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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF SOCIAL SCIENCES 

DEPARTMENT OF ACCOUNTING AND MANAGEMENT SCIENCE 

Doctor of Philosophy 

'A GENERALIZED ALGORITHM TO EVALUATE PROJECT COMPLETION TIMES 
AND CRITICALITY INDICES FOR PERT NETWORKS' 

by Mohammad Ali Soukhakian 

For stochastic PERT networks the main difficulty in calculating the 
probability distribution function (pdf) for project completion time is 
caused by structural and statistical dependence between activities. 
This dependency also makes it very hard to identify the most critical 
paths and activities. 

This study presents a method for taking into account dependence 
between activities and provides a generalized algorithm to evaluate 
the project completion time and criticality index of each activity and 
path using a Controlled Interval and Memory (CIM) approach proposed by 
C.B. Chapman and D.F. Cooper (1983) Risk engineering: basic controlled 
interval and memory models. Journal of the Operational Research 
Society 34(1), 51-60. 

The procedure allows activity durations to have any continuous or 
discrete distribution presented in a finite set of ordered pairs. It 
has been tested using simple activity network models with different 
statistical and structural dependence between activities. 

The proposed procedure provides an exact pdf for project completion 
time when the duration times of activities are discrete and 
approximates the pdf of the project completion time when the duration 
times of activities are continuous. Approximation is due to: (i) 
discretizing continuous distributions, (ii) convoluting discrete 
approximations to continuous distribution. 

The computational experience shows that the criticality indices 
obtained using the proposed procedure is very close to the exact 
criticality indices obtained using complete enumeration and both 
methods give the same ranking of criticality indices in most PERT 
networks. 

Compared with Monte Carlo simulation, the proposed procedure is 
comparatively easy to understand and use for simple networks. 
Moreover, for the same level of precision, Monte Carlo simulaton 
requires much greater computation effort than the proposed procedure. 
However, Monte Carlo simulation may maintain a comparative advantage 
for very complex networks, and the ideal approach to networks in 
general may be a hybrid. 

IX 



CHAPTER 1: INTRODUCTION 

One of the most important problems in the analysis of PERT networks is 

the determination of the distribution function for project completion 

times. When the duration times of the activities of a project are 

random variables, the completion time of the project is also a random 

variable, with a distribution function that is a complex function of 

the distribution functions for each activity. 

For networks with a special structure, the distribution function for 

project completion time can be obtained by reducing the network to a 

single, equivalent activity starting at an initial node (1) and ending 

at a terminal node (N). Assuming statistical independence of the 

durations of the network activities, the reduction is possible through 

repeated application of two well-known operations: convolution and 

greatest. 

Convolution and greatest operations both involve the combining of 

probability distributions. 

Many well-established approaches for combining probability 

distributions are available, including: analytical methods like 

moment-based approaches, simulation or sampling based methods, 

numerical methods, discrete probability interval distribution methods 

and interval or histogram representation methods. 

If the PERT network satisfies the conditions necessary for the direct 

use of convolution and greaLest operations, then the network is termed 



reducible; otherwise, it is termed irreducible. If the network is 

reducible to a single equivalent activity (1,N), then it is termed 

completely reducible. If the network is completely reducible, the 

analytical form of the distribution function of the project completion 

time can be determined. However, irreducibility of the network 

prevents such analytical determination. 

In conventional PERT network models it is assumed that different paths 

are structurally independent. This is not true for irreducible 

networks,because in irreducible networks at least two paths share one 

or more common activities. For instance, in the "Wheatstone bridge" 

of Figure 1.1, which is the simplest irreducible network, there are 

three paths. Two (paths 1-2-4 and 1-3-4) can be analysed in a 

straightforward fashion because they are independent, but the third 

path (1-2-3-4) can not because of the existence of a common arc 

between it and each of the other two paths. The third path is 

structurally dependent upon the other paths. 

Figure 1.1 

In addition, in the conventional PERT network models it is assumed 

that the completion time distributions of individual activities are 

statistically independent. In practice there may be dependence 
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between activities. Conditions which affect one activity, causing it 

to have a rapid completion time or a slow completion time, quite often 

affect other activities as well. Further, many managers will attempt 

to improve performance by switching manpower and resources to speed 

activities which are lagging behind schedule and to take advantage of 

activities which are ahead of schedule. 

Most of the approaches to PERT network analysis proposed to date make 

the assumption that the duration times of activities have 

statistically independent distributions, an important possible source 

of error. 

Structural dependence relationships can interact with statistical 

dependence relationships and produce important effects which cannot be 

detected and understood using simple expected value calculations. 

These effects are complex, but they can be identified, modelled and 

understood in a Controlled Interval and Memory (CIM) framework 

(Chapman and Cooper, 1983a). 

The simplest CIM model is a histogram representation of probability 

distribution using a common interval or class width, as used for basic 

descriptive statistics (Driscoll, 1980). The addition of two such 

distributions using a CI approach produces a result distribution with 

intervals of the same equal width. Its computation procedure can be 

viewed as a special case of Discrete Probability Distribution (DPD) 

approach (ref. Kaplan, 1981).The Controlled Interval and Memory 

(CIM) approach is the generalized version of the Common Interval 

approach. 



Flexibility of computation operations and flexibility in specifying 

dependence structures are the two main advantages of the CIM approach 

over functional integration, numerical integration or moment-based 

approaches. Monte Carlo approaches have advantages relative to the CI 

approach if complex non-sequential distribution combination patterns 

are involved, as in some PERT networks, otherwise a CIM approach 

provides much greater precision for similar computational effort. The 

DPD approach has some comparative advantages if precision is not very 

important, statistical dependence is not present and a basic 

distribution specification is acceptable, otherwise the CIM framework 

is preferable. 

This dissertation presents a method for taking into account dependence 

between activities in PERT networks and provides a generalized 

algorithm to evaluate the project completion time and criticality 

index of each activity and path using a CIM approach. To accomplish 

this, we consider different activity network models with different 

statistical and structural dependence between distributions, and we 

employ standard CIM calculation procedure which retains a memory of 

structural links for later use. For example, in the PERT activity 

network of Figure 1.1 a greatest operation on B and (A plus C), 

followed by the addition of E, determines the finishing distribution 

for E. Adding A plus D determines the finishing distribution for D. 

However, a greatest operation when merging these two paths to 

determine the project finishing distribution must consider their joint 

dependence upon A. This requires a memory of A through both paths, 

allowing the final merge to proceed initially in terms of 

distributions which are conditional upon the duration of A, then 

'forgetting' the A memory by using the probabilities of specific A 



durations to remove the condition. 

The above example could be modelled in a Monte Carlo Simulation 

framework, but CIM models are comparatively easy to understand and use 

for simple networks. Moreover, for the same level of precision, Monte 

Carlo Simulation requires much greater computation effort than the CIM 

method unless 'memory' dimensions become numerous. A complex PERT 

network involving several thousand activities, for example, is better 

handled via simulation. 

The retention of a single memory dimension for A of Figure 1.1 

involves preserving and working with a matrix of probabilities at each 

stage. This involves a slight increase in computational effort. In 

general, n levels of memory involve (n+1) dimensional probability 

matrices. In order to minimize the memory limitations of a CIM approach 

this dissertation presents a procedure which solves the network for 

various conditional values of common activities and then deconditions 

conditional probability distribution functions. 

A generalized form of the proposed procedure determines the 

probability distribution function of project completion time and a 

criticality index for all activities and paths. It allows activity 

durations to have continuous distribution or any distribution function 

presented in a finite set of ordered pairs. It also allows 

statistical dependence between activities. 

The proposed procedure provides an exact pdf for project completion 

time when the duration times of activities are discrete and 

approximates the pdf of the project when the duration times of activities 
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are continuous. Approximation is due to: 

(i) discretizing continuous distributions, 

(ii) convoluting discrete approximations to continuous distribution. 

The structure of this thesis is as follows. 

Chapter 2 presents a brief discussion of studies concerned with 

stochastic PERT network completion times. 

Chapter 3 introduces the proposed basic procedure for project completion 

times. 

Chapter 4 introduces the proposed procedure and the algorithm. 

Chapter 5 considers other methods relevant to the proposed procedure. 

Chapter 6 introduces the proposed procedure for criticality indices. 

Chapter 7 deals with PERT networks with structural and statistical 

dependence relationships. 

Chapter 8 presents a brief discussion of discretizing methods. 

Chapter 9 considers convoluting discrete approximations within the 

CIM framework. 

Chapter 10 presents a brief discussion of solving stochastic PERT 

networks using Monte Carlo methods. 

Chapter 11 provides a summary and conclusion. 



CHAPTER 2: REVIEW OF THE LITERATURE 

INTRODUCTION 

A number of industrial and management problems have been successfully 

solved with the aid of quantitative models and techniques based on 

networks. Such problems include:constructing a dam; determining the 

shortest or most economical shipping route between two locations; 

developing an aircraft; planning, scheduling, and controlling the 

building of a large military weapon system; determining the maximum 

flow and optimal expansion policies for a gas pipeline system; 

implementing a new computer system; designing, introducing, and 

marketing a new product. 

The planning, management, and control of projects is a problem area 

that has been aided by network based techniques, especially CPM 

(Critical Path Method) and PERT (Program Evaluation and Review 

Technique). CPM and PERT are the two primary project management 

network techniques used today. 

CPM uses only a single estimate of activity times and does not 

consider the effects of uncertainty in the activity time. CPM is often 

used as basis for considering the trade-off between a project's cost 

and completion date. In this context it focuses on shortening the 

duration of task or activity time by utilizing more resources, 

balancing the increased costs against savings associated with project 

overheads or completion opportunity costs. 



PERT was developed in the late 1950s independently of CPM although it 

is very similar in many respects. It was used extensively in managing 

military research and development projects. Its first application was 

the Polaris missile project for the U.S. Navy. Since then, PERT has 

been successfully used in the construction industry, particularly in the 

building of large structures. Examples of how it can be applied to 

the manufacturing function of a firm include: the scheduling of 

aircraft maintenance, the design, development, and testing of new 

machines; first production runs; installing fixed assets; and plant 

lay-out. 

In many projects, especially research and development projects, the 

time durations for various activities are known only with a high 

degree of uncertainty. It was to cope with this aspect of network 

planning that the PERT system was created. The approach considers arc 

lengths (activity durations) as random variables with known 

distributions. This approach gives rise to two important problems. 

One is determining the distributions for arcs. The other is solving 

the model, finding something that corresponds to the project duration 

and critical path in the deterministic case. 

The theoretical problems associated with PERT have been discussed 

extensively in the literature. MacCrimmon and Ryavec (1964) discuss 

assumptions that induce bias in the PERT completion time estimate. 

Among these assumptions are: Beta distributed activity times, the 

methods of calculation for the mean and variance of activity times, 

activity independence and the normality assumption for path completion 

time. Considerable research has been devoted to the estimation of 

activity duration times. An interesting attempt was reported by Kidd 



(1975), 

In the next section, the PERT model is characterized and the relevant 

terms are defined. 

In the third section, the solution technique now used is analysed and 

the important assumptions emphasised. 

Proposed methods for solving stochastic PERT problem is the subject 

matter of the fourth section. 

The final section provides a summary and conclusions. 

THE PERT MODEL 

A PERT network is a connected, directed, acyclic graph, G(N,A), 

composed of N nodes designated events and A arcs designated 

activities. Associated with each activity is a non-negative random 

variable called its duration. All activities leading into a node must 

be completed before activities leading out of that node can be 

started. An event is said to have occurred when all activities 

leading into the node representing that event have been completed. 

There are two special events, the initial event (node 1) and the 

terminal event (node N). No activity leads into the initial node or 

out of the terminal node. The nodes can be numbered such that an 

arrow leads from a smaller numbered node to a larger one. 

It is usually assumed that activities' duration are independently 
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distributed, each in a finite range. A path is defined as a sequence 

of activities from the initial node to some other node. A realization 

of the network is the network with a fixed value for each of its 

activity durations. For a particular realization of the network, the 

longest path from the initial to the terminal node is called the 

"critical path", its length the project duration and the activities on 

it "critical activities". Any delay in a critical activity will 

obviously cause a corresponding delay in the entire project. 

SOLVING THE PERT MODEL: INITIAL BASIC APPROACH 

For the usual theoretical solution of PERT networks, two kinds of 

standard assumptions are made. 

(i) Assumptions that are relevant to the individual activities. 

(ii) Assumptions that are relevant to PERT network as a whole. 

When the duration times of activities are random variables, denoted by 

for activity (ij), the standard approach proposed by the 

originators of PERT (Malcolm et al, 1959) is simply to replace 

activity durations with deterministic equivalents and aggregate these 

to identify the longest path(s) through a network. 

The deterministic equivalent is chosen as follows. 

Three time estimates, an optimistic, pessimistic and most likely 

activity duration (a , b , and m ), are obtained from the 
ij ij ij 

manager/engineer of an activity. From the family of Beta 

distributions, with these characteristics, the variance for each 
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activity time is assumed to be. 

o2 = (bij - aij)2/36; 

and the mean is approximated by 

Yij = (aij + 4mij+b.j)/6 ' 

Let denote the critical path(s). Assume that: 

1 - The activities are independent. 

2 - The critical path has enough activities so that central limit 

theorem applies. 

3 - The critical path is enough longer than any other path so 

that the probability of a realization having a different 

critical path is negligible. 

The length of the critical path is itself a random variable, being 

the sum of random variables, and is identical with the time of 

realization of node N, denoted by Tjq. 

Tn = I Yij = Z (Tc) (2.1) 

(ij)sTc 

The above first two assumptions lead to the conclusion that T^ is 

approximately Normally distributed with mean 

% • I •[ Vij ! 

(ij)sTc (ij)eTc 

and variance 
( 2 . 2 ) 

°N = / 

(ij)cTc 

then the probability that event N will occur on or before a specific 
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time t is given by 

Pr <1 Tw < t I 
8N 

( 2 . 3 ) J L ON 

Since only the mean and variance of the distribution are used in 

current calculation method, the assumption of Beta distribution 

is not fundamental to the subsequent analysis. This assumption may 

be "logical" and highly convenient, especially under the stipulation 

of the three time estimates, a, m, and b and the approximations 

based on them, but it seems that in some instances it would be equally 

"logical" to assume other forms of df. 

The possible errors in the individual activities could, by themselves, 

cause errors in the calculation of a project mean and variance, 

although the extent and direction of these errors might be difficult 

to determine. However, even if the data (i.e. the mean, variance, 

and distribution) that PERT obtains for each activity are correct, 

significant error can still be introduced into the calculation of 

a network mean and variance. As a result, probabilty statements concerning 

the various completion times of a project can also be incorrect. 

Consider the question of probability statements attached to the realization 

time of an event, say the last node N, in the case where several 

paths Ti, T2, , Tj- lead from the origin, node 1, to node N, as 

shown in Figure 2.1. 

Figure 2.1 
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Let Z(Ti) denote the duration of path TjeP; then the earliest 

realization time of node N is given by 

^ TieP (2.4) 

or = max |z(T]̂ ), Z(T2), , Z(Tj-)| ; r=number of paths to N 

The paths (T^) are not independent because they usually share activities. 

Even if they are considered "approximately" independent, their duration 

need not be Normally distributed. Even if the duration of each 

path is Normally distributed, T^ which is the maximum of a finite set of 

random variables is not Normally distributed. In fact, under the 

assumption of independence, the pdf of T^ is the product of the individual 

pdfs; 

Pr [Tn ̂ t] = Pr [max |z(Ti), Z(T2), ... , Z (Tr)j< b] 
J " 

= Pr [Z(Ti) < t; Z(T2) <t ZCT?) < t ] (2.5) 

r 
= 1 Pr [ Z(Tî ) ̂  t], by independence . 
k=:. 

Finally, even if the pdf of T^ is approximated by a Normal distribution, 

it would be a Normal df with a different mean and different variance 

from that suggested by this initial PERT approach. 

Consequently, the probability statements made according to the basic 

PERT procedure are clearly subject to serious shortcomings. Much 

of the PERT literature has been concerned with approaches to overcome 

these shortcomings. These approaches can be classified as analytical, 

approximation or simulation methods. The next section presents 

a brief discussion of proposed methods for solving the stochastic 

PERT problem. 
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Before presenting proposed methods the basic PERT procedure is illustrated 

by an Example. 

Example 2.1 Consider the PERT network of Figure 2.2 with three 

time estimate (optimistic:a, most likelyim, and pessimistic:b) as 

shown beside each activity. 

( 4 , 6 , 1 4 ) , ^ - \ ( 2 , 4 . 2 5 , 5 ) / 

Figure 2.2: Project Network with three time estimate. 

Let Y_ denote the mean time of activity (ij). Using the following 

equations, the mean time and variance for each activity can be computed. 

Yij = (a^j+Ami j+b^j )/6 ; 

h = (bij-aij)2/36 . 
1] 

Table 2.1 shows these values. 
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Table 2.1; Mean time and Variance for the activities of PERT network 

of Figure 2.2. 

Activity Mean Time (Yij) Variance (o|j) 

(in months) 

Variance (o|j) 

1,2 5 1.78 

1,3 4 0.25 

2,3 6 4 

2,4 7 2.78 

3,4 3 1 

3,5 2 0.44 

4,6 6 4 

4,7 4 0.25 

5,6 9 1.78 

6,8 3 1 

7,8 5 1.78 

Let, 

ES(ij) = Earliest Start time for activity (ij). 

EF(ij) = Earliest Finish time for activity (ij). 

E: = Earliest occurrence time for event j. 

The following expression can be used to find the earliest finish 

time for activity (ij) 

EF(ij) = ES(ij) + Yij < (2.6) 

It is usually assumed that projects start at time zero. Therefore, 

letting ES(1,2) = ES (1,3) = 0, and given ^\,2~ 5 and = 4, 

the earliest finish time for activity (1,2) and (1,3) can be computed 

by using expression (2.6) as follows: 

EF(1,2)= 0+5 = 5 and EF(1,3) = 0 + 4 = 4 • 
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Given = 0, the earliest occurrence time of event j, j= 2,...., N 

can be computed successively using the following expression, where 

j is the succeeding event number, and i<j 

Ej = max (Eĵ  + Yij) • (2.7) 

Recall that an event does not occur until all activities leading 

into the node representing that event have been completed. Activities 

leaving a node cannot be started until all preceding activities 

have been completed and the event has occurred. Therefore, the 

earliest start time for activities leaving a particular node is equal 

to the maximum of the earliest finish times for all activities entering 

the node which is equal to the earliest occurrence time of that event. 

Thus, with, i<j<k, 

ES(jk) = max EF(ij) = Ej • (2.8) 

Using expressions (2.6),(2.8) and (2.7), Earliest Finish time and 

Earliest Start time for each activity and Earliest occurence time 

for each node can be computed. 

For example, 

ES(2,3) = EF(1,2) = 5 , 

ES(2,4) = EF(1,2) = 5 , 

EF(2,3) = ES(2,3) + ¥2,3 = 5 + 6 = 11 , 

ES(3,4) = max {EF(1,3), EF(2,3)} 

= max {4,11} = 11 . 

Proceeding in a forward pass through the network, we can find the 

earliest start and earliest finish time for each activity. These 

values are shown in Table 2.2 

Given E^ = 0, by using expression (2.7). 

E2 = E]̂  + = 0 + 5 = 5 , 

E3 = max {(El + Yi^3),(E2 + ¥2,3)} 

= max {(0 + 4), (5 + 6)} = max {4,11} = 11 . 

Proceeding in a forward pass through the network we can find the 

earliest occurrence time for each node. These values are shown in Table 2.3. 
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As shown in Table 2.3 the earliest occurrence time for the terminal 

event (node 8) is 25. Thus the earliest completion time for the 

entire project is 25 months. The algorithm for finding the critical 

path then involves a backward pass calculation. 

Let, 

LS(ij) = Latest Start time for activity (ij). 

LF(ij) = Latest Finish time for activity (ij). 

Lj = Latest occurrence time for event j. 

The following expression can be used to find the start time for 

activity (ij), 

LS(ij) = LF(ij) - Yij • (2.9) 

Letting L̂q = Eĵ  and using the following expression, the latest occurrence 

time for events N-1, N-2,....,l can be computed. 

Li = min (Lj - Y^j) , (2.10) 

and also, the latest finish time for an activity entering a particular 

node can be computed using the following expression. 

LF(li) = Li = min LS(ij) . (2.11) 
j 

Given Lg = Eg = 25, by using expressions (2.9), (2.11) and (2.10), 

Latest Start time and Latest Finish time for each activity can be 

computed as follows: 

LF(7,8) = Eg = 25 , 

LF(6,8) = Eg = 25 , 

LS(7,8) = LF(7,8) - Y7^g= 25 - 5 = 20 , 

LS(6,8) = LF(6,8) " ̂ 5^7= 25 - 3 = 22 . 

Proceeding in a backward pass through the network, we can find the, 

Latest Finish and Latest Start time for each activity as shown in 

Table 2.3. 

Also, Ly = Lg - Yy^g = 25 - 5 = 20 , 

L6 = Lg - Y5^g = 25 - 3 = 22 , 

L^ = min {(Ly - Y4,y),(L6 - Y^^g)} 
= min {(20 - 4),(22 - 6)} = min {(16),(16)} = 16 -
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Proceeding in a backward pass through the network, we can find the 

Latest occurrence time for each node. These values are shown in 

Table 2.3. 

By comparing the earliest start time and the latest start time (or 

earliest finish time and latest finish time) for each activity, 

we can find the amount of float associated with each of the activities. 

Float is defined as the length of time an activity can be delayed 

without affecting the completion date for the porject. 

Float for activity (ij) is defined by the equation: 

Fij = LS(ij) - ES(ij) = LF(ij) - EF(ij) • (2.12) 

Table 2.2: Calculation of Activity times. 

Activity ES(ij) LS(ij) EF(ij) LF(ij) Fij 

1,2 0 0 5 5 0 

1,3 0 7 4 11 4 

2,3 5 5 11 11 0 

2,4 5 9 12 16 4 

3,4 11 13 14 16 3 

3,5 11 11 13 13 0 

4,6 14 16 20 22 2 

4,7 14 16 18 20 2 

5,6 13 13 22 22 0 

6,8 22 22 25 25 0 

7,8 18 20 23 25 2 

From a practical point of view, float means more time to work, less 

to worry about, and a chance to transfer men, machinery or supervision 

to an activity that lies on the critical path. 

In general, the critical path activities are the activities with 
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zero float. A critical activity cannot be delayed without affecting 

the entire project. In other words, if we fall behind on the critical 

path, the project completion time will fall behind to the same extent. 

For all events on the critical path = L^, and on all other non-

critical path Ei < Li. The difference , S^, is called the slack 

for event i. Slack for each event of Figure 2.2 is shown in Table 

2.3. As shown in Table 2.2, float for activities (1,2), (2,3), 

(3,5), (5,6) and (6,8) is equal to zero. Therefore, these activities 

are critical,and following path which consists of critical activities is 

the critical path. Critical path = 1-2-3-5-6-8 • 

Table 2.3: Calculation of Event Times. 

Event Earliest occurrence time Latest occurence time Event Slack 

E^ L^ Si 

1 0 0 0 

2 5 5 0 

3 11 11 0 

4 14 16 2 

5 13 13 0 

6 22 22 0 

7 18 20 2 

8 25 25 0 

Notice that only two events have any slack: events 4 and 7. They have a 

combined total of 4 months of slack. It means in practice we could 

fall 4 months behind somewhere on these two events and not interfere 

with completion of the project on time, at its earliest expected 

date. 
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The PERT model uses sum of the mean times of activities on the critical 

path as the mean of the distribution of project completion time 

and sum of the variances of activities on the critical path as the 

variance of the distribution of project completion time. Therfore, 

by using the following equations the mean and variance of the project 

completion time can be computed 

% ° I ' I : 
(ij)€Tc (ij)cTc 

( 2 . 2 ) 

= V al- . 

(ij)fTc 

Mean: gg = 5+6+2+9+3 = 25 

Variance: Og = 1.78+4+0.44+1.78+1 = 9 

Under the PERT assumptions, the project completion time is normally 

distributed with a mean of 25 and a standard deviation of 3. 

Now let us look at PERT assumptions. 

1 - The activities are independent. 

We could switch resources from activities which are ahead of 

schedule to the activities which are behind schedule or to 

the critical path. Moreover, in a project when an activity 

takes a long time we could speed up the following activity, 

at additional cost. Therefore, this assumption is unrealistic. 

2 - The critical path has enough activities so that central limit 

theorem applies. Use of the central limit theorem for large 

network is probably not a serious source of error given independence, 

but for small network of Figure 2.2 the central limit theorem 

does not hold even with independence and the distribution of 

project completion time will not be approximately normal. 

3 - The critical path is enough longer than any other path so 

that probability of a realization having a different critical 

path is negligible. 

This assumption is not true for the PERT network of Figure 2.2. This 

network consists of 7 different paths as shown in Table 2.4. 
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Table 2.4: Different paths of project network of Figure 2.2 

Path Mean of the path length Variance of the path length 

1-2-4-7-8 5+7+4+5 = 21 1.78+2.78+0.25+1.78 = 6.59 

1-2-4-6-8 5+7+6+3 21 1.78+2.78+4+1 = 9.56 

1-2-3-4-6-8 5+6+3+6+3 = 23 1.78+4+1+4+1 = 11.78 

1-2-3-5-6-8 5+6+2+9+3 = 25 1.78+4+0.44+1.78+1 = 9 

1-3-5-6-8 4+2+9+3 18 0.25+0.44 + 1.78+1 = 3.47 

1-3-4-7-8 4+3+4+5 16 0.25+1+0.25+1.78 = 3.28 

I - 3 - 4 - 6 - 8 4+3f6+3 = 16 0.25+1+4+1 = 6.25 

All of these paths could be critical. As an extreme case, consider path 

(1-3-4-7-8). Although its mean time is 16 and none of the activities 

along this path are critical, when all activities on this path 

accomplished in the pessimistic time (b), then the length of this 

path is 28, whereas the length of the "critical path" was found to 

be 25. Since all the other paths also could be critical, even if 

each has a small probability of being critical, the error can be 

accumulate significantly. 

The deviation of the basic PERT calculation of the mean from the 

actual mean depends upon the following factors: 

1 - Number of paths merging in terminal node that may become critical. 

2 - "Closeness" of the expected completion times of the paths. 

3 - The variance of the path lengths. 

4 - The correlation of paths, i.e, the number of common activities 

between paths. 

Effects of these factors in the project completion time will be described 

in more detail in the following chapters. 
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PROPOSED METHODS FOR SOLVING PERT MODELS 

Proposed methods for solving the stochastic PERT problem have usually 

followed one of three main approaches: analytic, approximation, or 

Monte Carlo simulation. The research literature on this problem 

can be classified into several groups. 

The first group is concerned with approximating the mean completion 

time. These approximations involve the manipulation of a fixed 

number of time values and the corresponding probabilities. Frequently 

quoted are Fulkerson (1962) and Elmaghraby (1967). 

The second group is also concerned with approximations. The computation 

involves the manipulation of distributions parameters. This approach 

usually assumes a Normal distribution for individual activities. 

Examples include Clark(1961) and Sculi (1983). 

The third group is concerned with the estimation of the distribution 

function of the project completion time, including: 

(i) Determination of the exact probability distribution function 

(pdf) of networks with special activity configurations. 

(ii) Approximating the pdf. 

(iii) Bounding the pdf. 

Examples include, 

(i) :Martin (1965), Hartely and Wortham (1966), Ringer (1966), 

Burt and Carman (1971b). 

(ii) :Dodin (1985b). 

(iii) :Robillard and Trahan (1977). 

The fourth group uses simulation to estimate the completion time 

distribution. Examples can be found in Van Slyke (1963) and Cook 

and Jennings (1979). 
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In order to illustrate the problem we return to a more detailed discussion 

of the PERT model. 

Consider the PERT network of Figure 2.3. Assume the nodes are numbered 

such that an arc leads from a smaller numbered node to a higher one. 

Figure 2.3 

Let Pj denote the subnetwork of nodes and arcs up to and including node 

j as shown in the Figure. 

Let denote the duration time of activity (ij) eA, and Tf̂ (A) denote 

the critical path given any realization of the network. 

(By definition; a realization of a network is a result of a random 

experiment that assigns a duration ŷ ĵ to each arc (ij) eA, where 

ŷ ĵ is chosen according to the pdf of the random variable Y^j 

(Elmaghraby, 1977)). 

Finally, let p[y(A)] denote the probability of the realization of 

the arcs in the network where y(A) = vector of realization of all 

arcs in the network. When Yĵ j is discretely distributed for all (ij)EA, 

the project completion time (T^) is a random variable whose expected 

value is given by 

E(Tn) = eN = y TN(A).p[y(A)] (2.13) 

y(A) 

The PERT model estimates the expected duration of the project by 

defining the function gj recursively as follows: 
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= 0 

g_ = max {g + Yij} • j = 2,3 N (2.14) 

Note that j is the succeeding event number, and i<j, where 

Yij = yij-p(yij) 

yij 

and p(yij) is the marginal probability function of arc (ij). 

In the case of a continuous random variable, appropriate changes 

such as replacing Z by / and p(•) by f(.) are made. 

Computation of (2.14) is an easy task, even for large PERT networks 

having thousands of arcs. However, we assert that expected value 

obtained using PERT model is biased optimistically: the enequalities 

gj ̂  Sj (j = 2,3 N) 

always hold, where ej = expected value of critical path to node j 

given any realization of the subnetwork P^ 

j = 2,3 ...., N. 

In other words, the maximum value obtained based on substituting 

the expected values for the duration time of activities along different 

paths to node j, (j = 2,3 N) as it is used in the basic PERT 

model is not larger than the expected value of the maximum of the 

durations of the paths to node j. This assertion follows from a 

result based on Jensen's inequality (Rao, 1973 p.58). 

Proposition: If Xg are random variables, then 

EXi, , Xg [niaxj{fj(Xi, . . . ,Xs)}] > maxj {Ex^,. . ̂ Xg[f j (Xi,. . . ,Xs) ] } 

where Ex^^.,^ Xg is the mathematical expectation involving random variables 

X^ p'-} Xg and fj is a function defined on those random variables. 

Before proceeding further, we illustrate (2.13) and (2.14) by means 

of a small numerical example. 

Example 2.2 

Consider the network of Figure 2.4 with possible durations shown 
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beside each activity. Assume all time durations are independent 

and equally probable. Since this network consists of A activities 

and each activity can take 2 values, to evaluate its completion time 

2^= 16 deterministic problems each with probability of occurence 

equal to 1/16 need to be solved. 

Figure 2.A 

Table 2.5 shows all 16 realization times of the project. For each 

realization time, the critical path is determined. 
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Table 2.5: Possible realization times of the project of Figure 2.4. 

Path (1-2-4) Path (1 -3-4) Length of Critical Path 

I 
Duration time of (A+C) 

II 
Duration time of (B+D) 

III 
max (I,II) 

4+3 = 7 2+1 = 3 max { 7 , 3 } = 7 

4+3 = 7 2+7 = 9 max { 7 . 9 } = 9 

4+6 = 10 2+1 = 3 max {10 ,3} = 10 

4+6 = 10 2+7 = 9 max {10 ,9} = 10 

4+3 = 7 5+1 = 6 max {7+6} = 7 

4+3 = 7 5+7 = 12 max {7 ,12} = 12 

4+6 = 10 5+1 = 6 max {10 ,6} = 10 

4+6 = 10 5+7 = 12 max {10 ,12} = 12 

5+3 = 8 2+1 = 3 max { 8 , 3 } = 8 

5+3 = 8 2+7 = 9 max { 8 , 9 } = 9 

5+6 = 11 2+1 = 3 max {11,3} = 11 

5+6 = 11 2+7 = 9 max { 1 1 , 9 } = 11 

5+3 = 8 5+1 = 6 max { 8 , 6 } = 8 

5+3 = 8 5+7 = 12 max {8 ,12} = 12 

5+6 = 11 5+1 = 6 max {11.6} = 11 

5+6 = 11 5+7 = 12 max {11,12} = 12 

By using equation (2.13),the expected value of project completion time can 

be found: 

E(Tn) 1 &N = I (A).p[y(A)] 
y(k) 

7+9+10+10+7+12+10+12+ 8+9+11+11+8+12+11+12 ^ 
e = 16 
4 

®4 is the actual value. 

Now we use (,2.14) to obtain. 
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gl = 0 , 

S2 ~ 81 + &(4+5) = 0+4.5 = 4.5 

§3 = Si + 2(2+5) = 0+3.5 =3.5 

g4 = max(g2+A(3+6), gg+A (1+7)) 

= max(4.5+4.5,3.5+4) = max (9,7.5) = 9 

Indeed g4 = 9 < 64 = 9.937 

In this example the PERT model estimate (g4) is approximatley 10% 

optimistically biased. In many situations, this PERT estimate may be very 

far from the real value. However, this lower bound can be improved using 

one of the following approaches. 

APPROXIMATING THE PROJECT COMPLETION TIME PARAMETERS 

(a) Approaches based on approximating activity pdf's with simpler pdf's. 

(b) Approaches based on moments. 

Approaches based on approximating activity pdf's with simpler pdf's. 

One alternative to improve the PERT estimate is to approximate the 

given activity duration time pdf's with simpler pdf's. For example, 

the pdf can be approximated by single step functions, which reduces 

the stocastic problem to an ordinary deterministic one. 

The first improvement published is due to Fulkerson (1962). He proposed 

a lower bound that is a function of the variance associated with each 

arc for the case where the activity durations are discrete random 

variable. 

Fulkerson's estimate is as follows: 

Let Bj denote the set of arcs immediately preceding node j, as shown in 

Figure 2.3 . 

Determine a function fj recursively by 

fl = 0 , 

fj = ̂ max {fii+yi;fi2 + YZ; ;fi^+Yrj}^Pty(Bj)1; j=2,3 ,..,n (2.15) 

y(Bj) 

where y(Bj) is the vector of realization of all arcs in the set Bj(assumed 

to contain rj arcs) and we wrote y^ as a shorthand for y^^. 
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In words, fj is the expected value (over all realization of Bj) of the 

maximum length to node j. 

Note that g^ as given by Equation (2.14) is the maximum of the expected 

values. It is intiutively clear that averaging over the maxima is 

never less than the maximum of the average (Elmaghraby, 1977). 

Elmaghraby (1967) proposed two approaches. His first approach is 

based on the following observation : 

If all arrows in a directed acyclic network, such as in PERT, are 

reversed, the average duration of the project êq remains unchanged.However 

intermediate values of f 1 Ci^N, do not necessarily remain the same. 

Consequently, if we substitute in the expression of f^ the maximum of these 

tw values obtained from the "as given" and the "reversed" subnetwork 

Pĵ , we can only improve (although still approaching e^ from below). 

Proof of this statement concerning the invariance of ejq under reversal of 

the arrows is given in Elmaghraby (1977 p.244.) 

His second approach involves a generalization of the Fulkerson's approach. 

It is more accurate than Fulkerson's. 

Cliengen (1964) has described another extension of Fulker son's estimate to include 

the continuous case and derives a computationally feasible form for his estimate. 

Robillard and Trahan (1976) also present a generalization of Fulkerson's 

estimate and demonstrate that it is always at least as accurate as 

Fulkerson's and it is potentially better than Elmaghraby's estimate. 

In this approach the activity durations can be discrete or continuous. 

Lindsey (1972) developed a method of calculating the expected completion 

time based on a model approximating the actual network. 

Approaches based on moments 

Another approach to improving basic PERT model estimates is based 

on moments. 

Tippett (1925) contributed one of early important works on the distribution 
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of the largest of independent normal random variables with equal means 

and variances. His results indicate that the expected value of the 

completion time increases with the number of parallel elements in 

the network, and with the variance of the elements. In PERT networks, 

alternate paths contain common elements and are thus correlated. They 

also have unequal means and variances. Therefore, although Tippett's 

work gives us some helpful insight into the problem, his tables are 

not strictly applicable. 

Clark (1961) attacked a problem considerably closer to the one posed 

by PERT network than did Tippett. He assumed that the elements in 

the network are normal random variables, that the paths have unequal 

means and variances, that the paths through the network are correlated, 

and that the distribution of the largest value is approximately normal. 

Clark's method is very tedious and also an approximation since it 

is necessary to assume normality at each iteration. 

Sculli (1983) reconsidered the problem of using the normal distribution 

as a representation of activity durations in PERT networks. He provided 

a method for deriving estimates of means and variances of the earliest 

event occurrence times. As opposed to (Clark's 1961) approach, it 

was assumed, additionally, that the activity completion times entering 

a common event are treated as independent normal random variables. 

Kamburouski (1985) presents a method of determining the lower and upper 

bounds on the mean event occurrence times. His approach employs only 

a formula for determining the first moment around zero of max(Xi, X2), 

where , X2 are independent and normal random variables. 

EVALUATION OF THE PDF OF PROJECT COMPLETION TIME 

Another approach to solving the PERT probem is based upon determination 

or approximation of the probability distribution function of the project 

completion time. One advantage of such determination is that we would 

then be able to not only determine E(Tf̂ )̂  but also give precise probability 
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statement concerning the completion time of the project. 

These approaches can be classified as 

a) Analytical 

b) Monte Carlo Simulation. 

Analytical Approaches 

Analytical approaches for determination of the exact pdf or its bounds 

and approximations involve following four steps (Elmaghraby, 1977). 

STEP 1. Identification: Identify various subnetworks as special 

activity configurations whose pdfs are known (the so-called "generic" 

subnetworks). 

STEP 2. Simplification: Replace the various configuration of Step 

1 and their associated completion time distributions by single equivalent 

activities and completion time distributions. 

STEP 3. Decomposition: Decompose the simplified network into several 

subnetworks by separating subnetworks at each cut vertex. A cut vertex 

is any node such that every path from the origin to the terminal passes 

through it. Each subnetwork should be a set of parallel paths. 

STEP 4. Synthesis: Reduce each subnetwork to a simple equivalent 

activity, then combine the set of equivalent activities, which are 

now in series, in a grand equivalnet activity. The result is the 

completion time of the entire project. The basic idea for these steps 

is due to Sielken, Hartley and Arseven (1975). 

In order to clarify the analytic approach, we start with a completely 

reducible network to which we can apply the last step. 

Consider network of Figure 2.5. 

Figure 2.5 
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This network can be reduced to a single activity through repeated 

application of the following operations, (i) convolution, and (ii) 

greatest. 

Convolution Operation 

Duration times of two activities in series can be added to give rise 

to a new activity. The distribution function of the duration of the 

new activity is obtained by convoluting the df's of these activities. 

This operation is called the convolution operaiton. 

Consider two arcs in series, as shown in Figure 2.6. Let and denote 

the duration times of a and b, with pdfs F^Ct), and F̂ ,(t), respectively. 

Let c denotes the resultant activity. If activity a starts at time zero, 

then the realization time of node 3 is a random variable, denoted 

by Y(̂ , and given by Y^ = Y^+Yy. The pdf of Y^ is given by 

Fc (t) 1 Pr[Yc^t] = /t (t-y)dFb(y) = Fa(t-y)"Fb(y) (2.16) 

where the asterisk denotes a convolution operation. Note that each 

convolution operation reduces the number of nodes and the number 

of arcs each by one: the network gains a new arc, but loses two 

arcs. 

Figure 2.6 

Greatest Operation 

Taking the maximum duration tine of two parallel activities gives rise 

to a new activity. The distribution function for the duration of 

the new activity is obtained by multiplying the df's of these activities. 

This operation is called a greatest or maximum operation. 
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Consider two arcs in parallel, as shown in Figure 2.7. Let Yg and Yf denote 

the duration times of e and f, with pdfs Fe(t) and Ff(t) respectively. Let 

g denotes the resultant activity. If node 1 is realized at time 

zero, then realization time of node 2 is a random variable, denoted 

by Yg, and given by Yg = max {Yg, Yf}. The pdf of Yg is given by 

Pr[Yg < t] = Pr[max(Ye, Yf) ̂  t] 

= Pr[Ye <: t and Yf < t] 

= Pr[Yg 4 t] X Pr [Yf t] assuming independence • 

That is 

Fg(t) = Fe(t). Ff(t) (2.17) 

where (.) denotes a greatest operation. Each greatest operation 

reduces the number of arcs by one: the network gains a new arc 

but loses two arcs. 

Figure 2.7 

Now we return to example network of Figure 2.5 

Figure 2.5 

Convoluting activities c and d gives rise to a new activity g as 

shown in Figure 2.8. 
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Figure 2.8 

A greatest operation for activities b and g gives rise to a new 

activity h as shown in Figure 2.9. 

Figure 2.9 

Convoluting activities a and f gives rise to a new activity i and 

convoluting activities h and e gives rise to a new activity j as 

shown in Figure 2.10. 

(C 
Figure 2.10 

Finally, a greatest operation for activities i and j gives rise 

to a new activity k as shown in Figure 2.11. 
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©—<D 
Figure 2.11 

For completely reducible networks, the exact value of the pdf is 

obtained through repeated application of convolution and greatest 

operations. Now consider the irreducible network of Figure 2.12. 

Figure 2.12 

A network is called irreducible if we cannot reduce it to a single 

activity (1, N) through repeated applicaticn of convolution and greatest 

operations. The network configureation of Figure 2.12 is the simplest 

irreducible neh/vork, called a Wheatston bridge or interdictive 

graph. Dodin (1985c) proved that the network is irreducible if and only 

if it has the interdictive graph. This proof is provided in Appendix A. 

The interdictive graph shares with all irreducible networks the following 

properties. 

(1) The number of nodes N%4, and the number of arcs A>4. 

(2) Where l(i) denotes the Indegree of node i (Number of arcs ending at 

node i) and 0(i) denotes the Outdegree of node i (Number of arcs 

emanating at node i), for each node i?̂ l or N, I(i)+0(i)>3: there are no 

arcs in series. 

(3) There do not exist two arcs with the same start node and end node, i.e 

there are no pairs of arcs in parallel. 
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For irreducible networks, since the paths are correlated because 

of the common activities, there is no way to combine activities 

through convolution and greatest operations. In such a case, in 

order to obtain the pdf of project completon time, the general 

principle to apply is to evaluate the pdf of the project completion 

time by conditioning project completion time on the values of common 

activities, and then remove the conditional nature by integrating 

over-all values of common activities. The final result is the 

unconditional pdf of project completion time. For example, in 

the "Wheatstone bridge" of Figure 2.12 activity, A is common between 

two paths (1-2-4 and 1-2-3-4) and activity, E is common between 

two paths (1-2-3-4 and 1-3-4). Let denote duration time of activity i. 

Since, 

T^ = max {Xj^+Xj),XA+XQ+Xj;,Xg+Xg} 

let Z(Ti) = Xa+ Xd ^ z(T2) =Xa+Xc+Xe , ZfT]) = Xg+Xg ' 

Then, F4(t/XA,XE) = F(t/XA,XE)F(t/XA,XE)F(t/XA,XE) 
Z(Ti) Z(T2) ZCT]) 

and F4(t) = // F(t - X^).F(t-XA-XE).F(t - XE)dF(x^)dFg(Xg) 

Z(Ti) Z(T2) ZCT]) A 

Hartley and Wortham (1966) have developed an algorithm for computing 

the comulative distribution of the completion time for certain PERT 

networks. These networks (which they term "multiple crossed") are 

composed of certain simple subnetworks, namely, 

(a) two activities in series. 

(b) several activities arranged in parallel-

(c) five activities arranged in a "Wheatstone bridge" configuration. 

For the precise way in which the above subnetworks are used as 

building blocks to build up a "multiple crossed" network reference 

must be made to Hartley and Wortham (1966). However, the use of 

their algorithm does not necessitate an examination of each network 

to determine whether it falls into the category of "multiple crossed" 
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the algorithm may be applied to any network and if it happens to be "multiple 

crossed" the algorithm will automatically compute the df of the project 

completion time: if, on the other hand, the network is not "multiple 

crossed" the algorithm will not be able to reduce the network to 

a single activity. As soon as we find therefore that no reduction 

of activity and nodes has occurred on two consecutive cycles we 

would output the reduced network activities and associated cdf's 

so that it can be solved by a Monte Carlo method or some other 

algorithm suitable for non-reducible networks. 

Ringer (1969) extended the concept of "multiple crossed" networks by adding two 

additional subnetworks as building blocks to the three mentioned above and 

developing integral operators for: 

(d) The "Double Wheatstone bridge". Figure 2.13 

(e) The "Criss-Cross". Figure 2.14 

The operations for uncrossed networks and the Wheatstone bridge 

are given by Hartley and Wortham (1966). 

(i) (ii) 

Figure 2.13: Double Wheatstone bridges 

(i) (ii) (iii) 

Figure 2.14: Criss-Cross networks 
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Ringer (1969) also showed that the cdf of project completion time 

could be expressed in simpler form by conditioning on particular 

activity times. This concept was also developed independently by 

Burt and Carman (1971b), who describe and evaluate a technique for 

performing this multiple integration. 

The above discussion should give full meaning to the first two steps 

of the general procedure. Since the complexity of subnetworks prevents 

the straightforward step-by-step application of convolution and greatest 

operations, in the "identification" step various generic subnetwork 

configurations whose pdfs are known are recognized and the "simplification" 

step replaces these generic subnetworks by their equivalent activities. 

In order to illustrate the general procedure we consider the complex 

network of Figure 2.15. 

Figure 2.15 

Since node 8 is a cut vertex (e.g. the termination event of all activities 

preceding it) the network is decomposable into two subnetworks as 

shown in Figure 2.16. 
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(a) (b) 

Figure 2.16 

The subnetwork of Figure 2.16(a) consists of two subnetworks a Double 

Wheatstone bridge, {(1,5), (1,6), (1,7), (5,7), (6,7), (5,8), (6,8), 

(7,8)} and a reducible network, {(1,2), (2,3), (2,4), (3,4), (4,8)}. 

Let us denote their equivalent activities by A]̂  and A^.The subnetwork of 

Figure 2.16(b) consists of two subnetworks, a Criss-Cross, {(8,11), 

(8,12), (11,12), (11,13), (11,14), (12,13), (13,14)} and a Wheatstone 

bridge, { (8,9), (8,10), (9,10), (9,14), (10,14)}. Let Ag and A4 denote 

their equivalent activities. The original network of Figures 2.15 

is now represented by the set of equivalent activities shown in Figure 

2.17. 

1 ^ 

(i)A, CO 4 ( " ) 

Figure 2.17 

This network is completely reducible by using two greatest operations 

followed by a convolution operation. 

A refinement of the above approach was proposed by Martin(1965), who 

presented a method for the efficient computation of the density function 

of the project completion time under the assumption that the distribution 

functions of activity duration are polynomials. 
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In particular, an algorithm is described that reduces a series -

parallel network to a single activity. The specialization of this 

algorithm to the class of polynomial leads to a detailed examination 

of the convolution operation for polynomials. 

Charnes, Cooper, and Thompson (1 964) illustrated their method of 

"chance constrained and stochastic programming" with exponential 

cdf's and a network for which cdf of completion time also separates. 

Burt, Gaver, and Perlas (1970) have investigated the exponential families 

of cdf's in connection with simple stochastic PERT networks. 

Dodin (1985a) presents a practical procedure to approximate the distribution 

fucntion of the realization time of all events in the network. The 

approximating procedure consists of three steps: deiscretizing continuous 

distributions, reducing the network , and sequential approximation. 

This procedure can be applied to large stochastic networks with any 

structure, and it allows the activity duration to have a continuous 

or discrete distributon. This procedure will be discussed in detail 

in Chapter 5. 

The method of bounding distribution is developed in detail by (Kelindorfer, 

1971). In practice, this approach concerns only PERT networks where 

the distribution functions associated with the activities are discrete. 

Dodin (1985b) developed a procedure which bounds the exact distribution 

of the project completion time from below. He believes this bound 

is tighter than any of the existing lower bounds. 

Monte Carlo Methods 

Because severe difficulties exist in deriving analytical solutions 

in PERT networks, many analysts have turned to Monte Carlo methods 
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to derive approximate solution. 

Van Slyke (1963) develops the idea of using crude simulation as a 

tool for finding the cdf of a PERT network's completion time. He 

also suggests two methods of potentially reducing simulation computation 

times. 

Klingel (1966) used a crude simulation approach to study the direction 

and magnitude of the errors of the basic PERT solution approach 

when parallel paths are present in a network. 

Antithetic variates, stratification and control variates have been suggested 

by Burt and Carman (1971b) as ways to reduce the computational effort required 

in crude simulation. Burt and Carman (1971a) also developed a new 

simulation procedure called conditional Monte Carlo Simulation in 

which certain activity times are fixed at their original sampled 

value thus reducing computation effort and variance. 

Min-Max Method 

The min-max method was suggested by Van Slyke (1963). This method 

examines each path in the network twice. The first time the most 

optimistic time for each activity is assumed and a critical path 

is identified. The length of this path represents the absolute minimum 

project completion time. In the second examination, the most pessimistic 

time is assumed for each network activity and the length of each 

path is compared to the length of the optimistic critical path. If 

the length of a path using the pessimistic activity time is less 

than the length of the optimistic critical path then that path is 

flagged noncritical. Those paths designated noncritical are disregarded 

in the ensuing simulation. 

Path Deletion Method 

The path deletion method, also suggested by Van Slyke (1963),is operationally 

identical to crude simulation for the first one hundred iterations. 
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After the first one hundred iterations those paths that had not yet been 

critical are flagged as non-critical and ignored for the rest of the 

simulation. 

Dynamic Shut-Off Method 

The dynamic shut-off method operates exactly like crude simulation 

except the number of iterations is dynamically controlled. After 

each one hundred iterations the cumulative density function of project 

completion time is compared to the cdf from one hundred iterations 

earlier. 

Accuracy and the computation efficiency of the three methods (Min-Max, 

Path Deletion and Dynamic Shut-off) 

Of the three methods (Min-Max, Path Deletion and Dynamic Shut-Off) 

tested by Cook and Jennings (1979) it was felt that the min-max method 

would result in the most accurate approximation of the project completion 

time cdf. The other two methods have a potential of biasing the results 

because paths that could feasibly be critical paths are deleted from the 

network. In addition it was felt that the path deletion method would be 

computationally superior due to the number of activities deleted from the 

simulation. 

Antithetic Variates 

Antithetic variates is a widely known technique which is probably 

the most often and the most easily used variance reduction technique. 

The basic idea of this approach is as follows. Suppose we have an 

unknown parameter 6, which we wish to estimate by a statistic t. 

For instance, in the context of activity networks, 6 may be T(q, which 

we are estimating by the sample duration . We seek another estimation 

t' having the same expectation as t and a strong negative correlation 

with t. Then § (t+t') will be unbiased in 0, but its sampling variance 

is given by 

Var[|(t+t')] = J Var(t) + I Var(t') + 2Cov(t,t') 
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< 5 Var(t), because Cov(t,t') < 0 • 

A theorem due to Hamraersley and Mauldon (1956) asserts that whenever 

we have an estimation consisting of a sum of random variables, it 

is possible to arrange for there to be a strict functional relationship 

between them such that the estimation remains unbiased, while its 

variance comes arbitrarily close to the smallest that can be attained 

with these variables. The basic idea is that we "rearrange" the 

random variables by permuting finite subintervals, in order to make 

the sum of the rearranged functions as nearly constant as possible; 

hence their variance is made as small as possible. If the individual sub-

interval sums are exactly a constant, their variance is zero (Elmaghraby, 1977)' 

Detailed discussion of antithetic variates technique is presented in Chapter 10. 

Sullivan, Hayya and Schaul (1982) investigated the application 

of antithetic variates technique for the estimation of 

project completion times in stochastic acyclic networks. They provide 

a theorem which leads to a guaranteed reduction in variance associated 

with the application of antithetic sampling in stochastic networks 

where the arc times are symmetrically distributed about their means. 

A note by Grant (1983) extends this work by proving that variance 

reduction is guaranteed for PERT type networks even if the time distributions 

are not symmetrically distributed. 

Sullivan, Hayya, and Schaul (1982) demonstrate that on the average 

the antithetic variate method can provide the same precision as straight 

forward Monte Carlo with one fourth the computation time. Furthermore, 

they note that when activity durations are distributed symmetrically 

about their means we can expect the antithetic variate method to 

require less than one tenth the time used by straightforward Monte Carlo. 

Control Variates 

The basic idea underlying antithetic variates is the generation of 
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a twin random variable that is negatively correlated with the original 

random variable. Control variates is an alternative approach to 

generate a random variable that is positively correlated with the 

original random variable. The control variate technique applies when 

there is an approximation to the process simulated that can be treated 

theoretically. By following through the actual and control processes 

simultaneously, using the same random numbers at corresponding points 

in the two processes, the difference is observed. This difference 

is then an estimate of the correction to be applied to the theoretical 

results of the control process. In order to introduce the concept 

of control variates in the context of activity networks consider 

the network of Figure 2.18. Suppose, that all durations of activities 

are random variables whose distribution functions are amenable to 

mathematical manipulation except Yy. Suppose we are interested in estimating 

project completion time, EfT^). 

It would be very time consuming task to compute the completion time 

distribution of this network by analytic methods. The control variate 

procedure requires that we construct a simplifed network "similar" 

to network of Figure 2.18, such as network of Figure 2.19, whose 

E(T5) can be determined analytically, where 

YA = Yl + Y4 

Yfi = Yi + Y3 

Yq = a random variable highly correlated with Yy but much simpler. The 

general idea of the control variates technique is to exploit the 

similarity between Figure 2.18 and 2.19 in order to improve estimates 

concerning Figure 2.18; in doing so, use is made of the exact knowledge 

of Figure 2.19. In other words, simulation is used to correct a 

known result for Figure 2.19 to bring it close to Figure 2.18. 

Since E(T5) = EfT^) + E[T5 -T5] 



44 

it is possible to estimate E(T^) by computing E(T^) analytically, 

and then estimating E[T^ - T^Jfrom a sampling experiment. The latter 

^, ^2 ,Yg. Plus the surrogate random variable . These, in turn, 

step involves obtaining K realizations of the eight random variables 

?1' 

will yield the values xCk) and tCk), k = 1,2,....,K, where x values are 

the sample realizations of the T values. Averaging, we obtain the 

estimate of E[T^ - T^] as given by 

K 
V T X k ) - t ( k ) 
L K 
1 

Since the arc durations in the two networks share the same random 

numbers, T^ and T^ are positively correlated. Thus 

Var(Tg - Tg) = | {Var (T^) + Var (T^) - 2Cov(T^,T^)} 

Hence, it follows that if 

Var(Tg) < 2 CovfT^.T^) 

a reduction in variance over crude sampling is achieved. Notice that 

Figure 2.19 ignores the path containing activity (2,4) of duration Y^. 

Figure 2.18 Figure 2.19 

Stratified Sampling 

In stratified sampling we break the range of the duration of each 

activity into several intervals, say 
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* j - l ^ ^ 'k 

where a. < a, < < a. = M, and M is the maximum duration of y 
0 1 k 

(or its truncated version). A random variable is chosen from each 

interval and the analysis proceeds on the basis of the samples drawn. 

Hybrid Approaches 

Some of the above mentioned approaches may be combined to advantage. 

For instance, the antithetic approach may be combined with any other 

approach to yield improved results. 

Burt et al (1970) gives some sample results from a combined antithetic 

variate and control variate simulation of stochastic networks. 

Kleijnen (1975), on the other hand, challenges the efficiency of combining 

variance reduction technique. He notes that while the antithetic variate 

method generates negative correlations, the control variate method 

generates positive correlations that tend to offset the negative 

correlations. The research methodology presented by Sullivan, Hayya and 

Schaul (1982) can be used to experimentally test the efficiency of 

combined variance-reduction techniques for simulating stochastic networks. 

Conditional Monte Carlo 

Conditional Monte Carlo has been shown by Burt and Carman (1971a) to 

provide improved estimators of the cumulative distribution function 

(cdf) for stochastic PERT network durations. In their scheme,"unique" 

activities were identified as those lying upon at most a single path 

from source to terminus in a given network. The cdf's of the duration 

of these activities thereupon entered into a network duration cdf 

estimator in full analytic form; other "nonunique" activities were 

sampled. One advantage of this approach is that the cdf's of the unique 

activities appear within the estimator in product form, simplifing 
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computations. Carman (1972) also introduces another conditional sampling 

method that will, for almost all network, allow the cdf's of many more 

activities to enter an estimator in analytic form than the conditional 

Monte Carlo method permits. The approach is based on Martin's (1965) 

series-parallel reduction of stochastic PERT networks and Hartley and 

Wortham's (1966) definitions of crossed and multiple-crossed networks. 

The basic idea is to (a) reduce the network as far as possible by 

series-parallel reduction; (b) eliminate crossing activities by 

conditional sampling of their predecessors or successors; (c) repeat 

(a) and (b) until the network is completely reduced; and (d) use the 

resulting estimator to estimate the network duration cdf. 

SUMMARY AND CONCLUSIONS 

It is well known that probability statements made according to the 

basic PERT procedure are subject to serious shortcomings. Much of 

the PERT literature has been concerned with approaches to overcoming 

these shortcomings. These approaches can be classified as analytical, 

approximation or Monte Carlo Simulation in two area: 

1 - Evaluation of the mean project completion time. 

These approaches mostly supply lower bounds on the mean value 

of project completion time and can be classified as: 

(a) Approaches involve the manipulation of a fixed number of 

time values and the corresponding probabilities. 

(b) Approaches involve the manipulation of only distribution 

parameters. 

2 - Evaluation of the pdf of project completion time. 

The analytic methods evaluate exact pdf of project completion 

time of special simple networks with simple functional forms for 

activites' distribution. In general, we cannot expect in a 

given problem, simple network structure and simple functional forms 

for activities' distribution. In this case, one alternative is to 
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approximate the pdf of the project completion time by approximating each 

activity distribution with a simpler one. 

In approximation methods, even knowing the accuracy of the individual 

activity approximations, it is very difficult to predict the 

accuracy of the pdf of project completion time. 

Since analytic methods are unsuitable and approximation methods 

are not reliable, then there is no choice but to turn to Monte Carlo 

simulation. Crude Monte Carlo simulation does not require extensive 

assumptions, but it is very computationally costly for reasonable 

levels of precision with respect to the resulting distribution. 

In order to reduce the computational effort and to enhance precision 

of crude Monte Carlo method a variety of variance reduction 

techniques have been proposed. Among these techniques, the Antithetic 

variates is the easiest to apply and the most widely known. 
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CHAPTER 3: BASIC CIM MODELS FOR STRUCTURAL DEPENDENCE 

INTRODUCTION 

This chapter looks briefly at analytical and approximation approaches to 

combining probability distributions which were not discussed in the 

previous chapter, discrete probability interval distribution methods 

and interval or histogram representation methods, to introduce controlled 

interval and memory (CIM) models. It concentrates on a 'controlled 

interval' (Cl) approach to addition (convolution) and taking the maximum 

(greatest) of independent probabilistic variables. Finally, CIM treatment 

of structural dependence in network merge events is considered through 

an example. 

NUMERICAL METHODS 

Numerical Integration 

Numerical integration approaches are based largely on functional integration 

results, functional integration being an analytic approach which is used 

in problem areas like queueing theory. In order to clarify the approach 

in PERT networks, consider a network with n activities and m complete 

paths (sequences of activities starting at the beginning and finishing 

at the end of the project). For the ith complete path the completion 

time for the path, say u^, is written as the sum of the appropriate activity 

completion times. Then, the pdf of the network completion time, F(t), 

is given by the probability that Ui ^ t for all i and is given by 

F(t) = / ... / dFi dFn 

where the limits on the integration satisfy u^ ̂  t, i=l,...,m. In 

determination of F(t), it is necessary to integrate a product of the 

distribution functions of activity times. Even if analytic forms for 

activity time distributions are available, only in rare cases can an 

analytic solution be obtained for the integral, and dependencies between 

activity distributions pose a major problem. As mentioned in Chapter 2 
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the analytic methods tackle above expression by assuming (1) simple 

functional forms for the dFj j=l ,...,n,and (2) special networks for which 

the mulivariate integral may be seperated into a series of single variate 

integrals. 

Generally speaking, we cannot expect in a given problem to find both 

simple pdf's and simple network structure. One alternative is to use 

numerical msthods for the evaluation of integration or at the underlying 

activity times distributions. 

If analytic base variable distributions are available, there is a variety 

of quadrature and finite difference methods for evaluating the convolution 

integral. However, these do not seem to have been used in PERT problems. 

A likely explanation for this is due to the multivariate nature of 

the integrals, their difficult regions of integration, and their 

computational demands. Therefore, a different approach is needed. 

Discrete Probability Distributions 

A more flexible numerical approach is to abandon the analytic base 

variable distribution and to adopt a different representation for it. 

One such representation is what Kaplan (1981) calls a discrete probability 

distribution (DPD), or what Winkler and Hays (1970) refer to as a 

probability mass function. 

A DPD is a set of doublets {< Px(x),x >}, in which Px(x) is the proability 

associated with a particular discrete value x of the base variable X, 

with ^Px(x)=l. The DPD can be regarded as an approximation to an underlying 

x 

continous base variable distribution, or it can be considered more directly, 

and often more usefully, as a specification of our state of knowledge 

about the base variable. 
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Combining two base variables in DPD form yields a result which is also 

a DPD (Kaplan 1981). If X and Y are independent base variables with 

DPD representations X = { < Px(x), x >} and Y = { < PyCy), y >}, then 

the derived variables Z = { < Px(x)pY(y), f(X,Y) >}. This result 

generalises readily to functions with more than two arguments. 

For special case, when Z=X+Y, DPD representation of Z is obtained by 

convoluting the DPD representation of the base variables using following 

equation. 

z 

Pz(z) = ' (3-1) 

x=0 
As an example, assume X and Y have the following DPD representations. 

X Px(x) Y PyCy) 

2 0.2 3 0.3 

3 0.4 4 0.5 

4 0.4 5 0.2 

The DPD representation of Z=X+Y can be computed by using equation (3.1) 

as shown in Table 3.1. 

Table 3.1: DPD representation of Z=X+Y . 

Pz(z) 

5 

6 

7 

0.2 X 0.3 = 0.06 

0.2 X 0.5 + 0.4 X 0.3 = 0.22 

0.2 X 0.2 + 0.4 X 0.5 + 0.4 x 0.3 = 0.36 

0.4 X 0.2 + 0.4 X 0.5 = 0.28 

0.4 X 0.2 = 0.08 
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For example, when Z = 5 

PZ (5 ) = Px(2).PY(5 - 2) 

= Px(2).PY(3) 

= ( 0 . 2 ) ( 0 . 3 ) 

= 0.06 , 

or, when Z = 6 

Pz (6 ) = Px(2) . PyCG - 2) + Px (3 ) . PyCG - 3) 

= Px (2). PyCA) + Px(3). PY(3) 

= (0.2)(0.5) + (0.4)(0.3) 

= 0 . 2 2 . 

If X and Y are in parallel, then the DPD representation of W=max {X,Y} 

can be computed using following equations. 

Fw = Fx(W).FY(W) (3.2) 

Pw (w) = Fy(w)-F\^(w) for a w slightly less than w. 

The calculation process for this greatest operation is as follows. 

X Px(x) Fx(x)=CP(x) Y Pyfy) FY(y)=CP(y) 

2 0.2 0.2 3 0.3 0.3 

3 0.4 0.6 4 0.5 0.8 

4 0.4 1.0 5 0.2 1.0 

where, CP indicates Cumulative Probability, adopting the notations of 

Chapman and Cooper (1983a)as well as that of Dodin (1980) used earlier. 

By using equation (3.2), DPD representation of W can be computed as 

shown in Table 3.2. 
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Table 3.2: DPD representation of W=max {X,Y} 
• 

W Pw(w) Fw(w) 

2 0.0 - 0.0 = 0.0 0.2 X 0.0 = 0.0 

3 0.18 - 0.0 = 0.18 0.6 X 0.3 = 0.18 

4 0.80 - 0.18 = 0.62 0.8 X 1 0.80 

5 1 - 0.8 = 0.20 1 X 1 1 

For example, when W = 2 

Fw(2) = Fx(2). Fy(2) 

= ( 0 . 2 ) ( 0 . 0 ) 

= 0.0 , 

or, when W = 3 

Fw(3) = FX(3).FY(3) 

= (0.6)(0.3) 

— 0.18 9 

and 

Pw(3) = Fw(3) - Fw(2) 

= 0 . 1 8 - 0 . 0 = 0 . 1 8 

While the DPD representation is notationally compact and computationally 

simple to implement, there are three problem areas associated with it 

(Cooper and Chapman, 1987). First, if X and Y are DPDs with m and n 

doublets respectively, then Z = f(X,Y) has mn doublets, so a series 

of operations on DPDs will quickly lead to storage problems unless some form 

of aggregation is taken. Aggregation requires that the range of Z be 

divided into intervals in some way. Doublets with z-values within a 

specified interval can now be combined into a single new doublet <p,z> 

with p =^pj and z=h(zj), where the summation is over the doublets in 

the interval and h is an aggregation function such as an arithmetic 
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or geometric mean. This is not likely to be major problem in practice. 

The second problem area is more serious. Discrete distribution procedures 

involve inherent bias relative to comparable continuous distribution 

treatment. Using very large numbers of doublets will limit this bias, 

but because a DPD approach ignores it, it cannot be controlled. It 

will accumulate over successive operations, and substantial computational 

effort is necessary to maintain reasonable confidence in the results. 

The third problem area is also serious. The operations DPDs which 

have been described above assume independence between the base variables, 

an important practical limitation. 

Interval and Histogram Representations 

An alternative representation of base variable distribution is a histogram. 

With this representation the analytic convolution formulae become sums 

rather than integrals, and the calculations are both simple in concept 

and straightforward computationally. Several different histogram 

representations are possible, based on intervals of equal width (Driscoll, 

1980; Chapman and Cooper, 1983a) or equal proability (Colombo and jaarsma, 

1980). The Controlled Interval and Memory (CIM) approach, developed by 

Chapman and Cooper (1983a) is normally based on histograms with intervals 

of equal width within each distribution and different width for different 

distributions. Like discrete probability distribution approaches, approaches 

based on interval and histogram representations involve inherent bias. 

However, in the CIM framework the bias can be considered and controlled, 

drawing upon functional and numerical integration techniques, greatly 

reducing the computation required to maintain confidence in the results. 

Further, the CIM framework allows flexible treatment to dependence. 

The next two sections of this chapter provide a simple common interval 

example of the controlled interval (CI) approach. 
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Example Problem: 

The Kentucky Power and Light Company (KP&L) is currently starting work on 

a project designed to increase the power capacity of its plants. The 

project is divided into two major stages: stage 1 (design) and stage 

2 (construction). While each stage will be scheduled and controlled 

as thoroughly as possible, ultimately each stage of the project will 

be completed either earlier than scheduled, later than scheduled, or 

on time. 

KP&L is primarily concerned with the delay problems that occur whenever 

a stage of the project is completed late. Such probems are of major 

concern to KP&L because they cause cost overruns and require additional 

managerial effort to reschedule related phase of the project. Thus, 

KP&L^ management would like a thorough analysis of the project, including 

probability assessments for encountering stage-delay problems (Anderson, 

Sweeney, and Williams, 1978). 

In order to clarify the concept of CI approach to addition of probabilistic 

variables let us consider above example with proposed data in the context 

of risk analysis. 

The objective of the risk analysis in this example is to determine the 

probability of completing the two sequential stages on time. 

Subsequent sections illustrate the progress of the analysis. 

COMMON INTERVAL ADDITION 

The first stage is 'design'. A simple CI (common interval) definition 

of the uncertainty associated with this stage uses three durations D1 

for this stage in months,with associated probabilities, P(D1), as 

indicated in Table 3.3. 
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Table 3.3: Design distribution, D1 months. 

D1 P(D1) 

2 0.3 

3 0.5 

4 0.2 

Two alternative interpretation of this tabular representation are possible, 

both useful on occasion. One is the discrete probability tree of Figure 

3.1. The other is the rectangular histogram of Figure 3.2, or the 

equivalent cumulative form of Figure 3.3, where the durations are 

central classmarks for values over the intervals 1.5 -2.5 months, 2.5 

- 3.5 months and 3.5 - 4.5 months. Smooth curves can be used in Figures 

3.2 and 3.3, but for most purposes the simplicity employed here is preferable. 

2 0.3 

3 0.5 

4 0 . 2 

Figure 3.1 
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Only three cells were used for this example, but computer sofware can 

allow distributions to be specified in this form using any number of 

D1 values. A graphical approach using a smooth curve version of Figure 

3.3 can be convenient in this context. Computer software can also generate 

distributions in this form from conventional distributions specified 

in terms of parameters, like the minimum, maximum and most likely values 

used to define PERT Beta distributions. 

Experience in a project planning context suggests this flexibility and 

generality is occasionally invaluable and never unwelcome. 

The next stage is 'construction' . A simple CI definition of the uncertainty 

associated with this stage uses three durations D2 for this stage in months, 

with associated probabilities, P(D2), as indicated in Table 3.4. 

Table 3.4; Construction distribution, D2 months. 

D2 P(D2) 

6 0.3 

7 0.6 

8 0 . 1 

Figure 3.4 shows discrete probability tree and Figure3.5 shows rectangular 

histogram of this tabular representation. 

6 0.3 I 

0.6 

0 . 1 

Figure 3.4 
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Figure 3.5 
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Design and construction are assumed to have independent duration distribution. 

Adding their duration distributions, to determine the duration distribution 

for the combination of 'design' followed by 'constructioncan be performed 

using a two-level probability tree. 

A simple representation of the probability tree is provided in Figure 

3.6, D1 defining three branches, each of which is associated with three 

D2 branches. Table 3.5 provides a tabular form of this tree. Implied 

values of P(Da), Da = D1 + D2, the joint distribution of design plus 

construction, may be obtained from the probability tree in the normal 

way, as shown in Figure 3.5 and Table 3.5. However, the common interval 

form allows the simplified approach illustrated in Table 3.6. Each 

possible combination of D1 and D2 is considered, the joint probabilities 

producing the computation entries, and the entries associated with the 

same Da value are summed. If we do not need to remember D1 or D2 

individually, we can choose to remember only their sum Da. 
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D1+D2 

D1 

0.3 

0.5 

4 0 . 2 

0.3 

0.6 

0.1 

0.3 

0.6 

0.1 

0.3 

0.6 

0 . 1 

10 

10 

11 

10 

11 

12 

0.09 

0 .18 

0 .03 

0.15 

0.30 

0 .05 

0 .06 

0 .12 

0 .02 

Figure 3.6 
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Table 3.5: Two level probability tree for design and construction. 

DESIGN CONSTRUCTION DESIGN PLUS CONSTRUCTION 

D1 P(D1) D2 P(D2) Da P(Da) 

2 0.3 6 0.3 2 + 6 = 8 0.3x0.3=0.09 

7 0.6 2 + 7 = 9 0.3x0.6=0.18 

8 0.1 2+8 = 10 0.3 X 0.1 = 0.03 

3 0.5 6 0.3 3+6 = 9 0.5 x 0.3 = 0.15 

7 0.6 3+7 = 10 0.5 X 0.6 = 0.30 

8 0.1 3+8 = 11 0.5 X 0.1 = 0.05 

A 0.2 6 0.3 4+6 = 10 0.2x0.3 = 0.06 

7 0.6 4+7 = 11 0.2 X 0.6 = 0.12 

8 0.1 4+8 = 12 0.2 X 0.1 = 0.02 
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Table 3.6: The simplified computation for 'design' plus 'construction'. 

in the case where the individual 'design' and 'construction' 

intervals do not need to be remembered. 

DESIGN PLUS CONSTRUCTION 

Da Computation 

8 0.3 X 0.3 = 0.09 

9 0.3 X 0.6 + 0.5 X 0.3 = 0.33 

10 0.3 X 0.1 + 0.5 X 0.6 + 0.2 x 0.3 = 0.39 

11 0.5 X 0.1 + 0.2 X 0.6 = 0.17 

12 0 . 2 + 0 . 1 = 0 .02 

For illustrative simplicity, the same interval widths have been used 

for both distributions and only three classes. In practice, more intervals 

are normally used, with different interval widths for each component 

distribution and the result, but a constant interval within each distribution. 

The procedures used here are very basic special cases, but they are 

important as a basis of understanding for all those involved in actual 

studies. 

COMPUTATION ERROR AND COMPUTATION GENERALIZATION 

Had we chosen to interpret the Di values of Tables 3.3 and 3.4 as integer 

values, we could interpret the Da values of Table 3.6 as integers, and 

the P(Da) computation of Table 3.6 would be precise and error free. 

Alternatively, had we chosen to interpret the Di and P(Di) of Tables 

3.3 and 3.A as doublets which represented the limits of our state of 

knowledge in the Discrete Probability Distribution (DPD) sense, the 

Da and P(Da) of Table 3.6 would represent the limits of our state of 

knowledge, implicitly admitting but explicitly ignoring any computation 

error associated with "knowledge" not available. 
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Having interpreted the Di as classmarks with associated class boundaries, 

representing very large sets of integer values, classified or grouped, 

with continuous variable Di being a speical limiting case, we must 

recognise a source of computation error. 

Some of this computation error arises because values in the top half 

of one class together with values in the top half of another class may 

be associated with a joint classmark value which is one class too low. 

For example, in Table 3.6, the probability associated with DI = 2.4 

and D2 = 6.4 is associated with a joint duration Da = 2 + 6 = 8. As 

2.4 + 6.4 = 8.8, it should be associated with a joint duration Da = 9. 

A corresponding computation error arises because values in the bottom 

half of one class together with values in the bottom half of another 

class may be associated with a joint classmark value which is one class 

too high. For example, in Table 3.6, the probability associated with 

DI = 3.6 and D2 = 7.6 is associated with a joint duration Da=4+8=12. As 

3.6+7.6=11.2, it should be associated with a joint duration Da=ll. 

If the original classes for Dl=3 and D2=6 are interpreted as rectangular 

histograms, functional integration shows that the joint distribution 

Da is a triangle (Figure 3.6.) 

0.5 

+ 

0.3 

0.15 

DI = 3 D = 6 Da = 8 9 10 

Figure 3.6 

Most of the misallocation of probabilities cancels out, but some residual 
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remains. In particular, modal probability values are over-estimated, 

and extreme values are ignored. In this sense the joint distribution 

of Table 3.6 under-estimates risk, a distribution in density form free 

from computation error being slightly wider and flatter. 

Complete elimination or partial reduction of this computation error 

within the CI framework can be achieved via one or more of five approaches: 

derived correction factors; 

interpolated correction factors; 

more classes; 

empirically determined correction factors; or 

more allocations. 

Chapter 9 provides complete discussion of above mentioned approaches. 

