University of
@Southampton

University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any
accompanying data are retained by the author and/or other copyright owners. A
copy can be downloaded for personal non-commercial research or study, without
prior permission or charge. This thesis and the accompanying data cannot be
reproduced or quoted extensively from without first obtaining permission in
writing from the copyright holder/s. The content of the thesis and accompanying
research data (where applicable) must not be changed in any way or sold
commercially in any format or medium without the formal permission of the

copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic

details must be given, e.g.

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton,

name of the University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]

UNIVERSITY OF SOUTHAMPTON

A Desk-top Information Manager

Jorge B. Bocca

Thesis submitted for the Degree of Doctor of Philosophy

UNIVERSITY OF SOUTHAMPTON

1985

ACKNOWLEDGEMENTS

First and above all, I would like to thank Professor
David W. Barron for the helpful and timely comments he
made while supervising this work. I am grateful to Mark
Wallace who made me aware of many design drawbacks and
forced me to rethink innumerable problems that I had
believed solved. Special thanks must go to Michael
Freeston for his pragmatism when the flow of ideas took
me to impossible dreams, Professor Michael Shave and Dr.
Maurice Flower for all their support and encouragement.
In particular, I would 1like to thank Carol Kealey for
typing this thesis. Finally but not least, I would also
like to acknowledge the many comments and discussions
with the members of the Computer Studies Department at

Southampton University.

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

Faculty of Mathematical Studies

Doctor of Philosophy

A Desk-top Information Manager

Jorge B. Bocca

This thesis describes the principles, the design and
the implementation of an information management system.

Because this system is intended for general purpose
use, it needs to be flexible to lend itself to multiple
uses, portable to take advantage of new hardware,
expandable to provide a regulated growth path and above
all easy to use. A Desk-top Information Manager (ADIM)
was designed and implemented to satisfy these
requirements.

The main core of ADIM 1is a highly efficient
interconnectable "desk-top" data base management system.
This data base system is of a relational type and
provides users of it with an. interface based on
relational algebra. ALFRED is a family of languages
designed and implemented for use with ADIM.

This thesis also discusses efficiency problems in
relational systems and their solutions within ADIM, ways
of implementing the interconnection of data bases and
applications of ADIM.

—ii-

TABLE OF CONTENTS

INTRODUCTION.

1.1 Goals and Motivations

1.2 Review

1.3 Organization of the Thesis

DESIGN GOALS.

Simplicity
Cost effectiveness and portability
Modularity
Compactness
Dynamic data and static structures
Efficiency
Distributed data and processing power
Decomposition
Data base design

@ Operational Overview

* L4 *

> » 2

NN NDDDNDN
L .

s o

A0 0O ~J Y U WM

LANGUAGES.

Introduction

ALFRED

An introduction to retrieve
Algebra Operators

Other Commands

Syntax of ALFRED-U

The user and the languages

L

Wwwwwww
L
~TOY U s WO N

ARCHITECTURE.

4.1 ADIM - Basic Modules

4.2 Query Generators: G-units

4.3 Query Processors: P-units

4.4 Control Unit: C-unit

4.5 Segments and Concurrent Processes

-iii-

5. DECOMPOSITION.

Introduction

Basic Concepts

Decomposition Procedure

Design Tools

Retrieval Tactics
Implementation

Some comments on decomposition

oottt
® 5 @
~STOY U N

s 9 o 3

6. DATA STRUCTURES AND NATURE OF DATA.

Efficiency

Random Directories
Extendible Hashing
Dynamic Trees

B-Tree Implementation
Empirical Tests

Cost Estimation
Dynamic Structures

L] »

L

L -

[N e We W e) WerWe Mo Te
* L]
O ~JOY Ut (W N

7. IMPLEMENTATION OVERVIEW.

. Introduction

. Sub-systems

. CQL

. FML
Utilities

Special Files
System Catalogues
Some Comments

NN N NN
L4
O ~J OV UL W N

s s 3

8. CONCLUSIONS AND FURTHER WORK.
APPENDICES.

A, ALFRED Demonstration

B. Utilities to the DBA: a demonstration
C. FML demonstration

D. ALFRED-U to QUEL: a demonstration

E. ALFRED-U to QUEL: Source code

F. Binary Cyclic Codes

G. Cyclic Codes Algorithms: a sample

H. ALFRED VC to K: Translator Source Code

REFERENCES.

—iv-

CHAPTER 1

INTRODUCTION

1.1 Goals and Motivations -

In this thesis I advocate the use of the relational
model of data for the design and implementation of a
personal data base syétem. Recent research in relational
data base systems has produced solutions which rely on
large and powerful computer systems. I have concentrated
on solutions based on small computer systems. My design
concentrates on the use of multiple microprocessors.
These processors in conjunction with appropriate
algorithms can produce highly efficient personal data
base systems. The design gives special consideration to
future expansions of these personal units., The aim has
been to design interconnectable ‘'desk-top' data base

systems.

Small is beautiful, and certainly this is the case of

all microprocessor based systems. Apart from cosmetic
considerations, low cost and friendliness are the
over~riding factors in the design of personal computer
systems. In this thesis, I attempt to demonstrate the
feasibility of designing and implementing a personal data
base management system which complies with the above

requirements.

I believe that a personal data base management system
must be: flexible to lend itself to multiple uses,
portable to take advantage of new hardware, expandable to
provide a regulated growth path and above all, easy to

use.

Data independence and the ability to formulate
queries in a non-procedural fashion are the distinctive
virtues of the relational model of data [CODD7¢]. It is
because I believe that these virtues provide an adequate
base for flexibility, portability, expandability and ease
of use, that I advocate the relational model of data for
the design and implementation of a personal data base

system.

Although many people may argue against a relational
approach on the grounds of efficiency, I firmly believe
that appropriate optimization techniques once

incorporated into the design of a personal data base

system can produce an efficient implementation.

In pursuit of the above goals, I have designed and
implemented a personal data base management system based
on the relational model. ADIM ~ A Desk-top Information
Manager - is the name of this system. ADIM embodies the

design principles and ideas presented in this thesis.

ADIM's requirements of flexibility and expandability
demanded an architecture where distributed systems and/or
multiprocessor systems could be used advantageously
depending on the circumstances. Thus, for the sake of
efficiency, a wuser who starts on a one-site-single
processor personal system can progress to a
one~site-multiprocessor system. Alternatively, another
user might have a need for a growth path leading to a
loose distributed system, but owing to financial
considerations he/she starts with a one-site personal
system. An example of the first case is a data base
system for use in an automatic document classification
system, where the growth in the quantity of documents to
classify is accompanied by a gradual deterioration in the
performance of the system. Performance in this case, can
be improved by increasing the number of processors in the
system. The second case is examplified by a university
data base. This data base could have been originally set

up in the mathematics department and followed later by

the installation of a data base in the physics

department.

A logical expansion can be obtained by
interconnecting both data bases into a unified

distributed system.

In order to develop ADIM as a highly efficient
interconnectable "desk-top" data base system, three

problems needed to be solved:

(a) distribution of data traffic between
processors/sites;

(b) distribution of data traffic between secondary
and main memories;

{c) processors scheduling.

A direct attack on the data traffic bottlenecks, (a)
and (b), is to curb the amount of traffic in the most
saturated data pathways of the data base system. For
example, if we assume parallel processing in a
multiprocessor site with several disc units, it would be
more efficient to have each processor interacting with a
different disc unit rather than several of them
interacting with one disc. This is because the disc
channel capacity would not be saturated and therefore, no
processor would be kept waiting for other processors to

finish.

In order to obtain a meaningful and efficient
distribution of data onto the different units of
secondary storage and throughout the interconnected
"desk-top" data base systems, data must be partitioned.
Decomposition techniques and data base design tools
provide the necessary elements for a solution to problems
(a) and (b). Techniques for decomposition of a data base
are presented in chapter 5, together with some tools for

the design of data bases.

Unfortunately, as a result of decomposing a data
base, simple user's queries can become very complex
queries, To solve this problem, ADIM makes use of
techniques based on optimization by query transformation
{PALERMO, PECHERER] . Lastly, but not least in
importance, once a relation has been identified for
retrieval, this operation should be executed in minimal
time. For this, data structures and access methods
appropriate to the general nature of data bases should be
used. B-trees [COMMER79] are used by ADIM as the unique
data structure. This, I feel is a very efficient

solution for static and volatile data.

Finally, searching strategies based on the particular
data base and the system's architecture produce the
solution to problem (c). Cost functions were defined, so

that decisions regarding alternative strategies could be

made. A discussion of cost based strategies in ADIM is

held in chapter 6.

1.2 Review -

The development of the earliest and possibly most
comprehensive relational data base management system to
date - INGRES, was completed by a team working at the
University of California, Berkeley, under the direction
of M. Stonebraker [HSW75]. The proposal of a relational

model of data is the contribution of E.F. Codd [CODD74].

Considering the potential areas of application it is
not a surprise that research and development ©of
distributed data base systems is a very active field
[HELLER, STONENEUH, HEVNER, DEPPE, ADIBA, STOCKER]. Some
experimental systems have been implemented [CHAM,
HELLER], while others offering many interesting features
are being developed. The Polypherne project [ADIBA] in
France and.the PROTEUS project [STOCKER] in the UK are
distinctive examples of this trend. These projects, like
similar projects in the USA, are all orientated towards
widely distributed computer networks. As far as the
author knows, not much emphasis has been placed on the
design and implementation of data base systems for small

microcomputers sharing a common pool of data. Also, very

very few relational data base management systems capable
of running on small microcomputer (personal computers)
have been implemented. The existing systems in this
class do not exhibit a great deal of sophistication.
Perhaps the most popular among these systems is DBasell
[ASHTON] . Other systems in this class are: Data Ease

and Condor [JACOBSON].

The distribution of processing power and storage
cells has a significant effect on the design of data
bases. At the global level of design, a common data
model 1is required. A global model which supports
heterogeneous data models at the local nodes is the main

feature of PROTEUS [STOCKER].

Another problem of particular importance to
distributed data base management systems is the
partitioning of data bases into physically distributed
files. Interesting results in this area have been
reported in recent years [SKCWHC, WUN]. Siang Wung's
solution is based upon the use of specialized hardware

[WUN] .

Because of the efficiency considerations, research
into access methods, data storage structures and file
organization techniques have received a deserved amount

of attention [HS75, HELD75, HELSTO75, LITWIN, TAMMIEN,

YAO, FREDKIN, FAGIN, QUITZOW, LARSON, BAYER, GUDES,
BURHARD] . B-trees [BAYER, COMMER79] and Extendible
Hashing [FAGIN] have proved to be very efficient schemes

for handling very large files in relational data bases.

Recently, interest in data bases for expert systems
has grown rapidly. Here, efforts to bring together
methods from the fields of artificial intelligence and
data base have created an area of mutual interest in both
research communities. A number of researchers in recent
years have seeked to exploit the similarities between
logic based deduction and relational data base concepts
[GALLAIRE, KOWALSKI, NICOLAS]. Interesting results have
been produced by the use of AI techniques in conceptual
modelling [JARVAS] and in the solution of efficiency

problems of relational data base systems [JARKE].

1.3 Organization of the Thesis -

I have divided the exposition into eight chapters and
eight appendices. Chapter 1 1is this introduction,
chapter 2 discusses the design principles, chapter 3
presents the users' interface to the system, ALFRED a
family of languages, chapter 4 discusses the major
architectural features of ADIM, while chapters 5 and 6

cover the details of solutions to the efficiency

problems, chapter 7 is an overview of the implementation
of ADIM, and finally, chapter 8 provides concluding
remarks and some open problems. The appendices provide
demonstrations of ALFRED, utilities for the data base
administrator, and complete listings of the more

interesting programs in the implementation of ADIM.

CHAPTER 2

ADIM - DESIGN GOALS

ADIM is a relational data base management system,
primarily intended for use on microcomputers. This
chapter presents a general description of the design

goals in ADIM.

2.1 Simplicity -

At the architectural level, simplicity is the
predominant theme. I believe that a simple language does
not necessarily reduce the power of expression available
to users. It might produce longer sequencies of queries,
but the queries themselves would not be more difficult to
express than in a more complex language. In terms of
efficiency, there are advantages 1in wusing a simple
language: there is no need for sophisticated and bulky

software to deal with major query decomposition [WOYU];

10

the size of the parser for the language is considerably
reduced, and so grammatical and semantic analysis is
accomplished with savings in space and time; but above
all, the application of optimization techniques and the

estimation of costs becomes simpler.

The query language in ADIM is of an algebraic type
[CODD72], and includes: join, an extended restriction
operation, projection, union, relative complement, and

aggregate operations such as average and count.

Three different wversions of the query 1language
co-exist in ADIM. ALFRED is a family of languages for
use with all types of relational systems. ALFRED-U is a
language for casual users, while ALFRED-VC and ALFRED-K
provide the interface between ADIM and general purpose
languages such as 'C' and PROLOG [CLOMEL, RJLK78].
Details of these linguistic variations of the ALFRED

language are reported in chapter 3.

2.2 Cost effectiveness and portability -

The imposition of any computer model or operating
system would defeat one of the major objectives of ADIM,
that of COST EFFECTIVENESS. Portability of ADIM is only

restricted by the specification of a minimum hardware

11

configuration, that is an 8-bit microcomputer system able

to run the CP/M Operating System [CPM].

2.3 Modularity -

Modular expandability is implemented in ADIM, not
only by allowing the hardware to expand locally, but also
laterally, by . interconnection of two or more ADIM
systems. In this way, the sharing of data by a community
of users is possible, i.e. an architectural design for

interconnectable 'desk-top' data base units.

2.4 Compactness -

A unique file structure used throughout the entire
data base system has not only made implementation
simpler, but has also contributed to the production of a

more compact and efficient data base system.

2.5 Dynamic data and static structures -

The choice of B-trees as the unique file structure
has provided ADIM with the capability of dealing

efficiently with wvolatile data without Jjeopardizing

12

performance on more stable data environments. Other
types of static structure, significantly ISAM [IBM66]
type files, have a tendency to rapid deterioration of

performance on volatile data.

But above all, B-trees are one of the cornerstones of
an effective costing system. The heavy extra load
imposed on the data base system by the collection of
statistics for optimization purposes is avoided, and a

neat, clean alternative is offered by the use of B-trees.

It is this file structure, used in conjunction with
cost functions which provides a basis for run-time

optimization in ADIM.

2.6 Efficiency -

The choice of the relational model of data, as a
central feature of ADIM, on its own induces significant
problems of efficiency, in addition to those already
found by the implementation of a non-relational data base

management system for microcomputers.

Efficiency is sought in ADIM at three levels: design
decisions at an architectural level, during the setting

up of data bases by the Data Base Administrator, and

13

dynamically at run-time.

2.7 Decomposition -

The use of D-join and D-union in the process of
decomposition ([BOCCA] will normally produce relations
with a small number of attributes and relatively small
cardinality. ADIM, in <consequence, assumes small
relation sizes to determine basic optimization
strategies. Thus, while many relations may be involved
in a query, their relative sizes are small. This
approach seeks a maximization of parallelism in the
evaluation of queries, Decomposition is discussed in

chapter 5.

2.8 Distribution of data and processing power -

An architecture for easy distribution of data and
concurrent processing has been sought since the earliest
stages of design. This can be seen throughout the
system, from the file structures supported at the lowest
level of the system up to the data base design tools

provided by ADIM.

14

2.9 Data base design -

The provision of design tools to the data base
administrator, not only induces good design of the data
base by encouraging normalization, data integrity and
security, but also produces small relations to be stored
and manipulated by the data base system. This approach
does not restrict the diversity of views that can be
supported in the data base, on the contrary it encourages
a versatile use of views at the highest level. The basic
tools provided by ADIM for data base design are:
decomposition functions [BOCCA] and enforced use of

unique keys.

2.18 Operational overview -

Hypothetically, a user of the ADIM system may enter a
query at any node in a network of microcomputers (and
indeed, computers in general). Since distribution
details are invisible to the user, the query is submitted
as if the data base were centralized at the user's node.
Likewise, the result of the query is placed at the user's

node if not specified otherwise,

Parsing of the user's query is normally done at the

entry node. The subset of the data base required to

15

satisfy the query 1is determined by a master node.
Consultation of the system's catalogue (itself, a set of
relations) provides the locations in the network of the
required data. Then the query 1is decomposed into
subqueries, which in turn are submitted to remote nodes
in the network for processing. At this stage and for a
majority of cases, more than one decomposition of the
query is possible and several alternative strategies of
processing thus emerge. A cost analysis of the different
strategies is undertaken, cost comparisons are made and a
strategy is selected. This results in sub-queries which
are processed by remote nodes. The intermediate
relations produced by the remote nodes are composed by
the master node into one relation. This relation is

finally passed to the entry node which originated the

query.

16

CHAPTER 3

LANGUAGES

3.1 Introduction - ALFRED -

This chapter discusses a group of languages available
in ADIM. All of these languages belong to a family, and
they provide users of ADIM with facilities to create,
maintain and destroy data bases. In addition, once a
user starts interacting with an ADIM data base, these
languages provide facilities to create, maintain and
destroy relations, as well as to query, input, delete and
update data on the relations. The query section of these
languages are based on a relational algebra [CODD72].
Except for the syntax, the operators of the algebra are
the same in all the languages. The group of languages is
given the generic name: ALFRED - A Language For

RElational Decomposition. The different variations are:

17

*

ALFRED-U ¢ ALFRED for Users,

ALFRED-VC : ALFRED with Vviews and Characteristics,

*

ALFRED~-K : ALFRED for Kernel.

Users of ADIM can interact with their data bases by
using any of the three syntaxic variations of ALFRED: U,
VC or K. It is expected that casual users would favour
ALFRED-U. ALFRED-VC was designed for use by data base
administrators, Prolog programmers and in general, the
serious users of ADIM. Users interested in using ADIM
from their own favourite programming language, can do so

by using ALFRED-K.

The subsequent discussion is divided into sections.
The first section introduces ALFRED in general, without
paying much attention to the syntaxic details of it.
Subsequent sections discuss the syntax and semantic of
ALFRED. The chapter is closed with a discussion on the
rationale for having three different syntaxic versions
for ALFRED. As a preamble to the discussion, I should
mention here, that although all of the facilities in
ALFRED are described in this chapter, I have focused on
the query facilities. This is so, because it is in the
query sublanguage where the differences among the three

versions of ALFRED, are more pronounced.

18

3.2 ALFRED -

ALFRED is essentially a command language for the
manipulation of relational data bases. It does include
facilities to create, delete and modify data bases as
well as the relations within the data bases. Its
retrieval command uses a query sublanguage based on
relational algebra, [CODD72], i.e. a <collection of
operators which deals with whole relations, yielding new
relations as a result. The command to delete data from a
given relation, uses a subset of the retrieval
sublanguage to specify the deletion criteria. The same
thing applies to the update command. A discussion on
some of the main commands in ALFRED is started below with

the retrieval command.

It is obvious that the retrieval power of the query
sublanguage would be ultimately determined by the set of
algebra operators selected for the sublanguage. Because
of this, I aimed to define the query sublanguage, in
ALFRED's retrieval command, with a set of operators that
is complete in a relational sense [CODD72}. Also, for
self-evident reasons, I tried to make the syntax of this
sublanguage, easy and efficient to use. That 1is, the
sublanguage should -encourage users to produce clear
sentences, while at the same time, it should discourage

them from using long and convoluted sentences.

19

R. Pecherer as part of his work in query optimization
[PECHERER], proposed four equivalent and complete sets of

operators. These sets were:

s1 = {
restriction, product,
projection, division
}
S2 = {
join, projection,
difference
}
S3 = {
restriction, product,
projection, difference
}
S4 = {
join, projection,
division
}

He also proved that algebraic expressions containing
operators taken from any one of these four sets can be
mechanically converted to equivalent expressions using
operators of any one of the other three sets. For the
purpose of selecting a minimum set of operators for
ALFRED, a <closer inspection of the four sets |is

undertaken below.

At first, due to their simplicity, the use of product

and restriction looked very attractive. However, Jjoin

20

and restriction are very common occurrences in queries.
After some consideration, I adopted join and restriction,
since product can easily be generated by using join with
a condition evaluating to true in all cases. At a later
stage and after some practical experiences with ALFRED, I
felt that in order to facilitate the construction of
ALFRED's sentences, product was a desirable operator.

Thus, product was added to the retrieval set.

From the point of view of optimizing the processing
of queries, the choice of join and restriction also gave
me a greater scope. Once the previous decision was
taken, the choice of a set of operators was greatly

simplified.

The second choice to be made was between the division
and set difference operators. The transformation of an
expression using division into an expression involving
product, projection and difference is by no means simple.
Nevertheless, queries involving division do not occur
very often, and although queries involving difference are
not very common either, the actual implementation of
difference is much simpler than the implementation of
division. Thus, I opted for set difference and the

retrieval set became:

21

{
restriction, join,
projection, difference,
product

}

For the convenience of users and in particular the
data base administrator, I included some operators beyond
Codd's definition of relational completeness. They are
the union and intersection operators, and those data
operators normally described as aggregate
operators/functions. Examples of the latter are: total,

average, max, min, etc.

Two classes of aggregate operators are included:

scalar and vector aggregates.

A scalar aggregate when computed gives a single
scalar value. For example, one may want to know the
average age of all the students attending one particular

college.

Vector aggregates differ from scalar aggregates in
that they return a set of values. The data to be
aggregated 1is logically partitioned by one or more
property(ies), e.g. age, sex, social class, etc. For
example one may want to know the average age of students

for each social class attending one particular college.

22

ALFRED-U implements the algebra operators in an
interactive gquery sub-language. This form 1is for the
convenience of casual users of ADIM. Alternatively, by
using ALFRED-VC or ALFRED-K, all of the algebra operators
mentioned in the preceding paragraphs can be used in an
embedded form as function «calls 1in general purpose

languages, in particular Prolog [CLOMEL].

The next section introduces some of the retrieval
facilities in ALFRED, while specific details of syntax
and semantic of ALFRED are presented further on in this

chapter.

3.3 An introduction to retrieve -

As its name suggests, ALFRED performs decomposition
of queries and composition of results into relations.
This feature of ALFRED 1is completely transparent to
casual users of the language. For them, ALFRED-U
provides a simple and easy to use interface to their data
bases. The data bases themselves, would normally be set
up by a data base administrator (DBA). To do this, the
DBA will normally use ALFRED-VC, a version of ALFRED that
knows about views and characteristics. At this level,
the DBA is also provided with a number of data base

design tools. The tools, views and characteristics are

23

discussed at length in Chapter 5. ALFRED-K is a virtual
machine for the ALFRED-VC interpreter, and as such, it is

hard to use by ordinary users.

As an introduction to the syntax of ALFRED and also
to obtain an intuitive feeling for the usefulness, power
of expression and general difficulty in wusing its
retrieval facilities, some simple queries, all written in
ALFRED-U, are presented below.

RESTRICTION:

The restriction operator chooses those tuples of a

relation which satisfy a given condition. For example,

RETRIEVE contract WHEN [date>'31/12/81"]
INTO new_contracts?

could be interpreted as: those contracts signed after

the 31/12/81; put them into the relation new contracts.

PROJECTION:

This operator in 1its simplest form returns the

specified attributes of the given relation, and

24

eliminates duplicates from the result. The projection in
a query is specified by the INTO part of the query. For

example, the query

RETRIEVE employee WHEN [salary>10080]
INTO highpaid ® [name, dept, salary]?

selects the name, dept and salary of those employees
earning a salary greater than 10¢¢@8. It put the data so
selected into the relation highpaid. More sophisticated
uses of the projection operator in ALFRED, allow the
specification of more general assignments of values to

the attributes in the result relation. For example,

RETRIEVE employee WHEN [dept='production']
INTO bonus ~ [name, pay=salary*@.1]7?

gives employees in the production department, a bonus

payment of 10% of their salary.

Trivially, at run time, the -evaluation of the
restriction and projection can be collapsed together into
one process, thus eliminating the need for the generation
of a temporary relation as well as the file accesses

associated with it.

25

JOIN:

Takes two relations as operands. The result relation
is formed by the concatenation of a tuple of one relation
with a tuple of the other relation whenever their
identifying keys match. In fact, a weaker condition
applies, but in most queries, the above condition is

sufficient. An example of a query involving join, is

RETRIEVE engquiries :*: contracts INTO
enqg_to_contracts?

This query produces as result the relation

eng_to_contracts which relates a contract to the original

enquiry that led to it.

PRODUCT:

Corresponds to the cartesian product of two

relations. An example of its use is given later on, in

this section.

DIFFERENCE:

This is the set difference of two relations. This

26

operator indirectly and in conjunction with product,
restriction and projection provides an algebraic
counterpart to the universal quantification in a
first-order predicate calculus. For example, consider
the relation ACCOUNTS[acc _no, currency, amount] which
holds information on the type of currency used by
customers, and the relation RATES [curr name, rate] which
holds information on the exchange rate of currencies,

then the set of queries:

RETRIEVE ACCOUNTS INTO T1 = [acc no]l?
RETRIEVE RATES INTO T2 " [curr name]?
RETRIEVE T1 (*) T2 INTO T3? - /*product*/
RETRIEVE ACCOUNTS INTO T4 ~ [acc_no, currency]?
RETRIEVE T3 :-: T4 INTO T5 ° [acc nol?

T /*difference*/
RETRIEVE Tl :-: T5 INTO acc_in_all currencies?

produces the relation acc_in_all currencies, with the
names of those clients who hold accounts in all the
currencies in which the company deals. Obviously, this

query could have been written in a shorter form.
UNION, COUNT and AVERAGE below, are self-explanatory.

In this example, the relation contr holds information

about contracts:

27

/*union#*/
RETRIEVE contr :+: newcontr INTO allcontr?

/*count*/
RETRIEVE COUNT OF contr © [product]
BY supplier name INTO gcontr?

/*average*/
RETRIEVE AVERAGE OF contr © [amount]
BY supplier name INTO av_x_supplier?

3.4 Algebra Operators -

This section defines the operators of the algebra in
ALFRED. The definitions given by Pecherer for the
algebra operators, were modified in ALFRED. This was
done in order to achieve a terser syntax for the
retrieval sublanguage. Practical wusage of ALFRED
indicates that no significant differences exists in the
power of expression of the two languages. The definition
of the operators below, assume some familiarity with the
basic concepts of the relational model of data. Further
details about this model can be found in C.J. Date's
book, [DATE]. The notation used in the definitions is
explained immediately after its first use, and in fact,

it is based on ALFRED-VC.

28

3.4.1 Join -

Let R and P be relations. Let r and p be tuples in R

and P, respectively. The join of R and P is defined by:

R :*: P = { rp/K is a subset of L
and r[L] = plK]
where

rp denotes the concatenation of tuples r and p,
without duplicate attributes;

r{K] refers to the set of attributes in the primary
key for relation R; and

r{L] denotes the tuple containing only those
attributes specified by the list L.

3.4.2 Product -

Let R and P be relations. Let r and p be tuples in R
and P, respectively. The product of relations R and P is

defined by:

R(*)P = {rp/r in R and p in P}

29

3.4.3 Restriction -

Let R be a relation. The restriction of R on

predicate [sel-pred] is defined by:

Re{sel-pred] = {r/r is in R
and [sel-pred] is true

}

where,

sel-pred is a boolean predicate involving
<sel-expr>, the negation ~“<sel-expr>
and the connectives: AND and OR;

<sel-expr> 1is <expr><cmp><expr>;

{expr> is an expression involving attributes
of R, scalar constants and arithmetic
operators from the set {+, -, *, /};

<cmp> is one of {K, <=, >, >=, =}.

3.4.4 Projection -

Let R be a relation and L a list of attributes for R.

The projection of R on L is defined by:

R ™~ [<L>] = { r[<L>]1/r belongs to R}

39

where,

<L> is a list of <l-expr>;

<l-expr> 1is <att> = <sel-expr> or just <att>;

<att> is an attribute in R;

r[<L>] is the tuple containing those attributes
specified by <att> after <l-expr> has been
evaluated and the result assigned to <att>.

If <l-expr> is just <att>, it is
interpreted as <att> = <att)>.

Let R and P be relations. The union of R and P is

defined only if R and P are union compatible [see

3.4.5.a], by:

R :+: P = {r/r is in R or r is in P}

3.4.5.a Union Compatible -

Relations R and P are said to be union compatible, if

the attributes for R and P are in a one-to-one

correspondence such that the corresponding attribute are

31

defined on the same domain.

3.4.6 Difference -

The difference of relations R and P is defined only

if R and P are union compatible [see 3.4.5.a], by:

R:~: = {r/r is in R and R is not in P}

3.4.7 Intersection -

The intersection of R and P is defined only if R and

P are union compatible [see 3.3.4.a], by:

R :.: P= {r/r is in R and r is in P}

3.4.8 Scalar -

Let R be a relation. A scalar x is the single value

defined by:

X:R[A] = f(r[A]), for all r in R.

32

where

f(R[A]) is the application of function f to R[A],

X is the user's name for function £,
e.g.: TOTAL, COUNT, AVERAGE, etc.

Remark:

For consistency purposes, ADIM always produces a
relation as result (except for errors).
3.4.9 Vector -

Let R be a relation and L a list of attributes for R.

A vector F is defined by:

F:R[A]/[<L>] = {x = (p[Ll, £(q[A]))/p is in R 7 [<L>]
and q is in R@[L = p[L]] for each p
}

3.5 Other commands -

The commands to c¢reate and maintain data bases
provided by ALFRED, also have an interactive counterpart.
Some of these commands are executed from within an ALFRED

session, while others stand as self-contained programs

33

executable as commands in the host operating system.

A summary description of these commands follow.

3.5.1 mkdev -

This command is used to incorporate a new device or
file to ADIM. 1In order to ensure portability as well as
improved efficiency, ADIM does not rely upon the file
structure of the host operating system. To accomplish
this, a catalogue of devices and data bases available to
ADIM is kept in the host file "alldbs". The existence of
this mechanism demands of the host operating system a
capability to create and maintain sequential files. I do
not think that this demand is a restriction in any
operating system commercially available. The sequential
file is only used for bootstrapping the ADIM system,
which in turn, only recognizes its own file structure.
Thus, the task of mkdev is to prepare the new device for
use by ADIM and to register in "alldbs" that this device

is ready for use. For instance, by typing

mkdev data 40000

the host file "data"™ will be registered as an ADIM device

having 40080 pages of storage capacity.

34

3.5.2 dbmk -

The dbmk command creates a new data base by building
templates for the systems relations and registering the
name of the data base in the host file "alldbs". A
catalogue of relations in a data base is kept by a set of

relations known as system relations.

