

University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any

accompanying data are retained by the author and/or other copyright owners. A

copy can be downloaded for personal non-commercial research or study, without

prior permission or charge. This thesis and the accompanying data cannot be

reproduced or quoted extensively from without first obtaining permission in

writing from the copyright holder/s. The content of the thesis and accompanying

research data (where applicable) must not be changed in any way or sold

commercially in any format or medium without the formal permission of the

copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic

details must be given, e.g.

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton,

name of the University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]

REFERENCE ONLY
THIS BOOK MAY NOT BE

TAKEN OUT OF THE LIBRARY

UNIVERSITY OF SOUTHAMPTON

A Desk-top Information Manager

Jorge B. Bocca

Thesis submitted for the Degree of Doctor of Philosophy

UNIVERSITY OF SOUTHAMPTON

1985

ACKNOWLEDGEMENTS

First and above all, I would like to thank Professor

David W. Barron for the helpful and timely comments he

made while supervising this work. I am grateful to Mark

Wallace who made me aware of many design drawbacks and

forced me to rethink innumerable problems that I had

believed solved. Special thanks must go to Michael

Freeston for his pragmatism when the flow of ideas took

me to impossible dreams, Professor Michael Shave and Dr.

Maurice Flower for all their support and encouragement.

In particular, I would like to thank Carol Kealey for

typing this thesis. Finally but not least, I would also

like to acknowledge the many comments and discussions

with the members of the Computer Studies Department at

Southampton University.

— i —

UNIVERSITY OP SOUTHAMPTON

ABSTRACT

Faculty of Mathematical Studies

Doctor of Philosophy

A Desk-top Information Manager

Jorge B. Bocca

This thesis describes the principles, the design and
the implementation of an information management system.

Because this system is intended for general purpose
use, it needs to be flexible to lend Itself to multiple
uses, portable to take advantage of new hardware,
expandable to provide a regulated growth path and above
all easy to use. A Desk-top Information Manager (ADIM)
was designed and implemented to satisfy these
requirements.

The main core of ADIM is a highly efficient
interconnectable "desk-top" data base management system.
This data base system is of a relational type and
provides users of it with an interface based on
relational algebra. ALFRED is a family of languages
designed and implemented for use with ADIM.

This thesis also discusses efficiency problems in
relational systems and their solutions within ADIM, ways
of implementing the interconnection of data bases and
applications of ADIM.

— i i

TABLE OF CONTENTS

1. INTRODUCTION.

1.1 Goals and Motivations
1.2 Review
1.3 Organization of the Thesis

2. DESIGN GOALS.

2.1 Simplicity
2.2 Cost effectiveness and portability
2.3 Modularity
2.4 Compactness
2.5 Dynamic data and static structures
2.6 Efficiency
2.7 Distributed data and processing power
2.8 Decomposition
2.9 Data base design
2.10 Operational Overview

3. LANGUAGES.

3.1 Introduction
3.2 ALFRED
3.3 An introduction to retrieve
3.4 Algebra Operators
3.5 Other Commands
3.6 Syntax of ALFRED-U
3.7 The user and the languages

4. ARCHITECTURE.

4.1 ADIM - Basic Modules
4.2 Query Generators: G-units
4.3 Query Processors: p-units
4.4 Control Unit: C-unit
4.5 Segments and Concurrent Processes

-i i i-

5. DECOMPOSITION.

5.1 Introduction
5.2 Basic Concepts
5.3 Decomposition Procedure
5.4 Design Tools
5.5 Retrieval Tactics
5.6 Implementation
5.7 Some comments on decomposition

6. DATA STRUCTURES AND NATURE OF DATA.

6.1 Efficiency
6.2 Random Directories
6.3 Extendible Hashing
6.4 Dynamic Trees
6.5 B-Tree Implementation
6.6 Empirical Tests
6.7 Cost Estimation
6.8 Dynamic Structures

7. IMPLEMENTATION OVERVIEW.

7.1 Introduction
7.2 Sub-systems
7.3 CQL
7.4 FML
7.5 Utilities
7.6 Special Piles
7.7 System Catalogues
7.8 Some Comments

8. CONCLUSIONS AND FURTHER WORK.

APPENDICES.

A. ALFRED Demonstration
B. Utilities to the DBA: a demonstration
C. FML demonstration
D. ALPRED-U to QUEL: a demonstration
E. ALPRED-U to QUEL: Source code
F. Binary Cyclic Codes
G. Cyclic Codes Algorithms: a sample
H. ALFRED VC to K: Translator Source Code

REFERENCES.

— i V—

CHAPTER 1

INTRODUCTION

1.1 Goals and Motivations -

In this thesis I advocate the use of the relational

model of data for the design and implementation of a

personal data base system. Recent research in relational

data base systems has produced solutions which rely on

large and powerful computer systems. I have concentrated

on solutions based on small computer systems. My design

concentrates on the use of multiple microprocessors.

These processors in conjunction with appropriate

algorithms can produce highly efficient personal data

base systems. The design gives special consideration to

future expansions of these personal units. The aim has

been to design interconnectable 'desk-top* data base

systems.

Small is beautiful, and certainly this is the case of

1

all microprocessor based systems. Apart from cosmetic

considerations, low cost and friendliness are the

over-riding factors in the design of personal computer

systems. In this thesis, I attempt to demonstrate the

feasibility of designing and implementing a personal data

base management system which complies with the above

requirements.

I believe that a personal data base management system

must be; flexible to lend itself to multiple uses,

portable to take advantage of new hardware, expandable to

provide a regulated growth path and above all, easy to

use.

Data independence and the ability to formulate

queries in a non-procedural fashion are the distinctive

virtues of the relational model of data [CODD70]. It is

because I believe that these virtues provide an adequate

base for flexibility, portability, expandability and ease

of use, that I advocate the relational model of data for

the design and implementation of a personal data base

system.

Although many people may argue against a relational

approach on the grounds of efficiency, I firmly believe

that appropriate optimization techniques once

incorporated into the design of a personal data base

2

system can produce an efficient implementation.

In pursuit of the above goals, I have designed and

implemented a personal data base management system based

on the relational model. ADIM - A Desk-top Information

Manager - is the name of this system. ADIM embodies the

design principles and ideas presented in this thesis.

ADIM’s requirements of flexibility and expandability

demanded an architecture where distributed systems and/or

multiprocessor systems could be used advantageously

depending on the circumstances. Thus, for the sake of

efficiency, a user who starts on a one-site-single

processor personal system can progress to a

one-site-multiprocessor system. Alternatively, another

user might have a need for a growth path leading to a

loose distributed system, but owing to financial

considerations he/she starts with a one-site personal

system. An example of the first case is a data base

system for use in an automatic document classification

system, where the growth in the quantity of documents to

classify is accompanied by a gradual deterioration in the

performance of the system. Performance in this case, can

be improved by increasing the number of processors in the

system. The second case is examplified by a university

data base. This data base could have been originally set

up in the mathematics department and followed later by

3

the installation of a data base in the physics

department.

A logical expansion can be obtained by

interconnecting both data bases into a unified

distributed system.

In order to develop ADIM as a highly efficient

interconnectable "desk-top" data base system, three

problems needed to be solved;

(a) distribution of data traffic between
processors/sites;

(b) distribution of data traffic between secondary
and main memories;

(c) processors scheduling.

A direct attack on the data traffic bottlenecks, (a)

and (b) , is to curb the amount of traffic in the most

saturated data pathways of the data base system. For

example, if we assume parallel processing in a

multiprocessor site with several disc units, it would be

more efficient to have each processor interacting with a

different disc unit rather than several of them

interacting with one disc. This is because the disc

channel capacity would not be saturated and therefore, no

processor would be kept waiting for other processors to

finish.

4

In order to obtain a meaningful and efficient

distribution of data onto the different units of

secondary storage and throughout the interconnected

"desk-top" data base systems, data must be partitioned.

Decomposition techniques and data base design tools

provide the necessary elements for a solution to problems

(a) and (b). Techniques for decomposition of a data base

are presented in chapter 5, together with some tools for

the design of data bases.

Unfortunately, as a result of decomposing a data

base, simple user's queries can become very complex

queries. To solve this problem, ADIM makes use of

techniques based on optimization by query transformation

[PALERMO, PECHERER]. Lastly, but not least in

Importance, once a relation has been identified for

retrieval, this operation should be executed in minimal

time. For this, data structures and access methods

appropriate to the general nature of data bases should be

used. B-trees [COMMER79] are used by ADIM as the unique

data structure. This, I feel is a very efficient

solution for static and volatile data.

Finally, searching strategies based on the particular

data base and the system's architecture produce the

solution to problem (c). Cost functions were defined, so

that decisions regarding alternative strategies could be

5

made. A discussion of cost based strategies in ADIM is

held in chapter 6.

1,2 Review -

The development of the earliest and possibly most

comprehensive relational data base management system to

date - INGRES, was completed by a team working at the

University of California, Berkeley, under the direction

of M. Stonebraker [HSW75]. The proposal of a relational

model of data is the contribution of E.F. Codd [CODD70].

Considering the potential areas of application it is

not a surprise that research and development of

distributed data base systems is a very active field

[HELLER, STONENEUH, HEVNER, DEPPE, ADIBA, STOCKER]. Some

experimental systems have been implemented [CHAM,

HELLER], while others offering many interesting features

are being developed. The Polypherne project [ADIBA] in

France and. the PROTEUS project [STOCKER] in the UK are

distinctive examples of this trend. These projects, like

similar projects in the USA, are all orientated towards

widely distributed computer networks. As far as the

author knows, not much emphasis has been placed on the

design and implementation of data base systems for small

microcomputers sharing a common pool of data. Also, very

6

very few relational data base management systems capable

of running on small microcomputer (personal computers)

have been implemented. The existing systems in this

class do not exhibit a great deal of sophistication.

Perhaps the most popular among these systems is DBasell

[ASHTON], Other systems in this class are; Data Ease

and Condor [JACOBSON].

The distribution of processing power and storage

cells has a significant effect on the design of data

bases. At the global level of design, a common data

model is required. A global model which supports

heterogeneous data models at the local nodes is the main

feature of PROTEUS [STOCKER],

Another problem of particular importance to

distributed data base management systems is the

partitioning of data bases into physically distributed

files. Interesting results in this area have been

reported in recent years [SKCWHC, WUN] . Siang Wung•s

solution is based upon the use of specialized hardware

[WUN].

Because of the efficiency considerations, research

into access methods, data storage structures and file

organization techniques have received a deserved amount

of attention [HS75, HELD75, HELSTO75, LITWIN, TAMMIEN,

7

YAO, FREDKIN, FAGIN, QUITZOW, LARSON, BAYER, GUDES,

BURHARD]. B-trees [BAYER, COMMER79] and Extendible

Hashing [FAGIN] have proved to be very efficient schemes

for handling very large files in relational data bases.

Recently, interest in data bases for expert systems

has grown rapidly. Here, efforts to bring together

methods from the fields of artificial intelligence and

data base have created an area of mutual interest in both

research communities. A number of researchers in recent

years have seeked to exploit the similarities between

logic based deduction and relational data base concepts

[GALLAIRE, KOWALSKI, NICOLAS]. Interesting results have

been produced by the use of AI techniques in conceptual

modelling [JARVAS] and in the solution of efficiency

problems of relational data base systems [JARKE].

1.3 Organization of the Thesis -

I have divided the exposition into eight chapters and

eight appendices. Chapter 1 is this introduction,

chapter 2 discusses the design principles, chapter 3

presents the users' interface to the system, ALFRED a

family of languages, chapter 4 discusses the major

architectural features of ADIM, while chapters 5 and 6

cover the details of solutions to the efficiency

8

problems, chapter 7 is an overview of the implementation

of ADIM, and finally, chapter 8 provides concluding

remarks and some open problems. The appendices provide

demonstrations of ALFRED, utilities for the data base

administrator, and complete listings of the more

interesting programs in the implementation of ADIM.

9

CHAPTER 2

ADIM - DESIGN GOALS

ADIM is a relational da

primarily intended for use

chapter presents a general

goals in ADIM.

ta base management system,

on microcomputers. This

description of the design

2.1 Simplicity -

At the architectural level, simplicity is the

predominant theme. I believe that a simple language does

not necessarily reduce the power of expression available

to users. It might produce longer sequencies of queries,

but the queries themselves would not be more difficult to

express than in a more complex language. In terms of

efficiency, there are advantages in using a simple

language; there is no need for sophisticated and bulky

software to deal with major query decomposition [WOYU];

10

the size of the parser for the language is considerably

reduced, and so grammatical and semantic analysis is

accomplished with savings in space and time; but above

all, the application of optimization techniques and the

estimation of costs becomes simpler.

The query language in ADIM is of an algebraic type

[CODD72] , and includes; join, an extended restriction

operation, projection, union, relative complement, and

aggregate operations such as average and count.

Three different versions of the query language

co-exist in ADIM. ALFRED is a family of languages for

use with all types of relational systems. ALFRED-U is a

language for casual users, while ALFRED-VC and ALFRED-K

provide the interface between ADIM and general purpose

languages such as 'C' and PROLOG [CLOMEL, RJLK78].

Details of these linguistic variations of the ALFRED

language are reported in chapter 3.

2.2 Cost effectiveness and portability -

The imposition of any computer model or operating

system would defeat one of the major objectives of ADIM,

that of COST EFFECTIVENESS. Portability of ADIM is only

restricted by the specification of a minimum hardware

11

configuration, that is an 8-bit microcomputer system able

to run the CP/M Operating System [CPM].

2.3 Modularity -

Modular expandability is implemented in ADIM, not

only by allowing the hardware to expand locally, but also

laterally, by interconnection of two or more ADIM

systems. In this way, the sharing of data by a community

of users is possible, i.e. an architectural design for

interconnectable 'desk-top' data base units.

2.4 Compactness -

A unique file structure used throughout the entire

data base system has not only made implementation

simpler, but has also contributed to the production of a

more compact and efficient data base system.

2.5 Dynamic data and static structures -

The choice of B-trees as the unique file structure

has provided ADIM with the capability of dealing

efficiently with volatile data without jeopardizing

12

performance on more stable data environments. Other

types of static structure, significantly ISAM [IBM66]

type files, have a tendency to rapid deterioration of

performance on volatile data.

But above all, B-trees are one of the cornerstones of

an effective costing system. The heavy extra load

imposed on the data base system by the collection of

statistics for optimization purposes is avoided, and a

neat, clean alternative is offered by the use of B-trees.

It is this file structure, used in conjunction with

cost functions which provides a basis for run-time

optimization in ADIM.

2.6 Efficiency -

The choice of the relational model of data, as a

central feature of ADIM, on its own induces significant

problems of efficiency, in addition to those already

found by the implementation of a non-relational data base

management system for microcomputers.

Efficiency is sought in ADIM at three levels: design

decisions at an architectural level, during the setting

up of data bases by the Data Base Administrator, and

13

dynamically at run-time.

2.7 Decomposition -

The use of D-join and D-union in the process of

decomposition [BOCCA] will normally produce relations

with a small number of attributes and relatively small

cardinality. ADIM, in consequence, assumes small

relation sizes to determine basic optimization

strategies. Thus, while many relations may be involved

in a query, their relative sizes are small. This

approach seeks a maximization of parallelism in the

evaluation of queries. Decomposition is discussed in

chapter 5.

2.8 Distribution of data and processing power -

An architecture for easy distribution of data and

concurrent processing has been sought since the earliest

stages of design. This can be seen throughout the

system, from the file structures supported at the lowest

level of the system up to the data base design tools

provided by ADIM.

14

2.9 Data base design -

The provision of design tools to the data base

administrator, not only induces good design of the data

base by encouraging normalization, data integrity and

security, but also produces small relations to be stored

and manipulated by the data base system. This approach

does not restrict the diversity of views that can be

supported in the data base, on the contrary it encourages

a versatile use of views at the highest level. The basic

tools provided by ADIM for data base design are:

decomposition functions [BOCCA] and enforced use of

unique keys.

2.10 Operational overview -

Hypothetically, a user of the ADIM system may enter a

query at any node in a network of microcomputers (and

indeed, computers in general). Since distribution

details are invisible to the user, the query is submitted

as if the data base were centralized at the user's node.

Likewise, the result of the query is placed at the user's

node if not specified otherwise.

Parsing of the user's query is normally done at the

entry node. The subset of the data base required to

15

satisfy the query is determined by a master node.

Consultation of the system's catalogue (itself, a set of

relations) provides the locations in the network of the

required data. Then the query is decomposed into

subqueries, which in turn are submitted to remote nodes

in the network for processing. At this stage and for a

majority of cases, more than one decomposition of the

query is possible and several alternative strategies of

processing thus emerge. A cost analysis of the different

strategies is undertaken, cost comparisons are made and a

strategy is selected. This results in sub-queries which

are processed by remote nodes. The intermediate

relations produced by the remote nodes are composed by

the master node into one relation. This relation is

finally passed to the entry node which originated the

query.

16

CHAPTER 3

LANGUAGES

3.1 Introduction - ALFRED -

This chapter discusses a group of languages available

in ADIM. All of these languages belong to a family, and

they provide users of ADIM with facilities to create,

maintain and destroy data bases. In addition, once a

user starts interacting with an ADIM data base, these

languages provide facilities to create, maintain and

destroy relations, as well as to query, input, delete and

update data on the relations. The query section of these

languages are based on a relational algebra [C0DD72].

Except for the syntax, the operators of the algebra are

the same in all the languages. The group of languages is

given the generic name: ALFRED - A Language Por

RElational Decomposition. The different variations are;

17

ALFRED-U : ALFRED for Users^

ALFRED-VC : ALFRED with Views and Characteristics,

ALFRED-K : ALFRED for Kernel.

Users of ADIM can Interact with their data bases by

using any of the three syntaxic variations of ALFRED: U,

VC or K. It is expected that casual users would favour

ALFRED-U. ALFRED-VC was designed for use by data base

administrators, Prolog programmers and in general, the

serious users of ADIM. Users interested in using ADIM

from their own favourite programming language, can do so

by using ALFRED-K.

The subsequent discussion is divided into sections.

The first section introduces ALFRED in general, without

paying much attention to the syntaxic details of it.

Subsequent sections discuss the syntax and semantic of

ALFRED. The chapter is closed with a discussion on the

rationale for having three different syntaxic versions

for ALFRED. As a preamble to the discussion, I should

mention here, that although all of the facilities in

ALFRED are described in this chapter, I have focused on

the query facilities. This is so, because it is in the

query sublanguage where the differences among the three

versions of ALFRED, are more pronounced.

18

3.2 ALFRED -

ALFRED is essentially a command language for the

manipulation of relational data bases. It does Include

facilities to create, delete and modify data bases as

well as the relations within the data bases. Its

retrieval command uses a query sublanguage based on

relational algebra, [C0DD72], i.e. a collection of

operators which deals with whole relations, yielding new

relations as a result. The command to delete data from a

given relation, uses a subset of the retrieval

sublanguage to specify the deletion criteria. The same

thing applies to the update command. A discussion on

some of the main commands in ALFRED is started below with

the retrieval command.

It is obvious that the retrieval power of the query

sublanguage would be ultimately determined by the set of

algebra operators selected for the sublanguage. Because

of this, I aimed to define the query sublanguage, in

ALFRED'S retrieval command, with a set of operators that

is complete in a relational sense [CODD72] . Also, for

self-evident reasons, I tried to make the syntax of this

sublanguage, easy and efficient to use. That is, the

sublanguage should encourage users to produce clear

sentences, while at the same time, it should discourage

them from using long and convoluted sentences.

19

R. Pecherer as part of his work in query optimization

[PECHERER], proposed four equivalent and complete sets of

operators. These sets were:

SI = {
restriction, product,
projection, division

)

S2 = (
join, projection,
difference

S3 = {
restriction, product,
projection, difference

S4 = {
join, projection,
division

}

He also proved that algebraic expressions containing

operators taken from any one of these four sets can be

mechanically converted to equivalent expressions using

operators of any one of the other three sets. For the

purpose of selecting a minimum set of operators for

ALFRED, a closer inspection of the four sets is

undertaken below.

At first, due to their simplicity, the use of product

and restriction looked very attractive. However, join

20

and restriction are very common occurrences in queries.

After some consideration, I adopted join and restriction,

since product can easily be generated by using join with

a condition evaluating to true in all cases. At a later

stage and after some practical experiences with ALFRED, I

felt that in order to facilitate the construction of

ALFRED'S sentences, product was a desirable operator.

Thus, product was added to the retrieval set.

From the point of view of optimizing the processing

of queries, the choice of join and restriction also gave

me a greater scope. Once the previous decision was

taken, the choice of a set of operators was greatly

simplified.

The second choice to be made was between the division

and set difference operators. The transformation of an

expression using division into an expression involving

product, projection and difference is by no means simple.

Nevertheless, queries involving division do not occur

very often, and although queries involving difference are

not very common either, the actual implementation of

difference is much simpler than the implementation of

division. Thus, I opted for set difference and the

retrieval set became:

21

restriction, join,
projection, difference,
product

For the convenience of users and in particular the

data base administrator, I included some operators beyond

Codd's definition of relational completeness. They are

the union and intersection operators, and those data

operators normally described as aggregate

operators/functions. Examples of the latter are: total,

average, max, min, etc.

Two classes of aggregate operators are included:

scalar and vector aggregates.

A scalar aggregate when computed gives a single

scalar value. For example, one may want to know the

average age of all the students attending one particular

college.

Vector aggregates differ from scalar aggregates in

that they return a set of values. The data to be

aggregated is logically partitioned by one or more

property (ies) , e.g. age, sex, social class, etc. For

example one may want to know the average age of students

for each social class attending one particular college.

22

ALFRED-U implements the algebra operators in an

interactive query sub-language. This form is for the

convenience of casual users of ADIM. Alternatively, by

using ALFRED-VC or ALFRED-K, all of the algebra operators

mentioned in the preceding paragraphs can be used in an

embedded form as function calls in general purpose

languages, in particular Prolog [CLOMEL].

The next section introduces some of the retrieval

facilities in ALFRED, while specific details of syntax

and semantic of ALFRED are presented further on in this

chapter.

3.3 An introduction to retrieve -

As its name suggests, ALFRED performs decomposition

of queries and composition of results into relations.

This feature of ALFRED is completely transparent to

casual users of the language. For them, ALFRED-U

provides a simple and easy to use interface to their data

bases. The data bases themselves, would normally be set

up by a data base administrator (DBA). To do this, the

DBA will normally use ALFRED-VC, a version of ALFRED that

knows about views and characteristics. At this level,

the DBA is also provided with a number of data base

design tools. The tools, views and characteristics are

23

discussed at length in Chapter 5. ALPRED-K is a virtual

machine for the ALFRED-VC interpreter, and as such, it is

hard to use by ordinary users.

As an introduction to the syntax of ALFRED and also

to obtain an intuitive feeling for the usefulness, power

of expression and general difficulty in using its

retrieval facilities, some simple queries, all written in

ALFRED-U, are presented below.

RESTRICTION:

The restriction operator chooses those tuples of a

relation which satisfy a given condition. For example,

RETRIEVE contract WHEN [date>' 31/12/81']
INTO new_contracts?

could be interpreted as; those contracts signed after

the 31/12/81; put them into the relation new_contracts.

PROJECTION:

This operator in its simplest form returns the

specified attributes of the given relation. and

24

eliminates duplicates from the result. The projection in

a query is specified by the INTO part of the query. For

example, the query

RETRIEVE employee WHEN [salary>10000]
INTO highpaid [name, dept, salary]?

selects the name, dept and salary of those employees

earning a salary greater than 10000. It put the data so

selected into the relation highpaid. More sophisticated

uses of the projection operator in ALFRED, allow the

specification of more general assignments of values to

the attributes in the result relation. For example,

RETRIEVE employee WHEN [dept=* production']
INTO bonus " [name, pay=salary*0.1]?

gives employees in the production department. a bonus

payment of 10% of their salary.

Trivially, at run time, the evaluation of the

restriction and projection can be collapsed together into

one process, thus eliminating the need for the generation

of a temporary relation as well as the file accesses

associated with it.

25

JOIN:

Takes two relations as operands. The result relation

is formed by the concatenation of a tuple of one relation

with a tuple of the other relation whenever their

identifying keys match. In fact, a weaker condition

applies, but in most queries, the above condition is

sufficient. An example of a query involving join, is

RETRIEVE enquiries :* contracts INTO
enq_to_contracts?

This query produces as result the relation

enq_to_contracts which relates a contract to the original

enquiry that led to it.

PRODUCT:

Corresponds to the cartesian product of two

relations. An example of its use is given later on, in

this section.

DIFFERENCE:

This is the set difference of two relations. This

26

operator indirectly and in conjunction with product,

restriction and projection provides an algebraic

counterpart to the universal quantification in a

first-order predicate calculus. For example, consider

the relation ACCOUNTS[acc_no, currency, amount] which

holds information on the type of currency used by

customers, and the relation RATES [curr_name, rate] which

holds information on the exchange rate of currencies,

then the set of queries:

RETRIEVE ACCOUNTS INTO T1 " [acc_no]?
RETRIEVE RATES INTO T2 [curr_name]?
RETRIEVE T1 (*) T2 INTO T3? /*product*/
RETRIEVE ACCOUNTS INTO T4 " [acc_no, currency]?
RETRIEVE T3 :-: T4 INTO T5 " [acc_no]?

/*difference*/
RETRIEVE T1 :-: T5 INTO acc_in_all_currencies?

produces the relation acc_in__all_currencies, with the

names of those clients who hold accounts in all the

currencies in which the company deals. Obviously, this

query could have been written in a shorter form.

UNION, COUNT and AVERAGE below, are self-explanatory.

In this example, the relation contr holds information

about contracts:

27

/*union*/
RETRIEVE contr :+: newcontr INTO allcontr?

/*count*/
RETRIEVE COUNT OF contr [product]

BY supplier_name INTO qcontr?

/*average*/
RETRIEVE AVERAGE OP contr '' [amount]

BY supplier_name INTO av_x_supplier?

3.4 Algebra Operators -

This section defines the operators of the algebra in

ALFRED. The definitions given by Pecherer for the

algebra operators, were modified in ALFRED. This was

done in order to achieve a terser syntax for the

retrieval sublanguage. practical usage of ALFRED

indicates that no significant differences exists in the

power of expression of the two languages. The definition

of the operators below, assume some familiarity with the

basic concepts of the relational model of data. Further

details about this model can be found in C.J. Date’s

book, [DATE]. The notation used in the definitions is

explained immediately after its first use, and in fact,

it is based on ALFRED-VC.

28

3.4.1 Join —

Let R and P be relations. Let r and p be tuples in R

and P, respectively. The join of R and P is defined by:

R ;*; P = { rp/K is a subset of L
and r[L] = p[K]

}

where

rp denotes the concatenation of tuples r and p,
without duplicate attributes;

r[K] refers to the set of attributes in the primary
key for relation R; and

r[L] denotes the tuple containing only those
attributes specified by the list L.

3.4.2 Product -

Let R and P be relations. Let r and p be tuples in R

and P, respectively. The product of relations R and P is

defined by:

R(*)P = {rp/r in R and p in P}

29

3.4.3 Restriction -

Let R be a relation. The restriction of R on

predicate [sel-pred] is defined by;

R@[sel-pred] = {r/r is in R
and [sel-pred] is true

}

where,

sel-pred is a boolean predicate involving
<se l-expr>, the negation ~<sel-expr>
and the connectives: AND and OR;

<sel-expr> is <expr><cmp><expr>;

<expr> is an expression involving attributes
of R, scalar constants and arithmetic
ope rators from the set {+, -^ */ /};

<cmp> i s one of (<, <=, >, >=, =}.

3.4.4 Projection -

Let R be a relation and L a list of attributes for R.

The projection of R on L is defined by;

R "^ [<L>] = { r[<L>]/r belongs to R)

30

where,

<L> is a list of <l-expr>;

<l-expr> is <att> = <sel-expr> or just <att>;

<att> is an attribute in R;

r[<L>] is the tuple containing those attributes
specified by <att> after <l-expr> has been
evaluated and the result assigned to <att>.
If <l-expr> is just <att>, it is
interpreted as <att> = <att>.

3.4.5 Union -

Let R and P be relations. The union of R and P is

defined only if R and P are union compatible [see

3.4.5.a]f by:

R :+: P = {r/r is in R or r is in P}

3.4.5 .a Union Compatible -

Relations R and P are said to be union compatible, if

the attributes for R and P are in a one-to-one

correspondence such that the corresponding attribute are

31

defined on the same domain.

3.4.6 Difference -

The difference of relations R and P is defined only

if R and P are union compatible [see 3.4.5.a], by:

R;-; = {r/r is in R and R is not in P}

3.4.7 Intersection -

The intersection of R and P is defined only if R and

P are union compatible [see 3.3.4.a], by:

R :.: P = {r/r is in R and r is in P}

3.4.8 Scalar -

Let R be a relation. A scalar x is the single value

defined by:

X:R[A] = f(r[A]), for all r in R.

32

where

f(R[A]) is the application of function f to R[A],

X is the user’s name for function f,
e.g.: TOTAL, COUNT, AVERAGE, etc.

Remark:

Por consistency purposes, ADIM always produces a

relation as result (except for errors).

3.4.9 Vector -

Let R be a relation and L a list of attributes for R.

A vector F is defined by:

F:R[A]/[<L>] = (x = (p[L],
and q is

f(q[A]))/p is in R " [<L>]
in R@[L = p[L]] for each p

3.5 Other commands -

The commands to create and maintain data bases

provided by ALFRED, also have an interactive counterpart.

Some of these commands are executed from within an ALFRED

session, while others stand as self-contained programs

33

executable as commands in the host operating system.

A summary description of these commands follow.

3.5.1 mkdev -

This command is used to incorporate a new device or

file to ADIM. In order to ensure portability as well as

improved efficiency, ADIM does not rely upon the file

structure of the host operating system. To accomplish

this, a catalogue of devices and data bases available to

ADIM is kept in the host file "alldbs". The existence of

this mechanism demands of the host operating system a

capability to create and maintain sequential files. I do

not think that this demand is a restriction in any

operating system commercially available. The sequential

file is only used for bootstrapping the ADIM system,

which in turn, only recognizes its own file structure.

Thus, the task of mkdev is to prepare the new device for

use by ADIM and to register in "alldbs" that this device

is ready for use. Por instance, by typing

mkdev data 40000

the host file "data" will be registered as an ADIM device

having 40000 pages of storage capacity.

34

3.5.2 dbmk -

The dbmk command creates a new data base by building

templates for the systems relations and registering the

name of the data base in the host file "alldbs". A

catalogue of relations in a data base is kept by a set of

relations known as system relations.