Now return to the example problem. Consider the example PERT network 

shown in Figure 3.7. Assuming duration times are discretely distributed, 

an exact project completion time can be obtained from probability tree 

of Figure 3.6 

^ Design ,—^ Constructio 

Figure 3.7 

using equation (2.13) as follows; 

E(Tĵ )=eĵ = y Tĵ (A). pCy(A)3 (2.13) 

y(A) 

e^ = 8x0.09+9x0.18+10x0.03+9x0.15+10x0. 30+11x0 .05+10x0.06+11x0 .12+12x0.02 

= 9.7. 
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Or, we can use Table 3.6 and the following equation. 

(3.1) 
V 

6] - ^Da.P(Da) 

therefore. 

Da 

eg = 8x0.09+9x0.33+10 xO.39+11x0.17+20x0.02 

= 9.7 . 

Using the basic PERT procedure, 

V 
gj = max ^gi+Yij ( 2 . 1 4 ) 

where, ^\2 ~ 2x0.3+3x0.5+4x0.2 = 2.9 and 

Y23 = 6x0.3+7x0.6+8x0.1 = 6.8 

gg, can be computed as follows: 

81 = 0 

§2 = max {g]̂  + Y12} = max {0+2.9} = max {2.9} = 2.9 
i i i 

g3 = max {g2 + Y23} = max {2.9+6.8} = max {9.7} = 9.7. 
i i i 

For this example, the project completion time obtained using a basic 

PERT solution procedure was found to be equal to the exact project completion 

time, because the project consists of only series activities. 

Now consider two similar projects as one integrated project as shown 

in Figure 3.8. 

Construction 
Design 

Design 
Construction 

Figure 3.8 

Since this network consists of 4 stages and each stage can take 3 values, 

in evaluation of its completion time, 3'̂ = 81 deterministic problems 
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need to be solved. Complete enumeration is a burdensome time consuming 

task. However, the same result can be obtained by taking the maximum 

of the duration times of paths 1-2-4 and 1-3-4. 

Let, denote resultant of Design and Construction in each sequence of 

Figure 3.8 as shown in Figure 3.9. 

Da 

TTT. 
Figure 3.9 

The duration distribution of Da is summarised in Table 3,7. 

Table 3.7: Da distribution in months. 

Da P(Da) F(Da) = CP(Da) 

8 0.09 0.09 

9 0.33 0.42 

10 0.39 0.81 

11 0.17 0.98 

12 0 .02 1 .0 

Taking the maximum of the duration times of the similar activities of 

Figure 3.9 gives the df of the project completion time.Table 3.8 shows 

this process. 
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Table 3.8 Project completion time of Figure 3.8. 

T4 P(T4) 

8 

9 

10 

11 

12 

0.09x0.09 

0.42x0.42-0.09x0.09 

0.81x0.81-0.42x0.42 

0.98x0.98-0.81x0.81 

1 x 1 -0.98x0.98 

= 0 .0081 

= 0.1683 

= 0.4797 

= 0.3043 

= 0.0396 

E = ^ T4. P(T4) = 8x0.0081+9x0.1683+10x0.4797+11x0.3043+12x0.0396 = 10.199 

T4 

Using the basic PERT procedure, g^ is found to be 9.7, which is exactly 

equal to project completion time of Figure 3.7. As mentioned in the 

previous chapter, the basic PERT procedure does not consider the effects 

of parallel activities in the evaluation of project completion time. 

In this example, the basic procedure calculated mean (g^ = 9.7) is 

approximately 4.9% less than actual mean (E = 10.199 = e^). This bias ig an 

increasing function of the number of parallel paths, as shown in graph 

3.1, obtained by complete enumeration. 

15 

o u u 
w 

g 
o 
w 
a) 

p-i 

10 

N= 1 10 

Number of similar parallel paths 
Graph 3.1 
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Determination of the pdf of project completion time for completely reducible 

networks is a simple matter through repeated application of convolution 

and greatest operations using a CIM procedure. However, as mentioned 

in the previous chapter,for irreducible networks there is no way to 

combine the activities through convolution and greatest operations because 

the paths are correlated as a result of the common activities. In such 

cases the general principle to apply is to evaluate the pdf of the project 

completion time by conditioning project completion time on the values 

of common activities, and then removing the conditional nature to obtain 

unconditional pdf of project completion time. The generalized form of 

CIM procedure for irreducible networks proposed by Chapman and Cooper 

(1983a)is based on this general principle. In the following section 

structural dependence is examined through an example and the CIM treatment 

of this structural dependence is considered. 

Example 3.2: 

The example involves 5 activities: A,B,C,D and E precedence relationships 

are specified in Table 3.9 and shown in precedence (Activity-on-arc) 

diagram of Figure 3.10. 

Table 3.9: Activity list for example 3.2, with precedence relationships. 

NUMBER LABEL PREDECESSORS 

A 

B 

C 

D 

E 

A 

A 

B,C 
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Figure 3.10: Activity-on-arc precedence diagram. 

Table 3.10 shows the durations of the activities. For ease of calculations 

it is assumed that each activity has two duration times. Expected values 

and variances are also shown. 

Table 3.10: Project activity durations,in year units. 

L.A Xa = 

P = 

3 8 

0 . 8 0 . 2 

E = 4 , a = A 

2.B Xg = 

P = 

6 9 

0.6 0.4 

E = 7.2 , 0^=2.16 

3.C Xq = 4 6 

P = 0.3 0.7 

E =5.4 , a^= 0.84 

4.D Xj) = 4 5 

P = 0.9 0.1 

E = 4.1 , o2= 0.09 
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Table 3.10 (Concluded) 

5.E Xe = 1 2 

P = 0.5 0.5 

E = 1.5 , a2= 0.25 

The network contains three paths (1-2-4, 1-2-3-4 and 1-3-4), and the 

time required for project completion is given by T4 where, 

T4 = max {Z(Ti),Z(T2), Z^Tg)} (3.2) 

and Z(Ti) = X^+Xj) 

Z(T2) = XA+Xc+XE 

Z(T]) = Xg+Xg . 

The pdf of T4 can not be expressed as a product of the pdf's of Z(T]̂ ), 

Z(T2) and Z^Tg). The reason is that these three paths are structurally 

dependent: activity A is common to paths Z(T]̂ ) and Z(T2), and activity E 

is common to paths Z(T2) and Z^Tg). 

The CIM treatment of this structural dependence is as follows: 

1 - Retain a memory of common activity A through the network. 

2 - Determine the pdf of the project completion time in terms of 

distributions which are conditional upon the duration of A. 

3 -•Decondition the conditional pdf's by using the probabilities of 

specific A durations. 

The following section illustrates the computation procedure. 

Table 3.11 shows the time distributions for this procedure. In Table 

3.11A,Xa is the duration time of A which is equal to D's start time. 

This calculation format keeps a memory of A aspect of distribution 

functions of start and finish time of activities needed later in 

computation sequence. 
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Table 3.11A: Duration time of A. 

A=3 CON CP A=8 CON CP UNC.P 

X a = 3 0.8 1 1 0.8 

8 0 . 2 1 1 0 . 2 

E = 3 8 4 

Table 3.11B shows B's finish time. 

Table 3.11B: B's finish time. 

P CP 

^2 = 6 0.6 0.6 

9 0.4 1.0 

E = 7.2 

Convoluting A and C provides C's finish time, which is shown in 

Table 3.11C. The probabilities computed in Table 3.11C in the A = 3 

and A = 8 columns are joint probabilities, in the UNC.P column are 

unconditional probabilities, in the CP columns are cumulative probabilities 

and in the CON columns are conditional probabilities. 

Table 3.11C: C's finish time. 

A=3 CON CP A=8 CON CP UNC.P 

F3 = 7 0.8x0.3 = 0.24 0.3 0.3 0.24 

9 0.8x0.7 = 0.56 0.7 1.0 0.56 

12 0.2x0.3 = 0.06 0.3 0.3 0.06 

14 0.2x0.7 = 0.14 0.7 1.0 0.14 

E = 8.4 13.4 9.4 
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For example, 

P(A=3 and F3=7) = P(A=3).P(F3=7|A=3) 

= P(A=3).P(C=4) 

= 0.8 X 0.3 

= 0.24 , 

and E(F3|a=3) F3.P(F3(a=3) 

F3 

= 7 X P(F3=7|A=3) + 9 X P(F3= 9|A=3) 

= 7 x 0 . 3 + 9 x 0 . 7 

= 8.4 , 

or E(F3|a = 8) = ^ F3.P(F3|a = 8) 

F3 

= 12 X P(F3 = 12|A=8) + 14 X P(F3=14|A=8) 

= 12 X 0.3 + 14 X 0.7 

= 13.4 , 

and E(F3) = E(F3|a=3).P (A=3) + E(F3|a = 8).P(A=8) 

= 8.4 X 0.8 + 13.4 X 0.2 

= 9.4. 

Convoluting A and D provides D's finish time, which is shown in Table 

3.11D. 

Table 3.IIP: D's finish time. 

A=3 CON CP A=8 CON CP UNC.P 

F4 = 7 .8x.9=.72 .9 .9 .72 

8 .8x,1=.08 .1 1.0 .08 

12 .2x.9=.18 .9 .9 .18 

13 .2x.1=.02 .1 1.0 .02 

E = 7.1 12.1 8.1 
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Taking the maximum of the distributions F2 and F3 gives a new 

distribution which is the start time of E. Table 3.HE shows this 

distribution. 

Table 3. HE: E's start time. 

A=3 CON CP A=8 CON CP UNC.P 

S5 ' = 7 .144 .3x.6 = .18 .18 .144 

9 .656 1x1".3x.6 = .82 1.0 .656 

12 .06 .3x1 = .3 .3 .06 

14 '14 1x1-.3x1 = .7 1.0 .14 

E = 8.64 13.4 9.592 

For example, 

P(S5=7| |A=3) = CP(F2 ̂  7|A=3).CP(F3 ^7|A=3) 

= 0.6 X 0.3 

— 0.18 » 

P(S5=7 and A=3) = P (S5=7|A=3).P(A=3) 

= 0. ,18 X 0.8 

= 0. 144 , 

or 

P(S5=9 (A=3)=CP(F2 ̂ 9|A=3).CP(F3 <9|A=3)-CP(F2 < 9|A=3).CP(F3 <9|A=3) 

= 1 x 1 - 0 . 6 x 0 . 3 

= 0.82 , 

and 

P(S5=9 and A=3) = P(S5=9|A=3).P(A=3) 

= 0.82 X 0.8 

= 0.656 • 

Convoluting E and S5 gives E's finish time. Table 3.1IF shows this 

distribution. 



Table 3. IIF: E's 

A=3 

finish time. 

CON CP A=8 
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CON CP UNC.P 

F5 = 8 .072 .18X.5 = .09 .09 .072 

9 .072 .18x.5 = .09 .18 .072 

10 .328 .82x.5 = .41 .59 .328 

11 .328 .82x.5 = .41 1.0 .328 

13 .03 . 3x. 5 = .15 .15 .03 

14 .03 . 3x.5 = .15 .30 .03 

15 .07 . 7x. 5 = .35 .65 .07 

16 .07 . 7x.5 = .35 1.0 .07 

E = 10.14 14.9 11.092 

Taking the maximum of the distributions F4 and F5 gives distribution of 

the project completion time. Table 3.11G shows this distribution. 

Table 3.11G: Project completion time. 

A=3 CON A=8 CON UNC.P 

FP = 8 .072 .09 X 1 = .09 .072 

9 .072 .18x1-.09x1 = .09 .072 

10 .328 .59x1-.18x1 = .41 .328 

11 .328 1x1-.59x1 = .41 .328 

13 .03 .15x1 = .15 .03 

14 .03 .3x1-.15x1 = .15 .03 

15 .07 .65x1-.3x1 = .35 .07 

16 .07 1x1-.65x1 = .35 .07 

E = 10 .14 14.9 11.092 

As it is shown in Table 3.11G, the expected value of the project completion 

time is obtained by deconditioning the conditional expected values as 

follows: 
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E(FP) = E(FPjA=3).P(A=3) + E(Fp1A=8).P(A=8) 

= 10.14 X 0.8 + 14.9 X 0.2 

= 11.092 . 

The CIM procedure provides an exact pdf of each PERT network with discrete 

distribution functions if we retain memory of all common activities 

throughout the procedure. The retention of a single memory dimension 

for the network configuration of Example 3.2 involved preserving and 

working with a matrix of probabilities at each stage. This involved 

a slight increase in computational effort. The network configuration 

of Figure 3.11 needs five levels of memory (memory of A,B,C,J and F) 

up to node 6. It thus requires a six dimensional matrix of probabilities 

in final stage. In general, n levels of memory involve an (n+1)-

dimensional probability matrix. Large values of n make this approach 

computationally demanding. 

D 

Figure 3.11 

In order to minimize the computational implications of the memory aspect 

of the CIM approach this dissertation presents a procedure which solves 

the PERT network for various condition values of common activities, 

and then, by deconditioning conditional pdf's a pdf of project completion 

time is obtained. Detailed discussion of the proposed procedure for 

networks given discrete statistically independent distributionsand the 

algorithm are given in Chapter 4. However, a generalized form of the proposed 

procedure; 

(a) Provides an exact pdf for project completion time when the duration 

times of activities are discrete. 
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(b) Approximates the pdf of the project completion time when the 

duration times of activities are continuous. Approximation 

is due to: 

(i) discretizing continuous distributions. 

(ii) convoluting discrete approximations to continuous distribution. 

(c) Determines a criticality index for all activities and paths. 

(d) Allows statistical dependence between activities. 

SUMMARY AND CONCLUSIONS 

In this chapter the basic common interval form of the Controlled Interval 

and Memory (CIM) approach is introduced in the context of combining 

probabilistic variables. A histogram representation of probability 

distributions is used. The addition of independent distributions is 

interpreted as a probability tree, and 'collapsed' calculation patterns 

are derived. 

In the last section, structural dependence is examined through an example 

and the CIM treatment of the structural dependence is considered. This 

example has shown that the CIM procedure provides an exact pdf for project 

completion time in PERT networks with discrete distribution functions 

if we retain memory of all common activities throughout the procedure. 
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CHAPTER A; PROPOSED PROCEDURE 

INTRODUCTION 

This chapter provides detailed discussion of a proposed procedure and 

presents the algorithm of the proposed procedure for PERT networks when 

duration times of activities are discretely distributed and only structural 

dependence is present. Since the proposed procedure is mainly based 

on Carman's (1972) method of conditional sampling of stochastic networks, 

the first section looks briefly at conditional sampling methods. Detailed 

discussion of Monte Carlo methods and comparison between the proposed 

method based on a CIM approach and Monte Carlo methods is the subject 

matter of Chapter 10. 

Conditional Monte Carlo in The Simulation of Stochastic Networks 

Recall that the major reason for the breakdown of the analytic approach 

is the dependence relationships among paths due to common activities. 

If such correlation among paths is eliminated, the result would be 

a set of independent paths, and the df of the completion time would 

be the product of the dfs of the paths. Conditional Monte Carlo proposed 

by Burt and Carman (,1971a) is an approach using such independence to 

provide improved estimators of the pdf of the completion time. 

Consider once more the network of Figure 2.12. Recall that, Z(T]̂ ) = X^+Xq, 

Z(T2^ = X^+Xq+Xj;, and Z(T3)=Xg+X£. The straightforward simulation approach 

would take samples T^, Tg, Tq, Tg, and Tg, k=l,2,...,N, and form the 

estimate of T4 = max{Z(T]^), Z(T2), ZtT])}. 

Figure 2.12 
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If the values of random variables and Xg were fixed then the three paths 

of the network would be independent and unconditional pdf of project 

completion time is given by 

dFXAdfxE 

or = FD(t-XA)Fc(t-XA-XE)FB(t-XE)' (4-1) 
^A,ae 

In Conditional Monte Carlo the manner in which we set Xĵ  and Xg to constant 

values is by sampling them: fixing the random variables at some sample 

values. Expression (A.1) is then said to be "conditioned" on the fact 

that Xĵ  and Xg have taken on these sample values. 

The utility of the conditional sampling approach is crucially dependent 

on the ratio of unique activities to common activities. A unique activity 

is one which lies on a single path. The higher the ratio of unique 

activities to common activities the more useful is the conditional Monte 

Carlo approach. For example, when using the conditional Monte Carlo 

estimate for Wheatstone bridge of Figure 2.12 we need take only two 

samples per realization instead of five as required for the straightforward 

simulation. This is a saving of 60% of sampling effort. However, more 

efforts is involved in performing the multiplication of probabilities 

for each sample. Hence, the net reduction in effort may be only 50%. 

The process of conditioning enables us to apply an anlytical approach 

to the remainder of the network. This, in turn, means that we are able 

to use all the information available on the dfs of the activity durations, 

rather than just the sample values as in crude Monte Carlo. Consequently, 

the variability of the estimate T^ from its true value is greatly reduced. 

This is a positive and important gain. 

The conditional Monte Carlo sampling approach proposed by Burt and Carman 

(1971a) should contribute toward a more efficient procedure in two respects: 
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(a) by reducing the sampling effort itself because one need only sample 

from the nonunique activities and (b) greatly reducing the variability 

of the probability estimate because of our ability to utilize all the 

information on the df of the unique activities. The price to be paid for 

these two advantages is the added burden of multiplying out the conditional 

probabilitites. 

The following algorithm proposed by Burt and Carman (1971a) determines 

all unique activities in an arbitrary PERT network. 

1 - Check the start node with (/)• 

2 - Select any unchecked node, all of whose predecessor nodes are 

checked. This is "Currently Scanned Node" (C.S.N.). 

3 - If the C.S.N, has 2 or more immediate predecessor nodes or any 

immediate predecessor activities marked N, then mark all activities 

eggressing from the C.S.N, with the letter N. Check (/) the 

C.S.N. 

4 - If all nodes except the finish node are checked (/), continue; 

otherwise, return to step 2. 

5 - Check the finish node with (OO. 

6 - Select any remaining unchecked (̂ ()node, all of whose successor 

nodes are checked (/). This is the C.S.N. 

7 - If the C.S.N, has 2 or more immediate successor nodes or any 

successor activity marked n, then mark all activities immediately 

preceding the C.S.N, with an n. Check (^) the C.S.N. 

8 - If all nodes except the start node are checked (X), then stop; 

otherwise return to step 6. 

Stop. All activities not marked N or n are unique. All activities 

marked N or n are nonunique. 
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Example: 

/ 

The activity connecting nodes 1 and 4, and the activity connecting nodes 

2 and 5, are unique. 

Garman's Method 

A method for generalizing the conditional sampling approach from its 

current use of product-form estimators to the use of product/convolution-

form estimator is suggested by Garman (1972). Garman's approach requires 

fewer samples per realization at the expense of more computing because 

of the need to calculate the convolutions of functions. For example, 

consider again the Wheatstone bridge of Figure 2.12. The conditional 

Monte Carlo approach identified activities A and E as the common (nonunique) 

activities. This led to the sampling of and Xg. As an alternative, 

suppose we consider only X^ constant at T^. Then all paths to node 

4 will not be independent, but now there are two paths in parallel from 

node 1 to node 3, and series-parallel reduction methods to the network 

of Figure 2.12 yields the estimate 

F4(t)/x^ = {[FB(t)Fc(t-XA)]*FE(t)}FD (t- X^) (4.2) 

where the asterisk in (4.2) denotes the convolution operator. 

Thus we have reduced the number of activities sampled from two to only 

one - at the price of computing the convolution in (4.2). 

Carman's approach is based on Martin's (1965) series-parallel reduction 

of stochastic PERT networks and Hartley and Wortham's (1966) definitions 
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of crossed and multiple crossed networks. The basic idea is to (a) 

reduce the network as far as possible by series-parallel reduction; 

(b) eliminate crossing activities by conditional sampling of their 

predecessors or successors; (c) repeat (a) and (b) until the network 

is completely reduced; and (d) use the resulting estimator to estimate 

the network duration pdf. 

PROPOSED PROCEDURE 

The proposed procedure of this dissertation is mainly based on Carman's 

approach. However, instead of fixing the duration times of chosen activities 

at sample values, we conditionalize the chosen activities by fixing 

the random variables at their realization times. Therefore, for activity 

networks when the duration times of activities are continuously distributed, 

the first step of proposed procedrue is discretizing the continuous 

distributions. 

Discretizing the continuous distributions will be described in Chapter 8. 

Now for discretely distributed networks consider again the Wheatstone 

bridge of Figure 3.10 in order to clarify the proposed procedure. Recall 

that each activity of this network has two duration times. 

Figure 3.10 

By fixing on the first realization time of A, 3 and the first realization 

time of E, 1, changes the network of Figure 3.10 to that of Figure 4.1, 

and all path durations are independent. 
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3+D 

3+C+l 

Figure 4.1 

The pdf of the project completion time given = 3 and Xg = 1 can be 

computed as follows: 

Table 4.1 shows duration time of (3+D), Table 4.2 shows duration time 

of (3+C+l), and Table 4.3 shows duration time of (B+1). 

Table 4.1: Duration time of (3+D). 

P CP 

X(3+D)= 7 

8 

0.9 

0.1 

0.9 

1 . 0 

Table 4.2: Duration time of (3+C+l) 

P CP 

%(3+C+l)= 8 0.3 

10 0.7 

0.3 

1 .0 

Table 4.3: Duration time of (B+1) 

P CP 

%(B+1)= 7 

10 

0 . 6 

0.4 

0 . 6 

1 . 0 

Taking the maximum of these three parallel paths yields the pdf of the project 

completion time given Xp^ = 2 and Xg = 1, as shown in Table 4.4. 
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Table 4.4: Project completion time given = 3 and Xg = 1. 

EP = 8 

10 

0.3 X 0.6 = 0.18 

1 - 0.18 = 0.82 

E = 9.64 

Fixing on the first realization time of A and the second realization 

time of E changes the network of Figure 3.10 to that of Figure 4.2. 

3+D 

3+C+2 

Figure 4.2 

Table 4.5 shows the duration time of (3+C+2), and Table 4.6 shows the 

duration time of (B+2). 

Table 4.5: Duration time of (3+C+2). 

P CP 

%(3+C+2)= 9 0.3 

11 0.7 

0.3 

1.0 

Table 4.6: Duration time of (B+2). 

P CP 

%(B+2)= 8 

11 

0 .6 

0.4 

0 .6 

1.0 

Taking the maximum of the duration times of (3+D), (3+C+2) and (B+2) 

yields the pdf of the project completion time given X^ = 3 and Xg = 2. 
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Table 4.7: Project completion time given = 3 and Xg = 2. 

F P = 9 0 . 3 x 0 . 6 = 0 . 1 8 

11 1 - 0.18 = 0.82 

E = = 10.64 

Similarly, by fixing on the second realization time of A and the first 

realization time of E the network of Figure 3.10 changes to that of 

Figure 4.3. 

8+D 

8+C+l 

B+1 

Figure 4.3 

Table 4.8 shows duration time of (8+D), Table 4.9 shows duration time 

of (8+C+l). 

Table 4.8: Duration time of (8+D). 

P CP 

X(8+C+l)= 12 

13 

0.9 

0 . 1 

0.9 

1 . 0 

Table 4.9: Duration time of (8+C+l). 

P CP 

X(8+C+l)= 13 

15 

0.3 

0.7 

0 . 3 

1 . 0 

Taking the maximum of the duration times of (8+D), (8+C+l) and (B+1) 

yields the pdf of the project completion time given X^ = 8 and Xg = 1. 
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Table 4.10: Project completion time given = 8 and Xg = 1. 

FP = 13 

15 

0.3 X 1 = 0.3 

1 - 0.3 = 0.7 

E = 14.4 

Finally, by fixing on the second realization time of A and the second 

realization time of E the network of Figure 3.10 changes to that of 

Figure 4.4. 

Figure 4.4 

Table 4.11 shows the duration time of (8+C+2). 

Table 4.11: Duration time of (8+C+2). 

P CP 

X(8+C+2)= 14 

16 

0.3 

0.7 

0.3 

1.0 

8+D 

8+C+2 

B+2 

Taking the maximum of the duration times of (8+D), (8+C+2) and (B+2) 

yields the pdf of the project completion time given X^ = 8 and Xg = 2. 

Table 4.12; Project completion time given X^ = 8 and Xg = 2. 

FP = 14 

16 

0.3 

0.7 

E = 15.4 

By deconditioning the pdfs of project completion times of Tables 4.4, 
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4,7, 4.10 and 4.12, the unconditional pdf of project completion time 

is obtained. 

Tables 4.13 through 4.16 show the unconditional pdf of Tables 4.4, .4.7, 

4.10 and 4.12 respectively. 

Table 4.13: Unconditional pdf of Table 4.4.(P(X^=3).P(Xe=1)=0.8x0.5=0.4)• 

FP = 8 0.18 X 0.4 = 0.072 

10 0.82 X 0.4 = 0.328 

Table 4.14: Unconditional pdf of Table 4.7.(P(X^ = 3).P(Xe =2)=0.8x0.5=0.4). 

FP = 9 0.18 X 0.4 = 0.072 

11 0.82 X 0.4 = 0.328 

Table 4.15: Unconditional pdf of Table 4.10.(P(X^=8).P(Xg=l) = 0.2x0.5=0.1), 

FP = 13 0.3 X 0.1 = 0.03 

15 0.7 X 0.1 = 0.07 

Table 4.16: Unconditonal pdf of Table 4.12. (P(Xj^=8) .P(Xg=2)=0.2 x 0.5=0.1). 

FP = 14 0.3 X 0.1 = 0.03 

16 0.7 X 0.1 = 0.07 

Simple addition of probabilities for each realization time of Tables 

4.13 through 4.16 gives the unconditional pdf of project completion time 

as shown in Table 4,17. 
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Table 4.17: Unconditional project completion time. 

EP = 8 0.072 

9 0.072 

10 0.328 

11 0.328 

13 0.030 

14 0.030 

15 0.070 

16 0.070 

E = 11.092 

As an alternative, suppose we conditionalize A only. Then all paths 

will not be independent, but now the network would be subject to series 

- parallel reduction. 

Figure 4.5A shows the network of Figure 3.10 conditioning A at its first 

realizatin time, 3. Figure 4.5B shows the network of Figure 3.10 

conditioning A at its second realization time, 8. 

D+3 

Figure 4.5A 

D+8 

Figure 4.5B 

Taking the maximum of (C+3) and B gives F as shown in Figure 4.6A. Taking 

the maximum of (C+8) and B gives H as shown in Figure 4.6B. 
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D+3 

Figure A.6A 

D+8 

Figure 4.6B 

Determining the pdf of the networks of Figure 4.6A and 4.6B is a simple 

matter. Finally, by deconditioning the pdf's of these networks, the 

pdf of the main network which is the network of Figure 3.10 is obtained. 

The calculation procedure is as follows, where * denotes convolution 

and . denotes greatest operation. 

Tables 4.18A through 4.18F show the calculation procedure to determine 

the project finish time of Figure 4.6A given A=3. 

Table 4.ISA: Duration time of (D+3). 

P CP 

7 0.9 0.9 

8 0.1 1.0 

E = 7.1 

Table 4.18B: Duration time of 

P 

(C+3). 

CP 

7 0.3 0.3 

9 0.7 1.0 

E = 8.4 
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Table 4.18C: Duration time of B. 

P CP 

6 0 .6 0 . 6 

9 0.4 1.0 

E = 7.2 

Table 4.18D: Duration time of B.(C+3)=F • 

P CP 

7 0.6 X 0.3 = 0.18 0.18 

9 1x1 - 0.18 = 0.82 1.0 

E = 8.64 

Convoluting E and F of Figure 4.6A gives G as shown in Figure 4.7A. 

Table 4.18E shows duration time of G. 

Table 4.18E Duration time of G = F"E . 

CP 

8 0.18 X 0.5 = 0.09 0.09 

9 0.18 X 0.5 = 0.09 0.18 

10 0.82 X 0.5 = 0.41 0.59 

11 0.82 X 0.5 = 0.41 1.0 

D+3 

Figure 4.7A 

E = 10.14 

Taking the maximum of the durations of (D+3) and G gives the project 

completion time given A=3, as shown in Table 4.18F. 
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Table 4.18F: (Project finish time | A=3)=G.(D+3) . 

P 

8 0.09 X 1 =0.09 

9 0.18 X 1 - 0.09 X 1 = 0.09 

10 0.59 X 1 - 0.18 X 1 = 0.41 

11 1 x 1 0.59 X 1 = 0.41 

E = 10.14 

Tables 4.18G through 4.18K show the calculation procedure to determine 

the project finish time of Figure 4.66 given A=8. 

Table 4.18G: Duration time of (D+8). 

P CP 

12 0.9 0.9 

13 0.1 1.0 

E = 12.1 

Table 4.18H: Duration 

P 

time of (C+8). 

CP 

12 0.3 0.3 

14 0.7 1.0 

E = 13.4 

Table 4.181: Duration 

P 

time of B. 

CP 

6 0.6 0.6 

9 0.4 1.0 

E = 7.2 
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Table A.18J: Duration time of H=B.(C+8) . 

P CP 

12 0.3 0.3 

14 0.7 1.0 

E = 13.4 

Convoluting H and E gives I as shown in Figure 4.7B. 

Table 4.18K: Duration time of I=H*E • 

P CP 

D+8 

Figure 4.7B 

13 0.3 X 0.5 = 0.15 0.15 

14 0.3 X 0.5 = 0.15 0.30 

15 0.7 X 0.5 = 0.35 0.65 

16 0.7 X 0.5 = 0.35 1.0 

E = 14.9 

Taking the maximum of the durations of (D+8) and I yields the project 

completion time given A=8, as shown in Table 4.18L. 

Table 4.18L: (Project finish time|A=8)=I.(D+8) • 

P 

13 0, . 15 X 1 = 0, ,15 

14 0, .30 X 1 • - 0, ,15 X 1 = 0. ,15 

15 0, ,65 X 1 • - 0. ,30 X 1 = 0, ,35 

16 1 X 1 - 0, ,65 X 1 = 0. ,35 

E = 14.9 

By deconditioning the pdfs of project finish time of Tables 4.18F and 

4.18L the unconditional pdf of project finish time is obtained. 
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Table 4.18M shows the unconditional pdf of Table 4.18F. 

Table 4.18M: Unconditional pdf of Table 4.18F. 

8 0.09 X 0.8 = 0.072 

9 0.09 X 0.8 = 0.072 

10 0.41 X 0.8 = 0.328 

11 0.41 X 0.8 = 0.328 

Table 4.18N shows the unconditional pdf of Table 4.18L 

Table 4.18N: Unconditional pdf of Table 4.18L. 

13 0.15 X 0.2 = 0.03 

14 0.15 X 0.2 = 0.03 

15 0.35 X 0.2 = 0.07 

16 0.35 X 0.2 = 0.07 

Simple addition of probabilities for each realization time of Tables 

4.18M and 4.18N gives the unconditional pdf of project finish time as 

shown in Table 4.18P. 

Table 4.18P: Unconditional Project finish time. 

EP = 8 0.09 X 0.8 0.072 

9 0.09 X 0.8 = 0.072 

10 0.41 X 0.8 = 0.328 

11 0.41 X 0.8 = 0.328 

13 0.15 X 0.2 = 0.030 

14 0.15 X 0 . 2 = 0.030 

15 0.35 X 0.2 = 0.070 

16 0.35 X 0.2 0.070 

E = 11.092 
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Tables 4.17 and 4.18P show the same exact pdf of the project completion 

time. In the first approach, in order to determine the pdf of project 

completion time by conditioning at all realization times of common activities 

the network was solved 2 x 2 = 4 times, while in the second approach 

at the expense of more computation effort in convolution operations 

the number of the times which the project needed to be solved was reduced 

from 4 to 2. Following examples show the efficiency of the second 

approach. 

SECOND EXAMPLE 

Consider the Double Wheatstone bridge of Figure 4.8. This network is 

irreducible and may not be further simplified by convolution and greatest 

operations. However, suppose we conditionalize by first realization 

time of A, (T^)- Since we may now consider A constant (value of its 

first realization time), we may reduce network of Figure 4.8 to that 

of Figure 4.9, where I=G+T^ and J=D+T^. The pdf's of these random variables 

are Fj(t)=FQ(t-T^) and Fj(t)=Fg(t-T^), which are now independent. Now J 

and B are parallel activities and so may be replaced by K as in Figure 

4 . 1 0 , where K has the pdf F j i;(t ) = F B(t ) F j)(t - T ^ ). Next, suppose we 

conditionalize by first realization time of C, (Tq). The network of 

Figure 4 . 1 0 is then equivalent to that of Figure 4.11, where L = F + T q and 

M=H+Tq. Now, however the network of Figure 4.11 is subject to complete 

series-parallel reduction. 

Figure 4.8 
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Figure 4.9 

Figure 4.10 

Figure 4.11 
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In the above example in order to reach a completely reducible network 

we conditionalized two activities (A and C). Assuming each activity 

has three realization times, for determination of project completion 

time the project is needed to be solved 3^=9 times, where 3 is the number 

of the realization times of each conditionalized activity and 2 is the 

number of the activities which have been conditionalized. 

We take advantage of a statement in chapter two to minimize calculation 

effort in our proposed procedure. Recall that we stated that "if all 

arrows in a directed acyclic network, such as in PERT, are reversed, 

the average duration of the project, êq remains unchanged". 

Figure 4.12 shows Figure 4.8 with reversed arrows. 

Figure 4.12 

Suppose we conditionalized network of Figure 4.12 by first realization 

time of E, (Tg). Since we may now consider E constant (value of its 

first realization time) we may reduce network of Figure 4.12 to that 

of Figure 4.13, where N=D+Tg, 0=B+Tg and P=F+Tg. Now, the network 

of Figure 4.13 is subject to complete series-parallel reduction. Notice 

that the nodes in Figure 4.12 are numbered such that an arrow leads 

from a smaller numbered node to a larger one. 
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Figure 4.13 

Since each activity has three realization times and by conditioning 

only one activity (E), the project is reached to a completely reducible 

form, therefore, in order to determine the pdf of project completion 

time the project is needed to be solved 3 times. Comparing with the 

9 times of the previous case (project as given) approximately 67% saving 

in computation time is very considerable. Notice that since there are 

3 common activities (A,C and E) using the first approach (i.e. 

conditioning at realization times of all common activities) the network 

is needed to be solved 3 = 27 times. Using CIM approach we need to 

retain memory of A and C in network as given (Figure 4.8), and memory 

of E in network with reversed direction of arrows (Figure 4.12). 

THIRD EXAMPLE 

Consider activity network of Figure 4.14. This network is taken from 

(Van Slyke, 1963). 

Figure 4.14 
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By convoluting I and N, network of Figure 4.14 can be reduced to network 

of Figure 4.15. 

where Z = I*N 
Figure 4.15 

Following networks show the reduction process of Figure 4.15 by conditioning 

at first realization time of each appropriate activity in each iteration. 

where, 

X=T^+E 

Y=T^+C 

Figure 4.16 
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T:+H 

Figure 4.17 

Figure 4.18 

Figure 4.19 
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Figure 4.20 

Figure 4.21 

Figure 4.22 
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T*+Z 

T„+J 

Figure 4.23 

Now the network of Figure 4.23 is completely reducible. Using forward 

pass (network as given) minimum number of activities needed to be 

conditionalized to reach a ccnpletely reducible form is 5 including A,B,U,V 

and X. 

Now let us reverse all arrows of Figure 4.15. 

Figrue 2.24 shows Figure 4.15 with reversed arrows. 

Figure 4.24 

The following networks show the reduction process of Figure 4.24 by 

conditioning at first realization time of each appropriate activity 

in each iteration. Notice that the nodes in Figure 4.24 are numbered 

such that an arrow leads from a smaller numbered node to a larger one. 
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Figure 4.25 

Figure 4.26 

Figure 4.27 
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Figure 4.28 

Figure 4.29 

Figure 4.30 
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The network of Figure 4.30 is completely reducible. Using backward 

pass minimum number of activities needed to be conditionalized to reach 

a completely reducible network for this example is 3, including K, c 

and e. Assuming on average each conditionalized activity has 5 realization 

times, in forward pass the project needs to be solved 5^= 3125 times, 

while using backward pass the project needs to be solved 5^= 125 times, 

which needs 4% of the computation effort required in forward pass. 

Considering 96% saving in computation effort in this example and approximately 

67% in the first example by using backward pass instead of forward pass 

it is worth testing the project before applying the main algorithm to 

see the project as given, or the project with reversed arrows needs 

the minimum number of activities to be conditonalized. 

Notice that in Figure 4.15 all activities except activity Z are common 

activities, therefore, by using the CIM approach we need to retain a memory 

of activities A,B,C,D,E and H up to node 9. Also in Figure 4.24 by 

using the CIM approach we need to retain a memory of activities K,M,L,F 

and G up to node 8. 

A GENERAL ALGORITHM 

The following section presents the algorithm. The approach is based 

on Martin's (1965) series parallel reduction of stochastic PERT networks. 

Ringer's (1969) conditioning on particular activity times and Carman's (1972) 

conditional sampling of stochastic networks. The general method of inplenEntation . 

is based on the following theorem which has been proved by Garman (1972). 

THEOREM 1. Any irreducible network will possess (1) at least one activity 

'a' such that 'a' has more than one successor while each of its successors 

has only 'a' as a predecessor; and (2) at least one activity 'b' such 

that 'b' has more than one predecessor while each of its predecessors 
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has only 'b' as a successor. 

PROOF Consider the set of all activities which emanate from the 

network's source. If the network is irreducible, there must be at least 

one of these activities like 'a' which precedes a set of activities 

which are preceded by no other activity (otherwise, the network would 

either by cyclic or subject to parallel reduction). If this set consists 

of only one activity, the network would be subject to series reduction. 

Therefore we have proved (1); to prove (2), we simply consider activities 

entering the terminus in analogous fashion. 

The reduction process (STEP I) of the following algorithm is developed 

by Dodin (1985a), this process is also used in Steps III and V with 

some changes. 

THE ALGORITHM 

STEP I - Reduce the network to its irreducible form using convolution and 

greatest operations. The logic used to effect all possible 

reductions in the network is stated in the following by the 

name REDUCE. 

The reduction process (REDUCE). The following steps are used 

to identify and perform all the convolution and multiplication 

operations in the network: 

(1) Calculate l(i) and 0(i), the indegree and outdegree, for 

all nodes j=l,2,....,N in the network G(N,A). 

(2) If l(i)+0(i) > 3 for all j#l,N then the network is irreducible; 

stop. If on the other hand l(i)+0(i)=2 for at least one 

j5̂  1,N then the activity network is reducible since a 

convolution operation is possible; if it is carried out 
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it might give rise to multiplication and convolution 

operations. Go to 3. 

(3) Use the scanning operator, denoted by SCAN, described 

below to identify all the convolution and multiplication 

operations, i.e. 

SCAN: G(N,A) > G(N^!A^; 

(1) (1) 

where N <N and A <A. The following are the steps of 

SCAN: 

(a) Rank the arcs in A from 1 to A such that for any 

two arcs p=(ij)€A and q=(lk)€A p<q if i<l; if i=l 

then j<k. Set the arc indicator 5(p)=l for all 

p=l,2,...,A, M=A, and K=1. 

(b) If 6(K)=0, go to e; otherwise let i be the start 

node of arc K and j be its end node, and set J=1. 

(c) If 6(J)=0 or J=K, go to d; otherwise let a be the 

start node of arc J and g be its end node, then check 

for the conditions of either a multiplication or 

a convolution operation; if i=a and j=|3 then K and 

J define a multiplication operation; do the necessary 

bookkeeping, and set 6(K)=0, 6(J)=0, M ^ M+1 and 

6(M)=1, then go to e. If not, then if either (i) 

j=(x and l(i)=0(i) = l, or (ii) i=p and l(i)=0(i) = l, 

then K and J define a convolution operation ; do the 

necessary bookkeeping > and set 6(K)=0, 6(J)=0,M M+1 

and 6(M)=1, then go to e. 

(d) Set J ^ J+1. If J >M, go to e; otherwise go to c. 

(e) If K = M, stop; otherwise set K ^ K+1 and go to b. 

( 1 ) / 

If A =1 (i.e. the network is reduced to an equivalent activity starting 

in node 1 and ending in node N) stop. The pdf of the duration of this 

final activity is equal to F(t). 
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^ (1 ) ( 1 ) ( 1 ) 

If A f1, then A ^ 5,N ^ and G(N ,A ) is the corresponding irreducible 

network of G(N,A). In this case the pdf of is obtained through the use 

of Conditioning Process presented in STEP II. Set (i) -> (i+1), KF=0, 

then go to STEP II. 

The reduction process described above starts with a convolution operation, 

then a sequaice of multiplication and convolution operating may follow 

in any order. The process may start with any of the initial convolutions 

available without fear of missing any convolution or multiplication 

operation; this is clear from step 3 above. The reduction process does 

not alter the realization of Tf̂  or its pdf. 

STEP II - Conditioning Process 

(i) 

(a) All nodes in N are in ascending order i.e. an arc leads 

from a smaller number node to a larger one. Set the 

node indicator y (i')=0 for all i'=immediate succeeding 

node number of node 1, L'=greatest node number in i', 
(i) 

and set node indicator Y(k')=l for all k'eN , and k'^i', 

I'=2. 

(b) If y(I')=1> go to j;otherwise let 1(1') be the indegree 

of node I' and 0(1') be its outdegree, and set J'=2. 

(c) If y(J')=1 or J'=I', go to i; otherwise let l(J') be 

the indegree of node J' and O(J') be its outdegree, then 

check for the condition of conditioning operation ; if I(J^1 

or r(J)-l(l')=l and O(I') ^ O(J'), set y(J')=l then go to d; 

otherwise set y(I')=1, then go to j. 

(d) Set J' -> J'+l. If J' > L', go to e; otherwise go to c. 

(e) Use conditioning operator, denoted by COND, described 

below to identify conditioning operation, i.e. 
(i)(i) (i+1) (i+1) 

COND: G(N ,A ) ̂  G(N ,A ) 
(i+1) (i) (i+1) (i) 

where N =N -1 and A =A -1 
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The following are the steps of COND: notice that activity 

p'=(ll') is chosen to be conditionalized. 

(f) Determine the set of A(l'), which is the set of activities 

emanating from node I', these activities are in ascending 

order from I" to J". Set the arc indicator 6(q')=0 for 

all q'=I", M"=J" , L"=I" , K"=I"-1. 

Notice that K" denote number of resultant activity. 

(g) If 6(L")=1> go to h; otherwise for each activity (l'j")eA(I'), 

convolute the first realization time of p'=(lf) with 

FjijrT(y), i.e. Tp( with the distribution function of 

Yjij", denote this convolution by F^juCy). 

Therefore, for any value t > 0, 

F}jn(y)=Pr(T^, <t) 

Pr(Yj I jii=y)Pr(Tpi <t-y) . 

Do the necessary bookkeeping and go to h. 

(h) Set K" ->• K"+l, then if 6(L")=1 set 6(K")=0; otherwise 

set 6(K")=1. Then if L"=M", set 6(p')=0, Y(I')=0> 

^ G(N(i+l),A(i+l)), KF KF+1, and go 

to STEP III; otherwise set L" ->• L"+l and go to g. 

(i) Set J' ^ J'+l. If J' > L', go to j; otherwise go to c. 

(j) If I'=L', go to e; otherwise set I' -> I'+l and go to b. 

STEP III - Reduction Process 

Use the scanning operator, denoted by SCAN, described below 

to identify all the convolution and multiplication operations 

i.e. 

SCAN: G(N(i),A(i)) ^ G(N( i+D , A( i+D ) 

where < N(i) and A(i^l)<A(i). The following are the 

steps of SCAN: 



107 

(a) For all the arcs in G(N(i),A(i)), set the arc indicator 

6(1')=1, M=greatest arc number in and K=smallest 

arc number in A(i). 

(b) If 6(K)=b, go to e; otherwise let i be the start node 

of arc K and j be its end node, and set J=smallest arc 

number in A(i). 

(c) If 6(J)=0 or J=K, go to d; otherwise let a be the start 

node of arc J and p be its end node, then check for the 

conditions of either a multiplication or a convolution 

operation; if i=a and j=|S then K and J define a multiplication 

operation; do the necessary bookkeeping, and set 6(K)=0, 

6(J)=0, M M+1 and 6(M)=1, then go to e. If not, then 

if either (i) j=a and l(i)=0(i)=l or (ii) i=p and l(i)=0(i)=l, 

then K and J define a convolution operation; do the necessary 

bookkeeping, and set 6(K)=0, 6(J)=0, and 6(M)=1. 

G(N(i),A(i)) ̂  G(N(i+l),A(i+l)), then go to e. 

(d) Set J ^ J+1. If J > M, go to e; otherwise go to c. 

(e) If K=M, stop; otherwise set K K+1 and go to b . 

If = l (i.e., the network is reduced to an equivalent 

activity starting in node 1 and ending in node N) stop. The 

pdf of the duration of this final activity is equal to conditional 

pdf of the project completion time given first realization 

time of p'. 

If ^(1*1)^1, then set (i) ̂  (i+1) and go to STEP II. Every 

iteration of STEP II - III must reduce the given network by 

at least one activity. Hence, by induction on the finiteness 

of the original network, a trivial (i.e. one activity) network 

must eventually be reached. 

STEP IV - Reverse direction of all arrows in the network and renumber 

nodes such that an arrow leads from a smaller numbered node 
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to a larger one, set KF KB, then apply STEPS I through III 

to the network with reversed arrows until the network is reduced 

to an equivalent activity starting in node 1 and ending in 

node N. 

If KF ^ KB apply following steps to the given network; otherwise 

apply following steps to the network with reversed arrows. 

KF denotes number of activities which have been conditionalized 

in the given network and KB denotes number of activities which 

have been cnditionalized in the network with reversed arrows. 

STEP V - Let Tp' denote kth realization time of activity p' =(1I'), 

where k=l,....,KI' and MM=KM where KM=min {KF,KB} from STEP IV. 

Let NF denote number of nodes in the first irreducible network, 

denote network configuration indicator, and 

k denote realization time indicator, set k=l and apply following 

iterations to the irreducible network chosen in STEP IV. 

(a) Set the node indicator Y(i')=0 for all i'=immediate succeeding 

node number of node 1, L'=greatest node number in i', 

and set node indicator Y(k')=l for all k'eN^^^, and k'^i', 

I'=2. 

(b) If y(I')=1, go to j; otherwise let l(l') be the indegree 

of node I' and 0(1') be its outdegree, and set J'=2. 

(c) If Y(J')=1 or J'=I', go to i; otherwise let L(J') be 

the indegree of node J' and O(J') be its outdegree, then 

check for the condition of conditioning operation; if I(j')>l 

or I (J') = l(l' )=1 and O(I') O(J'), set y(J')=l then go to d; 

otherwise set Y(I')=1, then go to j. 

(d) Set J' ^ J'+l. If J' > L', go to e; otherwise go to c. 

(e) Use conditioning operator, denoted by COND, described 

below to identify conditioning operation, i.e. 
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COND: G(N(i),A(i)) G(N(i+l),A(i+l)) 

where N(i*l)=N(i)-l and A(i*l)=A(i)-l 

The following are the steps of COND: 

Notice that activity p'=(ll') is chosen to be conditionalized. 

(f) Determine the set of A(l'), which is the set of activities 

emanating from node I', these activities are in ascending 

order from I" to J". Set the arc indicator 6(q')=0 for 

all q'=I", I"+1,.,J"; M"=J"; L"=I"; K"=I"-1. Notice 

that K" denote number of resultant activitiy. 

(g) If 6(L")=1, go to h; otherwise for each activity (I'j")6A(I'), 

convolute the kth realization time of p'=(ll') with Fjij"(y)» 

i.e. convolute Tpi, with the distribution function of 

denote this convolution by F^jii(y). 

Therefore, for any value t > 0, 

(y)=Pr(Tk,+Yi,jU <<: t) 

= jpr(Yi,j"=y). Pr(T^, t-y) 

y 

Do the necessary bookkeeping, and go to h. 

(h) Set K" K"+l, then if 6(L")=1 set 6(K")=0; otherwise 

set 6(K")=1. Then if L"=M", set 6(p')=0, y(I')=Q, 

G(N(i),A(i)) ̂  G(N(i+l),A(i+l)), MM=MM-1, and go to k; 

otherwise set L" -> L"+l and go to g. 

(i) Set J' -> J'+l. If J' > L', go to j; otherwise go to c. 

(j) If I'=L', go to e; otherwise set I' ^I'+l and go to b. 

(k) Use the scanning operator, denoted by SCAN, described 

below to identify all the convolution and multiplication 

operations, i.e. 

SCAN: G(N(i),A(i)) -> G(N( ), A( i+D ) 

where N(i+1) <N(i) and A(i*l)<A(i) 

The following are the steps of SCAN: 
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(l) For all the arcs in set the arc indicator 

6(1')=1, M=greatest arc number in and K=smallest 

arc number in A^i). 

(m) If 6(K)=0, go to p; otherwise let i be the start node 

of arc K and j be its end node, and set J=smallest arc 

number in A(i/. 

(n) If 6(J)=0 or J=K, go to o; otherwise let a be the start 

node of arc J and p be its end node, then check for the 

conditions of either a multiplication or a convolution 

operation ; if i=a and j=p then K and J define a multiplication 

operation; do the necessary bookkeeping, and set 6(K)=0, 

6(J)=0,M -> M+1 and 6(M)=1, then go to p. If not, then 

if either (i) j=a and l(i)=0(i)=l, or (ii) i=p and l(i)=0(i)=l, 

then K and J define a convolution operation; do the necessary 

bookkeeping, and set 6(K)=0, 6(J)=0, M M+1 and 

6(M)=1, then go to p. 

(o) Set J J+1. If J > M, go to p; otherwise go to n. 

(p) If K=Mj stop; otherwise set K -> K+1 and go to m. 

If MM > 0, set G(N(i),A(i)) -» G(n( ), a( i+D), then go to a. 

If MM=0. The pdf of the duration time of this final 

activity is equal to pdf of project completion time given 

kth realization times of activities which have been 

conditionalized, do the necessary bookkeeping, and set 

G(N(i),A(i)) -> G(N(I),A(I)) , k k+1, and go to q. 

(q) If k > KI' go to r; otherwise goto a. 

(r) If N(i)=NF, go to s; otherwise set G(N(i),A(i)) -» 

G(N(l),A(l)),i.e. use irreducible network of previous 

step, and set k -> k+1, then go to a. 

(s) Decondition the pdf of the final activities. 
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(t) Determine thepdf of the project completion time, mean and 

standard deviation. 

FOURTH EXAMPLE 

As an example let us apply the proposed algorithm to the PERT network 

of Figure 4.31. 

Figure 4.31 

This network consists of 5 nodes and 7 activities. In Figure 4.32 the 

nodes are numbered such that an arc leads from a smaller numbered node 

to a larger one. 

Figure 4.32 

The reduction process; 

(1) Calculate l(i) and 0(i), the indegree and outdegree, for all nodes 

j=l,2,...N in the network G(N,A). 

I(1)=0 

0(1)=2 

I(2)=l 

0(2)=3 

I(3)=2 

0(3)=1 

I(4)=l 

0(4)=1 0(5 )=0 I 
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(2) Since l(i)+0(i)=2 for node 4, therefore the network is reducible. 

Scanning operator identifies all the convolution and greatest operations, 

go to 3. 

(3) Use the scanning operator, denoted by SCAN, 

SCAN: G(N,A) ^ G(N(1),A(1)) 

(a) Rank the arcs in A from 1 to A such that for any two arcs 

p=(ij) eA and q=(lk)eA p<q if i<l; if i=l then j<k. Set 

the arc indicator 6(p)=l for all p=l,2,...,A, M=A, K=l,and 

G(N(i),A(i)) G(N(0),A(0)). 

For two arcs emanating from node 1, p=(ij)=(l,2) and q=(lk)=(l,3) 

since i=l and j<k, rank the arcs such that (p<q) i.e. set 

p 1 and q 2. For three arcs (2,3), (2,4) and (2,5) emanating 

from node 2 since their start nodes is the same, rank the arcs 

in ascending order of their ending nodes i.e. 3, 4 and 5 

respecitvely. By using the same procedure, the algorithm ranks 

all the arcs as shown in Figure 4.33. 

Figure 4.33 

Then the algorithm sets the arc indicator 6(p)=l for all arcs 

p=l,2,...,7, M=7, K=1 and G ( n ( i),A ( i ) ) ^ G(n(0),a(0)). 

(b) If 6(K)=0, go to e; otherwise let i be the start node of arc K and 

j be its end node, and set J = 1. 
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6(K=l)=l, (i=l) is the start node of arc 1 and (j=2) is its 

end node, set J=1. 

(c) If 6(J)=0 or J=K, go to d; otherwise let a be the start node 

of arc J and p be its end node, then check for the conditions 

of either a multiplication or a convolution operation; if i=a 

and j=p then K and J define a multiplication operation; do 

the necessary bookkeeping, and set 6(K)=0, 6(J)=0, M -> M+1 

and 6(M)=1, then go to e. If not, then if either (i) j=a and 

l(i)=0(i)=l, or (ii) i=p and l(i)=0(i)=l, then K and J define 

a convolution operation; do the necessary bookkeeping, and 

set 6(K)=0, 6(J)=0, M -> M+1 and 6(M)=1, then go to e. 

6(J=1)=1, but J=K, go to d. 

(d) Set J -> J+1. If J > M, go to e; otherwise go to c. 

^ ^ , (J=2) < (M=7), go to c. 

(c) 6(J=2)=1, (a=l) is the start node of arc 2 and (p=3) is its 

end node, since i=a but p these two arcs (K=l) and (J=2) 

don't satisfy conditions of greatest operation, and since 

and i?̂ p they don't satisfy conditions of convolution operation, 

go to d. 

I 2 I 2^^ » (J=3) < (M=7), go to c. 

(c) 6(J=3)=1, (a=2) is the start node of arc 3 and (p=3) is its 

end node, these two arcs (K=l) and (J=3) don't satisfy conditions 

of greatest or convolution operations, go to d. 
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The algorithm repeats this process and in each iteration sets 

J -> J+1 until all arcs are considered with the first arc 

(K=l) for the conditions of greatest or convolution operations, 

go to d. 

I3 % ' (J=4) < (M=7), go to c. 

(c) 6(J=A)=1, but (K=l) and (J=4) don't satisfy conditions of greatest 

or convolution operations, go to d. Figure 4.33 shows that 

arc 1 is not in series or parallel with any other arcs, therefore, 

this process for K=1 without any reduction in network terminates 

in e. 

(e) (K=l) < (M=7) ===> |K -> K+1 , 
1 ^ 2 , go to d. 

(b) 6(K=2)=1, (i=l) is the start node of arc 2 and (j=3) is its 

end node, set J=1. Now arc K=2 is considered with the other 

arcs for the conditions of greatest or convolution operations. 

This operation for K=2 without any reduction of network terminates in e. 

(e) (K=2) < (M=7) ===> JK ̂  K+1 , 
(2 + 3 ' so to b. 

(b) 6(K=3)=1, (i=2) is the start node of arc 3 and (j=3) is its 

end node, set J=l. Now arc K=3 is considered with the other 

arcs for the conditions of greatest or convolution operations, 

again this operation for K=3 without any reduction of network 

terminates in e. 

(e) (K=3) < (M=7) JK ^ K+1 ^ , 
(3 ^ 4 , go to b. 

(b) 6(K=4)=1, (i=2) is the start node of arc 4 and (j=4) is its 

end node, set J=l, go to c. 

(c) 6(J=1)=1, (a=l) is the start node of arc 1 and (p=2) is its 

end node, these two arcs (K=4) and (J=l) don't satisfy conditions of 

greatest or convolution operations, go to d. 
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The algorithm repeats this process and in each iteration 

sets J ->• J+1. K=4 and any of J ̂  6 don't satisfy conditions 

of greatest or convolution operations, go to d. 

(d) J ->• J+1 
6 ^ 7 

(J=7) is not greater than (M=7), go to c. 

(c) 6(J=7)=1, (a=4) is the start node of arc 7 and (p=5) is its 

end node, since j=a=A and l(4)=0(A)=l, K=4 and J=7 define a 

convolution operation; do the necessary bookkeeping, and set 

I'M M+1 6(K=4)=0, 6(J=7)=0, 
7 ^ 

6(M=8)=1, ^ G(n( i+D ^ , then go to e. 

Notice that arc 8 is the resultant of the two activities in 

series (K=4 and J=7) as shown in Figure 4.34. 

Figure 4.34 

(e) (K=4) < (M=8) ===> JK -> K+1 
14 ^ 5 

, go to b. 

(b) 6(K=5)=1, (i=2) is the start node of arc 5 and j=5 is its end 

node, set J=1. 

(c) 6(J=1)=1, (a=l) is the start node of arc 1 and (p=2) is its 

end node, these two arcs (K=5) and (J=l) don't satisfy 

conditions of greatest or convolution operations, go to d. 

The algorithm repeats this process and in each iteration sets 

J J+1, until all arcs are considered with arc (K=5). 
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(d) |J ^ J+1 ^ (j=2) < (M=8), go to c. 

(c) 6(J=2)=1, (a=l) is the start node of arc 2 and (p=3) is its 

end node, these two arcs (K=5) and (J=2) don't satisfy conditions 

of greatest or convolution operations go to d. 

, (J=3) < (M=8), go to c. (d) fj ^ J+1 
\2 ^ 3 

(c) 6(J=3)=1, (a=2) is the start node of arc 3 and (p=3) is its 

end node, K=5 and J=3 don't satisfy conditions of greatest 

or convolution operations go to d. 

{3 Z 4^^ ' < (M=8), go to c. 

(c) 6(J=4)=0, go to d. 

I4 % 5^^ > (J=5) < (M=8), go to c. 

(c) 6(J=5)# 0, but K=J, go to d. 

{5 Z 6^^ ' < (M=8), go to c. 

(c) 6(J=6)=1, (a=3) is the start node of arc 6 and (P=5) is its 

end node. K=5 and J=6 don't satisfy conditions of greatest 

or convolution operations go to d. 

^ , (J=7) < (M=8), go to c. 

(c) 6(J=7)=0, go to d. 

jy % g"*"̂  , (J=8) is not greater than (M=8), go to c. 

(c) 6(J=8)=1, (a=2) is the start node of arc 8 and (p=5) is its 

end node, since i=a=2 and j=p=5, K=5 and J=8 define a greatest 

operation; do the necessary bookkeeping, and set 6(K=5)=0, 

S(J.8)=0, . M+1 _ 

G(N(i),A(i)) then go to e. 
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Notice that arc 9 is the resultant of the two parallel activities 

K=5 and J=8 as shown in Figure A.35. 

Figure 4.35 

(e) (K=5) < (M=9) ===> /K -> K+1 
5 ^ 6 

, go to b. 

(b) 6(K=6)=1, (i=3) is the start node of arc 6 and j=5 is its end 

node, set J=l. 

(c) 6(J=1)=1, (a=l) is the start node of arc 1 and (|3=2) is its 

end node, K=6 and J=1 don't satisfy conditions of greatest 

or convolution operations, go to d. 

(d) r J J+1 
1 ^ 2 

, (J=2) < (M=9), go to c. 

(c) 5(J=2)=1, (a=l) is the start node of arc 2 and (p=3) is its 

end node, K=6 and J=2 don't satisfy conditions of greatest 

or convolution operations, go to d. 

(d) J -> 
2 ^ 

J+1 
3 

(J=3) < (M=9), go to c. 

(c) 6(J=3)=1, (a=2) is the start node of arc 3 and (p=3) is its 

end node, K=6 and J=3 don't satisfy conditions of greatest 

or convolution operations, go to d. 

(d) J ^ 
3 ^ 

J+1 
4 

(J=4) < (M=9), go to c. 

(c) 6(J=4)=0, go to d. 
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j 4 Z 5"*"̂  ' < (M=9), go to c. 

(c) 6(J=5)=0, go to d. 

^ 5 Z ' (J=6) < (M=9), go to c. 

(c) 6(J=6)^0, but J=K, go to d. 

{ 6 Z 7^^ ' (J=7)<(M=9) go to c. 

(c) 6(J=7)=0, go to d. 

{ 7 Z 8^^ ' (J=8) < (J=9), go to c. 

(c) 6(J=8)=0, go to d. 

I 3 % g"*"̂  > (J=9) is not greater than (M=9), go to c. 

(c) 6(J=9) = 1, (a=2) is the start node of arc 9 and( 3=5) is its end 

node, K=6 and J=9 don't satisfy conditions of greatest or 

convolution operations, go to d. 

^ 9 Z 10*^ ' (J=10) > (M=9), go to e. 

(e) (K=6) < (M=9) ===> r K ^ K+1 . , 
\ 6 7 ' 2° to D. 

(b) 6(K=7)=0, go to e. 

(e) (K=7) < (M=9) ===> r K -f K+1 
\ 7 -> 8 ' 8 ' 

(b) 6(K=8)=0, go to e. 

(e) (K=8) < (M=9) ===> / K -> K+1 , 
8-^9 ' 8° to D. 

(b) 6(K=9)=1, (i=2) is the start node of arc 9 and (j=5) is its 

end node, set J=1, go to c. 

(c) 6(J=l) = l, (a=l) is the start node of arc 1 and (|3=2) is its 

end node, K=9 and J=1 don't satisfy conditions of greatest 

or convolution operations, go to d. 

(d) I J ^ J+1 
^ 2 ' (J=2) < (M=9), go to c. 
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(c) 6(J=2)=1, (a=l) is the start node of arc 2 and (p=3) is its 

end node, K=9 and J=2 don't satisfy conditions of greatest 

or convolution operations, go to d. 

j 2 Z 3"̂ ^ ' < (M=9), go to c. 

(c) 6(J=3)=1, (ct=2) is the start node of arc 3 and (p=3) is its end 

node, K=9 and J=3 don't satisfy conditions of greatest or 

convolution operations, go to d. 

{ 3 I 4^^ ' (J=4) < (M=9) , go to c. 

(c) 6(J=4)=0, go to d. 

(d) [ J ̂  J+1 
I 4 I 5"̂ ^ ' (J=5) < (M=9), go to c. 

(c) 6(J=5)=0, go to d. 

{ 5 t 6^^ ' < (M=9), go to c. 

(c) 6(J=6)=1, (a=3) is the start node of arc 6 and (p=5) is its 

end node, K=9 and J=6 don't satisfy conditions of greatest 

or convolution operations, go to d. 

( 6 Z < (M=9), go to c. 

(c) 6(J=7)=0, go to d. 

(d) f J ̂  J+1 , (J=8) < (M=9), go to c. 

(c) 6(J=8)=0, go to d. 

I g ̂  , (J=9) is not greater than (M=9), go to c. 

(c) 6(J=9)^ 0, but J=K, go to d. 

{ 9 I 10^ ' > (M=9), go to e. 

(e) (K=9)=(M=9). Stop. 
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Since A(i)^l,G(N(i),A(i)) is the corresponding irreducible network of 

G(N,A). In this case the pdf of t5 is obtained through the use of 

Conditioning Process presented in STEP II. Notice that all nodes in 

Figure A.35 are in ascending order, i.e., an arc leads from a smaller 

numbered node to a larger one. Set KF=0 (KF denotes number of activities 

which have been conditionalized up to now). 

STEP II - Conditioning Process 

(a) Set the node indicator Y(i')=0 for all i'=immediate succedding 

node number of node 1, L'=greatest node number in i', and set 

node indicator Y(k')=l for all k'(N(i), and k ' i ' , I'=2. 

y(2)=0, y(3)=0, L'=3, y(1)=1, y(5)=1, i ' = 2 . 

(b) If y(I')=1» go to j; otherwise let l(l') be the indegree of 

node I' and O(l') be its outdegree, and set J'=2. 

y(I'=2)=0 , fl(I'=2)=l 
|o(I'=2)=2 ' 

( c) If y(J')=1 or J'=I', go to i ; otherwise let I(J') be the indegree 

of node J' and O(J') be its outdegree, then check for the 

condition of conditioning operation; if l(I')=l and 0(1') ^ 

O(J'), set y(J')=1 then go to d; otherwise set y(I')=1> then 

go to j. 

y(J'=2)=0, but I'=J', go to i. 

{ 2 ^ 3 (^^"3) is not greater than (L'=3), go to c. 

(c) y(J'=3)=0, l(J'=3)=2, and 0(J'=3)=1, since l(l'=2)=l 

and (0(I'=2) =2)> (0(J'=3)=1), therefore, set y('J'=3) = 1, 

go to d. 
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(d) Set J' ^ J'+l. If J' > L' go to e; otherwise go to c. 

3 Z 4 (J'=4) > (L'=3), go to e. 

(e) Use conditioning operator, denoted by COND, described below 

to identify conditioning operation, i.e. 

COND: G(N(i), A^i)) ^ G(N(i+l),A(i+l)) 

where and A(i^^)=A(i)-l 

Notice that activity p'=l=(l,2) is chosen to be conditionalized. 

(f) Determine the set of A(I'), which is the set of activities 

emanating from node I', these activities are in ascending order 

from I" to J". 

Set the arc indicator 6(q')=0 for all q'=I", I"+1,...,J" 

M"=J", L"=I", K"=I"-1. 

Notice that K" denotes number of resultant activity. 

A(I'=2)={3,9}, 6(3)=0, 6(9)=0, M"=9, L"=3, K"=3-l=2. 

(g) If 6(L")=1, go to h; otherwise for each activity (I'j")«A(l'), 

convolute the first realization time of p'=(ll') with FjijuCy) 

i.e. Tp,, with the distribution function of ^ , denote this 

convolution by Fj^„(y)-

Therefore, for any value t>0, 

F|j.(y)=Pr(Tl,+Y;,j.<t) 

= ^ Pr(Yj,j„=y) Pr(Tp,< t-y) . 

Do the necessary bookkeeping, and go to h. 

6(L"=3)=0, therefore, convolute 2)Mith the distribution 

function of Y Y^ 2 denote this convolution by ^ (y)-

?! 2(y)=Pr(T| + Y^ ^^t) 

= |Pr(Y2^3=y).Pr(Tj t-y) . 

y 

Do the necessary bookkeeping and go to h. 
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(h) Set K" K"+l, then if 6(L")=1 set 6(K")=0; otherwise 

set 6 (K")=l. Then if L"=M", set 6(p')=0, Y(l')=0, 

G(n(i),a(i)) -> G(N(i+l),A(i+l)), KF KF+1, and go to 

STEP III; otherwise set L" L"+l and go to g. 

2" I ^"3^ . 6(L"=3)=0==> 6(K"=3)=1, 

(L"=3)# (M=9) ===> ^ ^ ' 8° to g. 

Notice that K" is a new arc as shown in Figure A.36. 

(g) 6(L"=A)=1, go to h. 

(h) r K"+ K"+l 
3 - ^ 4 

6(L"=4)=1 ===> 6(K"=A)=0, 

(L"=4)^(M"=9) ====> r L"^ L"+l 
I 4 ^ 5 , go ^ g . 

(g) 6(L"=5)=1 , go to h. 

(h) [ K" ^ K"+l^ 6(L"=5)=1 ===> 6(K"=5)=0, 

(L"=5)^(M"=9) ===> f L"-> L"+l 
t 5 ^ 6 ' SO ^ 8 . 

(g) 6(L"=6)=1 , go to h. 

(h) I K"+ K"+l ^ 6(L"=6)=1 ===> 5(K"=6)=0, 

(L"=6)^(M"=9) ===> fL" L"+l 
6 * 7 ' 8° to 

(g) 6(L"=7)=1 , go to h. 

(h) \ ^ K"+l ^ 6(L"=7)=1 ===> 6(K"=7)=0, 

(L"=7)5^(M"=9) ===> r L" ̂  L"+l 
\ 7 8 * go to g. 

(g) 6(L"=8)=1 , go to h. 

(h) { ^7 t K^+1^ 6(L"=8)=1 ===> 6(K"=8)=0, 
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(L"=8)^(M"=9) ===> f L"-> L"+l 
I 8 ̂  9 , BO to g. 

(g) 6(L"=9)=0 , convolute t| , with the distribution function 

of Y2^5, denote this convolution by 5(7)-

-rr (tJ + Y2^5 < t) 

= Vpr (Y2,5=y)' < t-y) . 

y 

Do the necessary bookkeeping, and go to h. 

I g"% , 6(L"=9)=0 ===> 6(K"=9)=1, 

(L"=9)=(M"=9) ===> set, 6(p'=l)=0, y(l'=2)=0, 

(G(N(i),A(i))=G(4,5)) (G(N(i+l>,a(i+1)) = G(3,4)), 

KF -> KF+1 
0 1 

, and then go to STEP III. 

Notice that KF denotes number of activities which have been 

conditionalized up to now. 

Figure A.36 

STEP III - Reduction Process 

Use the scanning operator to identify all the convolution 

and multiplication operations. 

SCAN: G(N(i),A(i)) -> G(N( i+D , A^ i+D ) 

where N^i+D <N(i) and A^i+l) <A(i) 
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(a) 5(2)=1, 6(3)=1, 6(6)=1. 6(9)=1, M=9, K=2. 

(b) 6(K=2)=1, (i=l) is the start node of arc 2 and (j=3) is its 

end node, set J=2, go to c. 

(c) 6(J=3)=1, (a=l) is the start node of arc 3 and (p=3) is its 

end node, since i=a=l and j=p=3, therefore, activities 2 and 

3 define a multiplication operation, do the necessary 

bookkeeping, and set 6(K=2)=0, 

5(J=3)=0, f M -> M+1 
9 ^ 10 

, 6(M=10)=1, 

(G(N(i),A(i)) =G(3,4)) (G(N(i+l) =G (3,3)), then 

go to e. Notice that arc 10 is the resultant arc of the two 

parallel arcs 2 and 3 of Figure 4.36 as shown in Figure 4.37. 

Figure 4.37 

(e) (K=2)^(M=10) ===> [ K K+1 , 
2 ^ 3 , go to b. 

(b) 6(K=3)=0, go to e. 

(e) (K=3)^(M=10) ===> / K K+1 
3 -> 4 , go to b. 

(b) 6(K=4)=0, go to e. 

(e) (K=4)^(M=10) ===> / K K+1 
4 ^ 5 ' 3° to b. 

(b) 6(K=5)=0, go to e. 

(e) (K=5)^(M=10) ===> ] K K+1 
\ 5 6 

, go to b. 
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(b) 5(K=6)=1, (i=3) is the start node of arc 6 and (j=5) is its 

end node, set J=6 and go to c. 

(c) 6(J=6)=1, but J=K, go to d. 

{ 6 ̂  < (M=10), go to c. 

(c) 6(J=7)=0, go to d. 

{ 7 I ' (J=8) < (M=10) , go to c. 

(c) 6(J=8)=0, go to d. 

{ 8 ̂  < (M=10), go to c. 

(c) S(J=9)=1, (a=l) is the start node of arc 9 and (p=5) is its 

end node, K=6 and J=9 don't satisfy conditions of greatest 

or convolution operations go to d. 

(d) j g ̂  10^ ' is not greater than (M=10), go to c. 

(c) 6(J=10) = 1, (a=l) is the start node of arc 10 and (|3=3) is 

its end node, since i=p=3, activities K=6 and J=10 define 

a convolution operation; do the necessary bookkeeping, and 

set 6(K=6)=0, 6(J=10)=0, 

10^ 11^ ' &(M=11)=1, (G(N(i),A(i)=G(3,3)) ^ 

(G(N(i+l),A(i+l)) = G(2,2)), 

then go to e. Notice that arc 11 is the resultant arc of 

the two arcs in series (K=6) and (J=10) of Figure 4.37 as 

shown in Figure 4.38. 

JLL 

Figure 4.38 
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(e) (K=6)^(M=11) ===> 1 K ^ K+1 ^ , 
( 6 ^ 7 ' S° to b. 

(b) 6(K=7)=0, go to e. 

(e) (K=7)^(M=11) ===> J K K+1 , 
I 7 ^ 8 , go to b. 

(b) 6(K=8)=0, go to e. 

(e) (K=8)^(M=11) ===> / K K+1 , 
I 8 + 9 , go to b. 

(b) 6(K=9)=1, (i=l) is the start node of arc 9 and (j=5) is its 

end node, set J=9 and go to c. 

(c) 6(J=9)^ 0, but J=K , go to d. 

(d) f J ̂  J+1 ^ (J=10) < (M=ll), go to c. 

(c) 6(J=10)=0, go to d. 

{ 10% 11^' is not greater than (M=ll), go to c. 

(c) 6(J=11)=1, (a=l) is the start node of arc 11 and (p=5) is 

its end node, since i=a=l and j=p=5, therefore, activities 

9 and 11 define a multiplication operation, do the necessary 

bookkeeping, and set 6(K=9)=0, 

6 ( J = n ) = 0 , I H . M+l _ , 

( G ( n<i),A(i ) ) . G(2,2)) ^ ( G ( n ( i + 1 > , a ( i + 1 ) ) " G(2, 1 )), then go 

to e. 

Notice that arc 12 is the resultant arc of the two parallel 

arcs K=9 and J=ll of Figure 4.38 as shown in Figure 4.39 

© ^ < t ) 

Figure 4.39 
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(e) (K=9)t^(M=12) ===> J K K+1 
9 ^ 10 

, go to b. 

(b) 6(K=10)=0, go to e. 

(e) (K=10)^(M=12) ===> Jk ^ K+1 
1 0 ^ 11 ' ® 

(b) 6(K=11)=0, go to e. 

(e) (K=11)^(M=12) ===> J K K+1 
11 -> 12 

, go to b. 

(b) 6(K=12)=1,(i=l) is the start node of arc 12 and (j=5) is its 

end node, set J=12 and go to c. 

(c) 6(J=12)^0, but J=K, go to d. 

(d) r J J+1 
12 13 

, (J=13)>(M=12), go to e. 

(e) (K=12)=(M=12). STOP. 

STEP IV - Reverse direction of all arrows in the network and renumber 

nodes such that an arrow leads from a smaller numbered node 

to a larger one, set KF -> KB, then apply STEPS I through III 

to the network with reversed arrows until the network is reduced 

to an equivalent activity starting in node 1 and ending in 

node N. 

Figure 4.40 shows Figure 4.31 with reverse direction of 

arrows. 

Figure 4.40 
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In Figure 4.41 nodes are numbered such that an arc leads from 

a smaller numbered node to a larger one. 

Figure 4.41 

First step of scanning operation ranks the arcs as shown in 

Figure 4.42. Notice that S(N,A) denotes activity network 

with reverse direction of arrows. 

Figure 4.42 

Activities 1 and 4 of Figure 4.42 are series, activity 8 is 

the resultant of these two activities as shown in Figure 4.43. 

Figure 4.43 
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Activities 3 and 8 of Figure 4.43 are parallel, activity 9 

is the resultant of these two parallel activities as shown 

in Figure 4.44. 

Figure 4.44 

Now,activity network of Figure 4.44 is irreducible, therefore, 

conditioning operator of STEP II identifies activity p'=2=(l,3) 

to be conditionalized. Figure 4.45 shows activity network 

of Figure 4.44 by conditioning activity p'=2 at its first 

realization time. 

