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UNIVERSITY OF SOUTHAMPTON
ABSTRACT
FACULTY OF MATHEMATICAL STUDIES

Master of Philosophy

NUMERICAL MODELLING OF NATURAL CONVECTION IN
CRYOGENIC LIQUIDS

by Aganaden Thancanamootoo

In this thesis, we look at the numerical modelling of natural convection
in a cryogenic liquid contained in a storage vessel, when the motion is
caused by heat leakages through the vessel's sides and bottom. The
problem of natural convection, in general, involves the solution of the
full Navier Stokes equations coupled with the energy equation and the
equation of continuity. Here, the pressure terms in the momentum
equation are eliminated and the resulting equation is written in

stream function vorticity type, the stream function being connected

to the vorticity through a Poisson equation. A numerical solution,
based on finite difference methods, is obtained, using non-uniform
grid which leads to better resolution of the boundary layers. The
transport equations are solved by the Alternating Direct Implicit method.
This method requires the transport equations to be converted into
parabolic partial differential equations, by the inclusion of the time
dependent terms, thereby enabling us to march forward in time to the
steady state solution. Solution of the Poigson equation by the cyclic
reduction method yields the stream function. The governing equations
are solved in both Cartesian and cylindrical polar coordinates, but
similar numerical procedures are adopted in each case. Various ways
of enhancing the rate of convergence to the steady state are examined.
Numerical results are obtained for a variety of Grashof numbers for
various boundary conditions and aspect ratios and, for the Cartesian
case, the numerical method is stable for Grashof numbers up to 1012.

The derived results show good agreement with available experimental data.
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CHAPTER 1
INTRODUCTION

Cryogenics - a brief outlook

Cryogenic engineering deals with the practical
application of very low temperature processes and techniques
and is generally concerned with temperatures below ~1SOOC.
In general, there is ample reason for treating cryogenics
as a special field. However, although certain physical
properties of materials at very low temperatures differ
greatly from those commonly encountered at room temperatures
cryogenic fluids are, like most ordinary fluids, Newtonian.
The cryogenic fluids that are most widely encountered are
Liquid Natural Gas (LNG), Liquid Air, Liquid Oxygen, Liquid
Nitrogen and Liquid Helium. They find wide application,
for instance in medicine, space exploration and in gas
separation. LNG ig, in particular, a very useful source of
energy, and is widely used for domestic purposes. One of the
major problems encountered in cryogenics is the storage of
cryogenic fluids. Only a few decades ago evaporation was a
major threat due to the poor design of storage tanks and the
poor gquality of insulation. Over the years design and
insulation techniques have improved enormously and nowadays,
fluid loss due to evaporation has been considerably reduced.
However, cryogenic fluids being very expensive, engineers

are congtantly aiming at ways of minimising fluid losses.
Convective heat transfer

When there is transfer of heat by mass movement of
fluid, the resulting thermal-energy exchange process is called
convection heat transfer. There are two kinds of convection
processes: natural and forced convection. In the first type,
the driving force arises from the density difference in the

fluid, which giveg rise to buoyant forces.
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Forced convection, on the other hand, occurs when an external
driving force moves a fluid past a surface at a higher or
lower temperature than the fluid. Natural convection occurs
in cryogenic storage tanks and in many other engineering
applications, e.g. petroleum storage vessels on hot days, the
thermal response of a building to a change in environment
temperature, and the storage of hot fluids for solar power
plants. In all these cases the way by which heat enters the
enclosure is of great importance and the flow structure
depends critically on the applied heating conditions and the

geometry of the containers.
Literature review

Theoretical

In the last few decades there has been considerable
research interest in natural convection of flulds in cavities.
Most of this theoretical and experimental research has been
concerned with the natural convection of a Newtonian fluid in
two—dimensional rectangular enclosures. FExcellent reviews of
the area are given in the paper by EcKert and Carlson (1961)
and in the articles by Ostrach (1972; 1982) and Catton (1978).
Before describing the most important contributions to the
literature it is useful to note that all work involves the
solution of the Navier Stokes equation coupled with the energy
equation. In obtaining numerical solutions the system of equations
is normally written in stream function-vorticity form (in which
the stream function and vorticity are comnnected through a Poisson
equation) or in primitive variable form (where the dependent

" variables are the velocity and pressure).
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The first successful attempt at a numerical solution
of a natural convection problem in a two-dimensional rectangular
cavity was performed by Hellums and Churchill (1961). These
authors analysed the problem of convection in a rectangular
enclosure with differentially heated end walls and adiabatic
top and bottom surfaces. They developed an explicit finite
difference method for solving the model equations and steady
state solutions were obtained. Unfortunately, stability
congiderations placed severe restrictions on the time step in
their explicit method. Wilkes and Churchill (1966) extended
the method of solution developed by Hellums and Churchill (1961)
to analyse the same problem. They manipulated the momentum
equations to eliminate the pressure gradients, preferring to
work with vorticity. The vorticity and energy equations were
then solved by the alternating direction implicit (ADI) method
and the Poisson equation was solved by successive-over—relaxwhian
(SOR) at each time step. Although a theoretical analysis
predicted unconditional stability for the numerical scheme,
instabilities did occur in practice and the authors were unable
to obtain solutions for Grashof. numbers greater than 105.
Torrance (1968) compared several finite difference techniques,
both explicit and implicit, that had been developed for the
prediction of natural convection flows. In particular, he
pointed out that the finite difference form of the equations
used by Wilkes and Churchill (1966) did not conserve energy or
vorticity. Torrance alsoc discussed, in some detail, the
truncation errors of various finite difference representations
of the transport equations by introducing false diffusion}terms.
He concluded that, for buoyancy dominated flows, in order to
obtain a stable solution it is necessary to use an upwind or

upstream difference representation of the non~linear convective

terms.
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In 1970 Newell and Schmidt examined the problem of
laminar natural convection originally considered by Hellums and
Churchill (1961) and investigated a range of parameters
sufficient to determine the dependence of Nugselt number on
Grashof number and the aspect ratio. Two of the novel features
of their numerical investigation were the use of a non-uniform
grid spacing and the solution of the governing finite difference
equations by a direct matrix inversion. Unfortunately Newell
and Schmidt used a non-congervative finite difference scheme
and encountered numerical difficulties which prevented them

from obtaining solutions for Grashof numbers greater than 105.

De Vahl Davis (1968) also studied the steady laminar
motion of a fluid in a rectangular cavity with differentially
heated end walls. The Navier Stokes equations were written as
a fourth order equation in the stream function and the
corresponding finite difference equation was solved by direct
matrix inversion. An SOR scheme was used to update the
temperature. The results were found to be compatible with,
and form an extension of, some previous theoretical and
experimental results. However, even though it was found that
higher Prandtl numbers exert a slight stabilising influence on
the numerical solution, instabilities were encountered because
of the non-linear terms in the equations and results were

found only for Grashof numbers up to 10°.

In the last ten to fifteen years more complicated
numerical schemes have been developed, yet all of the authors
concerned have examined the motion of a fluid in a rectangular
cavity with differentially heated end walls. A highly efficient
method, called cyclic reduction, to solve the Poisson equation
was developed by Buzbee et al in 1970. The latter authors
examined in detail the additional variants to the method that
can be introduced in order to obtain greater numerical

stability. Schumann and Sweet (1976) extended the cyclic
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reduction method to solve the general Poisson equation on a
rectangular two-dimensional staggered grid with an arbitrary
number of grid points in each direction. However, although
any boundary condition could be used in one direction only
Neumann boundary conditions were applied in the other.
Kublbeck et al (1979) used the ADI scheme to solve the
transport equations. The momentum equation was written

in stream-function-vorticity type and the Poisson equation
was solved by the Cyclic reduction method. Solutions were

16

obtained for Grashof numbers of up to 10 .

The most notable research work in this area in
recent years has been carried out by Phillips (1984). He
wrote down the momentum equation as a fourth order equation
in the stream function and the latter was solved by the
Dynamic ADI method. The most important feature of his method,
is that it incorporates an automatic step size changer,
unfortunately though, at the expense of additional computations.
However, Phillips argues that the advantages of having an
automatic step size changer which decreases the time step
when instabilities occur and attempts to keep it within a
region of fagt convergence gseem to outweigh the extra

computation.

Experiments

Even though numercus theoretical investigations of
natural convection in rectangular cavities have been reported,
detailed experimental results for the temperature and
velocity distributions are limited. One major problem in the
storage of cryogenic fluids is the increase in pressure.
Huntley (1960) carried out experiments with Liquid Nitrogen
in a wiformly heated cryogenic container. He confirmed the
development of liguid temperature gradients as a contributing

factor to the increase in pressure. These gradients became
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more severe in time. Neff and Chiang (1966) also did
experiments in auniformly heated enclosure to investigate

the phenomenon of stratification in cryogenic fluids.
Stratification results because the warmer layer has a lower
density and the fluid is a poor heat conductor. The authors
found that bottom heating of cryogenic containers significantly
reduces stratification. Fan, Chu and Scott (1968) did
experimental and theoretical work on temperature profiles in
pressurised cryogenic vegsels subject to a time dependent
uniform heat flux. Their theoretical work ignores the axial
velocity and yields linear uncoupled equations that can be
solved using Duhamel's theory of superposition (Carlslaw, 1959).
Unfortunately, they considered a gross oversimpkﬂoation of

the real problem since convection is the main mechanism that
creates stratification. Other experiments have dealt with
temperature measurements in air enclosed between two vertical
plates maintained at different temperatures and results have
shown satisfactory agreement with available numerical solutions.
Over the years, the experimental techniques have gradually
improved - from Mach-Zender interferometer to Schlieren
photography and Laser Doppler Velocimeter (LDV) thus enabling

highly accurate measurements to be taken.

Experiments studying natural convection in cryogenic
fluids have recently been conducted at the Institute of
Cryogenics, University of Southampton using modern techniques.
In one experiment (Scurlock et al, 1984) LDV and Schlieren
Optics were applied to Liquid Nitrogen (LIN) to measure the
vertical velocity and temperature profile respectively. Without
giving much experimental detail, an inner Dewar flask containing
LIN, with a heater coil fixed around it at its mid height, was

immersed in a pool of LIN contained in an outer Dewar.
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The LIN in the inner Dewar was therefore subjected to a steady
lateral heat flux and heat leak at the base was practically
zero. A buoyancy-driven flow was set up and measurements
using the techniquesg mentioned above were taken. These
measurements were the first ever taken in a Liquid Nitrogen
pool. The earlier literature review reveals that analytical
results corresponding to Scurlock's experiment have not so

far been calculated.

This thesis is concerned with the study of natural
convection in a cryogenic fluid in containers of prescribed
shape. In particular, the flows of a cryogenic ligquid in both
rectangular and cylindrical cavities caused by the influx of
heat through the gides and base of the cavities are studied.
The major physical processes that occur in a real storage

situation are shown schematically in Fig. 1.7.
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Fig. 1.1 Physical process in an enclosed cavity.

The emphasis in this thesis is placed on developing
a simple, but useful, mathematical model. More specifically,

the objectives of the research are the following:
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To develop a mathematical model appropriate to the
physical problem using the conservation eqguations of

mass, momentum and the equation of energy transfer.

To solve the equations using a reliable numerical
method and hence determine the temperature and
velocity distributions in the fluid contained in

the cavity.

To obtain numerical results for different boundary

conditions.
To compare these numerical results with experimental
data (when available) in order to evaluate the

usefulness of the model.

To suggest possible refinements of the model.
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CHAPTER 2
FORMULATION OF THE PROBLEM

§2.1 Choice of coordinate axes

In the previous chapter the problem was set up from
a physical point of view. The main aim of this chapter is to
construct a mathematical model related to the physical
problem. This section provides an introduction and can thus
be regarded as a transition from the physical world into the

mathematical world.

The problem will in the first instance be
investigated in Cartesian coordinates and later on in
cylindrical coordinates. Cartesian analogues of engineering
problems are, in general, the sgsimplest to work with, although
such analogues are gtrictly valid only for an infinitely long
third dimension. Nonethelegs, previous theoretical works in
the engineering field have shown that Cartesian models provide

useful contributions to our understanding of the real world.

In practice heat is likely to enter the container
symmetrically and so we adopt this simplifying assumption.
As a consequence we asgume that the fluid flow in the container
is symmetrical about the centre line and hence only one half of
the container need be examined which makes the numerical
solution much more efficient. The Cartesian set-up is shown

in Fig. 2.7.
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Fig. 2.1 Cartesian representation

In Fig. 2.1 W is the height of the fluid,
2H is the width of the container _\_/ is the fluid velocity
with U and V as its components. The base and left wall of
the container are represented along axes Ox and OJ

respectively. HS is the line of symmetry.
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§2.2 Governing eguations

Since we are dealing with the motion of a liquid
induced by a temperature gradient, the full vector equations
governing the motion of the liquid are the Navier-3tokes

equations (Milne-Thomson, 1968).

p(2 - (¥9)Y) - f (TLTOU)-Tes,
coupled with the energy equation (Li. Lam, 1966) (2.2.1)
oG 2T - vkvT +Q -« LT

and the equation of continuity

D(O/Dt " Fdiv\_/ - 0 (2.2.2)

where
_E ig the body force per unit volume,
23 represents the internal heat generation,

ﬂi denotes the viscous dissipation,

and ;E~ represents the particle derivative

Dt

oT o A (V)T

Dt ot

In natural convection flows the dominant driving
force arises from the temperature variation in the fluid
which results in changes in density. The driving force for
the flow is then due to the difference between the body
force and the force due to the hydrogtatic pressure gradient

in the ambient medium.
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In normal circumstances the body force ll is given by

by (2.2.9)

where 9 is the gravitational force per unit mass of the
fluid.-~ If the variation of f> with temperature were to be

neglected, no flow would result.

In the Navier-Stokes equation, the local pressure #
may be split into 2 terms, one due to hydrostatic pressure
in the ambient medium, E and the other due to the motion

of the fluid,F s viz
d

;3 - h,, h, (2.2.4)

From simple hydrostatics it is well known that

Vfi - /fj 7 (2.2.5)

where /O is the density of the ambient fluid.
[o]

Hence, using equations (2.2.3) -~ (2.2.5), we may write

bW - (/0-/0)3 ~Vh . (2.2.6)

j . __jal ) (2.2.7)
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i i
where J is the unit vector in the upward vertical direction

and.j Tis the magnitude of j , and equation (2.2.6) becomes

b‘VF = (/:—/o)j}_ ..V;,d, (2.2.8)

Substituting (2.2.8) into (2.2.1)1 we obtain

/o%i :/(‘V‘A&%V(V-M)) +([: f)jé -V (2.2.9)

In order to make progress with natural convection
problems it is usual to introduce the Boussinesg approximation

which is now discussed.

s,

If is a function of temperature | ana pressure F
then the density at a given point in the flow, /9(Tir)
may be written in terms of the density’/Q(u,f> in the

ambient medium through a double Taylor series expansion about

the ambient conditions:

For o Phs F 1) L ?F/w FO(T-TO)

]

' 3/0/% T, ) s 3/”\0;72 p (H o

i g%m b=, (T*T")

(2.2.10)
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_T(OK) F (atm) /D(g/co)
75 0.74992 0.81812
76 0.84901 0.81361
7 0.95784 0.80905
77.36 1.0000 0.80736
78 1.0770 | 0.80445
79 1.2072 0.79981
80 1.3489 0.79513

Table 1 Ligquid Nitrogen along saturation curve

Data for cryogenic fluids (see, for example, Table 1)

shows that

A»c;/%} . L *\>/f/é7_ é . (2.2.11)

an inequality satisfied by most fluids at normal temperatures.
Since (717;) and |p-p | are in general small quantities it

therefore seems reasonable to approximate (2.2.10) by

f“f : —wail) ) (2.2.12)

where we have used the definition of fg , the volumetric

expansion coefficient, namely

i ) ?}(W/w)h ' )

i
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\

Equation (2.2.12) indicates that the density difference may be
approximated as a pure temperature effect. In the Boussinesqg
approximation equation (2.2.12) is introduced in the buoyancy

term, but in all other places the density is assumed constant.