From the point of view of the implementation of ADIM,

the use of relations to describe other relations as well

as themselves, has considerably reduced the size of the

software to be written. This reduction is possible

because of the shared use of software modules between the

system and the users, i.e. there is no need to write

special software to handle system catalogues [RDBMS,

MRDS]. As an example, the command

dbmk dept 1

will create the data base 'dept* in device 1. This means

that the system relations for data base 'dept* will

reside in device 1. Users relations for this data base

(or any other data base) can reside anywhere in the ADIM

system.

35

3.5.3 dbrm -

It is the counterpart to dbmk. Thus,

dbrm dept

will release back to the ADIM system all the storage

space occupied by the relations in the data base ’dept'.

Also, the entry for 'dept* in "alldbs" will disappear.

3.5.4 display -

The issue of the display command will print the named

relation in the user's terminal. Display uses a standard

form of presentation. Typing

display staff

will print the relation 'staff in the user's terminal.

3.5.5 create -

An interactive facility to create new relations.

Create provides the user with help in the definition of

the primary key [C0DD72] for the new relation as well as

36

asking the user for the name

of this relation. The issue

and format of the attributes

of the command

create staff 1

will initiate a dialogue with the user. This dialogue,

ultimately will define the attributes and keys for the

relation ’staff. Once the dialogue is finished

(successfully) the appropriate entries will be made in

the system relations. Also, storage for ’staff will be

allocated in device 1.

3.5.6 destroy -

It is the counterpart to create. Thus, the command

destroy staff

will eliminate the relation ’staff from the system

relations and will also release the space occupied by

this relation.

37

3.5.7 append -

Interactively adds a new tuple to a named relation.

For instance, the issue of the command

append staff

will prompt the user with the name of each attribute, and

then it will use the data so collected to add a new tuple

to the relation staff.

3.5.8 delete -

Deletes those tuples in a named relation. The tuples

deleted are those which satisfy a given condition. The

condition is specified by using a subset of the language

used for retrievals. The syntax of the command follows

our own previous notational definitions, and specifically

is denoted by:

delete <relation> WHEN [<sel-exp>]

For example.

DELETE staff WHEN [age>65]?

38

remove from the relation staff all the members of staff

that are older than 65 years of age.

3.5.9 update -

Updates data in a given relation. Its syntax is

similar to the delete command. More formally, it is

denoted by:

update <relation> WHEN [<sel-expr>] INTO [<L>]

An example of update is

UPDATE staff WHEN [dept = ’production’]
INTO [salary = salary * 1.1]?

which gives members of staff in the production department

an increase in their salaries of 10%.

In general, the syntax of non-retrieval commands does

not differ very much among the tree versions of ALFRED:

U, VC and K. Hence, the discussion on the specific

syntax of these commands is postponed to chapter 5, where

the relevant syntaxic details are discussed as part of a

more general discussion on the implementation of ALFRED.

Thus, for the remainder of this chapter, I concentrate on

39

the syntax of ALFRED'S retrieval facilities.

3.6 Syntax of ALFRED-U -

The syntax of ALFRED-U is presented in this section.

The syntax for ALFRED-VG is a derivation of ALFRED-U, and

in fact, most of it has already been presented. It was

used as the notational device to explain the semantic of

the retrieval algebra, in section 3.4. The explanation

on syntax of ALFRED-K is postponed to Chapter 5, where it

is explained along with the details for the

implementation of the ALFRED interpreter. The same

applies to the non-retrieval commands of ALFRED-VC.

The notation used to define the syntax of ALFRED-U is

based on a derivation of BNF notation. Non-terminal

tokens are enclosed by < and >. Curly brackets are used

to represent an optional repetition (0 to n times). The

description of the syntax follows:

40

ALFRED-U SYNTAX

<Ucomms>

<Ucomm>

:= {<Ucomm>} OFF /*logout ALFRED-U*/

;= <retrieve> 1 2'
! <delete> ; -) 1
I <update> 1 2 1

1 <copy-str> '?'
1 <rmrel> , ? 1

I <fnkrel> ,2'
1 <rmdb> i -> e

1 <mkdb> I 7 •

1 <mkdev> « 7 e

1 <display> • 2,
1 <append> e 7 f

I <logindb> I -) I

:= 'RETRIEVE' <relexp> 'WHERE'
{<restrcond>} 'INTO'
RELATION <proilist>

1 'RETRIEVE' <aggregate> 'OF' RELATION
<proilist> 'INTO' RELATION

1 'RETRIEVE' <aggregake> 'OF' RELATION
<projlist> 'BY' ATTRIBUTE
'INTO' RELATION

<retrieve>

<relexp>

<dop>

<restrcond>

<selexps>

<selexp>

::= RELATION
I RELATION <dop> RELATION

:= :+: /*union*/
I :*: /*ioin*/
I (*) /*product*/
I :.: /*intersection*/
I :-: /*difference*/

;= •['<selexps>’]’

;= <selexp>
I <selexps> 'AND' <selexps>
I <selexps> *OR' <selexps>
I <selexps> /*not*/
I '('<selexps>')'

:= rexp 'AND' rexp
I rexp 'OR' rexp
I '~' rexp /*not*/
I '(•selexp')*

41

<rexp> ::= dexp '<’ dexp
i dexp *<=' dexp
1 dexp ’=' dexp
i dexp *>* dexp
I dexp •>=• dexp
I sexp '<• dexp
1 sexp *<=’ sexp
1 sexp *=• sexp
1 sexp ’>• sexp
j sexp *>=* sexp

<dexp> ::= NUMBER
1 <dattrib>
1 dexp *+• dexp
1 dexp •-' dexp
I dexp ’*• dexp
1 dexp '/' dexp
1 *-' dexp
j *(’dexp') '

<sexp> ;;= <sattrib>
1 STRING /*string of characters*/

<dattrib> :;= DREG /*a numeric attribute*/

<sattr ib> :;= SREG /*an alphanumeric attribute*

<projlist> :;= /*empty list*/
1 ' " ’ ' [' <pro jspeO '] '

<delete> ::= 'DELETE' RELATION 'WHEN' <restrcond>

<update> ::= 'UPDATE' RELATION 'WHEN' <restrcond>
'INTO' '['<projspec>']'

<pro j speo ::= <assign>
1 <projspec> ',' <projspec>

<assign> ::= ATTRIBUTE
1 DREG '=' dexp /*DREG - numeric

attribute*/
1 SREG '=' sexp /*SREG - alphanumeric

att*/

<copy-str> ::= 'COPY' 'STRUCTURE' RELATION 'TO'
RELATION /*replicate structure*/

<rmrel> ::= 'DESTROY' RELATION

<mkrel> ::= 'CREATE' RELATION /*interactive
invocation*/

<d isplay> ::= 'DISPLAY' RELATION

42

<rmdb> ::= 'DBRM' DATABASE

<mkdb> ::= 'DBMK' DATABASE

<mkdev> ::= 'MKDEV DEVICE POSITIVE-INTEGER

<append> ::= 'APPEND' RELATION /*interactive*/

<log indb> ::= 'LOGIN' DATABASE /*change current data
base*/

43

3.7 The user and the languages -

In this chapter, a family of languages based on a

relational algebra have been presented. ALPRED-U is a

language devised for casual users of ADIM and ALFRED-VC

and ALFRED-K are languages aimed at more sophisticated

users of ADIM. In designing these languages, I have

tried to satisfy the different and sometimes conflicting

requirements imposed on a language by the two communities

of users. In doing so, I had four options open to me:

i) Designing two languages with different roots,

but specifically aimed at both types of users.

For instance, a non-procedural query language

based on a first order predicate calculus for

the casual users and a procedural language

based on a relational algebra for the more

sophisticated users.

ii) Embedding the language for casual users into a

general purpose programming language. For

instance, an EQUEL [STOROWE] type of solution.

iii) Designing two languages sharing the same roots,

but with different external appearances. For

instance, two languages based on a relational

algebra, the first language with interactive

facilities for casual users and the second

language with functions called from a general

44

purpose programming language for the non~casual

users. Obviously, both languages supporting

the same set of relational operators.

iv) Designing a new general purpose programming

language or extending an existing one, so that

data base facilities are built into the

language.

Although case (iv) has been advocated by research

workers as the most positive solution [STOROWE], the

scale and scope of this project make this alternative

prohibitive. Consequently, I have discarded this

alternative.

I believe that case (ii) produces a mismatch between

the languages. Confusion to users is caused by the

combination of procedural and non-procedural languages.

An example of this occurs in EQUEL when a distinction has

to be made between use of interactive INGRES and *G*

programs with embedded QUEL statements.

Alternative (i) adds to the problems of (ii), the

learning of a new language

Finally, I compromised and chose an alternative that

is basically (iii) with some elements of (ii), as a

result of the analysis above. I designed and implemented

45

ALFRED a family of three languages based on a relational

algebra. The algebra fits neatly with the constructs of

high level general purpose languages of the type of 'C'

and/or PROLOG. ALFRED-U is the interactive language for

the casual users and ALFRED-VC and ALFRED-K cover the

needs of non-casual users.

46

CHAPTER 4

ARCHITECTURE

4.1 ADIM - Basic Modules -

ALFRED provides group of users with a mechanism to

support a variety of logical views over a common pool of

data. Admittedly, this is not a capability unique to

ALFRED. A number of other systems provide it as well. I

believe that it is the design philosophy and the size of

the implementation, in terms of hardware and software,

what makes ALFRED’S implementation original. Views, as

seen in ADIM [see Chapter 5], have only been implemented

in systems that largely exceed the hardware requirements

of ALFRED [HSW75, MISTRES]. I also believe that in many

of these cases, views have been added as an after thought

[MISTRES]. Because of this, the use of views in these

systems produces a noticeable degradation in performance.

47

In addition to the important role that views can play

in the definition of logical data bases, as it will be

seen in Chapter 5, I believe that they can also

contribute to improve the performance of systems of the

type of ADIM. They can be used as a convenient way of

representing data spread over the network of a

distributed data base management system. In ADIM, I

sought to incorporate the views and capabilities of

ALFRED, at the earliest stages of design. To achieve

this, ADIM was implemented as a system of loosely

connected multi-processes, which if so wanted could run

on a number of different processors, concurrently. A

description of this architectural design is given below.

Basically ADIM consists of three types of processing

nodes: query generators - G-units, query processors -

P-units and one control unit - C-unit. Several G-units

and P-units can be connected (using a bus or local area

network) to the central C-unit, Fig. 4.1. Normally, a

G-unit co-exists with a P-unit in one machine. A brief

discussion of the role of these units and their

interconnections is the content of this chapter.

FIG. 4.1

48

4.2 Query Generators: G-units -

In its most frequent use, a G-unit accepts queries in

the ALFRED-U language and prepares reports as produced by

the display command. As an alternative method, a query

or set of queries can be submitted to a G-unit in the

form of a program written in either pure ALFRED-VC or

PROLOG with embedded ALFRED-VC/K statements. This latter

method can also be used for the preparation of reports.

Queries are normally submitted to ADIM through a

G-unit. A query expressed in ALFRED-U or ALFRED-VC has

to be passed to the C-unit for decomposition and

generation of the equivalent ALFRED-K statements.

Queries expressed in ALFRED-U by the G-unit are

translated into equivalent ALFRED-VC statements, prior to

submission to the C-unit,

Queries in ALFRED-VC form are passed to the C-unit

which decomposes them and distributes the processing of

the sub-queries over the network of P-units. Queries to

P-units are expressed in ALFRED-K. The C-unit returns

result relations, normally one, and error conditions, if

any.

A G-unit is made up of three modules, as follows:

49

G-MONITOR -

This module is the outer layer of the system.

Queries are entered through the monitor using the ALFRED

monitor or a host editor. The ALFRED monitor provides a

facility to enter queries at the user’s terminal. By

using an editor, queries can be written in a file which

is given as input to the ALFRED monitor. It is also

possible at this stage, to write a pure ALFRED-VC program

or a PROLOG program with embedded ALFRED-VC statements.

These programs can make calls to the ADIM library.

G-DBMS -

This is a data base that maintains the local schema

as its only task. This data base is maintained as a

Prolog data base.

G-SCHEMA -

This is a description of what users of an individual

G-unit can see of the global system. G-Schema is a data

base which keeps information about the relations in the

system as seen from this G-unit. Partitions of relations

and physical locations are transparent to the G-Schema.

50

The relations in this data base are represented by Prolog

facts.

user

PIG. 4.2

4.3 Query Processors: p-units -

Query processors usually referred to as P~units, are

the local processing engines. A P-unit receives queries

expressed in ALFRED-K form, processes the queries and

returns the result to the calling C-unit. A P-unit only

knows about the local relations and therefore, the

queries processed by a particular P-unit must be referred

to data bases held locally. It should be noticed that

P-units not only provide a considerable processing power

but also constitute the storage nodes of ADIM.

51

The modular structure of a p-unit is as follows;

P-PROCESSOR -

This is a processing unit for local queries. This

unit is a centralized version of the kernel of ADIM,

This local data base management system handles all the

data stored in this node. It also includes the schemas

for the local data bases which are kept as relations.

P-SCHEMA -

This keeps information on the relations stored in the

local data bases.

P-DB -

These are the storage cells of the network. The

P-DBs are indeed the local data bases.

52

FIG. 4.3

4.4 Control Unit: C-unit -

The C-unit is the centre of the network. Many

G-units and P-units may be connected to one C-unit.

Every query in ALFRED-VC form is decomposed by the C-unit

into a number of local queries. If the query is received

by the C-unit in ALFRED-K form, decomposition is not

necessary and therefore the C-unit only re-routes the

query. Normally, however, queries are received in

ALFRED-VC form, they are then decomposed and transformed

to ALFRED-K form. The local queries resulting from

decomposition are sent by the C-unit to the relevant

P-units, which in turn, return an answer. Finally, the

C-unit further processes the local answers and a final

reply is sent to the G-unit responsible for the original

(global) query.

53

Thus, the C-unit is the centre of control for the

whole distributed system. It receives queries,

decomposes them into sub-queries, allocates the

processing of sub-queries to different P-units, performs

joins while composing the reply and ultimately, delivers

a relation (or relations or error messages) back to the

original source of the query. The different modules to

perform all of these tasks are described below;

C-PROCESSOR -

This receives queries in ALPRED-VC form. Once a

query has been received, the P-Processor decomposes the

query into sub-queries with the support of the C-DBMS,

which, in turn holds information about all the relations

in the system, i.e. the global schema (see C-Schema

below) . A stream of sub-queries is passed over to the

p-Switch which returns a serial reply of relations and/or

error messages. In order to recompose a reply to the

original query which has been decomposed into

sub-queries, a number of join operations has to be

performed. This task is delegated to the C-DBMS by the

C-Processor.

54

C-DBMS -

This is a specialised data base management system.

It performs two tasks. Firstly, it supports the

C-Processor in decomposing the original query into

sub-queries, and secondly, it performs joins on behalf of

the C-Processor, so that a composed reply can be obtained

from the serial replies produced by the P-Switch. In

relation to the first task, it maintains the C-Schema and

provides the network administrator with an interface, so

that security and integrity constraints can be enforced.

This module has been implemented by embedding the kernel

of ADIM into Prolog.

C-SCHEMA -

This is the global schema. This is a data base with

information about the relations existing in the system.

These relations are indeed the users views. Prolog is

used to represent the C-SCHEMA.

55

C-METHA-SCHEMA -

This is the schema describing the data stored in the

C-unit, that is the C-SCHEMA. Again, a Prolog data base

is used to describe the C-METHA-SCHEMA.

FIG. 4.4

It should be appreciated that this data base is at

the centre of control for the whole of ADIM. Perhaps,

the most important relations in this data base, are those

holding information on the distribution of data. A

description of these relations is given below:

56

The attributes,

1. R_ local - maintains information on the
relations stored in the different
local nodes.

The attributes,

Lname ;
Node ;

LogCond :

Type 1
Owner :
Cardinality :

: is the local name of the relation.
: the identifier for the node where
the relation is stored.

: is a logical condition attached to
the relation, e.g.: "all students in
this relation are in the School of
Mathematics".

: it could be public or private.
: the owner of the relation.
: the cardinality of the local
relation.

2. R_ global - maintains information on relations
as seen globally.

The attributes.

Name
Rexpr 1

DAccess, :
DSave
Timestamp,
Semaphore,
Owner,
Permission

; is the global name of the relation.
: is the ALFRED-VC expression to form
this relation from the local
relations.

: are the last access and save up to
dates.

: have the obvious meaning.

3. Node - stores information on the local
nodes.

Nodeld : is the identifier for the node.
Siteld : is the site identifier.
Host : is the host computer identifier
Owner : is the owner of the node.

57

4. Link - maintains information on every
communication in the network.

The attributes,

Linkid : is the unique identifier for the
link.

Nodeld : the identifier for the node where
this linked is sited.

Direction : the direction of the link, i.e.: IN
or OUT.

5. Linktype - maintains further information on the
link.

The attributes,

Linkid ; as in the relation Link, it is the
identifier for the link.

Protocol :
Type :

the general protocol, e.g.; X25.
the specific implementation of the
protocol, e.g.: PSS.

Speed :
CostF :
CostV :
Class :

speed factor, e.g.: 9600.
the fixed cost of using this link,
cost per unit transmitted.
the type of network, e.g.: 1-1,
broadcast, etc.

Special ; special to the link, e.g.: number
to dial.

The loading of the information to the different

relations of the data base is the task of the data base

administrator. For this purpose, a suite of programs to

carry out automatic decomposition of views is provided.

The following chapter discusses these programs in some

detail.

58

4.5 Segments and Concurrent Processes -

It is my view, that the distinction of three

processing units: G, P and C units, is a key element in

the provision of full support of segmented logical views

of data, in ADIM. At a physical level, the use of

separated schemas permits the physical decomposition of

relations, thus providing ADIM with an extensive

capability for parallelism during query evaluation. I

believe this feature to be the most important element

towards the development of efficient desk-top information

systems. It should also be noticed, that due to hardware

limitations, a unique centralized system might be

desirable. In this case, all three units could be sited

on the one machine and each of the units could be

implemented as a separate process. Communications could

be established by using intermediate files, or if the

host operating system provide them, by pipes.

A more detailed discussion on the use and

implementation of views and decomposition techniques is

held in the next chapter.

59

CHAPTER 5

DECOMPOSITION

5.1 Introduction -

Decomposition techniques and methods have several

motivations. Among others, they can be used to support

different logical views over a common pool of data, to

improve the performance of data base management systems

and to help to maintain the security and integrity of

data bases. This chapter discusses the uses of

decomposition techniques in the context of ADIM, and it

also describes some theoretical and practical aspects of

their implementation in ADIM.

Perhaps, the most obvious usage of decomposition

techniques and methods, is to provide support for the

co-existence of different views over a common pool of

data. This application rests upon logical

considerations. To explain the concept of views, let us

consider a university data base as example. This data

60

base consists of the following relations:

]

administration [
name, address, tutor,
dateofbirth, startyear, faculty

]

mathematics [
name, tutor,
startyear, subject

]

physics [
name, laboratory, startyear

computing
name, startyear, tutor,
laboratory, project

]

The relation in the data base above, could be

interpreted in a number of manners. Let us consider one

such interpretation. The central administration of the

university keeps personal data about every enrolled

student of the university in the relation administration.

People in the physics department are only interested in

their own students. The same is true in the department

of mathematics. In both of these two cases, some

additional information is required beyond what the

administration can offer. Thus, the need for relation

physics and relation mathematics arise. For instance,

information about the laboratory used by each student of

physics. Since, computing is a group within mathematics,

they too would like to keep a copy of some of the data

61

for mathematics and add to it, information that is

specific to the students of computing science. Hence,

the existance of the relation computing.

The given interpretation for the example data base,

illustrates a case where users needs for information

overlap. The data base could indeed be set up as four

independently stored files. Alternatively, the four

relations could be integrated in such a way that common

data is shared, thus avoiding duplicate copies.

This latter alternative immediately solves one

problem. Consider a student of mathematics who changes

tutor. The situation is recognized within the

mathematics department and consequently, the relation

mathematics is updated to reflect the change. But since,

staff in mathematics have no direct access to the

relation administration, no change is made to it. Thus,

a problem of integrity within the university data base

arises. Information about a particular student is

self-contradictory. By holding only one copy of the

common data, this problem would have never arisen.

In order to allow users to share common information,

and at the same time, to maintain their own associations

over the data, separated logical views should be

constructed for each group of users. To make this

62

possible, the information system in use must provide this

capability. ADIM’s support of views is based upon the

use of a number of decomposition techniques.

Efficiency can also be greatly improved by

decomposition, since processing of a query can be

partitioned into subqueries, each of which could be

processed in parallel in a distributed or multiprocessor

system. Sotrage use is also improved by sharing a single

copy of common data. In a later section on query

transformation, I show some techniques which make

advantageous use of decomposition. It should also be

noticed that the reduction in size for each one of the

physically stored relations, means that data flows can be

spread more evenly on the system's pathways, thus

avoiding major jams in the circulation of data. I

believe this last reason, to be a strong argument for the

application of decomposition techniques in distributed

and/or multiprocessor data base systems. In ADIM’s case,

this argument is even more relevant given its minimal

hardware requirements.

In addition, decomposition techniques can also lead

to more secure data bases. In the example, the

administration relation could be partitioned into two

relations, one relation holding confidential data such as

address and date of birth, while the second relation

63

holds the remaining information.

5.2 Basic Concepts -

Before a more detailed description of decomposition

techniques is undertaken, some basic concepts are

introduced. Two conceptual operations are defined:

D”Union and D-join, as well as a number of other related

concepts. These definitions follow.

5.2.1 Simple Relation -

A basic relation (or simple relation) in a given data

base is a cluster of records representing one partition

after decomposition.

5.2.2 D-union -

Relation R is the D-union of relations R and R",

denoted by

R = R' + R"

if

(1) R' and R" have exactly the same attributes;

64

(2) R' and R" have the same attributes in their
primary key;

(3) the primary key value sets of R' and R", denoted
by R*[K*:>] (Note: This notation was taken from
the book by G.Wiederhold, "Database Design",
[WIEDERHOLD]) and R"[K":>] respectively, are
mutually exclusive;

then

R = {x/x is either a tuple in R'
or a tuple in R"

5.2.3 D”join -

Relation R is the D-join of relations R' and R",

denoted by

R = R' * R"

(1) R' and R" have the same attributes in their
primary key;

(2) R'[K':>] and R"[K":>] hold any of the
relationships:

(a) R’[K*:>] is a subset of R"[K":>]
(b) R"[K":>] is a subset of R'[K‘:>]

65

(3) the attribute sets for R' and R", denoted by
R’[A'] and R*'[A"] respectively, hold the
relationship:

(R'[A'] - R'[K':>]) r\ (R"[A"] - R"[K":>]) = []

where [] denotes the empty relations, then

R[K:>] denotes the primary key for R and

R = {r/ r' is a tuple in R* and r[A'] = r*
and r" is a tuple in R" and r[A"] = r"
and r[K] = r*[K*] = r"[K’']

}

5.2.4 Compounded Relation -

A compounded relation in a given data base is a

relation defined by a decomposition expression. This

expression is made up of simple relations, algebra

operators in ALFRED, and D-join and D-union.

5.2.5 Characteristic -

The characteristic R<E> of a relation R is the

logical expression E such that E evaluates to true for

every tuple in R. For example, in our student data base,

the characteristic for each relation is:

66

computing < faculty = "mathematics" and
subject = "computing"

>

administration < true >'

physics < faculty = "physics" >

mathematics < faculty = "mathematics" >

The characteristic R<true> is referred to as the

universal characteristic.

If confidentiality was to be preserved in some of the

information in the relation administration, the

decomposition:

administration = P* * p"

where

P*[name:> address, dateofbirth]
and P"[name:> tutor, startyear, faculty]

could have been established.

5.2.6 Link -

Two views, represented by R* and R" respectively, are

said to be 1 inked if

(a) 3x,y such that xeR'<E'> and y6R"<E"> and
x[K':>] = y[K":>]

(b) (R'[A'] - R'[K':>])rA (R"[A"] - R"[K":>]) / []

67

5.3 Decomposition Procedure -

The interpretation of the world albeit a small part

of it, is a human activity. A comprehensive treatment of

the design of models to represent reality escapes the

boundaries of this work. Nevertheless some practical

help is useful. Thus, ADIM provides data base designers

with a number of tools to aid the design of data bases.

It should be reminded though, that the ultimate

responsibility rests upon the people designing the data

bases.

As expressed in the previous section, D-union and

D-join only exist as conceptual tools of analysis. The

same applies to the procedure for decomposition presented

below. Since, ADIM's retrieval performance is highly

dependent on the physical size of relations, rather than

in the number of relations involved in a query, I have

devised a decomposition procedure such that physically

large relations can be represented by compounded

relations made up of several small basic relations.

Let us begin with a matter of notation. The

partition i of relation R is denoted by R[i]. Then, the

decomposition procedure for a given set of views over a

common pool of data, is:

68

step (1). Create 3 lists;

PARTITIONS^ denoted by P.
Initially, it holds all the views in the
data base. For each view, an entry exists
in this list. An entry has three fields:

(a) a unique name for the partition, say
R';

(b) the attribute set for the partition,
i.e. R'[A'];

(c) the characteristic for the partition,
i.e. R'<E'>.

SCRATH, denoted by S.
Initially, it holds all the names of
partitions, i.e. names in field (a) of P.

EXPRESSIONS, denoted by E.
Each entry in this list has the form:

<view> = <decomposition expression>

where, <view> is the name of the view, and
<decomposition expression> is the expression
denoting this view, i.e. a compounded
relation. Initially, the list E holds the
unique names in field (a) of P, in both
sides of the •=' symbol.

69

step (2). Apply the procedure below. The element i of
list P is denoted by P[i]. The same applies
to lists S and E. The last element in a list
is denoted by LAST. In C-like notation, the
procedure is again;

for (i=l; i<LAST; i++)
for (j=l; j<=LAST; j++)

if (S[i] is linked to S[j])

partition (S[i],S[j]); /*given
below*/

enter resulting partitions
at end of P;

delete from P the entries for
S[i] and S[i];

delete S[i] and S[j] from S;
in E, replace all occurrences

of S[i] and S[j] on
the rhs of expressions,
by their equivalent
expression, using the new
partitions and the D-join
and D-union operators;

goto again;
}

Step (3). Stop. The list E holds the relevant
expressions.

The procedure partition (R', R") to partition the
views/relations R' and R" completes the general
decomposition procedure. The details of it, follow.

Step (1). Rearrange the order of attributes in R' and R"
so that they only intersect in one common
area. Notice that the tuples have not been
input yet, thus, one could imagine a
reordering of tuples in both relation such
that the intersection of R' with R" only
occurs in one common area. In pictures,

Fig. 5.1

70

step (2). A. Get R[A] = R'[A'] U R"[A"]

B. Divide R[A] into three sets:

(a) I[A] = R'[A'] nR"[A"],

notice that

R[K:>] = R'[K':>] = R"[K":>]

is a subset of

I[K:>];

(b) R'''[A'''] = R'[A'] - I[A]

k— R' ' ' ———_^j ^ — 2 — > <^—— R' ' ' ' —^1

Fig. 5.2

71

step (3). This partition of R* and R" determines three
possible relations: R’••, R**‘' and I. Now,
let us consider the relation I. If R’<E'> was
the characteristic of R* and R"<E"> was the
characteristic of R", we further divide I,
horizontally, by decomposing I into the tree
relations defined by the characteristics
R'<E'> and R"<E">. Thus, we have

I = I' + I" + I"

with characteristics for I', I" and I'"'.

I'<E' and not E">
I"<E" and not E'>
I'''<E' and E">

and attributes:

I[A] = I'[A] = I"[A] = I'''[A].

It should be noticed, the importance of
functional dependencies [ULLMAN, VEMAD], in
the above procedure. Their identification by
the data base designer, can produce results
even when the attributes involved in the
characteristics of R* and R" are not the same.
To explain this, consider our students data
base, again. Let us imagine a super-relation
covering the whole data base. Whenever the
attribute subject takes the value "computing",
the attribute faculty must necessarily take
the value "mathematics". This dependency
allows us to partition the mathematics
relation into two relations: R' and R", with
characteristics: R'<subject = "computing">
and R"<not (subject = "computing")>,
respectively.

72

step (4). Finally, the equivalent expressions for R* and
R" can be constructed. In the general case:

R' = R'"' * (I' + I'"')
R" = R'""' * (I" + I'"')

and, in the special cases:

For R*, if

(a) I' = [] then R' = R'"' * I'"'
(b) R'"' = [] then R' = I' + I'''
(c) R'"' = [] and I' = [] then R' = I'''

Similarly, for R", if

(a) I" = [] then R" = R'*'" * I'"'
(b) R'"'' = [] then R" = I" + I'*'
(c) R'"'' = [] and I" = [] then R" = I''"

The application of the decomposition procedure to our

example data base, after 44 iterations in Step (2)

produces the following list of expressions E:

administration = ((R10+R11)+(R7+R6)*R8)*R3
mathematics = R1*(R10+R11)
physics = R5*R6
computing = R9*R10

where,

RI [name, subject]
RI < faculty = "mathematics" >

R3 [name, dateofbirth, address, faculty]
R3 < true >

R5 [name, laboratory]
R5 < faculty = "physics" >

R6 [name, startyear]
R6 < faculty = "physics" >

73

R7 (name, startyear]
R7 < not (faculty = "mathematics" and

faculty = "physics") >

R8 [name, tutor]
R8 < not (faculty = "mathematics") >

R9 [name, laboratory, project]
R9 < faculty = "mathematics" and

subject = "computing" >

R10 [name, startyear, tutor]
R10 < faculty = "mathematics" and

subject = "computing" >

Rll [name, startyear, tutor]
Rll < faculty = "mathematics" and not

(subject = "computing") >

To obtain R9, R10 and Rll, the dependency:

subject —> faculty was assumed.

5.4 Design Tools -

The use of functional dependencies [ULLMAN] in the

decomposition procedure in the previous section,

highlights the need for some analysis tools to help the

design of data bases. ADIM provides two such design

tools: TC - a program to aid in the identification of

functional dependencies and AT - a program to help in the

analysis of entities [VETMAD] and their relationships. A

brief description of these programs follow.

74

5.4.1 TC - Functional Dependencies -

It is because of the relative importance that

functional dependencies have in the decomposition

procedure, that a program to aid in their identification,

is included in ADIM. Before we explain this program,

some basic concepts have to be defined.