Figure 4.45 

Now, reduction process of STEP III identifies all greatest 

and convolution operations of Figure 4.45 and applies all 

appropriate iterations until the network is reduced to a single 

activity as shown in Figure 4.48. 

In Figure 4.46 activity 10 is the resultant activity of the 

two parallel activities 5 and 9 of Figure 4.45. 
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Figure 4.46 

In Figure 4.47 activity 11 is the resultant activity of the 

two activities in series 10 and 7 of Figure 4.46. 

G I 

11 

D 

Figure 4.47 

In Figure 4.48 activity 12 is the resultant activity of the 

two parallel activities 6 and 11 of Figure 4.47. 

12 

< D 

Figure 4.48 

Notice that in the network with reverse direction of arrows 

KB=1 at final stage, therefore, since KF=KB, the algorithm 

applies following STEPS to the network as given. 
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STEP V - Let, Tpi denote kth realization time of activity p'=(ll'), 

where k=l,...., KI' and MM=KM where KM=min {KF, KB} from 

STEP IV. Let NF denote number of nodes in the first 

irreducible network of project which is indicated by G ( N ^ ^ ^ ^ ) , 

and let k denote the realization time indicator, set k=l 

and apply following iterations to the irreducible network 

chosen in STEP IV. 

KM=min {KF=1, KB=1} =1, the first irreducible network of the 

network as given is shown in Figure 4.35. 

Figure 4.35 

NF=4, G(N(l),A(l))=G(4,5). When k=l, the algorithm applies 

all iterations of STEP V from (a) through (p), in (p) since 

for this network MM=0, the pdf of the duration time of the 

final activity is equal to the pdf of project completion time 

given first realization time of activity 1 (activity which 

has been conditionalized), do the necessary bookkeeping, and 

set G(N(i),A(i)) ^ G ( n ( ^ ) , i.e. use the previous 

1 2 

irreducible network, and set k -> k+1 i.e. set T^ ^ T^, and go to q. 

(q) If k > KI' go to r; otherwise go to a. 

(r) If N(i)=NF, go to s; otherwise set G(N(i),A(i) -> G(n(I) 

i.e. use irreducible network of previous step, and set k k+1 

then go to a. 

(s) Decondition the pdf of the final activities. 

(t) Determine the pdfof the project completion time, mean and standard 

deviation. 
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FIFTH EXAMPLE 

In the following, the proposed procedure is applied to the network 

configuration of Figure 4.49 with complete enumeration. Network 

configuration of Figure 4.49 is an irreducible network, all activities 

except D and G are common. For ease of calculation assume all activities 

have discrete distributions with two realization times. 

D 

Figure 4.49 

Tables 4.19A to 4.191 respectively show duration times of activities 

A to I. 

Table 4.19A: Duration time of A . 

P CP 

2 0.2 0.2 

5 0.8 1.0 

Table 4.19B: Duration 

P 

time of B • 

CP 

3 0.4 0.4 

4 0.6 1.0 

Table 4.19C: Duration time of C. 

1 0.6 0 6 

2 0.4 1 0 
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Table 4.19D: Duration time of D. 

P CP 

3 0.9 0.9 

5 0.1 1.0 

Table 4.19E: Duration time of E . 

P CP 

4 0.5 0.5 

7 0.5 1.0 

Table 4.19F: Duration 

P 

time of F. 

CP 

3 0.1 0.1 

4 0.9 1.0 

Table 4.19G; Duration time of G . 

P CP 

3 0. 7 0 7 

7 0. 3 1 0 

Table 4.19H; Duration time of H . 

P CP 

3 0.6 0.6 

5 0.4 1.0 

Table 4.191: Duration 

P 

time of I. 

CP 

4 0.3 0.3 

6 0.7 1.0 
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Figure 4.49 shows that A has three successors (D,G and C) and each of 

these successors has only A as a predecessor, therefore by fixing on 

the first realization time of A, 2,changes the network of Figure 4.49 

to that of Figure 4.50. 

Figure 4.50 

Tables 4.20A through 4.20C show duration times of (2+C), (2+D) and 

(2+G) respectively. 

Table 4.20A: Duration time of (2+C)-

P CP 

3 0.6 0.6 

4 0.4 1.0 

Table 4 20B: Duration time of (2+D). 

P CP 

5 0.9 0.9 

7 0.1 1.0 

Table 4. 20Cr Duration time of (2+G^ 

P CP 

5 0.7 0.7 

9 0.3 1.0 
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Taking the maximum of B and (2+C) gives K as shown in Figure 4.51. 

Figure 4.51 

Table 4.21 shows duration time of K. 

Table 4.21: Duration time of K. 

P CP 

3 0 4 X 0.6 = 0.24 0 .24 

4 1 X 1 - 0.4 X 0.6 = 0.76 1 .0 

Figure 4.51 shows that K has two successors (E and F) and each of these 

successors has only K as a predecessor, by fixing on the first 

realization time of K,3,changes the network of Figure 4.51 to that of 

Figure 4.52. 

Figure 4.52 

Tables 4.22A and 4.22B show duration times of (3+E) and (3+F) respectively. 
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Table A.22A: Duration time of (3+E). 

P CP 

7 0.5 0.5 

10 0.5 1.0 

Table 4.22B: Duratin time of 

P 

(3+F). 

CP 

6 0.1 0.1 

7 0 . 9 1.0 

Taking the maximum of (2+D) and (3+E) gives L and taking the maximum 

of (2+G) and (3+F) gives M as shown in Figure 4.53. 

Figure 4.53 

Tables 4.23A and 4.23B show duration times of L and M respectively. 

Table 4.23A: Duration time of L. 

P CP 

7 1 X 0.5 = 0.5 0.5 

10 1 X 1 - 0.5 X 1 = 0.5 1.0 
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Table 4.23B: Duration time of M. 

P CP 

6 

7 

9 

0.1 X 0.7 = 0.07 0.07 

1 X 0.7 - 0.1 X 0.7 = 0.63 0.70 

1 x 1 - 1 x 0 . 7 =0.30 0.10 

Convoluting L and H gives N, and also convoluting M and I gives 0 as 

shown in Figure 4.54. 

N 

Figure 4.54 

Duration time of N is shown in Table 4.24A and duration time of 0 is 

shown in Table 4.24B. 

Table 4.24A: Duration time of N. 

P CP 

10 0.6 X 0.5 = 0.3 0.3 

12 0.4 X 0,5 = 0.2 0.5 

13 0.6 X 0.5 = 0.3 0.8 

15 0.4 X 0.5 = 0.2 1.0 

Table 4.24B: Duration time of 0. 

P CP 

10 0.3 X 0.07 = 0.021 0.021 

11 0.3 X 0.63 = 0.189 0.210 

12 0.7 X 0.07 = 0.049 0.259 

13 0.7x 0.63 + 0.3 X 0.3 = 0.531 0.790 

15 0.7 X 0.3 = 0.210 1.0 
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Taking the maximum of N and 0 gives P as shown in Figure 4.55. 

Figure 4.55 

Table 4.25 shows the project finish time given A=2 and K=3, where 

P(A=2)=.2 and P(K=3)=-24 . 

Table 4.25: Project finish time 1 (A=2 and K=3). 

10 0. 3 X 0.021 = 0. 0063 

11 0. 21 X 0.3 - 0.3 X 0.021 = 0. 0567 

12 0. 259 X 0.5 - 0.210 X 0.3 = 0. 0665 

13 0. 790 X 0.8 - 0.259 X 0.5 = 0. 5025 

15 1 X 1 - 0.790 X 0.8 = 0. 3680 

By fixing on the second realization time of K, 4,changes the network 

of Figure 4.51 to that of Figure 4.56. 

Figure 4.56 
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Tables 4.26A and 4.26B show duration times of (4+E) and (4+F) 

respectively. 

Table 4.26A: Duration time of (4+E). 

P CP 

8 0.5 0.5 

11 0.5 1.0 

Table 4.26B: Duration time of 

P 

(4+F). 

CP 

7 0.1 0.1 

8 0.9 1.0 

Taking the maximum of (2+D) and (4+E) gives Q and taking the maximum 

of (2+G) and (4+F) gives R as shown in Figure 4.57. 

Figure 4.57 

Tables 4.27A and 4.27B show duration times of Q and R respectively. 

Table 4.27A: Duration time of Q. 

P CP 

8 0.5 X 1 = 0.5 0.5 

11 1 x 1 - 0.5 X 1 = 0.5 0.5 
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Table A.27B; Duration time of R. 

P CP 

7 0.1 X 7 = 0.07 0.07 

8 1 X 0.7 - 0.1 X 0.7 = 0.63 0.70 

9 1 X 1 - 1x0.7 = 0.30 1.0 

Convoluting Q and H gives S, and also convoluting R and I gives T as 

shown in Figure 4.58. 

( 2 

Figure 4.58 

Duration time of S is shown in Table 4.28A and duration time of T is 

shown in Table 4.28B. 

Table 4.28A; Duration time of S. 

P CP 

11 0.5 X 0.6 = 0.3 0.3 

13 0.5 X 0.4 = 0.2 0.5 

14 0.5 X 0.6 = 0.3 0.8 

16 0.5 X 0.4 = 0.2 1.0 

Table 4.28B: Duration time of T. 

P CP 

11 0.3 X 0.7 = 0.021 0.021 

12 0.3 X 0.63 = 0.189 0.210 

13 0.7 X 0.07 + 0 3 X 0.3 = 0.139 0.349 

14 0.7 X 0.63 = 0.441 0.790 

15 0.7 X 0.3 = 0.210 1.0 
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Taking the maximum of S and T gives U as shown in Figure 4.59, 

O ^ - G ) 

Figure 4.59 

Table 4.29 shows the project finish time given A=2 and K=4, where P(A=2)=.2 

and P(K=4)=.76 • 

Table 4.29: Project finish time|(A=2, K=4). 

11 0.021 x 0.3 0.0063 

12 0.210 x 0.3 - 0.021 x 0.3 = 0.0567 

13 0.349 X 0.5 - 0.210 X 0.3 = 0.1115 

14 0.790 X 0.8 - 0.349 X 0.5 = 0.4575 

15 1 X 0.8 - 0.790 X 0.8 0.1680 

16 1 x 1 - 1 x 0 .8 = 0.2000 

Tables 4.25 and 4.29 show the pdf of the project coipletion time for K=3 and K=4 

respectively given A=2 . 4 is the last realization time of K. By fixing on the 

second realization time of A, 5,changes the network of Figure 4.49 to 

that of Figure 4.60. 

Figure 4.60 
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Tables 4.30A through 4.30C show duration times of (5+C), (5+D) and 

(5+G) respectively. 

Table 4.30A: Duration time of (5+C), 

P CP 

6 0.6 0.6 

7 0.4 1.0 

Table 4.30B: Duration time of (5+D). 

P CP 

8 0.9 0.9 

10 0.1 1.0 

Table 4.300: Duration time of 

P 

(5+g). 

cp 

8 0.7 0.7 

12 0.3 1.0 

Takin the maximum of B and (5+C) gives V as shown in Figure 4.61, 

Figure 4.61 

Table 4.31 shows duration time of V. 



143 

Table 4.31: Duration time of V. 

P CP 

6 0 . 6 x 1 0.6 0. 6 

7 1 x 1 - 0 . 6 x 1 = 0.4 1. 0 

Figure 4.61 shows that V has two successors (E and F) and each of 

these successors has only V as a predecessor, by fixing on the first 

realization time of V, 6,changes the network of Figure 4.61 to that of 

Figure 4.62. 

Figure 4.62 

Tables 4.32A and 4.32B show duration times of (6+E) and (6+F) respectively. 

Table 4.32A: Duration time of (6+E). 

P CP 

10 0.5 0.5 

13 0.5 1.0 

Table 4.32B: Duration time of 

P 

(6+F). 

CP 

9 0.1 0.1 

10 0.9 1.0 
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Taking the maximum of (5+D) and (6+E) gives W and taking the maximum 

of (5+G) and (6+F) gives X as shown in Figure 4.63. 

Figure 4.63 

Tables 4.33A and 4.33B show duration times of W and X respectively. 

Table 4.33A: Duration time of W. 

P CP 

10 1 X 0.5 0.5 0.5 

13 1 X 1 - 1 x 0 . 5 = 0.5 1.0 

Table 4.33B Duration time of X. 

P CP 

9 0.1 X 0.7 = 0. 07 0.07 

10 1 X 0. 7 - 0.1 X 0.7 = 0. 63 0.70 

12 1 X 1 - 1 X 0.7 = 0. 30 1.0 

Convoluting W and H gives Y and also convoluting X and I gives Z as 

shown in Figure 4.64. 

GI 5) 
Figure 4.64 
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Duration time of Y is shown in Table 4.34A and duration time of Z is 

shown in Table 4.34B. 

Table 4.34A: Duration time of Y. 

P CP 

13 

15 

16 

18 

0.6x0.5=0.3 0.3 

0 . 4 x 0 . 5 = 0 . 2 0.5 

0.6 X 0.5 = 0.2 0.8 

0.4 X 0.5 = 0.2 1.0 

Table 4.34B: Duration time of Z. 

P CP 

13 

14 

15 

16 

18 

0.3 X 0.07 = 0.021 0.021 

0.3 X 0.63 = 0.189 0.210 

0.7 X 0.07 = 0.049 0.259 

0.7 X 0.63 + 0.3 X 0.3 = 0.531 0.790 

0.7 X 0.3 = 0.210 1.0 

Taking the maximum of Y and Z gives a as shown in Figure 4.65. 

G) ^ 
Figure 4.65 

Table 4.35 shows the project finish time given A=5 and V=6, where P(A=5)=.8 

and P(V=6)=.6 • 
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Table 4.35: project finish time | (A=5 and V=6). 

13 0.3 X 0.021 = 0.0063 

14 0.210 X 0.3 - 0 021 X 0 . 3 = 0.0567 

15 0.259 X 0.5 - 0 210 X 0.3 = 0.0665 

16 0.790 X 0.8 - 0 259 X 0.5 = 0.5025 

18 1 x 1 - 0 790 X 0.8 = 0.3680 

By fixing on the second realization time of V, 7,changes network of 

Figure 4.61 to that of figure 4.66. 

Figure 4.66 

Tables 4.36Aand 4.36B show duration times of (7+E) and (7+F) 

respectively. 

Table 4.36A: Duration time of (7+E). 

P CP 

11 0.5 0.5 

14 0.5 1.0 

Table 4.36B: Duration time of 

P 

(7+F). 

CP 

10 0.1 0.1 

11 0.9 1.0 

Taking the maximum of (5+D) and(7+E) gives |3 and taking the maximum 

of (5+G) and (7+F) gives -y as shown in Figure 4.67. 
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Figure 4.67 

Tables 4.37A and 4.37B show duration times of p and y respectively. 

Table 4.37A: Duration time of p. 

P CP 

11 

14 

1 x 0 . 5 =0.5 

1 X 1 - 1 X 0.5 = 0.5 

0.5 

1 . 0 

Table 4.37B: Duration time of y. 

P CP 

10 

11 

12 

0.1 X 0.7 = 0.07 0.07 

1 X 0.7 - 0.1 X 0.7 = 0.63 0.70 

1 X 1 - 1 X 0.7 = 0.30 1.0 

Convoluting p and H gives 5, and also convoluting y and I gives 9 as 

shown in Figure 4.68. 

(2 9 S) 
Figure 4.68 

Duration time of 6 is shown in Table 4.38A and duration time of 9 is 

shown in Table 4.38B. 

Table 4.38A: Duration time of 6. 

P CP 

14 

16 

17 

19 

0.6 X 0.5 

0.4 X 0.5 

0.6 X 0.5 

0.4 X 0.5 

0.3 

0 . 2 

0.3 

0 . 2 

0.3 

0.5 

0 . 8 

1 .0 
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Table 4.38B: Duration time of 

P CP 

14 

15 

16 

17 

18 

0.3 X 0.07 = 0.021 

0.3 X 0.63 = 0.189 

0.7 X 0.07 + 0.3 X 0.3 = 0.139 

0.7 X 0.63 = 0.441 

0.7 X 0.3 = 0.210 

0.021 

0.210 

0.349 

0.790 

1 . 0 

Taking the maximum of 6 and 9 gives X as shown in Figure 4.69 

G> <3 
Figure 4.69 

Table 4.39 shows the project finish time given A=5 and V=7, 

where P(A=5)=.8 and P(V=7)=.4-

Table 4.39: Project finish time |(A=5 and V=7). 

14 0.021 X 0.3 = 0.0063 

15 0.210 X 0.3 - 0.021 x 0.3 = 0.0567 

16 0.349 X 0.5 - 0.210 x 0.3 = 0.1115 

17 0.790 X 0.8 - 0.349 X 0.5 = 0.4575 

18 1 x 0 . 8 - 0.790 X 0.8 = 0.1680 

19 1 x 1 - 1 x 0 . 8 = 0.2000 

By deconditioning the pdfs of project finish times given in Tables 4.25, 

4.29, 4.35 and 4.39 the unconditional pdf of project finish time is 

obtained. Table 4.40 shows the unconditional pdf of Table 4.25. 
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Table 4.40: 

P(A=2)P(K=3)=(0.2)(0.24)=0.048 

10 

11 

12 

13 

15 

0.0063 X 0.048 

0.0567 X 0.048 

0.0665 X 0.048 

0.5025 X 0.048 

0.3680 X 0.048 

0.0003024 

0.0027216 

0.0031920 

0.0241200 

0.0176640 

Table 4.41 shows the unconditional pdf of Table 4.29, 

Table 4.41: 

P(A=2)P(K=4)=(0.2)(0.76)=0.152 

11 0.0063 X 0. 152 = 0.0009576 

12 0.0567 X 0. 152 = 0.0086184 

13 0.1115 X 0. 152 = 0.0169480 

14 0.4575 X 0. 152 = 0.0695400 

15 0.1680 X 0. 152 = 0.0255360 

16 0.2000 X 0. 152 = 0.0304000 

Table 4.42 shows the unconditional pdf of Table 4.35. 

Table 4.42: 

P(A=5)P(V=6)=(0.8)(0.6)=0.48 

13 0 0063 X 0.48 = 0.003024 

14 0 0567 X 0.48 = 0.027216 

15 0 0665 X 0.48 = 0.031920 

16 0 5025 X 0.48 = 0.241200 

18 0 3680 X 0.48 = 0.176640 
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Table 4.43 shows the unconditional pdf of Table 4.39. 

Table 4.43 

P(A=5)P(V=7)=(0.8)(0.4)=0.32 

14 0.0063 X 0.32 = 0.002016 

15 0.0567 X 0.32 = 0.018144 

16 0.1115 X 0 . 3 2 = 0.035680 

17 0.4575 X 0.32 = 0.146400 

18 0.1680 X 0.32 = 0.053760 

19 0.2000 X 0.32 = 0.064000 

Simple addition of probabilities for each realization time of Table 

4.40 to Table 4.43 gives the unconditional pdf of project finish time 

as shown in Table 4.44. 

Table 4.44: Project finish time. 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

0.0003024 = 0.0003024 

0.0027216 + 0.00095760 = 0.0036792 

0.0031920 + 0.00861840 = 0.0118104 

0.0241200 + 0.01694800 + 0.0030240 = 0.0440920 

0.0695400 + 0.02721600 + 0.0020160 = 0.0987720 

0.0176640 + 0.0255360 + 0.0319200 + 0.0181440 = 0.0932640 

0.0304000 + 0.2412000 + 0.3568000 = 0.3072800 

0.1464000 = 0.1464000 

0.1766400 + 0.0537600 = 0.2304000 

0.0640000 = 0.0640000 

E = 16.3086640 
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SUMMARY AND CONCLUSIONS 

In this chapter a procedure to determine the probability distribution 

function of project completion time for PERT network with discrete 

statistically independent distribution is presented. This procedure 

computationally is based on the CIM approach and possesses the 

following advantages. 

1 - Provides an exact pdf for project completion time in PERT networks 

with discrete distributions. 

2 - Determination of the criticality indices of activities is a 

simple matter for an activity network in which this procedure is 

employed in evaluation of its completion time. 

3 - It can be applied for PERT networks with statistical and structural 

dependence relationships between activities. 

4 - It can be applied for PERT networks with discrete or continuous 

distributions . 

The algorithm consists of the following steps. 

1 - Reduce the network to its irreducible form using convolution 

and greatest operations. 

2 - If the network is reduced to an equivalent activity starting 

in node 1 and ending in node N, stop. The pdf of the 

duration time of this final activity is equal to F(t). 

3 - If the network is not completely reducible, calculate the 

indegree and outdegree of every node i^N, i.e. I(i) and 0(i), 

then choose one activity 'a' such that 'a' has more than one 

successor while each of its successor has only 'a' as a 

predecessor. 

A - Conditionalize by setting the chosen activity 'a' at its kth 

realization time T^; this is done by deleting 'a', adding 

T^ to the successors of 'a', and maintaining the implied 

precedence of activities in the conditinalized network. 
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5 - Decondition the df of final activity of step 4. 

6 - Determine the df of project completion time, mean and standard 

deviation. 
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CHAPTER 5: OTHER METHODS RELEVANT TO PROPOSED PROCEDURE 

INTRODUCTION 

This chapter looks briefly at other methods relevant to the proposed 

procedure of Chapter 4. Important factors affecting the magnitude of 

the bias using other methods are then considered through different 

examples. 

These factors are as follows: 

1 - Number of subcritical paths leading to a merge event. 

2 - "Closeness" of the expected completion times of the subpaths leading 

to a merge event. 

3 - The variance of the subpaths lengths. 

4 - The correlation of the subpaths, i.e., the number of common activities 

between subpaths. 

Fulkerson's Approach 

As pointed out in Chapter 2 the first improvement for the PERT estimate 

is due to Fulkerson (1962). He proposed a lower bound that is a function 

of the variance associated with each arc for the case where the activity 

durations are discrete random variables. 

Fulkerson's estimate is as follows: 

Let Bj denote the set of arcs immediately preceding node j. Determine a 

function fj recursively by 

f^= 0 

fj= ^max + yi;fi2+ Vi' i +yr.}'P[y(Bj)J; (2.15) 

y (Bj) j=2,3,...,n 

where y (B j ) is the vector of realization of all arcs in the set Bj. 

Recall that the PERT model estimates the expected duration of the project 

by defining the function gj recursively as follows: 



1 5 4 

8l=0 » 

gj=max {gi+Yij} ,j=2,3,...,N . (2.14) 

Note that, j is succeeding event number, and i<j. 

where Y^j = ^Yij-pCyij) 

yij 

and p(ij) is the marginal probability function of arc (ij). 

Example 1: 

Consider the network of Figure 5 .1 . The realizations of each activity 

indicated on the arcs are assumed equally likely. This simple network 

has 324 different realizations, all equally probable. All 324 realizations 

were enumerated by Elmaghraby ( 1 9 7 7 ) , the CP in each realization 

evaluated, and then the average evaluated, e ^ = 1 2 . 3 1 4 8 . The PERT estimate 

proceeds as follows: 

y^ 2=8/3;y^ 2=5;y^ ^=ll/3;y2 2=4;y2 ^=19/3, and y^ ^=10/3; and 

8 

82=71,2=3 
o on 

8^= max {0+5;- + 4} = ^ 
g^= max {0+1^; y + ^ ; y } = 10 • 

To be sure, g^ = 10 < 12.3148 = e^. We now evaluate the function (f%). 

f^.O 

3 

(3-

^ ( 2 x 8 i + 2x8 I +2xl0+6xllj+6xl2l+9xl4|) 

= 12.148 

Indeed, g^=10 < f^=12.148 <e^=12.3148. Formally, we have 



155 

Theorem 5.1: 8j ̂  ^ ^>3,...,n. Proof is given in 

Elmaghraby (1977). 

Fulkersoris (1962) approach is not closely related to the proposed approach 

for determining the pdf of project completion times, but its procedure is 

similar to the procedure of the proposed method for approximating 

criticality indices of the activities, the subject matter of Chapter 6. 

( 1 , 6 , 1 2 ) 
E 

,5) 

2 

Figure 5.1. Example network with random durations. 

Table 5.1 summarizes the data on the CPs, their length, and the 

frequency of the occurrence, where 

Path 1-2-4 is labelled #1 

1 - 2 - 3 - 4 is labelled #2 

1-4 is labelled #3 

1-3-4 is labelled //4 
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Table 5.1. Analysis of CPs of Network of Figure 5.1 

Length Paths in Network Frequency Relative 

of CP 1 2 3 4 lor2 lor4 2or3 2or4 of Length Frequency 

17 36 36 0.1111 

15 12 12 0.0370 

14 36 12 48 0.1481 

13 30 6 24 6 6 72 0.2222 

12 12 24 6 42 0.1296 

11 6 18 6 30 0.0926 

10 8 24 4 36 0.1111 

9 10 16 2 28 0.0864 

8 2 6 2 10 0.0309 

7 2 2 2 6 0.0185 

6 2 2 0.0062 

5 2 2 0.0062 

Frequency 

of Path 112 90 24 64 10 6 4 14 324 

THE APPROXIMATING PROCEDURE 

The approximating procedure proposed by Dodin (1985a) consists of 

three steps: discretizing continuous distributions, reducing the 

network, and sequential approximation. A brief discussion of these 

three steps; is given in Dodin (1985a) and a detailed discussion 

and a documentation of their computer program are presented in Dodin 

(1980). Figure 5.2 summarizes the steps of the procedure. 
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( START) 

Read the input data (the stru 
cture of the network and the acti 

vities' durations and dists.)-

NO Discretize all 
continuous distributions 

YES 

Calculate the indegree and 
outdegree of every node j eN 
i.e. I(i) and 0(i)• 

Calculate the indegree and 
outdegree of every node j eN 
i.e. I(i) and 0(i)• 

con 

ion 

Apply REDUCE to carry out 
all the convolution and 
multiplication operations 

Apply the sequential 
Approximation to the 
irreducible network. 

Print the approximate 
distribution function. 

"N't). 

is the 
network completely 

reducible? 

(sTOf) 

Figure 5.2: A procedure to approximate the distribution function of 

the longest path in stochastic networks. 
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1 - Discretizing the continuous distributions 

The discretization is done by approximating the continuous df by 

a dicrete function represented by the set of ordered pai rs (y) = 

{yĵ , p(y^))}. The accuracy of the discretization can be increased 

by increasing the cardinality of the set F^^Cy). 

2 - Reducing the network 

If the conditions of either Convolution or Greatest operations exist 

in the stochastic network, then the network can be reduced by the 

repeated use of the two operations until one of the following two 

evaluation occurs: 

(i) The network is reduced to an equivalent activity starting in 

node 1 and ending in node N. The df of the duration of this 

final activity is equal to F(t). In this case the network 

is termed completely reducible. 

(ii) The network reach a form G(N',A') where N' ^ N and A' < A which 

does not have the conditions of either of the above two operations. 

The original network, G(N,A), is termed reducible, and the 

new network G(N',A') is termed irreducible. 

The logic used to effect all possible reductions in the network 

is stated in the following by the name REDUCE. 

The reduction process (REDUCE). The following steps are used to 

identify and perform all the convolution and multiplication operations 

in the network: 

(1) Calculate l(i) and 0(i), the indegree and outdegree, for all 

nodes j=l,2,..,N in the network G(N,A). 

(2) If I(i) +0(i)>3 for all j^l, N then the network is irreducible; stop. If 

on the other hand l(i)+0(i)=2 for at least one j^l, N then the Activity 

Network is reducible since a convolution operation is possible: if it is 

carried out it might give rise to multiplication and convolution operations. 

Go to 3. 

(3) Use the scanning operator, denoted by SCAN,described below to identify all 

the convolution and multiplication operations, i.e. 
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SCAN: G(N,A) G(N',A') 

where N' < N and A' < A. The following are the steps of SCAN: 

(a) Rank the arcs in A from ItoA such that for any two arcs p=(ij)eA 

and q=(lk)eA p<q if i< 1; if i=l then j<k. Set the arc indicator 

6(p)=l for all p=l,2,...,A,M=A, and K=l. 

(b) If 6(K)=0, go to e; otherwise let i be the start node of arc 

K and j be its end node, and set J=1. 

(c) If 6(J)=0 or J=K, go to d; otherwise let a be the start node 

of arc J and g be its end node, then check for the conditions 

of either a multiplication or a convolution operation; if i=a and 

j=|3 then K and J define a multiplication operation; do the necessary 

bookkeeping, and set 5(K)=0, 6(J)=0, M^M+1 and 6(M) = 1, then go to e. 

If not, then if either (i) j=a and l(i)=0(i)=l, or (ii) i=P and l(i)=0(i)=l, 

then K and J define a convolution operation; do the necessary bookkeeping 

and set 6(K)=0, 6(J)=0, M -> M+1 and 6(M)=1, then go to e. 

(d) Set J J+1. If J > M, go to e; otherwise go to c. 

(e) If K=M, stop; otherwise set K -> K+1 and go to b. 

If A'=l then the network is completely reducible and the approximating 

procedure terminates with the df of approximated by the df of the 

equivalent activity (1,N). If A'^1, then A')5,N^4 and G(N',A') 

is the corresponding irreducible network of G(N,A). In this case 

the approximate df, of is obtained through the use of the Sequential 

Approximation presented in the next section. 

The reduction process described above starts with a convolution 

operation, then a sequence of multiplication and convolution operations 

may follow in any order. The process may start with any of the 

initial convolutions available without fear of missing any convolution 

or multiplication operation j this is clear from Step 3 above. The 

reduction process does not alter the realization of T^ or its df. 
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Completely reducible networks can be reduced to the equivalent, 

single activity (l,N) in a fixed number of convolution and multiplication 

operations. To reduce the network to the activity (1,N) implies 

that N-2 nodes and A-1 arcs have to be suppressed, but a convolution 

operation is necessary to reduce the network by one arc and one 

node. Hence we have N-2 convolution operations and A-N+1 multiplication 

operations. Therefore the complexity of REDUCE is (at worst) of 

0(CA), exactly like the complexity of the sequential approximation, 

where C is the complexity of the convolution and multiplication 

operations. 

3 - Sequential Approximation 

The sequential approximation to be described below can be applied 

to any stochastic network with N>2 and A>1, reducible or irreducible. 

The approximation process enters the sequential approximation with 

the irreducible network G(N',A'). The sequential approximation 

starts at node 1, which has the df F(l) = {(0,1)}, then proceeds 

sequentially to approximate the df of the realization times of the 

next nodes in increasing order, ending with node N. The df of T^ for 

all jeN' is approximated using the following procedure: 

(1) Without loss of generality, assume the sequential approximation 

is at node jeN', then I(j)>l or 0(j)>l, i.e. I(j)+0(j)>3 as 

is shown in Figure 5.3. 

Figure 5.3: A node in an irreducible network. 
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Determine the set of B(j), which is the set of activities ending 

at node j, and rank the activities in an ascending order of 

their starting nodes; see Figure 5.3 for illustration. 

(2) For each activity (ij) e B(j): 

(a) Convolute F^^ly) with F\(t),i.e. the distribution function of 

Y.. with the distribution function of T.. Denote this 
ij 1 

convolution by F(i). 

Therefore, for any value t > 0, 

F(i) = Pr(T.+Y_ <t)=^Pr(Y^j=y)Pr(T.( t-y) • 

y 

(b) Let K=C(F(i)) which is the number of ordered pairs in 

the distribution F(i)={r^, p(r^))}. K can be a large 

n u m b e r ; for example if C(F^j (y))=20 and C(F^(t))=30, then 

30 ̂  C(F(i))^600. Thus, if K is greater than a desired 

number of discrete points (realizations) the analyst would 

like to have for the df of T^, then, F(i), which has K 

ordered pairs, is approximated by another df with the 

desired number of realizations; denote such a number by 

k. This approximation is done according to the rules: 

(i) The full range of the distribution F(i) is maintained. 

(ii) The intermediate K-2 points are mapped into k-2 

points using the following three steps; 

(11.1) Let A=(r^^^-r2)/(k-2), then we have k-2 intervals; 

each is of width A. The first interval contains 

all the realizations in the interval [r^.r^+A], and 

the nth interval contains all the realizations 

r^e[r^+ACn-l)jr^+nA] for n=2,3,.•..,k-2. 

(11.2) For the realizations in the nth interval let 

m m 

then 
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(ii,3) If the nth interval is empty, i.e. there does not 

exist any 

r € [r„+A(n-l),r„ +nA], then 
m l J. 

(r'^j p(r'^))=(r2+(n-0.5),0). 

(3) Fj(t)=Pr(%j^t) max={F(i) for all ieN' such that (ij)€B(j)}; 

To avoid any unexpected escalation in the storage requirements, 

the above maximum operation can be performed sequentially, 

and the operation of step 2.b above can be used whenever 

the cardinality of the new distribution is greater than 

k. For instance, let 

F(i^,i2)=max {F(i^), Fd^)}, 

i.e. for any value t > 0 

F(i^,i2)=Pr(max{T.^+Y.^j, t) 

then. 

=Pr(T.^+Y.^j ^ t)Pr(T.2 + Y.gj t) 

f ( i 2 , i 2 ) = m a x { f d ^ . i ^ ) , f d ^ ) } , 

and so on until Fj(t) is finally obtained where 

Fj(t)=F(i^ ^ , i^)=max {F(i^_2,i^.^),F(n)}. 

k > je N', until finally, node N is reached, and F^^t) is 

approximated. The complexity of the sequential approximation 

is a linear function of the number of the convolution and 

multiplication operations. In an irreducible network with 

A arcs and N nodes. Step 2 of the SA implies that we have 

A-O(l) convolution operations. Step 3 implies that for each 

jî l or 2 we have I(j)-1 multiplication operations, which implies 

that the total number of the multiplication operations is 
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N 

(I(j)-1)=A-N+1 . 

J = 2 

Therefore, the complexity of the SA is of 0(CA) where C 

is the complexity of the convolution and multiplication 

operations'which depends on the cardinality of the discrete 

distribution functions. If the cardinality of the discrete 

distributions is less than or equal to k, then the complexity of 

the convolution and multiplication is (at worst) of O(k^). 

Example 1. 

Consider, again, the network of Figure 5.1. We apply the approximating 

procedure and evaluate d^ as an estimate of e^. 

Tables 5.2 to 5.9 show the calculation procedure. 

Table 5.2: A's finish time. 

1 1/3 

2 1/3 

3 1/3 

Table 5.3: B's finish time. 

P CP 

0 1/3 1/3 

1 1/3 2 / 3 

10 1/3 3 / 3 

Table 5.4: C's finish time. 

P CP 

2 1/2 1/2 

8 1/2 1/1 
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Table 5.5: D's finish time. 

P CP 

4 1/6 1/6 

5 1/6 2 /6 

6 1/6 3 /6 

7 1/6 4/6 

8 1/6 5 /6 

10 1/6 6 /6 

Table 5.6: E's finish time. 

P CP 

2 1/9 1/9 

3 1/9 2 / 9 

6 1/9 3 /9 

7 1/9 4/9 

8 1/9 5 / 9 

11 1/9 6 / 9 

13 1/9 7/9 

14 1/9 8 /9 

17 1/9 9 /9 

Table 5.7: F's start time. 

P 

4 1/12 

5 1/12 

6 1/12 

7 1/12 

8 6/12 

10 2/12 
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Table 5.8: F's finish time. 

P CP 

5 1/36 1/36 

6 1/36 2/36 

7 1/36 3/36 

8 2/36 5/36 

9 8/36 13/36 

10 2/36 15/36 

11 4/36 19/36 

12 7/36 26/36 

13 6/36 32/36 

14 2/36 34/36 

15 2/36 36/36 

Table 5.9: Project finish 

P 

time using Dodin's approach. 

5 4/972 

6 8/972 

7 

8 

12/972 

26/972 

9 80/972 

10 95/972 

11 117/972 

12 126/972 

13 204/972 

14 144/972 

15 48/972 

17 108/972 

<̂ 4 = 12.400205 0=2.5192 
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Using the proposed procedure of Chapter 4, df of the project completion 

time can be computed as shown in Table 5.10. 

Table 5.10: Project completion time using proposed procedure. 

P 

5 0.0062 

6 0.0062 

7 0.0185 

8 0.0308 

9 0.0864 

10 0.1111 

11 0.0926 

12 0.1296 

13 0.2222 

14 0.1481 

15 0.0370 

17 0.1111 

12.3148 0=2.5735 

Notice that the df obtained using the proposed procedure is exactly 

the same as the df obtained with complete enumeration as shown in 

Table 5.1. 

Example 2 

Consider the network of Figure 3.10. In the following, the approximating 

procedure is applied to approximate the df of the project completion 

time. 
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Figure 3.10 

Tables 5.11 through 5.18 show the calculation procedure. 

Table 5.11: 

X. 

Duration time of A=D's start time. 

P CP 

3 0 . 8 0 . 8 

8 0.2 1.0 

Table 5.12: Duration times of B,C,D and E. 

P CP 
^C P CP P CP P CP 

6 0.6 0.6 4 0.3 0.3 4 0.9 0.9 1 0.5 0.5 

9 0.4 1.0 6 0.7 1.0 5 0.1 1.0 2 0.5 1.0 

Table 5.13: C's finish time. 

P CP 

7 0 .8 X 0.3 = 0.24 0.24 

9 0.8 X 0.7 = 0.56 0.80 

12 0.2 X 0.3 = 0.06 0.86 

14 0.2 X 0.7 = 0.14 1.0 

Table 5.14: D's finish time. 

P CP 

7 0.8 X 0.9 = 0.72 0.72 

8 0.8 X 0.1 = 0.08 0.80 

12 0.2 X 0.9 = 0.18 0.98 

13 0.2 X 0.1 = 0.02 1.0 
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Table 5.15: E's start ti i m e . 

CP 

7 

9 

12 

14 

0.24 X 0.60 

0.80 X 1 

0.86 X 1 

1 x 1 

0.24 X 0.60 

0.80 X 1 

0.86 X 1 

= 0.144 

= 0.656 

= 0.060 

= 0.140 

0.144 

0 .800 

0 . 8 6 0 

1 . 0 

E = 9.592 

Table 5.16: E's finish time. 

P CP 

8 

9 

10 

11 

13 

14 

15 

16 

0.144 X 0.5 

0.144 X 0.5 

0.656 X 0.5 

0.656 X 0.5 

0.060 X 0.5 

0.060 X 0.5 

0.140 X 0.5 

0.140 X 0.5 

0.072 

0.072 

0.328 

0.328 

0.030 

0.030 

0.070 

0.070 

0.072 

0.144 

0.472 

0.800 

0.830 

0 .860 

0.930 

1 . 0 

E = 11.092 



Table 5.17: Project finish time using 

P 

Dodin 
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s approach. 

8 0.80 X 0.072 = 0. 0576 

9 0.80 X 0.144 - 0.80 X 0.072 = 0. 0576 

10 0.80 X 0.472 -0.80 X 0.144 = 0. 2624 

11 0.80 X 0.80 - 0.80 X 0.472 = 0. 2624 

12 0.98 X 0.80 - 0.80 X 0.80 = 0. 1440 

13 0.83 X 1 - 0.98 X 0.80 = 0. 0460 

14 0.86 X 1 - 0.83 X 1 = 0. 0300 

15 0.93 X 1 - 0.86 X 1 = 0. 0700 

16 1 X 1 -0.93 X 1 = 0. 0700 

11.4056 0=2.077 

The project finish time using proposed procedure is given in Table 

4.17. 

Table 4.17: Unconditional project completion time. 

P 

FP = 8 0.072 

9 0.072 

10 0.328 

11 0.328 

13 0.03 

14 0.03 

15 0.07 

16 0.07 

E = 11.092 0=2.125 
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The df of the project completion time can be computed from tree 

diagram of Figure 6.11. Table 5.18 shows the exact df of the project 

completion time. 

Table 5.18: Exact project completion time. 

P 

8 0.072 

9 0.072 

10 0.328 

11 0.328 

13 0.03 

14 0.03 

15 0.07 

16 0.07 

E= 11.092 o=2.125 

Notice that the df obtained using the proposed procedure is exactly 

same as the df obtained using complete enumeration. 

Example 3. 

Consider the network configuration of Figure 4.49. Table 5.19 shows 

the duration times of activities, and Tables 5.20 through 5.22 show 

the df of the project completion times using Dodin's approach, complete 

enumeration, and proposed procedure of Chapter 4 respectively. 

Figure 4.49 



Table 5.19: Duration times of activities 
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P CP P CP 
^C 

P CP 

2 0.2 0.2 3 0.4 0.4 1 0.6 0.6 

5 0 .8 1.0 4 0.6 1.0 2 0.4 1.0 

^D 
P CP P CP 

4 
P CP 

3 0.9 0.9 4 0.5 0.5 3 0.1 0.1 

5 0.1 1.0 7 0.5 1.0 4 0.9 1.0 

P CP P CP P CP 

3 0.7 0.7 3 0.6 0.6 4 0.3 0.3 

7 0,3 1.0 5 0.4 1.0 6 0.7 1.0 

Table 5.20; Project completion time using Dodin's approach. 

P 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

0.0000005 

0.000146 

0.0022794 

0.0135847 

0.0872907 

0.0786823 

0.3230316 

0.1938648 

0.23712 

0.064 

^6 = 16.556236 0=1.4139275 
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P 
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time using complete enumeration. 

10 0 0003023 

11 0 0036782 

12 0 0118095 

13 0 0441925 

14 0 0987603 

15 0 0931824 

16 0. 3069175 

17 0. 146392 

18 0. 2303077 

19 0. 063992 

®6= 16.300809 0=1.6511466 

Table 5.22: Project completion time using proposed procedure. 

P 

10 0 0003024 

11 0 0036792 

12 0 0118104 

13 0 044092 

14 0 098772 

15 0 093264 

16 0 30728 

17 0 1464 

18 0. 2304 

19 0 064 

^6= 16. 308664 0=1.6509811 

Notice that the deviation between corresponding enteries of Tables 

5.21 and 5.22 is due to approximation in rounding operation. 



173 

Example 4. 

Consider the network configuration of Figure 5.4. This network is 

symmetric, duration times of activities are shown beside each activity 

with equal probability for occurrence. Tables 5.23 through 5.25 show the df 

of the project completion times using Dodin's approach, complete 

enumeration, and proposed procedure respectively. 

Figure 5.4 

Table 5.23: Project finish time using Dodin's approach. 

P 

3 0.0029296 

4 0.1884766 

5 0.5742188 

6 0.234375 

S = 5.0400392 0=0.6580019 

Table 5.24: Proiect completion 

P 

time using complete enumeration 

3 0.0078125 

4 0.21875 

5 0.5546875 

5 0.21875 

^5= 4.984375 o=0.6844746 
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Table 5.25: Project completion time using proposed procedure. 

P 

3 

4 

5 

6 

0.0078125 

0.21875 

0.5546875 

0 .21875 

4.984375 o=0.6844746 

Now let us change realization times of common activity B from (1 

and 2) to (1 and 10) as shown in Figure 5.5, and apply three above 

mentioned approaches to this network. 

Figure 5.5 

Table 5.26: Project completion time using Dodin's approach. 

P 

3 

4 

5 

11 

12 

13 

14 

0.0019531 

0.046875 

0.0761719 

0.0625 

0.203125 

0.375 

0.234375 

11.855468 0=2.8713645 
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Table 5.27: Project completion time using complete enumeration 

or using proposed procedure. 

P 

3 

4 

5 

12 

13 

14 

0.0078125 

0.1875 

0.3046875 

0.03125 

0 . 2 5 

0 .21875 

8 .984375 0=4.4264551 

Notice that in all examples of this chapter the mean value of project 

completion time using Dodin's approach is pessimistically biased, 

i.e., Dodin's approach overestimates the mean value of project completion 

time. On the other hand, Dodin's approach underestimates the standard 

deviation of project completion time. The bias in Dodin's approach 

mainly depends on the following two factors. 

1 - Number of activities emanating from a merge event. 

2 - Standard deviation of the subpaths lenghts. 

For instance in Figure 5.4 three arcs emanate from node 2, since 

in Dodin's approach it is assumed that the paths are independent, 

by using sequential approximation we take into account common activity 

B of Figure 5.4 three times as shown in Figure 5.6, therefore, we 

increase the number of paths in the network, as a result we increase 

the mean value of project completion time, and decrease the standard 

deviation of the project completion time. 
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Figure 5.6 

Second factor which affects the mean value and standard deviation 

of project completion time using Dodin's approach is the standard 

deviation of the activities leading into those merge events for 

which the outdegree are greater than one. Table 5.27 shows the 

effect of this factor on the mean value and standard deviation of 

the project completion times of the networks of Figure 5.5 and Figure 

5.6, where in Figure 5.5 the common activity B has two realization 

times 1 and 2 (0^=0.5) and in Figure 5.6 it has two realization 

tiems 1 and 10 (o =4.5). 
D 

Table 5.27: 

Oj j.0,5 

Exact-Calculated mean 

Dodin's-Calculated mean 

per cent error (Dodin's from Exact) 

4.984375 

5.0400392 

+ 1.12 

Exact-Calculated standard deviation = 0.6844746 

Dodin's-Calculated standard deviation = 0.6580019 

per cent error (Dodin's from Exact) - 3.9 
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0^=4.5 

Exact-Calculated mean 

Dodin's-Calculated mean 

per cent error (Dodin's from Exact) 

= 8.98437 

=11.855468 

+ 32 

Exact-Calculated standard deviation = 4.4264551 

Dodin's-Calculated standard deviation = 2.8713645 

per cent error (Dodin's from Exact) - 35 

Notice that the per cent error in mean value and standard deviation 

of the project completion time is an increasing function of the 

standard deviation of common activity B. 

Example 5. 

Figure 5.7 shows an irreducible network with four common arcs A,B,G 

and H. Assume all activities have two realization times 1 and 2 

and equal probability. 

Figure 5.7 

In order to evaluate effects of standard deviations of common activities 

A and B on the mean value and standard deviation of project completion 

time we gradually increase the duration times of activities A and 

B as follows: 
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A, B A, B A B A B A ,B 

X P X P X P X P X P 

1 0.5 2 0.5 3 0.5 4 0.5 5 0.5 

2 0.5 4 0.5 6 0.5 8 0.5 10 0.5 

E= =1.5 3 4 5 6 7.5 

a= =0.5 1 1 5 2 2.5 

A, B A, B A, B A, B A B 

X P X P X P X P X P 

6 0.5 7 0.5 8 0.5 9 0.5 10 0.5 

12 0.5 14 0.5 16 0.5 18 0.5 20 0.5 

E=9 

a=3 

10.5 

3.5 

12 

4 

13.5 

4.5 

15 

5 

The following tables show the project completion time using Dodin's 

approach. In each case only the final table is shown. 

Project completion time. 

P A,B 

3 0 0009765 

4 0 0966797 

5 0 5126953 

6 0 3896485 

5 291015 

a = 0 6368232 

1 0 5 

2 0 5 
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Project completion time. 

P 

Project completion time. 

P 

4 0.0009765 7 0.0009765 

5 0.0234375 
A 

8 0.0234375 A B 

6 0.140625 
2 0.5 

9 0.038086 5 0.5 

7 0.4453125 4 0.5 12 0.102539 10 0.5 

8 0.3896485 13 0.4453125 

^6= 7.199219 
14 0.3896485 

0.770145 

Protection Completion time. 

P 

5 

6 

7 

8 

9 

10 

0.0009765 

0.0234375 

0.038086 

0.102539 

0.4453125 

0.3896485 

d,= 9.136719 
6 

a = 0.9232554 

d, = 11.074219 
6 

o = 1.1085419 

A,B 

3 0 5 

6 0 5 

Protect completion time. 

P 

6 0.0009765 

7 0.0234375 A, B 

8 0.038086 
4 0.5 

10 0.102539 8 0.5 

11 0.4453125 

12 0.3896485 

d,= 13.011719 
5 

o = 1.312447 

Project completion time 

P 

8 0.0009765 

9 0.0234375 A, B 

10 0.038086 
6 0.5 

14 0.102539 
12 0.5 

15 0.4453125 

16 0.3896485 

^6= 14 .949219 

a = 1 .5275329 

Project completion time. 

P 

9 0.0009765 

10 0.0234375 A B 

11 0.038086 7 0.5 

16 0.102539 14 0.5 

17 0.4453125 

18 0.3896485 

d = 16.886719 
6 

o = 1.749811 
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Project completion time. 

P 

10 

11 

12 

18 

19 

20 

0.0009765 

0.0234375 

0.038086 

0.102539 

0.4453125 

0.3896485 

A.B 

8 

16 

0.5 

0.5 

d = 18.824219 

a = 1.9765117 

Project completion time. 

P 

11 

12 

13 

20 

21 

22 

0.0009765 

0.0234375 

0.038086 

0.102539 

0.4453125 

0.3896485 

A.B 

9 

10 

0.5 

0.5 

d,= 20.761719 6 

a = 2.2065812 

Project completion time. 

P 

12 

13 

14 

22 

23 

24 

0.0009765 

0.0234375 

0.038086 

0.102539 

0.4453125 

0.3896485 

d, = 22.699218 
6 

a = 2.4389732 

A.B 

10 0. 

20 0. 

The following tables show project completion time using proposed procedure. 

In each case only the final table is shown. 

Project completion time. 

P 

Project completion time. 

3 0.0039062 5 

4 0.1289062 
A, B 

6 

7 5 0.4960937 
1 0.5 

6 

7 

6 0,3710937 
2 0.5 

8 

0.0039062 

0.09375 

0.1875 

0.34375 

0.3710937 

A.B 

2 0.5 

4 0.5 

E = 5.234375 
o = 0.6787435 

= 6.984375 

o = 0.9841265 
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Project completion time. 

P 

Project completion time 

P 

5 0.0039062 8 0.0039062 

6 0.09375 A 9 0.09375 A, B 

7 0.1523437 
3 0 .5 

10 0.1524375 
6 0.5 

8 0.0351562 
6 0 .5 

14 0.0351562 
12 0.5 

9 0.34375 15 0.34375 

10 0.3710937 16 0.3710937 

^6 = 8.734375 ^6 = 13.984375 

a = 1.357417 o = 2.5980286 

Project completion time 
P 

Project completion 
P 

time 

6 0.0039062 9 0.0039062 

7 0.09375 A B 10 0.09375 A ,B 

8 0.1523437 
4 0. 5 

11 0.15234375 
7 0.5 

10 0.0351562 
8 0. 5 

16 0.0351562 
14 0.5 

11 0.34375 17 0.34375 

12 0.3710937 18 0.3710937 

^6 = 10.48375 ^6= 15.7343375 

a = 1.7632723 a = 3.0220133 

Project completion 
P 

time. Project completion 
P 

time 

7 0.0039062 10 0.0039062 

8 0.09375 A, B 11 0.09375 A B 

8 0.5 
9 0.1523437 

5 0. 5 
12 0.15234375 

8 0.5 

12 0,0351562 
10 0. 5 18 0.0351562 

16 0.5 

13 0.34375 19 0.34375 

14 0.3710937 20 0.3710937 

^6 = 12.234375 
^6 = 17.484375 

o = 2.1775998 a = 3.4482423 
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Project completion time. 

P 

11 0 0039062 

12 0 09375 A 

13 0 15234375 9 0.5 

20 0 0351562 18 0.5 

21 0 34375 

22 0 3710937 

E^= 19.234375 

o = 3.875953 

Project completion time. 

P 

12 0 0039062 

13 0 09375 A, B 

14 0 15234375 
10 0 5 

22 0 0351562 20 0 5 

23 0 34375 

24 0. 3710937 

E,= 20.984375 
6 

a = 4.3047666 

Diagrams 5.1 to 5.4 illustrate effects of standard deviations of 

common activities A and B on the mean value and standard deviation of 

project completion time obtained using (a) Dodin's procedure 

(b) Proposed procedure, and (c) PERT method. 
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Diagram 5.1: Relationship between mean value of project completion 

time and standard deviation of common activities A and B. 
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Diagram 5.2; Relationship between standard deviation of project 

completion time and standard deviation of common activities 

A and B. 
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Diagram 5.3: Percent bias on the mean value of project completion time 

as a function of standard deviation of common activities 

A and B. 

- denotes optimistically biased and + denotes pessimistically 

biased. 
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Diagram 5.4: Percent bias on the standard deviation of the project 

completion time as a function of standard deviation of 

common activities A and B. 

- denotes optimistically biased and + denotes pessimistically 

biased. 



187 

Example 6. 

Consider Wheatstone bridge of Figure 5.8. Table 5.28 shows duration times 

of activities. In order to evaluate effect of standard deviation of 

common activity A on the mean value and standard deviation of project 

completion times using Dodin's procedure and conventional PERT method 

we gradually increase the range of the duration time of activity A as shown 

in Table 5.29. Notice that for all different duration times of A mean 

is 10. 

Figure 5.8 

Table 5.28: Duration times of activities. 

A B C D E 

P P P P 
^E 

P 

9 0.25 19 0.25 9 0.25 9 0.25 1 0.25 

10 0.5 20 0.5 10 0.5 10 0.5 2 0.5 

11 0.25 21 0.25 11 0.25 11 0.25 3 0.25 
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Table 5.28: Different duration times of activity A. 

A A A A A 

P P 
^A 

P P P 

9 0.25 8 0.25 7 0 25 6 0.25 5 0.25 

10 0.5 10 0.5 10 0 5 10 0.5 10 0.5 

11 0.25 12 0.25 13 0. 25 14 0.25 15 0.25 

E = 10 10 10 10 10 

o = 707 1. 414 2. 12 2 .826 3.53 

X. X. X. 

4 

10 

16 

0.25 

0.5 

0.25 

3 

10 

17 

0.25 

0.5 

0.25 

2 

10 

18 

0.25 

0.5 

0.25 

1 

10 

19 

0.25 

0.5 

0.25 

0 

10 

20 

0.25 

0.5 

0.25 

E= 10 

o = 4.234 

10 

4.95 

10 

5.65 

10 

6.364 

10 

7.071 

Diagrams 5.5 to 5.8 illustrate effects of standard deviation of common 

activity A on the mean value and standard deviation of project completion 

time obtained using (a) Dodin's procedure (b) Proposed procedure, and 

(c) PERT method. 
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Diagram 5.7: Percent bias on the mean value of project completion time as 

a function of standard deviation of common activity A. 

- denotes optimistically biased and + denotes pessimistically 

biased. 
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Diagram 5.8: Percent bias on the standard deviation of project completion 

time as a function of standard deviation of common activity A. 

- denotes optimistically biased and + denotes pessimistically 

biased. 
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Example 7. 

Consider PERT network of Figure 5.9. Table 5.30 shows the duration 

times of activities. This network is originally presented in Mac 

Crimmon and Ryavec (1962). 

Figure 5.9 

Table 5.30; Duration times of activities of Figure 5.9. 

A,B,F and G C and E D H 

X P X P X P X P 

1 0.2 1 0.2 2 0.2 3 0.2 

2 0.6 3 0.6 5 0.6 7 0.6 

3 0.2 5 0.2 8 0.2 11 0.2 

Using proposed procedure the pdf of the project completion time Which is 

equal to the exact pdf can be obtained as shown in Table 5.31. 
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Table 5.31 Exact 

P 

4 0. 0000025 

5 0. 0002303 

6 0. 0059007 

7 0. 1326386 

8 0. 1882111 

9 0. 2250546 

10 0. 1936793 

11 0. 2 5 2 6 8 2 2 

12 0. 0016000 

E = 9.2317133 o = 1.3931231 

Using Dodin's procedure the pdf of the project ccnpleti on time can be obtained 

as shown in Table 5.32. 

Table 5.32: Approximate project completion time using Dodin's procedure. 

P 

5 0 0001146 

6 0 0026084 

7 0 1074626 

8 0 2089091 

9 0. 2249392 

10 0. 1980924 

11 0. 2562737 

12 0. 0016000 

^5 " 
9.2833219 o = 1.3495862 

Using PERT model calculation procedure the mean and standard deviation 

of project completion time can be computed as; mean = 8 and standard 

deviation = 1.264911. Table 5.33 summarizes the results. 
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Table 5.33: Summary of Results for Figure 5.9. 

Calculation procedure Project completion time 

PERT - calculated mean 

Exact (analytically)-calculated mean 

Dodin's-calculated mean 

per cent error (PERT from Exact) 

per cent error (Dodin's from Exact) 

8 . 0 

9.2317133 

9.2833219 

-13.34 

+ 0.56 

PERT-calculated standard deviation 1.264911 

Exact (analytically)-calculated standard deviation 1.3931231 

Dodin's-calculated standard deviation 1.3495862 

per cent error (PERT from Exact) -9.20 

per cent error (Dodin's from Exact) -3.13 

Diagrams 5.1 through 5.8 show that PERT-calculated mean is less than 

actual mean and PERT-calculated standard deviation is greater than 

actual standard deviation, while Table 5.33 shows that both PERT-

calculated mean and standard deviation are less than Exact mean and 

standard deviation respectively. This is because, in PERT method the 

completion times of paths in the netowrk are assumed to be completely 

correlated, and the critical path cannot change. Also, Diagrams 5.1 

through 5.8 and Table 5.33 show that mean completion time obtained 

using Dodin's procedure is biased optimistically, while Dodin's procedure 

calculated standard deviation is biased in either direction. The reason 

is that, in Dodin's procedure it is assumed that all paths are 

structurally independent. 
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In fact independence assumption among paths in Dodin's procedure is 

one of the sources of error in determination of the mean and 

standard deviation of the project completion times in irreducible 

networks and this bias is an increasing function of the standard deviation 

of common activities and the number of activities which emanate from 

the nodes in which these common activities terminate. 

SUMMARY AND CONCLUSTIONS 

In this chapter effects of structural dependence relationships in PERT 

networks has been shown through examples. It has demonstrated that 

conventional PERT procedure always leads to an optimistically biased 

estimate of the occurrence time for the network events, and the 

Approximating Procedure proposed by Dodin (1985a) which is based on 

the assumption of complete independence among paths in irreducible 

networks always leads to a pessimistically biased estimate of the 

occurrence time of events. On the other hand both PERT and Dodin's 

calculated standard deviation may be biased in either direction. 

Precise statement about the magnitude of the error, however, cannot 

be made since errors in the project mean and variance vary with 

different network configurations. The two more important factors 

affecting the magnitude of the merge event bias are as follows: 

1 - The number of subcritical paths leading to a merge event. 

2 - The variance of the subpaths lengths. 
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CHAPTER 6; PROPOSED PROCEDURE FOR CRITICALITY INDICES 

INTRODUCTION 

One of the more misleading aspects of conventional PERT methods is 

the implication that there is a unique critical path. In general, 

any of a number of paths could be critical, depending on the particular 

realization of the random activity durations that actually occur. Thus, 

it makes sense to talk about a "criticality index", which is the 

probability that an arc will be on the critical path (Van Slyke, 1963). 

If we let P denote the set of all paths in the PERT network, and 

Z(T,) denote the duration of path T̂  e P, then: Z(T,) = V Y 

where Y^^ is duration of arc (ij)eA. 

The criticality of a path T^sP is measured by the probability that 

its duration Z(T^) is greater than or equal to the duration of all other 

paths. This probability is called the criticality index of the path, 

and is denoted by CP (Dodin and Elmaghraby, 1985). Therefore, for 

any path T^ e P: 

CP(T.) =Pr [Z(T,) > Z(T ) for all T €P;T.#T ]. (6.l) 
1 1 q q 1 q 

The criticality index of an activity, denoted by CA, is defined by 

the sum of the criticality indices of the paths containing it; therefore, for 

any activity (ij) e A: 

CA(ij) = ^ CP(T^) . (6.2) 

^1 
((ij)fT^) 

Evidently, the larger the value of CA(ij), the more crucial is the 

activity; and conversely. The CA appears to be an exceedingly useful 

measure of the degree of attention an activity should received by 

management, since it carries more pointed information than the basic 

critical path concept now used. Specifically, the CAs indicate which 
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activities are the bottleneck activities and should be expedited if 

the entire project is to be expedited. It should be added that the 

probability of an activity being on the critical path is not correlated 

too well with slack, as computed by conventional PERT procedure which 

is the factor that usually determines the degree of attention that 

a particular activity receives. The following example may clarify 

these points. 

Example 1. 

Consider the network of Figure 6.1, with the customary time estimates 

of a, m, and b shown beside the corresponding activity. This example 

is originally presented in Mac Crimmonand Ryavec (1964) with three 

time estimates of activity B as 7-8-10. 

\ 0 - 0 - 0 

2-4-5 

7-9-11 

2-4-6 

Figure 6.1 PERT network showing activities with 

associated times. 

Using the PERT calculated mean times (given in the circle below the 

activities), the PERT procedure would choose 1-2-4-6 as the critical 

path because it has the maximum sum of means (13). Using the proposed 

procedure of next section, calculations will show that path 1-2-4-6 

has the probability .372 of being the longest path, and this is a larger 

probability than any of the other three paths. The probability of 
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each activity being on the longest path is A,.515; B,.485; C,.372; 

D,.143; E,.135 and F,.35 

Note that although path 1-2-4-6 is the most probable longest path, 

it does not contain activity B which is more critical than activity 

C, which is on this most probable longest path. 

This example suggests that a critical activity concept may be more 

valid in a stochastic model than a critical path concept. In fact, 

the issue of determining the CPs and the CAs has received little attention 

in the literature. This is due to the difficulty in evaluating both 

expressions(6.1) and (6.2). The first attempt to approximate the CAs 

was introduced by Van Slyke (1963) using "crude" Monte Carlo simulation. 

Martin (1965) defined the CP(T^) and the CA(ij) conceptually without 

suggesting how to obtain their values. 

Sigel et al (1979) suggested the use of conditional Monte Carlo simulation 

to approximate CPs, then used them to approximate the CAs using (6.2). 

In the above three references, the evaluation of the CAs requires the 

enumeration of all the paths in the activity network, the approximation 

of the corresponding CPs, and the identification of the paths passing 

through each activity, all of which are burdensome, time consuming 

tasks. 

Recently, theoretical results are developed by Dodin and Elmaghraby 

(1985) which lead to the first analytical approximating procedure 

to estimate the CAs without either using Monte Carlo simulation or 

identifying the paths and the CPs. This procedure (i) measures the 

"degree of criticality" of an individual activity, and (ii) can be 

used to generate the criticality list of the "M most critical 

activities". This procedure needs a small fraction of computing effort 



200 

of Monte Carlo sampling, which is the only other practical 

approach to the determination of the criticality of an activity 

(Dodin and Elmaghraby, 1985). 

Computation Procedure 

Following section presents computation procedure for criticality indices 

of simple networks by using the definition of criticality index. 

Example 3. 

Consider PERT network of Figure 6.2. 

Figure 6.2 

Table 6.1 shows the durations of the activities. Expected values and 

variances are also shown. 

Table 6.1 Project activity durations. 

l.A X = 4 5 
A 

P = 0.6 0.4 

E = 4.4 , 0^=0.24 

2.B X = 6 7 

P = 0.4 0.6 

E = 6.6 , 0^=0.24 



3.C 1 

0.1 

10 

0.9 

E = 9.1 a2 = 7.29 

201 

4.D 

P 

E = 1.1 

1 

0 . 2 0 . 8 

a^=0.16 

Using the calculated mean times, the PERT procedure would choose path 

(1-2-4) containing activities A and B the critical path because it 

has the maximum sum of means (4.4+6.6 = 11), while, using the proposed 

procedure, calculation will show that path 1-3-4 is more than twice 

as critical as path 1-2-4. Expected activity durations, earliest and 

latest activity start time, floats, mean and variance of project completion 

time are shown in precedence (Activity-on-node) diagram of Figure 6.2A. 

KEY: 

NUMBER NAME 
FLOAT DURATION FLOAT 

EARLY LATE 
START START 

START 

1 A 

4.4 
0 0 

0 2 B 

6.5 
4.4 4.4 

0 1 A 

4.4 
0 0 

2 B 

6.5 
4.4 4.4 

3 C 

9.1 

0 0.1 

0.1 4 D 

1.8 

9.1 9.2 

0.1 
3 C 

9.1 

0 0.1 

4 D 

1.8 

9.1 9.2 

FINISH 

11 

E = 11 
0^=0.48 

Figure 6.2A: Expected activity durations, activity early and late start 

time, mean and variance of project completion time and 

link floats. 
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The calculation procedure based on the definition of criticality index 

is as follows : 

Using the definition of the convolution operator to A and B gives activity 

E, and also, convoluting activities C and D gives activity F as shown in 

Figure 6.3. 

E 

© 
Figure 6.3 

Duration time of E is given in Table 6.2 and Table 6.3 shows duration 

time of F (path 1-3-4). 

Table 6.2: Duration time of E. 

P CP 

10 

11 

12 

0.6x0.4 =0.24 0.24 

0.6 X 0.6 + 0.4 X 0.4 = 0.52 0.76 

0.4 X 0.6 = 0.24 1.0 

E = 11, o2= 0.48 

Table 6.3: Duration time of F. 

P CP 

2 0.1 X 0.20 = 0.02 0.02 

3 0.1 X 0.8 = 0.08 0.10 

11 0.9 X 0.20 = 0.18 0.28 

12 0.9 X 0.80 = 0.72 1.0 

E = 10.9 , o2 = 7.45 

The criticality of path 1-2-4 is measured by the probability that its 

duration is greater than or equal to the duration time of all other 

paths, i.e., path 1-3-4 and the criticality of path 1-3-4 is measured by 

the probability that its duration is greater than or equal to the duration 
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time of all other paths i.e. path 1-2-4. Hence, 

Criticality Index of path 1-2-4 equals , 

P(E=10).P(F <10)+P(E=11).P(F <11)+P(E=12).P(F <12) 

= 0.24 X 0.1 + 0.52 X 0.28 + 0.24 x 1.0 

= 0.4096 , 

and 

Criticality Index of path 1-3-4 equals , 

P(F=2).P(E <2)+P(F=3).P(E <3)+P(F=ll).P(E<11)+P (F=12).P(E <12) 

= 0.02 x 0.0 + 0.08 X 0.0 + 0.18 x 0.76 + 0.72 x 1 

= 0.8568 , 

These operations are summarized in Table 6.4. 

Table 6.4: Criticality Indices of paths 1-2-4 and 1-3-4. 

path 1-2-4 path 1-3-4 

10 

11 

12 

0.24 X 0.1 = 0.0240 

0.52 X 0.28 = 0.1456 0.18 x 0.76 = 0.1368 

0.24 X 1 = 0.2400 0.72 x 1 = 0.7200 

CP = 0.4096 0.8568 

^ 0.4096 _ _ 0.8568 „ 
Normalized CP - 0.4096+0.8568 0.4096+0.8568 ' 

As it is shown in Table 6.4 the sum of CP (0.4096 + 0.8568=1.2664) is greater 

than one, because when the duration time of each path is 11 or 12, 

two paths are critical simultaneously. 

By normalizing criticality indices we change the sum of CPs to unity. 

Table 6.4 shows that path 1-3-4 is more than twice as critical as path 1-2-4, 

which has been chosen critical by PERT procedure. The reason is that, in 

PERT, only the means of the activity durations are used in determining 

of the critical path and the stochastic element - the variance of activity 

duration-is not incorporated (mean value of path 1-2-4 is 11 and its 

variance is 0.48, while mean value of path 1-3-4 is 10.9 and its variance 
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is 7.45). 

In this example, criticality index of activity A is equal to criticality 

index of activity B and equals 0,323, because these two are series 

activities and also criticality index of activity C is equal to criticality 

index of activity D and equals 0.677. 

This example also suggests that a critical activity concept is more 

valid in a stochastic model than a critical path concept, especially 

since the PERT-calculated critical path is not even necessarily the 

most probable longest path. 

Since all activities of Figure 6.2 are unique activities, therefore, 

criticality indices obtained in the above are exact, i.e. they are 

exactly the same as criticality indices obtained by complete enumeration 

as shown in the following. Tree diagram of Figure 6.4 shows critical 

path and probability of each realization time of the network of Figure 

6 . 2 . 
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Realization times of activities 

and probability of each realization-

Project realization 

time and critical 

path-

Probability 

of each 

realization. 

B D AB CD 

0.6 

0.4 

6 0.4 

7 0.6 

6 0.4 

0 . 6 

1 0 . 2 

1 0 . 1 
2 0 . 8 

10 0 . ' 
1 0 . 2 

2 0.1 

1 0 . 2 
0 . 1 

2 0 . 8 

1 0 . 2 
10 0.9 

2 0.1 

1 0 . 2 

1 0 . 1 
2 0.1 

1 0 . 2 
10 0.9 

2 0 . 8 

1 0 . 2 

1 0 . 1 
2 0 . 8 

1 0 . 2 
10 0.9 

2 0.1 

10 

10 

11 

11 

11 

11 

11 

11 

12 

12 

12 

12 

11 

12 

11 

12 

11 

12 

12 

0.0048 

0.0192 

0.0432 

0.1728 

0.0072 

0 .0288 

0.0648 

0.2592 

0.0032 

0 .0128 

0 .0288 

0.1152 

0.0048 

0.0192 

0.0432 

0.1728 

1 . 0 

Figure 6.4 
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Criticality index of path AB equals sum of the probabilities of realizations 

when path AB is critical, i.e. 

CP(AB)=0.0048+0.0192+0.0072+0.0288+0.0648+0.0032+0.0128+0.0288+0.0048+ 

0.0192+0.0432+0.1728=0.4096 , 

and similarly, 

CP(CD)=0.0432+0.1728+0.0648+0.2592*10288+0.1152+0.1728 = 0.8568 . 

Example 3. 

Now, let us consider the PERT network of Figure 3.10 of Chapter 3. 

Figure 3.10 

In order to determine the exact criticality index of each activity 

it is necessary that all path durations be independent, therefore, 

by fixing on the realization times of A and E, we change network of Figure 

3.10 to networks of Figure 6.5 through 6.8 and all path durations would 

be independent. 

Figure 6.5 Figure 6.6 
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Figure 6.7 Figure 6.8 

Now we determine the criticality indices of activities of Figure 6.5 

through Figure 6.8. 

Tables 6.5 through 6.7 show duration times of paths of Figure 6.5. 

Table 6.5; Duration time of (3+D)> 

P CP 

7 0 9 0.9 

8 0 1 1.0 

Table 6.6: Duration time of (3+C+l). 

P CP 

8 0.3 0.3 

10 0.7 1.0 

Table 6.7: Duration 

P 

time of (B+D-

CP 

7 0.6 0.6 

10 0.4 1.0 

Table 6.8 shows project finish time given A=3 and E=1, 
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Table 6.8: Project finish time given A=3 and E=1. 

P 

8 0 18 

10 0 82 

E = 9.64 

Table 6.9 shows criticality indices of the paths given A=3 and E=1, 

Table 6.9; Criticality indices of paths (3+D), (3+C+l) and (B+1). 

(3+D) (3+C+l) (B+1) 

8 0.1x0. 3x0.6 = 0.018 0.3 xlxO.6 = 0.18 -

10 0.7 xlxl = 0.7 0.4x1x1 = 0.4 

CP = 0.018 0.88 0.4 

Table 6.10 through 6.12 show duration times of paths of Figure 

Table 6.10: Duration time of (3+D). 

P CP 

7 

8 

0.9 0.9 

0.1 1.0 

Table 6.11: Duration time of (3+C+2) 

P CP 

• 

9 0.3 0.3 

11 0.7 1.0 

Table 6.12: Duration time of (B+2). 

P CP 

8 0.6 0.6 

11 0.4 1.0 
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Table 6.13 shows project finish time given A=3 and E=2. 

Table 6.13: Project finish time given A=3 and E=2. 

P 

9 

11 

0 .18 

0 .82 

E = 10.64 

Table 6.14 shows criticality indices of the paths given A=3 and E=2. 

Table 6.14: Criticality indices of paths (3+D), (3+C+2) and (B+2)' 

(3+D) (3+C+2) (B+2) 

9 - 0.3x0.6x1=0.18 

11 - 0.7x1x1 =0.7 0.4x1x1=0.4 

CP= 0.0 0.88 0.4 

Tables 6.15 through 6.17 show the duration times of paths of Figure 

6.7. 

Table 6.15; Duration time of (8+D). 

P CP 

12 0.9 0.9 

13 0.1 1.0 

Table 6.16: Duration 

P 

time of (8+C+l). 

CP 

13 0.3 0.3 

15 0.7 1.0 

Table 6.17: Duration time of (B+1) 

P CP 

7 0.6 0. 6 

10 0.4 1. 0 
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Table 6.18 shows project finish time given A=8 and E=l, 

Table 6.18: Project finish time given A=8 and E=l. 

P 

13 

15 

0.3 

0.7 

E= 14.4 

Table 6.19 shows criticality indices of the paths given A=8 and E=l, 

Table 6.19: Criticality indices of paths (8+D), (8+C+l) and (B+1). 

(8+D) (8+C+l) (B+1) 

13 0.1x0.3x1 = 0.03 0.3 X 1 X 1 = 0.3 -

15 - 0.7 X 1 X 1 = 0.7 -

CP = 0.03 1.0 0.0 

Tables 6.20 through 6.22 shows the duration times of paths of Figure 

6.8. 

Table 6.20: Duration time of (8+D), 

P CP 

12 0.9 0.9 

13 0.1 1.0 

Table 6.21: Duration 

P 

time of (8+C+2). 

CP 

14 0.3 0.3 

16 0.7 1.0 

Table 6.22: Duration 

P 

time of (B+2). 

CP 

8 0.6 0.6 

11 0.4 1.0 
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Table 6.23 shows the project finish time given A=8 and E=2. 

Table 6.23: Project finish time given A=8 and E=2. 

P 

14 0. 3 

16 0. 7 

E = 15.4 

Table 6.24 shows the criticality indices of the paths given A=8 and 

E=2. 

Table 6.24; Criticality indices of paths (8+D), (8+C+2) and (B+2) • 

(8+D) (8+C+2) (B+2) 

14 - 0 3x1x1 = 0.3 -

16 - 0 7x1x1 = 0.7 -

CP = 0.0 1.0 0.0 

By deconditioning the expected values of project finish times given 

in Tables 6.8, 6.13, 6.18 and 6.23 the exact value of project finish 

time can be computed as follows: 

E = 9.64x0.4+10.64x0.4+14.4x0.1+15.4x0.1 

= 11.092 • 

Also, by deconditioning the criticality indices of paths given in Tables 

6.9, 6.14, 6.19 and 6.24 the exact value of criticality indices of 

paths and activities can be computed as follows: 

CA(B) = 0.4x0.4+0.4x0.4+0.0x0.1+0.0x0.1 

= 0.32 , 

CA(C) = 0.88x0.4+0.88x0.4+1x0.1+1x0.1 

= 0.904 , 

CA(D) = 0.018x0.4+0.0x0.4+0.03x0.1+0.0x0.1 

= 0.0102 , 

CA(A) = CA(C)+CA(D) 

= 0.904+0.0102 

= 0.9142 , 
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CA(E) = CA(B)+CA(C) 

= 0.32+0.904 

=1.224 . 

