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ASPECTS OF HYDROFRACTURE AND HEAT TRANSFER

IN A GEOTHERMAL ENERGY RESERVOIR

By Amanda Dawn Kelly

The problem of propagating a crack in a linearly elastic

substance using a viscous fluid is considered.

Conventionally, such problems assume that the elastic stress

on the crack wall is supported entirely by the fluid

pressure. Here, existing cracks are discussed for the case

of the normal stress supported jointly by the fluid pressure

and by the elastic deformation of local asperities in the

crack. The resulting one-dimensional, second order,

non-linear, partial, integro-differential equation is

analysed. Analytical and numerical solutions of this

equation are obtained using asymptotic analysis and

similarity transformations for the cases of extreme values

of the non-dimensional parameter, representing the balance

between the two possible stress supporting mechanisms.

Additionally, the geothermal energy reservoir is

considered on a macroscopic scale as a porous medium and the

long term heat transfer effects are investigated. The

permeability of the rock and the viscosity of the fluid are

assumed to have a simple temperature dependence and a

condition for the stability of an isotherm is determined.
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CHAPTER 1 - INTRODUCTION

In the last twenty years there has been an upsurge of

interest, both from the general public and from industry, in

alternative forms of energy. A new awareness of the

greenhouse effect and air and sea pollution, for instance,

has prompted investigations into renewable energy sources

like solar, wind and wave power and geothermal energy.

Geothermal energy is the heat energy stored in the hot

rocks, deep below the earth's surface. Twenty years ago in

Los Alamos, New Mexico, engineers and geologists wondered

whether they could fuel a power plant, by pumping cold water

down a hole several kilometres deep, and then sucking the

water back up, at a much higher temperature, through a

second hole. Los Alamos National Laboratory sits on top of

several old volcanoes and it is here that scientists drilled

the first wells into the hot dry Precambrian granite to

create a loop system into which they could pump the cold

water and retrieve steam to drive turbines and then condense

and re-use the water. Most of the heat in the Earth's outer

crust comes from the disintegration of unstable forms of

uranium, thorium and potassium in the rocks below the

surface. The average temperature of the rocks worldwide

increases with depth by about 3 0°C per kilometre althougn

where the crust is thin or where volcanoes or earthquakes

have disturbed the Earth, this geothermal gradient may be

considerably steeper.

In 1977 The Camborne School of Mines (CSM) started work

on its own version of the Los Alamos project at Rosemanowes

Quarry, Penryn in Cornwall. Temperature gradients are not

as steep in Cornwall as they are in New Mexico (3 0-4 0°C/Km

compared to 55°C/Km at the Los Alamos site) and it took

nearly three years to drill to a depth of 2 kilometres,

where the rock temperature of around 8 0°C is above the

minimum needed for a commercial system. A pair of wells

were drilled forming huge Js which started vertically and

then gently curved as they got deeper (see Figure 1.1).

The Cornish team used explosives to fracture the rock

near the bore of the well, something which the American team

think is unnecessary, and then pumped 26 million litres of



water down the well at pressures of up to 14 megapascals,
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Figure 1.1- The Wells

Experiments with hot dry rocks have shattered

conventional notions about fracturing in granite. The rock

is not homogeneous, nor will hydrofracturing necessarily

create just a few large planar fractures exactly in line

with the direction of maximum stress. Instead, injected

water generates forces that shoot through a cobweb of

natural joints, whose response may be determined by a

pattern formed long ago. By using seismic sensors which

were able to detect any small movement in the rock due to

the shear stimulation of the rock joints, the group

discovered that the hydrofracturing had created a vast cloud

of vertical joints. Encompassing about 825 million cubic

metres, it was the largest fracture field ever created, but

it went the wrong way, projecting downward from the

injection well rather than upward to the production well.

This shearing mechanism is discussed in Pine and Batchelor

(1984), with specific reference to the Camborne project.

They conclude that the shearing is due to the locally high

ratio of maximum to minimum principal effective stresses.

Upward shear growth is predicted at greater depths where the

ratio of horizontal stress gradients is lower. This



disagreement with accepted practice, however, merely

succeeded in pointing out how little is known about the

motion of fluid filled cracks in a geothermal energy

reservoir (GER).

The Cornwall project team came up with the idea of

writing a computer code to model the shearing mechanism.

The Fluid Rock Interaction Program (FRIP) developed by

Cundall (1982, 1983), is a two-dimensional numerical code

which models the behaviour of a network of fluid filled

cracks. A one-dimensional, single crack version of FRIP,

known as FBED (FRIP - Boundary Element Displacement

Discontinuity Method), has since been written to try to

improve the original model used in formulating FRIP. More

recently FRIP has been extended to three dimensions and FBED

has been extended to model a planar crack. The numerical

models are discussed by Pine and Nicol (1988) with special

reference to the Camborne project. The actual model used to

develop the FBED code is discussed in Nicol (1988), and is

the basis of the analytical model produced in this document.

The aim of this thesis is twofold. First, the

one-dimensional crack problem is analysed, in order that a

better understanding of the mechanisms involved in the

geothermal energy project's hydrofracturing may be obtained.

Second, the long term cooling effects within the GER are

discussed in order to investigate the expected occurrence of

instabilities in flow paths due to rock shrinkage.

Previous work is referred to as appropriate throughout

the thesis, but a brief outline of some of the less directly

relevant work is given here. A large amount of work has

been carried out in the area of crack and fracture

migration. Barenblatt (1962) gives a comprehensive study on

the theory of equilibrium cracks and summarises much of the

work done prior to 1962. Since then, Geertsma and Haafkens

(1969) have presented a synopsis of several theories for the

prediction of the behaviour of hydraulic fractures. The

synopsis compares and contrasts previous models such that of

Perkins and Kern (1961) (extended by Nordgren (1972)) and

that of Geertsma and de Klerk (19 69).

Spence and Turcotte have presented a considerable

number of papers on a range of applications of the theory of



cracks. The more relevant work is referred to later on in

the thesis, but other applications include the behaviour of

strike-slip faults (1974, 1975, 1979) and more recently

bouyancy driven magma migration (1990), a topic also

considered by Lister (1990).

The formation of rock joints is discussed in Kemeny and

Cook (1985) and the properties and behaviour of the joints

are further discussed by Cook (1988).

The current status of geothermal energy projects in the

United States and in Japan are given by Franke (1988) and

Tomita et al. (1988), respectively, while a series of

progress reports on the Cornish project is available from

the British Library Document Supply Centre at Boston Spa.

So, here in chapter one, the background history to the

geothermal energy related problems that are discussed in

this thesis, has been presented. In chapter two the

required laws and equations are outlined and this chapter

also serves to establish the notation used throughout. The

content of chapter two is standard and well known. In

chapter three a one-dimensional model for a typical fluid

filled crack is presented and a single second order,,

non-linear, singular integro-differential equation for the

crack height is obtained. The model outlined here is one

that was developed by the CSM (Markland (1989)) although the

analytical treatment of it, in the non-dimensionalisation

and in the solutions obtained in chapter four, is new. In

chapter five, numerical solutions to this equation are

presented and a comparison with the analytical solutions is

given in the last section. The numerical model used here is

based on the CSM code FBED, and as such is not a new

approach. The stability analysis carried out on the

difference scheme in chapter five, however, has not been

previously discussed.

In chapter six a different aspect of the behaviour of a

GER is introduced and the long term heat transfer effects

are considered. This involves developing a model for the

heat transfer which includes a simple temperature dependent

permeability for the rock. The model presented in this

section is based on ideas that were discussed at the 1991



European Study Group with Industry. The analysis of the

model, however, is original work and therefore has not been

seen before. Solutions are obtained for the case of a

planar isotherm within the rock and then this solution is

perturbed in order to ascertain the conditions for stability

of the isotherm. The motivation behind this work is to

investigate the expected occurrence of cold spots in the

reservoir. These cold spots are thought to be due to rock

shrinkage which creates preferred paths for the fluid flow,

the possible result of this being that large amounts of heat

remain unrecovered.

Much of the work in this thesis was carried out with

the aim of providing additional insight to the reservoir

models used by the CSM. Analytical solutions are generally

sought where possible, since the CSM already has

comprehensive numerical models to describe the reservoir

behaviour. The analytical results are sought in order to

check on the accuracy of these numerical models. This

underlying motivation for the work should be noted since it

helps to explain the choice of methods used throughout the

thesis.



CHAPTER 2 - BASIC EQUATIONS OF LINEAR ELASTICITY

AND FLUID DYNAMICS

2.1 - Introduction

In this chapter the notation used throughout this

thesis is established and the standard, basic equations of

both linear elasticity and Newtonian fluid dynamics are

introduced. Simplifications to these governing equations

for the cases of plane strain elasticity and low Reynolds'

number flow between lubricated plates are discussed since

these are the particular cases which are relevant to the

flow of a viscous fluid through cracks in an isotropic

linearly elastic material.

2.2 - Linear Elasticity Equations for an Isotropic Material

The fundamental assumption concerning the behaviour of

a perfectly elastic, isotropic solid, is that the six

components of the stress tensor <r. ., given by

cr =
Ij

a
XX

cr
yx

cr
*• z x

cr
xycr
yy

cr
zy

cr
xzcr
yz

cr
zz '

(six components because cr = <j ) are linear functions of

the six components of the strain tensor,

e =
ij

e e e
xx xy xz

e e e
yx yy yz

e e e
zx zy zzThe sign convention adopted here is that the stress

component
ij

is positive if it acts in the positive j

direction on a plane whose outward normal points in the

positive i direction. In other words positive normal

stresses are tensile. Note that an isotropic solid is one

in which its properties are independent of the direction

considered. The stress-strain relations, known as the



Generalised Hooke's Law, for such a solid are given by

e = — a 2.2.01a
xy 2G xy

e = — a 2.2.01b
xz 2G xz

e = — a 2.2.01c
yz 2G yz

e = - \ a - v (cr + a ) \ 2.2. Old
XX

= — \ a - v (cr + 0 - )

E [ xx yy zz J

= — \ a - v (a + cr )
g |_ yy xx zz J

1 r= —

e = — | a - v (cr + cr ) | 2.2.01e
yy

E I zz
2.2.01f

where E is Young's modulus, G is the shear modulus (or

modulus of rigidity), and v is Poisson's ratio. Young's

modulus and the shear modulus are related by:

E = 2G (1 + v).

For the special case when the solid is in static

equilibrium, with no body forces acting, the equations of

motion are given by

da da da
— + — — + — — = 0 2.2.02a

2.2.02b

= 0. 2.2.02c
ax ay az

These equations are known as the equilibrium equations.

In most problems strains are very small quantities and

so the product of two or more strains can be neglected in

ax

acr
xy

ax

da
xz

ay

ea-

sy

da
• + — —

az

3cr

az

ao-
+ zz



comparison to the strains themselves. Such strains are

called infinitesimal strains. The relationship between

strains and displacements (where the u are the

displacements in the directions x ) is given by the

infinitesimal strain-displacement equations,

au
e =

yy

e =

xy

e =
yz

ax

au
y

ay

au
z

az

e =
yx

e
zx

e
zy

1

2

2

1

2

r au
y H

, ax

au

ax

au
z

3y

au
h
 x

ay

au )
h
 x

az
au '

h y

az

2.2.03a

2.2.03b

2.2.03c

2.2.03d

2.2.03e

2.2.03f

The complete formulation of problems in linear

elasticity is now seen. The stresses must satisfy equations

(2.2.02) although the boundary conditions may specify either

stress or displacement. The strains are then found from the

stresses via the stress-displacement relations (2.2.01).

Finally, when the strains are known, their definitions

(2.2.03) may be regarded as a set of equations from which

the displacements can be found.

If one length scale in an elasticity problem is very

large in comparison to the other two, it is often the case

that the strains are very small across the large length

scale, and that there is no displacement in such a

direction. In such cases a plane strain approximation can

be introduced. For example, picture a pipe with a uniform

cross-section whose length scale is much greater than its

dimensions of cross-section. Assume that the external force

applied is parallel to the cross-section and is independent



of position along the pipe. A cross-section at any point

along the length of the pipe would be exactly the same as at

any other (except perhaps at the ends of the pipe). So for

an infinite pipe the problem can be reduced to two

dimensions. If the cross-section of the pipe lies in the

x,y plane, it is assumed that

e = e = e = e = e = 0
zz xz zx yz zy

and

U = 0
z

which in turn implies that

c r - a = c r = < x = 0 .
xz zx zy yz

These assumptions lead to the following reduced set of

equations for the case of plane strain:

da da

ax

da
xy

ax

da
zz

3Z

cr
XX

yy

cr

cr
xy

e
XX

ay

a<x

ay

= 0

- 2G

- 2G

1-21

' — n

-

e
XX

-

e
yy

e

= 2G e
xy

au
X

+

+

X X

v ( }
o 4- r>

! _ 2 i , I xx yy J

o 4- O

1-2V \> X X y y J

+ e
yy J

2 . 2 . 0 4 a

2 . 2 . 0 4 b

2 . 2 . 0 4 c

2 . 2 . 0 4 d

2 . 2 . 0 4 e

2 . 2 . 0 4 f

2 . 2 . 0 4 g

2 . 2 . 0 4 h



au
e = — y
yy ay

e
xy

au
X

SZ

au
y

dz

= e =
yx

= 0

= 0

au

ax

au

ay

2.2.04i

2.2.04J

2.2.04k

2.2.041

For further detail on the subject of linear elasticity

see Jaeger (1969).

2.3 - Basic Solutions For An Elastic Half Plane

In this section a plane strain problem in an elastic

half-plane, y ̂  0 is considered. The particular boundary

conditions imposed are relevant to the problem of an

infinite planar crack along y = 0. A known displacement

along y = 0 is imposed and the resultant stresses and

displacements in the half-plane y > 0 are sought, and

standard relations between normal stress and normal

displacement and between shear stress and shear displacement

(along the crack) are derived. The Fourier Transform

approach used in this section is the same as that used by

Sneddon and Lowengrub (1969).

The governing equations (2.2.04) can be solved in two

parts for the following sets of boundary conditions (Crouch

(1976)),

(1)
y = 0 2.3.01ao- = 0

xy

U

|x| > 1

Dy(x)
y = 0 2.3.01b

< 1

iij
x,y 2.3.01c

10



(2)

(X
yy

u
X

CT
ij

= 0

-> 0

0

Dx(x)

2

y =

I *

= 0

> l

l

00

y =

v i ,

0

j

2

2

2

. 3

. 3

. 3

• 02a

• 02b

.02c

where D and D , the given differences in displacement

between the two sides of the crack, may be defined via

D = u (x,0 ) - u (x,0 )
X X - X +'

2.3.03
D = u (x,0 ) - u (x,0 )
y y - y +

where the crack surfaces are distinguished by assuming that

one surface is on the positive side of y = 0, denoted by

y = 0 , and the other is on the negative side of y = 0,

denoted by y = 0 .