A functional dependency fd is defined as follows:

Attribute B is functionally dependent on set of
attributes A = {A^, A^, ..., A^}, denoted by

fd (A^, Ag, ..., A^) = B

if the value v[B] in any tuple v,
determined by the set of values

is always fully

(v[A^], vEAg], ..., v[A^]}

Armstrong's axiom on transitivity can be stated as:

If fd(A1, Ag, ..., A) — B., B^, «.«, B
and fd(B^, ..., B) = C, C , ..., C.
then fd(A^, A^, ..., A^) = C:, C^, ..., C,

Now, we are in a position to discuss the program TC.

The designer of the data base identifies some of the

functional dependencies in the data. Then, s/he feeds

these dependencies to TC, which by recursive application

75

of the transitivity axiom generates the transitive

closure (TC) of the input set.

The program and an initial set of fds is presented

below. The set of fd’s:

fd ([name], [address]).
fd ([name], [spouse]).
fd ([spouse], [children]).

illustrates the way in which the program is initialized

for a starting set of fd's.

76

TEST DATA BASE

fd([riaiiie]i [address.]).
fd(Cname 3? [spouseH).
■I"d ([spouse 3 7 [children]).

/''ii- i-ran s i t i vi tv «-/
tr’ansC AttL17 AttL2)

Fd(AttLl, X), fd(X, AttL2).

TRANSITIVE CLOSURE

tc([]).
tc([X 1 Y 3)

y*^ generator */
(

(fd(X, Z)
) /* or */
(not var(X >7

trans(X7 Z)7
not fd(X, Z >7
not var(Z >7
asserta< fd(X7 Z) >7
/* mark new fd added ft/
asserta(newfd(mark)) /* only once

)
; 7
fail

)

tc(Y).

GENERATE TC

/ir general case ^V
oenLcC C X I Y 3)

/% verier ate all bv recur-si on i^/
tc([X I Y 3), /* level 1 */
/* clieck if anv new fd added ^/
iiewf d (mar k) ?
retract(rieujfd< mark) >7
/* recursion one level down
uentc([X : Y 3).

/K boundarv condition -V
9 e n t c (_) : - -

/it no new fd added ft/
1 i s t i i iy (I- d) .

77

The AXIOMS section of the program, defines the rule

trans(...) for the transitivity axiom. In a more

comprehensive version of this program, other axioms have

also been included. Axioms to test reflexivity,

augmentation, union and decomposition [ULLMAN] are

included in this more sophisticated version of TC. As it

can be appreciated in the version of TC here presented,

the definition of Prolog rules for the axioms is quite

straightforward.

In this version of the program TC, the second

definition of tc(...) acts as a generator of possible

fd's and tester for them. Once a satisfactory fd is

found, it is added to the other fd's by asserta(...).

The rule gentc(...) activates the previous rule.

tc(...), in a recursive manner.

Finally, the lists of

by the data base designer

non-redundant fd's for

procedure reported in the

fd's

, who

use

previ

produced by TC is examined

chooses a suitable set of

with the decomposition

OUS section.

78

5.4.2 AT - Analyst Tool -

The software tool here discussed, denominated AT -

Analyst Tool, helps the analyst/data base administrator

in the determination of elementary relations [VETMAD] to

construct data bases. The program is based on the

identification of entities and their relationships.

Data bases in AT are formed by the application of

mechanical rules to entities and relationships discovered

by the analyst within the organization being modelled.

AT does not replace the analysis process; this is still

done by the analyst by means of interviews and

consultation of the relevant documents in the

organization.

Once entities and relationships are identified by the

analyst, AT queries him/her and determines the elementary

relations necessary to represent all the different

conceptual views that users may have of their

organization/activity. Queries to the data base

administrator/analyst try to determine the following:

i) entities and their names (unique);
ii) domains and their names (unique);
iii) primary keys for each type of entity; and
iv) relationships among entities and their names

(unique).

79

Once this information is provided to AT by the

analyst, AT proceeds to:

i)
ii)

form virtual
form virtual

relations for the entities; and
relations for the relationships.

Then, from these virtual relations, AT seeks to

discover sets of elementary relations. These are

obtained by asking the analyst for the functional

dependencies that have been identified by him/her in the

analysis process. The program TC which was presented

earlier on, aids the analyst in this task.

The elementary relations of this stage are integrated

into ADIM’s data bases by means of the simple techniques

described in section 5.6. Obviously, at this stage

minimal covers could also be determined. The future

development of a program to do this, depends on the

results of further research on the relationship between a

minimal cover determined purely by functional

dependencies and the decomposition of views advocated

earlier on in this chapter.

80

5.5 Retrieval Tactics -

Let us now explore the potential for efficiency

improvements of decomposition. By using our students

data base and ADIM's algebra query language an example

can be given.

Consider the question:

"list the name and date of birth of
students in the faculty of mathematics"

expressed in ALPRED-U, as

RETRIEVE administration WHEN [faculty =
"mathematics"]

INTO mathstudents " [name, dateofbirth]?

DISPLAY mathstudents?

the equivalent tree for this expression is

mathstudents '' [name, dateofbirth]

@ [faculty = "mathematics"]

administration

Using the decomposition of relation administration, the
tree becomes

81

mathstudents [name, dateofbirth]

@ [faculty = "mathematics"]

*

R3 +

+ R8 R10 Rll
/\

R7 R6

By defining

(a) R + []=R
(b) R * []=[]

and, denoting the retireval condition by Q, we have

O=:[faculty="mathematics"]

and, since

(R8<not(faculty="mathematics")> and Q)=[]

then the whole of the arrowed subtree can be eliminated

from the evaluation of Q.

Similarly, deletions, insertions and updates can be

handled.

Consider another example, where efficiency

improvements are introduced by the application of query

transformation techniques [PECHERER, PALERMO]. Suppose

82

that in the students data base, we were concerned with

the age (date of birth) of those students reading

computer science.

In plain english:

"list the date of birth of students
reading computer studies"

In ALFRED-U:

RETRIEVE administration :*: computing

INTO cs_dofb [name, dateofbirth] ?

The corresponding evaluation tree for the query is:

cs_dofb [name, dateofbirth]

/\

administration computing

Replacing the relations administration and computing

by their respective decomposition expressions, the tree

becomes

83

cs_dofb " [name, dateofbirth]

Clearly, in order to evaluate the decomposed tree, it

is not necessary to wait for the expression "R9*R10” to

be evaluated. In fact, it is more efficient to modify

the tree, bringing the evaluation of the projection

'‘[name, dateofbirth] down the tree, thus reducing the

amount of data required to pass between the different

nodes of the tree. Also, notice that once the projection

is lowered in the tree, the evaluation of R9''[name,

dateofbirth] becomes R9''[name] * R10''[name] since the

attribute dateofbirth is in neither R9 nor R10.

Furthermore, this expression can be replaced, after R9

(or R10) has been selected because of its (small)

cardinality, by the expression

R9 '' [name]

if cardinality of R9 is less or equal
than the cardinality of R10

84

The correctness of the last step is due to condition

(2) in the definition of d-join. In other words, given

relations R’ and R" with the common primary key K

R'[K:>] * R"[K:>] = R'[K:>]

whenever the value set for K in R' is a subset of the

value set for K in R”. A proof of this assertion is

trivial.

Prom the example, it emerges clearly that substantial

benefits can be obtained by query transformation and

decomposition. To determine what relationships hold

among the operators, and which relationships to apply in

a particular situation are not by any account simple

problems. Relationships among the algebra operators of

the query language have been established in several

cases, and their conditions for optimal use have been

specified as well [PALERMO, PECHERER]. The integrated

study of decomposition operators and query algebra

operators need some further work. ADIM's approach is of

a pragmatic nature, where complexity analysis define

rules of transformation of a general standing, ADIM uses

them; but in the particular cases where costs can be

estimated with a certain degree of accuracy, specific

strategies are adopted.

85

An example of this is often provided by the join

operation. Any analysis based on its complexity would

suggest that evaluation of joins should be postponed for

as long as possible, but if it was known that the two

relations involved in the join have a small cardinality,

one could in some cases favour an early evaluation.

Before we leave the discussion on retrieval tactics

and perhaps, as a suitable introduction to the next

section on implementation, it should be noticed that the

definitions of D-union and D-join, in fact, correspond to

special cases of union and natural join, as defined in

[CODD70]. This contradicts some researchers who have

suggested decomposition operators which do not have a

counterpart in Codd's algebra [SKCWHC, CODD70]. ADIM's

set of operators allows the translation phase of the

optimizer to embed compounded relations into a query

expressed in algebraic form, and then translate the

expanded query into a simpler and/or more efficient

query. It is worth noticing the considerable results

obtained by many researchers using translation techniques

to optimize queries in algebraic languages [PALERMO,

PECHERER, SAGIV]; where these languages mirror closely

Codd’s algebra. Most of these results could not be fully

useable by ADIM, if an uncompatible set of decomposition

operators was chosen. As a limiting factor, although

decomposition techniques can handle volatile data

86

advantageously, stable user's views have to be assumed,

in order to avoid very expensive re-construction of data

bases. On the other hand, from an implementation point

of view, since D-join and D-union are special cases of

union and natural join, no special software modules are

necessary in the implementation of the ADIM system.

5.6 Implementation -

Once the data base administrator has decided on a

suitable set of basic relations, views and

characteristics, a data base has to be set up.

Basic relations, views and characteristics are

established in the data base as Prolog facts. An example

of this is given below:

87

/*DATA BASE : demo*/

/*relations*/
relation(employee),
relation(students).

/*characteristics*/
characteristic(students,[dept = "mathematics]).

/*views*/
view(lowpaid, @[salary<10000]).

A basic relation is defined by the relationship

relation. The name of the basic relation appears as the

only object of the Prolog fact. For example,

relation(section A_staff).

defines the basic relation section A_staff. Basic

relations are physically stored in secondary memory, e.g.

disc, and can only be accessed by ALFRED-K requests.

The characteristic of a basic relation is defined by

a restriction condition and it is expressed on those

terms. Thus a characteristic is represented by the

Prolog fact characteristic (...) which has two objects:

the name of the relation and the restriction condition.

88

For example,

characteristic(section A_staff,[section = "A"]).

establishes that the characteristic of the basic relation

section A_staff is [section = "A"]. At present, the

values for the attribute section are still stored, but

obviously they are redundant information. Future work on

ADIM should seek to correct this.

Basic relations without a characteristic are assumed

to have the universal characteristic, i.e [true].

Again, views are also represented as Prolog facts.

The view relationship has two objects; the name of the

view and the algebraic expression associated with the

view’s name. For example,

view(deptl_staff, sectionA_staff ;+; sectionB_staff),

defines the view deptl_staff as the union of the basic

relations sectionA_staff and sectionB_staff.

In fact, the expression defining a view is not

restricted to the use of basic relations. Views can also

appear in an expression defining a new view. For

instance,

89

view(staf£, deptl_staff ;+: dept2_staff).

defines the view staff as the union of the views

deptl_staff and dept2_staff.

It should also be noticed that by allowing the

assignment of a characteristic to a view, ADIM allows

general characteristics to be propagated to many basic

relations. Por instance,

characteristic(staff, [site = "Southampton"]).

propagates all the way down the tree the characteristic

[site = "Southampton"]. This characteristic is thus

shared by several basic relations. In this example,

basic relations sectionA_staff and sectionB_staff inherit

the characteristic [site = "Southampton"].

5.6.1 Generation of ALFRED-K queries -

As already mentioned, ALFRED-U expressions are mapped

into ALFRED-VC by the G-monitor in the Query Generator

(G-unit, Chapter 4) . In turn, ALFRED-VC expressions are

further processed by the C-unit, and equivalent

expressions in ALFRED-K are generated. ALFRED-K

expressions only admit basic relations, i.e. relations

90

which are physically stored. In the process to convert

ALFRED-VC expressions into ALFRED-K expressions,

characteristics are added to views and basic relations,

views are expanded to expressions made up of basic

relations only, and finally, these last expressions are

optimized for evaluation, A brief discussion of the

query evaluation process follows in this section.

ALFRED: U to VC -

The translation of ALFRED-U expressions to ALFRED-VC

expressions is accomplished by an interpreter program

This interpreter is written in Prolog The program is

divided into two sections

The first of these sections reads ALFRED-U sentences

and converts each one of them into a list of Prolog

atoms. The second section transforms lists of atoms into

ALFRED-VC expressions.

The implementation of the first section is based upon

a similar program presented by W. Clocksin and W. Mellish

in their book "Programming in Prolog" (pp. 87-88)

[CLOMEL]. Obviously, some modifications were necessary

to handle the peculiarities of ALFRED syntax.

91

The implementation of the second section of the

program is rather simple and it will not be described

here. Nevertheless, a short description of its function

is given below.

Basically, the second section takes the list of atoms

generated by the first section and converts it into an

expression in ALFRED-K form. In the majority of cases,

the list of atoms remains unaltered. For instance, the

list [display, employee] derived from the ALFRED command:

DISPLAY employee?

will still be the list [display, employee] when passed to

the ALFRED:VC to K translator.

However, more complex commands give rise to some

Interesting problems. In particular, queries could often

lead to expressions that would be very inefficient to

evaluate directly. Thus, in order to improve the

evaluation time of these queries, they are transformed

into equivalent queries, which can then be evaluated more

efficiently. Cases of this sort are not always due to

poorly formulated queries. They also arise because of

the incorporation of views and characteristics into the

query. Views and characteristics are added to the query

by the ALFRED;VC to K translator. Also, steps for a more

92

efficient evaluation of the query are taken by this

translator (VC to K) . Nevertheless, the ALFRED-U to VC

translator 'optimize* the query, by altering the syntax

within the list of atoms. This new syntax, while still

readable and understandable by ordinary users, is more

amenable to further manipulation than the one used at the

end of the first section.

ALFRED: VC to K -

Queries in ALFRED-VC are translated into ALFRED-K

equivalent queries, in three stages. This is done by an

interpreter which is also written in Prolog. The first

part of this program defines the syntax, priority and

associativity rules for operators. The following extract

from this part defines the operators restriction, union,

join and projection, respectively.

? - op(7, xfy, @).
? - op(9, yfx, :+:).
? - op(10, yfx, :f:).
? - op(8, xfy, ^).

/*restriction*/
/*union*?
/*join*/
/*project*/

The three stages for this interpreter are:

characteristic handler, view explosion and optimizer.

The Prolog rule map(E,P) transforms the ALFRED-VC

expression E into the ALFRED-K expression F.

93

map(E,F):-
maps expression E into the fully
decomposed, optimized expression
P (in clausal form).

*/

map(E,F):-
char(E,El), /*add characteristics*/
expl(El,E2), /*explode views*/
simp(E2,F). /*optimize*/

As it can be seen above, the rule map(E,F)

sequentially activates the tree stages.

Characteristics are added to basic relations and

views by the following rules:

/*add characteristics*/

char(E,F):- /*form the restriction
expression*/

characteristic(E,C),
F = .. [@,E,C].

char(E,F);- /*recursive propagation*/
E = .. [Op,Lexp,Rexp],
char(Lexp,Xexp), /*left hand side*/
char(Rexp,Yexp), /*r.h.s.*/
P = .. [Op,Xexp,Yexp].

char(E,E). /*catch-all*/

Three similar rules govern the expansion of views:

94

z*
expl(E,P):-

expands views in expression E
to expression F which has basic
relations only.

* /

expl(EfE):- /*catch basic rels, attributes and
comds*/

basic(E)f!. /*test E is primitive object*/

expl(E,P):- /*explodes views*/
view(EfEl) y /*is E a view? expand it*/
expl(ElfP). /*explode El*/

expl(EfF):- /*recursive explosion of views*/
E = .. [0p» Lexp, Rexp]y
expl(Lexp» Xexp),
expl(Rexpy Yexp),
F = .. [Op, Xexp, Yexp].

The first of the rules is the catch-all rule. It has

a few exceptions. It takes account of basic relations,

lists of attributes and lists of conditions. The second

rule, once it finds a view, expands it in case there are

more views hidden in a tree of views. The last rule,

propagates the expansion along the expression E in a

recursive manner.

Optimization or rather efficiency improvements are

governed by the rule simpl(E,P). This rule transforms

expression E into expression F. Expression F is

equivalent to E but in most circumstances it will be

evaluated in a time that is significantly faster than the

time it would take to evaluate E. The rules for this

transformation are:

95

/*
simplify relational expressions

simpl(E,E):- /*catch-all basic atoms*/
basic(E) , I .

simpl(E,F):-
E = .. [Opf Lexpf Rexp],
simpl (Lexpf Xexp),
simpl (Rexp, Yexp)
s (OPf Xexpf Yexp, P).

The first occurence of rule simpl(E,E) defines the

stop condition for the recursion in the second definition

of simpl(E,F). This second occurence of rule simpl(E,F)

propagates the optimization process, recursively. The

clause s(Op, Xexp, Yexp, F) in this rule, is satisfied if

a known rule of optimization exists for the operator Op

in the context of expressions Xexp and Yexp, Thus, the

rule:

/*proiection associative case*/
s(",X,Y,Z):-

is_list(X),
is_list(Y),
intersection(X,Y,Zl),
set(Zl,Z). /*eliminate duplicates from

list Zl*/

transforms two adjacent projections on one relation into

one projection on the same relation.

For example, let us consider the following expression

to optimize:

96

? - simpl (employee^ [name^ address] ^[namey address^
salar/yX).

The rule simpl(EyE) will break the expression into its

basic parts: the relation employeey the list of

attributes [name, address] and the second list of

attributes (name, address, salary]. Since the

associativity of ~ was defined to be right to left, by

the definition

? - op(8, xfy, ^). /*proiect*/

the expression will be interpreted to be

employee^([name, address]^[name, address, salary])

and hence, when an attempt is made to satisfy the second

definition of simpl(E,P), Lexp is instantiated to

employee and Rexp is instantiated to [name,

address][name, address, salary]. Thus, two recursive

invocations of simpl(E,F) are made;

simpl(employee, _25)

simpl([name, address]*[name, address, salary], _26)

The first of these invocations, simpl(employee, _25)

instantiates 25 to employee, since employee is satisfied

97

by basic(employee) . It is the second Invocation which

merges the two attributes lists into one. The merger is

done by the associativity rule for projections

s('', [name, address], [name, address, salary],

_101)

which instantiates _101 to [name, address], thus

instantiating the variable X to

employee^[name, address]

In this manner then, the expression employee^ [name,

address][name, address, salary] is simplified to the

expression employee'* [name, address] which involves only

one projection instead of the original two.

Notice that if in the above example, two disjoint

sets of attributes were given, the simplification of the

expression would reduce the two lists of attributes to

the empty set. The projection of a relation on an empty

set of attributes has been defined so as to produce the

empty relation by the rule:

/*empty list of attributes => empty relation*/
s(", X, [], []).

98

and hence, when this case arises there is no need to

inspect relation X.

All of the rules of optimization discussed in section

5.5, have been incorporated into the translator in a

similar manner. More importantly, new optimization rules

can easily be added to the translator here described.

Similarly, most of the rules presented by Palermo

[PALERMO] have been incorporated. The same applies to

the set of optimization rules discussed by Pecherer

[PEGHERER]. It should be noticed though that Pecherer’s

set of rules is a superset of Palermo's set of rules.

Some further details about the incorporation of these

rules are given later on.

Perhaps, what is new in my set of rules is the

treatment of empty lists of attributes, empty relations,

unconditional true and unconditional false.

Although, one would not normally expect users of ADIM

to submit queries involving empty relations, they might

appear in query expressions once characteristics are

added to queries and views are expanded into expressions

made up of basic relations only. Take for example, the

view staff below, on which a query sub-expression is

based. Let us assume that the sub-expression being

evaluated is

99

... Staffs [salary>10000] ...

and that the view staff has been defined by the data base

administrator by

view (staff y employee @ [salary<10000]).

then. the evaluation of this expression will produce the

empty relation.

Similar things can happen during the evaluation of

projections. We might end up with a sub-expression

containing an empty list of attributes on which to

project. Such a case presents itself when given a

relation, two or more projections are attempted on this

relation, using disjoint sets of attributes for the

respective projections. For example, the two projections

on staff, below

staffs[name, salary]^[code, dept]

are equivalent to

staff' []

ADIM evaluates this expression to the empty relation.

This is obviously, one possible way of interpreting the

expression staffs []. Other people might interpret it

100

differently, for instance, they could equal it to the

relation staff, itself. I decided to use the current

interpretation purely on the grounds of consistency,

which I expect will become apparent later on in this

section.

Also, views and characteristics can produce

interesting results. They often turn a condition into a

certainty. For example, take the view

view (sections, staff®[section = "B”])

and the sub-expression of a query

... sections ® [section = "S"] ...

which is certainly true for every tuple in section "B".

Alternatively, take the view

view (lowpaid, staff® [salary<7500]).

and the sub-expression of a query

... lowpaid @[salary>7500] ...

which is false for every tuple in lowpaid.

101

Empty relations and empty lists of attributes or

conditions are represented within the ALFRED-VC to

ALPRED-K translator by an empty list, []. Unconditional

false is represented by the singleton [false], and

likewise, unconditional true by [true].

To know that a particular expression or

sub-expression evaluates to the empty relation can be

used to our advantage. The same applies to lists of

attributes and/or conditions evaluating to [true] or

[false]. To illustrate this point, take the following

user's query:

RETRIEVE lowpaid WHERE [salary > 7500]
INTO notsobad?

If lowpaid was defined as the view:

view(lowpaid, staff@[salary<7500]).

the ALPRED:VC to K translator would transform the query

into the following sequence of equivalent expressions:

102

lowpaid @[salary>7500]

staff @[salary<7500] @ [salary>7500]

staff @[salary<7500 and salary>7500]

staff @[false]

[] /*the empty relation*/

of which the last one clearly establishes the futility of

calling the ALFRED-K processor (P-unit) for this query

since at this stage^ we already know that the final

result is the empty relation.

In the case of restrictions, in order to compare the

different conditions of the restriction among themselves,

a canonical representation for the condition(s) is

necessary. For instance, if we were given the condition

[salary>7000 and not (salary>7000)] , we would like to

match the first occurence of salary>7000 with its

negation later on, not (salary>7000). This would allow

us to transform the original expression into [false], and

consequently, to deduce that regardless of the relation

to which the restriction was applied to, the final result

103

is the empty relation.

Because of the reasons given above, restriction

conditions are transformed within the ALFRED:VC to K

translator into clausal form. The part of the translator

that does this transformation is based on a similar

program, which is described in detail in Appendix B of

the book by W.F. Clocksin and C.S. Mellish, "Programming

in Prolog" [CLOMEL]. Thus, by using this module,

restriction conditions received in ALFRED-VC form, from

G-units, are transformed into a list of clauses in

conjunctive normal form.

A simple example of transformation to clausal form is

the mapping of the condition [salary>100] into the list

of clauses [:([salary>100] ,[])] . This list has only one

clause, :([salary>100],[]), which in turn, is made up of

two lists of disjunctions; [salary>100] and [] . The

first of the lists holds the conditions (disjunctions)

which are not negated, in this case, the only condition

of the restriction, salary>100. The second list holds

the conditions which are negated, in this case, none.

To further illustrate the transformation of ALFRED-VC

restriction conditions into clausal form, a list of

restriction conditions together with their equivalent

clausal form are presented below. These transformations.

104

I believe, are self-explanatory;

1. staff §[salary>100 and ~(dept="B") and sex="M”]

staff @[:([salary>100],[]),
:([],[dept="B"]),
:([sex="M"],[])

2. staff @[salary=1000 or dept="B"]

staff @[:([salary=1000, dept="B"])]

3. staff @[salary>200 or ~(dept="B")]

staff @[:([salary>200], [dept="B"])]

4. staff @[salary>200 or (dept="B" and sex="M")]

staff @[:([salary>200, dept="B"], []),
:([salary>200, sex="M"], [])

Once restriction conditions have been transformed to

their equivalent clausal form, their optimization becomes

simpler. For instance, the appearance of a condition p

in both, the list of not negated conditions and the list

of negated conditions, implies that p is being or-ed with

its negation, i.e. p or not p, which is true in all

cases. In this case, once this situation is identified

the particular clause can be replaced by [true]. This

precise instance of clausal optimization is performed

within the interpreter by

/*test for contradiction*/
contrary (:(A,B),[:(Al,B1)!_]):-

equivalent (A,Al),
equivalent (B,B1).

contrary (:(A,B), [__|Cls]):-
contrary (:(A,B), Cis).

105

The second definition of contrary (...) above,

recursively searches for the negation of conditions in A,

while the first definition performs the actual tests.

The Prolog clause equivalent(...) has been defined

elsewhere, and it tests the equivalence of two sets.

Once a condition becomes [true] or [false] further

performance improvements for the whole restriction

expression can be obtained by the application of the

following rules:

/*false & X => false*/
optcls(X,[false]):-

member(X,[false]).

/*true & X => X*/
optcls(X,Y):-

delete([true],X,Y).

In the definition of rule optcls(...), if [false] is

found in the canonical expression X, the whole expression

is transformed into [false]. This is trivially derived

from p &...& [false] &...& r => [false]. Similarly, if

the canonical expression X has not been reduced to

[false] by the above rule, all occurences of [true] are

removed from X by the second definition of the

optcls(...) rule. This, in turn, is derived from p &

[true] => p.

The transformation of restriction conditions to

106

clausal form allows ADIM to optimize the evaluation of

restrictions, in general. More importantly though,

further possibilities of optimizing whole relational

expressions arise. For instance, after the explosion of

views into their corresponding basic relations

expressions, we could have the query;

staff @[salary>100 and ~(salary>100)]"[name]

which, by application of the optimization rules for

restiction could be reduced to:

staff @ [false] name

This expression, in turn, could be transformed to the

empty relation projected on attribute name, i.e.

[]"[name]

and, then the empty relation, i.e.

[]

The transformation of staff @ [false]''[name] into

[]''[name] is based upon the rule for restriction which

states that any relation restricted on the condition

[false] evaluates to the empty relation, []. The

107

transformation from []^[name] to [] is based upon the

rule for projection which states that the empty relation

projected on any list of attributes evaluates to the

empty relation. This later rule is stated in Prolog as

the fact:

s(", [], []).

Other rules for other operators can be stated in a

very similar manner. Below, some of these rules have

been selected for discussion. Because of the relevance

to ADIM’s implementation, I have focused the discussion

on those rules involving empty relations, empty lists of

attributes or conditions, [false] and [true].

Rules for union:

s(:+:, X, [], X).
s(:+:, [], X, X).

these two rules state that the union of a relation X and

the empty relation evaluates to relation X.

Por join:

s(:*:y [], []).
s(:*:f [], []).

108

these two rules state that the join of any relation and

the empty relation evaluates to the empty relation.

Por difference:

s(:-:, [], _y []).

states that the empty relation difference any relation

always produces the empty relation as result; and

s(:-:f X, [], X).

states that the relation X difference the empty relation

evaluates to X.

For intersection:

s (: . ; , [] r r []) •
s (: « : f f []) «

State that the intersection of the empty relation with

any relation, including the empty relation itself,

evaluates to the empty relation.

Por restriction, before we can apply the relational

optimization rules, we need to transform the restriction

condition into its equivalent clausal form, which in

109

turn, can be optimized. The transformation to clausal

form and the optimization of it, and the subsequent

optimization of the relational expression is performed

by:

s(e, X, Y, Z):-
clauseform(X, XI),
clauseform(Y, Yl),
srestr(@, XI, Yl, Z).

The transformation into clausal form is performed by

clauseform(...) which in turn, invokes rule optcl{...) to

optimize the clauses. The rule clauseform (...) , as

implemented in ADIM, is identical to the one presented by

W. Clockin and C. Mellish, except by the call to

optcls(...) and in some minor syntax details which are

specific to ADIM.

Thus, once the restriction condition has been

clausified and then optimized by clauseform(...) and

optcls(...), respectively, the relational expression of

which the restriction is a sub-expression, can be

optimized. This is achieved in a similar fashion to the

optimization of the other operators. Thus, the rules for

empty relations, empty lists of conditions, [true] and

[false] can be defined by:

srestr (@, [], []). /*!*/
srestr (@, X, [], X). /*2*/
srestr (@, X, [false], []). /*3*/
srestr (@, X, [true], X). /*4*/

110

In plain English, rule 1 states that a restriction on

an empty relation always evaluates to the empty relation.

Rule 2 states that any relation X, except for X equals

the empty relation (since rule 1 is defined earlier on),

when restricted on an empty list of clauses evaluates to

X. Rule 3 states that any relation X restricted on

[false] will produce the empty relation. Based upon

similar logical reasoning, rule 4 states that any

relation X, except for [], when restricted on [true] will

deliver X.

Other rules of optimization, including many of the

ones proposed by Pecherer and Palermo, as already

mentioned, have also been incorporated into ADIM, by use

of techniques similar to those discussed above. Thus,

for instance, the rule

s(@, R1:*:R2, X, Z1:*:Z2):-
s(@, RI, X, Zl)
s(@, R2, X, Z2).

distributes restriction over join operations, so that

relations RI and R2 could be restricted before performing

the join. This, as it is well known, would reduce the

size of RI and RI prior to the join, so achieving a much

more efficient evaluation of the original expression.

Another example of general rules for altering the

111

order of evaluation within the expression, is the rule

s(", X, Y@Z, X@Z"Y).

which pushes all restrictions on a relation, to the left,

and all projections to the right. In this manner, by

subsequent use of the associative rules for restriction

and projection, all the restrictions on the relation as

well as all the projections could be reduced to one

restriction on the relation, followed by one projection,

A most efficient evaluation of this expression can be

achieved then, by evaluation of both operation,

restriction and projection, on one pass over the given

relation.

5.7 Some comments on decomposition -

In this chapter, decomposition techniques have been

discussed from a number of different perspectives.

Examples of their relevance to the areas of logical

design, efficiency, security and integrity of data bases

were given. The discussion has in general been centred

around practical problems rather than purely theoretical

questions. I felt that the theoretical aspects from

which ADIM benefits are well covered in the data base

112

literature. References to them are given in appropriate

places in the chapter. Perhaps, the main contribution of

this chapter is the presentation of an implementation

framework such that extensions and/or modifications to

ADIM are very easy to make. This is important in an

experimental system of this type.

In designing ADIM, I have come to distinguish two

areas of research problems which needed solving. The

first has relatively solid foundations. In this area,

new fundamental results are unlikely to be produced.

This is particularly true, if one is constrained to

conventional hardware architectures. Nevertheless, from

an engineering point of view, it still represents a

challenge in terms of technological trade-offs. These

have to be resolved for each particular application. I

feel that most of the implementation of the P-unit falls

into this category.

The second area is more of an open question. Study

and experimentation of problems in this area are more

likely to produce significant results of a general

nature. I believe that the decomposition techniques of

this chapter are more into this category than the former.