Criticality index of each path equals the minimum of the criticality 

index of the activities on that path. Therefore, 

CP(path 1-2-4) = rain {CA(A), CA(D)} 

= min {0.9142, 0.0102} 

= 0 .0102 , 

CP(path 1-2-3-4) = rain {CA(A), CA(C), CA(E)} 

= rain {0.9142, 0.904, 1.224} 

= 0.904 , 

CP(path 1-3-4) = rain {CA(B), CA(E)} 

= rain {0.32, 1.224} 

= 0.32 . 

Criticality indices of activities are shown in Figure 6.9. 

9142 

0.32 V^.224 

Figure 6.9 

Normalized criticality indices of activities are shown in Figure 6.10. 

74072 

917355 

Figure 6.10 
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These exact values also can be obtained by complete enumeration as 

shown in tree diagram of Figure 6.11. 

Realization times of activities and 
probability of each realization. 

Project realization Probability 
time and critical of each 
path. realization 

1-2-4 1-2-3-4 1-3-4 

8 0.0648 

9 0.0648 

8 8 0.0072 

9 0.0072 

10 0.1512 

11 0.1512 

10 0.0168 

11 0.0168 

10 0.0432 

11 0.0432 

10 0.0048 

11 0.0048 

10 10 0.1008 

11 11 0.1008 

10 10 0.0112 

11 11 0.0112 

13 0.0162 

14 0.0162 

13 13 0.0018 

14 0.0018 

15 0.0378 

16 0.0378 

15 0.0042 

16 0.0042 

13 0.0108 

14 0.0108 

13 13 0.0012 

14 0.0012 

15 0.0252 

16 0.0252 

15 0.0028 

16 0.0028 

3 0.8 

0 . 2 

0.6 

0.4 

0.6 

0.4 

4 0.9 

4 0.3 

5 0.1 

4 0.9 

6 0.7 

5 0.1 

4 0.9 

4 0.3 

5 0.1 

4 0.9 

6 0.7 

5 0.1 

4 0.9 

4 0.3 

5 0.1 

4 0.9 
6 0.7 

5 0.1 

4 0.9 

4 0.3 

5 0.1 

4 0.9 

6 0.7 

5 0.1 

Figure 6.! 

0.5 

0.5 

1 0.5 

0.5 

1 0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

1 0.5 

0.5 

0.5 

2 0_̂ 5 

_1 0.5 

2 0.5 

1 0^5 
2 0_.5 

1 0^5 
2 0.5 

1 0^5 

2 0.5 

_1 0^5 

2 0^5 
1 0_.5 

2 0.5 

_1 0^5 

2 0.5 
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Suppose we apply the proposed procedure of Chapter A and conditionalize 

A only. Then all the paths will not be independent but the network 

would be subject to series-parallel reduction and the approximate 

value of criticality index of each activity and path can be obtained 

as follows: 

Figure 3.10 

When A=3, the approximate criticality indices of activities (D+3) and 

G, where G is equivalent of series activities F and E are determined 

from Tables 4.18A and 4.18E. 

Table 4.18A: Duration time of (D+3). 

P CP 

7 0.9 0.9 

8 0.1 1.0 

D+3 

Figure 4.5A 

D+3 

Figure 4.6A 
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Table A.18E: Duration time of G=F*E. 

P CP 

8 0.18 X 0.5 = 0.09 0.09 

9 0.18 X 0.5 = 0.09 0 . 1 8 

10 0.82 X 0.5 = 0.41 0.59 

11 0.82 X 0.5 = 0.41 1.0 

Table 5.25 shows the approximate criticality indices of (D+3) and G. 

Table 6.25: Approximate criticality indices of (D+3) and G. 

(D+3) G 

9 

10 

11 

0.1x0.09 = 0.009 0.09x1 = 0.09 

0.09x1 = 0.09 

0.41x1 = 0.41 

0.41x1 = 0.41 

CAP = 0.009 1.0 

Normalized CAP = (NCAP) = 0.0089 0.9911 

Criticality index of E equals 0.9911 and also criticality index of 

F equals 0.9911, F is resultant of two parallel activities (C+3) and 

B, therefore, criticality indices of (C+3) plus B is equal to criticality 

index of F. Tables 4.18B and 4.18C show duration times of (C+3) and 

B respectively. 

Table 4.18B: Duratioi time of (C+3) . 

P CP 

7 0.3 0.3 

9 0.7 1.0 
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Table A.18C: Duration time of B. 

P CP 

6 0.6 0.6 

9 0.4 1.0 

In order to determine criticality indices of (C+3) and B> first, normalized 

criticality indices of each one is determined, then by multiplying 

each normalized CAP by criticality index of F, criticality index of 

each one is obtained as shown in Table 6.26. 

Table 6.26; Approximate criticality indices of (C+3) and B. 

(C+3) B 

7 0.3x0.6 = 0.18 

9 0. 7x1 = 0.7 0.4x1 = 0.4 

CAP = 0.88 0.4 

NCAP = 0.6875 0.3125 

NCAP . CAP(F) = 0.6875 X 0.9911 = 0.6814 0.3125x0.9911 = 0.3097 

As a proposition in the next section we demonstrate that for any node 

i^l, N in a PERT network, the sum of the criticality indices of the 

arcs ending in node i equals the sum of the criticality indices of 

the arcs emanating from node i. Therefore, in this example, criticality 

index of A is equal to sum of the criticality indices of C and D. 

Note that criticality index of (C+3) is in fact criticality index of 

C. 
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Table 6.27 shows the approximate criticality indices of all activities 

given A=3. 

Table 6.27: Approximate criticaltiy indices of activities given A=3. 

Activity CAP 

E 0.9911 

D 0.0089 

C 0.6814 

B 0.3097 

A 0.6814+0.0089 = 0.6903 

Given A=8, the approximate criticality indices of activities (D+8), 

and I which is equivalent of series activities E and H are determined 

from Table 4.18G and Table 4.18K. 

Table 4.18G; Duration time of (D+8). 

P CP 

12 0. 9 0.9 

13 0. 1 1.0 

D+8 D+8 

Figure 4.5B Figure 4.6B 



218 

Table 4.18K Duration 

P 

time of I=H"E. 

CP 

13 0.15 0.15 

14 0.15 0.30 

15 0.35 0.65 

16 0.35 1.0 

Table 6.28 shows the approximate criticality indices of (D+8) and I. 

Table 6.28; Approximate criticality indices of (D+8) and I. 

(D+8) I 

13 0.1x0.15 = 0.015 0.15x1=0.15 

14 0.15x1=0.15 

15 0.35x1=0.35 

16 0.35x1=0.35 

CAP = 0.015 1.0 

NCAP 0.0148 0.9852 

The approximate criticality index of E is equal to 0.9852 and also 

the approximate criticality index of H is equal to 0.9852. H is the 

resultant of two parallel activities (C+8) and B, therefore, the appproximate 

criticality indices of (C+8) plus B is equal to the approximate criticality index of H. 

Table 4.18H and Table 4.181 show the duration times of (C+8) and B 

respectively. 

Table 4.18H; Duration time of (C+8) 

P CP 

12 0.3 0.3 

14 0.7 1.0 
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Table A.181: Duration time of B. 

P CP 

6 0.6 0.6 

9 0.4 1.0 

Table 6.29 shows the approximate criticaltiy indices of (C+8) and B. 

Table 6.29: Approximate criticality indices 

(C+8) B 

of (C+8) and B. 

12 0.3x1 = 0.3 

14 0.7x1 =0.7 

CAP = 1.0 0 

CAP.CAP(F) = 1x0.9852 = 0.9852 0 

Table 6.30 shows the approximate criticality indices of all activities 

given A=8. 

Table 6.30: Approximate criticality indices of activities given A=8. 

Activity CAP 

E 0.9852 

D 0.0148 

C 0.9852 

B 0.0 

A 0.0148 +0.9852 = 1.0 

By deconditioning the approximate criticality indices of Tables 6.27 

and 6.30 the approximate criticality indices of network of Figure 3.10 

is obtained. 

Multiplying entries of Table 6.27 by (P(A=3)=.8) and enteries of Table 

6.30 by (P(A=8)=.2) and simple addition of the approximate criticality 

indices of corresponding values gives the normalized value of the approximate 
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criticality index of each activity as shown in Table 6.31 and Figure 

6.11. 

Table 6.31 Normalized values of the approximate criticality indices 

of activities. 

Activity NCAP 

E 

D 

C 

B 

A 

0.9911x0.8+0.9852x0.2 = 0.9899 

0.0089x0.8+0.0148x0.2 = 0.0101 

0.6814x0.8+0.9852x0.2 = 0.7421 

0.3097x0.8+0.0x0.2 = 0.2478 

0.6903x0.8+1x0.2 = 0.7522 

Figure 6.11 

The approximate criticality index of each path (CPP) equals the minimum 

of the approximate criticality index of the activities which are on 

this path. Hence the approximate criticality index of path 1-2-4 of 

Figure 6.4 equals rain {CAP(A), CAP(D)} 

= min {0.7522, 0.0101} 

= 0 .0101 , 

similarly, CPP (path 1-2-3-4) = min {CAP(A), CAP(C), CAP(E)} 

= min {0.7522, 0.7421, 0.9899} 

= 0.7421 , 
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and CPP(path 1-3-4) = min {CAP(B), CAP(E)} 

= min {0.2478, 0.9899} 

= 0.2478 . 

Notice that values shown in Table 6.31 and Figure 6.11 are the normalized 

values of the approximate criticality indices obtained using proposed 

procedure. Table 6.32 shows the exact values of criticality indices 

(CA) obtained from the tree diagram of Figure 6.11 and also shows 

the normalized values of exact criticality indices (NCA) 

Table 6.32: 

Activity CA NCA 

E 1.224 0.9917 

D 0.0102 0.0083 

C 0.904 0.7324 

B 0.32 0.2593 

A 0.9142 0.7407 

In order to determine the goodness of proposed procedure, in the 

following we calculate the correlation coefficient between normalized 

values of exact criticality indices and normalized vaJjes of criticality 

indices obtained using proposed procedure. 
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Activity NCA 

X 

NCAP 

Y 
x=X-X y=Y-Y xy 

E 

D 

C 

B 

A 

0.9917 

0.0083 

0.7324 

0.2593 

0.7407 

0.9899 

0.0101 

0.7421 

0.2478 

0.7522 

0.44522 

-.53818 

0.18592 

-.28718 

0.19422 

0.44148 

-.53832 

0.19368 

-.30062 

0.20378 

0.1982208 

0.2896377 

0.0345662 

0.0824723 

0.0377214 

0.1949045 

0.2897884 

0.0375119 

0.0903723 

0.0415262 

0.1965557 

0.2897130 

0.0360089 

0.0863320 

0.0395781 

ZX= 
2.7324 
X= 
0.54648 

EY= 
2.7421 
Y= 
0.54842 

Ex^= 
0.6426184 0.6541033 

Zxy= 
0.6481877 

Correlation Coefficient: r,, 
z(xy) 0.6481877 

X,Y y(Zx2)(%y2) v/(0.6426184)(0.6541033) 

= 0.9997721 , 

Before introducing the proposed procedure, next section presents a summary 

of first analytical approximating procedure to estimate the criticality 

indices proposed by Dodin and Elmaghraby (1985). 

APPROXIMATING THE CRITICALITY INDICES OF THE ACTIVITIES IN PERT 

NETWORKS 

Notation 

The following is a list of the notations used throughout this paper; 

A: 

ACAP(ij): 

C.: 
J 

CA(ij): 

CAP(ij): 

CI: 

the set of activities (arcs) in the network G(N,A); also 

the cardinality of the set. 

the approximate criticality index of activity (ij). 

the cutset at node j. 

the exact criticality index of activity (ij). 

the probability that the maximum of the paths in L(ij) is 

longer than the maximum of the paths in the complement set 

L(ij). It is a lower bound on the value of CA(ij). 

criticality index. 
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CN(i); the criticality index of node i=the sum of the CIs of the 

paths containing node 1. 

CP: critical path (defined only for DANs). 

CP(T^): the criticality path index of path T^= the probability that 

path is not shorter than any other path. 

DAN: deterministic activity network. 

E[Z(T^)]: the mathematical expectation of the r.v. Z(T^). 

L(ij): the set of paths containing arc (ij). Its complement 

is L(ij)=P-L(ij). 

MCS: Monte Carlo Sampling. 

N: the set of nodes in the network G(N,A); also the cardinality 

of the set. 

n^: the in-degree of node j. 

P: the set of paths from node 1 to node N: also the cardinality 

of the set. 

T^; the hth path; T^^P. 

PAN: probabilistic activity network. 

pdf: probability distribution function. 

r.v. random variable 

T^: the duration of the longest path "forward" from node 
1 

1 to node i, 

Tj: the duration of the longest path "backwards" from node 

N to node j. 

: the duration of the longest path not containing arc (ij), 

: the duration of the longest path containing arc (ij). 

: the duration of activity (ij), a r.v. 

Z(T^): the duration of path T^eP. 
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1. Introduction 

One of the main purposes of using network analysis for project planning 

and control stems from the need to identify the paths and activities 

that are critical to the achievement of the project objectives. 

In deterministic activity network (DANs), in which the activity 

duration is a constant, it is relatively easy to answer questions 

such as: which is the critical path(s)? Which are the M most critical 

activities? Which is the critical list (CL) of activities? (The 

Critical List is a list of the activities ranked in decreasing order 

of their criticalities). 

In PANs, such as the PERT model, one must phrase these questions 

in probabilistic terms, such as: Which path (or paths) is the most 

probable to be critical? Which activities are the most critical 

activities? Can the activities be ranked in decreasing order of 

their relative criticalities? 

These and other questions are the subject matter of this paper. 

To guide the reader through the development, Dodin and Elmaghraby 

(1985) explain their strategy as follows. They first give precise 

definitions to the (probabilistic) notions of path and activity 

criticalities. It will then become evident that the definitional 

expressions cannot be used for computing purposes because they demand 

the complete enumeration of the paths in the network, and the determination 

of the criticality of each path-an onerous task at best for any 

realistic network. Thus they are driven to define a surrogate measure 

to the (exact) criticality of an activity. They demonstrate that 

the surrogate measure always underestimates the exact measure. Thus 

the price paid for not having to enumerate the paths and determine-

their individual criticalities is not to be able to determine the 

criticality index exactly, but only to bound it from below. Finally, 
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and in order to avoid the evaluation of multiple integrals that 

are required by the surrogate measure, they apply the approximating 

procedure developed in Dodin (1980) to calculate the surrogate measure. 

They demonstrate, through extensive computing experience, that the 

approximation of the surrogate measure is quite good. They therefore 

achieve the answers to the questions posed above at a miniscule 

fraction of the computing effort of Monte Carlo Sampling (MSG). 

This brings these concepts to within the grasp of operating managers. 

In the following section theoretical results are developed which 

lead to the first analytical approximating procedure to estimate 

the CAs without either using MCS or identifying the paths and their 

CPs. Such a procedure is a direct application of the approximation 

of the distribution function (df) of the project completion time 

developed by Dodin (1980), which was briefly outlined in Chapter 5. 

The procedure starts at node N, approximates the CAs of the arcs 

ending in node N, then proceeds recursively to nodes N-1, N-2 and 

so on until it finally reaches node 2 where the CA of arc (1,2) 

is estimated. The procedure and an illustrative example are presented 

in section 3. A suggestion of its accuracy, based on computational 

experience, is the subject of section 4. 

2. Theoretical Results 

For any arc (ij)eA, let denote the duration of the longest path containing 

arc(ij). We are interested in the distribution function of W... 
ij 

For computing purposes we split into three segments as follows: 

W..=Tf + Y..+T^ (6.3) 
iJ 1 iJ J 

where T^ = max^ {Z(T^^)}, and T^ = max j {2(1^ )}= max {Z(T )}. 
^ li 

Basically, T^ measures the duration of the longest path "forward" from 

node 1 to node i, while T^ measures the duration of the longest 
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path "backwards" from N to node j. The rationale for this split 

will become evident momentarily. Clearly, any path from node 1 to 

node N containing arc (ij), say T^, consists of three segments: the 

subpath arc (ij) and the subpath Hence the duration of is 

Z(T^)=Z(T^^(l))+Y.j+Z(Tj^(l)). (6.4) 

Consequently, if the number of subpaths of the form is equal to m and 

the number of subpaths of the form is equal to n, then the number of 

paths containing arc (ij) is equal to mn. This discussion results 

in the following proposition: 

PROPOSITION 1. W.j = ^{Z(T^)}, where Z(T^) is as defined in 

(6.4 ) ' 

The proof is by direct substitution in the definition of in (6.3), and 

is relegated, with other proofs, to the section 6. 

Let L(ij) denote the set of paths containing arc (ij), i.e.: 

L(ij) = {T^eP:(ij) e T^} • (6.5) 

Now, the exact value of the CA of arc (ij), defined in (6.2), is 

given by: 

CA(ij) = ECP(T^)= ZPr(Z(T^) Z(T ) for all T^eP; T^# T^) 

( 6 . 6 ) 

where the summation are taken over T̂ ^ « L(ij). In words, CA(ij) 

measures the "weight" attached to the event that any T^eL(ij) is 

longer than any other path in the network. This weight is a measure 

of the criticality of activity (ij). Unfortunately, it is extremely 

difficult to calculate CA(ij) directly from (6.6). To eliminate 

this difficulty, we appeal to the r.v. defined above and to the concept of 

"directed cutset", which is defined as follows (see Figure 6.12): 

the directed cutset at node j for j>l, denoted by C^, is the set of arcs 

connecting the nodes with numbers less than j to the nodes with 

numbers greater than or equal to j,i.e. 

Cj= {(ik)eA:i<j and k>j}. (6.7) 
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(N) 

Figure 6.12. The Directed Cutset Cy 

Clearly, any path from node 1 to node N, say T^, must pass through only 

one arc of the set C^. Therefore, if |Cj| is the cardinality of 

the set Cj, then the set of all paths in the network, P, can be partitioned 

into ICj1 subsets. They constitute the basis for the definition 

of the set L(ij). Let 

CAP(ij) = Pr [W.. > W for all (Ik) « C,; (ij)^(lk)] (6.8) 
ij J 

where C^ is as defined in (6.7). Close scrutiny of (6.8) reveals that 

CAP(ij) measures the probability that the maximum of the paths in 

the subset L(ij) is longer than the maximum of the paths not containing 

(ij), i.e. in the complementary set L(ij)=P-L(ij). The latter paths are 

precisely the paths that contain all arcs in C^ except arc (ij). We assert below that 

CAP(ij) always underestimates CA(ij). 

PROPOSITION 2. 

CAP(ij) C CA(ij) for all (ij) e A. (6.9) 

To facilitate the use of equation(6.8) to approximate the criticality 

indices of some or all the activities in PERT networks we apply the 

following proposition: 

PROPOSITION 3. 

For any node i^l, N in a PERT network, the sum of the CAs of the 

arcs ending in node i equals the sum of the CAs of the arcs emanating 
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from node i, i.e., 

CA(ji) = ^CA(ij) (6.10) 

jeB(i) jeA(i) 

where A(i) is the set of arcs emanating from node i, and B(i) is 

the set of arcs incident into node i. 

The following two results are immediate consequence of Proposition 3: 

COROLLARY 1. The criticality indices of nodes 1 and N are identical 

and equal to the criticality index of any directed cutset, which 

is given by the constant value E CPCT^), i.e if CN denotes the 
T^eP 1 

criticality index of the node, then 

CN(1) = CN(N) = CP(T^) > 1.0. (6.11) 

T^€P 

The two equalities in (6.11) are rather obvious; the inequality 

follows from the definition of CP(T^) as probability, and the fact that 

in an activity network two or more paths may be critical simultaneously. 

COROLLARY 2. The CP of any path is equal to the CA of any unique 

arc on the path (an arc belonging to no other path). Moreover, 

all unique arcs on the same path have the same criticality index. 

Proposition 3 can be used to approximate the CAs of some arcs without 

using (6.8). If arc(ij) e A is the only arc terminating in node 

j then 

CA(ij) = CN (j) = ^ CA(jk). 

k(A(j) 

However, if there are n arcs terminating in node j and the CAs 

of n-1 of these are known, then the remaining CA(ij) is obtained 

from the equation: 



CA(ij) = CN(j) - CA(kj) 

229 

kEB(j) 

We recapitulate the development thus far. We have concentrated 

on determining the criticality index of an arc CA(ij) because it 

is the key to answering the questions raised in the Introduction. 

To circumvent the need to enumerate the paths in the network we 

defined the "directed cutset" at a node j and the new measure CAP(ij) 

as a surrogate for CA(ij), and asserted that CAP(ij) underestimates 

CA(ij). 

We now concern ourselves with the computation of CAP(ij). One 

of the difficulties in implementing expression (6.7) is the identification 

of the elements of C.. 
J 

This difficulty is resolved using the following proposition: 

PROPOSITION 4. 

For any node jfl the set is given by the difference equation 

Cj = + {(ij) e A: i < j} - {(jk)eA:k>j} (6.12) 

with the initial condition = {(iN) eA}. In other words, + 

the arcs incident into node j - arcs emanating from node j. 

Another difficulty in evaluating the right-hand side of (6.8) is 

the determination of the df of the random variable W., for all (ii)eC.. 
ij J 

But from (6.3), it is clear that the problem of determining the value 

of CAP(ij) reduces to the calculation of the df of the r.v.'s T^ and 

Tj and performing the necessary convolutions in equation (6.3). 

The calculation of the df's of if and T^ is precisely the problem discussed 

in Dodin (1980). Therefore the techniques used in Dodin (1980) 

to approximate the df of the project completion time are now used 
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to approximate the df of bLj. As it is discussed in Dodin (1980), the 

error in this approximation occurs due to three causes: (i) Discretizing 

the df of the activity duration if it is continuous; (ii) Convoluting 

two random variables, one with m realizations and the other with 

n realizations, that give rise to a third random variable which 

might have mn realizations. To avoid the uncontrolled increase in the 

number of realizations as computation progresses, we require the reduction 

of the realizations of the new random variable to a predetermined 

number of discrete points; (iii) Assuming the independence of the paths. 

It was concluded in Dodin (1980) that the approximation is accurate if 

all the activities have discrete df's or if the error in the discretization 

of the continuous distributions is very small. Most importantly, using 

the techniques of Dodin (1980) to evaluate (6.3) gives an approximation 

to the CAP(ij). Denote such approximation by ACAP(ij). Unfortunately, it 

cannot be asserted that ACAP(ij) underestimates CA(ij). However, empirical 

evidence given in section 4 indicates that the values of ACAP's form a 

very close estimate to the corresponding CAs obtained by extensive Monte 

Carlo sampling. 

3. The Algorithm 

The theory presented in the previous section is used to develop the 

algorithm described below, and it is illustrated by an example which 

directly follows the statement of the algorithm. 

Algorithm 

This algorithm is used to approximate the criticality indices of all 

the activities and events in PERT network. It starts at node N, then 

moves sequentially to nodes N-1, N-2,....,2. In each step it approximates 

the CAs of the arcs ending in the node under consideration, and the 

criticality index of the immediately preceding node. The algorithm 

proceeds as follows: 

1 - For each node i=2,3,....,N-1 determine the df of the two random 
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variables and using the Approximating Procedure of Dodin (1980). 

2 - Let j=N; determine the criticality indices of all the arcs ending 

in node j, i.e., the elements of C^, as follows: 

(a) Let n. be the indegree of node j and suppoese the arcs ending in node j 
J 

are arranged in nondecreasing order of their starting nodes as shown 

in Figure 6.13. 

Figure 6.13. Order of the Arcs Ending in Node N. 

Notice that if n^=l, then we can let j=N-l and we use Proposition 3 to 

obtain ACAP(N-1,N): so we can always assume that we start with a node 

j such that n^ > 1. If n^=l for all j=2,3,...,N, then all activities 

are critical and each criticality index is equal to 1; the network 

has only one path. 

(b) Determine (of (6.3)) and (defined below) for all (ij)ECj using 

the formulas: 

W. .=T^ +Y.. +T^ and V. . = max {W,, } • 
ij 1 ij J ij Ik' 

(Ik)eC. 

(lk)#(ij) 

is easily seen to denote the maximum duration of the paths not 

containing arc (ij). Consequently, CAP(ij) of (6.8) may be written 

as CAP(ij) = Pr (W^^ > V^^). This rewritting of (6.8) is the form 

utilized in the following step (c). 

(c) ACAP(ij)=Pr(W^j > V^^) for all (ij)ECj. Assuming the independence of 

the two random variables W.^ and , then calculate 



232 

ACAP(ij) = ^ Pr(W.j=t)'Pr(V.j <: t), 

where the summation is over all values t in the domain of 

(d) ACN(N) =)f..s p ACAP(ij), and ACN(N-l) = ACAP(N-1,N), where 

ACN(i) is the approximate value of CN(i). 

3 - Iteratively, the process moves on to the next smaller numbered 

node, i.e. j is set to j-1. If nj=l, then the CA of the arc ending 

in node j is approximated by ACN(j); go to 4. Otherwise, if nj>l, then 

the CAs of the arcs ending in node j are approximated as follows: 

(a) Determine the set using (6.12). 

(b) Determine for each arc ending in node j, i.e. for all (ij) in the 

subset {(ij)eA:i<j}. The r.v.'s W^^'s of the remaining arcs in are 

known from the previous steps. 

(c) Determine for the arcs ending in node j, then for each (ij) of 

these arcs ACAP(ij)=Pr(W^^ > V^^). 

(d) ACN(j-l) = .A > j.i,ACAP(j-l,lc). 

4 - If 2=2, stop; otherwise go to 3. 

Example 4. 

The above algorithm is applied to the project represented by the PERT 

network of Figure 6.14. The realization of each activity indicated on 

the arcs of Figure 6.14 are assumed equally likely. Using the approximating 

procedure of Dodin (1980) we obtain the df's of the r.v.'s T^, T^, T^ and 

T^; these df's are given in Table 6.33. 

1 , 6 , 1 2 

2 

Figure 6.14. A PERT Network-



Table 6.33: The df's of T^, T^, T^ and T^ 
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4 

t 

p(t)x3 

1 2 5 

1 1 1 

^2 

t 

p(t)xl8 

4 6 7 8 9 10 12 

1 3 2 2 2 2 6 

4 

t 

p(t)xl2 

4 5 6 7 8 10 

1 1 1 1 6 2 

b 

?3 

t 

p(t)x3 

1 4 5 

1 1 1 

Starting at node 4 we recognize that its indegree n^ = 3; we calculate the 

df's of the r.v.'s. and df's of the corresponding r.v.'s 

^14' ^24' "̂ 34' ̂ ^ich are given in Table 6.34. From rule 2.c of the 

Algorithm, 

ACAP (1,4) = 0.0772, ACAP(2,4) = 0.3940, ACAP(3,4) = 0.5844, 

and from rule 2.d we obtain 

ACN(4) = 1.0556, ACN(3) = 0.5844. 

The process moves to node j=3 where the CAs of arcs (1,3) and (2,3) are to 

be approximated. Step 3.a gives 

C] = {(1,4), (2,4), (3,4)} + {(1,3), (2,3)} - {3,4} 

= ((1,4), (2,4), (1,3), (2,3)}, 
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Table 6.34: The df's of the r.v.'s W.. and V., for i=l,2, and 3 
i4 i4 

w 0 1 10 

^14 
p(w)x3 1 1 1 

V 5 6 7 8 9 10 11 12 13 14 15 17 

^14 
p(v)x324 2 4 6 13 40 10 39 42 68 48 16 36 

w 2 3 6 7 8 11 13 14 17 

^24 
p(w)x9 1 1 1 1 1 1 1 1 1 

V 5 6 7 8 9 10 11 12 13 14 15 

^24 
p(v)xl08 2 2 2 4 16 19 12 21 18 6 6 

^34 
w 5 6 7 8 9 10 11 12 13 14 15 

^34 
p(w)x36 1 1 1 2 8 2 4 7 6 2 2 

V 2 3 6 7 8 10 11 13 14 17 

^34 
p(v)x27 2 2 2 2 2 5 3 3 3 3 

and from rules 3.b and 3.c we calculate the df of the r.v.'s 

and which are shown in Table 6.35. 

Table 6.35; The df's of the r.v.'s and 

"W 3 6 7 9 12 13 

^13 
p(w)x6 1 1 1 1 1 1 

^23 
w 5 6 7 8 9 10 11 12 13 14 15 

^23 
p(w)xl8 1 1 1 2 3 2 3 2 1 1 1 

V 5 6 7 8 9 10 11 12 13 14 15 17 

^13 
p(v)x486 4 8 12 26 30 70 84 36 66 72 24 54 

Therefore 

ACAP(l,3)=Pr(W^2 > V.])=0.2476, and 
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ACAP(2,3)=ACN(3) - ACAP(1,3) = 0.3368. 

Then from rule 3.d ACN(2) = 0.3368+0.3940 = 0.7308. Finally, j is set 

equal to 2; thus, ACAP (1,2) = ACN (2) = 0.7308. 

Figure 6.15 summarizes the estimates of the criticality indices of all the 

activities obtained by the algorithm. If they are compared with the 

corresponding "exact" CAs obtained by complete enumeration, which are 

given in Figure 6.16, it is seen that the estimates bound the exact 

CAs from below, and the maximum absolute value of the difference between the 

exact CA and the corresponding approximate CA is less than 0.04. 

Furthermore, if the activities in the PERT network are ranked in decreasing 

order of their CAs, both methods (estimation and enumeration) give the same 

ranking (as shown in Figures 6.15 and 6.16). 

>3940 

Figure 6.15. The Estimates of the CAs. 

Rank of 
Activity Criticality 

( 1 , 2 ) 1 

(3,4) 2 

(2,4) 3 

(2,3) 4 

(1.3) 5 

(1.4) 6 
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Figure 6.16. The Exact Values of the CAs. 

Rank of 
Activity Criticality 

(1,2) 1 

(3,4) 2 

(2,4) 3 

(2,3) 4 

(1,3) 5 

(1,4) 6 

From the definition of the CN of node N we have: 

N-1 

CN(N)= y CA(iN)= y CP(T,) = 1.1050. 

i=l leP 

The parameter CP has a probability interpretation while CN does not 

have such an interpretation. In fact, the above Example CN(A) = 1.105. 

Also, the CAs of the arcs do not have a probability interpretation. 

We think of CA(ij) for an (ij) (A as a weight which relates the activity 

(ij) to the other activities. To help the interpretation of CA and 

CN as probability measures (between 0 and 1) we resort to "normalization". 

For example, the CAs of the activities in Figures 6.15 and 6.16, when 

"normalized," give the values shown in Figures 6.17 and 6.18 respectively. 

From Figure 6.18 we say that activity (2,4) is critical 35.76% of the time. 

The algorithm can be modified to give the normalized estimates of CAs. 
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This modification is limited to adding one more calculation to steps 

2c and 3c to obtain the normalized ACAP(ij) for all (ij) e A. The 

normalized values of ACNs can be obtained from steps 2d and 3d after 

replacing ACAP(ij) by the corresponding normalized values. 

.0731 

Figure 6.17. The Normalized Values Figure 6.18. The Normalized Values 

of Figure 6.15. of Figure 6.16. 

4. Computational Experience 

Before discussing the computational experience with this algorithm 

Dodin & Elmaghraby (1985) introduce the concept of criticality list 

which will be used as a measure of performance. In DANs an activity 

is either critical, which is the case if its float time is equal to 

zero, or noncritical with float time greater than zero. However, a 

noncritical activity with float time equal to s units is more critical 

than another noncritical activity with float time equal to ks units, 

where k>l. The highest ranking noncritical activity should receive 

more attention from management than the others, since any slippage 

in the critical path might cause such an activity to become critical. 

The list obtained by ranking the activities in increasing order of 

their float time, breaking ties in favor of the activity with the smaller 

starting node, is called the criticality list (CL). In case of PANs 

the CL is obtained by ranking the activities in decreasing order of 

the CAs and breaking ties in favor of the activity with the smaller 

starting node. 
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The concept of CL has not been used in project management and control 

even though, for a given activity, its position on the CL gives a measure 

of its importance. The list also shows the top M critical activites, 

i.e., it shows the top five, ten or 10% of the critical activities. 

This identification enhances the task of meting out the attention 

given to individual activities. 

Dodin & Elmaghraby (1985) use the CL to measure the accuracy of the 

approximate ACAPs obtained by the algorithm. The CL generated by the 

algorithm is compared with the exact CL obtained by extensive Monte 

Carlo Sampling (MCS), since it is not possible to obtain exact CAs 

analytically. 

They propose two measures of "goodness" of their procedure because the 

literature is void of any measure of performance or any computational 

experience with which to compare (mainly because the concept of CL 

as introduced here is new). The measures are: Compare the top M activities 

in both lists to see how many of them match, and calculate the 

correlation coefficient between the two lists. 

The variations in the measures of performance depend on the sample size 

used in MCS, the df's of the activites, the accuracy of discretizing 

continuous distributions, and on the size and structure of the PERT 

network; see Dodin (1980). 

The following paragraphs presents the impact of these factors on the 

proposed measures of performance. The section terminates with conclusions 

concerning the use of the algorithm. 

Monte Carlo Sampling of the PERT network is performed using the method 

of Dodin (1980). It assigns a random value to each arc in the network 

generated from the original df of the activity, continuous or discrete. 
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Then the Critical Path method of DANs is used to identify the critical 

path(s) and activities. These two steps are repeated for a 

satisfactory number of times. In each experiment, frequencies of the 

critical activities are updated. The sample size should be "large 

enough" to guarantee that the CL obtained by MCS is very close to the 

exact CL. For example, Table 6.36 shows that for a G(10,15), generated 

at random, using the random activity network generated presented in 

Dodin (1980), with each activity having the same discrete distribution, 

the sampled CL stabilizes as the sample size increases, the table 

shows that the sampled CL converges to the CL obtained by the algorithm. 

The same conclusions can be derived from the correlation coefficient, 

denoted by r, which appears in the last row of Table 6.36, between the 

approximate CL and each of the samples CLs. In fact, r indicates for this 

PERT network that for a large sample size the two CLs are almost identical. 

Table 6.37 shows for the same PERT network, the approximate CAs generated 

by both procedure, the algorithm and MCS. These approximate values 

appear in the table under the headings ACAP and CAS respecitvly. The 

table also shows the corresponding normalized values and CLs. The 

column head by D is the difference between the normalized CAs. 

Tables 6.38 through 6.41 show the impact of size and density of the 

PERT network on the measures of performance. In Tables 6.38 and 6.39 

we list the number of matching top five and top ten activities in the 

two criticality lists for all the problems tested. In Table 6.38 

the same discrete distribution is used for each activity in the randomly 

generated network, while in Table 6.39 the same uniform distribution 

is used for each activity. Tables 6.40 and 6.41 show the correlation 

coefficients between the two criticality lists for all the problems 

considered in Tables 6.38 and 6.39, respectively. The entries in Tables 

6.38 and 6.39 and the correlation coefficient in Tables 6.40 and 6.41 
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indicate the closeness of two criticality lists. The tables also indicate 

that the accuracy of the algorithm may not be affected by the size or 

density of the network. The four tables do not indicate any significant 

difference between using either discrete or continuous df, even though 

it was expected to have the numbers in the Tables 6.38 and 6.40 to be 

higher since the networks in Tables 6.38 and 6.40 are free of discretizing 

errors. The lack of significant difference between the corresponding 

entries in the Tables 6.38 and 6.39 on the one hand and Tables 6.40 and 

6.41 on the other hand is due to the accurate discretization of the 

uniform distribution. 

Table 6.42 shows further the impact of the density of PERT networks on 

the measures of performance. In all the six problems considered in 

Table 6.42 the same discrete distribution was assigned to each activity. 

The table lists the number of matching top 5 and 10 activities in the 

corresponding criticality lists. The last column of the table shows the 

correlation coefficient between the corresponding CLs. Again Table 6.42 

shows that the algorithm performs equally well for all densities. 

The CPU time of the approximating procedure (excluding the MCS) is 

minimal. For any of the 38 problems tested, it is always less than 30 

seconds on AMDAHL V-70. The CPU time requirement for MCS depend on the 

size of the network, sample size and the df of the arc lengths. For 

large networks the sample size has to be large enough to have confidence in 

the sampled CL; in this case the CPU requirements are high. For example, 

in a network G(50,150) generated at random, where each activity is 

uniformly distributed between 0 and 10, the CPU time was twelve minutes 

on AMDAHL V-7 for a sample of size 10,000. The CPU time requirements for 

sampling the same PERT network to guarantee a 0.95 confidence in the 

sampled CL is over 30 minutes, since a sample of minimum size equal to 

25,000 experiments is required for such accuracy. 
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Table 6.36: The CL's Generated by the Algorithm and MCS. 

Arc// CL of 
Algorithm 1 

[CL(A)] 

CL obtained by MCS CL(S) CL of 
Algorithm 1 

[CL(A)] s .s*=700 s.s.= 1500 s.s.= 3000 s.s.= 5000 

1 6 6 6 6 6 

2 12 10 12 12 12 

3 10 10 10 10 10 

4 3 3 3 3 3 

5 15 10 12 12 12 

6 6 6 6 6 6 

7 6 6 6 6 6 

8 12 10 12 12 12 

9 11 10 10 10 10 

10 12 10 12 12 12 

11 4 4 4 4 4 

12 9 9 9 9 9 

13 4 4 4 4 4 

14 2 1 2 2 2 

15 1 1 1 1 1 

r between CL[A] and CL[S] 0.960 0.985 0.985 0.985 

"s.s. is the sample size in MCS 



242 

Table 6.37: Sample Output 

The criticality index of the 15 activities in a network with 10 nodes. 

Arc J ACAP(j)* CAS(j)* 

Normalized 

ACAP(j)" 

Normalized 

CAS(j)* D" CL(A) CL(S) 

1 0.543 0.576 0.543 0.493 -0.050 6 6 

2 0.000 0.000 0.000 0.000 -0.000 12 12 

3 0.002 0.001 0.002 0.001 -0.001 10 10 

4 0.604 0.591 0.604 0.506 -0.098 3 3 

5 0.000 0.000 0.000 0.000 -0.000 15 12 

6 0.543 0.576 0.543 0.493 -0.050 6 6 

7 0.543 0.576 0.543 0.493 -0.050 6 6 

8 0.000 0.000 0.000 0.000 -0.000 12 12 

9 0.002 0.001 0.002 0.001 -0.001 11 10 

10 0.000 0.000 0.000 0.000 -0.000 12 12 

11 0.543 0.581 0.543 0.498 -0.045 4 4 

12 0.061 0.010 0.061 0.009 -0.052 9 9 

13 0.543 0.580 0.543 0.497 -0.045 4 4 

14 0.999 1.166 0.999 0.999 0.000 2 2 

15 1.000 1.167 1.000 1.000 0.000 1 1 

* The values are truncated for the third decimal point. 



243 

Table 6.38: The Matching of the Top 5 and 10 Activities in the CLs 

When All Activities Have Discrete Distribution. 

Nodes 10 20 30 40 

Measure 

Density^^ 
Top 5 Top 10 Top 5 Top 10 Top 5 Top 10 Top 5 Top 10 

1.5 5 10 5 10 5 10 4 10 

2.0 4 10 5 10 3 10 4 10 

2.5 4 9 4 10 5 8 5 10 

3.0 5 10 4 9 5 9 4 10 

Table 6.39 : The Matching of Top 5 and 10 Activities in the CLs When All 

Activities Have Uniform Distribution. 

Nodes 10 20 30 40 

Measure 

Density\^ 
Top 5 Top 10 Top 5 Top 10 Top 5 Top 10 Top 5 Top 10 

1.5 3 10 5 9 5 9 5 10 

2.0 5 10 4 9 3 9 4 8 

2.5 5 9 5 10 5 10 4 10 

3.0 5 10 4 10 4 8 4 10 
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Table 6.40: The Correlation Between the Two Criticality Lists When 

All Activities Have Discrete Distributions. 

^\Nodes 

Density^. 
10 20 30 40 

1.5 0.985 0.960 0.861 0.994 

2.0 0.970 0.851 0.851 0.960 

2.5 0.950 0.904 0.886 0.959 

3.0 0.978 0.923 0.955 0.914 

Table 6.41: The Correlation Between the Two Criticality Lists When 

All Activities Have Uniform Distributions. 

^x^odes 

Densit^\^ 
10 20 30 40 

1.5 0.939 0.736 0.958 0.986 

2.0 0.986 0.880 0.792 0.836 

2.5 0.989 0.929 0.946 0.931 

3.0 0.988 0.874 0.831 0.923 
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Table 6.42: The Impact of the PERT Network Density on the Measure 

of Performance . 

Density 
No. of nodes = 15 

Top 5 Top 10 Correlation Coefficient 

2 5 10 0.941 

3 4 10 0.934 

4 5 10 0.946 

5 4 9 0.918 

6 4 10 0.925 

7 5 9 0.892 

5. Conclusions 

The objective of the authors of this paper was to offer the manager the 

probabilisitc equivalents of the commonly known concepts in DANs. They 

developed the approximate criticality index of an activity, ACAP, which; 

(i) measures the "degree of criticality" of an individual activity, 

and (ii) can be used to generate the criticality list (CL) of the "M 

most critical activities". ACAP is determined at a small fraction 

of the computing effort of Monte Carlo Sampling (MCS), which is the 

only other practical approach to the determination of the criticality 

of an activity. 

Extensive computing experience reveals several interesting and significant 

results, which is summarized as follows: 

The most critical activities generally appear at the beginning and 

end of a project. This is a natural consequence of the definition 

of the CA given in (6.2), its surrogate CAP of (6.8), and its approximation 
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ACAP. It is also a reasonable conclusion, considering the logical 

structure of the network. If used in a dynamic fashion it gives the 

most critical activities conditional upon the completion of certain 

segments of the project. 

Most interestingly, the CL obtained by MCS converges to the approximate 

CL generated by Dodin and Elmaghraby's procedure as the sample size 

increases. This is an unexpected result. It certainly assures them 

of the "stability" of their CL relative to the MCS - generated list. 

Finally, the error in approximation is drastically reduced when the 

discretization of the activity df is made finer. This is in consonance 

with the results obtained in the estimation of the df of the project 

completion time presented in Dodin (l980). Unfortunately, we could 

not obtain a bound on the error committed because it is dependent on 

several factors, some of which are not even measurable (such as the 

structure of the network). 

6. Proofs of Propositions 

The following complete proofs of the four theoretical results given in 

the text are taken from (Dodin and Elmaghraby, 1985). 

Proof of Proposition 1 

By definition 

W. . = T^ + Y. . + T^ 
ij 1 iJ 3 

= max {Z(T̂  .)} + Y.. + max {Z(T )} 
Tli 'J Tjn J" 

= max { max {Z(T\.) + Y.. +Z(T. )}} 
rp rp J-l IJ J" 

li jN 

= max {Z(T^)}. 
?1 

((ij)T^) 
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Proof of Proposition 2 

We first argue heuristically that CAP(ij) ̂  CA(ij), then present a 

more formal proof of the proposition. If any path e L(ij) is longer 

than any path €L(ij), then, max {Z(T^); e L(ij)} is longer than 

max {Z(T^): e L(ij)}. Therefore, the set on which CA(ij) is defined 

contains the set on which CAP(ij) is defined. Moreover, the sum of 

probabilities defining CA(ij) is no less than the probability of the 

union of the events in the set, which is no smaller than that defining 

the probability of CAP(ij). Consequently, CAP(ij) ̂  CA(ij). 

Now, as it is stated in (6.6) and (6.8) respectively. 

CA(ij) = ) Pr [Z(T^) > Z(Tq) for all T^eP, and 

T^L(ij) 

CAP(ij)= Pr [W.j > for all (Ik) e C.] , 

which, using Proposition 1, may be written as 

CAP(ij) = Pr [ max {Z(T,)} > max {Z(T )}]. 
T^eL(ij) TqCL(ij) 

We prove that (5.9) holds for the case where L(ij) has three paths 

and L(ij) may have any finite number of paths. All other cases can 

be proved similarly. Suppose L(ij) = {T^, T^, T^}, then 

CA(ij) = Pr[Z(TT)>Z(T ) for all T eP, T ]+Pr[Z( T ) > Z(T ) for all 
1 q q q i m q 

T eP, T ] + Pr[Z(T ) >Z(T ) for all T eP, T ], and (Al) 
q q m n q q q n 

CAP(ij) = Pr [max{Z(T^), Z(T^),Z(T^)} > Z(T ) for all T^eP]. 

Partitioning the event of the maximum leads to: 

CAP(ij) = Pr[Z(T^)>Z(Tq) for all T^€L(ij), Z(T^)>Z(T^), Z(T^)>Z(T^)] 

+Pr[Z(T )>Z(T ) for all T eL(ij), Z(T )>Z(T,), Z(T )>Z(T )] 
m q q m l m n 

+Pr[Z(T )^Z(T ) for all T (L(ij), Z(T )>Z(T,), Z(T )>Z(T )]. (A2) 
n q q n 1 n m 
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We consider (Al) and (A2) term by term in evaluating the difference 

CA(ij) - CAP(ij). It is obvious that the first term of (Al) is identical 

to the first term of (A2); therefore the two will cancel. Now, 

Pr[Z(T )>Z(T ) for all T eP]-Pr[Z(T )>Z(T ) for all T €L(ij),Z(T )>Z(Tj, 
m q q m q q m l 

Z(T_^)>Z(T^)l 

" Pr[Z(T )>Z(T ) for all T eL(ij), Z(T )=Z(T,)]. 
m q q m l 

Finallv 

Pr[Z(T^)>Z(Tq) for all T eP] 

- Pr[Z(T^)>Z(T ) for all T eL(ij), Z(T^)>Z(T^),Z(T^)>Z(T^)] 

= Pr[Z(T^)>Z(T ) for all T eL(ij), Z(T^)>Z(T^),Z(T^)=Z(T^)] 

+Pr[Z(T^)>Z(T ) for all T €L(ij), Z(T^)=Z(T^),Z(T^)>Z(T^)] 

+Pr[Z(T^)>Z(Tq) for all T eLfij), Z(T^)=Z(T^),Z(T^)=Z(T^)]. 

Collecting terms, we have 

CA(ij) - CAP(ij) = Pr [Z(T^))Z(T ) for all T €L(ij), Z(T^)=Z(T^)] 

+Pr [Z(T^)>Z(T^) for all T eLflj), Z(T^)=Z(T^),Z(T^)>Z(T^)] 

+Pr [Z(T^)>Z(T^) for all T €L(ij), Z(T^)>Z(T^),Z(T^)=Z(T^)] 

+Pr [Z(T^)>Z(T ) for all T €L(ij), Z(T^)=Z(T^),Z(T^)=Z(T^)] 

>0 

since each term on the r.h.s is ^0. 

Proof of Proposition 3 

If we let c|= ^ j^g^^CA(ji) and C?= ^jeA(i)^^^^^^' and denote 

the criticality index of node i by CN(i) which is defined by; 

CN(i) = I CP(T^), 

T^(ieT^) 

1 2 
then we want to show that C% = = CN(i). Let 
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= the indegree of node i 

I 

n^ = the outdegree of node i, and 

L. = {T^sP : ieT^}. 

Partition the set L. into n. disjoint subsets such that the first subset 
1 1 

consists of all the paths containing the first arc terminating in node i, the 

second subset consists of all paths containing the second arc terminating 

in node i and so forth, and the subset n^ consists of all paths containing 
r 

the last arc terminating in node i, i.e., Therefore 

= 

1 
CP(T^) = V CP(T^)=CN(i). 

jeB(i) T^eL(ji) T^eL. 

2 ' 
To prove that = CN(i) we partition into n^ disjoint subset where the 

jth subset consists of all paths containing the jth arc emanating from 

node iji.e. ^ L(ij)- ClearIg , 

jsA(i) 

4 - 1 
CP(T^) j= ^ CP(T^)=CN(i). 

jtA(i) T^eL(ij) T^eL. 

Thus, cj = cj = CN(i) 

Proof of Proposition 4. 

We use induction from above, i.e., we show that the expression given 

in (6.10) is true for j=N-l and assume that it holds for k+1, where 

2 <k+l <N-1, then show that it holds for j=k. 

Indeed, if j=N-l then the jth directed cutset is given by 

{(ij)eA : i^N - 1 or N and j=N-l or N} 

= {(ij)eA : i<N-l and j=N} U {(ij)eA : i<N-l and j=N -1}. 

But {(ij)eA : i<N-l and j=N} = - {N-1,N} which does not overlap 

with {(ij)fA : i<N-l and j=N-l}. Therefore 

{(i.N-l)eA : i < N-1} - {(N-1, N)}. 



250 

Assume that (6.12) holds for k+1 such that 2 <k+l < N-1; we want to 

show that it holds for j=k. 

The kth directed cutset is given by 

= {(ij) eA: i<k and j>k} 

N 

= y {(ij)eA : i<k } 

j=l N 

= {(ik)eA : i<k} + S {(ij)eA: i<k}. 

j=k+l 

N N 

But y {(ij)€A : i<k} = ^ [{(ij)^ A : i <k+l} - {(kj)}] 

j=k+l j=k+l 

: j >k}. 

Thus, + {(ik) € A : i<k} - {(kj)fA : j>k}. 

PROPOSED PROCEDURE 

The proposed procedure to be described is operationally identical to the 

proposed procedure of Chapter 4 for determining the pdf of the project completion 

time, hence resultant network of that procedure is used to approximate 

the criticality indices of activities. 

Since in proposed procedure of Chapter 4 resultant network consists 

of only series-parallel activities as shown in Figure 6.19, it is very 

easy to estimate CA(ij)directly from (6.2). 

CA(ij) = ^ CP(T^) = ^Pr [(Z(T^) > Z(T^) for all T «P, T^^T^]. (6.2) 

"l 
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(a) (b) 

(c) (d) 

Figure 6.19 

Same as Dodin and Elmaghraby's procedure the proposed procedure for 

determining the criticality indices of all the activities starts at 

node N of final networks, determines the criticality indices of the 

arcs ending in node N, then proceeds recursively to nodes N-1, N-2 

and so on until it finally reachs node 2 where the criticality index 

of arc (1,2) is determined. 

Next section presents the Algorithm. 

The following is a list of the notations used in this algorithm: 

Bj: set of arcs ending in node j. 

CAP(ij): approximate criticality index of activity (ij). 

CNP(j): approximate criticality index of node j. 

CPP(T^) ; approximate criticality index of path T^. 
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I(j): indegree of node j. 

For arc (ij)€A, let denote the duration of the path from the initial 

node to node j containing arc (ij). 

Let denote durations of the paths ending in node j not containing arc 

(ij), such that (lj)€B^ and (Ij)^(ij). 

THE ALGORITHM 

This algorithm is used to approximate the criticality indices of all 

the activities and events in PERT network. 

It starts at node N, then moves sequentially to nodes N-1, N-2,....,2. 

In each stage it approximates the CAs of the arcs ending in the node 

under consideration, and the criticality index of the immediately 

preceding node. The algorithm proceeds as follows: 

1 - For each node i=2,3,...,N-1 determine the df of the random variable 

T^ (realization time of node i) using the proposed procedure of 

Chapter 4. 

2 - Let j=N. Determine the criticality inidices of all arcs ending 

in node j, i.e., the elements of as follows: 

a - Let l(j) be the indegree of node j and suppose the arcs ending 

in node j are arranged in nondecreasing order of their starting 

nodes as shown in Figure 6.19 (Notice that if I(N)=1, then 

we can let j=N-l and we use proposition 3 to obtain CAP(N^1,N); 

so we can always assume that I(j) >1. If l(j)=l for all j=2,3,..N 

then all activities are critical and each criticality index 

is equal to 1; the network has only one path). 

b - Determine for all (ij)€Bj 

using the formula W^j=T^+Y^j . (6.13) 

c - CAP(ij)=Pr(W.j > W^j) for all ( i j ) e B (6.14) 

since random variables and are independent, then calculate 
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CAP(ij) = Vpr (W. .=t). J_ J_ Pr(W . ̂  t), (6.15) 
L 1=1 
^ Ifi 

where the summation is over all values t in the domain of 

d - CNP(N) " y CAP(ij). and CNP(N-l) « CAP(N-1, N) • (6.16) 

3 - Iteratively, the process moves on the next smaller numbered node, 

i.e., j is set to j-1. If I (j)=l, then the CAP of the arc ending 

in node j is equal to CNP(j); go to 4. Otherwise, if I(j) >1, 

then the CAPs of the arcs ending in node j are determined as follows; 

a - Determine the set B. • 
J 

b - Determine for each arc ending in node j. 

c - For each arc ending in node j, 

CAP(ij) = Pr (W.j > ) for all (ij)eBj 

d - CNP(j-l) = (i-l.k)• (6,17) 

4 - If 2=2, stop; otherwise go to 3. 

5 - Decondition the approximate criticality indices of activities. 

6 - Determine the approximate criticality indices of activities and 

paths. 

Example 5. 

As an example let us apply the proposed algorithm to the PERT network 

of Figure 4.31 of Chapter 4. 

Figures 4.33 through 4.39 show the reduction process of network configuration 

of Figure 4.31 using the proposed procedure of Chapter 4 by fixing on 

the first realization time of common activity 1. 
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Figure 4.31 

Figure 4.33 

Figure 4.34 
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Figure 4.35 

Figure 4.36 

Figure 4.37 
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11 

Figure 4.38 

© 
Figure 4.39 

1 - The random variables, (realization time of node i, 1=2,3,4,5) 

are known from Chapter 4. 

2 - Let j=5. Determine the approximate criticality indices of arcs 

9 and 11 of Figure 4.38 as follows: 

a - I(j=5)=2. 

b - Determine for all (ij) 

using formula W.. = T. + Y,. 
iJ 1 iJ 

Wg = Tj + Yg . 0 + Yg . ¥g and - 0 + - Yjj 

c - CAP(9) - Pr (Wg and CAP (11) = Pr (W J, W ) 

then calculate 

CAP(9) = ^ Pr (Wg=t).Pr(W^^ ̂  t), and CAP(11)= ^ P(W^^= t).Pr(Wg<t) 

t t 

In Figure 4.37 the approximate criticality index of arc 6 is equal 

to the approximate criticality index of arc 10 because these two arcs 
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are series and also equals to the approximate criticality index of 

arc 11 since arc 11 is the resultant arc of these two arcs. 

Therefore, CAP(6) = CAP(lO) = CAP(ll) , 

d - CNP(5) = CAP(9) + CAP(ll) = CNP(l) , and CNP(3) = CAP(6) • 

In Figure A.36 CAP(2) + CAP(3) = CNP(3) , 

in Figure A.35 CAP(l) = CAP(3) + CAP(9) = CNP(2) , 

in Figure 4.34 CAP(5) + CAP(8) = CAP(9) , 

finally in Figure A.33 CAP(A) = CAP(7) = CAP(8) = CNP(A) • 

The criticality indices obtained in above are the approximate conditional 

criticality indices of the activities and nodes given first realization 

time of common activity 1. Similarly the approximate conditional 

criticality indices of the arcs and nodes can be computed for all realization 

times of common activity and then by doconditioning these conditional 

criticality indices the approximate criticality indices can be determined. 

Following examples illustrate that the criticality indices obtained 

using proposed procedure is better than the criticality indices obtained 

using Dodin and Elmaghraby's (1985) procedure. Most importantly the 

criticality indices obtained using proposed procedure of this dissertaton 

are consistent while those obtained using proposed procedure of Dodin 

and Elmaghraby are not consistent. The inconsistency in approximate 

criticality indices obtained using Dodin and Elmaghraby's (1985) 

approach stems from the manner of choosing activities for determining 

the approximate criticality indices in any Directed Cutset. For example, 

in Page 233 the Directed Cutset of node 3 is determined to be 

C^ = { ( 1 , A ) , ( 2 , A ) , ( 1 , 3 ) , ( 2 , 3 ) } , since the approximate criticality 

indices of activities (1 ,A) and (2 ,A) previously determined as ACAP 

(1 ,A) = 0.0772 and ACAP (2 ,A) = 0.39A0, in order to calculate the 

approximate values of criticality indices of activities ( 1 , 3 ) and ( 2 , 3 ) 
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i.e., ACAP (1,3) and ACAP (2,3) we can choose one of the following 

alternatives. 

1 - We can calculate ^23' ^^3 ~ max ^24^' 

are shown in Table 6.35. Therefore, 

ACAP(1,3) = Pr ^ V^^) = 0.2476 

and ACAP(2,3) = ACN(3)-ACAP(1,3) = 0.3368 

as we have done in Pages 234 and 235 

or, 

2 - We can calculate W^^, W^^ and = max {W^g, which 

are shown in Table 6.43 and calculate ACAP (2,3) first and then 

ACAP (1,3) as follows: 

Table 6.43: The df's of the r.v.'s W^^, ^22' ^23 

W 3 6 7 9 12 13 

^13 
p(w)x6 1 1 1 1 1 1 

w 5 6 7 8 9 10 11 12 13 14 15 

^23 
p(w)xl8 1 1 1 2 3 2 3 2 1 1 1 

V 3 6 7 8 9 10 11 12 13 14 17 

^23 
p(v)xl62 4 8 12 6 10 20 12 18 36 18 18 

Therefore, 

ACAP(2,3) = Pr (W^^ > ¥^3) = 0.3944 

and ACAP(1,3) = ACN (3) - ACAP(2,3) = 0.5844 - 0.3944 = 0.1900 

Then from rule 3.d ACN(2) = 0.3944 + 0.3940 = 0.7884 . Finally 

j is set equal to 2; thus, ACAP(1,2) = ACN(2) = 0.7884. 

Figure 6.20 summarizes the estimates of the criticality indices of all 

the activities obtained by the algorithm using second alternative. If 

they are compared with the corresponding "exact" CAs obtained by complete 

enumeration, which are given in Figure 6.16, it is seen that the estimates 
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don't bound the exact CAs from below for two activities (1,2) and (2,3), 

and the maximum absolute value of the difference between the exact CA and 

the corresponding approximate CA is less than 0.07. Notice that in this 

case both methods (estimation and enumeration) don't give the same 

ranking of their CAs (as shown in Figures6.15 and 6.20). 

1900 

Figure ( ).20. The Estimates of the CAs. 

using second alternative. 

Activity 
Rank of 

Criticality 

(1.2) 1 

(3,4) 2 

(2,3) 3 

(2,4) 4 

(1,3) 5 

(1,4) 6 

Figure 6.21 shows the normalized values of Figure 6.20. 

,3732 

Figure 6.21. The Normalized Values of Figure 6.20. 
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Let X denote the exact normalized criticality indices (NCA) of Figure 

6.18, denote the normalized criticality indices (NACAP) of Figrure 

6.17, and denote the normalized criticality indices (NACAP) of Figure 

6.21. In the following we calculate the correlation coefficient between 

X and Z^ and also between X and Z^. 

Activity 

(NCA) 

X 

(NACAP) 

Z, x=X-X 
'1 

xz 
1 

(1.2)=A 

(1,4)=B 

(1.3)=C 

(2.3)=D 

(2.4)=E 

(3,4)=F 

0.6872 

0.0782 

0.2346 

0.3296 

0.3576 

0.5642 

0.6923 

0.0731 

0.2346 

0.3191 

0.3732 

0.5536 

0.3119667 

-.2970333 

-.1406333 

-.0456333 

-.0176333 

0.1889667 

0.3179834 

-.3012166 

-.1397166 

-.0552166 

-.0011166 

0.1792834 

0.0973232 

0.0882287 

0.0197777 

0.0020823 

0.0003109 

0.0357084 

0.1011134 

0.0907314 

0.0195207 

0.0030488 

0.0000012 

0.0321425 

0.0992002 

0.0894713 

0.0196488 

0.0025197 

0.0000196 

0.0338785 

Z X= 
2.2514 
X= 
3752333 .3743166 

E x^ = 
0.2434312 

Z z^= 
0.246558 

E xzi= 
0.2447381 

Correlation Coefficient: r 
E(xz^) (0.2447381) 

X,Z. y (Zx:)(Zz3) y(0.2434312)(0.246558) 

0.9990137 . 
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Activity 

(NCA) 

X 

(NACAP) 

x=X-X Z2=2^-Z2 Z2 XZ' 

(1.2)=A 

(1,4)=B 

(1> 3)=C 

(2.3)=D 

(2.4)=E 

(3,4)=F 

0.6872 

0.0782 

0.2346 

0.3296 

0.3576 

0.5642 

0.7469 

0.0731 

0 .1800 

0.3736 

0.3732 

0.5536 

0.3119667 

2970333 

1406333 

-.0456333 

-.0176333 

0.1889667 

0.3635 

-.3103 

-.2034 

-.0098 

- . 0 1 0 2 

0.1702 

0.0973232 

0.0882287 

0.0197777 

0.0020823 

0.0003109 

0.0357084 

0.1321322 

0.096286 

0.0413715 

0.000096 

0.000104 

0.028968 

0.1133998 

0.0921694 

0.0286048 

0.0004472 

0.0001798 

0.0321621 

Z X= 
2.2514 
X= 
J752333 

Z 2%= 
2.3004 
Z= 
0.3834 

Z = 
0.2434312 0.2989577 

E XZ2 = 
0.2669631 

Correlation coefficient: r 
S(xz2) (0.2669631) 

X,Z: / (Zx2)(Zz2) y(0.2434312)(0.2989577) 

= 0.989597. 

By applying the proposed procedure of this dissertation the approximate 

criticality indices of activities are calculated as shown in Figure 

6.22. Figure 6.23 shows the normalized values of Figure 6.22. 

.3951 

.3949 
6-.0864 

.3721 

0.0814 

Figure 6.22. The Estimates of CAs Figure 6.23. The Normalized Values 

using the proposed procedure. of Figure 6.22. 
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Let Y denote the normalized criticality indices (NCAP) of Figure 6.23, 

in the following ve calculate the correlation coefficient between X 

and Y. 

If the criticality indices obtained using the proposed algorithm are 

compared with the corresponding "exact" CAs obtained by complete 

enumeration as shown in Figure 6.16 it is seen that the maximum absolute 

value of the difference between the exact CA and the corresponding 

approximate CA is less than 0.045, and both methods give the same ranking. 

Activity 
(NCA) 

X 

(NCAP) 

Y 
x=X-X y=Y-Y xy 

(1.2)=A 

(1,4)=B 

(1.3)=C 

(2.3)=D 

(2.4)=E 

(3,4)=F 

0.6872 

0.0782 

0.2346 

0.3296 

0.3576 

0.5642 

0.7012 

0.0814 

0.2174 

0.3291 

0.3721 

0.5465 

0.3119667 

-.2970333 

.1406333 

-.0456333 

-.0176333 

0.1889667 

0.3265834 

-.2932166 

-.1572166 

-.0455166 

-.0025166 

0.1718834 

0.0973232 

0.0882287 

0.0197777 

0.0020823 

0.0003109 

0.0357084 

0.1066567 

0.0859759 

0.024717 

0.0020717 

0.0000063 

0.0295439 

0.1018831 

0.087095 

0.0221098 

0.002077 

0.0000443 

0.0324802 

X= 
2.2514 
X= 
.375233 

Y= 
2.2477 
Y= 
.3746166 

Ex^ = 
0.2434312 

Ey2 = 
0.2489715 

Zxy= 
0.2456894 

z(xy) (0.2456894) 

Correlation Coefficient:r 
X,Y y(Zx2)(Zy2) y(0.2434312)(0.2489715) 

= 0.997984 

Example 3. 

Consider again the Wheatstone bridge of Figure 3.10. By appling the 

Approximating Procedure proposed by Dodin and Elmaghraby (1985), the 

criticality indices of activities are calculated as shown in Figures 6.24 
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through 6.27. Since, in order to approximate the criticality indices 

of activities leading into node 3 where = {(1,3), (2,3), (2,4)} 

we have two choices (1 - we can choose to approximate the criticality 

index of activity (2,3) first and then (1,3) or 2 - we can choose to 

approximate the criticality index of activity (1,3) first then (2,3)) 

therefore, we have two series of answers. First group of the answers 

are shown beside the activites of Figure 6.24, and second group of 

the answers are shown beside the activities of Figure 6.25. Figures 6.26 

and 6.27 show the normalized values of the criticality indices of Figures 

6.24 and 6.25 respectively. 

2 

W 1 0. 

(]J) J 4 ) 
0. 

1^3J 

Figure 6, .24 

Rank of 
Activity Criticality 

(1,2)=A 1 

(3,4)=E 2 

(2,3)=C 3 

(2,4)=D 4 

(1,3)=B 5 

Figure 6.25 
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Activity 
Rank of 

Criticality 

(3,4)=E 1 

(1,2)=A 2 

(2,3)=C 3 

(1,3)=B 4 

(2,4)=D 5 

Figure 6.26 

.8347 

Figure 6.27 

Figure 6.11 shows the normalized values of the criticality indices obtained 

using proposed procedure of this dissertation (NCAP), and Figure 6.10 

shows the normalized values of the criticality indices obtained by complete 

enumeration (NCA) (i.e. the normalized values of the exact CAs). 

Comparing the criticality indices shown beside the activities of Figure 

6.24 with the exact CAs of Figure 6.10, we see that criticality indices 

shown beside the activities of Figure 6.26 which are obtained by using 
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Approximating Procedure proposed by Dodin and Elmaghraby don't give 

the same ranking as exact CAs. 

1522 L 0>4 41 

( 1 ) 0.7&21 
(^4) 

0^ 24Z8 I 0 ^ 

1 3 ) 

Figure 6.11 

Rank of 
Activity Criticality 

(3,4)=E 1 

(1,2)=A 2 

(2,3)=C 3 

(1,3)=B 4 

(2,4)=D 5 

Figure 6.10 

Activity 
Rank of 

Criticality 

(3,4)=E 

(1.2)=A 

(2.3)=C 

(1.3)=B 

(2.4)=D 

1 

2 

3 

4 

5 



266 

Let X denote the criticality indeices of Figure 6.10, denote the 

criticality indices of Figure 6.26 and denote the criticality indices 

of Figure 6.27. In the following we calculate the correlation coefficient 

between X and Z^ and also between X and Z^. 

Activity 

(NCA) 

X 

(NACAP) 

^1 
x=X-X :i=Zl-Zl x^ xz^ 

(3,4)=E .9917 .8347 0.44522 0.29192 0.1982208 .0852172 .1299686 

(2,4)=D .0083 . 1653 -.53818 -.37748 0.2896377 .1424911 .2031521 

(2,3)=C .7324 .7139 0.18592 0.17112 0.0345662 .029282 .0318146 

(1,3)=B .2593 .1208 -.28718 -.42198 0.0824723 .1780671 .1211842 

(1,2)=A .7407 .8792 0.19422 0.33642 0.0377214 .1131784 .0653394 

ZX= 
2.7324 
X= 
.54648 

ZZ= 
2.7139 

.^4278 

Zx2 = 

0.6426184 

Xz^ = 
.5482358 

EXZy= 
.5514589 

Z(xz) 
Correlation Coefficient: r^ „ = o\ 

X,Z^ 

= 0.9290795 • 

0.5514589 
y(.6426184)(.5482358) 

Activity 

(NCA) 

X 

(NACAP) 

Z^ x=X-X Z2=Z2-Z2 xz-

(3,4)=E 

(2,4)=D 

(2,3)=C 

(1,3)=B 

(1,2)=A 

.9917 

.0083 

.7324 

.2593 

.7407 

,8347 

,1653 

,5962 

,2385 

7615 

0.44522 

-.53818 

0.18592 

-.28718 

0.19422 

0.31546 

-.35394 

0.07696 

-.28074 

0.24226 

0.1982208 

0.2896377 

0.0345662 

0.0824723 

0.0377214 

0.099515 

0.1252735 

0.0059228 

0.0788149 

0.0586899 

.1404491 

.1904834 

.0143084 

.0806229 

.0470517 

ZX= 
2.7324 
X= 
.54648 

ZZ2 = 
2.5962 
Z2 = 
.51924 

Zx^= 
0.6426184 0.3682161 

ZXZ2 = 
0.4729155 
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0.4729155 
Correlation Coefficient: r 

X,Z2 y(Zx2)(Zz2) "y(.6426184)(.368261) 

= 0.972141 • 

Comparing, r„ and r % with r = .9997721 which is obtained previously 

A,Z^ A, 2 A,I 

by using the proposed procedure (see page 222), we see that the proposed 

procedure is more accurate than Dodin and Elmaghraby's procedure especially 

because the criticality indices shown in Figure 6.26 don't give the same 

ranking as exact CAs. 

Example 6. 

Consider the network configuration of Figure 5.4 Notice that this network 

is symmetric, the duration times of activities are shown beside each activity 

with equal probability for occurrence. This example may clarify the two 

following weak points of the Approximating Procedure proposed by Dodin 

and Elmagraby (1985). 

1 - Since the network is symmetric the criticality indices (CIs) of similar 

activities are actually the same, while Dodin and Elmagraby's procedure 

doesn't give the same CAs for similar activities. 

2 - Dodin and Elmaghraby's procedure is not very accurate if common activities 

have relatively large variances relative to the variances of the other 

activities. 

Figure 5.4 

As mentioned previusly, Dodin and Elmaghraby's procedure gives more than 

one series of answers for the CIs of activities in irreducible networks. 
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The number of series of answers depends on the number of activities 

in the Directed Cutset of the merge events for which we need to approximate 

the criticality indices of activites from criticality indices of the other 

activities. For instance, in order to estimate the CIs of the activities 

of Figure 5.4 using Dodin and Elmaghraby's procedure first step is 

approximating the CIs of G,E, and H.Having done that second step is 

determining the Directed Cutset of node 4 which is C^ = {(3,5), (2,5), 

(2,4), (1,4)}. Since we know the CIs of activities (3,5) and (2,5) from 

previous step, therefore, we have two unknowns, including the CI of activity 

(1,4) and the CI of activity (2,4). Thus, we can choose to approximate 

the CI of activity (1,4) first and then the CI of activity (2,4) or vice 

versa we can choose to approximate the CI of activity (2,4) first then 

the CI of activity (1,4). Next step is approximating the criticality 

indices of activities leading into node 3, where C^={(1,3), (2,3), (2,5), 

(2.4), (1,4)}, notice that although nodes 3 and 4 are structurally symmetric 

but these two sets (C^ and C^) are not equal i.e., they don't have similar 

elements and this is the reason that Dodin and Elmagraby's procedure gives 

different CIs for similar activities. Since we know the CIs of activities 

(2.5), (2,4) and (1,4) in the set C^ from previous steps we have two unknowns, 

including the CIs of activities (1,3) and (2,3). Thus, we can choose 

to approximate the CI of activity (1,3) first and then the CI of activity 

(2,3), or we can choose to approximate the CI of activity (2,3) first 

and then the CI of activity (1,3). We had two choices for estimating 

the CIs of activities (1,4) and (2,4) and now we have two choices for estimating 

the CIs of activities (1,3) and (2,3) therefore we have 2x2=4 different series 

of answers for approximating the CIs of activities. 

Table 6.44 shows the exact normalized criticality indices of activities 

obtained using complete enumeration, four different series of criticality 

indices obtained using Dodin and Elmaghraby's procedure and also shows 

the Correlation Coefficient between exact and estimate criticality indices 

for each series of answers, and the rank (R) of Criticality. 
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(NCA) (NACAP) (NACAP) (NACAP) (NACAP) 

Activity X R 
"l 

R 
^2 

R R Z4 R 

(1,2)=B 0.6588486 1 0.7262668 1 0.5797278 1 0.8480393 1 0.7015003 1 

(3,5)=G 0.4946695 2 0.4822051 2 0.4822051 2 0.4822051 2 0.4822051 2 

(4,5)=H 0.4946695 3 0.4822051 3 0.4822051 3 0.4822051 3 0.4822051 ' 3 

(2,3)=D 0.3240938 4 0.2779135 5 0.2779135 4 0.3996859 5 0.3996859 4 

(2,4)=F 0.3240938 5 0.4127636 4 0.2662247 5 0.4127636 4 0.2662247 5 

(1.3)=A 0.1705756 6 0.2042916 6 0.2042916 7 0.0825191 6 0.0825191 7 

(1,4)=C 0.1705756 7 0.0694415 7 0.2159804 6 0.0694415 7 0.2159804 6 

(2,5)=E 0.0106609 8 0.0355896 8 0.0355896 8 0.0355896 8 0.0355896 8 

Correlaton Coefficient 

between X and Z^,i=l,4 Z ~ -96949 rX,Z2= "93554 96123 

Notice that in none of the cases the Rank of Criticality is same as the Rank 

of Exact NCAs. Now in Table 6.45 we compare the exact normalized CAs with 

the normalized criticality indices obtained using the proposed procedure 

of this dissertation. 
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Table 6.45: 

Activity 

(NCA) 

X R 
(NCAP) 

Y 
R 

(1,2)=B 0.6588486 1 0.6536187 1 

(3,5)=G 0.4946695 2 0.4930477 2 

(4,5)=H 0.4946695 3 0.4930477 3 

(2,3)=D 0.3240938 4 0.3198572 4 

(2,4)=F 0.3240938 5 0.3198572 5 

(1,3)=A 0.1705756 6 0.1731905 6 

(1,4)=C 0.1705756 7 0.1731905 7 

(2,5)=E 0.0106609 8 0.013 9043 8 

Correlation Coefficient 

between X and Y 

Y = .99995 

Notice that the correlation coefficient obtained usifly proposed procedure 

is greater than all other correlation coefficients obtained using Dodin 

and Emaghraby's procedure, and also both methods (proposed and enumeration) 

give the same ranking of their criticality indices, most importantly 

criticality indices obtained for similar activities using the proposed 

procedure are the same, i.e., the proposed procedure always gives the 

same criticality indices for similar activities in any symmetric network. 

Example 6 (continued): 

Let us examine the effect of variance of common activitiy B on the 

accuracy of Dodin and Elmaghraby's procedure. Assume we change the 

realization times of activity B from (1,2) to (1,10) as shown in Figure 

5.5. 
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Figure 5.5 

Table 6.46 shows the exact normalized criticality indices of activities 

of Figure 5.5, four different series of normalized criticality indices 

obtained using Dodin and Elmaghraby's procedure and also shows the 

Correlation Coefficient between exact and estimate CAs for each series 

of answers, and the rank (R) of Criticality. 

