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UNIVERSITY OF SOUTHAMPTON 
ABSTRAOT

FACULTY OF MATHEMATICAL STUDIES
Master of Philosophy

NUMERICAL MODELLING OF NATURAL CONVECTION IN 

CRYOGENIC LIQUIDS
by Aganaden Thancanamootoo

In this thesis, we look at the numerical modelling of natural convection
in a cryogenic liquid contained in a storage vessel, when the motion is
caused by heat leakages through the vessel's sides and bottom. The
problem of natural convection, in general, involves the solution of the
full Navier Stokes equations coupled with the energy equation and the
equation of continuity. Here, the pressure terms in the momentum
equation are eliminated and the resulting equation is written in
stream function vorticity type, the stream function being connected
to the vorticity through a Poisson equation. A numerical solution,
based on finite difference methods, is obtained, using non-uniform
grid which leads to better resolution of the boundary layers. The
transport equations are solved by the Alternating Direct Implicit method.
This method requires the transport equations to be converted into
parabolic partial differential equations, by the inclusion of the time
dependent terms, thereby enabling us to march forward in time to the
steady state solution. Solution of the Poisson equation by the cyclic
reduction method yields the stream function. The governing equations
are solved in both Cartesian and cylindrical polar coordinates, but
similar numerical procedures are adopted in each case. Various ways
of enhancing the rate of convergence to the steady state are examined.
Numerical results are obtained for a variety of Grashof numbers for
various boundary conditions and aspect ratios and, for the Cartesian

12case, the numerical method is stable for Grashof numbers up to 10 .
The derived results show good agreement with available experimental data.
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1.

CHAPTER 1 
INTRODUCTION

Cryogenics - a brief outlook

Cryogenic engineering Heals with the practical 
application of very low temperature processes and techniques 
and is generally concerned with temperatures below -150°C.
In general, there is ample reason for treating cryogenics 
as a special field. However, although certain physical 
properties of materials at very low temperatures differ 
greatly from those commonly encountered at room temperatures 
cryogenic fluids are, like most ordinary fluids, Newtonian. 
The cryogenic fluids that are most widely encountered are 
Liquid Natural Gas (LNG), Liquid Air, Liquid Oxygen, Liquid 
Nitrogen and Liquid Helium. They find wide application, 
for instance in medicine, space exploration and in gas 
separation. LNG is, in particular, a very useful source of 
energy, and is widely used for domestic purposes. One of the 
major problems encountered in cryogenics is the storage of 
cryogenic fluids. Only a few decades ago evaporation was a 
major threat due to the poor design of storage tanks and the 
poor quality of insulation. Over the years design and 
insulation techniques have improved enormously and nowadays, 
fluid loss due to evaporation has been considerably reduced. 
However, cryogenic fluids being very expensive, engineers 
are constantly aiming at ways of minimising fluid losses.

Convective heat transfer

When there is transfer of heat by mass movement of 
fluid, the resulting thermal-energy exchange process is called 
convection heat transfer. There are two kinds of convection 
processes: natural and forced convection. In the first type, 
the driving force arises from the density difference in the 
fluid, which gives rise to buoyant fbrces.



Forced convection, on the other hand, occurs when an external 
driving force moves a fluid past a surface at a higher or
lower temperature than the fluid. Natural convection occurs
in cryogenic storage tanks and in many other engineering 
applications, e.g. petroleum storage vessels on hot days, the 
thermal response of a building to a change in environment 
temperature, and the storage of hot fluids for solar power 
plants. In all these cases the way by which heat enters the 
enclosure is of great importance and the flow structure 
depends critically on the applied heating conditions and the 
geometry of the containers.

Literature review

Theoretical

2.

In the last few decades there has been considerable 
research interest in natural convection of fluids in cavities.
Most of this theoretical and experimental research has been 
concerned with the natural convection of a Newtonian fluid in 
two-dimensional rectangular enclosures. Excellent reviews of 
the area are given in the paper by EcKert and Carlson (19^1) 
and in the articles by Ostrach (1972; I982) and Catton (1978).
Before describing the most important contributions to the 
literature it is useful to note that all work involves the 
solution of the Navier Stokes equation coupled with the energy 
equation. In obtaining numerical solutions the system of equations 
is normally written in stream function-vorticity form (in which 
the stream function and vorticity are connected through a Poisson 
equation) or in primitive variable form (where the dependent 
variables are the velocity and pressure).



The first successful attempt at a numerical solution 
of a natural convection problem in a two-dimensional rectangular
cavity was performed, by Heliums and Churchill (1961). These 
authors analysed the problem of convection in a rectangular 
enclosure with differentially heated end walls and adiabatic 
top and bottom surfaces. They developed an explicit finite 
difference method for solving the model equations and steady 
state solutions were obtained. Unfortunately, stability 
considerations placed severe restrictions on the time step in 
their explicit method. Wilkes and Churchill (1966) extended 
the method of solution developed by Heliums and Churchill (1961) 
to analyse the same problem. They manipulated the momentum 
equations to eliminate the pressure gradients, preferring to 
work with vorticity. The vorticity and energy equations were 
then solved by the alternating direction implicit (Aid) method 
and the Poisson equation was solved by successive-over-relax^i^^^ 
(SOR) at each time step. Although a theoretical analysis 
predicted unconditional stability for the numerical scheme, 
instabilities did occur in practice and the authors were unable 
to obtain solutions for Grashof. numbers greater than 10^. 
Torrance (1968) compared several finite difference techniques, 
both explicit and implicit, that had been developed for the 
prediction of natural convection flows. In particular, he 
pointed out that the finite difference form of the equations 
used by Wilkes and Churchill (1966) did not conserve energy or 
vorticity. Torrance also discussed, in some detail, the 
truncation errors of various finite difference representations 
of the transport equations by introducing false diffusion terms. 
He concluded that, for buoyancy dominated flows, in order to 
obtain a stable solution it is necessary to use an upwind or 
upstream difference representation of the non-linear convective 
te rms.

3.



In 1970 Newell and Schmidt examined the problem of 
laminar natural convection originally considered by Heliums and 
Churchill (l96l) and investigated a range of parameters 
sufficient to determine the dependence of Nusselt number on 
Grasf'iof number and the aspect ratio. Two of the novel features 
of their numerical investigation were the use of a non-uniform 
grid spacing and the solution of the governing finite difference 
equations by a direct matrix inversion. Unfortunately Newell 
and Schmidt used a non-conservative finite difference scheme 
and encountered numerical difficulties which prevented them

5from obtaining solutions for Grashof numbers greater than 10 .

He Vahl Davis (1968) also studied the steady laminar
motion of a fluid in a rectangular cavity with differentially 
heated end walls. The Navier Stokes equations were written as 
a fourth order equation in the stream function and the 
corresponding finite difference equation was solved by direct 
matrix inversion. An SOR scheme was used to update the 
temperature. The results were found to be compatible with, 
and form an extension of, some previous theoretical and 
experimental results. However, even though it was found that 
higher Prandtl numbers exert a slight stabilising influence on 
the numerical solution, instabilities were encountered because 
of the non-linear terms in the equations and results wereCfound only for Grashof numbers up to 10^.

4.

In the last ten to fifteen years more complicated 
numerical schemes have been developed, yet all of the authors 
concerned have examined the motion of a fluid in a rectangular 
cavity with differentially heated end walls. A highly efficient 
method, called cyclic reduction, to solve the Poisson equation 
was developed by Buzbee et al in 1970« The latter authors 
examined in detail the additional variants to the method that 
can be introduced in order to obtain greater numerical 
stability. Schumann and Sweet (1976) extended the cyclic



reduction method to solve the general Poisson equation on a 
rectangular two-dimensional staggered grid with an arbitrary 
number of grid points in each direction. However, although 
any boundary condition could be used in one direction only 
Neumann boundary conditions were applied in the other.
Kublbeck et al (1979) used the API scheme to solve the 
transport equations. The momentum equation was written 
in stream-function-vorticity type and the Poisson equation 
was solved by the Cyclic reduction method. Solutions were 
obtained for Grashof numbers of up to 10^^.

The most notable research work in this area in 
recent years has been carried out by Phillips (I984). He 
wrote down the momentum equation as a fourth order equation 
in the stream function and the latter was solved by the 
pynamic API method. The most important feature of his method, 
is that it incorporates an automatic step size changer, 
unfortunately though, at the expense of additional computations, 
However, Phillips argues that the advantages of having an 
automatic step size changer which decreases the time step 
when instabilities occur and attempts to keep it within a 
region of fast convergence seem to outweigh the extra 
computation.

Experiments

5.

EVen though numerous theoretical investigations of 
natural convection in rectangular cavities have been reported, 
detailed experimental results for the temperature and 
velocity distributions are limited. One major problem in the 
storage of cryogenic fluids is the increase in pressure. 
Huntley (i960) carried out experiments with Liquid Nitrogen 
in a uniformly heated cryogenic container. He confirmed the 
development of liquid temperature gradients as a contributing 
factor to the increase in pressure. These gradients became
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more severe in time. Neff and Chiang (1966) also did 
experiments in a uniformly heated enclosure to investigate 
the phenomenon of stratification in cryogenic fluids. 
Stratification results because the warmer layer has a lower 
density and the fluid is a poor heat conductor. The authors 
found that bottom heating of cryogenic containers significantly 
reduces stratification. Pan, Chu and Scott (I968) did 
experimental and theoretical work on temperature profiles in 
pressurised cryogenic vessels subject to a time dependent 
uniform heat flux. Their theoretical work ignores the axial 
velocity and yields linear uncoupled equations that can be 
solved using Duhamel's theory of superposition (Carlslaw, 1959)" 
Unfortunately, they considered a gross oversimplification of 
the real problem since convection is the main mechanism that 
creates stratification. Other experiments have dealt with 
temperature measurements in air enclosed between two vertical 
plates maintained at different temperatures and results have 
shown satisfactory agreement with available numerical solutions. 
Over the years, the experimental techniques have gradually 
improved - from Mach-Zender interferometer to Schlieren 
photography and Laser Doppler Velocimeter (LDV) thus enabling 
highly accurate measurements to be taken.

Experiments studying natural convection in cryogenic 
fluids have recently been conducted at the Institute of 
Cryogenics, University of Southampton using modem techniques.
In one experiment (Scurlock et al, I984) LDV and Schlieren 
Optics were applied to Liquid Nitrogen (LIN) to measure the 
vertical velocity and temperature profile respectively. Without 
giving much experimental detail, an inner Dewar flask containing 
LIN, with a heater coil fixed around it at its mid height, was 
immersed in a pool of LIN contained in an outer Dewar.



The LIN in the inner Dewar was therefore subjected to a steady 
lateral heat flux and heat leak at the base was practically 
zero. A buoyancy-driven flow was set up and measurements 
using the techniques mentioned above were taken. These
measurements were the first ever taken in a Liquid Nitrogen 
pool. The earlier literature review reveals that analytical 
results corresponding to Scurlock's experiment have not so
far been calculated.

7.

This thesis is concerned with the study of natural 
convection in a cryogenic fluid in containers of prescribed 
shape. In particular, the flows of a cryogenic liquid in both
rectangular and cylindrical cavities caused by the influx of 
heat through the sides and base of the cavities are studied. 
The major physical processes that occur in a real storage 
situation are shown schematically in Fig. 1.1.



outlet for boil-off

Fig. 1.1 Physical process in an enclosed cavity.

The emphasis in this thesis is placed on developing 
a simple, but useful, mathematical model. More specifically, 
the objectives of the research are the following:



To develop a mathematical model appropriate to the 
physical problem using the conservation equations of
mass, momentum and the equation of energy transfer.

To solve the equations using a reliable numerical 
method and hence determine the temperature and 
velocity distributions in the fluid contained in 
the cavity.

To obtain numerical results for different boundary 
conditions.

9.

4. To compare these numerical results with experimental 
data (when available) in order to evaluate the 
usefulness of the model.

To suggest possible refinements of the model,



CHAPTER 2
FORMULATION OF THE PROBLEM

10.

2.1 Choice of coordinate axes

In the previous chapter the problem was set up from 
a physical point of view. The main aim of this chapter is to 
construct a mathematical model related to the physical 
problem. This section provides an introduction and can thus 
be regarded as a transition from the physical world into the 
mathematical world.

The problem will in the first instance be 
investigated in Cartesian coordinates and later on in 
cylindrical coordinates. Cartesian analogues of engineering 
problems are, in general, the simplest to work with, although 
such analogues are strictly valid only for an infinitely long 
third dimension. Nonetheless, previous theoretical works in 
the engineering field have shown thi^ Cartesian models provide 
useful contributions to our understanding of the real world.

In practice heat is likely to enter the container 
symmetrically and so we adopt this simplifying assumption.
As a consequence we assume that the fluid flow in the container 
is symmetrical about the centre line and hence only one half of 
the container need be examined which makes the numerical 
solution much more efficient. The Cartesian set-up is shown 
in Fig. 2.1.



11.

Fiff. 2.1 Cartesian representation

In Fig. 2.1 is the height of the flui&,
2Ji is the width of the container V is the fluid velocity

with U and \/ as its components. The base and left wall of 
the container are represented along axes and Ov
respectively. H5 is the line of symmetry.



12.

2.2 Governing eguations

Since we are dealing with the motion of a liquid 
induced by a temperature gradient, the full vector equations 
governing the motion of the liquid are the Navier-Stokes 
equations (Milne-Thomson, 1968).

V

coupled with the energy equation (Li. Lam, I966)

y-v(vY\] -Vj, f i

411
Dfc

^ vkv I + Q + /t
(2.2.1)

and the equation of continuity

r Jiv V o

where
L is the body force per unit volume,

represents the internal heat generation, 
jP denotes the viscous dissipation.

(2.2.2)

and represents the particle derivative

bk 'b)fc
VV T

In natural convection flows the dominant driving 
force arises from the temperature variation in the fluid 
which results in changes in density. The driving force for 
the flow is then due to the difference between the body 
force and the force due to the hydrostatic pressure gradient 
in the ambient medium.



13.
In normal circumstances the hody force _b is given by

t = (2.2.3)

where g is the gravitational force per unit mass of the 
fluid. If the variation of jO with temperature were to be 
neglected, no flow would result.

In the Navier-Stokes equation, the local pressured 
may he split into 2 terms, one due to hydrostatic pressure 
in the ambient medium, ^ and the other due to the motion
of the fluid, j) : viz

^ ' I ' h (2.2.4)

From simple hydrostatics it is well known that

'k /Tl ’

where is the density of the ambient fluid.

Hence, using equations (2.2.3) - (2.2.^^, we may write

(2.2.5)

k-

For vertical buoyant flows.

(2.2.6)

(2.2.7)
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where j is the unit vector in the upward, vertical direction 
ando is the magnitude of ^ , and equation (2.2.6) becomes

b-Vî crju (2.2.8)

Substituting (2.2.8) into (2.2.1). we obtain

pM.