Eliminating the stresses and strains from the plane

strain equations results in a pair of simultaneous, second

order partial differential equations for the displacement

components u and u
x y

32u 92u S2u
X X = 0 2.3.042(ll) + (l2l) +

3x2 ay2 3x3y

a2u a2u a2u
(1-2V) y + 2(l-l>) y + = 0 2.3.05

ax2 ay2 axay

In order to find solutions of (2.3.04) and (2.3.05),

the equations are transformed to a pair of ordinary

differential equations by taking Fourier transforms in x.

This pair of linear equations can then be solved and the

solutions inverted to obtain u and u . If the Fourier
x y

transform is defined by

11



CO

f(t) dt

and if u and u denote the Fourier transforms in the x
x y

variable of u and u respectively, so that

ux = ?[ux(x,y)]

then the transforms of equations (2.3.04) and (2.3.05) are

~ 2A

a u
dy

e ux -
au
— y = 0
ay

2.3.06

au

ay

a2u

ay
U 2.3.07

The boundary conditions are transformed to

(1)

A
cr = 0

xy
y = 0 2 . 3 . 0 8 a

u =

A

U

x > 1

D
y

2

(x)

( X 2 H• y 2 )

<

1/2

1

-> 00

y = 0

V i , j

2 .3 .08b

2 . 3 . 0 8 c

(2 )

cr = 0
yy

y = 0 2 . 3 . 0 9 a

A
U =

x Dx(x)

x > 1

X < 1

y = 0 2.3.09b

, 2 2, 1/2
(x + y ) ->

V i , j 2 . 3 . 0 9 c

The system of equations is solved in the usual way by

12



seeking a solution of the form

x O
\ =

Substituting these values into (2.3.06) and (2.3.07) gives

= 0

C2 " i£A A = 0
0 0

which can be written in matrix form as

B

For a non-trivial solution for A and B the determinant of
o o

this matrix must be zero

= 0

Evaluating the determinant gives us a quartic in A, which is

actually a quadratic in A2 and it is found that

A = ±£ twice. 2.3.10

u and u , therefore, have solutions of the form
x y

u = A

2.3.11

2.3.12

There are two possible ways of proceeding at this

point. One is to find the corresponding eigenvectors of the

matrix which would give us a relation between the

coefficients A (£) and B (£) . An alternative way to find

this relation is to substitute these values for u and u

13



back into equations (2.3.06) and (2.3.07). The second

method is chosen because this is algebraically the less

complicated of the two.

To ensure that u and u remain finite as y -> » the
x y

exponentially growing terms in the expressions for u and u

must be removed by choosing their coefficients to be zero.

Hence if £ < 0 then A = A = B = B = 0 , if £ > 0 then
^ 2 4 2 4 ' ^

A = A = B = B = 0 and if £ = 0 then, trivially, u and

u are both identically zero.

Consider the modulus of £ and introduce coefficients

, D2(C) to obtain
ly Y e-^ly 2.3.13

(i = D (£)e~l^ly + D (£) y e"' ̂'y 2.3.14

In order to find the unknown coefficients, these results are

substituted back into equations (2.3.06) and (2.3.07) and

coefficients of y are equated to get

+i|e|£Da=O 2.3.15

|C2 + D2C
2=0 2.3.16

^) + | e | 2 D i = 0 2.3.17

ieK|C2+D2|£|
2=0 2.3.18

Note equations (2.3.16) and (2.3.18) above are identical

-iI € Ic
By rearranging (2.3.16) and substituting D = into

(2.3.15) and (2.3.18), the latter become

-Ca£
2 + (41/-3) |C|C2 + i|CKD 1 = 0 2.3.19

D j C | 2 = 0 2.3.20

Notice that equation (2.3.20) is a factor of times

equation (2.3.19), and so equations (2.3.19) and (2.3.20)

14



c. . -1 • i^Di

are linearly dependent. Rearrange (2.3.19) to get

-KC-

1 TiT
where

K = 3-4v 2.3.21

and so u and u are given by

ft = L _ 3 + i i i l 5 ] e -K| y + c y e -K | y 2.3.22l J

ft = D e - I ? l y - — C y e - | ^ l y 2 . 3 . 2 3
y i 2 *

In order to simplify the algebra that follows, set

and solve for unknown functions A(^) and B(£) . So for y *• 0

the displacements are given by

u = ir^ACC) " K'^AtO - B(C)JK|y] e~l?ly 2.3.24

2.3.25

and along y = 0 these become

2.3.26

2.3.27

Since the boundary conditions are also imposed on the

stresses, in order to discover the functions A(£) and B(£),

the stress—strain eguations (2.2.04e,g) under Fourier

transformation are needed. Let a- = [̂cr ] and
yy yy

a- = [̂o- 1. Combining eguations (2.2.04e & g) with
xy xy

eguations (2.2.04h,i,j) gives a set of eguations which

15



relate the stress to the displacement. Taking the Fourier

transformation in the x variable of these equations gives

du

lay

- j -A(K+l) - B(K-l ) + 2 ( A - b ) | £ | y i

au
y y 1-2V V - ay

G
= - -{A(l-K) - B(l+K) + 2(A-B) | £ | y \ e"' s ' J 2 .3 .29

K

First impose boundary condition (2.3.08a). Along y = 0

a is given by
xyxy

xy
i

-l)
J
i

A(K+1) + B(K-l) 2.3.30

Jso to ensure that a- = 0 along y = 0, the following
xy

relationship between A and B is chosen, A(K+1) = - B(K-l).

In order to simplify the algebra, choose

2.3.31

2 . 3 . 3 2

and so, substituting (2.3.31) and (2.3.32) into (2.3.24),

(2.3.25), (2.3.28) and (2.3.29) gives

2 . 3 . 3 3

2Gu = | ? r 1 ( 2 - 2 y + | C | y ) ip(O e ~ l ? ' y , 2 . 3 . 3 4

o- ( ? , Y ) = - i £ Y ' / ' (C) e " l ^ l y , 2 . 3 . 3 5
xy

" l e l y . 2 . 3 . 3 6

1 6



Along y = 0 the stresses and displacements are

,A
2Gu (£,0) = - (1 - 2v) i?0(C) 2.3.37

A (£,0) = 2(1 - v) |£| 1i(i(n 2.3.38

O" (£,0) = 0 2.3.39
xy

2.3.40

is found by imposing condition (2.3.08b) to be

GD
Ifl 2.3.41

2(1 - v)

and so substituting (2.3.41) into (2.3.37) and (2.3.40)

gives the normal stress and the shear displacement along

y = 0 as

1 " 2v

u (£,0) = i sgn£ D 2.3.42
4(1 - V) y

GD
)- (f 0) = —
yy

^ lei • 2.3.43
2(1 - v)

Note that the shear stress and the normal displacement along

y = 0 are specified by the boundary conditions (2.3.08).

Inverting the Fourier transforms using the table in

Appendix A leads to the solution

(1 - 2v) f1 ds
u (x,0) = D (s) 2.3.44

4n(l - v) J y s - x

-G
.1

cr (X,O) =
yy

3D (s) ds
2.3.45

as s - x
-1

A similar method can be used to find the integral

equation relating the shear stress to the relative shear

displacement, for the case of zero normal stress along the x
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axis. This is done by imposing boundary conditions (2.3.09)

on equations (2.3.24), (2.3.25), (2.3.28) and (2.3.29). The

following solution for the normal displacement and the shear

stress is obtained

Uy(x,0) =
- 2v)

4rc(l - v) J

ds
Dx(s)

-l s - x
2.3.46

-G -1 3D (s) ds

27T(1-V) J 3S s - x
2.3.47

Superimposing the two problems above leads to the

solution for the stresses and displacements along a crack in

an infinite elastic medium, for the case of zero far-field

stresses (the crack is taken to extend from x = -1 to

x = 1). The solution is

D (1 - 2v) f d s
u ( x , 0 ) = - — - D ( s )

47r( l - v) i_x s - x
2 . 3 . 4 8

D (1 - 2v)
u ( x , 0 ) = - — +

4TT(1 - V) J

d s
Dx(s)

- l s - x

-G f1 3D (s) ds

ayy(X'0) = ~ V

yy 2n(l-v) J as s - x

- G
a ( x , 0 ) =

a 3D (s) ds

xy 2n(l-v) J
- I

s - x

2 . 3 . 4 9

2 . 3 . 5 0

2.3.51

where D and D are the relative displacements of the crack
x y

surfaces as described above (see definition 2.3.03).

2.4 - Incompressible Viscous Flow

In this section the governing equations for the flow of

an incompressible fluid are outlined and simplifications are

suggested for the case where lubrication theory is

18



applicable.

The motion of a fluid is governed by several

conservation laws and a set of constitutive equations. If

p(x,y,z,t) is the density of the fluid and v (u(x,y,z,t),

v(x,y,z,t), w(x,y,z,t)) is the velocity vector of a fluid

particle which has component u in the x direction, v in the

y direction and w in the z direction, then by considering

conservation of mass the continuity equation is obtained

dp a(pu) d(pv) a(pw)
— + + + = 0 2.4.01
at ax ay az

The continuity equation for an incompressible fluid, is

obtained from (2.4.01) by setting the material derivative of

p to be zero (since the density of a fluid element does not

change with the movement of the fluid element) and is

3u 3v 3w
— + — + — = 0 . 2.4.02
3x 3y 3z

Considering conservation of linear momentum of an

incompressible Newtonian fluid leads to the familiar

Navier-Stokes equations (no body forces acting)

au au au 3u i 3p (i
— + u — + v — + w — = - + — V u 2.4.03a
at 3x 3y 3z p dx p

av av av av i 3p u
— + u — + v — + w — = + -
3t 3x 3y 3z p ay p

3w 3W 3w 3w 1 dp fi
— + u — + v — + w — = - — —
at 3x ay az p az p

where V2 is the standard Laplacian operator

a 2 a2 x2

a a a
v2 = — + — + — .

ax2 ay2 3z
For further details see Batchelor (1970).

u — + v — + w — = - + — V2v 2.4.03b

u — + v — + w — = - — — + — Vw 2.4.03c
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2.5 - Flow Between Two Moving Plates (Lubrication Theory)

In this section, the problem of slow viscous flow

between two plates that are free to move in the direction

perpendicular to the fluid layer is considered (see figure

2.1) .

Fig. 2.1 - Flow Between Two Moving Plates

The aim of this chapter is to apply lubrication theory

to the Navier-Stokes equations to obtain Reynolds' equation.

Lubrication theory describes the phenomenon, often witnessed

in practice, that a thin layer of fluid between two surfaces

of much larger dimensions than the thin layer, serves to

lubricate the subsequent motion. This is due to a large

positive pressure set up in the fluid layer. This large

pressure comes from the fact that because the fluid layer is

so small, the rate of strain and stress due to viscosity in

the fluid layer are very large, and this stress, under

certain conditions (i.e. conditions which produce a low

Reduced Reynolds7 number) develops a large pressure. The

reason for deriving this result is that a fluid filled crack

in a solid such as rock, can be considered to hold to the

approximations made in obtaining Reynolds' equation.

Consider a fluid, subject to a pressure p(x,y,z,t),

flowing between two plates z = g(x,y,t) and z = h(x,y,t), as

pictured in figure 2.1. The governing equations are the

Continuity equation (2.4.02) and Navier-Stokes equations

(2.4.03) for an incompressible Newtonian fluid, where body

forces are absent.
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Consider the plate z = h. Define f = h - z = 0. I f t
—l

and t2 are two vectors orthogonal to each other and to Vf

(i.e. tangential to f), and if Vf = (f ,f ,-1), then set the
x y

vectors t and t to be
—1 —2

t = (0, 1, f ) t = (f 2+ 1, -f f , f )
—1 y —2 y x y x

Fluid cannot pass through the surface, hence

that

Df
—
Dt

is

0 =

= 0

ah
—
at

at
= — +
at

ah
_1_ IT _____

ax

V.Vf

ah
+ V - W

ay
z = h 2.5.01a

Since the fluid is viscous, a no slip condition on the

moving plates is imposed. The plates are assumed to move

only in the z direction, therefore the fluid velocity

components in the directions of t and t , on the plate

surface z = h, are zero. This implies that

(0, 1, fy) . (u, v, w)
T = 0

which is equivalent to

v + w f = 0 z = h 2 . 5 . 0 1 b
y

and similarly

u (f 2+ 1) -v f f + w f = 0 z = h. 2.5.01c
y x y x

If X, Y and Z are typical length scales in the x, y and

z directions respectively; and U, V and W are typical speeds

in the x, y, and z directions, and T is a suitable

time-scale, then in order to non-dimensionalise the system

the following change of variables is introduced

x = Xx y = Yy z = Zz t = Tt

u = Uu v = Vv w = Ww f = Zf
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and finally to scale the pressure

/uUX

P =

Assume that X = 0(Y) and that U = 0(V), (i.e. X = Y and

U = V) , and that Z << X. The non-dimensional model is then

given by the following equations and conditions.

au av xw aw
__ + __ + = o
ax ay zu az

zu
Choosing W = — leads to

X

2.5.02a

3u 3v 3w
-— + —- + — = 0
3x 3y 3~z

2.5.03a

and the first Navier-Stokes equation becomes

pZ 2 3u pZ2U

JUT at iix

du du _ 3u
U — + V —— + W —2
3x 3y 3z

3p

ax

3 2U

3X 2

82U n

ay

82u

3 Z 2
2.5.02b

X W
Choosing T = — = — , and making the usual low Reduced

U Z
Reynolds' number assumption, this becomes

ap d2u

ax az2
2.5.03b

and similarly the remaining Navier-Stokes equations become

3p

3z 2
2.5.03c

aP
—- = 0 .
az

2.5.03d
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Since variations in h(x, y, t) are of order Z, let

h(x, y, t) = Z H(x, y, t)

and so condition (2.5.01a) becomes

3H _ 3H _ 3H _ _
0 = — + u — - + v — - - w on z; = H. 2.5.04

at ax ay

Since Z « X the other boundary conditions (2.5.01 b & c)

become

u = 0 o n l = H 2.5.05a

v = 0 on z = H. 2.5.05b

Substituting these values into (2.5.04) gives

_ a H _
w = —- on z = H. 2.5.05c

at

Similarly for the lower plate, z = g(x, y, t) , which

becomes ¥ = G(x, y, t) , in terms of the non-dimensional

variables, the boundary conditions are

u = 0 on z = G 2.5.06a

v = 0 on ~z = G 2.5.06b

_ 8G _
w = — on z = G. 2.5.06c

at

This system of equations (2.5.03) and boundary

conditions (2.5.05 & 2.5.06) are easily solved to obtain the

following solution for the velocity components

1 aP -2u = [z - (H + G) z + GH] 2.5.07a

1 ap
v = [z - (H + G) z + GH] . 2.5.07b
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These expressions for u and v are substituted into the

continuity equation to obtain w,

w = - —
1 a

2 ax

1 a

2 ay

C(x, y)

p f z z
— -i (H + G) - + GH z
3x 1 3 2

ap ( z3 z2

— \ (H + G) - + GH z
ay

2.5.07c

where C(x, y) is an arbitrary constant.