With the aid of (2.2.12) and assuming that:—

(1) viscous dissipation is negligible;

(i1) there are no internal heat sources;

(iii) the Boussinesq approximation is valid and

(iv) the thermal conductivity of the liquid is independent

of temperature

we obtain from equations (2.2.1), (2.2.2) and (2.2.9) the

following governing equations:

+(\_[V>_\Z S vV :Vﬁ j(BT T)(} (2.2.14)

O

QJ’Q/
Tl<

KVZT ) (2.2.15)

1

RIS (L/~\7)T

VvV o o= o, (2.2.16)

where

i>:/4)/ — Kinematic viscosity and

K= 5/ — thermal diffusivity .
G

The assumption regarding viscous dissipation
is reasonable since cryogenic fluids have low viscosity.
Data for cryogenic fluids also show that the thermal
conductivity does not show any significant variation with

temperature. The above equations are time dependent.
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For our problem we will impose boundary conditions that are
independent of time and will seek the steady-state solution

to the above system. This solution can be achieved either

by neglecting the time~dependent terms in equations (2.2.14)
and (2.2.13) from the outset, or obtaining the solution from
the general equations (2.2.14) and (2.2.15) through application
of a time-marching numerical method. It is the latter approach

that will be adopted in this thesis.

For our two-dimensional situation equation (2.2.16)

can be written as

ATQLL + N . o . (2.2.17)
X oy
This equation implies the existence of \r)(X,y> , the

stream function, such that

w - f
2y

?

(2.2.18)

V - Y

——

X

(Milne-Thompson,1968)

On substituting equations (2.2.718) into (2.2.17) we find that

the latter is identically satisfied.

Equation (2.2.14) is usually referred to as being
written in primitive variable form, the primitive variables
being and.}[ . In our problem we are not interested in
the pressure field directly and will place boundary conditions
on the velocity and its derivatives., Hence it seems more
appropriate to convert equation (2.2.14) to the so-called
stream function-vorticity type, with dependent variables the
stream function and vorticity. Using familiar wvector identities

equation (2.2.14) can be written
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Y +v(,f.y2) S Vxcwl v
~t 2

(2.2.19)

11

~ (3.—“{ (cliv l/_) - ol eurd ‘\{> 73 Vi}d ' 2(5(1“7;)3%

which can be simplified by using (2.2.16). Next the curl
operator is applied to both sides of equation (2.2.19).
Using the definition of curl and applying some vector

identities we obtain

ot B) = ~Vedenl 0 + 9P 2k 2.
’}QE& C (ax) W 3(37”( X (2‘220)

where

K is the unit vector in the Z -direction

and the vorticity, () is defined through

ety

JARNERREIV B (2.2.21)

Substituting (2.2.18) in (2.2.21) and recalling that
\ =(U,V, O) we obtain

.@ = (O, O,Q> ; (2.2.22)
where

Q. oY RN G VAl ¢ k (2.2.23)
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2
S7 denoting the Laplacian operator. Equation (2.2.23)
is generally known as the "Polsson Equation for the
stream—function." Using the definition of curl,

equation (2.2.22) yields

Cul = [ 720 | R o)
'by DX ’

and

Corl cnrl & - (o, o »VZQ)

From expressions (2.2.18) and (2.2.22), we find that

(yx_og> . vl -ue o

from which it follows that

w(<yx@> i <o, o “A;V(MQ}»

On substituting (2.2.25) and (2.2.27) into (2.2.20) it is
readily observed that the vector equation (2.2.20) reduces

to the scalar eguation

Q- Law(YR) s VIR e gfr
Dt 0
the other two components of the vector egquation being

identically zero., Using the continulty equation we obtain

another expression for J‘v(\_/ Q)

GV Q) - Qa1 VR - 130« V3G

(2.2.24)

(2.2.25)

(2.2.26)

(2.2.27)

(2.2.28)

(2.2.29)
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Substituting (2.2.29) into (2.2.28) we finally obtain

P, UQ VIR - 7R 2(517_“ : (2.2.30)
t X 'b} X
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%22.3 Governing equations in non-dimensional form

In the previous section it was shown ((2.2.15),
(2.2.23), (2.2.30)) that the three governing equations which

result from our mathematical model are

DR+ UE » VIR :szQng(e%’;)

We shall now look at the non-dimensionalisation of

these governing eguations.
Let
c{o'be a characterigtic velocity,

H be a characteristic length and

F be a characteristic stream function
.

From Fourier's law of heat  conducticn

QR = kYT

where h“ is the *+hevmdl conductrdéy

we deducve that a characteristic temperature is

Q' H
k

(2.3.1)

(2.3.2)

(2.3.3)

(2.3.4)

(2.3.5)
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Put
w.u o vVi.v o X x
o Ao H
\f (2.3.6)
c\//w , . /6
9 2 T"To <2~3-7)

T . Lc4j/41 : (2.3.8)

In (2.3.7) 7; is the surface temperature of the
fluid. In this thesis we assume that the fluid free surface
ig flat and isothermal. Experiments with cryogenic fluids
would suggest that this assumption is quite a reasonable one.

It follows from equations (2.2.18) and (2.3.6) that

u&(%J%ﬁ YA %H ,M L (2.3.9)

In order to simplify the above expregsions 1t seems reasonable

to assume that

(3 = Ao f1 . (2.3.10)

[}

Recalling expression (2.2.23) the non-dimensional vorticity

component, (Q* y 1s defined through

@R. L QF . | (2.3.11)
H

With the aid of equations (2.3.6) - (2.3.9) and
(2.3.11), equation (2.3.1) becomes

Qe Ut 4 ¥ VIRt - ¥ VTR, 4R e
T

XK 'by* o H k, = AX*



where Y - H §7*2 - \5 + K2L§i‘

Choosing

= = K
H >

equation (2.3.12) can be written as

0, wrar L XVFRRE -
BT D X* ’?>y*

_RYTQY ¢ 6eRPToB
DX*

where the Prandtl number R— , Grashof . number 67 and
Rayleigh number Ra are defined by

y i

R.v  6.9fan | RGP
K R v*

Using the same non-dimensional variables it is

easily shown that the non-dimensional forms of the energy

equation (2.3.2) and Poisson equation (2.3.3) are

Yo, ure . V¥Yae v e
Yy DXF¥ 'BJ*

and

VAl ek

i

(2.3.13)

(2.3.14)

(2.3.15)

(2.3.16)

(2.3.17)
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§2.4, Boundary and initial conditions

Before formulating the boundary conditions we introduce

a few gimplifying assumptions. We assume that

(i) there is no evaporation
(ii) there is a constant and uniform heat flux on bottom and
sides of the container ,

(iii) there is no shear stress at top surface.

The first two assumptions are not strictly valid; yet
if they were disregarded, the model would be very much complicated.
Moreover experiments with cryogenic fluids show that evaporation
only becomes gignificant if we are dealing with containers on a
laboratory scale. Variations in the influx of heat through the
outer surface of the container are more significant at the base
than at the walls because of supporting devices at the bottom.
With reliable means of insulation existing nowadays, however,
the uniformity of the heat flux through the container walls is

also a reasonable agsumption.

Since the viscosity of the cryogenic vapour is small
compared to the liquid viscosgity the condition of zero shear

gtress at the surface ig a realistic postulate.
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Fig. 2.4.1 Solution domain

We shall now consider the boundary conditionsg in physical: variables.
Reference ghall be made to Fig. 2.4.71 and each boundary will be

separately considered.

/
Consider B, : this boundary represents the top surface,

e B {(x,j)/ongH, :/..w}.

/
It is an isothermal flat surface, so, on 8, y We require [ - /o

i

B

Since we are assuming zero evaporation, the fluid molecules are

at rest with respect to thej ~direction, and we need V= o

This condition implies that }\/ - 0 - (2.4.7)
X

o~
The shear stress LXJ is defined by

Ty = UYL (2.4.2)
v f 2y e
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Considering zero shear stress, expressions (2.4.1) and (2.4.2)

imply that
Y (2.4.3)
oy
Equations (2.2.18), (2.2.23), (2.4.1) and (2.4.3) then imply
that on 5‘/
X -0 . (2.4.4)

that is we have zero vorticity on the top surface.

/
2. Consider next &2 which represents the mid-line or the line

of symmetry:
Bz/ . {(XSO) o<J«‘¢J ,x:H}

By symmetry, there is no heat and mass transfer across the

mid-line and hence

I = O 5 (2'4’5)
“oX
Uu-2ao ; /}_\/_ - o . (2.4.6)
X

Equations (2.2.18), (2.2.23) and (2.4.6) again imply that on B,

Q=0 - (2.4.7)
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/
The boundary 83 represents the left-half of the base of the

container:

ie B: = {(X’J)/ oeX ¢ H | J=OS . (2.4.8)

The no-slip condition on this surface implies that the fluid

4
is at rest on 83 ;
Therefore U. o (2.4.9)
and Vio . (2.4.10)

Equations (2.2.18), (2.2.23) and (2.4.9) then reveal that

on B;

2
Q- -2 Y . (2.4.11)
'Bg*
Let Q( be the value of the external heat fluy at the bage.
Then on 5;

Q - -k . (2.4.12)
From (2.4.12) we obtain

I O | (2.4.13)

’D;Tr T

Finally, B“ represents the left wall of the container:

/
&‘ = { (X,C\/)! o<yc\\}) X;o}
The no slip condition again implies that on B;
U-o (2.4.14)

and V.o . (2.4.15)
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and (2.2.18), (2.2.23) and (2.4.15) yield

Q. 7 o B

— Y
b x?
/
Suppose (Qz is the value of the external heat flux on 89 '
then
QZ. H - é )_\.O_I
X
or
/
’—D»]: = - Q‘“‘ on ‘Bq‘
X b

/ / 7
Since no fluid crosses the boundarieg B‘, Bz . 83 or

B; all are gteamlineg. Moreover, since the boundaries
intersect, in pairs the gstream function has the same
congtant value on all of the separate boundaries. So on

/ /
& ' 31 y B; and 3; we take
T.o

Equations (2.2.18), (2.4.10) and (2.4.14) imply that

/

Fjiij = 0 on Bj
0y

and

o . o on B,

er

Now we shall put the boundary conditions in non-dimensional

variables. Reference is made to§£2.3 and Fig. 2.4.2. Each

boundary is separately considered.

(2.4.16)

(2.4.17)

(2.4.18)

(2.4.19)

(2.4.20)

(2.4.21)
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B(" u*)V*IGJQ*.\[J* Bz

B ‘ X*

3
Fig., 2.4.2 Solution domain

Uging the definitions for the respective non-dimensional

variables in 2.3, the following picture emerges:

.o B . { (x*,y%) f o XXl yX 21})

2. on D, - (X*,J*)] oy <, X*:I},

(2.4.22)

(2.4.23)

(2.4.24)
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/
where we recall that Q is a reference heat flux. We shall

put Q/ equal to Q, , in which case

P

P (2.4.27)
y* ¥
. On - XX \*>/ 0 <\y¥* <« | x*: o
4 B, - {( Y N , :
x *
Y7. o ) 7T - o, (2.4.28)
“Ox X
* 2 X
Q"L -7 t , (2.4.29)
X
}-@-* = -G (2.4.30)
DX Q,
Let us now look at the initial conditions. If
our system is sufficiently stable the steady state solution
eventually reached with our time-marching method should be
independent of the initial conditions. For the present,
therefore, it is assumed that
9‘ \{/*O ‘7’“’{0 4 T : o
=0 =0 =0 a = (2.4.31)

throughout the region D £ X*f

In

o]

in

[\ Wl
>

i~
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The choice of initial conditions is discusged further in
of this thesis.

Chapter 4
We have now formulated a fairly simple mathematical model.

Its usefulness, or otherwise, depends on the sensibility of

the numerical results.
Summing up§2h1 —-§2.4, we collect together the

important equations of our mathematical model.

For convenience the stars on the non-dimensional quantities

are now omitted and the governing system of equations plus

the boundary and initial conditions are written:

Q4 u'@_@_fh’\/}__@_ < RviqQ .« 6 R 8 (2.4.32)
~T DX 'bg X
DI udb , ¥ve . Ve, (2.4.33)
ot DX B
VEY . i@, (2.4.34)
where it should be emphasgised §72 now denotes
(2.4.35)

2

VAR W o
X3 oyt

Boundary conditions

1. On {(x,n)[ 0

< X s!}
7

@:o, T.o, @ :o



Initial conditions

Tio, R:0, B0 in { (*y)

An analytical solution to this coupled system of ejuations is
not possible, so in the next chapter we shall look for a

numerical solution.
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CHAPTER 3
NUMERICAL PROCEDURE

§3.1 Choice for a numerical golution procedure

To the present, only a limited number of types of
partial differential equations have been golved analytically
and these solutions are normally restricted to problems in
regions of simple geometrical shape. Exact analytical solutions
of our governing equations are not feagible so approximate
analytical methods or numerical solutions are the only methods
available, apart from the use of analogue deviceg. Although
analytical approximation methods can provide extremely useful
information concerning the character of the solution for
critical values of the dependent variables, it is not possible
for our problem to find such solutions that are valid throughout
the cavity. Therefore, in this thesis, a numerical solution
procedure hag been adopted. Of the numerical approximation
methods available for solving differential equations those
employing finite differences are more frequently used and will
be employed here. Since the transport equations are of
parabolic type and the Poisson equation is elliptic, the
numerical techniques for these two types of equations will be

discussed in the following sections.
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3.2 An introduction to finite difference schemes

Let the arbitrary function f and its derivatives be
single~valued, finite and continuous functions of the independent

variable S

i< UZ
In other words ][) c C ( > . Then by Taylor's theorem it
follows that

féﬂk) = f@) + L}E ,LE }_i{ + o(Ls) (3.2.1)
S 21 ™»s?

wo fsa)  fo - L B AL o), e

21 Tos?
LZ
where L ig measured relative to the § ~axis and -9< denotes

terms containing third and higher power of h .

Addition of (3.2.1) and (3.2.2) gives

f<8+{«> + f(&L) = 2f(3) + L\Zi_{ + OO‘O . (3.2.3)

st

Assuming the magnitudes of the higher terms are negligible

in comparison with lower order terms, it follows that

> . th - sy + Hs- ) 2.
W%‘E = ?{f@ L) Zf() 1[( L)} (3.2.4)

2
with a leading error on the right hand side of OU«) e In
an analogous way subtraction of expansion (3.2.2) from (3.2.1)

gives

~ . ﬁ{ f@L)_%-L)j ) (3.2.5)

S
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2
with an error of <’0w> . Expression (3.2.5) is called the

central-difference approximation for kbﬁ .
S
2
Neglecting terms of order L. and higher in
expansions (3.2.1) and (3.2.2), we obtain the following two
expressions for B respectively:
s

%g: Lo -fe

and

o

|
s l

{ fo) f(s-l\)ﬁ

(3.2.6)

(3.2.7)

Formulae (3.2.6) and (3.2.7) are called the forward-difference

and backward-difference approximations respectively for Fb€

oS

»

It is easily seen from expansions (3.2.71) and (3.2.2) that the

errors in using the formulae (3.2.6) and (3.2.7) are both
of C(L> .

Ifr f is a function of more than one variable,
then the above expressions can be used to obtain appropriate
finite difference forms for the partial derivatives. 3Below

we ghall derive some basic finite difference formulae.
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Tig 3.2.1 Digcretization of a sguare region

Let (QC_(RZ be a square finite region (see Fig. 3.2.1)
and suppose F is a function of two variables S and € (t is
not necessarily the time). Using expressions (3.2.4) - (3.2.7)
we approximate the first and second derivatives of the function
on a set of discrete points within R . The discretization of R
is done in the following way: subdivide the region R into sets
of equal squares of sides gs 2 L, g(: : L , as shown in
Fig. 3.2.1 and let the co-ordinates (s,t ) of the arbitrary
mesh point P be

L }L ) (3.2.8)

where U and} are integers. Denoting the value of{7 at P
by

)fp - f(hl\,)l\) z 7Lu‘f ;
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we have by (3.2.4):

}ff = L f[(amu,ﬂ,] - zfm,jq +1Cﬁi-')L,JL]} o (3.2.9)
}S‘P i

ie ﬂ . L 1(:”. - 2{ , f, (3.2.10)
st K k 7

L
with an error of order LL . Similarly

ﬂ = 1 f " ,~21€;,— + fb) (3.2.11)
~3 2 L L‘z ¢ d 4 ?