/

/ryy-9('7.y)) 4^ -

J
(2.2.9)

In order to make progress with natural convection 
problems it is usual to introduce the Boussinesq approximation
which is now discussed.

If XP is a function of temperature ! and pressure 
then the density at a given point in the flow, 
may be written in terms of the density in the
ambient medium through a double Taylor series expansion about 
the ambient conditions:

r' r 11\ T-T.
’iT/j)

■hf’/ IT-1
Ar/j,

0 / r-

LI " PAh jfc (t't f ■ -f

i- t't
(2.2.10)

t -



15.

T(“k) f (atm) (g/cc)

75 0.74992 0.81812
76 0.84901 0.81361
77 0.95784 0.80905
77.36 1.0000 0.80736
78 1.0770 0.80445
79 1.2072 0.79981
80 1.3489 0.79513

Table 1 Liquid Nitrogen along saturation curve

Data for cryogenic fluids (see, for example, Table 1)
shows that

) (2.2.11)

an inequality satisfied by most fluids at normal temperatures. 
Since lo) and are in general small quantities it
therefore seems reasonable to approximate (2.2.10) by

where we have used the definition of ^ , the volumetric
expansion coeffioient, namely

(2.2.12)

(2.2.13)



16.
\

Equation (2.2,12) indicates that the density difference may he 
approximated as a pure temperature effect. In the Boussinesq 
approximation equation (2.2.12) is introduced in the Buoyancy 
term, hut in all other places the density is assumed constant.

With the aid of (2.2.12) and assuming that:-

(i) viscous dissipation is negligible;
(ii) there are no internal heat sources;
(iii) the Boussinesq approximation is valid and
(iv) the thermal conductivity of the liquid is independent 

of temperature

we obtain from equations (2.2.1), (2.2.2) and (2.2.9) the 
following governing equations:

by
lit

yy) V = -9P”y - ^ T-T. (2.2.14)

-hr 4(y y)T . kV^I , (2.2.15)

7^ o (2.2.16)

where
- Kinematic viscosity and 

K: k/ - thermal diffusivity

The assumption regarding viscous dissipation 
is reasonable since cryogenic fluids have low viscosity. 
Tata for cryogenic fluids also show that the thermal 
conductivity does not show any significant variation with 
temperature. The above equations are time dependent.



For our problem we will impose boundary conditions that are
independent of time and will seek the steady-state solution 
to the above system. This solution can be achieved either 
by neglecting the time-dependent terms in equations (2.2.14) 
and (2.2.13) from the outset, or obtaining the solution from 
the general equations (2.2.14) and (2.2.1$) through application 
of a time-marching numerical method. It is the latter approach 
that will be adopted in this thesis.

For our two-dimensional situation equation (2.2.16) 
can be written as

17.

'bu + "by o (2.2.17)

This equation implies the existence of 
stream- function, such that

u

V
(2.2.18)

(Milne-Thompson,1968)

On substituting equations (2.2.18) into (2.2.1?) we find that 
the latter is identically satisfied.

Equation (2.2.14) is usually referred to as being 
written in primitive variable form, the primitive variables 
being and V . In our problem we are not interested in 
the pressure field directly and will place boundary conditions 
on the velocity and its derivatives. Hence it seems more 
appropriate to convert equation (2.2.14) to the so-called 
stream function-vortioity type, with dependent variables the 
stream function and vorticity. Using familiar vector identities 
equation (2.2.14) can be written



4- Wi V
18.

V X Curl V

z. y j - Cwr[ yJ ~ ^ ^ ^ ^ [I '^oj j,

which can be simplified by using (2.2.16). Next the curl
operator is applied, to both sides of equation (2.2.1$^. 
Using the definition of curl and applying some vector 
identities we obtain

(2.2.19)

^0 CurifV X > (2.2.20)
'j ~bx

where
K is the unit vector in the 2 -direction

and the vorticity, is defined through

6J Cut ri V (2.2.21)

Substituting (2.2.18) in (2.2.21) and recalling that 
y =:^U,V,oJ we obtain

u = (o, g,Q ) (2.2.22)

where

sff _''if 9' y (2.2.23)



\7 denoting the Laplacian operator. Equation (2.2.23) 

is generally known as the "Poisson Equation for the 
stream-function." Using the definition of curl, 
equation (2.2.22) yields

19.

Cur o

and

(Uvr( ^ * I 0 o

From expressions (2.2.18) and (2.2.22), we find that

V X
) = [vQ,-UQ,oj,

from which it follows that

Cur
t (y X wj

0 V Q

(2.2.24)

(2.2.2$)

(2.2.26)

(2.2.27)

On substituting (2.2.2$) and (2.2.27) into (2.2.20) it is 
readily observed that the vector equation (2.2.20) reduces 
to the scalar equation

jiv(VQj t (2.2.28)

the other two components of the vector equation being 
identioally zero. Using the continuity equation we obtain
another expression for Jiv QJ

JiyfV Q) ; (Q dly- V i V rCH-aiQ - + V
(2.2.2$)



20.

Substituting (2.2.29) into (2.2.28) we finally obtain

>Q * utg t VIQ , i V"Q »
T>t T>v (T "bx

(2.2.30)



2.3 Governing equations in non-dimensional form

In the previous section it was shown ((2.2.1$),
(2.2.23), (2.2.30)) that the three governing equations which
result from our mathematical model are

21.

t uThS f - -pV (p + —
<!' Dx (2.3.1)

m + lWV]T
Urt

KV'T

7T . - Q

(2.3.2)

(2.3.3)

We shall now look at the non-dimensionalisation of 
these governing equations.

Let

o/g be a characteristic velocity,
H be a characteristic length and

be a characteristic stream functione

From Fourier's law of heat conduction ,

Q k VT (2.3.4)

where is the ther^^ conductr/it^
we deduce that a characteristic temperature is

Q H (2.3.5)
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Put
U' LL

w

V% y , X* . X, ,
H ^ (2.3.6)

r*. Vt > J

T-L
Q'H/fe ’

(2.3.7)

% U.4 ■ (2.3.8)

In (2.3.7) io is the surface temperature of the 
fluid. In this thesis we assume that the fluid free surface 
is flat and isothermal. Experiments with cryogenic fluids
would suggest that this assumption is quite a reasonable one. 
It follows from equations (2.2.18) and (2.3.6) that

V*

In order to simplify the above expressions it seems reasonable 
to assume that

(2.3.9)

H ' (2.3.10)

Recalling expression (2.2.23) the non-dimensional vortioity
component, Q* , is defined through

H
(2.3.11)

With the aid of equations (2.3.6) - (2.3.9) and
(2.3.11), equation (2.3.1) becomes

, u*t£* + Kv'aQ* = -V V'*Q* t (2.3.12)



where V - H

w

23.

\7^ ZV-i
If

Choosing

= _K
H

equation (2.3.12) can be written as

t U*>Q* , Xv*M*

- t QriV'W .
T)X*

where the Prandtl number ^ , Grashof. number and
Rayleigh number fLu are defined by

(2.3.13)

(2.3.14)

K ^

Using the same non-dimensional variables it is 
easily shown that the non-dimensional forms of the energy 
equation (2.3.2) and Poisson equation (2.3.3) are

(2.3.15)

%
hi
and

u*M t
T)X* 'df

. V & (2.3.16)

r o' (2.3.17)



)2.4 Boundary and initial conditions

Before formulating the boundary oonditions we introduce 
a few simplifying assumptions. We assume that

(i) there is no evaporation ;
(ii) there is a constant and uniform heat flux on bottom and 

sides of the container •
(iii) there is no shear stress at top surface.

The first two assumptions are not strictly valid; yet
if they were disregarded, the model would be very much complicated. 
Moreover experiments with cryogenic fluids show that evaporation 
only becomes significant if we are dealing with containers on a 
laboratory scale. Variations in the influx of heat through the 
outer surface of the container are more significant at the base 
than at the walls because of supporting devices at the bottom.
With reliable means of insulation existing nowadays, however, 
the uniformity of the heat flux through the container walls is 
also a reasonable assumption.

24.

Since the viscosity of the cryogenic vapour is small 
compared to the liquid viscosity the condition of zero shear 
stress at the surface is a realistic postulate.



1.

We shall now consider the boundary conditions in physical variables. 
Reference shall be made to Fig. 2.4.1 and each boundary will be
separately considered.

Consider B, : this boundary represents the top surface,

/
le X .jj 0 c X < H, j w

It is an isothermal flat surface, so, on O, , we require
Since we are assuming zero evaporation, the fluid molecules are 
at rest with respect to the V -direction, and we need ^ 0

This condition implies that 0 (2.4.1)

The shear stress is defined by

i bu
aj 0)x.

(2.4.2)



Considering zero shear stress, expressions (2.4.1) and (2.4.2) 
imply that

26.

73
(2.4.3)

Equations (2.2.18), (2.2.23), (2.4.I) and (2.4-3) then imply 
that on 6,

Q = o (2.4.4)

that is we have zero vorticity on the top surface.

2. Consider next which represents the mid-line or the line
of symmetry:

6 (X.^jj , X, H

By symmetry, there is no heat and mass transfer across the
mid-line and hence

31 ^ o , (2.4.5)

IX = 0 . o
1)X (2.4.6)

Equations (2.2.18), (2.2.23) and (2.4.6) again imply that on 2L

Q = 0 (2.4.7)



3. The boundary represents the left-half of the base of the
container:

27.

le 6: 6 X ^ H (2.4.8)

The no-slip condition on this surface implies that the fluid 
is at rest on 6, ;

Therefore

and

U : O

V = O

(2.4.9)

(2.4.10)

Equations (2.2.18), (2.2.23) and (2.4*9) then reveal that
on 6;

Q , .
Df

Let CX be the value of the external heat flux at the base.

(2.4.11)

M
Then on fe:

0 _ -k "g

From (2.4.12) we obtain

(2.4.12)

k
4. Finally, 8^ represents the left wall of the container.

(2.4.13)

The no slip condition again implies that on 13

and

U = 0 

V . 0

(2.4.14)

(2.4.15)
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an& (2.2.18), (2.2.23) (2.4.1$) yield.

Q = -Tt
lx'

on 6,

Qz

or

(2.4.16)

Suppose is the value of the external heat flux on 8^^ ,
then

(2.4.17)

- on 5:

Since no fluid crosses the boundaries 6 ,8^ , 6 or
6^ all are steamlines. Moreover, since the boundaries 

intersect, in pairs the stream function has the same 
constant value on all of the separate boundaries. So on
8, » and 8^ we take

r = 0

(2.4.18)

(2.4.19)

Equations (2.2.18), (2.4.IO) and (2.4.I4) imply that

On

and

on (2.4.20)

"If
lx

CP on 6: . (2.4.21)

Now we shall put the boundary conditions in non-dimensional
variables. Reference is made to^2.3 and Fig. 2.4.2. Each 

boundary is separately considered.
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Using the definitions for the respective non-dimensional 
variables in 2.3, the following picture emerges:

1. On

2. On

6 -
^ = O

6, .

I (X* I c & X' . I , - I j

O

* / , X*

16
"i)X*

O

o Q 0

(2.4.22)

(2.4.23)

[2.4.24)



3. On B,

30.

o

= o , It' O

rir^

-j_ ^

V <3^

(2.4.25)

(2.4.26)

M =

where we recall that Q is a reference heat fluy.
put equal to Q, , in which case

We shall

'10
-if if

4. on e^-. I(X‘,f)l h<^O < V * 4 ! X* = 0

Y o = o
1)X jf

1)X']e
I)/'' Q,

(2.4.27)

(2.4.28)

(2.4.29)

(2.4.30)

Let us now look at the initial conditions. If
our system is sufficiently stable the steady state solution 
eventually reached with our time-marching method should, be 
independent of the initial conditions. For the present, 
therefore, it is assumed that

6 = 0 ^ —0 O c^l o (2.4.31)

throu^out the region O ^ X 4 I , O 4 y



The choice of initial conditions is discussed further in 
Chapter 4 of this thesis.

We have now formulated a fairly simple mathematical model. 
Its usefulness, or otherwise, depends on the sensibility of 
the numerical results.

Summing up^ 2.1 -^2.4, we collect together the 

important equations of our mathematical model.

For convenience the stars on the non-dimensional quantities
are now omitted and the governing system of equations plus 
the boundary and initial conditions are written:

31.

t
.JfVbs . R + (Pr a' Ix) , (2.4.32)

Dx DX

^0 f ube ^7" 8 , (2.4.33)
Dx

-G ; (2.4.34)

where it should be emphasised now denotes

7'
(2.4.35)f

Boundary conditions

1. On

0=0, ‘ °, Q
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2. On

3. On

4. On

{ O'j) 1^9 - o
'bx

'f' ^ o

1 (x. o) 1 o 4 X 4

f. o -Vt .- '

{ (°'^) 1 0. J ,

t. 'if . o ,

Q = o .

DX

Initial conditions

Q.o B =

%

Q - -tt , le - a .
'bx

in

An analytical solution to this coupled system of equations is 
not possible, so in the next chapter we shall look for a 
numerical solution.



CHAPTER 3
NUMERICAL PROCEDURE

3.1 Choice for a numerical solution procedure

33.

To the present, only a limited number of types of 
partial differential equations have been solved analytically 
and these solutions are normally restricted to problems in 
regions of simple geometrical shape. Exact analytical solutions 
of our governing equations are not feasible so approximate 
analytical methods or numerical solutions are the only methods 
available, apart from the use of analogue devices. Although 
analytical approximation methods can provide extremely useful 
information concerning the character of the solution for 
critical values of the dependent variables, it is not possible 
for our problem to find such solutions that are valid throughout 
the cavity. Therefore, in this thesis, a numerical solution 
procedure has been adopted. Of the numerical approximation 
methods available for solving differential equations those 
employing finite differences are more frequently used and will 
be employed here. Since the transport equations are of 
parabolic type and the Poisson equation is elliptic, the 
numerical techniques for these two types of equations will be 
discussed in the following sections.



34.