From the point of view of the implementation of ADIM,
the use of relations to describe other relations as well
as themselves, has considerably reduced the size of the
software to be written. This reduction is possible
because of the shared use of software modules between the
system and the users, i.e. there is no need to write
special software to handle system catalogues [RDBMS,

MRDS]. As an example, the command

dbmk dept 1

will create the data base 'dept' in device 1. This means
that the system relations for data base 'dept' will
reside in device 1. Users relations for this data base
(or any other data base) can reside anywhere in the ADIM

system.

35

3.5.3 dbrm -

It is the counterpart to dbmk. Thus,

dbrm dept

will release back to the ADIM system all the storage

space occupied by the relations in the data base ‘dept'.

Also, the entry for ‘'dept' in "alldbs" will disappear.

3.5.4 display -

The issue of the display command will print the named

relation in the user's terminal. Display uses a standard

form of presentation. Typing

display staff

will print the relation 'staff' in the user's terminal.

3.5.5 create -

An interactive facility to create new relations,
Create provides the user with help in the definition of

the primary key [CODD72] for the new relation as well as

36

asking the user for the name and format of the attributes

of this relation. The issue of the command

create staff 1

will initiate a dialogue with the user. This dialogue,

ultimately will define the attributes and keys for the

relation ‘'staff’', Once the dialogue is finished

(successfully) the appropriate entries will be made in

the system relations. Also, storage for ‘'staff' will be

allocated in device 1.

3.5.6 destroy -

It is the counterpart to create. Thus, the command

destroy staff

will eliminate the relation 'staff' from the system

relations and will also release the space occupied’ by

this relation.

37

3.5.7 append -

Interactively adds a new tuple to a named relation.

For instance, the issue of the command

append staff

will prompt the user with the name of each attribute, and
then it will use the data so collected to add a new tuple

to the relation staff.

Deletes those tuples in a named relation. The tuples
deleted are those which satisfy a given condition. The
condition is specified by using a subset of the language
used for retrievals. The syntax of the command follows
our own previous notational definitions, and specifically

is denoted by:

delete <relation> WHEN [<sel-exp>]

For example,

DELETE staff WHEN [age>65]7?

38

remove from the relation staff all the members of staff

that are older than 65 years of age.

3-5.9 Update b

Updates data in a given relation. 1Its syntax is
similar to the delete command. More formally, it is

denoted by:

update <relation> WHEN [<sel-expr>] INTO [<L>]

An example of update is

UPDATE staff WHEN [dept = "production’']
INTO [salary = salary * 1.1]7?

which gives members of staff in the production department

an increase in their salaries of 10%.

In general, the syntax of non-retrieval commands does
not differ very much among the tree versions of ALFRED:
U, VvC and K. Hence, the discussion on the specific
syntax of these commands is postponed to chapter 5, where
the relevant syntaxic details are discussed as part of a
more general discussion on the implementation of ALFRED.

Thus, for the remainder of this chapter, I concentrate on

39

the syntax of ALFRED's retrieval facilities.

3.6 Syntax of ALFRED-U -

The syntax of ALFRED-U is presented in this section.
The syntax for ALFRED-VC is a derivation of ALFRED-U, and
in fact, most of it has already been presented. It was
used as the notational device to explain the semantic of
the retrieval algebra, in section 3.4. The explanation
on syntax of ALFRED-K is postponed to Chapter 5, where it
is explained along with the details for the
implementation of the ALFRED interpreter. The same

applies to the non-retrieval commands of ALFRED-VC.

The notation used to define the syntax of ALFRED-U is
based on a derivation of BNF notation. Non-terminal
tokens are enclosed by < and >. Curly brackets are used
to represent an optional repetition (¢ to n times). The

description of the syntax follows:

40

<Ucomms>

<Ucomm>

<retrieve>

<relexp>

<dop>

<restrcond>

<selexps>

<selexp>

£33

29

e

LT3

s

o sontn, Tt ey et ooy o, i o §

— gy

— e w— —

I

i

L}

ALFRED-U SYNTAX

{<Ucomm>} OFF /*logout ALFRED-U*/

Kretrieve> '?2°

<delete> i
<update> e
<copy~-str> '?!
<rmrel> e
<mkrel> e
<rmdb> e
<mkdb> Ll
<mkdev> el
<display> *'?°'
<append> e

<logindb> '?2°

'RETRIEVE' <relexp> 'WHERE®
{<restrcond>} '"INTO'
RELATION <projlist>
'RETRIEVE' <aggregate> 'OF' RELATION
<projlist> '"INTO' RELATION
'RETRIEVE' <aggregate> 'OF' RELATION
<projlist> 'BY' ATTRIBUTE
'INTO* RELATION

RELATION
RELATION <dop> RELATION

/*union¥*/
/*join*/
/*product*/
/*intersection*/
/*difference*/

% % +
s 88 = 324 s

'8 LE B Y 3 L2
| »

"['<selexps>']"

<selexp>

<selexps> 'AND' <selexps>
<selexps> 'OR' <selexps>
'~1 Kselexps> /*not*/
" (*<selexps>")'!

rexp 'AND' rexp

rexp 'OR' rexp

'~? rexp /*not*/
"('selexp')!

41

<rexp>

<dexp>

{sexp>

<dattrib>
<sattrib>

<projlist>

<delete>

<update>

<projspec>

<assign>

<copy-str>

<rmrel>

<mkrel>

<display>

*e

s

s

It

(X3

LY

L X

2

— - — — o —— - §

s —

—

]

[x3

[

I

i

dexp '<' dexp

dexp '<=' dexp

dexp '=' dexp

dexp '>' dexp

dexp '>=' dexp

sexp '<' dexp

Sexp '<=' sexp

sexp '=' sexp

sexp '>' sexp

sexp '>=' sexp

NUMBER

<dattrib>

dexp "+' dexp

dexp '-' dexp

dexp '*' dexp

dexp "/' dexp

f—!' dexp

l(ldexpl)l

<sattrib>

STRING /*string of characters*/
DREG /*a numeric attribute*/
SREG /*an alphanumeric attribute*/

/*empty list*/
*['<projspec>'}?

| e |

'*DELETE' RELATION 'WHEN' <restrcond>

RELATION 'WHEN' <restrcond>
"INTO' '"['<projspec>']’

'UPDATE'

<assign>

<projspec> ',' <projspec>

ATTRIBUTE

DREG '=' dexp /*DREG - numeric
attribute*/

sexp /*SREG - alphanumeric
att*/

SREG

'COPY' 'STRUCTURE' RELATION 'TOf
RELATION /*replicate structure*/

"DESTROY® RELATION

RELATION /*interactive
invocation*/

'CREATE'

'DISPLAY' RELATION

42

<rmdb>
<mkdb>
<mkdev>
<append>

<logindb>

Ex3

(13

ey

L3 LY a9

.,

. -
.

'*DBRM' DATABASE

'DBMK' DATABASE

' MKDEV!
'APPEND'

'LOGIN'

DEVICE

RELATION

DATABASE

43

POSITIVE-INTEGER
/*¥interactive*/

/*change current data
base*/

3.7 The user and the languages -

In this chapter, a family of languages based on a
relational algebra have been presented. ALFRED-U is a
language devised for casual users of ADIM and ALFRED-VC
and ALFRED-K are languages aimed at more sophisticated
users of ADIM. In designing these languages, I have
tried to satisfy the different and sometimes conflicting
requirements imposed on a language by the two communities

of users. 1In doing so, I had four options open to me:

i) Designing two languages with different roots,
but specifically aimed at both types of users,
For instance, a non-procedural query language
based on a first order predicate calculus for
the casual users and a procedural language
based on a relational algebra for the more
sophisticated users.

ii) Embedding the language for casual users into a
general purpose programming language. For
instance, an EQUEL [STOROWE] type of solution.

iii) Designing two languages sharing the same roots,
but with different external appearances. For
instance, two languages based on a relational
algebra, the first language with interactive
facilities for casual users and the second

language with functions called from a general

44

purpose programming language for the non-casual
users. Obviously, both languages supporting
the same set of relational operators.

iv) Designing a new general purpose programming
language or extending an existing one, so that
data base facilities are built into the

language.

Although case (iv) has been advocated by research
workers as the most positive solution [STOROWE], the
scale and scope of this project make this alternative
prohibitive. Consequently, I have discarded this

alternative.

I believe that case (ii) produces a mismatch between
the languages. Confusion to users is caused by the
combination of procedural and non-procedural languages.
An example of this occurs in EQUEL when a distinction has
to be made between use of interactive INGRES and 'G'

programs with embedded QUEL statements.

Alternative (i) adds to the problems of (ii), the

learning of a new language.

Finally, I compromised and chose an alternative that
is basically (iii) with some elements of (ii), as a

result of the analysis above. I designed and implemented

45

ALFRED a family of three languages based on a relational
algebra. The algebra fits neatly with the constructs of
high level general purpose languages of the type of ‘'C!
and/or PROLOG. ALFRED-U is the interactive language for
the casual users and ALFRED-VC and ALFRED-K cover the

needs of non-casual users.

46

CHAPTER 4

ARCHITECTURE

4.1 ADIM - Basic Modules -

ALFRED provides group of users with a mechanism to
support a variety of logical views over a common pool of
data. Admittedly, this is not a capability unique to
ALFRED. A number of other systems provide it as well. I
believe that it is the design philosophy and the size of
the implementation, in terms of hardware and software,
what makes ALFRED's implementation original. Views, as
seen in ADIM [see Chapter 5], have only been implemented
in systems that largely exceed the hardware requirements
of ALFRED [HSW75, MISTRES]. I also believe that in many
of these cases, views have been added as an after thought
[MISTRES]. Because of this, the use of views in these

systems produces a noticeable degradation in performance.

47

In addition to the important role that views can play
in the definition of logical data bases, as it will be
seen in Chapter 5, I believe that they can also
contribute to improve the performance of systems of the
type of ADIM. They can be used as a convenient way of
representing data spread over the network of a
distributed data base management system. In ADIM, I
sought to incorporate the views and capabilities of
ALFRED, at the earliest stages of design. To achieve
this, ADIM was implemented as a system of loosely
connected multi-processes, which if so wanted could run
on a number of different processors, concurrently. A

description of this architectural design is given below.

Basically ADIM consists of three types of processing
nodes: query generators - G-units, dquery processors -
P-units and one control unit - C-unit. Several G-units
and P-units can be connected (using a bus or local area
network) to the central C-unit, Fig. 4.1. Normally, a
G-unit co-exists with a P-unit in one machine. A brief
discussion of the role of these units and their

interconnections is the content of this chapter.

FIG. 4.1

48

4.2 Query Generators: G-units -

In its most frequent use, a G-unit accepts queries in
the ALFRED-U language and prepares reports as produced by
the display command. As an alternative method, a query
or set of queries can be submitted to a G-unit in the
form of a program written in either pure ALFRED-VC or
PROLOG with embedded ALFRED-VC/K statements. This latter

method can also be used for the preparation of reports.

Queries are normally submitted to ADIM through a
G-unit. A query expressed in ALFRED-U or ALFRED-VC has
to be passed to the C-unit for decomposition and
generation of the equivalent ALFRED-K statements.
Queries expressed in ALFRED-U by the G-unit are
translated into equivalent ALFRED-VC statements, prior to

submission to the C-unit.

Queries in ALFRED-VC form are passed to the C-unit
which decomposes them and distributes the processing of
the sub-queries over the network of P-units. Queries to
P-units are expressed in ALFRED-K. The C-unit returns
result relations, normally one, and error conditions, if

any.

A G-unit is made up of three modules, as follows:

49

G-MONITOR -

This module 1is the outer 1layer of the system.
Queries are entered through the monitor using the ALFRED
monitor or a host editor. The ALFRED monitor provides a
facility to enter queries at the user's terminal. By
using an editor, queries can be written in a file which
is given as input to the ALFRED monitor. It is also
possible at this stage, to write a pure ALFRED-VC program
or a PROLOG program with embedded ALFRED-VC statements.

These programs can make calls to the ADIM library.

G—~-DBMS -

This is a data base that maintains the local schema
as its only task. This data base is maintained as a

Prolog data base.

G-SCHEMA -

This is a description of what users of an individual
G-unit can see of the global system. G-Schema is a data
base which keeps information about the relations in the
system as seen from this G-unit. Partitions of relations

and physical locations are transparent to the G-Schema.

50

The relations in this data base are represented by Prolog

facts.

user

L 1

G-MONITOR C-UNIT
— T AN

G-DBMS

y

G-SCHEMA

FIG. 4.2

4.3 Query Processors: P-units -

Query processors usually referred to as P-units, are
the local processing engines. A P-unit receives queries
expressed 1in ALFRED-K form, processes the queries and
returns the result to the calling C-unit. A P-unit only
knows about the 1local relations and therefore, the
queries processed by a particular P-unit must be referred
to data bases held 1locally. It should be noticed that
P-units not only provide a considerable processing power

but also constitute the storage nodes of ADIM.

51

The modular structure of a P-unit is as follows:

P-PROCESSOR =~

This is a processing unit for local queries. This

unit is a centralized version of the kernel of ADIM.

This local data base management system handles all the

data stored in this node. It also includes the schemas

for the local data bases which are kept as relations.

P~-SCHEMA -

This keeps information on the relations stored in the

local data bases.

pP-DB -

These are the storage cells of the network. The

P~DBs are indeed the local data bases.

52

P-PROCESSOR C-UNIT

o

P-SCHEMA P-DB

FIG. 4.3

4.4 Control Unit: C-unit -

The C-unit 1is the centre of the network. Many
G~units and P-units may be connected to one C-unit.
Every query in ALFRED-VC form is decomposed by the C-unit
into a number of local queries. If the query is received
by the C-unit in ALFRED-K form, decomposition is not
necessary and therefore the C-unit only re-routes the
query. Normally, however, queries are received 1in
ALFRED-VC form, they are then decomposed and transformed
to ALFRED-K form. The local queries resulting from
decomposition are sent by the C-unit to the relevant
P-units, which in turn, return an answer. Finally, the
C-unit further processes the local answers and a final
reply is sent to the G-unit responsible for the original

(global) query.

53

Thus, the C-unit is the centre of control for the
whole distributed system. It receives gueries,
decomposes them into sub-queries, allocates the
processing of sub-queries to different P-units, performs
joins while composing the reply and ultimately, delivers
a relation (or relations or error messages) back to the
original source of the query. The different modules to

perform all of these tasks are described below:

C~-PROCESSOR -

This receives queries in ALFRED-VC form. Once a
query has been received, the P-Processor decomposes the
guery into sub-queries with the support of the C-DBMS,
which, in turn holds information about all the relations
in the system, i.e. the global schema (see C-Schema
below) . A stream of sub-queries is passed over to the
p-Switch which returns a serial reply of relations and/or
error messages. In order to recompose a reply to the
original query which has been decomposed into
sub-queries, a number of join operations has to be
performed. This task is delegated to the C-DBMS by the

C-Processor.

54

C-~-DBMS -

This is a specialised data base management system.
It performs two tasks. Firstly, it supports the
C~Processor in decomposing the original query into
sub-queries, and secondly, it performs joins on behalf of
the C-Processor, so that a composed reply can be obtained
from the serial replies produced by the P-Switch. In
relation to the first task, it maintains the C-Schema and
provides the network administrator with an interface, so
that security and integrity constraints can be enforced.
This module has been implemented by embedding the kernel

of ADIM into Prolog.

C-SCHEMA -

This is the global schema. This is a data base with
information about the relations existing in the system.
These relations are indeed the users views, Prolog is

used to represent the C-SCHEMA.

55

C~-METHA~-SCHEMA -

This is the schema describing the data stored in the
C-unit, that is the C-SCHEMA. Again, a Prolog data base

is used to describe the C-METHA-SCHEMA.

N
N G-UNIT G~METHA-~SCHEMA
C-PROCESSOR C~DBMS
N\
N P-UNIT C-SCHEMA

FIG. 4.4

It should be appreciated that this data base is at
the centre of control for the whole of ADIM. Perhaps,
the most important relations in this data base, are those
holding information on the distribution of data. A

description of these relations is given below:

56

1.

2.

3.

R_local -

The attributes,

Lname
Node

LogCond

Type
Owner
Cardinality

R global -

The attributes,

Name
Rexpr

DAccess,
DSave
TimeStamp,
Semaphore,
Owner,
Permission

Node -

The attributes,

Nodeld
Siteld
Host
Oowner

LTI Y

(13

X3

maintains information on the
relations stored in the different
local nodes.

is the local name of the relation.
the identifier for the node where
the relation is stored.

is a logical condition attached to
the relation, e.g.: "all students in
this relation are in the School of
Mathematics".

it could be public or private.

the owner of the relation.

the cardinality of the local
relation.

maintains information on relations
as seen globally.

is the global name of the relation.
is the ALFRED-VC expression to form
this relation from the local
relations.

are the last access and save up to
dates,

have the obvious meaning.

stores information on the local
nodes.

is the identifier for the node.
is the site identifier.

is the host computer identifier.
is the owner of the node.

57

4, Link - maintains information on every
communication in the network.

The attributes,

Linkid : is the unique identifier for the
link.

Nodeld : the identifier for the node where
this linked is sited.

Direction : the direction of the link, i.e.: 1IN
or QUT.

5. Linktype - maintains further information on the

link.

The attributes,

Linkid : as in the relation Link, it is the
identifier for the link.

Protocol : the general protocol, e.g.: X25.

Type : the specific implementation of the
protocol, e.g.: PSS.

Speed : speed factor, e.g.: 960f.

CostF : the fixed cost of using this link.

CostvV : cost per unit transmitted.

Class : the type of network, e.g.: 1-1,
broadcast, etc.

Special : special to the link, e.g.: number

to dial.

The loading of the information to the different
relations of the data base is the task of the data base
administrator. For this purpose, a suite of programs to
carry out automatic decomposition of views is provided.
The following chapter discusses these programs in some

detail.

58

4.5 Segments and Concurrent Processes -

It is my wview, that the distinction of three
processing units: G, P and C units, is a key element in
the provision of full support of segmented logical views
of data, in ADIM. At a physical 1level, the use of
separated schemas permits the physical decomposition of
relations, thus providing ADIM with an extensive
capability for parallelism during query evaluation. I
believe this feature to be the most important element
towards the development of efficient desk-top information
systems. It should also be noticed, that due to hardware
limitations, a unique centralized system might be
desirable. In this case, all three units could be sited
on the one machine and each of the units could be
implemented as a separate process. Communications could
be established by using intermediate files, or 1if the

host operating system provide them, by pipes.

A more detailed discussion on the use and
implementation of views and decomposition techniques is

held in the next chapter.

59

CHAPTER 5

DECOMPOSITION

5.1 Introduction -

Decomposition techniques and methods have several
motivations. Among others, they can be used to support
different logical views over a common pool of data, to
improve the performance of data base management systems
and to help to maintain the security and integrity of
data Dbases. This chapter discusses the wuses of
decomposition techniques in the context of ADIM, and it
also describes some theoretical and practical aspects of

their implementation in ADIM.

Perhaps, the most obvious usage of decomposition
techniques and methods, 1is to provide support for the
co-existence of different views over a common pool of
data. This application rests upon logical
considerations. To explain the concept of views, let us

consider a university data base as example. This data

60

base consists of the following relations:

administration [
name, address, tutor,
dateofbirth, startyear, faculty

]

mathematics [
name, tutor,
startyear, subject

]

physics [
name, laboratory, startyear

]

computing [
name, startyear, tutor,
laboratory, project

]

The relation in the data base above, could be
interpreted in a number of manners. Let us consider one
such interpretation. The central administration of the
university keeps personal data about every enrolled
student of the university in the relation administration.
People in the physics department are only interested in
their own students. The same 1s true in the department
of mathematics. In both of these two cases, some
additional information 1is required beyond what the
administration can offer. Thus, the need for relation
physics and relation mathematics arise. For instance,
information about the laboratory used by each student of
physics. Since, computing is a group within mathematics,

they too would like to keep a copy of some of the data

61

for mathematics and add to it, information that is
specific to the students of computing science. Hence,

the existance of the relation computing.

The given interpretation for the example data base,
illustrates a case where users needs for information
overlap. The data base could indeed be set up as four
independently stored files. Alternatively, the four
relations could be integrated in such a way that common

data is shared, thus avoiding duplicate copies.

This latter alternative immediately solves one
problem. Consider a student of mathematics who changes
tutor. The situation is recognized within the
mathematics department and consequently, the relation
mathematics is updated to reflect the change. But since,
staff in mathematics have no direct access to the
relation administration, no change is made to it. Thus,
a problem of integrity within the university data base
arises. Information about a particular student 1is
self-contradictory. By holding only one copy of the

common data, this problem would have never arisen.

In order to allow users to share common information,
and at the same time, to maintain their own associations
over the data, separated 1logical views should be

constructed for each group of users. To make this

62

possible, the information system in use must provide this
capability. ADIM's support of views is based upon the

use of a number of decomposition techniques.

Efficiency can also be greatly improved by
decomposition, since ©processing of a query can be
partitioned into subqueries, each of which could be
processed in parallel in a distributed or multiprocessor
system. Sotrage use is also improved by sharing a single
copy of common data. In a later section on duery
transformation, I show some techniques which make
advantageous use of decomposition. It should also be
noticed that the reduction in size for each one of the
physically stored relations, means that data flows can be
spread more evenly on the system's pathways, thus
avoiding major jams in the circulation of data. I
believe this last reason, to be a strong argument for the
application of decomposition techniques in distributed
and/or multiprocessor data base systems. In ADIM's case,
this argument 1is even more relevant given its minimal

hardware requirements.

In addition, decomposition techniques can also lead
to more secure data bases, In the example, the
administration relation could be partitioned into two
relations, one relation holding confidential data such as

address and date of birth, while the second relation

63

holds the remaining information.

5.2 Basic Concepts -

Before a more detailed description of decomposition
techniques 1is undertaken, some basic concepts are
introduced. Two conceptual operations are defined:
D-union and D-join, as well as a number of other related

concepts. These definitions follow.

5.2.1 Simple Relation -

A basic relation (or simple relation) in a given data

base is a cluster of records representing one partition

after decomposition.

5.2.2 D-union -

Relation R is the D-union of relations R' and R",

denoted by

R =R'+ R"
if

(1) R' and R"™ have exactly the same attributes;

64

(2) R' and R"™ have the same attributes in their
primary key;

(3) the primary key value sets of R' and R", denoted
by R'[K':>] (Note: This notation was taken from
the book by G.Wiederhold, "Database Design",
[WIEDERHOLD]) and R"[K":>] respectively, are
mutually exclusive;

then

R = {x/x is either a tuple in R’
or a tuple in R"
}

5.2.3 D-join -

Relation R is the D-join of relations R' and R",

denoted by

R - RI * Rl!
if

(1) R' and R"™ have the same attributes in their
primary key;

(2) R'[K':>] and R"[K":>] hold any of the
relationships:

(a) R'[K':>] is a subset of R"[K":>]
(b) R"[K":>] is a subset of R'[K':>]

65

(3) the attribute sets for R' and R", denoted by
R'[A'] and R"[A"] respectively, hold the
relationship:

(R'[A'] = R'[K":>1) [\ (R"[A"] - R"[K":>]) = []
where [] denotes the empty relations, then
R{K:>] denotes the primary key for R and
R = {r/ r' is a tuple in R' and r[A'] = r'

and r" is a tuple in R" and r[A"] = "

and r[K] = r'[K'] = r"[K"]
}

5.2.4 Compounded Relation -

A compounded relation in a given data base is a

relation defined by a decomposition expression. This

expression is made up of simple relations, algebra

operators in ALFRED, and D-join and D-union.

5.2.5 Characteristic -

The characteristic RKEY> of a relation R is the

logical expression E such that E evaluates to true for
every tuple in R. For example, in our student data base,

the characteristic for each relation is:

66

*mathematics™ and
"computing"

computing < faculty
subject

| S|

>
administration < true >
physics < faculty = "physics" >

mathematics < faculty = "mathematics" >

The characteristic R<true)> is referred to as the

universal characteristic.

If confidentiality was to be preserved in some of the
information in the relation administration, the

decomposition:

administration = p' * p*
where

P' [name:> address, dateofbirth]
and P" [name:> tutor, startyear, faculty]

could have been established.

5.206 Link -

Two views, represented by R' and R" respectively, are

said to be linked if

(a) :3 X,y such that x e R'<E'> and y e R"<E"> and
X[K':>] = y[K":>]
(b) (R'[A'] - R'[K':>])/\ (R"[A"] - R"[K":>]) # []

67

5.3 Decomposition Procedure -

The interpretation of the world albeit a small part
of it, is a human activity. A comprehensive treatment of
the design of models to represent reality escapes the
boundaries of this work., Nevertheless some practical
help is useful. Thus, ADIM provides data base designers
with a number of tools to aid the design of data bases.
It should be reminded though, that the ultimate
responsibility rests upon the people designing the data

bases.

As expressed in the previous section, D-union and
D-join only exist as conceptual tools of analysis. The
same applies to the procedure for decomposition presented
below. Since, ADIM's retrieval performance 1is highly
dependent on the physical size of relations, rather than
in the number of relations involved in a query, I have
devised a decomposition procedure such that physically
large relations can be represented by compounded

relations made up of several small basic relations.

Let wus begin with a matter of notation. The
partition i of relation R is denoted by R[i]. Then, the
decomposition procedure for a given set of views over a

common pool of data, is:

68

Step (1). Create 3 lists:

PARTITIONS, denoted by P.
Initially, it holds all the views in the
‘data base. For each view, an entry exists
in this list. An entry has three fields:

(a) a unique name for the partition, say
R';

(b)) the attribute set for the partition,
i.e. R'[A'];

(c) the characteristic for the partition,
i.e. R'<E'>.

SCRATH, denoted by S.
Initially, it holds all the names of
partitions, i.e. names in field (a) of P.

EXPRESSIONS, denoted by E.
Each entry in this list has the form:

<view> = <decomposition expression>

where, <view> is the name of the view, and
<decomposition expression> is the expression
denoting this view, i.e. a compounded
relation. Initially, the 1list E holds the
unique names in field (a) of P, in both
sides of the '=' symbol.

69

Step (2). Apply the procedure below. The element i of
list P is denoted by P[i]. The same applies
to lists S and E. The last element in a list
is denoted by LAST. 1In C-like notation, the
procedure is again:

for (i=1; i<LAST; i++)
for (j=1; j<=LAST; j++)
if (s[i] is linked to S[3l)

partition (S[i],S[3}); /*given
below*/

enter resulting partitions
at end of Pp;

delete from P the entries for
S{i] and S[jl;

delete S[i] and S[j] from S;

in E, replace all occurrences
of 8[i] and S[j] on
the rhs of expressions,
by their equivalent
expression, using the new
partitions and the D-join
and D-union operators;

goto again;

Step (3). Stop. The list E holds the relevant
expressions.

The procedure partition (R', R") to partition the
views/relations R' and R" completes the general
decomposition procedure. The details of it, follow.

Step (1). Rearrange the order of attributes in R' and R"
so that they only intersect in one common
area. Notice that the tuples have not been
input yet, thus, one could imagine a
reordering of tuples in both relation such
that the intersection of R' with R" only
occurs in one common area. In pictures,

R“

Rl

7 Fig. 5.1

70

Step (2). A. Get R[A] = R'[A'] U R"[A"]

B. Divide R[A] into three sets:

(a) I[A] = R'[A'] N\ R"[A"],

notice that

R[K:>]

= RY[K'":>]

is a subset of

I[K:>]

«
&

= R"[K":>]

(b) RIII[AIII] - RI[AI} — I[A]
(C) RIII![AIIII] — R"{A“] - I[A}
In pictures,
! {
i I
; | |
. ‘ , :
f i ! |
Ke— R''' —===31<=I-> 1 <—= R'''! -3
Fig. 5.2

71

Step (3).

This partition of R' and R" determines three
possible relations: R'"', R''"'' and I. Now,
let us consider the relation I. If R'<E'> was
the characteristic of R' and R"<E"> was the
characteristic of R", we further divide I,
horizontally, by decomposing I into the tree
relations defined by the characteristics
R'<E'> and R"<E">. Thus, we have

I =1I'+1I"+ 1"
with characteristics for I', I" and I'*'*',

I'<E' and not E">
I"<E" and not E'>
I'F'<E' and E">

and attributes:
I[A] = I'[A] = I"[A] = I'"'[A].

It should be noticed, the importance of
functional dependencies [ULLMAN, VEMAD], in
the above procedure. Their identification by
the data base designer, can produce results
even when the attributes involved in the
characteristics of R'" and R" are not the same.
To explain this, consider our students data
base, again. Let us imagine a super-relation
covering the whole data base. Whenever the
attribute subject takes the value "computing®,
the attribute faculty must necessarily take
the value "mathematics". This dependency
allows us to partition the mathematics
relation into two relations: R' and R", with

characteristics: R'<subject = "computing">
and R"<not (subject = "computing")>,
respectively.

72

Step (4).

Finally, the equivalent expressions for R' and
R" can be constructed. 1In the general case:

Rl - Rl'! +* (I! + Illl)
Rn=thll* (I!I+II|I)

and, in the special cases:

For R', if
(a) I' = [] then R' = R''' % [''?
(b) R''" = [] then R'" = I' + I'"'
(c) R*'" = [} and I'" = [] then R' = I'*"

Similarly, for R", if

(a) I" = [] then Rll — Rlllt * Il!l
(b) RItrE - [] then R™ = I" + J't¢
{¢) R'''f" =[] and I" = [] then R" = I''°¢

The application of the decomposition procedure to our

example data base, after 44 iterations in Step (2)

produces th

adminis
mathema
physics
computi

where,

e following list of expressions E:

tration = ((R1@0+R11)+(R7+R6)*R8)*R3
tics = R1* (R1@0+R11l)

= R5*R6
ng = R9*R10

R1 [name, subject]

Rl < faculty = "mathematics" >

R3 [name, dateofbirth, address, faculty]

R3 < true >

R5 [name, laboratory]

R5 < faculty = "physics" >

R6 [name, startyear]

R6 < faculty = "physics" >

73

R7 [name, startyear]
R7 < not (facul
facul

R8 [name, tutor]
R8 < not (facul

R9 [name, laboratory,
R9 < faculty
subject

R14 [name, startyear,
R10 < faculty
subject

R1l [name, startyear,

"mathematics" and

ty

i

Ly *physics™) >
ty = "mathematics") >
project]
"mathematics" and
"computing" >
tutor]
"mathematics" and
"computing® >

tutor]

R11 < faculty = "mathematics" and not
(subject = "computing") >

To obtain R8, R1g and Rll, the dependency:

subject --> faculty was assumed.