Table 6.46 

(NCA) (NACAP) (NACAP) (NACAP) (NACAP) 

Activity 
X R 

Zl 
R 

^2 
R R 

Z4 
R 

(1,2)=B 0.7070938 1 .9105231 1 0.8783784 1 0.8915265 1 0.9236712 1 

(3,5)=G 0.4942791 2 0.439737 2 0.439737 2 0.439737 2 0.439737 2 

(4,5)=H 0.4942791 3 0.439737 3 0.439737 3 0.439737 3 0.439737 3 

(2,3)=D 0.347826 4 0.3962748 4 0.3962748 4 0.4094229 4 0.4094229 4 

(2,4)=F 0.347826 5 0.3937181 5 0.3615777 5 0.3615777 5 0.3937181 5 

(1,3)=A 0.146453 6 0.0434622 8 0.0434622 8 0.0303141 8 0.0303141 8 

(1,4)=C 0.146453 7 0.0460188 7 0.0781593 7 0.0781593 7 0.0460188 7 

(2,5)=E 0.0114416 8 0.1205258 6 0.1205258 6 0.1205258 6 0.1205258 6 

Correlation Coefficient 
^X,Zi= ^X,Z2" 

between X and Z^,i= 1,4 .93454 .94110 .93708 .93123 
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Notice that again in none of the cases the Rank of Criticality is the 

same as the Rank of Exact CA. In Table 6.47 we compare the exact 

normalized CAs with the normalized criticality indices obtained using 

proposed procedure. 

Table 6.47: 

Activity 

(NCA) 
X 

R 
(NCAP) 

Y R 

(1,2)=B 0.7070938 1 0.7513965 1 

(3,5)=G 0.4942791 2 0.4947571 2 

(4,5)=H 0.4942791 3 0.4947571 3 

(2,3)=D 0.347826 4 0.3704554 4 

(2,4)=F 0.347826 5 0.3704554 5 

(1,3)=A 0.146453 6 0.1243016 6 

(1,4)=C 0.146453 7 0.1243016 7 

(2,5)=E 0.0114416 8 0.0104855 8 

Correlation Coefficient 

between X and Y 

rx.Y = -99775 

Notice that again the correlation coefficient obtained using proposed 

procedure is greater than all other correlation coefficients obtained 

using Dodin and Elmaghraby's procedure, and also both methods (proposed 

and enumeration) give the same ranking of their criticality indices, 

and the criticality indices obtianed for similar activities using 

the proposed procedure are the same. 

Example 7: 

Consider the network configuration of Figure 6.28, the duration times 

of activities are shown beside each activity with equal probability 

of occurrence. 
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Figure 5.28 

For this network again the proposed procedure provides better estimate 

than Dodin and Elmaghraby's procedure. 

Networks of Figures 6.29 through 6.31 have been solved using three approaches 

(complete enumeration, Dodin and Elmaghraby's procedure and proposed 

procedure of this Chapter) for determining criticality indices of 

activities. In all projects the answers obtained using proposed 

procedure were found to be better than Dodin and Elma^aby's procedure 

and for each project, the proposed and enumeration method gave the 

same ranking of their criticaltiy indices. The realizations of each activity 

indicated in the arcs are assumed equally likely. 

4 ; 13 y I 3 

Figure 6.29 Figure 6.30 Figure 6.31 

In the following we apply the proposed procedure to the network of 

Figure 4.49 as final example with complete enumeration. 

Example 8: 

Consider the network of Figuer 4.49 and the consecutive networks 

of that by conditioning at common activites (A and K) as shown in 

Figures 4.50 through 4.52. 
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Figure 4.49 

Figure 4.50 

Figure 4.51 



275 

Figure 4.52 

Figure 4.52 is the conditional network of Figure 4.49 given A=2 and 

K=3. The approximate criticality indices of activities H and I of 

Figure 4.52 is determined by using Tables 4.24A and 4.24B as shown 

in Table 6.47. 

Table 6.47: Approximate criticality indices of activites H and I 

given A = 2 and K = 3. 

H I 

10 0.3x0. 021 = 0.0063 0.021x0.3 = 0.0063 

11 0.189x0.3 = 0.0567 

12 0.2x0. 259 = 0.0518 0.049x0.5 = 0.0245 

13 0.3x0. 790 = 0.2370 0.531x0.8 = 0.4248 

15 0.2 X 1 = 0.2000 0.210 X 1 = 0.2100 

CAP = 0.4951 0.7223 

NCAP = 0.4067 0.5933 

The approximate criticality indices of activities (2+G) and (3+F) 

is obtained from Tables 4.20C and 4.22B as shown in Table 6.48. 
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Table 5.48: Approximate criticality indices of activities (2+G) 

and (3+F). 

(2+G) (3+F) 

6 0.1x0.7 = 0.07 

7 0.9x0.7 = 0.63 

9 0.3x1 = 0.3 

CAP = • 0.3 0.7 

NCAP = 0.3 0.7 

NCAP.CAP(I) = 0.3x0.5933 = 0.178 0.7x0.5933 = 0.4133 

Also the approximate criticality indices of activities (2+D) and 

(3+E) is obtained from Tables 4.20B and 4.22A as shown in Table 

6.49. 

Table 6.49: Approximate criticality inidces of activites (2+D) and 

(3+E) given A=2 and K=3. 

(2+D) (3+E) 

7 0. 1x0.5 = 0.05 0. 5x 1 = 0.5 

10 0. 5x 1 = 0.5 

CAP = 0.05 1.0 

NCAP = 0.048 0.952 

NCAP.CAP(H)=0. 048x0 4067 = 0.0195 0.952x0 4067 = 0.3872 

Now, proposition 3 can be used to determine the approximate criticality 

indices of activities (2+C) and B of Figure 4.50. 

For node 3 of Figure 4.50, the sum of the approximate criticality 

indices of E and F equals the sum of the approximate criticality 

indices of B and (2+C). i.e.. 
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CAP(B) + CAP(2+C) = CAP(E)+CAP(F) 

= 0.3872 + 0.4153 

= 0.8025 . 

In order to find the contribution of each one from 0.8025, we need to 

determine the normalized value of the approximate criticality index 

of (2+C) and B from Tables 4.20A and 4.19B as shown in Table 6.50. 

Notice that K=3. 

Table 6.50: Approximate criticality indices of activities (2+C) and B given 

A=2 and K=3. 

(2+C) B 

3 0.6 0.4 

CAP = 0.6 0.4 

NCAP = 0.6 0.4 

(NCAP)(0.8025) = 0.4815 0.321 

Finally, the approximate criticality index of A equals the sum of the 

approximate criticality indices of D,C and G which is equal to 

.0195+.4815 + .178 = .679 . 

Table 6.51 shows the approximate criticality indices of all activities 

given A=2 and K=3. 
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Table 6.51; Approximate criticality indices given A=2 and K=3. 

Activity NCAP 

H 0.4067 

I 0.5933 

G 0.1780 

E 0.3872 

F 0.4153 

D 0.0195 

C 0.4815 

B 0.3210 

A 0.6790 

By using the same procedure for each set of conditions, the approximate 

criticality indices of network given specific set of conditions is 

obtained. In the following, final Table of each set of conditions 

is given. 
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Table 6.52: Approximate criticality indices of activites given A=2 

and K=4. 

Activity NCAP 

H 0.4400 

I 0.5600 

G 0.1680 

E 0.4400 

F 0.3920 

D 0,0000 

C 0.3328 

B 0.4992 

A 0.5008 

Table 6.53: Approximate criticality indices of activities given 

A=5 and V=6. 

Activity NCAP 

H 0.4067 

I 0.5933 

G 0.1780 

E 0.3872 

F 0.4153 

D 0.0195 

C 0.8025 

B 0.0000 

A 1.0000 
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Table 6.54: Approximate criticality indices of activites given A=5 

and V=7• 

Activity NCAP 

H 

I 

G 

E 

F 

D 

C 

B 

A 

0.4400 

0.5600 

0.1680 

0.4400 

0.3920 

0.0000 

0.8320 

0.0000 

1.0000 

By deconditioning the approximate criticality indices of Tables 6.51 

through 6.54 and simple addition of corresponding criticality indices, 

the approximate criticality index of each activity is obtained. 

Tables 6.55 to 6.58 show unconditional criticality indeces of Tables 

6.51 to 6.54 respectively. 

Table 6.55; Unconditional criticality indices of Table 6.51. 

P(A=2).P(K=3)=(0.2).(0.24) = 0.048 

Activity UNC.NCAP 

H 

I 

G 

E 

r 

D 

c 

B 

A 

0.4067x0.048 

0.5933x0.048 

0.1780x0.048 

0.3872x0.048 

0.4153x0.048 

0.0195x0.048 

0.4815x0.048 

0.3210x0.048 

0.6790x0.048 

0.0195216 

0.0284784 

0.0085440 

0.0185856 

0.0199344 

0.0009360 

0.0231200 

0.0154080 

0.0325920 
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Table 6.56: Unconditional criticality indices of Table 6.52. 

P(A=2).P(K=4)=(0.2).(0.76) = 0.152 

Activity UNC.NCAP 

H 

I 

G 

E 

F 

D 

C 

B 

A 

0.4400x0.152 

0.5600x0,152 

0.1680x0.152 

0.4400x0.152 

0.3920x0.152 

0.0000x0.152 

0.3328x0.152 

0.4992x0.152 

0.5008x0.152 

0.0668800 

0.0851200 

0.0255360 

0.0668800 

0.0595800 

0.0000000 

0.0505856 

0.0758784 

0.0761216 

Table 6.57: Unconditional criticality indices of Table 6.53. 

P(A=5).P(V=6)=(0.8).(0.6)=0.48 

Activity UNC.NCAP 

H 

I 

G 

E 

F 

D 

C 

B 

A 

0.4067x0.48 

0.5933x0.48 

0.1780x0.48 

0.3872x0.48 

0.4153x0.48 

0.0195x0.48 

0.8025x0.48 

0.0000x0.48 

1.0000x0.48 

0.195216 

0.284784 

0.085440 

0.185856 

0.199344 

0.009360 

0.385200 

0.000000 

0.480000 
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Table 6.58 Unconditional criticality indices of Table 6.54. 

P(A=5).P(V=7)=(0.8).(0.4)= 0.32 

Activity UNC.NCAP 

H 0.440x0.32 = 0.14080 

I 0.560x0.32 = 0.17920 

G 0.168x0.32 = 0.05376 

E • 0.440x0.32 = 0.14080 

F 0.392x0.32 = 0.12544 

D 0.000x0.32 = 0.00000 

C 0.832x0.32 = 0.26624 

B 0.000x0.32 = 0.00000 

A 1.000x0.32 = 0.32000 

Table 6.59 shows approximate criticality indices of activities. 

Table 6.59: Approximate criticality indices of activities. 

Activity NCAP 

H 0.0195216+0.0668800+0.195216+0.14080 = 0.42240 

I 0.0284784+0.0851200+0.284784+0.17920 = 0.57760 

G 0.0085440+0.0255360+0.085440+0.05376 = 0.17330 

E 0.0185856+0.0668800+0.185856+0.14080 = 0.41210 

F 0.0199344+0.0595840+0.199344+0.12544 = 0.40430 

D 0.0009360+0.0000000+0.009360+0.00000 = 0.01030 

C 0.0231200+0.0505856+0.385200+0.26624 = 0.72514 

B 0.0154080+0.0758784+0.000000+0.00000 = 0.09128 

A 0.0325920+0.0761216+0.480000+0.32000 = 0.90870 

The approximate criticality index of each activity is shown in Figure 6.32. 
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D 0.0103 

F 0.404J 

Figure 6.32 

The approximate criticality index of each path is shown in Table 6.60. 

Table 6.60: Approximate criticality indices of paths. 

Path NCPP 

1-2-5-6 min{CA(A),CA(D), CA(H)} = 0, .01030 

1-2-3-5-6 min{CA(A),CA(C), CA(E), CA(H)} = 0. .41210 

1-2-3-4-6 min{CA(A),CA(C), CA(F), CA(I)} = 0. .40430 

1-2-4-6 min{CA(A),CA(G), CA(I)} = 0, ,17330 

1-3-5-6 min{CA(B),CA(E), CA(H)} = 0, ,09128 

1-3-4-6 min{CA(B),CA(F), CA(I)} = 0. ,09128 

SUMMARY AND CONCLUSIONS 

A fundamental problem in PERT networks is to identify the activities 

which are critical to the achievement of the project objectives. 

In an activity network if the duration of the activity is not a random 

variable, then the criticality of each activity represented by its float 

time. However, when the duration of any activity is a random variable, 

it is not easy to identify the criticality of each activity. In this case 

the criticality of an activity is known as the "criticality index," which 

is defined as the sum of the criticality indices of the paths containing 

it. The criticality index of a path is the probability that the duration 

of the path is greater than or equal to the duration of every other path 
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in the network. 

In this chapter a procedure to estimate criticality indices of activities 

in PERT networks with discrete statistically independent distributions 

is presented. This procedure operationally is identical to proposed 

procedure of Chapter 4 for determining pdf of project completion time 

and resultant network of that procedure is used to approximate the 

criticality indices of activities and paths. 

Criticality indices obtained using proposed procedure are more accurate 

than criticality indices obtained using Approximating Procedure proposed 

by Dodin and Elmaghraby (1985). If common activity times have relatively 

large variance or the number of activities emanating from merge events 

are more than two, criticality indices obtained using Dodin and Elmagraby's 

procedure are less accurate, while these factors don't affect the accuracy 

of criticality indices obtained using proposed procedure.Moreover proposed 

procedure and erumeration method both give the same ranking of criticality 

indices in most PERT networks. Finally, proposed procedure could be 

applied in PERT networks with statistical and structural dependence 

relationships between activities which will be discussed in the next 

chapter. 
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CHAPTER 7 PERT NETWORKS WITH STATISTICAL AND STRUCTURAL DEPENDENCE 

RELATIONSHIPS 

INTRODUCTION 

In the conventional PERT network models it is assumed that the completion 

time distributions of individual activities are statistically independent. 

In practice there may be dependence between activities. Conditions 

which affect one activity, causing it to have a rapid completion time 

or a slow completion time, quite often affect other activities as well. 

Further, many managers will attempt to improve performance by switching 

manpower and resources to speed activities which are ahead of schedule. 

Most of the statistical theories of PERT network analysis proposed to 

date make the assumption that the duration times of activities have 

statistically independent distributions. This assumption is one of 

the possible sources of error in project completion times and criticaltiy 

indices. 

Structural dependence relationships can interact with statistical dependence 

relationships and produce important effects which cannot be detected 

and understood using simple expected value calculations. These effects 

are complex, but they can be identified and understood in a Controlled 

Interval and Memory framework. 

In this chapter effects of statistical and structural dependence relationships 

are examined through examples. The chapter starts with an example used 

by Cooper and Chapman (1987) involving an activity network model, where 

structural dependence arises in a natural and obvious way in network 

merge events, and considers the CIM treatment of it. Then the chapter 

presents proposed procedure and the algorithm for the PERT networks 

with statistical and structural dependence relationships between activities. 
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Example 1 

The example concerns part of the construction of an offshore oil platform. 

This specific applicaton area is incidental : the example was designed 

to illustrate the CIM approach to structural dependence, to indicate 

the importance of structural dependence in risk calculations. The 

numbers provide an outline framework for discussion; insights are the 

major objective. 

The example involves six activities: the design, materials acquisition 

and fabrication of the topsides modules for an offshore platform; and 

the design, materials acquisition and fabrication of the steel jacket 

itself . Finish-to-start precedence relationships are specified in 

Table 7.1, and shown in the precedence (activity-on-node) diagram of 

Figure 7.1. 

Table 7.1: Activity list for an offshore platform, with finish-to-start 

precedence relationships. 

NUMBER LABEL PREDECESSORS 

MODULES SEQUENCE 

1 

2 

3 

Design 

Materials 

Fabrication 

JACKET SEQUENCE 

4 

5 

6 

Design 

Materials 

Fabrication 

4 

1 , 5 



287 

MODULES SEQUENCE 

FINISH START 

4 DESIGN 

1 DESIGN 3 FABRICATION 

6 FABRICATION 5 MATERIALS 

2 MATERIALS 

JACKET SEQUENCE 

Figure 7.1: Activity-on-node precedence diagram, with finish-to-start 

links. 

Table 7.2 shows the durations of the activities in the Modules sequence, 

with time expressed in half-year units. Under 'Modules Fabrication', 

the second and third lines show conditional probabilities, conditional 

on the Modules Design duration Dl; for example, 

P(D3=3|D1=4)=0.3. 

The fourth line shows unconditional probabilities; for example, 

P(D3=3) = P(D3=31D1=4)P(D1=4) 

+P(D3=3|D1=5)P(D1=5) 

= 0.3x0.6+0.8x0.4 

= 0.5. 

There is negative statistical dependence between Modules Fabrication 

and Modules Design: if Design takes a long time, then Fabrication 

can be speeded up, at additional cost. The table shows expected values: 
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it is useful to keep track of expected values, and this can be done 

authomatically with appropriate software. 

Table 7.2: Modules sequence activity durations, in half-year units. 

1. MODULES DESIGN D1 = 4 5 

P = 0.6 0.4 E=4.4 

2. MODULES MATERIALS D2 = 2 3 

P = 0.3 0.7 E=2.7 

3. MODULES FABRICATION D3 = 3 4 

P GIVEN MODULES DESIGN D1 = 4 0.3 0.7 E=3.7 

5 0.8 0.2 3.2 

P = 0.5 0.5 E = 3.5 

Table 7.3 shows the durations of the activities in the Jacket sequence. 

There is positive statistical dependence between Jacket Design and 

Modules Design, and between Jacket Fabrication and Modules Design.Problems 

with the design of the modules, particularly if they involve changes 

in the number or size of modules affecting their total weight, will 

lead to related problems with the design and fabrication of the jacket. 

Again, the dependence is specified in terms of conditional probabilities, 

and unconditional probabilities and expected values are also shown. 
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Table 7.3: Jacket sequence activity durations, in half-year units. 

4. JACKET DESIGN D4 = 

P GIVEN MODULES DESIGN D1 = 4 0.7 0.3 

5 0.2 0.8 

P = 0.5 0.5 

E=2.3 

2 . 8 

2.5 

5, JACKET MATERIALS D5 

P 

2 

0.3 

3 

0.7 E=2.7 

6. JACKET FABRICATION 

P GIVEN MODULES DESIGN 

D6 = 

D1 

P = 

4 

5 

0.7 0.3 

0 . 2 0 .8 

0.5 0.5 

E=4.3 

4.8 

E=4.5 

The simple six-activity structure of this example may be appropriate 

in practice. A coarse activity structure is often used in practice 

in order to facilitate a detailed treatment of the risks associated 

with each activity. Because the activities used here are composites 

of many lower level (more detailed) activities, there may be precedence 

relationship overlaps, as shown in Table 7.4. To examine all the activities 

at a level of detail which avoids the overlaps would often be too complicated 

and unnecessary for risk analysis purposes. The same distribution 

of overlap has been assumed in each here, for simplicity. Expected 

values are shown, for ease of interpretation. 
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Table 7.4: Activity Precedence Relationship Overlaps. 

1 - 2 Modules Design and Modules Materials 

L = 0 1 

P = 0.5 0.5 E=0.5 

2 - 3 Modules Materials and Modules Fabrication 

L = 0 1 

P = 0.5 0.5 E=0.5 

5 - 6 Jacket Materials and Jacket Fabrication 

L = 0 1 

P = 0.5 0.5 E=0.5 

EXPECTED VALUE CALCULATIONS 

Given the expected activity durations and the expected overlaps, standard 

network calculations can be performed to provide an initial assessment 

of the project schedule. A forward pass calculates activity earliest 

start times and project earliest finish time, and a backward pass calculates 

activity latest start times. Link float can be computed using 

FLOAT (link i - j) = Latest Start (node j) 

- Earliest Finish (node i) 

+ Overlap (link i - j) 

= LS(j) - ES(i) - D(i) + OL(i,j). 

Expected activity durations and overlaps,earliest and latest activity 

start times, project finish time and floats are shown in Figure 7.2. 

The floats indicates that the Modules sequence is critical, and that 

the Jacket sequence is not critical. On the basis of this expected 

value assessment, the link 1 - 6 has the largest link float and looks 

irrelevant. 
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KEY: 

NUMBER NAME 

DURATION 

EARLY LATE 
START START 

FLOAT 
OVERLAP 

MODULES SEQUENCE 

-0.5 

START FINISH 

4 DESIGN 

1 DESIGN 

5 MATERIALS 6 FABRICATION 

3 FABRICATION 2 MATERIALS 

JACKET SEQUENCE 

FIGURE 7.2; Expected activity durations and overlaps, activity early 

and late start times, project finish time, and link floats. 

DISTRIBUTION CALCULATIONS 

The expected value calculations of Figure 7.2 are easy to perform. 

However, they do not take into account the probabilistic aspects of 

the dependence relationships that exist between the activities in the 

project network structure. It is necessary to examine the distributions 

of start and finish time for the activities and for the project network 

as a whole if the effects of these relationships are to be understood 

fully. 

Modules Sequences 

Table 7.5 shows the time distributions for the Modules sequence. Table 

7.5A, Modules Materials start time, S2, is the Modules Design distribution 
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minus the overlap between Design and Materials, performed as a standard 

CIM subtraction calculation. This calculation format keeps a memory 

of the Modules Design aspect of S2 uncertainty, needed later in the 

computation sequence. The probabilities computed in Table 7.5 in the 

Dl=4 and 5 columns are joint probabilities, rather than conditional 

probabilities like those in Table 7.2, 7.3 and 7.4; for example, 

Table 7.5A: Modules Materials start time. 

P]MODULES DESIGN 

D1 = 4 D1 = 5 

UNCONDITIONAL 

P 

S2 = 0.5x0.6 = 0.3 

0.5x0.6 = 0.3 0.5x0.4 = 0.2 

0.5x0.4 = 0.2 

0.3 

0.5 

0 . 2 

E = 3.5 4.5 3.9 

Table 7.5B: Modules Materials finish time. 

P MODULES DESIGN 

D1 = 4 D1 = 5 

UNCONDITIONAL 

P 

F2 = 5 0.3x0.3 = 0.09 0.09 

6 0.3x0.3+0.7x0.3 = 0.30 0.3x0, .2 = 0.06 0.36 

7 0.7x0.3 = 0.21 0.3x0 , .2+0.7x0.2 = 0.20 0.41 

8 0.7x0.2 = 0.14 0.14 

E = 6 . 2 7.2 6.6 
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P MODULES DESIGN 

D1 = 4 D1 = 5 

UNCONDITIONAL 

P 

53 = 4 

5 

6 

7 

0.5x0.09 + 0.5x0.30 

0.5x0.30 + 0.5x0.21 

0.5x0.21 

0.5x0.09 = 0.045 

0.195 0.5x0.06 

0.255 0.5x0.06 + 0.5x0.20 

0.105 0.5x0.20 + 0.5x0.14 

0.5x0.14 

0.045 

0.03 0.225 

0.130 0.385 

0.170 0.275 

0.070 0.070 

5.7 6.7 6.1 

Table 7.5D: Modules Fabrication finish time. 

P MODULES DESIGN 

D1 = 4 D1 = 5 

UNCONDITIONAL 

P 

F3 = 7 

8 

9 

10 

11 

12 

0.3x0.045 

0.3x0.195+0.7x0.045 

0.3x0.255+0.7x0.195 

0.3x0.105+0.7x0.255 

0,7x0.105 

0.0135 0.0135 

0.0900 0.8x0.03 = 0.0240 0.1140 

0.2130 0.8x0.13+0.2x0.03 = 0.1100 0.3230 

0.2100 0.8x0.17+0.2x0.13 = 0.1620 0.3720 

0.0735 0.8x0.07+0.2x0.17 = 0.0900 0.1635 

0.2x0.07 = 0.0140 0.0140 

E = 9.4 9.9 9 .6 
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P(S2=4 and Dl=4) = P(no overlap) P(D1=4) 

= 0.5 X 0.6 

= 0.3. 

Because these are joint probabilities, the expected value calculations are 

a little different; for example, 

E(S2|D1=4) = (3x0.3+4x0.3)/(0.3+0.3) 

= 3.5. 

Tables 7.5B, 7.5C and 7.5D show the distributions of Modules Materials 

finish time (5A plus the Modules Materials duration distribution). 

Modules Fabrication start time (53 minus the overlap between materials and 

Fabrication), and Modules Fabrication finish time (5C plus the Modules 

Fabrication duration distribution). The memory of the Modules Design 

duration is retained throughout, for later use. 

Figure 7.3 illustrates the start and finish time distributions for the Modules 

sequence in Table 7.5. In Figure 7.3, the overlap allows a 'jump back' 

in the time sequence of activities. The 'curves' plotted here are based on 

histogram intervals, centred on whole numbers of half year units. 

MODULES SEQUENCE 

1 DESIGN 

TERIALS 

FABRICATION 

OVERLAP 

TIME 
FIGURE 7.3: Time distributions for the Modules sequence. 
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MODULES SEQUENCE 

FINISH TIME COMPONENTS 

M 
i-J 
M 

I 
I 

1 DESIGN 

2 MATERIALS 

3 FABRICATION 

FIGURE 7.4: Contributions of each activity variation to the Modules 

sequence finish time variation. (Note that the Materials 

and Fabrication components include a variation due to 

overlap.) 

The contributions of each component activity variations to the modules 

sequence finish time are shown in Figure 7.4. The lines shown are the 

Design start time SI, the Design finish time Fl, the Materials finish 

time F2, and the Fabrication finish time F3 (which is the Modules sequence 

finish time), all plotted from a common zero probability point. The areas 

between the lines indicate the variation contributions of each activity 

plus associated contributions from the overlap with prior activities. 

In the Modules sequence, the expected start times derived from the 

distributional results in Table 7.5 are the same as the start times 

calculated from the expected activity durations and expected overlaps 

of Figure 7.2. 
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Jacket Sequence 

Table 7.6 shows a sequence of calculations similar to Table 7.5, for 

the Jacket sequence. Again, the calculations keep a memory of Modules 

Design. Table 7.6A, Jacket Design finish time, converts the Table 7.3 

values from conditional probabilities to joint probabilities; for example 

P(F4=2 and Dl=4) = P(D1=4) P(F4=2|D1=4) 

= 0.6 X 0.7 

= 0.42. 

Table 7.6A: Jacket Design finish time. 

P MODULES DESIGN 

D1 = 4 D1 = 5 

UNCONDITIONAL 

P 

F4 = 2 0.6x0,7 = 0.42 

3 0.6x0.3 = 0.18 

0.4x0.2 = 0.08 

0 . 4 x 0 . 8 = 0 .32 

0.5 

0.5 

E = 2.3 2 . 8 2.5 

Table 7.6B: Jacket Materials finish time. 

P MODULES DESIGN 

D1 = 4 D1 = 5 

UNCONDITIONAL 

P 

F5 = 4 0.3x0.42 = 0.126 0.3x0.08 =0.024 0.15 

5 0.3x0.18+0.7x0.42 = 0.348 0.3x0.32+0.7x0.08 =0.152 0.50 

6 0.7x0.18 = 0.126 0.7x0.32 = 0.224 0.35 

E = 5.0 5.5 5.2 
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Table 7.6C: Jacket Fabrication start time, considering materials only. 

P|MODULES DESIGN UNCONDITIONAL 

D1 = 4 D1 = 5 P 

S6' = 3 0.5x0.126 = 0.063 0. 5x0.024 = 0.012 0.075 

4 0. 5x0,126 + 0.5x0.348 = 0.237 0.5x0. 024+0. 5x0.152 = 0.088 0.325 

5 0. 5x0.348 + 0.5x0.126 = 0.237 0.5x0. 152+0. 5x0.224 = 0.188 0.425 

6 0. 5x0.126 =0.063 0.5x0. 224 = 0.112 0.175 

E = 4.5 5.0 4.7 

Table 7. 6D: Jacket Fabrication start time. 

P]MODULES DESIGN UNCONDITIONAL 

D1 = 4 D1 = 5 P 

S6 = 4 0. 063+0.237 = 0.300 0.300 

5 0.237 0.012+0.088+0 .188 = : 0.288 0.525 

6 0.063 0.112 0.175 

E = 4.605 5.280 4.875 



Table 7.6E: Jacket Fabrication finish time. 
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PI MODULES DESIGN 

D1 = 4 D1 = 5 

UNCONDITIONAL 

P 

F6 = 8 0.7x0,300 = 0.2100 

9 0.7x0.237+0.3x0.300 = 0.2559 

10 0.7x0.063+0.3x0.237 = 0.1152 

11 0.3x0.063 = 0.0189 

0 .2100 

0.2x0.288 = 0.0576 0.3135 

0.2x0.112+0.8x0.288 = 0.2528 0.3680 

0.8x0.112 = 0.0896 0.1085 

E = 8.905 10.080 9.375 

Table 7.6B, Jacket Materials finish time, is Table 7.6A plus the Jacket 

Materials duration distribution. Table 7.6C, the Jacet Fabrication start 

time considering Materials only, is 6B minus the overlap. Table 7.6D, 

jacket Fabrication start time, takes into account the Modules Design 

finish time. Because this is a merge event, a 'greatest' operation is used 

rather than addition, but the CIM principle are the same; for example, 

P(S6=4 and Dl=4) = P(S6=3 and Dl=4) 

+ P(S6=4 and Dl=4) 

= 0.063+0.237 

= 0.300. 

Table 7.6E, Jacket Fabrication finish time, is 6D plus the Jacket Fabrication 

duration distribution. 

Figure 7.5 shows the start and finish times for the activities in the Jacket 

sequence. Between Materials and Fabrication, there is a 'jump back' due 

to the overlap between these activities, and a 'jump forward' due to the 

precedence link from Modules Design. The Modules Design component, shown 

shaded in Figure 7.5, is a variation attributable to structural dependence 
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of a more complex form than the additions and subtractions considered prior 

to this in the precedence network framework. 

cq i s 

JACKET SEQUENCE 

4 DESIGN 

MATERIALS 

6 FABRICATION 

MATERIALS/FABRICATION 
OVERLAP 

MODULES DESIGN COMPONENT 
STRUCTURAL DEPENDENCE 

TIME 

FIGURE 7.5 Time distributions for the Jacket sequence. 

The expected activity start times for the Jacket sequence calculated from 

the CIM distributional results in Table 7.6 are shown in Figure 7.6, with 

the values calculated from the expected activity durations shown in 

parentheses. The structural dependence embodied in the link 1 - 6 has 

increased the expected duration of the Jacket sequence from 9.2 to 9.4 

half-year time units. At the merge event at the start of Jacket Fabrication, 

there is an expected delay of 0.2 due to Modules Design delays. The link 

1 - 6 will be critical at least some of the time, although link 1 - 6 

seemed irrelevant when judged solely on the basis of expected values. 
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3 FABRICATION 

START FINISH 

9 . 4 ( 9 . 2 } 

4 DESIGN 

0(0 ) 

1 DESIGN 

6 FABRICATION 

4 . 9 ( 4 . 7 ) 

5 MATERIALS 

2 MATERIALS 

JACKET SEQUENCE 

FIGURE 7.6: Expected activity start times and sequence finish time for the 

jacket sequence, calculated using CIM models, with the previous values shown 

in brackets. 

Criticality Indices 

To further examine the links leading into the merge events at the start of 

Jacket Fabrication, the criticality indices of the links can be calculated. 

The criticality index of a link indicated the conditional probability that 

the link will be critical. Calculations based on joint probabilities are 

shown in Table 7.7, and criticality is illustrated in Figure 7.7. For 

example, when the ModulesDesign duration D1 = 4 and the Jacket Fabrication 

start time S5=4, the probability that the Jacket Fabrication start time is 

constrained by link 1 - 6 (link 1 - 6 is critical) is 
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P(constrained by Dl=4) = P(S6=3 and D1=A) 

+ P(S6=4 and Dl=4) 

= 0.063+0.237 

= 0.300; 

the probability that it is constrained by link 5 - 6 is P(S6=A and 

Dl=4) = 0.237: and 0.237 is also the probability that it is constrained by 

both. In Table 7.7, the 'Total' row indicates the joint probability that 

a link is critical and the particular Modules Design duration D1 is obtained. 

The criticality index is the corresponding conditional probability, 

calculated by dividing the joint probability by the probability associated 

with the particular D1 value; for example, 

C(link 1 - 6|D1=4) = P(1 - 6is critical and D1=4)/P(D^=4) 

= 0.3/0.6 

= 0.5. 

Table 7.7: Jacket Fabrication start time criticality indices, joint 

probabilities. 

MODULES DESIGN D1 = 4 D1 = 5 D1 = 4 or 5 

LINK 1-6 5-6 BOTH 1-6 5-6 BOTH 1-6 5-6 BOTH 

S6 = 4 p = 0.300 0.237 0.237 0.300 0.237 0.237 

5 0.237 0.288 0.188 0.188 0.288 0.425 0.188 

6 0.063 0.112 0.175 

TOTAL p = 0.300 0.537 0.237 0.288 0.300 0.188 0.588 0.837 0.425 

CRITICALITY 

INDEX C = 0.500 0.895 0.395 0.720 0.750 0.470 0.588 0.837 0.425 



FIGURE 7.7: 

Jacket Fabrication start time criticality pie diagrams. 
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MODULES 

DESIGN 

D1 = 4 

1 - 6 ALONE 

5 - 6 ALONE 

BOTH 

D1 = 5 

1 - 6 ALONE 

5 - 6 ALONE 

BOTH 

D1 = A OR 5 

1 - 6 ALONE 

5 - 6 ALONE 

BOTH 



303 

When the Modules Design duration Dl=4, the link 1 - 6 alone is critical 

for only a small proportion (0.500 - 0.395 = 0.105) in comparison with link 

5 - 6 alone (0.895 - 0.395 = 0.500). Link 1 - 6 looks more important when 

the Modules Design duration is longer (Dl=5), which is not surprising. 

Overall, link 1 - 6 has a criticality index of nearly 0.6, in marked 

contrast to the initial expected-value assessment. 

THE PROJECT AS A WHOLE 

It is now possible to look at the project as a whole, using Table 7.8. 

Tables 7.8A and 7.8B convert the joint distributions for Modules Fabrication 

finish time (from Table 7.5D) and Jacket Fabrication finish time (from 

Table 7.6E) to rounded conditional distributions; for example, in Table 

7.8A, 

P(F3=11|D1=A) = P(F3=11 and D1=4)/P(D1=4) 

= 0.0735/0.6 

= 0.1225 

= 0 . 1 2 . 

Table 7.8C gives the project finish time conditional distribution, 

calculated using a CIM 'greatest' operation at the merge event; for 

example, 

P(F3<9|D1=4)=P(F3=7 jDl=4) + P(F3=8|D1=4) 

+P(F3=9|D1=4) 

=0.02 + 0.15 + 0.36 

=0.53, 

P(F6^8lDl=4)=P(F6=8|D1=4) 

=0.35, 

P(FP=9|D1=4)=P(F6=8|D1=4) P(F3=9|D1=4) 

+P(F6=9|D1=4) P(F3<9|Dl=4) 

=0.35x0.36+0.43x0.53 

=0.3539. 

Table 7.8D shows the corresponding joint distribution for Project finish 
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time; for example, 

P(FP=9 and Dl=4) = P(FP=9|D1=A) P(D1=4) 

= 0.3539x0.6 

= 0.21234. 

The Modules sequence, Jacket sequence and Project finish time distributions 

are illustrated in Figure 7.8. 

Table 7.8A; Modules Fabrication finish time rounded conditional distributions 

PIMODULES DESIGN 

D1 = 4 D1 = 5 

F3 = 7 0.02 

8 0.15 0.06 

9 0.36 0.28 

10 0.35 0.40 

11 0.12 0.23 

12 0.03 

E = 9.4 9.9 

Table 7.8B: Jacket Fabrication finish time rounded conditional distributions. 

PI MODULES DESIGN 

D1 = 4 D1 = 5 

F6 = 8 0.35 

9 0.43 0.14 

10 0.19 0.64 

11 0.03 0.22 

E = 8.9 10.1 
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Table 7.8C: Project finish time conditional distributions. 

P MODULES DESIGN 

D1 = 4 D1 = 5 

FP = 8 .35x17 =.0595 

9 .35x.36+. ,A3x. ,53 =.3539 . 14x. 34 =.0476 

10 .35x.35+. 43x. 35+. , 19x. 88 =.4402 . 14x. 40+. 64x. 74 =.5296 

11 .35x.12+. 43x. 12+. 19x. 12+.03x1=.1464 . 14x. 23+. 64x. 23+. ,22x. ,97 =.3928 

12 . 14x. 03+. 64x. 03+. 22x. ,03 =.0300 

E = 9.7 10.4 

Table 7.8D: Project finish time joint distributions. 

P]MODULES DESIGN UNCONDITIONAL 

D1 = 4 D1 = 5 P 

FP = 8 .03570 .04 

9 .21234 .01904 .23 

10 ,26412 .21184 .47 

11 .08784 .15712 .25 

12 .01200 .01 

E = 9.7 10.4 10.0 
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M 
hJ 
M 

I s 
PM 

JACKET SEQUENCE 

MODULES SEQUENCE 

PROJECT 

FINISH TIME 

FIGURE 7.8: Sequence finish time distributions and project finish time 

distribution. 

Table 7.9 shows the criticality calculations for the project as a whole. 

The computation process is similar to that used for the criticality 

indices of the links leading into the Jacket Fabrication activity (Table 

7.7), but joint probabilities are used here instead of conditional 

probabilities. The approach illustrated is slightly different, but the 

principles are the same. For example, in Table 7.9A with the Modules 

Design duration Dl=4 and a project duration FP=9, 

P (FP=9 and Jacket sequence critical|D1=A) 

= P(F6=9|D1=4) P(F3<9|D1=4) 

= 0.43 X 0.53 

= 0.2279, 
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P (FP=9 and Modules sequence critical|D1=A) 

= P(F6=8|D1=4) P(F3=91D1=A) + P (F6=9|D1=A) P(F3=9|D1=A) 

= 0.35x0.036 + 0.43x0.036 

= 0 . 2 8 0 8 , 

P (FP=9 and both sequences criticaljBl=4) 

= P(F6=9|D1=4) P(F3=9|D1=4) 

= 0.43x0.36 

= 0.1548. 

Table 7.9A: Project finish time criticality indices. Part 1 of 3, 

P MODULES DESIGN D1 = 4 

JACKET SEQUENCE MODULES SEQUENCE BOTH 

FP=8 .35x.l7 = .0595 .35x.l5 = 

9 .43X.53 = .2279 .35x.36+.43x.36 

10 .19X.88 = .1672 .35x.35+.43x.35+.19x.35 

11 .03x1.00= .0300 .35x,12+.43x.l2+.19x.l2+0.03x.l2 = 

.0525 .35x.l5=.0525 

.2808 .43x.36=.1548 

.3395 .19x.35=.0665 

.1200 .03x.l2=.0036 

C = .4846 .7928 .2774 
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Table 7.9B: Project finish time criticality indices. Part 2 of 3. 

P MODULES DESIGN D1 = 5 

JACKET SEQUENCE MODULES SEQUENCE BOTH 

FP=8 

9 

10 

11 

12 

.14x.34=.0476 

.64x .74=.4736 

,22x.97=.2134 

,14x.28 = .0392 

,14x.40+.64x.40 = .3120 

14x.23+.64x.23+.22x.23 = .2300 

14x.03+.64x.03+.22x.03 = .0300 

.14x.28=.0392 

.64x.40=.2550 

.22%.23=.0506 

c = .7346 .6112 .3458 

Table 7.9C: Project finish time criticality indices, Part 3 of 3. 

P 1 MODULES DESIGN D1 = 4 or 5 

JACKET SEQUENCE MODULES SEQUENCE BOTH 

FP=8 .03570 .03150 .03150 

9 .15578 .18416 .10856 

10 .28976 .32850 .14230 

11 .10336 .16400 .02240 

12 .01200 

C = .58460 .72016 .30476 



FIGURE 7.9: 

Project finish time criticality pie diagrams. 
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The criticality indices are illustrated in Figure 7.9. When the Modules 

Design duration is short (Dl=4), the Modules sequence is more important 

than the Jacket sequence, but when the Modules Duration is longer (Dl=5), 

then the Jacket sequence is more important! This counter-intuitive 

result arises for a number of reasons: the negative statistical dependence 

between Modules Design and Modules Fabrication offsets the effect of 

increased Modules Design duration on the Modules sequence; the positive 

statistical dependence between Modules Deisgn and both Jacket Design 

and Jacket Fabrication means Modules Design delays have a large positive 

impact on Jacket sequence delays; the structural precedence link between 

Modules Design and Jacket Fabrication introduces further postitive dependence. 

Thus Modules Design delays impacts the Jacket sequence more than the 

Modules sequence, due to both statistical and structural dependence. 

Figure 7.10 shows the expected activity start and Project finish times 

calculated usng the CIM approach as just outlined, with the previous 

estimates in brackets. The expected values are higher than the original 

estimates for both merge events. The structural dependence relationships 

have had a big impact on expected values, with an increase of 0.2 at each merge. 

Criticality indices are also shown. These criticality indices indicate that 

the Jacket sequence is almost as important as the Modules sequence for 

project completion, a very different picture from the misleading representation 

of Figure 7.2. 

Figure 7.11 shows Project finish time distributions conditional on 

Modules Design duration «The gap between these curves and the associated 

difference in expected values, from E = 9.7 when D1 =4 to E = 10.4 

when D1 =5, indicates that the Modules Design activity is very important. 

This might lead to a change in plans, to avoid problems at the outset. 

For example, a revised precedence arrangement between sequences and 

a delayed start to the Jacket sequence might be considered, as illustrated 

by Figure 7.12. This would change the structural dependence relationships, 
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and ought to affect the statistical dependence of the Jacket sequence 

on Modules Design as well. 

MODULES SEQUENCE 

START FINISH 

10.0(9.6) 

0 (0 ) 

4 DESIGN 

4 . 9 ( 4 . 7 ) 

6 FABRICATION 

0(0 ) 

1 DESIGN 

2 . 5 ( 2 . 5 ) 

5 MATERIALS 

3 FABRICATION 

3 . 9 ( 3 . 9 ) 

2 MATERIALS 

JACKET SEQUENCE 

FIGURE 7.10: Expected activity start and project finish times, calculated 

using CIM models, with the previous values shown in brackets. Link 

criticality indices are also shown. 

3 
M 

I 
I 

MODULES DESIGN 

1 1 

PROJECT FINISH TIME 

FIGURE 7.11; Project finish time conditional distributions. 
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MODULES SEQUENCE 

FINISH START 

FF 

3 FABRICATION 1 DESIGN 

4 DESIGN 

2 MATERIALS 

5 MATERIALS 6 FABRICATION 

JACKET SEQUENCE 

FIGURE 7.12: Revised project plan, with a delayed start to the Jacket 

sequence and a finish-to-finish precedence link. 

In the following, the proposed procedure is applied to the network 

configuration of the above example. Figure 7.13 shows activity-on-arc 

diagram of Example 1. Notice that overlaps between activities are 

shown as activities but with negative duration times. 01 denotes overlap 

between Modules Design and Moduels Materials, 02 denotes overlap between 

Modules Materials and Modules Fabrication, and 03 denotes overlap between 

Jacket Materials and Jacket Fabrication. Table 7.10 shows durations 

of the activites. Expected values are also shown. 

D1 

D2 F2 
M2 

Figure 7.13 
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Table 7.10 Project activity durations. 

Dl = 4 5 

P = 0.6 0.4 E = 4.4 

Ml = 2 3 

P = 0.3 0.7 E = 2.7 

F1 = 3 4 

GIVEN Dl = 4 0.3 0.7 E = 3 . 7 

5 0.8 0.2 3.2 

D2 = 2 3 

P GIVEN Dl = 4 0.7 0.3 E = 2.3 

5 0.2 0.8 2.8 

P = 0.5 0.5 E = 3.5 P = 0.5 0.5 E = 2.5 

M2 = 2 3 

P 0.3 0.7 E = 2.7 

F2 = 4 5 

P GIVEN D l = 4 0.7 0.3 E = 4.3 

5 0.2 0.8 4.8 

P = 0.5 0.5 E = 4.5 

01 = -1 0 

P = 0.5 0.5 E =-.5 

F2 = 4 5 

P GIVEN D l = 4 0.7 0.3 E = 4.3 

5 0.2 0.8 4.8 

P = 0.5 0.5 E = 4.5 

02 = -1 0 

P = 0.5 0.5 E=-.5 

03 = -1 0 

P = 0.5 0.5 E=-.5 

By fixing on the first realization time of Dl, 4, changes the network of 

Figure 7.13 to that of Figure 7.14, and all path durations are independent. 

Figure 7.14 
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Following section shows calculation process. 

Mi's start time. 

P 

3 0.5 

4 0.5 

Ml' 3 finish time 

P 

5 0.5x0 3 = 0.15 

6 0. 5x0 7+0 .5x0.3 = 0.5 

7 0. 5x0 7 = 0.35 

02's finish time. 

4 0.15x0.5 = 0. 075 

5 0.15x0.5+0.5x0 5 = 0. 325 

6 0.5x0.5+0.35x0 5 = 0. 425 

7 0.35x0.5 = 0. 175 

Fl's finish time. 

P CP 

7 0.075x0.3 = 0.0225 0.0225 

8 0.325x0.3+0. 075x0.7 = 0.15 0.1725 

9 0.425x0.3+0. 325x0.7 = 0.355 0.5275 

10 0.175x0.3+0. 425x0.7 = 0.35 0.8775 

11 0.175x0.7 = 0.1225 1.0 
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M2's finish time-

P 

4 0.7x0.3 = 0.21 

5 0.7x0.7+0.3x0 3 = 0.58 

6 0.3x0.7 = 0.21 

03's finish time. 

P CP 

3 0.21x0.5 = 0. 105 0.105 

4 0.58x0.5+0 21x0 5 = 0. 395 0.500 

5 0.21x0.5+0 58x0 5 = 0. 395 0.895 

6 0.21x0.5 = 0. 105 1.000 

Duration time of D1=A• 

P CP 

1 

Taking the maximum of Dl=4 and 03's finish time yields F2's start time 

as follows: 

P2's start time. 

P 

4 1x0.5 = 0.5 

5 1x0.895-1x0.5 = 0.395 

6 1x1 - 1x0.895 = 0.105 
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F2's finish time. 

CP 

8 0. 5x0.7 =0. 35 0. 35 

9 0. 5x0.3+0.395x0.7 =0. 4265 0. 7765 

10 0. 395x0.3+0.105x0.7 =0. 192 0. 9685 

11 0. 105x0.3 =0. 0315 1. 0000 

Taking the maximum of Fl's finish time and F2's finish time yields the pdf 

of the project completion time given D^=4. 

Project completion tlme|Dl=4. 

P 

8 0. 060375 

9 0. 3492287 

10 0. 440255 

11 0. 1501413 

E = 9.6801626 

By fixing on the second realization time of Dl, 5, changes the network of 

Figure 7.13 to that of Figure 7.15, and all path durations are independent. 

Ml 

5+01 

F2 
D2 

M2 

Figure 7.15 

Following section shows calculation process, 
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Mi's start time. 

P 

4 0.5 

5 0.5 

Ml' s finish time. 

P 

6 0.5x0.3 = 0.15 

7 0.5x0.7+0.5x0.3 = 0.5 

8 0.5x0.7 = 0.35 

02' s finish time. 

P 

5 0.15x0,5 = 0.075 

6 0.15x0.5+0.5x0.5 = 0.325 

7 0.5x0.5+0.35x0.5 = 0.425 

8 0.35x0.5 = 0.175 

Fl's finish time. 

P CP 

8 

9 

10 

11 

12 

0.075x0.8 = 0.06 0.06 

0.075x0.2+0.325+0.8 = 0.275 0.335 

0.325x0.2+0.425x0.8 =0.405 0.74 

0.425x0.2+0.175x0.8 = 0.225 0.965 

0.175x0.2 = 0.035 1.0 
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M2'i 3 finish time. 

P 

4 0.2x0.3 = 0.06 

5 0.2x0.7+0.8x0.3 = 0.38 

6 0.8x0.7 = 0.56 

03's finish time. 

CP 

3 0.06x0. 5 = 0 03 0.03 

4 0.38x0. 5+0 06x0 .5 = 0 22 0.25 

5 0.56x0. 5+0 38x0 5 = 0 47 0.72 

6 0.56x0. 5 = 0 28 1.00 

Taking the maximum of Dl=5 and 03's finish time yields F2's start time 

as follows: 

F2's start time. 

5 1x0.72 = 0.72 

6 1x1 - 1x0.72 = 0.28 

F2's finish time. 

CP 

9 

10 

11 

0,72x0.2 = 0.144 0.144 

0.72x0.8+0.28x0.2 = 0.632 0.776 

0.28x0.8 = 0.224 1.000 

Taking the maximum of Fl's finish time and F2's finish time yields the 

pdf of the project completion time given = 5. 
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Project completion time | Dl=5. 

P 

9 0. 04824 

10 0. 526 

11 0. 39076 

12 0. 035 

E = 10.4152 

By deconditioning the pdfs of the project completion times given Dl=4 and Dl=5 

unconditional pdf of the project completion time can be obtained as follows: 

Unconditional pdf of project completion time. 

P 

8 0. 060375x0.6 = 0 .036225 

9 0. 3492287x0.6+0.04824x0 4 = 0 .2288332 

10 0. 440255x0.6+0.526x0.4 = 0 .474553 

11 0. 1501413x0.6+0.39076x0 4 = 0 .2463887 

12 0. 035x0.4 = 0 .014 

Following table shows the rounded pdf of the project completion time, which is 

exactly the same as the pdf of the project caipletion time obtained using CIM 

procedure. 

Rounded pdf of project completion time. 

P 

8 ,04 

9 .23 

10 .47 

11 .25 

12 . 01 

E = 10.0 
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In the following we apply the proposed procedure for criticality indices 

of Chapter 6 in order to approximate the criticality indices of 

activities of Figure 7.13.Given Dl=4 the approximate criticality indices of 

activities of Figure 7.14 can be computed as follows: 

Approximate criticality indices of activities F1 and F2 given Dl=4. 

F1 F2 

8 0.15x0.35 = 0.0525 0. 35x0.1725 0.060375 

9 0.355x0.7765 = 0.2756575 0. 4265x0.5275 0.2249787 

10 0.35x0.9685 = 0.338975 0. 192x0.8775 0,16848 

11 0.1225x1 = 0.1225 0. 0315x1 0.0315 

CAP = 0.7896325 0.4853337 

Approximate criticality indices of activities M2 and Dl=4, 

M2 Dl=4 

given Dl=4. 

4 0.395 0.5 

5 0.395 

6 0.105 

CAP = 0.895 0.5 

Normalized CAP = 0.641577 0.3584229 

Nor .CAP X CAP(F2) = 0,3113789 0.1739547 
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Approximate Criticality Indices of Activities Given Dl=4. 

Activity CAP 

D1 

Ml 

F1 

D2 

M2 

F2 

0.9635872 

0.7896325 

0.7896325 

0.3113789 

0.3113789 

0.4853337 

Given Dl=5 the approximate criticality indices of activities of Figure 7.1. 

can be computed as follows: 

Approximate criticality indices of activities F1 and F2 given Dl=5. 

F1 F2 

9 0.275x0.144 = 0.0396 0.144x0 335 = 0.04824 

10 0.405x0.776 = 0.31428 0.632x0 74 = 0.46768 

11 0.225x1 = 0.225 0.224x0 965 = 0.21616 

12 0.035x1 = 0.035 

CAP 0.61388 0.73208 

Approximate criticality indices of activities M2 and Dl=5, given Dl=5. 

M2 Dl=5 

5 0.47 0.72 

6 0.28 

CAP 0.75 0.72 

Normalized CAP = 0.510204 0.4897959 

Nor. CAP X CAP (F2) = 0.3735101 0.3585697 
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Approximate Criticality Indices of Activities Given Dl=5. 

Activity CAP 

D1 0.9724497 

Ml 0.61388 

F1 0.61388 

D2 0.3735101 

M2 0.3735101 

F2 0.73208 

By deconditioning the conditional criticality indices and simple addition 

of corresponding criticality indices, the approximate criticaltiy index 

of each activity is obtained as follows: 

Approximate Criticality Indices of Activities. 

Activity CAP 

D1 0.9635872x0.6+0.9724497x0.4 = 0.9671321 

Ml 0.7896325x0.6+0.61388 xO.4 = 0.7189315 

F1 0.7896325x0.6+0.61388 xO.4 = 0.7189315 

D2 0.3113789x0.6+0.3735101x0,4 = 0.3362313 

M2 0.3113789x0.6+0.3735101x0.4 = 0.3362313 

F2 0.4853337x0.6+0.73208 xO.4 = 0.5840322 

Following section presents the Algorithm. 
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THE ALGORITHM 

STEP I - Check for the condition of conditioning operation. 

If duration time of activity, say i, is conditional upon 

duration time of one of the previous activities, say j, 

conditionalize by setting the duration time of activity j at 

its kth realization time. 

STEP II - Reduce the network to its irreducible form using convolution 

and greatest operations. 

If the network is reduced to an equivalent activity starting in 

node 1 and ending in node N, stop. The pdf of the duration time 

of this final activity is equal to F(t) given kth realization 

time of the activity which has been conditionalized in STEP I. 

Go to STEP I. 

If the network is not completely reducible, calculate the 

indegree and outdegree of every node i^N, i.e. I(i) and 0(i), 

then choose one activity 'a' such that 'a' has more than one 

successor while each of its successor has only 'a' as a 

predecessor. 

STEP III - Conditionalize by setting the chosen activity 'a' at its kth 

k Ic realization time Ta; this is done by deleting 'a', adding Ta 

to the implied precedence of activities in the conditionalized 

network. 

STEP IV - Decondition the df of the final activity. 

STEP V - Determine the df of the project completion time, mean and standard 

deviation. 
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Example 2: 

Consider again the example problem of Chapter 3, recall that the example 

problem consists of two stages, Design and Construction as shown in Figure 

3.7 with three time estimates for each stage as shown in Tables 3.3 and 3.4. 

©Design Construction 
< 3 ) - ^ 

Figure 3.7 

Table 3.3: Design distribution, D1 months. 

D1 P(D1) 

2 0.3 

3 0.5 

4 0.2 

Table 3.4: Construction distributon, D2 months. 

D1 P(D2) 

6 0.3 

7 0.6 

8 0 .1 

The pdf of the project completion time was found as shown in Table 3.6, with 

mean equal to 9.7 months and standard deviation equal to 0.922 months. 
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Table 3.6: Project completion time = Design plus Construction. 

P 

8 

10 

12 

0.09 

0.33 

0.39 

0.17 

0 .02 

Let us assume that the duration time of Construction is statistically 

dependent upon the duration time of Design as shown in Table 

Table 7.11: Construction distribution, D2 months. 

D2 = 6 7 8 

P Given D1 = 2 0.1 0.7 0.2 

3 0.5 0.5 0 

4 0.1 0.7 0.2 

Unconditional P = 0.3 0.6 0.1 

Using the proposed procedure, project completion time can be computed 

as follows: 

Given Dl=2, project completion time is shown in Table 7.12. 

Table 7.12: Project completion time given Dl=2. 

P CP 

8 0.1 0.1 

9 0.7 0.8 

10 0.2 1.0 

Given Dl=3, project completion time is shown in Table 7.13. 
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Table 7.13; Project completion time given Dl=3. 

P CP 

9 

10 

11 

0.5 0.5 

0.5 1.0 

0.0 1.0 

Finally given Dl=4, project completion time is shown in Table 7.14. 

Table 7.14: Project completion time given Dl=4. 

P CP 

10 0.1 0.1 

11 0.7 0.8 

12 0 . 2 1.0 

By deconditioning thepdfs of Tables 7.12 through 7,14, and simple addition 

of corresponding probabilities unconditional pdf of the project completion 

time can be computed as shown in Table 7.15. 

Table 7.15: Unconditional pdf of the project completion time. 

P 

8 0.1x0.3 = 0.03 

9 0.7x0.3+0.5x0.5 = 0.46 

10 0.2x0.3+0.5x0.5+0.1x0.2 = 0.33 

11 0.0x0.5+0.7x0.2 = 0.14 

12 0.2x0.2 = 0.04 

E = 9.7 and a= 0.888 

Notice that although the unconditional probability of Table 7.11 is 

exactly the same as probability of Construction distribution of Table 

3.4, but pdfs of the project completion times of Tables 3.6 and 7.15 

are not the same, it is because of the statistical dependence relationship 

between duration times of Design and Construction. Hence, the mean 

values of the project completion times are the same but the standard 
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deviations are not. 

Now let us consider the two similar projects of the example problem 

as one integrated project as shown in Figure 3.8. Assume that the 

duration time of Construction in each sequence is conditional upon 

the duration time of Design as shown in Table 7.11. 

Using the proposed procedure, project completion time can be computed 

as shown in Table 7.16. 

Table 7.16: Project completion time. 

P 

8 0.003 

9 0.314 

10 0.485 

11 0.126 

12 0.072 

E = 9.95 a = 0.8588 

Comparing with the project completion time obtained in Chapter 3 for 

similar project without statistical dependence between duration times 

of Design and Construction for each sequence as shown in Table 3.8, we 

can see that not only the standard deviations of these pdfs are not 

the same but also the mean values are not the same. It is because 

of the effects of the statistical dependence relationships between 

duration times of Design and Construction and also because of the effect 

of greatest operation over the duration times of two parallel paths. 
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Table 3.8: Project completion time. 

P 

8 0.0081 

9 0.1683 

10 0.4797 

11 0.3043 

12 0.0396 

E = 10.199 0 = 0.7898 

Proposed procedure for Criticality Indices of activities in PERT networks 

with Statistical and Structural dependence relationships between activities 

is exactly the same as proposed procedure of Chapter 6. 

Example 3: 

Consider again, the Example 2 of Chapter 6 as shown in Figure 6.2. 

Table 6.1 shows the durations of the activities. Expected values and 

variances are also shown. 

Figure 6.2 



329 

Table 6.1; Project activity durations. 

l.A X. = 4 5 
A 

P = 0.6 0.4 

E = 4.4 , gZ = 0.24 

2.B Xg = 6 7 

P = 0.4 0.6 

E = 6.6 , 0|2 = 0.24 

3.C X = 1 10 

P = 0.1 0.9 

E = 9.1 , o2 = 7.29 

4.D X^ = 1 2 

P = 0.2 0.8 

E = 1.8 , o2 = 0.16 

Using the proposed procedure of Chapter 6, the approximate criticality 

indices of activites were found to be, CAP(A)=CAP(B)=0.4096 and 

CAP(C)=CAP(D)=0.8568,and alsotheNormalized Criticality Indices were found 

to be, NCAP(A)=NCAP(B)=0.323 and NCAP(C)=NCAP(D)=0.677. 

Let us assume that the duration time of activity B is statistically 

dependent upon the duration time of activity A as shown in Table 7.17. 
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Table 7.17: Duration time of activity B. 

P Given = 4 0.2 0.8 

5 0.7 0.3 

Unconditional P 0.4 0.6 

Notice that although network configuration of Figure 6.2 is subject 

to series-parallel reduction but since the duration time of activity 

B is conditional upon the duration time of activity A the first step 

in order to find thepdfand approximate criticality indices of activities 

is to conditionalize activity A at its different realization times. 

Therefore, by conditioning at first realization time of activity A,A, 

changes the network of Figure 6.2 to the network of Figure 7.17 and two 

paths would be statistically and structurally independent. Convoluting 

4 and B gives duration time of E and convoluting C and D gives duration 

time of F as shown in Tables 7.18 and 7.19 respectively. 

Figure 7.17 

E) 
Figure 7.18 
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Table 7.18: Duration time of E. 

P CP 

10 0.2 0.2 

11 0.8 1.0 

Table 7.19: Duration time of F. 

P CP 

2 0.02 0.02 

3 0.08 0.1 

11 0.18 0.28 

12 0.72 1.0 

Table 7.20 shows Project finish time given A=A. 

Table 7.20: Project finish time given A=4. 

P 

10 

11 

12 

0 . 0 2 

0.26 

0.72 

E = 11.7 

Table 7.21 shows criticality indices of activities given A=4. 

Table 7.21: Criticality indices of activites given A=4. 

C=D A=B 

10 

11 

12 

0 .02 

0.18 0.224 

0.72 

CAP = 0.90 0.244 
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By conditioning at second realization time of A,5, changes the network 

of Figure 6.2 to that of Figure 7.19. Convoluting 5 and B gives duration 

time of G as shown in Table 7.22. 

Figure 7.19 

Cil 
Figure 7.20 

Table 7.22: Duration time of G. 

P CP 

11 0. 7 0.7 

12 0. 3 1.0 

Taking the maximum of the duration times of F and G gives project finish 

time given A=5 as shown in Table 7.23. 

Table 7.23: Project finish time given A=5. 

P 

11 

12 

E = 

0.196 

0.804 

11.804 
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Table 7.24 shows criticality indices of activities given A=5. 

Table 7.24: Criticality indices of activites given A=5. 

C=D A=B 

11 

12 

0 . 1 2 6 

0.72 

0.196 

0.3 

CAP = 0.846 0.496 

By deconditioning the pdfs of the project finish times of Tables 7.20 and 

7.23, unconditional pdf of project finish time can be obtained as shown in 

Table 7.25, and also by deconditioning criticality indices of Tables 7.21 

and 7.24, criticality indices of activities can be obtained as shown in 

Table 7.26. 

Table 7.25: Unconditional project finish time. 

P 

10 0,02x0 6 = 0. 012 

11 0,26x0 6+0.196x0.4 = 0. 2344 

12 0.72x0 6+0.804x0.4 = 0. 7536 

E = 11. 7416 

Table 7.26: Criticality indices of activities. 

Activity CAP Normalized CAP 

A 0.3448 0.2819 

B 0.3448 0.2819 

C 0.8784 0.7181 

D 0.8784 0.7181 

Unconditional project finish time and criticality indices shown in Tables 7.25 

and 7.26 are exact. These values also can be obtained with complete 
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enumeration as shown in tree diagram of Figure 7.21. 

Notice that statistical dependence between duration times of activites 

A and B has changed the pdf of project completion time from Table 7.27 

which is obtained from Figure 6.4, to that of Table 7.25, and also has 

changed the criticality indices of activities from Table 6.4 to that of 

Table 7.26. 

Table 7.27; Project finish time. 

10 

11 

12 

0.024 

0 .1888 

0.7872 

E = 11.7632 
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Realization times of activities froject realization Probability 

and probability of each realization- time and critical of each 

path- realization-

A P B P C P D P AB CD 

1 0.2 10 0.0024 

1 0 .1 
0.0096 

0.2 
2 0.8 10 0.0096 

6 0.2 

1 0.2 11 0.0216 
10 0 .9 

2 0.8 12 0.0864 

A 0.6 
0,0096 1 0.2 11 0,0096 

1 0 .1 
0.8 11 0.0384 

0.8 
2 0.8 11 0.0384 

7 0.8 

1 0.2 11 11 0.0864 
10 0 .9 

2 0.8 12 0.3456 

1 0.2 11 0.0056 
1 0 .1 

2 0.8 11 0,0224 

6 0.7 
0.0504 1 0.2 11 11 0.0504 

10 0 .9 
0.8 12 0,2016 2 0.8 12 0,2016 

5 0.4 5 0.4 

1 0.2 12 0,0024 
1 0 .1 

2 0.8 12 0.0096 

7 0.3 
1 0.2 12 0.0216 1 0.2 12 0.0216 

10 0 .9 
0.8 12 12 0.0864 2 0.8 12 12 0.0864 

Figure 7.21 

Example 4: 

Consider again example 3 of Chapter 6 assume duration time of activity C 

is conditional upon duration time of activity A as shown in Table 7.28. 

Notice that unconditional probability of C in Table 7.28 is the same as 

probability distribution of C of example 3 of Chapter 6. 
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Figure 3.10 

Table 7.28: Duration time of activity C. 

= 

P GIVEN X,= 3 
A 0 . 2 

0.7 

Unconditional P 0.3 

0 .8 

0.3 

0. : 

Using the proposed procedure, the pdf of project completion time and the 

approximate criticality indices of the activities can be computed. Project 

completion time and approximate criticality indices are shown in Tables 

7.29 and 7.30 respectively. 

Table 7.29: Project completion time. 

P 

8 0.048 

9 0.048 

10 0.352 

11 0.352 

13 0.07 

14 0.07 

15 0.03 

16 0.03 

E = 11.028 



337 

Table 7.30: Normalized values of the approximate criticality indices. 

Activity Normalized CAP 

A 

B 

C 

D 

E 

0.759 

0.241 

0.7475 

0.0115 

0.9885 

Using tree diagram of Figure 7.22, the project completion time and the exact 

criticality indices of activities can be determined as shown in Tables 

7.31 and 7.32 respectively. 

Table 7.31: project completion time obtained from tree diagram . 

P 

8 0.048 

9 0.048 

10 0.352 

11 0.352 

13 0.07 

14 0.07 

15 0.03 

16 0.03 

E = 1 1 . 0 2 8 

Table 7.32: Exact criticality indices of activities. 

Activity CA Normalized CA 

A 

B 

C 

D 

E 

0.9478 

0.32 

0.936 

0.0118 

1.256 

0.7476 

0.2524 

0.7383 

0.0093 

0.9907 
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0 . 8 

8 0 . 2 

0 . 6 

0.4 

0 . 6 

0.4 

es of activities and Project realization Probability 

each realization . time and critical of each 

path. realization, 

C P D P E P 1-2-4 1 -2-3-4 1-3-4 

0.9 
1 0.5 8 0.0432 

4 0.9 
2 0.5 9 0.0432 

4 0.2 
2 0.5 9 0.0432 

4 0.2 

5 0.1 
1 0.5 8 8 0.0048 

5 0.1 
9 0.0048 2 U.b 9 0.0048 

4 0.9 
1 0.5 10 0.1728 

4 0.9 
0.5 11 0.1728 

6 0.8 
2 0.5 11 0.1728 

6 0.8 
1 0.5 10 0.0192 

5 0.1 
1 0.5 10 0.0192 

5 0.1 
0.5 11 0.0192 2 0.5 11 0.0192 

4 0.9 
1 0.5 10 0.0288 

4 0.9 

4 0.2 
2 0.5 11 0.0288 

4 0.2 
1 0.5 10 0.0032 

0.1 
1 0.5 10 0.0032 

5 0.1 
2 0.5 11 0.0032 2 0.5 11 0.0032 

1 0.5 10 10 0.1152 
4 0.9 

0.5 11 11 0.1152 
6 0.8 

2 0.5 11 11 0.1152 
6 0.8 

1 0.5 10 0.0128 
s 0.1 

1 0.5 10 0.0128 
0.1 

0.5 11 0.0128 2 0.5 11 0.0128 

0.9 
1 0.5 13 0.0375 

4 0.9 
2 0.5 14 0.0375 

0.7 
2 0.5 14 0.0375 

4 0.7 
0.0042 S 0.1 1 U.b 13 13 0.0042 0.1 

2 0.5 14 0.0042 2 0.5 14 0.0042 

1 0.5 15 0.0162 
4 0.9 

2 0.5 16 0.0162 
0.2 

2 0.5 16 0.0162 
fa 0.2 

0.5 15 0.0018 
5 0.1 

1 0.5 15 0.0018 
5 0.1 

0.5 16 0.0018 2 0.5 16 0.0018 

1 0.5 13 0.0252 
4 0.9 

0.5 14 0.0252 2 0.5 14 0.0252 
4 0.: 1 0.5 13 13 0.0028 

0.1 
1 0.5 13 13 0.0028 

b 0.1 
2 0.5 14 0.0028 0.5 14 0.0028 

0.9 
1 0.5 15 0.0108 

4 0.9 
2 0.5 16 0.0108 0.5 16 0.0108 

6 0.3 
1 0.5 15 0.0012 1 0.5 15 0.0012 

5 0.1 
0.5 16 0.0012 2 0.5 16 0.0012 

Figure 7.22 
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In order to determine the goodness of proposed procedure, in the 

following we calculate the correlation coefficient between normalized 

values of exact criticality indices of Table 7.32 and normalized values of 

criticality indices obtained using proposed procedure of Table 7.30. 

Let X denote the normalized values of criticality indices and Y denote the 

normalized values of criticality indices obtained using proposed procedure. 

Activity (NCA) 
X 

(NCAP) 
Y 

x=X-X y=Y-Y x^ y2 xy 

A 0.7476 0.759 0 .19994 0.2095 0.039976 .0438902 0.0418874 

B 0.2524 0.241 - .29526 -.3085 0.0871784 .0951722 0.0910877 

C 0.7383 0.7475 0 19064 0.198 0.0363436 .039204 0.0377467 

D 0.0093 0.0115 - .53836 -.538 0.2898314 ,289444 0.2896376 

E 0.9907 0.9885 0 .44304 0.439 0.1962844 .192721 0.1944945 

EX= 
2.7383 
X=.54766 

ZY= 
2.7475 
Y=.5495 

Zx^ = 
0.6496138 

Zy2= 
.6604314 

Zxy= 
0.6548539 

Correlation Coefficient: r 
X,Y 

z(xy) 0.6548539 
/(.6496138)1.6604314) 

= 0.9997766• 

Example 5: 

Consider the Wheatstone bridge of figure 7.23 assume duration times of 

activities C and D are conditional upon duration time of activity B. Table 

7.33 shows duration times of activities. 

Figure 7.23 
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Table 7.33: Project activity durations. 

4 5 1 2 

p 0.6 0.4 P 0.3 0.7 

5 6 = 2 3 

P GIVEN Xg = 1 0.3 0.7 P GIVEN Xg = 1 0.9 0.1 

2 0.8 0.3 2 0.4 0.6 

= 1 

= 0.3 

2 

0.7 

Using the proposed procedure, the pdf of project completion time and the 

approximate criticality indices of activities can be computed. Project 

completion time and approximate criticality indices are shown in Tables 7.34 

and 7.35 respectively. 

Table 7.34: Project completion time. 

P 

6 

7 

8 

9 

0.01458 

0.23562 

0.5538 

0.196 

E = 7.93122 

Table 7.35: Normalized value of approximate criticality indices. 

Activity Normalized CAP 

A 

B 

C 

D 

E 

0.781 

0.62 

0.219 

0 . 1 6 1 

0.839 
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Using tree diagram of Figure 7.24, project completion time and exact 

criticality indices of activities can be determined as shown in Tables 7.36 

and 7.37 respectively. 

Realization times of activities and Project realization Probability 

probability of each realization- time and critical of each 

path. realization. 

A P B P C P D P E P 1-2-4 1-2-3-4 1-3-4 

0.9 
1 0.3 6 6 6 0.01458 

2 0.9 
2 0.7 7 7 0.03402 

S 0.3 
2 0.7 7 7 0.03402 

0.3 
1 0.3 0.00162 

3 0.1 
1 0.3 7 0.00162 

3 0.1 
2 0.7 7 7 7 0.00378 

1 0.3 
2 0.7 7 7 0.00378 

1 0.3 1 0.3 7 0.03402 
2 0.9 

1 0.3 0.03402 
0.9 

0.7 8 0.07938 
5 0.7 

2 0.7 8 0.07938 
0.7 

0.3 7 0.00378 
3 0.1 

1 0.3 7 7 0.00378 
3 0.1 

2 0.7 8 0.00882 
4 0.6 

0.7 
4 0.6 

1 0.3 7 0.04032 
0.4 

1 0.3 7 0.04032 
2 0.4 

0.7 8 0.09408 
s 0.8 

2 0.7 8 0.09408 

1 0.3 7 0.06048 
3 0.6 

1 0.3 7 7 0.06048 
0.6 

2 0.7 g 0.14112 
2 0.7 

2 0.7 0.14112 
2 0.7 

1 0.3 7 7 0.01008 
0.4 

1 0.3 7 7 0.01008 
2 0.4 

2 0.7 8 8 0.02352 2 0.7 0.02352 

h 0.2 1 0.3 7 7 7 0.01512 
3 0.6 

1 0.3 7 7 7 0.01512 
0.6 

0.7 8 0.03528 2 0.7 8 8 0.03528 

7 0.9 
1 0.3 7 7 0.00972 

0.9 
0.7 8 0.02268 

5 0.3 
2 0.7 8 0.02268 

0.3 
0.3 8 0.00108 

3 0.1 
1 0.3 8 0.00108 

3 0.1 
0.00252 

1 0.3 
2 0.7 8 8 0.00252 

1 0.3 1 0.3 7 7 7 0.02268 
0.9 

1 0.3 0.02268 
2 0.9 

2 0.7 8 8 0.05292 2 0.7 8 0.05292 
h 0, / 0.3 8 0.00252 

0.1 
1 0.3 8 0.00252 

3 0.1 
2 0.7 8 8 8 0.00588 

5 0.4 
2 0.7 8 8 8 0.00588 

5 0.4 1 0.3 8 0.02688 1 0.3 8 0.02688 
2 0.4 

2 0.7 9 0.06272 2 0.7 9 0.06272 

1 0.3 8 8 0.04032 
3 0.6 0.7 0.09408 

2 0.7 
2 0.7 9 0.09408 

2 0.7 
1 0.3 8 0.00672 0.3 8 0.00672 

2 0.4 
2 0.7 9 0.01568 2 0.7 9 0.01568 

6 0.2 
0.3 8 0.01008 

3 0.6 
1 0.3 8 8 0.01008 

3 0.6 
0.7 

8 

0.02352 2 0.7 9 0.02352 

Figure 7.24 
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Table 7.36: Project completion time obtained from tree diagram 

P 

0.01458 

0.23562 

0.5538 

0.196 

E = 7.93122 

Table 7.37: Normalized criticality indices. 

Activity Normalized CA 

A 0.7556 

B 0.6176 

C 0.2444 

D 0.1380 

E 0.8620 

In the following the correlation coefficient between normalized values of exact 

criticality indices and criticality indices obtained using proposed procedure 

is determined. 

Activity Exact CA 
X 

Estimate 
CA Y 

X =x-x y=Y-Y x2 xy 

A 0.7556 0.781 0 .23208 0.257 0.0538611 0.066049 0.0596445 

B 0.6176 0.62 0 .09408 0.096 0.008851 0.009216 0.0090316 

C 0.2444 0.219 - .27912 -.305 0.0779079 0.093025 0.0851316 

D 0.1380 0.161 - .38552 -.363 0.1486256 0.131769 0.1399437 

E 0.8620 0.839 0 .33848 0.315 0.1145687 0.099225 0.1066212 

sx= 
2.6176 
X=0.52352 

EY= 
2.62 
Y=0.524 

Zx2 = 
0.4038143 

Zy2= 
0.399284 

Exy = 
0.4003726 
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(.4003726) 
'X,Y /(.4038143)(.399284) 

= 0.9970862. 

Example 6: 

Consider network configuration of Figure 7.25, assume duration time of 

activity D is conditional upon duration time of activity A. Table 7.38 

shows duration times of activities. 

Figure 7.25 

Table 7.38: Project activity durations. 

2 3 = 1 2 

P 0.5 0.5 P = 0.5 0.5 

_ 2 3 
= 2 

U 

p = 0.5 0.5 
P GIVEN X, 

A 
= 2 

3 

0.7 

0.2 

0.3 

0.8 

1 2 
4 

= 1 2 

P 0.5 0.5 p 0.5 0.5 

= 1 2 1 2 

P = 0.5 0.5 P = 0.5 0.5 

Project completion time and approximate criticality indices obtained using 

proposed procedure are shown in Tables 7.39 and 7.40 respectively. 