3.2 An introduction to finite difference schemes

Let the arbitrary function f anh its derivatives be 

single-valued, finite and continuous functions of the independent 
variable S K / 'In other words j 6 C. 

follows that
Then by Taylor's theorem it

= fis) t 111 t H
"1)5

L-iA‘ ir

rf . a(L‘
'1)5^

) (3.2.1)

"g)5»
) ; (3.2.2)

where L is measured relative to the S -axis and denot
terms containing third and higher power of L .

es

Addition of (3,2.1) and (3.2.2) gives

(3) + L f c{L (3.2.3)

Assuming the magnitudes of the higher terms are negligible 
in comparison with lower order terms, it follows that

= _L_.f ' zii;) f I ,I Jwith a leading error on the right hand side of o[i>J . In 

an analogous way subtraction of expansion (3.2.2) from (3.2.1) 
gives

(3.2.4)

If
1)5

^^54 Lj - f (f-Lj (3.2.5)
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with an error of ‘’(^3 ' Expression (3.2.5) is called the 

central-difference approximation for

Neglecting terms of order ^ and higher in 
expansions (3-2.1) and (3.2.2), we obtain the following two 
expressions for respectively:

1 = 4^0^ L) _ f
(3.2.6)

and

1)5 L (3.2.7)

Formulae (3.2.6) and (3.2.7) are called the forward-difference
and backward-difference approximations respectively for if

1)S
It is easily seen from expansions (3.2.1) and (3-2.2) that the 
errors in using the formulae (3.2.6) and (3-2.7) are both
of <k)

If 4 is a function of more than one variable, 
then the above expressions can be used to obtain appropriate 
finite difference forms for the partial derivatives. Below 
we shall derive some basic finite difference formulae.
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R
p

i’j-')

Fig 3.2.1 Discretization of a sq-uare region

Let Le a square finite region (see Fig. 3.2.1)
and suppose f is a function of two variables £ and t ( t is 

not necessarily the time). Using expressions (3.2.4) - (3.2.7) 
we approximate the first and second derivatives of the function 
on a set of discrete points within R . The discretization of 
is done in the following way: subdivide the region R into sets 
of equal squares of sides ^5 -k, = U , as shown in
Fig. 3.2.1 and let the co-ordinates ( S> , t ) of the arbitrary 
mesh point P he

S : JR . L: fL

where L and i are integers. Denoting the value of
by

(3.2.8)

f at P

‘■'i
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we have by (3.2.4):

If
le -^£

jk] - z-T[i-kji] + ^ (3.2.9)

Cm ,j - ^ + C-/ ,j y ; (3.2.10)

with an error of order k Similarly

k'

p
‘■ni-l , k

with an error again of order ^

(3.2.11)

With this notation the centred, forward and backward 
difference approximations for the first derivative at the 
point P are respectively

l£
rt>s,

Vl5
<•-1 ,1 (3.2.12)

(3.2.13)

and if
n)5 k

f-
‘■y (3.2.14)

The correspondingthe last two with an error of 
expressions for can be written from the above in an
obvious way. Expressions ((3.2.10) - (3.2.I4)) are known as 
the finite-difference formulae for the first and second
derivatives of f . The points of intersection of lines in the 
discretized region that are parallel to the ^ -axis and t -axis 
are called mesh points. Finite difference methods generally give 
solutions that are sufficiently accurate for the required purposes,



38.

l3«3 Co-ordinate transformation. The ADI method

The finite difference formulae derived in the previous 
section shall be used in the solution of the governing equations 
for our particular problem.

Let X2 be the region over which the governing 
equations (2.4.32) - (2.4.34) and the boundary conditions are
defined.

ii' X, 0 ^ X ^ (3.3.1)

Because of the expected steep temperature and velocity 
gradients in the fluid near the side walls, we would like in our
numerical scheme to have good resolution in and near the boundary 
regions. One answer to the problem would be to introduce an 
extremely dense, but uniform, grid which naturally leads to a 
tremendous number of algebraic equations to be solved. An 
alternative, and better method, is to use a non-uniform grid by 
introducing suitable coordinate transformations

X

which accumulate the grid points in the boundary regions.

With arbritrary transformation relations b(x) and ,
one obtains for the first derivative of a dependent dummy variable.T

hx

If
■^3

A, IT

A IC
(3.3.2)

(3.3.3)
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where

^-•1. -
From (3«3,2), (3.3.3) one similarly obtains for the second
derivatives

where

tr = 6x% ,lx" 'tp*'
f r = A'^r , 3,ir.

6. = =

(3.3.4)

Substituting (3.3.2) - (3.3.4) into governing equations 
(2.4.32) - (2.4.34) one obtains the following set of transformed 
equations

utQ + lAp f y'A' I f
DC (3.3.5)

t rs A_Q
^^<1, CrP/A Ifi"" -3^

'^0 + A t KA vie a A,ll6 t KAjl®
T>1 "3 6% (3.3.6)

+ E)D9 +
-H

K'il f XIA'ti, B it Q (3.3.7)



where the velocities are calculated as follows:

40.

Li: ITA.lf V.- . A -if (3.3.8)

It should, he noted that the original equations are immediately 
recovered by setting

A, A
?

I

The choice of the form of coordinate transformation may 
depend on the nature of the particular problems to be solved. 
Several useful transformations have been discussed (Roache, 197^! 
Phillips, 1984). For natural convection in a cavity, the relation

~ J. (3.3.9)

has been recommended (Kublbeck, I980) and will be used in this 
thesis. Fig. 3.3.1 shows a graph of this relation for several 
values of the deformation parameter,^;

Fig. 3.3.1 The transformation relation jo(x,(:}for different values 
of the deformation parameter



For our problem we shall choose
41.

0) = a

that is, the N -coordinate will not be transformed: 
this postulate will be discussed at the end of ^3.7. 

With the assumption (3.3.10) it follows that

(3.3.10)

A. and z O

Also vri.th the coordinate transformation, the discretization 
of the continuous region, S2. gives the following grid 
system :

N 1/3.3.11)

where k = ^ is related to X through expression

(3.3.9). Next we define as follows:

__(2 r j" - C''~0 ^ ^ '(dj ; N- j.( 3.3.12)

For a numerical solution procedure finite difference formulae 
are used to approximate the derivates in the governing equations 
and boundary conditions. Thus the governing differential 
equations are converted into algebraic finite difference 
equations which are now defined over . Similarly the boundary 
conditions are converted into algebraic finite difference 
equations defined over .



The value of any function FN at any point in ^ 
is defined as follows:

42.

, (3.3.13)

where |? = G'''j L , ^ ^ h2,..., I\l ^ ^ /,2,...^/\/.

The ADI method

In problems involving parabolic equations, one can 
construct numerical solutions step by step using an explicit 
scheme, because only two time levels are involved in the 
calculations: the new values at time ( ntl ) being 
calculated solely in terms of values at the previous time n . 
Although it would appear to be much simpler and computationally 
faster to obtain the numerical solution of parabolic equations 
with an explicit method than with an implicit method, explicit 
schemes do introduce a difficulty, since they are prone to 
instability. Most implicit schemes, on the other hand, are 
unconditionally stable and thus^for a given grid size^it is 
frequently possible to take time steps many times larger in 
implicit schemes than those allowed by the explicit schemes, 
and yet still obtain comparable accuracy. An obvious 
disadvantage of implicit methods is that it requires the 
simultaneous solutions of the N algebraic equations at a new 
time step. The final choice of which method to use for the 
vorticity and energy equations depends on many factors (Roache, 1972), 
In this thesis, the oonservation equations are solved using an 
alternating direot implicit (ADl) finite difference method 
(Peaceman and Rachford, 1955).



M

1)6-

-7^

43.

-7f-

-^f-

N

Fig. 3.3.2 Internal grid

Away from the boundaries centred space differences are 
used for all terms except the non-linear convection one. Since 
the central difference representation of the convection terms 
gives physically unrealistic results (Patankar, I98O) this 
unrealistic scheme may cause some of the stability problems 
encountered by earlier investigators who have used the central 
difference approximation. In the present work the second 
upwind difference scheme is used for the convection terms, because 
this method is always physically realistic and achieves numerical 
stability of the convection term by introducing false diffusion 
(Roache, 1972). False diffusion is a particular type of 
truncation error and it is a desirable one at large Grashof 
numbers to promote increased numerical stability (Torrance, 1968; 
Patankar, I980).



The ATI method splits the time step into two obtaining 
at each time level a two-dimensional implicit method. The 
solution procedure is characterised hy writing the finite 
difference equations in implicit form in the 3 -direction and 
solving these equations at the end of a half time step. Assuming 
the solution is known for time L = n <^1 , application of the

corresponding finite difference equations to each of the (N-Z) 
mesh points along a row parallel to |o -axis (see Pig. 3.3*2) gives 
( N-2 ) equations for the {l^~Z ) unknown values of f" , say at 
these mesh points for time L = z) • When there
are ( N-2. ) rows parallel to -axis the advancement of the solution 
over the whole space () to the ( o + T ) th time step involves 
the solution of {N-Z ) independent systems of equations, each 
system containing ( N-l ) unknowns. The finite difference equations 
are then written in implicit form in the y -direction and, using 
similar arguments as above, the resulting { N-Z ) independent 
systems of equations each containing ( N-Z ) unknowns are solved 
to give the solution at time ( ), Fig. 3.3.3 shows schematically
the approach of the two-dimensional ATI scheme.

44.

The advantage of the ATI over fully implicit methods is 
that at each time step the finite difference equation, although
implicit, forms a tridiagonal system, which can be easily solved.
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r'

r ' f JL.z

r

Fig. 3.3.3 Arrangement of time-step and grid point for ADI scheme



In the next section , we shall look at the seconh
upwind differencing method and shall derive the appropriate 
finite difference equations.

46.



^3-4 Second upwind difference scheme. Finite difference equations

Since equations (3.3.6) and (3.3.3") are similar in form,
and recalling our assumptions =1 ^ 8 r o it is convenient

d 7
to represent both by the general equation

47.

X
where

and

% + A uTl (3.4.1)
'7)1 ^ 'hjo V "7)|)^ 7)^^ Dpy ' ^

o<( z 1^=0 and I ~ Q for the energy equation

- R- ^ =6^^/A and : 6$ for the
( X —

momentum equation-

The constant /\ influences the rate of convergence of equation 
(3.4.1) and may be set differently for the energy and vorticity
equations.

To obtain an implicit scheme in the 
equation (3.4.1) can be written

-direction

7—~ +- i r-—I 'T , A u-br
7l Ai

XV" hr'

= ^ , riE", htT'"

V y "Xf >
At the next half time step the corresponding equation in the
^ -direction is

(3.4.2)

X Al

• A +1
A u'“ AT ' b[

= C<
A'

"bb v/ I
(3.4.3)



where the time derivatives have been approximated by the simple 
difference formula.

In the second upwind differencing scheme (Roache, 1976),
the non-linear convective terms in (3.4.2) are apprciimated as
follows:

48.

Vir
h

\"

a

L (v; 7; - yj , v; >., > o

I
2k

^ , v:<o

,(3.4.5)

where
+■ V.: (3.4.6)

and
V. . (V:, . (3.4.7)

We can rewrite (3.4-5) in the more compact form:

Vir . v: -iv;i)f:^yyy v;bvMv:fc -(vhiviijC-,
4k

- (3.4.8)



Th.6 same arguments are valid for the first velocity component 
giving

_KW|j4"; -(uMusl-u; '(u:i)r-(UMu;j)lT:;/ ^

^ "'i 4- k

49.

Ul = Uc-I,Wiere + Uyj ajid ' ""'V
Similarly, for the non-linear convective terms in (3.4.3), we 
have

uir) %

-ly

4k
1(1.4.10)

v;" :; - (vr4vri-v: n+'
r'

4k
(3.4.11)

At each new time level U(__ , L(g_ , and Vr. are calculated from 
the current values of the stream function using central
differences.

The second derivatives of the diffusion terms are 
approximated by centred space evaluation with an error of

n*\ r—n ^+ I <iy ' (3.4.12)

4T
k‘

— n 24"
■r' “'“'i * '

f— n
(3.4.13)



The seconh derivatives on the right hand side of equation (3.4«3) are
approximated in the same way hut are not given here. The first 
derivatives of the diffusion terms are also approximated hy centred 
space evaluation:

50.

n +1 z 1— n *
* t.w (3.4.14)

The derivative in the buoyancy term in (3.4.2) is 
approximated by centred space evaluation yielding

4 zL
82. el (3.4.15)

The corresponding derivative in the buoyancy term in (3.4.3) is 
obtained from above simply by replacing n by n+i .

Substituting (3.4.8), (3.4.9) and (3.4.12) - (3.4.1$) 
into (3.4.2) and bearing in mind that functions and 6^ are 
functions of the ^ -coordinate only, we have for the first half
of the time step 

nt-i

A
A .,(ui-|u:l)C:; ^(ui.|u;|-ui

(1- )„L>................ ........................................

+
VMvfiJc;, -(vMv;i-vMv:Dq -(VMV: j

4 In
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If 2.L

f C'-R- AxW (- 6^-1,
Ik ^ (3.4.16)

Similarly, from (3.4.3), we obtain for the next half of the 
time step

"V f-

(ur -lurijcj 4ur^|-ur^4uri)c:
4k

+ 0 D(v:-iv::)q>(v:hiv:'fv:5r'|q''4v:Nv:1i4'
U

k -^k

t (3.4.17)
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Rearranging Equations (3.4.16) and (3.4.1?) one obtains finally
for the jo -component

.fV O I--  n f i

and for the V -component

%,cr' - PC' .u',,

o 2,5,

Rfl f JL r-— n f I /on-fX j of-< —i—*n+X r——nf-f /Q-' ' Q '
where

(3.4.19)

■ ’J- - , 'V-1

Kl,

sV

= "AxCO^UI+IUZlj

4A I
- 6. (i)

ZL J

4k ^ ^ r

(3.4.20)

(3.4.21)

(3.4.22)

'V <■) Lt‘
" tlV'll t o<

4h k'
t

4k k“
+

and
* tJi

(3.4.23)

Lp/^{e:„, _ a:,^-

kVj = '31 f?!"' '‘lvr*'i) -
■'I 4k ^ / P

(3.4.24)
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5."" ' y YTLiv-ij-v;" .|V

4k

+■ z + (3.4.25)

I n + 1
2

y X (v;“ -ivr-4k ^
- o4 (f'

(3.4-26)

ntiz

■ ^ ■*’1 
2

I— n Hn +i 2. f /Ax(i) + _6xju

4 k ^ I k' zk
+

Aw fur- .|u";*i-u:*‘ 'iu:*‘i)
2=( -f-

f
• n ti

y
+lur"l)^'^fAxLu -6xiL)

A zh 2k ^
(3.4.27)

Equations (3.4.18) and (3.4.1?) are valid at every 
mode inside the boundary. Given a row with grid points
one obtains for each j, a tridiagonal matrix of size (N-Z ) x 
( N-2 ) to determine the ( N-2 ) unknowns. A similar type of 
matrix occurs on using (3.4.1?) for a fixed L . In the next two 
sections shall deal with the construction of the tridiagonal 
matrix and shall look at a particular method of solving the finite 
difference equations.



b3•5 Boundary conditions in finite difference form

The construction of the tridiagonal matrix requires the 
inclusion of the Boundary conditions. Therefore, we shall devote 
this section to the formulation of the boundary conditions in 
finite difference form, recalling that the cavity considered has 
been shown on Fig. 2.4*2.

54.

1. On T : (y I)L, ^ I-- the dependent variables satisfy

O G 2 O ^ 0 = 0'

The finite difference form of these conditions are

2. On = Q'Gk j : the required bounda:i:y

^ - O . (3.5.2)conditions are hi.

