Alpern and Gal [2] that this game had a solution in

mixed strategies. More importantly, we could introduce a time limit and consider

the 'finite version' of this game. It seems probable that, as was found for the linear

games in Chapter 3, optimal or e-optimal strategies for the infinite game could

then be constructed out of solutions to the finite game. If this were so, Theorem

3.3.8 (voo — uiim) would also have its analogue in a more general discrete game.

What happens when the set of states is infinite? In particular, let us consider

this in the light of the games we introduced in Chapters 2 and 3. When p = oo

it clearly makes no sense to talk about a target game, so we need only consider

the detection games F ^ and Fn , n < oo. When p = oo, it can be shown that

the space (/OO,GQ is still compact, and, if we assume that for all g G Goo and

all r, gT < r, then so too is (Goo,d). As n ^ is upper semicontinuous on I x G

(the topological product of (/oo,c?) and (Goo,d)), we deduce from Glicksberg's

Theorem that the extended game F ^ has a solution and there is an optimal

strategy for the Infiltrator.
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If the speed of the Guard u = 1 then we do not know the value of this infinite
state game. However, if u > 2, then the value is zero. The Guard strategy below
ensures that the payoff is zero no matter what the Infiltrator does. The crucial
factor here is that wherever the Infiltrator is, the Guard can always be sure of
'overtaking' him within a finite amount of time. At time 1 the Guard knows
that his opponent must be at state one and so he also moves there. There is a
probability fi that detection occurs immediately. At time 2 the Infiltrator may
be either at state one or state two, and the Guard chooses one of these states
at random. Thus, after time 2 the probability that the Infiltrator has not been
detected is precisely (1 — fi)(l — (J./2). Whichever state the Guard moved to at
time 2, at time 3 he can still move to state three, which he does. Let t\ = 3.
From here on the Guard chooses his moves according to the following rule.

Suppose that at time tj, j > 1, the Guard is at state tj. Therefore he can
be sure that the Infiltrator is not any further from state one than he is. He then
retraces his steps to state one, choosing at random one of the paths tj, tj — 1, tj —
2 , . . . , 2,1 and tj — 1, t3; — 2 , . . . , 2,1,1 each of which takes tj moves. Assuming
that the Infiltrator was not detected before time tj then, during the period [tj, 2tj]
he must meet at least one of the above paths. Thus the probability of detection
during this period is at least | / i . The Guard then moves out to state tj+i where
tj+i — Atj — 1, moving two states forward on each move. Hence he arrives at
state tj+i at precisely time 2tj + ;~2 = tj+i- He then repeats the manouevre,
retracing his steps again, choosing at random between the paths tj+i,tj+\ —
1, . . . , 2,1 and £j+1 — 1, . . . , 2,1,1. Assuming that the Infiltrator was not detected
before time fj+i, there is again a probability of at least |/x that he is detected
during the period [tj+i,2tj+i]. If the Guard continues in this way, by time tn,
n £ IN, the probability that the Infiltrator is still undetected is at most (1 —
fi) (l — £) . As n —> oo this tends to zero for all 0 < fi < 1. Therefore detection
is guaranteed with proability one. The value of the game is zero.

For other problems with an infinite set of states, it is unclear whether similar
detection games are sure to have solutions. The infinite state problem is certainly
an interesting one. In the context of evasion it can be related to the problem in
which an evader is attempting to escape from some region. He may either try to
leave the region by using known escape routes, or he can try and lose himself in
the interior. If the region is a large one, it may be appropriate to consider there
to be an infinite number of states among which he can move.

The comments we have made concerning the playing space could be repeated
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in the context of both the detection probability and the initial conditions. The
technique of studying the limiting behaviour of a sequence of finite games seems
quite robust. We make a few comments about the detection probability before
discussing more thoroughly the initial conditions.

We have assumed throughout that there is a constant probability of detection
H, 0 < n < 1. It is also possible to make fi depend on the state, the time, and
even the past history of the game (so that, for instance, the second time that
the Guard looks in a particular state he does so more carefully). Another idea
is that the Infiltrator could be detected with positive probability even when the
Guard is in another state. In this way, the continuous notion of an exponential
detection function could be discretized.

Finally we come to the question of the initial conditions. By this we mean
the position of the two players at the start of play. We have assumed that the
Infiltrator starts at some known state, whereas the Guard can choose his starting
state. However, as we have also assumed that, except in the safe base games, the
Guard can start in the same state as the Infiltrator, and so the Guard can always
play in such a way that there is a probability of fi that the Infiltrator is detected
immediately. Both of these assumptions may be questioned.

In particular, it seems interesting to suggest the following generalisation. Sup-
pose that there is a time period T, T > 0, at the beginning of the game, during
which the Infiltrator is undetectable. Thus, if T > 0, he has some time in which
to 'get himself lost'. Of course this problem is covered by the general detection
function that we suggested above. But let us suppose that, after time T the
detection probability is again constant, so the problem is only a relatively slight
generalisation of that which we have studied. If T — 0, this is the original game.

We can deduce the solution for T = 1. This corresponds to the situation in
which the Guard can no longer have an attempt at detecting his opponent at
state one. It is clear that optimal and e-optimal mixed strategies for the original
game are also optimal and e-optimal here. However, the values of all the games,
finite or infinite, detection or target, are increased by a factor of I/A. This is
because the probability of the Infiltrator surviving beyond the first move of the
game is now one instead of A, and otherwise all the probabilities are the same. If
T > 2 then the solution has no such simple relationship to the original problem.
For from the second move onwards, the Infiltrator can start to lose himself among
the states.

Alternatively, the Guard could be assumed to start from a given state away
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from the start of the Infiltrator. This would again give the Infiltrator some chance
to 'get lost' before the Guard is within range.

Our final point concerns what we describe as the 'computability' of the so-
lutions. One of our main aims has been to demonstrate the use of the finite
approximations to Search Games that are obtained by imposing a time limit on
play. The strength of this technique is that optimal mixed strategies are known
to exist for all finite games. However, for this to be practically useful, it must be
feasible to calculate the solutions to these finite games.

In theory, a finite game can be solved using a computer. In practice however,
if the number of pure strategies is too large, we are told this is still infeasible.
We are unqualified to give any opinions on this question. The point we can make
is that the pure strategy sets can sometimes be substantially reduced without
changing the value of the game. For instance, we have discussed the importance j
to the Infiltrator of the pure strategies known as wait-and-run strategies. We "«
have seen that, in the solution given for finite detection games in Chapter 6,
the Infiltrator could here restrict himself to mixed strategies over only the wait-
and-run strategies, rather than over the whole of In. A general question to ask is
this. In what circumstances can a restriction like this (to wait-and-run strategies,
or any other subset of the pure strategy sets) be made? Note also that, in
the infinite games, by considering only wait-and-run strategies, the set of pure
strategies is brought down to a countable number. If the pure Guard strategies
could be similarly restricted, then these problems could be studied as infinite
matrix games.

7.3 In Conclusion

In conclusion then we present this work as a small contribution to the theory of
Search Games. We have given a complete solution (the value and two optimal
or e-optimal strategies) to a few games of infiltration, most significantly the safe
base games of Chapter 5. But there is also included here a collection of more
general theorems and observations. Although these are based around the discrete
infiltration problem originally suggested by Gal, it is hoped that some of these
ideas and conclusions may prove fruitful in stimulating and directing further
research in other kinds of discrete search problems.
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