Imposing boundary conditions (2.5.05c) and (2.5.06c)

on(2.5.07c) and subtracting the resulting two expressions,

gives an equation relating the pressure to the separation of

the two plates

3(G-H)

at 123X
(G - H)

ax 123y
— (G - H)

L ay
2.5.08

It should be noted that this equation can be obtained by

considering the motion of the fluid between one moving plate

and one fixed plate. This can be seen from the equation

itself since it depends only on the distance between the two

plates (G - H). Substituting the original variables back

into this equation (2.5.08) and letting h^ = H - G gives

ah,

at

i a

ax ax

l a

3y ay
2.5.09

which is the three dimensional Reynolds' equation for flow

between moving plates.
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CHAPTER 3 - A ONE-DIMENSIONAL MODEL

OF A FLUID FILLED CRACK

3.1 - Introduction

In this section a one-dimensional model of a fluid

filled crack is formulated. The model can be considered in

three parts: (1) the sub-model of the rock, (2) the

sub-model of the fluid and (3) the interaction of (1) and

(2) known as the crack law. In (1) the rock is considered

to be a two-dimensional linearly elastic material in a state

of plane strain whereupon the stress/strain/displacement

relations derived in chapter 2 (2.2.04) can be applied.

Part (2) of the model is concerned with the behaviour

of a thin layer of an incompressible, Newtonian, viscous

fluid. Since the crack width is much smaller than the crack

length the lubrication approximation is taken to be valid

and so Reynolds' equation (2.5.09), governs the fluid flow.

It is noted that crack surfaces are not, in general,

parallel to each other and since the surfaces touch at

various points the flow through a crack is tortuous. It is

because of this that the validity of the lubrication

approximation has been discussed previously by Witherspoon

et al. (1980). They summarise the arguments put forward by

previous authors and they conclude that generally the cubic

flow law is reasonable for flow through cracks.

^ ^ \b \ ^ k̂ \b '*b ^ ^ ^ ^ ^ ^

^^ A\ A\ rt\ ^ \ N̂ ^ ^ N̂ N̂

rock yy

Fig. 3.1 - An Open Crack

Finally, part (3) , to link these two sub-models an

appropriate crack law is discussed, which allows the crack

to be in one of two possible states; open or partially open.
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An open crack is defined as the state when the fluid

pressure, p, is equal to the elastic normal stress, a , so
yy

the crack faces are not exerting any force on each other

(see figure 3.1). A partially open crack is then the case

of the elastic normal stress being supported both by the

fluid pressure and by deformations, 5h, in local asperities

(bumps) in the crack (see fig. 3.2). Note that a

pre-existing crack is never completely closed since the

roughness of the crack faces ensures a small separation even

when very high stresses are imposed. The crack, however, is

considered to be thin enough and flat enough that the

elastic problem can be considered to have a flat boundary.

rock a
yy

\^ ^^ ^^ si/ \^ ^^ ^^

- constant of
proportionality

rOCk yy

Fig. 3.2 - A Partially Open Crack

A partially open crack can itself be considered as

having two separate states: (1) shearing, where the crack

surfaces are allowed to slide over each other and (2) stuck,

where the surfaces only move in the normal direction and do

not slide over each other. The model presented here is the

model used by the Camborne School of Mines to set up their

one-dimensional numerical code called FBED which is

discussed briefly in chapters one and five.

The final set of equations is non-dimensionalised and

for the particular case of a partially open crack which does

not shear, a single, non-linear, second order, partial

integro-differential equation is obtained, containing just

one parameter, which is physically small but not negligible.

The following chapters then look at ways of solving this

equation both analytically (first generally and then by

considering limiting cases as the parameter tends to zero

and infinity) and numerically.
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3.2 - The Model

Consider a plane strain problem in the x, y plane. An

infinite crack y = 0 splits the plane into two semi-infinite

half-planes y > 0, y < o. Since the problem is symmetric

about y = 0 attention is restricted to the half-plane y ^ 0,

The plane strain equations (2.2.04) for the case of zero

stress at infinity and finite displacements, lead to

expressions (2.3.50) and (2.3.51) for the elastic shear and

normal stresses along the crack surface. Generalising for

an infinite crack with stresses cro and a° at infinity, the
xy yy

following expressions are obtained

-G f°° 3D (s) d s
<7 ( x , t ) - <T° = —x 3 . 2 . 0 1 a

x y xy 2rc(l- i>) J 3 s s - x
v ' J - o o

-G r°° 3D (s) d s
<T ( X , t ) - <r° = — y . 3 . 2 . 0 1 b

y y yy 2tl(\-v) J 3s s - x
— 00

where D and D are defined by (2.3.03) to be the relative
x y

displacements of the crack surfaces. G and v are parameters

determined by the properties rock.

These equations form the first part of this model of a

one-dimensional crack. They therefore hold along the crack

and it is assumed that the reader understands that
a (x,t) = a (x,0,t) and a (x,t) = a (x,0,t). The
xy xy yy yy

equations for this problem all hold along y = 0, since the

model is one-dimensional.

Now consider the crack surfaces to be lubricated by a

thin layer of an incompressible, viscous, Newtonian fluid.

The equation governing the flow of such a fluid is Reynolds'

equation (2.5.09). The one-dimensional version of this

equation forms part of the model and is

i a

at i2ji ax

3 3.2.01c
ax

Note that because of the symmetry in this problem, the

crack height, h, in this equation is minus the value of the

normal displacement term, D , in equation (3.2.01b), that is
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h = - Dy- 3. 2. Old

The effective normal stress, <r ' , is defined by
yy

cr ' = cr + p. 3.2.01e
yy yy

Recall that positive normal stresses are tensile, so that

for a typical crack, the elastic normal stress is negative

since the rock faces are compressed, this in turn implies

that the effective normal stress is negative as long as the

fluid pressure is of a smaller magnitude than the normal

stress. This can be used to test whether the crack is fully

open. The crack opens at the point when the fluid pressure

reaches the same size as the normal stress, so it is the

point where the effective stress is zero.

To complete the model a crack law is required to relate

the elasticity equations to the fluid flow equations. The

crack law that is used in this model is discussed in

Markland (1989). To help explain the crack law, the problem

is considered in two parts: (1) Fully open crack (see figure

3.1) and (2) Partially open crack (see figure 3.2). The

partially open problem is also considered in two parts: (A)

that of a stuck crack when the displacement in the x

direction, of one crack face relative to the other, is zero;

and (B) that of a sliding or shearing crack, when the crack

faces can move relative to each other along the direction of

the crack. A simple friction law is used for deciding which

state the partially open crack is in. The aperture of the

crack, h, can be seen to have three contributory parts.

First, there is a component, he, known as the elastic

component of aperture, which is due to the stretching of the

partially open crack when the shear force is insufficient to

shear the crack. Second, there is a shear component, hs,

which arises as the shearing crack surfaces ride up over

bumps in the crack. The final component, hn, is the

increase in aperture which occurs when the crack is fully

open. The total aperture is therefore

h = he + hs + hn. 3.2.01f
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Equations (3.2.01) hold for all modes of the crack,

whether open or partially open, sliding or stuck. Each case

is now considered separately to close the model.

OPEN CRACK

If the effective stress, cr ' , is zero at any point in

the crack then the crack is termed open at that point. This

results from the fluid pressure being large enough to

balance the normal stress

cr ' = cr + p = 0. 3.2.02a
yy yy

This is the crack law that is conventionally used in

hydrofracture models (e.g. Spence and Turcotte (1985)).

When the crack is open, the only aperture gain will be

due to the hn component, he will be at its maximum value and

hs will remain constant for the period that the crack is

open, so

he = h 3.2.02b

dhs

— = 0. 3.2.02c
at

PARTIALLY OPEN CRACK

As stated above this section will be split into two

parts so that the case of a stuck crack is considered

separately from that of a shearing crack. A crack is

partially open if

cr ' < 0 3.2.03a
yy

and as a consequence, since there is by definition no open

mode contribution to the aperture,
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h" = 0. 3.2.03b

If uc is the coefficient of friction then the

frictional state of the crack is given by

| cr | < u | a- 'I 3.2.04a
xy t ' yy '

=> Crack is stuck

| cr I = (i I cr 'I 3.2.05a
i xy ' f ' yy '

=*• Crack is sliding.

The equations that complete each section are considered in

parts (A) Stuck and (B) Sliding.

(A) Stuck

Here a case is considered whereby the crack surfaces

are not sliding over each other because the friction between

them is too great, i.e.

\a I < n \a ' I. 3.2.04a
I X y I f I yy I

The crack will effectively stretch as the fluid pressure

increases and as the point at which slipping occurs

approaches. The relative amount, D , that the crack

stretches is governed by a spring law

So- SD
— x y = k — x 3.2.04b
at s at

where k is a type of spring constant for the crack.

The aperture gain due to shearing will not change if

the crack is stuck so

3hs

= 0 . 3.2.04c
at
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Assume that there is a minimum value for the thickness

of the crack when the effective stress is large and

negative. At this point, hs = hn = 0 and he = h . As the
min

effective stress increases above some reference value,

it is assumed that he grows linearly in proportion to a

(Bandis et al. (1983), Barton (1986)), (see figure 3.3)

ref

yy

.h'

- h
min

ref
yy

Fig. 3.3 - Elastic Aperture v Effective Stress

This means that he is given by

(h - h . )

h e = -I

h -
max

min

<J
r e f

yy
a £ a ' < 0

ref yy
3 . 2 . 0 4 d

(T ' < (7
yy ref

Although this is a piecewise linear relationship between the

elastic aperture and the effective stress, there is no

reason why an alternative functional relationship with a

similar shape to that above, i.e. monotonically increasing

in a ' with a non-negative minimum value for he, could not
yy

have been chosen. It is shown later on in chapter four,

however, that there is no power law dependency that gives a

similarity solution to this problem. Using a piecewise

linear function, though, enables similarity solutions to be

found for certain cases of this problem, also discussed in

chapter four.
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(B) Sliding

When the fluid pressure is slowly increased, the

effective stress decreases in magnitude and the surfaces

begin to slide over each other until the point is reached

where the effective stress is exactly balanced by the

frictional force on the crack surface

|<x | = u \cr ' I . 3.2.05a
1 xy ' f ' yy '

It should be noted that it remains possible for the elastic

aperture to increase so equation (3.2.04d) still holds.

The sliding aperture increases linearly with the

distance that the crack surface is displaced, and also

depends on the angle of the bump, known as the dilation

angle, ijj. A maximum possible value for this sliding

aperture (hs ) is assumed since this would seem reasonable

dhs

in practice. So — is defined by
at

5hs [ tarwp
SD

X 0 < h < h
max

3.2.05b
a t ' o, hs = hs

It is the stretching and sliding that requires further

study but the remainder of this thesis will concentrate

mainly on the stretching, i.e. on the partially open crack

problem where no shearing is involved, though the

incorporation of shearing effects is briefly discussed at

the end of this chapter.

Section 3.3 - Non-dimensionalisation of the Partially Open,

No Shear Crack. Problem

So far a set of equations governing the motion of a

fluid filled crack has been written down and for the case of

partially open crack with no shearing of the surfaces, these

equations are (3.2.01, 3.2.03 and 3.2.04).
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There are, therefore, ten equations in ten unknowns,

although one of these unknowns (hn) is zero, and D can be

replaced by -h, so they can be reduced to eight equations in

eight unknowns. The boundary conditions for these equations

are discussed later on (chapter 4).

Non-dimensionalising a problem helps determine the

dominant terms in an equation and often leads to simplifying

assumptions which enable approximate solutions to be found.

In this case, if h is a typical crack width, p is a
max

o
typical pressure, cr and cr° are the stresses at infinity,

xy yy

and L is a typical length scale, then in order to

non-dimensionalise the 1-D crack equations the following

variables are introduced

h = h h,
max

= Po " (V-Po* P

Gh
0 , max —cr - cr + cr ,

yy yy T yy

cr = <r° ( 1 - cr ) ,
xy xy xy

CT ' = (CT° + p ) ( 1 - Cr ' ) ,
yy yy o ' yy

t = T t ,

x = L x ,

a° L
D = -^— D .

Finally, in order to simplify the Reynolds' equation

(3.2.01c) time is scaled by T where T is given by

-12u L2

> 0 since (a +p ) < 0.( p
h2 (o-° + p )

max yy o

Consider the case when the crack is not clamped shut

(i.e. cr ' a cr ) . Eliminating hn and D and setting
vv ref y
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h s = 0, the equations become

- 1 f00 3D ds
cr =

xy 2TI(1-V) ds s - x
3.3.01a

r°° ah ds
cr =

yy 2n(l-v) I Ss s - x
- 0 0

3.3.01b

ah a

at ax

- 3 a P
h —

ax
3.3.01c

cr ' = p + A cr
yy yy

3.3.01e

3cr 3D
*y _ ~ x

a t a t
3.3.01f

h =
(p-l)+a(l-5h)cryy

cr ' < 1-A/a
yy

3.3.01g

where
Gh

a = -
cr L

ref

h
5 =

h

min

3 . 3 . 0 2 a

3 . 3 . 0 2 b

K =
k L

s 3 . 3 . 0 2 C

Gh

A = -
(a + p )L

yy o

3 . 3 . 0 2 d

In standard S.I . un i t s , typ ica l magnitudes of the scale

factors are (Pine and Batchelor (1984), CSM (1988)):

G = 0(1010)

o- = 0(107)

p = O(107)

h° = O(10"4 - 10"3)
max

h = 0(10" )
min
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ref
= 0(10 )

k = o(io ) .
s x '

All other scale factors are taken to be 0(1) and so the

parameters have the following magnitudes:

cc = 0(10"* - 1) ,

7
A

0(10"3 -

O(10"2) ,

- 1) .

Observe the equations containing the terms a and u .
xy x

Equation (3.3.01a) implies that cr and u are of the same
xy x

order of magnitude, whereas (3.3.01f) implies that cr and
— -2 x y

u differ by a factor of n, i.e. 10 . This is true if

cr = u = 0.
xy x

3.3.03

limit as 5 -> 0, if tr ' < 1 - A/a
h yy

Considering the

then h = 0, otherwise the remaining equations in h, p and cr

can be combined together to form one equation, valid for

values of the effective stress in the region

1 <o- ' < 1.
a yy

The equation is

ah

a t

a

3X
H3 a

3X

r A

I «
h - a cr

yy

1

J .
3.3.04

where cr is given by
yy

cr =
yy

3h ds
3.3.01b

3s s - x

Restricting attention to non-zero values of h, the time

variable is rescaled by a factor of A/a and so (3.3.04)

becomes
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ah
—
a t

a
= —

ax

a 1
I _

ax 1
- a cr

yy

Defining a new parameter e as

Gh a
e =

2n{\-v)
= O(10"2 - 10

3.3.05

3.3.06

and substituting the normal stress term (3.3.01b) into

(3.3.05), a singular integro-differential equation for the

motion of a 1-D fluid filled, partially open, non-shearing

crack is obtained

3h 3

at ax

a

ax
h3 — \Y\ - e

ah ds

as s - x
3.3.07

In the next chapter this equation is solved

analytically using the techniques of asymptotic analysis and

similarity solutions for the cases where c is either very

large or very small. Numerical solutions to (3.3.07) are

obtained in chapter five and a comparison is made between

the two sets of results.