The latter two equations can be written

t j - ^ ^ i= N-( . (3-5.3)

bu^ the temperature condition needs careful treatment.
It was shown by numerical experimentation that the results 
obtained from our numerical procedure depend crucially on the 
accuracy of the expressions used to represent the heat input 
at the boundaries. Hence, for greater accuracy, we assume that 
the temperature in the immediate vicinity of the line of 
symmetry can be approximated by a parabola.



To formulate the necessary expression we return temporarily to 
the continuous region, _Q. (see (3.3-1) in space before
applying the conditions obtained to the grid system J2 (in j

space).

Suppose that near the axis of symmetry

55.

9[x) f Lx f c (3.5.4)

where is measured from the centre line, 
then from (3.^.4) we find that (^(^0 =
The temperature condition immediately yields

(3.5.5)

O (3.5.6)

In X2 ^ in the range
(3.5.4) - (3.5.6) imply that

Sh.,, -- a. x( f Lx, t Cj (3.5.7)

a (3.5.8)

6
N, a (3.5.9)

0 (3.5.10)

where
, Xz are measured in X -space and^'X^, A- 

correspond to the points ( jM-2 )k , ( N-5 )L in h -space
X

respectively.



Assuming that - and are known, equations
(3«5'7) - (3«5«10) represent a system of linear algebraic
equations for , 6^ , Q and 0^ . with solution

56.

(3.5.11)

where

E (3.5.12)

(3.5.11) represents the temperature condition at the line of 
symmetry.

3. On E = A/
conditions to be satisfied are

the boundary

f. Df Q . -f'ff X'29. -I ■ (3-5-13)i o
3

Clearly zero stream function implies that

VP o L : ;,2, .

Next we shall find an approximation for 
the Taylor's series expansion.

from

X. = t, , Lrtt
2. k I 2' 1 r

f o (£; (3.5.14)

Dividing by k on both sides of (3.5.14) and 

using
.If

i', I
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we have

-ff
t-, I

O
(k) ' (3.5.15)

Although the truncation error in (3.5*15) is of order k , 

Kublbeck et al (l979) and Roache (1976) certify that the
resulting numerical procedure is essentially more stable 
than it would be with the corresponding approximation due 
to Woods (1954)

t j. Vftf
D <>) I o) Z

which is accurate to ,(f) Other approximations are
suggested by Roache (1976) but shall use the expression
(3.5.15). With this choice the finite difference form of 
the vorticity boundary condition can be written

(3^,1 = -2^ Yu,2 ^ ^ . (3.5.16)

As stated earlier, numerical results are found to
be very sensitive to the aoouraoy of expressions used to 
represent the heat input at the boundaries. Hence, for 
greater accuracy, we assume that the temperature at the walls 
also has a parabolic profile.

As in the case of the temperature at the centre line, 
we suppose that

C\ ky f C (3.5.17)



which immediately gives

0t“) . c ,

Hence from (3.5"13) we find, that
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~\
'T'

(3.5.18)

(3.5.19)

Then in -Q. , V ^ , such that ; g L i N expressions
(3.5.17) - (3.5.19) imply that

Q-^U + Lih f Ci ^ (3.5.20)

Q: (2L) + k-, (ik) f Cl , (3.5.21)

c. (3.5.22)

_ J_ (3.5.23)

Assuming that ^ and 0are known equations (3.5*20) -

(3.5.23) represent a system of linear algebraic equations, the 
unknowns being Gl , and 6)^,1 *

Solving the system, wo obtain for the temperature at the base:

9:, 4 - 6)^3 t 2k

4. Finally on i (u ^ j j - (j'l) k , j ^J-lj ,
with our coordinate transformation the non dimensional variables 
satisfy

t- of , 0 .

(3.5.24)

Q (K n . H'l ■
(3.5.25)



- Q,
The first condition is obviously written

59.
(3.5.26)

A/-^,1 = I = 0I \j

Using a Taylor series expansion an approximation for ^ 
is obtained in a similar way to that for 1) in the 
previous sub-section: Thus <7

i-f

(3.5.27)

t, = T„, + Llf
'‘t "I

and using (3.5.2?) it follows that

ih I + (3.5.28)
2! "BbZf' ' 'y

(3.5.29)

From (3.5.25), (3.5.27) and (3.5.2?) we obtain the following 
exoression for the wall vorticity:

O''j - - (3.5.30)

Again for greater accuracy we assume that the temperature near 
the wall has a parabolic distribution following the same 
argument as in sub-section 2 but recalling that the appropriate 
boundary condition is now ( jy - o ~ ~ ^ deduce

that the expression for the wall temperature is

6, E, + t, 6,,j T Ej (3.5-31)

where
E-, = (3.5.32)
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Ea -

E.
■

X,) OyE, ,

(3.5.33)

(3.5.34)

with the quantities Xi and corresponding to the point:
li and Z l~i in ^ -space.



61.
3'6 Construction of Tridiagonal matrices. Solution of Finite

Difference equations (FDE)

We shall now construct the tridiagonal matrix for the 
first half of the time step. We recall that the FDE corresponding
to the transport equation for the first half of the time step is
given by (3.4.l8), which yields the following system of linear 
algebraic equations.

- + 1 T"

-t-a 11"
=

R W-l,

— n + i 
N-z. ' t ^ r ^ ,; 'N-,y

n f 1 z

(3.6.1)

N-l,.

For the momentum equation the boundary conditions just discussed 
in 3.5 give

(3.6.2)

c: = 0: = 0 (3.6.3)

Since it is not possible to know beforehand the wall vorticity 
at ( ntl ), we have taken its value to be the one at time A



This indicates that the wall vorticity lags behind by half a time 
step. This will occur at all time levels. Since we are aiming 
at a steady state solution, this difference in time levels does
not affect the numerical results at steady state.
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System (3.6.1) can be written as

where / V is the following tridiagonal matrix

0

5" t: 0
o

o

0
0

0

0
n ^ n —r- n

0 ^ - 0 r:., s:.,

(3.6.4)

(3.6.5)

0:'Q:'
0""
Wm-i,

J

'U - R'y Q".I

U"VA N-(, .

(3.6.6)

For the energy equation, we refer to expressions (3.5.II) 
and (3.5.31) which define the temperature at the wall and at the 
line of symmetry respectively.
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The tridiagonal matrix ,/ \ , for the energy equation therefore is

c.RVs;) y.E.c:
K.

0

0

0

%
o

N-Z,,

A

N-l.

0

0

fs:
where E , E, , are defined through (3.5.12), (3.5.32), 
(3.5'33) respectively. The corresponding vector (3 is

Ul, - E, p..

w-l,,

(3.6.10)

where (l* is defined through (3.5'34)

The matrices corresponding to the momentum equation for 
the second half of the time step have essentially the same structure 
as those discussed above. The only difference in /\ lies in 
interchanging Lj and I ^ in the subscripts and because of the 
modified version for the base vorticity, only the first element of



the column vector U is different. There are also slight changes 
in the matrices /\ and 0 for the energy equation. As discussed

earlier we have (see 3.5)
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e:: ^ 4 0"
and 6" =

ntl I .

j

0

Hence, fbr the case of the temperature the matrices are A =

R~‘‘->3
o

o

5

n +2 —1— r\ +

0

r» + i

n +_[ 
z.

0

Y+1

0

O
-ntL

i

4,N'2

5

(3.6.11)

n+Lz

and

u n+iz
L, N-l

(3.d.12)
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Having completed, the construction of the tridiagonal 

matrices for all relevant cases we shall now look at a particular 
way of solving the equations using the tridiagonality of the 
matrices. The Grout decomposition method (Bajpai, Mustoe, Walker; 
1977) is a general method for solving systems of equations that 
yields particularly simple results when is tridiagonal.

A =In brief, if / \ - |<. im-. i,—is a tridiagonal matrix,
/ K = I, - j M

then there exist a lower triangular matrix

and an upper triangular matrix

with Lt

X MIC , m : I, - j M 
K - I, -.,rt

K = I,-.., M
M IC - when - /c

such that

In that case the non-zero components in the matrices L. and Li 
are readily calculated through

(i)

(ii)

(iii)

m I m I , fn - I, 2u ! KL K : 2
I K - (.K. Kfl KfJ

^ k'i/ 1/ -

(iv) uK «-! =■

KK K for |( = a,., ri

I ’O/C K. J

This procedure is termed triangular decomposition. To solve the 
system of equations

Ar-B A, where / \ is tridiagonal
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we first factorise M into
A intoLU so that

Lu r = 6 = Liir
Then if we write

ur = 1 (3.6.13)

then the original equation is equivalent to

L3 . 6 (3.6.14)

Since L is a triangular matrix with only one non-zero 
sub diagonal, ^ can be easily found from (3.6.I4) to be 
given by1 I I

/ <

Having foundwe then use (3.6.13) to find . Again the 
triangular nature of makes the solution an easy task. We 
obtainC = 1

- X ~ Cfl
(3.6.15)

K = 2,,

Having determined the solution of the conservation 
equations, we shall, in the next paragraph, look at the solution 
of the Poisson equation.



53.7 Solution of Poisson equation - Block Cyclic Reduction method

We shall now consider the elliptic Poisson equation 
(2.4.34) for the stream function. A review of the literature 
shows that many attempts have been made to find a solution. The 
iteration methods are very easy to understand and program.
Frankel (195O) has developed a method of applying over relaxation 
to the Gauss-Seidel method: this procedure is called Successive 
Overrelaxation (SOR). In recent years the slightly more complicated 
All methods have become popular. The procedure here is to convert 
the elliptic equation into a parabolic one, by including the unsteady 
terms which can then be integrated in time by the previously 
described ADI method until steady state is reached.

Due to intensive research direct inversion methods are 
now coming into wider use. These methods are extremely accurate 
since in theory they yield the exact solution to the difference 
equations. They need considerably less computation time than ADI 
methods, but they often place some limitations on the boundary 
conditions and grid size. Kublbeck, Marker and Straub (198O) 
conclude that a reasonable compromise between computation time, 
freedom with boundary conditions and a suitable grid size is 
obtained with the method of cyclic reduction of Schumann and Sweet 
(1976). Buzbee et al (1970) examined the method of cyclic reduction 
with the Buneman variants to obtain greater numerical stability. In 
this work, the Poisson equation will be solved by the method of cyclic 
reduction using the Buneman variant.

An introduction to the idea of cyclic reduction

Consider the system of equations

67.

M
(3.7.1)
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where M is a X ^ real symmetric matrix of block tridiagonal

form:

A T" o .. .
T" /\ T ' :
d ' '' 0

; ■_T
\ O .. . O f A

(3.7.2)

We assume that I is symmetric and that the (^xb ) matrices 
A and T commute. To maintain consistency with the form of 
matrix M, we write the vectors X and ^ in partitioned form,

X =
X.

\

(3.7.3)

Furthermore it is then quite natural to write

X; ' I- '■J , . " (3.7.4)

With the use of expressions (3.7.2), (3.7.3) system (3.7.l)may he
expressed as

Ax, t Tx,
^ X n f A X; f ^ = % (3.7.5)

A X, ■
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Consider a i such that
iquations forQ-lj , j and are

t Ax^.., 'Tx,

1 t Ax, + 1 Xj,.

'-j t Ax,„ 7 '

^r'
3 (3.7.6)

I
Multiplying the first and third equations of above system by j , 
the second by (“A) a,nd adding we have

+ i^T-Ajxj . Tx,„
This is a single equation of the same form as each equation in 
(3.7.6) but with the unknowns _Xj., and 2S_j+i appearing.
By choosing even values for J a new smaller system of equations 
involving /Kjh indices is produced. The process of

areducing the number of equations in this fashion is known as cyclic 
reduction. It should be noted, however, that the calculation of the 
right hand sides of equations (3.7*7) is subject to severe 
rounding off errors in many cases of interest. This difficulty is
almost eliminated by using the more stable Buneman variants of the 
Cyclic Reduction method.

Recall the Poisson equation in transformed coordinates.
equation (3-3*7)j which, with c i and EXj: 0 , reduces to

A' 'tl 6. If t
If

= -Q (3.7.8)

subject to 1=0 on all boundaries. f



Next, we convert equation (3.7.8) into finite difference form 
using central differences obtaining
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with boundary conditions
N-I (3.7.9)

t,
t,
t.,

f.
‘o,N

O 1

' V

J

L- i)Z, ...hi y lyZ,...^ A/ . (3.7.10)

E^uation8(3.7.9)and(3.7.l0)can be put into the form (3.7.I) and
the corresponding matrices M and ^ are now determined.

Let a-
.2

d : A’jo-iUuO
(3.7.11)

-L'Gi,
I

Then equation (3.7.9) can be written in a simplified way:

t'+i, I
^ ^ = (^W,^,(3.7.12)



but the boundary conditions are unchanged. With i=z 
equations (3.7.10) and (3-7.12) yield the set of equations
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QH Z.Z 1

t,. + k + C; ^ t> = QH 3 2 ' (3.7.15)

Qw-, t-,., + L, %-,,z ^ f t-w. .

Furthermore for general J, in the range 
equations (3.7*10) and (3-7*12) yield

j 4 j 4 N-2

'J 'J

4r ‘’^4 ^ . QHi,
(3.7.14)

^N-l ^-2y ^N-l vPN-,„ -QHL.. .

Finally when ( : , the corresponding set of equations is

i 'z, N-l

<■ kt"-, + (^4,.-, -Qf,,..,(3.7.15)

a N-l N-l,t4-i

L, ^
N'/ ' N'l , N-l + rJ-l) W-2 = QH /

N(*' , N/-I



Define the vectors

%
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and QH: throng

PH:;

and Pi.
d

/

QH:,..

(3.7.16)

... JNf-l

then systems (3.7«13), (3'7«14) and (3.7'15) can be written
respectively

'42
+ o

. t *..., 0. L . QH, (3.7.17)

11;, 7 At 71%, »X-,= %.
y+i 'jfz

j < i ^

(3.7.18)

j
and

0-
42

+ -f o ; (3.7.19)

where

A -- 0
0

kz Gz

a

0
c.5

o

o
('N'Z

o (^u. k
H-l ^W-I

(3.7.20)

= _J_— r (3.7.21)
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and J_ is the identity matrix of orderf^/-^. Hence, the systems 

of equations (3.7.1?) - (3.7.19) are equivalent to the block 
matrix equation

where IT C) - 0 

j[ ][ \ : 

0

0

'• 0 
I

0 I A

(3.7.22)

(3.7.23)

and

r'N-l

QH,
OH,

(3.7.24)

The basic idea for reducing the system (3.7.22) was 
given at the beginning of this section, although the precise 
details depend on the value of N . For convenience we choose

N = 2"' + (3.7.25)

where Kl is a positive integer. System(3.7.22) may be writtenAt + It
T t-. At 7 ft' ^ QH, .