5.4 Design Tools -

The use of functional dependencies [ULLMAN] in the

decomposition procedure in the previous section,

highlights the need for some analysis tools to help the
design of data bases. ADIM provides two such design

tools: TC

in the identification of

a program to aid
functional dependencies and AT -~ a program to help in the
analysis of entities [VETMAD] and their relationships. A

brief description of these programs follow.

74

5.4.1 TC - Functional Dependencies -

It 1is because of the relative importance that
functional dependencies have in the decomposition
procedure, that a program to aid in their identification,
is included in ADIM. Before we explain this program,

some basic concepts have to be defined.

A functional dependency fd is defined as follows:

Attribute B is functionally dependent on set of
attributes A = {Al, Bor eeer An}, denoted by

if the value v[B] in any tuple v, is always fully
determined by the set of values

(VIAT, VIA,D, <oey VIALD)

Armstrong's axiom on transitivity can be stated as:

If fd(A,, A,y -ves A) = B, B, ve., B
and £d(B1, B2, .10, BD) =], céi ceer O]
then fd(Al, AZ’ oo An) = Cl’ C2, ey C1

Now, we are in a position to discuss the program TC.
The designer of the data base identifies some of the
functional dependencies in the data. Then, s/he feeds

these dependencies to TC, which by recursive application

75

of the transitivity axiom generates the transitive

closure (TC) of the input set.

The program and an initial set of fds is presented

below. The set of fd's:

fd ([name], [address]).
fd ([name], [spouse]).
fd ([spouse], [children}).

illustrates the way in which the program is initialized

for a starting set of fd's.

76

/ %
TEET DATA BAZE
n/

T Cratne 1y
Fdl Crame d,

Laddiressl).
[zpousaely.

Foa(lespruuceds

[ehildrend).

% transitivity w/
trans(AttLl, AtLLEZ) 1~
Fd O oAttLls XY, FdO X AtELT .

/3t
TRANSITIVE CLOSURE
¥

 Fd Xs Z)
S ooy #/
not var{ X).
trans(X, Z),
ot Fd0 X, Z00),
fnot var{(Z 7.
assertal F40 3, 72)),
A omark new Fdoadded ®/
meeertal newfd(marl Y) /% onlw ance %/

~a

o~

}
¥y
Fail
)
told ¥).
VE:
GENERATE T
=
A weneral case #/
) 2
t

menbtol T X VY]
JH o wanwrate all by recursion #/

¥ 3 s FE Tavel 1 #/
A check of any new fd added #/
newrd(mark Y.
ratrart(prewddl mark Y Y.
J¥ o recursiaon ane Tevel down %/
gentc(E O S R

SR o beoundary cordition #/

wentol o) &-
J¥ one new fd wdded s/
Tisltinmal Fd).

77

The AXIOMS section of the program, defines the rule
trans(...) for the transitivity axiom. In a more
comprehensive version of this program, other axioms have
also been included. Axioms to test reflexivity,
augmentation, union and decomposition [ULLMAN] are
included in this more sophisticated version of TC. As it
can be appreciated in the version of TC here presented,
the definition of Prolog rules for the axioms is quite

straightforward.

In this wversion of the program TC, the second
definition of tc(...) acts as a generator of possible
fd's and tester for them. Once a satisfactory f£d is

found, it is added to the other fd's by asserta(...).

The rule gentc(...) activates the previous rule,

tc(...), in a recursive manner.

Finally, the lists of fd's produced by TC is examined
by the data base designer, who chooses a suitable set of

non-redundant fd's for use with the decomposition

procedure reported in the previous section.

78

5.4.2 AT - Analyst Tool -

The software tool here discussed, denominated AT -
Analyst Tool, helps the analyst/data base administrator
in the determination of elementary relations [VETMAD] to
construct data bases. The program is based on the

identification of entities and their relationships.

Data bases in AT are formed by the application of
mechanical rules to entities and relationships discovered
by the analyst within the organization being modelled.
AT does not replace the analysis process; this is still
done by the analyst by means of interviews and
consultation of the relevant documents in the

organization.

Once entities and relationships are identified by the
analyst, AT queries him/her and determines the elementary
relations necessary to represent all the different
conceptual views that users may have of their
organization/activity. Queries to the data Dbase

administrator/analyst try to determine the following:

i) entities and their names (unique);

ii) domains and their names (unique);

iii) primary keys for each type of entity; and

iv) relationships among entities and their names
(unique).

79

Once this information is provided to AT by the

analyst, AT proceeds to:

i) form virtual relations for the entities; and
ii) form virtual relations for the relationships.

Then, from these virtual relations, AT seeks to
discover sets of elementary relations. These are
obtained by asking the analyst for the functional
dependencies that have been identified by him/her in the
analysis process. The program TC which was presented

earlier on, aids the analyst in this task.

The elementary relations of this stage are integrated
into ADIM's data bases by means of the simple techniques
described in section 5.6. Obviously, at this stage
minimal covers could also be determined. The future
development of a program to do this, depends on the
results of further research on the relationship between a
minimal cover determined purely by functional
dependencies and the decomposition of views advocated

earlier on in this chapter.

80

5.5 Retrieval Tactics -

Let us now explore the potential for efficiency
improvements of decomposition. By wusing our students
data base and ADIM's algebra query language an example

can be given.

Consider the question:

"list the name and date of birth of
students in the faculty of mathematics"

expressed in ALFRED-U, as

RETRIEVE administration WHEN [faculty =
"mathematics"]

INTO mathstudents = [name, dateofbirth]?
DISPLAY mathstudents?
the equivalent tree for this expression is

mathstudents = [name, dateofbirth]

administration

@ [faculty = "mathematics"]

Using the decomposition of relation administration, the
tree becomes

81

~

mathstudents [name, dateofbirth]

@ [faculty = "mathematics"]

/ N\
/ N\
R3 +
/ \
*/ \
Chg —=> +
RS /N /N
/ N/ '\
+ R8 R1g R11
/\
/ 0\
R7 R6
By defining
(a) R + []=R
(b) R * []=[]

and, denoting the retireval condition by Q, we have
Q=[faculty="mathematics"]

and, since

(R8<not(faculty="mathematics")> and Q)=[]

then the whole of the arrowed subtree can be eliminated

from the evaluation of Q.

Similarly, deletions, insertions and updates can be

handled.
Consider another example, where efficiency
improvements are introduced by the application of query

transformation techniques [PECHERER, PALERMO]. Suppose

82

that in the students data base, we were concerned with
the age (date of birth) of those students reading

computer science.

In plain english:

"list the date of birth of students
reading computer studies”

In ALFRED-U:
RETRIEVE administration :*: computing
INTO cs _dofb " [name, dateofbirth]?
The corresponding evaluation tree for the query is:

cs dofb " [name, dateofbirth]

HE
/\
/ \

administration computing
Replacing the relations administration and computing

by their respective decomposition expressions, the tree

becomes

83

cs dofb ~ [name, dateofbirth]
~|

/ N\
/ N\
X X
/ N\ 7/ \
/N / N\
R9 R1f R3 +
/ \
/N
+ X
/N /N
/o N/ N\
R19 R11 R8 +
/ N\
/ N\
R7 R6

Clearly, in order to evaluate the decomposed tree, it
is not necessary to wait for the expression "R9*R1g" to
be evaluated. In fact, it is more efficient to modify
the tree, bringing the evaluation of the projection
“[name, dateofbirth] down the tree, thus reducing the
amount of data required to pass between the different
nodes of the tree. Also, notice that once the projection
is lowered in the tree, the evaluation of R9"[name,
dateofbirthlbecomes R9"[name] * R1§"[name] since the
attribute dateofbirth is in neither R9 nor RI10.
Furthermore, this expression can be replaced, after RS
(or R1#) has been selected because of 1its (small)

cardinality, by the expression

R9 ° [name]

if cardinality of R9 is less or equal
than the cardinality of R10

84

The correctness of the last step is due to condition
(2) in the definition of d-join. In other words, given

relations R' and R" with the common primary key K

R'[K:>] * R"[K:>] = R'[K:>]

whenever the value set for K in R' is a subset of the
value set for K in R". A proof of this assertion is

trivial.

From the example, it emerges clearly that substantial
benefits can be obtained by query transformation and
decomposition. To determine what relationships hold
among the operators, and which relationships to apply in
a particular situation are not by any account simple
problems. Relationships among the algebra operators of
the query language have been established in several
cases, and their conditions for optimal use have been
specified as well [PALERMO, PECHERER]. The integrated
study of decomposition operators and query algebra
operators need some further work. ADIM's approach is of
a pragmatic nature, where complexity analysis define
rules of transformation of a general standing, ADIM uses
them; but in the particular cases where costs can be
estimated with a certain degree of accuracy, specific

strategies are adopted.

85

An example of this is often provided by the join
operation. Any analysis based on its complexity would
suggest that evaluation of joins should be postponed for
as long as possible, but if it was known that the two
relations involved in the join have a small cardinality,

one could in some cases favour an early evaluation.

Before we leave the discussion on retrieval tactics
and perhaps, as a suitable introduction to the next
section on implementation, it should be noticed that the
definitions of D-union and D-join, in fact, correspond to
special cases of union and natural 3join, as defined in
[copp70] . This contradicts some researchers who have
suggested decomposition operators which do not have a
counterpart in Codd's algebra [SKCWHC, CODD7@0]. ADIM's
set of operators allows the translation phase of the
optimizer to embed compounded relations into a query
expressed in algebraic form, and then translate the
expanded query into a simpler and/or more efficient
query. It is worth noticing the considerable results
obtained by many researchers using translation techniques
to optimize queries in algebraic languages [PALERMO,
PECHERER, SAGIV]; where these 1languages mirror closely
Codd's algebra. Most of these results could not be fully
useable by ADIM, if an uncompatible set of decomposition
operators was chosen. As a limiting factor, although

decomposition techniques can handle wvolatile data

86

advantageously, stable user's views have to be assumed,
in order to avoid very expensive re-construction of data
bases. On the other hand, from an implementation point
of view, since D-Jjoin and D-union are special cases of
union and natural join, no special software modules are

necessary in the implementation of the ADIM system.

5.6 Implementation -

Once the data base administrator has decided on a
suitable set of basic relations, views and

characteristics, a data base has to be set up.

Basic relations, views and <characteristics are
established in the data base as Prolog facts. An example

of this is given below:

87

/*DATA BASE : demo*/
/*relations*/

relation(employee).
relation({ students).

e
e

L]

/*characteristics*/
characteristic(students,[dept = "mathematics]).

/*views*/
view(lowpaid, @{salary<lggeg]) .

L]
®

e

A basic relation is defined by the relationship
relation. The name of the basic relation appears as the

only object of the Prolog fact. For example,

relation(section A staff).

defines the basic relation section A staff. Basic
relations are physically stored in secondary memory, e.g.

disc, and can only be accessed by ALFRED-K requests.

The characteristic of a basic relation is defined by
a restriction condition and it is expressed on those
terms. Thus a characteristic is represented by the
Prolog fact characteristic(...) which has two objects:

the name of the relation and the restriction condition.

88

For example,

characteristic(section A staff,[section = "A"]).

establishes that the characteristic of the basic relation
section A staff is [section = "A"]. At present, the
values for the attribute section are still stored, but
obviously they are redundant information. Future work on

ADIM should seek to correct this.

Basic relations without a characteristic are assumed

to have the universal characteristic, i.e {true].

Again, views are also represented as Prolog facts.
The view relationship has two objects: the name of the
view and the algebraic expression associated with the

view's name. For example,

view(deptl staff, sectionA staff :+: sectionB staff).

defines the view deptl staff as the union of the basic

relations sectionA staff and sectionB staff.

In fact, the expression defining a view is not
restricted to the use of basic relations. Views can also
appear in an expression defining a new view. For

instance,

89

view(staff, deptl staff :+: dept2 staff).

defines the view staff as the union of the views

deptl staff and dept2 staff.

It should also be noticed that by allowing the
assignment of a characteristic to a view, ADIM allows
general characteristics to be propagated to many basic

relations. For instance,

characteristic(staff, [site = "Southampton"]).

propagates all the way down the tree the characteristic
[site = "Southampton™"]. This characteristic is thus
shared by several basic relations. In this example,
basic relations sectionA staff and sectionB staff inherit

the characteristic [site = "Southampton®].

5.6.1 Generation of ALFRED-K queries -

As already mentioned, ALFRED-U expressions are mapped
into ALFRED-VC by the G-monitor in the Query Generator
(G-unit, Chapter 4). In turn, ALFRED-VC expressions are
further processed by the C-unit, and equivalent
expressions in ALFRED-K are generated. ALFRED-K

expressions only admit basic relations, i.e. relations

90

which are physically stored. In the process to convert
ALFRED-VC expressions into ALFRED-K expressions,
characteristics are added to views and basic relations,
views are expanded to expressions made up of basic
relations only, and finally, these last expressions are
optimized for evaluation. A brief discussion of the

query evaluation process follows in this section.

ALFRED: U to VC -

The translation of ALFRED-U expressions to ALFRED-VC
expressions is accomplished by an interpreter program.
This interpreter is written in Prolog. The program is

divided into two sections.

The first of these sections reads ALFRED-U sentences
and converts each one of them into a list of Prolog
atoms. The second section transforms lists of atoms into

ALFRED-VC expressions.

The implementation of the first section is based upon
a similar program presented by W. Clocksin and W. Mellish
in their book "Programming in Prolog" (pp. 87-88)
[CLOMEL]. Obviously, some modifications were necessary

to handle the peculiarities of ALFRED syntax.

21

The implementation of the second section of the
program 1is rather simple and it will not be described
here. Nevertheless, a short description of its function

is given below.

Basically, the second section takes the list of atoms
generated by the first section and converts it into an
expression in ALFRED-K form. In the majority of cases,
the list of atoms remains unaltered. For instance, the

list [display, employee] derived from the ALFRED command:

DISPLAY emplovee?

will still be the list [display, employee] when passed to

the ALFRED:VC to K translator.

However, more complex commands give rise to some
interesting problems. In particular, queries could often
lead to expressions that would be very inefficient to
evaluate directly. Thus, in order to improve the
evaluation time of these queries, they are transformed
into equivalent queries, which can then be evaluated more
efficiently. Cases of this sort are not always due to
poorly formulated queries. They also arise because of
the incorporation of views and characteristics into the
gquery. Views and characteristics are added to the query

by the ALFRED:VC to K translator. Also, steps for a more

92

efficient evaluation of the query are taken by this
translator (VC to K). Nevertheless, the ALFRED-U to VC
translator 'optimize' the query, by altering the syntax
within the list of atoms. This new syntax, while still
readable and understandable by ordinary users, 1is more
amenable to further manipulation than the one used at the

end of the first section.

ALFRED: VC to K -

Queries in ALFRED-VC are translated into ALFRED-K
equivalent queries, in three stages. This is done by an
interpreter which is also written in Prolog. The first
part of this program defines the syntax, priority and
associativity rules for operators. The following extract
from this part defines the operators restriction, union,

join and projection, respectively.

?2 - op(7, xfy, @). /*restriction*/
? - op(9, yvix, :+:). /*union#*?

? - op(18, yix, :+:). /*join*/

? - op(8, xfy,). /*project*/

The three stages for this interpreter are:
characteristic handler, view explosion and optimizer.
The Prolog rule map(E,F) transforms the ALFRED-VC

expression E into the ALFRED-K expression F.

93

/*
map(E,F) :~
maps expression E into the fully
decomposed, optimized expression
F (in clausal form).

*/

map(E,F) ¢~
char(E,E1l), /*add characteristics*/
expl(E1,E2), /*explode views*/
simp(E2,F). /*optimize*/

As it can be seen above, the rule map(E,F)

sequentially activates the tree stages.

Characteristics are added to basic relations and

views by the following rules:

/*add characteristics*/

char (E,F) :- /*form the restriction
expression*/

characteristic(E,C),
F= .. [@€,E,C].

char (E,F) :- /*recursive propagation*/
E = .. [Op,Lexp,Rexpl,
char (Lexp,Xexp) ., /*left hand side*/
char (Rexp,Yexp), /*r.h.s.*/
F= .. [Op,Xexp,Yexp].

char(E,E). /*catch-all*/

Three similar rules govern the expansion of views:

94

/%
expl(E,F) :~
expands views in expression E
to expression F which has basic
relations only.

*/
expl (E,E) :~- /*catch basic rels, attributes and
comds*/
basic(E),!. /*test E is primitive object*/
expl(E,F) :~ /*explodes views*/
view(E,El), /*is E a view? expand it*/
expl(E1,F). /*explode El1*/
expl(E,F) :~ /*recursive explosion of views*/

E = .. [Op, Lexp, Rexpl,
expl{Lexp, Xexp).,
expl (Rexp, Yexp).,
F=,, [0Op, Xexp, Yexp].

The first of the rules is the catch-all rule. It has
a few exceptions. It takes account of basic relations,
lists of attributes and lists of conditions. The second
rule, once it finds a view, expands it in case there are
more views hidden in a tree of views, The last rule,
propagates the expansion along the expression E in a

recursive manner.

Optimization or rather efficiency improvements are
governed by the rule simpl(E,F). This rule transforms
expression E iInto expression F. Expression F is
equivalent to E but in most circumstances it will be
evaluated in a time that is significantly faster than the
time it would take to evaluate E. The rules for this

transformation are:

95

/%
*/

simpl(E,E):- /*catch-all basic atoms*/
basic(E) ,!.

simplify relational expressions

simpl(E,F) :~
E= .. [Op, Lexp, Rexp]l,
simpl (Lexp, Xexp),
simpl (Rexp, Yexp).,
s (Op, Xexp, Yexp, F).

The first occurence of rule simpl(E,E) defines the
stop condition for the recursion in the second definition
of simpl(E,F). This second occurence of rule simpl(E,F)
propagates the optimization process, recursively. The
clause s(0Op, Xexp, Yexp, F) in this rule, is satisfied if
a known rule of optimization exists for the operator Op
in the context of expressions Xexp and Yexp. Thus, the

rule:

/*projection associative case*/
s(”,X,Y¥,Z):-
is list(X),
is list(y),
intersection(X,Y,Z21),
set(21,2). /*eliminate duplicates from
list Z1%*/

transforms two adjacent projections on one relation into

one projection on the same relation.

For example, let us consider the following expression

to optimize:

96

? - simpl(employee”[name, address]”[name, address,
salary,X) .

The rule simpl(E,E) will break the expression into its
basic parts: the relation employee, the 1list of
attributes [name, address] and the second 1list of
attributes [name, address, salary]. Since the
associativity of © was defined to be right to left, by

the definition
? - op(8, xfy, T). /*project*/
the expression will be interpreted to be
employee” ([name, address]”[name, address, salaryl)
and hence, when an attempt is made to satisfy the second
definition of simpl(E,;F), Lexp is instantiated to
employee and Rexp is instantiated to [name,

address] " [name, address, salary]. Thus, two recursive

invocations of simpl(E,F) are made:

simpl (employee, 25)

simpl ([name, address]"[name, address, salary]l, _26)

The first of these invocations, simpl(employee, 25)

instantiates 25 to employee, since employee is satisfied

97

by basic(employee). It is the second invocation which
merges the two attributes lists into one. The merger is

done by the associativity rule for projections

s(”, [name, address], [name, address, salary],

_1p81)

which instantiates 101 to [name, address], thus

instantiating the variable X to

employee” [name, address]

In this manner then, the expression employee” [name,
address] " [name, address, salary] is simplified to the
expression employee”[name, address] which involves only

one projection instead of the original two.

Notice that if in the above example, two disjoint
sets of attributes were given, the simplification of the
expression would reduce the two lists of attributes to
the empty set. The projection of a relation on an empty
set of attributes has been defined so as to produce the

empty relation by the rule:

/*empty list of attributes => empty relation*/
s(", X, 01, [1)o

98

and hence, when this case arises there is no need to

inspect relation X.

All of the rules of optimization discussed in section
5.5, have been incorporated into the translator in a
similar manner. More importantly, new optimization rules
can easily be added to the translator here described.
Similarly, most of the rules presented by Palermo
[PALERMO] have been incorporated. The same applies to
the set of optimization rules discussed by Pecherer
[PECHERER] . It should be noticed though that Pecherer's
set of rules is a superset of Palermo's set of rules.
Some further details about the incorporation of these

rules are given later on.

Perhaps, what is new in my set of rules is the
treatment of empty lists of attributes, empty relations,

unconditional true and unconditional false.

Although, one would not normally expect users of ADIM
to submit queries involving empty relations, they might
appear in gquery expressions once characteristics are
added to queries and views are expanded into expressions
made up of basic relations only. Take for example, the
view staff below, on which a query sub-expression is
based. Let us assume that the sub-expression being

evaluated is

99

... staff@[salary>10000] ...
and that the view staff has been defined by the data base

administrator by

view (staff, employee @ [salary<lggggl).

then, the evaluation of this expression will produce the

empty relation.

Similar things can happen during the evaluation of
projections. We might end up with a sub-expression
containing an empty list of attributes on which to
project. Such a case presents itself when given a
relation, two or more projections are attempted on this
relation, using disjoint sets of attributes for the
respective projections. For example, the two projections

on staff, below

staff” [name, salary] “{code, dept]

are equivalent to

staff”]

ADIM evaluates this expression to the empty relation.

This is obviously, one possible way of interpreting the

expression staff”[]. Other people might interpret it

1090

differently, for instance, they could equal it to the
relation staff, itself. I decided to use the current
interpretation purely on the grounds of consistency,
which I expect will become apparent later on in this

section.

Also, views and characteristics can produce

interesting results. They often turn a condition into a

certainty. For example, take the view

view (sectionB, staff@[section = "B"}])

and the sub-expression of a query

... SectionB @[section = "B"] ...

which is certainly true for every tuple in section "B".

Alternatively, take the view

view (lowpaid, staff@[salary<7560]).

and the sub-expression of a query

... lowpaid @[salary>7506] ...

which is false for every tuple in lowpaid.

101

Empty relations and empty lists of attributes or
conditions are represented within the ALFRED-VC to
ALFRED-K translator by an empty list, []. Unconditional
false 1is represented by the singleton [false], and

likewise, unconditional true by [true].

To know that a particular expression or
sub-expression evaluates to the empty relation can be
used to our advantage. The same applies to lists of
attributes and/or conditions evaluating to [true] or
[false}l. To illustrate this point, take the following

user's query:

RETRIEVE lowpaid WHERE [salary > 7508]
INTO notsobad?

If lowpaid was defined as the view:

view(lowpaid, staff@[salary<7560]).

the ALFRED:VC to K translator would transform the query

into the following sequence of equivalent expressions:

102

L

lowpaid @[salary>750¢]

®

e

staff @[salary<75¢0] @ [salary>7500]

Ll

L

staff @[salary<7500 and salary>7500]

®

staff @[false]
[] /*the empty relation*/

of which the last one clearly establishes the futility of
calling the ALFRED-K processor (P-unit) for this query
since at this stage, we already know that the final

result is the empty relation.

In the case of restrictions, in order to compare the
different conditions of the restriction among themselves,
a canonical representation for the condition(s) 1is
necessary. For instance, if we were given the condition
[salary>7000 and not (salary>7000)], we would like to
match the first occurence of salary>7000 with its
negation later on, not (salary>7000). This would allow
us to transform the original expression into [false], and
consequently, to deduce that regardless of the relation

to which the restriction was applied to, the final result

183

is the empty relation.

Because of the reasons given above, restriction
conditions are transformed within the ALFRED:VC to K
translator into clausal form. The part of the translator
that does this transformation is based on a similar
program, which is described in detail in Appendix B of
the book by W.F. Clocksin and C.S. Mellish, "Programming
in Prolog" [CLOMEL]. Thus, by using this module,
restriction conditions received in ALFRED-VC form, from
G~units, are transformed into a list of clauses 1in

conjunctive normal form.

A simple example of transformation to clausal form is
the mapping of the condition ([salary>1@8] into the 1list
of clauses [:([salary>198},[1)]. This list has only one
clause, :([salary>108),[]), which in turn, is made up of
two lists of disjunctions; [salary>1¢¢] and []. The
first of the 1lists holds the conditions (disjunctions)
which are not negated, in this case, the only condition
of the restriction, salary>104. The second list holds

the conditions which are negated, in this case, none.

To further illustrate the transformation of ALFRED-VC
restriction conditions into clausal form, a list of
restriction conditions together with their equivalent

clausal form are presented below. These transformations,

104

I believe, are self-explanatory:
1. staff @[salary>10@ and ~(dept="B") and sex="M"]
staff @[:([salary>1008],[1).,
:([],[dept="B"]),
:([sex="M"]1,[1)
]
2. staff @[salary=1088 or dept="B"]
staff @[:([salary=10080, dept="B"]1)]
3. staff @[salary>200 or ~(dept="B")]
staff @[:([salary>200), [dept="B"})]
4. staff @[salary>200 or (dept="B" and sex="M")]

staff @[:([salary>200, dept="B"], [1),
)

[
:([salary>208, sex="M"], []
]

Once restriction conditions have been transformed to
their equivalent clausal form, their optimization becomes
simpler. For instance, the appearance of a condition p
in both, the list of not negated conditions and the list
of negated conditions, implies that p is being or-ed with
its negation, i.e. p or not p, which is true in all
cases, In this case, once this situation is identified
the particular clause can be replaced by [true]. This
precise instance of clausal optimization 1is performed

within the interpreter by

/*test for contradiction*/

contrary (:(A,B),[:(AL1,Bl)| _]):~
equivalent (A,Al),
equivalent (B,Bl).

contrary (:{(A,B), [[Cls]):-
contrary (:(A,B), Cls).

185

The second definition of contrary (...) above,
recursively searches for the negation of conditions in A,
while the first definition performs the actual tests.
The Prolog clause equivalent(...) has been defined

elsewhere, and it tests the equivalence of two sets.

Once a condition becomes {[true] or {[false] further
performance improvements for the whole restriction
expression can be obtained by the application of the

following rules:

/*false & X => false*/
optcls(X,[falsel) :-

member (X,[falsel) .
/*true & X => X*/
optcls(X,Y) :~

delete({true] ,X,Y).

In the definition of rule optcls(...), if [false] is
found in the canonical expression X, the whole expression
is transformed into [false]. This 1is trivially derived
from p &...& [false] &...& r => [false]. Similarly, if
the canonical expression X has not been reduced to
[false] by the above rule, all occurences of [true] are
removed from X by the second definition of the
optcls(...) rule. This, in turn, is derived from p &

[true] => p.

The transformation of restriction conditions to

106

clausal form allows ADIM to optimize the evaluation of
restrictions, in general. More importantly though,
further ©possibilities of optimizing whole relational
expressions arise. For instance, after the explosion of
views into their corresponding basic relations

expressions, we could have the query:

staff @[salary>10g and ~(salary>1¢8)]" [name]

which, by application of the optimization rules for

restiction could be reduced to:

staff @ [false] " name

This expression, in turn, could be transformed to the

empty relation projected on attribute name, i.e.

[17 [name]

and, then the empty relation, i.e.

(]

The transformation of staff @[false]"[name] into
[] " [name] is based upon the rule for restriction which
states that any relation restricted on the condition

[false] evaluates to the empty relation, []. The

197

transformation from []"[name] to [] is based upon the
rule for projection which states that the empty relation
projected on any list of attributes evaluates to the

empty relation. This later rule is stated in Prolog as

the fact:

s(%y I3, _s (D).

Other rules for other operators can be stated in a
very similar manner. Below, some of these rules have
been selected for discussion. Because of the relevance
to ADIM's implementation, I have focused the discussion
on those rules involving empty relations, empty lists of

attributes or conditions, [falsel] and [true].

Rules for union:

s{:+:, X, [J, X).
s(:+:, [1, X, X).

these two rules state that the union of a relation X and

the empty relation evaluates to relation X.

For join:

198

these two rules state that the join of any relation and

the empty relation evaluates to the empty relation.

For difference:

s(i=z, [1+ _» [1)o

states that the empty relation difference any relation

always produces the empty relation as result; and

s(:~-:, X, [1, X).

states that the relation X difference the empty relation

evaluates to X.

For intersection:

state that the intersection of the empty relation with
any relation, including the empty relation itself,

evaluates to the empty relation.

For restriction, before we can apply the relational
optimization rules, we need to transform the restriction

condition into its equivalent clausal form, which in

129

turn, can be optimized. The transformation to clausal
form and the optimization of it, and the subsequent
optimization of the relational expression is performed

by:

s(@, X, ¥, 2Z):-
clauseform(X, X1),
clauseform(y, Y1),
srestr(@, X1, Y1, 2).

The transformation into clausal form is performed by
clauseform(...) which in turn, invokes rule optcl(...) to
optimize the clauses. The rule clauseform(...), as
implemented in ADIM, is identical to the one presented by
W. Clockin and C. Mellish, except by the <call to
optcls(...) and in some minor syntax details which are

specific to ADIM.

Thus, once the restriction condition has Dbeen
clausified and then optimized by clauseform(...) and
optcls(...), respectively, the relational expression of
which the restriction 1is a sub-expression, can be
optimized. This is achieved in a similar fashion to the
optimization of the other operators. Thus, the rules for
empty relations, empty lists of conditions, [true] and

[false] can be defined by:

srestr (@, [1, _, [1). /*1*/
srestr (@, X, [], X). /*2%/
srestr (@, X, [falsel, [1). /*3%/
srestr (@, X, [truel], X). /*4%/

11¢

In plain English, rule 1 states that a restriction on
an empty relation always evaluates to the empty relation.
Rule 2 states that any relation X, except for X equals
the empty relation (since rule 1 is defined earlier on),
when restricted on an empty list of clauses evaluates to
X Rule 3 states that any relation X restricted on
[false] will produce the empty relation. Based upon
similar logical reasoning, rule 4 states that any
relation X, except for [], when restricted on [true] will

deliver X.

Other rules of optimization, including many of the
ones proposed by Pecherer and Palermo, as already
mentioned, have also been incorporated into ADIM, by use
of techniques similar to those discussed above. Thus,

for instance, the rule

s{@, Rl1:*:R2, X, Z1:*:22):~
s(@, R1, X, Z1)
S(@I RZ, X’ 22).

distributes restriction over Jjoin operations, so that
relations R1 and R2 could be restricted before performing
the join. This, as it is well known, would reduce the
size of Rl and Rl prior to the join, so achieving a much

more efficient evaluation of the original expression.

Another example of general rules for altering the

111

order of evaluation within the expression, is the rule

s(", X, Y@Z, X@Z"Y).

which pushes all restrictions on a relation, to the left,
and all projections to the right. In this manner, by
subsequent use of the associative rules for restriction
and projection, all the restrictions on the relation as
well as all the projections could be reduced to one

restriction on the relation, followed by one projection.

A most efficient evaluation of this expression can be
achieved then, by evaluation of both operation,
restriction and projection, on one pass over the given

relation.