They together with the ALFRED hierarchy of languages,

provide an excellent framework for experimentation in the

fields of retrieval languages, query optimization

113

techniques, security and integrity of data bases. The

implementation issues discussed in this chapter,

illustrate this point. A specific example is ALFRED-VC’s

representation of axioms for functional dependencies

[section 5.6] and the deduction rules of optimization

associated with them [sections 5.4.1, 5.5 and 5.6].

The next chapter, concentrates on the discussion of

engineering aspects in the construction of a highly

efficient P-unit. This is done within the general

principles and aims outlined in Chapter 2.

114

CHAPTER 6

DATA STRUCTURES AND NATURE OF DATA

6.1 Efficiency -

The processing of a query in ADIM involves the

activation of three stages: the

decomposition-optimization cycle, the processing of

queries involving the basic relations and the composition

of a reply. The problems of the second stage and their

solutions in ADIM are discussed in this chapter. Maybe

the most important problems of this stage are those of

efficiency in retrieval operations. My aim was to

provide ADIM with a mechanism such that a most efficient

retrieval capability could be attained with not too much

wastage of secondary memory. This strategy assumes that

the cost of secondary memory is of less importance to

users than the waiting time for a reply. I believe this

to be a reasonable assumption considering the trend to

declining prices of memories in the past and the

115

foreseeable future. This approach to efficiency

necessarily leads us into a discussion of the data

structures and access mechanisms provided by ADIM.

The access mechanism to the stored data is a set of

functions implemented at a low level in the ADIM system.

These functions provide a mechanism which is independent

of the operating system and/or hardware in use. This

approach ensures a high degree of portability for the

applications written on top of ADIM as well as for the

ADIM system itself. As far as retrieval of data is

concerned, the most important problem to solve is the

transformation of elements in the data space as seen by

the user to the address space provided by secondary

memory in the host computer or computers. For the sake

of simplicity, I will be referring to the singular

computer, where extensions to the ideas exposed are

obvious. Otherwise, ideas and principles will be

explicitly exposed.

Some authors [HELD75, PECHERER, HELSTO75] have

proposed some desirable conditions that the function

described above should meet. G. Held and M. Stonebraker

in their 1975 paper [HELSTO75], proposed:

116

"Condition 1.

The function should not introduce additional

secondary accesses in order to compute an

address."

"Condition 2.

The function should map the given sample of the

key space [data space as seen by the user]

uniformly across the address space."

The first condition makes the very realistic

assumption that in existing commercially available

computers, as well as in computers coming on to the

market in the foreseeable future, computations performed

on data available in main memory are several order of

magnitude cheaper in time than the retrieval of data from

secondary memory into main memory. In other words, it is

more efficient to calculate the address of some data than

to look it up in a dictionary held in secondary memory.

Condition 2 establishes the principle that overflow

areas should not be used. Obviously, if keys are used to

find data in the address space, the extensive use of

overflow areas will render key usage as almost useless

and unnecessary.

The authors of [HELSTO75] also formulated a third

117

condition:

"Condition 3.

The function should be an order preserving

function (i.e. if K* < K" then H(K') < H(K"))

[K* and K" belong to the data space and H(K‘)

and H(K") belong to the address space]".

The purpose of this condition is to provide efficient

retrieval in queries of the form

RETRIEVE employee WHEN

[dept = "marketing"]

INTO marketing ?

as well as in queries of the form

RETRIEVE employee WHEN

[salary > 10000]

INTO highpaid ?

In the first query^ a randomizing (hash) function

will in most cases provide a very efficient solution.

Howeverf the same function will be absolutely hopeless in

the second query^ since a complete scan of the relation

employee will be required. Condition 3 seeks a function

able to behave well in both types of queries.

118

Although the imposition of the above conditions seem

to have produced good results in the design and

implementation of INGRES [SWKH76], the additional

requirements of compactness, modularity and portability

impose further conditions to the design of ADIM.

Thus, I have added

Condition 4.

The selected function should not co-exist with

any other function intended for the same

purpose.

Condition 5.

The function should be effective regardless of

time dependencies of the data set.

Condition 6.

The function should have a cost prediction

element in it.

The aim of condition 4 is to achieve a high degree of

compactness, so making duplication of effort unnecessary.

The use throughout the entire system of a unique file

structure makes implementation simpler and produces a

more compact system than otherwise obtainable with the

use of a range of files structures. I feel this makes

119

the difference on whether the ADIM system will run or not

on an 8-bit micro-computer. As an additional bonus, in a

small system ‘bugs' are better controlled and more easily

cured.

Many functions can provide a remarkably good

performance in a stable environment where predictions can

easily be made, but certainly this is not the case of

many applications requiring the use of a data base

management system. For instance, booking systems are a

case of management of very volatile data where

predictions about the shape of the distribution function

for this data are difficult to make, if not impossible.

Condition 5 seeks a function which is efficient under

volatile and stable environments. I believe that

performance on retrieval should be independent of the

length of time that data resides in a given data base.

Condition 6 assumes that query optimization

sub-systems are an integral part of relational data base

management systems. A query optimization sub-system

based on statistical analysis of past behaviour can only

make cost predictions in environments with stable data

and queries meeting a certain regularity. I do not

believe this to be the general case. Furthermore, the

software to collect statistics on the traffic of data and

the software to analyse this statistical data can be very

120

bulky, so making the optimization sub-system too big to

fit in small computers where it is most needed.

Precisely because of these considerations, I feel that

the provision of cost parameters should be a condition of

the function under consideration.

Obviously, any function can meet condition 4, if all

the other conditions are dropped. Since this is not the

case, I had to seek a unique function which will comply

with all the other five conditions, as well.

Randomizing (hash) functions [KNUTH] meet conditions

If 2 and 5, but fail to meet conditions 3 and 6 *

Static directories of the ISAM [IBM66] type comply

with conditions 2 and 3, but not the others. The variety

of functions of this type used by INGRES [HSW75,

HELSTO75], called generalized directories, attempts to

provide a compromise. They offer tuning parameters for

re-organization of directories, whenever efficiency

decreases beyond acceptable levels. In this manner,

generalised directories fully comply with condition 3 and

partially comply with condition 1 and 2. They make no

attempt to satisfy conditions 5 and 6.

Unwillingly, to compromise on the failure of the

above functions to comply with all six conditions, I

121

embarked on the study of three more functions. One of

these functions attempts to provide a continuum between

randomizing functions and directory structures, while the

other two concentrates on the problems of volatile data.

A discussion of these functions follow.

6.2 Random Directories -

Generalized directories [HELD75] as found in the

INGRES access methods represent a continuum of functions

between simple order preserving functions at one extreme

and normal directories of the ISAM type [IBM66] at the

other. It appeared plausible that a continuum between

randomizing functions and simple order preserving

functions existed. I wanted to investigate this

possibility and consequently, I embarked on the study of

a class of functions which appeared to be a good

candidate. Linear transformations between vector spaces

have a sound theoretical basis as well as being general

enough to cover a very wide spectrum. Since they had to

be implemented with subsequent change in mind, a flexible

approach had to be adopted and the particular case of

functions based on binary cyclic codes [Appendix G] was

chosen.

In order to conduct a minimum set of experiments, I

122

decided to implement some basic algorithms for coding and

decoding binary cyclic codes. This was done by software

simulation of different existing hardware devices, an

acceptable family of algorithms was recognized and

implemented as standard coding and decoding procedures.

An example of these algorithms is given in Appendix F.

Cyclic codes are most easily implemented by using

shift-register devices. Software for the encoding

dictionary is minimized by making use of the cyclic

property and the property that each code polynomial is a

multiple of the generator polynomial.

Once the basic procedures were established, I started

work on the allocation of randomizing functions to

regions of the total address space. The regions are not

necessarily disjoint. In this manner, the order of the

data space is to some extent preserved in the address

space. Thus, a reduction of the searching time in

queries involving order becomes possible.

Moreover, I also experimented with a dynamic

allocation of randomizing functions to regions. This

dynamic allocation allows for reorganization of

individual regions of the total storage holding a

relation.

123

The use of this technique is complemented by the

fixing of a maximum boundary to the access factor and

minimum and maximum boundaries to the occupancy factor.

Certainly, the access factor and the occupancy factor

will not be optimal (except in extraordinary

circumstances) , but failure of an existing randomizing

function to comply with the predetermined boundaries will

never be disastrous, because a new member of the family

of functions can be selected and the failing region can

be reorganized. The techniques for fixing boundaries for

the access and occupancy factor are an appropriated

modification of the one used by D.G. Held [HELD75] in his

generalized directories.

Basically, the scheme as described, is a compromise

between randomizing functions and static directory

structures. The aim of the scheme was to improve on the

performance of a scheme used by INGRES [HELD75]. The

results of the experimentation were not particularly

encouraging. Although, the reallocation of a function to

a region, and the subsequent re-distribution of data onto

a larger or smaller region was performed in a reasonable

time (in relation to the size of the key space) , the

amount of information needed in memory, at all times,

made this scheme unacceptable. Information needed to

keep in memory included, among others: identification of

function and its characteristics, parameters, data types

124

of keySy and boundaries of region.

6.3 Extendible Hashing -

As mentioned earlier on in this chapter, for a number

of years in the past, static directories have been used

in data base implementations with a relative degree of

success [IBM66, HSW75, HELSTO75]. My main objection to

their use in ADIM is the constraint imposed by condition

5. The functions implementing an access mechanism for a

system based on static directories generally provide very

good performance in environments where predictions can be

made about the total volume of data, the distribution

functions for the keys and the traffic of data as a

function of time. Unfortunately, this is not the case in

many data base applications, where the nature of the

application involves the manipulation of highly volatile

data. In this later case, predictions about the shape of

the distribution function for the keys, data traffic or

volume of data are very difficult if not impossible to

make.

However, in recent years, a number of researchers

have been exploring schemes for structuring data whose

volume is allowed to grow and shrink by large factors

[BAYER, C0MMER79, FAGIN, TAMMINEN, H0PCR0PT83]. The

125

schemes proposed have gradually converged into two main

schemes. The first of these schemes is known as B-trees

[BAYER, COMMER79] and we shall be discussing it in

Section 6.4. The other scheme, known as extendible

hashing [FAGIN], is the main topic of discussion in this

section.

Extendible hashing offers a very attractive

alternative to the access methods previously discussed in

this chapter. It always uses two disc accesses for each

search, while at the same time, retaining a capability

for efficient insertions and deletions. Remarkably,

these characteristics are valid with static and volatile

data.

The method was developed in 1978 by R. Fagin, J.

Nievergelt, N. Pippenger, and R. Strong [FAGIN]. It is

based on an extension of radix search trees, also known

as digital search trees or tries [FREDKIN]. Fagin's

method attempts to exploit the speed of radix search

trees without having to pay the high cost in memory space

which characterize the latter.

In general, extendible hashing can be depicted as two

files: a directory file and the leaf pages file. The

file for the leaf pages store the data. The directory

file contains 2^ entries one for each d-bit pattern. A

126

leaf page contains all data records such that their keys

begin with a specific bit pattern. Thus, to search for

the record associated with a given key, the leading

d-bits of the key are used to index into the directory.

This entry of the directory, in turn, stores a pointer to

the leaf page associated with the d-bit pattern of the

given key. Then, the referenced leaf page is accessed

and searched for the proper record. A leaf page can be

pointed to by one or more directory entries. If a leaf

page holds all the records with keys beginning with a

specific k bits, then the directory will have 2^"^

directory entries pointing to it.

INSERTION -

To explain the insertion algorithm let us start with

a given initial structure. A directory file with only

one entry. This entry points to an empty leaf page. A

leaf page can hold up to four records. See figure 6.1,

below.

Directory (D) Leaf Pages (L)

0

Figure 6.1

127

Now, let us insert four records. The keys for these

records, in binary, are: 01001, 00101, 10100 and 01001.

They are placed into leaf page 0:

D L

Figure 6.2

The entry in directory D, states that all records are

stored in page 0 of the leaf pages file, L, where they

are kept in sorted order of their keys. Now, we attempt

to insert a new record. Say, the key for this record is

in binary notation: 11000. Since, page 0 is full, it

must be split to make room for this new record. To do

this, we create a second leaf page at the end of file, L.

Then, we leave records with key beginning with 0 in page

0, and move those records which key begins with 1 to page

1. The directory size is also doubled in size, thus that

a new entry pointing to the new leaf page, can be

created. We are left with the following structure:

128

D L

1 i

Figure 6.3

We now add the record with key 01010;

In order to add yet one more record y say the record

with key 01001y we need to split page 0 again. This time

129

we will use the two leading bits of the key to index into

the directory, D. Thus, we split page 0 into two pages;

one page for those records which key starts with 00, and

one page for those records which key starts with 01. It

is in the handling of the directory, where Fagin's method

differs from more conventional methods. Instead of just

creating one more directory entry, pointing to the newly

created page (by the split), Fagin's method doubles the

size of the directory. Thus our example, becomes:

Figure 6.5

130

SEARCH -

NoWf we can access any record by using the leading 2

bits of its key as an index into the directory D. The

directory entry i, in turn, holds the number of the page

in which the wanted record is stored.

DELETION -

The principles for the deletion algorithm are similar

to the insertion algorithm, just discussed. Whenever,

empty pages arise after deletions, the algorithm for

deletion halves the size of the directory.

As the discussion above clearly demonstrated,

extendible hashing provide a graceful and efficient

mechanism to handle highly volatile data. But, it should

be appreciated that it is not free of problems. The

algorithm for insertion, as presented above, is very

susceptible to a poor key distribution. The value of d

(the leading bits in the key) is the largest number of

bits needed to assign keys to leaf pages. Now, if input

keys are clustered, large numbers of keys will agree in a

large number of leading bits. This will cause a very

large directory. In fact, in some applications, the

directory could get unacceptably large. A solution to

131

this problem is to apply a randomizing function (hashing)

to the keys, to make them pseudo-random. Prom this point

of view, we can think of the algorithm for splitting

nodes as a mechanism to handle hash value collisions. It

is this view which earned this method the name;

"extendible hashing".

The introduction of hashing, on the one hand, often

solves the problem of large directories caused by

clustering in the input keys. On the other hand, it

re-introduces one of the main problems of randomizing

functions, i.e. a very poor performance in range type

searches. Some suggestions have been made towards a

solution to this problem. Fagin, et.al. [FAGIN]

suggested the use of order preserving randomizing

functions. As it is well known, these functions in most

cases fail to break clusters. To use them for general

purposes, the best that we could expect is some reduction

in the size of the directory. The magnitude of the

reduction would depend on specific applications.

Unfortunately, one can expect cases where the reduction

in size of the directory will not be significative

enough.

A more serious problem with extendible hashing arises

when there are more equal keys than the capacity of a

leaf page, allows. In this case, the algorithm breaks

132

down completely. In our example, consider the case where

we want to insert two records with key 01001.

In summary, extendible hashing is an excellent scheme

for structuring data whose volume is allowed to grow and

shrink by large factors. Unfortunately, its suitability

to handle data which keys are clustered, present some

problems not easily solved in the context of a general

purpose system like ADIM. It should also be said, that

after I started work in the implementation of an access

method for ADIM, some researchers have proposed

variations on the extendible hashing scheme that appears

to be very hopeful for a general solution of the search

by range problem [LITWIN78, LITWIN81, TAMMINEN, LARSON].

Some other interesting ideas about a solution to this

problem, can be found in a paper by W.A. Burkhard

[BURKHARD]. This paper addresses the more general

problem of partially specified queries, and precedes the

one by Fagin, et.al.

6.4 Dynamic Trees -

A number of alternatives to extendible hashing have

been proposed. In fact, many of these proposals preceded

it [BURKHARD, BAYER]. Perhaps, not surprisingly, the

most important of these alternatives is one based upon

133

directory structures which expand and shrink dynamically

with usage. I turned my attention to them very early on

the life of the ADIM project. After careful

consideration of a number of variations based upon 2-3

trees [HOPCROFT83], I decided to provide ADIM with a

directory structure based on a generalization of 2-3

trees, known as B-trees [BAYER, C0MMER79]. The reason

for this decision was the desire to preserve within

ADIM's file structure the advantages of static directory

structures, e.g. average depth of 0(log n) for a "random"

tree of n nodes, while at the same time, avoid the

problems caused by unbalanced trees (directory

structures), likely to occur in relations with a high

rate of insertions, deletions and updates. Additional

reasons for choosing B-trees are provided later on in

this chapter.

Before proceeding any further with the discussion

about the motivation behind the choice of B-trees, as the

unique file structure for relations in ADIM, a

clarification of our conceptual framework is required. A

closer scrutiny of the terms and concepts embodied in 2-3

trees and B-trees is necessary, if only for the sake of

completeness in the exposition. Thus, in the next

paragraphs, a brief introduction to 2-3 trees is followed

by a more thorough discussion of B-trees. This later

discussion starts with a definition of B-trees and an

134

exploration of their main features. It proceeds to

analyse how well B-trees in general, fulfil ADIM's

requirements; then, it describes the particular

implementation for ADIM. Finally, it re-links with our

discussion about the motivation behind the choice of

B-trees for ADIM, and draws conclusions about

performance, size and complexity of the implementation,

and general fulfilment of the conditions outlined earlier

on in this chapter.

It should be noticed that we are interested here in

the storage of records in files, where the files are

stored in blocks of external storage. Hence, the correct

interpretation for the idea of a tree, is to think of the

nodes as physical blocks. In the sequel, I shall use the

word page to refer to a physical block of external

storage. Also, since we are dealing with ordered sets, I

assume that each record of a file has a key, a set of

fields that uniquely identifies each record. For

example, the same field of the employees file might be

considered such a key.

6.4.1 2-3 Trees

Static directories based upon a tree structure

provide an attractive average depth of 0(log n)

135

However, in practical applications, cases often arise of

trees with imbalanced growth, and therefore, with

branches growing well beyond the average mark. In the

case of directory structures, this situation appears as

an uncontrolled proliferation of overflow pages.

Obviously, this is a situation to be avoided if an

efficient retrieval system is to be supported. This

suggests that a reorganization of the tree after

insertions and deletions might solve the problem.

Unfortunately, even in data bases with relations of a

moderate size, this is not practical, because of the

excessive balancing overhead. An alternative approach to

this problem, is to seek a general criterion for

controlled growth. One such criterion is embodied in 2-3

trees, and it can be stated as follows:

(a) Interior nodes of the tree can only have two or
three children.

(b) All paths from the root to the leaves must have
the same length.

Fig. 6.6

136

Figure 6.6 is an example of a 2-3 tree. Observe that

a 2-3 tree of i levels has between 2^"^ and 3^”^ leaves.

From a different perspective, a 2-3 tree with n elements

requires at least log^n levels and no more than log2fi

levels. Thus, path lengths in the tree are 0(log n) .

The algorithms to insert, delete, update and test for

membership of elements in 2-3 trees are suitable

adaptations of the corresponding algorithms for binary

trees. Since, a binary tree has up to two children per

node, the algorithms have to be modified to accommodate

up to three children in each node of the tree. Also,

deletion and insertion of elements can lead to situations

that need special treatment. One such situation arises

when an attempt is made to insert a new element in a node

with two elements in it. In this case, a split of the

node into two nodes is necessary in order to maintain a

balanced tree. Another exceptional situation arises when

in a node with one element in it, an attempt is made to

delete this element. Again, in order to keep the balance

of the tree, two adjacent nodes have to be merged

together into one node. A generalized version of the

algorithms and their handling of special cases is

provided by a kind of tree data structure called B-trees

[BAYER]. They are discussed in the next sub-section.

137

6.4.2 B-Trees -

A generalization of the criterion embodied by 2-3

trees was postulated by R. Bayer [BAYER] in 1970:

"... every page (except
and 2n nodes [elements]

one) contains between n
for a given constant n.

This generalization of the criterion for 2-3 trees is

obviously a better criterion for external storage. Por a

relation with a given number of elements (tuples)^ an

increase in the number of elements per page would

normally cause a reduction in the number of pages

required to store this relation in external storage.

Hence^ a tree with fewer levels can be constructed for

this relation, so reducing the number of pages to inspect

during searches. Put another way, a B-tree is a special

kind of balanced tree that permits the retrieval,

insertion and deletion of records from an external file

with a guaranteed worst-case performance.

Formally, a B-tree is a tree with the following

properties:

(a) Each page, except for the root contains at most
2n items.

(b) Each page, except for the root and the leaves,
has between n+1 and 2n+l children.

138

(c) The root is either a leaf or has at least two
children, i.e. one item.

(d) Each path from the root to a leaf has the same
length.

Note that a B~tree with n = l is a 2-3 tree. In

general, n is said to be the order of the B-tree.

Fig. 6.7 B-tree of order 2.

aI n B-tree, we can view a page with m keys, as

having the form

"^1' ^1" ^2" ^2' ^m' ^m^

where p. is a pointer to the i^^ child of the node

represented by this page and k. is a key; 0<i<m and

l<i<m. The keys within the page are in sorted order, so

139

^^^^2^''^^m' ^^ ^^^ subtree pointed by p^, all keys are

less than k^. The opposite is true at the other end of

the page, in the subtree pointed by p^, all keys are

greater than k . However, in the general case, where

0<i<m, keys in the subtree pointed by p^ are greater than

k. and less than k.,..

RETRIEVAL -

To retrieve a record r with key value x, we trace the

path from the root page to the page which contains the

record r, if it exists in the file. We trace this path

by successively fetching pages from external storage into

main memory and finding the position of x relative to the

keys k.,k2f...,k^. If in the latest page brought into

main memory, there is a k^ such that k.=x, we have found

the record r. Otherwise, if k.<x<k.^., we next fetch

page p. and repeat the process; if x<k^ we continue the

search in page p ; if x>k we use page p^ to continue our

search.

INSERTION -

To insert a record r with key x into a B-tree, we

first find the page P at which r should belong. If this

140

page has m<2n records (items), we insert r into this page

in the proper sorted order. In the case where m=2n, i.e.

page P is full, we would need to change the structure of

the tree. To understand what happens in this case, refer

to Fig. 6,8. In this example, a record r with key B is

inserted in a B-tree of order 2.

Insert 13

Figure 6.8

The procedure to insert record r with key 13 is:

(a) Key 13 is searched for and not found. The
record r should be inserted in page P, but this
page is full.

(b) page P is split into two pages, P’ and P".

141

(c) The 2n+l records, including record r, are
equally distributed into P* and P", and the
record with the middle key is moved up one level
into the ancestor page N.

Obviously, the insertion of the middle record in the

ancestor page could again cause a split of a page, i.e,

the ancestor page. In this manner, the splitting of

pages could propagate all the way up to the root, thereby

increasing the height of the B-tree.

DELETION -

In the algorithm to delete a record r with key x from

a B-tree, two cases have to be considered:

(a) The record r with key x is on a leaf page; the
trivial case.

(b) The record r with key x is not on a leaf page;
in this case, the record r must be replaced by
one of the two records whose key values are
closest to X; these two records, one on each
side of r, happen to be on leaf pages, and
therefore, can easily be deleted.

In the latter case, assume x=k.. To find one of the

key values closest to x, descend down the pointer P^.i

and along the right most pointers to leaf page P. The

sought record is the one with key k on page P, i.e. the

furthest right record on P. To complete the deletion of

142

record r with key x replace record r by the record with

key k^ on page P

Any reduction

and then reduce the size of P by one.

in the size of a page, must be followed

by a check of the number m of records left on the page.

If m<n, property (b) of B-trees is violated. When this

underflow condition is detected immediate corrective

action must be undertaken.

An underflow of page P is corrected by borrowing a

record from one of the neighbouring pages of P. Because

of the cost of having to move another page into main

memory, this is a relatively expensive operation.

Preventive action should be taken to reduce the frequency

of this operation. This can be done by moving more than

one record at a time into P, whenever possible. Thus,

once a neighbour page is brought into main memory, the

records on this page and those in P are distributed

evenly on both pages.

Obviously, the removal of the middle record from the

ancestor page, could again cause an underflow. This in

turn, might need the merging of the ancestor page and one

of its neighbour pages. In the extreme case, merging

could propagate all the way up to the root. Whenever the

size of the root page becomes 0, i.e. m=0, it is itself

deleted, thus causing a reduction in the height of the

143

B-tree.

Figure 6.9-a illustrates deletion^ case (a);

Figure 6.9-b illustrates case (b) .

and

144

Figure 6.9-a

delete 15

V

Figure 6.9-b

145

6.5 B-Tree Implementation -

The implementation of the set of functions that made

up ADIM's file management, is now presented. These

functions, as well as the rest of the core of ADIM, are

written in 'C'. The functions are:

(i) search (): to retrieve a tuple from a B-tree;

(ii) travertree (): to fully traverse a B-tree;

(iii) partial (): to partially traverse a B-tree;

(iv) insert (): to append a new tuple to a B-tree;
and

(v) delete (): to delete a tuple from a B-tree.

The definition of the structure of a page precedes

the discussion on the actual implementation.

6.5.1 Page Structure -

Typically, B-trees are implemented in two levels: a

B-tree for the keys and a flat file for the tuples

themselves. The link is established by associating the

keys in the B-tree with record positions in the flat

file. This type of implementation is illustrated by

Figure 6.10.

146

flat file

Figure 6.10

The obvious alternative to the above scheme is to

store tuples and their keys in the B-tree itself.

For a given page size, a two tier file structure is

normally preferred to the one level option. A B-tree

restricted to the keys only, would have a higher fan-out

ratio than its whole tuples counterpart. This in most

cases, would reduce the height of the tree, and

consequently, fewer pages would need to be fetched into

main memory during searches.

Nevertheless, the one tier option should not be

totally discounted without some further consideration. A

compromise between the two approaches would be to

replicate a two tier B-tree implementation by a B-tree

147

for whole tuples supported by adequate secondary indexes.

Of course, the secondary indexes implemented as B-trees,

as well. In this manner, the B-tree for the tuples would

appear as the flat file and one of the indexes as the

B-tree for the keys. This approach would achieve for the

index(es), the high fan-out ratio tree, whenever this is

required.

Since, ADIM's expected operational scenario is

managing data bases with many relatively small and medium

sized relations, I judged the compromise suggested above

to have the potentiality for excellent space/time

performance, and therefore chose it. It must be

emphasised, that this decision was backed up with very

conclusive empirical tests [section 6.6]. Large

relations are unlikely to be found in a properly

constructed ADIM data base, because of the application of

decomposition techniques during the process of setting up

data bases.

Once the above decision was made, decisions about the

structure of a page and ways to represent tuples inside

such a page, were painlessly made. Thus, the structure

of a page in ADIM was defined by the following sequence

of declarations:

148

#def ine
#de£ine
#define

PGSZ
OFFSET
PTRSZ

1024
4*sizeof (int)
sizeof (int)

struct page

int no; /*page number*/
int up; /*page number of parent*/
int q; /*number of tuples in the page*/
int p0; /*extra pointer to child on left*/
char i_tups[PGSZ - OFFSET];

Global definitions such as PGSZ, OFFSET and PTRSZ

make the porting of ADIM to new machines a relatively

easy task. Also, and more importantly, tunning the

performance of ADIM is aided by definitions of this sort.

For instance, PGSZ which defines the size of a page in

bytes, could be set to 512, 1024, 2048 or any other size.

Thus, in a computer configuration where the time taken to

move 1 byte or 512 bytes from disc to memory is the same,

e.g. DEC - PDPll family, it would be advantageous to

define PGSZ as a multiple of 512. More obviously, these

definitions also make programs clearer.

149

The field no is used to stamp the page with a unique

identifying number; up refers to the identifying number

of the ancestor page (except for the root page); q is the

number of tuples stored, at present, in the page; and, if

the page is not a leaf, p0 points to the root page of the

left most sub-tree. A pointer to a page is recorded by

storing the unique identifying number of that page.

PTRSZ is the number of bytes required to store such a

pointer, and it is determined by the host computer.

OFFSET is the total number of bytes required by the

fields no, up, q and p0. The difference PGSZ - OFFSET is

the number of bytes available on the page, for the

storage of tuples.

Tuples within a page are defined by the 'C

declaration:

struct i tup

int pgno;
char t[MAXTUP]

/*pointer to sub-tree*/
/*tuple proper*/

MAXTUP is a global definition which sets the maximum

size in bytes for a tuple. MAXTUP is normally defined by

the expression (PGSZ - OFFSET)/2 - PTRSZ.

In the structure defined by i_tup, the field pgno

points to the root of the sub-tree on the right of the

150

tuple. The array _t is the tuple itself (tuple proper).

Although, the declaration of t suggests a fixed size

array of MAXTUP bytes; in practice, t occupies a

considerably smaller size. In fact, the number of bytes

used by the tuple t, is determined by the data types of

its attributes. Integer attributes occupy IS2 bytes,

reals use RSZ bytes, and strings of characters one byte

per character plus one byte for the end of a strings

marker. ISZ and RSZ are machine dependent and typical

values are eight for RSZ and four for ISZ.

In order to manipulate the apparent overlapping of

tuples within a page, another C structure is necessary:

union record
{ /*treats tuples in two modes*/

struct i_tup*cooked; /*formatted tuple*/
char *raw; /*unformatted tuple*/

};

The union record provides two alternative views for a

tuple within a page. As ^aw, the stored tuple (tuple

proper + pointer) can be seen as a sequence of bytes

without demarcation between pointer and tuple proper. On

the other hand, the field cooked of the union, makes the

distinction between the pointer and the tuple proper.

The use of these two views of a stored tuple is

illustrated by the following piece of 'C code:

151

srch del(d,xx,p,...) /*searches xx in tree 2nd deletes
it*/

char XX; /*search key*/
int p ; /*page to search*/

struct page *pp;
union record kaddr;

pp = salloc(PGSZ); /*get memory for page*/
get_page(dfpPfP); /*retrieve page p into pp*/

itpsz = <actual length in bytes for tuple +
pointer>;

kaddr.raw = pp -> i_tups; /*get first tuple*/
kaddr.raw += (k*itpsz); /*iump to tuple k*/

if (kcompare (dy xx^ (kaddr.cooked)->t)==EQUAL)
/*found it*/

else
/*continue search*/

152

The function srch_del() searches in the relation

described by dy the tuple with key xx and deletes it.

The call to salloc() allocates memory space for a page;

pp records the location of the memory space allocated.

Page p is retrieved by get_page() from disc into the

location pointed by pp. Once page p is in main memory,

we skip all the fields at the beginning of the page, and

position ourselves at the location of the first tuple

stored on this page:

kaddr.raw = pp -> i_tups;

then, we move to tuple ^ in the page, by:

kaddr.raw += (k*itpsz);

The variable itpsz holds the actual length, in bytes,

occupied by the tuple proper and the pointer associated

with it. Thus, in order to compare the key xx with the

tuple proper (t) , we need to ignore the pointer (pgno) .