2
with an error again of order L .

With this notation the centred, forward and backward
difference approximations for the first derivative at the

point P are regpectively

~
= : 3‘1\ <7(J¢H,J' - wf-t,, J) ) (3.2.12)
"4
A s 4)
iy L 4 ¢
)
and ’B( | - {T(‘rb'd - {"d) ) (3.2.14)

L]

L70s

705 oy

the last two with an error of OGJ . The corresponding
expressions for 'wF,bt can be written from the above in an
obvious way. Expressions ((3.2.10) - (3.2.14)) are known as

the finite~difference formulae for the first and second
derivatives of f . The points of intersection of lines in the
discretized region that are parallel to the § -axis and t -axls
are called mesh points. Finite difference methods generally give

solutions that are sufficiently accurate for the required purposes.
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§3.3 Co—ordinate transformation. The ADI method

The finite difference formulae derived in the previous
gection sghall be used in the solution of the governing equations

for our particular problem.

/
Let ,gz be the region over which the governing
equations (2.4.32) - (2.4.34) and the boundary conditions are
defined.

0. {(XJ” 0 < x sf,os;{sn}- (3.3.1)

Because of the expected steep temperature and velocity
gradients in the fluid near the side walls, we would like in our
numerical scheme to have good resolution in and near the boundary
regions. One answer to the problem would be to introduce an
extremely dense, but uniform, grid which naturally leads to a
tremendous number of algebraic equations to be solved. An
alternative, and better method, is to use a non-uniform grid by

introducing suitable coordinate transformations
X <> FLX) , (\)( > Cl/(y}

which accumulate the grid points in the boundary regions.

With arbritrary transformation relations F}) and iQﬁ R

one obtains for the first derivative of a dependent dummy variable.|

R A (3.3.2)
U x }f)

0 . Al (3.3.3)
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where
A = /zf- A = ?i
x X7 ¢ ”b}
From (3.3,2), (3.3.3) one similarly obtaing for the second
derivatives
VoL AL BT
Xt "bfz ’bf
(3.3.4)
P AJ?__I_ ¢ Bl
’Bf B? 31
where
B, . &P B, . ¥4
X2 oy

Substituting (3.3.2) = (3.3.4) into governing equations
(2.4.32) — (2.4.34) one obtains the following set of transformed

equations

20 L AU+ YA VA ~P@k3@ YA ag)

ot °p ¢ 29 op P24 (3.3.9)
P P)ngam_@ r GRA B

°p 729 o
-EKE + /\ Ll\bE9 t KZA \/'569 = /\ Ab + Ki/\;;£Q.+
S T " op ¥ (3.3.6)
+ BL?QQ + 5 E%fbﬁ s

p 9
/\ YELB A LY (Aa’v I w> : (3.3.7)

3F % ?m 9,
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where the velocities are calculated as follows:

U= XA Faj/ V. - A E_tt . (3.3.8)
1131 ’ x 3F

It should be noted that the original equations are immediately

recovered by setting

A)( = AJ = l R Bx by B = =}
The choice of the form of coordinate transformation may

depend on the nature of the particular problems to be solved.
Several useful transformations have been discussed (Roache, 19763

Phillips, 1984). For natural convection in a cavity, the relation

/a(x) = 1 Ji+ ban [T (2x-)] | (3.3.9)
1 WD

has been recommended (Kublbeck, 1980) and will be used in this

thesis. Fig. 3.3.1 shows a graph of thig relation for several

values of the deformation parameter,é .

Fig. 3.3.7 The transformation relation b(x,é) for different valueg

of the deformation parameter

19
)

0.8
0-64
oy

€:05

o1 =0

2045

0.2 - " ’ X o
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For our problem we shall choose

CW> - y , (3.3.10)

that is, the y —coordinate will not be transformed:
this postulate will be discussed at the end of§,3.7.
With the assumption (3.3.10) it follows that

Also with the coordinate transformation, the discretization
7
of" the continuous region, 2 giveg the following grid

system :

0. (P”';w cPL Gk dy=(j-)h| s aN, JRIER ?(3.3.11)

where L\: l/4hﬁ4) . E ig related to X through expression
(3.3.9). Next we define 1 as follows:

_Q z OD,jJ) . h :(‘M)L\ R ;{J :(d-;)l\j L: 2,3, -, N-1, }:2,5,..,N~1 .(3*3.1@

For a numerical solution procedure finite difference formulae

are used to approximate the derivates in the governing equations
and boundary conditions. Thus the governing differential
equations are converted into algebraic finite difference
equations which are now defined over XZ . Similarly the boundary
conditions are convertgg into algebraic finite difference

equations defined over_xo\él .
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The value of any function Fh{ at any point in._CZ

is defined as follows:

FN;,J - FN<P 3;) , (3.3.13)

where F;: @-I)L, yd- :u_/)‘« ;s b2, N d 12, N -

The ADI method

In problems involving parabolic equations, one can
congtruct numerical solutions step by step using an explicit
scheme, because only two time levels are involved in the
calculations: the new values at time ( N+l ) being
calculated solely in terms of values at the previous time N .
Although it would appear to be much simpler and computationally
faster to obtain the numerical solution of parabolic equations
with an explicit method than with an implicit method, explicit
schemes do introduce a difficulty, since they are prone to
instability. Most implicit schemes, on the other hand, are
unconditionally stable and thus for a given grid size,it is
frequently possible to take time steps many times larger in
implicit schemes than those allowed by the explicit schemes,
and yet still obtain comparable accuracy. An obvious
disadvantage of implicit metheds is that it requires the
simultaneous solutions of the N algebraic equations at a new
time step. The final choice of which method to use for the
vorticity and energy equations depends on many factors (Roache, 1972).
In this thesis, the conservation equations are solved using an
alternating direct implicit (ADI) finite difference method
(Peaceman and Rachford, 1955).
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Fig. 3.3.2 Internal grid

Away from the boundaries centred space differences are
used for all terms except the non-~linear convection one. Since
the central difference representation of the convection terms
gives physically unrealistic results (Patankar, 1980) this
unrealistic scheme may cause some of the stability problems
encountered by earlier investigators who have used the central
difference approximation. In the present work the second
upwind difference scheme is used for the convection terms, because
this method is always physically realistic and achieves numerical
stability of the convection term by introducing false diffusion
(Roache, 1972). False diffusion is a particular type of
truncation error and it is a desirable one at large Grashof
numbers to promote increased numerical stability (Torrance, 19683

Patankar, 1980).
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The ADI method splits the time step into two obtaining
at each time level a two-dimensional implicit method. The
solution procedure is characterised by writing the finite
difference equations in implicit form in the F —direction and
solving these equations at the end of a half time step. Assuming
the solution is known for time Lz N gT , application of the
corresponding finite difference equations to each of the (N-2 )
mesh points along a row parallel to p -axis (see Fig. 3.3.2) gives
( N-2 ) equations for the (N-2 ) unknown values of [ , say at
these mesh points for time L= Q‘*i)gt . When there
are ( N-2 ) rows parallel to -axis the advancement of the solution
over the whole space (_Q.) to the (M+ L ) th time step involves
the solution of ( N-2 ) independent systems of equations, each
system containing ( N-Z ) unknowns. The finite difference equations
are then written in implicit form in the } —direction and, using
similar arguments as above, the resulting ( N-2Z ) independent
systems of equations each containing ( N-2 ) unknowns are solved
to give the solution at time ( n+! ). Fig. 3.3.3 shows schematically

the approach of the two-dimensional ADI scheme.

The advantage of the ADI over fully implicit methods is
that at each time step the finite difference equation, although

implicit, forms a tridiagonal system, which can be easily solved.
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Fig. 3.3.3 Arrangement of time-—step and grid point for ADI

scheme
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In the next section , we shall look at the second
upwind differencing method and shall derive the appropriate

finite difference equations.
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§3.4 Second upwind difference scheme., Finite difference eguations

Since equations (3.3.6) and (3.3.5) are similar in form,
and recalling our assumptions /A\y S B - 0 it is convenient

to represent both by the general equation

X

1A
kP { g op U

A
where

Wk + SV - Aiﬁ LE5OT, ﬁxlf>+(g (3.4.1)
o ) ?

>

ol = | (6 = O and/ = Q for the energy equation

and _ .
°<=P,,)€:Grﬁ/—\xg& and F: Q for the

b}b momentum equation -

The congtant x influences the rate of convergence of equation

(3.4.1) and may be set differently for the energy and vorticity

equations.

To obtain an implicit scheme in the/0 —direction

equation (3.4.1) can be written

L et v
A op %

2 2/~ntl P ' oy

: °<<Ax\9_[ T e ¥ @,_{._ + Bx_\g{:"‘ + (@ . (3.4.2)
ks o

At the next half time step the corresponding equation in the

;{ ~direction is

NSYA op oy
2—nel N2 A ny A ntl
:&@@ zfygf+y£n+f
opt oy o/ ’ (3.4.3)
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where the time derivatives have been approximated by the simple

difference formula.
In the second upwind differencing scheme (Roache, 1976),

the non-linear oconvective terms in (3.4.2) are approximated as

follows:
(\GE?‘VLAF‘t) ; Vo >0, V" 50

n EIT\ <\/Rn{_;:;ﬂ §\/‘:’[:J';> 5 \/RN<O ) \/1_“ £ 0 >

K y Vel - V.1,

L L J;—l

n n
\_/R>0)VL<O)

l < &H“\/ F> , \/,: <o, \/Ln7o ,(3.4.5)

2k

where

L’J )

<\/ g T V. (3.4.6)

\/L = (\/L,J + \/L'J*_) ¢ (3'4'7>

We can rewrite (3.4.5) in the more compact form:

. (3.4.8)

A VA s (AT IR Rt s e
( J)L.J +h
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The same arguments are valid for the first velocity component

giving

((U(:*); fan oz o fu:ku" L e T

§

where UR = <Lhn,3 + UL6> and UL = (th + u““i> .

Similarly, for the non-linear convective terms in (3.4.3), we

have

R YR l)r'm 4.10)

(u bI)Mé o g o
i ik
and (vm%%w)% :
VR Ve R ATV Rt ) et Vi i
Lk

At each new time level Lh\, uk, \Q and.VL are calculated from

the current values of the stream function using central

(3.4.11)

—

differences.

The second derivatives of the diffusion terms are

approximated by centred space evaluation with an error of O(Lv ’

nt! ol +! 1
(?I) L | (C“‘z - ZEJ‘" L r,ﬂd) , (3.4.12)

’DPL

2 n N n —n
:Ql;) = i <ilhéﬂ - Z(Ij + {%dj> . (3.4.13)
Byl Y A
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The second derivatives on the right hand side of equation (3.4.3) are
approximated in the same way but are not given here. The first
derivatives of the diffusion terms are also approximated by centred

space evaluation:

n+l N+l +1
<I> ‘ = .'_ <}:;l b~ [:4';‘) : (3.4.14)

%# 2h '

The derivative in the buoyancy term in (3.4.2) is

approximated by centred space evaluation yielding

(%?)nd i i< i 9“"} ' (3.4.15)

The corresponding derivative in the buoyancy term in (3.4.3) is

obtained from above simply by replacing n by n+é .

Substituting (3.4.8), (3.4.9) and (3.4.12) = (3.4.15)
into (3.4.2) and bearing in mind that functions A and B
functions of the F —coordinate only, we have for the first half

of the time step

+i J,
I
Lry T, +

ST
uret

A @)Km

oy

lusl) " (s

LMy
—r

Lh

_\/:+

VIR - (e 1)1‘;}} _

¥ A A A Ik
| o
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¢ h+z TRtE AL 2 [0 nn nel et
a [‘A“““ Y ([ ) bl ’J
k K 2k

2 n n
P62 A (B, -B,,) (3.4.16)
2h

Similarly, from (3.4.3), we obtain for the next half of the

time step

n+t n+t
[
o o

i DU SU o

n+t
-
[

il Hz“(ui"%{u:*%ﬁ ;

kA A+l s —nt 2/ —n+t 40 Nt N ! 41
- A A;&(ﬁ’) <{:+|,2: _2E);+Z T |;~l,:2>fﬁ/_ (};,J’ﬂ _2{‘:7' +Eé-l ..6.’;0)({::\"; _Ej‘,‘z) v
K R 2k ’
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Rearranging Equations (3.4.16) and (3.4.17) one obtaing finally
for the io ~component

N0 nt ol n At —_—— gy n
Ri;;!z"f i SBJEJ ! /:,J' [«‘n,} = u;,& v (3.4.18)

and for the;/ —component

+' N ns At n+' A+t "*J-
Rn [ +5 L{— T F = U o (3.4.19)

Ly J,-[ J

C,0= 2,3,... N-I
where cf

Rt’ = ”&&)(UZJUZU - o((ﬁ,i_(:) - _[__Sj_}‘)) , (3.4.20)

bk 5 2k
5{:’(] = _2 4 _,ig( +Hl U () + 2~=<A 2=l (3.4.27)
ST 4k
—_—n 2
0 A (U] -%(_A_XM Bl e
4T R 21
u vy = I‘-:T‘fl “é(‘\/; +IV':D ' Oj—bin +
+EJ’ 2 ¥ (V.zn*f\/; '\/:fl\/L" —ioib:zj + (3.4.23)
aOTA Lh |2

o T [g\ . v)d_iq + crﬁ‘@_j@(@” _a,)

and

) e ) (3.4.24)
L‘L

Ly (v NV

K Lk



2
+ 2 + ZO(b/ (3.4-25)

Tbnfé = _b: (\/&M‘l ‘l\/,fﬂ) - °‘X2 (3.4.26)

U""'}) Alpy s B,@)) +

uk b 2k

] -Ax&»(u:htuz*% *u:‘%fluii)’“ 22w,

AR DTN L

o2 sl gl )

Equations (3.4.18) and (3.4.19) are valid at every
mode {i,é} ingside the boundary. Given a row with N grid points

one obtains for each } a tridiagonal matrix of size (N-2 ) x

( N-2 ) to determine the ( N-2 ) unknowns. A similar type of
matrix occurs on using (3.4.19) for a fixed L . In the next two
sections we shall deal with the construction of the tridiagonal

matrix and shall look at a particular method of solving the finite

difference equations.
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§3.5 Boundary conditiong in finite difference form

The construction of the tridiagonal matrix requires the

inclusion of the boundary conditions. Therefore, we shall devote

this section to the formulation of the boundary conditions in

finite difference form, recalling that the cavity considered has

been shown on Fig. 2.4.2.

On {.<E”[V>( R.:Gf'>L , l:I,Zw'N}, the dependent variables satisfy

Lf/:o , 9;0) Q:O'

The finite difference form of these conditions are

\{/L,N = QO , 9,‘,,/\1 = O/ QL,N:O; (= (2, ., [\1-(3.5.1)

On {(N) jé> ' J; = (j‘l)k ) 3 :2,L.NJNT}) the required boundary

-}_Q‘ e LfJ:O)C\):O ' (3'5'2)

conditions are -
/

M

The latter two equations can be written
- . \ - - 3.5.3
o Gy -0, oo, (30523

b, i

but the temperature condition needs careful treatment.

It was shown by numerical experimentation that the results
obtained from our numerical procedure depend crucially on the
accuracy of the expressions used to represent the heat input
at the boundaries. Hence, for greater accuracy, we assume that
the temperature in the immediate wvicinity of the line of

symmetry can be approximated by a parabola.
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To formulate the necessary expression we return temporarily to

the continuous region, {2 (see (3.3.1) in X‘y

applying the conditions obtained to the grid system 12

space ).