5.7 Some comments on decomposition -

In this chapter, decomposition techniques have been
discussed from a number of different perspectives.
Examples of their relevance to the areas of logical
design, efficiency, security and integrity of data bases
were given. The discussion has in general been centred
around practical problems rather than purely theoretical
questions. I felt that the theoretical aspects from

which ADIM benefits are well covered in the data base

112

literature. References to them are given in appropriate
places in the chapter. Perhaps, the main contribution of
this chapter 1is the presentation of an implementation
framework such that extensions and/or modifications to
ADIM are very easy to make. This is important in an

experimental system of this type.

In designing ADIM, I have come to distinguish two
areas of research problems which needed solving. The
first has relatively solid foundations. In this area,
new fundamental results are unlikely to be produced.
This 1is particularly true, 1f one is constrained to
conventional hardware architectures. Nevertheless, from
an engineering point of view, it still represents a
challenge in terms of technological trade-offs. These
have to be resolved for each particular application. I
feel that most of the implementation of the P-unit falls

into this category.

The second area is more of an open gquestion. Study
and experimentation of problems in this area are more
likely to produce significant results of a general
nature, I believe that the decomposition techniques of
this chapter are more into this category than the former.
They together with the ALFRED hierarchy of languages,
provide an excellent framework for experimentation in the

fields of retrieval languages, query optimization

113

techniques, security and integrity of data bases. The
implementation issues discussed in this chapter,
illustrate this point. A specific example is ALFRED-VC's
representation of axioms for functional dependencies
[section 5.6] and the deduction rules of optimization

associated with them [sections 5.4.1, 5.5 and 5.6].

The next chapter, concentrates on the discussion of
engineering aspects in the construction of a highly
efficient P-unit. This is done within the general

principles and aims outlined in Chapter 2.

114

CHAPTER 6

DATA STRUCTURES AND NATURE OF DATA

6.1 Efficiency -

The processing of a query in ADIM involves the
activation of three stages: the
decomposition-optimization <cycle, the ©processing of
queries involving the basic relations and the composition
of a reply. The problems of the second stage and their
solutions in ADIM are discussed in this chapter. Maybe
the most important problems of this stage are those of
efficiency in retrieval operations. My aim was to
provide ADIM with a mechanism such that a most efficient
retrieval capability could be attained with not too much
wastage of secondary memory. This strategy assumes that
the cost of secondary memory 1is of less importance to
users than the waiting time for a reply. I believe this
to be a reasonable assumption considering the trend to

declining prices of memories in the past and the

115

foreseeable future. This approach to efficiency
necessarily leads us into a discussion of the data

structures and access mechanisms provided by ADIM.

The access mechanism to the stored data is a set of
functions implemented at a low level in the ADIM system.
These functions provide a mechanism which is independent
of the operating system and/or hardware in use. This
approach ensures a high degree of portability for the
applications written on top of ADIM as well as for the
ADIM system itself. As far as retrieval of data is
concerned, the most important problem to solve is the
transformation of elements in the data space as seen by
the user to the address space provided by secondary
memory in the host computer or computers. For the sake
of simplicity, I will be referring to the singular
computer, where extensions to the ideas exposed are
obvious. Otherwise, ideas and principles will be

explicitly exposed.

Some authors [HELD75, PECHERER, HELSTO075] have
proposed some desirable conditions that the function
described above should meet. G. Held and M., Stonebraker

in their 1975 paper {HELSTO75], proposed:

116

"Condition 1.
The function should not introduce additional
secondary accesses in order to compute an

address.,”

"Condition 2.
The function should map the given sample of the
key space [data space as seen by the user]

uniformly across the address space."

The first condition makes the very realistic
assumption that in existing commercially available
computers, as well as in computers coming on to the
market in the foreseeable future, computations performed
on data available in main memory are several order of
magnitude cheaper in time than the retrieval of data from
secondary memory into main memory. In other words, it is
more efficient to calculate the address of some data than

to look it up in a dictionary held in secondary memory.

Condition 2 establishes the principle that overflow

areas should not be used. Obviously, if keys are used to
find data in the address space, the extensive use of
overflow areas will render key usage as almost useless

and unnecessary.

The authors of [HELSTO75] also formulated a third

117

condition:

"Condition 3.
The function should be an order preserving
function (i.e. 1f K' < K" then H(K') < H({(K"))
[K'* and K" belong to the data space and H(K')

and H(K") belong to the address space]"®.

The purpose of this condition is to provide efficient

retrieval in queries of the form

RETRIEVE employee WHEN
[dept = "marketing"]

INTO marketing ?

as well as in queries of the form

RETRIEVE employee WHEN
[salary > 10084]

INTO highpaid ?

In the first query, a randomizing (hash) function
will in most cases provide a very efficient solution.
However, the same function will be absolutely hopeless in
the second query, since a complete scan of the relation
employee will be required. Condition 3 seeks a function

able to behave well in both types of queries.

118

Although the imposition of the above conditions seem
to have produced good results in the design and
implementation of INGRES [SWKH76] , the additional
requirements of compactness, modularity and portability

impose further conditions to the design of ADIM.

Thus, I have added

Condition 4.
The selected function should not co-exist with
any other function intended for the same

purpose.

Condition 5.
The function should be effective regardless of

time dependencies of the data set.

Condition 6.
The function should have a cost prediction

element in it.

The aim of condition 4 is to achieve a high degree of
compactness, so making duplication of effort unnecessary.
The use throughout the entire system of a unique file
structure makes Iimplementation simpler and produces a
more compact system than otherwise obtainable with the

use of a range of files structures. I feel this makes

118

the difference on whether the ADIM system will run or not
on an 8-bit micro~computer. As an additional bonus, in a
small system 'bugs' are better controlled and more easily

cured.

Many functions can provide a remarkably good
performance in a stable environment where predictions can
easily be made, but certainly this is not the case of
many applications requiring the use of a data base
management system. For instance, booking systems are a
case of management of wvery wvolatile data where
predictions about the shape of the distribution function
for this data are difficult to make, if not impossible.
Condition 5 seeks a function which is efficient under
volatile and stable environments. I believe that
performance on retrieval should be independent of the

length of time that data resides in a given data base.

Condition 6 assumes that query optimization
sub-systems are an integral part of relational data base
management systems. A query optimization sub-system
based on statistical analysis of past behaviour can only
make cost predictions in environments with stable data
and queries meeting a certain regularity. I do not
believe this to be the general case. Furthermore, the
software to collect statistics on the traffic of data and

the software to analyse this statistical data can be very

129

bulky, so making the optimization sub-system too big to
fit in small computers where it 1s most needed.
Precisely because of these considerations, I feel that
the provision of cost parameters should be a condition of

the function under consideration.

Obviously, any function can meet condition 4, if all
the other conditions are dropped. Since this is not the
case, I had to seek a unique function which will comply

with all the other five conditions, as well.

Randomizing (hash) functions [KNUTH] meet conditions-

1, 2 and 5, but fail to meet conditions 3 and 6.

Static directories of the ISAM [IBM66] type comply
with conditions 2 and 3, but not the others. The variety
of functions of this type wused by INGRES [HSW75,
HELSTO075), called generalized directories, attempts to
provide a compromise. They offer tuning parameters for
re-organization of directories, whenever efficiency
decreases beyond acceptable levels. In this manner,
generalised directories fully comply with condition 3 and
partially comply with condition 1 and 2. They make no

attempt to satisfy conditions 5 and 6.

Unwillingly, to compromise on the failure of the

above functions to comply with all six conditions, I

121

embarked on the study of three more functions. One of
these functions attempts to provide a continuum between
randomizing functions and directory structures, while the
other two concentrates on the problems of volatile data.

A discussion of these functions follow.

6.2 Random Directories -

Generalized directories [HELD75] as found in the
INGRES access methods represent a continuum of functions
between simple order preserving functions at one extreme
and normal directories of the ISAM type [IBM66] at the
other. It appeared plausible that a continuum between
randomizing functions and simple order preserving
functions existed. I wanted to investigate this
possibility and consequently, I embarked on the study of
a class of functions which appeared to be a good
candidate. Linear transformations between vector spaces
have a sound theoretical basis as well as being general
enough to cover a very wide spectrum. Since they had to
be implemented with subsequent change in mind, a flexible
approach had to be adopted and the particular case of
functions based on binary cyclic codes [Appendix G] was

chosen.

In order to conduct a minimum set of experiments, I

122

decided to implement some basic algorithms for coding and
decoding binary cyclic codes. This was done by software
simulation of different existing hardware devices, an
acceptable family of algorithms was recognized and
implemented as standard coding and decoding procedures.

An example of these algorithms is given in Appendix F.

Cyclic codes are most easily implemented by using
shift-register devices. Software for the encoding
dictionary is minimized by making use of the cyclic
property and the property that each code polynomial is a

multiple of the generator polynomial.

Once the basic procedures were established, I started
work on the allocation of randomizing functions to
regions of the total address space. The regions are not
necessarily disjoint. In this manner, the order of the
data space is to some extent preserved in the address
space. Thus, a reduction of the searching time in

queries involving order becomes possible.

Moreover, I also experimented with a dynamic
allocation of randomizing functions to regions. This
dynamic allocation allows for reorganization of
individual regions of the total storage holding a

relation.

123

The use of this technique is complemented by the
fixing of a maximum boundary to the access factor and
minimum and maximum boundaries to the occupancy factor.
Certainly, the access factor and the occupancy factor
will not be optimal (except in extraordinary
circumstances), but failure of an existing randomizing
function to comply with the predetermined boundaries will
never be disastrous, because a new member of the family
of functions can be selected and the failing region can
be reorganized. The techniques for fixing boundaries for
the access and occupancy factor are an appropriated
modification of the one used by D.G. Held [HELD75] in his

generalized directories.

Basically, the scheme as described, is a compromise
between randomizing functions and static directory
structures. The aim of the scheme was to improve on the
performance of a scheme used by INGRES [HELD75]. The
results of the experimentation were not particularly
encouraging. Although, the reallocation of a function to
a region, and the subsequent re-distribution of data onto
a larger or smaller region was performed in a reasonable
time (in relation to the size of the key space), the
amount of information needed in memory, at all times,
made this scheme unacceptable. Information needed to
keep in memory included, among others: identification of

function and its characteristics, parameters, data types

124

of keys, and boundaries of region.

6.3 Extendible Hashing -

As mentioned earlier on in this chapter, for a number
of years in the past, static directories have been used
in data base implementations with a relative degree of
success [IBM66, HSW75, HELSTO75]. My main objection to
their use in ADIM is the constraint imposed by condition
5. The functions implementing an access mechanism for a
system based on static directories generally provide very
good performance in environments where predictions can be
made about the total volume of data, the distribution
functions for the keys and the traffic of data as a
function of time. Unfortunately, this is not the case in
many data base applications, where the nature of the
application involves the manipulation of highly volatile
data. 1In this later case, predictions about the shape of
the distribution function for the keys, data traffic or
volume of data are very difficult if not Iimpossible to

make.

However, in recent years, a number of researchers
have been exploring schemes for structuring data whose
volume is allowed to grow and shrink by large factors

[BAYER, COMMER79, FAGIN, TAMMINEN, HOPCROFT83]. The

125

schemes proposed have gradually converged into two main
schemes. The first of these schemes is known as B-trees
[BAYER, COMMER79] and we shall be discussing it in
Section 6.4. The other scheme, known as extendible
hashing [FAGIN], is the main topic of discussion in this

section.

Extendible hashing offers a very attractive
alternative to the access methods previously discussed in
this chapter. It always uses two disc accesses for each
search, while at the same time, retaining a capability
for efficient insertions and deletions. Remarkably,
these characteristics are valid with static and volatile

data.

The method was developed in 1978 by R. Fagin, J.
Nievergelt, N. Pippenger, and R. Strong [FAGIN]. It is
based on an extension of radix search trees, also known
as digital search trees or tries [FREDKIN]. Fagin's
method attempts to exploit the speed of radix search
trees without having to pay the high cost in memory space

which characterize the latter,

In general, extendible hashing can be depicted as two
files: a directory file and the leaf pages file. The
file for the leaf pages store the data. The directory

d

file contains 2Y entries one for each d-bit pattern. A

126

leaf page contains all data records such that their keys
begin with a specific bit pattern. Thus, to search for
the record associated with a given key, the leading
d-bits of the key are used to index into the directory.
This entry of the directory, in turn, stores a pointer to
the leaf page associated with the d-bit pattern of the
given key. Then, the referenced leaf page 1is accessed
and searched for the proper record. A leaf page can be
pointed to by one or more directory entries. TIf a leaf
page holds all the records with keys beginning with a
specific k bits, then the directory will have Zd"k

directory entries pointing to it.

INSERTION -

To explain the insertion algorithm let us start with
a given initial structure. A directory file with only
one entry. This entry points to an empty leaf page. A

leaf page can hold up to four records. See figure 6.1,

below.

Directory (D) Leaf Pages (L)

] o]

Figure 6.1

127

Now, let us insert four records. The keys for these
records, in binary, are: @1¢¢1, 09191, 10169 and £1091.

They are placed into leaf page O:

D L
o o}

0 2 00101
g1001
gleol
10180

Figure 6.2

The entry in directory D, states that all records are
stored in page O of the leaf pages file, L, where they
are kept in sorted order of their keys. Now, we attempt
to insert a new record. Say, the key for this record is
in binary notation: 119009. Since, page 0 is full, it
must be split to make room for this new record. To do
this, we create a second leaf page at the end of file, L.
Then, we leave records with key beginning with 0 in page
0, and move those records which key begins with 1 to page
1. The directory size is also doubled in size, thus that
a new entry pointing to the new leaf page, can be

created. We are left with the following structure:

128

i J

o] T
0 0] :Ql@l
1 0 1801
0 ;lﬂ@l

2
1 ,0100
1 Elﬂﬂﬁ

|

:

Figure 6.3

We now add the record with key 81018:

D L

1 o T
0 o] 20 9101
1 1 O: 1001
0, 1601
0+ 1010

Yo
1, 0100

I
1, 10090

{

i

t

Figure 6.4

In order to add yet one more record, say the record

with key @1¢01, we need to split page O again. This time

129

we will use the two leading bits of the key to index into
the directory, D. Thus, we split page O into two pages:
one page for those records which key starts with §g, and
one page for those records which key starts with gl. It
is in the handling of the directory, where Fagin's method
differs from more conventional methods. Instead of just
creating one more directory entry, pointing to the newly
created page (by the split), Fagin's method doubles the

size of the directory. Thus our example, becomes:

D L
(1) J
E— o
00 (0)] 00 141
0l (1) 2
10 (2) 1
11 (3) 1
1 0190
1 19000
2
01 g9g1
01 @01
new page
01 991
01 @10
Figure 6.5

139

SEARCH -

Now, we can access any record by using the leading 2
bits of its key as an index into the directory D. The
directory entry i, in turn, holds the number of the page

in which the wanted record is stored.

DELETION -

The principles for the deletion algorithm are similar
to the insertion algorithm, just discussed. Whenever,
empty pages arise after deletions, the algorithm for

deletion halves the size of the directory.

As the discussion above <clearly demonstrated,
extendible hashing provide a graceful and efficient
mechanism to handle highly volatile data. But, it should
be appreciated that it is not free of problems. The
algorithm for insertion, as presented above, is very
susceptible to a poor key distribution. The value of d
(the leading bits in the key) is the largest number of
bits needed to assign keys to leaf pages. ©Now, if input
keys are clustered, large numbers of keys will agree in a
large number of leading bits. This will cause a very
large directory. In fact, in some applications, the

directory could get unacceptably large. A solution to

131

this problem is to apply a randomizing function (hashing)
to the keys, to make them pseudo-random. From this point
of view, we can think of the algorithm for splitting
nodes as a mechanism to handle hash value collisions. It
is this wview which earned this method the name:

"extendible hashing".

The introduction of hashing, on the one hand, often
solves the ©problem of large directories caused by
clustering in the input keys. On the other hand, it
re-introduces one of the main problems of randomizing
functions, i.e. a very poor performance in range type
searches. Some suggestions have been made towards a
solution to this ©problem. Fagin, wet.al. [FAGIN]
suggested the use of order ©preserving randomizing
functions. As it is well known, these functions in most
cases fail to break clusters. To use them for general
purposes, the best that we could expect is some reduction
in the size of the directory. The magnitude of the
reduction would depend on specific applications.
Unfortunately, one can expect cases where the reduction
in size of the directory will not be significative

enough.

A more serious problem with extendible hashing arises
when there are more equal keys than the capacity of a

leaf page, allows. In this case, the algorithm breaks

132

down completely. 1In our example, consider the case where

we want to insert two records with key 01¢81.

In summary, extendible hashing is an excellent scheme
for structuring data whose volume is allowed to grow and
shrink by large factors. Unfortunately, its suitability
to handle data which keys are clustered, present some
problems not easily solved in the context of a general
purpose system like ADIM. It should also be said, that
after I started work in the implementation of an access
method for ADIM, some researchers have proposed
variations on the extendible hashing scheme that appears
to be very hopeful for a general solution of the search
by range problem [LITWIN78, LITWIN81, TAMMINEN, LARSON].
Some other interesting ideas about a solution to this
problem, can be found in a paper by W.A. Burkhard
[BURKHARD] . This paper addresses the more general
problem of partially specified queries, and precedes the

one by Fagin, et.al.

6.4 Dynamic Trees -

A number of alternatives to extendible hashing have
been proposed. In fact, many of these proposals preceded
it [BURKHARD, BAYER]. Perhaps, not surprisingly, the

most important of these alternatives 1s one based upon

133

directory structures which expand and shrink dynamically
with usage. I turned my attention to them very early on
the life of the ADIM ©project. After <careful
consideration of a number of variations based upon 2-3
trees [HOPCROFT83], I decided to provide ADIM with a
directory structure based on a generalization of 2-3
trees, known as B-trees [BAYER, COMMER79]. The reason
for this decision was the desire to preserve within
ADIM's file structure the advantages of static directory
structures, e.g. average depth of @(log n) for a "random"
tree of n nodes, while at the same time, avoid the
problems caused by unbalanced trees (directory
structures), likely to occur in relations with a high
rate of insertions, deletions and updates. Additional
reasons for choosing B-trees are provided later on in

this chapter.

Before proceeding any further with the discussion
about the motivation behind the choice of B-trees, as the
unique file structure for relations in ADIM, a
clarification of our conceptual framework is required. A
closer scrutiny of the terms and concepts embodied in 2-3
trees and B-trees is necessary, if only for the sake of
completeness in the exposition. Thus, in the next
paragraphs, a brief introduction to 2-3 trees is followed
by a more thorough discussion of B-trees. This later

discussion starts with a definition of B-~trees and an

134

exploration of their main features. It proceeds to
analyse how well B-trees 1in general, fulfil ADIM's
requirements; then, it describes the particular
implementation for ADIM. Finally, it re-links with our
discussion about the motivation behind the choice of
B-trees for ADIM, and draws conclusions about
performance, size and complexity of the implementation,
and general fulfilment of the conditions outlined earlier

on in this chapter.

It should be noticed that we are interested here in
the storage of records in files, where the files are
stored in blocks of external storage. Hence, the correct
interpretation for the idea of a tree, is to think of the
nodes as physical blocks. In the sequel, I shall use the
word page to refer to a physical block of external
storage. Also, since we are dealing with ordered sets, I
assume that each record of a file has a key, a set of
fields that wuniquely 1identifies each record. For
example, the same field of the employees file might be

considered such a key.

6.4.1 2-3 Trees -

Static directories based upon a tree structure

provide an attractive average depth of g(log n).

135

However, in practical applications, cases often arise of
trees with imbalanced growth, and therefore, with
branches growing well beyond the average mark. In the
case of directory structures, this situation appears as
an uncontrolled proliferation of overflow pages.
Obviously, this 1is a situation to be avoided 1if an
efficient retrieval system is to be supported. This
suggests that a reorganization of the tree after
insertions and deletions might solve the problem.
Unfortunately, even in data bases with relations of a
moderate size, this is not practical, because of the
excessive balancing overhead. An alternative approach to
this ©problem, 1is to seek a general criterion for
controlled growth. One such criterion is embodied in 2-3

trees, and it can be stated as follows:

(a) Interior nodes of the tree can only have two or
three children.

{b) All paths from the root to the leaves must have
the same length.

Fig. 6.6

136

Figure 6.6 is an example of a 2-3 tree. Observe that

1-1 4nd 31"l leaves.

a 2-3 tree of i levels has between 2
From a different perspective, a 2-3 tree with n elements
requires at least log3n levels and no more than 1ogzn

levels. Thus, path lengths in the tree are @(log n).

The algorithms to insert, delete, update and test for
membership of elements in 2-3 trees are suitable
adaptations of the corresponding algorithms for binary
trees, Since, a binary tree has up to two children per
node, the algorithms have to be modified to accommodate
up to three children in each node of the tree. Also,
deletion and insertion of elements can lead to situations
that need special treatment. One such situation arises
when an attempt is made to insert a new element in a node
with two elements in it. In this case, a split of the
node into two nodes is necessary in order to maintain a
balanced tree. Another exceptional situation arises when
in a node with one element in it, an attempt is made to
delete this element. Again, in order to keep the balance
of the tree, two adjacent nodes have to be merged
together into one node. A generalized version of the
algorithms and their handling of special cases is
provided by a kind of tree data structure called B-trees

[BAYER] . They are discussed in the next sub-section.

137

A generalization of the criterion embodied by 2-3

trees was postulated by R. Bayer [BAYER] in 197¢:

"... every page (except one) contains between n
and 2n nodes [elements] for a given constant n."

This generalization of the criterion for 2-3 trees is
obviously a better criterion for external storage. For a
relation with a given number of elements (tuples), an
increase in the number of elements per page would
normally cause a reduction in the number of pages
required to store this relation in external storage.
Hence, a tree with fewer levels can be constructed for
this relation, so reducing the number of pages to inspect
during searches. Put another way, a B-tree is a special
kind of balanced tree that permits the retrieval,
insertion and deletion of records from an external file

with a guaranteed worst-case performance.

Formally, a B-tree is a tree with the following

properties:

(a) Each page, except for the root contains at most
2n items.

(b) Each page, except for the root and the leaves,
has between n+l1 and 2n+1 children.

138

(¢) The root is either a leaf or has at least two
children, i.e. one item.

(d) Each path from the root to a leaf has the same
length.

Note that a B-tree with n=1 is a 2-3 tree. In

general, n is said to be the order of the B-tree.

l

25

12\ 20~ /39 | 504

| AR

4 58 9} 114 15 16 17} |21 23 26 32 409 42 48 53 55

Fig. 6.7 B-tree of order 2.

In a B-tree, we can view a page with m keys, as

having the form

[por kll pll kzl le e e o F kml pm}

where p; is a pointer to the i* child of the node

represented by this page and kj is a key; @¢<i<m and

1<j<m. The keys within the page are in sorted order, so

139

kl<k2<..<km. In the subtree pointed by Py all keys are
less than kl. The opposite is true at the other end of
the page, in the subtree pointed by pm, all keys are
greater than km. However, in the general case, where

g<i<m, keys in the subtree pointed by p; are greater than

ki and less than ki+1'

RETRIEVAL -~

To retrieve a record r with key value x, we trace the
path from the root page to the page which contains the
record r, if it exists in the file. We trace this path
by successively fetching pages from external storage into
main memory and finding the position of x relative to the
keys kl,kz,...,km. If in the latest page brought into
main memory, there is a ki such that ki=x, we have found

the record r. Otherwise, if ki<x<k we next fetch

i+1”
page p, and repeat the process; if x<kl we continue the
search in page Pyi if x>km we use page P, to continue our

search.

INSERTION -~

To insert a record r with key x into a B-tree, we

first find the page P at which r should belong. If this

149

page has m<2n records (items), we insert r into this page
in the proper sorted order. 1In the case where m=2n, i.e.
page P is full, we would need to change the structure of
the tree. To understand what happens in this case, refer
to Fig. 6.8. In this example, a record r with key B is

inserted in a B-tree of order 2.

.

A l
gy 3 6 8 19 P {14 15 17 29 Q |25 g
nsert 13
g |36 8 10 P' |13 14 p" | 17 20 Q1 25 g
Figure 6.8

The procedure to insert record r with key 13 is:

(a) Key 13 is searched for and not found. The
record r should be inserted in page P, but this
page is full.

(b) Page P is split into two pages, P' and P".

141

(c) The 2n+l1 records, including record r, are
equally distributed into P' and P", and the
record with the middle key is moved up one level
into the ancestor page N.

Obviously, the insertion of the middle record in the
ancestor page could again cause a split of a page, i.e.
the ancestor page. In this manner, the splitting of
pages could propagate all the way up to the root, thereby

increasing the height of the B-tree.

DELETION -

In the algorithm to delete a record r with key x from

a B-tree, two cases have to be considered:

(a) The record r with key x is on a leaf page; the
trivial case.

(b) The record r with key x is not on a leaf page;
in this case, the record r must be replaced by
one of the two records whose key values are
closest to X; these two records, one on each

side of r, happen to be on leaf pages, and
therefore, can easily be deleted.

In the latter case, assume x=ki. To find one of the
key values closest to x, descend down the pointer Pi_1

and along the right most pointers to leaf page P. The
sought record is the one with key km on page P, i.e. the

furthest right record on P. To complete the deletion of

142

record r with key x, replace record r by the record with

key km on page P, and then reduce the size of P by one.

Any reduction in the size of a page, must be followed
by a check of the number m of records left on the page.
If m<n, property (b) of B-trees is violated. When this
underflow condition 1is detected 1immediate corrective

action must be undertaken.

An underflow of page P is corrected by borrowing a
record from one of the neighbouring pages of P. Because
of the cost of having to move another page into main
memory, this is a relatively expensive operation.
Preventive action should be taken to reduce the frequency
of this operation. This can be done by moving more than
one record at a time into P, whenever possible. Thus,
once a neighbour page is brought into main memory, the
records on this page and those in P are distributed

evenly on both pages.

Obviously, the removal of the middle record from the
ancestor page, could again cause an underflow. This in
turn, might need the merging of the ancestor page and one
of its neighbour pages. In the extreme case, merging
could propagate all the way up to the root. Whenever the
size of the root page becomes 8, i.e. m=g, it is itself

deleted, thus causing a reduction in the height of the

143

B~-tree.,

Figure 6.9-a illustrates deletion, case (a); and

Figure 6.9~b illustrates case (b).

144

_— N

368 10

36 8 l@}

1221
368 148 14 15 290 25 31 43
Figure 6.9-a
13 14 17 20 25 31 43
{
delete 15

|

12,21

14 15 17 20

25 31 43

dellete 17

l

12,2

/ ,\\

368180 13 14 17 20

25 31 43

Figure 6.9-b

145

6.5 B-Tree Implementation -

The implementation of the set of functions that made
up ADIM's file management, is now presented. These
functions, as well as the rest of the core of ADIM, are

written in 'C'. The functions are:

(i) search (): to retrieve a tuple from a B-tree;
(ii) travertree (): to fully traverse a B-tree;

(iii) partial (): to partially traverse a B-tree;

(iv) insert (): to append a new tuple to a B-tree;
and
{(v) delete (): to delete a tuple from a B-tree.

The definition of the structure of a page precedes

the discussion on the actual implementation.

6.5.1 Page Structure -

Typically, B-trees are implemented in two levels: a
B-tree for the keys and a flat file for the tuples
themselves. The link is established by associating the
keys in the B-tree with record positions in the flat

file. This type of implementation is illustrated by

Figure 6.140.

146

B-Tree keys only L8 P -

flat file |la|bjcjd| el ki m| P| e¢6 o0 coce

AN

typles

Figure 6.10

The obvious alternative to the above scheme is to

store tuples and their keys in the B-tree itself.

For a given page size, a two tier file structure is
normally preferred to the one level option. A B-tree
restricted to the keys only, would have a higher fan-out
ratio than its whole tuples counterpart. This in most
cases, would reduce the height of the tree, and
consequently, fewer pages would need to be fetched into

main memory during searches.

Nevertheless, the one tier option should not be
totally discounted without some further consideration. A
compromise between the two approaches would be to

replicate a two tier B-tree implementation by a B-tree

147

for whole tuples supported by adequate secondary indexes.
Of course, the secondary indexes implemented as B-trees,
as well. In this manner, the B-tree for the tuples would
appear as the flat file and one of the indexes as the
B-tree for the keys. This approach would achieve for the
index(es), the high fan-out ratio tree, whenever this is

required.

Since, ADIM's expected operational scenario 1is
managing data bases with many relatively small and medium
sized relations, I judged the compromise suggested above
to have the potentiality for excellent space/time
performance, and therefore chose it. It must be
emphasised, that this decision was backed up with very
conclusive empirical tests [section 6.6]. Large
relations are unlikely to be found in a properly
constructed ADIM data base, because of the application of
decomposition techniques during the process of setting up

data bases.

Once the above decision was made, decisions about the
structure of a page and ways to represent tuples inside
such a page, were painlessly made. Thus, the structure
of a page in ADIM was defined by the following sequence

of declarations:

148

$define PGS?Z 1824
#define OFFSET d*sizeof (int)
tdefine PTRSZ sizeof (int)

struct page

{

int no; /*page number*/

int up; /*page number of parent*/

int q; /*number of tuples in the page*/
int pg; /*extra pointer to child on left*/

char 1 _tups[PGSZ - OFFSET];

Global definitions such as PGSZ, OFFSET and PTRSZ
make the porting of ADIM to new machines a relatively
easy task. Also, and more importantly, tunning the
performance of ADIM is aided by definitions of this sort.
For instance, PGSZ which defines the size of a page in
bytes, could be set to 512, 1624, 2048 or any other size,
Thus, in a computer configuration where the time taken to
move 1 byte or 512 bytes from disc to memory is the same,
e.g. DEC - PDP1l1 family, it would be advantageous to
define PGSZ as a multiple of 512. More obviously, these

definitions also make programs clearer.

no up g po

i-tups

Figure 6,11

149

The field no is used to stamp the page with a unique
identifying number; up refers to the identifying number
of the ancestor page (except for the root page); g is the
number of tuples stored, at present, in the page; and, if
the page is not a leaf, pf points to the root page of the
left most sub-tree. A pointer to a page is recorded by
storing the unique identifying number of that page.
PTRSZ is the number of bytes required to store such a
pointer, and it is determined by the host computer.
OFFSET is the total number of bytes required by the
fields no, up, q and pf#. The difference PGSZ - OFFSET is
the number of bytes available on the page, for the

storage of tuples.