This is achieved by:

...kcompare(d,XX,(kaddr.cooked) -> t) ...

which, as wanted, skips over the pointer to the sub-tree

(pgno), and directly compares the key xx with the tuple

proper t.

153

6.5.2 File Management Functions -

Information about active relations is kept in main

memory by descriptors. A descriptor is a brief summary

of the structure and general characteristics of a

relation. Descriptors are defined by the following ’C*

structures;

struct relation

char relid [MAXNAME];
long relsave;
long reltups;

int relwid;
unsigned relattss;
unsigned dvc;
int root;
unsigned n;

/*relation name*/
/*0S time for save*/
/*no. of tuples in

relation*/
/*width in bytes of rel.*/
/*no. of atts.*/
/*device for rel.*/
/*page no of root*/
/*n for B-tree*/

struct descriptor

struct relation reldum;
char status;
unsigned devdesc;
char offset [MAXDOM];
char fmt [MAXDOM];
char fl [MAXDOM];
char given [MAXDOM];

/*dump of relation tuple*/
/*open, closed, etc*/
/*ADIM DEV.descriptor*/
/*offset to att.i*/
/*format of att.i*/
/*length in bytes of att i*/
/*value supplied in key

YES/NO*/

In the structure relation, relid stores the name of

the relation; relsave keeps information about the

validity date for this relation; reltups keeps track of

the number of tuples; relwid is the width in bytes of a

tuple; re1a11s is the number of attributes in the

154

relation; dye is the device (disc) on which the relation

is stored; root is the page number of the root page in

the B-tree; and, n is the degree of the B-tree.

In descriptor, reldum is a replica of the relation

above; status knows about the actual condition of the

relation; open, closed, etc; devdesc is a machine

independent device descriptor; offset[i] is the offset in

bytes from attribute [0] to attribute[i]; fmt[i] is the

data type of attribute[i]: 'c', 'i', 'r', etc; fl[i] is

the length in bytes of attribute[i]; and, given[i]

records whether a key for attribute[i] has or has not

been supplied.

Further information about the attributes of relations

are kept in a catalogue which is defined by the ’C'

structure:

struct attribute
{

char aname[MAXNAME];
char rid [MAXNAME];
char format[PSZ];

int asize;

int start;

int relative;

int key pos;

/*name of attribute*/
/*name of relation*/
/*integer, real, string of

chars, etc*/
/*length in bytes of this

att.*/
/*starting position in tuple

(byte)*/
/*relative positionzfirst,

second,etc*/
/*relative position in key*/

155

In attribute, aname is the name of the attribute; r^

refers to the relation to which the attribute is part of;

format is the data type of the attribute, e.g. c20 - a

character string of length twenty; asize is the length in

bytes of this attribute; start is the offset, in bytes,

from the left edge of the tuple to this attribute;

relative is the relative position of this attribute,

within the list of attributes belonging to this relation

(rid)- i.e. a value between zero and the degree of the

relation minus one; and keypos is the relative position

in the key - i.e. a value between one and the number of

attributes in the key.

Now that the underlying structures of ADIM's file

management have been presented, let us examine the set of

functions that make up ADIM's File Management Functions.

First of all, to operate on a relation, we will need to

activate it, and later on, once we have finished with it,

we will have to deactivate it.

The function openr() makes a named relation active.

Briefly, openr() sets up a descriptor for the relation.

This descriptor is set up from information held in the

system’s catalogues ’relation* and 'attribute'.

As the counterpart to openr(), the function closer ()

deactivates a relation. For this, it uses the

156

information in the descriptor to update the catalogues

'relation* and ’attribute*.

Since, the algorithms for openr() and closer () are

not of primary importance to the current discussion, I

shall not dwelve into them, in this chapter. Further

details are given in Chapter 7.

The algorithms for search(), travertree() , partial(),

insert() and delete() were, not surprisingly, written in

'C. Their implementation is a recursive version of the

general algorithms described in Section 6.4.2. In this

manner, the implementation of search() was based on

retrieval, insert() on insertion and delete() on

deletion. Obviously, travertree() and partial() are

extensions of the algorithm for search(). Thus,

travertreeO was implemented as a recursive traversal of

the B-tree, and partial() was implemented as the

functional composition of search() and travertreeO .

Maybe, some specific aspects of the implementation of

these functions needs some further discussion. For

instance, setting up frames for the pages and tuples in a

particular relation, is a problem that needs to be solved

by all of the File Manipulation Functions, with the

exception of openrO and closer(). To discuss it, let us

consider the function search ():

157

int n, nn, tpsz, itpsz; /*global to this file*/

search(d,t,action,extra,rw) /*searches t in relation d*/
struct descriptor *d;
char *t; /*pattern to match*/
int (*action)();
char *extra;
char rw; /*read/write permission*/

{
/*frame tuple*/
n = d -> reldum.n;
nn = 2*nf
tpsz = d -> reldum.relwid;
itpsz = tpsz + sizeof (int);

return(srh_get(d
t,
d -> reldum.root,
(*action)
extra,
rw

Searching for a tuple to match the pattern in t, is

done by srh_get(). But, before srh_get() is called,

searchO sets up a frame for the tuples in this relation.

The degree -n of the B-tree and the length, in bytes, of

the tuples -tpsz, are obtained from the descriptor d.

The length, in bytes, of the tuple plus the pointer to

the sub-tree, are then calculated -itpsz. Similarly, the

maximum number of tuples in a page -nn, is obtained by

doubling the value of n.

The descriptor d was set up by a previous call to

openrO . Likewise, the function setkeyO , discussed in

Chapter 7, sets the pattern to be sought in t. The

158

character in rw specify access authorization for this

search.

Perhaps the most interesting aspect of ADIM's

implementation of B-trees, is the extensive use of

functional composition. For instance, in the case of

search(), it is difficult to imagine anybody searching

for a particular tuple, without a purpose in mind.

Normally once a tuple is found, some further processing

would take place, e.g. print the tuple. Hence,

functional composition, as an integral part of the Pile

Manipulation Functions, becomes a very powerful

technique.

In search (), travertree() and partial (), the

parameter action is a pointer to a function to be

composed with the calling function. The parameter extra,

in turn, provides a pointer to the parameters to be used

by action. An illustrative example of the use of this

technique, is the function printr().

159

/* PRINTR - prints a relation on user's VDU
A simplified version - no error handling

*/

struct endofmarks
{

char eof; /*end of field marker*/
char eot; /*end of tuple marker*/

/* printr....*/
printr(rel)

char *rel; /*name of relation*/
(

struct markers = {'!', '\n'};
struct descriptor desc;
struct descriptor *d = desc;

if (openr(dy rely R) == FAIL) return (FAIL);

printf ("RELATION:%s\n"yrel);

travertree(dyd->reldum.rooty print_tupley & markers);

closer (D);

printf ("\n\n");
}

print_tuple(dytupleymarks) /*prints a tuple on user's
VDU*/

struct descriptor *d;
char *tuple; /*tuple to print*/
struct endofmarks * marks;

int i;

for (i=0; i<d->reldum.relatts; i++) /*for each
attribute*/

(
< print the attribute >;
putchar (marks->eof); /*end of field*/

putchar (marks->eot); /*end of tuple*/

160

First of all, printr() initializes the variable

markers, to •| * for end of field and ’\n’ for end of

tuple. If the relation rel is successfully opened by

openrO, its name is displayed on the user's terminal.

Then, travertree() is composed with the function

print_tuple(), to print every tuple of rel. The function

printtuple() uses the markers to print tuple, each time

it is invoked by travertree(). Finally, the relation rel

is closed by closer ().

Thus, assuming the

employee(name, salary), the

produce

existence of the relation

call printr ("employee") would

RELATION: employee

K.Robertson
T.Hamilton

387.25
531.15

R.Johnson 423.10

In the printr() example above, the whole of rel was

printed, since travertree() was called with

d->reldum.root, the root page for rel. If only a

sub-tree of the whole tree storing the relation was to be

printed, the root page for that sub-tree should be

provided. Thus, in the implementation of partial (), the

call to travertree() is preceded by a call to search (),

161

which finds the root page for the sub-tree.

It should also be noticed that, by using a different

"action" function in our printr() example, we could

format the display of rel differently. Thus, by changing

print_tuple() to an appropriate function, we could use

printr() as a general display facility for relations, a

report generator, a facility in an integrated DBMS and

text processing package, etc.

In a similar fashion, we could use functional

composition in arithmetic applications. For instance, to

calculate the salary bill of a company, we could use

travertreeO in the following manner:

total_salary = 0.0;

travertree(d, d -> reldum.root, add_salary, &
total_salary);

printff"TOTAL SALARIES:%f\n", total_salary);

add_salary(d, tuple, tsal) /*add salary to tsal (total
salary)*/

struct descriptor *d;
char *tuple; /*tuple with salary attribute*/
double *tsal; /*total salaries*/

double *psalary;

psalary = < position in tuple of attribute salary >;
*tsal += *psalary; /*add salary to total*/

}

162

In order to examine the implementation of functional

composition, let us have a closer look at travertree():

163

/* TRAVERTREE - B-tree traversal
A simplified version - no error handling.

travertree (d, node^ action^ extra)
struct descriptor *d;
int node; /*root page*/
int (*action)(); /*fog*/
char *extra;

union record tt;
struct page *ppf *salloc();

if (node != END) /*not the bottom of the B-tree*/
(

pp = salloc(PGSZ); /*allocate memory for page*/
get_page (d^pp^node); /*retrieve node into

PP*/

tt -> raw = p -> i_tups; /*get to first tuple*/

travertree (d,pp->p0faction, extra); /*down p0*/

for (i = pp->q; i>0; i —)
{

(*action)(d,(tt.cooked)->tfextra);
/*compose*/ travertree (d,(tt.cooked) ->
pgno^action,extra); tt -> raw f=
(d->reldum.relwid + sizeof(int));

sfree(pp); /*release memory*/

164

TravertreeO parameters are by now fairly familiar to

usy and hopefully^ do not require further explaining.

Nevertheless, if it is still felt that an explanation is

necessary, please, see the search() example earlier on in

this section. As for the variables declared internally

to travertree () , the union tt of type record, allows us

to look at tuples in raw and cooked form, according to

requirements. The function salloc() returns a pointer to

an area of main memory, capable of storing a page. The

variable pp is a pointer to such area of memory.

The first test performed by travertree(), is to check

that it has not hit the bottom of the tree. If that was

the case, travertree () returns immediately. Otherwise,

salloc() allocates main memory for a page node, which in

turn, is retrieved from secondary storage by getpage().

Then, the pointer tt is set to point to the first tuple

in the page, ready to start processing.

The 'for’ loop, iteratively, applies the function

action to each tuple (t) in the page. It also calls

travertreeO recursively, thus the sub-tree beneath each

pointer (pgno), could also be processed by action.

165

for (i = pp -> q; i>0; i —)
(

(*action)(df(tt.cooked) -> t^extra); /*compose*/
travertree(dy(tt.cooked) -> pgnofactionyextra);

The statement

tt -> raw += (d ->

reposition the pointer

reldum.relwid + sizeof(int));

tt to point to the next tuple on

the page.

Sincey in a page there is one more pointer than

tuplesy i.e. the pointer p0y some special action is

requiredy if the sub-tree beneath p0 is not to be

ignored. Thus, before entering the loop, an additional

recursive call to travertree() is made:

travertree(dypp -> p0yactionyextra); /*down p0*/

Finally, once we come out of the loop, the memory

space occupied by page node, is no longer required, and

therefore, it is released for re-use by ADIM. This is

done with a call to sfree().

In this example as well as in numerous previous

166

examples^ the function get_page() has been used. This

function provides a machine independent interface,

between the File Manipulation Functions and the host

operating system's file management. In fact, ADIM

supports its own device handlers. This, I believe,

enhances the portability and efficiency of ADIM. Por a

discussion of these aspects of the implementation of

ADIM, see Chapter 7.

6.5.3 Memory Management -

Perhaps, more closely related to the Pile

Manipulation Functions, are the memory management

functions, salloc() and sfree(). These two functions

implement a memory management system based on a stack

discipline. This technique provides a natural 'cache*

memory for the Pile Manipulation Functions. Empirical

support for this assertion is provided by practically all

the examples in this section. All of the File

Manipulation Functions, except for openr() and closer(),

have been implemented recursively, and hence a stack

memory is not only sufficient, but also extremely

efficient.

To illustrate the argument above, consider

travertreeO once more. Each call to travertree() gets

167

memory from the stacks by calling salloc(). Thus,

recursive calls to travertree(), gradually increase the

height of the stack. Now, just before returning,

travertreeO releases memory back to the stack by calling

sfree(). Consequently, the stack gradually and

gracefully shrinks.

By choosing a reasonable page size, and allocating

memory space for the stack, commensurate to the page

size, a simple and powerful memory management is achieved

for each particular application of ADIM.

6.5.4 FML: Comments on implementation -

An appropriate characterization of the File

Manipulation Functions is perhaps compactness. One of

ADIM's stated objectives is to provide a data base

management system for small computers. The code for the

File Management Functions, despite its complexity, is

extremely compact. It is my belief, that this was only

possible because of the extensive use of functional

composition and a matching memory management sub-system.

This compactness was not achieved at the expense of

efficiency. On the contrary, functional composition and

the stack memory management positively contributed to the

implementation of a highly efficient system.

168

6.6 Empirical Tests -

Concurrently to the design and development of ADIM,

some empirical tests were conducted. These tests were

performed, at different stages, during the development of

ADIM. The implementation and subsequent operation of two

application systems were used as a material base for

experimentation. Below, a report on the performance,

implementation and use of B-trees by these applications,

follows. Details of ’worst’ case performance, in both

systems, are also given.

The first of the applications, named Commodities

Buyer Agency, despite its complexity, still is a good

example of an information system with an underlying data

base of relatively small size. Relations sizes range

between a dozen tuples and up to ten thousand tuples.

The second application, an Examinations Monitoring system

is interesting because of its larger relations. During

joins. Intermediate relations could easily have well over

a quarter of a million tuples. The relevance to ADIM of

these systems is more than apparent. The implementation

of B-trees as used by the Commodities Buyer Agency, the

Examinations Monitoring system and finally, ADIM itself,

should be seen as progressive refinements of the same

basic ideas. It should also be emphasized that both

systems used for experimentation, Commodities Buyer

169

Agency and Examinations Monitoring are today successfully

operating on a daily basis.

6.6.1 Commodities Buyer Agency -

This is a system for a company acting as a buying

agent for third party companies. Por the purpose of this

report, I shall refer to the company acting as a buying

agent as the agent, and its customers companies as

buyers. Companies selling through the agent, shall be

referred to as suppliers.

In this system buyers ask the agent for details of

prices, delivery date, discounts, etc. available for a

given product. This process is called the enquiry. The

agent, in turn, asks for quotations from suppliers. The

suppliers quotes depend on the number of units being

bought, payment terms, delivery time required, possible

penalties for delays, commission to be paid to the agent,

etc. Only, when all parties - buyer, supplier and agent

- reach an agreement, contracts are signed, and then the

commercial transaction proceeds. Bad buyers and

suppliers are restricted from entering the system. Also,

according to their past record, buyers and suppliers are

ranked. Thus, suppliers who pay high commissions,

deliver and pay commissions on time, are likely to

170

receive more and better requests for quotations.

Details about enquiries, quotations and contracts are

input, deleted and modified, interactively. Statistical

reports, bills and contracts are prepared on batch mode.

Shortly after the first implementation of ADIM's

B-tree file management was completed, and around the time

that the specifications for the commodities system were

being prepared, the data base management system DBasell

[ASHTON] was released. DBasell claimed (and still does)

to be a relational data base management system for small

computers [8 bit microcomputers]. Moreover, DBasell was

the first commercial system of its kind to offer B-trees

in its file management subsystem.

In many respects, one could find similarities between

DBasell and the kernel of ADIM, at least, on paper.

DBasell and ADIM are relational systems for small

computers, and both use B-trees in their file management.

Because of these similarities, an early evaluation of

DBasell was highly desirable. Thus, we chose it for the

implementation of the Commodities Buyer Agency system.

In general, a relatively quick implementation was

possible. The whole system was implemented within three

months. The hardware used for the system was:

171

COMMART Communicator: 8-bits micro running the MP/M
operating system;

64kbytes of memory + 4*48kbytes of memory;
18 Mbytes Winchester disc;
2 8" floppy discs;
4 terminals; and
1 printer.

The relations for the most important entities in the

system are:

enquiries - holds details about enquiries;
quotations - quotes received from suppliers;
contracts - main details of contracts; and
payments - to monitor outstanding payments.

The implementation and subsequent operation of the

Commodities Buyer Agency system, produced the following

finds:

Positive

1. A relatively quick implementation. The whole
implementation of the Commodities Buyer Agency
system took six month/man.

2. An implementation easy to understand by
non-computer specialists. Nowadays, the
commodities system is run and maintained by
personnel, who at the time of the implementation,
had no previous computer knowledge.

172

Negative

1. DBasell’s explicit two levels implementation of
B-trees, i.e. one sequential file for the
relation and B-tree files for the indexes,
confuses inexperienced users. Por instance,
expressions such as;

USE enquiries
USE enquiries INDEX enqndxl
USE enquiries INDEX enqndx2

are not clear to users, unless they know about
indexes and also, understand the way that
'enqndxl' and 'enqndx2' were built.

2. Moreover, expressions as the ones above, are
absolutely contrary to what is regarded as one of
the characteristics of relational systems, i.e.
the separation of the logical view of data from
the physical details of the implementation.
Another example of this, is the explicit use of
memory partitions, e.g.

SELECT primary
SELECT secondary

Even worse, the user must know whether indexes
are being used or not. The command FIND, which
searches an indexed relation, would produce
unpredictable results if used on a relation with
the wrong index or no index. Por a relation
without indexes LOCATE could do the same as FIND
(!). In addition, the syntax for the 'boolean'
condition in FIND and LOCATE is different.

3. Nevertheless, if JOIN did work on a multi-user
environment, there would have been less of a need
to use the non-relational operators FIND and
LOCATE. Unfortunately, JOIN and SORT do not
always work with relations bigger than 100
tuples, under MP/M.

173

4. More seriously, DBasell’s implementation of
relations on sequential files and indexes on
B-tree files, means that with volatile data,
extensive re-organization of multiple indexes
often has to be done. Deleted tuples are not
erased from the sequential file, neither from the
B-tree. In order to really delete them, PURGE
has to be used and the B-tree for the index has
to be re-constructed. It makes one wonder why
B-trees were used in the first place, when a
static directory structure would have done
exactly the same job without the added complexity
of on the 'fly' re-structuring of data files.
Does DBasell really support B-trees? Let us
believe that it does.

In summary, the relational capabilities of DBasell

was found to be rather restricted. Nevertheless, the use

of DBasell in the commodities system still allowed me to

test the performance of B-trees. Por this purpose,

possible extreme cases were considered and two such

situations identified. The first case, was the

interactive retrieval of one tuple, and the second case,

a join involving two large relations. Obviously,

relations sizes are relative to the size of the computer

in use.

Although an indexed search for a particular tuple may

take some time, the performance is still satisfactory.

At the other extreme, performance was assisted by

simulation of a JOIN. This was necessary, since JOIN

does not work properly under MP/M. The structure of the

relations used and the program for this simulation

174

follows:

STBUCTUEE FOE FILE: B:ENQUCO .DBF
^EUMBER OF RECORDS: 00600
DATE OF LAST UPDATE:

^PRIMARY USE DATABASE
00/00/00

FLD NAME TYPE WIDTH DEC
.601 ENQ:DATE 0 008
BRKa^^KT^e%N^-%^

z:063 %NE^: N c bzb
004 SUP:NO C 006

:ao$: fLNtNAME 0 015
^006 DATE:TOSUP C 008
^007 : $RD:NAME 0 . 015
008 STATUS C 020
009 SUPiNAME C 030
010 COUNTRY C 020
Oil OUOTfDATE O 008
012 DATE:TOCLN C 008
013 CLN:ANS C 008
014 CONT:DATE C 008
015 CLNCONT:N C 025
016 REMARKS C 020

L.#* 3OTAL ;*^ 00227

STRUCTURE FOR FILE: B:QUOT
10146

.DBF
NUMBER OF RECORDS:
DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE
FLD NAME TYPE WIDTH DEC

BTOOENqiN 0 OPT.
002 SUPiNO c 006
003 QUOT:DATE c 008
004 MONT:UNIT c 003
005 QUOT:VALUE N 01 2 002
006 BXP:DATE C 008
007 DATE:TOCLN C 008
008 MEDIUM C 001
009 FORM:PAY C 007
010 STATUS C 020
** TOTAL ** 00081

175

***********************#**********#****#*********##*****#*#****'
* BUSCAE.CMD
********#**#*#*******'
CLEAR

L:8ET TALK OR
SET FORMAT TO SCREER

^EIRASE
SELECT SECORLARY
USE xiaot IRLEK iqiioetco
SELECT FRIKARY

ISSE enquco /
DO WHILE .ROT. EOF

^^^^^ /^^^^ Btcoenqin TO aumero :
SELECT SECORDARY
EIRD Anumero
IF f-O

SELECT PRIMARY
SKIP

; ELSE
STORE quottdate TO uno

^^- ^ ^atertocln TO dos
SELECT PRIMARY
REPLACE quot:date WITH uno,date: tocln IflTH dos
SKIP

ERDIF
ERDDO
^RASE
QUIT

176

Relation 'enquco' had 600 tuples and relation "quot"

had 10146 tuples. The program produces a simple report

on the date of quotation and validity of the quote. The

test was run with three other users in the system. None

of the other users were using DBasell. The work load of

the system, at the time, could be described as light.

The total time taken by this simulated JOIN was 31

minutes.

6.6.2 Examinations Monitoring System -

The purpose of this system is to collect the names

and other relevant information about students taking a

series of examinations. In the current year, each

student may register for examinations in a number of

subjects, varying between one and fifteen. The

registration of the students, some 60-100 thousand per

year, is done at their own schools. For administrative

purposes, the schools are grouped into local education

authorities. Due to the large quantities of data, the

registration of candidates, input of examination results,

issue of certificates and the production of multiple

reports for operational and statistical purposes, are all

done in batch mode. As one would also expect on a system

of this nature, queries about individual candidates and

amendments to the data relating to them, are normally

177

done interactively.

A file or data base management system for the

Examination Monitoring System, would need to handle data

which is grouped in large logical collections and also

represents complex relationships.

Preliminary studies on the possible software tools

for the implementation of this system, established that

no suitable commercially available data base management

system existed. One of the specifications for this

system, was the use of a Hewlett-Packard minicomputer,

which certainly restricted the choice of software tools.

Perhaps, the attraction of a low cost microcomputer

based implementation would have persuaded us and the

commissioners of the system, to use DBasell on different

hardware. Fortunately, our previous experience with

DBasell clearly demonstrated its unsuitability for a

project of such scope and complexity as this one.

Thus, a decision was made to write our own file

management module for the Examination Monitoring System.

Clearly, this was an excellent opportunity to perform

further tests on B-trees, and in particular, ADIM’s own

implementation of them.

178

Ideallyy I would have liked to put ADIM directly to

the test. Unfortunately, a compiler for the *C* language

was not available for this particular machine. Hence, an

alternative had to be found. Algorithms identical to the

ones used in ADIM, were coded in PASCAL, and subsequently

used as the file management module of the Examination

Monitoring System.

Prom the point of view of the ease of use of ADIM's

file management, the particular implementation of the

Examination Monitoring System, should be of little

relevance, since ALFRED was not used. Nevertheless,

there is a point which is worth while mentioning.

Considering the magnitude of the project, a relatively

short period of time was taken for the implementation of

the whole system. Including the PASCAL re-write of

ADIM's file management, the Examination Monitoring System

was implemented in months rather than years. I believe

this was possible, mainly, because of the functional

composition capabilities of ADIM’s file management.

More importantly, once the system was fully tested

and had completed its first year of operation, its

performance could be evaluated. I believe it could be

described as more than satisfactory. For instance,

multiuser interactive queries and updates, take a time

that for all practical purposes, is negligible. At the

179

other extreme of the scale, reports generated in batch

mode, at worst, only take a few minutes.

To illustrate these worst cases, I have included

below two programs from the Examination Monitoring

System. The first one, generates a general statistical

report on the results obtained by students in their

examinations. The second program, groups the candidates

by school and then prints their results.

The program 'statsl' completes a full traversal of a

large B-tree. This program was run on a machine with no

other users on it. The candidates file (CANDREL) had

67,000 valid entries and its size was 12 Mbytes. The

program was executed in 434 seconds of CPU time and run

during 11 minutes of real time.

180

^>:ub?:«h 5^tatE 1 < '^r^ut^ ^.ut£-^^^^^

awerded » certificate:

writeinC rd)j

UI THDRAUNFi^Thdrawn, Mk;%thdrawn:

sr c l g^tdpgggg^r;
closed rd, 'SAVE' >;

writclni 'Number of Candidates processed ... ', Total)

181

The program 'NTRYSCHS' is interesting ^ because it

implements a join of four relations. The relations

involved are:

GANDREL - candidates,* entries : 67,500; size :12,2Mbytes
SGHREL - schools; entries:600 ; size:14Kbytes
SBJREL - subjects; entries:579 ; size:39.4Kbytes
LEAREL - leas; entries:40 ; size:1.6Kbytes

The following program was run on a machine with no

other users on it. Execution time was 2 hrs. and 15

minutes.

182

e==2-=J^£1 tSltS—^5=^™^";^=-.^--=^"",^ ^=^,^fe=H=^i^r==--=iS====. - ==^^^==
wr i t€ 1 nC 'Proces* i ng cceplctc -___________ in spoojfilt. LP ';

w^itelnf Laft schuc-l printed; , prtyschzcl;;
E5:^3wyi«M;:MS^5S$^5S6^fctei5t»3$^s^B
______ write page printed:' . PageHmf^- !

c 1 f f 11 e , SAVE J

. cloeert leaf lie, SHvE j

Ek:< ELSE writtln', NOT CuNEiKP'EO: EKOOFK"! rEO^TE^,
Eh:'. . WTPYSCNE *) ' '' ' '

183

6.6.3 Comments on the tests -

The application systems described in this section are

in no way intended as a direct comparison between DBasell

and ADIM. The Commodities Buyer Agency system uses

DBasell, and since DBasell has become a very popular

system, I think that a description of the commodities

system helped to place ADIM's capabilities into context.

It should also be said that this work was done early in

the design and implementation of ADIM, circa 1981. It is

also interesting to note how quickly DBasell acquired a

very wide user community. I believe that this is more an

indication of the need for personal information systems

than of the quality/capabilities of DBasell. This point

is illustrated by the Commodities Buyer Agency example.

Simulation and theoretical work have been done to

estimate the behaviour of B-trees [GUDES, YAO, QUITZOW].

Although, this type of work can provide good analytical

results, in the final instance, practical issues will

determine the performance of a particular implementation.

A case to illustrate this point, is DBasell' s

Implementation of B-trees. In practical terms, it would

not matter if DBasell's indexes were implemented as ISAM

directories. A deletion of an item in DBasell does not

erase the item, it only marks the item as deleted. One

needs to 'purge' and re-organize the indexes to actually

184

delete items.

Against this background, the Examination Monitoring

system put the core of ADIM to the test. This system

completely proved the feasability of B-trees, as

implemented in ADIM. It produced performance figures

many times better than DBasell could have produced

(projected figures), had DBasell been capable of handling

files of the magnitude required by this application. It

should also be noticed that in the implementation of the

Examination Monitoring system some inefficiency was

introduced by coding ADIM-File Manipulation Language

(FML) in Pascal, rather than ’C’. The inefficiency is

due to the strong data typing of Pascal, which makes data

type coersions cumbersome to implement. Unfortunately,

this type of 'dirty' programming is required at the

lowest level of file systems such as FML.

6.7 Cost estimation -

The complexity analysis of algebra operators helps in

establishing very general ideas about the time required

to evaluate a particular expression, but it is limited to

using little information about the relations involved

except their cardinality. On the other hand, general

cost functions are difficult to establish, but in a

185

particular environment they can provide us with a good

deal more information so that a decision regarding

specific strategies for evaluation can be adopted in the

processing of certain queries.

Decisions about a strategy for processing a query in

ADIM are made in two different places: the ALFRED-VC to

K translator y and in ALFRED-K's virtual machine^

otherwise known as a P-unit.

A global strategy for the evaluation of a user's

query is chosen by the C-unit. The decision is made by

the application of general principles of relational

optimization. The transformation of algebraic

expressions into equivalent and generally more efficient

expressions is governed by a set of rules. The rules are

derived from techniques proposed by Pecherer [PECHERER]

and Palermo [PALEREMO]. Also, rules to deal with cases

due to the use of the decomposition process, are

included. More details about the decomposition process

and general rules of optimization in ADIM, can be found

in Chapter 5.

In this section, a second form of "optimization" of

query expressions is discussed. To find equivalent

expression, i.e. one which takes minimal time to

evaluate, for a given relational expression, it could

186

easily take longer than the actual time needed to

evaluate the original expression, itself. Hence, ADIM

does not attempt true optimization, but instead, tries to

quickly determine a good equivalent expression. A good

equivalent relational expression in this context means an

expression equivalent to the user’s query expression,

which can be evaluated in a time close to the optimal

equivalent expression, if there was one. The choice of a

good equivalent expression is based on a cost analysis of

a number of equivalent expressions.

Queries received by a P-unit are again transformed by

the application of transformation rules. This time, ADIM

only uses a small number of the rules proposed by Palermo

and Pecherer. The aim is to reduce the number of

alternative evaluations for a given query to only a few

cases. This assumes that some global optimization of the

query has already taken place [See Chapter 5]. In this

way, we only need to concentrate on a few significant

cases. In fact, the rules used at this stage only

involve the operators restriction and/or projection, plus

one more operator. In ADIM, projection is normally

evaluated concurrently with other operators. Hence, we

can think of the cost to evaluate projection as being

zero, except of course, when projection is the only

operator to evaluate. Also, by using the parameters of

B-trees, we can estimate with certain accuracy the volume

187

of data involved in a restriction operation. The rules

for restriction seek to benefit from this information.

Given a number of different alternatives for the

evaluation of a query, a decision is made by estimating

the total cost for each alternative, and then, choosing

the one with the lowest cost.