Suppose that near the axis of symmetry

@(x) - axt+bx +c
where X is measured from the centre line,

then from (3.5.4) we find that 69(0) = C

The temperature condition immediately yields
b:O

m O , \7/0( in the range 2 éJ < N-I
(3.5.4) = (3.5.6) imply that

where

gpace before

(in Ig-;{

(3.5.4)

(3.5.5)

(3.5.6)

(3.5.7)

(3.5.8)

(3.5.9)

(3.5.10)

X, K are measured in X -space and(P‘XJ ,(P‘X{>

correspond to the points ( N-2 )L ’ ( N-3 )H in F —-gpace

respectively.
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Assuming that N-,; @and G;N.LJ‘ are known, equations
(3.5.7) = (3.5.10) represent a system of linear algebraic
equations for QJ' , 6) , CJ and GN’(} with solution

@N E QN_,)J <1vE) + E@N-l;; , (3.5.11)

4
where

E - (><,)Z x.)" -(X)): (3.5-12)

1

(3.5.11) represents the temperature condition at the line of

symmetry.

On {Gﬁﬁ)] hs Qﬂ)L, ¢z hL.N)N} , the boundary

conditions to be satisfied are

2

’532 753

Clearly zero stream function implies that
\{/L” - O Loz ’92/ ,N

2
Neyt we shall find an approximation for :2_:t; from

Ig 2t .o , Q- ¥ Y26 . < (3.5.13)
0y

) . ov?
the Taylor's series expansion. y

\ﬁ,z . \f/. " L?jf[ " ﬁ},t ; o(@ : (3.5.14)
2yl 2! 732

Z
Dividing by l—\ on both sides of (3.5.14) and

\f/'c,: = ?fi)f =0 .,
K

b,l

o

using
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we have

5 ] zt,%z + olh)  (.5.19)

oYL

Although the truncation error in (3.5.15) is of order A '
Kublbeck et al (1979) and Roache (1976) certify that the
resulting numerical procedure is essentially more stable
than it would be with the corresponding approximation due

to Woods (1954)

ﬁ = Sluz 4 —/—?ii/:.
oyl N 2040

Iy
which is accurate to O(L) . Other approximations are
suggested by Roache (1976) but shall use the expression
(3.5.15). With this choice the finite difference form of

the vorticity boundary condition can be written

4

O ﬁi&. by, N - (3.5.16)
, E

As stated earlier, numerical results are found to
be very sensitive to the accuracy of expressions used %o
represent the heat input at the boundaries. Hence, for
greater accuracy, we assume that the temperature at the walls

also has a parabolic profile.

As in the case of the temperature at the centre line,

we suppose that

@(y) = ayz + Ej + C (3.5.17)
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which immediately gives

E} ~
©) =c, & b . (3.5.18)
°¥
y:a
Hence from (3.5.13) we find that

b- - (3.5.19)

Then in _SZ ’ \fd , such that | € L ¢ N expressions
(3.5.17) = (3.5.19) imply that

B.. - a 1, b h o+ ¢ X (3.5.20)
By = alh)+ b))+ | (3.5.21)
@;), - - , (3.5.22)
b . | . (3.5.23)

(%

g

Assuming that é;hz and E;Q3 are known equations (3.5.20) -
(3.5.23) represent a system of linear algebraic equations, the

unknowns being 4. E; , C. ana O, .

Solving the system, we obtain for the temperature at the base:

@;,. = %(4 6., - 6., + ZL/K) : (3.5.24)

Finally on {(byé)[' ?JJ = 4ok, i 2,3,‘.,,N~s‘)) .

with our coordinate transformation the non dimensional variables

\f/:’ﬁ) = 0

o
Q:_Az,ﬁ +Bxﬂ .
op !

op?

satisfy

(3.5.25)
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A28 - -8 (3.5.26)
% - Q&

The first condition is obviously written

\f)v;,g z }\f)/ =0 i J‘: 2,3,..., N-I - (3-5.27)
’.DI) l)J‘ 5
: : : : : d ¥
Using a Taylor series eypansion an approryimation for ST
is obtained in a similar way to that for ADZVJ in the

. . Iy
previous sub-section: Thus }

T, - ¥

and using (3.5.27) it follows that

'y ) 4

i
g 2 Tp

2 ‘ .
'?__f Co= Z\‘{i'é L\Z t O(L) . (3.5.29)
oprln
From (3.5.25), (3.5.27) and (3.5.29) we obtain the following

expression for the wall vorticity:

¢

Q,,. - “ZAiU)\h»J"/L\‘ . (3.5.30)

Again for greater accuracy we assume that the temperature near

the wall has a parabolic distribution following the same

argument as in sub-section 2 but recalling that the appropriate
e) :‘@

boundary condition is now ('} W)y -0 2 Q, we deduce

that the expression for the wall temperature is

£,6., + E 6, +E : (3.5.31)

where

E, - (x)° (Xa)* (X,)Z) (3.5.32)

P/
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Ez = “<X;);{(X2)z‘(><.)z) , (3.5.33)
E, - [X,xz (X.+Xz)<] @/Q,, (3.5.34)

with the quantities Xx and Xz corregponding to the points
If\ and 2“: in fa ~-gpace.
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‘§3.6 Construction of Tridiagonal matrices. Solution of Finite

Difference equations (FDE)

We shall now construct the tridiagonal matrix for the
first half of the time step. We recall that the FDE corresponding
to the transport equation for the first half of the time step is
given by (3.4.18), which yields the following system of linear

algebraic equations.

Rn l"n"}‘: + S:,i {—2‘.;1.% 'r‘-[:.n rn.‘*% = unz’. ,

z,}‘ b}
n ,\1,_; n n+d — ntl ; un
QB’J Ea‘ * 53[ ot sy I: ) = 3)J,

. (3.6.1)

Rn rﬂ‘fé R Sn J——-I\#é —— fﬂfé un
I N - N*‘)J .

2 N-1,7 UN-f, f /N_,,‘ N, |
' 4" § i

For the momentum equation the boundary conditions just discussed

[:J z Q:‘,J E *Z\ﬁ.J AZ(:)/L\Z , (3.6.2)

in 3.5 give

[N"‘ = Qr:(} - 0 . (3.6.3)

g

Since it is not possible to know beforehand the wall vorticity

at ( ni-% ), we have taken its value to be the one at time N .
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This indicates that the wall vorticity lags behind by half a time
step. This will occur at all time levels. Since we are ailming
at a steady state solution, this difference in time levels does

not affect the numerical results at steady state.

System (3.6.1) can be written as

/A\ >< ) B , (3.6.4)

where /A\ is the following tridiagonal matrix

SZ’J IJ o - . O
; N
Rg}} 533 133 e 0 (3.6.5)
0 o
. ; 7
0 O nN-z,(, Sz; T“‘ZJ
D M O N"’J S:‘J

— — R e

X Qz,t}‘ B: UZJ (;;zdeTJ | (3.6.6)

34

N+l
O n
N";J u .
S e d L -N")J _.___J
For the energy equation, we refer to expressions (3.5.11)

and (3.5.31) which define the temperature at the wall and at the

line of symmetry respectively.



63.

The tridiagonal matrix )/C\ y for the energy equation therefore is

r n n n
FRS) (TER) o .
R, S: T '
37& 3)& JIJ ) N :
0 . )
: o 0
3 * Rﬂ 5{\ ___[__n
O N_Z’(j N‘Z,J N 11}
(R
0 R 0 Nl ’ /N-l,(} E N-a,; !u-. g([‘ E)
where £, E, | E, are defined througn (3.5.12), (3.5.32),
(3.5.33) respectively. The corresponding vector ES is
N
n
UZ)J - C}' {%22
Lis,'
¢ (3.6.10)

where E; is defined through (3.5.34)

The matrices corresponding to the momentum equation for

the second half of the time step have essentially the same structure

ag those discussed above. The only difference in /X lieg in

interchanging LS and J’J in the subscripts and because of the

modified version for the base vorticity, only the first element of
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the column vector 8 is different. There are also slight changes

in the matrices A and B for the energy equation. As discussed

earlier we have (see
@'\‘f‘l

Lyl =
@nﬂ

and N

i

Hence, for the case of the temperature the matrices are

3.5)

L @":Iz
3

3

0

-1 6,

i+
vy F —ZA .
3y 7

A.

‘ o
3.6.11)
o)
Snt"z TME"
N2 {,N2
R g
\i,N-l L,N-A
. (3.6.12)
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Having completed the construction of the tridiagonal
matrices for all relevant cases we shall now lock at a particular
way of solving the equations using the tridiagonality of the
matrices. The Crout decomposition method (Bajpai, Mustoe, Walker;
1977) is a general method for solving systems of equations that

yields particularly simple results when A ig tridiagonal.

In brief, if /A\ = (am ‘()m: Lol 1s a tridiagonal matrix,
Kz, M

then there exist a lower triangular matrix

L, z (JMK‘ zi'(””: and an upper triangular matrix
Ll: (umK>M:“-»M with umxfl when — m s IC
Kz, M
such that

A.LU .-

In that case the non-zero components in the matrices L and u

are readily calculated through

(1) {m' - Qm, L M=,z
C{,K/{” K=z

aK‘( - (44 Kt uK&H}

Py
[
(=]

g

=~
IS
f

N
}—l
}_.l
H
p
T~ e
~
R
o

K+ w S aKH Ko for K = 2,3,., I,

(iV) UK Kel. = C{K KH/{ b

This procedure is termed triangular decomposgition. To solve the

system of equations

Af = _E_)_ , where /\ ig tridiagonal
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we first factorise A into Lu so that

Lwr -8 Lur)

Then if we write

i

Ll[f gi ) (3.6.13)

then the original equation is equivalent to
Lag = B (3.6.14)

Since L is a triangular matrix with only one non-zero

sub diagonal, 2 can be easily found from (3.6.14) to be

B,/(” |
B, - [KK_,jwq//t J K23,

Having found_j__ we then use (3.6.13) to find _{: . Again the

given by

J

H

e

triangular nature of U makes the solution an easy task. We

I

obtain

-

"

i

(3.6.15)
E = j,g‘ U s (_,;“ R K= M-I,M2, .., 2,1

Having determined the solution of the conservation
equations, we shall, in the next paragraph, look at the solution

of the Poisson equation.
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§3.7 Solution of Poisson equatibn -~ Block Cyclic Reduction method

We shall now consider the elliptic Poisson equation
(2.4.34) for the stream function. A review of the literature
shows that many attempts have been made to find a solution. The
iteration methods are very easy to understand and program.
Frankel (1950) has developed a method of applying over relaxation
to the CGauss-Seidel method: this procedure is called Successive
Overrelaxation (SOR). In recent years the slightly more complicated
ADT methods have become popular. The procedure here is to convert
the elliptic equation into a parabolic one, by including the unsteady
terms which can then be integrated in time by the previously

described ADI method until steady state is reached.

Due to intensive research direct inversion methods are
now coming into wider use. These methods are extremely accurate
since in theory they yield the exact solution to the difference
equations. They need considerably less computation time than ADI
methods, but they often place some limitations on the boundary
conditions and grid size. Kublbeck, Merker and Straub (1980)
conclude that a reasonable compromise between computation time,
freedom with boundary conditions and a suitable grid size is
obtained with the method of cyclic reduction of Schumann and Sweet
(1976). Buzbee et al (1970) examined the method of cyclic reduction
with the Buneman variants to obtain greater numerical stability. In
this work, the Poisson equation will be solved by the method of cyclic

reduction using the Buneman variant.

An introduction to the idea of cyclic reduction

Congider the system of equations

My . ;, (3.7.1)
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where Pq is a i)(q/ real symmetric matrix of block tridiagonal
form:

T 0 ... o
M- AT

o >

6 . (3.7.2)
o ‘oT/\

We assume that [ is symmetric and that the (}:xr ) matrices
,A and | commute. To maintain consistency with the form of

matrix P?, we write the vectors X and ;Z in partitioned form,

X J,

x —_—
= d

X = : , J - | - (3.7.3)

al} 2

Furthermore it is then guite natural to write
X, J
l} {
X2: 4

d Jd
X: = . ] 2, b o (34744
=4 . ) ;& . ’J b2 )F )
Xy .
by )FJ
With the use of expressions (3.7.2), (3.7.3) system (3.7.1)may be
expressed as
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Consider a | such that 2 < J < N-1, then the
equaiionsfor(J-O , J and(JfO are

T?SJVZ + /A\ﬁd‘-; * TL( 2 y(}"'a

d -y

JRSSEY

s Ax s Ten - Y Gae

Tx. + Ax +T = y

___J ...J-H 5}?2 -.J.H .
Multiplying the first and third equations of above system by I '
the second by F/A) and adding we have

—_—

| Xip + <2Ti/‘\z)2<' + Té -1y -A A C(3.7.7)
} 4 im0 J}' g},.

This is a single equation of the same form as each equation in

(3.7.6) but with the unknowns 2(). and X, ~not appearing.

By choosing even values for } a new smaller system of equations

involving :XJﬂs with even indices is produced. The process of

reducing the number of equations in this fashion is known as cyclic

reduction. It should be noted, however, that the calculation of the

right hand sides of equations (3.7.7) is subject to severe

rounding off errors in many cases of interest. This difficulty is

almost eliminated by using the more stable Buneman variants of the

Cyclic Reduction method.

Recall the Poigson equation in transformed coordinates,

equation (3.3.7), which, with /\ =1 and 15; = 0 , reduces to

J

Azx ﬁ + P)xﬁ/ + b/z ’?:Lf z “Q ) (3.7.8)
op? p oy

subject to \F= 0 on all boundaries.
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Next, we convert equation (3.7.8) into finite difference form
uging central differences obtaining

_/%_L; ( . ~z\f/ .,)1 B, @( . \I)“> g <ﬁ2}*’-2\t3+\ﬁ’d‘):

=" QC,J

, L,J = 2,3, N-t  (3.7.9)
with boundary conditions

l)d = O 3

N’J : 0 ) L= 2

N s b N L (301210)

\ﬁ { ol 1%

»

T -

= O

Equations(3.7.9)and(3.7.10)can be put into the form (3.7.1) and

the corresponding matrices M and § are now determined.

Let a

LG Ai@) ~é{1 B
b= 2 (Ao 5)

(3.7.11)
¢ = A6+ LhB),

QH;IJ: QL @L’J .

Then equation (3.7.9) can be written in a simplified way

a(, \{/Lq’d + !3‘; k‘i,J + C;\ﬁ,u,J + XZ t,}-, + XZ ﬁ}+,=QH:’~)(3.7.12
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but the boundary conditions are unchanged. With (}= 2
equations (3.7.10) and (3.7.12) yield the set of equations

LL \t,z * Cl 3,2 + XZ t,s = QH:’Zv
qﬁY + Ezﬁ,} + Cl\f:z + b/zt,g = QH::

2,2 22 2 225 (3.7.13)

/
aN—l \f/uq.,z * Lw( \T/AM,z * s j(/’“"ﬂ N QHN“:Z ’

Furthermore for general J, in the range 3« (} < N-2
equations (3.7.10) and (3.7.12) yield

ID;\{:, + CZ\/V;,A + (Y t’d“”‘ ¥ \f/JH i} QH;(},

3) 1
’4 >4
(3.7.14)

Byt

aN-l \FM,J +£N-a\ﬁ1-,,> +X fm -*K N joo =Q /

Nt,J' .