(3.7.26;
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and it is this system that is now subjected to the process of 
oyolic reduction. Becalling result (3.7.7)1 after one stage 
of cyclic reduction we have

fi (3.7.27)

for j, - ■2,4^ N~3 with f . I O

Since system (3.7.27) is block tridiagonal and is of the form 
of system (3.7*22) with

A'" = 21- (3.7.28;

(•)
_ /A (3.7.29)

we can apply the reduction process repeatedly until we are 
left with one block equation (this is possible with our choice 
of N ). lu general after(V-Nj reductions we have

(f + i)

II - Aurj with A (3.7.30)

and the right hand side is obtained from

/)(r4i) ,o(r)
+ T.y ■ _

:r (3.7.31)

Tdie]% r= 0,^. * ( K is defined through (3.7.25)) and
J . l-r*' ,2-2- . ... , (2"'-1)2"' .

After KL steps, we obtain the single block equation

(K)
(3.7.32)
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In general system (3.7.32) can easily be inverted, but, 

as stated earlier, in practice the calculation of the right hand 
sides introduces acute instabilities. The Buneman variant requires 
that the right hand sides resulting from the reduction process are 
not computed directly but defined implicitly by two auxill&ry
vectors yfr) and

<1
First, note that the right hand side of (3.7.27) may be written as

u)

QH, + AQH,
tf

= A‘'7A]"'Qh,„ MH, f QH,„ - 2fAl‘'QH (3.7.33)

where (= 2,^ have used equation (3.7.28)

Next let us define

0)

0)

then from (3.7.3) we have
>0)

Writing

A
-I

A‘y^>

0)

^ h
r ■ n' ■ V .

(3.7.34)

(3.7.35)

(3.7.36)

(3.7.37)

Ur / /,(!-)we can obtain expressions for p and ^1. by substituting 
(3.7.37) i"to (3.7.31) and making use of the identity (3.7'30). 
The following relationships are obtained:

hC) kM
7

J

ir) A -2''
(3.7.38)
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r
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(r)
^'-2^ 2r (3.7.39)

for 62'" L: ',2..^ 2K-r
, with

t/> , hi"
0

r) nr)

After (2 reductions, one therefore has the equation

A" Z%i 7. Z'

and hence
vy

2^ + i

To compute

t , .'A
(or'

T

(3.7.40)

(3.7.41)

2^+1 in (3.7.41) we solve the syst em
of equations

(h)
2< Ir (3.7.42)

Mwhere M
r)

is given by the factorization
2^

y) Z CosOfl

z i
(3.7.43)

cuid 6^ = ' (Buzbee et al, 1970)- It
should be pointed out that in the derivation of (3.7.43) the 
authors have assumed that the matrix ^ can be diagonalised.
We note that each of the matrices forming the product in
(3.7.43) is tridiagonal. Hence, for equation (3.7.41) ws have

A.lfAl - M
Aj 2"

where for a given T

Aj . A A 2 Cos ef I , r\(r)with defined above
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Define f throng

n
V U

[AjfA..,] •■•[Az. lIH 
'a

\

J i3.7.44)

A
^ Lt I

"kere 96, = a'

= L
K

system

& : /,2,

ZVI =

V z ^ J i ^ ^ t • ^

at each stage obtaining the solution by using the Grout decomposition 
method described earlier. At the end of this cyclic procedure, a 
solution is determined for : Having found , we
then back-solve to successively find the eliminated unknowns. To 
achieve this we use the relationship

t
Tju + '^.2',, = /f t 2'"' , (3.7-45)A" I.

for J i : /, 2 z , 2-K*i-r j with +/ 0

Hence to find the eliminated unknowns we solve the system of
equations

Lr)

j

1 , (3.7.
46)

where i - 2. , 3-2 ^ 2- ~ ^ , using the factorization
h(r)

of f\ and the procedure described earlier.

To summarise, the Buneman algorithm for the solution 
of the Poisson equation with the boundary conditions proceeds as 
follows:



1. Compute the sequence
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r -1 > 2,K with

Determine YI 2^+1

0)

by (3.7.38) and (3.7.39) for

= ig for I : 2/ and

3. Back-solve for other Ij’s using (3.7*46) ■

%’ - YtY . j : - '
from (3.7.41) '

The scheme described in this section is valid only for the case
+ j . Schumann and Sweet (1978) have examined the 

case for general!^ : the basic method is unaltered but the 
details of the reduction process are changed.

It should be emphasised that the complications introduced 
with the use of Buneman's variants were judged worthwhile since 
they provide greater numerical stability.

Ideally, we would like to transform the coordinates in 
both X and ^-directions since we would then obtain, for a fixed 
number of mesh points, a more accurate description of the flow in 
the boundary layer at the bottom of the container and in the shear 
layer near the free surface of the fluid than we get with mesh 
points that are equally spaced in theX -direction. Unfortunately, 
the use of stretched co-ordinates in both directions gives rise to 
an asymmetric block tridiagonal matrix and the 'simple' reduction 
process outlined above does not work. It might be possible to 
amend the method to circumvent this difficulty but such a change is 
not attempted in this thesis.
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CHAPTER 4
NUMERICAL RESULTS AND DISCUSSION

4.1 Stability criteria of the ADI scheme

Generally speaking, implicit methods are unconditionally 
stable: that is, round off errors introduced at time level /) are 
not magnified in modulus when values of the dependent variable are
computed at time level ( At ^ ). This is clearly demonstrated by 
various stability analysis methods (Roache, 1976). These methods 
however make use of some simplifying assumptions; that the velocity 
be a positive constant along any given row or column, for instance. 
These assumptions are not generally valid and therefore, in practice, 
one does experience certain restrictions on the time step. These 
restrictions certainly arise with the ADI scheme.

Roache (1976) argues that the Courant-Priederick-Lewy (CFL)
condition is a reliable stability criterion for most numerical methods. 
The CFL condition states that

A% 4. 1 i
2

(4.1.1)

where is some diffusion coefficient.

Since the CFL condition is a very general one, its application to our 
problem does not neoessarily guarantee that round off errors are not
amplified.

There is another condition that must be obeyed in order to 
obtain accurate solutions to the system of linear algebraic equations 
using the Crout algorithm; that the coefficient matrix on the left 
hand side of (3.6.4) be diagonally dominant. In order to be more 
explicit, we first recall that the transport equation in transformed
coordinates along a given row as A n + I can be written
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i]! A. It ■f (4.1.2)

where is a positive constant and. JiL ) 1-^ some known
quantity. Using forward time and centred space approximations we 
obtain from (4.1.2) the following finite difference equation (PUE).

R 1—o+J ^ I—n-t-J-t S- R ^O ‘ u-| f

where

T n + L
u * Of I Ul (4.1.3)

R;, Bt Aj( (t- ) - OC. 3x R)) -i °< A;( (i)

;Uk .
(4.1.4)

S.

and ii:

z ZoL Ay i^)

^LL Ay A

zk

is a known quantity.

(4.1.5)

(4.1.6:

Diagonal dominance of the system of equation 4.1.3 requires that

S. > R -f- II (4.1.7)

If (4.1.7) is not obeyed, then the loss of accuracy in the solution 
of the algebraic equations may make the results from an application 
of the Grout method quite worthless. Throughout the following 
analysis let us assume that ^ is constant at all nodes in a 
particular row.
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Suppose 0 . Then, if

, (4.%8)

inequality (4.I.Y) is satisfied (that is the matrix is diagonally 
dominant) for all values of . The inequality (4.1.8) is
equivalent to

UA (i) (4.1.9)
■=^ A^c^)

or R, < 2

where denotes the cell Reynolds number for the transformed
equations.

When inequality (4.1.8) is not satisfied diagonal dominance requires 
that

c.)
k A A'

yielding

>v4- ^ Axto - (.0 - ^°<Ax(p)k < ,2 -(4.1.10)

Suppose now L^A^G) — Ba G ) ^ ^ . In this

case if G) - 01 ^ G) (or > -2 )
Ik ^

then (4.1.7) is always satisfied irrespective the value of 
However, if <l-2 then inequality (4.1.7) is satisfied only if 
the time step /Si is chosen such that

AT/\ ■Ba (i) ~ 00 Ax (i ) — 2«X Ax G/)k CZ "(4.1.11)
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Conditions (4*1*10) and (4.I.II) may be more conveniently written as
the single equation

u Ax (t) - G-)I - zcK Ax(i.)
A k'

<( ,2 - (4.1.12)

Similarly the conditions on that yield unconditional stability
can be combined to give | ^ 2 .

As n + 1 n + I , we have the following FDE
corresponding to the transport equation, where is assumed to be
constant along a given column

nil nt I r. I Ur, (4.1-13)

where

R. a ^ k (4.1.14)

5, f- 2«<4 (4.1.15)

I:J V.
Zh

o<4 (4.1.16)

and (JL ^ is a known quadity. Diagonal dominance of the system 

of equations (4.1.13) again requires that (4.1.7) be satisfied.

Using the same arguments as for the case when O ? ^ z ’ 
find that the coefficient matrix is diagonally dominant for all 
values of AI if I 1^2.,

we



where Be =
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On the other hand, if >2 the
system is diagonally dominant when the time step satisfies

|i\/l - < 2 (4.1.17)

It was found hy numerical experimentation that a variable
time step enabled the steady state solution to be reaohed faster 
than with a constant step. In view of the fact that a large part 
of the computational calculations in the program involved inversion 
of tridiagonal systems, diagonal dominance of the matrices was 
found to be a key element for numerical stability. In our numerical 
procedure the CFL condition (4.I.7) was used to provide an initial 
value of the time step and any subsequent changes in were made
through the use of conditions (4.I.IO) (4.1.17).



^ 4"2 Computational procedure

The procedure that was adopted for obtaining solutions 
using the finite difference equations derived in $ 3.$ is now 
described. First, it was necessary to choose values for 
N (the number of mesh points in a row or column), for the small 
convergence parameters EP1, EP2 and EP3 (defined later in this 
section), for the initial time step Ziu , the Prandtl number Py and the 
Grashof number Gr . Then the dependent variables (p , E) and 
were initialized.

Suppose the solution for (3.4*1) had been calculated at 
time level n . Then the temperature at the bottom and sides of 
the container were updated using the prescribed constant heat 
fluxes on these surfaces (conditions (3.5*^4) and (3.5.31))- Next, 
the components of the matrices A appropriate to the solution of 
the momentum and energy equations along the first row ( 1=^ ) were
calculated from equations (3.4.18). Using the Grout algorithm 
(see 6 3-6) the vorticity and temperature at time level ( )
were found consecutively at all internal nodes along that particular 
row, using the boundary conditions at the ends of the row. This 
procedure was repeated for the other rows ( ■■■, N-i ). The
vorticity at time level ( n t 4 ).was then substituted into the 
right hand side of the Poisson equation (2.4-34). Using the Block 
Cyclic Reduction Method given in ^ 3-7, the Poisson Equation was 
solved to give the stream function at time level ( n + 4 ). The 
time step was then set to its correct value according to (4-1.12).

After updating the values of the temperature and vorticity 
on the boundary the procedure described in the above paragraph was 
repeated, except that now the vorticity and temperature were calculated 
in coTumn order through (3.4.1$), this time using the boundary conditions 
at the base and top surface. With this method the vorticity, temperature 
and stream function were found at time level ( A + t ).
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A convergence test was now performed. Let ^ , 9 ,
be the calculated values of the respective variables at an 
arbitrary point ( ) at time level ( A + t ( by ) 6 i2 , S2.
being defined tlhroT^^i (3.3.12);

to be the corresponding values at the same point 
at time level n
and 8e the maximum values of the variables over the
whole grid at time level ( A I ). Then we assumed that convergence 
of our solution was achieved when all the inequalities

Q- Q,

9-9,
tn

f - tt

EP1,

< EP2

EP3

. > ^ N) ^^

were satisfied, where EP1, EP2 and EP3 were prescribed constants.
If the convergence test was satisfied, the velocity field was 
calculated from the stream function using equations (2.2.18) and 
the solution was printed out. However, if one or more inequalities 
was violated, the value of Hwas increased by one with the time 
step set according to (4.1.17) and the procedure for updating the 
dependent variables was repeated.
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)4.3 On convergence, accuracy and converged solution

In this section we shall describe the steps, which we 
have taken to enhance the rate of convergence of the numerical 
solution and shall discuss the accuracy achieved. For simplicity, 
let us take the measure of the rate of convergence to be inversely 
proportional to the number of iteration steps required to achieve 
the steady state solution.

Effect of parameter X

A parameterwas introduced earlier (see (3.4.1)). 
Various sets of numerical results were produced for different 
values of and it was found that changingdid significantly 
affect the rate of convergence. An optimal value of = 0.2$ 
for the energy equation was found by numerical experimentation.

Choice of time step

The program was run initially with a constant time step 
( = C ) set by the GFL condition (see 5 4.I). Numerous sets
of numerical results were produced with different constant values 
of AI and different sets of error parameters. For a given 
Grashof number and a given set of error parameters results obtained 
with a smaller value of were generally less accurate, as might 
have been anticipated, since the solution was being truncated before 
it had properly converged. The values chosen for and the
convergence parameters (EP1, etc) should therefore increase (or 
decrease) in tandem. However, a variable time step (discussed in 
^ 4'1) bad positive advantages on the rate of convergence, though 
some extra computations were required at each time step. The 
advantages on the rate of convergence of having a variable time 
step seemed to outweigh the disadvantages, but care has to be 
taken to ensure the solution has fully converged.



87.

Other approximations for temperature boundary conditions and some
derivatives Y

Various sets of numerical results were also produced 
with different finite difference expressions for approximating 
both the heat input at the solid boundaries and the temperature 
condition at the centre line. Initially, linear expressions were 
used at all three boundaries. With parabolic approximations, 
however, (see($ 3.5) the solution converged faster and one expects 
them to provide increased accuracy in the velocity and thermal 
boundary layers. It should be pointed out that the extra 
computations needed for the parabolic approximations were 
insignificant. It is possible that exponential expressions for 
the variation in temperature near the boundaries would lead to 
more accurate results, but such variations have not been investigated 
in this work.

Expressions for the derivatives of the stream function near 
the solid boundaries, more accurate than those introduced in^ 3.7, 
were obtained by exploiting fully the boundary conditions on the
stream function and velocity. The modified expressions are derived 
as follows: Using Taylor's expansion we have for j = 1,2, N

u/
t

: ^ f L/luk (h:) + jk f (4.3.1)

and

"K,, .t. f ,41(4.3.2)

From (4.3.1) and (4.3.2) and with the use of the boundary 
conditions

(ly ) , (seej^ 3.5) (4.3.3)
P

it follows that



^2 ijy
j - j ) / 2.U^ + C> (4.3.4)

and.