Tuples within a ©page are defined by the 'C!

declaration:

struct i tup

{
int pgno; /*pointer to sub-tree*/
char t[MAXTUP]; /*tuple proper*/

MAXTUP is a global definition which sets the maximum
size in bytes for a tuple. MAXTUP is normally defined by

the expression (PGSZ - OFFSET)/2 - PTRSZ.

In the structure defined by i tup, the field pgno

points to the root of the sub-tree on the right of the

158

tuple. The array t is the tuple itself (tuple proper).
Although, the declaration of t suggests a fixed size
array of MAXTUP bytes; in practice, t occupies a
considerably smaller size. In fact, the number of bytes
used by the tuple t, is determined by the data types of
its attributes. Integer attributes occupy ISZ bytes,
reals use RSZ bytes, and strings of characters one byte
per character plus one byte for the end of a strings
marker. ISZ and RSZ are machine dependent and typical

values are eight for RSZ and four for ISZ.

In order to manipulate the apparent overlapping of

tuples within a page, another 'C' structure is necessary:

union record

{ /*treats tuples in two modes*/
struct i tup*cooked; /*formatted tuple*/
char *raw; /*unformatted tuple*/

The union record provides two alternative views for a
tuple within a page. As raw, the stored tuple (tuple
proper + pointer) can be seen as a sequence of bytes
without demarcation between pointer and tuple proper. On
the other hand, the field cooked of the union, makes the

distinction between the pointer and the tuple proper.

The use of these two views of a stored tuple is

illustrated by the following piece of 'C' code:

151

srch _del(d,xx,ps...) /*searches xx in tree 2nd deletes
it*/

char xx; /*search key*/
int p ; /*page to search*/

struct page *pp;
union record kaddr;

Pp = salloc(PGSZ); /*get memory for page*/
get page(d,pp,p); /*retrieve page p into pp*/

-

itpsz = <actual length in bytes for tuple +
pointer>;

®

kaddr.raw = pp ~> 1 _tups; /*get first tuple*/
kaddr.raw += (k*itpsz); /*jump to tuple k*/

if (kcompare (d, xx, (kaddr.cooked)->t)==EQUAL)
/*found 1it*/

else
/*continue search#*/

152

The function srch del() searches in the relation
described by 4, the tuple with key xx and deletes it.
The call to salloc() allocates memory space for a page;
pp records the location of the memory space allocated.
Page p is retrieved by get page() from disc into the
location pointed by pp. Once page p 1s in main memory,
we skip all the fields at the beginning of the page, and

position ourselves at the location of the first tuple

stored on this page:

kaddr.raw = pp -> 1 tups;

then, we move to tuple k in the page, by:

kaddr.raw += (k*itpsz);

The variable itpsz holds the actual length, in bytes,
occupied by the tuple proper and the pointer associated
with it. Thus, in order to compare the key xx with the
tuple proper (t), we need to ignore the pointer (pgno).

This is achieved by:

...kcompare(d,xx,(kaddr.cooked) -> t) ...

which, as wanted, skips over the pointer to the sub-tree
(pgno), and directly compares the key xx with the tuple

proper t.

153

6.5.2 File Management Functions -

Information about active relations is kept in main
memory by descriptors. A descriptor is a brief summary
of the structure and general characteristics of a
relation. Descriptors are defined by the following 'C’

structures:

struct relation

{
char relid [MAXNAME]; /*relation name*/
long relsave; /*0S time for save*/
long reltups; /*no. of tuples in
relation*/
int relwid; /*width in bytes of rel.*/
unsigned relattss; /*no. of atts.*/
unsigned dvc; /*device for rel.*/
int root; /*page no of root*/
unsigned n; /*n for B-tree*/

};

struct descriptor

{
struct relation reldum;:; /*dump of relation tuple*/
char status; /*open, closed, etc*/
unsigned devdesc; /*ADIM DEV.descriptor*/
char offset [MAXDOM]; /*offset to att.i*/
char fmt ([(MAXDOM]; /*format of att.i*/
char £1[MAXDOM]; /*length in bytes of att i*/
char given [MAXDOM]; /*value supplied in key

YES/NO*/

}i

In the structure relation, relid stores the name of
the relation; relsave keeps information about the
validity date for this relation; reltups keeps track of
the number of tuples; relwid is the width in bytes of a

tuple; relatts 1is the number of attributes in the

154

relation; dvc is the device (disc) on which the relation
is stored; root is the page number of the root page in

the B-tree; and, n is the degree of the B-tree.

In descriptor, reldum is a replica of the relation
above; status knows about the actual condition of the
relation: open, closed, etc; devdesc is a machine
independent device descriptor; offset[i] is the offset in
bytes from attribute[@] to attribute[i]; fmt[i] 1is the
data type of attribute[i]: 'c', 'i', 'r', etc; fl1[i] is
the 1length in bytes of attribute[i]l; and, given[i]
records whether a key for attribute[i] has or has not

been supplied.
Further information about the attributes of relations
are kept in a catalogue which is defined by the fC!

structure:

struct attribute

{

char aname [MAXNAME] ; /*name of attribute*/

char rid[MAXNAME]; /*name of relation*/

char format[FSZ]; /*integer, real, string of
chars, etc*/

int asize; /*length in bytes of this
att.*/

int start; /*starting position in tuple
(byte) */

int relative; /*relative position:first,
second,etc*/

int key pos; /*relative position in key*/

155

In attribute, aname is the name of the attribute; rid
refers to the relation to which the attribute is part of;
format is the data type of the attribute, e.g. ¢2f - a
character string of length twenty; asize is the length in
bytes of this attribute; start is the offset, in bytes,
from the left edge of the tuple to this attribute;
relative is the relative position of this attribute,
within the 1list of attributes belonging to this relation
(rid)- i.e. a value between 2zero and the degree of the
relation minus one; and keypos is the relative position
in the key - i.e. a value between one and the number of

attributes in the key.

Now that the underlying structures of ADIM's file
management have been presented, let us examine the set of
functions that make up ADIM's File Management Functions.
First of all, to operate on a relation, we will need to
activate it, and later on, once we have finished with it,

we will have to deactivate it.

The function openr() makes a named relation active.
Briefly, openr() sets up a descriptor for the relation.
This descriptor is set up from information held in the

system's catalogues 'relation' and ‘'attribute'.

As the counterpart to openr(), the function closer()

deactivates a relation. For this, it uses the

156

information in the descriptor to update the catalogues
‘relation' and ‘attribute®.

Since, the algorithms for openr() and closer() are
not of primary importance to the current discussion, I
shall not dwelve into them, in this chapter. Further

details are given in Chapter 7.

The algorithms for search(), travertree(), partial(),
insert() and delete() were, not surprisingly, written in
'C'., Their implementation is a recursive version of the
general algorithms described in Section 6.4.2. In this
manner, the implementation of search() was based on
retrieval, insert{() on insertion and delete() on
deletion. Obviously, travertree() and partial() are
extensions of the algorithm for search(}). Thus,
travertree() was implemented as a recursive traversal of
the B-tree, and partial() was implemented as the

functional composition of search() and travertree().

Maybe, some specific aspects of the implementation of
these functions needs some further discussion. For
instance, setting up frames for the pages and tuples in a
particular relation, is a problem that needs to be solved
by all of the File Manipulation Functions, with the
exception of openr() and closer{). To discuss it, let us

consider the function search():

157

int n, nn, tpsz, itpsz; /*global to this file*/
search(d,t,action,extra,rw) /*searches t in relation d*/
struct descriptor *d;
char *t: /*pattern to match*/
int (*action) ();
char *extra;
char rw; /*read/write permission*/
/*frame tuple*/
n =4d ~> reldum.n;
nn = 2%n;
tpsz = d -> reldum.relwid;
itpsz = tpsz + sizeof (int);
return(srh get(d,
— y
d -> reldum.root,
(*action),

extra,
rw

Searching for a tuple to match the pattern in t, is
done by srh get(). But, before srh get() is called,
search() sets up a frame for the tuples in this relation.
The degree -n of the B-tree and the length, in bytes, of
the tuples -tpsz, are obtained from the descriptor d.
The length, in bytes, of the tuple plus the pointer to
the sub-tree, are then calculated -itpsz. Similarly, the
maximum number of tuples in a page -nn, 1s obtained by

doubling the value of n.

The descriptor d was set up by a previous call to
openr () . Likewise, the function setkey(), discussed in

Chapter 7, sets the pattern to be sought in t. The

158

character in rw specify access authorization for this

search.

Perhaps the most interesting aspect of ADIM's
implementation of B-trees, 1is the extensive use of
functional composition. For instance, in the case of
search(), it is difficult to imagine anybody searching
for a particular tuple, without a purpose in mind.
Normally once a tuple is found, some further processing
would take place, e.g. print the tuple. Hence,
functional composition, as an integral part of the File
Manipulation Functions, becomes a very power ful

technique.

In search (), travertree () and partial(), the
parameter action is a pointer to a function to be
composed with the calling function. The parameter extra,
in turn, provides a pointer to the parameters to be used
by action. An illustrative example of the use of this

technique, is the function printr().

159

/* PRINTR - prints a relation on user's VDU
A simplified version -~ no error handling

*/

struct endofmarks

{
char eof; /*end of field marker*/
char eot; /*end of tuple marker*/

};

/* printr....*/
printr(rel)

char *rel; /*name of relation*/
{ struct markers = {'1', '\n'};
struct descriptor desc;
struct descriptor *d = desc;
if (openr(d, rel, R) == FAIL) return (FAIL);
printf ("RELATION:gs\n",rel);
travertree(d,d->reldum.root, printﬂtuple, & markers) ;
closer (D);
} printf ("\n\n");

print_tuple(d,tuple,marks) /*prints a tuple on user's
VDU*/
struct descriptor *d4d;
char *tuple; /*tuple to print*/
struct endofmarks * marks;

int i;

for (i=¢; id<d->reldum.relatts; i++) /*for each

attribute*/
{
< print the attribute >;
putchar (marks->eof); /*end of field*/
}
putchar (marks->eot); /*end of tuple*/

1690

First of all, printr() initializes the variable
markers, to '|' for end of field and '\n' for end of
tuple. If the relation rel is successfully opened by
openr(), its name is displayed on the user's terminal.
Then, travertree() is composed with the function
print tuple(), to print every tuple of rel. The function
print tuple() uses the markers to print tuple, each time
it is invoked by travertree(). Finally, the relation rel

is closed by closer ().
Thus, assuming the existence of the relation

employee (name, salary), the call printr("employee") would

produce

RELATION: employee

K.Robertson] 387.25
T.Hamilton] 531.15
R.Johnson] 423.10

In the printr{) example above, the whole of rel was
printed, since travertree() was called with
d->reldum.root, the root page for rel. If only a
sub-tree of the whole tree storing the relation was to be
printed, the root page for that sub-tree should be
provided. Thus, in the implementation of partial(), the

call to travertree() is preceded by a call to search(),

16l

which finds the root page for the sub-tree.

It should also be noticed that, by using a different
"action" function in our printr() example, we could
format the display of rel differently. Thus, by changing
print tuple() to an appropriate function, we could use
printr() as a general display facility for relations, a
report generator, a facility in an integrated DBMS and

text processing package, etc.

In a similar fashion, we <could use functional
composition in arithmetic applications. For instance, to
calculate the salary bill of a company, we could use

travertree() in the following manner:

e

total salary = 0.0;

travertree(d, d -> reldum.root, add salary, &
total salary);

printf("TOTAL SALARIES:%f\n", total salary);

°

add_salary(d, tuple, tsal) /*add salary to tsal (total

salary)*/
struct descriptor *d;
char *tuple; /*tuple with salary attribute*/
double *tsal; /*total salaries*/
{
double *psalary;
psalary = < position in tuple of attribute salary >;
*tsal += *psalary; /*add salary to total*/
}

162

In order to examine the implementation of functional

composition, let us have a closer look at travertree():

163

/* TRAVERTREE - B-tree traversal
A simplified version - no error handling.

*/

travertree (d, node, action, extra)
struct descriptor *d;
int node; /*root page*/
int (*action) (); /*fog*/
char *extra;

union record tt;
struct page *pp, *salloc():

if (node !{= END) /*not the bottom of the B-tree*/
{
pp = salloc(PGSZ); /*allocate memory for page*/
get page (d4,pp,node); /*retrieve node into
pp*/

tt -> raw = p => 1 tups; /*get to first tuple*/

travertree (d,pp->pf,action,extra); /*down pg*/

for (i = pp->q; i>@g; i--)
{

(*action) (d,(tt.cooked)->t,extra);
/*compose*/ travertree (d,(tt.cooked)
pgno,action,extra); tt -> raw +=
(d->reldum.relwid + sizeof(int));

}

sfree(pp); /*release memory*/

164

Travertree() parameters are by now fairly familiar to
us, and hopefully, do not require further explaining.
Nevertheless, if it is still felt that an explanation is
necessary, please, see the search() example earlier on in
this section. As for the variables declared internally
to travertree(), the union tt of type record, allows us
to look at tuples in raw and cooked form, according to
requirements. The function salloc() returns a pointer to
an area of main memory, capable of storing a page. The

variable pp is a pointer to such area of memory.

The first test performed by travertree(), is to check
that it has not hit the bottom of the tree. If that was
the case, travertree() returns immediately. Otherwise,
salloc() allocates main memory for a page node, which in
turn, is retrieved from secondary storage by get page().
Then, the pointer tt is set to point to the first tuple

in the page, ready to start processing.

The '"for' loop, iteratively, applies the function
action to each tuple (t) in the page. It also calls
travertree() recursively, thus the sub-tree beneath each

pointer (pgno), could also be processed by action.

165

for (i = pp -> qg; i>g; i--)
{

(*action) (d, (tt.cooked) -> t,extra); /*compose*/
travertree(d, (tt.cooked) -> pgno,action,extra);

The statement
tt -> raw += (d -> reldum.relwid + sizeof(int));

reposition the pointer tt to point to the next tuple on

the page.

Since, in a page there is one more pointer than
tuples, i.e. the pointer p@g, some special action is
required, if the sub-tree beneath p# 1is not to be
ignored. Thus, before entering the loop, an additional

recursive call to travertree({) is made:
travertree(d,pp -> p@#,action,extra); /*down pg*/

Finally, once we come out of the loop, the memory
space occupied by page node, is no longer required, and
therefore, it is released for re-use by ADIM. This is

done with a call to sfree().
In this example as well as in numerous previous

166

examples, the function get page() has been used. This
function ©provides a machine independent interface,
between the File Manipulation Functions and the host
operating system's file management. In fact, ADIM
supports its own device handlers. This, I believe,
enhances the portability and efficiency of ADIM. For a
discussion of these aspects of the implementation of

ADIM, see Chapter 7.

6.5.3 Memory Management -

pPerhaps, more closely related to the File
Manipulation Functions, are the memory management
functions, salloc() and sfree(). These two functions
implement a memory management system based on a stack
discipline. This technique provides a natural ‘cache'
memory for the File Manipulation Functions. Empirical
support for this assertion is provided by practically all
the examples in this section, All of the File
Manipulation Functions, except for openr() and closer(),
have been implemented recursively, and hence a stack
memory is not only sufficient, but also extremely

efficient.

To illustrate the argument above, consider

travertree() once more. BEach call to travertree() gets

167

memory from the stack, by calling salloc{(). Thus,
recursive calls to travertree(), gradually increase the
height of the stack. Now, Jjust before returning,
travertree() releases memory back to the stack by calling
sfree(). Consequently, the stack gradually and

gracefully shrinks.

By choosing a reasonable page size, and allocating
memory space for the stack, commensurate to the page
size, a simple and powerful memory management is achieved

for each particular application of ADIM.

6.5.4 FML: Comments on implementation -

An appropriate characterization of the File
Manipulation Functions 1is perhaps compactness. One of
ADIM's stated objectives 1is to provide a data base
management system for small computers. The code for the
File Management Functions, despite its complexity, 1is
extremely compact. It is my belief, that this was only
possible because of the extensive use of functional
composition and a matching memory management sub-system.
This compactness was not achieved at the expense of
efficiency. On the contrary, functional composition and
the stack memory management positively contributed to the

implementation of a highly efficient system.

168

6.6 Empirical Tests -

Concurrently to the design and development of ADIM,
some empirical tests were conducted. These tests were
performed, at different stages, during the development of
ADIM. The implementation and subsequent operation cof two
application systems were used as a material base for
experimentation. Below, a report on the performance,
implementation and use of B-trees by these applications,
follows. Details of 'worst' case performance, in both

systems, are also given.

The first of the applications, named Commodities
Buyer Agency, despite its complexity, still is a good
example of an information system with an underlying data
base of relatively small size. Relations sizes range
between a dozen tuples and up to ten thousand tuples.
The second application, an Examinations Monitoring system
is interesting because of its larger relations. buring
joins, Intermediate relations could easily have well over
a quarter of a million tuples. The relevance to ADIM of
these systems is more than apparent. The implementation
of B-trees as used by the Commodities Buyer Agency, the
Examinations Monitoring system and finally, ADIM itself,
should be seen as progressive refinements of the same
basic ideas. It should also be emphasized that both

systems used for experimentation, Commodities Buyer

169

Agency and Examinations Monitoring are today successfully

operating on a daily basis.

6.6.1 Commodities Buyer Agency -

This is a system for a company acting as a buying
agent for third party companies. For the purpose of this
report, I shall refer to the company acting as a buying
agent as the agent, and its customers companies as
buyers. Companies selling through the agent, shall be

referred to as suppliers.

In this system buyers ask the agent for details of
prices, delivery date, discounts, etc. available for a
given product. This process is called the enquiry. The
agent, in turn, asks for quotations from suppliers. The
suppliers quotes depend on the number of units being
bought, payment terms, delivery time required, possible
penalties for delays, commission to be paid to the agent,
etc. Only, when all parties - buyer, supplier and agent
— reach an agreement, contracts are signed, and then the
commercial transaction proceeds. Bad buyers and
suppliers are restricted from entering the system. Also,
according to their past record, buyers and suppliers are
ranked. Thus, suppliers who pay high commissions,

deliver and pay commissions on time, are likely to

179

receive more and better requests for quotations.

Details about enquiries, quotations and contracts are
input, deleted and modified, interactively. Statistical

reports, bills and contracts are prepared on batch mode.

Shortly after the first implementation of ADIM's
B-tree file management was completed, and around the time
that the specifications for the commodities system were
being prepared, the data base management system DBasell
[ASHTON] was released. DBaselIl claimed (and still does)
to be a relational data base management system for small
computers [8 bit microcomputers]. Moreover, DBasell was
the first commercial system of its kind to offer B-trees

in its file management subsystem.

In many respects, one could find similarities between
DBaseIl and the kernel of ADIM, at least, on paper.
DBaseII and ADIM are relational systems for small
computers, and both use B-trees in their file management.
Because of these similarities, an early evaluation of
DBaseIIl was highly desirable. Thus, we chose it for the

implementation of the Commodities Buyer Agency system.

In general, a relatively quick implementation was
possible. The whole system was implemented within three

months. The hardware used for the system was:

171

COMMART Communicator: 8-bits micro running the MP/M
operating system;

64kbytes of memory + 4*48kbytes of memory;

18 Mbytes Winchester disc;

2 8" floppy discs;

4 terminals; and

1 printer.

The relations for the most important entities in the

system are:

enquiries - holds details about enquiries;
quotations - quotes received from suppliers;
contracts - main details of contracts; and
payments -~ to monitor outstanding payments.

The implementation and subsequent operation of the

Commodities Buyer Agency system, produced the following

finds:

Positive

1. A relatively quick implementation. The whole
implementation of the Commodities Buyer Agency
system took six month/man.

2. An implementation easy to understand by
non-computer specialists. Nowadays, the
commodities system is run and maintained by
personnel, who at the time of the implementation,
had no previous computer knowledge.

172

Negative

1. DBaselIl's explicit two levels implementation of
B-trees, i.e. one sequential file for the
relation and B-tree files for the indexes,
confuses inexperienced users. For instance,
expressions such as:

USE enquiries
USE enquiries INDEX engndxl
USE enquiries INDEX engndx2

are not clear to users, unless they know about
indexes and also, understand the way that
*engndxl' and ‘engndx2' were built.

2. Moreover, expressions as the ones above, are
absolutely contrary to what is regarded as one of
the characteristics of relational systems, i.e.
the separation of the logical view of data from
the physical details of the implementation.
Another example of this, is the explicit use of
memory partitions, e.g.

SELECT primary
SELECT secondary

Even worse, the user must know whether indexes
are being used or not. The command FIND, which
searches an indexed relation, would produce
unpredictable results if used on a relation with
the wrong index or no index. For a relation
without indexes LOCATE could do the same as FIND
(). In addition, the syntax for the 'boolean’
condition in FIND and LOCATE is different.

3. Nevertheless, if JOIN did work on a multi-user
environment, there would have been less of a need
to use the non-relational operators FIND and
LOCATE. Unfortunately, JOIN and SORT do not
always work with relations bigger than 100
tuples, under MP/M.

173

4. More seriously, DBasell's implementation of
relations on sequential files and indexes on
B~tree files, means that with volatile data,
extensive re-organization of multiple indexes
often has to be done. Deleted tuples are not
erased from the sequential file, neither from the
B-tree. In order to really delete them, PURGE
has to be used and the B-tree for the index has
to be re-~constructed. It makes one wonder why
B~trees were used in the first place, when a
static directory structure would have done
exactly the same job without the added complexity
of on the 'fly' re-structuring of data files.
Does DBasell really support B-trees? Let us
believe that it does.

In summary, the relational capabilities of DBasell
was found to be rather restricted. Nevertheless, the use
of DBaseII in the commodities system still allowed me to
test the performance of B-trees. For this purpose,
possible extreme cases were considered and two such
situations identified. The first case, was the
interactive retrieval of one tuple, and the second case,
a Jjoin involving two large relations. Obviously,
relations sizes are relative to the size of the computer

in use.

Although an indexed search for a particular tuple may

take some time, the performance is still satisfactory.

At the other extreme, performance was assisted by
simulation of a JOIN. This was necessary, since JOIN
does not work properly under MP/M. The structure of the

relations wused and the program for this simulation

174

follows:

STRUCTURE FOR FILE: B:ENQUCO
"NUMBER OF RECORDS: 00600
~DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE
FLD NAME TYPE WIDTH
D01 ,ENQ DATE c 008
TE s 3.',.‘, : o o o g_”‘“ﬂ mvm‘a
CL c 020
004 SUP:KO c 006
2005 CLN:HAME c 015
. 006 DATE:TOSUP c 008
=007 TRD:NAME L 015
008 STATUS ¢ 020
D09 SUP:FAME ¥ 030
010 COUNTRY C 020
- D11 QUOT:DATE £ 008
012 DATE:TOCLKN C 008
013 CLN:ANS c 008
014 CONT:DATE C 008
015 CLNCONT:N c 025
016 REMARKS c 020
B8 pomay, we 00227
STRUCTURE FOR FILE: B:QUOT
KUMBER OF RECORDS: 10146
- DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE
FLD NAME TYPE WIDTH
o1 ETCOEFQ:¥ ¢ 00T,
$£02 SUP:E0 c 006
003 QUOT:DATE c 008
D04 MONT:UNIT c 003
005 QUOT:VALUE N 012
006 EXP:DATE C 008
007 DATE:TOCLN C 008
008 KEDIUM c 001
009 FORM:PAY C 007
010 STATUS ¢ 020
% TOTAL *% 00081

@

175

.DBF

DEC

«DBF

DEC

002

EERETEFERERBEEFUBER UG E VARG LGB R SR ER ARG ERORGEB RN B ERENEREHELORER R RS
* BUSCAR.CHMD
(22232222222 2222222 X222 X2 XXX 22X X222 X s X2ty
CLEAR
-8BET TALK OF
SET FORMAT T0 SCREER
~ERASE N
SELECT SECOKRDARY
"USE guot IKDEX xguoetco
SELECT PRIMARY
L ISE BODGUCO
DO WHILE .KOT. EOF
. SBTORE stcoeng:n T0 numero
SELECT SECONDARY
~ FIFD &numero

IF £=0
SELECT PRIMARY
SKIP
ELSE
STORE quot:date TO uno
=8T0ORE dateztocln TO dos
SELECT PRIMARY
REPLACE guot:dste WITH uno,date:tocln WITH dos
SKIP
ENDIF
EXDDO
ERASE
QUIT

176

Relation 'enquco' had 6¢9 tuples and relation 'quot'
had 18146 tuples. The program produces a simple report
on the date of quotation and validity of the quote. The
test was run with three other users in the system. None
of the other users were using DBaselIl. The work load of
the system, at the time, could be described as 1light.
The total time taken by this simulated JOIN was 31

minutes.

6.6.2 Examinations Monitoring System -

The purpose of this system is to collect the names
and other relevant information about students taking a
series of examinations. In the current year, each
student may register for examinations in a number of
subjects, wvarying between one and fifteen. The
registration of the students, some 6@-1¢8 thousand per
year, is done at their own schools. For administrative
purposes, the schools are grouped into local education
authorities. Due to the large quantities of data, the
registration of candidates, input of examination results,
issue of certificates and the production of multiple
reports for operational and statistical purposes, are all
done in batch mode. As one would also expect on a system
of this nature, queries about individual candidates and

amendments to the data relating to them, are normally

177

done interactively.

A file or data base management system for the
Examination Monitoring System, would need to handle data
which 1is grouped in 1large logical collections and also

represents complex relationships.

Preliminary studies on the possible software tools
for the implementation of this system, established that
no suitable commercially available data base management
system existed. One of the specifications for this
system, was the use of a Hewlett-Packard minicomputer,

which certainly restricted the choice of software tools.

Perhaps, the attraction of a low cost microcomputer
based implementation would have persuaded us and the
commissioners of the system, to use DBasell on different
hardware. Fortunately, our previous experience with
DBaselIl clearly demonstrated its unsuitability for a

project of such scope and complexity as this one.

Thus, a decision was made to write our own file
management module for the Examination Monitoring System.
Clearly, this was an excellent opportunity to perform
further tests on B-trees, and 1in particular, ADIM's own

implementation of them.

178

Ideally, I would have liked to put ADIM directly to
the test. Unfortunately, a compiler for the 'C' language
was not available for this particular machine. Hence, an
alternative had to be found. Algorithms identical to the
ones used in ADIM, were coded in PASCAL, and subsequently
used as the file management module of the Examination

Monitoring System.

From the point of view of the ease of use of ADIM's
file management, the particular implementation of the
Examination Monitoring System, should be of 1little
relevance, since ALFRED was not used. Nevertheless,
there 1s a point which 1is worth while mentioning.
Considering the magnitude of the project, a relatively
short period of time was taken for the implementation of
the whole system. Including the PASCAL re-write of
ADIM's file management, the Examination Monitoring System
was implemented in months rather than years. I believe
this was possible, mainly, because of the functional

composition capabilities of ADIM's file management.

More importantly, once the system was fully tested
and had completed its first year of operation, 1its
performance could be evaluated. I believe it could be
described as more than satisfactory. For instance,
multiuser interactive queries and updates, take a time

that for all practical purposes, is negligible. At the

179

other extreme of the scale, reports generated in batch

mode, at worst, only take a few minutes.

To 1llustrate these worst cases, I have included
below two pfograms from the Examination Monitoring
System. The first one, generates a general statistical
report on the results obtained by students in their
examinations. The second program, groups the candidates

by school and then prints their results.

The program 'statsl' completes a full traversal of a
large B-tree. This program was run on a machine with no
other users on it. The candidates file (CANDREL) had
67,000 valid entries and its size was 12 Mbytes. The
program was executed in 434 seconds of CPU time and run

during 11 minutes of real time.

189

The program f‘NTRYSCHS' is interesting, because it
implements a join of four relations. The relations

involved are:

CANDREL - candidates; entries:67,500; size:12.2Mbytes
SCHREL - schools; entries:600 ; Size:l4Kbytes
SBJREL -~ subjects; entries:579 ; Size:39.4Kbytes
LEAREL - leas; entries:4¢ ; size:l.6Kbytes

The following program was run on a machine with no
other users on it. Execution time was 2 hrs. and 15

minutes.

182

6.6.3 Comments on the tests -

The application systems described in this section are
in no way intended as a direct comparison between DBasell
and ADIM. The Commodities Buyer Agency sSystem uses
DBaselIlI, and since DBaseIIl has become a very popular
system, I think that a description of the commodities
system helped to place ADIM's capabilities into context.
It should also be said that this work was done early in
the design and implementation of ADIM, circa 1981. It is
also interesting to note how quickly DBaseIl acquired a
very wide user community. I believe that this is more an
indication of the need for personal information systems
than of the quality/capabilities of DBaselIlI. This point

is illustrated by the Commodities Buyer Agency example.

Simulation and theoretical work have been done to
estimate the behaviour of B-trees [GUDES, YAOQO, QUITZOW].
Although, this type of work can provide good analytical
results, in the final instance, practical issues will
determine the performance of a particular implementation.
A case to illustrate this point, is DBaselIl's
implementation of B-trees. In practical terms, it would
not matter if DBaselIl's indexes were implemented as ISAM
directories. A deletion of an item in DBaseIl does not
erase the item, it only marks the item as deleted. One

needs to 'purge' and re-organize the indexes to actually

184

delete items.

Against this background, the Examination Monitoring
system put the core of ADIM to the test. This system
completely proved the feasability of B-trees, as
implemented in ADIM. It produced performance figures
many times better than DBaselII could have produced
(projected figures), had DBaseIl been capable of handling
files of the magnitude required by this application. It
should also be noticed that in the implementation of the
Examination Monitoring system some inefficiency was
introduced by <coding ADIM-File Manipulation Language
(FML) in Pascal, rather than 'Cf. The inefficiency 1is
due to the strong data typing of Pascal, which makes data
type coersions cumbersome to implement. Unfortunately,
this type of 'dirty' programming is required at the

lowest level of file systems such as FML.

6.7 Cost estimation -

The complexity analysis of algebra operators helps in
establishing very general ideas about the time required
to evaluate a particular expression, but it is limited to
using 1little information about the relations 1involved
except their cardinality. On the other hand, general

cost functions are difficult to establish, but in a

185

particular environment they can provide us with a good
deal more information so that a decision regarding
specific strategies for evaluation can be adopted in the

processing of certain queries.

Decisions about a strategy for processing a query in
ADIM are made in two different places: the ALFRED-VC to
K translator, and in ALFRED-K's wvirtual machine,

otherwise known as a P-~unit.

A global strategy for the evaluation of a user's
query 1is chosen by the C-unit. The decision is made by
the application of general wprinciples of relational
optimization. The transformation of algebraic
expressions into equivalent and generally more efficient
expressions is governed by a set of rules. The rules are
derived4from techniques proposed by Pecherer [PECHERER]
and Palermo [PALEREMO]. Also, rules to deal with cases
due to the use of the decomposition ©process, are
included. More details about the decomposition process
and general rules of optimization in ADIM, can be found

in Chapter 5.