Finally when J‘: N-1 , the corresponding set of equations is

b+ ot

) 2
a5 2, N~ t+ EB\K)NH + CB \l‘:,N-l +2§ \fg)N-z ;QH;)N_“(B-%.’IB)

v, /
+ 2, N-2 - QH}.,N-I s

3, N~i

N
z
-
o—
<
z'.{.
-+
o<
N
€

QH,
- N-2 = N=l N-t -
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Define the vectors H‘j and QH; through
T, /
\1; - 4 and QHJ - ) (3.7.16)

n——— [m———
-

\{/N—:,‘ l .
4 QHNﬂ,J ’ J‘:Z,S,...)N-l

then systems (3.7.13), (3.7.14) and (3.7.15) can be written

respectively

A\E + li{;—‘r OA_Jif...f-

Ift‘ f A\fj ! l jr PO e O'\IJmt: &H>

—
(o]

gﬁ
D)
B g
-
~
=

- — T Y (3.7.18)
3¢ ¢ N2
and o‘
OA£+ o 4 of[i_f +If~_§ TAE: ;QHN-, , (3.7.19)
|
where ;
Bz Cz 0 0O
ab b3 C3
A - _,%% 0 e (3.7.20)
: o Cya
© © au—: EN»: ?
QH, - L QH. . (3.7.21)
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—

and I is the identity matrix of order(hﬁZ). Hence, the gsystems
of equations (3.7.17) = (3.7.19) are equivalent to the block

matrix equation
MY

(3.7.22)
where /\ I: O 0 |
L A T
: L] 02
[\/1 0 0 o (GeTe23)
O o 1A
Y, QH,
QH
>< : j)_; and £ . — | . (3.7.24)
I O,
The bagic idea for reducing the system (3.7.22) was
given at the beginning of this section, although the precise
details depend on the value of hJ . For convenience we choose
Kt
N = 2" .1 (3.7.25)

where K is a positive integer. System(3.7.22) may be written

/AKE{; + Ii :QHZ,
;1: \f;+| * /\ j}_ t :[ Y;;‘

. SRBYY

It

CDH; , J; 3, N-2

e

[,

" (3.7.26)
.]j \f;-z + /\if;;i gg&iﬁj

(4]
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and it is this system that is now subjected to the process of
cyclic reduction. Recalling result (3.7.7), after one stage

of cyclic reduction we have

EE;, + (ZLAZ)\E“ 4 Tii’ : @ + QH,, -AQH, (3.7.27)

for j* b, o, N-3 kf:/ : \KI = Q-

Since gystem (3.7.27) is block tridiagonal and is of the form
of system (3.7.22) with

AV L et [A]* , (3.7.28)

0
f _ QHJ- P RH, - AQ e (3.7.29)

i,

we can apply the reduction process repeatedly until we are
left with one block equation (this is possible with our choice

of N ). In general after(Fiﬂ) reductions we have
(I”H) 3 Z (0)
/A\ . 2T - L/\w] with A : A (3.7.30)

and the right hand side is obtained from

(r+1) ‘
7C = ﬁw +€(: - /A\(r)g(r) , (3.7.31)

d I

—nniree

[N

k-1 , ( K is defined through (3.7.25)) and
(Z‘th _ 1)2-?1'1

After K  steps, we obtain the single block equation

A(K) \f;ﬂ : Ef) : (3.7.32)

Mwmarzoﬂv

. _ . r+t _Zrﬂ
I va , 2

N R
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In general system (3.7.32) can easily be inverted but,
as stated earlier, in practice the calculation of the right hand
sides introduces acute instabilities. The Buneman variant requires
that the right hand sides resulting from the reduction process are

not computed directly but defined implicitly by two auxiliavy
vectors F(r) and ﬁ(')
4 4

First, note that the right hand side of (3.7.27) may be written as

¢)
- O Qi -AGH, -

(1) ~1 -
= A[AJ(mﬁu+§§}+C%&Z~ZMJ(QH“) (3.7.33)
where J'; 2,4, -, N-3 and we have used equation (3.7.28)

Next let us define

3 -1
f;“ - [AJ Q. , (3.7.34)
J
CLU) . QH - QHjn -2 ’b“’ (1)
e — 4

then from (3.7.3) we have

f‘(') _ A(l)c(:) 4 %(,) ) (3.7.36)

iy ‘
— 4

Writing

f ) A(r) ) (r)

i /3 =y (3.7.37)

— d \i b

. . ) r) _ ,

we can obtain expressions for )b and C_Li by substituting

. . . :
(3.7.37) into (3.7.31) and making use of the identity (3.7.30).

The following relationships are obtained:

][ p© )
+ " (r) ( (r)
F(r ) _ F( )_ LA } (D o + fg - CL
' i d- 12"
4 ¢ d

4 — - 7 (3.7.38)




o ) ‘(\f*é\)
C[(”') - C(/(r) + Lj ry B 2}1 (3.7.39)
i 12 it 4
- [ ort ] -r
for J = L2 ) L= 12, .., 2% -1, witn

) ~ -
F - F“ . CL‘” - 49 (3.7.40)
0 ZK'FI o ZK“ '

R

After K reductions, one therefore has the equation

AVY. L AP

2

and hence

- -1 gle)
- F(f) + !/\(K')] ’CL:K . (3.7.41)

+ 4 2 - u

To compute \!/Z"ﬂ in (3.7.41) we solve the system

of equations

[ i,

A (Y B - T e

(r)
where A is given by the factorization

o
Ar)zom A t / Cos @ﬁr)I> (3.7.43)

| s/

e
and er) = (Z}#)?T/Z”‘ , (Bugzbee et al, 1970)- It
should be pointed out that in the derivation of (3.7.43) the
authors have assumed that the matrix A can be diagonalised.

We note that each of the matrices forming the product AH in
(3.7.43) is tridiagonal. Hence, for equation (3.7.41) we have

) ()

where for a given

Q) ")
AJ = A + 2 (os Qj I , with 8; defined above



Define Q/ through

L

fl; :[ALHALH} [Az} \CKH‘,ZT) “(3.7.44)

<)
where ael - %(K) , r(ZrH = \fzK+I - FZ‘ >

at each stage obtaining the solution by using the Crout decomposition
method described earlier. At the end of this cyclic procedure, a

solution is determined for ﬂé“+c : Having found #in+a , We

then back—-solve to successively find the eliminated unknowns. To

achieve this we use the relationship

r r) r
\i/‘__ZrH + /A\()\t/ﬂ + \r;*Z'H = A( /’)() + CL(r) ) (3.7.45)

y d ,
¢ 4

. - . iK#1-1 . \(/ \)‘/
for d: AR I,Z,m)Z ~|] with P oK 4 = 2

Hence to find the eliminated unknowns we solve the system of

equatlons

/\m \K‘ _(j(r) . 7/(.')’_ \wa +_\C.i’:__' (3.7.26)

A y

~ r
where J = 21: 3.2 NN ZZK*‘~‘Z y using the factorization

of /¥ﬂ and the procedure described earlier.

To summarise, the Buneman algorithm for the solution
of the Poisson equation with the boundary conditiong proceeds as

follows:
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Compute the sequence

() )
ID ) CL by (3.7.38) and (3.7.39) for

4 A

M},2,.., K with

12

O for j: O, 2¥*" ana

P

= QHJH 5 J = L2, ., 2K o

Determine \fén+! from (3.7.41) -

Back-solve for other #;k using (3.7.46) -

The scheme described in this section ig valid only for the case
N = 2" + | . Schumann and Sweet (1976) have examined the

case for general N : +the basic method is unaltered but the

details of the reduction process are changed.

It should be emphasised that the complications introduced
with the use of Buneman's variants were judged worthwhile since

they provide greater numerical stability.

Ideally, we would like to transform the coordinates in
both X and \J-directions since we would then obtain, for a fixed
number of mesh points, a more accurate description of the flow in
the boundary layer at the bottom of the container and in the shear
layer near the free surface of the fluid than we get with mesh
points that are equally spaced in the j —direction. Unfortunately,
the use of stretched co-ordinates in both directions gives rise to
an asymmetric block tridiagonal matrix and the 'simple' reduction
process outlined above does not work. It might be possible to
amend the method to circumvent this difficulty but such a change is

not attempted in this thesis.



79.

CHAPTER 4
NUMERICAL RESULTS AND DISCUSSION

é A.1 Stability criteria of the ADI scheme

Generally speaking, implicit methods are unconditionally
stable: that is, round off errors introduced at time level [} are
not magnified in modulus when valueg of the dependent variable are
computed at time level ( Nt é ). This is clearly demonstrated by
various stability analysis methods (Roache, 1976). These methods
however make use of some simplifying assumptions; that the velocity
be a positive constant along any given row or column, for instance.
These assumptions are not generally valid and therefore, in practice,
one does experience certain restrictions on the time step. These

restrictions certainly arise with the ADI scheme.

Roache (1976) argues that the Courant-Friederick-Lewy (CFL)
condition is a reliable stability criterion for most numerical methods.

The CFL condition states that

AT ¢ Lk (3:1.)
c Lk

where o is some diffusion coefficient.

Since the CFL condition is a very general one, its application to our

problem does not necessarily guarantee that round off errors are not

amplified.

There is another condition that must be obeyed in order to
obtain accurate solutions to the system of linear algebraic equations
using the Crout algorithm; that the coefficient matrix on the left
hand side of (3.6.4) be diagonally dominant. In order to be more
explicit, we first recall that the transport equation in trangformed

coordinates along a given row as n— n+L can be written
2



L}i F A)( H}f :o{AZ}__ZE“ + dgx?_’:-f ?_l[)(f)y>)(4.1.2>
AT kF FDF" 'b’g fby

where o{ 1s a positive constant and \bﬁ?(F,g;) is some known
2
quantity. Using forward time and centred space approximations we

obtain from (4.1.2) the following finite difference equation (FDE).

i 1 —_ n+ L n
EZL[:lTE " £;LE:H+L + f E:T 2 ; LJL ) (4.1.3)

R; = - m Ax@>—°£8x w) -+ «Aica) (4.1.4)
2h N ’

S . 2 + Lo AX@) , (4.1.5)
" AT R '
R L
1'(‘ pd (M'Ax(_")‘ °<B)< Q’>) “MAXU) (4.1.6)
2h A

n
and l}; igs a known quantity.

Diagonal dominance of the system of equation 4.1.3 requires that

> IQ;/ +{T;{ : (4.1.7)

If (4.1.7) is not obeyed, then the loss of accuracy in the solution

of the algebraic equations may make the results from an application
of the Crout method quite worthless. Throughout the following
analysis let us assume that W is constant at all nodes in a

particular row.
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Suppose UAX[L)-—o{BX(L) > 0 . Then, if

(DLAX(U*%BXU)J/Z £ dAx(L) ,  (4.1.8)

h

inequality (4.1.7) is satisfied (that is the matrix is diagonally
dominant) for all values of AT . The inequality (4.1.8) is

equivalent to

(qu@) ~O<B,((L))l\ < 2 R (4.14-9)
o«A;M
or Qc_ é Z Pl

where RC denotes the cell Reynolds number for the transformed

equations.

When inequality (4.1.8) is not satisfied diagonal dominance requires

that
2
quU’) “’(BX 2 < 2 1 2°<Axc‘) ; yielding
h DA 1
>\AI ULAX(L)~¢<5K@) ‘zo</\xm £ 2 +(4.1.10)
h h*
Suppose now MAXG) - BAG) £ O . 1In this
case if o By() - U(A,((_L) < oLA;G) (or RC >-2 )
2h N

then (4.1.7) is always satisfied irrespective the value of Az(>0) .
However, if RCQ‘Z then inequality (4.1.7) is satisfied only if
the time step AT is chosen such that

Afx xBx@)_qu@) - zxAi(L) L 2 (4.1.11)
h K
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Conditions (4.1.10) and (4.1.11) may be more conveniently written as

the single equation

N . 2. B
Aoz {MAxu%deu)/» aaan@) < 2 0 (4.1.12)
h K
Similarly the conditions on ¢ that yield unconditional stability

can be combined to give 1R¢{< Z.

As I’H~.2'. — N+l , we have the following FDE
corresponding to the transport equation, where is assumed to be
constant along a given column

n+i n+l —— A d nt+t
R. r:, + 'SJ’ [; + Id Ff, = UJ = (4.1.13)

4 ¢ >

where
2. - - /Y . X (4.1.14)
(} ZL L\Z) )
JSJ = 2 2 , (4.1.15)
vy N
T .V L (4.1.16)
2h iy

ntl
and ua ? is a known quantity. Diagonal dominance of the system
of equations (4.1.13) again requires that (4.1.7) be satisfied.

Using the same arguments as for the case when N —3 r‘s-f-z_i , we
find that the coefficient matrix is diagonally dominant for all

Rcféz

values of AT, if

7
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where QC = VI’\/O( . On the other hand, if (ch > 2  the

system is diagonally dominant when the time step satisfies

AAT l\% ~_2_E_z<_ < 2 . (4.1.17)

It was found by numerical experimentation that a variable
time step enabled the steady state solution to be reached faster
than with a constant step. In view of the fact that a large part
of the oompqtational calculations in the program involved inversion
of tridiagonal systems, diagonal dominance of the matrices was
found to be a key element for numerical stability. In our numerical
procedure the CFL condition (4.1.7) was used to provide an initial
value of the time step and any subsequent changes in Af were made

through the use of conditions (4.1.10) and (4.1.17).
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§‘4.2 Computational procedure

The procedure that was adopted for obtaining solutions

using the finite difference equations derived in § 3.5 ig now

described. First, it was necessary to choose values for

N (the number of mesh points in a row or column), for the small

convergence parameters EP1, EP2 and EP3 (defined later in this
section), for the initial time step AT , the Prandtl number Pr and the

and #/

Grashof number Gr . Then the dependent variables & , B

were initialized.

Suppose the solution for (3.4.1) had been calculated at

time level n . Then the temperature at the bottom and sides of

the container were updated using the prescribed constant heat
fluxes on these surfaces (conditions (3.5.24) and (3.5.31)). Next,

the components of the matrices A appropriate to the solution of

the momentum and energy equations along the first row ( i::z ) were
calculated from equations (3.4.18).

Using the Crout algorithm
(see é 3.6) the vorticity and temperature at time level (N+4 )
were found consecutively at all internal nodes along that particular
row, using the boundary conditions at the ends of the row. This

procedure was repeated for the other rows ( }: 3,4, .-, N-1 ). The

vorticity at time level ( N+ % ) .was then substituted into the

right hand side of the Poisson equation (2.4.34). Using the Block

Cyclic Reduction Method given in §‘3.7, the Poisson Equation was
solved to give the stream function at time level ( n+ é Yo The

time step was then set to its correct value according to (4.1.12).

After updating the values of the temperature and vorticity

on the boundary the procedure described in the above paragraph wasg
repeated, except that now the vorticity and temperature were calculated

in column order through (3.4.19), this time using the boundary conditions
With this method the vorticity, ftemperature

).

at the base and top surface.
and stream function were found at time level ( N+ |
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A convergence test was now performed. Let 62 ) E; ' q)
be the calculated values of the respective variables at an
arbitrary point ( L’} ) at time level (N +!' ), (in ) € Q2 , 2
being  defined through (3.3.12);
CQZ, Eﬁ ' %1 to be the corresponding values at the same point
at time level n
and CQM ’ 624, \ﬁ; be the maximum values of the variables over the
whole grid at time level ( n-+| ). Then we assumed that convergence

of our solution was achieved when all the inequalities

{Q‘“Qz[ ' EP1,
o8

6 - B8, <« =, v G”J) e 1
ot

vy
T

were satisfied, where EP1, EP2 and EP3 were prescribed constants.

L EP3

If the convergence test was satisfied, the velocity field was
calculated from the stream function using equations (2.2.18) and
the solution was printed out. However, if one or more inequalities
was violated, the value of ) was increased by one with the time
step set according to (4.1.17) and the procedure for updating the

dependent variables was repeated.
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‘§AL3 On convergence, accuracy and converged solution

In this section we shall describe the steps, which we
have taken to enhance the rate of convergence of the numerical
solution and shall discuss the accuracy achieved. For simplicity,
let us take the measure of the rate of convergence to be inversely
proportional to the number of iteration steps required to achieve

the steady state solution.

Effect of parameter >\

A parameter'>\ was introduced earlier (see (3.4.1)).
Various sets of numerical results were produced for different
values of A and it was found that changing‘>\ did significantly
affect the rate of convergence. An optimal value of ;\ = 0.25

for the energy equation was found by numerical experimentation.