'^(i,j). i. (tiy - i, t 4L). (4.3.5)

Furthermore, another Taylor expansion yields

hf (4.,) . hto,,) i-kll ,1:'ll 4 4l . (4.3.6)

and expressions (4.3.3) to (4.3.6) then imply that

-f O (4.3.7)

In an analogous way it can he shown that

1)

L,z) = ^ t o(l^)
(4.3.8)

Although the expressions for the first derivatives are 
modified as above, a simple Taylor's expansion analysis reveals 
that the second derivatives (2,f) and (0 :>)

retain their usual finite difference expressions. On the 
introduction of expressions (4.3.7) and (4.3.8) the solution 
converged much faster and, consequently, a more accurate picture 
was revealed.



It should, he emphasized that the inclusion of (4.3.7) 
and (4«3«8) into the FDE for the Poisson equation did create
some difficulties, since the diagonal elements of the block 
matrix M were changed from A (see (3.7.23)). The original form 
was restored by moving the 'extra' terms to the right hand side 
of equation (3.7.12) for the case when 1= 2 , giving the 
following scheme:

(reference is made to expressions (3.7.11) and (3.7.12))

k/,']'fi.i + (‘""/jO ■tv <*
VH,,. - ^[2)1. (4.3.9)

More accurate solutions could have been obtained by 
representing the c^riv^ivesin the governing equations by finite 
difference approximations to a higher order of accuracy, thus 
reducing the truncation error, but the technique has not been 
used in this thesis.

Changes in grid spacing

Another technique commonly used for improving the accuracy 
of the solution is to reduce the grid spacing. No specific formula 
which connects the magnitude of the discretization error to the size 
of the grid spacing has yet been found. However, numerical 
experimentation has shown that, in general, errors decrease as the 
grid spacing is reduced. One therefore expects that using smaller 
and smaller grid spacings will eventually produce successive finite 
difference solutions that differ from the true solution by decreasing 
amounts. This approach is usually very uneconomic, however, and this 
was confirmed from a careful consideration of our program run with 
different mesh sizes. It was found that on halving the grid spacing
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the computational time increased approximately by a factor of 
r^, where T is the ratio of the respective numbers of grid 
points (i.e. r= J(^2. f- j j for the appropriate K).

In practical terms this meant, for instance, that the program 
could be run satisfactorily on the local computer for a (17 x I7) 
mesh but had to be run on a super computer (CRAY-1S) if a (33 x 33) 
mesh were used. To decrease cost (and turn-round time) the program 
was developed and run mostly on the local computer but some runs 
on the CRAY-1S were carried out.

Heat and mass balance

We shall look now at ways of checking whether steady state 
has been reached, recalling that, at steady state, all the physical 
variables at each point are independent of time. One method is 
based on heat balance. Since we are assuming no evaporation at the
free surface, all the heat passing through the solid boundaries of 
the container must leave through the top surface in the steady state. 
Therefore, a necessary condition for the numerical solution to 
satisfy in the steady state is the balance of heat in the container. 
A method of testing whether such a balance has been established is 
outlined below.

If is the heat flux leaving the top surface in the 
real cavity, then

te a Q3 (see ( 2.4), (4.3.10)
j., _ SQ'

where Qj and correspond to the respective heat fluxes in the
r 0 : I.Z 5non-dimensional cavity 

Introducing the variable I- ^ is the distance measured into
the fluid from the free surface, the boundary condition (4.3.10) can 
be written tel
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Assuming a parabolic distribution for the temperature at the free 
surface,

e (3 ^ f- t>^ f C.
L~

we then deduce that

t = _% .
)S&.

On the free surface we require (see (3.5.I)) that
and hence we find from (4-3.11) that

(4.3.11)

(4.3.12)

c = o (4.3.13)

Assuming ^ are known, then V 0 in the range
I 61/ 6 M , equations (4.3.II) to (4.3.13) imply that

= a, ft N) L

from which we deduce

L , l\J-l 

/

(4.3.14)

(4.3.15)

(4.3.16)
zk

A simple analysis shows that,when - (\) (see 4.3.10), we obtain the 
following expression for ^

where is the corresponding heat flux in the non-dimensional cavity.

Using the trapezoidal rule to evaluate the amount of heat leaving 
the free surface, QS say, we have 

N-l

Q5 --
C % I

(4.3.17)

where measured in non-dimensionalJXrspace, corresponds to
( u-l )k in b -space.
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Since Q^ and are both constants, for heat balance we require

(PS = (g), +
(4.5.18)

Expression (4.3.17) is one criteria that helps us decide whether
steady state has been reached. The accuracy of the heat balance 
was calculated, by comparing GlS and ( 62,+ ).
precisely, a percentage value

P (32) I ^
(:), ^ (3i

(4.3.19)

was evaluated. For the numerical results presented later 
condition (4.3.1 9) was satisfied at '1% accuracy for most cases 

and, at worst, at accuracy. Similar checks were also 
performed on the mass balance within the liquid. In the steady 
state the total mass flow across any line X = const or ^- const 
must be zero. The accuracy of the mass balance relative to the 
vertical velocity for instance, was found by comparing the mass M, 
of liquid going upwards and the mass of liquid going downwards,
A percentage value ^ given by

P . n,.-rl
max

100

was then evaluated. Relative to both velocity components balance 
was obtained within 1^ accuracy. It is not surprising that, on 
the whole, the mass balance was more accurate than the heat balance, 
since accurate calculations for the heat flux at the free surface 
were not possible because of the relative scarcity of grid points 
in the thermal layer.
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Check with known solutions

Another important way of checking major parts of our 
program was to change our problem to one commonly used in this 
area to assess numerical schemes: namely, a square region with 
differentially heated end walls and adiabalic top and bottom
solid surfaces. This conversion was easily carried out and the 
resulting numerical solution obtained with our method was compared 
with the very accurate results that are available in the literature. 
Pig. 4.3.1 shows the vertical velocity profile, obtained using our 
numerical scheme along^^^Lfor Ra = 10^ and Pr = O.73. The figure 
clearly shows a centro-symmetric pattern: a necessary feature in 
view of the symmetry of the problem. Our values for the horizontal 
and vertical velocities were within of those obtained in the 
bench mark solution of Markatos et al (I983) and De Vahl Davis (I982),
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Vio'

Fig 4.3.1 Comparison problem. Vertical velocity, Ra - 1
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4.4 Wumerical results and analysis

Ntfflierical results were obtained on the different mesh
sizes (9 I 9), (17 z 17) (33 % 33). Convergent solutions
could, not be obtained for the (33 x 33) mesh on the local computer 
(ICL 2976), so some runs for this mesh size were performed on the 
CRAY-.1S at the University of London Computer Centre. Although the 
latter results showed little qualitative difference from the ones 
obtained on the (l7 % 17) mesh, the results did reveal a more 
accurate description of the velocity and thermal boundary layers 
and varied at the most by 10^ from the results recorded on the 
(17 X 17) mesh. Most of the numerical results were obtained 
locally on a (17 x 17) mesh size for Grashof numbers up to 10^ 
and it is mainly these results that are presented in this thesis.

A few runs were performed for Grashof numbers of 10'
J2to 10“*. Although instabilities did not arise for these values of

Gr it is possible that the velocities become sufficiently large
for the flow to be turbulent. Since the Reynolds number is defined
by Re = , the transition to turbulence clearly depends on
the properties of the liquid under consideration and the size of
the container. Because of the close similarity of the results for
Gr = 10^ and Gr = 10^, we shall concentrate on presenting numerical
results at steady state for Gr = 10^ and Gr = 10®, with a few plots 

12for Gr = 10 . In all cases, the Prandtl number is equal to unity
which is a reasonable value for cryogenic liquids.

The program was run with different values of the stretching 
parameter £ (see Fig. 3.3.1). With £ = 0.95, it was found that the 
X -coordinate was overstretched and, consequently, the results 
suffered from loss of accuracy in the core region. However, as €. 
is decreased, the numerical error increases. The choice of £) = 0.8
seemed to be the best for our problem and is the one used for our 
numerical results.
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Numerical results are presented for different values 
of the aspect ratio ( ^ ). It was found that the
aspect ratio had a major influence on the stability of the 
numerical method. This dependence was already revealed for 
similar problems almost two decades ago by Elder (1966). For 
our problem it did not prove possible to obtain accurate results 
with our numerical method for Y < O.25. It was assumed in
^ 2.4 that (3, and the heat fluxes at the base and sides of 
the container respectively were both constant. In practice, there 
may be spatial variations in these heat fluxes, particularly in(^^ 
but although these would seem comparatively simple to introduce 
we do not do so here.

Some numerical results are presented for cases when there 
is no heat flux at the base. In these situations, a change of heat 
flux scale is necessary, in that (see 2.3) may no longer be
set equal to Q, we can however, setlp^ equal to .

The initial conditions were set as stated in ^ 2.3. These 
conditions provide an initial guess for the dependent variables. In 
view of the limited computational time on the local computer it was 
found necessary, in some cases, where the rate of convergence was 
slow to perform numerical computation in 2 stages. The outputted 
transient solution, for a given Grashof number, from the first stage 
was then used as initial conditions for another run at the same 
Grashof number.

The temperature and velocity profiles shown on Figures 
in this section are accompanied by small squares or rectangles 
that indicate the line along which the temperature or velocity 
is plotted. In order to make the diagrams more explicit for 
cases, where I , small rectangles representing the real 
configurations of the left half of the cavity, are drawn. In 
these rectangles, for instance, the line^ = 1 would represent the 
top surface of the liquid, its height being given by , whereiff is the width of the cavity. : ^
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We shall now examine in some detail the numerical solutions 
obtained, grouping these solutions in a convenient way.

1. =

Here we are looking at a rectangular region of liquid
with an equal influx of heat per unit area at the sides and bottom.
Fig. 4.4.1 shows streamline patterns for Gr = 10^. Since we are 
at steady state, the streamlines coincide with the particle paths 
and, therefore, the flow pattern is roughly speaking a cylindrical 
vortex, rotating clockwise in the region shown. The vortex is 
generated by the horizontal temperature gradient across the cavity 
since the heat transfer is still mostly by conduction. In the 
V-plots in Pig. 4.4.5, the curve corresponding to Gr = 10^ 
demonstrates that the boundary layer is comparatively thick. This 
is not unexpected because we are dealing with a low Grashof number, 
for which viscous effects outweigh convection effects and, 
consequently, the liquid is still slowly moving.

As the Grashof number is increased to 10° (which, in our 
case, would mean that more heat is being applied at the base and 
sides of the cavity) buoyancy effects dominate the flow and, as a
result, the boundary layer becomes thinner and the maximum velocity
moves closer to the wall. Also, more of the motion of the liquid
now occurs close to the boundaries and there is correspondingly

12less activity in the core region. At Gr = 10 , the boundary layer
is thinner and much more pronounced and the velocity gradient in
that layer is very high, thus confirming the high values of the

12vorticity in that region. Again, we find that, at Gr = 10 , more
of the motion of the liquid s shifted towards the boundaries. The 
effect of increasing the Grashof number on the flow pattern can be



observed, by comparing Fig. 4'4.1 and Fig. 4'4'3 and inspecting
the plots in Fig. 4«4'5. As Gr increases by a factor of 10^,

2the vertical velocity increases by about 10 and, as is evident 
in Fig. 4'4'5, we find that there is a downward and relatively 
strong jet at the centre line. This phenomenon, which was not 
expected by experimentalists, has now been frequently observed 
during experiments with cryogenic liquids.

Fig. 4»4«4 shows temperature profiles along the line
.4For Gr = 10 , the curve corresponds to the conductionX= 1z

solution as the velocities are still small. Furthermore, we find
that, along this curve, the vertical temperature gradient changes
sign twice indicating the variation of the temperature with
distances in the middle of the cavity. However, as Gr is 

8 12increased to 10 and further to 10 , the corresponding temperature
profiles in Fig. 4*4*4 show that the vertical temperature gradient 
in the middle is almost zero. In these cases, because of the 
predominance of convective effects, the liquid moves faster and the 
flow becomes more uniform. The temperature in the core region is 
found to be constant. Peaks arise in the temperature close to the
free surface (the ones for Gr = 10° and Gr
obvious).

1210 being more

It should be pointed out that the temperature profiles 
(or velocity profiles) measured along a constant value of ^ 
are not expected to be so accurate as those along a constant 
value of;^ , because the j -coordinate is not transformed so as to 
accumulate grid points near the boundaries.

As stated earlier, only a few solutions were obtained on 
a (33 % 33) mesh. Although these solutions took much longer time 
to converge, they did give more accurate results, in particular 
providing a better description of the thermal boundary layer at 
the free surface. Moreover, a very interesting fact was noted on 
comparing Fig. 4*4*3 and the streamline pattern for the finer mesh.
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Pig. 4'4«3 shows that on increasing the Grashof number from 
10^ to 10 , the single circular vortex is conserved. However, 
the flow pattern for Gr = 10^ on the (33 x 33) grid showed the 
formation of a small secondary vortex in the bottom left hand 
corner of the cavity. A close look at the temperature distribution 
in that particular region showed a high concentration of isotherms 
similar in shape to that of a plume. These results suggest the 
existence of plume convection, thus confirming experimental 
observations by Scurlock et al (1$84).
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Fig. 4.4.1 Streamline pattern, Or = 10^
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Fig. 4»4»2 Isotherms, Gr 10
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Fig, 4«4«3 Streamline pattern, Or = 10^
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0(0

Fig. 4.4.4 Temperature profiles
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Fig. 4.4.5 Vertical velocity profiles
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2. V i I , ^: O

Here we are looking at the same cavity as before bnt 
without any influx of heat at the base. Ihere is not mnch 
qualitative difference in the numerical results from those of 
the previous case. Fig. 4.4.6 shows vertical velocity profiles 
for Gr = 10^\ 10^ and we observe the marked difference in the 

boundary layer thickness as the Grashof number is increased.
Comparing Fig.'s 4'4«5 and 4*4*6, we find that, when Gr = 10^, 
the velocity profile is considerably flatter in the region 
0.25 < X <■ 0.8. This implies that, for Gr = 10^, there is 
relatively less motion in the core region when the heat flux at 
the base is switched off. Also, as expected, the magnitudes of 
the velocities in this subsection are lower than those in 
subsection 1 as buoyancy effects are less strong. Although the 
scales are different, a comparison of Fig.'s 4*4*8 and 4*4*4 naturally 
reveals that the temperature gradient near the free surface is lower 
when there is no heat flux at the base. It is interesting to note 
from Fig. 4*4*7 that, even though no heat source is present at the 
base, a boundary layer still arises there. The isotherms for 
Gr = 10^ (which are not shown here) reveal an almost vertical 
stratification pattern, which is not too dissimilar from the one 
shown later in Fig. 4*4*14 except for there being slightly thicker 
boundary layers in this case. Vertical motion in the core region 
is considerably reduced, therefore as shown in Fig. 4*4*6.