Project completion time and exact criticality indices using complete 

enumeration are shown in Tables 7.41 and 7.42 respectively. 
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Table 7.39: Project completion time. 

P 

3 

4 

5 

6 

E = 

0.0109375 

0.228125 

0.5328125 

0.228125 

4.978125 

Table 7.40: Normalized values of criticality indices using proposed 

procedure. 

Activity CAP 

A 

B 

C 

D 

E 

F 

G 

H 

0.1722 

0.6494 

0.1784 

0.3142 

0.0139 

0.3213 

0.4864 

0.4997 

Table 7.41: project completion time. 

P 

3 

4 

5 

6 

0.010937 

0.2281234 

0.5328092 

0.2281236 

E = 4.9780922 
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Table 7.42: Normalized values of exact criticality indices using complete 

enumeration. 

Activity CA 

A 0.1567 

B 0.6715 

C 0.1718 

D 0.3427 

E 0.0104 

F 0.3184 

G 0.4994 

H 0.4902 

In the following the correlation coefficient between normalized values of 

exact criticality indices and criticality indices obtained using proposed 

procedure is determined. 

Activity Exact CA 
X 

Estimate 
CA Y 

x=X-X y=Y-Y x2 xy 

A 0.1567 0.1722 -.1759375 -.1572375 0.30954 .030954 .0276639 

B 0.6715 0.6494 .3388625 .3199625 0.1148277 .102376 .1084232 

C 0.1718 0.1784 -.1608375 -.1510375 0.0258687 .0228123 .0242924 

D 0.3427 0.3142 .0100625 -.0152375 0.0001012 .0002321 -.0001533 

E 0.0104 0.0139 -.3222375 -.3155375 0.103837 .0995639 .101678 

F 0.3184 0.3213 -.0142375 -.0081375 0.0002027 .0000662 .0001158 

G 0.4994 0.4864 .1667625 .1569625 0.0278097 .0246372 .0261754 

H 0.4902 0.4997 .1575625 .1702625 0.0248259 .0289893 .0268269 

EX= 
2.6611 
X= 
.3326375 

ZY= 
2.6355 
Y= 
.3294375 

ZX2= 
0.3284269 

Zy2= 
.3034006 

Sxy= 
.3150223 
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(0.3150223) 
X,Y y(.3284269)(.30340067 

0.9979614 . 

Example 7: 

Consider network configuration of Figure 7.26, assume duration times of 

activities C and G are conditional upon duration time of activity A, and 

duration times of activities D and H are conditional upon duration time of 

activity B as shown in Table 7.43. 

Figure 7.26 

Table 7.4 3: Project activity durations. 

P = 0.2 0.8 

Xg = 3 4 

P = 0.4 0.6 

%C = 3 4 

P GIVEN X = 2 0.7 0.3 

8 0.2 0.8 

^ ^ 
P GIVEN Xg = 3 0.2 0.8 

5 0.6 0.4 

Xg = 4 6 

P = 0.7 0.3 

X? = 6 8 

P = 0.4 0.6 

Xg = 7 8 

P GIVEN X, = 2 0.2 0.8 
A 

8 0.7 0.3 

Xg= 4 6 

P GIVEN Xg = 3 0.4 0.6 

4 0.9 0.1 

Xj = 4 6 

P = 0.8 0.2 
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Project completion time and approximate criticality indices obtained using 

proposed procedure are shown in Tables 7.44 and 7.45 respectively. 

Table 7.44: Project completion time using proposed procedure. 

P 

14 0.0002007 

15 0.0169558 

16 0.2234766 

17 0.2481867 

18 0.290754 

19 0.1702656 

20 0.05016 

E = 17.523764 

Table 7.45: Normalized values of criticalitv indices using proposed 

procedure. 

Activity CAP 

A 0.469022 

B 0.5309779 

C 0.2794486 

D 0.3590374 

E 0.3894332 

F 0.1344112 

G 0.1171173 

H 0.4934492 

I 0.5065511 

Project completion time and criticality indices using complete enumeration 

are shown in Tables 7.46 and 7.47 respectively. 
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Table 7.46: Project completion time. 

P 

14 0.0002007 

15 0.0169537 

16 0.223465 

17 0.2481489 

18 0.2906766 

19 0.1702004 

20 0.0500819 

E = 17.51871 

Table 7.4 7; Normalized values of exact criticality indices using 

complete enumeration. 

Activity CA 

A 

B 

C 

D 

E 

F 

G 

H 

I 

0.4797383 

0.5202616 

0.3198927 

0.315716 

0.4837151 

0.1126227 

0.0877461 

0.4283387 

0.5716612 

In the following the correlation coefficient between normalized 

values of exact criticality indices and criticality indices obtained 

using proposed procedure is determined. 
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Activity Exact 
CA X 

Estimate 
CA Y 

x=X-X y=Y-Y xy 

A 

B 

C 

D 

E 

F 

G 

H 

I 

0.4797383 

0.5202616 

0.3198927 

0.315716 

0.4839151 

0.1126227 

0.0877461 

0.4283387 

0.5716612 

0.469022 

0.5309779 

0.2794486 

0.3590374 

0.3894332 

0.1344112 

0.1171173 

0.4934492 

0.5065511 

0.1108614 

0.1513847 

-.0489842 

-.0531609 

0.1150382 

-.2562542 

-.2811308 

0.0594618 

0.2027843 

0.1046389 

0.1665948 

-.0849345 

-.0053457 

0.0250501 

-.2299719 

-.2472658 

0.1290661 

0.142168 

0.0122902 

0.0229173 

0.0023994 

0.002826 

0.0132337 

0.0656662 

0.0790345 

0.0035357 

0.0411214 

0.0109492 

0.0277538 

0.0072138 

0.0000285 

0.0006275 

0.052887 

0.0611403 

0.016658 

0.0202117 

0.0116004 

0.0252199 

0.0041604 

0.0002841 

0.0028817 

0.0589312 

0.069514 

0.0076745 

0.0288294 

EX= 
3.319892/ 
X= 
. 3 6 8 8 7 6 9 

ZY= 

3.2794479 
Y=. 36438311 

0.2430244 

Zy2 = 

0.1974698 

Exy= 

0.2090956 

Correlation Coefficient: r 
z ( x y ) ( .2090956) 

X,Y y(.2430244)(.1974698) 

= 0.9544872 . 
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SUMMARY AND CONCLUSIONS 

This chapter in the first part has provided an illustration of the 

importance of structural dependence relationships in the context of an 

offshore construction schedule. It has demonstrated how such relationships 

can interact with statistical dependence relationships to produce important 

effects which cannot be detected and understood usign simple expected value 

calculations. These effects are consideredinaCIM framework. 

In the second part proposed procedure to determine probability distribution 

function of the project completion time in PERT networks with statistical 

and structural dependence relationships between activities when duration 

times of activities are discretly distributed is presented. This 

procedure provides the exact pdf of project completion times. 

Finally, proposed procedure of Chapter 6 to estimate criticality indices of 

activities and paths is applied to the PERT networks with statistical and 

structural dependence relationships between activities. The correlation 

coefficients between criticality indices obtained using proposed procedure 

and exact criticality indices obtained using complete enumeration showed 

that the estimate criticality indices are very close to the exact criticality 

indices. 
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CHAPTER 8: DISCRETIZING CONTINUOUS DISTRIBUTIONS 

INTRODUCTION 

As mentioned in Chapter 4 for PERT networks, when the duration times of 

activities are continuously distributed the first step in proposed procedure 

is discretizing the continuous distributions. This chapter looks briefly 

at different discretizing methods and the accuracy of the most efficient 

method is examined through simple examples. 

Discretizing methods 

Discretizing is done by determining a set of ordered pairs denoting F(a). 

The cardinality of F(a) dependes on the desired accuracy of the 

discretization. Using the closeness to the exact values of the first 

five moments as a criterion to determine the count of points in the pdf 

F(a), denoted by CF(a); three methods have been proposed and tried by 

Dodin(1980). The most efficient in terms of accuracy and computer time 

is a hybrid of methods 2 and 3 described below. These three methods are; 

1- The 2m Method; If we decide that CF(a)=m for any activity a with 

continuous distribution, then from the definition of F(a) we have 2m 

unknowns; m realizations and the corresponding m probabilities. The 

first 2m moments of the continuous distribution can be used to construct 

the following system of 2m nonlinear equations: 

m 

^ x^p(xj^)=e^, for n=0,l,2, ,2m-l (8.1) 

where 

k=l 

e^ =E(x")= 

In a matrix form we have: 

VP=E 

x dF (x)dx, the n moment. 
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where V is the Vandermonde matrix of dimension 2mxm and P is the probability 

vector with m components, and E is the vector of the 2m moments. Two 

methods have been tried to solve this system of nonlinear equations, 

but neither succeeded for ra>8. These two methods are: 

(a) Brown Method: Which is documented in IMSL(42 ) library under 

the name ZSYSTM. Starting with an initial solution ZSYSTM is supposed 

to converge to a solution within e from a feasible solution. However, 

many runs to different values of m and different initial solutions proved 

that ZSYSTM was not converging, and often terminated because of a singularity 

that occurred in the iteration,due mainly to the nature of Vandermonde 

matrix V. Two other packages SBROWN and SNGINT developed by the Argonne 

National Labratory have been tried; neither succeeded in solving the 

above system. The failure led to the search for other methods. The 

following method was successful in solving the above system, but only 

for small value of m(^8). 

(b) Gaussian Quadrature (39 ); To solve the above system of nonlinear 

equations the procedure is as follows: 

(i) Determine the sample polynomial 

m 

T T ( x ) = y 

k=0 

The coefficient are determined uniquely using the following system of 

linear equations after setting Ĉ =̂l. 

Co*0+Cl=l+C2G2+'''+Cm-l=m-l+=m=0 

Co*l+Cl=2+C2e3+...+C^_ie^+e^+i=0 

Ccf2+ClG3+C2G4+'-'+Cm_ie^+i+e^+2=0 

Coem_l+Ciem+C2=m+l+-''+Cm-l*2m-2+*2m-l-° 
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(ii) The set of realizations (discrete points) are determined by 

solving the polynomial 

m 

I "k 
k=0 

where all m solutions are simple and real (since O^^u^x^v). 

(iii) The corresponding probabilities are determined by substituting 

for in the first m equations of (8,1) then solve uniquely for p(x^). 

This algorithm was programmed and tested; it works for m^8. It is not 

recommended for discretization since it is very sensitive to the values 

of E(x^), and requires the solution of two systems each of m linear equations, 

and the solution of a polynomials of the m^^ degree, each time it is 

used to approximate a distribution. Furthermore, the user would never 

know when the procedure will "blow-up". 

2- Using Equal Distances: Based on the distribution of the activity, 

the minimum and maximum realization values u and v can be determined; 

then by the use of an appropriate spacing A, depending on the desired 

accuracy, the range (v-u) can be subdivided into equal intervals. In this 

case 

x, =u+A(k-l)Vk=l,2,3....,m where m=[YZM] 
^ A 

As a rule in Dodin's (1980) study the minimum and maximum realizations 

are determined such that 

p(x<u)=p(x>v)=0.0005 

The corresponding probabiliies are determined according to 

p(x%)= 
X, + A/2 

dF(x)dx for each k=2,3,4....,m-l, 
x^-A/Z 

and p(x^)=p(u)= 
fU+A/2 

dF(x)dx and p(x )=p(v)= 
m 

dF ( X) dx. 
v-A/2 

For a small A (large m) the determination of the probability can be 
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approximated by p(y^)=Af(y^) for each k=l,2,....,in where y^ is the center 

of the interval, i.e.,y^=u+A(k-l)+A/2 and f(y)=dF(y). This approach, as 

it appears in Figure 8.1, treates all points in the range of the r.v. in 

a uniform fashion, i.e., we partition the range into equal distances. This 

approach is very convenient for some distributions such as the uniform and 

the triangular distributions, and some other distributions when their 

skewness or peaks are not very acute. If sharp peaks are present, such as 

the case in the exponential distribution with large paramenter a, or 

the normal distribution with small a, then very small value of A are used 

to minimize the errors of approximation. This drawback led to the use of 

the following alternative. 

P(R) 

1.0 

0 .6 

0.4 

0 . 2 

0.0 

X X « * X » * 

F(x) 

f (x) 

_ i I 1 1 1 • 1 1 1 • 1 -

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 R 

Figure 8.1 

Equal Distance Discretization for the Exponential Distribution. 
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3- Using Equal Probabilities: Here, again, u and v are determined 

in the same way as in Method 2. Then F(a) is determined according to: 

A=p(xj^)-l/m for a given m, 

and 

-1 k 
p(Xj ) - A / 2 ) 

using the continuous distribution function. This scheme is suitable 

for all distributions under consideration (i.e. Uniform, Exponential, 

Triangular, Normal, Gamma, and Beta). However, it may not be easy (or 

it can be time consuming) to invert some of the distribution functions. 

Hence its use is limited to the exponential distributions, where it is 

needed the most, while the method of equal distance is used for the remaining 

five distributions. Figures 8-1 and 8-2 illustrate methods 2 and 3 respectively 

for the exponential distribution with parameter a=l. 

Figure 8.2 shows that method 3 responds to the peak of the pdf by taking 

more realizations, where Figure 8.1 shows that method 2 does not respond 

to peaks. 



P(R) 

1 . 0 

0 . 8 

0 . 6 

0.4 

0 . 2 

0.0 
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X 
t 

* 

% 

* F(x) 

» 

* 

% 

t 

t 
% 

% 

f (x) 

* 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4 . 0 R 
Figure 8.2 

Equal Proabability Discretization for the Exponential Distribution. 

TESTING THE ACCURACY OF THE APPROXIMATE PDF DUE TO DISCRETIZATION 

The accuracy of the approximate pdf of the project completion time due 

to discretizing denoted by F(N) can be measured by its closeness 

to the "true" pdf, denoted by F'(N). Such "closeness" is measured either 

by the maximum value of the absolute deviation of F(N) from F'(N), denoted 

by MDV, or the average value of the absolute deviations, denoted by ADV. 

Since the CIM approach is based on histograms of equal width within each 

distribution/in the following we apply the second method (Equal distances) to 

small projects^and then in Chapter 9 we compare the accuracy of the CIM approach 

and the Equal Distances method by measuring their closeness to the "true" 

pdf. 

Example 1: 

consider PERT network of Figure 8.3 assume activities are similar and 

duration times of activities are normally distributed with mean 100 and 
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variance 100.649. 

Figure 8.3 

To approximate the normal by a discrete distribution, we first divide 

the range of the random variable x into appropriate intervals. Naturally, 

the smaller the intervals, the better the approximation. In Dodin's (1980) 

study in which the discretization is based on equal distances in most 

of the cases 20 cells are used in discretizing procedure, while in Yong's 

(1985) study in which addition of distributions are based on CIM approach 

it is concluded that for the addition operation, an initial input of 

45 cells and a squeeze level of 0.12% will result in 30 cells with very 

little error for both the Normal and the skewed distribution after squeezing, 

therefore, in order to compare the accuracy of these two methods, we 

use 40 cells for input distribution and a squeeze level of 0.166%. 

From the standard normal tables, we obtain the information in Table 8.1. 
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z F(z) z F(z) 

0.0000 0.1 0.5398 

-3.7 0.0001 0.3 0.6179 

-3.5 0.0002 0.5 0.6915 

-3.3 0.0005 0.7 0.7580 

-3.1 0.0010 0.9 0.8159 

-2.9 0.0019 1.1 0.8643 

-2.7 0.0035 1.3 0.9032 

-2.5 0.0062 1.5 0.9332 

-2.3 0.0107 1.7 0.9554 

-2.1 0.0179 1.9 0.9713 

-1.9 0.0287 2.1 0.9821 

-1.7 0.0446 2.3 0.9893 

-1.5 0.0668 2.5 0.9938 

-1.3 0.0968 2.7 0.9965 

-1.1 0.1357 2.9 0.9981 

-0.9 0.1841 3.1 0.9990 

-0.7 0.2420 3.3 0.9995 

-0.5 0.3085 3.5 0.9998 

-0.3 0.3821 3.7 0.9999 

-0.1 0.4602 ° ° 1.0000 

To approximate the standard normal by a discrete distribution using intervals 

of 0.2 would be equivalent to replacing the continuous scale -oo<z<oo with the 

discrete values -3.8,-3.6,-3.4,....,3.4,3.6, and 3.8. In other words, 

we have replaced each interval by its midpoint. Table 8.2 shows the 

discrete approximation. By replacing z in Table 8.2 by p+oz where p=100 

and o = y 100.649 = 10.032, we can discretize the continuous distributions 

of activities of Figure 8.3 as shown in Table 8.3. 
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z p U ) z p(z) 

- 3 . 8 0.0001 0.2 0.0781 
-3.6 0.0001 0.4 0.0736 
-3.4 0.0003 0.6 0.0665 
-3.2 0.0005 0.8 0.0579 
-3.0 0.0009 1.0 0.0484 
-2.8 0.0016 1.2 0.0389 
-2.6 0.0027 1.4 0.0300 
-2.4 0.0045 1.6 0.0222 
-2.2 0.0072 1.8 0.0159 
-2.0 0.0108 2.0 0.0108 
-1.8 0.0159 2 . 2 0.0072 
-1.6 0 . 0 2 2 2 2.4 0.0045 
-1.4 0.0300 2 . 6 0.0027 
-1.2 0.0389 2.8 0.0016 
-1.0 0.0484 3.0 0.0009 
-0.8 0.0579 3.2 0.0005 
-0.6 0.0665 3.4 0.0003 
-0.4 0.0736 3.6 0.0001 
-0.2 0.0781 3 . 8 0.0001 
0.0 0.0796 

Table 8.3 

X p ( x ) F i x ) X p ( x ) F(x ) 

61.7796 0.0001 0.0001 102.0116 0.0781 0.6179 
63.7912 0.0001 0.0002 104.0232 0.0736 0.6915 
65.8028 0.0003 0.0005 106.0348 0.0665 0.7580 
67.8144 0.0005 0.0010 108.0464 0.0579 0.8159 
69.8260 0.0009 0.0019 110.0580 0.0484 0.8643 
71.8376 0.0016 0.0035 112.0696 0.0389 0.9032 
73.8492 0.0027 0.0062 114.0812 0.0300 0.9332 
75.8608 0.0045 0.0107 116.0928 0.0222 0.9554 
77.8724 0.0072 0.0179 118.1044 0.0159 0.9713 
79.8840 0.0108 0.0287 120.1160 0.0108 0.9821 
81.8956 0.0159 0.0446 122.1276 0.0072 0.9893 
83 .9072 0 . 0 2 2 2 0.0668 124.1392 0.0045 0.9938 
85.9188 0.0300 0.0968 126.1508 0.0027 0.9965 
87.9304 0.0389 0.1357 128.1624 0.0016 0.9981 
89.9420 0.0484 0.1841 130.1740 0.0009 0.9990 
91.9536 0.0579 0.2420 132.1856 0.0005 0.9995 
93.9652 0.0665 0.3085 134.1872 0.0003 0.9998 
95.9768 0.0736 0.3821 136.2088 0.0001 0.9999 
97.9884 0.0781 0.4602 138.2204 0.0001 1.0000 
100.0000 0.0796 0.5398 
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Mean and variance of the data of Table 8.3 can be computed as follows: 

M = Z xp(x)=100 , 

â = E x^ p(x) - (Zxp(x))2 

= 10101.532 - 10000=101,532 • 

Notice that the deviation between variance of the discrete approximate and 

the variance of the continuous distribution i.e. (101.532-100.649 = 0.883) is 

due to discretizing procedure. 

As mentioned previously, the approximation can be improved by choosing smaller 

intervals. 

By convoluting the distribution function of Table 8.3 with itself, approximate 

pdf of the project completion time of Figure 8.3 can be obtained as shown in 

Table 8 . 4 . 

Table 8.4 

y=x" p(y) f ( y ) y= =X"X p(y) F(y) 

133 .6172 0 0000004 0 0000004 202 0116 0. 0557610 0 .5838901 
135 .6288 0 0000012 0 0000016 204 0232 0. 0541188 0 .6380089 
137 .6404 0. 0000028 0. 0000044 206 0348 0. 0514878 0 .6894967 
139 .6520 0 0000062 0 0000106 208. 0464 0. 0480184 0 .7375151 
141 .6636 0. 0000114 0. 0000220 210. 0580 0. 0438994 0 .7914145 
143 .6752 0. 0000208 0. 0000428 212. 0696 0. 0393414 0 .8207559 
145 .6868 0 0000376 0 0000804 214 0812 0. 0345608 0 .8553167 
147 6984 0. 0000650 0. 0001454 216. 0928 0. 0297620 0 .8850787 
149 7100 0. 0001092 0. 0002546 218. 1044 0. 0251236 0 .9102023 
151 7216 0. 0001794 0. 0004340 220. 1160 0. 0207898 0 .9309921 
153 7332 0. 0002878 0. 0007218 222. 1276 0. 0168646 0 .9478567 
155 7448 0. 0004520 0. 0011738 224. 1392 0. 0134100 0 .9612667 
157 7564 0. 0006950 0. 0018688 226. 1508 0. 0104532 0 .9717199 
159 7680 0. 0010464 0. 0029152 228. 1624 0. 0079876 0 .9797075 
161 7796 0. 0015438 0. 0044590 230. 1740 0. 0059834 0 .9856909 
163 7912 0. 0022320 0. 0066910 232. 1856 0. 0043938 0 .9900847 
165 8028 0. 0031630 0. 0098540 234. 1972 0. 0031630 0 .9932477 
167 8144 0. 0043938 0. 0142478 236. 2088 0. 0022320 0 .9954797 
169 8240 0. 0059834 0. 0202312 238. 2204 0. 0015438 0 .9970235 
171 8376 0. 0079876 0. 0282188 240. 2320 0. 0010464 0 .9980699 
173 8492 0. 0104532 0. 0386720 242. 2436 0. 0006950 0 9987649 
175 8608 0. 0134100 0. 0520820 244. 2552 0. 0004520 0 .9992169 
177. 8724 0. 0168646 0. 0689466 246. 2668 0. 0002878 0 9995047 
179 8840 0. 0207898 0. 0897364 248. 2784 0. 0001794 0 .9996841 
181. 8956 0. 0251236 0. 1148600 250. 2900 0. 0001092 0 .9997933 
183 9072 0. 0297620 0. 1446220 252. 3016 0. 0000650 0 9998583 
185 9188 0. 0345608 0. 1791828 254. 3132 0. 0000376 0 .9998959 
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Table 8.4 (Continued) 

y=x" p(y) F(y) y=y*y p(y) F(y) 

187 .9304 0 .0393414 0 2185242 256 .3248 0 .0000208 0 9999167 
189 .9420 0 .0438994 0 2624236 258 .3364 0 .0000114 0 9999281 
191 .9536 0 .0480184 0 3104420 260 .3480 0 .0000062 0 9999343 
193 .9652 0 .0514878 0 3619298 262 .3596 0 .0000028 0 9999371 
195 .9768 0 .0541188 0 4160486 264 .3712 0 .0000012 0 9999383 
197 .9884 0 .0557610 0 4718096 266 .3828 0 .0000004 0, 9999387 
200 .0000 0 .0563195 0 5281291 

Table 8.4 shows the pdf of project completion time. Mean and variance 

of the project completion time can be computed as follows: 

M^= ^yp(y) = 199.98755 , 

= ^ y^p(y) " yp(y))' 

y y 

= 40200.457 - 39995.02 = 205.437 • 

Notice that the number of ordered pairs (realizations) in Table 8.4 is 

67, and since we are not interested in extreme values associated with 

distribution tails with respect to the final results, therefore, we use 

the same truncation procedure (squeezing) as it is used in (Yong, 1985) 

which is the squeezing procedure for truncation used in the British 

Petroleum International limited second generation risk analysis software. 

The squeezing procedure for truncation used in BP second generation risk 

analysis software is based on a delibrate misallocation of probabilities 

in order to lose unwanted distribution tails at a certain specific cut 

off level and then allocating the latter uniformly over the whole of 

the remaining probability distribution. 

In the software, squeezing is performed if any cell has an upper boundary 

cumulative probability level less than a certain level, d, for example, 

or a lower boundary cumulative probability level greater than a level (1-d) 
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where d is set in the software. 

Squeezing will involve cutting off a total probability of at the lower end 

and Ey at the upper end (Figure 8.4) where: 

Eĵ  + Ey = E (with E being set in the software) 

:L - : 

m = mean of distribution 

a = absolute minimum value of the distribution 

b = absolute maximum value of the distribution 

m-a 

Figure 8.4: Distribution Showing the Mean, Extreme Values and Extreme 

Tail Probabilities. 

If the E^ cumulative probability levels fall within any one cell then the 

probability attached to the cell will be reduced by the relevant amount. 

As already mentioned, the E probability cut off will be allocated evenly 

to the remaining cells. Finally, cells may remain with relevant cumulative 

probability levels less than d or greater than 1 - d, as squeezing is 

performed only once on each result distribution. The way in which squeezing 

is actually performed is well documented in "Appendix XII of the BP's 

Second Generation Risk Analysis Software User Specification". 

Now we return to example problem, let us truncate the first and last 
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11 realization times of Table 8.4 and allocate the (2x0.0007218 = 

0.0014436) probability cut off evenly to the remaining ordered pairs 

as shown in Table 8.5. 

Since in Table 8.5 number of ordered pairs is 45 and is greater than 

24 which we would like to have to make a comparison between the accuracy 

of Equal Distances method and the CIM approach in the next chapter, therefore, 

we approximate the pdf of Table 8.5 by another pdf with 24 ordered pairs 

as shown in Table 8.6 according to the following rules as used by Dodin 

(1980). 

(i) The full range of the distribution F(i) is maintained. 

(ii) The intermediate K-2 points are mapped into k-2 points using the 

following three steps; 

(11.1) Let A=(rĵ _̂ -r2)/(k-2), then we have k-2 intervals; each is of width A. 

The first interval contains all the realizations in the interval 

[r2,r2+A], and the nth interval contains all the realizations 

r^ 6[r2+A(n-l)jr^+nA] for n=2,3,....,k-2. 

(11.2) For the realizations in the nth interval let 

*n= ̂  

m m 

then 

(r; . p(r;))=(K^/y„. y „ ) , 

(11.3) If the nth interval is empty, i.e. there does not exist any 

r^e[r2+A(n-l),r2+n], then 

(r' p(r'))=(r2+(n-0.5),0). 
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y=X"X p(y) y=X"X p(y) 

155 .7448 0. 0004800 202 .0116 0. 0557930 
157 .7564 0. 0007270 204 .0232 0. 0541508 
159 .7680 0. 0010784 206 .0348 0. 0515198 
161 .7796 0. 0015758 208 .0464 0. 0480504 
163 .7912 0. 0022640 210 .0580 0. 0439314 
165 .8028 0. 0031950 212 .0696 0. 0393734 
167 .8144 0. 0044258 214 .0812 0. 0345928 
169 .8260 0. 0060154 216 .0928 0. 0297940 
171 .8376 0. 0080196 218 .1044 0. 0251556 
173 .8492 0. 0104852 220 .1160 0. 0208218 
175 .8608 0. 0134420 222 .1276 0. 0168966 
177 .8724 0. 0168966 224 .1392 0. 0134420 
179 .8840 0. 0208218 226 .1508 0. 0104852 
181 .8956 0. 0251556 228 .1624 0. 0080196 
183 .9072 0. 0297940 230 .1740 0. 0060154 
185 .9188 0. 0345928 232 .1856 0. 0044258 
187 .9304 0. 0393734 234 .1972 0. 0031950 
189 .9420 0. 0439314 236 .2088 0. 0022640 
191 .9536 0. 0480504 238 .2204 0. 0015758 
193 .9652 0. 0515198 240 .2320 0. 0010784 
195 9768 0. 0541508 242 .2436 0. 0007270 
197 9884 0. 0557930 244 .2552 0. 0004840 
200 .0000 0. 0563515 

Table 8.6 

y=x" 'x p(y) F(y)=F(N) 
y= X"X p(y) F(y)=F(N) 

155 .74480 0. 0004840 0. 0004840 202 .011600 0 .0557930 0. 5839363 
158 .95795 0. 0018054 0. 0022894 205 .003940 0 .1056706 0. 6896069 
162 .96562 0. 0038398 0. 0061292 209 .224854 0 .0919818 0. 7815887 
166 .97102 0. 0076208 0. 0137500 213 .010380 0 .0739662 0. 8555549 
170 .97542 0. 0140350 0. 0277850 217 .013630 0 .0549496 0. 9105045 
174 .97928 0. 0239272 0. 0517122 221 .017120 0 .0377184 0. 9482229 
178 .98286 0. 0377184 0. 0893060 225 .020700 0 .0239272 0. 9721501 
182 .98630 0. 0549496 0. 1443802 229 .024560 0 .0140350 0. 9861851 
186 .98959 0. 0739662 0. 2183464 233 .028940 0 .0076208 0. 9938059 
190 .99283 0. 0919818 0. 3103282 237 .034320 0 .0038398 0. 9976457 
194 .99606 0. 1056706 0. 4159988 241 .041920 0 .0018054 0. 9994511 
198 .99920 0. 1121445 0. 5281433 244 .255200 0 .0004840 0. 9999351 

Mean and variance of the data of Table 8.6 can be computed as follows: 

= yp(y)=200.00695 , 

y 

^ == ̂  y2p(y)-(^ yp(y))' 
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= 40205.239-40002.78 = 202.459 • 

Table 8.6 shows the approximate pdf of the project completion time. Following 

section presents a method for determining the accuracy of the approximate 

pdf. 

This method is presented in Dodin (1980) for comparing the accuracy of 

the pdf of the project completion time obtained using his approach with 

the true pdf obtained using Monte Carlo Simulation. 

Comparing the Approximate pdf with the "true" pdf 

Here, the "true" pdf of the project completion time is represented by 

the pdf obtained from the standard normal tables denoted by F'(N) as 

shown in Table 8.7; the cardinality of F'(N) is 24. This distribution 

is compared with the approximate pdf denoted by F(N) which has 24 realizations. 

The objective of the comparison is to determine the maximum absolute 

deviation (MDV), the average value of the absolute deviations (ADV) between 

two distributions, and the mean and the standard deviation of each 

distribution. 

The deviations are computed using linear interpolation. Figure 8.5 

illustrates the concept of linear interpolation where the points generating 

the solid line represent the approximate pdf, F(N), and the scattered 

points in the plane (R,P(R)) represent the "true" pdf, F'(N). 
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Table 8.7 

Realization Probability F' (N) Realization Probability F' (N) 

155 .74778 0 00140 0 00140 201 .92390 0.10687 0 .60687 
159 .59579 0. 00209 0. 00349 205 .77191 0.09935 0 .70622 
163 .44380 0. 00379 0. 00728 209 .61992 0.08584 0 .79206 
167 .29181 0. 00772 0. 01500 213 .46793 0.06891 0 .86097 
171 .13982 0. 01370 0. 02870 217 .31594 0.05150 0 .91247 
174 .98783 0. 02293 0. 05163 221 .16395 0.03590 0 .94837 
178 .83584 0. 03590 0. 08753 225 .01196 0.02293 0 .97130 
182 .68385 0. 05150 0. 13903 228 .85997 0.01370 0 .98500 
186 53186 0. 06891 0. 20794 232 .70798 0.00772 0 .99272 
190 37987 0. 08584 0. 29378 236 .55599 0.00379 0 .99651 
194 22788 0. 09935 0. 39313 240 .40400 0.00209 0 .99860 
198 07589 0. 10687 0. 50000 244 .25201 0.00140 1 .00000 

M=200 and a^=201.75 

0.75 

P(R'k) 
0.50 

P'lR/) 

0.25 
P (R.) 

R' R 
m *NRR 

Figure 8.5 

Linear Interpolation 
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If the number of realizations in F'(N) is n=NIN, then we have a deviations. 

Let 

D^: be the deviation where k=l,2,...,n. 

Hence, 

MDV=M|x 

n 

ADV = ^ |D^|/n. 

k=l 

In the approximate pdf the minimum and maximum realization times of the 

project are always preserved; they are represented by and 

respectively. 

Hence, 

and ^ *NRR 

Therefore, for any R^ of the true realizations, k=l,2,...,n, there exists 

an approximate realization Rj where j<NRR such that 

Using this relation we can obtain the equation of the line segment 

connecting the two points (R^,P(Rj)) and (Rj^^,P(Rj^^)). If such a line 

is denoted by y = rx + s 

where x is the realization axis and y is the probability axis, then 

the slope of the line is 

r = (P(Rj+i) - P(Rj))/(Rj+i - Rj) 

and the intercept is 

s = P(Rj) - rRj-

Hence, if R^ is given, then using the line equation we calculate the 

corresponding approximate probability P(R^) where 

P(R^) = y = rR^ + s , 

then \ = P(R^) - P'(R^). 

See Figure 8.5 for illustration. 
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The linear interpolation is carried out for all realizations except 

for those which lie in the 0.01 left and right tails of the "true" 

distribution. The exclusion of the two tails does not alter the values 

of MDV and may alter ADV only slightly, and speeds up the interpolation 

since many realizations with negligible probabilities might lie in 

the tails. For example, the application of the linear interpolation 

to Tables 8.5 and 8.7 led to the exclusion of the first and last three 

realizations of Table 8.7. Table 8.8 has the complete output of the 

linear interpolation; the third column in the table headed by "APRXMTD 

PROBJ' represents P(R^) and the last column represents . Figure 8.6 is 

a digital plot of the first three column of Table 8.8. 

The symbol (*) represents the "true" distribution where (-) represents 

the approximate distribution and (*) is used whenever (•) and (-) are 

to be printed in the same location in the xy-plane. 

REALIZATION EXACT PROB. APRXMTD PROB. ACTUAL DIFFERENCE 

1 167.29181 0.01500 0.0148743 -.0001257 
2 171.13982 0.02870 0.0287674 .0000674 
3 174.98783 0.05163 0.0517927 .0001627 
4 178.83584 0.08753 0.0880454 .0005154 
5 182.68385 0.13903 0.1402288 .0011988 
6 186.53186 0.20794 0.2098892 .0019492 
7 190.37987 0.29378 0.2962443 .0024643 
8 194.22788 0.39313 0,3957216 .0025916 
9 198.07589 0.50000 0.5022775 .0022775 
10 201.92390 0.60687 0.5823119 -.0245581 
11 205.77191 0.70622 0.7063424 .0001224 
12 209.61992 0.79206 0.7893080 -.0027520 
13 213.46793 0.86097 0.8618353 .0008653 
14 217.31594 0.91247 0.9133526 .0008826 
15 221.16395 0.94837 0.9491004 .0007304 
16 225.01196 0.97130 0.9720978 .0007978 
17 228.85997 0.98500 0.9856081 .0006081 
18 232.70798 0.99272 0.9931950 .0004750 

Table 8.8 

Comparison of the Exact and the Approximate Probability Distribution 

Functions. 
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The Average of the Absolute Values of the Deviations = .0023969 

The Maximum of the Absolute Values of the Deviations = .0245581. It 

is No. 10. 

Number of Positive Deviates = 15 

Number of Negative Deviates = 3 

P(R) 

1 . 0 

0.9 

0.8 

0.7 

0 . 6 

0.5 

0.4 

0.3 

0 .2 

0.1 

0.0 

, X * 

Exact 

_ Approximate 

V Both 

165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 R 

Figure 8.6 

Comparison of the Exact and the Approximate Probability Distribution 

Functions of Example 1. 

Example 2: 

Let us assume activities A and B of Figure 8.3 are parallel as shown 

in Figure 8.7, then the probability distribution function of T=max{A,B} 

can be computed as shown in Table 8.9. 

Table 8.9 shows the approximate pdf of the project completion time 
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using 40 cells in discretizing the input distribution. 

Figure 8.7 

The approximate pdf of the project completion time obtained from the 

standard normal tables by taking the maximum of the duration times 

of a normal distribution with p=100 and a=10.032 using 140 cells as 

shown in Table 8.10 assumed to be error free and considered as "true" 

pdf. 
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x p ( x ) F ( x ) p ( z ) r ( z ) 

61 . 7796 . 0 0 0 1 . 0 0 0 1 ( .0001)2 - ( .0000)2 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 
6 3 . 7912 . 0 0 0 1 . 0 0 0 2 ( . 0 0 0 2 ) 2 - ( . 0 0 0 0 ) 2 = . 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 
65 . 8028 . 0 0 0 3 . 0 0 0 5 ( . 0 0 0 5 ) 2 - ( . 0 0 0 2 ) 2 = . 0 0 0 0 0 0 2 . 0 0 0 0 0 0 2 
6 7 . 8144 . 0 0 0 5 . 0 0 1 0 ( . 0 0 1 0 ) 2 - ( . 0 0 0 5 ) 2 = . 0 0 0 0 0 0 8 . 0000010 
6 9 . 8260 . 0 0 0 9 . 0 0 1 9 ( . 0 0 1 9 ) 2 - ( . 0 0 1 0 ) 2 = . 0 0 0 0 0 2 6 . 0 0 0 0 0 3 6 
71 . 8376 . 0 0 1 6 . 0 0 3 5 ( . 0 0 3 5 ) 2 - ( . 0 0 1 9 ) 2 = . 0 0 0 0 0 8 6 . 0 0 0 0 1 2 2 
73 . 8492 . 0 0 2 7 . 0 0 6 2 ( . 0 0 6 2 ) 2 - ( . 0 0 3 5 ) 2 = . 0 0 0 0 2 6 2 , 0 0 0 0 3 8 4 
7 5 . 8608 . 0 0 4 5 . 0 1 0 7 ( . 0 1 0 7 ) 2 - ( . 0 0 6 2 ) 2 = . 0 0 0 0 7 6 0 . 0 0 0 1 1 4 4 
7 7 . 8724 . 0 0 7 2 . 0 1 7 9 ( . 0 1 7 9 ) 2 - ( . 0 1 0 7 ) 2 = . 0 0 0 2 0 6 0 . 0 0 0 3 2 0 4 
7 9 . 8840 . 0 1 0 8 . 0 2 8 7 ( . 0 2 8 7 ) 2 - ( . 0 1 7 9 ) 2 = . 0 0 0 5 0 3 2 . 0 0 0 8 2 3 6 
8 1 . 8956 . 0 1 5 9 . 0 4 4 6 ( . 0 4 4 6 ) 2 - ( . 0 2 8 7 ) 2 = , 0 0 1 1 6 5 5 . 0019891 

83. 9072 .0222 . 0 6 6 8 ( . 0 6 6 8 ) 2 - ( . 0 4 4 6 ) 2 = . 0 0 2 4 7 3 1 . 0 0 4 4 6 2 2 

85. 9188 . 0 3 0 0 . 0 9 6 8 ( . 0 9 6 8 ) 2 - ( . 0 6 6 8 ) 2 = . 0 0 4 9 0 8 0 . 0 0 9 3 7 0 2 
8 7 . 9304 . 0 3 8 9 . 1 3 5 7 ( . 1 3 5 7 ) 2 - ( . 0 9 6 8 ) 2 = . 0 0 9 0 4 4 2 . 0 1 8 4 1 4 4 
8 9 . 9420 . 0 4 8 4 . 1 8 4 1 ( . 1 8 4 1 ) 2 - ( . 1 3 5 7 ) 2 = . 0 1 5 4 7 8 4 . 0 3 3 8 9 2 8 
9 1 . 9536 . 0 5 7 9 . 2 4 2 0 ( .2420)2 - ( . 1 8 4 1 ) 2 = . 0 2 4 6 7 1 2 . 0 5 8 5 6 4 0 

93. 9652 . 0665 . 3 0 8 5 ( . 3 0 8 5 ) 2 - ( .2420)2 = . 0 3 6 6 0 8 2 . 0 9 5 1 7 2 2 
9 5 . 9768 . 0 7 3 6 . 3 8 2 1 ( .3821)2 - ( .3085)2 = . 0 5 0 8 2 8 2 . 1460004 
9 7 . 9884 . 0 7 8 1 . 4 6 0 2 ( . 4 6 0 2 ) 2 - ( . 3 8 2 1 ) 2 = . 0 6 5 7 8 3 6 . 2 1 1 7 8 4 0 

100 . 0000 . 0 7 9 6 . 5 3 9 8 ( . 5 3 9 8 ) 2 - ( . 4 6 0 2 ) 2 = . 0 7 9 6 0 0 0 . 2 9 1 3 8 4 0 
102 . 0116 . 0 7 8 1 . 6 1 7 9 ( . 6 1 7 9 ) 2 - ( .5398)2 = . 0 9 0 4 1 6 4 . 3 8 1 8 0 0 4 
104 . 0232 . 0 7 3 6 . 6 9 1 5 ( . 6 9 1 5 ) 2 - ( . 6 1 7 9 ) 2 = . 0 9 6 3 7 1 8 . 4 7 8 1 7 2 2 
106 . 0348 . 0 6 6 5 . 7 5 8 0 ( . 7 5 8 0 ) 2 - ( . 6 9 1 5 ) 2 = . 0 9 6 3 9 1 8 . 5 7 4 5 6 4 0 
108 . 0464 . 0 5 7 9 . 8 1 5 9 ( . 8 1 5 9 ) 2 - ( .7580)2 = . 0 9 1 1 2 8 8 .6656928 
110 . 0580 . 0 4 8 4 . 8 6 4 3 ( .8643)2 - ( .8159)2 = . 0 8 1 3 2 1 6 . 7 4 7 0 1 4 4 
112 . 0696 . 0 3 8 9 . 9 0 3 2 ( . 9 0 3 2 ) 2 - ( . 8 6 4 3 ) 2 = . 0 6 8 7 5 5 8 . 8157702 
114 . 0812 . 0 3 0 0 . 9 3 3 2 ( .9332)2 - ( .9032)2 = . 0 5 5 0 9 2 0 .8708622 
116 . 0928 . 0 2 2 2 . 9 5 5 4 ( . 9 5 5 4 ) 2 - ( .9332)2 = . 0 4 1 9 2 6 9 . 9127891 
118 . 1044 . 0 1 5 9 . 9 7 1 3 ( . 9 7 1 3 ) 2 - ( . 9 5 5 4 ) 2 = . 0 3 0 6 3 4 5 . 9 4 3 4 2 3 6 
120 . 1160 . 0 1 0 8 . 9 8 2 1 ( . 9 8 2 1 ) 2 - ( . 9 7 1 3 ) 2 = . 0 2 1 0 9 6 8 . 9 6 4 5 2 0 4 
122 . 1276 . 0 0 7 2 . 9 8 9 3 ( . 9 8 9 3 ) 2 - ( . 9 8 2 1 ) 2 = . 0 1 4 1 9 4 0 . 9 7 8 7 1 4 4 
124 . 1392 . 0 0 4 5 .9938 ( .9938)2 - ( .9893)2 = . 0 0 8 9 2 4 0 . 9 8 7 6 3 8 4 
126 . 1508 . 0 0 2 7 . 9 9 6 5 ( . 9 9 6 5 ) 2 - ( .9938)2 = . 0 0 5 3 7 3 8 . 9 9 3 0 1 2 2 
128 . 1624 . 0 0 1 6 . 9 9 8 1 ( . 9 9 8 1 ) 2 - ( . 9 9 6 5 ) 2 = . 0 0 3 1 9 1 4 . 9 9 6 2 0 3 6 
130 . 1740 . 0 0 0 9 . 9 9 9 0 ( . 9 9 9 0 ) 2 - ( . 9 9 8 1 ) 2 = . 0 0 1 7 9 7 4 . 9 9 8 0 0 1 0 
132 . 1856 . 0 0 0 5 . 9 9 9 5 ( . 9 9 9 5 ) 2 - ( . 9 9 9 0 ) 2 = . 0 0 0 9 9 9 2 . 9 9 9 0 0 0 2 
134 . 1972 . 0 0 0 3 . 9 9 9 8 ( .9998)2 - ( . 9 9 9 5 ) 2 = . 0 0 0 5 9 9 8 . 9 9 9 6 0 0 0 
136 . 2088 . 0 0 0 1 . 9 9 9 9 ( . 9 9 9 9 ) 2 - ( . 9 9 9 8 ) 2 = . 0 0 0 2 0 0 0 . 9 9 9 8 0 0 0 
138 . 2204 . 0 0 0 1 1 . 0 0 0 0 ( 1 . 0 0 0 ) 2 - ( . 9 9 9 9 ) 2 . 0 0 0 2 0 0 0 1 . 0 0 0 0 0 0 0 

where z=x.x = 105.67481 t 

a = 8.3246621 . 
z 
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x p(x) F(x) p(t) F(t) 

61.2802 .0001 .0001 0.0000000 0.0000000 
61.8028 .0001 .0002 0.0000000 0.0000000 
62.3254 .0001 .0003 0.0000000 0.0000000 
62.9020 .0001 .0004 0.0000001 0.0000001 
63.4516 .0001 .0005 0.0000001 0.0000002 
64.0012 .0001 .0006 0.0000001 0.0000003 
64.5508 .0001 .0007 0.0000001 0.0000004 
65.1004 .0001 .0008 0.0000002 0.0000006 
65.6500 .0001 .0009 0.0000002 0.0000008 
66.1996 .0002 .0011 0.0000004 0.0000012 
66.7492 .0002 .0013 0.0000004 0.0000016 
67.2988 .0003 .0016 0,0000009 0.0000025 
67.8484 .0003 .0019 0.0000011 0.0000036 
68.3980 .0003 .0022 0,0000012 0.0000048 
68.9476 .0004 .0026 0.0000019 0.0000067 
69.4972 .0004 .0030 0.0000023 0.0000090 
70.0468 .0005 .0035 0.0000032 0.0000122 
70.5964 .0005 .0040 0.0000038 0.0000160 
71.1460 .0007 .0047 0.0000060 0.0000220 
71.6956 .0007 .0054 0.0000071 0.0000291 
72.2452 .0008 .0062 0.0000093 0.0000384 
72.7948 .0009 .0071 0.0000120 0.0000504 
73.3444 .0011 .0082 0.0000168 0.0000672 
73.8940 .0012 .0094 0.0000211 0.0000883 
74.4436 .0013 .0107 0.0000261 0.0001144 
74.9932 .0015 .0122 0.0000344 0.0001488 
75.5428 .0017 .0139 0.0000444 0.0001932 
76.0924 .0019 .0158 0.0000564 0.0002496 
76.6420 .0021 .0179 0.0000708 0.0003204 
77.1916 .0023 .0202 0.0000876 0.0004080 
77.7412 .0026 .0228 0.0001118 0.0005198 
78.2908 .0028 .0256 0.0001355 0.0006553 
78.8404 .0031 .0287 0.0001683 0.0008236 
79.3900 .0035 .0322 0.0002132 0.0010367 
79.9396 .0037 .0359 0.0002520 0.0012897 
80.4892 .0042 .0401 0.0003192 0.0016089 
81.0388 .0045 .0446 0.0003831 0.0019920 
81.5884 .0049 .0495 0.0004611 0.0024531 
82.1380 .0053 .0548 0.0005528 0.0030059 
82.6876 .0058 .0606 0.0006693 0.0036752 
83.2372 .0062 .0668 0.0007899 0.0044651 
83.7868 .0067 .0735 0.0009400 0.0054051 
84.3364 .0073 .0808 0.0011264 0.0065315 
84.8860 .0077 .0885 0.0013036 0.0078351 
85.4356 .0083 .0968 0.0015380 0.0093731 
85.9852 .0088 .1056 0.0017811 0.0111542 
86.5348 .0095 .1151 0.0020967 0.0132509 
87.0844 .0100 .1251 0.0024020 0.0156529 
87.6340 .0106 .1357 0.0027644 0.0184173 
88.1836 .0112 .1468 0.0031358 0.0215531 
88.7332 .0118 .1587 0.0036354 0.0251885 
89,2828 .0124 .1711 0.0040896 0.0292781 
89.8324 .0130 .1841 0.0046176 0.0338957 
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X p(x) F(x) p(t) F(t) 

90.3820 .0136 .1977 .0051924 .0390881 
90.9316 .0142 .2119 .0058164 .0449045 
91.4812 .0147 .2266 .0064459 .0513504 
92.0308 .0154 .2420 .0072165 .0585669 
92.5804 .0158 .2578 .0078968 .0664637 
93.1300 .0164 .2742 .0087248 .0751885 
93.6796 .0170 .2912 .0096118 .0848003 
94.2292 .0173 .3085 .0103748 .0951751 
94.7788 .0179 .3264 .0113647 .1065398 
95.3284 .0182 .3446 .0122122 .1187520 
95.8780 .0186 .3632 .0131651 .1319171 
96.4276 .0189 .3821 .0140862 .1460033 
96.9772 .0192 .4013 .0150412 .1610445 
97.5268 .0194 .4207 .0159468 .1769913 
98.0764 .0197 .4404 .0169637 .1939550 
98.6260 .0198 .4602 .0178319 .2117869 
99.1756 .0199 .4801 .0187120 .2304989 
99.7252 .0199 .5000 .0195040 .2500029 
100.2748 .0199 .5199 .0202960 .2702989 
100.8244 .0199 .5398 .0210880 .2913869 
101.3740 .0198 .5596 .0217681 .3131550 
101.9236 .0197 .5793 .0224363 .3355913 
102.4732 .0194 .5987 .0228532 .3584445 
103.0228 .0192 .6179 .0233588 .3818033 
103.5724 .0189 .6368 .0237138 .4055171 
104.1220 .0186 .6554 .0240349 .4295520 
104.6716 .0182 .6736 .0241878 .4537398 
105.2212 .0179 .6915 .0244353 .4781751 
105.7708 .0173 .7088 .0242252 .5024003 
106. 3204 .0170 .7258 .0243882 .5267885 
106. 8700 .0164 .7422 .0240752 .5508637 
107.4196 .0158 .7580 .0237032 .5745669 
107.9692 .0154 .7734 .0235835 .5981504 
108.5188 .0147 .7881 .0229541 .6211045 
109.0684 .0142 .8023 .0225836 .6436881 
109.6180 .0136 .8159 .0220076 .6656957 
110.1676 .0130 .8289 .0213824 .6870781 

110.7172 .0124 .8413 .0207104 .7077885 
111.2668 .0118 .8531 .0199940 .7277825 
111.8164 .0112 .8643 .0192348 .7470173 
112.3660 .0106 .8749 .0184356 .7654529 
112.9156 .0100 .8849 .0175980 .7830509 
113.4652 .0095 .8944 •0169033 .7999542 
114.0148 .0088 .9032 .0158189 .8157731 
114.5644 .0083 .9115 .0150620 .8308351 
115.1140 .0077 .9192 .0140964 .8449315 
ll5.6636 .0073 .9265 .0134736 .8584051 
116.2132 .0067 .9332 .0124600 .8708651 
116.7628 .0062 .9394 .0116101 .8824752 
117.3124 .0058 .9452 .0109307 .8934059 
117.8620 .0053 .9505 .0100472 .9034531 
118.4116 .0049 .9554 .0093389 .9127920 
118.9612 .0045 .9599 .0086189 .9214109 
119.5108 .0042 .9641 .0080808 .9294917 
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Table 8.10 (Concluded) 

X p(x) F(x) p(t) F(t) 

120.0604 .0037 .9678 .0071480 .9366397 
120.6100 .0035 .9713 .0067680 .9434265 
121.1596 .0031 .9744 .0060317 .9494582 
121.7092 .0028 .9772 .0054645 .9549227 
122.2588 .0026 .9798 .0050882 .9600109 
122.8084 .0023 .9821 .0045124 .9645233 
123.3580 ,0021 .9842 .0041292 .9686525 
123.9076 .0019 .9861 .0037436 .9723961 
124.4572 .0017 .9878 .0033556 .9757517 
125.0068 .0015 .9893 .0029656 .9787173 
125.5564 .0013 .9906 .0025739 .9812912 
126.1060 .0012 .9918 .0023789 .9836701 
126.6556 .0011 .9929 .0021832 .9858533 
127.2052 .0009 .9938 .0017880 .9876413 
127.7548 .0008 .9946 .0015907 .9892320 
128.3044 .0007 .9953 .0013940 .9920189 
129.4036 .0005 .9965 .0009962 .9930151 
129.9532 .0005 .9970 .0009968 .9940119 
130.5028 .0004 .9974 .0007977 .9948096 
131.0524 .0004 .9978 .0007981 .9956077 
131.6020 .0003 .9981 .0005988 .9962065 
132.1516 .0003 .9984 .0005989 .9968054 
132.7012 ,0003 .9987 .0005991 .9974045 
133.2508 .0002 .9989 .0003996 .9978041 
133.8004 ,0002 .9991 .0003996 .9982037 
134.3500 .0001 .9992 .0001998 .9984035 
134.8996 .0001 ,9993 .0001998 .9986033 
135.4492 .0001 ,9994 .0001999 .9988032 
135.9988 .0001 .9995 .0001999 .9990031 
136.5484 .0001 .9996 .0001999 .9992030 
137.0980 .0001 .9997 .0001999 .9994029 
137.6476 .0001 .9998 .0002000 .9996029 
138.1972 .0001 .9999 .0002000 .9998029 
138.7468 .0001 1.0000 .0002000 1.0000000 

where t=x.x 

= 106.39181 , 

= 6.4543783 • 

The application of the linear interpolation to Tables 8.10 and 8.9 led to the 

exclusion of the first 45 and last 21 realizations of Table 8.10. Table 8.11 

has the complete output of the linear interpolation. 
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REALIZATION EXACT PROS. APRXMTD PROB. ACTUAL DIFFERENCE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

85.9852 

88.1936 

90.3820 

92.0308 

94.2292 

96.4276 

98.0764 

100.2748 

102.4732 

104.1220 

106.3204 

108.5188 

110.1676 

112.3660 

114.5644 

116.2132 

118,4116 

120.6100 

122.2588 

124.4572 

126.6556 

0.0111542 

0.0215531 

0.0390881 

0.0585669 

0.0951751 

0.1460033 

0.1939550 

0.2702989 

0.3584445 

0.4295520 

0.5267885 

0.6211045 

0.6870781 

0.7654529 

0.8308351 

0.8708651 

0.9127920 

0.9434265 

0.9600109 

0.9757517 

0.9858533 

0.0096687 

0.0203626 

0.0392891 

0.0599689 

0.1018428 

0.1607424 

0.2152662 

0.3037355 

0.4039147 

0.4829640 

0.5875021 

0.6847901 

0.7507604 

0.8238877 

0.8308351 

0.9146226 

0.9466453 

0.9680060 

0.9792964 

0.9884878 

0.9938130 

-.0014855 

-.0011905 

.0002010 

.0014020 

.0066677 

.0147391 

.0213112 

.0334366 

.0454702 

.0533544 

.0607136 

.0636856 

.0636823 

.0584348 

.0500981 

.0437575 

.0338533 

.0245795 

.0192855 

.0127361 

.0079597 

Table 8.11 

Comparison of the Exact and the Approximate Probability Distribution Functions 

of Example 2. 

The Average of the Absolute Values of the Deviations = 0.0294306 

The Maximum of the Absolute Values of the Deviations = 0.0636856. It is No.12. 

Number of Positive Deviates = 19 

Number of Negative Deviates = 2 
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Figure 8.8 

Comparison of the Exact and the Approximate Probability Distribution 

Functions of Example 2. 

Example 3: 

Let us assume duration times of activities A and B of Figure 8.9 are 

similar and have Beta distribution with parameters r=3 and s=5. This 

gave rise to a distribution with a range of 0 and 1 and a mean of .375 

for each activity as shown in Figure 8.10. 

To approximate the Beta by a discrete distribution, we first divide 

the range of the distribution into 30 cells, then from the tables of 

the Incomplete Beta-Function (Pearson, 1956), with these parameters 

we obtain the information in Table 8.12. 
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Since it is difficult to work out the actual or theoretical values 

corresponding to these 30 discrete points, the tables of the Incomplete 

Beta-Function with 100 cells for r=3 and s=5 as shown in Table 8.13 

taken as being correct (error free) for calculation purposes. 

2 . 0 

0.5 

Figure 8.9 

0 .2 .4 .6 .8 1.0 X 

Figure 8.10 

Beta Density 

Table 8.12 

X p ( x ) F(x) X p ( x ) F(x) 

. 0 3 3 3 .0015579 . 0015579 . 5 3 3 3 . 0 4 5 1 8 5 3 .8183889 

. 0666 . 0 0 9 0 9 0 2 . 0106481 . 5667 . 0372095 .9007837 

. 1 0 0 0 . 0 2 0 9 2 6 8 . 0 3 1 5 7 4 9 . 6 0 0 0 . 0296919 .9304756 

.1333 . 0349290 . 0665039 . 6 3 3 3 . 0 2 2 6 9 7 4 .9531730 

.1667 . 0483066 . 1148105 .6667 . 0 1 6 8 1 3 1 .9699861 

.2000 . 0 6 0 1 5 2 4 . 1 7 4 9 6 2 9 .7000 . 0119001 .9818862 

. 2 3 3 3 . 0698516 . 2448145 .7333 .0078847 .9897709 

.2667 . 0763758 . 3 2 1 1 9 0 3 .7667 . 0049538 .9947247 

.3000 . 0799547 . 4011450 .8000 . 0 0 2 8 6 4 3 .9975890 

. 3 3 3 3 . 0 8 0 6 3 6 5 . 4817815 .8333 . 0 0 1 4 5 7 2 .9990462 

.3667 . 0786691 . 5604506 .8667 . 0 0 0 6 5 3 2 .9996994 

.4000 . 0 7 4 5 3 9 1 .6349897 .9000 . 0002349 .9999343 

. 4 3 3 3 . 0684861 . 7034758 .9333 .0000568 .9999911 

. 4667 . 0613729 .7648487 .9667 . 0 0 0 0 0 7 3 .9999984 

.5000 . 0 5 3 5 4 0 2 . 8183889 1 . 0 0 0 0 . 0 0 0 0 0 0 2 .9999986 

M - m | -I x p ( x ) = .374699, = V x ^ p ( x ) - .1651698 
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r 

= jx^ p(x) = .0824376 , 

a -m^=in'^ - (m|)2 = .1651698 - (.374699)2 = .0247705 ==> o= .1573864 , 

- 3m^m^ + 2(mj)3 = .0824376 - 3(.374699) (.1651698)+2(.374699)^ 

= .0019856 , 

= .0019856/(.0247705)^ = .509324 , 

where = coefficient of skewness • 
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x p(x) F(x) x p(x) F(x) 

.01 .0000340 .0000340 .51 .0160761 .7895136 

.02 .0002296 .0002636 .52 .0154085 .8049221 

.03 .0005994 .0008630 .53 .0147325 .8196546 

.04 .0011208 .0019838 .54 .0140509 .8337055 

.05 .0017732 .0037570 .55 .0133668 .8470723 

.06 .0025370 .0062940 .56 .0126829 .8597552 

.07 .0033936 .0096876 .57 .0120020 .8717571 

.08 .0043264 .0140140 .58 .0113264 .8830835 

.09 .0053195 .0193335 .59 .0106589 .8937424 

.10 .0063580 .0256915 . 60 .0100015 .9037439 

.11 .0074286 .0331201 .61 .0093566 .9131005 

.12 .0085187 .0416388 .62 .0087260 .9218265 

.13 .0096170 .0512558 .63 .0081117 .9299382 

.14 .0107127 .0619685 .64 .0075155 .9374537 

.15 .0117967 .0737652 .65 .0069387 .9443924 

.16 .0128608 .0866260 . 66 .0063828 .9507752 

.17 .0138941 .1005201 .67 .0058490 .9566242 

.18 .0148946 .1154147 .68 .0053384 .9619626 

.19 .0158530 .1312677 .69 .0048518 .9668144 

.20 .0167643 .1480320 .70 .0043900 .9712044 

.21 .0176242 .1656562 .71 .0039534 .9751578 

.22 .0184283 .1840845 .72 .0035425 .9787003 

.23 .0191736 .2032581 .73 .0031576 .9818579 

.24 .0198569 .2231150 .74 .0027984 .9846563 

.25 .0204763 .2435913 .75 .0024652 .9871215 

.26 .0210299 .2646212 .76 .0021575 .9892790 

.27 .0215166 .2861378 .77 .0018751 .9911541 

.28 .0219357 .3080735 .78 .0016173 .9927714 

.29 .0222868 .3303603 .79 .0013835 .9941549 

.30 .0225702 .3529305 .80 .0011730 .9953279 

.31 .0227864 .3757169 .81 .0009847 .9963126 

.32 .0229362 .3986531 .82 .0008178 .9971304 

.33 .0230208 .4216739 .83 .0006711 .9978015 

.34 .0230418 .4447157 .84 .0005433 .9983448 

.35 .0230010 .4677167 .85 .0004335 .9987783 

.36 .0229002 .4906169 .86 .0003399 .9991182 

.37 .0227418 .5133587 .87 .0002615 .9993797 

.38 .0225284 .5358871 .88 .0001968 .9995765 

.39 .0222623 .5581494 .89 .0001443 .9997208 

.40 .0219466 .5800960 .90 .0001026 .9998234 

.41 .0215839 .6016799 .91 .0000704 .9998938 

.42 .0211775 .6228574 .92 .0000461 .9999399 

.43 .0207303 .6435877 .93 .0000287 .9999686 

.44 .0202456 .6638333 .94 .0000166 .9999852 

.45 .0197266 .6835599 .95 .0000087 .9999939 

.46 .0191767 .7027366 .96 .0000040 .9999979 

.47 .0185988 .7213354 .97 .0000015 .9999994 

.48 .0179967 .7393321 .98 .0000004 .9999998 

.49 .0173733 .7567054 .99 .0000001 .9999999 

.50 .0167321 .7734375 1.00 .0000001 1.0000000 

m=.375 , o=.15504624 , g^=.3098386. 

Notice that the exact mean, variance, and coefficient of skewness of each 

activity can be computed as follows: 



3 8 0 

Mean = r/(r+s) 

= 3/(3+5) 

= .375 , 

Variance = rs/(r+s+l)(r+s)^ 

= 3x5/(3+5+1)(3+5)2 

= .0260416 ==> o=.161374 , 

1 1 

Coefficient of skewness = 2(s-r)(r+s+l)^/(r+s+2)(rs)^ 

= 2(5-3)(3+5+l)V(3+5+2)(3x5)^ 

= .3098386 • 

Project completion time can be approximated using one of the following 

approaches. 

(i) Convoluting the pdf of the activities using 30 cells for input 

distribution. 

(ii) By interpolation of the incomplete Beta function. 

(i) Approximating the pdf of the project completion time using 30 cells for 

input distribution. 

The approximate pdf of project completion time using 30 cells can be obtained 

from Table 8.12 as shown in Table 8.14. 

Table 8.14 

y=x"'x p(y) F ( y ) y=x*x p(y) F(y) 

.0667 .0000024 .0000024 .9667 .0332526 .8604786 

.1000 .0000282 .0000306 1.0000 .0285586 .8890372 

.1333 .0001478 .0001784 1.0333 .0240944 .9131316 

. 1667 .0004892 .0006676 1.0667 .0199670 .9330986 

.2000 .0012232 .0018908 1.1000 .0162496 . 9 4 9 3 8 2 0 

.2333 .0025274 .0044182 1.1333 .0129808 .9623290 

.2667 .0045528 .0089710 1.1667 .0101740 .9725030 

.3000 .0073996 .0163706 1.2000 .0078188 . 9 8 0 3 2 1 8 

.3333 ,0110962 .0274668 1.2333 .0058864 .9862082 

.3667 .0155924 .0430592 1.2667 .0038590 .9900672 

.4000 ,0207592 .0638184 1.3000 .0031236 .9931908 

.4333 .0264048 .0902232 1.3333 .0021958 .9953866 

.4667 ,0322856 . 1 2 2 5 0 8 8 1.3667 .0015036 .9968902 

.5000 .0381304 .1606392 1.4000 .0010014 .9978916 

.5333 .0436598 .2042990 1.4333 .0006470 .9985386 
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Table 8.14 (Concluded) 

y=x"x p(y) F(y) y=X"X p(y) F(y ) 

.5667 .0486104 .2529094 1.4667 .0004036 .9989422 

.6000 .0527492 .3056586 1.5000 .0002432 .9991854 

.6333 .0558930 .3615516 1.5333 .0001400 .9993254 

.6667 .0579154 .4194970 1.5667 .0000770 .9994024 

.7000 .0587546 .4782216 1.6000 .0000402 .9994426 

.7333 .0584130 .5366346 1.6333 .0000196 .9994622 

.7667 .0569518 .5935864 1.6667 .0000086 .9994708 

.8000 .0544864 .6480728 1.7000 .0000034 .9994742 

.8333 .0511722 .6992450 1.7333 .0000012 .9994754 

.8667 .0471930 .7464380 1.7667 .0000002 .9994756 

.9000 .0427490 .7891870 1.8000 .0000001 .9994757 

.9333 .0380390 .8272260 1.8333 .0000000 .9994757 

M=m|̂  = 

o^=m' -

.7385594 , m^ = 

(mj)2 = .5939056 

.5939056 , 

- ( . 7 3 8 5 5 9 4 ) 

= .5126808 , 

2 = .0484357 ==> a = .2200811, 

+ 2(mp^ 

= .5126808 - 3(.7385594)(.5939056) + 2(.7385594)3 = .002501, 

g =m /(m )2= .00250l/(.0484357)2= .2346219 . 

(ii) Approximating the pdf of the project completion time using interpolation-

The approximate pdf of project completion time using the closeness to the 

exact values of the first three moments as a criterion can be obtained by 

interpolating the incomplete Beta function. The best fitted curve was 

found to be a Beta function with parameters r=6.5 and s=10.5988. The pdf of 

this function is shown in Table 8.15. 

Table 8.15 

Z=X"X p(z) F(z) Z=X*X p(z) F(z) 

.02 .0000002 .0000002 .92 .0246374 .7816812 

.04 .0000008 .0000010 .94 .0231098 .8047910 

.06 .0000051 .0000061 .96 .0215495 .8263405 

.08 .0000177 .0000238 .98 .0199754 .8463159 

.10 .0000475 .0000713 1.00 .0184058 .8647217 

.12 .0001069 .0001782 1.02 .0168571 .8815788 

.14 .0002106 .0003888 1.04 .0153442 .8969230 
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Z=X"X p(z) F(x) z=x*x p(z) F(z) 

. 16 . 0 0 0 3 7 6 3 . 0007651 1 . 0 6 . 0138806 .9108036 

. 18 . 0006226 .0013877 1 . 0 8 .0124771 .9232807 

. 2 0 . 0009688 . 0023565 1 . 1 0 . 0111434 .9344241 

. 2 2 . 0014325 .0037890 1 . 1 2 . 0098865 .9443106 

. 2 4 . 0 0 2 0 2 9 5 . 0058185 1 . 1 4 . 0087124 .9530320 

.26 . 0027729 . 0 0 8 5 9 1 4 1 . 1 6 . 0076246 .9606476 

.28 . 0036713 .0122627 1 . 1 8 . 0066249 .9672725 

. 3 0 . 0047295 . 0 1 6 9 9 2 2 1 . 2 0 . 0057141 .9729866 

. 3 2 . 0059471 . 0229393 1 . 2 2 . 0048912 .9778778 

. 3 4 .0073187 . 0302580 1 . 2 4 .0041537 .9820315 

.36 . 0088339 .0390919 1 . 2 6 . 0034989 .9855304 

.38 . 0104780 .0495699 1 . 2 8 . 0029220 . 9884524 

. 4 0 . 0122318 .0618017 1 . 3 0 . 0024188 .9908712 

. 4 2 . 0140721 .0758738 1.32 . 0019837 .9928549 

. 4 4 .0159731 . 0918469 1 . 3 4 . 0 0 1 6 1 1 4 . 9944663 

.46 . 0179068 .1097537 1 . 3 6 . 0012949 . 9957612 

. 48 . 0198431 .1295968 1 . 3 8 . 0010300 . 9967912 

. 50 . 0217518 .1513486 1 . 4 0 . 0008099 .9976011 

. 5 2 .0235366 . 1749511 1 . 4 2 . 0 0 0 6 2 9 2 .9982303 

. 5 4 .0253661 . 2003172 1 . 4 4 .0004826 .9987129 

.56 . 0270149 .2273321 1 . 4 6 . 0003650 .9990779 

.58 . 0285231 . 2 5 5 8 5 5 2 1 . 4 8 . 0 0 0 2 7 2 3 .9993502 

. 60 . 0 2 9 8 6 8 3 .2857235 1 . 5 0 . 0001998 .9995500 

.62 . 0 3 1 0 3 1 4 . 3167549 1 . 5 2 . 0 0 0 1 4 4 2 .9996942 

. 6 4 . 0319959 . 3487508 1 . 5 4 . 0001023 .9997965 

. 66 . 0327505 . 3815013 1 . 5 6 . 0000710 .9998675 

.68 . 0332870 . 4147883 1 . 5 8 . 0 0 0 0 4 8 4 .9999159 

. 70 . 0336013 .4483896 1 . 6 0 . 0000321 .9999480 

.72 . 0 3 3 6 9 3 3 .4820829 1 . 6 2 . 0000208 .9999688 

. 74 . 0335668 .5156497 1 . 6 4 . 0 0 0 0 1 3 1 .9999819 

.76 .0332286 . 5 4 8 8 7 8 3 1 . 6 6 . 0000079 .9999898 

.78 . 0326896 . 5815679 1 . 6 8 .0000047 .9999945 

.80 . 0319624 . 6 1 3 5 3 0 3 1 . 7 0 .0000027 .9999972 

.82 . 0310628 . 6445931 1 . 7 2 . 0 0 0 0 0 1 4 .9999986 

. 8 4 . 0300083 . 6746014 1 . 7 4 .0000007 .9999993 

. 86 . 0288183 .7034197 1 . 7 6 . 0 0 0 0 0 0 4 .9999997 

.88 . 0 2 7 5 1 2 3 . 7309320 1 . 7 8 . 0 0 0 0 0 0 2 .9999999 

.90 . 0261118 .7570438 1 . 8 0 . 0 0 0 0 0 0 1 1 . 0 0 0 0 0 0 0 

M = ni| = . 7502554 = . 6150564 m; . 5423512 , 

0= = - ( i n p 2 = . 6 1 5 0 5 6 4 - ( . 7 5 0 2 5 5 4 ) 2 = .0521733 => a = . 2 2 8 4 1 4 7 , 

™3 ~ ""3 ~ ^ 2(m^)3 

= . 5 4 2 3 5 1 2 - 3 ( . 7 5 0 2 5 5 4 ) ( . 6 1 5 0 5 6 4 ) + 2 ( . 7 5 0 2 5 5 4 ) 3 = . 0026151 , 

= . 0 0 2 6 1 5 1 / ( . 0 5 2 1 7 3 3 ) ^ 

= . 2194409 
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Notice that the exact mean, variance, and coefficient of skewness of the 

project completion time can be computed using the following equations: 

Since duration times of activities A and B are statistically independent; 

(i) mean value of the project completion time (T=A+B) equals the mean 

value of A plus the mean value of B. 

Hence, 
m|(T)=m|(A) + m'(B) 

= ^A + ^B ' 

(ii) variance of the project completion time equals the variance of A 

plus the variance of B. 

m2(T)=m2(A) + m^CB) or o? = 0% + *B' 

(iii) third moment about the mean of the project completion time 

equals the third moment about the mean of A plus the third 

moment about the mean of B. 

m^CT) = m^CA) + m^CB) , 

(iv) and finally coefficient of skewness of the project completion 

time 

g^(T) = ny(T)/[m2(T)]: , 

where: 

m| = first moment about the origin = (mean). 

m^ = second moment about the mean = (variance). 

m^ = third moment about the mean. 

g^ = coefficient of skewness = (moment coefficient of 

skewness). 

By using the above equations the exact mean, variance, and coefficient 

of skewness of the project completion time of example 3 can be computed 

as follows: 

From page 380 we have exact mean for activities A and B; M^=Mg= .375, 

exact variance of activities A and B; = .0260416, and exact 

coefficient of skewness of activities A and B; g^(A) = g^(B) = .3098386 . 

Therefore, 
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Exact mean of the project completion time; 

+ Mg 

= . 3 7 5 + . 3 7 5 = . 7 5 . 

Exact variance of the project completion time; 

Om = O' + a' 
T A B 

= . 0 2 6 0 4 1 6 + . 0 2 6 0 4 1 6 = . 0 5 2 0 8 3 2 • 

Exact coefficient of skewness of the project completion time; 

(T) = m2(T)/[m2(T)]2 

= (m^CA) + m^CB))/[m^CA) + m^ (B)]^ , 

since m^(A)=m2(B) and m^(A)=m2(B) , therefore. 

g^(T) = (2m2(A))/[2m2(A)]2 

= m2(A)/2^[m^CA)]^ + m2(A)/2^[m^CA)]^ 

= 2 g ^ ( A ) / 2 * or g ^ ( A ) / 2 ^ 

= . 3 0 9 8 3 8 6 / 1 . 4 1 4 2 1 3 5 

= . 2 1 9 0 8 8 9 . 

Notice that the difference between exact mean, variance and coefficient 

of skewness and the mean, variance and coefficient of skewness obtained 

in second approach (Approximating pdf of the project completion time 

using interpolation), as shown in Table 8 .16 is not significant, therefore, 

we assume the pdf of the project completion time obtained using second 

approach to be error free and considered as "true" pdf. In the following 

the "true" pdf is compared with the approximate pdf of Table 8 .14 which 

is obtained by using 30 cells for each activity. 

Table 8 .16 

Approximate value Exact value % Error 

Mean 

Variance 

Coefficient of 
skewness 

. 7 5 0 2 5 5 4 

. 0 5 2 1 7 3 3 

. 2 1 9 4 4 0 9 

. 7 5 0 

. 0 5 2 0 8 3 2 

. 2 1 9 0 8 8 9 

. 0 3 

. 0 0 1 7 

.0016 
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The application of the linear interpolation to Tables 8.14 and 8.15 

led to the exclusion of the first 13 and the last 26 realizations of 

Table 8.15. Table 8.17 has the complete output of the linear 

interpolation. Figure 8.11 is a digital plot of the first three columns 

of Table 8.17. 