Choice of time step

The program was run initially with a constant time step
( AT = C ) set by the CFL condition (see § 4.1). Numerous sets
of numerical results were produced with different constant values
of AT and different sets of error parameters. For a given
Grashof number and a given set of error parameters results obtained
with a emaller value of AT were generally less accurate, as might
have been anticipated, since the solution was being truncated before
it had properly converged. The values chosen for AT and the
convergence parameters (EP1, etc) should therefore increase (or
decrease) in tandem. However, a variable time step (discussed in
§ 4.1) had positive advantages on the rate of convergence, though
some extra computations were required at each time step. The
advantages on the rate of convergence of having a variable time
step seemed to outweigh the disadvantages, but care has to be

taken to ensure the solution has fully converged.
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Other approximations for temperature boundary conditions and some

derivatives; ot %’

Various sets of numerical results were also produced
with different finite difference expressions for approximating
both the heat input at the solid boundaries and the temperature
condition at the centre line. Initially, linear expressions were
used at all three boundaries. With parabolic approximations,
however, (S€£1§ 3.5) the solution converged faster and one expects
them to provide increased accuracy in the velocity and thermal
boundary layers. It should be pointed out that the extra
computationg needed for the parabolic approximations were
insignificant. It is possible that exponential expressions for
the variation in temperature near the boundaries would lead to
more accurate results, but such variations have not been investigated

in this work.

Expressions for the derivatives of the stream function near
the golid boundaries, more accurate than those introduced in‘§ 3.7,
were obtained by exploiting fully the boundary conditions on the
gtream function and velocity. The modified expressions are derived

as follows: Using Taylor's expansion we have for J: f,2,..., N

op

\K,J: Ty Wty g%f%%ﬂk o) (43

and

Yo, Wy e ete) e @ By et e
op 2! P 3! }P
From (4.3.1) and (4.3.2) and with the use of the boundary

conditions

#./,J M) 2o, (see §3.5) (4.3.3)

it follows that
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";ng () - (8f,3~ \ﬁ,d)/zﬁ vl s
Y () - %(“G,J-q‘h,)/ﬁ rooh) . (43.5)

v p

FPurthermore, another Taylor expansion yields

and

%..:: @’J> = %i/("d> + Lﬂ + sz >S)L + onB) , (4.3.6)

’b;:l 2\ ?f&

and expressions (4.3.3) to (4.3.6) then imply that

f\%g@/{}?z (t,} i ﬁd)/‘ + o) (4.3.7)

In an analogous way it can be shown that

%(L,z) B {ﬁ,z + "L;L(i,;)/w + o(m : (4.3.8)

Although the expressions for the first derivatives are
modified as above, a simple Taylor's expansion analysis reveals

that the second derivatives A) #’ng) and FbZ%;ng)
2

retain their usual finite difference expressiong. On the
introduction of expressions (4.3.7) and (4.3.8) the solution
converged much faster and, consequently, a more accurate picture

was revealed.
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It should be emphasized that the inclusion of (4.3.7)
and (4.3.8) into the FDE for the Poisson equation did create
some difficulties, since the diagonal elements of the block
matrix M were changed from A (see (3.7.23)). The original form
was restored by moving the 'extra' terms to the right hand side
of equation (3.7.12) for the case when t: 2 , giving the

following scheme:

(reference is made to expressions (3.7.11) and (3.7.12))

VALRIC/RL IR

= QHZ’J - Bx(z)l'\<\f/z’,(j- \f;,;) : (4.3.9)

1
Y

More accurate solutions could have been obtained by
representing the derivatives in the governing equations by finite
difference approximations to a higher order of accuracy, thus
reducing the truncation error, but the technique has not been

used in this thesis.

Changes in grid spacing

Another technique commonly used for improving the accuracy
of the solution is to reduce the grid spacing. No specific formula
which connects the magnitude of the discretization error to the size
of the grid spacing has yet been found. However, numerical
experimentation has shown that, in general, errors decrease as the
grid spacing is reduced. One therefore expects that using smaller
and smaller grid spacings will eventually produce successive finite
difference solutions that differ from the true solution by decreasing
amounts. This approach is usually very uneconomic, however, and this
was confirmed from a careful consideration of our program run with

different mesh sizes. It was found that on halving the grid spacing
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the computational time increased approximately by a factor of

rz’ where [© is the ratio of the respective numbers of grid

points (i.e. [= (ZK’14-C»/(2f“ t+ | ) for the appropriate K).
In practical terms this meant, for instance, that the program
could be run satisfactorily on the local computer for a (17 x 17)
mesh but had to be run on a super computer (CRAY-1S) if a (33 x 33)
mesh were used. To decrease cost (and turn-round time) the program
was developed and run mostly on the local computer but some runs

on the CRAY-1S were carried out.

Heat and mass balance

We shall look now at ways of checking whether steady state
has been reached, recalling that, at steady state, all the physical
variables at each point are independent of time. One method is
based on heat balance. Since we are assuming no evaporation at the
free surface, all the heat passing through the solid boundaries of
the container must leave through the top surface in the steady state.
Therefore, a necessary condition for the numerical solution to
satisfy in the steady state is the balance of heat in the container.
A method of testing whether such a balance has been established is

outlined below.

Ifr 623 is the heat flux leaving the top surface in the

feal cavity, then

?LB = :Qi = *Qg__ (see 55 2.4), (4.3.10)
_oy =t ¥R’ 5&,
where st and C?; correspond to the respective heat fluxes in the
non~dimensional cavity(%4~6 Q. = Ejl‘@r L:x,zyp).
Introducing the variable EJ: h:j y :3 ig the distance measured into

the fluid from the free surface, the boundary condition (4.3.10) can

% LB/
ENEREE 5 Q,

be written
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Assuming a parabolic distribution for the temperature at the free

surface,

5. agz + Ej’+ C (4.3.11)
we then deduce that

b Q

3 . (4.3.12)
§Q,
On the free surface we require (see (3.5.1)) that E>/~ . 0
=0
and hence we find from (4.3.11) that J
cC = O . (4.3.13)
Assuming 6;;)N 1 G;L N-2 are known, then \7L in the range

| «v ¢ N, equations (4.3.11) to (4.3.13) imply that

2
@‘;> N-t = C!JL‘ + U, N> L/X@ N (4.3.14)
2 .
Oine = Gy & L,N)a%a o (@a5)
{
from which we deduce
QJ(L;I\DF YR [ 4Bina - 9%,“) : (4.3.16)
’ 2h
/ .
A simple analysis shows that K when CQ}: GQZ (see 4.3.10), we obtain the
following expression for 633 : C;g@)w

. (¥ 8o/ )l Ocs -Bines),

where C;g is the corresponding heat flux in the non-dimensional cavity.

"

Using the trapezoidal rule to evaluate the amount of heat leaving

the free gurface, C?S say, we have
@S i Q3 (uﬂ N)/ (le X[,)) (4.3.17}

where )<;, measured in non-dimensional X-space, corresponds to

( -1 )k in.F —-space.



92.

Since CQ( and CQa are both constants, for heat balance we require

QS = Q' + Qz : (4.3.18)

Expression (4.3.17) is one criteria that helps us decide whether
steady state has been reached. The accuracy of the heat balance
was calculated by comparing (RS and ( &, + X, ). More

precisely, a percentage value

P _ OF) ~<§I +@:> x 100 (4.3.19)
D+ &

was evaluated. For the numerical results presented later
condition (4.3.19) was satisfied at 1% accuracy for most cases

and, at worst, at 3% accuracy. Similar checks were also
performed on the mass balance within the liquid. In the steady
state the total mass flow across any line X. = const or'Kj:oonst
must be zero. The accuracy of the mass balance relative to the
vertical velocity for instance, was found by comparing the mass M,
of liquid going upwards and the mass rﬂz of liquid going downwards.

A percentage value R given by

p,:_ mz‘mf
max@m,MJ(

was then evaluated. Relative to both velocity components balance

= 100

was obtained within 1% accuracy. It is not surprising that, on

the whole, the mass balance was more accurate than the heat balance,
since accurate calculations for the heat flux at the free surface
were not possible because of the relative scarcity of grid points

in the thermal shear layer.
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Check with known solutions

Another important way of checking major parts of our
program was to change our problem to one commonly used in this
area to assess numerical schemes: namely, a square region with
differentially heated end walls and adiabalic top and bottom
solid surfaces. This conversion was easily carried out and the
resulting numerical solution obtained with our method was compared
with the very accurate results that are available in the literature.
Fig. 4.3.1 shows the vertical velocity profile, obtained using our
numerical scheme along:f%_for Ra = 106 and Pr = 0.73. The figure
clearly shows a centro-symmetric pattern: a necessary feature in
view of the symmetry of the problem. Our values for the horigzontal
and vertical velocities were within 1% of those obtained in the

bench mark solution of Markatos et al (1983) and De Vahl Davis (1982).
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.é 4.4 Numerical results and analysis

Numerical results were obtained on the different mesh
sizes (9 x 9), (17 x 17) and (33 x 33). Convergent solutions
could not be obtained for the (33 x 33) mesh on the local computer
(ICL 2976), so some runs for this mesh size were performed on the
CRAY-1S at the University of London Computer Centre. Although the
latter results showed little qualitative difference from the ones
obtained on the (17 x 17) mesh, the results did reveal a more
accurate description of the velocity and thermal boundary layers
and varied at the most by 10% from the results recorded on the
(17 x 17) mesh. Most of the numerical results were obtained
locally on a (17 x 17) mesh size for Grashof numbers up to 108

and it is mainly these results that are presented in this thesis.

A few rung were performed for Grashof numbers of 109
to 1012. Although instabilities did not arise for these values of
Gr 1t is possible that the velocities become sufficiently large
for the flow to be turbulent. Since the Reynolds number is defined
by Re = fﬂV& % , the transition to turbulence clearly depends on
the properties of the liguid under consideration and the size of
the container. Because of the close similarity of the results for
Gr = 106 and Gr = 108, we shall concentrate on presenting numerical
results at steady state for Gr = 104 and Gr = 108, with a few plots
for Gr = 1012. In all cases, the Prandtl number is equal fo unity

which is a reasonable wvalue for cryogenic liguids.

The program was run with different values of the stretching
parameter £ (see Fig. 3.3.1). with € = 0.95, it was found that the
X —coordinate was overstretched and, consequently, the results
suffered from loss of accuracy in the core region. However, as €
is decreased, the numerical error increases. The choice of 6, = 0.8
seemed to be the best for our problem and is the one used for our

numerical results.
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Numerical results are presented for different values
of the aspect ratio ( ¥- ffAb ). It was found that the
agpect ratio had‘a major influence on the stability of the
numerical method. This dependence was already revealed for
similar problems almost two decades ago by Elder (1966). For
our problem it did not prove possible to obtain accurate results
with our numerical method for ¥ < 0.25. It was assumed in
$ 2.4 that &, and Q, the heat fluxes at the base and sides of
the container respectively were both constant. In practice, there
may be spatial variations in these heat fluxes, particularly in.CQ?
but although these would seem comparatively simple to introduce

we do not do so here,

Some numerical results are presented for cases when there
is no heat flux at the base. In these situations, a change of heat
flux scale is necessary, in that Cz/(see_é 2.3) may no longer be
set equal to Q} ¢ we can however, set Q’ equal to (QZ .

The initial conditions were set as stated in §‘2.3. These
conditions provide an initial guess for the dependent variables. In
view of the limited computational time on the local computer it was
found necessary, in some cases, where the rate of convergence was
slow to perform numerical computation in 2 stages. The outputted
transient solution, for a given Grashof number, from the first stage
was then used as initial conditions for another run at the same

Grashof number.

The temperature and velocity profiles shown on Figures
in this section are accompanied by small squares or rectangles
that indicate the line along which the temperature or velocity
is plotted. In order to make the diagrams more explicit for
cages, where X% ' y small rectangles representing the real
configurations of the left half of the cavity, are drawn. In
these rectangles, for instance, the line(j = 1 would represent the
top surface of the liguid, its height being given by ii// , where

2H is the width of the cavity.
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We shall now examine in some detall the numerical solutions

obtained, grouping these solutions in a convenient way.

Here we are looking at a rectangular region of liquid
'with an equal influx of heat per unii area at the sides and bottom.
Fig. 4.4.1 shows streamline patterns for Gr = 104. Since we are
at steady state, the streamlines coincide with the particle paths
and, therefore, the flow pattern is roughly speaking a cylindrical
vortex, rotating clockwise in the region shown. The vortex is
generated by the horizontal temperature gradient across the cavity
gsince the heat transfer is still mostly by conduction. In the
\/~plots in Fig. 4.4.5, the curve corregponding to Gr = 104
demonstrates that the boundary layer is comparatively thick. This
ig not unexpected because we are dealing with a low Grashof number,
for which viscous effects outweigh convection effects and,

congequently, the liquid is still slowly moving.

As the Grashof number is increased to 108 (which, in our
cage, would mean that more heat is being applied at the base and
sides of the cavity) buoyancy effects dominate the flow and, as a
result, the boundary layer becomes thinner and the maximum velocity
moves cloger to the wall. Also, more of the motion of the liquid
now occurs close to the boundaries and there is correspondingly
less activity in the core region. At Gr = 1012, the boundary layer
ig thinner and much more pronounced and the velocity gradient in
that layer is very high, thus confirming the high values of the
vorticity in that region. Again, we find that, at Gr = 1012, more
of the motion of the ligquid is shifted towards the boundaries. The

effect of increasing the Grashof number on the flow pattern can be
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observed by comparing Fig. 4.4.1 and Fig. 4.4.3 and inspecting
the plots in Fig. 4.4.5. As Gr increases by a factor of 104,
the vertical velocity increases by about 102 and, as ig evident
in Fig. 4.4.5, we find that there ig a downward and relatively
strong jet at the centre line. This phenomenon, which was not
expected by experimentalists, has now been frequently observed

during experiments with cryogenic ligquids.

Fig. 4.4.4 shows temperature profiles along the line
X< é; . For Gr = 104, the curve corresponds to the conduction
solution as the velocities are still small. Furthermore, we find
that, along this curve, the vertical temperature gradient changes
sign twice indicating the variation of the temperature with
distances in the middle of the cavity. However, as Gr is

12, the corresponding temperature

increased to 108 and further to 10
profiles in PFig. 4.4.4 show that the vertical temperature gradient
in the middle is almost zero. In these cases, because of the
predominance of convective effects, the liquid moves faster and the
flow becomes more uniform. The temperature in the core region is
found to be constant. Peaks arise in the temperature close to the
free surface (the ones for Gr = 108 and Gr = 10'° being more

obvious).

It should be pointed out that the temperature profiles
(or velocity profiles) measured along a constant value of Y
are not expected to be so accurate as those along a constant
value of X , because the\j —coordinate is not transformed so as to

accumulate grid points near the boundaries.

As stated earlier, only a few solutions were obtained on
a (33 x 33) mesh. Although these solutions took much longer time
to converge, they did give more accurate results, in particular
providing a better description of the thermal boundary layer at
the free surface. Moreover, a very interesting fact was noted on

comparing Fig. 4.4.3 and the streamline pattern for the finer megh.
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Fig. 4.4.3 shows that on increasing the Grashof number from

104 to 108, the single circular vortex is conserved. However,

the flow pattern for Gr = 108 on the (33 x 33) grid showed the
formation of a small secondary vortex in the bottom left hand
corner of the cavity. A close look at the temperature distribution
in that particular region showed a high concentration of isotherms
similar in shape to that of a plume. These results suggest the
existence of plume convection, thus confirming experimental

observations by Scurlock et al (1984).
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Fig., 4.4.1

Streamline pattern, Gr = 104
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Fig. 4.4.3 Streamline pattern, Gr
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2. X:l, Q,:O

Here we are looking at the same cavity as before but
without any influx of heat at the base. There is not much
qualitative difference in the numerical results from those of
the previous case. Tig. 4.4.6 shows vertiéal velocity profiles
for Gr = 104, 108 and we obgerve the marked difference in the
boundary layer thickness as the Grashof number is increased.
Comparing Fig.'s 4.4.5 and 4.4.6, we find that, when Gr = 108,
the velocity profile is considerably flatter in the region
0.25 < X < 0.8, This implies that, for Gr = 108, there is
relatively less motion in the core region when the heat flux at
the base is switched off. Also, as expected, the magnitudes of
the velocities in this subsection are lower than those in
subsection 1 as buoyancy effects are less strong. Although the
scales are different, a comparison of Fig.'s 4.4.8 and 4.4.4 naturally
reveals that the temperature gradient near the free surface is lower
when there is no heat flux at the base. It is interesting to note
from Fig. 4.4.7 that, even though no heat source is present at the
base, a boundary layer still arises there. The isotherms for
Gr = 108 (which are not shown here) reveal an almost vertical
stratification pattern, which is not too dissimilar from the one
shown later in Fig. 4.4.14 except for there being slightly thicker
boundary layers in this case. Vertical motion in the core region

ig considerably reduced, therefore as shown in Fig. 4.4.6.