Section 3.4 - The Shearing Problem

The above non-dimensional analysis is concerned

strictly with a crack which is re-opened due to a fluid

loading but which has zero elastic shear stress along the

crack surfaces. This means that displacements only occur in

the direction normal to the crack and not parallel to it.

Here the shearing mechanism is briefly discussed and it is

concluded that the inclusion of shearing results in a much

more complicated mathematical problem.

Allowing the crack surfaces to slide over each other

introduces three new variables to the problem. They are:

(1) the elastic shear stress cr , (2) the shear displacement
xy

u , and (3) an added component of normal displacement due to

the shearing of the crack, hs. These components are defined

in the development of the model earlier in this chapter, by
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(3.2.01, 3.2.04, 3.2.05a and 3.2.05b). For the case of zero

elastic shear stress along the crack the problem can be

written in terms of a singular integro-differential equation

(3.3.07). When shearing is allowed to occur the elastic

normal stress and displacement become dependent on the

component of shear dilation, hs, which in turn is dependent

on the elastic shear stress. A complicated expression for

u results which would almost certainly require a numerical

integration technique to solve the problem. This problem

is, therefore, considered no further.
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CHAPTER 4 - ANALYTICAL SOLUTIONS OF THE PARTIALLY OPEN

CRACK EQUATION

4.1 - Introduction

In the previous chapter a model for the behaviour of a

partially open crack with zero shear stress along the crack

surfaces is described. A non-linear, singular integro-

differential equation for the non-dimensional crack width h,

is obtained (3.3.07), containing one non-dimensional

parameter, c, whereby

ah
—
a t

a
= —

ax
h 3

a
—
ax

h -
1

c H
dh

ax
or 3.3.07

h = 0,

where H represents a Hilbert Transform defined by

H[f(x)] = f(s)
s - x

In section 4.2 analytical solutions to equation

(3.3.07) are sought. The problem is briefly outlined and

then a general power law dependency of the crack width on

the effective stress is discussed. It is found, however,

that no analytical solutions can be obtained when such a lav;

is introduced.

The cases of very large and very small values of e in

(3.3.07) are then considered. The parameter, e, is a ratio

of shear modulus/crack length to reference stress/maximum

crack displacement and its value determines how changes in

fluid pressure are compensated for. Large values of e imply

that changes in the fluid pressure are compensated for by a

global redistribution of stresses along the crack, whereas

small values of c mean that a local deformation of

asperities occurs. An asymptotic series is sought in each

of these two cases and similarity solutions are found for

the resulting first order equations.
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Spence and Turcotte (1985) consider a problem that

corresponds to the first order equation for large values of

c. Their analysis involves using similarity transformations

and the resulting ordinary integro-differential equation is

solved numerically using Chebychev polynomials. The problem

of a pre-existing crack, with no stress singularity at the

crack tip, is considered more carefully by Spence and Sharp

(1985), and again numerical solutions are obtained. In this

thesis, in order to obtain closed form analytical solutions

(which can then be used as a test case for the CSM numerical

code), the h term is replaced by h. So, consider

Sh
—

at

a
= —

ax
h

a
—
ax

h - e n
ah
—
ax

or 4.1.01
h = 0

rather than (3.3.07).

The h3 term in (3.3.07) arises from the assumption that

a fluid filled crack behaves in the same way as lubricated

parallel plates. Crack surfaces, however, are rough and not

strictly parallel and, because of this, the validity of the

cubic law has been a topic of discussion in the past

(Witherspoon et al. (1980)). Additionally, for flow through

partially open cracks the flow path is tortuous since the

fluid moves around the touching asperities. It is not

asserted that a linear law is more valid than the cubic law,

but that, since the true nature of the flow law is unknown,

a substitute law which allows us to obtain analytical

solutions is justifiable. Smyth and Hill (1988) for

example, made a similar assumption in order to obtain

analytical solutions to high order non-linear diffusion

equations. The cubic law equation is briefly discussed bur

is then not considered further in this thesis.

It is necessary, for the small e case, to examine more

closely the behaviour at the crack tip and this is done in

section (4.5).
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4.2 - Analysis of the Problem For a General value of c

Equation (3.3.07) represents the width of a crack in a

linearly elastic solid, which is being reopened by the

injection of an incompressible viscous fluid. The crack

faces are assumed only to move normal to each other and do

not slide over each other. The crack pressure is assumed to

be smaller in magnitude than the normal stress so that the

crack never becomes fully open. A closed form analytical

solution for equation (3.3.07) cannot be obtained since the

h term ensures that the equation is not integrable

analytically. It is shown, however, that a similarity

transformation for the equation exists, but that the

solution does not satisfy any practical boundary conditions.

An attempt to reconcile this difference is made by

introducing a general power law relation between the crack

width and the effective stress, but it is shown that all

possible similarity transformations lead to physically

unrealistic solutions, except for the open crack case where

the normal effective stress is zero. Similarity solutions

for this case have been obtained by Spence and Turcotte

(1985) and Spence and Sharp (1985).

It is noted that h = 0 is the solution outside the

crack; throughout this chapter, however, attention is

restricted to the integro-differential equation in order to

find non-zero solutions for h.

Look for a similarity solution of the form

h = t" f (7)) 7) = X t"' S = S t"' .

37) 97) df
If 7) = — and 7) = — and if f = — then

1 at x ax dT)

71 = 7) = f P.)

Substituting these transformations into equation (3.3.07)

gives
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t""1 (af - = t-2*3

-co

•* - m

3 a

p

f3

f

t

s

a f

ds "] ' '
4.2.01

By choosing /3 = 0 and a = -1/3, (4.2.03) can be reduced

to an ordinary integro-differential equation in t\,

f = f f - e f 4.2.02

The solution to equation (4.2.02) is of the form

h(x,t) = t f(x) and since this solution seems to

correspond to that of a distributed sink problem, it is of

little physical interest.

Notice that one must choose /3 = 0 to ensure that the

Hilbert transform has the same power dependency on t as the

crack height term, h. Alternative power laws are

investigated to see if there exists any law which gives a

more useful similarity solution. The law used above is

shown in figure 3.3.

r
- h

- h
min

cr
ref

a- '
yy

Fig. 3.3 - Elastic Aperture v Effective Stress

(Piecewise Linear Law)

This is not ideal since it has a discontinuity in the first

: crack la1

and has continuous slope

derivative at cr ' = cr
yy

which isbe one

A more realistic crack law would
ref

continuous
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everywhere, but which has a similar shape to the above

(monotonically increasing in <r ' with a non-negative

minimum value h = h^) . what is actually required is a law

of the kind pictured in figure 4.1, so if F(cr ') = (a ' ) n

, e . , _. yy yy '

h is defined as

h e = -I

h - (h - h ) r
max max min [_

h , a ' < cr
min yy ref

F(cr '
yy

)
ref'

cr £ a ' < 0
ref y y

4 . 2 . 0 3

h = F(cr ' )
yy

- h

- hm i n

crr e f
y y

Fig. 4.1 - Elastic Aperture v Effective Stress

(Non-linear Law)

Variations in F~ are considered to be linearly

dependent on cr , since this ensures that the dimensions of
ref

the problem are again confined to just one parameter.
Restricting attention to the interval cr ^ cr ' < o,

ref yy '

and non-dimensionalising and re-arranging in the same way as

in section 3.3, the following equation is obtained

ah 8

at ax

.,-1 - h) ] - e H
ax

ah

ax
4.2.04

The problem here, however, is that because of the

non-dimensionalisation, the function F depends on (1 - h)

and not just on h, as previously expected. Therefore any

power law, (1 - h)*, y a 0, (other than j = 0) ,

automatically contains the linear terms in h which caused

the problem in the similarity solution above. With n = 0 we
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have the first order equation for the large c problem, which

does indeed have a similarity solution which is found in

section 4.3. It may be possible, however, to obtain a

solution of (4.2.04) for the limiting case as e -> 0. This

has not yet been investigated but it is a possible line for

future work to take.

The boundary and initial conditions have not yet been

discussed. It is possible to impose a constant fluid flux

condition as did Spence and Turcotte (1985), but in order to

obtain closed form analytical solutions of this problem it

is necessary to impose a point source, Barenblatt (1953)

type, condition. This condition corresponds to assuming

that the mass of fluid remains constant. Initially the

height is given by a Dirac-delta function in x and by

insisting that the height keeps compact support and showing

this to be consistent with the solution obtained, this

ensures that the mass of fluid in the crack remains

constant. This means that the crack height is zero outside

the fluid filled region and will take some positive value,

inside the region. If the non-dimensional length of the

crack is given by 2£(t) , then the crack height has the form

h(x,t) < • 4.2.05

The constant fluid mass condition can now be written as

rKt)

h(x,t) dx = 1 . 4.2.06
** _ 1 I 4- \

Finally, assume that the crack already exists and is

being reopened by the fluid loading; this means that there

is no stress singularity at the crack tip.

4.3 - e » 1 Problem

Consider the simplified equation (4.1.01). Recall that

large values of e mean that the fluid pressure is supported

preferentially by the elastic normal stress. This
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corresponds to the fully open crack case described in the

model in chapter two, since deformations in asperities are

negligible.

Let c = 1/5, so that 5 « 1, rescale the time with 5 and

obtain

ah
—
at

a
= —
ax

h
8

- hi
ax

i - H
dh

ax
4.3.01

Look for an asymptotic series solution of the form

h = hQ(x,t) + 5 hx(x,t) + 5 h2(x,t) + ... 4.3.02

and substitute this expression into equation (4.3.01) to

obtain

S(h +5h
0 1

at

+ .• •) a
= _
aX

(h +5h
0

a

ax

CO
a(h +5h +...) ds

as s - x
4.3.03

As 5 -> 0 the first order equation and boundary conditions

are

3h

at

a

ax
H

'ati

ax
4.3.04

ho(x,t)
> o
= 0

x|

xl
4.3.05

-1
hQ(x,t) dx = 1 4.3.06

A similarity transformation to this problem exists and

has the form

hQ(x,t) = f
1/4 £(t) = X t1/4
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where TJ = x t-1/4
and 2£(t) denotes the length of the

crack. This transformation differs from that of Spence and

Turcotte (1985) because h is substituted for h3 in the

governing equation (3.3.07).

Using primes to denote the derivative with respect to

the similarity variable, TJ, the ordinary integro-

differential equation and its corresponding boundary

conditions are

1

4

H

H

A:

dH dr

- 1

> 0

= 0

dr r - 17

7)1 < 1

f H dT) = I/A

4.3.07

4.3.08

4.3.09

Equation (4.3.07) can be integrated twice to obtain

7) A r dH dr
+ CA =

8

H = 0

-l
dr r -

4.3.10

7}| > 1

where C is an arbitrary constant of integration. In order

to find the form of H inside the crack, the finite range

Hilbert transform is inverted (Tricomi (1951)) to obtain

dH

dr nV(l -

2. , 2^3
- r ) (T) A

(r - 7?)
+ CAV dr

8

D
4.3.11

The inversion necessitated the switch from a cubic law to

the linear law in equation (4.1.01), since a linear integral

equation is then obtained, rather than a non-linear integral

equation. The eigen-solution generated in this process is

discarded since it is an odd function of x and since the
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crack width is assumed to be symmetric about the y-axis, so

set D = 0. Evaluating the integral in (4.3.11), for

11? | < 1, gives

dH
— = a 7} (1 - T,V 1 / 2 + /3 T,3 (1 - T)2)"1/2 4.3.12
d

where a and /3 are defined in terms of the unknown constants

A and C by

4.3.13

4.3.14

a
A

= —
n

8TT

r A2 ]
c - —

16

Equation (4.3.12) is then integrated to get

(3
H = - (a + 0) (1 - 7)V / 2 + - (1 - 7)2)3/2 + E |T)| < 1

3
4.3.15

H = 0 ITJI < 1

where E is a constant of integration found to be zero since

the crack height is zero at the ends of the crack,

17) | = 1. To determine A and C boundary condition (4.3.09) is

imposed, and the following relation is obtained

A4 + 32C A2 + 64 = 0 . 4.3.16

A second relation for the two constants can be found by

examining the stress at the crack tip. As stated, the case

under consideration is that of a pre-existing crack and so

the stress at the crack tip is finite. The form of the

similarity solution requires the normal elastic stress to

have the form

a = t"1/2 a , 4.3.17
yy yy
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so the first order approximation to the stress/crack width

relation (3.3.01b) can be rewritten

dH ds
o- = -
^ A

4.3.18
ds s - 7}

Substituting the solution for H(TJ), (4.3.15), into equation

(4.3.18), the following expression for the normal stress is

obtained

cr =
yy

- 1 (a + /3TJ )7T + —
A [ 2

if /3TT 27)(a
- \ (a + ^7)2)Tr + — + -
A 2 fTi

4.3.19

where f (TJ) is given by

f (T)) = arctan
1 -

I (T72 - 1 ) 1 / 2
- arctan

1 +

1/2

Thus, since it is known that the stress is finite as 77 -» l+,

and since f (77) -> -rr/2 as TJ -> 1+, one must set a = -/S in

order to remove the singularity from equation (4.3.19).

This condition is expected since it is also required that

dH/dTj remains finite as |T)| -> l". Using this condition with

equation (4.3.16) and the definitions of a and /3 (4.3.14,

4.3.15), the following values for the constants are obtained

A = 2/2 C =
2

-a =
2/2

71

Hence, an approximation to the crack height for the problem

for the small 5 case is given by

H

2/2

3TT

0

2 . 3/2
( 1 - T) )

4.3.20

T ) | ^ 1

In terms of the non-dimensional variables this gives
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Figure 4.2 - Leading order solution as 6 -> 0
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h Ho

2^2

3TT

0 ,

-1/4
1 -

8 t 1/2

3 / 2

Ixl ^

1 /4

1/4
4 .3 .21

and hQ is represented graphically in figure 4.2. This

solution is consistent with the assumption that the Hilbert

transform term in (4.1.01) is greater than the crack height

term for sufficiently large values of e. Therefore (4.3.21)

is a uniformly valid leading order approximation for all

values of the space variable.

The next term in the series expansion for the crack

width, is found by equating 0(5) terms in (4.3.02) to obtain

ah
i

at

a
= —
ax

- h
i

h
0

a
—
ax

ah

ax

f
1

rah "
0

ax

h

]

J

) .
ax

•

ah
i

ax _

4.3.22

with boundary conditions

_i(t)

h:(x,t) dx = 0
-Kt)

xl * l(t)
4.3.23

4.3.24

Substituting for hQ (4.3.21) into (4.3.22), one

proceeds in the same way as for the first order equation and

looks for a similarity solution of the form,

h = t Ei(2V2rt) , (.(t) = 2/2 t1/4

Xt -1/4

where T) =

2/2

Omitting the algebra and choosing a = 0, the following

o.i.d.e. for H is obtained
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TJH '= — J (1 - ,,
2,3/2

"SH '
1

Sx _

4.3.25
3TT2

Although the right hand side of this equation is

integrable, the left hand side is not, so no further

progress is made in generating a closed form analytical

solution to the first order problem.