In this section, a second form of "optimization”™ of
query expressions is discussed. To find equivalent
expression, 1i.e. one which takes minimal time to

evaluate, for a given relational expression, it could

186

easily take 1longer than the actual time needed to
evaluate the original expression, itself. Hence, ADIM
does not attempt true optimization, but instead, tries to
quickly determine a good equivalent expression. A good
equivalent relational expression in this context means an
expression equivalent to the wuser's gquery expression,
which can be evaluated in a time close to the optimal
equivalent expression, if there was one. The choice of a
good equivalent expression is based on a cost analysis of

a number of equivalent expressions.

Queries received by a P-unit are again transformed by
the application of transformation rules. This time, ADIM
only uses a small number of the rules proposed by Palermo
and Pecherer. The aim is to reduce the number of
alternative evaluations for a given query to only a few
cases. This assumes that some global optimization of the
query has already taken place [See Chapter 5]. In this
way, we only need to concentrate on a few significant
cases, In fact, the rules used at this stage only
involve the operators restriction and/or projection, plus
one more operator. In ADIM, projection is normally
evaluated concurrently with other operators. Hence, we
can think of the cost to evaluate projection as being
zero, except of course, when projection is the only
operator to evaluate. Also, by using the parameters of

B-trees, we can estimate with certain accuracy the volume

187

of data involved in a restriction operation. The rules

for restriction seek to benefit from this information.

Given a number of different alternatives for the
evaluation of a query, a decision is made by estimating
the total cost for each alternative, and then, choosing

the one with the lowest cost.

To estimate the total cost for a given relational
expression, an evaluation tree is built for the
expression and cost is allocated to each node of the
tree, Internal and external nodes are costed. The cost
analysis assumes that basic relations and intermediate
relations which are created during the evaluation of the
tree, are already sorted into their correct retrieval
key. This is a realistic assumption. Basic relations
are often accessed by their key, and therefore, they can
be considered as sorted. In the case of basic relations
being accessed by non-key attributes, sorting can be
added as another leaf to the evaluation tree. Let us

examine now the case of intermediate relations.

Consider an evaluation tree for a given query. For
each internal node in the tree, we know before we
evaluate the node which specific attributes will be
needed in its evaluation. Hence, we can create the

intermediate relations with their keys sorted in the

188

correct order, i.e. we build the key for an intermediate
relation with the attributes by the evaluation of the

parent node of the relation.

It should be noticed that the only relations that
might need to be sorted are basic relations. Because of
decomposition, these relations are bound to be small and
therefore, their sorting would not add significantly to

the evaluation of the query expression.

Now to estimate costs, we need to define our cost
unit. In conventional computers, the time needed to move
one word from disc into main memory, is most likely to be
the same as the time needed to move a whole physical
block of the disc into memory. Because of this, ADIM
defines the size of a B-tree page as a multiple of
physical blocks in a disc. Thus, it makes sense then, to
define as our cost unit, the block. For the purpose of
cost analysis, we can equal one B-tree page to one block.
Notice that in ADIM, as well as in any other data base
management systems, data traffic is the factor that

determines the speed of the system, overall.

The total estimated cost for an evaluation tree is
defined by the sum of the estimated cost for each of the
nodes in the tree. The basic relations, represented by

the external nodes (leaves) of the tree, are assigned a

189

cost equal to the number of blocks occupied by their
B-tree. The cost of internal nodes, the operators,
depends on the cost allocated to their children and the

operator represented by the node itself.

The creation of intermediate relations is not costed,
since their contribution to the total time taken by the
evaluation of the whole tree, is assumed to Dbe
proportioned to the evaluation of internal nodes of the

tree.

Before proceeding with the discussion on how to
determine the cost for each node in an evaluation tree,

let me introduce some notation:

NR = number of blocks used by the B-tree for relation
R;

TR = number of tuples in relation R;

np = degree of B-tree for relation R

(Z*nR records can be stored in one B-tree page);

KR = occupancy factor for relation R, i.e.
* % -
(No*2 np)/Tgi
CX = cost in blocks (to be retrieved from disc} to

evaluate node X of the tree. It is assumed a
fixed time is needed to move one block.

Now, I shall proceed to explain the cost allocation
schemes for each of the possible elements to be found in

an evaluation tree,

198

BASIC RELATION -

The cost associated with a given relation R is
determined by the number of blocks, Né, in the B-tree for
R. The value of NR can be determined in three different
ways. The first and most obvious way, is used when the
B-tree is stored in one of ADIM's devices. The device
descriptor holds this information. The second way of

determining the value of N is used when the B-tree for

R'

R has been constructed as a file in the host operating

system. The value of NR is defined by the ratio of the

length of the file and the size of a page in the B-tree,
The third and final case, occurs when the two previous
methods fail. In this case, ADIM's functions
‘create page' and 'destroy page' must keep count of the
number Npe This is in fact simpler than to keep than the
count for the number of tuples in a relation, TR’ We

denote the cost associated with a given relation R, by:

191

JOIN, UNION, DIFFERENCE AND INTERSECTION -

These four operators are evaluated in a similar
manner. Consider the two relations R' and R" and one
operator, say X. The application of operator x to
relations R' and R", produces the relation R. The
algorithm to evaluate x, assumes the relations R' and R"
are sorted on a common list of attributes A, R'{A] and
R"[A], respectively. The main part of the algorithm is

presented below:

Step I+1.
a. If r'[A] = r"[A] then for
(1) R':*:R", build tuple r for R from r'
and r";
(ii) R':.:R", build tuple r for R from r';
(iii) R':+:R", build tuple r for R from r';
(iv) else, do nothing.

b. Read next tuple r' from R; and next tuple r"
from R".
Step I+2.
a. If r*[Al>r"{A] then for

(i) R*:+:R", build tuple r for R from r";
(ii) else, do nothing.

b. Read next tuple r" from R".

192

Step I+3.

a. If r'f[{al<r"[A] then for

(1) R':+:R", build tuple r for R from r';
(ii) R':~:R", build tuple r for R from r‘;
(iii) else, do nothing.

b. Read next tuple r' from R'.

Step I+4.

Iterate steps (I+1)-(I+3), until ... END.

From the given algorithm we can then deduce the

following:

Cest+: = NR' + NR"
C:o: = Npy + Npn
Ci-: = NR' + Npw

The cost estimation functions given above, assume a
memory management based on a stack. Once a page of a
B-tree is pushed into the stack, it stays there until all
of the tuples in the page have been processed. This is
naturally enforced by the algorithm being discussed,

since ADIM's stack has capacity to store several pages.

193

PRODUCT -

This operator is evaluated by iteration over one
relation, R", for each tuple in relation R'. Thus, the
estimated cost for the evaluation of R=R'(*)R", is given

by the formula:

PROJECTION -

Normally, projection is evaluated in conjunction with
another operator. Hence, the cost normally estimated for
projection is nil. In the unlikely case that projection
is evaluated on its own, the cost allocated to it is Np
since R is assumed to be sorted. Thus, the cost function

for projection is:

Ca =08 , 1if evaluated in conjunction with any other
operator.
Ca = N, , if evaluated on its own.

194

RESTRICTION -

Perhaps the most interesting cost function is the one
for restriction. It is an important operator because of
the frequency with which it appears in queries. O0Often,
it is also wused to derive new algebra operators.
Examples of this, are: a generalized join and vector

type operators.

Because of the above reasons, ADIM uses a cost
function for restriction, which is much more refined than
any other cost function, previously discussed. Also,
ADIM chooses rules of optimization involving restriction,

in preference to other rules.

In Chapter 5, we learnt that restriction's conditions
in ALFRED-K are expressed in ‘clausal' form, i.e. a
search condition Q=[ql and g, and ... and g,] on a
relation R is always expressed in conjunctive normal
form. The conditions q; are, in turn, 1lists of
disjunctions. Because of this, ADIM searches the list Q
of conjunctions, first of all, for a 1list 95 of
disjunctions which includes an appropriate condition on

the key(s) for R. For example, in the query:

RETRIEVE students WHEN [name = "Jones" and ...?

195

which can be expressed in ALFRED-K, by:

students @ [[:([name = "Jones"],[1), ...1]

the condition expressed by the <clause :([name =
"Jones™], []1) will be selected by ADIM, to help in the

determination of cost estimates.

If no clause g; meets the above requirements, then
there is not much that ADIM can do, and hence, the cost

function for the restriction is taken to be:

In fact, this situation is unusual, since relations
are normally sorted on the correct key, as it was seen
earlier on in this section. 1In any other case, relations
can always be sorted previous to the evaluation of the

restriction.

Now, let us consider the normal situation, i.e. a
suitable condition q; on a relation which is sorted on
the correct key,. In a restriction of this type, ADIM

distinguishes three uses:

(1) equality (=)
(ii) less (<, <=)
(iii) greater (>, >=)

Cases (ii) and (iii) are symmetric, and therefore,
conclusions for case (iii) are 1identical to those for
case (ii). Because of this, I will only discuss cases

(i) and (ii).

Case (i) is perfectly straightforward. The maximum
number of pages to visit, is determined by the height of
the B-tree for the relation. This is never a large
number. In practical cases, even for large relations,
this number is unlikely to be more than half a dozen
pages. Because of the very high probability of finding
the sought item, near to the bottom of the B-tree, ADIM
defines the cost function for this case, to be equal to

the height of the B-tree, i.e.:

c@ = h , where h is the height of the B-tree

The accuracy of the estimated cost in case (ii) is
certainly, more important than in case (i). A retrieval
by range may access a very large number of pages, since
at least, a partial traversal of the B-tree for the input
relation R, will be necessary. Also, the size of the
B-tree for the result relation depends on the number of

pages retrieved from R.

The study of case (ii) can again be divided into two

categories. 1 shall call these categories: restriction

197

type L and restriction type R. Let me explain these

categories. Consider the B-tree T and condition 0,

below:
|
level 0=[code<78] [j6-150
“ I
level 52/ 90 | [120 130
level 20,35, 6009 95 102

2 / \\\\\\\

level |5 12 17125 3038 42155 58165 67172 75182 84{91 93

B-tree T (h=4)

Figure 6.12

First, an explanation for restriction type L.
Consider the key for the B-tree, to be the attribute
code. We search the tree T for the first item, such that
code<=70, even when Q=[code<74]. I have marked with a
broken line the walk down the tree to item with code=78.
Notice that every item on the left of the broken line was
code<7g. Hence, the name ‘restriction type L°'. Now,
take any sub-tree with root on the left of the item which
code is 78, in page A. Call this sub-tree S. Every item
in sub-tree S also has code less than 78. The situation

as described so far, can be depicted by:

198

B-~tree T

Figure 6.13

In figqure 6.13, the tree T is represented by a
triangle. Every item in the darkened area of the
triangle has code<78. Similarly, every item outside the
darkened area B, has code>=7¢. Hence, the cost of
evaluating a restriction of type L, can be determined by
a calculation of the number of blocks in the darkened

area B of the triangle.

To explain a restriction type R, consider again the
tree T of the previous example. This time, the condition
is Q'=[code>=70]. The area for the qualifying items
appears now on the right hand side sector of the

triangle:

189

B~-tree T\\\

Figure 6.14

Do you remember the symmetry of cases (ii) and (iii)?
To determine the cost of a restriction type R, calculate
the area in blocks for the whole of triangle T, and also
the area of triangle B. The cost for this type of
restriction is then, given by the difference between the
area of T and the area of B. The number of blocks in B
are calculated by using the negation of the original

condition Q', e.g. in our example: Q"=not Q'=[code<78].

But, how is the number of blocks in area B
calculated? First, allow me to answer a simpler

question: how many blocks does a B-tree X have?

The maximum number of pages (blocks) that a B-tree
can have is determined by its degree and height, denoted
by n and h, respectively. A formula to calculate this

maximum is given below:

(2%n + 1) -1
Max. No. of Pages = ——ecmmrm e (1)

Now, if we know the occupancy factor of the B-tree
for relation R, denoted by Krr we can estimate more

accurately the number of pages N in the B-tree. From

RI
(1) above follows:
(KR * 2 % np + l)h -1
NR B e e e o o e e (2)
KR * 2 % np

Simulation studies and practical experimentation with
B~trees [YAO, NAKAMURA, ROSENBERG] have demonstrated that
a conservative figure for the occupancy factor in large
B-trees, is around KR = ¢.7. However, ADIM can determine
with greater accuracy the wvalue KRt for any given
relation R. The formula used by ADIM to calculate the

occupancy factor, is:

k - R__Z___'R (3)

As it was explained earlier on, the value NR is

easily obtainable in ADIM. The same is also true for T
and np. In Section 6.5, we discussed the descriptor for
each open relation. This descriptor stores the values TR

and Npr in the fields reldum.reltup and reldum.n,

respectively.

Let us assume that the value KR is also valid for

201

every sub-tree in the B-tree. This is not an unrealistic
assumption, considering the uniform distribution of data
enforced by the overflow and underflow algorithms used by
ADIM [QUITZOW]. By using formula (2) above, we could
calculate the number of blocks in any given sub-tree, if

we knew the height of the sub-tree.

In our example in order to get to page A, we walked
down to level d of B-tree T. We know it is level 4,
because in our way down the tree T, we visited d+1 pages.
Now, let us assume that we also know the height h of tree
T. Then, we can deduce the height of any sub-tree which
root page is pointed by a pointer in page A. This height
is determined by the difference: h-(d+1) . See digure

6.15, below:

/\ € level g
/\
/ \
/ T \ level 4
h 3 / \
v
L / /@\ \ ¢ level h-1

Figure 6.15

The assumption about us knowing the value of h, is a
fact in ADIM. As soon as a relation is opened in ADIM,
its height h is determined. Also, while the relation R

remains opened, the wvalue of h is updated whenever the

202

tree shrinks or grows.

In page A of our example there are g=3 items. The
item with code=7¢ is in position, i=1. All of the items
stored in each of the sub-trees on the left of item
code=70, satisfy the condition Q=[code<74]. Because of
this, we referred to them as the qualifying sub-trees.
In page A there are: g-i=2, qualifying sub-trees. See

figure 6.16, below:

!
i
i
4

A (2) (1) (2)
/ 68 \\. N 8@\\
qualifying R \\\\N

sub~trees

Figure 6.16

From formula (2), we can now derive a formula to

estimate the cost associated with level 4, Ca.g ¢
(K * 2 * ng +)79 -1
Casg = (Gg-ig)* ——m-mmmmmmmmm oo (4)
@:d d “d K % 9 %
R "R

Let us now look at page B, the ancestor of page A
[Figure 6.12). The sub-trees to the left of the element
immediately to the left of the broken line, are all

qualifying sub-trees. By using the same analysis that we

203

used for page A, we can estimate the cost associated with
level d-1. In this manner, climbing up the B-tree while
re-tracing our steps, we calculate the cost at every
level until we reach the root page. Thus, the final cost

function for restriction type L is:

C@ = C o5+ d (5)

where

and

=
!

r = (Ng * 2% np)/Tp

It also follows from this analysis, a cost function

for restrictions type R. The formula is:

d
C@ = NR - (;5:5 C@=j + d)

The values for C@-j have been obtained by using the

negation of the original condition Q.

One minor point. The count of levels d in the
analysis above, is not obtained by directly counting the
number of levels descended, as suggested in the

discussion. During searches, ADIM pushes every new page

204

into a stack, and on backtracking pop them out. The
effect of this is that during the walk down the B-tree,
its pages are stacked up, and during the climbing up,
these pages are thrown away. Thus, if we record the
position in the stack for the root page of the B-tree, we
can always establish the current level in the B-tree.

See Figure 6.17.

A\\\\\\
| B c
|
— | -
LI AR C -~
A
B-tree STACK
currently
visiting this
page.

Figure 6.17

Also, because of the stack, once we calculate C@:d
for page A, in Figure 6.11, we do not need to get page B
from disc again, since it already is in the stack. This
explains why, we only add 4 in the calculation of C@.

Finally, it should be noticed that the cost function
for restriction is of special significance, since
restriction is also used in the definition of all the

vector aggregate operators, and a dgeneralized join

205

operator.

6.8 Dynamic Structures -

It has been suggested that dynamic access methods
particularly trees [KNUTH] and B-trees [COMMER79], etc,
may be troublesome [HS75] as a storage structure for
files on paged secondary storage devices. As a
consequence there exists a widespread belief that
implementation of B-trees in a relational environment may
incur a performance ©penalty when compared to other
schemes for the management of large volumes of data

[HS75, HELD75].

It was precisely these views and opinions about the
inefficiency of B-trees that led me to a more detailed
study of them. My opinion is that B-trees may be
inefficient where they have been implemented on top of
the existing file structure of the host operating system.
Normally, this file structure is of a static type,
supporting sequential files and/or static directories,
e.g. UNIX [RT74] and Cp/M [CPM]. This way of
implementing B-trees [ASHTON, MISTRES] 1is bounded to be
inefficient,. Firstly, the dynamic re-structuring of
B-trees conflicts with the static files of the operating
system. Secondly, the number of re-directions needed in

a search of a B-tree are multiplied many times over by

206

the re-directions imposed by the file system of the
operating system. For instance, consider the case of a
B-tree with a height of five nodes for the keys and
implemented on top of the UNIX file system. Since UNIX
normally imposes three re-directions in big files (like
the one in the example), in order to access one item in
the leaves of the B-tree, fifteen pages of data will have

to be examined.

Clearly, situations such as the one in the above
example are not desirable in a relational system where
associative searches of the data space may cause
extensive examination of secondary memories. As an
alternative, I decided to explore a situation where
B-trees are implemented as hardware devices, so
by-passing the file structure of the host operating

system and its inherent inefficiencies.

For retrieving data by equality, an access method
based on a carefully designed hash function will
certainly be extremely difficult to beat in performance,
but notice that the same hash access method will be
disastrous for a retrieval by range [see sections 6.2 and
6.37. A retrieval by range on a hashed key of the
relation will force a sequential search visiting every
tuple of the relation in question. On the other hand,

given a stable relation, static directories such as the

207

ones used in INGRES [SWKH76)] will improve considerably
the performance for the retrieval by range case while
still behaving moderately well in the retrieval by
eqguality case. However, when confronted with volatile
relations, i.e. relations subject to continuous up-dates,
deletions and additions, they are no solution. This is
due firstly, to an excessive number of overflow pages
generated by partial reorganizations of files between
up-dates, secondly to the need to search sometimes
sizeable sequential files created by delayed updates,and
thirdly to the relatively high cost of the periodical
reorganization of those files supporting the relations

affected.

From the discussion above, B-trees as candidates for
the unique file structure of ADIM, meet conditions 2, 3,
4 and 5. Condition 6 1is also fulfilled by B-trees, as
demonstrated in Section 6.7. However, condition 1
remains for closer scrutiny. Obviously, this condition
is not fully met by B-trees. Nevertheless, by using a
memory management system based on a stack discipline
(LIFO), a whole branch of a B~tree can be loaded into
main memory, so reducing the access factor to one, for
all successive pages after the first page of a range (>,
<, etc) retrieval. Meanwhile, equality retrievals and
the first page of a range retrieval have an access factor

upper bounded by the height of the B-tree.

208

It is precisely, on volatile data bases such as the
one used in personal systems (banking, home management,
office automatization, etc) that B-trees as a particular
case of dynamic data structure have the potential to
provide major gains in performance. Reorganization of
data on the fly as a central characteristic of B-trees
does avoid all of the perils of delayed updates, i.e.
overflow pages, huge sequential files and expensive
periodical reorganizations. I am convinced that in a
stable environment B-trees also perform better than many

other data structures,

By choosing B-trees as the file structure for ADIM,
all six conditions of section 6.1 can be met. Condition
1 to 5 can be met fully, and condition 6 partially.
Because of this, and in preference to many other £file
structures (randomizing directories included), I believe
that the use of B-trees is highly advantageous. This is
demonstrated by the empirical tests in section 6.6.
Consequentially, ADIM uses a unified file structure based
on B-~trees. I did not experience any major problem in
the implementation of them and I can also produce good

reasons for their use.

209

CHAPTER 7

IMPLEMENTATION OVERVIEW

7.1 Introduction -

In order to avoid unnecessary complexity in the
exposition, I will concentrate only on some aspects of
the implementation of ADIM. Thus, I will cover the core
of the ADIM system and those parts which provide a focus
of interest for implementators using ADIM in future
applications. For these reasons then, the discussion is

centred around the implementation of a P-unit.

It should be noticed that the implementation of C and
G units as well as some aspects of the P-unit have

already been covered in chapters 4, 5 and 6.

The description of the implementation is broken down
into six areas: i) sub-systems of ADIM as invoked by

users; 1ii) the Compiler Query Language a virtual machine

219

for ALFRED-K; iii) a file manipulation language for the
CQL; iv) utilities; v) some special files; and vi) system
catalogues. A detailed discussion of these six areas

follows.

7.2 Sub-systems -

In this section, the implementation of three
sub-systems is examined: ALFRED, dbmk and mkdev. They
are not the only sub-systems of ADIM, but they are
representatives of the implementation problems in

sub~systems of their type.

7.2.1 ALFRED -

The ALFRED sub-system is entirely written in PROLOG.
It is normally used as a G-unit, but the data base
administrator can also use it as a front—-end to the
C-unit. The ALFRED sub-system has three parts: the
parser and lexical analyzer which recognizes wvalid
sentences; the decomposition part which breaks down the
queries into queries involving only elementary relations;
and the code generator which has two passes, the first of
which creates unigue names and sets up necessary tables,

and the second pass which issues a function call in

211

ALFRED-K form for every query involving elementary
relations. The output of ALFRED can be compiled and
executed directly (if the C-unit is present) or it can be
a file containing the queries in ALFRED-K form (Chapter

3) for a delayed execution.

702.2 dbmk -

This is for creation of new data bases. It creates
the system relations: ‘relation' and ‘'attribute'. It
also makes entries in the sequential file falldbs'. This

sub-system is written in the language 'C'.

By invocation of the function existdb(), it checks if
the named data base has already been created. It also
checks if the specified device exists within the system.
Once that the above tests have delivered a positive
result, dbmk ©proceeds to <create the data base by
obtaining space for the relation. Finally dbmk records
the existence of the new data base in the file 'alldbs'

of the host operating system.

It should be noticed that relations in a data base
are described in terms of relations. These are the
relations: trelation' and ‘'attribute', These relations

are in turn, described by themselves, so permitting the

212

shared use of software for the manipulation of catalogues
belonging to the system and relations belonging to users.
Since at the time of invocation of dbmk, the catalogues
for the new data base do not exist, it 1s necessary to
maintain the correspondence between the sizes of the 'C’'
structures for the catalogues and the sizes given by ADIM
to the same catalogues. This problem only arises when
ADIM is ported to a new operating system. For this
reason and to improve portability, dbmk makes extensive
use of the function pointer() which takes care of

variations in the data types of 'C*,

7.2.3 mkdev -

The purpose of mkdev is to create an environment for
ADIM independent of the peculiarities of physical
devices. Thus, an ADIM device could correspond to a
sequential file in a given operating system or it could
be a magnetic disc or any other physical device used as
secondary memory. Once mkdev has run, the relevant entry
in the local file 'alldbs' will be established as a
record of the relationship between the device (or file)
in the host machine and a device name within the ADIM
system. Notice that mkdev tests for the existence of the

device before creating it.

213

A device in ADIM consists of map pages and data
pages. The map pages are used to maintain a bit map of

the data pages. Data pages are used to store relations.

In order to implement mkdev, the following functions
were also implemented: opendev(), to open a device;
closedev(), to close a device; zeromap() and maper(), to
mark a data page in use within the device; unmask(), to
free a data page; mask(), to do the bit mapping.
References to some of these functions will be made again

in section 7.4.

A description of the implementation of the CQL
follows. These functions are invoked directly by the
application(s) using a P-unit or by any G-unit (including

an ALFRED sub-system).

7.3.1 append -

This function appends a tuple to a named relation.
It first tests the existence of the relation. Then, it
prompts the user with the names of each attribute, and

waits for input. The append() function makes extensive

214

validations of input data. For this purpose, append()
invokes utility routines which are discussed in section
7.5. Finally, append() handles the new tuple to the
function insert() of the FML (section 7.4) for addition

to the named relation.

7.3.2 display -

This function prints the named relation in the user's
terminal. The implementation of display{() is a
rudimentary application of a generalized mechanism for
building report generators. This mechanism is based on a
table with five columns. The first column contains the
name of the function invoked, in this case ‘'display'.
The second column contains the name of a function which
produces the headings for the report. The third column
contains the name of the function to print individual
tuples. The fourth column contains the name of the
function which handles the 'end-of-tuple' delimiter. The
fifth and final column contains the name of the function
which handles the printing after the last tuple has been

printed.

In the case of display(), the columns are as follows:

215

1. display - the name of the command.

2. printhead - prints the names of the relation and
the attributes.

3. printtup - prints the tuple. 1In turn, this
function invokes printatt() which
prints every value per attribute,
using the corresponding format, i.e.
it prints an integer as an integer
and not as a string of characters.

4. preol -~ invoked after the last
attribute/value for the tuple has
been printed. This prints a vertical
bar (|), followed by the characters
'LF-RETURN',

5. preor - ‘prints a horizontal line and two
'LF-RETURN',

I would 1like to stress that I have concentrated in
providing a general mechanism for the preparation of
reports. The display() function 1is only a trivial

example of the use of this mechanism.

7.3.3 create -

The invocation of this function creates a new
relation. Firstly, it interactively collects information
about the name of the relation, the device where it will
be created, the name of the attributes and their format.
Once this information 1is <collected, it ©proceeds to
validate the names, formats and devices. Sometimes, the

device is unknown to ADIM, a relation with such a name

216

already exists, etc. After the wvalidation stage,
information on keys for the relation is collected. At
this point, it supplies the user with help to set up the
primary key and in some cases it does it for him/her.

Error recovery is graceful.

703»4 jOin, project, Union, Select, ee o

These are the functions which implement the query

sub-~language. Typically, they will:

i) open the source relation(s);

ii) create an empty relation for the result. If
this relation is temporary it can sometimes be
maintained in buffers in main memory, so
speeding up execution.

iii) the algebra operation is performed and the

generated tuples are stored in the relation
created in step (il).

Step (iii) is perhaps the most interesting.
Depending on the boolean condition in operations such as
join() and select(), partial traversals of the B-trees
are attempted. In some other cases, tuples are obtained
with one invocation of gettuple(). 1If all of this fails,

then a complete traversal of the B-tree is performed.

217

7.3.5 Remarks -

It should be noticed that throughout this stage of
the implementation, references to relations are
immediately transformed to a descriptor. A descriptor is
an in-core summary of the details held about one relation
in the system catalogues. This mechanism avoids the
inefficient and often repeated consultation of system's
catalogues held in secondary memory (which is

considerably slower than main memory).

7.4 FML -~

The File Manipulation Language (FML) is the interface
between the CQL (section 7.3) and the operating system /
host computer. It is a layer of safety, to ensure
portability of ADIM. A list of the main functions and a

brief description of their implementation follows.

7.4.1 closer -

This function releases the descriptor of an open

relation. It is the counterpart of openr (), below.

218

7.4.2 openr -

This function consults the system catalogues and
creates an in-core summary of the characteristics of the
named relation. For this, it needs to open the relation
'relation' and the relation ‘'attribute'. Unfortunately,
to open these relations a descriptor for them Iis
required. Hence, the functions reldesc() and attdesc{()
were provided. These functions "hand-craft" the
descriptors for ‘'relation' and 'attribute'. A locking
control for devices is also activated in certain cases,

by the invocation of openr{().

7.4.3 Increate -

Similarly to create in CQL, it creates a new
relation. This function is used to create a relation
where details about the relation's name, the names of the
attributes, the format of the attributes and the key are
implicit in the query. For instance, the result relation
in a join or project. In order to gather information
from the source relations, it uses the functions
get_atts() and pull att(). The first of these functions
normally invokes the second, which collects information

about one particular attribute in a relation.

219

7.4.4 insert, search, delete, travertree and partial -

These functions are a recursive implementation of

what their names suggest. Thus:

i) partial(), is a partial traversal of the B-tree
for a given relation;

ii) travertree(), is a full traversal of the tree;

iii) insert(), appends a new entry to the tree;

iv) search(), finds an entry in the tree; and
v) delete(), deletes the keyed entry from the
tree,

These functions need the descriptor for the given
relation. This is normally provided by openr(), together

with the searching keys.

I feel that the implementation of these functions is
highly compact. This makes possible the running of ADIM
in small systems, typically, a CP/M based system or a

small configuration of UNIX.

Perhaps the most interesting aspect of this
implementation 1s the flexibility built into these
functions. At least, one parameter in each of these
functions accepts the name of another function. Thus,
for instance, a trivial implementation of join() could

have been:

220

travertree(descrl, ..., travertree, param2);

where,

struct param2 {
descriptor descr2;
condition join cond;

} param2;

This mechanism is used often in the implementation of
ADIM. In particular, in the <case of the FML
implementation, it provided me with a powerful and simple

method to implement composition of functions.

7.5 Utilities -~

For the purpose of this explanation, I have grouped

the utilities into seven groups.

7.5.1 Memory management -

These functions implement a stack discipline for the
management of memory. No other type of memory management
is required to handle queries. This discipline is

extremely well suited for ADIM, since the relations are

221

stored as B-trees. This combination makes a 'garbage

collector?! absolutely unnecessary.

Not only the software to write was reduced, but also,
the stack discipline provides a natural ‘cache memory'
for ADIM. As an example consider, the previous trivial
join. Pages grabbed by the first invocation of
travertree() are only released once the second invocation
(the parameter to the first) of travertree() has fully

finished with themnm.

A simpler example is provided by the query:

RETRIEVE employee WHEN

salary > 16K ... ?

Here, a partial search of the B-tree loads and
unloads pages in main memory until the first qualifying
tuple is found. From this point onwards, all of the
tuples to the right of this tuple (in the page) as well
as all the pages in the sub-tree below, qualify. Because
of this, the whole of the qualifying sub-tree can be
further processed by stacking its pages and then poping
one page at a time for processing. Notice that once the
first tuple is found, no more testing of the

qualification is necessary.

222

In the case of the join example:
travertree(....,travertree, ...);
the stack naturally handles backtracking.

In the scheme of memory management described, the

most important functions are:

salloc() - grabs a page from the stack;

sfree () - releases the page.