The numerical results mentioned above are not inconsistent
with expérimental data. However, in a laboratory situation the
containers are narrow cylinders and so it seems appropriate to
look next at numerical results for cavities with a smaller aspect

ratio.
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3. X: O‘Zgi QI:O'

In this cavity, the height of the fluid is twice the
width. Results are presented for Gr = 108 only since the latter
value corresponds more closely to experimental data and, also,
results obtained for Gr = 104 were found to be closely similar to
the corresponding ones presented in subsection 1. 1In Fig. 4.4.9
the vertical velocity profile reveals a sharp definition of the
boundary layer and the central downward jet is evident. The
other interesting feature is the almost flat portion in the middle.
Almost the same picture is revealed in Fig. 4.4.11 for the
horizontal velocity. These results indicate that the motion of
the liquid is, to a large extent, confined close to the boundaries
and to the free surface and the liquid in the core region is
relatively static. Recirculation exists mostly within the boundary
layers and the flow along the sidewall contributes to the thermal
layer formation at the top as shown in Fig. 4.4.10. No obvious
reason is found for this behaviour, but these results are in good
agreement with experimental results from the Institute of Cryogenics,

University of Southampton.

4. X: O-S_) @‘ - 0

In this cavity the height of the liquid is equal to the

width of the cavity. Velocity and temperature profiles for
Gr = 108 are shown in Fig. 4.4.12 and 4.4.713 respectively and
these are qualitatively similar to the ones corresponding to

6' = 0.25 plotted on Fig. 4.4.9 and Fig. 4.4.10. Fig. 4.4.12
reveals once again that the velocity boundary layer and central

jet are clearly defined and the middle portion is almost flat.
Hence, the motion of the liquid is mostly confined to the boundaries,
the central jet is very close to the line of symmetry and the

remainder of the liquid is relatively stagnant.
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The igotherms shown in Fig. 4.4.14 reveal a thermal
stratification in the core region. This vertical stratification
in the temperature distribution with increasing values from the
bottom to the top of the cavity inhibits the vertical motion in
the core region and so is consistent with the velocity profile
shown in Fig. 4.4.12. The boundary layers are guite noticeable
in Fig. 4.4.14. Results for Gr = 1O4 are qualitatively similar
to those given in subsection 2 for a different aspect ratio and

are not presented.

We can deduce from the results presented in subsections 3
and 4, therefore, that some variations in the aspect ratio have
little influence on the velocity and temperature distributions in

the liquid.

5' K:l, CQ; - 2

2

In a real large storage tank, the presence of support
devices at the base mean that, on average, the influx of heat at
the base is higher than that at the walls and consequently our
program was run with the ratio of the heat fluxes as stated above.
The results showed little gqualitative change from the ones given
in subsection 1. However, the isotherms plotted in Fig. 4.4.15,
for Gr = 108, reveal an interesting fact: for comparison of
Fig.'s 4.4.14 and 4.4.15 reveals that the application of an
external heat flux at the base totally disrupts the vertical
thermal stratification. Sidewall heating, therefore, produces
the greatest amount of stratification, a result first noted
experimentally by Fan and Chu (1968). This subsection completes

our analysis of the numerical results for the rectangular cavity.

In general, the coordinate transformation, F(@ decreases
the numerical error in the solutions, but increases the
computational time by approximately 30%. As stated earlier, test

runs have éhown that numerical results are essentially grid
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independent. Hence, one could suggest that numerical results, for
a given Grashof number, on a crude mesh be interpolated (assuming
a linear or parabolic distribution of the dependent variable
between grid points), to be subsequently defined as initial
conditions for the same Grashof number on a finer mesh. This
procedure would be easier to implement on a regular grid than on
a non—equidistant one. Whether or not this procedure would save
overall computational time is debatable since the interpolations
introduce extra computations particularly so if they are to be

used on a high order interpolation scheme.
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Fig. 4.4.6 Vertical velocity
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Fig. 4.4.15 Isothermg, Gr = 108
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§ 4.5 Comparison of numerical regults with experimental data

After discussing practical situations in Chapter 1, a
transition was then made from the physical world to the
mathematical one by congtructing a mathematical model and solving
the resulting equations. In order to test the usefulness of this
mathematical model a comparigon must be made between the numerical
results and experimental data. Such a comparison is not easy 1o
carry out, however, since as stated in the introduction experimental

data on natural convection in cryogenic fluids is limited.

Experimental data on natural convection in Ligquid
Nitrogen (LIN) was recorded by Beresford (1984) and Scurlock et al
(1984) at the Institute of Cryogenics, University of Southampton.
In one experiment a Dewar flask containing LIN was subjected to a
congtant and uniform lateral heat flux while at the bottom a heat
shield was provided by an external LIN pool. The boundary conditions
and aspect ratio in this experiment correspond closely to those
mentioned in subgection 3 ofié 4.4, but it must be emphasized that
the numerical results presented in\§ 4.4 refer only to Cartesian
geometry whereas in the experiment a cylindrical configuration is
appropriate. IFig. 4.5.71 shows the temperature profile measured by
Scurlock et al (1984) along the axis of the container, while
Fig. 4.5.2 shows the vertical velocity profile measured by
Beresford (1984) at midheight. Qualitative agreement between
Fig. 4.4.10 and Fig. 4.5.1 is evident, the most striking feature
being the common thermal boundary layer at the free surface, although
it should be noted that we have assumed zero evaporation in our
model. Comparison of the wvelocity profiles in Fig. 4.4.9 and
fMig. 4.5.2 also reveals qualitative agreement. Moreover, with the
gubgtitution of the figures relevant to LIN, it was found that the
magnitudes of the velocities in Fig. 4.5.2 were of the same order

as those obtained from our results with Gr = 108. With the aid of
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a Video Camera Scurlock and his co-workers also confirmed from
experiments that the motion of Liquid Nitrogen was mainly
confined to regions close to the boundaries while, in the core

region, the liguld was essentially stagnant.

Some time ago Fan and Chu (1968) carried out a theoretical
and experimental analysis of thermal stratification in closed
cryogenic containers. Experimental observations suggested that
lateral heat flux ié respongible for creating stratification.
Unfortunately, their theoretical model was not sufficiently
sophisticated to enable them to predict the effect on stratification
of applying a heat flux at the base of the container. Numerical
results derived from our model and presented earlier in subgections 3
and 5 of é 4.4 show not only that side wall heating creates a well
defined vertical stratification pattern but also that this pattern
ig disturbed in a major way when a heat flux ig applied to the
bottom. This observation could have significant implications in

cryogenic engineering.

It is generally believed within the cryogenic industry
that stratification leads to major problems in cryogenic storage
tanks with the unavoidable influx of some heat, the temperature
of the liquid at the free surface frequently rises more rapidly
than that of the bulk of the liguid. Since the warmer liquid has
a lower density and the liquid is a poor thermal conductor a stable
stratification pattern is created, similar to that shown in
Fig. 4.4.14. Since the pressure in the vapour above the liguid
is determined by the temperature of the ligquid surface,
stratification is accompanied by a corresponding rise in vapour
pressure, and the length of time that the liguid can be stored
without venting vapour is greatly reduced. Vertical heat pathsg
can be created by providing thermal conductors. Stratification
can also be reduced by stirring the liquid, but carrywe out this

gtirring in huge storage tanks may not be straightforward.
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Fig. 4.4.15 showed us that almost vertical heat paths from the
bottom to the top of the vessel can be created through the
application of additional heating at the bottom. This process
can in practice, sometimes lead to an instability, however, as
the liquid becomes superheated in the lower region of the
container. Ideally therefore one would like to apply heating at
the base, sufficient just to disturb the stratification pattern

but not so high as to cause superheating of the liquid.
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Fig, 4.5.1 Temperature profile, Scurlock et al (1984)
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CHAPTER
NATURAL CONVECTION IN CYLINDRICAL GEOMETRY

§;5.1 Choice of Coordinate axes

This chapter is devoted to the study of laminar natural
convection in cryofluids in a cylindrical container subject to an
influry of heat through the container's base and walls. BSolutions
in this geometry are important to obtain since as stated in the
introduction to this thesis, cylindrical containers offen arise
in practice. However, Roache (1976) mentions that the solution of
the transport equations in cylindrical coordinates introduces many
complications and the task is far from simple. For instance,
numerical instabilities often arise from singularities inherent to
the equations. In this chapter we present some numerical results

on a regular grid for Grashof numbers ’104.

The mathematical model considered here is the cylindrical
analogue of the problem investigated in earlier chapters of this

thesis. A cross—section of the cylindrical tank is shown in

Fig. 5. 1.1.

Z 4

A NNN

AN

SUORTRRNYRRSN

o/ 777777 /////////////H

Fig. 5.1.1 Cylindrical representation
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Note that in our simplified model
H is the radius of the cylinder and the height of fluid;

the base of the cylinder is represented by the axis Or ,
the axis of the cylinder lies along axis CDZ ;
and V= (U,V,0), where || is the radial velocity and V is

the arial velocity.

Our investigation of the cylindrical case is based on the

same assumptions introduced in the previous two chapters. These

are:i-

The problem is avisymmetric;

Viscous digsipation is unimportant;

1

2

3. There are no internal heat sources:

4 The Boussinesq approximation is valid;
5

The thermal conductivity, coefficient of viscosity etc. are

independent of temperature;
The top surface is flat and isothermal;

No evaporation occurs;

There is no shear stress at the top surface;

O 0 3 Oy
.

The cryogenic liguid is Newtonian.



126,

%5.2 The governing equations and boundary conditions

The governing equations for our axisymmetric problem

(see, for instance, Li-Lam, 1966) are

The radial momentum equation

[ - TRTIRVATAE —}]j’_ Lfu_u S (s.20)

or Ry VEE rr ror ry

and the axial momentum equation

§>W+u}_y +V>V - m +/Z VY o, .V [ (5.2.2)
coupled with the energy equation
o ue V}I = K ﬁ*

1
>k r Y2 o

and the equation of continuity

T o T (5.2.3)
oD

t

19, . (5.2.4)

WV U
r D2 r

It should be noted that in writing the above eguations some of

the agsumptions stated in§ 5.1 have been used.

As earlier since the pressure boundary conditions are
difficult to specify, we shall work with the vorticity and
stream function. Differentiating (5.2.1) with respect to Z and
(5.2.2) with respect to !l , adding both resulting equations to
eliminate the pressure terms and then using equation (5.2.4) and

the Boussinesqg approximation we obtain



</
)
-+
<
o/
)
~+
<
o/
0

2 2 -

. (29,10 TR - @O UQ (fVT | (5:2:5)
or> T or D# r r’

where(? y the only non-gero component of the vorticity, is

defined through

R- 2V _u : (5.2.6)
or

~ is the kinematic viscosity, and F i1s the thermal volumetric

expansion coefficient. The stream function, Y/ is defined by

1Y V-

————

= . L2 . (5.2.7)
V2 T or

FEquation (5.2.4) is then satisfied identically and from (5.2.6)

and (5.2.7) we obtain the Poisson equation for the stream function

VY Y Rl (5.2.8)

r2 »r ot

We shall next proceed with the non-dimensionalization of

the governing eguations. Put

u* . uH/K AR \/H/< . (5.2.9)
K:ﬁ ) Z*:% T é%z ). (5.2.10)

\f/*: \]%H R Q* Q% (5.2.11)

and é) = 7i-7;

(5.2.12)

O
4
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where, we recall that F( is thermal diffusivity, -7: is

/
surface temperature of the fluid and 62 is a reference heat flux.
Substituting (5.2.9) - (5.2.11) into (5.2.5) we obtain the

non~dimensional momentum equation

’}Q ¥ Q% , VEOR* . {2(32&*,,
2R }Z*

?_Q*Jr )262* - Q?*
R REp2

2y

X 2
+ léfi_égl + G e 20 (5.2.13)
R 2R

and (Q*= Bv*_ADU* (5.2.14)

Substituting (5.2.11) into (5.2.8) we obtain the non-dimensional

Poisson equation for the stream function

BRI Gy} SN LI (5.2.15)

>R RR z’“

Likewise, we obtain the non-dimensional energy equation

np

(5.2.16)
oYl

W, ur W VW -0 L 128
ot R dEF PR RR
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Boundary conditions

After non-dimensionaliging the variables the region in which
we solve the equations is now 04 R ¢l , 0& Z* ¢ . The boundaries

are shown on Fig. 5.2.1.

2

0]
Fig. 5.2.1 Solution domain
1. On B. = {(R,l)f 0¢<R ¢ l} , the temperature is ambient and
SO we require
b .o g (5.2.17)
The postulate of no evaporation on Eh  gives V.o which implies

V*z O ana

*
2V -0 . (5.2.18)
R
(‘)
The assumption that there is no shear stress on D

implies that the component

SR-Z){ =0 . (5'2-19)
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Now
Seav - J [ e (5:2:20)
oz* R (Milne-Thomson, 1968)

and using (5.2.14), (5.2.18), (5.2.19) and (5.2.20) it then follows

that
*
QT =0 . (5.2.21)

o< Z*cl} _ symmetry of flow

2. On the boundary Bz = {(0) ZX )

implies
1\ AV EPo I (5.2.22)
2or 2r
In non-dimensional form these requirements can be written
X
‘DQ' = 0 7\/* =0 J u = 0 : (5‘2‘23)
OR SR
The last condition clearly yields
}u* = 9] on 82 . (5.2.24)

DZ*

and equations (5.2.14), (5.2.24) and (5.2.25) then imply

QY - o . (5.2.25)

3. On the base BS , defined by 85 = { (2) O)} 0sk ¢ [}

the no-slip-condition implies that fluid is at rest,

in which case we require

Uu*. o i
¥
Vi<o . (5.2.27)

(5.2.26)
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Using (5.2.7), (5.2.9), (5.2.10), (5.2.14) and (5.2.27) we find
that the vorticity on B, is given by

LI (5.2.28)

R zx?
If C?, is the constant and uwniform external heat flux

at the bage then, in physical variables, we have

R © (5.2.29)

02 k
which in non-dimensional variables becomes
0 - @
’DZ* Q/
/
If we put CQ = C?, , then the heat flux condition to be applied

along the base 1is

?Q@ . - - (5.2.30)

*
Finally on the boundary Bq = (l, Z ) / o< Z¥ < } ,

the no-slip condition again implies
u* . o (5.2.31)

\/* NG . (5.2.32)

In a similar way to above we then deduce that the vorticity on Ez_
satisfies
* 2 *
QY- 2T (5.2.33)
OR?
If 592 ig the external heat flux then, in non-dimensional terms,

we require

B . & (5.2.34)
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The boundaries 8, , Bz y Bs andf%w are all streamlines that

intersect, so on all boundaries we put

#*
\]u= o - (5.2.35)

In addition (5.2.26) and (5.2.32) imply that

?ZY:* . o0 o B (5.2.36)
2zt
>¢Y*. o oo B, . (5.2.37)
o R

Finally, from (5.2.23),

P
. 0 (5.2.38)
vz ¥
A A . . U *
and, with the aid of L'Hopital's Rule, it is clear that - 0
as Fl<«> 0 only 1if

2 ﬂ) X
?’“‘ P O on B. - (5.2.39)
DROZ
For convenience the stars on the non-dimensional quantities are

now omitted and the governing system of equations plus the

boundary and initial conditions can therefore be written:

)@_Q,, ub_@ +V}_Q= R(V‘Q—Q>+ u® GrPer__@ - (5.2.40)
R

“SD St

DL R 02 R* R
0 s uW 4 V. VO , (5.2.47)
DT DR VE
2
RGNy G )4 o (5.2.42)
R R X3
where

z ’2; s ~

Ve ' 5220
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Boundary conditions

1. On {(R,l)[osﬂsl%
9:0) \“f)-_ o, Q=0

{(RO)/ 0¢R ¢ }:

'}‘9:‘[, \‘t):O ‘E—i—.f):oj
2 ’

{ @z)[ 04241}:

00 . .@i \()=O, ﬁ:o
R R, 2R

For the initial conditions we use simply

Y:O}Q;o/ O:0 i g(ﬁ)z)/ 0¢R ¢

2 Q: 0
Q-12Y
R 2*
Q-2 Y
DR?
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~§5.3 Numerical method

The numerical method is based on finite differences
introduced inéiLZ. The continuous region, over which the

governing equations are defined, is discretized as follows:

JZ: <R‘,)ZJ) , RL = (L‘l)i-\ )ZJ_(J-I)[—\/ L= I,z,.‘.)N;}:I’Z,___’Njg5.3.1>

with jl. defined by

{2 {(R;, Zi) R.- -0k, Z; ;Q‘-()L! L2 2,3, N-1 }:2';""’N"j>(5‘3'2)

aere b = /(N‘f)

Comparison of the system summarised at the end of\§5.2
with the corresponding Cartesian system reveals close gimilarities
and therefore the numerical procedure adopted here ig basically
the same as the one used for the Cartesian case described earlier.
Thus the transport equations are solved by an ADI scheme and the
Poisson equation is solved by the Block Cyclic Reduction method.
The non-linear convection terms in the momentum equation are

approximated by second upwind differencing scheme.