4.4 - c « 1 Problem

Here an asymptotic series solution is sought for

equation (4.1.01) as e -> 0. Recall that e is defined by

(3.3.06) in such a way that small values of e correspond to

a small shear modulus/length ratio compared to the reference

stress/maximum crack displacement ratio. This implies that

changes in fluid pressure are compensated for by a local

deformation of asperities rather than a global

redistribution of stresses. Look for a solution of the

form

h = h + e h
0 1

e2 h + e h +
n

In this section it is shown that the 0(e) terms in the

solution as e -» 0, are singular at the crack tip. Since

this invalidates the assumption that the O(e) terms are

smaller than the 0(1) terms (local to the tip), the

behaviour in the region close to the tip is investigated

further in section 4.5.

Substituting this series expansion into equation

(4.1.01) gives

a (h + eh +. . .) 3

at ax
(h + eh + ...) — 1 (h + eh + .. .)

ax ' °

a(h + eh +...)
v o I '

as

ds

s - x
4.4.01
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so as e -» 0, the highest order equation is

ah ao _

at ax

ah
h - c

0 ax
4.4.02

and the boundary conditions are

ho(x,t)
> 0

= 0

x| < £(t)

xl £ £(t)

-1

hQ(x,t) dx = 1,

4.4.03

4.4.04

where 21 is the length of the crack as before.

The solution to this problem can be found in the usual

way by looking for a similarity transformation of the form

h = ta H (xt"13)
0 0 v '

and is found to be

-1/3

hQ(x,t) =

.,2 2,-2/3
A - X t x| < At

1/3

4.4.05

xl > At1/3

where A is a constant of integration which can be found

using boundary condition (4.4.04) to be

A =
9

2

1/3

4.4.06

Equation (4.4.05) is plotted in figure 4.3. This is a

standard solution to the non-linear diffusion equation

(4.4.02).
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Figure 4.3 - Leading order solution as £, -> 0
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The next step in obtaining a solution to the small c

problem is to consider the 0(e) terms in the equation

(4.4.01). Equating coefficients of e gives

ah

at

a

ax
h

0

a

ax
hI1 - n

"ah
0

ax

ah
+ h —

1 ax
4.4.07

The boundary conditions for the first order problem are

> 0

= 0
4.4.08

J
l (t )

-l (t )

h dx = 0. 4.4.09

Rearranging (4.4.07) it is seen that

ah s (h h )
i _ v o i'

at ax
- f(h0)

where f (h ) is given by the following expression

f (h ) = + —
0 Q

ax

h — \n
0 ax ax

4.4.10

The function f can be obtained since h is known (4.4.05)

and integrable. After some algebra, f(h ) is found to be

In

f (h ) = 9t'

, ,1/3

At - x

At1/3+ x

2A

9t
5/3

|x| < At

At

1/3

4.4.11
1/3

Outside the crack

4.4.12
at

and, since h is initially zero outside the crack, this

implies that
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At 1 / 3. 4.4.13

Inside the crack, a similarity transformation for h

exists and is of the form

ha = f
2/3H(r,)

xt
7) =

-1/3

Again using primes to denote derivatives with respect to the

variable 7), the resulting ordinary differential equation is

(1 - 7} ) H " - 27) H' + 2H = F(7)) 4.4.14

where F(TJ) is given by

2X
F(7)) = — -IT) In

3

1 - 7 )

1 + 7]
+ 2 4.4.15

Equation (4.4.14) is a Legendre equation of order one. The

complementary function for this equation is therefore

H = C 7? In
1

1

- 7)

+ 7)
+ 2 7) 4.4.16

where C and C are constants of integration, though since H

is an even function of 7) one must choose C = 0 . The

particular integral is given by

H =
p

(TJ) - H (T})H
4.4.17

(1 -

where A is the wronskian, ie A = H H ' - H H ' , where

4.4.18

and

H2 = 77 In
1 - 7 ?

7)

+ 2. 4.4.19
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This can be expanded to give

-A
H = -

3
T)ln

1 - 7 ]

1 + -0
+ 2

+ 2

+ 2

4.4.20

The general solution to equation (4.4.14) is the sum of the

complementary function (4.4.16) and the particular integral

(4.4.20)

H = Sin
1 -

7)A

3

r7)

S

Sin
l - S

l + S

Tjln

1 - 7 )

7?
+ 2

4.4.21

Simplifying this expression gives

H = C Tjln
1 - 7 ?

1 +
+ 2

4AT?

In
1 - 7 )

1 + 7 )

2X
+ — ln| 1 - 7}'

9

In
9

1 - 7 ] f17
4A7) f17 In I 1 -

lnll -
- r

4.4.22

The constant C can be found by imposing the conservation of

fluid mass boundary condition which, in terms of the

similarity variable T), is

r- dT) = 0. 4.4.23

A summary of the necessary integration is found in Appendix

B. The constant C is then given by

2A A
C = In2 4.4.24
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The first order term for the crack height for the small e

problem is then given by

h =-

t-2/3H(xt-1/3/A)

0

|x| < At1/3

4.4.25
|x| > At1/3

-1/3where A is given by (4.4.06) and H(xt /A) is given by

(4.4.22) and (4.4.24). So an approximate solution to

(4.4.01) is

-1/3

h =

A - x t
2.-2/3 + et-2/3T -1/3

/ * ) |x| < At

4.4.26 .

Ixl > At

1/3

1/3

For this asymptotic series solution to be a uniformly

valid approximation of the crack width h, eh is required to

as e -> 0,be smaller than h for all values of x and t.
1/3Since h becomes infinite at the crack tips x = ± At

A
— In
3

X - At
1 / 3

x + At
1 / 3

| x | -> At 1 / 3

(see Appendix C for details), it is clear that the

approximation does not hold in this region. This is

expected since the limit e -» 0 insists that changes in fluid

pressure are compensated for by a local aperture change

rather than a global redistribution in stresses. When the

aperture is almost zero, i.e. at the crack tip, the

otherwise small, elastic normal stress term becomes

comparatively large and so the original assumption does not

hold. Away from the crack tip, however, for t > 1 (as in

the large e case), the solution is reasonable.

The next step is then to investigate the behaviour at

the ends of the crack, close to the tip.
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Section 4.5 - Crack Tip Analysis

A uniformly valid approximate solution to equation

(4.1.01) is now sought, for all values of x and t, for the

case of e « 1. To do this, consider more closely the

behaviour of the crack near the crack tip. In section 4.4

an approximate solution (4.̂ -. 26) is obtained, valid

everywhere except close to the crack tip. To obtain this

solution a simplifying assumption that changes in the fluid

pressure would be compensated for preferentially by a local

deformation in the asperities rather than a global

redistribution of stresses is made. In the notation used,

this means that the term ca is small in comparison with
yy

the crack height h. Towards the ends of the crack the

height decreases to zero and so it becomes impossible for

changes in the fluid pressure to be balanced by changes in

the crack height and the elastic normal stress term becomes

significant. This implies that the initial assumption is

invalid in the crack tip region and hence the solution is

invalid in this region.

The increased importance of the stress redistribution

term means that the behaviour at the crack tip affects the

behaviour of the crack everywhere. It cannot be considered

as a local effect and in this respect it is unlike usual

boundary layer problems. In equation (4.1.01) it is the

Hilbert transform term that ensures the global response.

Bearing this in mind, local functions <f> at the left-hand

end and <f> at the right-hand end of the crack are
R

introduced, and a solution is sought of the form

h = h (x,t) + eh (x,t) + ... + enhn + . . .
0 1 n

4.5.01

where

-, .1/3 -. jl

x + At X - At

Since <p and <p are local functions the following boundary
L. R

conditions are imposed
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<PL -* 0 CL -> -« 4.5.02a

0. -> 0 £ -> oo 4.5.02b
L L

<PR -> 0 £ -» a 4.5.02c

0R -» 0 £ -> -oo 4.5.02d

where a is determined by the position of the front so that

the new crack length is t(t) = 2(Xt1/3 + ca) .
In the previous section solutions for the functions h

(4.4.05) and h (4.4.2 5) are obtained. Notice that h is

singular at |x| = Xt1/3. Since the crack height is not

expected to be singular at any values of x and t (an

exception being t = 0 because of the initial condition), the

functions <p and (f> are expected to remove these

singularities. Also, notice that when the expression for h

(4.5.01) is substituted into the equation (4.1.01), it is

necessary to take the Hilbert transform of the functions

ah /ax, 30 /ax and dtp /dx. Since all three of these

functions become singular as |x| -» (At1/3)~, the Hilbert

transforms do not exist there. To overcome this problem a

function, f is introduced and is of the form

L 4.5.03

where F(TJ) is defined in terms of functions F and F by
R L

dF dH dF dF
— = R

dT} drj di? drj

where

dF dH dF dH
R lim — — L = lim —

d7)

Integrating (4.5.03) gives

= H - F - F + C 4.5.04
R L f
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where C is an arbitrary constant of integration. For

By defining Fsimplicity choose C such that lim F = 0.
f T?->± 1"

via its derivative it is ensured that both F and dF/dTj are

non-singular as ITJI -> l~. It is not enough to define F by

F = H - lim H - lim H
_ +

since this does not ensure that dF/d7) is non-singular at the

ends of the crack.

Note that the functions F , F , F and their derivatives

are all taken to be zero for values of 7) such that 1171 > 1.

A detailed evaluation of the limiting values of H and dH/d7)

at each end of the crack is given in Appendix B. For values

of 7} where 17) I < 1 the following expression exists

dF dH - A 2A
— = lim — = + — In
dT) 7)->-l~ d7) 3(1+7?) 3

1 + A ATT

18 27

4.5.05

and integrating with respect to 7/ gives

A 2A
F = - -ln|l+7j|+ —
L 3 3

-(i +

7)) In I 1 + 7)

2A A
In2 + —

3 18

An

27
(1 + 7)) + C 4.5.06

where C is an arbitrary constant of integration chosen to

be

A 2A An
C = - In2 + —
L 3 9 27

4.5.07

such that

lim F = lim H

Similarly,
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dFR dH A
R

— = lim — =
d7) 7)-»l~ d7) 3(1-7))

2A
in

3

1 - 7 } A ATT

18 27

4.5.08

and so

FR = "

- (1 -

A
- In
3

•n)

1

2A

3

2A
+

3
A

In2 H
18

- u)

An2-

27

ln|l-

(1 -

.1

7)) + C
' R

4.5.09

where C is an arbitrary constant of integration chosen to

be

A 2A ATT
C = - In2 + —
R 3 9 27

4.5.10

such that

lim F = lim H.
R

The function F is then given by

A

3

and C is chosen to be

2A
— 7)ln
3

1 -

1 +

2A 4A
In2

3 3

4.5.11

13A ATI
C = - 4.5.12

27

so that lim F = 0.

Recall that <p and <p and their first derivatives are
L R

expected to have singularities at the ends of the crack that

are of the same order as the singularities in the function

h there. In order to remove these singularities the

functions ij/ and ^ are introduced and are of the forms
L R

L = t"
2/\(CL) = t 2/3<J>

R
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where ^ and ^ are defined in terms of <p , <p , F and F by
L K L R L. R

\ = 4.5.13

= t2/3(p + F .
R R R

4.5.14

Rearranging equations (4.5.04), (4.5.13) and (4.5.14) and

substituting h , <p and (p into the expression for h

(4.5.01) gives

h = h + et"2/3[F - C + * + * ] + O(e2)
0 L f L RJ V '

4.5.15

where F ¥ and <£ are regular functions at the crack tip.
r L. R

Consider equation (4.1.01). First, concentrate on the

right-hand end of the crack as x -» At and so change

variables from (x,t) to (£ ,t) and consider the leading
R

order terms as e -> 0 and £ -> 0*. Using primes to denote
R

derivatives with respect to £ , equation (4.1.01) becomes
R

ah

at 3et2/3
h' = - h h - e K

ah

ax
4.5.16

Notice that the Hilbert transform term has been left as a

function of x. This is because it is necessary to determine

the leading order terms in the Hilbert transform and so this

term is dealt with separately, in more detai^ later in this

section. For now we concentrate on simplifying the rest of

the equation.

In terms of the new variables (£ ,t), h is given by
R 0

h =o
3t

0

2/3 6t
C < 0
SR

SR

4.5.17

So the leading order terms in the crack height, as e -> 0,

for the region C < 0, are
R

h = et~2/3<! + F - C + * + * )• = ch
_ i L H

4.5.18
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where

h = t + F _ C
f

4.5.19

Substituting this expression for h (4.5.18) into equation

(4.5.16) gives

dh

at 3t
2 / 3

4.5.20

and so it is clear that the 3/at term is negligible in

comparison with the other terms in the equation. To highest

order (4.5.20) is then

3t
2/3

h' = \h\h -
ah"

ax
4.5.21

Integrating once with respect to £ gives
R

Xh

3t2/3
= \h - n

ati

ax
4.5.22

where g (t) is an arbitrary function due to the integration.

Since h = 0 for \T\\ > 1, Vt, we must have g (t) = 0 . It

then follows that either

h = 0

or

3t
2/3

= h - H
dti

ax
g2(t)

4.5.23

4.5.24

and again the arbitrary function of integration, g (t) is

chosen to be zero. Substituting the expression for h

(4.5.19) into (4.5.24) gives

!5 = t " 2 / 3

2/3
+ F - C

f
- n

3t

which simplifies to

ah'

ax

4.5.25
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0 = t"2 / 3- i F - C + * +
f L R

ah'

ax
4.5.26

As x tends to the right-hand end of the crack, F -» 0 and so

-> C .
L f

4.5.27

Close to the right-hand tip, therefore, ¥ is given by
R

" 2 / 3

ah"

ax
4.5.28

The Hilbert transform of the slope of the crack height

is now investigated, in order to establish its leading order

terms. The Hilbert transform term can be written as a sum

of four integrals,

+ et

ah"

ax

- 2 / 3

dsr ah

J as s - x

00
ah ds

o

00
3F ds

as s - x

a* ds
L

ds

as s - x as s - x as s - x

4.5.29

and each integral is considered in turn.

First, look at the Hilbert transform of ah /dx
1/3,

and recall that TJ = x/(At ), hence

3h ds
o

as s - x 6t
2 / 3

- 1

3(1

ar

- r2) dr

r - 17

= \2 + Tjln
3t2/3

4 . 5 . 3 0

I n t e r m s of C , 7} = 1 + e C / ( A t 1 / 3 ) e q u a t i o n ( 4 . 5 . 3 0 ) can be
R R

written
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3h

3t
2/3

2 + 1 +
At

1/3 In
2At1/3+

4.5.31

By expanding the argument of the natural log term as a

Taylor series about C = 0 / the Hilbert transform is found
R

to be

H
'ah

3t2/3
2 + In

2At1/3
+ O(e) 4.5.32

Now consider

et-2/3
3F ds _1

ds s - x At

8F dr
4.5.33

-l
3r r - 7]

It is known that 3F/3T] is finite at 7) = 1. (4.5.33) is,

therefore, split into two parts so that the integral can be

evaluated as TJ -» 1" (i.e. as ( -> o") , in the following way
R

ct~2/3n

At

SF

ax At

dr

SF(1)
0(1) + — In

- I

2At1/3+
= O(c) 4.5.34

So as c -> 0, the contribution from this term is negligible.