7.5.2 Descriptors -

The functions reldesc() and attdesc() provide a
facility for quick creation of a descriptor for
'relation’ and ‘attribute', respectively. These
functions were originally implemented to bootstrap ADIM,
so that the catalogues of the system could also be
relations. To understand the problem, consider the
insertion of the tuple containing information about the
relation f‘relation' in the relation 'relation'. To do
this, it is necessary to invoke insert(), which needs as
parameter a descriptor for the relation in which the
tuple is going to be inserted. This descriptor is

normally obtained by opening the named relation. Since

223

the relation 'relation' does not exist when we want to
insert the tuple describing the relation f'relation' in
the relation 'relation', we need to create a descriptor
by different means. This is the purpose of reldesc() and
attdesc(). These two functions also are an obvious
short-cut to the catalogues of the system, which are

consulted several times in the course of a query.

The function replica() makes a copy of a given
descriptor. This is extremely useful when creating new
empty relations out of old relations. A case of this is

the result relation for a restriction operation.

7.5.3 Qualification -

Three functions were implemented to test tuples for
qualification wunder operations requiring these tests.
These functions are: compare (), nkcompare () and

qualify().

The function compare() tests for equality, inequality
or order, between two tuples belonging to relations not
necessarily different. Keys are used by compare(), while
nkcompare{) is a version of compare() for those cases
where searching keys are not available. The function

qualify() is more suited for comparisons between a tuple

224

and a set of constants. Typically, compare() and
nkcompare() are used in operations such as join, while

qualify() is used by operations such as restriction.

7.5.4 Keys -

The function setkey() prepares a tuple image for
searching in a given relation. This function sets the
keys for searching. The counterpart to setkey() is

clearkey(), which clears the searching keys.

7.5.5 Errors -

All errors and warnings are handled by the functions
error(} and warning(). They receive a set of parameters
indicating position in the system, offending object
identity and error class and type. Errors and warnings
are classified according to the different sub-systems of
ADIM. Furthermore, within a class they are also typified
by another identification (number). This scheme of
handling errors and warnings allows an ADIM system to
maintain error messages and warning messages in relations
like the ones used by other catalogues in the system.
The advantage of doing this is twofold; firstly, by

dynamic insertion of error and warning messages, an ADIM

225

system can be tailored to specific environments and
applications; and secondly, a reduction of size of the
ADIM system resident in main memory is achleved, since
the messages which occupy considerable space are kept in
secondary memory. In addition, I should mention that
ADIM uses 1ts own data base capabilities (retrieval,
insertion, etc) to handle its error and warning messages.
This makes the writing of special software for this
purpose, absolutely unnecessary. Thus again, as

implementator, I have benefited from the above scheme.

I feel that the described scheme for handling errors
and warnings is a major contribution towards compactness
in ADIM. In the previous paragraph, I have given one
reason for it. A second reason, probably obvious at this
point, is that software which is not written does not

occupy any space. This is exactly what I have done here.

7.5.6 Strings -

A set of utilities to manipulate strings is an
obvious need in any data base system. In particular, in
the ADIM system, the following functions have been
implemented and also made available for general

applications:

226

cmp(s,t):
strigth(s):
strcep(s.,t):
reverse(s):

itoa(n,s):

concat{o,il1,i2):

indsex (tbl,entry):

getline(s,1lim):

clean(s,sz):

move({r,a,sz):

pad{a,sz):

7.5.7 validation -

compares strings s and t;
returns the length of string s;
copies string t into s;
reverses string s in place;

converts the integer n into the
string s;

concatenates strings il and i2
into string o;

find entry in sequential table
tbl;

gets line from tty into s and
returns its length;

cleans the string s of size sz;

moves the string a of size sz
into r;

pads the string a with blanks
until size of a becomes sz.

Functions to validate input data were implemented,

They are available

functions are:

v_1id(s):

v_form(s):

v_pint(s):

v_preal(s):

to applications as well. The

validates the string s as an
identifier;:

validates the format in the
string s;

to validate the positive integer
in s;

likewise, but for reals;

227

v_real(s): validates real numbers;

v_int(s): validates integers;
v_string(s): validates strings;
v_char(c): validates ¢ as an ascii

character.

7.6 Special Files -

This section discusses files of special significance

in ADIM.

7.6.1 alldbs -

This 1s a sequential file (the only one) assumed to
exist in the host operating system. This file is
required to bootstrap an ADIM system. The contents of
this file describe the devices available to ADIM and the

data bases recognized by ADIM in a given computer.

7.6.2 devices -

The file 'alldbs' associates the names of devices

and/or files in terms of the host operating system and

the names of such devices and/or files in terms of ADIM.

228

7.6.3 FILES.h -

Tuning of ADIM is possible by changing the value of
parameters defined in the files which names are
post-fixed with .h. This follows the conventions of the

UNIX operating system and the programming language 'C'.

7.6.4 IRC -

This is a shell or submit type of program generated
by ALFRED and containing ALFRED-K expressions equivalent
to the original ALFRED-U/VG query. This is normally used
as an intermediate stage in the processing of ALFRED-U/VG

queries.

7.7 System Catalogues -

The system catalogues for a given data base are kept
in the relations: 'relation' and ‘'attribute'. Error and

warning messages are kept in the relations: ‘error' and

‘warning'.

229

7.8 Some comments -

I feel that the implementation of ADIM fulfills the
requirements for compactness, modularity and portability
extremely well, The technique of using ADIM for its own
implementation and maintenance, is to my belief, a major
contributor to the above achievements. This is
particularly true in the case of error and warning

handling.

The marriage of B-trees and memory management based
on a stack greatly simplified the implementation of the
algebra operators. A 'garbage collector' is implicit in
the above marriage: needless to say, the relevance to
costing of queries, which is discussed more extensively

elsewhere in this thesis.

238

CHAPTER 8

CONCLUSIONS AND FURTHER WORK

I have designed a "desk-top" information system which
complies with the requirements of flexibility,
portability, expandability and ease of use, demanded by
personal systems. In designing such a system, I have
found that efficiency of operation is the outstanding
obstacle to its construction. I have undertaken a study
of the problems of efficiency arising in the operation of

such a system and provided an integral solution.

A high degree of compactness in the implementation of
ADIM was attained by a careful selection of component
parts. This selection of modules aimed for a
minimalization of components to fulfil the requirements
of ADIM. Alternatively, I could have chosen to offer
users of ADIM a variety of good solutions to the problems
posed by the design and implementation of each module of

ADIM. This latter approach has already been tried in the

231

design of some relational data base management system
[HUTT78, SWKH76] with a resulting product that it is too
large and complicated for use as a personal data base
management system. Let alone, an integrated information

system, as described in this thesis.

ADIM assumes a small cardinality and degree in the
relations of a data base. This state of the data base is
attained by decomposition techniques applied to views,
(Chapter 5). Thus, typically in ADIM, a gquery once
parsed will refer to many small relations rather than few
large ones. This allows the simple application of

parallelism to the processing of queries in ADIM.

The choice of B-trees as the unique file structure
throughout the data base management system enabled me, as
designer, to avoid the unnecessary accumulation and
manipulation of statistics, usually required for
monitoring the efficiency of the system. The evaluation
tactics described in chapters 5 and 6 make use of the
properties of B-trees to estimate data flow. This
obviously leads to good cost estimation of queries,
updates and insertions in the data bases administered by

ADIM.

The fulfilment of the requirements for expandability

and flexibility demanded of ADIM, are demonstrated in

232

chapter 6. Applications such as the Examination

Monitoring System are an illustration of this point.

Further work to be undertaken as well as some open

problems emanate from the following list:

(a) Methods for using functional dependencies in the
decomposition procedure.

(b) Use of security and integrity constraints in
decomposition techniques.

(c) Cost criteria for optimizing relational
expressions which include query algebra and
decomposition operators.

(d) The use of several processors should be
incorporated in the cost functions, by
considering parallel processing. A distinction
has to be made between one-site multiprocessor
systems and distributed systems, because of

different cost structures imposed by data
pathways.

Finally, I feel that ADIM contributes an architecture
and an implementation for a Desk-top Information Manager
which is small and yet efficient. Furthermore, ADIM
provides a flexible and expandable base for
experimentation and development of new ideas in the areas
of relational data base management systems, query
languages, heterogeneous and homogeneous distributed data

base systems and data base design.

233

Note:

APPENDICES

The syntax of the languages used in the
demonstrations might be slightly different from
the syntax defined in Chapter 3. This is because
an older version of ADIM was used in some of these
demonstrations.

235

A, APPENDIX

ALFRED Demonstration

In this appendix, a short sequence of queries is
presented. The queries involve relations created in
APPENDIX B. The system's catalogues are examined often
so a detailed picture of the processing of the queries
can be observed. The queries are followed by a display
of their evaluation.

236

% prolog
PROLOG Version NUP

7~ [7alfred’].
alfred consulted.

yes
7- alfred{dept,query).

WELCOME
70

ALFRETD

QUERIES :

tJ
9%,
~J

display relation 7
display attribute 7

display staff 7
display addresses ?

doin staff # addresses where
snumber = staff _id
into t1 7

display t1 7

project tl:staff_id, name, salary, city
into homes 7

display relation 7

display attribute 7

display homes !

238

ALFRED EXECUTION

RELATION:
irelid
taddresses

iattribute
irelation

relation

irelsave

ireliups irelwidirvelattidve iroot
34 461 4] 71
23 341 74 971
41 281 8i 971
21 341 41 97

RELATION:

istaff_id
raddr
icity
rphone
tanane
irid
iformatl
tasize
istart
irelative
tkeypos
irelid
irelsave
wreltups
rrelwid
irelatts
tdve
iroot

i
isnunber
inane
iroon

1

isalary

atiribute

iaddresses
taddresses
iaddresses
taddresses
iattribute
tattribute
tattribute
ratiribute
tattribute
tattribute
tattribute
irelation
irelation
irelation
irelation
irelation
irelation
irelation
irelation
istaff
istaff
istaff
istaff

i

(forsaltiasize istart irelatilhkeypos:

L1058 41 0! 0! 1
root150 201 4! 1 0
L1151 108 241 2 0!
Poo11sE 12t 41 3! 0!
Poot150 12 0! 0! 0;
: 1151 121 121 I 1
L1141 124 2! 0
1041 20 26! 3 0!
L104! 21 28! 4 0;
L104] 20 30 5! 2!
Poo104; 2 32! 6! 01
Coo11s 12 0! 0! 11
b105! 4y 12 R 0!
105! 4 14 21 0!
L 104! 20 201 3! 0!
L1146 1 221 ¥ 0
P11 1 23y 5! 0!
P104) 20 241 4; 0:
SREPY 1 28! 7! 0!
L105! 41 0! 0! £
D115 201 41 1 0!
P1041 20 24 200
SREPE 81 24! 3! 0!

239

RELATION: staff

e e e o s i g o i s Mt o e e i G i e o e o e o o i b e a3 S o o i o . i o i i ot . s o i S b

isnunber inaMe iroon isalary i
: 8765414, Jones : b7 11000.0001
H 1234561G. Baith H 341 12345.300)
RELATION: addresses

istaff_id laddr icity iphone

i 87634:59 Richmond Rd {Bristol 124333

: 367436122 Carnaby Rd. iLonden 12345467

: 123454134 Henry 5t. iBristol 143478

RELATION: t1

isnunber inanme irooM isalary istaff_id izddr

; 8765410, Jones H 671 11000.0001 87654159 Richmond F
: 12345616, Smith H 341 12345.5001 123456134 Henry §t,
RELATION: relation

irelid irelsave ireltups ireluidirelattidve iroot In :
iaddresses : 01 3 46 41 971 N 51
tattribute i 01 351 34 7i 773 41 73

thomes i 01 21 42 44 971 101 S
irelation] 01 4] 28 8 971 1 8:

istaff i 01 21 341 4 974 Y e

A : (i} 23 801 8i 971 81 RS

RELATION:
ranane

ystafi_id
1addr
icity
iphone
fanune
irid

irelative
1KEYPOS
rstaff_id
inaae
isalary
rcity
irelid
irelsave
ireltups
irelwid
irelatis
tdve
iroot

in
isnunber
iname
iroon
1salary
tsnunber
iname
iTooM
isalary
istaff_id
vaddr
tcity

RELATION:

istaff_id

attribute

taddresses
raddresses
taddresses
taddresses
rattribute
tattribute
iattribute
iattribute
vattribute
tattribute
tatirihute
ihones
thones
thones
thones
irelation
irelation
irelation
irelation
irelation
irelation
irelation
irelation
istaff
istaff
tstaff
istaff

HE A

111

i1

it

it

it

1t

R A

Jones

LOCAL STACK 39
GLOBAL STACK 1887
FREE AREA 18884

TINE 279

yes
e

242

iformatiasize istart irelatilkeypos!

1051
1154
1151
11354
1159
1131
1143
104:
1041
1041
1041
103
1138
1141
1134
1151
1031
10351
1041
1141
1163
1041
18]
1031
1154
104
IREN
1051
115
104:
114
1051
1191
1151
1153

44 0 01
20 y 1
0r 24! 21
120 34 3
121 01 01
120 12 ¥
1 24 2
20 241 3
20 29 Al
2t 30! 54
27 32 6
41 01 03
201 4 n
8 241 21
o) 32 31
121 01 0:
a1 ¥
TR 21
2t 20 3
o 22 44
1 23 51
21 24 51
1 26! 71
4} 0 01
201 4} f
20 24! 21
g8 241 3
41 0 0!
201 41 1)
21 24y 2!
Br 24! 31
4 34 4%
200 38! 51
101 58 44
120 481 71

i 876541 J.
i 12345616, Saith

i ot e e a8 R S e S s o S A e min an e e A e b e e e e i ki 5 i ek e G e S e i i e o s o i i

11000.0001Bristol
12345.5001Bristol

—— T e

SO OO DD OO O S -

Lo R e il SR A A e A e i o B v B e e - = I o e e e S

B. APPENDIX

Utilities to the Data Base Administrator

A Demonstration

This appendix demonstrates some of the most important
utilities available to the data base administrator. The
creation of device 'a' is followed by the creation of the
data base ‘dept'. The effects of these actions in the
file 'alldb' are shown. The invocation of ADIM
demonstrates the facilities to create relations and to
input data to relations. Also in this demonstration, the
means to examine a relation and to manipulate the keys of
such a relation are shown.

243

cat ../alldb
data bases
devices
Z uhkdev
nakedev: Usage
nakedev nomedev size{in blocks)
74 mkdev data 40
szdev = 40 mapsz = 1
tkdev -- in data 0 read and O write bad blocks found
#%% device built and in good shape for use *#%
Z cat ../alldb
data bases
devices
a data 1 40
% dbwsk
dbnk -~ Ussge:
dbmsk dbnase device
% dbrk dept =
Z cat ../alldb

data bases

a dept 1 4
devices

a data 1 40

%

244

Z adim dept
ADIHM

A TDesk-top Inforsation HManager

Version 1.0

_display relation

RELATION: relation

irelid irelsave ireltups ireluwidivelattidve iroot i
vattribute 01 154 344 71 971 4]
irelation ; 01 21 281 8! 9714 1
_gJarbaqe

eh 7

eh 7

eh 7

_display attribute

RELATION:

ikeypos
irelid
irelsave
ireltups
irelwid
irelatts
rdve
iront

attribute

tattribute
rattribute
tattribute
tatiribute
iatiribute
vatiribute
tattribute
irelation
irelation
irelation
irelation
irelation
irelation
irelation
irelation

ifornatiasize istart lrelatilkeypos!

1151 1
1153 1
1144
1041
104
1041
1041

]
'

1]

1

[}

t

%

:

]

]

i

t

i

t

b (8]
1 11;}» ?
1

t

i

1

]

t

H

t

1

3

1

t

[

T

G d P PR -
O D - O

< Y

1031
1051
1041
1168
114
104
1141

el SRR N A B N B L N B N S S B N |
SO LA e Gl P e OO L R G N e O

O b G P O O I DI S WO DD

O DO O S e

P P PY P e

246

7 adim dept

AT IMN

A Tesk-top Information Hanager

Version 1.0

_create staff a

RELATION: staff
Enter nase and forsat for each atiribute
(CANCELATION:- Type: 0 zftier name-pron.)

name: snumber

format: 1

more T {y-n} v

name: name

format: s20

nore ? {y-n) vy

naue: roon

fornat: h

more 7 (y-u) vy

name: salary

format: r

more 7 (y-n) n

247

Is there a primary key 7 (y-n) vy

Is the key compounded ? {y-n} vy

Enter atiribute names in decreasing order of isportance.
Types

2 - for HELP,

1 - to FINISH,and

0 - for CANCELATION.

after the name-pron.

names: 2

attributes are:
snusber
nase

rooM
salary

nane: snumber

nanez 1

WARNING - single key !!

confirm 7 (y-nly

create addresses a

RELATION: addresses
Enter name and format for each atiribute
{CANCELATION:- Type: 0 after nane-prows.)

nane: staff_id,

fornat: 1

more T {y-n) vy

name: addr

format: s20

more T {y-u) vy

nane: city

fornat: si0

more ? (y-n) vy

nane: phone

format: 512

more 7 {y-n) n

249

Is there a primary key 7 (y-n) vy

Is the key compounded 7 (y-w) n

nane: staff_id

_display relation

RELATION: relation

irelid irelsave ireltups irelwidirelattidve iroot In H
jaddresses | 01 N 464 41 9714 -1 o1
vattribute | N 231 34 7i 971 : 71
irelation ; N 44 28; Bi 971 ; 81
istaff H 01 N 34} 4: 971 -11 74

250

display attribute

RELATION:

istaff_id
iaddr
icity
iphone
ianame
trid
ifornat
tasize
istart
irelative
ikeypos
irelid
irelsave
ireltups
ireluid
irelatts
1dve
rroot

in
isnunber
inane
iroon

attribute

taddresses
iaddresses
iaiddresses
iaddresses
attribute
tiribute
attribute
tiribute
attribute
atiribute
atiribute
relation
r
r

(<1 B 13

o

elation
elation
irelation
irelation
irelation
irelation
irelation
istaff
istaff
istaff
istaff

1
¥
§
1
i
3
L]
t
]
i
¥
1
i
]
4
¥
]
)
1
+

1051
1150
1151
1151
1158
1RER
1161
1041
1048
1041
1041
1151
1051
1054
1041
1161
11618
1041
1161
1051
115]
104)
114

ifornatiasize istart irvelatilkeypos

201
101
121

—h

—

—

[
0O P O e ooa DY e = BRI e I BRI ORI MY R ORI e PO

[ZR00 %]

L A O I
SO U B G P e OO U s il P e O Y O

[R B B R R e

Oy B e O O DGO O ORI O 0O S IS D b b O

o 1Y e O

RS I o Y

display addresses

RELATION: addressas

istaff_id laddr icity iphone

_display staff

RELATION: staff

iroos isalary :
)

252

append staff

RELATION: staff

Enter value for each attribute.

snunber {i): 123434
na#ue {s): G. Snith
roos (h): 34
salary {r)s 12345.%

append staff

RELATION: staff

Enter value for each attribute.

snumber {i): B74534
name (s): J. Jones
roON (hy: &7xcd
roon {h): &7
salary {r}: 11000

~display staff

RELATION: staff

3
H
]
t
i
]
§
]
]

1

snumber inane irgon isalary

- e S oo - i s o Lo o 700 D s nwm R TN o o 1 B i e e oo i i ot ot e e et b i B e i S

8765414, Jones i 671 11000.000:

12345616, Smith 340 12345.500

- o ik 7o G s 2 o o o i bt b iy b o i o b g i et s o o S oA e e e ke S M S i o i

253

1
'

append addresses

RELATION: addresses

Enter value for each attribute.

staff_id (iY: 123456

addr {s): 34 Henry St.
city (s): Brisipl
phone {s): 45478

_append addresses

RELATION: addresses

Enter value for each zttiribute.

staff_id (i): 367436
addr {s): 22 Carnaby Rd.
city {s): London
phone (s): 234547

_append addresses

RELATION: addresses

Enter value for each attribute.

staff_id (iY: 87454

addr {s): 59 Richnond Rd
city {s): Bristol

_phone Jfs)s 24335

254

display addresses

RELATION: addresses

istaff_id laddr fcity iphone
] B7654159 Richmond Rd iBristol 124333
: 5674346122 Carnaby Rd. iLondon 1234547
: 123456134 Henry St. iBristol 145678

_display siaff

RELATION: siaff

isnumnber inane irpon isalary H
: 876541J. Jones : LS 11000,000.
! 12345616, Smith H 341 12345.500:

e o o g i S o e s W S e i o e e S e U S S o o ot G e S T i o W b e i e B i . o

+ ¥

255

display relation

RELATION: relation

irelid irelsave ireltups ireluidirelattidve iroot In
iaddresses : 01 3 441 41 94 bi v}
iattribute H 01 230 341 74 $71 4] 7
irelation i 01 43 281 81 971 1 8
: 01 21 341 43 971 o 7

ot o e i e S e e o 0 e o Gh A o S AL o o e i e S o e o i o e S o o e S i ok o S L b s i e Sk o S i e S o o e

256

display atiribute

RELATION:

3

ranane

istaff_id
taddr
feity
iphone
ianane
irid
iformat
iasize
istart
irelative
ikeypos
irelid
irelsave
ireltups
irelvid
irelatts
rdve
iroot

in
isnusber
inaHe
ITOOM
isalary

attribute

o e e o o e o Aty e e i e o e A o e b o o i i M L o i e S e g i ks e e o ek S e o . o S ot e

taddresses
{addresses
taddresses
iaddresses
tattribute
attribute
attribute
atiribute
attribute
attribute
atiribute
relation
relation
relation
relation
relation
irelation
irelation
irelation
istaff
tstaff
istaff
istaff

¥
T
¢
t
1
i
!
'
1
¥
H
)
L]
1
1
¢
4
t
i
1]
i
1]
t

iformatiasize istart irelatitkeyposi

—
—t
i
—h ko ot P
(5 20 38

—
<>
B4

[0 R we B - O A O S - - S O D B SN I O R R T A AN 1 T oo i o S -9

[IN SR 7S B O O O B

B P P B R e e

—
—
o
—
Oy B o O O s IR O OO RO 00 3 IO 2 D

Gl = 2 N O A B GE PO e OO U D OB o OO R O

Py Y

—t
—
e~
oo
DO et O OO D DO - ORI O O DD D O

c. APPENDIX

FML Demonstration

A set of queries in FML is presented here. These
queries are equivalent to the queries in the ALFRED
demonstration [APPENDIX A]. An evaluation of the queries
is also included.

258

#include "defs.h”
#include "global.h"

char *A14[1 =
char *4162701
mpain() {
dbopen{"dept");
display(“relation”,0);
display("attiribute”,0);
display({"staff",0);
display("addresses",0};

Join{"L1" "staff","addresses” ,A14,0);
display("t1",0);
project(“homes","t1",81827,0);
display("relation”,0);
display("attribute”,0);
display("honres",0);

dbclose();

}

)2

{ "snumber","=""staff_id",0 ¥;

259

{ "staff_id","nzme","salavy","city",0 3;

RELATION: relation

irelid irelsave ireltups ireluidirelattidve iroct in '
iaddresses i W 3 461 44 7 b1 B
tattribute H 01 234 34 71 971 41 I
irelation] i 44 281 81 97 1 81
istaff : 0t 21 341 43 971 5t 7
RELATION: attribute

ianane irid tfornatiasize istart irelstiikeypos)
istaff_id raddresses : 1051 41 01 0 14

taddr iaddresses i 1131 204 4: i 01

icity {addresses H 1151 101 243 21 {H

iphone iaddresses H 1151 121 343 31 01

lanane iattribute H 1181 121 01 0) 01

irid rattribute : 1154 12} 128 1 11

iformat ratiribute i 1161 il 243 21 Qi

fasize tattribute H 104 2% 261 34 0

istart tattribute | 104} 21 281 44 01
irelative iattribute H 104 21 301 WH 21

tkeypos tattribute H 1041 21 321 éi 01

irelid irelation 1 1151 1214 01 01 1

irelsave irelation ! 1051 43 120 14 01

ireltups irelation H 1054 41 14: 21 01

irelwid irelation i 1041 214 201! RH 01

irelatts irelation : 1141 1 221 41 01

1dve irelation ! 1141 11 231 51 'Y

ircot irelation ; 1041 21 241 61 04

in irelation : 1141 1 241 71 01

tsnusber tstaff : 1051 44 01 04 1

inane istaff i 11514 201 4] 1 01

iroom istaff ' 1041 21 243 21 (N

isalary tstaff ; 1141 8l 241 3 03

260

RELATION: staff

isnumber inahe irgos isalary i

: 8746541, Jones i 871 11000.0201

: 12345516, Snith H 34, 12345.353001

RELATION: =addresses

rstaff_id ladde icity iphone K

i 874634159 Richnond Rd iBristol 1243335 :

! 567436122 Carnaby Rd. iLondaon 1234567 H

: 1234546134 Henry St. iBristol 145478 :

RELATION: i

isnusber inane iroon isalary istaff_id iaddr

H 87635430, Jones i 671 11000.000: B74654159 Richnmi
: 12345616, Sanith : 341 12345.5001 123455134 Henry
RELATION: relation

irelid irelsave ireltups treluwidirelattidve iroot in H
taddresses | K 3 46 4] 971 41 H
iattribute : H 334 34 71 971 41 71
thones 4 H 21 421 41 g7 104 St
irelation] tH 4] 28 8 971 11 81
istaff P 01 2i 343 40 94 I
it ' H 2 801 81 971 81 31

261

H

tformatiasize istart irelatiikeyposi

—
—
i

— o — o P
Cad -3

ey
<>
[

PRI S S o QO P € b 00 B S Lo web B wd e NI e b P O 00O D IR R R e B R RS OO

(SIS B SO I 0% B O I

o
a3

[N A}

OO D e DO D DO RIO OO OO O D

SO s Gl B e OGP e OO W R DG MY D

—
—c
e
(g%

EOG I G DG TS B 26
o O O

<>

=
o
[
rtara
00 00 00 & O do > 0 Iy b O O du GBI O O PO PRI d DO MO O B e b O
L

gé
—ea Y
o~ LG GRS S
SE O A b G T3 s DGl N e O
SO N DO

RELATION: attribute
ianame irid
istaff_id iaddresses
Vaddr taddresses
icity iaddresses
iphone raddresses
tanane tattritute
irid tattribute
ifornat vattribute
fasize rattribute
istart rattribute
irelative tattribute
ikeypos tatiribute
istaff_1d thowmes
inane thones
isalary ihones
icity ihounes
irelid irelation
irelsave irelation
ireltups irelation
irelwid irelation
irelatts irelation
H irelation
iroot irelation
in irelation
isnunber istaff
inamne istaff
iToon tstaff
isalary rstaff
isnumber it

iname 111

iroos it
isalary it
vstaff_id HE A

taddr it

icity A

iphone it
RELATION: hones
istaff_id inane

: 8745414, Jones

¥
i

12345616. Snith

11000.0001Bristol ‘
12345.500 1 Bristol ;

262

D. APPENDIX

ALFRED~U to QUEL Translator

A Demonstration

Relations from the INGRES data base 'demo' are used
in this demonstration. The relations and the file
'*query' containing the ALFRED queries are shown. This is
followed by the translation from ALFRED to QUEL and the
evaluation of the queries.

263

ingres demno
INGRES wversion 4.3/-1 login
Yed Jul & 13:51:47 1983

COPYRIGHT
The Regents af the University aof California
1977

This progras materizl is the property of the
Regents of the University of California and
may not be reproduced or disclosed without
the prior written persission of the ouwner.

continue

print iten

* print supplier
% \g

264

Executing « . .

item relation

nusber inane

261Earrings
118iTowels, Bath

43 Maze

1061Clock Book

23i1 1b Box
521Jacket

14651 Jean
2581 8hirt

1201 Tuwin Sheet
301iBoy‘s Jean Suit
1211Queen Sheet
101181acks

115i6old Ring

2512 1b Box, Mix
11915queeze Ball
11idash Cloth
19iBellbotions
2118BC Blocks
1071The “Feel” Book
12118k1 Jumpsuit

supplier relation

¥
)

numnberinane

i = —— U7 o o Do O o Bt W s b W o e e S o o . e S e S o i

199 Koret
213iCannon
33ilevi-Strauss
89iFisher-Price
1231Playskool
421Whitman’s
15i0hite Stag

continue

idept iprice igoh

; 141
: 261
: 49
‘ 491
i 104
' 601
i 651
H 381
; 26
d 431
i 261
: 63
: 14;
i 101
; 49
i 1
i 431
: 1
i 33
i 651

iLos Angeles
iAtlanta

18an Francisco
iBoston
ilallas
iDenver

tWhite Plains

265

10001
2503
3288
1981
2151

32951
82351
4501
800

12501

137514

1600

49951
4301

2501

iCalif
i6a
iCalif
iMass
iTex
iColo
iNeb

el - - Vi o Wl o ok i b e o i o doay S o i o i o i e bt e e

201
10001
20014
1501
1004
3001
3001
12001}
750
5001
6001
3258
101
733
400
3751
4003
4051
2231
12518

isupplii

~

1 cat query

/%
10L to QUEL exanmple

3/

select item when “item.price »>= 1007
into 70 7

project T0: “iten=TO.nane, TO0.price, supwo=T0,supplier”
intp Tt 7

project supplier: “supplier = supplier.name, supplier.number”
into T2 7

Join T1 x T2 when

*Ti.supno = T2.nunber”

into T3 7

project T3: “T3.item, T3.supplier, T3.price’
into highprice ?

display highprice 7

destroy T0, T1, T2, T3 %

destroy highprice !

