The University of Southampton
University of Southampton Institutional Repository

Computational fluid dynamic investigation of hull-waterjet flow interaction

Computational fluid dynamic investigation of hull-waterjet flow interaction
Computational fluid dynamic investigation of hull-waterjet flow interaction
A comparison of reliable experimental data with the prediction of a Computational Fluid Dynamics (CFD) package for the flow over and through the upstream hull and inlet duct of a water-jet geometry has been carried out. The flow solver algorithm used is based on the incompressible, three-dimensional Reynolds averaged Navier-Stokes equations for turbulent flow with a k-ε turbulence model. A detailed series of wind tunnel tests of a representative water-jet geometry have been carried out for a range of duct exit velocity to ship speed ratios. Detailed surface pressure measurements and velocity profiles within the duct were obtained. A multi-block grid generator was used to produce a computational mesh of the water-jet inlet duct and wind tunnel working section which represented the ship hull. Solutions were obtained for comparable conditions to those tested. It was found that both the surface pressure variations and velocity profiles along and around the duct were well predicted as was the influence of operating condition. The differences found were principally attributed to the lack of grid resolution for the boundary layers and in areas of rapidly changing curvature. The CFD working section was then changed for a flat plate surrounding the duct inlet. This model was used to study the influence of pitch and yaw on the pressure distributions along the duct and velocities at the impeller face place. The results were promising and the predicted trends were as expected. In addition, modelling the influence of a simple hull shape on the flow through the water-jet inlet has been investigated. The ability of the flow solver to obtain reasonably accurate solutions was demonstrated, allowing predictions to be made of the total force distribution on both the hull surface in the vicinity of the duct and on the inlet duct itself. It is concluded that it is possible to model the water-jet system at present and obtain practical design information. However, significant improvements are still required to the methods by which complex three-dimensional shapes are defined in order to allow rapid parametric studies.
102
University of Southampton
Hughes, A.W.
d76a9db7-7d90-4852-9b93-151e1f07e38f
Turnock, S.R.
d6442f5c-d9af-4fdb-8406-7c79a92b26ce
Hughes, A.W.
d76a9db7-7d90-4852-9b93-151e1f07e38f
Turnock, S.R.
d6442f5c-d9af-4fdb-8406-7c79a92b26ce

Hughes, A.W. and Turnock, S.R. (1997) Computational fluid dynamic investigation of hull-waterjet flow interaction (Ship Science Reports, 102) Southampton, UK. University of Southampton 58pp.

Record type: Monograph (Project Report)

Abstract

A comparison of reliable experimental data with the prediction of a Computational Fluid Dynamics (CFD) package for the flow over and through the upstream hull and inlet duct of a water-jet geometry has been carried out. The flow solver algorithm used is based on the incompressible, three-dimensional Reynolds averaged Navier-Stokes equations for turbulent flow with a k-ε turbulence model. A detailed series of wind tunnel tests of a representative water-jet geometry have been carried out for a range of duct exit velocity to ship speed ratios. Detailed surface pressure measurements and velocity profiles within the duct were obtained. A multi-block grid generator was used to produce a computational mesh of the water-jet inlet duct and wind tunnel working section which represented the ship hull. Solutions were obtained for comparable conditions to those tested. It was found that both the surface pressure variations and velocity profiles along and around the duct were well predicted as was the influence of operating condition. The differences found were principally attributed to the lack of grid resolution for the boundary layers and in areas of rapidly changing curvature. The CFD working section was then changed for a flat plate surrounding the duct inlet. This model was used to study the influence of pitch and yaw on the pressure distributions along the duct and velocities at the impeller face place. The results were promising and the predicted trends were as expected. In addition, modelling the influence of a simple hull shape on the flow through the water-jet inlet has been investigated. The ability of the flow solver to obtain reasonably accurate solutions was demonstrated, allowing predictions to be made of the total force distribution on both the hull surface in the vicinity of the duct and on the inlet duct itself. It is concluded that it is possible to model the water-jet system at present and obtain practical design information. However, significant improvements are still required to the methods by which complex three-dimensional shapes are defined in order to allow rapid parametric studies.

Text
102.pdf - Version of Record
Download (1MB)

More information

Published date: 1997

Identifiers

Local EPrints ID: 46066
URI: http://eprints.soton.ac.uk/id/eprint/46066
PURE UUID: 3574880d-53f5-49bf-953f-331488962f54
ORCID for S.R. Turnock: ORCID iD orcid.org/0000-0001-6288-0400

Catalogue record

Date deposited: 17 May 2007
Last modified: 16 Mar 2024 02:37

Export record

Contributors

Author: A.W. Hughes
Author: S.R. Turnock ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×