The third integral within the Hilbert transform term

incorporates the effect of the function * . Since ah /3x is

discontinuous at x = ±At1/3 and since it is this

discontinuity which results in the singular behaviour of the
1/3

Hilbert transform at x = ±At , it is expected that the

functions 3^ /dx and 3^ /3x are similarly discontinuous at

x = -At1/3 and at x = At1/3, respectively. The Hilbert

transforms of each of these functions should then introduce

natural log singularities at the same points, which remove
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those introduced by «[ahQ/ax] . Additionally, in order that

no further singularities be introduced, it is expected that

the gradients of * and * are continuous at the new
L R

positions of the crack tips, that is at x = -At173 - ca and

at x = At + ca, respectively.

At a distance greater than 0(e) away from the left-hand

end of the crack, the function * looks like F (recall

4.5.02b). The region of integration is therefore split into
two sub-regions, (-At1/3 - ca) < x < (-At1/3 + e ) and

(-At1/3 + cb) < x < (At173), where 0 < b < 1, so that

r00

et
-2/3

a* ds

as s - x
= 1 + 1

1 2
4.5.35

where

and

I = et-2/3

I = et"2/3

1/3 b
t e

f A t 1/3

4.5.36
, 1/3 3S S - X
-At - ca

3F ds
L 4.5.37

.. 1/3 b 3S S - X
-At + e

First, consider I . Since the integration is over a
1/3

distance of 0(e) around the point x = -At , to evaluate

the integral close to x = At173 a change of variables is

introduced, from x to £ and the dummy variable is rescaled
R

as follows without invalidating the assumption that e is

small. Let

x = + At173 s = ex - At173

and substituting into (4.5.36) gives

I = et-2/3

b-1

-a

a*

3x e (x -
1/3

4.5.38

Taking the limit e -» 0 gives
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et-1

I = -
2A

4.5.39

and imposing conditions (4.5.02a) and (4.5.02b) gives

cf 1

2 A 7)->-i+e /At
1/3

et

2A

-l Ab A 2A Xn'
— lne ln|2At1/3| + —
3 3 9 27

= O(e lne) 4.5.40

Now consider I . SF /STJ is given by (4.5.05) so the

integral I can be written as

4.5.41

where I and I are given by

e

At

_1

-l + e

2X
— In
3

1 + r dr

r - 7}

Xt
1/3

4.5.42

e

At

-X dr

3 (1 + r) r - 7)

At
1/3

4.5.43

and I and I are both found to be O(e) .
2a 2b V '

Now consider the final part of the Hilbert transform

term in (4.5.29). Again it is known that at a distance

greater than O(e) away from the right-hand end of the crack,

the function * looks like F (recall 4.5.02d). Once more,
R R

therefore, split the region of integration into two

sub-regions so that

e t
-2/3

ds

as s - x
= 1 + 1 4.5.44
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where
.. 1/3 b

r.Xt - C
-2/3 4 . 5 . 4 5

-Xt
1/3 5S S - X

and
.. 1/3

.Xt + ca
-2/3

d s
4 . 5 . 4 6

L 1/3 b 9S S - X
At - e

First, consider I . Recall that 9F /a-r) is given by (4.5.08)

and substituting this into (4.5.45) leads to considering I

in two parts. That is

4.5.47

where I and I are given by

c r " -
I = At

At J

1/3
dr

9(1 - r) r -
4.5.48

e

Xt

r 1 " -L -— In
3

1 - r dr

r - 7)
4.5.49

and it is found that I = O(e lne) and I = O(e (lne) ) .

Lastly, consider I . The highest order terms of I

close to the right-hand end are required, so a change of

variables from x to C is introduced and since s varies
R

1/3

about Xt with variations of order e, s is scaled in the

same way, so that

x = eCR + Xt
1/3

= ET+ Xt1 / 3

and so

-2/3

b-1 dZ Z - C
-e SR

= 0(1). 4.5.50

Hence, the only terms in the Hilbert transform in (4.5.29)
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which make a significant contribution as e -» 0, are the

H[dhQ/dx] term (4.5.31) and the integral I4 (4.5.50), so

that

n
'dii

ax 3t2/3
2 + In

2At1/3

ra

0(e) 4.5.51

Substituting this into equation (4.5.28) gives

0 =
A

+ — -i2 + In
2 At1/3

a*
R

_eb-i ax x - CR

4.5.52

as the governing equation for the function ¥ in the region

-e " < £ < 0, with the condition that

- F -» 0
R R

4.5.53

Note that the ln|eC | terms in (4.5.52) are retained. These

are expected to be removed by the integral term.

Now examine the behaviour in the region 0 < £ < a.

Here the crack height is given by

h = O(e2) . 4.5.54

but the Hilbert transform term is the same as that given in

(4.5.51) since £ is still in the region close to zero. The

governing equation in this region is then

2 + In
2At1/3

_e

b-i a-c

4.5.55

and in the region where a < C , ¥ = 0.^ SR ' R
A similar analysis can be carried out for the region

1/3

around the left-hand tip of the crack as x -> -At , which

leads to the governing equations for ¥ in terms of the
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1/3local variable C, = (x + \t )/e. It is noted, however,
Li

that because the crack height is an even function in x, it

is necessary that * I = $ I . It follows,
J L • x = x R' x=x

I $ I
L • x=-x R' x=xo o

there fore, that

—X
1/3-,

X - At
1/3-,

4.5.56

that is

4.5.57

So the equations for ¥ are found by substituting (4.5.57)

into equations (4.5.52), (4.5.53) and (4.5.55). They are:

for 0 < £ < e
L>

b-l

0 = 2 + In
2At1/3

b-1

\_a ax x -
4.5.58

with boundary condition

- F -> 0
b-l 4.5.59

For -a < £ < 0

AC, A
— = *L

 + -
3 3 2 + In

2At
1/3

b-l

4.5.60
ax x - c

'a SL

and in the region where C < -a, $ =0.
Li Li

Closed form analytical solutions cannot be written down

for either of the functions * or * . It is possible,
L. R

however, that numerical solutions could be found and this is

a likely route for future work to take although no numerical

analysis is carried out here.

The solution to first order terms of equation (4.1.01)

for the case when e « 1 is then
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h =

0

et"

x < -At1 / 3-ea
,,1/3 .. , 1/3

-At - ea < x < -At

h ( x , t ) + e t " 2 / 3 [ F - C + * + * ] - A t 1 / 3 < x < At 1 / 3

0 f* L R

At1/3< x < At1/3+ ea

0 At1/3+ ea < x

4.5.61

where h , F and C are given by (4.4.05), (4.5.11) and

(4.5.12) respectively. $ is defined by (4.5.58), (4.5.59)

and (4.5.60) and * is defined by (4.5.52), (4.5.53) and

(4.5.56).

Section 4.6 - Summary

In section 4.3 a first order approximate solution for

the one-dimensional crack equation (4.1.01), with no

shearing is found, for the case where e is very large.

Since h , (4.3.21), is finite V x,t and since a * 0 V x,t

(in the region of interest), the term ecr is always greater

than h for sufficiently large values of e, except perhaps

for very small time, so the approximation can be considered

valid for all values of x and for time t > 1.

In section 4.4, the case where e is very small is

considered. The analysis is carried out in the same way as

for the previous case, but leads to the result that the

leading order solution is not valid close to the crack tip.

The behaviour in this region is then investigated more

closely in section 4.5 and the leading order approximate

solution is improved upon by introducing local functions at

the crack tip and taking into account that the effects

produced by these functions have global significance.
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CHAPTER 5 - NUMERICAL SOLUTION OF THE PARTIALLY OPEN

CRACK EQUATION

5.1 - Introduction

In chapter three, a model for the behaviour of a

one-dimensional, pre-existing crack in an infinite elastic

material, for the case where the crack is re-opened by the

injection of an incompressible viscous fluid is presented.

In chapter four, one particular aspect of this model is

investigated, namely the case where the fluid pressure is

insufficient to completely separate the crack surfaces but

where they do not shear over each other. Here, numerical

solutions to this same problem are sought. The analytical

and numerical results are then compared at the end of this

chapter. It should be noted that large scale one, two and

three dimensional codes for a single crack and for networks

of cracks have been previously established by the CSMGEP.

The codes FBED, FRIP-2D, and FRIP-3D incorporate the

dilation due to shearing and the open crack state as

described in chapter three. The numerical code used here

(called SPOC - Stuck Partially Open Crack) aims only to

solve equation (4.4.01), for a partially open crack with no

shear. The code uses a similar numerical method to FBED,

CSMGEP's one-dimensional code. The main reason for not

using FBED directly is the incompatibility between computing

facilities at Southampton University and the Cornwall

project. Additionally, numerical results for the

non-dimensional problem are required and until recently FBED

contained only dimensional variables.

SPOC is written in PASCAL and uses a forward time,

central space finite difference scheme for the flow problem.

It also incorporates a displacement discontinuity boundary

element technique to numerically evaluate the Hilbert

transform in the elastic normal stress term. Both of these

schemes, also employed in FBED, are described in section

5.2. A stability analysis is carried out in a different way

to that employed in FBED and the results are discussed in

section 5.3. Finally, in section 5.4, the numerical results

are presented and compared with the analytical results.
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Section 5.2 - The Discretised Model

Here, the one dimensional partially open crack equation

is approximated by a set of difference equations. These are

obtained in the usual way by considering a Taylor series

expansion of the dependent variables and using this to

obtain a local approximation for the derivatives.

To help explain the discretised version of the model

that is used in the numerical code, equation (4.1.01) is

rewritten in the following way

3h 3q
— = 5.2.01
at ax

q = - h — 5.2.02
3x

= h - e <x 5.2.03

cr =
3h ds

5.2.04
3s s - x

-00

where q represents the fluid flux through the crack, p is a

measure of the change in pressure and cr is a scaled

component of the elastic normal stress.

The grid system used is shown in Figure 5.1. The

domain is split into N discrete elements of width Sx centred

about the points x , 1 ̂  i =s N. Let x = iSx, t = n<5t and

hn, q", crn and pn represent the values of h, q, cr and p

respectively, at the point x. at time t . Most of the

variables are placed at the nodal points with the exception

of the flux variables, qn, which are centred between the

nodal points, at the end of each element.
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5t

nodal points
" i *

1 - 1 i 1 + 1

x q
1 ^ i

h

Figure 5.1 - Grid System in FBED and SPOC

Initially, the displacements are given a prescribed

constant value for each element. The normal stress at each

node is then calculated using a boundary element technique

described below, so that

(Sx/2) h
J

(x - x ) 2 - (Sx/2)2
j = 1 v i j ' \ / i

5.2.05

The pressure change is then given by

n , n np = h - CC .
M 1 1 ' 5.2.06

and so the flux at the end of each element can be evaluated

using a central difference approximation to 3p/5x and an

average value of h, so that

h" + h
i+i i 5.2.07

The crack height is then updated from the current flux

values using a forward difference approximation to 5h/3t,

hence

St , .
n+1 = h" q" - q" I. 5.2.08

Once the crack height is updated the cycle is repeated to

obtain the normal stress, pressure change and flux etc., for

subsequent time steps.

For a fuller description of the CSM code FBED see the
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Geothermal Energy Project report 3A-11 (Parker (1991)) and

for an overall view of the FRIP codes see report 3A-5

(Markland (1989)).

A Displacement Discontinuity Boundary Element Method

The normal stress is calculated numerically using a

displacement discontinuity method outlined in Crouch and

Starfield (1983) from an original paper by Crouch (1976).

The method is based on the analytical solution to a problem

of a constant discontinuity in displacements over a finite

line segment, representing a crack, along y = 0. Crack

surfaces are displaced relatively by a constant amount.

The idea behind the numerical method is to approximate

the continuous displacement of the crack surfaces by a

summation of discrete constant displacements (see Figure

5.2). If the analytical solution for each single elemental

displacement is known, then the numerical solution for the

full crack is found by summing the contributions of all N

elements.

h

Figure 5.2 - Approximation of Crack Heights

Using Displacement Discontinuities

The required analytical solution may be obtained

from the results presented earlier in chapter two. To solve

for a line displacement discontinuity, the problem of a

point displacement discontinuity is considered and then a

convolution integral is used to sum over a line of points.

Although physically a point displacement is a somewhat
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strange concept, mathematically it can be dealt with in

quite a straight forward manner. The problem considered is

that of a constant displacement discontinuity, over a finite

line segment in the x, y plane of an infinite elastic solid.

This problem is specified by the condition that the

displacements are continuous everywhere except over the line

segment in question and so two separate point displacements

are considered, first in the x direction and then in the y

direction, and then the two solutions are superposed.

Suppose the line segment is chosen to occupy a certain

portion of the x axis, say |x| s a, y = 0; by thinking of

this segment as a line crack, its two surfaces are

distinguished by assuming that one surface is on the

positive side of y = 0, denoted by y = 0 , and the other is

on the negative side of y = 0, denoted by y = 0 (as in

chapter two). D and D , the differences in displacement

between the two sides of the line segment (or point), may be

defined via (2.3.03). It is assumed that the problem is

symmetric in y, so that attention can be restricted to the

region y ̂  0. If 5 (x) is a Dirac delta function then the

boundary conditions for the two problems are (c.f. 2.3.08

and 2.3.09):

ill

y - 0, V x 5.2.09a

y = 0, V x 5.2.09b

x, y -> oo 5.2 . 09c
»j
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y = 0, V x 5.2.10a

y = 0, V x 5.2.10b

x, y -* oo. 5.2.10c
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where here D and D are assumed constant. Note that the
x y

problem with boundary conditions

u =
X

u =
y

a ->
ij

-

-

0

D
X

D
y

8

2

8

2

(x)

(x)

y = 0, v x

y = 0, v x

y -»

5.2.11a

5.2.11b

5.2.11c

is a different problem since evidently, with conditions

(5.2.11), the displacements are zero along y = 0 except at

the origin. Whereas, with conditions (5.2.09) and (5.2.10),

the displacements are merely continuous along y = 0 (except

for the discontinuity at x = 0) and it is this condition

which is physically appropriate. The solutions to the

plane strain displacement equations (2.3.04 and 2.3.05), for

these conditions (5.2.09 and 5.2.10) can be obtained in a

similar way to that of chapter 2, the difference here being

that D and D are point displacement discontinuities as
x y c

opposed to the general functions of x considered previously.