Due to the presence of the v 1t and Llj* terms in the
governing equations, numerical methods g&e strongly prone to
instabilities, especially near R‘: O. 1In this section we confine
attention to a regular grid which proves more stable, but the
omission of scaling in the R~ direction does mean diminisghed

accuracy in the solutions near R.0ana R:=1 .,
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Solution of transport equations

In view of the similarity of the numerical procedures,
the algebra discussed in the derivation of the finite difference
equations (FDE) in 5§3~q will not be repeated. We shall move
directly to the final form of the FDE's, bearing in mind that
here Ax =1, Bx = O . In updating the solution from time
level n to time level ( n+ L ), we have the following FDE

ntl n+ —_— 4 n
Rn.v[:);’,;STE‘i,I-;f‘,i ,uk , (5.3.3)

RnJ ~<U U )/L - = (Lf - zLE J ) (5.3.4)

n n
6'~ 2 +._L_<u:*{ ‘ lu ,>*2°< + g;){} , (5.3.5)

,.
al
I
>3
[}
-+
5

u; -lu;t - °<<_I- + __L_\> (5.3.6)

b’A’ = L}L L‘Z ZLE
n n n
and u;,j = EJ‘H {VQ B Q’\ + == |t
4h

+E \/’: Na! \/ Vl 2o< +F.,( ! LA tX 1+ (5.3.7)

4 7\Az ik “h R

¥ Gr Pr% < Lu,j‘@f.»',i

where X A and | are defined as in the Cartesian analysis.

In (5.3.5), (5.3.8)
. | ‘
XL)J' = —E—i (R + ﬁ)é‘“ -L\YV»,J,-I

for the momentum equation and 5; - = 0 for the energy equation.

¢
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In proceeding to time level (N+l ) from time ('7+é )
the FDE are

N+l Nl +1 ~+ '
Rwr, S, F an u:(539>

’J 9)j “©apt!

where

(5.3.10)

+ VT+%)+Zééi+i?>+gz;z )(5.3.11)

\/aMi} - = (5.3.12)

4 WL R 2L
ﬂ+£ ___( n+l . n+! n+l u:nu.i) |
4 F Tuk 3 { *' { t .2(&“;) +
d uh

+r U+ (U] o o éi’ @M' B - (5.3.13)
¢ Lh NSNS 2L

With the use of the non-dimensional analogue of expression (5.2.7),
n n
the formulae expressing (j: , u& , \4? and \ér in terms of VJ

are determined by approximating the derivatives by central differences.

2. Boundary conditions in finite difference form.

(i) At the node points {(}2;) ;) )RL=(‘-¢)L‘ ;:,,2,...)/\/} ,

we impose the conditions

n+_{.
@- = 0 (5.3.14)

LN



n+l

':‘),\I = O 3 (5'3'15)
n+£

inoo= 0 (5.3.16)

(ii) At the nodes { © %), Z&:(J'I)L( e 2,3,---,1\1-!},

the boundary conditions take the form

Yoo QL Lo . (5:3.17)

i Y

As in the Cartesian case, an expression for the
temperature condition is obtained by parabolic

approximation, yielding

n
Q,“; : ff_@zn,d- ~ji 9:. . (5.3.18)
3

(1ii) At the nodes { (/2;) o)) R.. @»:)L! Leh2..., N} ,

we can immediately apply

\Kn, = 0 - (5:3.19)

2’

Using a Taylor's series expansion for \f) we can

obtain the expression for the vorticity:

n+ \l[)"
C);),‘L = 2 1i, + o@«) . (5.3.20)
R. &
The temperature condition, again obtained by parabolic

interpolation, is found to be

n
G« w0, - 16, c2k . (5ae2n)
3 3

wie

(iv) At the nodes { (!, ZJ) ) Za' : Q‘—/)AI J 2,3,...,N-;},

we have

(5.3.22)
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As in (i1ii), an expression for the wall vorticity is

obtained through

QN,; . i\gj_’_‘{\ ¢ o(L) (5.3.23)

and the temperature condition leads to the formula

n N n
@N,} = 9N~l,J Cu + @’“3 Cz 4 C} , (5.3.4)

where
C, - Yy, (5.3.25)
C,\ = *% (5.3.26)
and G - 2k @ (5-3-27)

3 CQ‘

Construction of tridiagonal matrices

The construction of the solution matrices is dealt with along the

same lines as in é 3.6

Calculating quantities at time level ( n+z' ) the

system of equations (5.3.3) can be written as the matrix equation

Al -p - (5.3.28)

In particular, the momentum equations yield

A Q - Ba , (5-3.29)
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where
S T (5.3.30)
Z,J Z'J O e O
AQ - 3,} 9] ,
0 N"‘z.
: 4
O O RMJ N~;,J'

U,

4
]
u;j (5.3.31)

n —n n
u"“y’ - [N*l,’ Z\f{\;.

and the energy equations lead to

/A\eQ - Bs (5.3.32)

where

A | o o
| T

o) .. 0 (RL.JI:QC’) <g:""ci :{‘”: "JC>

(, and (, being defined through (5.3.25) and (5.3.36)

respectively

(5.3.33)
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n
and Ll
2

(5.3.34)

n )
u‘ Nt -7:14,(!' [}

C5 being defined through (5.3.27).

In proceeding to the next half time level equations
(5.3.9) again yield system (5.3.28)

where now

nf_‘& '-—-'nf-f
Sc,l 52 © ©
n+£ - ’ (5-3-3
A (2(;)3 . T B 5>
o ® g o
.__.._.n+_l
{i,Mﬂ

and

n+! N+l nt!
<uz - Rc,f Qaf (5.3.36)
n+!
R

O
1.0 ,(5.3.37)




(5.3.38)

L/Ln”
Fa
Ly, N-|

The solutions of the matrix equation (5.3.28) for all the various

cases is obtained by applying the Crout Decomposition method given

in§3.6.
4. Solutlon of Poigson Equation

This subsection deals with the solution of equation (5.2.43)
by the Block Cyclic Reduction Method which was elaborated h1§3.7.
By approximating the derivatives in (5.2.42) by finite difference

formulae we obtain the following finite difference equation

ai\{{"’i i q\t’é + G \ﬁ*'u} ! \ﬁ'}" ' \{{’J*' : QH&;}, (5.3.39)
where Lj= 2,3, 0, NI
aL = [ + I ) (5.3.40)
2(c-1)
C; z I - I : (5.3.41)

2(i-1)
QH;,) - QL,J (e-0) L

Following the same discussion given in @ 3.7, we find that

equation (5.3.39) is equivalent to the block matrix equation

M_/X = I , (5.3.42)
QH,

Y-

CH,-

where

><
£ €
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3 GRH,,
(QH, -
£,
with \[; - ?'J ) QHJ : : WEER Y
QH,,
N'J (}
and /A\ : O 0
M. I A Ly (5.3.43)
0 T
0 oL A
In (5.3.43)
‘ wL‘ C?. O O
a, - : (5.3.44)
/\ ] 5 o ~ )
S 0
' Crs
O O d,, -4

The solution of system (5.3.42) is obtained by exactly the same
method as was described in§3.7.
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é 5.4 Numerical results

The program for the axisymmetric case was run on a
(17 x 17) mesh with a Prandtl number equal to unity. A constant
time step satisfying the Courant-Fredericks-Lewy condition
(see é 4.1) was used. Thus, the computational procedure was

identical to the one described in §)4.2 except for the calculation

of the time step at each half time level.

Tests for both the heat and mass balances were used 1o

check whether steady state was reached, but since we are now in a
different geometry the formulae used vary somewhat from those

given in\§ 4.4. For a global balance of heat we now have

GQ; x Area of bagse + (Qz x Surface area of cylinder

}

j Zna(v_@) IR
DZJZ =1

ty

Q
yielding _ — ’
R/ + B - -\ 2B RdIR> (5.4.1)
2 02
o {221
where (refegz;ng to the non dimensional cavity)

CQ, is the heat flux at the base,
Eﬁ; is the heat flux through the side of the cylindrical

cavity.

Using a parabolic distribution for E> close to the top
surface, and with the aid of the boundary condition there the
right hand side of (5.4.1) was then evaluated using the trapezoidal

rule. Unlike the Cartesian problem, the mass balance analysis
involving the axial velocity V is now evaluated on an arbitrary

disc D parallel to the base,

where

(5.4.2)

D:%(R,Z))osﬁs/)ﬂk,% :
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In the steady state the total mass flow through D must be zero,

which yields

3
50 f(\/@)zmz)cm =0 - (5.4.3)

A corresponding expression for mass balance in terms of the radial

velocity can also be found.

The integral on the left hand side of (5.4.3) was

calculated for geveral values of‘L,, and in all cases was close
Much the same accuracy was achieved for the mass balance

to zero.
Calculation of both sides of equation

in the radial direction.
(5.4.1), however, revealed errors of up to 5% (see\§ 4.5 for
percentage meaning), higher than the corresponding comparisons for

the Cartesian case. This decrease in accuracy is perhaps to be

expected gince the axisymmetric program proved much less stable

than the corresponding Cartesian one. In fact, due to instabilities

it was not possible to obtain a solution for the axisymmetric problem

for Gr 104,

Numerical results in the axisymmetric case are presented
here for Gr = 104, with both the aspect ratio '5’ and the ratio of
the lateral heat flux to the one from bottom ( CQ{//CQ, ) equal
The streamline pattern in Fig. 5.4.7 reveals a single

to unity.
plane vortex, almost identical to the corresponding pattern in

Cartesian geometry (see Fig. 4.4.1). The vortex in Fig. 5.4.1 is

generated by a negative temperature gradient relative to '“ki ’

thus producing an anti-clockwise flow as indicated.

The axial velocity profile plotted in Fig. 5.4.2 is the

one occurring at midheight of the cylinder. At first sight this

profile seems to violate conservation of mass, but 1if one recalls
that in this geometry the same velocity profile is valid for all
values of‘#o (o 470 < 2T) then rotation of the region about the axis

of the cylinder results in the appearance of a scaling factor R

(see equation (5.4.3)).
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In this chapter no coordinate transformation is made

and, therefore, the boundary layers in Fig.'s 5.4.2 and 5.4.3 are
1O4 these boundary

likely to be less accurate. However, for Gr =

layers are comparatively thick and the loss in accuracy is not

significant. Apart from the changes introduced in the axial

velocity due to difference in geometry, the results are qualitatively
The dominant features

similar to the corresponding Cartesian ones.
of the flow remain the downward jet near the axis of symmetry,

the linearity of the axial velocity in the core region and the
The low Grashof number

thermal boundary layer at the top surface.
implies minimal convective effects, as confirmed by the relatively

low velocities in Fig. 5.4.2, and the B ~plot in Fig. 5.4.3 also

indicates that most heat transfer is by conduction and not convection.
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Fig. 5.4.1 Streamline pattern, Gr = 104
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Fig. 5.4.2 Axial velocity profile, Gr = 10%
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Fig. 5.4.3 Temperature profile along inner cylinder
(R = %) cr = 104
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CONCLUDING REMARKS AND FURTHER RECOMMENDATIONS

In this thesis we have shown how a combination of the
ADT and cyclic reduction methods can be implemented to solve the
problem of natural convection in cavities containing cryogenic
fluids. After eliminating the pressure from the governing fluid
flow equations, which avoids the need for a pressure boundary
condition, the resulting vorticity equation together with the
energy equation were converted into parabolic form, thus enabling
us to march forward in time to the steady state solution through
an adaptation of the ADI method. The method of cyclic reduction,
was used to solve the Poisson equation at every half time step.
The use of second upwind differencing scheme has allowed us o
obtain numerical results for Gr up to 1012. Boundary layers have
been resolved efficiently using a non-uniform grid. The rate of
convergence to steady state has been enhanced by, using a variable time
step and by incorporating accurate expressions for the temperature
derivatives at the boundaries. The problem was also investigated
in cylindrical geometry using the same numerical procedure, thus
showing the latter's flexibility, although stability problems were
encountered for Gr >>104. Numerical results were presented in
graphical form for different boundary conditions and different
aspect ratios. These results indicate, in particular, the existence
of a recirculating flow, incorporating velocity boundary layers at
the walls, a thermal shear layer at the free surface and a downward
Jet in the middle of the cavity. As the external heat flux is
increased the boundary layers become thinner and are more clearly
defined and buoyancy effects become predominant: the liguid moves
much faster and the downward jet is thinner and stronger. From the
numerical results we find that if a narrower cavity (a Dewar flask,
for instance) containing a cryofluid is subjected to a heat flux
only at the side walls, the liquid flow is mostly confined to the
boundaries. Our model predicts that, in this casge, side wall

heating produces the greatest amount of vertical thermal
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stratification thereby inhibiting vertical motion in the core
region. Results, however, show that vertical heat paths can be
generated if some heat leaks into the system from the bottom.

This result may find useful application in the design of cryogenic
storage vessels. One simple way of increasing the amount of heat
from the bottom into the system (but not to such an extent as to
cause superheating of the liquid) would be to design the base with
material of thermal conductivity slightly higher than that of the
walls. Numerical results also reveal that, as the total amount of
external heat is increased, plume-like flows start developing from

the bottom corners of the cavity.

A few simplifying assumptions were made in the setting up
of our model. However, as far as research in this area is
concerned, these assumptions are gquite commonly introduced and most
of them are quite acceptable when one considers real storage
situations. The usefulness of the model was tested by comparing
the numerical solution with available experimental data and good
qualitative agreement was achieved. Nonethelegs, as is customary
in these situations, some refinements of our model can be suggested.
Posgsible improvements are:~ the transformation of both coordinates X
and J , the inclusion of evaporation and allowing the external heat
fluxes to be functions of space. Much more work is necegsary on the
axisymmetric model to enable results to be found for higher Grashof
numbers and further theoretical investigation in plume-convection in
cryogenic liguids is also recommended. These are all lines of

research that can be pursued.

Mention should be made of the general usefulness of our
numerical method By simply changing some of the boundary conditions
and varying the Prandtl number, the method could be used to
investigate a wide variety of practical problems including, for
instance, double glazing, a fire alarm in a closed room and the
numerical modelling of convection in the atmosphere, the last two

relating to enclosed flows driven by localized heating from below.
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Finally, much more experimental data on natural convection in
cryogenic liquids is required in order to assess fully the

gquantitative implications of our mathematical model.
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