\p

\l

\g

4

266

Z 19l dewo < gquery

/%
I0L to OQUEL example
:t/
select item when “item.price >= 1007
into TO 7
project T0: “item=TO.name, TO.price, supno=TO.supplier”
intg T1 ?
project supplier: “supplier = supplier.nane, supplier.number’
into T2 7

Join T1 # T2 shen
Ti.supno = T2.number”
into T3 7
project T3: “T3.iten, T3.supplier, T3.price”
into highprice 7
display highprice 7
destroy 10, T1, T2, T3 7
destroy highprice !
/%

I0L to QUEL example
:t/

range of itea is iten
retrieve into TOlitea.all)
where iten.price >= 100

range of TQ is 10
retrieve into T1(iten=T0.name, TO.price, supno=TO.supplier)

range of supplier is supplier
retrieve into T2{(supplier = supplier.nawme, supplier.nunber)

range of T1 is T1

range of T2 is T2

retrieve into T3{T1.all, T2.all)
where Ti.supno = T2.number

range of T3 is 13

vetrieve into highprice(T3.iten, T3d.supplier, Ti.price)
print highprice

destroy T0, Ti, 72, T3

destroy highprice

267

highprice relation

1b Boy

1t Box, Min
EC Blocks
ellbottons
oy“s Jean Suit
lock Book
arrings

old Ring

1
1

queeze Ball

he “Feel” Book
owels, Bath
#in Sheet

] e e U U UY)Y IR G e G CY O3 D PO s
o
jo]
=

isupplier

tWhitnan’s
yUhitran’s
1Playskool
ilevi-8trauss
iLevi-Strauss
iPlayskool
iKoret

iKoret

iWhite Stag
iLevi-Strauss
iFisher-Price
iCannon
iLevi-Strauss
iWhite Stag
idhite Stag
iFisher-Price
iFisher-Price
iCannon
iCannon

268

s n i o e e 0 e o i A s e s o S o b e i B i ot e e kT e e

b i S G o i . . o B i 2l Y T 0k Sk v iy e o Wk AP i o i T i o e s e e o i

E. APPENDIX

ALFRED-U to QUEL Translator

Source Code

269

/%
Translate IQL into QUEL

*/

/*
SUGAR

*/

{define; ?2;}

{define; |;}

{define; {continuetrap};\
{type IQL query executed by INGRES ... \n\n\n}

/*

COMMANDS
*/
/* UNION */
{define; union $1 + $2; \
range of $2 is $2 \
append to $1($2.all)}
/* PROJECT */
{define; project $r : $| into $t; \
range of $r is S$r \
retrieve into $t($1])}

/* SELECT */

279

{define; select $r when $c into $t; \
range of S$r is Sr \

retrieve into $t(Sr.all) \
where S$c}

/* JOIN */

{define; join $1 * $2 when $c into $t; \
range of $1 is $1 \

range of $2 is $2 \

retrieve into $t($1l.all, $2.all) \
where S$c}

/* DISPLAY */
{define; display; print}

/* OTHER COMMANDS ARE IDENTICAL */

A demonstration run of this translator is presented

in APPENDIX

271

F. APPENDIX

Binary Cyclic Codes

272

Binary Cyclic Codes (BCC)

FREUXEXRXFEEIERAXXXXFAXERRERRES

Definition 1.-

An (n,k) linear code C is called a cyclic

code if it has the following property: If an n-tupla

vV =

(VO,VT,...,V »

n-—.

is a code vector of C, the n-tupla

obtained by

also a code

code vector

blished, as

v = vV . .. e v .
(n—1’vn1~1+1’ ’vn—T’vO’VT’ ’vn—1-1)

shifting v to the rigth cyeclically i1 places, is

vector of C.
A relationship between the components of a

and the cofficients of a polynomial can be esta-

follows:

273

v = (vo,v) C==>

. 8 ® v
17! ' n-1

. 1 n-1
v(X) = Vg * VK ket Voo1X
We shall call v(X) the code polynomial of v.

It can be shown easily that v(i)(X) is

the remainder resulting from dividing Xiv(X) by X0,i.e.
() = g + 1) + v (x)

It is clear that v(l)(X) = X*v(X) if the

degree of X*v(X) is n-1 or less.

Theoren 1.~
In an (n,k) cyclic code, there exists one
and only one code polynomial g(X) of degree n-k

g(X) = 1+81X+g2X2+...+gn__kqxn"k‘1+xn"k

Every code polynomial v(X) is a multiple of
g(X) and every polynomial of degree n-1 or less which is a

multiple of g{X) must be a code polynomial.

It follows from Theorem 1 that for all v(X)
in an (n,k) cyclic code
v{X) = m(X)g(X)

i 2 k-1
= (m0+ij+m2X +...+mk*1X Yg(X)

If the coefficients of n(X),
(mO,m1,...,mk~1) are the k information digits to be en-
coded, then v(X) would be the corresponding code polynomial.
Thus,the encoding of a message m(X) is equivalent to multi-
plying the message m(X) by g(X). The polynomial g(X) is
called the generator polynomial of the cyelic code. The de-~

gree n-k of g(X) is equal to the number of parity check di-

gits of the code.

Theorem 2.~
The generator polynomial g(X) of an (n,k)

cyclic code is a factor of Xn+1,i.e.

P12 g(X)n(X)

Theorem 3,~
If g(X) is a polynomial of degree n-k and is

a factor of X"+1, then g(X) generates an (n,k) yclic code.

Given the generator polynomial g(X) of an
{(n,k) cyclic code, the code can be put into systematic form.
That is, the first k digits of each code word are the unal-
tered information digits; the 1last n-k digits are parity

check digits.

Suposse that the message of k digits to be

encoded is

m = (my,mq,.ee,my o)

The corresponding message polynomial is

k-1

_ 1
n(X) = m0+m1X Foaotm X

k-1

Multiplying m(X) by Xn"k, we obtain

P ¥a(X) = q(X)g(X) + r(X) (%)

where q(X) and r(X) are the quotient and remainder respec-

tively.

Since the degree of g(X) is n-k the degree

of r(X) must be n-k-1 or less,
- 1
r(X) = PgaTqX enosr

Rearranging the equation marked by (%)

above, we obtain
r(x) + X% Kn(x) = qX)gx)

Thus by Theorem 1, r{(X) «+ P Kn(x) is a code po-

lynomial generated by g(X). Writing out r(X) + X“'k, we

have

r (X)X Kp(x) =

276

1 n-kK-1
r0+r1X +"‘+Pn—k-1x
n-k+1

n-k
+mOX +m1X +. 0040

n-1
K-1%

which corresponds to the code word

(PO’FT""’rn~k»1’mO’m1’""mk—T)

parity check-—=wrecmmeme message

277

G. APPENDIX

Cyclic Codes Algorithms

A Sample

278

/%

*

* This program simulates a hardware encoding
device.

* The logic is based in Binary Cyclic Codes.

* The hardware device simulated is a
shift-register.

*

*/

-define BYTE
-define N
~define K

= -1 CO

char M[K / BYTE + 1] { 213 };
char G[(N - K) / BYTE + 1] { 5 };
char REM[(N -~ K) / BYTE + 1] { @ };

main() {
printf("message is ");
output (M,K);
printf("code generator is 1");
output (G,N-K);
p_rem(M,G,REM,N,K);
printf("parity check bits for message are ");
output (REM,N-K) ;
}

p_rem(m,g,rem,n, k)
char m([],g9{],rem[];
int n,k;
{
int i,j,top;
char input,c;

top = (n-k)/BYTE;
for(i=g@; i < k ;i++) {
input = bit(m,k);
c = (rem[top] input) & 81 ? ~0 : @;

for(j=0; J <= top ;j++)
rem{j] = (c & g[3]);

r_shift(rem,n-k);

rem[@8] =i (¢ ? @91 << ((n-k-1) % BYTE) :
g):

279

bit(a,s)

char afll;
int s;
{
char t;

t = a[s/BYTE] & 1;
r shift(a,s);
return(t);

}

r shift(a,s)
char af[]l;

int s;

{
int top,i;
top = s / BYTE;
for(i=top; i > 9 ; i--) {

afi] =>> 1;
afi} =] (a[i~-1] & @1 ?
(B1<<(BYTE - 1)) :9);

}
algl =>> 1;

}

output(a,s)

char all;

int s;

{
int i,top;
top = s / BYTE;
bitp(al@],s % BYTE);
for(i=1; 1 <= top ;i++)

bitp(al[i] ,BYTE);

putchar (') ;

}

bitp(pattern,size)

char pattern,size;

{

char tester;

if(size <= @) return;
tester = @1 << (size -1);
while(size--) {

280

putchar(tester & pattern ? '1' : 'g');
tester =>> 1;

281

H. APPENDIX

ALFRED VC to K Translator

Source Code

282

e

decamr.iru

5/

.?" ar{ 7) wfv. @)-
Teoowpl T, wFms 32

Tl 10, wEs, DHE
Tl 8y owmfws 7Y,

Mo
ducamposod
%/

E, F) &
char(E. E1
exrl(L1,
cime(EZ2,

marr

exrpand views tu

®/

exPl{ E+ E) = /%

basic(E 3,

7o

expl(Es F)
view(E,

expl(El,

E1
=

expl{ E,
Lo,
Le=e,
Resr,
COp,

/¥

add charscteristic

%/

char(

char(
E =.. [Or,
char(Lexe,
char{ Rexp,
F [Op,

char(E, E).

/¥
Relatiocnal

[N RS BN TR

£z
F .

Lesr,

eristic(E,
£,

ion B odnte the Tully
and optimized e
Vs Jw oadd

Y, S oexrplude

/¥ apltimize #/

catch
H

)
).

Rexed,
Ke=p),
Yexr).

Xexp, Yexrl.

to relatiocns

N
1, !

).

L

Lexp, Rexp I,
Xexe),

Yexp).
Aexp, Yexel.

Optimiscer

283

chiaracteristic
Views

basic relations exrressions

Lbasic but rot relations #/

®/

/3
simplify rel expr.
#/

sime(E, E)} 1~
basic(E ¥y, !'.

simp(E,» F) -
E =.. [Op, Lexr. Rexe 1.
simrl Lexp, Xexp),

imp(Rexe, Yexp),

{ Or, Xexe, Yene, F).

i

basicl{ X) -
relation(X), .

basic(X)} 11—
/% tTist of conditions or attributes %/
s list(X ¥y V.

/
simelification rules
®/
/%
restriction rules
*/

/¥ normalize relational expressions %/

/¥ distribute @ over 41 %

s(€, R1 2+ RZ, X, Z1 24 Z2) -
s(@, Ri, X, 21 .,
S(©, 2 Kae 220,

/% puzsh @ to rigsht and ™ to leflt #/
s{ ~, X @ ¥, Z:+ X ™~ Z &Y).

/¥ normalize predicate 1f necessarvys then
ortimize! srestr()} #/

5(@1 X7 Yr Z y -
clavsefoerm(X, X1),
clauseform{ Y, Y1 1V,
srestr(€, X1, Y1, Z).

/% emptv relatian =3 emptv relation %/

srestr(€, [J, . [1).

/¥ emepty condition =X réfatiun #*/
srestr(€, X, [1, ¥).

284

/% false conditicon =2 emetw relation #/
srestr(@, X, [falsel, [1).

/% true condition = relation =/
srestr(@€, X, [truel. X).

LN

associative case ¥/
restr(€, X, ¥, Z) -
istist(X),
is_list(Y e
union{ X, Y, Z1 Y,
set(Z1s Z2). /% eliminale durplicates #/
gptclauses(Z2, Z). /% optimize clausces avain ¥/

srestr({ @, R @ X, ¥, Z) -
is_list(X),
ie.tlist(C Y),
union(X, Y, Z1 3,
set(Z1, Z2). /% eliminate duplicates #/
ortclauses 22, 23), /¥ optimize clauses again ¥/
srestr{ €, R, 23, Z). /¥ once mure #/

/% catch all =/
srestr(@, X, ¥, X € Y 1,

/¥

rroudject rultes
*/

¥ emply relation =2 emprty velation #/
S(S []7 —2 []).

/% emety list of atts =X emprtw relation #/
= ™, _» L1, £33 .

is_list(X),

iz tistC Y),

intersectiond X, ¥: 21).

setl Z1, Z Y. /% eliminate durlicates %/

/¥ catch all =/
S(s X Y’ X i Y)-

/%

union rules
%/

/% reltation i+ emptw relation = relation %/
S(P - x> L3, X d.
s(s+z2, [31, ¥Xs X 3.

V& W

/¥
Juin rules
*1,

/% relation t%1 empty relation =2 emply relation #/

s =%, _, [3, [) I
s{ s%#:, [1>. _» L2).

/¥ catch all =/
X

a(s#L, X, Y- HE 2 2 I

miscellaneaus

/%
Sete

®/

/¥ empte ¥/
emept~(L1),

/¥ menmber ¥/

member (X, [X 1

member(X, [- 1 Y
memter{ X, Y).

{2
T
L
L
t

/% subset #/

subset([,).

subset{ X, X).

subsetC [X VR 1. Y
member-{ X, Y),

Y

subset(R, ¥).

(X}

rroper(X, Y) -
SUbSE‘t(X Y P)
not(subset(Y, X)).

equivalent{ X, Y) -
subset(X, Y),
subset(Ys X).

/¥ intersection %/

intersection(L1, X, [

intersection([X !
member(X, Y)

I 7
intersectiont R, Y, Z
intersectiont [X ' R 1, Y, 2Z HES
P

intersection(R, Y.

/% upion #/

unioent T, %X, X),

upient [X | R 1, ¥, Z) 22—
member(Xs Y),

'y

union(R, Y. Z
urient L X ' R 3, Y, [
Ufli(lrl(F\'-; Y': Z

/% difference @ relative complement ¥/

difference({ X, [}, X).

difference([1s . [1).

difference! [X | XT 3. ¥, [X + 2 3) =2+
not member(X, Y),

Yy

difference(XT. Y> Z)
difference([X + XT 3: Y, Z) 2--
member(X, Y),

! ¥

difference(XT» Y, Z).

/% disdoint %/
disdoint(X, ¥) -

not({member(Z. X Y. member¢ Z, Y)

Counvinience - General

/% delete all cvourrances of X from list L &/
delete ., [1, L1).
delete¢ X, L X VL I M) 2~

! 2

deletet X2 Ly M).
delete X L Y ¢+ LT 3, LY VL2 23)y -
deletel X, L1, L:' Y.

/% make a set 3 from a list L=
remove durplicates #/
set([J, [1).
set(C L X 1 €1 3, L X Vv € 3) ¢~
riat member(X, =
set(L X + Z1 3, ©) =
member ¢ X2 21), 'y set(Z1, ©).

/% define coperators %/

287

RN T N { (:-OO-, Foa ™).
T oarl{ 200, =xFfv. or).
7= opl{ P00, »xfw. and).

/%

rnermalize predicate calculus expression

®/

/¥
clauseform{ X, Y)} I~

transform ¥ expression to clause foarm Y

if not already done. #/
clauseform{ X, Y) -
noet ¢l Farm(X).
Penarml Xs Y).
clauwseform(X, X 3.

clfowrmC L]).

clfourm L true 1).
cYform(L false 1).
clform(C [cli,)y V- 1).

Ponarm —-

normalises a predicate calculus

*/

penoarm([Expression J:» Clauses) -
nesin{ Exepressicon, X1),
congnl X1, X2),
clausifv(Xz, X3, L3),

srteclagses! X2, Clauses). /% urtimize

¥ move nesation inwards #/

resin((~-F), F1) -
Yy omest P, F1).

negin{{F and @), (Pt and 1)) -
Yy nmesaint F. PR Y,
neainl G, 1).

negin{(F or @), (F1 or Q1)) -
Yy nesin(By 1),
neain(@, 1).

nesin(F. F).

nea({(~F), F1) £~
's nesin(P 1 D).
e and &), (F1 or O1)) &--
Yy nes(F., F1),
nea(l, 1),
nea((F or G, (F1 and Q1)) -
Yy pmea(l, F1),
nea(ll, @1).
nea(F, (~F)).

/# distribute and over or %/

288

expPre

n
w

i

caondnl{{P or @)Y, R) -,
condn(F. Fi1y,
comdn(i, 1),

condnl((FP1 or

condn((P and &),
condn(fP,
condnt P P).

condrl (P and 0 or R).

crtclauses{ Clauses,

rmcontrary(
ortclsd

/¥ rmecontrary
16 founds
into

“false” ¥/

Shortls,

- search
the contradictorwy

Dl)? R)u

(P1 and Q1)) - 1!,
P1),

condn{@, Q1).

(F1 and Q1)) -

Yo condn{{lP oar 2)Y, P1),
condn((C or R), &1).
comdnl{{P or (@ and RY)Y: (P1 and @1))y - 1,
cordn((F or &), F1),
condn{ (P or RY, 1),
condnt(Fs F).
/% into clauscs #/
clavsifv{({(F and), Cl, C2) -
Yy clausifv(f, C1, C3).
clausifv (&, C=Z, C2).
clausifv(P, L ¢l (A, B)Y t Cs 31, Cs) -
inciause(P. 0, L1, B, [3J) N
clauvsifv{ _, C,).
inclause ((F or)y A, AL, B, B1) - 1,
il'l':.‘aUS(Z:‘(F’7 Az, Alr s Ei)v
inclause(@, A&, AZ, B, 02,
j.rl':TaUSG((“F')v N, A, EB1 BY - 1,
notind Py BY, pulind . B, Ei).
irnclause! Py A1, A, B,)Y -
noetind Fs BY, rulin¢ Fo &, 61).
notin(X, [X 1 31) =~ v, fail,
notint X, L - VL 3) 31— 1,
notin(X, L.
poetind X, [T).
FutinC X, [Js 0 X J dsi= 1.
Fputind X, L X V LI, L) -1,
PputainC X, LY VLY, LY | L1) &~
rutinC X, L. L1).
/¥
ertclauses —-
ortimize an exFression in clause {orm.
It finds contradiction in clauses,. eto.
*/

OrtClauses) -
Clauses, ShoartCls
OptClauses

4
).

and i1f one
clauses ate mared

for contradiction

289

rmcontrarvy(L3, [).

rmcontrar«(C L ¢1C A, B)y | Cls 1, [false 1 5
contrar~(¢l A, B), Cls). /% test for contrad.
rmcontraryC L ¢l A, B Y V Clsl 3 L 10N, B Y 4 Cls2 1)
rincontrary(Clsl, Cls2).
/#% contrary — test for contradiction #/
contrarv(c1C Ny B s [c1(C BL, AL Y } 1) =2-
eauivalent(A, Al),
eauivalent(X, EBE1).
contrarv(¢1C A B), [_ ¢V Cls 1) 2=~
contrarv(¢cl(A, B)y Lls).
/% ortcls — false & X =3 false #/
ortocls(X, [false 3) -
member{ false, X).
/¥ optcls — true & X => X #/
ortcle(X, [true 1) -
member{ true, X).
ortcls(X, X). /% catoch all =/
VE:
data base
#*/
view!{ rpurils, student ™ name).
viewl(hishraid,
(emplovee @ [salary = 1001) Cname, salary]
view(manualwarker,
emrlovee@l~(dert = 7)Y or (dert = % and section = 2Z2)3

view!{ all_staff,
deptl_stalff t+1 deetl_ staff).
view(deptl_stafi,

sectionfA_etaff s+ sectionbostaff).

relationt emrlavee).
relation(sectioenfA_staff).
relation{ sectionB_ostaff).
retationd dertZostaff).
relation(student).
relation(staff).

characterictic(sectionA_staff, [section = "N).

characteristic(secticonBostaff, [~({section =

290

TATYT D).

#/

) w

.

ADIBA

ASHTON

BABB79

BAYER

REFERENCES

Adiba, M., Caleca, Y.J., and Euzet, C., "A
distributed data base system using logical
relational machines®", Proc. 4th Conf. on
Very Large Databases, Berlin, 1978.

ASHTON-TATE. "DBasell Assembly-Language,
Relational Database Management System”.
Reference Manual. Ashton-Tate.
California. 1981.

E. Babb. "Implementing a relational
database by means of specialized hardware".
ACM Transac. Database Syst. 4, 1. March
79. pp. 1-29.

Bayer, R., and McCreight, E., "Organization
and Maintenance of large ordered indexes".
Acta Informatica 1,3 (1972), pp. 173-189.

291

BOCCA

BOCCAS82

BURKHARD

CHAM

CLOMEL

CODD7¢

COoDD72

J. Bocca. "On the Design of Personal Data
Base Systems"., IUCC-81 Colloquium,
September 1981.

J. Bocca. "Control of Distributed System -
CDS". 1Internal Memo. Dept. of Computer
Science, Bristol University. December
1982.

Burkhard, W.A., "Hashing and Trie
Algorithms for Partial Match Retrieval®,
ACM TODS l, 2; June 1976' pp. l75"l87t

Champine, G.A., "Six Approaches to
Distributed Databases", Datamation 23, 5,
May 1977, pp. 69-72.

W. Clocksin and C. Mellish. "Programming
in Prolog", Springer-verlag, 1981.

E.F. Codd. "A Relational Model of Data for
Large Shared Data Banks". CACM, 13, 197¢.
pp. 377-387.

E.F. Codd. "Relational Completeness of
Data Base Languages". IBM Research Report
RJ9¥9. New York, March 72.

292

COMMER79

CPM

DATE

DEPPE

FAGIN

FREDKIN

GALLAIRE

D. Comer. "The Ubiquitous B-tree",
Computing Surveys, Vol. 11, No.2, June 79.

CP/M Operating System, Digital Research
Corp.

Date, C.J., "An Introduction to Data Base
Systems", 3rd ed., Addisson-Wesley, 1981.

Deppe, M.E., and Fry, J.P., "Distributed
Data Bases: A summary of research",
Computer Networks 1, 2, Sept. 1976, pp.
139-138.

Fagin, R., Nievergelt, J., Pippenger, N.,

and Strong, H.R., "Extendible Hashing - A

Fast Access Method for Dynamic Files", ACM
TODS 4, 3 (1979), pp. 315-344.

Fredkin, E.H., "Trie Memorvy",
Communications of the ACM, Vol. 3, No. 9,
1960, pp. 4906-499.

Gallaire, H., and Minker, J., "Logic and
Data Bases", Plenum Press, 1978.

293

GUDES
Gudes, E., and Tsur, S., "Experiments with
B-Tree Reorganization", Proc. ACM SIGMOD
1980, pp. 208~-205.

HELD75
D.G. Held. "“Storage Structures for
Relational Data Base Management Systems®.
Memo No. ERL-M533. Electronics Research
Laboratory - University of California,

Berkeley, August 75.

HELLER
Heller, J., and Osterer, L., "The Design
and Model of the BNL Archive and
Dissemination System", Proc. 1977 Berkeley
Workshop on Distributed Data Management and
Computer Networks, May 1977, pp. 161-181.

HELSTO75
G. Held and M. Stonebraker. "Storage
Structures and Access Methods in the
Relational Data Base Management System
INGRES". Memo No. ERL-M5#5. Electronics
Research Laboratory - University of

California, Berkeley, March 1975,.

HEVNER
A. Hevner. "“The Optimization of Query
Processing on Distributed Database
Systems", Ph.D. Dissertation, Purdue
University, 1979.

294

HEVNERY

HONEYW

HOPCROFT

HOSA

HS75

HSW75

HUTT78

Hevner, A.R. and Yao, S.B., "Query
Processing in Distributed Database
Systems", IEEE Transactions on Software
Engineering, Vol. SE-5, 3, May 1979, pp.
177-187.

HONEYWELL. LEVEL 68 (Software). Reference
Manuals: LINUS and MRDS.

Hopcroft, J., Aho, A., and Ullman, J.,
"Data Structures and Algorithms",
Addisson-Wesley, 1983.

Horowitz and Sahni, "Fundamentals of
Computer Algorithms", Computer Software
Engineering Series, PITMAN, 1978.

G. Held and M. Stonebraker. "B-trees
re-examined”, Memo No. ERL~-M528.
Electronic Research Laboratory, University

of California, Berkeley, July 75.

G. Held, M. Stonebraker and E. Wong.
"INGRES ~ A Relational Data Base Management
System". AFIPS - Conference Proceedings,
Vol. 44, USA, 1975.

A. Hutt, Relational Data Base Management
System., Willey. Dec. 1979.

295

IBM66

JACOBSON

JARKE

JARVAS

JOHNSON

KNUTH

KOWALSKI

IBM Corp. “OS ISAM Logic". 1IBM, White
PlainS, NnYo' GY28"6618. 1966-

Jacobson, B., "DataEase vs. Condor and
dBase II", BYTE, October 1984, pp. 289-302.

Jarke, M., Clifford, J., and vassiliou, Y.,
"An optimizing Prolog Front-End to a
Relational Query System", Proc. ACM SIGMOD
84, pp. 296-306.

Jarbe, M., Vassiliou, Y., "Coupling expert
systems with database management system",
in Reitman, W. (ed.), Artificial
Intelligence Applications for Business,
Ablex, Norwood, NJ, 1984, pp. 65-85.

S.C. JOHNSON. "YACC - Yet Another
Compiler-Compiler”. Bell Telephone
Laboratory. Murray Hill, N.J.

Knuth. "The Art of Computer Programming",

Kowalski, R., "Logic for Problem Solving",
Nilsson, J. (ed.), Artificial Intelligence
Series 7, North Holland, 1979, pp. 37-42.

296

LANG78

LARSON

LITWIN78

LITWINS1

MISTRESS

NAKAMURA

NICOLA

G. Langdon, Jr. "A note on associative
processors for data management". ACM
Trans. Database Syst. 3, 2. June 78.

Larson, P.A., "Dynamic hashing", BIT, Vol.
18, 1978, pp. 184-281.

Litwin, W., "virtual Hashing: a
dynamically changing hashing", Proc. 4th
Int. Conf. on Very Large Data Bases,
Berlin, 1978, pp. 517-523.

Litwin, W., "Trie Hashing", ACM-SIGMOD 81.

Mistress User Manual.

Nakamura, T., and Mizoguchi, T., "An
Analysis of the Sotrage Utilization Factor
in Block Split Data Structuring Schemes",
Proc. 4th Int. Conf. on Very Large
Databases, Berlin, 1978.

Nicolas, J.M., and Yagdanian, K.,
"Integrity checking in Deductive Data
Bases", in Logic and Data Bases, Gallaire,
H., and Minker, J. (ed.), Plenum Press, New
York, 1978, pp. 325-344.

297

0ss

PALERMO

PECHERER

PROTEUS

QUITZOW

RJLK78

E. Ozkarahan, S. Schuster, and K. Sevcik.
"performance evaluation of a relational
associative processor". ACM Trans.
Database Syst. 2, 2. June 77. bpp.
175-195.

R. PALERMO. "A Data Base Search Problem”,
Fourth International Symposium on Computer
and Information Science (COINS IV), Miami
Beach, Florida, 1972.

R. Pecherer. "Efficient Retrieval in
Relational Data Base Systems", Ph.D.
Dissertation, University of California,
Berkeley, 1975.

PROTEUS working papers. Coordination of
the PROTEUS project: P. Stocker, Computing
Centre, University of East Anglia. Norwich
- UK. 1981-1983.

Quitzow, K.H., and Klopprogge, M., "Space
Utilization and Access Path Length in
B-Trees", Inf. Systems, Vol. 5, pp. 7-16.

D.M. Ritchie, S.C. Johnson, M.E. Lesk, B.W.
Kernighan. "The C programming language".
The Bell System Technical Journal.
July-August 78.

298

ROSENBERG

RT74

SAGIV

SKCWHC

STOCKER

STONENEUH

Rosenberg, A.L., and Snyder, L., "Time and
Space Optimality in B-Trees", ACM TODS 6, 1
March 1981, pp. 174-183.

E. Ritchie and K. Thompson. "The UNIX
Time-Sharing System”. CACM, 17, 1974. pp.
365~-375.

Y. Sagiv. "Optimization of Queries in
Relational Databses", Ph.D. thesis,
Department of Electrical Engineering and
Computer Science, Princeton University,
October 1978.

Shi-Kuo Chang and Wu-Haung Chen. "A
Methodology for Structured Database
Decomposition”™. IEEE Transactions on
Software Engineering. Vol.6. No.2. March
1989.

Stocker, P.M. et.al., Paper on PROTEUS.
Proc. 3rd Nac. Conf. on Data Bases, UK.,
1984.

Stonebraker, M., and Neuhold, E., "A
distributed data base version of INGRES",
Proc. 2nd Berkeley Workshop on Distributed
Data Management and Computer Networks,
Berkeley, May 1977, pp. 161-181.

299

STOROWE
M. Stonebraker and L.A. Rowe.
"Observations on Data Manipulation
Languages and their embedding in general
purpose programming languages"., Memo No.
UCB/ERL M77/53. Electronics Research
Laboratory - University of California,
Berkeley. July 1977.

SWKH76
M. Stonebraker, E. Wong, P. Kreps and G.
Held. "The design and Implementation of
INGRES". Memo No. ERL-M577. Electronics
Research Laboratory - University of
California, Berkeley, January 1976.

TAMMINEN
Tamminen, M., "Order preserving extendible
hashing and bucket tries", BIT 21, 1981,
pp. 419-435.

ULLMAN
J. Ullman. "Principles of Data Base
Systems". Computer Software Engineering
Series, PITMAN, 1980.

VETMAD
M. Veter and R.N. Maddison. "“"Database
Design Methodology". Prentice-Hall
International. 1981.

WIEDERHOLD

Wiederhold, G., "Database Design",
McGraw-Hill, 2nd edition, 1983.

309

WOODAL

WOoYU

WUN

YAO

YOUSSEFI

J. Woodfill et.al. INGRES version 6.2.
Reference Manual. Memo. No. UCB/ERL
M79/43. Electronics Research Laboratory,
University of California, Berkeley, May
1979.

E. Wong and K. Youssefi. "Decomposition -
A Strategy for Query Processing", ACM
Trans. on Data-base Systems, Vol.l, No.3,
pp. 223-241, 1976.

Wun, S$.8., "On a High-Performance VLS]
Solution to Database Problems", Ph.D.

dissertation, Carnegie-Mellon Univ., 1981.

Yao, A., "On Random 2-3 Trees", Acta
Informatica 9, 1978, pp. 159-170.

K. Youssefi. "Query Processing for a
Relational Database System", Ph.D.
Dissertation, University of California,
Berkeley, 1978.

301

BIOGRAPHICAL NOTE

Jorge Bernardino Bocca was born in Santiago, Chile on
26th September, 1954. He graduated with a Mention in
Mathematics from the Liceo de Aplicacion, Santiago,
Chile, in 1968. He attended University of Chile (School
of Economics), receiving a B.Sc. degree in Economics in
May 1973. In 1973 he worked for the National Copper
Corporation - CHILE (CODELCO) as Systems Analyst. From
mid-1974 and part of 1975, Jorge was an Assistant
Lecturer teaching "Information Systems" at the
Universidad Nacional del Sur, Bahia Blanca, Argentina.

From October 1976 to July 1978, he attended St.
Andrew's University, Scotland, receiving an M.Sc. in
Computational Science for a thesis entitled "RAL -
Relational Algebra Language”. In August 1978 he joined
the Institute of Hearing Research of the Medical Research
Council, as a Systems Programmer. In the Spring of 1979,
he started work at the Computer Studies Group of the
University of Southampton. Here, under the supervisiion
of Professor David W. Barron, he was a Research Assistant
working on a project studying some efficiency problems of
relational data base management systems. While working
on this project, in October 1980, he registered as
part-time Ph.D. student at Southampton University.

Early in 1982, he joined the Computer Science
Department at Bristol University. As Research Assistant
first and as Research Associate later, he was a member of
a research team working in the area of heterogeneous
distributed data base management systems.

Since June 1983, Jorge has been Lecturer in Computing
Science at the University of Ulster, Coleraine, County
Londonderry, Northern Ireland. He is a member of the
British Computer Society.

382