The solution for the problem with conditions (5.2.09) is

then

<T = -
xy

GD x y ( x 2 - 3 y 2 )

n (1 - v) (x2 + y 2 ) 3

GD
- 4 , 2 2 4

3y - 6xy - x
a =

yy 2TT (1 - v) (x2 + y2) 3

D rx3( l - 2v) + (3 - 2v) xy2'
u =

x 4TT ( 1 - V)
, 2 , 2 . 2

(x + y )

5.2.12a

5 . 2 . 1 2 b

5 .2 .12c

D r y 3 (2v - 3) + (2v - 1) yx2"1

4TT (1 - V)

- D 5(x)

y * 0

5.2 .12d

y = 0

The problem with conditions (5.2.10) is solved in the same
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way. The solution is

GD y4 - 6x2y2 + x4

a =
xy 27T (1 - v) (x2 + y2) 3

5 . 2 . 1 3 a

GD xy (x2 - 3y2)
cr =

yy TT ( 1 - v) ( x 2 + y 2 ) 3
5.2.13b

D

u =
x

Arc ( 1 - v)

y3(2i> - 1) + (2v - 3) yx2'

(x2 y 2 ) 2
y * 0

y = 0

5.2..13c

D

u =
y 47T ( 1 - v)

x3(2i> - 1) + (2i> + 1) xy2 '

( x 2 + y 2 ) 2
5.1.13d

Recall that the solution required is the sum of the above

two solutions. To obtain the solution for a point

displacement discontinuity D. = (D ,D ), therefore,

solutions (5.3.12) and (5.3.13) above are superimposed to

obtain

GD
cr = -
xy 2u (1 - v)

(y4 - 6x2y2

, 2 2,3

(x + y )

2xy (x2 - 3y2)D
, 2 , 2,3

(x + y )

5.2.14a

GD
cr = -
yy 2n (1 - v)

2xy (x2 - 3y2)Dx

(x2 + y 2 ) 3

(3y4 - 6x2y2 - x4)D

/ 2 , 2, 3

(x + y )

5.2.14b
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u = -
X

4TT

- D

D

( 1

5
X

X

-

(x)
v)

y

(2v -

0

1) +

(x2 -

(2v

H y 2

-

) 2

3) 2

yx y * 0

2

D rx3(l - 2v) + (3 - 2v) xy2"1

u =
y

47T(1 - v)

D

x

4TT (1 - v)

x3 (2v - 1) + {2v + 1) xy2"1

(x2 + y
2 ) 2

4TT (

- D
y

D

1

S

y

-

(x)
v)

"y3(2i

y =

> -

0

3) "

(x 2

h

+

(2v

y 2

- i

) 2

) yx 2 '
y * 0

5.2.14c

5.2.14d

This solution for a point displacement discontinuity is used

to obtain the solution for the constant displacement

discontinuity problem over a line segment y = 0, |x| ̂  a.

Dividing the segment into small elements of length drj, the

displacement discontinuity on an element which is centred at

x = f\, y = 0 is then:

D.(7)) = Di dm 5.2.15

where i is either x or y. The solution to the problem can

be found by substituting D (T?) and D (TJ) into (5.2.14),
x y

replacing x by X-TJ and integrating the resulting expressions

with respect to TJ between the limits -a and +a. The

solution to this problem (Crouch and Starfield (1983)), can

be written in terms of the function f(x,y), where

-1
f(x,y) =

4TT(1 - V)
Y\arctan

x - a
- arctan

x + a

- (x - a) In V[(x - a) 2 + y2]

+ (x + a) In V[(x + a) 2 + y2] 5.2.16

The first, second and third derivatives of f(x,y) are needed

in order to be able to write down the solution. Introducing
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the following notation for partial derivatives

at
f = —
'x ax

at

'y ~ ~a^

the derivatives are then

f =
,x 47T(1 - V)

In •[ (x - a)2 + y2]

- In •[ (x + a)2+y2]

f

m
 "

f

>

f
>

y

xy

X X

xyy

yyy

- 1

4 T T ( 1 -

1

477.(1 -

= - f
.yy

•p

,xxx

= -f
>xxy

v)

v)

arctan -

-

. ( x

1

477(1 -

1

477(1

2y

471(1

-

{

-

{

y

a ) 2

v)

v)

(X +

(X +

v)

(X +

y

i -

+

. ( X

[
[i
a)

a)

{

X

a)

1
a J

y2

X

- a

(

(x -

(x -
2 _

2 +

(x -

+ a

2 +

(x

- a

arctan
V

+

) 2 + y
X +

x +

• a)

" a)

y 2

y 2 }

x -

" a)

y 2 }

a)

2

y

a)

i

a

2

2
- y

2 , 2

+ y
-

2

a

/

2 + y2

2

Y |

x + a J

y2 .

} 2

2

and omitting bars, the solutions are

cr = 2G
xy

D [f + yf 1
x |_ »yy . yyy j

+ 2G D [- yf 1 5.2.17a
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a = 2G D
yy * yr 1

»xyyj

+ 2G D [f -yf 1 5.2.17b
y L >yy »yyyj

u = D |2 (1 - v) f - yf 1
x XL >y > XXJ

+ Dy[- (1 - 2V)f x-yf J 5.2.17c

u = D [(1 - 2v) f - yf 1
y X|_N ,x * ,xyj

+ D [2(1 - v) f -yf ] . 5.2.17d
y L i y , yyJ

Note that D and D are constant displacement
x y

discontinuities. In practice, a better approximation to the

displacements in each nodal element would be a function

linear in x, which makes the above analytical problem

considerably more difficult. In fact the above method

cannot be solved analytically for a linear law, since the

Fourier transform of the necessary boundary conditions

cannot be expressed in terms of closed form analytical

functions.

The solutions for the stresses and displacements are

included for completeness, though for the numerical code

only cr along y = 0 is required, and it is
yy

- GD
cr = 2G D f ,

yy y yy

y

271(1 - V)

2a

2 2x - a
5.2.18

In terms of the non-dimensional, discrete variables the sum

of the contributions from each elemental displacement gives

Sx hn

j = i (x^Xj) - (5x/2)
• . 5.2.05

This expression completes the discretisation of the model
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Section 5.3 - Stability Analysis

To investigate the stability of SPOC, the linear

equation

ah a2 , s
— = — h - e a 5.3.01
at ax2(- >

is considered. Note that previously, stability of FBED was

investigated by considering the equation

ah a ( da)- - -k-
at sx[ axj

(Parker (1991)) which is only appropriate for values of

e » 1. The results presented here are applicable for any

value of e.

Written in terms of the discrete variables equation

(5.3.01) becomes

hn+1 - hn hn - 2hn + hn o-n - 2an + an
i i i + 1 i i - 1 i + 1 i i - 1

- C .

5t 5x2

5 . 3 . 0 2

Recall t h a t crn i s given by

—̂, Sx h
crn = ) , 5.2.05

1 ^ (x - x ) 2 - (Sx/2)2

substituting this into (5.3.02) and remembering that

x = i5x leads to

= h
n + _ fh

n - 2hn + hn

i 2 { i l i

St

" i ~ i < - . - 2 1 , 1 + 1 i " i - 1

C5t Jl 96 h"I 5 . 3 . 0 3
-1) ( 4 ( i - j ) -9 )

n *i_n i_n . n» -1
Introducing the vector h = (h , h . ..., h ) , (5.3.03)

1 2 N

can be written as
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, n+1 , n

h = A h 5.3.04

where the NxN matrix A is given by

A = B - krC 5.3.05

with k = 96e/5x, r = <5t/(5x2) and where the components of

the matrix B, b , are given by

i = j

|i - j| = 1 5.3.06

otherwise

and the components of C, c. ., are given by

1
c .= Vi,j. 5.3.07

Note that i and j can take values 1, 2, ...., N.

The numerical scheme is stable if all of the

eigenvalues of the matrix A are of magnitude less than or

equal to 1. That is if

P(A) * 1.

Since the spectral radius of a matrix is always less than

the norm of the matrix (the maximum of the sums of the

magnitudes of every element in each row or column) , it is

sufficient to have

IIA|| - I -

where ||A|| represents the one norm of A.

Notice that that the one norm of A is obtain by summing

elements in the middle row (or column since A is symmetric),

or, if A has an even number of rows, by summing elements in

either of the middle two rows (or columns). To simplify the

notation it is assumed that A has an odd number of rows and

so N = 2M - 1. The following calculation, however, can then
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be repeated for N = 2M to consider matrices with an even

number of rows. Since B is a tri-diagonal matrix and since

each row of C is symmetric about its central element, the

norm of A can be written as

||A|| = |l - 2r - kr/9| + 2|r + kr/15|+ 2kr max(S )

5.3.08

where

s =

M - 2 M-l

(4(M-j)2-l) (4 (M-j)2-9) J—^ (4m2-l) (4m2-9)

The argument of S. can be split into partial fractions and

in doing so it becomes clear that l/(2m - a) terms will

cancel with -l/(2m + a) terms when m = m + a (a is either

1 or 3) . S. then tends to its maximum value as M -> w, and

so Max(S.) is found to be

1

M->o> J 9 0

lim S = — ,
J

and therefore

2kr
||A|| s |1 - 2r - kr/9| + 2|r + kr/15|+ . 5.3.09

90

Gerschgorin's circle theorem implies that all the

eigenvalues of the matrix A lie within or on the circle

centre a, radius d, where a is the diagonal element of the

norm row and d is the sum of the moduli of the off diagonal

elements. For stability we then require

|a - d| =s 1

where a and d are given by

a = 1 - 2r - kr/9, d = 2r + 7kr/45.

For small values of e then, the timestep has the limit

5t ̂  Sx/2, and for large e the limit is found to be

5t * 55x3/128.
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Alternatively, eigenvalues of the matrix A can be

calculated numerically by employing standard Numerical

Algorithms Group (NAG) routines. Use of these routines

means that values for the parameters c, dx and dt must be

specified in advance which means that a general formula for

the maximum possible timestep cannot be generated this way.

Varying the parameters, however, to ensure that the maximum

modulus eigenvalue is close to unity, is a simple task. In

carrying out this investigation the maximum possible

timestep, which guarantees stability of the SPOC code, is

found for several values of grid size and epsilon. A table

of results for a 2 0x2 0 matrix is presented in figure 5.3.

e

0.01
0.01
0.1
0.1
1
1
10
10
100
100

dx

0.5
1

0.5
1

0.5
1

0.5
1

0.5
1

max dt

0.1118
0.4731
0.0557
0.3091
0.0093
0.0692
0.0010
0.0079
0.0001
0.0008

Figure 5.3 - Maximum Timestep for Stability

The values given in figure 5.3 are in good agreement

with the limits established analytically using Gerschgorin's

theorem and also with observed values of the maximum

possible timestep. Any differences between observed values

and the above calculated values are thought to be due to the

fact that the stability analysis is carried out on the

linear equation (5.3.01) and not on the non-linear system

described by (5.2.01-5.2.04), which is approximated by the

code. The code, however, is stable for all of the values

presented in figure 5.3.
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Section 5.4 - Comparison of Numerical and Analytical

Solutions

In this section numerical solutions to (4.1.01) are

presented and compared with the analytical solutions

obtained in chapter four (see figures 4.2 and 4.3). Graphs

of the crack height against distance along the crack are

compared in each case.

The solutions given are calculated using twenty grid

points with typical values of Sx = 0.5 and 5t given

(approximately) by the corresponding values in figure 5.3.

The code was tested using a range of values for N, Sx and 5t

and the solutions appeared to be consistent.

Figures 5.4 and 5.5 are the numerical solutions for the

cases where e « 1 and e » 1 respectively. These should be

compared with the corresponding analytical solutions given

in figures 4.3 and 4.2. Figures 5.6 and 5.7 pick out the

curves at time = 10 from figures 4.3, 4.2, 5.4 and 5.5, and

depict the analytical and numerical solutions for e « 1 and

e » 1 respectively. Finally, in figure 5.8, one can see how

the numerical solution varies with c•

Notice that the analytical and numerical solutions are

in good agreement for the e « 1 case, except in the regions

close to the crack tips. There are two reasons for the bad

agreement in these regions. First, the analytical solution

is only a valid approximation away from the crack tip, since

the simplifying assumptions made in this case do not hold as

the crack height tends to zero (see section 4.5). The

second reason is that at the crack tip there is a

discontinuity in the gradient of the height. This

discontinuity is not modelled effectively by the numerical

code since the actual position of the tip will not

necessarily fall at a nodal point. The numerical method

tries to smooth out the discontinuity, hence the discrepancy

near the crack tip.

The graphs of the analytical and numerical solutions

for the case where c » 1, are in very good agreement for all

positions along the crack.

Finally, figure 5.8 illustrates that the parameter e

can be thought of as the ratio of the stiffness of the rock
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to the stiffness of the crack. The stiffness is simply the

resistance of the rock and the crack to deformation. So

e » 1 implies that the rock is much stiffer than the crack

and so any change in crack height has a global effect and

therefore the crack propagates quickly. Small values of e,

however, imply that the crack is much stiffer than the rock,

so changes in height have an effect only locally and the

crack, therefore, propagates much more slowly.

86



o
•

o
II
c
o

"GO
CL
(D

1 I [_

c
V

II
+-

5
mm

j

I I t I I I I I I

CO

CM

O

CM

oCO
v_
O

D)
C
o
CO

0
ocCO

• Mia

CD
co
d

CM

d

>jOBJO

Figure 5.4 - Numerical Solutions for e « 1 Case

87



oo

o
"(75
CL
CD

CM

I I I I I I I I I I [ I I I I I I I I I 1

o2
o

c

CO

0
o
c
CO

4—•

CO

I I I 1 t i l l I i i i i 1 i i i i 1 i i i i I

p p CD ID

p q
O OD h CD D f
p p p p q q
d d d c5 d d

CM -r- O
q q
d d

>joejo

Figure 5.5 - Numerical Solutions for c » 1 Case

88



time = 10

03

GO

c

Ul

oo
•aa

S
3

2 »

0
CD

ft)
3
a

(D

n

0.25 r-

D)
'0

O

b

0.2

0.15

0.1

0.05

0
-4.5 -3 -1.5 0 1.5

numerical

analytical

S \ , I
4.5

distance along crack



CD
E

I I I I 1 1 1 J 1 1 III 1 1 I 1 1 1 1

p
d

06 05

i i i i t i i

in

I i i i i I o

in

C\J

04 03

0.
02

0.
0

in

o -=

O

O

CD
C
g
CO

o
CO
C/)

Figure 5.7 - Comparison Between Analytical and Numerical

Solutions for c » 1

90



0.4

0.35

U4*.gur
e 

5.8

nam
p

ari son

3

• + - •

O)
"(D

ac
k

o

0.3

0.25

0.2

0.15

0.1

0.05

0

t = 2
eps=0.01

eps = 100

-10 -5 0 10

distance along crack



CHAPTER 6 - LONG TERM HEAT TRANSFER

IN A GEOTHERMAL ENERGY RESERVOIR

6.1 - Introduction

In this chapter the interaction between thermal and

elastic effects in the extraction of geothermal energy from

hot rock is considered. Recall that, as described in

chapter one, this energy is extracted by pumping cold water

through the rock extracting the heated water and passing

this through a heat exchanger. The consideration of the

coupling of heat transfer and elastic effects is motivated

by the apparent occurrence of cold spots and of short

circuits in the fluid flow through the rock. The hypothesis

to explain such occurrences is that as water flows through

the cracks and is heated, the rock cools and shrinks. This

shrinkage widens the cracks allowing increased cooling of

the rock and gives rise to preferred routes through the

rock. As the time scale for heat conduction through the

rock is large compared to the fluid residence time in the

rock, once preferred fluid paths have been established, much

of the geothermal energy becomes unrecoverable.