Table 8.17 

I REALIZATION TRUE PROB. APROXMTD PROB. ACTUAL DIFFERENCE 

1 .28 .0122627 .0119259 -.0003368 
2 .30 .0169922 .0163706 -.0006216 
3 .32 .0229393 .0230342 .0000949 
4 .34 .0302580 .0305925 .0003345 
5 .36 .0390919 .0399308 .0008389 
6 .38 .0495699 .0513474 .0017775 
7 .40 .0618017 .0638184 .0020167 
8 .42 .0758738 .0796599 .0037861 
9 .44 .0918469 .0966992 .0048523 
10 .46 .1097537 .1160315 .0062778 
11 .48 .1295968 .1377370 .0081402 
12 .50 .1513286 .1606392 .0092906 
13 .52 .1749511 .1868584 .0119073 
14 .54 .2003172 .2140475 .0137303 
15 .56 .2273321 .2431552 .0158231 
16 .58 .2558552 .2739123 .0180571 
17 .60 .2857235 .3056586 .0199351 
18 .62 .3165490 .3392261 .0226771 
19 .64 .3487508 .3731743 .0244235 
20 . 66 .3815013 .4078719 .0263706 
21 .68 .4147883 .4429504 .0281621 
22 .70 .4483896 .4782216 .0298320 
23 .72 .4820829 .5133026 .0312197 
24 .74 .5156497 .5480567 .0324070 
25 .76 .5488783 .5821615 .0332832 
26 .78 .5815679 .6153461 .0337782 
27 .80 .6135303 .6480728 .0345425 
28 .82 .6445931 .6788055 .0342124 
29 .84 .6746014 .7087090 .0341076 
30 .86 .7034197 .7369695 .0335498 
31 .88 .7309320 .7635100 .0325780 
32 .90 .7570438 .7891870 .0321432 
33 .92 .7816812 .8120308 .0303496 
34 .94 .8047910 .8338936 .0291026 
35 .96 .8263405 .8538068 .0274663 
36 .98 .8463159 .8718840 .0255681 
37 1.00 .8647217 .8890372 .0243155 
38 1.02 .8815788 .9035056 .0219268 
39 1.04 .8969230 .9171345 .0202115 
40 1.06 .9108036 .9290926 .0182890 
41 1.08 .9232807 .9395880 .0163073 
42 1.10 .9344241 .9493482 .0149241 
43 1.12 .9443106 .9571439 .0128333 
44 1.14 .9530230 .9643679 .0113449 
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ACTUAL DIFFERENCE 

45 
46 
47 
48 
49 
50 
51 

1 .16 
1 . 1 8 
1 .20 
1 .22 
1,24 
1.26 
1 . 2 8 

.9606476 

.9672725 

.9729866 

.9778778 

.9820315 

.9855304 

.9884524 

.9704607 

.9756231 

.9803218 

.9838563 

.9869806 

.9892920 

.9914134 

.0098131 

.0083506 

.0073352 

.0059785 

.0049491 

.0037616 

.0028610 

Table 8.17 (Concluded) 

Comparison of the Exact and the Approximate Probability Distribution 

Functions of Example 3. 

The Average of the Absolute Values of the Deviations = 

The Maximum of the Absolute Values of the Deviations = 

No. 27. 

Number of Positive Deviates = 49 

Number of Negative Deviates = 2 

.017182 

.0345425. It is 

Example 4: 

Let us assume activities A and B of example 3 are parallel, then the pdf 

of T=max{A,B} can be computed as shown in Tables 8.18 and 8.19. Table 

8.18 shows the approximate pdf of the project completion time using 30 

cells for activities A and B. 

Table 8.19 shows the approximate pdf of the project completion time 

using 100 cells for activities A and B, this pdf is assumed to be correct 

(error free) for calculation purposes. 
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P(R) 

1.0 

0.9 

0 . 8 

0.7 

0.6 

0.5 

0.4 

0.3 

0 . 2 

0 .1 

0.0 

r « * * 

Exact 

_ Approximate 

Both 

.2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 

Figure 8.11 

Comparison of the Exact and the Approximate Probability Distribution 

Functions of Example 3. 

Table 8.18 

R 

W=X"'X p(w) F(w) w=x.x p(w) F(w) 

.0333 .0000024 .0000024 .5333 .0588286 .7285889 

. 0666 .0001109 .0001133 . 5667 .0828223 .8114112 

.1000 .0008836 .0009969 .6000 .0543736 .8657848 

.1333 .0034258 .0044227 .6333 .0427539 .9085387 

.1667 .0087587 .0131814 .6667 .0323343 .9408730 

.2000 .0174306 .0306120 .7000 .0232275 .9641005 

.2333 .0293221 .0599341 .7333 .0155459 .9796464 

.2667 .0432291 .1031632 . 7667 .0098308 .9894772 

.3000 .0577541 .1609173 .8000 .0057066 .9951838 

.3333 .0711961 .2321134 .8333 .0029095 .9980933 

.3667 .0819914 .3141048 .8667 .0013055 .9993988 

.4000 .0891071 .4032119 .9000 .0004698 .9998686 

.4333 .0916663 .4948782 .9333 .0001136 .9999822 

. 4667 .0901153 .5849935 .9667 .0000146 .9999968 

.5000 .0847668 .6697603 1.0000 .0000004 .9999972 
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M=nî  = .4582186, = .229189, = .1231471 , 

0= = - (m|)2 = .229189 - ( . 4582186)= = .0192248 ==> a = .1386535 , 

m2=m^ - 3m|m^ + 2(m|)3 = .1231471-3(.4582186)(.229189)+(.4582186)^=.0005102, 

g = .0005102/(.0192248)2 = .0005102/.0026655 = 0-1914087. 

Table 8.19 

v=x.x p(v) F(v) v=x.x p (v) F ( v ) 

.01 .0000000 .0000000 .51 .0251262 .6233317 

.02 .0000000 .0000000 .52 .0245678 .6478995 

.03 .0000007 .0000007 .53 .0239341 .6718336 

.04 .0000032 .0000039 .54 .0232312 .6950648 

.05 .0000102 .0000141 .55 ,0224666 .7175314 

.06 .0000255 .0000396 .56 .0216476 .7391790 

.07 .0000542 .0000938 .57 ,0207814 .7599604 

.08 .0001025 .0001963 .58 ,0198760 .7798364 

.09 .0001774 .0003737 .59 .0189390 .7987754 

.10 .0002863 .0006600 .60 ,0179776 .8167530 

.11 .0004369 .0010969 .61 .0169995 .8337525 

.12 .0006368 .0017337 .62 .0160115 ,8497640 

.13 .0008934 .0026271 .63 .0150210 ,8647850 

.14 .0012129 .0038400 .64 ,0140344 .8788194 

.15 .0016013 .0054413 .65 ,0130576 .8918770 

.16 .0020627 .0075040 . 66 .0120964 .9039734 

.17 .0026002 .0101042 .67 ,0111564 .9151298 

.18 .0032163 .0133205 .68 ,0102422 .9253720 

.19 .0039107 .0172312 .69 ,0093580 .9347300 

.20 .0046822 .0219134 .70 ,0085079 .9432379 

.21 .0055285 .0274419 .71 .0076948 .9509327 

.22 .0064452 .0338871 .72 .0069215 .9578542 

.23 .0074267 .0413138 .73 .0061907 .9640449 

.24 .0084665 .0497803 .74 .0055031 .9695480 

.25 .0095564 .0593367 .75 .0048608 .9744088 

.26 .0106876 .0700243 .76 .0042641 .9786729 

.27 .0118505 .0818748 .77 .0037135 .9823864 

.28 .0130344 .0949092 .78 .0032086 .9855950 

.29 .0142287 .1091379 .79 .0027489 .9883439 

.30 .0154220 .1245599 .80 .0023337 .9906776 

.31 .0166032 .1411631 .81 .0019611 .9926387 

.32 .0177611 .1589242 .82 .0016303 .9942690 

.33 .0188846 .1778088 .83 .0013388 .9956078 

.34 .0199320 .1977720 .84 .0010845 .9966923 

.35 .0209869 .2187589 .85 .0008657 .9975580 

.36 .0219460 .2407049 .86 .0006791 .9982371 

.37 .0228322 .2635371 .87 .0005226 .9987597 

.38 .0236378 .2871749 .88 .0003934 .9991531 

.39 .0243558 .3115307 .89 .0002885 .9994416 

.40 .0249806 .3365113 .90 .0002052 .9996468 

.41 .0255074 .3620187 .91 .0001408 .9997876 

.42 .0259326 .3879513 .92 .0000922 .9998798 

.43 .0262538 .4142051 .93 .0000574 .9999372 

.44 .0264695 .4406746 .94 .0000332 .9999704 
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Table 8.19 (Concluded) 

v=x.x p(v) F(v ) v= x.x p(v) F(v ) 

.45 .0265795 .4672541 95 .0000174 .9999878 

.46 .0265846 .4938387 96 .0000080 .9999958 

.47 .0264860 .5203247 97 .0000030 .9999988 

.48 .0262872 .5466119 98 .0000008 .9999996 

.49 .0259911 .5726030 99 .0000002 .9999998 

.50 .0256025 .5982055 1. 00 .0000002 1.0000000 

M=mj = .4717789 , 
-2 

= .2427476 , = .1339443 , 

- (m'^)2=.2427476 - ( . 4 7 1 7 7 8 9 ) 2 = .0201723 ==> 0.1420292 , 

- + 2(mj = .1339443 - .3435695 + .2100126 = . 0003874 , 

3 3 
g^=m2/(mg): = . 0003874/(.0201723) 2 

= . 1352181 . 

The application of the linear interpolation to Tables 8.18 and 8.19 led 

to the exclusion of the first 16 and last 21 realizations of Table 8.19. 

Table 8.20 has the c omplete output of the linear interpolat ion. Figure 

8.12 is a digital plot of the first three columns of Table 8.20. 

I REALIZATION TRUE PROS. APRXMTD PROB. ACTUAL DIFFERENCE 

1 .17 .01014042 .0149081 .0048039 
2 .20 .02191340 .0306120 .0086986 
3 .24 .04978030 .0686047 .0188244 
4 .27 .08187480 .1088839 .0270091 
5 .30 .12455990 .1609173 .0363574 
6 .34 .19777200 .2485595 .0507875 
7 .37 .26353710 .3229336 .0593965 
8 .40 .33651130 .4032119 .0667006 
9 .44 .44067460 .5129530 .0722784 
10 .47 .52032470 .5933928 .0730681 
11 .50 .59820550 .6697603 .0715548 
12 .54 .69506480 .7452026 .0501378 
13 .57 .75996040 .8167983 .0568379 
14 . 60 .81675300 .8657848 .0490318 
15 .64 .87881940 .9150237 .0362043 
16 .67 .91512980 .9431733 .0280435 
17 .70 .94323790 .9641005 .0208626 
18 .74 .96954800 .9816164 .0120684 
19 .77 .98238640 .9900417 .0076553 
20 .80 .99067760 .9951838 .0045062 

Table 8.20 
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Comparison of the Exact and the Approximate Probability Distribution Functions 

of Example 4. 

The Average of the Absolute Values of the Deviations = .0372413 

The Maximum of the Absolute Values of the Deviations = .0730681. It is 

No. 10. 

Number of Positive Deviates = 20. 

Number of Negative Deviates = 0. 

P(R) 

1.0 

0.9 

0 . 8 

0.7 

0 .6 

0.5 

0.4 

0.3 

0 . 2 

0.1 

- T * 

Exact 

~ Approximate 

* Both 

15 ,25 .3 .35 .4 .45 .5 .55 .6 .65 .7 .75 .8 R 

Figure 8.12 

Comparison of the Exact and the Approximate Probability Distribution Functions 

of Example 4. 

Example 5: 

Consider again network configuration of Figure 8.9, assume activities A 

and B have Beta distribution with parameters r=2 and s=8, notice that in 
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this case the activities have extreme skewed distribution, recall that 

in example 3 the activities had moderate skewed distribution. 

The extreme skewed distribution with parameters r=2 and s=8 gave rise to 

a distribution with a range of 0 and 1 and a mean of .2 for activities A and 

B as shown in Figure 8 . 1 3 . 

Same as example 3 to approximategthe Beta by a discrete distribution, we 

first divide the range of the distribution into 30 cells, then from the 

tables of the Incomplete Beta - Function (Pearson, 1956), with these parameters 

we obtain the information in Table 8.21. 

The tables of the Incomplete Beta-Function with 100 cells for r=2 and s=8 

as shown in Table 8.22 taken as being correct for calculation purposes. 

2.0 

Figure 8.13 

Table 8.21 

x p(x) F(x) x p(x) F(x) 

.0333 .0416989 .0416989 .5333 .0048717 .9932666 

.0667 .0966020 .1383009 .5667 .0029732 .9962398 

.1000 .1221857 .2604866 .6000 .0017309 .9979707 

.1333 .1281315 .3886181 .6333 .0009394 .9989101 

.1667 .1220010 .5106191 .6667 .0004890 .9993991 

.2000 .1082053 .6188244 .7000 .0001363 .9996354 

.2333 .0921844 .7110088 .7333 .0001021 .9997375 
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X p ( x ) F(x ) X p(x) F(x) 

.2667 .0756150 .7866238 . 7667 .0000406 .9997781 

.3000 .0600106 .8466344 .8000 .0000141 .9997922 

.3333 .0458183 .8924527 .8333 .0000039 .9997961 

.3667 .0342376 .9266903 .8667 .0000006 .9997967 

.4000 .0248352 .9515255 .9000 .0000001 .9997968 

.4333 .0172955 .9688210 .9333 .0000000 .9997968 

.4667 .0117987 .9806197 .9667 .0000000 .9997968 

.5000 .0077752 .9883949 1.0000 .0000000 .9997968 

M=m| = .1999617 , = .0526811 = .0168492 , 

- (m|)2 = .0526811 - (.1999617)= = -0126965 ===> o=.1126787 , 

3m|m^ +2(m|)3 = .0168492 - .0316026 + .0159906 =.0012372 , 

g =m /(m^): = .0012372/(.0126965)% = .8648119 . 

Table 8.22 

X p(x) F(x) X p(x) F(x) 

.01 .0034357 .0034357 .47 .0042017 .9703644 

.02 ,0096792 .0131149 .48 .0037611 .9741255 

.03 .0150433 .0281582 .49 .0033567 .9774822 

.04 .0196076 .0477658 .50 .0029866 .9804688 

.05 .0234456 .0712114 .51 .0026489 .9831177 

.06 .0266266 .0978380 .52 .0023418 .9854595 

.07 .0292144 .1270524 .53 .0020634 .9875229 

.08 .0312686 .1583210 .54 .0018118 .9893347 

.09 .0328447 .1911657 .55 .0015851 .9909198 

.10 .0339933 .2251590 .56 .0013818 .9923016 

.11 .0347623 .2599213 .57 .0011998 .9935014 

.12 .0351950 .2951163 .58 .0010376 .9945390 

.13 .0353319 .3304482 .59 .0008936 .9954326 

.14 .0352098 .3656580 . 60 .0007663 .9961989 

.15 .0348628 .4005208 .61 .0006541 .9968530 

.16 .0343222 .4348430 .62 .0005557 .9974087 

.17 .0336160 .4684590 .63 .0004698 .9978785 

.18 .0327706 .5012296 .64 .0003950 .9982735 

.19 .0318093 .5330389 .65 .0003303 .9986038 

.20 .0307535 .5637924 . 66 .0002747 .9988785 

.21 .0296224 .5934148 .67 .0002270 .9991055 

.22 .0284336 .6218484 .68 .0001864 .9992919 

.23 .0272025 .6490509 .69 .0001520 .9994439 

.24 .0259429 .6749938 .70 .0001231 .9995670 

.25 .0246675 .6996613 .71 .0000988 .9996658 

.26 .0233867 .7230480 .72 .0000788 .9997446 

.27 .0221106 .7451586 .73 .0000622 .9998068 
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Table 8.22 (Concluded) 

X p(x) F(x) X p(x) F(x) 

.28 .0208473 .7660059 .74 .0000487 .9998555 

.29 .0196039 .7856098 .75 .0003877 .9998932 

.30 .0183870 .8039968 .76 .0000289 .9999221 

.31 .0172014 .8211982 .77 .0000218 .9999439 

.32 .0160517 .8372499 .78 .0000164 .9999603 

.33 .0149415 .8521914 .79 .0000120 .9999723 

.34 .0138735 .8660649 .80 .0000088 .9999811 

.35 .0128501 .8789150 .81 .0000062 .9999873 

.36 .0118727 .8907877 .82 .0000044 .9999917 

.37 .0109426 .9017303 .83 .0000030 .9999947 

.38 .0100603 .9117906 .84 .0000020 .9999967 

.39 .0092260 .9210166 .85 .0000013 .9999980 

.40 .0084395 .9294561 .86 .0000008 .9999988 

.41 .0077005 .9371566 .87 .0000006 .9999994 

.42 .0070079 .9441645 .88 .0000003 .9999997 

.43 .0063610 .9505255 .89 .0000001 .9999998 

.44 .0057583 .9562838 .90 .0000001 .9999999 

.45 .0051986 .9614824 .91 .0000001 1.0000000 

.46 .0046803 .9661627 .92 .0000000 1.0000000 

|j=.2 , o = .12060454 , g^=.8291561 

Exact mean, variance, and coefficient of skewness of each activity can be 

computed as follows: 

Mean = r/(r+s) 

= 2 / ( 2 + 8 ) 

= . 2 , 

Variance = rs/(r+s+l)(r+s)^ 

= 2x8/(2+8+1)(2+8)2 

= .0145454 ==> o = .1206043 , 

1 1 

Coefficient of skewness = 2(s-r)(r+s+l)^/(r+s+2)(rs)^ 

= 2 ( 8 - 2 ) ( 2 + 8 + l ) = / ( 2 + 8 + 2 ) ( 2 x 8 ) 2 

= .8291561 . 

In this example the pdf of project completion time using 30 cells for input 

distribution is compared with the pdf of project completion time obtained 

by complete convolution operation of the duration times of activites A and 

B using 100 cells for each activity. The latter is considered to be correct 
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(error free) for calculation purposes. 

(i) Approximating the pdf of the project completion time using 30 cells 

for input distribution. 

The approximate pdf of the project completion time using 30 cells can be 

obtained from Table 8.21 as shown in Table 8.23. 

Table 8.23 

y=x"x p(y) f(y) y=X"X p(y) F(y) 

.0667 .0017387 .0017387 .7333 .0113078 .9730333 

.1000 .0080562 .0097949 .7667 .0082546 .9812879 

.1333 .0195218 .0293167 . 8000 .0059086 .9871965 
. 1667 .0342924 .0636091 .8333 .0041488 .9913453 
.2000 .0498592 .1134683 .8667 .0028572 .9942025 
.2333 .0639086 .1773769 .9000 .0019296 .9961321 
.2667 .0748244 .2522013 .9333 .0012778 .9974099 
.3000 .0818226 .3340239 .9667 .0008296 .9982395 
.3333 .0847540 .4187779 1.0000 .0005276 .9987671 
.3667 .0839188 .5026967 1.0333 .0003284 .9990955 
.4000 .0799506 .5826473 1.0667 .0001998 .9992953 
.4333 .0736608 .6563081 1.1000 .0001184 .9994137 
.4667 .0658528 .7221609 1.1333 .0000688 .9994825 
.5000 .0572754 .7794363 1.1667 .0000386 .9995211 
.5333 .0485694 .8280057 1.2000 .0000210 .9995421 
.5667 .0402152 .8682209 1.2333 .0000108 .9995529 
.6000 .0325494 .9007703 1.2667 .0000054 .9995583 
.6333 .0257784 .9265487 1.3000 .0000026 .9995609 
.6667 .0199904 .9465391 1.3333 .0000010 .9995619 
.7000 .0151864 .9617255 1.3667 .0000002 .9995621 

M=m|= .3998142 , m^ = = .1852844 m- = .0968716 , 

02=^2" (m|)2 = .1852844 -- (.3998142) 2 = .0254331 ==> a = . 1594775 , 

m2=m^ - Srajm̂  +2(mj)3 = .0968716 - .222238 + .1278216 = .0024552 

g^=m^/(m2)2 = .6053254 • 

( ii) Approximating the pdf of the proiect completion time using 100 cells 

for input distribution. 

The approximate pdf of the project completion time using 100 cells can be 

obtained from Table 8.22 as shown in Table 8.24. 



T a b l e 8 . 2 4 

3 9 5 

z=x*x p(z) F ( z ) Z=X"X P(z) F ( z ) 

. 02 . 0 0 0 0 1 1 8 . 0 0 0 0 1 1 8 .66 .0072936 .9182698 

. 0 3 . 0 0 0 0 6 6 4 .0000782 . 6 7 . 0 0 6 8 0 4 0 . 9 2 5 0 7 3 8 

. 0 4 . 0 0 0 1 9 6 8 . 0 0 0 2 7 5 0 .68 . 0 0 6 3 3 5 6 . 9 3 1 4 0 9 4 

. 0 5 . 0 0 0 4 2 5 8 .0007008 .69 . 0 0 5 8 9 0 8 .9373002 

. 0 6 . 0 0 0 7 6 6 6 . 0 0 1 4 6 7 4 . 7 0 . 0 0 5 4 6 6 6 .9427668 

. 0 7 .0012264 .0026938 . 7 1 . 0 0 5 0 6 2 6 .9478294 

. 0 8 . 0 0 1 8 0 5 6 . 0 0 4 4 9 9 4 . 7 2 . 0 0 4 6 8 4 6 . 9 5 2 5 1 4 0 

. 0 9 . 0 0 2 5 0 0 6 . 0 0 7 0 0 0 0 . 7 3 . 0 0 4 3 2 5 2 . 9 5 6 8 3 9 2 

. 1 0 . 0 0 3 3 0 3 2 .0103032 . 7 4 .0038976 .9608268 

. 1 1 . 0 0 4 2 0 3 8 . 0 1 4 5 0 7 0 . 7 5 . 0 0 3 6 6 9 8 . 9 6 4 4 9 6 6 

. 1 2 .0051896 .0196966 . 7 6 . 0 0 3 3 7 1 8 .9678684 

. 1 3 . 0 0 6 2 4 7 0 .0259436 . 7 7 . 0 0 3 0 9 8 8 .9709672 

. 1 4 . 0 0 7 3 6 1 0 . 0 3 3 3 0 4 6 .78 . 0 0 2 8 3 0 8 . 9 7 3 7 9 8 0 

. 1 5 .0085172 .0418218 . 7 9 .0025880 .9763860 

. 1 6 . 0 0 9 7 0 0 8 . 0 5 1 5 2 2 6 .80 .0023624 . 9 7 8 7 4 8 4 

. 1 7 .0108966 .0624192 . 8 1 . 0 0 2 1 5 1 6 . 9 8 0 9 0 0 0 

. 1 8 .0120908 . 0 7 4 5 1 0 0 . 82 . 0 0 1 9 5 7 2 .9828572 

. 1 9 .0132706 .0877806 . 83 .0017766 .9846338 

.20 .0144232 .1022038 . 8 4 . 0 0 1 6 1 0 8 .9862446 

. 2 1 .0155382 . 1 1 7 7 4 2 0 .85 . 0 0 1 4 5 7 6 .9877022 

. 2 2 .0166048 .1343468 .86 . 0 0 1 3 1 7 8 .9890200 

. 2 3 . 0 1 7 6 1 5 0 . 1 5 1 9 6 1 8 . 8 7 . 0 0 1 1 8 7 6 .9902076 

. 2 4 .0185598 .1705216 .88 . 0 0 1 0 6 9 6 .9912772 

. 2 5 . 0 1 9 4 3 3 8 . 1 8 9 9 5 5 4 .89 . 0 0 0 9 6 1 4 .9922386 

.26 .0202312 .2101866 .90 .0008632 . 9 9 3 1 0 1 8 

. 2 7 .0209476 . 2 3 1 1 3 4 2 . 9 1 . 0 0 0 7 7 3 6 .9938754 

.28 . 0 2 1 5 8 0 0 .2527142 . 9 2 .0006922 . 9 9 4 5 6 7 6 

. 2 9 .0221278 . 2 7 4 8 4 2 0 . 93 . 0 0 0 6 1 7 8 . 9 9 5 1 8 5 4 

. 3 0 .0225856 . 2 9 7 4 2 7 6 . 9 4 . 0 0 0 5 5 0 4 .9957358 

. 3 1 .0229610 .3203886 . 9 5 . 0 0 0 4 9 0 2 .9962260 

. 3 2 .0232472 . 3 4 3 6 3 5 8 .96 .0004348 .9966608 

. 3 3 .0234488 .3670846 . 9 7 .0003858 . 9 9 7 0 4 6 6 

. 3 4 . 0 2 3 5 6 7 4 . 3 9 0 6 5 2 0 .98 . 0 0 0 3 4 1 4 . 9 9 7 3 8 8 0 

. 3 5 . 0 2 3 6 0 5 2 . 4 1 4 2 5 7 2 . 99 . 0 0 0 3 0 1 2 . 9 9 7 6 8 9 2 

. 3 6 . 0 2 3 5 6 6 0 .4378232 1 . 0 0 . 0 0 0 2 6 4 4 . 9 9 7 9 5 3 6 

. 3 7 .0234532 . 4 6 1 2 7 6 4 1 . 0 1 .0002340 .9981876 

.38 . 0 2 3 2 7 0 6 . 4 8 4 5 4 7 0 1 . 0 2 . 0 0 0 2 0 4 4 .9983920 

. 3 9 . 0 2 3 0 2 2 2 . 5 0 7 5 6 9 2 1 . 0 3 . 0 0 0 1 7 9 4 . 9 9 8 5 7 1 4 

. 4 0 . 0 2 2 7 1 2 4 . 5 3 0 2 8 1 6 1 . 0 4 . 0 0 0 1 5 6 0 .9987274 

. 4 1 .0223466 .5526282 1 . 0 5 . 0 0 0 1 3 6 0 .9988634 

. 4 2 . 0 2 1 9 2 9 2 . 5 7 4 5 5 7 4 1 . 0 6 . 0 0 0 1 2 3 6 .9989870 

. 4 3 . 0 2 1 4 6 4 6 . 5 9 6 0 2 2 0 1 . 0 7 . 0 0 0 1 0 4 0 .9990910 

. 4 4 . 0 2 0 9 5 9 0 . 6 1 6 9 8 1 0 1 . 0 8 . 0 0 0 0 8 9 4 . 9 9 9 1 8 0 4 

. 4 5 . 0 2 0 4 1 5 4 .6373964 1 . 0 9 . 0 0 0 0 7 7 0 . 9 9 9 2 5 7 4 

. 4 6 . 0 1 9 8 3 9 6 .6572360 1 . 1 0 .0000664 .9993238 

. 4 7 . 0 1 9 2 3 6 2 .6764722 1 . 1 1 . 0 0 0 0 5 7 0 . 9 9 9 3 8 0 8 

.48 . 0 1 8 6 0 9 8 .6950820 1 . 1 2 . 0 0 0 0 4 7 4 .9994282 

. 4 9 . 0 1 7 9 6 4 2 .7130462 1 . 1 3 . 0 0 0 0 4 1 8 . 9 9 9 4 7 0 0 

. 5 0 . 0 1 7 3 0 8 8 . 7 3 0 3 5 5 0 1 . 1 4 . 0 0 0 0 3 9 8 . 9 9 9 5 0 9 8 

. 5 1 .0166332 .7469882 1 . 1 5 . 0 0 0 0 3 0 0 .9995398 

. 5 2 . 0 1 5 9 5 6 0 . 7 6 2 9 4 4 2 1 . 1 6 . 0 0 0 0 2 5 4 . 9995652 

. 5 3 . 0 1 5 2 7 5 2 .7782194 1 . 1 7 . 0 0 0 0 2 1 6 .9995868 

. 5 4 . 0 1 4 5 9 4 0 .7928134 1 . 1 8 . 0 0 0 0 1 7 8 .9996046 
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Z=X" X p(z) F ( z ) Z=X"X p(z) F(z) 

.55 .0139160 .8067294 1 .19 .0000146 .9996192 

.56 .0132446 .8199740 1.20 .0000118 .9996310 

.57 .0125804 .8325544 1.21 .0000100 .9996410 

.58 .0119272 .8444816 1 . 2 2 .0000082 .9996492 

.59 .0112878 .8557694 1 .23 .0000060 .9995520 

.60 .0106620 .8664314 1.24 .0000052 .9996604 

.61 .0100532 .8764846 1.25 .0000040 .9996644 

.62 .0094620 .8859466 1 .26 .0000030 .9996674 

.63 .0088896 .8948362 1.27 .0000022 .9996696 

.64 .0083362 .9031724 1.28 .0000016 .9996712 

.65 .0078038 .9109762 1.29 .0000012 .9996724 
1.30 .0000006 .9996730 

p=m| = .4097325 , m' = .1969569 , m̂  = .1073794 , 

= m = .0290762 ==> 0 = .1705174 , m^ = .0028528 , 

= m^/ (m^)^ = 0028528/ 10290762)2 = 5754049 . 

The exact mean, variance, and coefficient of skewness can be computed as 

follows: 

From page 393 we have exact mean for activities A and B, = .2; 

exact variance of activites A and B, = .0145454, and exact coefficient 

of skewness of activities A and B, g^(A)=g^(B)= .8291561 . 

Therefore, 

Exact mean of the project completion time; 

M,j,= + Mg 

= .2 + .2 = .4 . 

Exact variance of the project completion time, 

a| = 

= .0145454 + .0145454 = .0290908 
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Exact coefficient of skewness of the project completion time; 

"2* 
Since M2(A)-m^(B) and m2(A)=m^(B), therefore > 

gl(T)=g^(A)/2 

= .5863019 

The application of the linear interpolation to Tables 8.23 and 8.24 led 

to the exclusion of the first 8 and last 44 realizations of Table 8.24. 

Table 8.25 has the complete output of the linear interpolation. Figure 

8.14 is a digital plot of the first three columns of Table 8.25. 

REALIZATION TRUE PROB. APRXMTD PROB. ACTUAL DIFFERENCE 

1 .1 .0103032 .0097949 -.0005083 
2 .14 .0333046 .0361939 .0028893 
3 .17 .0624192 .0685490 .0061298 
4 ,20 .1022038 .1134683 .0112645 
5 .24 .1705216 .1923858 .0218642 
6 .27 .2311342 .2603094 .0291752 
7 .30 .2974276 .3340239 .0365963 
8 .34 .3906520 .4356102 .0449582 
9 .37 .4612764 .5106186 .0493422 
10 .40 .5302816 .5826473 .0523657 
11 .44 .6169810 .6695176 .0525366 
12 .47 .6764722 .7278365 .0513643 
13 .50 .7303550 .7794363 .0490813 
14 .54 .7928134 .8360715 .0432581 
15 .57 .8325544 .8714461 .0388917 
16 .60 .8664314 .9007703 .0343389 
17 .64 .9031724 .9305576 .0273852 
18 .67 .9250738 .9480436 .0229698 
19 .70 .9427668 .9617255 .0189587 
20 .74 .9608268 .9746889 .0138621 
21 .77 .9709672 .9818704 .0109032 
22 . 80 .9787484 .9871965 .0084481 
23 .84 .9862446 .9919171 .0056725 

Table 8.25 

Comparison of the Exact and the Approximate Probability Distribution 

Functions of Example 5. 

The Average of the Absolute Values of the Deviations = .0275114 

The Maximum of the Absolute Values of the Deviations = .0525366. 

It is No.11. 
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Number of Positive Deviates = 22. 

Number of Negative Deviates = 1. 

P(R) 

1 . 0 

0 . 9 

0 .8 

0 . 7 

0.6 

0.5 

0.4 

0.3 

0 . 2 

0 . 1 

0 . 0 

• Exact 

_ Approximate 

X Both 

JL. 

.1 .15 .2 .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 .75 .8 .85 R 

Figure 8.14 

Comparison of the Exact and the Approximate Probability Distribution 

Functions of Example 5. 

Example 6: 

Let us assume activities A and B of example 5 are parallel, then the pdf of 

the project completion time T=max[A,B} can be computed as shown in Tables 

8.26 and 8.27. 

Table 8.26 shows the approximate pdf of the project completion time using 

30 cells for activities A and B. 

Table 8.27 shows the approximate pdf of the project completion time using 

100 cells for activities A and B, this pdf is assumed to be correct (error 

free) for calculation purposes. 
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w=x.x p(w) F(w) w=x.x p(w) F(aw) 

.0333 .0017387 .0017387 .5000 .0153095 .9769244 

.0667 .0173884 .0191271 .5333 .0096541 .9865785 

.1000 .0487261 .0678532 .5667 .0059152 .9924937 

.1333 .0831708 .1510240 .6000 .0034518 .9959455 

.1667 .1097078 .2607318 .6333 .0018758 .9978213 

.2000 .1222118 .3829436 .6667 .0009772 .9987985 

.2333 .1225899 .5055335 .7000 .0004724 .9992709 

.2667 .1132435 .6187770 .7333 .0002041 .9994750 

.3000 .0980128 .7167898 .7667 .0000812 .9995562 

.3333 .0796820 .7964718 .8000 .0000282 .9995844 

.3667 .0622831 .8587549 .8333 .0000078 .9995922 

.4000 .0466458 .9054007 .8667 .0000012 .9995934 

.4333 .0332134 .9386141 .9000 .0000002 .9995936 

.4667 .0230008 .9616149 .9333 .0000000 .9995936 

M=m| = .2665017 , = .0821502 , ™3 ~ 028809 , 

= .0111271 == > a = .105485 , 

™3 " • 0009849 , 

g^= m^/( m )2 = .8391411 . 

Table 8.27 

v=x.x p ( v ) F(v ) v=x.x p ( v ) F(v) 

.01 .0000118 .0000118 .47 .0081367 .9416070 

.02 .0001602 .0001720 .48 .0073134 .9489204 

.03 .0006208 .0007928 .49 .0065510 .9554714 

.04 .0014887 .0022815 .50 .0058476 .9613190 

.05 .0027895 .0050710 .51 .0052014 .9665204 

.06 .0045012 .0095722 .52 .0046100 .9711304 

.07 .0065701 .0161423 .53 .0040710 .9752014 

.08 .0089232 .0250655 .54 .0035817 .9787831 

.09 .0114788 .0365443 .55 .0031389 .9819220 

.10 .0141522 .0506965 .56 .0027404 .9846624 

.11 .0168625 .0675590 .57 .0023826 .9870450 

.12 .0195346 .0870936 .58 .0020628 .9891078 

.13 .0221024 .1091960 .59 .0017782 .9908860 

.14 .0245097 .1337057 . 60 .0015262 .9924122 

.15 .0267112 .1604169 .61 .0013037 .9937159 

.16 .0286715 .1890884 .62 .0011082 .9948241 

.17 .0303654 .2194538 .63 .0009374 .9957615 

.18 .0317773 .2512311 .64 .0007884 .9965499 

.19 .0328993 .2841304 .65 .0006596 .9972095 

.20 .0337314 .3178618 . 66 .0005487 .9977582 

.21 .0342793 .3521411 .67 .0004536 .9982118 

.22 .0345543 .38669 54 .68 .0003725 .9985843 
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Table 8.27 (Concluded) 

v=x.x p(v) F(v) v=x.x p(v) F(v ) 

.23 .0345716 .4212670 . 69 .0003038 .9988881 

.24 .0343496 .4556166 .70 .0002460 .9991341 

.25 .0339093 .4895259 .71 .0001976 .9993317 

.26 .0332725 .5227984 .72 .0001575 .9994892 

.27 .0324629 .5552613 .73 .0001244 .9996136 

.28 .0315037 .5867650 .74 .0000974 .9997110 

.29 .0304177 .6171827 .75 .0000754 .9997864 

.30 .0292281 .6464108 .76 .0000578 .9998442 

.31 .0279556 .6743664 .77 .0000436 .9998878 

.32 .0266209 .7009873 .78 .0000328 .9999206 

.33 .0252428 .7262301 .79 .0000240 .9999446 

.34 .0238383 .7500684 .80 .0000176 .9999622 

.35 .0224231 .7724915 .81 .0000124 .9999746 

.36 .0210112 .7935027 .82 .0000088 .9999834 

.37 .0196148 .8131175 .83 .0000060 .9999894 

.38 .0182445 .8313620 .84 .0000040 .9999934 

.39 .0169095 .8482715 .85 .0000026 .9999960 

.40 .0156171 .8638886 . 86 .0000016 .9999976 

.41 .0143738 .8782624 .87 .0000012 .9999988 

.42 .0131842 .8914466 .88 .0000006 .9999994 

.43 .0120521 .9034987 .89 .0000002 .9999996 

.44 .0109800 .9144787 .90 .0000002 .9999998 

.45 .0099697 .9244484 .91 .0000002 1.0000000 

.46 .0090219 .9334703 . 92 .0000000 1.0000000 

M=m| = .271869 , = .0881726 , = .0322659 , 

o^=m2 = .0142599 ==> o = .1194148 , 

= .0005408 , 

/(m^)^ = .3175945 • 

The application of the linear interpolation to Tables 8.26 and 8.27 led to 

the exclusion of the first 6 and last 35 realizations of Table 8.27. Table 

8.28 has the complete output of the linear interpolation. Figure 8.15 is 

a digital plot of the first three columns of Table 8.28. 
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ACTUAL DIFFERENI 

1 .07 .0161423 .0239529 .0078106 
2 .10 .0506965 .0678532 .0171567 
3 .14 .1337057 .1730299 .0393242 
4 .17 .2194538 .2728399 .0533861 
5 .20 .3178618 .3829436 .0650818 
6 .24 .4556166 .5282490 .0726324 
7 .27 .5552613 .6284887 .0732274 
8 .30 .6464108 .7167898 .0703790 
9 .34 .7500684 .8089628 .0588944 
10 .37 .8131175 .8633765 .0502590 
11 .40 .8638886 .9054007 .0415121 
12 .44 .9144787 .9432278 .0287491 
13 .47 .9416070 .9631314 .0215244 
14 .50 .9613190 .9769244 .0156054 
15 .54 .9787830 .9877641 .0089811 
16 .57 .9870450 .9928330 .0057880 

Compar ison of the Exact 
Table 8.28 
and the Approximate Probability Distribution 

Functions of Example 6. 

The Average of the Absolute Values of the Deviations = .0393944 

The Maximum of the Absolute Values of the Deviations = .0732274. It is No. 7, 

Number of Positive Deviates = 16. 

Number of Negative Deviates = 0. 
P(R)j 
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Figure 8.15 

. 4 ,45 755 Teli 
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SUMMARY AND CONCLUSIONS 

In this chapter different discretizing methods have been shown and the 

most efficient method has been used in discretizing distribution functions 

of simple networks. As it was clear from the previous section we had 

to compare the approximate pdf of the project completion time with those 

obtained from Normal Tables (using 140 cells), and Incomplete Beta-

Function Tables (using 100 cells) for input distribution using the 

following five measures of performance; 

1 - Mean value of the project completion time. 

2 - Standard Deviation. 

3 - Coefficient of Skewness. 

4 - The maximum of the absolute values of the deviations (MDV). 

5 - The average of the absolute values of the deviations (ADV). 

The variations in the measures of performance generally depend on the 

structure and the size of the Activity Network, the distributions of 

the activity times, the accuracy of the discretization, and the values of 

NRR and NIN. 

In the following we discuss the impact of the distribution type on the 

measures of performance for the six examples of the chapter. 

Table 8.29 shows how the distribution type affects the measures of 

performance. In each of the six problems considered in Table 8.29, the 

approximate mean value of the project completion time is within 3% of 

the exact mean, and the approximate standard deviation of the project 

completion time is within 29% of the exact standard deviation. The 

approximate mean and standard deviation both are less than exact mean 

and standard deviation except for example 1, while the approximate 
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coefficient of skewness is higher than exact coefficient of skewness. 

The approximate coefficient of skewness is within 42% of the exact 

coefficient of skewness except for example 6 which is very high; i.e. 

approximately 164% higher than the exact value. 

The graph of the density functions of each problem has the form shown 

in Figure 8.15. The approximate graph converges to the true graph as 

the number of cells increases. 

The values of MDV and ADV vary with the type of operation. In the six 

problems of Table 8.29, MDV and ADV for problems 2,4, and 6 are greater 

than MDV and ADV for problems 1,3, and 5 respectively. MDV is always 

less than .074 and ADV is less than .04. The smallest values of MDV and 

ADV were obtained in example 1 where the activities are series and have 

normal distribution. The accuracy of the approximation can be enhanced 

by using more cells. The graphs of the distributions of the problems 

in Table 8.29 have the general form of Figure 8.15 and 8.16. 



Table 8.29 

Sensitivity of the approximating method to the PDF's 

Distribution 
Type 

Operation 
Type 

Comparison of the Approximate PDF with the True PDF 

X 

1 
1—' 
(D 

Mean Standard Deviation Coefficient of 
Skewness 

MDV ADV 

X 

1 
1—' 
(D 

APRX. EXACT APRX. EXACT APRX. EXACT 

1 Normal Convolution 200.00695 200.00000 14.228808 14.187952 0 0 .0245581 .0023969 

2 Normal Greatest 105.67480 106.39181 8.324662 6 .4543783 0 0 .0636856 .0294306 

3 Beta(Moderate 
Skewed) Convolution .73855940 .75000000 .2200811 .22821740 .2346219 .2190889 .0345425 .0171820 

4 Beta(Moderate 
Skewed) Greatest .45821860 .47177890 .1386535 .14202920 .1914087 .1352181 .0730681 .0372413 

5 Beta(Extreme 
Skewed) Convolution .39981420 .40000000 .1594775 .17056020 .6053254 .5863019 .0525366 .0275114 

6 Beta(Extereme 
Skewed) Greatest .26650170 .27186900 .1054850 .11941480 .8391411 .3175945 .0732274 .0393944 

o 
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Figure 8.16 

General Forms of the Probability Density Functions of the Project 

Completion time. 
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Figure 8.17 

General Form of the True and the Approximate Distributions. 
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CHAPTER 9: CONVOLUTING DISCRETE APPROXIMATION TO CONTINUOUS 

DISTRIBUTION WITHIN THE CIM FRAMEWORK 

INTRODUCTION 

As mentioned in Chapter 3 an alternative representation of base variable 

distribution is a histogram. With this representation the analytic 

convolution formulae become sums rather than integrals, and the calculations 

are both simple in concept and straightforward computationally. The 

Controlled Interval and Memory (CIM) approach is based on histograms 

with intervals of equal width. Like discrete probability distribution 

approach, approaches based on interval and histogram representation involve 

inherent bias. However, in the CIM framework the bias can be considered 

and controlled, drawing upon functional and numerical techniques,greatly 

reducing the computation required to maintain confidence in the results. 

This chapter in the beginning looks at example problem of Chapter 3. 

This example is used throughout to illustrate and explain the major points 

of CIM approach as presented in (Cooper and Chapman 1987). The ways of 

specifying distributions so as to control distribution specification 

error are then considered. The next section briefly compares the generalised 

CI approach with alternative approaches, in the context of independent 

addition, in terms of computation efficiency and precision, errors in 

the specification of distributions and loss of information. 

The final section compares the accuracy of the DPD and the CIM approaches 

through simple examples. 

Example problem 

Reconsider example problem of Chapter 3, Recall that the project consists 

of two stages in series. 1(design) and 2(construction). 

A simple CI definition of the uncertainty associated with design stage 
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uses three durations D1 in months,with associated probabilities, P(D1), 

as indicated in Table 3.3, or alternatively as rectangular histogram 

of Figure 3.2. 

Table 3.3 Design distribution, D1 months. 

D1 

2 

3 

4 

P(D1) 

.3 

.5 

. 2 

1 
I 

0.5 

0.3 

0.2 

D1 = 

Figure 3.2 

The next stage is 'construction'. A simple CI definition of the uncertainty 

associated with this stage uses three durations D2 for this stage in 

months, with associated probabilities, P(D2), as indicated in Table 3.4, 

or as rectangular histogram of Figure 3.5. 
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Table 3.4 Construction distribution, D2 months. 

pq 
§ 

CM 

D2 

D2 = 

P(D2) 

.3 

. 6 

.1 

0 .6 

0.3 

0.1 

Figure 3.5 

Design and construction are assumed to have independent duration. 

The approach for combining distributions adopted by BP, in the old software, 

uses the common interval method as used in this example. The addition 

of two distributions in histogram form with equal or common cell 

division using old software produces a result distribution which has equal 

cell interval as shown in Table 3.6 and Figure 9.1. 
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Table 3.6 The simplified computation for 'design' plus 'construction', 

in the case where the individual 'design' and 'construction' 

intervals do not need to be remembered. 

DESIGN PLUS CONSTRUCTION 

Da Computation 

9 

10 

11 

12 

0.3x0.3 0.09 

0.3x0.6 + 0.5x3 0.33 

0.3x0.1 +0.5x0.6 +0.2x0.3 0.39 

0.5x0.1 +0.2x0.6 0.17 

0.2x0.1 0.02 

>-i 
H 

s 
CL, 

0.39 

0.33 

0.17 

0.09 

0 . 0 2 

Da = 8 11 12 9 10 

Figure 9.1 

In other words using the old software, when rectangular distribution 

or cell of histogram is combined repeatedly, the result distribution 

is allocated as a rectangular. However, functional integration or finite 

difference techniques have proved that when a rectangular distribution 

or cell of histogram is combined with another rectangular distribution 

or cell of histogram, then the result distribution should be of a 

triangular form* Hence to assume that the resulting distribution is 
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rectangular when it should be triangular in shape is inappropriate. 

Although a lot of the errors of the above type cancel out, the net result 

still bias the distribution variance on the low side because the actual 

result distribution should be wider than it actually is. 

Complete elimination or partial reduction of this computation error within 

the CI framework can be achieved via one or more of five approaches: 

derived correction factors; 

interpolated correction factors; 

more classes; 

empirically determined correction factors; or 

more allocation. 

Derived Correction Factors 

This approach involves assuming specific within-class probability distributions 

for any two component items or item groups, and deriving correction factors 

based upon the associated probability distribution function for the 

within-class distributions associated with the result. For example, 

if the distributions of Tables 3.3 and 3.4 are associated with rectangular 

density form as shown in Figures 3.2 and 3.5, the joint distributions 

has the trapezoidal" density form illustrated in Figure 9.2. 



0.39 

Figure 9.2 

" If represents the sum of k independently and uniformly distributed 

random variables, then 

frji (x)= OCX^l 
1 \o other x , 

and f^ (x)= 
2 

X 

2-x 
0 

O^x^l 
l<x<2 
other x. 

( 9 . 1 ) 

The two densities are plotted in Figure (i). The rectitude of the latter 

density may be established via moment-generating functions, noting that 

Mrp (t)=0 + [ e^^.l.dx = (e^ - 1 
Jo 

)/t 

is the moment-generating function for the uniformaly distributed random 

variable T^. Since is the sum of two such independently distributed 

random variables, its moment-generating function must be 

or 

m„ 

(t) = E [ê '̂ 2] = E[et(Ul+U2)] = E[e^"^ ]E[e^"2]^ 

(t) = [m^ (t)]2 = - 2e^ + l)/t^. 
2 "1 

A comparison of tabulations of Laplace transforms will reveal that m,̂  (t) 

2 
is the moment-generating function corresponding to the triangular function 
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f (x) of Equation (9.1). Owing to the unicity property of Laplace 

2 
transforms, f (x) must be then the probability density function for T^, 

2 
the sum of two independently and uniformly distributed random variables, 

3 X 

Figure (i) 

Associating the joint distribution of Table 3.6 with a rectangular density 

form introduces error, the necessary net correction involving a transfer 

from higher probability classes to adjacent lower probability classes 

equal to one eighth of the differences between adjacent probability values, 

also illustrated in Figure 9.2. The necessary correction is equivalent 

to cutting off the corners of the rectangular density form and relocating 

them as indicated. 

In this case the key errors are a probability of 0.01125 which should 

be allocated to the classmark 7, and a probability of 0.0025 which should 

be allocated to the classmark 13. More generally, 0.01 is the order 

of magnitude of the errors associated with extreme classmarks, other 

errors being comparatively trivial, if only three classes are used for 

component distributions as for this example. Adding succesive distributions 

will lead to smoother and smoother joint distribution curves, involving 

smaller and smaller corrections. 

One difficulty with this approach is the more and more complex form of 

the corrections required as more and more items are considered, or if 

smoother curves are used to begin with. Continual application of 
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corrections based on rectangular histograms is inconsistent. It over-

states risk, because it over-correct relative to the smoother 

distributions which must result from successive distribution combinations. 

However, as most other sources of bias under-state risk, a compensating 

bias can be attractive, if it can be justified. 

Interpolated Correction Factors 

This approach involves using the correction procedure derived above as 

an upper bound, in relation to a lower bound provided by the uncorrected 

procedure of Table 3.6. This yields a modified correction procedure 

which might be interpreted as an unbiased interpolation between these 

bounds. The difficulty with this approach is defining and justifying 

the interpolation point. However, it provides more flexibility than 

the first on its own. 

More Classes 

This approach involves recognizing that computation error decreases in 

proportion to the difference in adjacent probability values, as illustrated 

by Figure 9.2. This means computation error decreases as the number 

of classes increases. In principle it does not disappear entirely until 

each class contains a single integer, a special limiting form of within-

class distribution which is error free. In practice it decreases to 

zero very rapidly, for whatever degree of precision is required. Direct 

specification of a finer class width structure is possible, but not 

necessary. Any convenient class for specification purposes can be used 

to define a narrower width version of Tables 3.3 and 3.4 for computation 

purposes, using a suitable interpretation of the distribution shape. 

For example, the classes associated with D1 and D2 in Tables 3.3 and 3.4 

might be separated into 5 sub-classes, defined assuming uniform within-

class distribution, as indicated by Table 9.1 and Figure 9.3. 
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Table 9.1 A finer interval structure for D1 and D2, assuming uniform 

within-class distributions in the origional specifications in 

Tables 3.3 and 3.4 

DESIGN CONSTRUCTION 

D1 P(D1) D2 P(D2) 

1.6 0.06 5.6 0.06 
1.8 0.06 5.8 0.06 
2 . 0 0.06 6.0 0.06 
2.2 0.06 6 . 2 0.06 
2.4 0.06 6.4 0.06 
2 .6 0.1 6.6 0.12 

etc. etc. 

Table 9.2 The simplified probability-tree computation for Da = D^ + D2 

using the finer interval structure of Table 9.1. 

DESIGN PLUS CONSTRUCTION 

Da Computation P(Da) 

7 .2 0. 06x0. 06 0. 0036 

7 .4 0. 06x0. 06 + 0. 06x0. 06 0. 0072 

7 .6 0. 06x0. 06 + 0. 06x0. 06 + 0. 06x0. 06 0. 0108 

7 .8 0. 06x0. 06 + 0. 06x0. 06 + 0. 06x0. 06 etc. 0. 0144 

8 .0 0. 06x0. 06 + 0. 06x0. 06 + 0. 06x0. 06 ... 0. 0180 

8 .2 0. 06x0. 12 + 0. 06x0. 06 + 0. 06x0. 06 ... 0. 0276 

8 .4 0. 06x0. 12 + 0. 06x0. 12 + 0. 06x0. 06 ... 0. 0372 

8 . 6 0. 06x0. 12 + 0. 06x0. 12 + 0. 06x0. 12 ... 0. 0468 

etc. 
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The P(D1) = 0.06 associated with Dl=1.6 in Table 9.1 was obtained via 

0.3/5, the P(D1)=0.3 for Dl=2 of Table 3.3 providing the 0.3, and so 

on for the 3x5=15 classes of each distribution. If the distributions 

associated with Table 9.1 were combined usign the procedure of Table 

3.5, the result would be as indicated by Table 9.2 and Figure 9.3. 

This clearly provides a result much closer to the trapezoidal cumulative 

form illustrated by Figure 9.2 than Table 3.6. Indeed, the 0.0036 + 

0.0072 = 0.0108 probability allocated to 7.2 and 7.4 is very close to 

the 0.01125 which should have been allocated to Da = 7 in Table 3.6, 

as noted earlier. More generally, 0.001 is the order of magnitude of 

the errors associated with extreme classmarks, other errors being 

comparatively trivial. All such errors decrease as a function of n^, 

where n is the number of classes. The availability of this approach 

makes the procedure of Table 3.6 and extensions like that illustrated 

by Table 9.2 inherently error free. Computation error is simply an option, 

which can be accepted if it is not worth the effort to reduce or eliminate 

it, at any appropriate level. 

Empirically Determined Correction Factors 

This approach involves empirical experiments to assess correction factors 

akin to those associated with the first and second approaches. Any pair 

of distributions can be combined using a very fine class structure, so 

fine it can be treated as error free to the level or precision required. 

The result can then be summarized in a variety of simple frameworks, which 

can be treated as error-free results. Simplified versions of the component 

distributions can then, be combined, and compared to the error-free equivalent. 

Error measured in this way can be related to the class width, the number 

of classes, the difference in adjacent probability values, or other parameters 

suggested by the first or second approach. This approach demands extensive 

experimentation, but it lends further flexibility to the first three. 
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More Allocations 

This approach to computation error involves allocating each joint probability 

component in a manner which reduces error to an acceptable level. For 

example, instead of redefining Tables 3.3 and 3.4 in the form of Table 

9.1 with 5 times as many classes, and then combining the results as 

illustrated by Table 9.2, the same result could be obtained more directly. 

The factor set 

0,04 0.08 0.12 0.16 0.20 0.16 0.12 0.08 0.04 

could be applied to the 0.3x0.3=0.09 , 0.3x0.6-0.18, 0.5x0.3=0.15 and 

subsequent entries of Table 3.6 to generate the entries of Table 9.3. 

Table 9.3 The computation of Da = D1 + D2 using the factor set 0.04, 

0.08, 0.12, 0.16, 0.20, 0.16, 0.12, 0.08, 0.04 

DESIGN PLUS CONSTRUCTION 

Da Computation P(Da) 

7.2 0.04x0.09 0.0036 

7.4 0.08x0.09 0.0072 

7.6 0.12x0.09 0.0108 

7.8 0.16x0.09 0.0144 

8.0 0.20x0.09 0.0108 

8.2 0.16x0.09 + 0.04x0.18 + 0.04x0. ,15 0.0276 

8.4 0.12x0.09 + 0.08x0.18 + 0.08x0. ,15 0.0372 

8.6 0.08x0.09 + 0.12x0.18 + 0.12x0. ,15 0.0468 

8.8 0.04x0.09 + 0.16x0.18 + 0.16x0. ,15 0.0564 

etc. 
etc. 
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The factor set thus serves to integrate each pair of component distribution 

class intervals, allocating the associated probability to a joint probability 

distribution with a different class structure. The chosen factor set 

sums to one and spans twice the class width of Table 3.6, using a triangular 

pattern conforming to the result class width as for 9.2. For independent 

component distributions based on equal intervals, a triangular factor 

set provides a simple and attractive allocation pattern, but any of the 

first three approaches to reducing computation error can be applied to 

the definition of alternative factor set shapes. The triangular shape 

is based upon integrating two within class distributions which are both 

uniform (constant probability) and both the same width. Its validity 

given these assumptions is illustrated by Table 9.2. 

An obvious advantage of using more allocatons in comparison to using 

more classes is the considerable gain in computational efficiency. Apart 

from avoiding the need to refine the component distribution scales as 

the number of intervals is increased for the result, computation effort 

increases in a linear manner, whereas the approach of Tables 9.1 and 

9.2 involves an increase in computation effort which is proportional 

to the square of the increase in the number of intervals. 

A further advantage of the more allocations approach is that it generalises 

easily to component item and result classes which are not the same size, 

an obvious advantage when the items are of different magnitude, allowing 

a controlled number of classes for all component and result distributions. 

As with Table 9.3, each class interval combination involves a form of 

integration of the associated within-class distributions. The minimum 

value of the resulting distribution is the sum of the component class 

distribution minima. The maximum value of the resulting distribution 

is the sum of the component class distribution maxima. The shape of the 

allocation defined by the functional equivalent of the factors can reflect 
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specific within-class distribution assumption, adjustments based on 

bounds, or adjustments based on empirical experiments, including adjustments 

designed to balance the effects of truncating unwanted distribution tails. 

Each component distribution and the resulting sum distribution can use 

different interval widths. 

Another advantage of the more allocations approach is the ability to drop 

common intervals within each distribution, if precision within one particular 

region is more important than precision in other regions, as may occur 

when very long distribution tails are of interest. 

A final advantage of the more allocations approach is that it generalises 

easily to other distribution combination operations. 

Generalised CI Approaches 

Detailed treatment of generalised CI approaches, embedding the first 

four approaches as necessary in the fifth, is not considered in (Cooper 

and Chapman 1987). However, the examples chosen should clarify the 

principles involved, and illustrate the order of magnitude of the computation 

effort and error. The initial simple example of Table 3.6 provides errors 

of the order of 0.01, which the example of Table 9.2 reduces to the order 

of 0.001. Computation error of the order of 0.01 is acceptable for simple 

examples. Computation error of the order of 0.001 may not be acceptable 

for analysis purposes, but it is easily reduced by further orders of 

magnitude, at negligible cost in modern computing terms. Computation 

cost and error balancing can be an explicit part of CI computer software, 

either automatically or through manual intervention. 

Generalising the addition of two indpendent probabilistic variables to 

three or more poses no new problems. 
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SPECIFICATION ERROR AND SPECIFICATION GENERALIZATION 

Computation error of the order of 0.01 for the joint distribution of Table 

3.6 should be considered in the context of errors in specifying the 

probability distribution which may be of the order 0.1, ten times as 

large. Controlling specification error is much more important than 

controlling computation error. Cooper and Chapman (1987) distinguished 

two kinds of specification error: approximation error and residual error. 

There are a number of ways of reducing or eliminating specification 

approximation error: 

direct use of more classes; 

- maximum order polynomials for input distributions; 

- less than maximum order polynomials for output distributions; 

standard probability level specifications; 

other input distribution functions. 

Direct Use of More Classes 

The use of one month class intervals for the distributions of Tables 3.3 

and 3.4 involves a specification approximation error which the smaller 

class interval of Table 9.1 could reduce by using a smoother curve 

specification like that of Table 9.A and Figure 9.4. The probability 

allocations of Table 9.4 are quite different from those of Table 9.1, and 

differences of this kind could be argued to be a specification approximation 

error associated with Tables 3.3 and 3.4. corrected by Table 9.4. 

Sometimes it is convenient to reduce specification approximation error 

to an acceptable level by the direct use of more classes, as illustrated 

by Table 9.4. Flexibility and simplicity are maximised. Any distribution 

shape can be used, to any degree of specification precision. The 

existence of this approach makes the CI approach inherently free from 

specification approximation error. Approximation is simply an option, 

to be accepted if the saving in specification effort is worthwhile. 
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Maximum Order Polynomials for Input Distributions 

This approach involves fitting a smooth curve to a specification which 

is cruder than that used for computation purposes, and interpereting 

the curve choice as part of the specification. For example, the 3 

classes of P(D1) in Table 3.3 could be associated with a cumulative 

distribution shape defined by the 3rd order polynomial 

bp + b^X + + bgX? - p, 

where for X = 1.5, 2.5, 3.5 and 4.5, p = 0, 0.3, 0.8 and 1.0 (Figure 9.5). 

Solving the associated 4 linear equations for the b^ and using them 

to allocate probabilities to classmarks 1.6, 1.8, 2.0 4.4 will 

yield a shape more like Table 9.4 than Table 9.1. Using still finer classes 

would involve no additional specification effort, and computation effort 

could be balanced against both specification approximation error and 

computation error. More generally, nth order polynomials with n classes, 

given an n greater than 3, provide a useful complement to direct specification 

of more intervals. 

Table 9.4 A finer interval structure for D1 and D2 assuming a smooth-curve 

specification. 

DESIGN CONSTRUCTION 

D1 P(D1) D2 P(D2) 

1.2 0.01 5.2 0.01 

1.4 0.01 5.4 0.01 

1.6 0.01 5.6 0.01 

1.8 0.04 5.8 0.02 

2.0 0.06 6.0 0.05 

2.2 0.08 6.2 0.08 

2.4 0.09 6.4 0.11 

2.6 .10 6.6 0.11 

2 .8 .10 6 . 8 0.12 

etc. etc. 
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Less than Maximum Order Polinomials for output Distributions 

In addition to, or instead of, smoothing input or component distributions, 

result or output distributions could be smoothed using regression 

analysis and polynomials of lower order than the number of classes would 

permit. 

Standard Probability Level Specifications 

An alternative involves using standard probability levels, like quartiles 

or deciles, and fitting a polynomial in a manner akin to that just 

discussed. 

Other Input Distribution Functions 

A final alternative involves using distribution functions other than 

polynomials, specified in terms of suitable parameters. For example. 

Normal (Gaussian) distributions can be specified in terms of mean and 

variance, and Beta distributions can be specified in terms of optimistic 

(minimum), pessimistic (maximum) and most likely (modal) values. Hybrids 

are also useful. For example. Normal distribution tails can be used 

in conjunction with a Beta distribution between confidence limits 

associated with optimistic and pessimistic values. 

Specifications like this may be used for reasons of convenience, or they 

may be based on theoretical results. 

Computer software which facilitates user choices with all these options 

makes a CI approach very flexible, and associated specification 

approximation error is easy to control. Adequate treatment of this source 

of error will often provide more than sufficient freedom from computation 

error as an indirect spinoff. 
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Specification Residual Error 

Specification residual error, all other forms of specification error, 

is the most important kind of error, because it is the most difficult 

to control. No approaches can fully resolve these difficulties, including 

the CI approach. However, three characteristics not shared by most other 

approaches make the CI approach comparatively attractive. 

First, computer software which allows a flexible approach to specification 

approximation error as just discussed also allows the user to select a 

means of specifying any particular distribution which is the most comfortable 

for the circumstances. The specificaton method can be adjusted to the user 

and the problem, rather than forcing the user to conform to a rigid model. 

Second, given such software, it is an easy matter to extend it to allow 

comparisons of different approaches to specifying a distribution as a 

means of checking consistency. 

Third, if n distributions are summed, the computation procedure automatically 

provides n-2 intermediate sums, a useful basis for further consistency 

tests, including representations showing the relative contribution to 

uncertainty of each source distribution. 

COMPARISON WITH ALTERNATIVE APPROACHES 

The CI approach is closely related to the DPD approach. If component and 

joint distributions are associated with rectangular histograms, a 

convenient convention, class mark values are also conditional expectations, 

expected values within each interval. This means Tables 3.3 to 3.6 can 

be given a DPD interpretation. However, the DPD approach ignores 

computation error, making it impossible to control explicitly, and 

limiting implicit control to the use of more Di and P(Di) doublets, or 

different doublet patterns. Further, it lacks the specification flexibility 
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of the CI approach, with implications for specification approximation 

error and residual error. Finally, it involves a loss of information 

if large numbers of doublets are summarised. Its use may be preferable 

in some cases, but it would seem such circumstances must be very limited. 

The CI approach is also related to a functional intergration approach. 

If the errors indicated by Figure 9.2 are corrected, using the allocations 

approach to computation errors and the factor set 

0.125 0.750 0.125, 

assuming rectangular histogram components and a trapezoidal histogram 

joint distribution, the resulting distribution is the same as a functional 

integration approach would provide. However, the CI approach is clearly 

much simpler in its basic forms, as illustrated by Tables 3.3 to 3.5, 

and much more flexible in general. Functional integration is only preferable 

when simple special cases are involved, as in basic random arrival and 

departure queueing systems. 

The CI approach is also related to a numerical integration approach. 

If the rectangular histogram assumption for component distributions is 

interpreted as an approximation to an underlying smooth curve, the results 

are the same. However, the CI approach is simpler in its basic forms, 

and much more flexible in general. Numerical integration has no apparent 

advantage, although in some respects it is the alteiudtive tu CI which 

is closest conceptually. 

Given a large number of distributions to sum, with none dominating because 

of size or variability, summing distribution means and variances to define 

a joint distribution mean and variance is an attractive approach. However, 

when these conditions do not hold, moment based approaches become complex 

by comparison to Table 3.6 and generalisations of it, without any guarantee 
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of a decrease in computation cost or error. Further, a serious loss 

of information associated with component and resulting distributions 

is involved. Using such approaches to replace Table 3.6 should make 

this clear. 

Monte Carlo approaches offer computational simplicity and flexibility 

when complex non-sequential distribution combination structures are involved. 

However, specification flexibility is not greater in the present context, 

and computation (sampling) error is much greater for comparable levels 

of computation effort. To provide a single sample, many random number 

generation processes would involve a computational effort comparable 

to that employed by Table 3.6, and computational precision of the same 

order would involve an increase in computational effort of several orders 

of magnitude. 

OPERATION FLEXIBILITY AND OPERATION GENERALISATION 

The basic common interval independent addition operation of Table 3.6 

will generalise easily to accommodate dependent distributions using conditional 

specifications, and simplified percentage dependence specifications (akin 

to coefficient correlation specifications) are also possible. Subtraction 

and 'greatest' operations involve equally simple generalisations. However, 

the basic common interval approach will not generalise directly to 

multiplication and division. These operations in independent and dependent 

forms require the generalised controlled interval (Cl) approach with 

allocation factor sets as illustrated by Table 9.3, or functional equivalents, 

which reflect the operation in question. For example, multiplication 

of two within-class distributions must be related to maximum and minimum 

values defined by products of component class maxima and minima. 

However, it should be clear that within the context of a generalised 

CI approach incorporating the multiple allocation concept illustrated 
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by Table 9.3, many other operations, involving dependence if required, 

pose no new special difficulties in terms of distribution specification 

effort, computational effort or computational error. This is not true 

of the functional integration, numerical integration or moment-based 

approaches to combining distributions. Monte Carlo approaches have no 

new advantages relative to the CI approach, unless complex non-sequential 

distribution combination patterns are involved, as in some PERT networks. 

The DPD approach has some new comparative advantages, but only if precision 

is not very important and a basic distribution specification approach 

is acceptable. 

In the following section we compare the accuracy of the CIM approach 

and the DPD approach through simple examples. 

Example 1. 

Consider the network configuration of Figure 9.5. Duration times of 

activities A, B and C are similar as shown in Table 9.5, or alternatively 

as rectangular histogram of Figure 9.7. 

Figure 9.5 

Table 9.5 

X p(x) 

1 0.25 

2 0.50 

3 0.25 

p(x) 

0.5 

0.25 

0.00 
1 2 3 

Figure 9.7 

X 
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Considering duration times of activities A, B and C as discrete values,the 

pdf, mean, and variance of the realization times of nodes 2,3 and 4 can 

be computed as follows: 

Tables 9.6 to 9.8 show the pdf, mean and variance of the realization times 

of nodes 2,3 and 4 respectively. 

Table 9.6; Realization time of node 2. 

X p(x) 

1 0.25 

2 0.50 

3 0.25 

E = 2 , 0% = 0.5 

Table 9.7 : Realization time of node 3 

Y p(y) 

2 0.0625 

3 0.25 

4 0.375 

5 0.25 

6 0.0625 

E = 4 , 0% = 1.0 
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Table 9.8: 

Z 

Realization time of node 4. 

p(z) 

3 0.015625 

4 0 . 0 9 3 7 5 

5 0.234375 

6 0.3125 

7 0.234375 

8 0.09375 

9 0.015625 

E = 6 , = 1.5 

Considering duration times of activities as rectangular histogram, the 

exact mean and variance of the realization times of nodes 2,3 and 4 can 

be computed as follows: 

Figures 9.8 and 9.9 show the density functions of the realization times 

of nodes 3 and 4 respectively. 

p(x) 

0.5G 

0.25 

0.0 

p(x)' 

0.501 

0.251 + 

^0 . 2 

1 2 3 X 1 2 3 X 1 2 3 4 5 

Figure 9.8: Density function of the realization time of node 3. 
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p ( y ) 

0 . 5 0 -

0 . 2 5 . 

0.0 

X 

1 2 3 4 5 6 7 9 10 11 Z 

Figure 9.9: Density function of the realization time of node 4. 

For node 2; 

'1.5 E(x) = 

E ( x 2 ) = 

.25xdx + 
.5 

^ ^ .25x^dx + j 
.5 J 1.5 

2.5 

1.5 

[2.5 

.5xdx + 

. 5x^dx + 

3.5 

2.5 

3.5 

2.5 

. 25xdx = 2 , 

.25x dx = 4.583333 

E(x2) - (E(x))2 = 4.583333-4 •= .583333 

For node 3; 

E(y) = 2xE(x) = 2x2 = 4 , 

and 

= 2x0% = 2x.583333= 1.166666 , 

where Y = X+X • 
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For node 4; 

E(z) = E(x) + E(y) = 2+4=5 , 

and 

°Z ~ X + Oy " .583333 + 1.166666 = 1.75 , 

where Z = X + Y . 

Now, the mean and variance of the realization times of nodes 3 and 4 

can be computed using CIM approach as follows: 

Notice that in the new generation of risk analysis software used by BP, 

each time the input distribution is used, it is interpreted as a histogram 

as indicated by heavy line in Figures 9.10 and 9.11 rather than a trapezoid 

that it really is. Figures 9.10 and 9.11 show the density functions 

of the realization times of nodes 3 and 4 using CIM approach. 

p(x) 

0.50 

0.25. 

0.00 

p(x) ' 

0.50" 
+ 

0.25-

_O.QQ 
X 

p ( y j 

0.4 

0.3 

0 . 2 

0 . 1 

X 

/ \ 
/ \ 

/' 

1 2 3 4 5 6 7 Y 

Figure 9.10: Density function of the realization time of node 3 using 

CIM approach. 
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p ( y ) 

p(x) 0 . 4 

\ 

. 5 0 
0 . 3 / 

/ 
\ 
\ . 5 0 

+ 0.2 t 
/ 

\ 
\ 

.25 • 

. 00 

/ .25 • 

. 00 

0 . 1 
/ 

/ \ 
.25 • 

. 00 , , 0 . 0 U'' 
1 2 3 X 1 2 : i t 4 5 6 7 Y 

p(z) , 
0 . 3 . 

0.2 

0.1 

/̂, V 
'/ \ 

/ \ 
\ 

0 . 0 2 3 4 5 6 7 9 10 Z 

Figure 9 .11: Density function of the realization time of node 4 using 

CIM approach. 

For node 3; 

r 2 

E(y) = .03125ydy + .15625ydy + .3125ydy + 
^l -iz h 

,3125ydy 

f + J .5625ydy + | .03125ydy = 4 , 
J , 

and 

ECyZ) = 
r2 

r 

r 
.0312y2dy + J .ISGZSy^dy + | .3125y2dy + . 3125y^dy 

f + J .15625y2dy + | .03125y2dy = 17.33333 , 
J 

a 2 = E ( y 2 ) - ( E ( y ) ) 2 = 1 7 . 3 3 3 3 3 - 1 6 = 1 . 3 3 3 3 3 
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For node 4; 

E(z) = .0078215zdz + 
2 

rl 

,5 

+ 
f8 

.27347zdz + 

.0546875zdz+ 

,1640625zdz + 
r9 

1640625zdz + 

.0546875zdz + 

.2734375zdz 

f-0078125zdz 

= 6 

and 

E ( z 2 ) = 
F 3 ^4 (-5 

2 

r6 

5 

r9 

,0078125z2dz + .0546875z2dz f 
J -x 

1640625z^dz 

rl 

2734375z2dz + .273475z2dz + .1640625z2dz 

+ 
10 

.0546875z2dz + .0078125z2dz = 37.83333 , 

= E ( z 2 ) - ( E ( z ) ) 2 = 3 7 . 8 3 3 3 3 - 36 = 1 . 8 3 3 3 3 . 

Table 9.9 shows the per cent error of the variance of the realization times 

of nodes 2,3 and 4 using DPD and CIM approaches. 

Table 9.9 

Node No. Exact 
Variance 

Discrete 
Approx. 

Percent error 
Discrete from Exact. 

CIM 
Approx. 

Percent error 
CIM from Exact. 

2 .583333 .5 -14.3 . 5 8 3 3 3 3 0 

3 1.1666667 1.0 -14.3 1.333333 +14.3 

4 1.75 1.5 -14.3 1.833333 + 4.8 

Example 2: 

Reconsider example 1 of Chapter 8 which is shown in Figure 8.3, 

MD 
Figure 8.3 
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The activities are similar and duration times of activities are normally 

distributed with mean 100 and variance 100.649. 

Distribution percentile of the addition of two normally distributed variables 

with these values for mean and variance using 40 cells for input 

distribution with optimal squeezing at 0.166% obtained in Yong's (1985) 

study using CIM approach is given in Table 9.10. 

Table 9.10 

CUMULATIVE PERCENTAGE PROBABILITY VALUES 

0 1 5 25 50 75 95 99 100 
152.000 167.083 176.592 190.343 200.00 209.657 223.408 232.917 248.00 

Recall that in Chapter 8 the exact pdf of project completion time obtained 

as shown in Table 8.7. 

In order to compare the accuracy of the approximate pdf obtained using 

CIM approach with that obtained using DPD we use the procedure of Chapter 

8, i.e. the true pdf is compared with the approximate pdf obtained using 

CIM approach to determine maximum absolute deviation (MDV), and the average 

value of the absolute deviations (ADV) between two distributions, then 

these values are compared with the corresponding values obtained in Chapter 

8 for example 1. 

The application of the linear interpolation to Tables 9.10 and 8.7 led 

to the exclusion of the first and last three realizations of Table 8.7. 

Table 9.11 has the complete output of the linear interpolation. 
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Table 9.11: Comparison of the Exact and the CIM approximate Probability 

Distribution Functions of Example 2. 

I REALIZATION EXACT PROB. APRXMTD PROB. ACTUAL DIFFERENCE 

1 167.083 . 0106888 .01 -.0006888 

2 176.592 .0497070 .05 .0002930 

3 190.343 .2500391 .25 -.0000391 

4 200.000 .5000000 .50 0.0 

5 209.657 . 7499698 .75 .0000302 

6 223.408 .9502780 .95 -.0002780 

7 232.917 . 9892797 .99 .0007203 

The Average of the absolute Values of the Deviations 

The Maximum of the Absolute Values of the Deviations 

is No. 7. 

Number of Positive Deviates = 3. 

Number of Negative Deviates = 3. 

0.0002927 

0.0007203. It 
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Figure 9.12 is a digital plot of the first three columns of Table 9.11, 

P(R) 

1.0 

0.9 

0 . 8 

0.7 

0 . 6 

0.5 

0.4 

0.3 

0 . 2 

0.1 

0.0 

Exact 

Approximate 

Both 

160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 R 

Figure 9.12 

Comparison of the Exact and the Approximate Probability Distribution 

Functions of Example 2 using CIM approach. 

Example 3: 

Reconsider example three of Chapter 8. Recall that in that example it 

is assumed that duration times of activities A and B of Figure 8.9 are 

similar and have Beta distribution with parameters r=3 and s=5. 

Figure 8.9 
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Distribution percentile of the addition of the two Beta distribution 

with parameters r=3 and s=5 using 30 cells for input distribution without 

squeezing obtained in Yong's (1985) study using CIM approach is given 

in Table 9.12. 

Table 9.12 

CUMULATIVE PERCENTAGE PROBABILITY VALUES 

g 1 5 25 50 75 95 99 100__ 

0.000 0.2717 0.3857 0.5849 0.7411 0.9057 1.1448 1.3102 2.000 

Recall that in Chapter 8, the pdf of project completion time obtained 

using interpolation as shown in Table 8.16 assumed to be error free and 

considered as "true" pdf. 