The numerical results mentioned above are not inconsistent 
with experimental data. However, in a laboratory situation the 
containers are narrow cylinders and so it seems appropriate to 
look next at numerical results for cavities with a smaller aspect 
ratio.
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3. Y: Q, o

In this cavity, the height of the fluid is twice the 
width. Results are presented for Gr = 10^ only since the latter 
value corresponds more closely to experimental data and, also, 
results obtained &r Gr = 10^ were found to be closely similar to 
the corresponding ones presented in subsection 1. In Fig. 4.4.9 
the vertical velocity profile reveals a sharp definition of the 
boundary layer and the central downward jet is evident. The 
other interesting feature is the almost fiat portion in the middle. 
Almost the same picture is revealed in Fig. 4.4.11 for the 
horizontal velocity. These results indicate that the motion of 
the liquid is, to a large extent, confined close to the boundaries 
and to the free surface and the liquid in the core region is 
relatively static. Recirculation exists mostly within the boundary 
layers and the flow along the sidewall contributes to the thermal 
layer formation at the top as shown in Fig. 4.4.10. No obvious 
reason is found for this behaviour, but these results are in good 
agreement with experimental results from the Institute of Cryogenics, 
University of Southampton.

4. X. 0 ■

In this cavity the height of the liquid is equal to the 
width of the cavity. Velocity and temperature profiles for 
Gr = 10^ are shown in Fig. 4'4«12 and 4.4.I3 respectively and 
these are qualitatively similar to the ones corresponding to 

= 0.25 plotted on Fig. 4'4«9 Fig. 4.4.10. Fig. 4.4.12 
reveals once again that the velocity boundary layer and central 
jet are clearly defined and the middle portion is almost flat.
Hence, the motion of the liquid is mostly confined to the boundaries, 
the central jet is very close to the line of symmetry and the 
remainder of the liquid is relatively stagnant.
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The isotherms shown in Pig. 4«4.14 reveal a thermal
stratification in the core region. This vertical stratification 
in the temperature distribution with increasing values from the 
bottom to the top of the cavity inhibits the vertical motion in 
the core region and so is consistent with the velocity profile 
shown in Fig. 4.4.12. The boundary layers are quite noticeable 
in Fig. 4.4.14. Results for Gr = 10^ are qualitatively similar 
to those given in subsection 2 for a different aspect ratio and 
are not presented.

We can deduce from the results presented in subsections 3 
and 4, therefore, that some variations in the aspect ratio have 
little influence on the velocity and temperature distributions in 
the liquid.

5- Li, 0I = 2

In a real large storage tank, the presence of support 
devices at the base mean that, on average, the influx of heat at 
the base is higher than that at the walls and consequently our 
program was run with the ratio of the heat fluxes as stated above. 
The results showed little qualitative change from the ones given 
in subsection 1. However, the isotherms plotted in Fig. 4*4.15? 
for Gr = 10^, reveal an interesting fact: for comparison of 

Fig.'s 4.4.14 and 4*4*15 reveals that the application of an 
external heat flux at the base totally disrupts the vertical 
thermal stratification. Sidewall heating, therefore, produces 
the greatest amount of stratification, a result first noted 
experimentally by Fan and Chu (I968). This subsection completes 
our analysis of the numerical results for the rectangular cavity.

In general, the coordinate transformation, decreases
the numerical error in the solutions, but increases the 
computational time by approximately 30^^ As stated earlier, test 
runs have shown that numerical results are essentially grid
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independent. Hence, one could suggest that numerical results, for 
a given Grashof number, on a crude mesh he interpolated (assuming 
a linear or parabolic distribution of the dependent variable 
between grid points), to be subsequently defined as initial 
conditions for the same Grashof number on a finer mesh. This 
procedure would be easier to implement on a regular grid than on 
a non-equidistant one. Whether or not this procedure would save 
overall computational time is debatable since the interpolations 
introduce extra computations particularly so if they are to be 
used on a high order interpolation scheme.



109.



110.

Fig. 4»4»7 Horizontal velocity profile, Or = 10^
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Fig, 4»4»8 Temperature profile, Gr = 10^
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Fiff. 4.4.9 Vertical velocity profile, Gr - 10^



Fig. 4.4.10 Temperature profile, Gr = 10^
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Fig. 4.4.11 Horizontal velocity profile, Gr = 10
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Fig. 4.4.12 Vertical velocity profile, Gr = I08
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Fig, 4«4-13 Temperature profile, Gr = 10^
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Fig. 4-4.14 Isotherms, Gr = IpS
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Fig. 4«4'15 Isotherms, Gr = 10
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4«9 Comparison of numerical results with experimental data

After discussing practical situations in Chapter 1, a 
transition was then made from the physical world to the
mathematical one by constructing a mathematical model and solving 
the resulting equations. In order to test the usefulness of this 
mathematical model a comparison must be made between the numerical 
results and experimental data. Such a comparison is not easy to 
carry out, however, since as stated in the introduction experimental 
data on natural convection in cryogenic fluids is limited.

Experimental data on natural convection in Liquid 
Nitrogen (LIN) was recorded by Beresford (1984) and Scurlock et al 
(1984) at the Institute of Cryogenics, University of Southampton.
In one experiment a Dewar flask containing LIN was subjected to a 
constant and uniform lateral heat flux while at the bottom a heat 
shield was provided by an external LIN pool. The boundary conditions 
and aspect ratio in this experiment correspond closely to those 
mentioned in subsection 3 4.4, but it must be emphasized that
the numerical results presented in ^ 4*4 refer only to Cartesian 
geometry whereas in the experiment a cylindrical configuration is 
appropriate. Fig. 4«5'1 shows the temperature profile measured by 
Scurlock et al (1984) along the axis of the container, while 
Fig. 4«5*2 shows the vertical velocity profile measured by 
Beresford (1984) midheight. Qualitative agreement between 
Fig. 4.4*10 and Fig. 4.5-1 is evident, the most striking feature 
being the common thermal boundary layer at the free surface, although 
it should be noted that we have assumed zero evaporation in our 
model. Comparison of the velocity profiles in Fig. 4.4.9 arid 
Fig. 4.5.2 also reveals qualitative agreement. Moreover, with the 
substitution of the figures relevant to LIN, it was found that the 
magnitudes of the velocities in Fig. 4.5*2 were of the same order 
as those obtained from our results with Gr = 10^. With the aid of
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a Video Camera Scurlock and his co-workers also confirmed from
experiments that the motion of Liquid Nitrogen was mainly 
confined to regions close to the boundaries while, in the core 
region, the liquid was essentially stagnant.

Some time ago Fan and Chu (l$68) carried out a theoretical 
and experimental analysis of thermal stratification in closed 
cryogenic containers. Experimental observations suggested that 
lateral heat flux is responsible for creating stratification. 
Unfortunately, their theoretical model was not sufficiently 
sophisticated to enable them to predict the effect on stratification 
of applying a heat flux at the base of the container. Numerical 
results derived from our model and presented earlier in subsections 3 
and 5 of 6 4»4 show not only that side wall heating creates a well 
defined vertical stratification pattern but also that this pattern 
is disturbed in a major way when a heat flux is applied to the 
bottom. This observation could have significant implications in 
cryogenic engineering.

It is generally believed within the cryogenic industry 
that stratification leads to major problems in cryogenic storage 
tanks with the unavoidable influx of some heat, the temperature 
of the liquid at the free surface frequently rises more rapidly 
than that of the bulk of the liquid. Since the warmer liquid has 
a lower density and the liquid is a poor thermal conductor a stable 
stratification pattern is created, similar to that shown in 
Fig. 4*4*'14* Since the pressure in the vapour above the liquid 
is determined by the temperature of the liquid surface, 
stratification is accompanied by a corresponding rise in vapour 
pressure, and the length of time that the liquid can be stored 
without venting vapour is greatly reduced. Vertical heat paths 
can be created by providing thermal conductors. Stratification 
can also be reduced by stirring the liquid, but carry^^ out this 
stirring in huge storage tanks may not be straightforward.
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Fig. 4*4*15 showed us that almost vertical heat paths from the
bottom to the top of the vessel can be created through the 
application of additional heating at the bottom. This process 
can in practice, sometimes lead to an instability, however, as 
the liquid becomes superheated in the lower region of the 
container. Ideally therefore one would like to apply heating at 
the base, sufficient just to disturb the stratification pattern 
but not so high as to cause superheating of the liquid.
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<ii«tan£« t« ch« m

a) Temperature fluctuations AT "• Tbulk - T
b) Moving mean of AT, c) RMS of AT

Fig. 4»‘3»1 Temperature profile, Scurlock et al (1984)
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CHAPTER 5

NATURAL CONVECTION IN CYLINPRIGAL GEOMETRY

55-1 Choice of Coordinate axes

This chapter is devoted to the study of laminar natural 
convection in cryofluids in a cylindrical container subject to an 
influx of heat through the container's base and walls. Solutions 
in this geometry are important to obtain since as stated in the 
introduction to this thesis, cylindrical containers often arise 
in practice. However, Roache (1976) mentions that the solution of 
the transport equations in cylindrical coordinates introduces many 
complications and the task is far from simple. For instance, 
numerical instabilities often arise from singularities inherent to 
the equations. In this chapter we present some numerical results 
on a regular grid for Grashof numbers ^ 10'^.

The mathematical model considered here is the cylindrical 
analogue of the problem investigated in earlier chapters of this 
thesis. A cross-section of the cylindrical tank is shown in 
Fig. 5. 1.1.
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Pig. 5.1.1 Cylindrical representation
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Note that in onr simplified model
is the radius of the cylinder and the height of fluid; 

the base of the cylinder is represented by the axis ()r ,
the axis of the cylinder lies along axis ;
and y - (U ,\/>0 ), where t( is the radial velocity and V is 
the axial velocity.

Our investigation of the cylindrical case is based on the 
same assumptions introduced in the previous two chapters. These
are

1. The problem is axisymmetric;
2. Viscous dissipation is unimportant;
3. There are no internal heat sources;
4. The Boussinesq approximation is valid;
5. The thermal conductivity, coefficient of viscosity etc. are 

independent of temperature;
6. The top surface is flat and isothermal;
7. No evaporation occurs;
8. There is no shear stress at the top surface;
9. The cryogenic liquid is Newtonian.
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5.2 The governing equations and boundary conditions

The governing equations for onr azisymmetric problem 
(see, for instance, Li-Lam, 15166) are

The radial momentum equation

t . v'luL
\ "kz y r'br

(5.2.1)

and the axial momentum equation

ffetuly 4v)v 
iir in&y \d ih; ^ 1)2^ ^ "br'

coupled with the energy equation

V, u¥t vlT - K( ^.11% fU
5^^ "br r l>r 1)Z'
and the equation of continuity

(5.2.3)

+- 2_v f -LL
1)r "1)2 r

0 (5.2.4)

It should be noted that in writing the above equations some of 
the assumptions stated in^5.1 have been used.

As earlier since the pressure boundary conditions are 
difficult to specify, we shall work with the vorticity and 
stream function, differentiating (5.2.l) with respect to ^ and 
(5.2.2) with respect toT , adding both resulting equations to 
eliminate the pressure terms and then using equation (5.2.4) and 
the Boussinesq approximation we obtain
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= f + ihg _ (5.2.5)
^ "br^ r ^r 'bZ' ^/ r

where, the only non-zero component of the vorticity, is
defined through

S) . lA/ _
bb

(5.2.6)

is the kinematic viscosity, and ^ is the thermal volumetric 
expansion coefficient. The stream function, is defined by

U - -llif _ Vr j_-^r
"bz

(5.2.7)

Equation (5.2.4) is then satisfied identically and from (5.2.6) 
and (5.2.7) we obtain the Poisson equation for the stream function

tf - ±lt ,11
"br^ r Tbr 1)2^

O' (5.2.8)

We shall next proceed with the non-dimensionalization of 
the governing equations. Put

u*. uH

R-_ r
H

Yk ' V*

Z* = Z. H
tK H

K (5.2.9)

(5.2.10)

(5.2.11)

and B - T-Z Ql
-i

(5.2.12)



where, we recall that /<( is thermal diffusivity, is

surface temperature of the fluid and is a reference heat flux.
Substituting (5.2.9) - ($.2.11) into (5.2.5) we obtain the 
non-dimensional momentum equation

IQ*, U*1Q% V*1Q* -
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+ u* C)"" + <gr R/'iye

R
where R = 2

K̂

liR
(5.2.13)

(3 * = i^\/^ _ -Zhur*
"bfl "3 22*

and (5.2.14)

Substituting (5.2.11) into (5.2.8) we obtain the non-dimensional
Poisson equation for the stream function

Tr\ Ilf", ify
Likewise, we obtain the non-dimensional energy equation

(5.2.15)

t 4 ih . (5.2.16)
"be 'bZ* fl 3R
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Boundary conditions

After non-dimensionalizing the variables the region in which 
we solve the equations is now 04 Z * 4 i . The boundaries

are shown on Pig. 5*2.1•

1. On 15,
so we require

( I j the temperature is ambient and

Q = 0 (5.2.17)

The postulate of no evaporation on B, gives V= 0 which implies 
V* = 0 and

o (5.2.18)

The assumption that there is no shear stress on b, 
implies that the componentA = 0 (5*2.19)



130.

Now C
RZ = / (5.2.20)

(Milne-Thomson, I968)

and using (5.2.14), (5.2.18), (5.2.I9) and (5.2.20) it then follows
that

Q * 0

2. On the boundary 
implies

6. - |(o, z» ))o.z*<ij.

U 3V
3r Dr

In non-dimensional form these requirements can be written

(5.2.21)

symmetry of flow

U = O ' (5.2.22)

be = 0 DY* -- O U* = o

The last condition clearly yields

0 on

(5.2.23)

(5.2.24)

and equations (5.2.14), (5.2.24) and (5.2.25) then imply

0

3. 6,
On the base , defined by ^3 - | 0 ~ ^

the no-slip-condition implies that fluid is at rest,
in which case we require

U* = 0

\/* = 0 .

(5.2.25:

(5.2.26)

(5.2.27)
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Using (5.2.7), (5.2.9), ($.2.10), (5.2.14) and (5.2.27) we find
that the vorticity on 6^ is given by

Q* . ± * . (5.2.28)
If Of is the constant and uniform external heat flux 

at the base then, in physical variables, we have

-bT . _ Q

“dz k

which in non-dimensional variables becomes

. - Q, .

(5.2-29)

%
Q'

If we put C^= , then the heat flux condition to be applied

along the base is 7g
'll*

4. Finally on the boundary 6^ -

the no-slip condition again implies

*

(5.2.30)

c (9

o

(5.2.31)

(5.2.32)

In a similar way to above we then deduce that the vorticity on
satisfies

(3* = b'T2 * (5.2.331
"OR"

If is the external heat flux then, in non-dimensional terms.
we require

DAL C),
(5.2.34)
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The boundaries 8, , , 6^ and 6 are all streamlines that

intersect, so on all boundaries we put

T = 0 '
In addition ($.2.26) and ($.2.32) imply that

0

___  _ o

Finally, from ($.2.23),

on

on

B.
3 )

6„ .