To estimate the total cost for a given relational

expression, an evaluation tree is built for the

expression and cost is allocated to each node of the

tree. Internal and external nodes are costed. The cost

analysis assumes that basic relations and intermediate

relations which are created during the evaluation of the

tree, are already sorted into their correct retrieval

key. This is a realistic assumption. Basic relations

are often accessed by their key, and therefore, they can

be considered as sorted. In the case of basic relations

being accessed by non-key attributes, sorting can be

added as another leaf to the evaluation tree. Let us

examine now the case of intermediate relations.

Consider an evaluation tree for a given query. Por

each internal node in the tree, we know before we

evaluate the node which specific attributes will be

needed in its evaluation. Hence, we can create the

intermediate relations with their keys sorted in the

188

correct order, i.e. we build the key for an intermediate

relation with the attributes by the evaluation of the

parent node of the relation.

It should be noticed that the only relations that

might need to be sorted are basic relations. Because of

decomposition, these relations are bound to be small and

therefore, their sorting would not add significantly to

the evaluation of the query expression.

Now to estimate costs, we need to define our cost

unit. In conventional computers, the time needed to move

one word from disc into main memory, is most likely to be

the same as the time needed to move a whole physical

block of the disc into memory. Because of this, ADIM

defines the size of a B-tree page as a multiple of

physical blocks in a disc. Thus, it makes sense then, to

define as our cost unit, the block. For the purpose of

cost analysis, we can equal one B-tree page to one block.

Notice that in ADIM, as well as in any other data base

management systems, data traffic is the factor that

determines the speed of the system, overall.

The total estimated cost for an evaluation tree is

defined by the sum of the estimated cost for each of the

nodes in the tree. The basic relations, represented by

the external nodes (leaves) of the tree, are assigned a

189

cost equal to the number of blocks occupied by their

B-tree. The cost of internal nodes, the operators,

depends on the cost allocated to their children and the

operator represented by the node itself.

The creation of intermediate relations is not costed,

since their contribution to the total time taken by the

evaluation of the whole tree, is assumed to be

proportioned to the evaluation of internal nodes of the

tree.

Before proceeding with the discussion on how to

determine the cost for each node in an evaluation tree,

let me introduce some notation;

N„ = number of blocks used by the B-tree for relation

T_ = number of tuples in relation R;

Uj^ = degree of B-tree for relation R
(2*n^ records can be stored in one B-tree page);

Kn = occupancy factor for relation R, i.e.
^^R*^*"R)/^R7

C = cost in blocks (to be retrieved from disc) to
evaluate node X of the tree. It is assumed a
fixed time is needed to move one block.

Now, I shall proceed to explain the cost allocation

schemes for each of the possible elements to be found in

an evaluation tree.

190

BASIC RELATION -

The cost associated with a given relation R is

determined by the number of blocks, Nj^, in the B-tree for

R. The value of N^^ can be determined in three different

ways. The first and most obvious way, is used when the

B-tree is stored in one of ADIM's devices. The device

descriptor holds this information. The second way of

determining the value of N^, is used when the B-tree for

R has been constructed as a file in the host operating

system. The value of NL is defined by the ratio of the

length of the file and the size of a page in the B-tree.

The third and final case, occurs when the two previous

methods fail. In this case, ADIM's functions

'create page' and 'destroy page' must keep count of the

number N^. This is in fact simpler than to keep than the

count for the number of tuples in a relation, T^. We

denote the cost associated with a given relation R, by:

CR ^R

191

JOINy UNIONy DIFFERENCE AND INTERSECTION -

These four operators are evaluated in a similar

manner. Consider the two relations R' and R" and one

operator, say x. The application of operator x to

relations R* and R" , produces the relation R. The

algorithm to evaluate x, assumes the relations R* and R"

are sorted on a common list of attributes A, R* [A] and

R"[A]f respectively. The main part of the algorithm is

presented below:

Step l+l.

a. If r'[A] = r"[A] then for

(i) R':*:R"f build tuple r for R from r'
and r";

(ii) R':.:R", build tuple r for R from r';
(iii) R':+:R"y build tuple r for R from r';
(iv) else, do nothing.

b. Read next tuple r' from R; and next tuple r"
from R" .

Step If2.

a. If r'[A]>r"[A] then for

(i) R':+:R", build tuple r for R from r";
(ii) else, do nothing.

b. Read next tuple r" from R".

192

step 1+3.

a. If r\[A]<r"[A] then for

(i) R':+:R"y build tuple r for R from r';
(ii) R':-:R"y build tuple r for R from r';
(iii) elsey do nothing.

b. Read next tuple r' from R'.

Step 1+4.

Iterate steps (I+l)-(I+3)f until ... END.

Prom the given algorithm we can then deduce the

following:

^ ' ^ ' R I R"

C:.: = Nn, + Np^m

C:-: = N^, + Npm

C:*: = N^, + N^.

The cost estimation functions given above, assume a

memory management based on a stack. Once a page of a

B-tree is pushed into the stack, it stays there until all

of the tuples in the page have been processed. This is

naturally enforced by the algorithm being discussed,

since ADIM's stack has capacity to store several pages.

193

PRODUCT -

This operator is evaluated by iteration over one

relation, R", for each tuple in relation R’ . Thus, the

estimated cost for the evaluation of R=R'(*)R", is given

by the formula:

C ^R'*^R"

PROJECTION -

Normally, projection is evaluated in conjunction with

another operator. Hence, the cost normally estimated for

projection is nil. In the unlikely case that projection

is evaluated on its own, the cost allocated to it is Nn

since R is assumed to be sorted. Thus, the cost function

for projection is:

C* = 0 ,

C* = Np^ ,

if evaluated
operator.
if evaluated

in conjunction with any other

on its own.

194

RESTRICTION -

Perhaps the most interesting cost function is the one

for restriction. It is an important operator because of

the frequency with which it appears in queries. Often,

it is also used to derive new algebra operators.

Examples of this, are: a generalized join and vector

type operators.

Because of the above reasons, ADIM uses a cost

function for restriction, which is much more refined than

any other cost function, previously discussed. Also,

ADIM chooses rules of optimization involving restriction,

in preference to other rules.

In Chapter 5, we learnt that restriction's conditions

in ALFRED-K are expressed in 'clausal* form, i.e. a

search condition 0=[q^ and q. and ... and q^] on a

relation R is always expressed in conjunctive normal

form. The conditions q. are, in turn, lists of

disjunctions. Because of this, ADIM searches the list Q

of conjunctions, first of all, for a list q. of

disjunctions which includes an appropriate condition on

the key(s) for R. Por example, in the query:

RETRIEVE students WHEN [name = "Jones" and ...?

195

which can be expressed in ALFRED-Kf by:

students @ [[:([name = "Jones"],[]) , ...]]

the condition expressed by the clause :([name =

"Jones"], []) will be selected by ADIM, to help in the

determination of cost estimates.

If no clause q. meets the above requirements, then

there is not much that ADIM can do, and hence, the cost

function for the restriction is taken to be:

In fact, this situation is unusual, since relations

are normally sorted on the correct key, as it was seen

earlier on in this section. In any other case, relations

can always be sorted previous to the evaluation of the

restriction.

Now, let us consider the normal situation, i.e. a

suitable condition q. on a relation which is sorted on

the correct key. In a restriction of this type, ADIM

distinguishes three uses:

(i) equality
i^i) less
(iii) greater

(<,
(>,

196

Cases (ii) and (iii) are symmetric^ and therefore^

conclusions for case (iii) are identical to those for

case (ii). Because of this, I will only discuss cases

(i) and (i i) .

Case (i) is perfectly straightforward. The maximum

number of pages to visit, is determined by the height of

the B-tree for the relation. This is never a large

number. In practical cases, even for large relations,

this number is unlikely to be more than half a dozen

pages. Because of the very high probability of finding

the sought item, near to the bottom of the B-tree, ADIM

defines the cost function for this case, to be equal to

the height of the B-tree, i.e.:

Cg . h where h is the height of the B-tree

The accuracy of the estimated cost in case (ii) is

certainly, more important than in case (i). A retrieval

by range may access a very large number of pages, since

at least, a partial traversal of the B-tree for the input

relation R, will be necessary. Also, the size of the

B-tree for the result relation depends on the number of

pages retrieved from R.

The study of case (ii) can again be divided into two

categories. I shall call these categories: restriction

197

type L and restriction type R. Let me explain these

categories. Consider the B-tree T and condition Q,

below:

3

B-tree T (h=4)

Figure 6.12

First, an explanation for restriction type L.

Consider the key for the B-tree, to be the attribute

code. We search the tree T for the first item, such that

code<=70, even when O=[code<70]. I have marked with a

broken line the walk down the tree to item with code=70.

Notice that every item on the left of the broken line was

code<70. Hence, the name 'restriction type L'. Now,

take any sub-tree with root on the left of the item which

code is 70, in page A. Call this sub-tree S. Every item

in sub-tree S also has code less than 70. The situation

as described so far, can be depicted by:

198

/i\

Figure 6.13

In figure 6.13* the tree T is represented by a

triangle. Every item in the darkened area of the

triangle has code<70. Similarly* every item outside the

darkened area B* has code> = 70. Hence* the cost of

evaluating a restriction of type L* can be determined by

a calculation of the number of blocks in the darkened

area B of the triangle.

To explain a restriction type R* consider again the

tree T of the previous example. This time, the condition

is Q'=[code>=70]. The area for the qualifying items

appears now on the right hand side sector of the

triangle:

199

h

Do you remember the symmetry of cases (ii) and (iii)?

To determine the cost of a

the area in blocks for the

the area of triangle B.

restriction is then, given

area of T and the area of

restriction type R, calculate

whole of triangle T, and also

The cost for this type of

by the difference between the

B. The number of blocks in B

are calculated by

condition Q', e.g

using the negation of the original

in our example: Q"=not Q* = [code<70] .

But, how is the number of blocks in area B

calculated? First, allow me to answer a simpler

question: how many blocks does a B-tree X have?

The maximum number of pages (blocks) that a B-tree

can have is determined by its degree and height, denoted

by n and h, respectively. A formula to calculate this

maximum is given below;

(2*n + 1)^ - 1
Max. No# of Pages — ———------------- (1)

2*n

200

Now, if we know the occupancy factor of the B-tree

for relation R, denoted by K^» we can estimate more

accurately the number of pages N.^ in the B-tree. From

(1) above follows:

^R

(Kp * 2 * ng + 1)^ - 1

KR * 2 * n^
(2)

Simulation studies and practical experimentation with

B-trees [YAO, NAKAMURA, ROSENBERG] have demonstrated that

a conservative figure for the occupancy factor in large

B-trees, is around K^ = 0,7. However, ADIM can determine

with greater accuracy the value Kp^ for any given

relation R. The formula used by ADIM to calculate the

occupancy factor, is:

As it was explained earlier on, the value N^ is

easily obtainable in ADIM. The same is also true for Tp

and Up. In Section 6.5, we discussed the descriptor for

each open relation. This descriptor stores the values Tp

and n , in the fields reldum.reltup and reldum.n,

respectively.

Let us assume that the value K- is also valid for

201

every sub-tree in the B-tree. This is not an unrealistic

assumption, considering the uniform distribution of data

enforced by the overflow and underflow algorithms used by

ADIM [QUITZOW] . By using formula (2) above, we could

calculate the number of blocks in any given sub-tree, if

we knew the height of the sub-tree.

In our example in order to get to page A, we walked

down to level d of B-tree T. We know it is level d,

because in our way down the tree T, we visited d+1 pages.

Now, let us assume that we also know the height h of tree

T. Then, we can deduce the height of any sub-tree which

root page is pointed by a pointer in page A. This height

is determined by the difference: h-(d+l). See digure

6.15, below:

h "^

Figure 6.15

The assumption about us knowing the value of h, is a

fact in ADIM. As soon as a relation is opened in ADIM,

its height h is determined. Also, while the relation R

remains opened, the value of h is updated whenever the

202

tree shrinks or grows.

In page A of our example there are q=3 items. The

item with code=70 is in position, i=l. All of the items

stored in each of the sub-trees on the left of item

code=70, satisfy the condition Q=[code<70]. Because of

this, we referred to them as the qualifying sub-trees.

In page A there are: q-i=2, qualifying sub-trees. See

figure 6.16, below:

Figure 6.16

From formula (2), we can now derive a formula to

estimate the cost associated with level d, C. . :

C
@:d (qj-id)'

(Kp * 2 * n^ f 1) - 1
— —— — —» —. —» — .W —. —. NN. N.N —. — NN. NN. NN. NN —. NN. NN» N*. NNN NN. NN. NN. ^ ^ ^

* ^ * "P

Let us now look at page B, the ancestor of page A

[Figure 6.12]. The sub-trees to the left of the element

immediately to the left of the broken line, are all

qualifying sub-trees. By using the same analysis that we

203

used for page A* we can estimate the cost associated with

level d-1. In this manner, climbing up the B-tree while

re-tracing our steps, we calculate the cost at every

level until we reach the root page. Thus, the final cost

function for restriction type L is:

,5,

where

(K * 2 * Up + l)^-i"^ - 1

and

^R - (^R * ^ * ^R^/^R

It also follows from this analysis, a cost function

for restrictions type R. The formula is:

/ d \

The values for C. . have been obtained by using the

negation of the original condition Q.

One minor point. The count of levels d in the

analysis above, is not obtained by directly counting the

number of levels descended, as suggested in the

discussion. During searches, ADIM pushes every new page

204

into a stack, and on backtracking pop them out. The

effect of this is that during the walk down the B-tree,

its pages are stacked up, and during the climbing up,

these pages are thrown away. Thus, if we record the

position in the stack for the root page of the B-tree, we

can always establish the current level in the B-tree.

See Figure 6.17.

B-tree STACK

currently
visiting this
page.

Figure 6.17

Also, because of the stack, once we calculate Cg.^

for page A, in Figure 6.11, we do not need to get page B

from disc again, since it already is in the stack. This

explains why, we only add d in the calculation of C_.

Finally, it should be noticed that the cost function

for restriction is of special significance, since

restriction is also used in the definition of all the

vector aggregate operators, and a generalized join

205

operator.

6.8 Dynamic Structures -

It has been suggested that dynamic access methods

particularly trees [KNUTH] and B-trees [C0MMER79], etc,

may be troublesome [HS75] as a storage structure for

files on paged secondary storage devices. As a

consequence there exists a widespread belief that

implementation of B-trees in a relational environment may

incur a performance penalty when compared to other

schemes for the management of large volumes of data

[HS75, HELD75].

It was precisely these views and opinions about the

inefficiency of B-trees that led me to a more detailed

study of them. My opinion is that B-trees may be

inefficient where they have been implemented on top of

the existing file structure of the host operating system.

Normally, this file structure is of a static type,

supporting sequential files and/or static directories,

e.g. UNIX [RT74] and CP/M [CPM]. This way of

implementing B-trees [ASHTON, MISTRES] is bounded to be

inefficient. Firstly, the dynamic re-structuring of

B-trees conflicts with the static files of the operating

system. Secondly, the number of re-directions needed in

a search of a B-tree are multiplied many times over by

206

the re-directions imposed by the file system of the

operating system. For instance, consider the case of a

B-tree with a height of five nodes for the keys and

implemented on top of the UNIX file system. Since UNIX

normally imposes three re-directions in big files (like

the one in the example) , in order to access one item in

the leaves of the B-tree, fifteen pages of data will have

to be examined.

Clearly, situations such as the one in the above

example are not desirable in a relational system where

associative searches of the data space may cause

extensive examination of secondary memories. As an

alternative, I decided to explore a situation where

B-trees are implemented as hardware devices, so

by-passing the file structure of the host operating

system and its inherent inefficiencies.

For retrieving data by equality, an access method

based on a carefully designed hash function will

certainly be extremely difficult to beat in performance,

but notice that the same hash access method will be

disastrous for a retrieval by range [see sections 6.2 and

6.3] . A retrieval by range on a hashed key of the

relation will force a sequential search visiting every

tuple of the relation in question. On the other hand,

given a stable relation, static directories such as the

207

ones used in INGRES [SWKH76] will improve considerably

the performance for the retrieval by range case while

still behaving moderately well in the retrieval by

equality case. However, when confronted with volatile

relations, i.e. relations subject to continuous up-dates,

deletions and additions, they are no solution. This is

due firstly, to an excessive number of overflow pages

generated by partial reorganizations of files between

up-dates, secondly to the need to search sometimes

sizeable sequential files created by delayed updates,and

thirdly to the relatively high cost of the periodical

reorganization of those files supporting the relations

affected.

Prom the discussion above, B-trees as candidates for

the unique file structure of ADIM, meet conditions 2, 3,

4 and 5. Condition 6 is also fulfilled by B-trees, as

demonstrated in Section 6.7. However, condition 1

remains for closer scrutiny. Obviously, this condition

is not fully met by B-trees. Nevertheless, by using a

memory management system based on a stack discipline

(LIFO), a whole branch of a B-tree can be loaded into

main memory, so reducing the access factor to one, for

all successive pages after the first page of a range (>,

<, etc) retrieval. Meanwhile, equality retrievals and

the first page of a range retrieval have an access factor

upper bounded by the height of the B-tree.

208

It is precisely^ on volatile data bases such as the

one used in personal systems (banking, home management,

office automatization, etc) that B-trees as a particular

case of dynamic data structure have the potential to

provide major gains in performance. Reorganization of

data on the fly as a central characteristic of B-trees

does avoid all of the perils of delayed updates, i.e.

overflow pages, huge sequential files and expensive

periodical reorganizations. I am convinced that in a

stable environment B-trees also perform better than many

other data structures.

By choosing B-trees as the file structure for ADIM,

all six conditions of section 6.1 can be met. Condition

1 to 5 can be met fully, and condition 6 partially.

Because of this, and in preference to many other file

structures (randomizing directories included), I believe

that the use of B-trees is highly advantageous. This is

demonstrated by the empirical tests in section 6.6.

Consequentially, ADIM uses a unified file structure based

on B-trees. I did not experience any major problem in

the implementation of them and I can also produce good

reasons for their use.

209

CHAPTER 7

IMPLEMENTATION OVERVIEW

7.1 Introduction -

In order to avoid unnecessary complexity in the

exposition, I will concentrate only on some aspects of

the implementation of ADIM. Thus, I will cover the core

of the ADIM system and those parts which provide a focus

of interest for implementators using ADIM in future

applications. For these reasons then, the discussion is

centred around the implementation of a P-unit.

It should be noticed that the implementation of C and

G units as well as some aspects of the P-unit have

already been covered in chapters 4, 5 and 6.

The description of the implementation is broken down

into six areas: i) sub-systems of ADIM as invoked by

users; ii) the Compiler Query Language a virtual machine

210

for ALFRED-K; ill) a file manipulation language for the

CQL; iv) utilities; v) some special files; and vi) system

catalogues. A detailed discussion of these six areas

follows.

7.2 Sub-systems -

In this section, the implementation of three

sub-systems is examined; ALFRED, dbmk and mkdev. They

are not the only sub-systems of ADIM, but they are

representatives of the implementation problems in

sub-systems of their type.

7.2.1 ALFRED -

The ALFRED sub-system is entirely written in PROLOG.

It is normally used as a G-unit, but the data base

administrator can also use it as a front-end to the

C-unit. The ALFRED sub-system has three parts: the

parser and lexical analyzer which recognizes valid

sentences; the decomposition part which breaks down the

queries into queries involving only elementary relations;

and the code generator which has two passes, the first of

which creates unique names and sets up necessary tables,

and the second pass which issues a function call in

211

ALFRED-K form for every query involving elementary

relations. The output of ALFRED can be compiled and

executed directly (if the C-unit is present) or it can be

a file containing the queries in ALFRED-K form (Chapter

3) for a delayed execution.

7.2.2 dbmk -

This is for creation of new data bases. It creates

the system relations: ’relation’ and 'attribute*. It

also makes entries in the sequential file ’alldbs*. This

sub-system is written in the language ’C*.

By invocation of the function existdb(), it checks if

the named data base has already been created. It also

checks if the specified device exists within the system.

Once that the above tests have delivered a positive

result, dbmk proceeds to create the data base by

obtaining space for the relation. Finally dbmk records

the existence of the new data base in the file ’alldbs*

of the host operating system.

It should be noticed that relations in a data base

are described in terms of relations. These are the

relations: ’relation* and ’attribute*. These relations

are in turn, described by themselves, so permitting the

212

shared use of software for the manipulation of catalogues

belonging to the system and relations belonging to users.

Since at the time of invocation of dbmk, the catalogues

for the new data base do not exist, it is necessary to

maintain the correspondence between the sizes of the ’C

structures for the catalogues and the sizes given by ADIM

to the same catalogues. This problem only arises when

ADIM is ported to a new operating system. For this

reason and to improve portability, dbmk makes extensive

use of the function pointer() which takes care of

variations in the data types of 'C.

7.2.3 mkdev -

The purpose of mkdev is to create an environment for

ADIM independent of the peculiarities of physical

devices. Thus, an ADIM device could correspond to a

sequential file in a given operating system or it could

be a magnetic disc or any other physical device used as

secondary memory. Once mkdev has run, the relevant entry

in the local file 'alldbs' will be established as a

record of the relationship between the device (or file)

in the host machine and a device name within the ADIM

system. Notice that mkdev tests for the existence of the

device before creating it.

213

A device in ADIM consists of map pages and data

pages. The map pages are used to maintain a bit map of

the data pages. Data pages are used to store relations.

In order to implement rnkdev^ the following functions

were also implemented: opendev(), to open a device;

closedevO, to close a device; zeromapO and maper(), to

mark a data page in use within the device; unmask(), to

free a data page; mask()y to do the bit mapping.

References to some of these functions will be made again

in section 7.4.

7.3 COL -

A description of the implementation of the CQL

follows. These functions are invoked directly by the

application(s) using a P-unit or by any G-unit (including

an ALFRED sub-system).

7.3.1 append -

This function appends a tuple to a named relation.

It first tests the existence of the relation. Then, it

prompts the user with the names of each attribute, and

waits for input. The append() function makes extensive

214

validations of input data. Por this purpose^ append ()

invokes utility routines which are discussed in section

7.5. Finally, append() handles the new tuple to the

function insert () of the FML (section 7.4) for addition

to the named relation.

7.3.2 display -

This function prints the named relation in the user's

terminal. The implementation of display() is a

rudimentary application of a generalized mechanism for

building report generators. This mechanism is based on a

table with five columns. The first column contains the

name of the function invoked, in this case 'display'.

The second column contains the name of a function which

produces the headings for the report. The third column

contains the name of the function to print individual

tuples. The fourth column contains the name of the

function which handles the *end-of-tuple* delimiter. The

fifth and final column contains the name of the function

which handles the printing after the last tuple has been

printed.

In the case of displayO the columns are as follows:

215

1. display - the name of the command.

2. printhead ■- prints the names of the relation and
the attributes.

3. printtup - prints the tuple. In turn, this
function Invokes printattO which
prints every value per attribute,
using the corresponding format, i.e.
it prints an integer as an integer
and not as a string of characters.

4. preol - invoked after the last
attrlbute/value for the tuple has
been printed. This prints a vertical
bar (1), followed by the characters
'LF-RETURN'.

5. preor - prints a horizontal line and two
'LF-RETURN'.

I would like to stress that I have concentrated in

providing a general mechanism for the preparation of

reports. The display () function is only a trivial

example of the use of this mechanism.

7.3.3 create -

The invocation of this function creates a new

relation. Firstly, it interactively collects information

about the name of the relation, the device where it will

be created, the name of the attributes and their format.

Once this information is collected, it proceeds to

validate the names, formats and devices. Sometimes, the

device is unknown to ADIM, a relation with such a name

216

etc,already exists, After the validation stage,

information on keys for the relation is collected. At

this point, it supplies the user with help to set up the

primary key and in some cases it does it for him/her.

Error recovery is graceful.

7.3.4 join, project, union, select, ... -

These are the functions which implement the query

sub-language. Typically, they will:

i) open the source relation(s);

ii) create an empty relation for the result. If
this relation is temporary it can sometimes be
maintained in buffers in main memory, so
speeding up execution.

iii) the algebra operation is performed and the
generated tuples are stored in the relation
created in step (ii).

Step (iii) is perhaps the most interesting.

Depending on the boolean condition in operations such as

join() and selectO, partial traversals of the B-trees

are attempted. In some other cases, tuples are obtained

with one invocation of gettuple(). If all of this fails,

then a complete traversal of the B~tree is performed.

217

7.3.5 Remarks -

It should be noticed that throughout this stage of

the implementation, references to relations are

immediately transformed to a descriptor. A descriptor is

an in-core summary of the details held about one relation

in the system catalogues. This mechanism avoids the

inefficient and often repeated consultation of system’s

catalogues held in secondary memory (which is

considerably slower than main memory).

7.4 FML -

The Pile Manipulation Language (FML) is the interface

between the CQL (section 7.3) and the operating system /

host computer. It is a layer of safety, to ensure

portability of ADIM. A list of the main functions and a

brief description of their implementation follows.

7.4.1 closer -

This function releases the descriptor of an open

relation. It is the counterpart of openr(), below.

218

7.4.2 openr -

This function consults the system catalogues and

creates an in-core summary of the characteristics of the

named relation. For this, it needs to open the relation

'relation' and the relation 'attribute*. Unfortunately,

to open these relations a descriptor for them is

required. Hence, the functions reldesc() and attdesc()

were provided. These functions "hand-craft" the

descriptors for 'relation' and 'attribute'. A locking

control for devices is also activated in certain cases,

by the invocation of openr().

7.4.3 Increate -

Similarly to create in CQL, it creates a new

relation. This function is used to create a relation

where details about the relation's name, the names of the

attributes, the format of the attributes and the key are

implicit in the query. For instance, the result relation

in a join or project. In order to gather information

from the source relations, it uses the functions

get_atts() and pull_att(). The first of these functions

normally invokes the second, which collects information

about one particular attribute in a relation.

219

7.4.4 insert, search, delete, travertree and partial -

These functions are a recursive implementation of

what their names suggest. Thus:

i) partialO, is a partial traversal of the B-tree
for a given relation;

ii) travertree0 , is a full traversal of the tree;

iii) insertO, appends a new entry to the tree;

iv) search(), finds an entry in the tree; and

v) deleteO, deletes the keyed entry from the
tree.

These functions need the descriptor for the given

relation. This is normally provided by openr(), together

with the searching keys.

I feel that the implementation of these functions is

highly compact. This makes possible the running of ADIM

in small systems, typically, a CP/M based system or a

small configuration of UNIX.

Perhaps the most interesting aspect of this

implementation is the flexibility built into these

functions. At least, one parameter in each of these

functions accepts the name of another function. Thus,

for instance, a trivial implementation of join() could

have been;

220

travertree(descr1, ..., travertree^ param2);

where,

struct param2 {

descriptor descr2;

condition join_cond;

} param2;

This mechanism is used often in the implementation of

ADIM. In particular, in the case of the PML

implementation, it provided me with a powerful and simple

method to implement composition of functions.

7.5 Utilities -

For the purpose of this explanation, I have grouped

the utilities into seven groups.

7.5.1 Memory management -

These functions implement a stack discipline for the

management of memory. No other type of memory management

is required to handle queries. This discipline is

extremely well suited for ADIM, since the relations are

221

stored as B-trees. This combination makes a 'garbage

collector' absolutely unnecessary.

Not only the software to write was reduced, but also,

the stack discipline provides a natural 'cache memory'

for ADIM. As an example consider, the previous trivial

join. Pages grabbed by the first invocation of

travertreeO are only released once the second invocation

(the parameter to the first) of travertreeO has fully

finished with them.

A simpler example is provided by the query:

RETRIEVE employee WHEN

salary > 10K ... ?

Here, a partial search of the B-tree loads and

unloads pages in main memory until the first qualifying

tuple is found. From this point onwards, all of the

tuples to the right of this tuple (in the page) as well

as all the pages in the sub-tree below, qualify. Because

of this, the whole of the qualifying sub-tree can be

further processed by stacking its pages and then poping

one page at a time for processing. Notice that once the

first tuple is found, no more testing of the

qualification is necessary.

222

In the case of the join example:

travertree(....^travertreey ...);

the stack naturally handles backtracking.

In the scheme of memory management described^ the

most important functions are:

salloc() - grabs a page from the stack;

sfree() - releases the page.

7.5.2 Descriptors -

The functions reldesc() and attdesc() provide a

facility for quick creation of a descriptor for

'relation* and 'attribute', respectively. These

functions were originally implemented to bootstrap ADIM,

so that the catalogues of the system could also be

relations. To understand the problem, consider the

insertion of the tuple containing information about the

relation 'relation' in the relation 'relation'. To do

this, it is necessary to invoke insert(), which needs as

parameter a descriptor for the relation in which the

tuple is going to be inserted. This descriptor is

normally obtained by opening the named relation. Since

223

the relation ’relation’ does not exist when we want to

insert the tuple describing the relation ’relation’ in

the relation ’relation’, we need to create a descriptor

by different means. This is the purpose of reldesc() and

attdesc(). These two functions also are an obvious

short-cut to the catalogues of the system, which are

consulted several times in the course of a query.

The function replica() makes a copy of a given

descriptor. This is extremely useful when creating new

empty relations out of old relations. A case of this is

the result relation for a restriction operation.

7.5.3 Qualification -

Three functions were implemented to test tuples for

qualification under operations requiring these tests.

These functions are; compare(), nkcompare() and

qualifyO .

The function compare() tests for equality, inequality

or order, between two tuples belonging to relations not

necessarily different. Keys are used by compare (), while

nkcompareO is a version of compare() for those cases

where searching keys are not available. The function

qualifyO is more suited for comparisons between a tuple

224

and a set of constants. Typically, compare () and

nkcompareO are used in operations such as join, while

qualifyO is used by operations such as restriction.

7.5.4 Keys -

The function setkey() prepares a tuple image for

searching in a given relation. This function sets the

keys for searching. The counterpart to setkey() is

clearkey(), which clears the searching keys.

7.5.5 Errors -

All errors and warnings are handled by the functions

error() and warning(). They receive a set of parameters

indicating position in the system, offending object

identity and error class and type. Errors and warnings

are classified according to the different sub-systems of

ADIM. Furthermore, within a class they are also typified

by another identification (number). This scheme of

handling errors and warnings allows an ADIM system to

maintain error messages and warning messages in relations

like the ones used by other catalogues in the system.

The advantage of doing this is twofold; firstly, by

dynamic insertion of error and warning messages, an ADIM

225

system can be tailored to specific environments and

applications; and secondly^ a reduction of size of the

ADIM system resident in main memory is achieved, since

the messages which occupy considerable space are kept in

secondary memory. In addition, I should mention that

ADIM uses its own data base capabilities (retrieval,

insertion, etc) to handle its error and warning messages.