In the following the "true" pdf of Table 8.16 is compared with the approximate 

pdf of Table 9.12. 

The application of the linear interpolation to Tables 9.12 and 8.16 led to 

the exclusion of the first 13 and the last 26 realizations of Table 8.16. 

Table 9.13 has the complete output of the linear interpolation. Figure 9.13 

is a digital plot of the first three columns of Table 9.13. 

Table 9.13: Comparison of the Exact and CIM approximate Probability 

Distribution Functions of Example 3. 

I REALIZATION EXACT PROB. APRXMTD PROB. ACTUAL DIFFERENCE 

1 0.2717 0.0089014 .01 .0010986 

2 0 . 3 8 5 7 0.0473119 .05 .0026881 

3 0.5849 0.2485721 .25 .0014279 

4 0.7411 0.5007029 .50 -.0007029 

5 0.9057 0.7514220 .75 -.0014220 

6 1.1448 0.9507506 .95 -.0007506 

7 1.3102 0 . 9 9 0 8 8 1 2 .99 -.0008812 
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The Average of the Absolute Values of the Deviations = .0012816 

The Maximum of the Absolute Values of the Deviations = .0026881. It 

is No. 2. 

Number of Positive Deviates = 3. 

Number of Negative Deviates = 4. 

P(R) 

1 . 0 , 

0.9 ' 

0 . 8 . 

0.7 

0.6 • 

0.5 

0 . 4 

0.3 

0 . 2 

0 . 1 

0.0 

' Exact 

_ Approximate 

* Both 

.3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 R 

Figure 9.13 

Comparison of the Exact and the Approximate Probability Distribution 

Functions of Example 3 using CIM approach. 

Example 4: 

Reconsider example five of Chapter 8. Recall that in example 5 of Chapter 

8 it is assumed that duration times of activities of Figure 8.9 are 

similar and have Beta distribution with parameters r=2 and s=8. 
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Distribution percentile of the addition of the two Beta distribution 

with parameters r=2 and s=8 using 30 cells for input distribution 

without squeezing obtained in Yong's (1985) study using CIM approach 

is given in Table 9.14. 

Table 9.14 

CUMULATIVE PERCENTAGE PROBABILITY VALUES 

g 1 5 25 50 75 95 99 100 

0.000 0.080 0.147 0.2729 0.3823 0.5097 0.7144 0.8644 2.0000 

Recall that in Chapter 8, the pdf of project completion time obtained 

using 100 cells for input distribution as shown in Table 8.25 assumed 

to be error free and considered as "true" pdf. 

In the following the "true" pdf of Table 8.25 is compared with the approximate 

pdf of Table 9.14. 

The application of the linear interpolation to Table 9.14 and 8.25 led 

to the exclusion of the first 8 and last 44 realizations of Table 8.25. 

Table 9.15 has the complete output of the linear interpolation. Figure 

9.14 is a digital plot of the first three columns of Table 9.15. 

Table 9.15; Comparison of the Exact and the CIM approximate Probability 

Distribution Functions of Example 4. 

REALIZATION EXACT PROB. APRXMTD PROB. ACTUAL DIFFERENCE 

1 

2 

3 

4 

5 

6 

7 

0 .08 

0.147 

0 . 2 7 2 9 

0 . 3 8 2 3 

0.5097 

0.7144 

0.8644 

0.0035966 

0.0350046 

0.2267266 

0.4782564 

0.738165 

0.9475168 

0.9889322 

.01 

.05 

.25 

.50 

.75 

.95 

.99 

.0064034 

,0149954 

.0232734 

.0217436 

.011835 

.0024832 

.0010678 



The Average of the Absolute Values of the Deviations = 

The Maximum of the Absolute Values of the Deviations = 

is No. 3. 

Number of Positive Deviates =7. 

Number of Negative Deviates =0. 

440 

.0116859 

.0232734. It 

P(R) 

1 . 0 

0.9 

0. 

0.7 
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0.3 

0.2i 

0 . 1 

o.n i 

Exact 
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* Both 
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Figure 9.14 

Comparison of the Exact and the Approximate Probability Distribution 

Functions of Example 4 using CIM approach. 

SUMMARY AND CONCLUSIONS 

In the first part of this chapter the major points of CIM approach has 

been explained through an example. 

The CI approach to adding independent probabilisitc variables is simple 
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in its basic common interval form, and very flexible in its generalised 

forms. It allows specification effort, specification error, computation 

error and computation effort to be controlled in an integrated, effective 

and efficient manner. 

Comparing with the other approaches, moment-based, DPD and function 

integration approaches may be preferred in some cases, but only in very 

special circumstances, and numerical integration and Monte Carlo 

approaches offer no advantages. 

In the final part the simple examples of Chapter 8 are solved using CIM 

approach in order to compare the accuracy of the two approximate approaches, 

i.e. CIM and DPD. 

To compare the approximate pdf of the project completion times obtained 

using CIM approach for examples 2,3 and 4 with the "true" pdfs obtained 

in Chapter 8 we use the following measures of performance. 

1 - Mean value of the project completion time. 

2 - Standard Deviation. 

3 - Coefficient of Skewness. 

4 - The maximum of the absolute values of the deviations (MDV). 

5 - The average of the absolute values of the deviations (ADV). 

Table 9.16 shows how the distribution type affects the measures of performance. 

In each of the three problems considered in Table 9.16, the approximate 

mean is exactly same as the exact mean; the approximate standard 

deviation is slightly higher than exact standard deviation, it is within 

1.89% of the exact standard deviation; the approximate coefficient of 

skewness is less than exact coefficient of skewness, it is within 5.43% 

of the exact coefficient of skewness. 

The values of the MDV and the ADV vary with the shape of input distribution. 
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MDV is always less than .0233 and ADV is less than .012. The smallest 

values of MDV and ADV were obtained in example 2 where the activities 

are normally distributed. 



Table 9.16 

Sensitivity of the approximating method to PDF's 

m 
x 

3 

m 

Distribution 
Type 

Comparison of the Approximate PDF with the True PDF 
m 
x 

3 

m 

Distribution 
Type 

Mean Standard Deviation Coefficient of 
Skewness 

MDV ADV 

m 
x 

3 

m 

Distribution 
Type 

APRX. EXACT APRX. EXACT APRX. EXACT 

MDV ADV 

2 Normal 200 200 14.188 14.187952 0 0 .0007203 .0002927 

3 Beta(Moderate .75 .75 .2306512 .2282174 .2122 .2190899 .0026881 .0012816 
Skewed) 

4 Beta(Extreme .4 .4 .1737814 .1705602 .5545 .5863019 .0232734 .0116859 
Skewed) 

w 
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Table 9.17 shows the accuracy of the two approximate pdfs, DPD and CIM. 

Table 9.17 

Comparison of the two approximate PDFs 

Example 

Mean 

Example Exact Discrete 
Approxi. 

Percent error 
Discrete from Exact 

CIM 
Appr. 

Percent error 
CIM from Exact 

2 

3 

4 

200 

.75 

.4 

200.00695 

.7385594 

.3998142 

+0.00347 

-1.52541 

-0.04645 

200 

.75 

.4 

0 

0 

0 

. 

Example 

Standard Deviation 

Example Exact Discrete 
Approxi. 

Percent error 
Discrete from Exact 

CIM 
Appr. 

Percent error 
CIM from Exact 

2 

3 

4 

14.187952 

.2282174 

.1705602 

14.228808 

.2200811 

.1594775 

+0.28796 

-3.56515 

-6.49782 

14.188 

.2306512 

.1737814 

+0.00033 

+1.06643 

+1.8886 

Example 

Coefficient of Skewness 

Example Exact Discrete 
Approxi. 

Percent error 
Discrete from Exact 

CIM 
Appr. 

Percent error 
CIM from Exact 

2 

3 

4 

0 

.2190889 

.5863019 

0 

.2346219 

.6053254 

0 

+7.08981 

+3.24465 

0 

.2122 

.5545 

0 

-3.14434 

-5.42415 

Example 

MDV ADV 

Example Discrete 
Approximate 

CIM 
Approximate 

Discrete 
Approximate 

CIM 
Approximate 

2 

3 

4 

.0245581 

.0345425 

.0525366 

.0007203 

.0026881 

,0232734 

.0023969 

.0171820 

.0275114 

.0002927 

.0012816 

.0116859 

Table 9.17 shows that in all of the cases except for the coefficient of 

skewness of example 4, the CIM approximate is more accurate than DPD 

approximate. This conclusion can be generalised to other operations, 

including 'greatest', multiplication and division operations. 
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CHAPTER 10: SOLVING STOCHASTIC PERT NETWORKS USING MONTE CARLO METHODS 

INTRODUCTION 

As mentioned in Chapter 2, whenever analytical approaches fail for 

solving stochastic networks one alternative is to approximate the pdf 

of project completion time by approximating each activity distribution with 

a sinpler one, but since the approximation approaches are not reliable, many 

analysts have turned to Monte Carlo methods to derive approximation solutions. 

Monte Carlo Simulation is a powerful technique for attacking many problems 

related to PERT networks. In particular, within any prescribed bounds 

on the errors, one can determine factors such as Mean, Variance, pdf of 

the project completion time and the criticality index of each activity 

and path. 

The first section of this chapter provides a more detailed discussion 

of this method. In the second section the accuracy and the computation 

efficiency of the Monte Carlo method is compared with the accuracy and 

the computation efficiency of the CIM approach through simple networks. 

Straightforward Sampling or Crude Monte Carlo 

Van Slyke (1963) develops the idea of using crude Monte Carlo Simulation 

as a tool for finding the pdf of a PERT network's completion time. In 

crude Monte Carlo Simulation we apply the longest path algorithm to a 

long series of realizations, each one obtained by assigning a sample 

value to every activity drawn from its proper distribution. Then we use 

standard statistical methods to estimate the distribution and parameters 

of interest. Reconsider following four assumptions of classical PERT 

model: 

1 - The duration of activities are unimodal-in particular, they have beta 

distribution. 
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2 - The activities are independent. 

3 - The critical path is sufficiently longer than any other path so that 

the probability of a realization having a different critical path 

is negligible. 

4 - The critical path has enough activities so that central limit theorem 

applies. Hence, if T^ represent the realization time of node N, then 

T^ is approximately Normally distributed with a mean: 

and a variance: (2.2) 

Var(T^) = ^ Var(Y^j) 

where T^ is the critical path obtained from the PERT calculations. The 

Monte Carlo Simulation approach requires none of these assumptions. 

Assumption (2), that of independence among activities, is not a necessary 

condition although it is usually invoked to simplify the sampling 

procedure. Whether the activities are independent or not, the estimates 

of the mean and variance of T., are unbiased. 
N 

Precision of the Monte Carlo Method 

Denote the mean of the project completion time (T^) by the variance 

of T^ by o^, and the pdf of T^ by F^(t). 

Assume the structure of the network and the pdf of all activities (ij)6A 

(i.e. are given). 

All three parameters, o^, and F^^t) are unknown. 

The first parameter we shall consider is the mean. Each conplete realization 

is considered as one sample observation, and the estimator we consider is 
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the sample mean. 

Let Iĵ (t) be the random variable corresponding to project duration, l^(k) 

denote the "length" of the CP on the kth sample realization; 1^ denote 

the sample mean duration and K, the total number of sample taken. 

Then (1^(1), 1^^2),...., l^^K)) is our sample. The random variable 

K 

l%(k) (10.1) 

k=l 
1N= 

K 

is the estimator of E {Iĵ (t)} s 

Let o2 = Var {l^(t)} , 

then we have 

Var (i^)= . (10.2) 

Since the number of samples is very large, the central limit theorem 

tells us that 1^ is to a very good approximation normal with mean 

and variance o^VK. Notice that L, is an unbiased estimator of p... The 
N N N 

precision of this estimator is generally measured by its variance. 

Unfortunately, if there is a long chain of activities in series, then 

becomes large, and a very large sample size is required in order to 

determine E{l^(t)} precisely. 

Suppose with probability 0.99 we want our estimate of the mean to be 

within 0.01 of its true value. That is, we want to choose K so that 

Pr{ -0.01 0% < 1% < + 0.01 0.99 

which is equivalent to 

o - UN 0.01 ON 

< *„/ y-K- < Ow/y-K- ) > 0-99 : 
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that is 

$ (-0.01 y~T") ̂  0.005, 

which yields that 

0 . 0 1 y K > 2 . 5 8 , 

or ^ 66564 samples. 

Next we consider the variance, o^. 

Its best unbiased estimate is given by the sample mean-squared deviation 

given by 

K 

I ( V " -

S2 = , (10.3) 

K 

(notice that in order to obtain an unbiased estimate of the 

denominator should be (K-1), but since K is of order of several thousands, 

the error in using this simpler expression is negligible). 

Suppose we wish to know with probability 0.99 that our estimate of 

is correct within 2 percent; that is, we wish to choose K such that 

Pr{0 .98 < S2 < 1 . 0 2 0=} > 0 . 9 9 

but K.S^ 
N 

Pr{0.98 o2 < gz < 1.02 o^} = Pr {0.98K < ^ 1.02K} . 

In Chapter 2 we argued that is not normally distributed, but as a 

first order of approximation let us assume it is normally distributed. 

With this assumption we know that K.S^/o^ is distributed as the 
N N 

distribution with K-1 degrees of freedom , and for large K is approximately 

N(K-1,2(K-1)). 

Therefore, 

P.,0.,SK, (K.sp/.g , ...K, = Pr . ' 

1 2 G(^y2(K^l))' 

Therefore 

^V2(K-1)^^ 
1 - 2 
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or 

hence 

*(y2(K-l)^ < O'OOS ; 

1-0.02K 
y 2 ( K - l ) ^ - 2 . 5 8 , 

which yields the sample size K=33300. 

Thirdly, consider the measure of criticality of one activity. In any 

realization of the network, the activity (ij) is either on the critical 

path or it is not. Recall that the probability of an activity being on 

the critical path is given by its criticality index, which is equal to 

CA( i j ) = 2 CP(Ti) . ( 6 . 2 ) 

Tl 
((ij)fTi) 

Therefore we need sampling from a binomial distribution which is 

approximated very well by the Normal distribution function for the fixed 

sample. The estimator is the ratio of the number of sample realizations 

for which the arc is critical to the total sample size. The mean is 

KP and the variance KP(1 -P), where P is the probability of being critical. 

Suppose with probability of 0.99 we want our estimator of P to be 

correct within 0.01. 

Let p denote the estimator of P, we know that (P - P)/ /P(l - P)/K is 

asymptotically N(0,1). Therefore we want 

Pr{ |P - P| > 0.01} •= 0.99, 

> ° m - P ) / K ' • 

P is unknown but we can substitute P in the right hand side of the 

inequality sign in place of P 
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or better still, we can be conservative and substitute the worst 

possible value, P=0.5. 

Therefore 

Pr{ 
yp(i-p)/K ) 1/2 y K } " 

or 

P - PI 0.01 

'2 V 

P - P Pr{ - 0.02 /K < , , ^ C 0.02 /K } = 0.99, 
ypCl-P;/K 

This implies that 

0.02 y K = 2.58, or K = 16650 

Finally, consider the estimation of the pdf of T^, denoted by F^. 

We want to know, in some sense, how well our sample pdf fits the real 

one. If we assume that the pdf of the project completion time is 

continuous, we can make probability statements about the greatest 

absolute difference between the sample pdf and the true one independent 

of the distribution itself (Wilks, 1962). 

Kolmogorov gave the asympotic results that are tabulated, for example 

in Hole (1954), p.4. 

Let = sup {[F^^Xt) - F^(t)|}, 

where F^^t) is the true pdf and F^^Xt) is the pdf derived from a 

sample of size K. [sup is used instead of max since, depending on the 

situation, there might not be a value of t such that 0̂ ,= |Fĵ ĵ (t) - Fĵ (t) | 

However, it is always true that no number strictly smaller than can 

be greater than or equal to |F^%Xt) - F^(t)| for every t.] 

The probability that D is less than some specified d//K is asymptotically 
K 

given by 
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lim Pr(D ^d/ZK )= S (-l)(-l)^e ' • (10.A) 
K -4- oc ^ ^ 

In the tables we find d and the asymptotic probability of /K .D^^d. 

For example, suppose we wish to estimate F^(t) by such that 

the maximum deviation between the two functions does not exceed 0.01 in 

absolute value more than 1% of the time. We find that for the 

asymptotic probability Pr(/K.D^^d) =0.99 we have d=1.63. Since 

D„=0.01, we solve for /KCO.01)>1.63, to obtain K>26570. Of course, 

knowing the pdf (or the closest thing to it, the sample pdf) enables 

one to make probability statements concerning the completion time of 

the project. Unlike such probability statements made with the 

classical PERT calculations, these statements are accurate within the 

limit specified (1% in our example). 

Crude Monte Carlo simulation does not require extensive assumptions, 

but it is notorious for being computationally costly. Generally speaking, 

the result obtained from any form of Monte Carlo methods are subject to 

what is termed "sampling error" or "sampling variance". This means that 

a large number of repeated samples must be taken to obtain a reasonably 

close estimate of the desired result. But to use such an approach would 

increase the computation cost. As a result, a number of techniques have 

been developed for reducing the variance without increasing the sample 

size and number of repetitions. We briefly discussed four of them in 

Chapter 2 including, (a) Antithetic Variates, (b) Stratified Sampling, 

(c) Control Variates, and (d) Conditional Sampling. 

Since the antithetic variate method is the most widely known and easiest 

to apply of these techniques following section is devoted to a more 

detailed discussion of this technique. For more detailed discussion of 

the other techniques see Hammersely and Handscomb (1967) and the references 

cited therein. 
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Antithetic Variate Method 

Perhaps the best way to explain the concept of antithetic variate is to 

refer to a simple network of Figure 10.1, which is composed of two 

activities in series. 

Figure 10.1 

Suppose we wish to estimate the expected completion time of the project 

T^= by crude Monte Carlo simulation, where and are assumed 

to be independent. 

The straightforward procedure is to select two uniform random numbers 

0̂ :R̂ 1̂, and , and transform to realizations and by use of their 

respective dfs, say 

-1 
T.= F.(R); i=l,2 

- 1 

where F̂  is the df of and F̂  is its inverse. Then if we denote a 

realization of T^ by T^ for, t=l,...,K. Then the first realization 

is given by T^ = tJ + T^. 

We could tabulate K such realization and average to obtain the estimate 

of the mean 

f + fZ + T? + . . . + T* + 1% (10,5) 

^ K 

All random numbers are independent, and the K times are generated from 

their appropriate distributions, so 

ECT^) = E(T^) + ECT^) (10.6) 

and 
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Var(T.) + Var(T_) 
VarCT^) = — (10.7) 

In other words, the simple procedure described gives an unbiased 

estimator of £(1^) whose variance decreases as 1/K. If the procedure 

described is repeated many times (K ->• <»), then becomes arbitrarily 

close to EfTg). 

As mentioned before, if there are many independent serial activities 

then the sum of the variance in the numerator of (10.7) becomes large, 

and many repetitions are required in order to determine E(Tg) accurately. 

Note that in order to estimate ECl^) two realizatins, and need 

not be independent, so long as they have the correct marginal distributions. 

Therefore, if is large and one "forces" to be small, then the 

average will tend to be closer to the true value than in the case of 

purely independent samples. This is accomplished in the following fashion. 

Let R' be the complement of R. That is, R'=l - R. Two negatively 

correlated realizations of the ith activity duration are ^(R) 

and T\,=F^ ^(R'). The two activities of the network are sampled in this 

fashion, yielding a pair of realizations of project completion time. 

For K pairs of realizations, the stream T^, T^,, T^, T^i.T^, T^,, 

T^, T^i is generated and can be used to estimate E(Tg). 

The antithetic variate estimator for E(Tg) is 

k=l 2K 

= 1 r Y + T , ] V [ T ^ . + 1 

2 (T^ + ^3' ) ; the superscript a is for "antithetical" 
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ECT^)=E(T2,)=E(T2),so that the estimate of is, indeed, unbiased. 

Furthermore, Var (1^)= VarfT^,) = [Var(T^) + VarfT^jj/K. 

It is apparent from the manner of selection of the antithetic variables 

and T^,, that and , are negatively correlated; that is, 

Gov [T^, Since, 

Var(T*) = i [Var (T^) + VarCT^,)] + | Gov [T^, T^,] 

= I Var (T3) + ̂  [Gov T^, ^ Var (T^) 

[" Kleijnen (1975) observes that for complicated simulations,negative 

correlation cannot be proven. However, experiments with moderately 

complex system show that negative correlation does indeed occur 

(Sullivan et al, 1982)]. 

The conclusion is that the use of antithetic variates is more efficient 

than doubling the total number of independent samples taken. In other 

words, with the same sample size, the use of antithetic variates would 

result in a smaller variance of the estimate of the mean, ,and hence 

a more precise one. 

The dramatic effect of antitheticizing a sum is most apparent when T^ is 

symmetric, e.g., if T^ can be assumed uniform, or normal. In the latter 

case we can write 

?! = Pi' 

being distributed as N(0,1); and are mean and standard deviation 

of T^. Then the obvious antithetic is obtained by simple sign reversal 

of p. 
1 

T . , = P. - O.P. 

T + T T + T 
and an average of _j. 2 with 1' 2' already yields a zero-variance 

2 2 
estimate of . 
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The use of antithetic variates is also helpful in estimating the df 

of the random vairable T^. From the first set of observations the 

empirical pdf of F(t), and from the antithetic set of observations the 

second empirical pdf F'(t), can be determined. The antithetic variate 

estimate of the "true" pdf would then be given by F^(t)= [F(t) + F'(t)]/2, 

all t. Evidently, F'(t) compensate for any deviation of F(t) from the 

true F(t). 

The following section presents a summary of the work done by Krisadawat 

(1986) for comparing the accuracy and the computation efficiency of the 

Monte Carlo simulation and the CIM approaches for simple stochastic 

networks. 

SOLVING A STOCHASTIC NETWORK USING MONTE CARLO METHODS 

The Monte Carlo procedure applied by Van Slyke (1963) to networks assumes 

each activity has a beta distribution with mean t and a variance V . As 
e e 

generally recommended by Van Slyke (1963) for this purpose, 10,000 sets 

of random times for each activity in the network were generated. For 

each of these sets, the longest path through the network was determined: 

its duration was noted, as well as a count of each activity on the 

critical path. 

The procedure adopted in Krisadawat (1986) is different from Van Slyke 

(1963), Cook and Jennings (1979) and Burt and Garman (1971) where the 

completion times are of interest. The efficiency of the method 

independent of network complexity issues is of interest in Krisadawat 

(1986), the longest or critical path is assumed to be known. Non-

negative random variables of each activity on the longest path with a 

specified sample size and distribution, are generated. The expected 

value E and variance V^ of the completion time are determined by 

aggregating the expected duration and variance of each activity on the 
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critical path. Finally, since each arc in a network intended to 

represent paths made up of many activities, for the sake of convenience 

it is assumed that activities are normally distributed. Hence only 

methods for generating normal random variables are considered in his study. 

Generating normal random variables 

It should first be noted that given X'̂'N (0,1), X'^N(p,o2) can be obtained 

by setting X' = p+oX. So our attention will be restricted to generating 

standard normal random variables. 

One of the early methods for generating N(0,1) random variables, due to 

Box and Muller (1958), is still in wide use despite the current 

availability of much faster algorithms. The method simply says to 

generate and as uniform (0,1) random variables, then set X^ 

1 i 
(-21nU^)^cos2n.U2 and X^ = (-21nU^)^ sin Zn.Ug. Then X^ and X^ are 

independently N(0,1) random variables. 

An improvement to the Box and Muller method which eliminates the 

trigonometric calculations, described in Marsaglia and Bray (1964), has 

become known as "the polar method". It was found by Atkinson and Pearce 

(1976) to be between 9 and 31 percent faster in FORTRAN programming than 

the Box and Muller method. The polar method is used in this study. The 

algorithm of this method which also generates N(0,1) random variables 

in pairs, is as follows: 

1) generate and as U(Q,1), let = 2U^ - 1 for 

i=l,2 and let W = + V^. 

2) if W>1, go back to step 1. Otherwise, let 

Y = [(-21nW)/W]^, X^=V^Y and Xg = VgY. Then X^ and X^ are independent 

N(0,1) random variables. 
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The expected duration and variance of each activity are expressed in 

terms of one or several (unknown) parameters associated with the 

probability distribution of activity concerned. Several statistical 

methods are available: least squares methods, maximum likelihood 

methods and so on. The method of maximum liklihood is considered in 

Krisadawat's (1986) study. 

Maximum Likelihood Estimates 

The maximum likelihood estimate of 9, 9 say, based on a random sample 

X^,.., is the value of 9 which maximizes L(X^,...,X^; 9), considered 

as a function of 9 for a given sample X ,..., X^ where L is 

defined by 

L(X^,...,X^; 8) = f(X ;8)...f(X^^8). 

In order to find the maximum likelihood estimate, the maximum value of 

a function must first be determined. Since InX is an increasing function 

of X, lnL(X^,...,X^; 9) will achieve its maximum value for the same 

value of 9 as will L(X^,...,X^; 9). Hence under fairly general conditions, 

assuming that 9 is a real number and the L(X^,...,X^; 9) is a differential 

functin of 9, the maximum likelihood estimate can be obtained by 

solving the likelihood equation: 

InLCX^ X^; 8) = 0 . 

For example, if X has distribution N(p, o^), the maximum likelihood 

estimates of m and are given by 

n 

M - i J = X . 

i-l 
n 

i X)= . 

i=l 

However, the maximum likelihood yields a biased estimate of a^. Thus 
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n 

the unbiased estimate of the form l/(n-l) . ̂  (X^ - X)^ is used instead. 

i=l 

The full derivation can be seen in Appendix B. 

Confidence Interval 

In order to express the accuracy of the estimate, an interval estimate 

of the appropriate parameter is determined. This is usually referred 

to as a "confidence interval" because the method for computing such 

intervals are expressed in terms of a probability statement. 

From our knowledge of the standardized normal distribution, the variables 

z = (X-|j)/â  is normal distributed with mean 0.0 and the standard 

deviation 1.0, where o^=o//n , a referring to the population of X values. 

If a=l-Y, then by using the symmetry of the normal distribution the 

following relationship can be obtained: 

where ^a/2 ~^a/2 to those symmetric Z values for which 

the probability of greater or less values respectively, is a/2. From 

equation 10.8, the error can be expressed as: 

+ ERROR = z o//n , 

+ ERROR% = 100.z o/Cu/n) . 
- a/2 

EXPERIMENTS AND RESULTS 

The following experiments were designed by Krisadawat (1986) to measure 

the accuracy and computation efficiency of the Monte Carlo methods. The 

network considered in these experiments shown in Figure 10.2 is 

originally presented in Moder and Phillips (1983). 
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V = 0.88 

Figure 10.2 PERT network 

In this network, the critical path consists of the three activities 0-3, 

3-7 and 7-8. Suppose that the performance of each of these activities is 

subject to a considerable number of chance sources of variation such 

as the weather, equipments failure, personnel or material problems, 

or uncertainties in the methods or procedures to be used in carrying out 

the activity. In other words, the actual performance times for the 

activities on the critical path, instead of being exactly 2, 8 and 5 days 

are variables subject to random and chance variation with mean values 

of 2, 8 and 5 respectively. 

Any comparison of the results obtained by the Monte Carlo method and the 

exact results must take into account not only the computation time but 

also the degree of accuracy. The exact result is the sum of activity 

durations of the three activities on the critical path ignoring 

uncertainties, that is, 2+8+5 = 15. Whereas the results obtained by the 

Monte Carlo method is the sum of the expected duration and variance of the 

three activities which are obtained from the maximum likelihood estimates as 

discussed in the previous section. The computation time is the time taken to 

generate activity durations with specified sample size and distribution and 

calculate the expected du ration and variance of each activity by the maximum 

likelihood methods. The degree of accuracy considered is expressed in term of 
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errors and is calculated using the following confidence interval function: 

+ ERROR = z , _ o / / n 
— a/ z 

where 

and 

z /„ is the standard normal deviate, 
a/2 

a is the square root of the sum of variance of the 

durations on the critical path, 

n is the sample size, 

a is the confidence level. 

+ ERROR = 100. z ,„o/(mv^) 
— a/2 

where 

H is the exact sum of duration of the three 

activities on the critical path. 

In deriving the error figures in Table 10.1, 10.2 and 10.3, five 

confidence levels are considered; 10%, 5%, 1%, 0.5% and 0.1%. 

In determining the efficiency of the method, a number of tradeoffs may 

be involved. 

As pointed out by Van Slyke (1963), in solving PERT problems using 

Monte Carlo methods, most of the time is consumed in generating random 

variables. He recommended that 10,000 samples should be taken as a 

standard for network to obtain a reasonable precision. However, 

computation time and precision are conflicting objectives and tradeoff 

regarding these two factors must be included in determining the 

efficiency of Monte Carlo methods. 

Computer Program For Simulation 

To accomplish the objective above, a FORTRAN computer program was written. 

The main program consists of a function and three subroutines; RAND for 

generating random numbers; NORSAMP for generating random samples of 
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activity durations; BARVAR for determining the expected mean and variance 

of each activity and ERRSIG for calculating the error percentages at various 

confidence levels. For the function RAND, the portable FORTRAN function 

suggested by Schrage (1979) is used. 

For the subroutine NORSAMP, it is assumed that the activity durations 

on the critical path are distributed normally with the specified mean 

and standard deviation. The subroutine uses the polar method for 

generating random sample, as described previously. For subroutine BARVAR 

the expected mean and variance of each activity are determined by maximum 

likelihood estimates, as described previously. The subroutine ERRSIG has 

already been explained in the previous section. The listing and flow-

chart of the program can be seen in Appendix C. 

Results 

The results of the experiments are summarized in Tables 10.1, 10.2, and 

10.3. All the experiments were run on a IBM PC XT personal computer. 

The initial sample size of each activity on the critical path was 300 

and this is gradually increased to 9000. Empirical examination of the 

results in Table 10.1 shows that the completion time obtained by the 

Monte Carlo method differs from the exact completion time, but not to 

a significant extent. For 10%, 5%, 1%, 0.5% and 0.1% confidence 

intervals, the errors are -.1618, -.1928, -.2533, -.2767 and -.3236 

or 1.08% 1.29%, 1.69%, 1.84% and 2.16% respectively. As the sample 

size of each activity increases, it is clear from Table 10.2 and Table 

10.3 that the errors associated with the expected values at all 

significant levels gradually decrease. Figure 10.3 presents a pictorial 

relationship between the errors and sample size at 10%, 5%, 1%, 0.5% and 

0.1%. Looking at Figure 10.3, the errors at all significant levels 

decreases as the sample size get larger. However the decrease becomes 

less significant as the sample size of the three activities goes beyond 

5000. Thus the errors can be reduced by increasing the sample size up 
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to a sample size of about 5000 but beyond this the gain in precision 

is not significant, and it must be bought at the cost of substantially 

increased computation time. The cost of running a computer program is 

linearly proportional to the computation time and the sample size. As 

already pointed out by Van Slyke (1963), most of the time consumed 

using Monte Carlo methods is in generating random variables. Hence, the 

larger the sample size, the longer the time needed and consequently 

the bigger cost to be met. However, examination of the computation time 

from the three tables suggests that the Monte Carlo method is reasonably 

efficient in term of computation time and error up to sample size of 

about 10,000. 

COMPUTATION TIME: 

Ohr Omin 

EXACT : 

MONTE CARLO : 

SAMPLE SIZE = 300 

8sec 78hundredsec 

MEAN = 15.00 
VARIANCE = 2.8300 
MEAN = 14.87 
VARIANCE = 2.9017 

SIG LEVEL ERROR ERROR%( + - ) 

10.00 

5.00 

1.00 

0.50 

0.10 

-.1618 

-.1928 

-.2533 

-.2767 

-.3236 

1.08 

1.29 

1.69 

1.84 

2.16 

Table 10.1. Experimental result with the sample size of 300. 
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COMPUTATION TIME : 

Ohr Omin 51sec 95hundredsec 

E X A C T : 

MONTE CARLO : 

MEAN 
VARIANCE 
MEAN 
VARIANCE 

= 15.00 
= 2.8300 

= 14.94 
= 2.8579 

SAMPLE SIZE = 1800 

SIG LEVEL ERROR ERROR%( + - ) 

10.00 -.0655 .44 

5.00 -.0781 .52 

1.00 -.1026 .68 

0.50 -.1121 .75 

0.10 -.1311 .87 

Table 10.2. Experimental result with the sample size of 1800• 

COMPUTATION TIME : 

Ohr 4min 

EXACT : 

MONTE CARLO: 

19sec 

MEAN 

VARIANCE 
MEAN 
VARIANCE 

68hundredsec 

= 15.00 
= 2.8300 
= 15.06 
= 2.8776 

SAMPLE SIZE = 9000 

SIG LEVEL ERROR ERROR%( + - ) 

10.00 .0294 .20 

5.00 .0350 .23 

1.00 .0461 .31 

0.50 .0503 .34 

0.10 .0588 .39 

Table 10.3. Experimental result with the sample size of 9000. 
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Figure 10.3: Pictorial Relationship Between The Error and Sample Size. 
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Conclusion 

Krisadawat's (1986) study suggests that the Monte Carlo method is efficient 

for estimating the mean of network completion times in terms of both the 

computation time and the precision of the estimates. Empirical study 

favours this method for three reasons. First, a Monte Carlo or simulation 

program can be written quite easily. Second. the Monte Carlo method is 

flexible in that the sample size can be chosen to provide a desired 

level of confidence. Third, the Monte Carlo program considered in this 

study did not take advantage of variance-reducing techniques. Hence, 

the use of the variance-reducing techniques as mentioned before would 

further add to the efficiency of Monte Carlo methods. 

Alternatively, the CIM approach can be used to solve the above problem. 

"CATRAP", the CIM computer software developed by BP, was used by Yong 

(1985) to solve a similar network problem. He combined five normal 

distributions of activities, each with the mean and variance of 100. 

The efficiency was measured in term of the precision of the estimates. 

The experiments were carried out with different number of cells and a 

'squeezing procedure' was introduced to balance out the variance error 

caused by the probability allocation procedure and the need to truncate 

probability distribution tails. The 'optimal squeezing' was then 

obtained by varying the squeezing level for a particular cell size and 

by interpolating the results obtained corresponding to the zero variance 

bias. With 40 cells, less than 0.2% of the total probability area is 

squeezed. Some of the results from this study can be seen in Table 10.4 

and Table 10.5. 

Comparison of the results from Krisadawat's (1986) study with those of 

the CIM approach obtained by Yong (1985) in Table 10.4 and Table 10.5 

suggests that the CIM approach with about 40 cells and optimal squeezing 

gives comparable precision to the Monte Carlo method using about 10,000 
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PERCENTILE 

ERRORS IN THE VARIABLE 

VALUES FOR REPRESENTATIVE 

PERCENTILES PERCENTILE 

ZERO 

SQUEEZING 

OPTIMAL 

SQUEEZING 

1 0.78 0.28 

5 0.50 0.30 

25 0.98 0.91 

50 - -

75 0.98 0.91 

95 0.50 0.30 

99 0.78 0.28 

Table 10.4, Error percentages for 40 cells at various percentiles. 

PERCENTILE 

ERRORS IN THE VARIABLE 

VALUES FOR REPRESENTATIVE 

PERCENTILES PERCENTILE 

ZERO 

SQUEEZING 

OPTIMAL 

SQUEEZING 

1 0.14 0.04 

5 0.15 0.13 

25 0.02 0.01 

50 - -

75 0.02 0.01 

95 0.15 0.13 

99 0.14 0.04 

Table 10.5. Error percentages for 100 cells at various percentiles, 
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samples as recommended by Van Slyke (1963) with respect to 1 percentile 

values, much greater precision with respect to mean and variance values. 

Further examination of Table 10.4 and Table 10.5 also indicates that 

CIM precision is increased with reductions in percentile values up to the 

truncation point, whereas Monte Carlo precision declines with reductions 

in percentiles. Furthermore, very high levels of precision are 

possible if the CIM approach is used with 100 cells or more. 

In term of computation speed, it is clear from this study that Monte 

Carlo methods provide moderately good results with sample size as small as 

300. The CIM approach can only achieve the same with about 20 cells or 

less which provides unacceptable crudeness in the result distribution 

shape. 

Hence the Monte Carlo method would seem preferable if 

a) complex non-sequential dependence structure are involved, 

or 

b) not too much precision is required. 

Where the CIM approach would seem preferable if 

a) sequential structure, including branches, are involved; 

b) reasonable or high precision is required. 

However, it might point out that the CIM approach was developed for and 

is suitable for only fairly simple networks, although it might be used 

in conjunction with a Monte Carlo approach for more complex networks. 

In the following section we compare the accuracy of the proposed procedure 

with that of Monte Carlo method through simple examples. 

Example 10.1: 

Reconsider the network configuration of Figure 10.2. To approximate the 

normal distribution function of critical activities 0-3, 3-7, and 7-8 

each by a discrete distribution using 33 cells for each distribution 

from the standard normal tables, we obtain the information in Table 10.6. 
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z P(z) z P ( z ) 

0 .00000 0.2 0.07811 
-3.2 

0 .00052 0.4 0.07358 
-3.0 

0.00093 0.6 0.06661 
- 2 . 8 

0.00163 0.8 0.05793 
- 2 . 6 

0.00277 1.0 0.04842 
-2.4 

0.00454 1.2 0.03890 
-2.2 

0.00717 1.4 0.03002 
-2.0 

0.01087 1.6 0.02227 
-1.8 

0.01588 1.8 0.01588 
-1.6 

0.02227 2.0 0.01087 
-1.4 

0.03002 2.2 0.00717 
-1.2 

0.03890 2.4 0.00454 
-1.0 

0.04842 2 . 6 0.00277 
- 0 . 8 

0.05793 2 . 8 0.00163 
-0.6 

0.06661 3.0 0.00093 
-0.4 

0.07358 3.2 0.00052 
-0.2 

0.07811 + CO 0.00000 
0.0 

0.07900 

By replacing z in Table 10.6 by yi+az where m=2 and o = 70.39 s 0.6245, 

we can discretize the continuous distribution of activity 0-3 of Figure 

10.1 as shown in Table 10.7. 

Table 10.7 

P ( z ) P ( z ) P(z) P(z) 

0.0016 
0.1265 
0.2514 
0.3763 
0.5012 
0.6261 
0.7510 
0.8759 
1 . 0 0 0 8 

0.00052 
0.00093 
0.00163 
0.00277 
0.00454 
0.00717 
0.01087 
0.01588 
0.02227 

1.1257 
1.2506 
1.3755 
1.5004 
1.6253 
1.7502 
1.8751 
2 .0000 
2 .1249 

0.03002 
0.03890 
0.04842 
0.05793 
0.06661 
0.07358 
0.07811 
0.07900 
0.07811 

2 .2498 
2.3747 
2 .4996 
2 .6245 
2.7494 
2 .8743 
2.9992 
3.1241 
3 .2490 

0.07358 
0.06661 
0.05793 
0.04842 
0.03890 
0.03002 
0.02227 
0.01588 
0.01087 

3.3739 
3 .4988 
3.6237 
3.7486 
3.8735 
3.9984 

0.00717 
0.00454 
0.00277 
0.00163 
0.00093 
0.00052 



The discrete approximate of activities 3-7 and 7-f 

shown in Tables 10.8 and 10.9 respectively. 

Table 10.8 
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of Figure 10.2 are 

z P(z) z P(z ) z P ( z ) z P(z) 

4 0032 0 00052 6 .2514 0. 03002 8 .4996 0 07358 10 .7478 0 .00717 
4 2530 0 00093 6 .5012 0. 03890 8 .7494 0 06661 10 .9976 0 .00454 
4 5028 0 00163 6 .7510 0. 04842 8 .9992 0 05793 11 .2474 0 .00277 
4 7526 0 00277 7 .0008 0. 05793 8 .2490 0 04842 11 .4972 0 .00163 
5 0024 0 00454 7 .2506 0. 06661 9 .4988 0 03890 11 .7470 0 .00093 
5 2522 0 00717 7 5004 0. 07358 9 .7486 0. 03002 11 .9968 0 .00052 
5 5020 0 01087 7 7502 0. 07811 9 .9984 0. 02227 
5 7518 0 01588 8 0000 0. 07900 10 .2482 0. 01588 
6 0016 0 02227 8 2498 0. 07811 10 .4980 0. 01087 

Table 10.9 

z P(z) z P(z) z P ( z ) z P(z) 

1 9984 0 00052 3 6868 0 03002 5. 3752 0.07358 7 0636 0 .00717 
2 1860 0 00093 3 8744 0. 03890 5. 5628 0.06661 7 2512 0 00454 
2 3736 0 00163 4 0620 0. 04842 5. 7504 0.05793 7 4388 0 00277 
2 5612 0 00277 4 2496 0. 05793 5. 9380 0.04842 7 6264 0 00163 
2 7488 0 00454 4 4372 0. 06661 6. 1256 0.03890 7 8140 0 00093 
2 9364 0 00717 4. 6248 0. 07358 6. 3132 0.03002 8 0016 0 00052 
3 1240 0. 01087 4. 8124 0. 07811 6. 5008 0.02227 
3 3116 0. 01588 5. 0000 0. 07900 6. 6884 0.01588 
3 4992 0. 02227 5. 1876 0. 07811 6. 8760 0.01087 

Convoluting the duration times of activities 0-3, 3-7 and 7-8 of Tables 

10.7 to 10.9 yields the pdf of the project completion time as shown in 

Table 10.10 with mean 14.999817 and variance 2.84354. 

Notice that the results obtained for mean and variance of the project 

completion time using discrete approximate is more accurate than those 

obtained using Monte Carlo simulation. 



470 

Table 10.10 

t P(t) t p(t) t P(t) t P(t) 

7 .3084 .0000178 11 .2480 .0033047 15 .1876 .0441855 19 .1272 .0022921 

7 .4960 .0000181 11 .4356 .0046506 15 .3752 .0432850 19 3148 .0016376 

7 .6836 .0000188 11 .6232 .0059706 15 .5628 .0419026 19 5024 .0012275 

7 8712 .0000203 11 .8108 .0074355 15 .7504 .0401968 19 6900 .0008909 

8 0588 .0000222 11 .9984 .0091191 15 9380 .0380800 19 8776 .0006533 

8 2464 .0000250 12 1860 .0110462 16 .1256 .0355328 20 0652 .0004603 

8 4340 .0000292 12 .3736 .0132322 16 3132 .0328365 20 2528 .0003313 

8 6216 .0000421 12 .5612 .0156393 16 5008 .0299006 20 4404 .0002279 

8 8092 .0000553 12 .7488 .0182532 16 6884 .0269509 20. 6280 .0001530 

8 9968 .0000799 12 .9364 .0210393 16 8760 .0239486 20 8156 .0001105 

9 1844 .0001105 13 .1240 .0239486 17 0636 .0210393 21 0032 .0000799 

9 3720 .0001530 13 .3116 .0269509 17 2512 .0182532 21. 1908 .0000553 

9 5596 .0002279 13 .4992 .0299006 17 4388 .0156393 21 3784 .0000421 

9 7472 .0003313 13 6868 .0328365 17 6264 .0132322 21. 5660 .0000292 

9 9348 .0004603 13 8744 .0355328 17 8140 .0110462 21. 7536 .0000250 

10 1224 .0006533 14 0620 .0380800 18 0016 .0091191 21. 9412 .0000222 

10 3100 .0008909 14 2496 .0401968 18 1892 .0074355 22. 1288 .0000203 

10 4976 .0012275 14 4372 .0419026 18 3768 .0059706 22. 3164 .0000188 

10. 6852 .0016376 14 6248 .0432850 18 5644 .0046506 22. 5040 .0000181 

10. 8728 .0022921 14 8124 .0441855 18. 7520 .0033407 22. 6916 .0000178 

11. 0604 .0029279 15 0000 .0444189 18 9396 .0029279 

Example 10.2: 

Consider again network configuration of Figure 5.9 of Chapter 5. Following 

results as shown in Table 10.11 are taken from Merier, Newell, and Pazer 

(1969) for network of Figure 5.9 using Monte Carlo simulation. 

Figure 5.9 
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Table 10.11; COMPARISON OF PERT. ANALYTICAL, AND SIMULATION RESUTLS 

Method of computation 
Project Completion Time 

0 

PERT 8.00 1.26 

Analitically 9 .23 1.39 

Simulation 

40 Samples 9.67 1.27 

50 Samples 9.12 1.55 

90 Samples 9.36 1.41 

Table 10.12 shows percent error for mean and standard deviation of the 

project completion time using Monte Carlo simulation. 

Table 10.12; 

Sample size 

Percent error 

Mean Standard Deviation 
(Simulation from Exact) (Simulation from Exact) 

40 

50 

90 

+4.77 

-1.19 

+1.41 

- 8^^ 

+11.51 

+ 1.44 

Recall that the proposed procedure with less computation effort provides 

exact mean and standard deviation. 

Example 10.3: 

Consider again the network configuration of Figure 4.14 of Chapter 4. 

As mentioned in Chapter 4 this example is taken from Van Slyke (1963). 

The three numbers assigned to each activity are respectively the optimisitc, 

most likely, and pessimistic estimates for each activity. 

The expected project completion time using PERT is 66.0 with a variance 
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of 60.27. 

The Monte Carlo method proposed and tried by Van Slyke (1963) using 

10,000 realizations yields a mean of 67.0 and a variance of 42.39. 

The distributions used for the activity durations were the beta 

distributions with end points and modes given by the three parameters 

indicated in Figure 10.3. The standard deviation was taken to be 1/6 

the range. 

11-40 

0-40 

Figure 10.3 
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In Figure 10.4 normal distribution with mean 66.0 and variance 60.27 

is compared with the distribution obtained by Monte Carlo. 
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Figure 10.4: Probability density curves 

Figure 10.5 displays the network with the criticality index for each 

activity. The heavy line is "the critical path" calculated using 

expected values for the activity durations. 

Figure 10.5 
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The proposed procedure of this dissertation is applied to the network 

configuration of Figure 10.6 which is the network of Figure 10.3 with 

reversed direction of arrows in order to minimize calculation efforts. 

It is assumed that the duration times of activities are discretely 

distributed as shown in Table 10.13. 

The mean and variance for the project completion time using proposed 

procedure were found to be 69.95 and 116.75 respectively. 

Figure 10.6 
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Table 10.13: Duration times of activities of Figure 10.3, 

A P B P C P D P E p F P 

6 1/6 8 1/6 3 1/6 12 1/6 6 1/6 6 1/6 

12 4/6 10 4/6 21 4/6 15 4/6 11 4/6 12 4/6 

30 1/6 20 1/6 40 1/6 20 1/6 40 1/6 25 1/6 

M = 14 M = 11.333 M = 21.167 M = 15.333 M = 15 M = 13.167 
a = 7.503 a = 3.944 0 = 10.68 a = 2.357 o = 11.328 0 = 5.728 

G P H P I P J P K P L P 

0 1/6 8 1/6 1 1/6 3 1/6 7 1/6 7 1/6 

0 4/6 17 4/6 1 4/6 12 4/6 9 4/6 14 4/6 

0 1/6 21 1/6 1 1/6 18 1/6 12 1/6 21 1/6 

M = 0 M = 16.167 M = 1 M = 11.5 M = 9.167 M = 14 
a = 0 a = 3.933 a = 0 a = 4.387 0 = 1.462 o = 4.041 

M P N P 

25 1/6 6 1/6 

30 4/6 9 4/6 

AO 1/6 11 1/6 

M = 30.833 M = 8.833 

0 = 4.490 a = 1.464 

The normalized values of criticality indices of all activities are shown 

beside activities of Figure 10.7 

Figure 10.7 
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The mean and variance for the project completion time of Figure 10.6 

using Dodin's (1980) procedure were found to be 71.5 and 113.91 

respectively. Notice that in here again it is assumed that the duration 

times of activities are discretely distributed as shown in Table 10.13. 

The normalized values of criticality indices of all activities of 

Figure 10.6 using Dodin and Elmaghraby's (1985) approach were found as 

shown beside activities of Figure 10.8. 

78413 

132333 

8413 

49967 

4945 

22606 
r4775 

Figure 10.8 

The discrepancy between the values of mean, variance, and criticality 

indices obtained using the Monte Carlo simulation and those obtained 

using proposed prosedure is due to following factors: 

1 - In the Monte Carlo method the distributions used for the activity 

durations were the beta distributions with end points and modes given 

by the three parameters indicated in Figure 10.3. The standard 

deviation was taken to be 1/6 the range. In the proposed procedure 

the duration times of activities are assumed to have discrete 

distributions (i.e. each activity has three duration times as shown 

in Figure 10.3 with probability of occurrence 1/6, 4/6, and 1/6 

respectively). 

Notice that the standard deviation of activities in case of discrete 

distribution as shown in Table 10.13 is much greater than 1/6 the 
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range as it is used in Monte Carlo method. For example the standard 

deviation of duration time of activity A where A is discretely 

distributed as shown in Table 10.13 is approximately 7.503, while 1/6 of 

its range is 4. 

2 - The path deletion method as described in Chapter 2 is applied by Van 

Slyke (1963) to the network of Figure 10.3 to approximate the mean, 

variance and the pdf of project completion time and criticality 

indices of activities as shown in Figure 10.5. As we can see in 

Figure 10.5 the criticality indices of activities I and N are zero. 

As noted in Van Slyke (1963) activities I and N cannot be critical, but 

the Min-Max method as described in Chapter 2 and the proposed procedure 

of this dissertation and also Dodin and Elmaghraby's (1985) procedure 

don't reveal this. 

3 - In order to minimize the calculation effort the proposed procedure 

is applied to the network with arrow directions reversed. As 

mentioned previously this does not alter the exact pdf of the project 

completion time but may change the approximate criticality indices 

of activities. 

Let X denote the approximate criticality indices obtained using Monte 

Carlo method, Y denote the approximate criticality indices obtained 

using proposed procedure, and Z denote the approximate criticality 

indices obtained using Dodin and Elmagraby's procedure. The 

correlation coefficient between X and Y, and also between X and Z 

were found to be, 

1.1404851 

r„ Y ~ " Z Z Z Z Z I Z ^ = — ~ 0.947079, 
/ ( Z X 2 ) ( Z Y 2 ) / ( I . 5 8 0 1 5 2 7 ) ( . 9 1 7 7 1 4 9 ) 

and 
Zxz 

0.7999119 
r = — = — = 0.8185528. 

Y ( Z X 2 ) ( Z Z 2 ) / ( I . 5 8 0 1 5 2 8 ) ( . 6 0 4 3 5 4 6 ) 
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As we can see, considering the above factors, the approximate 

criticality indices of activities obtained using proposed procedure 

are more accurate than those obtained using Dodin and Elmaghraby's 

(1985) procedure. 

SUMMARY AND CONCLUSIONS 

In this chapter we briefly described Monte Carlo methods for solving 

stochastic PERT networks. In crude Monte Carlo simulation we apply the 

longest path algorithm to a long series of realizaticns each one obtained 

by assigning a sample value to every activity drawn from its proper 

distribution, then, given this information, we use standard statistical 

methods to estimate the distribution and parameters of interest. 

In the conventional PERT solution method, much of the output does not 

depend on the structure of the activity duration distributions but only 

on their means and variances. The Monte Carlo approach, in order to gain 

extra accuracy, does depend on the shape of the distribution. On the 

other hand, the Monte Carlo approach has greater flexibility in that 

any distribution can be used for activity durations: beta, normal, 

triangular, uniform, or discrete in any sort of mix. 

As mentioned in previous chapters the estimate for the mean using 

conventional PERT solution method is always low, and the estimate for the 

variance may be biased in either direction, whereas the Monte Carlo 

procedure gives an unbiased estimate of mean and variance. Moreover, the 

Monte Carlo procedure is very accurate in making estimate of the probability 

of meeting schedule dates and also yields information on the "criticality 

indices" of activities. 

The key drawback of the crude Monte Carlo method is that it is very 
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computationally costly for reasonable levels of precision with respect 

to the resulting distribution. 

Comparison of the results from experiments presented in this chapter 

suggests that the CIM approach with 40 cells and optimal squeezing gives 

comparable precision to the Monte Carlo method usign about 10,000 

samples as recommended by Van Slyke (1963) with respect to 1 percentile 

values, much greater precision with respect to mean and variance values. 

Furthermore, very high levels of precision are possible if the CIM approach 

is used with 100 cells or more. 

In term of computation speed, it is clear from the experiments of this 

chapter that Monte Carlo methods provide moderately good results with 

sample size as small as 300. The CIM approach can only achieve the same 

with about 20 cells or less which provides unacceptable crudeness in the 

result distribution shape. 

Considering the limitations of CIM approach for retaining a memory of 

common activities in calculation procedure, the CIM approach would seem 

preferable if 

a) not too many common activities are involved, or the activity network 

can be separated into several subnetworks. 

and 

b) reasonable or high precision is required. 

Monte Carlo method would seem preferable if 

a) complex dependence structure are involved, 

or 

b) not too much precision is required. 



480 

The proposed procedure of this dissertation minimizes the memory 

limitations of CIM approach, adding to the efficiency of this approach. 

However, Monte Carlo simulation may maintain a comparative advantage for 

very complex networks, and the ideal approach to networks in general 

may be a hybrid. 
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CHAPTER 11: SUMMARY AND CONCLUSION 

PERT has proved a useful and broadly applied management tool. In its 

original form, it is assumed duration times for individual activities 

are fixed and known in advance. This assumption led to the conventional 

PERT solution method for determining the critical path and project 

completion time. 

In practice it has been shown that this approach leads to optimistic bias 

for the mean value of the project completion time. Consequently, 

attempts were made to introduce probabilistic activity completion times, 

allowing representation of the stochastic nature of most projects. 

In stochastic PERT networks the main difficulty in calculating the pdf 

of the project completion time is caused by dependency between the paths. 

This dependency makes it also very hard to identify the most critical 

paths and activities in most stochastic networks. 

Ignoring the dependency between paths, Dodin (1980) proposed a procedure 

to approximate the pdf of project completion time. 

In Chapter 5 it was demonstrated that Dodin's (1980) procedure always leads 

to a pesimistically biased estimate of the occurrence time of events in 

irreducible networks. On the other hand both PERT and Dodin's calculated 

standard deviation may be biased in either direction. Precise statement 

about the magnitude of the error cannot be made since errors in project 

mean and variance vary with different network configurations. 

The two more important factors affecting the magnitude of the errors in 

merge events are as follows: 
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1 - The number of subcritical paths leading to a merge event. 

2 - The variance of the subpaths lengths. 

Considering the dependency between paths two main alternative procedures 

have been suggested. 

1 - The Controlled Interval and Memory (CIM) approach. 

2 - Monte Carlo Simulation. 

"CIM", developed by Chapman and Cooper (1983a), considers all paths if the 

memory concept is employed on the reducible networks. This method is 

based on defining each distribution of activities in histogram form 

with equal or common cell divisions within each distribution. The addition 

of two such distributions produces a result distribution which also has equal 

cell intervals. This method allows specification effort, specification 

error, computation effort and computation error to be controlled in an 

integrated manner. 

"Monte Carlo" simulation suggested by Van Slyke (1963) also considers all 

paths for complex networks. This method uses activity durations randomly 

drawn from appropriate probability distributions. Van Slyke (1963) 

suggested that the method can be used in two different ways. The first 

involves a relatively small sample size and is used to check on the 

traditional methods such as CPM and PERT. The second is to take a large 

sample size of activities and simulate the network to obtain the answers. 

Monte Carlo simulation provides an unbiased estimate of the mean and 

standard deviation of project completion time and approximates the 

criticality indices of activities and paths. One drawback of crude Monte 

Carlo simulation is that it is computationally very costly. 

The proposed procedure of this dissertation is based on the CIM approach 

to determine the mean, variance and probability distribution function 
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(pdf) of project completion time and approximate the criticality index 

of each activity and path. It allows activity durations to have 

continuous or any distribution function presented in a finite set of 

ordered pair. It also allows statistical dependence between activities. 

The proposed procedure provides an exact pdf for project completion time 

when the duration times of activities are discrete and approximates 

the pdf of the project completion time when the duration times of 

activities are continuous. 

Approximation is due to 

1 - Discretizing continuous distributions. 

2 - Convoluting discrete approximations to continuous distribution. 

In Chapter 6 it was demonstrated that approximate criticality indices 

of activities obtained using the proposed procedure are more accurate 

than those obtained using an approximating procedure proposed by Dodin 

and Elmaghraby (1985). If common activity times have relatively large 

variances or the number of activities emanating from merge events are more 

than two, approximate criticality indices obtained using Dodin and 

Elmaghraby's (1985) procedure are less accurate, while these factors don't 

affect the accuracy of criticality indices obtained using the proposed 

procedure. Moreover, the proposed procedure and numeration methods, both 

give the same ranking of criticality indices in most PERT networks. 

Chapter 7 demonstrated how structural dependence relationships can 

interact with statistical dependence relationships to produce important 

effects which cannot be detected and understood using simple expected 

value calculations, but they can be identified, modelled and understood 

in a CIM framework. 
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Chapter 8 provided a brief discussion of different discretizing methods 

for continuous distributions. The accuracy of the most efficient method 

was examined through simple examples • It was demonstrated that: the 

accuracy of the approximation can be enhanced by using more cells; 

the absolute values of the deviations between the exact and approximate 

pdf (MDV) and the average of the absolute values of the deviations between 

the exact and approximate pdf (ADV) were minimized in the case of a series of 

activities with normal distributions. 

In Chapter 9 the accuracy of the approximate pdfs for the project completion 

times obtained using CIM and DPD approaches were compared for the three 

examples of Chapter 8 by measuring their closeness to the "true" pdfs. It 

was demonstrated that the CIM approach provides more accurate results for 

combining continuous distributions of activities. This advantage was 

especially apparent in example 4 where the distribution functions of 

activities were extremely skewed. 

Finally, comparison of the results from experiments presented in Chapter 10 

suggests that the CIM approach with 40 cells and optimal squeezing gives 

comparable precision to the Monte Carlo method using about 10,000 samples. 

The CIM approach does have only one important limitation relative to 

Monte Carlo simulation which need to be noted, otherwise a CIM approach 

provides much greater precision for computation a moderate effort. The 

retention of a single memory dimension for the common activity A of Figure 

11.1 involved preserving and working with a matrix of probabilities at each 

stage. In general, n levels of memory involved an (n+1)-dimensional 

probability matrix. Large values of n make this approach computationally 

demanding. Computer software which will handle largish values of n is 

feasible, but the size of value of n at which Monte Carlo simulation would 

be a preferable computational approach remains a research issue. 

The proposed procedure of this dissertation minimizes the computational 
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implications of the memory aspect of the CIM approach by solving the 

network for various condition values of common activities. This 

adds to the efficiency of the CIM approach. When modelling activites 

at a source of risk/response level of detail, it is usual to employ only 20 

or so activities to represent a very large project. This means that the 

proposed procedure is usually viable for detailed risk analysis, although 

it could not be used exclusively for a large basic PERT network. 

Figure 11.1 
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APPENDIX A: 

Theorem : An activity network is not completely reducible if and only 

if it contains the interdictive graph. 

The following notation will be used in the proof of the theorem. 

(i,j) = arc (i,j)eA starting at node i and ending in node j where i<j, 

it is the only arc connecting node i to node j in the network. 

A(i) = {jeN: (i,j)e A}, the set of nodes succeeding node i. 

B(i) = {kcN: (k,i)e A}, the set of nodes preceding node i. 

P(i) = {keNik < i and k connects to i by a path}, i.e. the set of nodes that 

precede node i and connects to i by an arc or a path. 

The interdictive graph (IG) is the graph shown in Figure A.1; evidently, 

it is irreducible and shares with all irreducible networks the following 

properties. 

(1) The number of nodes N i), 4 and of arcs A > 5. 

(2) For each i^l,N,|A(i)|+|B(i)| ^3; hence, there are no arcs in series. 

(3) Either |A(1)|=1, in which case |B(2)|=|A(1)|=1 and |A(2)|> 2; or 

|A(1)|^2. Therefore, without loss of generality, we can assume that 

in an irreducible network |A(1)|>2. 

(4) Either |B(N)| =1, in which case |A(N-1)| = |B(N)| = 1 and |B(N-J)| 

or |B(N)|^2. Similarly we can assume that |B(N)|>2. 

(5) There exists a smallest numbered node j^l,2 or N and a node iePfj), 

such that there are two independent paths (no arcs in common) conneching 

i to j . 

Proof: The 'if part is true since the IG is irreducible; hence, any 

graph containing it is also irreducible. The proof of the 'only i f 

part is by contradiction. 

Assume the network to be irreducible; we wish to show that there 

exists at least one IG (in which the link (1,2), (1,3), etc., 

of Figure A.1 may themselves be paths). Since the rank (degree) of 
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each node i^l, N is at least 3, by Property 2, there must exist at 

least one node i^ with |B(ig)|>2. Then by Property 5, there must 

exist at least one node i^cPfi^) such that there are two 

independent paths (have no arcs in common) connecting i^ to i^. 

One of the paths must have at least one intermediate node with 

\k{±^)\yi since we started with a network which does not contain 

two arcs in parallel. In fact, there exist a node i^< i^ which 

can be considered the mirror image of 33 in the sence that there are 

two independent paths connecting node i^ to a node i^> i^ with one 

of the two paths passing through node i^; see Figure A.2 for 

illustration. Therefore, i^ is connected to i^ with two independent 

paths; one of them passes through node i_. 

The composition of the two paths connecting i^ to i^ and the two 

paths connecting i^ to i^ gives an interdictive graph. The absence 

of the 'cross-over' between nodes i^ and i^ imply that node i^ is 

connected to node i^ with two independent paths; hence, the digraph 

is composed of graphs in parallel, each one of which is itself 

composed of arcs in series (recall that we started with a digraph 

that contains no arcs in series). But such a diagraph is reducible, 

a contradiction. The paths (i^,....,i^), ( i ^ i ^ ) , (i^,....,!]^ 

(i^,.•••»i^), and (i^^....,i^) constitiute the desired IG as 

illustrated in Figure A2. 

Figure A.l: The interdictive graph. Figure A.2: An irreducible 

activity network. 
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APPENDIX B: 

Suppose that X has distribution N(u,o^). Hence the pdf of 

IS 

x-u 

If (Xp...,X^) is a sample of X, its likelihood function is given by 

L(X^ , . . . ,X^;u,o) = (2TTO^)~"^^exp{-i [ [(X^-u)/o]^} . 
i=l 

Hence 

I n ( L ) = ( - H ) i n ( 2 w o 2 ) - & % [ ( X - w i / o ] " 
i=l 

We must solve simultaneously 

)InL 

3U 
= 0 and 

ainL 
do 

We have 

^ ' = , N ( V U ) / O M 
1=1 

= 0 , 

which yields Q = X, the sample mean. And 

- - = + I [(X.-u)Vo=l = 0 , 
do a . "i- • 1 

1 = 1 

which yields 

'll (X--")' 
i=i 1 = 1 
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Note that the ML method yields a biased estimate of , since we have 

already seen that the unbiased estimate is of the farm 

i=l 
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APPENDIX C: 

EXTERNAL RAND 

REAL ERR0R(5),E0P(5),SLEVEL(5) 

REAL EXMEAN(20 0),EXVAR(2 00),XBAR(2 00),XVAR(200) 

REAL M E A N , S T A N D , X ( 3 0 0 0 ) 

INTEGER IHOUR,IMINUTE,ISECOND,IHUNDREDSECOND,ISEED 

L0GICAL*2 XT,SETTIM 

DATA SLEVEL /lO.0,5.0,1.0,0.5,0.1/ 

ISEED = 1234 

XT = SETTIM(0,0,0,0) 

C 

C INPUT THE NUMBER OF ACTIVITIES. 

C 

READ(3,*) M 

DO 44 IP = 1,M 

C 

C INPUT SAMPLE SIZE, MEAN AND STANDARD DEVIATION. 

C 

R E A D ( 3 , * ) N,MEAN,STAND 

C 

C CALL S U B R O U T I N E TO GENERATE NORMAL RANDOM 

C VARIABLES WITH THE SPECIFIED PARAMTERS ABOVE. 

C 

CALL NORSAMP(X,N,MEAN,STAND,ISEED) 
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C CALL SUBROUTINE TO CALCULATE THE EXPECTED MEAN AND 

C VARIANCE FROM THE SAMPLE. 

C 

CALL BARVAR(X,N,XVAR,IP) 

TXBAR = TXBAR + X B A R d P ) 

TXVAR = TXVAR + XVAR(IP) 

EXMEAN(IP) = MEAN 

EXVAR(IP) = STAND*2 

TMEAN = TMEAN + EXMEAN(IP) 

TVAR = TVAR + EXVAR(IP) 

44 TN = TN + N 

C 

C NOTE THE TIME TAKEN FOR THE COMPUTATION. 

C 

CALL GETTIM(IHOUR,IMINUTE,ISECOND,IHUNDREDSECOND) 

C 

C CALL SUBROUTINE TO COMPUTE THE ERRORS AT 10%, 5%, 1%, 

C 0.5%, 0.1% SIGNIFICANT LEVELS 

C 

CALL ERRSIG(TMEAN,TXBAR,TXVAR,ERROR,EOP,TN) 

WRITE(*,110) 

WRITE(*,120) IHOUR,IMINUTE,ISECOND,IHUNDREDSECOND 

WRITE(*,100) 

WRITE(*,130) 

WRITE(*,140) TMEAN 

WRITE(*,150) TVAR 
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WRITE(*,145) TXBAR 

WRITE(',150) TXVAR 

WRITE(*,100) 

WRITE(*,147) INT(TN) 

WRITE(*,100) 

WRITE(*,160) 

WRITE(*,170) 

WRITE(*,180) 

WRITE(*,170) 

WRITE(*,160) 

WRITE(*,170) 

DO 55 K = 1,5 

WRITE{*,190 ) SLEVEL(K) ,ERROR(K) ,EOP(K) 

55 WRITE(170) 

WRITE(*,160) 

100 FORMAT(IX) 

110 FORMAT(IX,'COMPUTATION TIME:') 

120 FORMAT(IX,12,'hr',12,'min',12,'sec',I2,'hundredsec') 

130 FORMAT(IX,'CENTRAL LIMIT THEOREM:') 

140 FORMAT(IX,'EXACT: MEAN =',F15.2) 

145 FORMAT(IX,'MONTE CARLO; MEAN =',F15.2) 

147 FORMAT(IX,'SAMPLE SIZE = ',115) 

150 FORMAT (IX, 'VARIANCE == ',F15.2) 

160 FORMAT(6X,39('-')) 

170 FORMAT(6X,' ',11X,' ',2(12X,' ')) 

180 F0RMAT(6X,' SIG LEVEL % ERROR ERROR %(+-) ') 
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190 FORMAT(6X,' ' , 3X,F5.2,3X, ' ',1X,F10.4,' ',1X 

1,F8.2, ' ' ) 

END 

FUNCTION RAND(IX) 

INTEGER A , P , IX , B15,B16,XHI,XALO,LEFTO,FHI,K 

DATA A/168 07/,615/32768/,816/65536/ 

1,P/2147483647/ 

XHI = IX/B16 

XALO = (IX-XHI*B16)*A 

LEFTO = XAL0/B16 

FHI = XHI*A+LEFT0 

K = FHI/B15 

IX = ((XALO-LEFTO*B16)-P+(FHI-K*B15)*B16)+K 

IF (IX .LT. 0) IX = IX+P 

RAND := FLOAT(IX)*4 .656612875E-10 

RETURN 

END 

SUBROUTINE NORSAMP(X,N,MEAN,STAND,ISEED) 

REAL X(N),MEAN,STAND 

INTEGER ISEED,N 

DO 11 I == 1,N 

22 U1 = RAND(ISEED) 

U2 = RAND(ISEED) 

VI = 2*U1-1 

V2 = 2*U2-1 

W = (Vl**2)+(V2**2) 
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IF ( W .GT. 1.0 ) GOTO 2 2 

Y = SQRT({-2*AL0G(W))/W) 

11 X(I) = MEAN + (Vl*y)*STAND 

END 

SUBROUTINE BARVAR(X,N,XBAR,XVAR,IP) 

REAL X(N),XBAR(200),XVAR(200) 

SXl = 0.0 

SX2 = 0 . 0 

DO 66 I = 1,N 

SXl = SXl + X(I) 

66 SX2 = SX2 + (X(I)**2) 

AN = N 

XBAR(IP) = SXl/AN 

XVAR(IP) = (SX2-(SX1*SX1)/AN)/(AN-1) 

END 

SUBROUTINE ERRSIG(TMEAN,TXBAR,TXVAR,ERROR,EOP,TN) 

REAL TMEAN,TXBAR,TXSTAND,TXVAR,ERROR(5),EOP(5),TN,Z(5) 

DATA Z/I.6449,1.9600,2.5758,2.8130,3.2905/ 

TXSTAND = SQRT(TXVAR) 

DO 3 3 I = 1,5 

ERROR(I) = Z(I)*(TXSTAND/SQRT(TN)) 

IF ( TMEAN .GT. TXBAR ) ERROR!I) = -1 *(ERROR(I) ) 

33 EOP(I) = ABS((ERROR(I)*100)/TMEAN 

END 
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APPENDIX D: 

Notations and Definitions 

The following is a list of notations and difinitions used throughout this 

study. 

A: the set of activities (arcs) in the network G(N,A); also the 

cardinality of the set. 

ACAP(ij): the approximate criticality index of activity (ij) using proposed 

procedure of Dodin and Elmaghraby (1985). 

A(i): set of arcs emanating from node i= set of nodes succeeding node i. 

ADV: average value of the absolute deviation of F(N) from F'(N). 

a: denotes an arc, and is indexed from 1 to A. 

a: optimistic activiity duration. 

B(i): set of arcs incident into node i= set of nodes preceding node i. 

Bj : set of arcs immediately preceding node j. 

b: pessimistic activity duration. 

C.: the cutset at node j. 
J 

CA(ij): the exact criticality index of activity (ij). 

CAP(ij): the approximate criticality index of activity (ij) using proposed 

procedure of this dissertation. 

CAP(ij): the probability that the maximum of the paths in L(ij) is longer 

than the maximum of the paths in the complement set L(i,j). It 

is a lower bound on the value of CA(ij). 

cdf; comulative distribution function. 

C.I. criticality index. 

CIM. controlled interval and memory. 

CN(i): the criticality index of node i= the sum of criticaltiy indices 

of the paths containing node i. 

CNP(i): the approximate criticality index of node i using proposed 

procedure of this dissertation. 

CP: cumulative probability. 
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CP(T^): the criticality path index of path = the probability that 

path is not shorter than any other path. 

CPP(T^): the approximate criticality index of path using proposed 

procedure of this dissertation. 

DAN: deterministic activity network. 

DC(j): directed cutset = set of arcs connecting the nodes with numbers 

less than j to the nodes with numbers greater than or equal 

to j . 

dF(x): density function of the random variable X,i.e., dF(x) = f(x). 

df: distribution function. 

dj: Dodin's estimate of the realization time for node j. 

E: mean value. 

E.: earliest occurrence time for event i. 
] 

e^: expected value of critical path to node j given any realization 

of subnetwork P^, j=2,3,...,N. 

EF(ij): earliest finish time for activity (ij). 

ES(ij): earliest start time for activity (ij). 

E[Z(T^)]: the mathematical expectation of r.v. Z(T^). 

F(N): approximate pdf of the project completion time. 

float time for activity (ij). 

F\j(Y^j): probability distribition function of activity (ij)eA. 

F'(N): true pdf of the project completion time. 

fj: Fulkerson's estimate of the realization time for node j. 

G(N,A): an activity network with N nodes and A arcs. 

S(N,A): an activity network with reversed direction of arrows. 

g^(.): coefficient of skewness = moment coefficient of skewness. 

gj: PERT estimate of the realization time for node j. 

I(i): indegree of node i = number of arcs ending at node i. 

i: denotes a node, and indexed from 1 to N. 

L(ij): the set of paths containing arc (ij). Its complement is 

L(ij)=P-L(ij). 
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L. : 
J 

LF(ij): 

LS(ij): 

MCS: 

MDV: 

m: 

: 

m^: 

m^(t): 

NACAP(ij); 

NCA(ij): 

NCAP(ij); 

NCPP(T ): 

NIN: 

NRR: 

n. : 
J 

0(i); 

P; 

PAN: 

pdf: 

P. : 

P2.(%)=P(X=x) 

P(yij): 

latest occurrence time for event j. 

latest finish time for activity (ij). 

latest start time for activity (ij). 

Monte Carlo Sampling. 

maximum value of the absolute deviation of F(N) from F'(N). 

most likely activity duration 

first moment about the origin = mean. 

second moment about the origin. 

third moment about the origin. 

second moment about the mean = variance 

third moment about the mean. 

moment generating function. 

the normalized value of approximate criticality index of activity (ij) 

using proposed procedure of Dodin and Elmagraby (1985). 

the normalized value of exact criticality index of activity(ij). 

the normalized value of aproximate criticality index of 

activity (ij) using proposed procedure of this dissertation, 

the normalized value of approximate criticality index of path 

using proposed procedure of this dissertation. 

number of the realizations in F'(N). 

number of the realizations in F(N). 

the in-degree of node j. 

outdegree of node i = number of arcs emanating from node i. 

the set of paths from node 1 to node N; also the cardinality 

of the set. 

probability activity network. 

probability distribution function. 

subnetwork of nodes and arcs up to and including node j. 

:the probability mass of random variable X and in short is 

denoted by p. 

marginal probability function of arc (ij). 
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p[y(A)] 

r.V. : 

r: 

SA: 

S. 

T : 
c 

T. : 
1 

V A ) : 

t " : 
a 

T^; 
1 

J 

"ij: 

W..: 

"ir 

"ir 

y(A): 

Z(T^): 

6(.)for arc 

y(. )for node 

probability of the realization of the arcs in the network. 

random variable. 

correlation coefficient 

sequential approximation. 

slack time for event i. 

critical path. 

the hth path; T^^P. 

realization time of node i, i=2,3,...,N. 

critical path given any realization of the network, 

kth realization time of activity a. 

the duration of the longest path "forward" from node 1 to 

node i. 

the duration of the longest path "backwards"from node N to 

node j. 

the duration of the longest path not contaiing arc (ij). 

the duration of the longest path containing arc ij. 

the duration of the paths ending in node j not containing 

arc (ij). 

the duration of activity (ij), a r.v. 

vector of realization of all arcs in the network. 

vector of realization of all arcs in the set B.. 
J 

the duration of path T^^P. 

maximum likelihood estimate of 9. 

a convolution operation. 

a greatest operation. 

0 if the argument variable is "inactive" 

1 if the argument variable is "active". 

where an "active" node or arc is one that is 

retained in the final (irreducible) network. 
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