0

and, with the aid of L'Hopital's Rule, it is clear that
as —> o only if

*
= 0 on

(5.2.35)

(5.2.36)

(5.2.37)

U

(5.2.38) 

* 0

(5.2.39)

For convenience the stars on the non-dimensional quantities are 
now omitted and the governing system of equations plus the 
boundary and initial conditions can therefore be written:

10 , u ^0 t vis .
Dl DR D%

^9 f vie.DI DR 1)Z
1)T _ JLTbf1)R.^
where

.40)

, (5.2.41)

(5.2.42)

(5.2.43)
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1. On

Boundary conditions

0 ^ ^

G = O ^ <D , Q = 0 •

2. On { j1 Z '

Tie . (5
T - O ^ vr _ o ^ Q - c

3. On 0 ^ R < ;j :

Q =-L'2>'t
-^8 . .-1 0

Df = o,
^Z iR i)Z'

4. On { U'Vl 0 c Z ^ / 1 :

"be = 0. %o , o 0.

"DR Q, J ^ "bR
For the initial conditions we use simply

T=o ^ Q = 0 = o (gyj oiHi I, Oi Zi I
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5-3 Numerical method

The numerical method is based on finite differences 
introduced in^3.2. The continuous region, over which the 
governing equations are defined, is discretized as follows:

with _Q_ defined by

2)

where

Comparison of the system summarised at the end of^^$.2 

with the corresponding Cartesian system reveals close similarities 
and therefore the numerical procedure adopted here is basically 
the same as the one used for the Cartesian case described earlier. 
Thus the transport equations are solved by an ATI scheme and the 
Poisson equation is solved by the Block Cyclic Reduction method. 
The non-linear convection terms in the momentum equation are 
approximated by second upwind differencing scheme.

Due to the presence of the ' _L * and ’-L ' terms in the 
governing equations, numerical methods are strongly prone to 
instabilities, especially near R - O. In this section we confine 
attention to a regular grid which proves more stable, but the 
omission of scaling in the R direction does mean diminished 
accuracy in the solutions near R = Oand f .
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1. Solution of transport equations

In view of the similarity of the numerical procedures, 
the algebra discussed in the derivation of the finite difference 
equations (FDE) in ^*3^ will not be repeated. We shall move 
direotly to the final form of the FDE's, bearing in mind that 
here z I , z O . In updating the solution from time 
level n to time level ( n +1 ), we have the following FDE

(5.3.3)

where

R",. z -(ui.iu:
-V 4R (5.3.4)

5", ^ t f" (5.3.5)

T" z uMu;i
4k

<=< / _L .

and U". =
4L

r— n
"'“a3- VLtivrIi- 2o( 

I 4k / ^

(5.3.6)

(5.3.7)
t Srfi-/{l(04,,-6"-..4.

where and I are defined as in the Cartesian analysis.
In (5.3.5), / ......... \ (5.3.8)

^ b '
for the momentum equation and = 0 for the energy equation.0



136.

In proceeding to time level + ( ) from time ( n + X )
the FDE are

q • n +/
Ow) Iw; "" L; = U,..%(5.3.9)

where

and

n+1

C"! 
J, . -

n +-j i

vi" *v:"
-

I z
(5.3.10)

q +(Vr‘‘|, (5.3.11)
>.k

‘■’J v;" -|v;"l  od (5.3.12)
-k

ntl I—- o f-Jr '

hk

q,
n + j 2 u n+i I in+J-lU;"!- ur‘>iu:% , 2

1 1:

C,;| uggiiry
4k .k'

(Gv-BZ'l-(5.3.13)

With the use of the non-dimensional analogue of expression (5.2.7),
in terms ofthe formulae expressing , V|_ and \/^

are determined by approximating the derivatives by central differences.

2. Boundary conditions in finite difference form.

(i) At the node points 
we impose the conditions^

e"4

‘■,N O (5.3.14)
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n+lf 0 (5.3.15)

0 (5.3.16)

(ii) At the nodes ^ (O, J "0 W j- -2,3, - ^N-l j ,

the boundary conditions take the form
Z O . (5.3^7)

As in the Cartesian case, an expression for the
temperature condition is obtained by parabolic 
approximation, yielding

e: 4 a"2,; i (5.3.18)

(iii) At the nodes - G*0^| 4-i,2..., N
we can immediately apply

4, I O (5.3.19)

Using a Taylor's series expansion for we can 
obtain the expression for the vorticity:

n+iQj t o
^2 k'

(5.3.20)

The temperature condition, again obtained by parabolic 
interpolation, is found to be

Oti, I = ^ - 1. 0 c i +3.^ ' (5.3.21)

(iv) At the nodes Ijj ^ 2j - | J ' J ,

fV.i = 0 (5.3.22)



138.

As in (iii), an expression for the wall vorticity is 
obtained through

0::;
= 2 f ofL)' (5.3.23)

and the temperature condition leads to the formula

e:, . % * q * , (5.3.4)

where

c, " %
7

(5.3.25)

- -X (5.3.26)

and q = ik a . (5.3.27)
3

3. Construction of tridiagonal matrices
Q,

The construction of the solution matrices is dealt with along the 
same lines as in ^ 3*6 •

Calculating quantities at time level ( ^4i ) the 
system of equations (5.3.3) can be written as the matrix equation

/\ r' ^ (b ' (5.3.28)

In particular, the momentum equations yield

A„ Q - 6,>Sl (5.3.29)
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where

A
Q -

s:

O

0 0

o

t:

(5.3.30)

a -

and the energy equations lead to

8 r 6,

where

* j 

o

1 c. iz.i iKL) 0
■'j

(5.3.31)

(5.3.32)

0

0

xA

N-2,

0 0
'J
4

(5.3.33)

C| and being defined through (5.3.2$) and (5-3.36)
respectively



and

e -

ir.,,-x:/„
(5.3.34)

C, being defined through (5.3.27).

In proceeding to the next half time level equations 
(5.3.9) again yield system (5.3.28)^

where now

s nfj

n+ii

o

D

~ ni-l_ t
0

0 (N,.P'OH

O

S

o
pnu
' i, w-( 
ntj

Z

s N-t

(5.3.35)

and

A,

5

o+i

hi

o

: - K; Q
Uu

u ['"I

'-fCio - 0

O R"'= 5""

o
"’" I— A

(5.3.36)

(5.3.37)
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Be

U"‘ Cd
U7A '

UTi, (5.3.38)

The solutions of the matrix equation ($.3.28) for all the various 
cases is obtained by applying the Grout Decomposition method given 
in^ 3.6.

4. Solution of Poisson Equation

This subsection deals with the solution of equation ($.2.43) 
by the Block Cyclic Reduction Method which was elaborated in^3.7.
By approximating the derivatives in (^.2.42) by finite difference 
formulae we obtain the following finite difference equation

. (5.3.

where dj- 2,3, ..., N'l

39)

a, = +
d-')

(5.3.40)

c, (5.3.41

'j ■ ' V '/ ■ ■ ("
Following the same discussion given in a 3.7, we find that 
equation (5.3.39) is equivalent to the block matrix equation

(5.3.42)

where

Y
\ 'N'l



with

%
t

f
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Qh
QH,„

2,),

and

In (5.3.43)

a,

o

o

A

4 Q

0
T

•0
0

'■■ '■ 1
0 I A

o o

0
c,

0 a,, -4

(5.3.43)

(5.3.44)

The solution of system (5.3.42) is obtained, by exactly the same 
method as was described inj)3.7.
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5.4 Numerical results

The program for the axisymmetric ease was run on a 
(17 X 17) mesh with a Prandtl number equal to unity. A constant 
time step satisfying the Courant-Fredericks-Lewy condition 
(see ^ 4*l) was used. Thus, the computational procedure was 
identical to the one described in ^4'2 except for the calculation 
of the time step at each half time level.

Tests for both the heat and mass balances were used to 
check whether steady state was reached, but since we are now in a 
different geometry the formulae used vary somewhat from those 
given in J 4-4* For a global balance of heat we now have

^I X Area of base + 8^ x Surface area of cylinder =

Jo
yielding

g clK. . (5-4.1)

2.^1

whera (referring to the non dimensional cavity)
(5( is the heat flux at the base,

is the heat flux through the side of the cylindrical 
cavity.

Using a parabolic distribution for close to the top 
surface, and with the aid of the boundary condition there the 
right hand side of (5.4.I) was then evaluated using the trapezoidal 
rule. Unlike the Cartesian problem, the mass balance analysis 
involving the axial velocity V is now evaluated on an arbitrary 
disc D parallel to the base, 
where

3 = (5.4.2)
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In the steady state the total mass flow through D must be zero, 
which yields

pl^VODinnJ de = o ■ (5.4.3)

A corresponding expression for mass balance in terms of the radial 
velocity can also be found.

The integral on the left hand side of (5.4.3) was 
calculated for several values of A, , and in all cases was close 
to zero. Much the same accuracy was achieved for the mass balance 
in the radial direction. Calculation of both sides of equation 
(5.4.1), however, revealed errors of up to 5^ (see ^ 4.5 for 
percentage meaning), higher than the corresponding comparisons for 
the Cartesian case. This decrease in accuracy is perhaps to be 
expected since the axisymmetric program proved much less stable 
than the corresponding Cartesian one. In fact, due to instabilities 
it was not possible to obtain a solution for the axisymmetric problem
for Gr > ^ .4

Numerical results in the axisymmetric case are presented 
here for Gr = 10^, with both the aspect ratio and the ratio of 
the lateral heat flux to the one from bottom ( ) equal
to unity. The streamline pattern in Fig. 5-4.1 reveals a single 
plane vortex, almost identioal to the corresponding pattern in 
Cartesian geometry (see Fig. 4.4.I). The vortex in Fig. 5.4.1 is 
generated by a negative temperature gradient relative to ,
thus producing an anti-clockwise flow as indicated.

The axial velocity profile plotted in Fig. 5-4*2 is the 
one occurring at midheight of the cylinder. At first sight this 
profile seems to violate conservation of mass, but if one recalls 
that in this geometry the same velocity profile is valid for all 
values ( 04/^^ <2^) then rotation of the region about the axis
of the cylinder results in the appearance of a scaling factor 
(see equation (5.4-3)).
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In this chapter no coordinate transformation is made 
and, therefore, the boundary layers in Fig.'s 5.4.2 and 5'4'3 are 
likely to he less accurate. However, for Gr = 10^ these boundary 
layers are comparatively thick and the loss in accuracy is not 
significant. Apart from the changes introduced in the axial 
velocity due to difference in geometry, the results are qualitatively 
similar to the corresponding Cartesian ones. The dominant features 
of the flow remain the downward jet near the axis of symmetry, 
the linearity of the axial velocity in the core region and the 
thermal boundary layer at the top surface. The low Grashof number 
implies minimal convective effects, as confirmed by the relatively 
low velocities in Fig. 5*4'2, and the 6 -plot in Fig. 5"4*3 also 
indicates that most heat transfer is by conduction and not convection.
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Z
A

1 ^

Fig. 3»4*1 Streamline pattern, Gr = i
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V

Fig. 5.4.2 Axial velocity profile, Gr = 10^



610A

Fig. 3-4»3 Temperature profile along inner cylinder
(R = i) Gr - 104
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CONCLUDING REMARKS AND FURTHER RECOMMENDATIONS

In this thesis we have shown how a combination of the 
ADI and cyclic reduction methods can be implemented to solve the 
problem of natural convection in cavities containing cryogenic 
fluids. After eliminating the pressure from the governing fluid 
flow equations, which avoids the need for a pressure boundary 
condition, the resulting vorticity equation together with the 
energy equation were converted into parabolic form, thus enabling 
us to march forward in time to the steady state solution through 
an adaptation of the ADI method. The method of cyclic reduction, 
was used to solve the Poisson equation at every half time step.
The use of second upwind differencing scheme has allowed us to 
obtain numerical results for Gr up to 10 . Boundary layers have
been resolved efficiently using a non-uniform grid. The rate of 
convergence to steady state has been enhanced by using a variable time 
step and by incorporating accurate expressions for the temperature 
derivatives at the boundaries. The problem was also investigated 
in cylindrical geometry using the same numerical procedure, thus 
showing the latter's flexibility, although stability problems were 
encountered for Gr ^10^1 Numerical results were presented in 
graphical form for different boundary conditions and different 
aspect ratios. These results indicate, in particular, the existence 
of a recirculating flow, incorporating velocity boundary layers at 
the walls, a thermal shear layer at the free surface and a downward 
jet in the middle of the cavity. As the external heat flux is 
increased the boundary layers become thinner and are more clearly 
defined and buoyancy effects become predominant: the liquid moves 
much faster and the downward jet is thinner and stronger. Prom the 
numerical results we find that if a narrower cavity (a Dewar flask, 
for instance) containing a cryofluid is subjected to a heat flux 
only at the side walls, the liquid flow is mostly confined to the 
boundaries. Our model predicts that, in this case, side wall 
heating produces the greatest amount of vertical thermal
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stratification thereby inhibiting vertical motion in the core 
region. Results, however, show that vertical heat paths can be
generated if some heat leaks into the system from the bottom.
This result may find useful application in the design of cryogenic 
storage vessels. One simple way of increasing the amount of heat 
from the bottom into the system (but not to such an extent as to 
cause superheating of the liquid) would be to design the base with 
material of thermal conductivity slightly higher than that of the 
walls. Numerical results also reveal that, as the total amount of 
external heat is increased, plume-like flows start developing from 
the bottom corners of the cavity.

A few simplifying assumptions were made in the setting up 
of our model. However, as far as research in this area is 
concerned, these assumptions are quite commonly introduced and most 
of them are quite acceptable when one considers real storage 
situations. The usefulness of the model was tested by comparing 
the numerical solution with available experimental data and good 
qualitative agreement was achieved. Nonetheless, as is customary 
in these situations, some refinements of our model can be suggested. 
Possible improvements are:- the transformation of both coordinates A 
and J , the inclusion of evaporation and allowing the external heat 
fluxes to be functions of space. Much more work is necessary on the 
axisymmetric model to enable results to' be found for higher Grashof 
numbers and further theoretical investigation in plume-convection in 
cryogenic liquids is also recommended. These are all lines of 
research that can be pursued.

Mention should be made of the general usefulness of our 
numerical method- By simply changing some of the boundary conditions 
and varying the Prandtl number, the method could be used to 
investigate a wide variety of practical problems including, for 
instance, double glazing, a fire alarm in a closed room and the 
numerical modelling of convection in the atmosphere, the last two 
relating to enclosed flows driven by localized heating from below.
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Finally, much more experimental data on natural convection in 
cryogenic liquids is required in order to assess fully the 
quantitative implications of our mathematical model.
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