This makes the writing of special software for this

purpose, absolutely unnecessary. Thus again, as

implementator, I have benefited from the above scheme.

I feel that the described scheme for handling errors

and warnings is a major contribution towards compactness

in ADIM. In the previous paragraph, I have given one

reason for it. A second reason, probably obvious at this

point, is that software which is not written does not

occupy any space. This is exactly what I have done here.

7.5.6 Strings -

A set of utilities to manipulate strings is an

obvious need in any data base system. In particular, in

the ADIM system, the following functions have been

implemented and also made available for general

applications:

226

cmp(s, t) : compares strings s and t;

strigth(s): returns the length of string s;

strep(s f t) : copies string t into s;

reverse(s): reverses string s in place;

itoa(n,s): converts the integer n into the
string s;

concat(Ofilfi2): concatenates strings il and 12
into string o;

indsex(tbl,entry): find entry in sequential table
tbl;

getline(s,lim): gets line from tty into s and
returns its length;

clean (s ,sz) : cleans the string s of size sz;

move(r,a,sz): moves the string a of size sz
into r;

pad(a,sz): pads the string a with blanks
until size of a becomes sz.

7.5.7 Validation -

Functions to validate input data were implemented.

They are available to applications as well. The

functions are:

v_id(s):

v_form(s) :

v_pi n t(s) :

v__preal (s) :

validates the string s as an
identifier;

validates the format in the
string s;

to validate the positive integer
in s;

likewise, but for reals;

227

v_real(s):

v_int(s):

v_string(s) ;

v_char(c):

validates real numbers;

validates integers;

validates strings;

validates c as an ascii
character.

7.6 Special Piles -

This section discusses files of special significance

in ADIM.

7.6.1 alldbs -

This is a sequential file (the only one) assumed to

exist in the host operating system.

required to bootstrap an ADIM system.

this file describe the devices available

This file is

The contents of

to ADIM and the

data bases recognized by ADIM in a given computer.

7.6.2 devices -

The file 'alldbs' associates the names of devices

and/or files in terms of the host operating system and

the names of such devices and/or files in terms of ADIM.

228

7.6.3 FILES.h -

Tuning of ADIM is possible by changing the value of

parameters defined in the files which names are

post-fixed with .h. This follows the conventions of the

UNIX operating system and the programming language 'C.

7.6.4 IRC -

This is a shell or submit type of program generated

by ALFRED and containing ALFRED-K expressions equivalent

to the original ALFRED-U/VG query. This is normally used

as an intermediate stage in the processing of ALFRED-U/VG

queries.

7.7 System Catalogues -

The system catalogues for a given data base are kept

in the relations: 'relation' and 'attribute'. Error and

warning messages are kept in the relations: 'error' and

'warning'.

229

7.8 Some comments -

I feel that the implementation of ADIM fulfills the

requirements for compactness, modularity and portability

extremely well. The technique of using ADIM for its own

implementation and maintenance, is to my belief, a major

contributor to the above achievements. This is

particularly true in the case of error and warning

handling.

The marriage of B-trees and memory management based

on a stack greatly simplified the implementation of the

algebra operators. A 'garbage collector' is implicit in

the above marriage: needless to say, the relevance to

costing of queries, which is discussed more extensively

elsewhere in this thesis.

230

CHAPTER 8

CONCLUSIONS AND FURTHER WORK

I have designed a "desk-top” information system which

complies with the requirements of flexibility,

portability, expandability and ease of use, demanded by

personal systems. In designing such a system, I have

found that efficiency of operation is the outstanding

obstacle to its construction. I have undertaken a study

of the problems of efficiency arising in the operation of

such a system and provided an integral solution.

A high degree of compactness in the implementation of

ADIM was attained by a careful selection of component

parts. This selection of modules aimed for a

minimalization of components to fulfil the requirements

of ADIM. Alternatively, I could have chosen to offer

users of ADIM a variety of good solutions to the problems

posed by the design and implementation of each module of

ADIM. This latter approach has already been tried in the

231

design of some relational data base management system

[HUTT78, SWKH76] with a resulting product that it is too

large and complicated for use as a personal data base

management system. Let alone, an integrated information

system, as described in this thesis.

ADIM assumes a small cardinality and degree in the

relations of a data base. This state of the data base is

attained by decomposition techniques applied to views,

(Chapter 5). Thus, typically in ADIM, a query once

parsed will refer to many small relations rather than few

large ones. This allows the simple application of

parallelism to the processing of queries in ADIM.

The choice of B-trees as the unique file structure

throughout the data base management system enabled me, as

designer, to avoid the unnecessary accumulation and

manipulation of statistics, usually required for

monitoring the efficiency of the system. The evaluation

tactics described in chapters 5 and 6 make use of the

properties of B-trees to estimate data flow. This

obviously leads to good cost estimation of queries,

updates and insertions in the data bases administered by

ADIM.

The fulfilment of the requirements for expandability

and flexibility demanded of ADIM, are demonstrated in

232

chapter 6. Applications such as the Examination

Monitoring System are an illustration of this point.

Further work to be undertaken as well as some open

problems emanate from the following list:

(a) Methods for using functional dependencies in the
decomposition procedure.

(b) Use of security and integrity constraints in
decomposition techniques.

(c) Cost criteria for optimizing relational
expressions which include query algebra and
decomposition operators.

(d) The use of several processors should be
incorporated in the cost functions, by
considering parallel processing. A distinction
has to be made between one-site multiprocessor
systems and distributed systems, because of
different cost structures imposed by data
pathways.

Finally, I feel that ADIM contributes an architecture

and an implementation for a Desk-top Information Manager

which is small and yet efficient. Furthermore, ADIM

provides a flexible and expandable base for

experimentation and development of new ideas in the areas

of relational data base management systems, query

languages, heterogeneous and homogeneous distributed data

base systems and data base design.

233

234

APPENDICES

Note: The syntax of the languages used in the
demonstrations might be slightly different from
the syntax defined in Chapter 3. This is because
an older version of ADIM was used in some of these
demonstrations.

235

A. APPENDIX

ALFRED Demonstration

In this appendix, a short sequence of queries is
presented. The queries involve relations created in
APPENDIX B. The system’s catalogues are examined often
so a detailed picture of the processing of the queries
can be observed. The queries are followed by a display
of their evaluation.

236

% prolog
PROLOG Version NU7

?- ["alfred"].

alfred consulted.

yes
?- alfred(dept,query).

WELCOME

T 0

ALFRED

QUERIES :

237

display relation ?
display attribute ?

display staff ?
display addresses ?

join staff addresses where
snunber = staff_id

into t1 ?

display t1 ?

project t1:5taff_id, naMe, salary, city
into hones ?

display relation ?
display attribute ?

display homes !

238

ALFRED EXECUTION

RELATION: relation

! relid irelsave ireltiips ! relwidi'relattidvc : root :n :
■w — "iW

! addresses 1 01 3: 46: 4: 97: 6: 5:
iattribute 1 0: 23: 34: 7: 97: 4: 7:
I relation : 0: 4: 28: 8: 97: H 8:
istaff

<*■ -W W- ' ■■ — —— —. —* w
: 0: 2: 34: 4:

"
97: 5: 7:

RELATION: attribute

:anare .'rid :forMat:asize Istart 1relati1keyposi

; staff_i d : addresses : 105: 4: 0: o: 1:
: addr :addresses : 1:5: 20: 4: i: o:
; city laddresses : 115: 10: 24: 2! o:
: phone :addresses : 115: 12: 34: 3; o;
: ana.ie : attribute : 115: 12: 0: o; o:
: rid lattribute : 115: 12: 12: 1: 11
! f ornat 1 attribute : 116: i; 24: o:
: d 5 i 2 e ;attribute : 104: 2: 26: 3! o;
: start :attribute : 104: 2: 29: 4: o;
: relative ;attri bute : 104: 2: 30: 51 2;
1keypos .'attribute : 104: 32: 6: 0;
; relid ;relation : 115: 12: 0: o; 1:
: relsave ;relation 1 105: 4: 12: 1; 0;
:reltups : relation : 105: 4: 16: 2! 0:
:relwid :relation : 104: 2: 20: 31 0:
:relatts 1 relation : 116: 1: 22: 41 0:
: dvc :relation : 116: 1; 23: 5: 0;
; r 0 D t ;relation : 104: 2: 24: 6; oi
: n ;relation 1 116: 1: 26: 7; Ol
; snunber :staff : 105: 4: 0: o;
: n a (1 e : s t a f f : 115: 20: 4: 1: 0;
: roon ;staff ; 104: 2: 24: 2!.
1 salary :staff : 114: 8: 261 3: 0:

239

RELATION: staff

Isnumber {name IrooM 1 salary 1
— N— WW MM MM MM, MM M- MM MM MM- M* MM MM MM MM

1 87654SJ. Jones
1 123456:0. Smith

1 671 11000.0001
: 341 12345.5001

RELATION: addresses

:5taff_id laddr Icity :phone
g MM MM MM MM.MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM.MMMMMMM MMMMMMMMMMMMMMWMMMMM-MM
1 87654:59 Richmond Rd : Bristol :24335
; 567436:22 Carnaby Rd. ;London 1234567
: 123456:34 Henry St. ;Bristol :45678

240

RELATION: t1

Isnumber Inane IrooM 'salary Istaffid laddr

: 87654IJ. Jones
1 123456IG. Smith

I 67! 11000.000: 87654:59 Richmond R
1 34: 12345.500: 123456134 Henry St.

RELATION: relation

relid :relsave :reltups :relwidIrelatt:dvc :root :n :

addresses : 01 31 46: 41 97: 6: 5:
attribute : 01 351 341 71 97: 4: 7:
homes : 0: 2: 42: 4: 97: 10: 5:
relation 1 01 4: 28: 81 97: 11 8:
staff 1 01 2: 34: 41 971 5: 7:
t1 : 01 2: 80: 81 971 8: 3:
» «W W. ■* N.. #;» w *. ** <* M.. #W w. a#. W.I. ^ im. M" ^ <*» w. »N. ..» NN.

241

RELAT ION: attribute

: a n a n e rid :format 1asi ze Istart IrelatilkeyposI

:staff id addresses 1 1051 41 0! 01 1
: addr addresses 1 1151 20! 4 I I 1 01
Icity addresses 1 1151 10! 241 21 01
!phone addresses 1 1151 121 34! 31 01
! anane attribute 1 1151 12! 0! 01 01
:rid attribute 1 1151 12I 12! 1 1 i
:fornat attribute 1 1161 1 1 24! 21 01
lasize attribute 1 104! 21 26! 31 01
:start attribute 1 1041 2! 28! 41 01
{relative attribute I 1041 2! 301 51 21
;keypos attribute I 1041 21 32! 61 01
;staff_id homes 1 1051 41 0! 01 1
! nane homes 1 115! 20: 4: 1 1 01
! salary homes I 114! 81 24! 21 01
Icity homes 1 1151 101 32! 31 01
I r e 1 i d relation I 115! 121 01 01 11
I relSdve relation I 1051 41 12! 1 1 01
1reltups relation I 105! 41 161 21 01
Irelwid relation I 104! 21 20: 31 01
1relatts relation I 116! 1 1 22! 41 01
I dvc relation I 116! 1 1 23: 5 1 01
1 root relation I 104! 21 24! 61 01
I n relation I 116! 1 1 261 7', 01
I snurtber staff 1 105! 4: 0! 01 11
I nane staff I 115! 20! 4! 1 1 01
i roofi staff : 104! 2: 24: 21 01
1 salary staff I 114! 81 26! 31 01
1 snu.nber t1 I 105! 4! 01 01 11
1 nane t1 ! 1151 20! 41 1 1 01
1 roon t1 1 104! 2! 241 01
1 salary t1 I 114! 8! 26! 31 01
Istaff_id tl I 105! 4! 34! 41 21
1 addr t1 ! 1151 20! 38! 51 01
Icity t1 ! 115: 10! 58: 61 01
1 phone tl I 115! 12! 68! ,^l 01

RELATION: hones

15taff_id Iname {salary Icity

1 87654IJ. Jones
I 123456:8. Smith

1 11000.000:Bristol
1 12345.SOOIBristol

LOCAL STACK 39
GLOBAL STACK 1887
FREE AREA 18884
TIME 279

yes

242

B APPENDIX

Utilities to the Data Base Administrator

A Demonstration

This appendix demonstrates some of the most important
utilities available to the data base administrator. The
creation of device ’a' is followed by the creation of the
data base 'dept'. The effects of these actions in the
file 'alldb' are shown. The invocation of ADIM
demonstrates the facilities to create relations and to
input data to relations. Also in this demonstration, the
means to examine a relation and to manipulate the keys of
such a relation are shown.

243

cat ../alldb
data bases
devices
2 rtkdev
Makedev: Usage

nakedev naMedev sizeCin blocks)
7. Mkdev data 40
szdev = 40 Mapsz = 1
Mkdev — in data 0 read and 0 write bad blocks found
■•*** device built and in good shape for use *:<:*
2 cat ../alldb
data bases
devices

a data 1 40
% dbMk
dbmk — Usage:

dbMk dbnaMe device
% dbMk dept a
% cat ../alldb
data bases

a dept 1 4
devices

a data 1 40
%

244

% adim dept

A D I M

A Desk-top InforMation Manager

Version 1.0

display relation

RELATION: relation

Irelid Irelsave Ireltups Irelwidlrelattidvc Iroot :n i

lattribute : 01 151 341 71 97: 4: 71
Irelation I 01 2: 281 8: 97: 1: 8:

_garbage

eh ?

eh ?

245

eh ?

display attribute

RELATION: attribute

!aname i rid 1 for

1anane 1 attribute 1

1 rid 1 attribute 1
1 forflat I attribute
! asize !attribute
!start iattribute 1
! relative !attribute 1
!keypos 1 attribute
! re lid 1 relation t
Irelsave !relation 1
I reltups !relation •

! relwid !relation 1
:relatts !relation 1
! dvc irelation 1

1 root irelation I

! n irelation «

flat

115
115
116
104
104
104
104
115
105
105
104
116
116
104
116

iasize istart !relatiikeypos1

121 0! 01 01
12! 121 1: 1 1

1 1 24: 01
2! 261 3! 01

28: -4! 01
2! 30: 5! 21
2! 32: 6! 01

12! 0: 0! 1 I
4! 12: 1 ! 0l
4! 16: 2! 0!
2! 20: 3! 0l
1 ! 22: 4! 0!
1 ! 23: 5! Ol

24: 6! 01
1 1 26: 7! 01

off
bye.

1.

246

7. adirt dept

A D I M

A Desk-top Inforridtion Manager

V e r 5 i 0 n 1.0

create staff a

RELATION: staff

Enter name and format for each attribute
(CANCELATION:- Type: 0 after name-prom.)

name: snumber

format: i

more ? (y-n) y

name; name

format; s20

more ? (y-n) y

name: room

format; h

more ? (y-n) y

name: salary

format; r

more ? (y-n) n

247

Is there a prinary key ? (y-n) y

Is the key compounded ? (y-n) y

Enter attribute names in decreasing order of importance.
Type;

2 - for HELP,
1 - to FINISH,and
0 - for CANCELATION.

after the name-prom.

name: 2

attributes are:

snuMber
name
room
salary

name: snumber

name; 1

WARNING - single key ! !

confirm ? (y-n)y

248

create addresses a

RELATION; addresses

Enter nane and format for each attribute
(CANCELATION;- Type; 0 after na«e-proH.)

na«e: staff_id,

forrtat; i

More ? (y-n) y

na«e; addr

for«at; s20

more ? (y-n) y

nane: city

fornat: 5IO

none ? (y-n) y

name: phone

format: s12

More ? (y-n) n

249

Is there a prinary key ? (y-n) y

Is the key coMpounded ? (y-n) n

na«e: staff_id

_di5play relation

RELATION: relation

1 relid irelsave 1reltups ! relnid!relattidvc iroob :n 1

1 addresses 0! 01 461 41 97: -1 I 5I
[attribute 0! 231 34: 7: 97: 4: 7:
irelation 0! 4: 28: 8: 97: 1: 8:
[staff 1 0! 0: 34: 4: 97: -1: 7:

25C

display attribute

RELATION; attribute

1aname ! r i d !

!staff_id laddresses 1
! addr laddresses i
! city laddresses 1
I phone laddresses 1
ianaMe 1 attribute 1
:rid lattribute 1
1format lattribute 1
Iasize lattribute 1
istart lattribute 1
1 relative lattribute 1
Ikeypos lattribute 1
1 relid Ireldtion 1
1relsave Irelation 1
1reltups Irelation 1
1relwid Irelation 1
:relatts Irelation 1
: dvc Irelation 1
! root Irelation 1
I n Irelation 1
1snuMber Istaff 1
1 nane Istaff 1
! roon Istaff 1
Isalary Istaff 1

fornat

105
115
115
115
115
115
116
104
104
104
104
115
105
105
104
116
116
104
116
105
115
104
114

iasize !start !relati!keyposI

41 01 01 1 I
201 41 1 1 01
101 241 2! 01
12! 341 31 01
121 01 01 01
121 121 1 1 1 1

1 1 241 21 01
21 261 31 01
21 281 41 01
21 301 51 21
21 321 61 01

121 01 01 1 1
41 121 1 I 01
41 161 2I 01
21 201 3I 01
1 I 22! 4I 01
11 231 5I 01
21 241 61 01
1 1 261 71 01
41 01 01 11

201 41 1 1 0l
21 241 21 0l
81 261 31 0l

251

display addresses

RELATION; addresses

5tdff_id iaddr Icity iphone

display staff

RELATION: staff

isnurtber ! natie !rao« !salary

252

append staff

RELATION: staff

Enter value for each attribute

snumber
name
room
salary

(i): 123456
(s): 6. Smith
(h): 34
(r): 12345.5

append staff

RELATION: staff

Enter value for each attribute.

snuMber (i): 87654
nane (s): J. Jones
roo« (h): 67,xcd
roort (h): 67
salary (r): 11000

-display staff

RELATION: staff

IsnuMber Iname IrooM Isalary I
^ — ■* W.W«WeeW»****W**iie***lW*Wl*e*™»iW.*W .* ■—* — W# W* *• W» W. W W» W W W. .^f W.

I 87654IJ. Jones I 671 11000.0001
I 123456:6. Smith I 34: 12345.500:

253

append addresses

RELATION: addresses

Enter value for each attribute.

staff_id (i): 123456
addr (s): 34 Henry St
city <s): Bristol
phone (s): 45678

append addresses

RELATION: addresses

Enter value for each attribute.

staff_id
addr
city
phone

(i): 567436
(s): 22 Carnaby Rd.
(s): London
(s): 234567

append addresses

RELATION: addresses

Enter value for each attribute.

5taff_id (i): 87654
addr (s); 59 Richflond Rd
city (s): Bristol
phone J 4335

254

display addresses

RELATION: addresses

staff_id iaddr :city :phone

87654i59 Richmond Rd 1 Bristol ;24335
567436122 Carnaby Rd. :London :234567
123456:34 Henry St. :Bristol :45678

display staff

RELATION: staff

Isnumber inane iroon isalary

87654:J. Jones I 67: 11000.0001
123456IG. Smith I 341 12345.5001

255

display relation

RELATION: relation

irelid irelsave ireltups
1 ■^•^■B****.-*^*****™** --M <MB ■■ *■ W W* #M IB* ■* W* *** *.» *.**** **...»*****B*^****

Irelwidlrelattidvc !root In 1

'addresses ! 0!
■'attribute 1 01
irelation ! 0!
Istaff : 01

31 461 41 971 61 51
23! 341 71 971 41 71

41 281 61 97: 11 8:
21 341 4: 97: 5: 7:

256

display attribute

RELATION:

!anane

15tdff_id
! addr
! city
!phone
! anane
! rid
! foPMat
! asize
! start
! relative
I keypos
I relid
! relsave
ireltups
I reluid
irelatts
1 dvc
! root
! n
! snuMber
! narte
i rooM
Isalary

attribute

Irid IforMatlasize Istart IrelatilkeyposI

:addresses ! 1051 4: o; 0: 1 1
iaddresses 1 1151 20: 41 11 01
! addresses : 115: 10: 24: 21 01
1 addresses 1 115: 12: 34: 31 01
! attribute : 115: 12: 0: 01 01
!attribute : 115: 12: 12: 1 1 1 I
1 attribute : 116: 1; 24: 21 01
!attribute : 104: 2: 26: 31 01
! attribute : 104: 2: 28: 41 01
i attribute : 104: 2! 30: 51 21
!attribute : 104: 2: 32: 61 01
!relation : 115: 12: 0: 01 1 I
irelation : 105: 4: 12: 1 1 01
irelation : 105: 4: 16: 21 01
!relation : 104: 2: 20: 31 01
!relation : 116: 1: 22: 41 01
! relation : 116: 1: 23: 51 01
!relation : 104: 2: 24: 61 01
!relation : 116: 11 26: 71 01
Istaff : 105: 4: 0: 01 1 1
Istaff : 115: 20: 41 11 01
:staff : 104: 2: 24: 21 01
1staff : 114: 81 261 31 01

_of f
bye.

257

C. APPENDIX

FML Demonstration

A set of queries in FML is presented here. These
queries are equivalent to the queries in the ALFRED
demonstration [APPENDIX A]. An evaluation of the queries
is also included.

258

Ninclude "defs.h"
#include "global.h"

char *A14[] = < "snuMber","=","5taff_id",0 };
char *AI627[] = { "staffed","name","salary","city",0 };
MainO {
dbopen("dept");
di5pldy("relation",0);
display("attribute",0);
di5play("staff",0);
di splay("addresses",0);
join("t1","staff","addresses",A 14,0);
di5play("t1",0);
project("hoMes","t1",A1627,0);
display("relation",0);
display("attribute",0);
di5play("hoMes",0);
dbcloseO;
}
%

259

RELATION; relation

1 relid :relsave ! reltups irelwidirelattldvc Iroot i n i

1 addresses 01 31 461 4: 971 6: 5:
1 attribute 0! 23: 341 71 971 4: 7:
!relation 0! 41 281 81 971 H 8:
Istaff 1 0! 21 341 41 971 5: 7:

RELATION; attribute

:aname 1 rid iformatiasize istart irelatiikeyposi

15taff_id ;addresses i 1051 4: 0: Oi 1 i
: addr 1 addresses 1 115: 20: 4: 1 i Oi
Icity 1 addresses : 1151 10: 24: 2: 01
1 phone ! addresses : 115: 12: 34: 3: 01
1aname !attribute : 115: 12: 0: Oi 01
:rid ;attribute : 115: 12: 12: 1 i 11
:format 1 attribute : 116: 1: 24: 2i Oi
1asize 1 attribute : 104: 2: 26: 3i Oi
1 start !attribute 1 104: 2: 28: 4i Oi
:relative 1 attribute 1 104: 2: 30: 5i 2l
Ikeypos 1 attribute : 104: 2: 32: 6i Oi
:relid !relation : 115: 12: 0: Oi 11
:relsave !relation : 105: 4: 12: 1 i Oi
:reltups 1 relation : 105: 4: 16: 2i 0!
:relwid !relation : 104: 2: 20: 3i 01
!relatts ;relation : 116: 1 ! 22: 4: Oi
: dvc 1 relation ; 116: 1 i 23: 5 i 01
1 root 1 relation 1 104: 2i 24: 6i 01
: n irelation ; 116: 1 i 26: 7i 01
:snurtber ; staff : 105: 4i 0: Oi 11
: name istaff : 115: 201 4: 1 i 01
: room istaff ; 104: 2: 24: 2i 01
: salary 1 staff : 1141 8: 26: 31 Oi

260

RELATION: staff

Isnumber Iname {room 1 salary-

! 876541J. Jones : 67! 11000.000
1 123456IG. Smith 1 34: 12345.500

RELATION: addresses

lstaff_id laddr :city 1 phone

1 87654159 Richmond Rd :Bristol :24335
i 567436:22 Carnaby Rd. :London :234567
1 123456:34 Henry St. :Bristol :45678

RELATION: t1

:snuMber Iname :rooM :salary :staff_id :addr

: 87654:J. Jones : 67: 11000.000: 87654:59 Richm
: 123456:0. Smith 1 34: 12345.500: 123456:34 Henry

RELATION: relation

Irelid :relsave Ireltups 1 relwid:relatt!dvc :root :n :

:addresses o: 3: 46: 4: 971 6: 5:
:attribute 0! 35: 34: 7: 97: 4: 7:
:homes 0! 2: 42: 4: 97: 10: 5:
;relation o: 4: 28: 8: 97: 1: 8:
:staff o; 2: 34: 4: 971 5: 7:
:ti 1 o: 2: 80: 8: 971 8: 3:

261

RELATION: attribute

!aname irid Iformatlasize Istart IrelatilkeyposI

istaff id 1 addresses 1 105! 4: 0: 0: 1 !
! addr ;addresses : 1151 20: 4: 11 0!
! city 1 addresses : 115: 10: 24: 2! o:
!phone 1 addresses : 115: 12: 34: 3: 01
!anane 1 attribute 1 115: 12! 0: 0: 0!
! rid 1 attribute 1 115: 12: 12: 1: 1:
iforfldt 1 attribute : 116: 1: 24: 2: 0!
iasize lattribute : 104: 2: 26: 3: Ol
:start 1 attribute : 104: 2: 28: 4: 0!
1 relative lattribute : 104: 2: 30: 5: 2!
Ikeypos I attribute : 104: 2: 32: 6: Ol
lstaff_id Ihones : 105: 4: 0: 0: 1 I
1 name 1 hones : 115: 20: 4! 1: 01
:salary 1 hones : 114: 8: 24! 2: Ol
Icity 1 hones : 115: 10: 32: 3: 01
Irelid 1 relation : 115: 12: 0: 0! 11
:relsave 1 relation : 105: 4: 12: 1: 01
Ireltups I relation : 105: 4: 16: 2: 0!
1relwid 1 relation : 104: 2: 20: 3: 01
1relatts 1 relation : 116: 1: 22: 4: 01
!dvc 1 relation : 116: 11 23! 5! 01
i root I relation : 104: 2: 24! 6: 01
! n I relation 1 116: 11 26: 7: 01
Ssnunber Istaff : 105: 4: 0: 0! 11
i name 1staff : 115: 20: 4: 1: 01
1 room 1 staff : 104: 2: 24: 2: 01
! salary 1 staff : 114: 8: 26: 3: 01
! snunber It1 : 105: 4: 0: 0: 11
! nane It1 : 115: 20! 4: 1: 01
iroon It1 : 104: 2: 24: 2! 01
! salary It1 : 114: 8: 26: 3! 01
istaff id Itl : 105: 4: 34: 4! 21
I addr It1 : 115: 20: 38: 5! 01
kity It1 : 115: 10: 58: 61 01
1 phone It1 : 115: 12: 68: 71 01

RELATION: homes

staff_id Inane 1 salary Icity

87654IJ, Jones
123456IG. Smith

: 11000.OOOIBristol
! 12345.500IBristol

262

D. APPENDIX

ALPRED-U to QUEL Translator

A Demonstration

Relations from the INGRES data base ’demo’ are used
in this demonstration. The relations and the file
’query’ containing the ALFRED queries are shown. This is
followed by the translation from ALFRED to QUEL and the
evaluation of the queries.

263

Ingres deno
INGRES version 6.3/-1 login
Wed Jul 6 15:51:47 1983

COPYRIGHT
The Regents of the University of California
1977

This program material is the property of the
Regents of the University of California and
nay not be reproduced or disclosed without
the prior written permission of the owner.

continue
■ 1; print item
* print supplier
* \g

264

Executing .

iten relation

number:name Idept iprice !qoh Isuppli:

26:Earrings 1 141 1000: 20: 199:
IIGITowels, Bath 1 261 250: 1000: 213:
43!Maze : 49: 325: 200: 89:

106IClock Book : 49: 198: 150: 125:
2311 lb Box : 10: 215: 100: 42:
521 Jacket : 60: 3295: 300: 15:

165:Jean : 65: 825: 500: 33:
258IShirt : 58: 650: 1200: 33:
120ITwin Sheet : 26: 800: 750: 213:
301:Boy's Jean Suit : 43: 1250: 500: 33:
1211 Queen Sheet : 26: 1375: 600: 213:
101:Slacks : 63: 1600: 325: 15:
1151 Gold Ring : 14: 4995: 10: 199:
2512 lb Box, Mix : 10: 450: 75: 42:

119:Squeeze Ball : 49: 250: 400: 89:
11!Wash Cloth ; 11 75: 575: 213:
191 Bellbottoms : 43: 450: 600: 33:
21:ABC Blocks : 1; 198: 405: 125:

107IThe Teel^ Book : 35: 225: 225: 89:
121:Ski Jumpsuit : 65: 4350: 125: 15:

supplier relation

number:name :city : state

199:Koret :Lo5 Angeles :Calif
213:Cannon ;Atlanta :Ga
33:Levi-Strauss ;San Francisco :Calif
89:Fisher-Price :Boston :Mass

125:Playskool :Bal las Hex
42:Uhitman'5 : Denver :Colo
15:Uhite Stag :Uhite Plains : Neb

continue

265

%

% cat query
/*

IQL to QUEL example

select item when item.price >= 100^
into TO ?

project TO: 'iteM=T0.naMe, TO.price, supno=T0.supplier'
into T1 ?

project supplier: ^supplier = supplier.name, supplier.number''
into T2 ?

join T1 * T2 when
'Tl.supno = T2.number^

into T3 ?
project T3: ''T3.iteM, T3.supplier, T3.price"'

into highprice ?
display highprice ?
destroy TO, T1, T2, T3 ?
destroy highprice !
\p
\1
\9

266

1 iql de«o < query
/*

IQL to QUEL exaMple

select item when 'item.price >= 100''
into TO ?

project TO: ^iteM=T0.naMe, TO.price, supno=T0.supplier'
into T1 ?

project supplier: 'supplier = supplier.name, supplier.number"
into T2 ?

join T1 * T2 when
'Tl.supno = T2.number"

into T3 ?
project T3: 'TS.item, T3.supplier, T3.price"

into highprice ?
display highprice ?
destroy TO, T1, T2, T3 ?
destroy highprice !
/*

IQL to QUEL example

range of item is item
retrieve into TOdtem.all)

where item.price >= 100

range of TO is TO
retrieve into T1 (itert=T0.naMe, TO.price, supno=T0.supplier)

range of supplier is supplier
retrieve into T2(supplier = supplier.name, supplier.number)

range of T1 is T1
range of T2 is T2
retrieve into T3(T1.aIl, T2.all)

where Tl.supno = T2.number

range of T3 is T3
retrieve into highprice(T3.ite«, T3.supplier, T3.price)
print highprice
destroy TO, T1, T2, T3
destroy highprice

267

highpi'ice relation

1 item {supplier {price 1*

11 lb Box ! Whitman''s
1

1 2151
12 lb Box, Mix : Whitman''5 1 450:
lABC Blocks 1Playskool 1 198:
!BellbottoMS !Levi-Strauss : 450:
IBoy^s Jean Suit 1 Levi-Strauss : 1250:
IClock Book !Playskool : 198:
lEarrings !Koret : 1000:
IGold Ring !Koret ; 4995:
:Jacket I'Uhite Stag : 3295:
IJean iLevi-Strauss : 825:
IMaze iFisher-Price : 325:
IDueen Sheet ICannon : 1375:
!Shirt !Levi-Strauss : 650:
ISki Jumpsuit iUhite Stag : 4350:
ISlacks !White Stag : 1600:
ISqueeze Ball !Fisher-Price : 250:
IThe Teel^ Book !Fisher-Price : 225:
ITowels, Bath iCannon : 250:
ITwin Sheet !Cannon : 800:

% % % %

268

E. APPENDIX

ALFRED-U to QUEL Translator

Source Code

269

Translate IQL into QUEL

*/

/*

SUGAR

* /

(define; ?;}

{define; |;}

(define; {continuetrap};\
(type IQL query executed by INGRES ... \n\n\n)

/*

COMMANDS

* /

/* UNION */

(define; union $1 + $2; \

range of $2 is $2 \

append to $l($2.all)}

/* PROJECT */

(define; project $r : $| into $t; \

range of $r is $r \

retrieve into $t($|)}

/* SELECT */

270

{define; select $r when $c into $t; \

range of $r is $r \

retrieve into $t($r.all) \
where $c}

/* JOIN */

(define; join $1 * $2 when $c into $t; \

range of $1 is $1 \

range of $2 is $2 \

retrieve into $t($l.all, $2.all) \
where $c}

/* DISPLAY */

(define; display; print}

/* OTHER COMMANDS ARE IDENTICAL */

A demonstration run of this translator is presented

in APPENDIX

271

F. APPENDIX

Binary Cyclic Codes

272

Binary Cyclic Codes (BCC)

%**%*#%*#%*%*%%#%****%##«***

Definition 1.-

An (n,k) linear code C is called a cyclic

code if it has the following property: If an n-tupla

V = (v^,v^,...,v^^^)

is a code vector of C, the n-tupla

- (^n-i*^ni-i+1'''''^n-1'^0*^1''''*^n-l-l)

obtained by shifting v to the rigth cyclically 1 places, is

also a code vector of C.

A relationship between the components of a

code vector and the cofficients of a polynomial can be esta­

blished, as follows:

273

V = (VQ,Vp...,V^ p <==>

v(x) = + v.x^ + + V ,x"-^

We shall call v(X) the code polynomial of v.

It can be shown easily that v^^\x) is

the remainder resulting from dividing X^v(X) by x’^,i.e.

X^v(X) = q(X)(x" + 1) + v^^^(X)

It is clear that v^^\x) = X^v(X) if the

degree of X^v(X) is n-1 or less.

Theorem 1. -

In an (n,k) cyclic code, there exists one

and only one code polynomial g(X) of degree n-k

g(X) = 1+g^X+g2X^+...+g^_^_^x"'^"^+x""^

Every code polynomial v(X) is a multiple of

g(X) and every polynomial of degree n-1 or less which is a

multiple of g(X) must be a code polynomial.

It follows from Theorem 1 that for all v(X)

in an (n,k) cyclic code

v(X) = m(X)g(X)

= (m.+m.X+mgX^+...+m .X^ ^)g(X)

274

If the coefficients of m(X),

(mQ,mp...,ni. p are the k information digits to be en­

coded, then v(X) would be the corresponding code polynomial.

Thus,the encoding of a message m(X) is equivalent to multi­

plying the message m(X) by g(X). The polynomial g(X) is

called the generator polynomial of the cyclic code. The de­

gree n-k of g(X) is equal to the number of parity check di­

gits of the code.

Theorem 2. -

The generator polynomial g(X) of an (n,k)

cyclic code is a factor of X^+1,i.e.

x"+1 = g(X)h(X)

Theorem 3. -

If g(X) is a polynomial of degree n-k and is

a factor of X^+1, then g(X) generates an (n,k) yclic code.

Given the generator polynomial g(X) of an

(n,k) cyclic code, the code can be put into systematic form.

That is, the first k digits of each code word are the unal­

tered information digits; the last n-k digits are parity

check digits.

Suposse that the message of k digits to be

encoded is

275

m - (iDq ,ni^ ,,.., ni^_ 1)

The corresponding message polynomial Is

m(X) = m_+m.X +»««+m ^X UI K-I

Multiplying m(X) by X^”^, we obtain

x"-^m(X) = q(X)g(X) + r(X) (*)

where q(X) and r(X) are the quotient and remainder respec­

tively.

Since the degree of g(X) is n-k the degree

of r(X) must be n-k-1 or less,

"^^:) = ro,r^X^+...+r^_^_^x"-k-1

Rearranging the equation marked by (*)

above, we obtain

r(X) + X"'''^m(X) = q(X)g(X)

Thus by Theorem 1, r(X) + X'^'^mCX) is a code po­

lynomial generated by g(X). Writing out r(X) + X""^, we

have

r(X)+x"-^m(X) =

276

which corresponds to the code word

parity check---------------------- message

277

G. APPENDIX

Cyclic Codes Algorithms

A Sample

278

* This program simulates a hardware encoding
device.
* The logic is based in Binary Cyclic Codes.
* The hardware device simulated is a

shift-register.
*

*/

ndefine BYTE 8
-■define N 7
-■define K 4
char M[K / BYTE + 1] (013 };
char G[(N - K) / BYTE + 1] { 05 };
char REM[(N - K) / BYTE + 1] { 0 };

main() {
printf("message is ");
output(M,K);
printfHcode generator is 1") ;
output(G,N-K);
p_rem(M,G,REM,N,K);
printf("parity check bits for message are ");
output(REM,N-K);

p_rem (m,g,rem,n,k)
char m[] ,g [] ,rem[] ;
i n t n , k ;
{

int i,j,top;
char input,c;

top = (n-k)/BYTE;

for(i=0; i < k ;i++) {
input = bit(m,k);
c = (rem[top] input) 6 01 ? "0 : 0;

for(i=0; j <= top ;i+f)
remtj] = (c & g[j]);

r_shift(rem,n-k);

rem[0] =i (c ? 01 << ((n-k-1) % BYTE) :
0);

}

279

bit(a,s)
char a[] ;
int s;
{

char t;

t = a[s/BYTE] 6 1;
r_shift(a ys);
return(t);

}

r_shift(a,s)
char a[];
int s;
(

int top,i;

top = s / BYTE;

for(i=top; i > 0 ; i—) {
a[i] =>> 1;
a[i] =1 (a[i-l] & 01 ?

(01<<(BYTE - 1)):0);

a[0] =>> 1;

output(ayS)
char a[];
int s;
{

int iytop;

top = S / BYTE;

bltp(a[0],s % BYTE);

for(i=l; i <= top ;i+f)
bitp(a[i],BYTE);

putchar('0);
}

bitp(patternfSize)
char patternfSize;

char tester;

if(size <= 0) return;

tester = 01 << (size -1);

while(size—) {

280

putchar(tester & pattern ? '1’ : ‘0’);
tester =>> 1;

281

H. APPENDIX

ALFRED VC to K Translator

Source Code

282

■Ji conir. I- r LI

C'r(7< xfv, @).
L‘ F " (^ J ', F >"1.) z i z) ,

?-• vi-(10. vfx, :*:).
7 • oi- (ti , X F ,)) «

Mar exrressic'Fi C iiilij t'lc. full-,
dviCuriir> used arid Lirtiihieed e^sf-r ess i uh F

iiiar(E. r) r-
char(E, El).
cxr1(El, C2),
simp(E2, F).

/;: add cliaraclei isbic ^/
/* expTudo views :^/

/# optimize i(^/

expand views to basic relations expressions
*/

expl(E, E /* catcli basic but not relations +r/
basic(E), !.

exp1(E, F)
view (
expl (

E, El
El, F

) ,
) .

exp](E, F) : -
E . [Op, Lexp, Rexp]
exp 1 (Lexp, Xexp),
expl (Rexp, Yexp),
F =.. [Op, Xexp, Yexr]

add characteristic to relations

char(E, F) :-
characteristic(E, C),
F =.. [e, E, C], !.

char(Cl F) :-
E =.. [Op,
char(Lexp,
char(Rexp,

Lexp, Rexp],
Xexp),
Yexp),

F =.. [Op, Xexp, Yexp].

/iF

Relational Ortimiser

c h a r (E, E) .

283

simplify rel expr.

5imp(El E) E-
basic(E), !.

simp(El F) :-
E =.. [Opi LexPi Rexp],
5imp(LexPi Xexp),
simp(Rc-xpi Yexp)i
s(Opi XexPi Yexpi F).

basic! X) :-
relation! X),

basic! X) :-
/* list of conditions or attributes if/
i s_li st! X), !.

/#

*/

/*

simplification rules

restriction rules

/* riormalize relational expressions if/

/* distribute @ over :+: */
s! 61 RI :+: R2, X, Z1 :r: Z2)

s! 6, RI, X, Z1 >,
s! e, R2, X, Z2).

/* push @ to right and '• to left «■/
s! X e Yi Z, X Z 6 Y).

/# normalize predicate if necessary. then
opt ifiiize: srestr!) #/

s! 6, X, Y, Z) :
clauseform! X, XI),
clauseform! Y, Yl),
srestr! 6, XI, Yl, Z).

/* empty relation => empty relation */
srestr! 6, [], _, []).

/* empty coiiJition => relation #/
srestr! 6, X, [], X).

284

/* false condition => emptv relation «■/
sr estr (6, X\ C false], []).

/# true condition => relation */
srestr(6, X, [true], X).

/* associative case «•/
srestrC ©, X, Y, Z) :-

i s_li st(X),
is_list(Y),
u n i o n (X, Y, Z1
set(Zl, Z2),
optclausesC Z2,

/* eliminate duplicates */
Z). /* optimize clauses asain */

srestr(@,R@X,Y,Z):-
is_list(X),
is_list(Y),
u n i 0 n (X, Y, Z1) ,
5et(Zl, Z2), /i^ eliminate duplicates #/
optclauses(Z2, Z3), /* optimize clauses again */
srestr(@, R, Z3, Z). /* once more #/

/* catch al 1 */
srestr(e, X, Y, X e Y).

project rules
*/

/^^ empty relation => empty relation */
s([], []).

/t$ empty list of atts => enipty relation */
s([], []).

/* associative case #/
s(X, Y, Z) : -

i s_li st(X),
is_list(Y),
i n t e r s e c t i o n (X, Y, Z1) ,
set(Zl, Z). /* eliminate duplicates #/

/* catch all */
s(X, Y, X Y).

/*
uni o rt rules

/* relation :+: empty relation => relatiori -(^/
s(:+:, X, [], X).
5(*4^", [], X, X)"

/* catch all */
s(:+:, X, Y, X :+: Y).

285

Join rules

,% relation £*: empty relation -<> empty relation »t/

s (2 -ii- 2 , _, C] ? C 3) ,
s([], []).

/* catch all */
5(X, Y, X Y).

/*
mi see 11aneous

is_list([]).
is_list([_ : _ 3).

/#
Sets

#/

/* enipt i */
empty([3).

/* member t^/
member(X, [X I _ 3).
member(X, [_ I Y 3) :-

member(X, Y).

/< subset */
subset([3, _).
subset (Xi X) .
subset([X ! R 3, Y)

member(X, Y),

subset(Ri Y).

proper(Xi Y) :-
subset(Xi Y)1
n 01 (s u b s e t (Y i X)).

equivalerit(Xi Y)
subset(X, Y),
s u b s e t (Y1 X).

/* intersection jV
inter sect ion(L3i Xi E3).
intersection([X I R 3, Y, [X : Z 3) :

meniber < X, Y),

286

union(R, Y, Z).

intersection(
intersection([X ! R

R,
],
R,

Y,
Y,
Y,

Z).
Z) :-
Z) .intersection(

/# union */
uni on([], X, X).
union([X 1 R], Y,

member(X, Y
Z)
),

u n i 011 (
union< R, Y,

[X 1 R], Y,
Z)
[X Z]) :

/* difference : relative complement */
difference(X, [], X).
difference([], _, []).
difference([X : XT], Y,

not member(X, Y)

difference(XT, Y,
difference([X : XT], Y,

member(X, Y),

difference(XT, Y,

[X I Z])

Z).
Z) :

Z).

/* disjoint #/
d i s J 0 i n t (X, Y) £ -

riot((member (Z> X), member(Z, Y)

Convinience - General

/■K delete all ocurrances of X from list L «/
de1ete(_, [], []).
de1ete(X, [X I L], M)

de1ete(X, L, M).
delete(X, [Y I LI], [Y I L2])

de 1ete(X, LI, L2).

/# make a set S from a list L£
remove duplicates »/

set([], []).
set([X : SI], [X I S])

not member(X, SI), i, set(
set([X I SI], S)

member(X, SI), !, set(SI,

/* define operators */

287

?- op(6007 fxi “).
?- op(900, xfY, or).
?- 0F-(900, xfv, and).

/ *
normalize predicate calculus expressiori

/■ii-
c 1 auseform (X-, Y)

trans-form X exf^ression to clause form Y

if not al ready done. ■$$■/
clauseform(X, Y) :-

not elform(X),
pcnorm(X, Y).

clauseform(X, X).

c 1 f o r m (C 3) .
e1f o r m(C I rue 3).
clform([false 3).
c 1 f o r m ([c 1 (_, _) ! _ 3).

PCnorm
normalises a predicate calculus expressioii

pcnorm([Expression 3, Clauses)
nesinC Expression, XI),
conJnC XI, X2),
clausif,(X2, X3, []),
or^tclauses< X3, Clauses). /# optimize clauses */

/* move negation inwards t:/
nes in(("P), Pl) :-

! , ne9(P, Pl).
ne9in((P arid Q), (Pl and QI)) :-

! , 11691 II (P, Pl) ,
nesinC G, QI).

no9 i n ((P or Q) , (Pl or Q1) > : --
i, ne9 i n(P, Pl),
ne9 in(Q, QI) .

n e 9 i n (P, P) ,

neg(("P), Pl) :—
!, ne9in(P, Pl).

neg((P and Q), (Pl or QI))
!, ne9(P, Pl),
n e 9(Q, QI).

rie9((P or Q), (Pl and QI)) :
!, ne9(P, Pl),
n e 9(Q, QI).

ne9(P, ("P)).

/* distribute and over or k/

288

conJn((P or Q), R) !,
c0nJn(P1 Pl),
conjn(G!, QI),
conJri1((Pl or 01), R).

conJri((P and 0), (Pl and 01)) :- !,
corijri(P, Pl), conjriCQ, 01).

c o n J n (P, P).

conjnl(((P and 0) or R), (Pl and 01)) :-
! , c o n j n ((P
conJn((Q or

o r-
R),

0), Pl),
01).

conJn1 ((P or (0 and R>) , (Pl and 01)) :-
conJn((P or 0), Pl),
coiiJ n((P or R), 01).

conJnl (P, P).

/# into clauses */
c1ausifY((P and 0), Cl, C2) :-

c1ausifY(P, Cl, C3),
c1aus ifY(0, C3, C2).

c1ausifY(P, [cT(A, B) : Cs], Cs)
inc1ause(P, A, [], B, []), !.

c 1 a u s i f Y (_, C, C).

iric1ause((P or 0), A, Al, B, Bl) : !,
iric1ause(P, Az, Al, B2, Bl),
inc1au5e< 0, A, A2, B, D2).

inc1ause(("P), A, A, Bl, B) :- !,
notiii(P, A), putin(P, B, Bl).

inc1ause(P, Al, A, B, B) :-
notin(P, B), putin(P, A, Al).

n o t i n(X, [X : _]) :— ! , fail.
notin(X, [_ I L]) :- !,

notin(X, L).
not in(X, []).

p u t i n (X,
Putin(X,
p u t i n (X,

[], [X]):- !.
[X I L], L) :- !.
[Y I L], [Y : LI])

put in(X, L, LI).

/*
oPtclause5 —

optiniize ari expiession in clause form
It finds contradiction in clauses, et

#/

optclausesC Clauses, OptClauses) :-
rmcontrarY(Clauses, ShortCIs),
optcls(CiiortCls, OptClauses).

/* rmcontrarY - search for contradiction and if one
is found, the contradictory clauses are maped
into 'false"" /

289

rmcontr a.ry(C3, t3).
rmcontrar Y(E cH A-, Ei) ! Cis]> C false 3) :

contrarY(cH A, B), Cis). /# test for contrad. */
rmcontrarY< [c1(A, B) I Cisl], [c1(A, B) 1 Cl52])

rmcontrarY(Cisl, C1s2).

/* contrarY - test for contradiction <(/
contrarY(c1(A, B), [c1(Bl, Al) : _])

equivalerit(A, Al),
equiva1ent(B, Bl).

contrarY< c1(A, B), E _ ! Cis 3) :-
coritrarv(c1(A, B >, Cis >.

/* optcis - false & X => false ■$$■/
optcl5(X, [false]) :-

member(false, X).
/* optcIs - true & X => X */
optc1s(X, [true 3) :-

member(
X, X).o p t c 1 s (

true, X).
/* catcli all */

data base

view(pupils, student '"'' name).
vieu)(hishpaid,

(employee 6 Esalary >- 1003) Eriame, sa1ar,3).
vieuj(manualujorker,

emploYee@E'^(dept - 7) or (dert = 9 and section = 32)3).
V i e w (a 1 1 _ s t a f f,

deptl_staff :+: dept2_staff).
V i e w (d o p 11 _ 51 a f f,

sect ioriA_staf f : : sect i oriB_staf f).

r e 1 a t i o ri (
re 1 at ion(
r e 1 a t i o n (
re 1 ati on(
r e 1 a t i o n (
re 1 at i oti (

employee).
sectionA_staff
sec 11 onE-i-staf f
dept2-_staf f).
student).
staff).

) .
) .

c harac t er- i s t i c (sec t i oriA_s taf f , Esectiori =
char actei i st i c(sec t i oriB_5 taf f , E ■•'(sec ti on

^A'3).
"A')3).

290

REFERENCES

ADIBA

Adibay M.y Caleca^ Y.J., and Euzet» C., "A

distributed data base system using logical

relational machines”, Proc. 4th Conf, on

Very Large Databases, Berlin, 1978.

ASHTON

ASHTON-TATE. "DBasell Assembly-Language,

Relational Database Management System”.

Reference Manual. Ashton-Tate.

California. 1981.

BABB79

E. Babb. "Implementing a relational

database by means of specialized hardware".

ACM Transac. Database Syst. 4, 1. March

79. pp. 1-29.

BAYER

Bayer, R., and McCreight, E., "Organization

and Maintenance of large ordered indexes".

Acta Informatica 1,3 (1972), pp. 173-189.

291

BOCCA

J. Bocca. "On the Design of Personal Data

Base Systems". IUCC-81 Colloquium,

September 1981.

BOCCA82

J. Bocca. "Control of Distributed System -

CDS". Internal Memo. Dept, of Computer

Science, Bristol University. December

1982.

BURKHARD

Burkhard, W.A., "Hashing and Trie

Algorithms for Partial Match Retrieval",

ACM TODS 1, 2, June 1976, pp. 175-187.

CHAM

Champine, G.A., "Six Approaches to

Distributed Databases", Datamation 23, 5,

May 1977, pp. 69-72.

CLOMEL

W. Clocksin and C. Mellish. "Programming

in Prolog", Springer-Verlag, 1981.

CODD70

E.F. Codd. "A Relational Model of Data for

Large Shared Data Banks". CACM, 13, 1970.

pp. 377-387.

CODD72

E.F. Codd. "Relational Completeness of

Data Base Languages". IBM Research Report

RJ909. New York, March 72.

292

C0MMER79

D. Comer. "The Ubiquitous B-tree",

Computing Surveys, Vol. 11, No.2, June 79.

CPM

CP/M Operating System, Digital Research

Corp.

DATE

Date, C.J., "An Introduction to Data Base

Systems", 3rd ed., Addisson-Wesley, 1981.

DEPPE

Deppe, M.E., and Fry, J.P., "Distributed

Data Bases: A summary of research",

Computer Networks 1, 2, Sept. 1976, pp.

130-138.

FAGIN

Fagin, R. , Nievergelt, J., Pippenger, N.,

and Strong, H.R., "Extendible Hashing - A

Past Access Method for Dynamic Files", ACM

TODS 4, 3 (1979), pp. 315-344.

PREDKIN

Fredkin, E.H., "Trie Memory",

Communications of the ACM, Vol. 3, No. 9,

1960, pp. 490-499.

GALLAIRE

Gallaire, H., and Minker, J., "Logic and

Data Bases", Plenum Press, 1978.

293

GUDES

Gudes, E., and Tsur, S., "Experiments with

B-Tree Reorganization", Proc. ACM SIGMOD

1980, pp. 200-205.

HELD75

D.G. Held. "Storage Structures for

Relational Data Base Management Systems".

Memo No. ERL-M533. Electronics Research

Laboratory - University of California,

Berkeley, August 75.

HELLER

Heller, J., and Osterer, L., "The Design

and Model of the BNL Archive and

Dissemination System", Proc. 1977 Berkeley

Workshop on Distributed Data Management and

Computer Networks, May 1977, pp. 161-181.

HELSTO75

G. Held and M. Stonebraker. "Storage

Structures and Access Methods in the

Relational Data Base Management System

INGRES". Memo No. ERL-M505. Electronics

Research Laboratory - University of

California, Berkeley, March 1975,.

HEVNER

A. Hevner. "The Optimization of Query

Processing on Distributed Database

Systems", Ph.D. Dissertation, Purdue

University, 1979.

294

HEVNERY

Hevner, A.R. and Yao, S.B., "Query

Processing in Distributed Database

Systems", IEEE Transactions on Software

Engineering, Vol. SE-5, 3, May 1979, pp.

177-187.

HONEYW

HONEYWELL. LEVEL 68 (Software). Reference

Manuals: LINUS and MRDS.

HOPCROFT

Hopcroft, J., Aho, A., and Ullman, J.,

"Data Structures and Algorithms",

Addisson-Wesley, 1983.

HOSA

Horowitz and Sahni, "Fundamentals of

Computer Algorithms", Computer Software

Engineering Series, PITMAN, 1978.

HS75

G. Held and M. Stonebraker. "B-trees

re-examined". Memo No. ERL-M528.

Electronic Research Laboratory, University

of California, Berkeley, July 75.

HSW75

G. Held, M. Stonebraker and E. Wong.

"INGRES - A Relational Data Base Management

System". AFIPS - Conference Proceedings,

Vol. 44, USA, 1975.

HUTT78

A. Hutt, Relational Data Base Management

System. Willey. Dec. 1979.

295

IBM66

IBM Corp. "OS ISAM Logic". IBM^ White

Plainsy N.Y., GY28-6618. 1966.

JACOBSON

Jacobson, B., "DataBase vs. Condor and

dBase II", BYTE, October 1984, pp. 289-302.

JARKE

Jarke, M., Clifford, J., and Vassiliou, Y.,

"An optimizing Prolog Front-End to a

Relational Query System", Proc. ACM SIGMOD

84, pp. 296-306.

JARVAS

jarbe, M., Vassiliou, Y., "Coupling expert

systems with database management system",

in Reitman, W. (ed.), Artificial

Intelligence Applications for Business,

Ablex, Norwood, NJ, 1984, pp. 65-85.

JOHNSON

S.C. JOHNSON. "YACC - Yet Another

Compiler-Compiler". Bell Telephone

Laboratory. Murray Hill, N.J.

KNUTH

Knuth. "The Art of Computer Programming",

Vol.3, Addisson-Wesley, 1973.

KOWALSKI

Kowalski, R., "Logic for Problem Solving",

Nilsson, J. (ed.). Artificial Intelligence

Series 7, North Holland, 1979, pp. 37-42.

296

LANG78

G. Langdon, Jr. "A note on associative

processors for data management". ACM

Trans. Database Syst, 3, 2. June 78.

LARSON

Larson, P.A,, "Dynamic hashing", BIT, Vol.

18, 1978, pp. 184-201.

LITWIN78

Litwin, W., "Virtual Hashing: a

dynamically changing hashing". Proc. 4th

Int. Conf, on Very Large Data Bases,

Berlin, 1978, pp. 517-523.

LITWIN81

Litwin, W., "Trie Hashing", ACM-SIGMOD 81.

MISTRESS

Mistress User Manual.

NAKAMURA

Nakamura, T., and Mizoguchi, T., "An

Analysis of the Sotrage Utilization Factor

in Block Split Data Structuring Schemes",

Proc. 4th Int. Conf, on Very Large

Databases, Berlin, 1978.

NICOLA

Nicolas, J.M., and Yagdanian, K.,

"Integrity checking in Deductive Data

Bases", in Logic and Data Bases, Gallaire,

H., and Minker, J. (ed.). Plenum Press, New

York, 1978, pp. 325-344.

297

OSS

E. Ozkarahan, S. Schuster, and K. Sevcik.

"Performance evaluation of a relational

associative processor". ACM Trans.

Database Syst. 2, 2. June 77. pp.

175-195.

PALERMO

R. PALERMO. "A Data Base Search Problem",

Fourth International Symposium on Computer

and Information Science (COINS IV), Miami

Beach, Florida, 1972.

PECHERER

R. Pecherer. "Efficient Retrieval in

Relational Data Base Systems", Ph.D.

Dissertation, University of California,

Berkeley, 1975.

PROTEUS

PROTEUS working papers. Coordination of

the PROTEUS project: P. Stocker, Computing

Centre, University of East Anglia. Norwich

- UK. 1981-1983.

QUITZOW

Quitzow, K.H., and Klopprogge, M., "Space

Utilization and Access Path Length in

B-Trees", Inf. Systems, Vol. 5, pp. 7-16.

RJLK78

D.M. Ritchie, S.C. Johnson, M.E. Lesk, B.W.

Kernighan. "The C programming language".

The Bell System Technical Journal.

July-August 78.

298

ROSENBERG

Rosenberg, A.L., and Snyder, L., "Time and

Space Optimality in B-Trees", ACM TODS 6, 1

March 1981, pp. 174-183.

RT74

E. Ritchie and K. Thompson. "The UNIX

Time-Sharing System". CACM, 17, 1974. pp.

365-375.

SAGIV

Y. Sagiv. "Optimization of Queries in

Relational Databses", Ph.D. thesis,

Department of Electrical Engineering and

Computer Science, Princeton University,

October 1978,

SKCWHC

Shi-Kuo Chang and Wu-Haung Chen. "A

Methodology for Structured Database

Decomposition". IEEE Transactions on

Software Engineering. Vol.6. No.2. March

1980.

STOCKER

Stocker, P.M. et.al.. Paper on PROTEUS.

Proc. 3rd Nac. Conf, on Data Bases, UK.,

1984.

STONENEUH

Stonebraker, M., and Neuhold, E., "A

distributed data base version of INGRES",

Proc. 2nd Berkeley Workshop on Distributed

Data Management and Computer Networks,

Berkeley, May 1977, pp. 161-181.

299

STOROWE

M. Stonebraker and L.A. Rowe.

"Observations on Data Manipulation

Languages and their embedding in general

purpose programming languages". Memo No.

UCB/ERL M77/53. Electronics Research

Laboratory - University of California,

Berkeley. July 1977.

SWKH76

M. Stonebraker, E. Wong, P. Kreps and G.

Held. "The design and Implementation of

INGRES". Memo No. ERL-M577. Electronics

Research Laboratory - University of

California, Berkeley, January 1976.

TAMMINEN

Tamminen, M., "Order preserving extendible

hashing and bucket tries", BIT 21, 1981,

pp. 419-435.

ULLMAN

J. Ullman. "Principles of Data Base

Systems". Computer Software Engineering

Series, PITMAN, 1980.

VETMAD

M. Veter and R.N. Maddison. "Database

Design Methodology". Prentice-Hall

International. 1981.

WIEDERHOLD

Wiederhold, G., "Database Design",

McGraw-Hill, 2nd edition, 1983.

300

WOODAL

J. Woodfill et.al. INGRES version 6.2.

Reference Manual. Memo. No. UCB/ERL

M79/43. Electronics Research Laboratory,

University of California, Berkeley, May

1979.

WOYU

E. Wong and K. Youssefi. "Decomposition -

A Strategy for Query Processing", ACM

Trans, on Data-base Systems, Vol.l, No.3,

pp. 223-241, 1976.

WUN

Wun, S.S., "On a High-Performance VLS]

Solution to Database Problems", Ph.D.

dissertation, Carnegie-Mellon Univ., 1981.

YAO

Yao, A., "On Random 2-3 Trees", Acta

Informatica 9, 1978, pp. 159-170.

YOUSSEFI

K. Youssefi. "Query Processing for a

Relational Database System", Ph.D.

Dissertation, University of California,

Berkeley, 1978.

301

BIOGRAPHICAL NOTE

Jorge Bernardino Bocca was born in Santiago, Chile on
26th September, 1950. He graduated with a Mention in
Mathematics from the Liceo de Aplicacion, Santiago,
Chile, in 1968. He attended University of Chile (School
of Economics), receiving a B.Sc. degree in Economics in
May 1973. In 1973 he worked for the National Copper
Corporation - CHILE (CODELCO) as Systems Analyst. From
mid-1974 and part of 1975, Jorge was an Assistant
Lecturer teaching "Information Systems" at the
Universidad Nacional del Sur, Bahia Blanca, Argentina.

From October 1976 to July 1978 , he attended St.
Andrew's University, Scotland, receiving an M.Sc. in
Computational Science for a thesis entitled "RAL -
Relational Algebra Language". In August 1978 he joined
the Institute of Hearing Research of the Medical Research
Council, as a Systems Programmer. In the Spring of 1979,
he started work at the Computer Studies Group of the
University of Southampton. Here, under the supervision
of Professor David W. Barron, he was a Research Assistant
working on a project studying some efficiency problems of
relational data base management systems. While working
on this project, in October 1980, he registered as
part-time Ph.D. student at Southampton University.

Early in 1982, he joined the Computer Science
Department at Bristol University. As Research Assistant
first and as Research Associate later, he was a member of
a research team working in the area of heterogeneous
distributed data base management systems.

Since June 1983, Jorge has been Lecturer in Computing
Science at the University of Ulster, Coleraine, County
Londonderry, Northern Ireland. He is a member of the
British Computer Society.

302