This problem was brought to the European Study Group in

April 1991 by the CSMGEP, where it was pointed out that the

problem is similar to that which arises when attempting to

drive water through an oil reservoir in order to flush out

the oil. In this problem, it is known that the oil/water

interface is unstable (Saffman & Taylor (1958)), and that

viscous fingering leads to preferred paths for the injected

water and leaves isolated oil pockets trapped in the

reservoir. Chuoke et.al. (1959) present results of an

experimental investigation into these instabilities along

with photographs of the oil/water fingering. Here the

Saffman-Taylor problem is outlined and a model for the

geothermal energy problem is formulated and analysed. Both

problems rely on linear stability analyses of planar

interfaces; in the Saffman-Taylor problem the interface is

between the water and the oil, and in the geothermal energy

problem the interface is defined by an isotherm of the

averaged temperature field in the rock (see section 6.3).
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6.2 - The Muskat Problem

In 1958 P.G. Saffman and G.I. Taylor presented a paper

in which they considered a problem which has since become

known as the Muskat problem (see Muskat (1937)). The

subject of the paper was the stability of an interface

between two immiscible viscous fluids, in the event of one

fluid being driven through a porous medium by the pressure

of the second fluid. Saffman and Taylor established that

the interface would be unstable if the driving fluid was the

less viscous of the two and stable otherwise. In this

section we discuss the assumptions made and the conditions

imposed by Saffman and Taylor and go on to derive their

results. For a synopsis on porous media flows see Wooding

and Morel-Seytoux (1976).

Consider two fluids of viscosities /J+ and \f which are

being forced through a porous medium by an imposed pressure

gradient, Vp. Gravitational forces are neglected. Taking

rectangular Cartesian co-ordinates (x,y,z), a situation is

considered in which the interface is parallel to the y-z

plane and moving with constant speed V in the x direction.

Attention is restricted to the x-y plane. The superscript

' + ' is used to denote fluid 1, initially in the region

x > 0, and the superscript '-' denotes fluid 2 initially in

the region x < 0. At this point it is necessary to make

some assumptions about the interface of the fluid. In

practice there would not be a sharp interface separating one

fluid from the other but instead they would mix together and

form a very thin region of unknown viscosity. If the two

fluids are oil and water, the thickness of this region is on

a molecular length scale, i.e., much smaller than the

macroscopic length scales of the problem; therefore in the

following analysis it is reasonable to assume that the

fluids are separated by a sharp interface, across which the

pressure and the normal component of velocity are

continuous. In an appendix to their paper Saffman and

Taylor give the modifications required for the case in which

one fluid does not completely expel the other but where a

proportion of the fluid is left behind.
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Governing Equations

If u(x,y,t) is the superficial fluid velocity (volume

flow rate through a unit cross-sectional area of solid

matter plus pore space) and p is the density of the fluid,

then the continuity equation for flow through a medium of

constant porosity e, is

dp
6— = -V. (pu) . 6.2.01
at

For an incompressible fluid this becomes

V.u = 0 6.2.02

and assuming flow through the medium to be governed by

Darcy's law we have

k
u = Vp = V<p 6.2.03

where k is the constant permeability of the medium, u is the

constant viscosity of the fluid and 0 is a velocity

potential.

Equations (6.2.02) and (6.2.03), for flow in a medium

of uniform permeability, lead to Laplace's equation

V2<p = 0. 6.2.04

Boundary Conditions

If the fluid velocity vector is

u(x,y,t) = u (x,y,t)i + u (x,y,t)i
x y

then the conditions of uniform parallel flow at infinity are

imposed

94



u -> V
x

U -> 0
y

x ^ ±00 6.2.05

Now concentrate more closely on the behaviour at the

interface. The two semi-infinite regions of constant

viscosity have a common boundary at the interface between

the two fluids. Since the position of this interface is

unknown, and since (6.2.04) is elliptic, two conditions are

needed along this boundary. Suppose that the interface

between the two fluids is defined by

f(x,y,t) = 0. 6.2.06

At the interface, both fluid 1 and fluid 2 have the same

normal velocity as the interface, so that

u+.n = u.n = v 6.2.07
n

where v (x,y,t) is the normal velocity of the interface and

n is the unit normal to the interface defined by

Vf
n = — . 6.2.08

I V f I

At time t, the interface is represented by f(x,y,t) = 0 and

so at a later time, t + 5t, the interface is given by

f (x + v n 5t,y + v n 5t,t + St) = 0 = f (x,y,t) .

n x n y

Straight away

Df df

— = — + v n . V f = 0 , 6.2.09
Dt at

and so the normal velocity of the interface is therefore

1 at
v = - — — . 6.2.10

Ivf I at
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Since u = V0, condition (6.2.07) shows that

1 at
- — — = V0.n 6.2.11
|vf | at

which can be rewritten as

at
— = - Vtp.Vf. 6.2.12
at

As previously stated, the pressure is taken to be

continuous across the interface. Since the pressure is

simply

p= 0,
k

then, in terms of velocity potentials 0+(x,y,t) and

0~(x/Y/t), continuity of pressure across the interface

becomes

\ -
- <p = - <p on f = 0. 6.2.13
k+ k"

Solution

First, a solution to the problem of a planar free

boundary between the two fluids is sought. Then small

perturbations to this solution are considered and the

stability of the free boundary is analysed.

A travelling wave solution of the form

0(x,y,t) = 0o(x - Vt) 6.2.14

is sought, where the interface between the fluids is given

by x = Vt and so f (x,t) = x - Vt. The equations and

boundary conditions for this problem are summarised

diagrammatically in figure 6.1.
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Figure 6.1 - 0(1) Muskat Problem

This system is easily solved and the velocity potentials

are found to be

= V(x - Vt) <p = V(x - Vt) + c 6.2.15

where c are constants found by specifying the pressure at
+

some point. For simplicity c are taken to be zero.

Small, harmonic perturbations to the interface are

imposed, of wavelength 2Ti/n, so that

f = x - Vt - = 0, 6.2.16

where e « 1, and a solution is sought of the form

<p = <po(x - Vt) + ee°" t+ lny0 (x - Vt) + 0 ( e 2 ) . 6.2.17

Let C, = x - Vt and let primes denote derivatives with

respect to C,, then substituting (6.2.17) into (6.2.04) gives

,+, . , CTt+lny . ,, 2 CTt+iny . , _ . 2. _» " + e e <p ' - en e <p + 0 ( e ) = 0
o 1 r i v '

and equa t ing 0(e) terms g ives (p def ined by
6.2.18
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4>x" - n" <pi = 0 . 6.2.19

The continuity of normal velocity (6.2.12) along f = 0

gives, to O(e),

<pQ' + e e y t ^ '
at CTt+iny , +

erne <p
at

Sy

at

at

6.2.20

and substi tuting in for f = x - Vt - ee<Tt+lny t h i s becomes,

to O(e) ,

+ ,
^0

+ , _
1

2 + =

1

6.2.21

In order to be able to impose the interface conditions along

the plane x = Vt, (6.2.21) is linearised about x = Vt, using

Taylor's theorem to obtain

, + . , CTt + i n y , + . . , fft+iny , + . n / 2.
d> + e e <p + c e d> + O ( e

= V + ecre
U t + i n y

on ( = 0 6 . 2 . 2 2

and equating terms of O(e) gives the condition

•;• - on ( = 0. 6.2.23

Substituting in (6.2.16) for <p in the second interface

condition, (6.2.13), which ensures continuity of pressure,

gives

A = -
M k"

ee
at+iny on f = 0.

6.2.24

Again linearise about x = Vt using Taylor's theorem to

obtain
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IJ-

k

, + , ( T t + i n y , + ,
<p + e e w + . . .

0 0

+ ee
O " t + i n y

+ ee
CTt + i ny , +

~ e e

C T t + i n y

+ ce
( X t + I n y

e e
CTt + i n y

on C = 0, 6 . 2 . 2 5

and equating O(e) terms gives

- A < P ' + 4>A = - \4>~' + 4>: on C = 0. 6.2.26

Finally, since the perturbation <p is required to be smaller

than the leading order terms, we must have <p+ = o(C) as

£ -» oo and 4>~ = o(C) as £ -» -m. The equations and boundary

conditions for the first order (0(e)) problem are summarised

in figure 6.2.

= 0

free boundary

' ' - n <p = 0

F i g u r e 6 . 2 - 0 ( e ) Muskat P r o b l e m

S i n c e t h e g o v e r n i n g e q u a t i o n f o r <p, ( 6 . 2 . 1 9 ) , i s w e l l known,
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the solutions for both fluids can be written down

stra ightaway

= _ V r 6.2.27

= Vr 6.2.28

where r is given by the continuity of pressure condition and

is

r =
kT k"

+

k+ + k-

So the solutions for the velocity potentials to the first

order in the deviation are

<p (x,y,t) = V(x - Vt) - c Vr e
<Tt+iny-n(x-Vt)

<p (x,y,t) = V(x - Vt) + e Vr e<7t+lny+n(x-Vt )

6.2.29

6.2.30

To determine the condition for the stability of the

interface we impose continuity of normal velocity across the

interface. This leads to an expression for a,

a = nVr. 6.2.31

To investigate stability, it is necessary to consider

when cr is positive and when cr is negative. A positive

value of cr implies that the 0(e) terms grow exponentially

and so the interface is unstable. Similarly a < 0 ensures

that 0(e) terms decay exponentially and so the interface is

stable.

For a medium of uniform permeability k = k , and if

n > 0 and if V > 0 then a > 0 only if ji+ > u~, that is only

if the driving fluid is the least viscous of the two. If

U+ < n~ then cr < 0, the interface is stable and fingering

does not occur.
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6.3 - Geothermal Energy Reservoir Problem

In this section the long term effects of heat transfer

in a geothermal energy reservoir are considered. The fluid

flow through individual cracks is considered in previous

chapters where the heat transfer is assumed to have no

effect on the flow path. In practice, as the heat is mined

the cracks are expected to widen due to rock shrinkage and

so the heat transfer process does affect the fluid flow. Two

asymptotic cases of this coupled thermo-elastic problem can

be treated by simple models. The first case is when the

crack separation distance is much greater than the thermal

diffusion length scale. This case (called model B by

Jenkins and Aronofsky (1955) ) has been considered before by

the C.S.M. and is not presented here. The second case is

when the separation distance is much smaller than the

thermal length scale (model A in Jenkins and Aronofsky

(1955) ) . This is the model which is considered in this

section.

In practice the cracks are usually between one and ten

metres apart and the thermal diffusion length is

approximately twenty metres over the twenty-five year life

time of the reservoir, which means that the physical problem

lies somewhere between these two extremes.

In section two of this chapter we have seen how the;

ratio of permeability to fluid viscosity plays an important

part in the stability of an interface between two fluids.

Here we investigate the necessary conditions for the

stability of flow in a geothermal energy reservoir, when the

viscosity of the fluid and the permeability of the rock are

assumed to have a simple temperature dependence.

Governing Equations

In order to model the heat transfer for closely spaced

cracks we take a macroscopic view of the reservoir in a

similar way to porous media models. In such a continuum

model the volume elements to which the velocity, pressure
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and temperature refer are assumed to contain a large number

of cracks and the dependent variables are averages over a

large number of cracks, although in detail they may show-

large variations within the individual elements. The

validity of this assumption for the case of the fluid flow

through a geothermal energy reservoir is not certain, but

the unknown nature of the crack distribution suggests that

this is a case worth considering. If this assumption is

valid, then for laminar flow through an isotropic medium,

the motion of the fluid is governed by Darcy's law (6.2.03).

Notice that the permeability, k, depends only on the

structure of the medium and is independent of the fluid.

The continuity equation for an incompressible fluid of

constant viscosity flowing in a medium of uniform porosity

is given by (6.2.02) and, as in the previous example,

equations (6.2.02) and (6.2.03) combine together to give

Laplace's equation for the velocity potential, <p, (6.2.04).

Denoting the average rock temperature by T and the.
r

average water temperature by T , the rate of change of the

heat energy stored in the rock must equal the rate at which

heat energy is lost to the water (since heat diffusion in

the rock is neglected), thus

9T
p c — r = h(T - T ) 6.3.01

r r at

where p and c are the density and the specific heat of the
r r

rock, respectively. Here h is a heat transfer coefficient,

which takes into account the properties of the rock and

fluid and the shape of the rock blocks.

Similarly, we consider a heat balance across a unit,

volume of water. Since we are considering a time scale of

approximately twenty-five years, (the expected life span of

a geothermal energy reservoir), we can consider the water

temperature to be quasi-steady. So, in a unit time

interval, the heat advected out of a volume element of water

is equal to the amount of heat energy gained from the rock.

Thus,
p c U.VT = h(T - T ) 6.3.02
w w w r w
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where p and c are the density and the specific heat of the
w w

water, respectively. We consider the problem to be

independent of z and simply look at a the x-y plane with

perturbations to a uniform flow in the x direction.

As seen in the crack models discussed in previous

chapters, it is possible that small changes in the crack

width could cause a wide-ranging redistribution of stresses.

This means that a local rock shrinkage could affect the flow

problem globally. These effects may be accounted for by

considering the permeability to be a non-local function of

rock temperature. Here, however, we consider the stress

redistribution to occur over a length scale smaller than

that of interest in the rock.

If the changes in permeability and viscosity can be

assumed to occur rapidly at a known rock temperature, T ,

then the above model can be taken to hold in the two

sub-regions where T > T and T < T . It is understood
r r

that the temperature dependence is somewhat different to the

step function behaviour suggested here, but since we wish to

investigate the stability of the flow path rather than

specify its exact nature, this assumption is thought to be

acceptable.

Note that in the previous section the free boundary was

defined to be the interface between two fluids of differing

viscosities. Here the free boundary is an isotherm, or

constant temperature front, across which both the fluid

viscosity and the rock permeability are assumed to jump.

Note also that physically the viscosity is dependent on the

fluid temperature rather than the rock temperature. It is

evident that this could be incorporated into the model by

allowing the viscosity and the permeability to jump at

different temperatures. The result would be two free

boundaries and so the stability analysis would need to be

carried out on both of these interfaces. Here, the jumps

are considered to occur at the same temperature since this

simplifies the algebra considerably.
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Interface Boundary Conditions

As in the previous section the superscript + denotes

values of the dependent variables on the side of the

interface where T > T , and the superscript - those where

T > T*.
r

To determine the jump conditions across the interface a

weak solution of the conservation laws could be considered

(see Smoller (1983)). A physical argument, however, is

thought to be sufficient here. In order to ensure

conservation of mass across the interface it is necessary

that

[u.nl = 0, 6.3.03

where square brackets, [], denote a jump in the specified

variable. Conservation of momentum gives

[p] = 0 6.3.04

and conservation of energy in both the fluid and the porous

medium gives

[T ] = 0 6.3.05
r'

[T ] = 0. 6.3.06
w

Since the position of the interface is unknown a

solution of the form

f(x,y,t) = x - fQ(y,t) = 0 6.3.07

is sought for the position of the contour defined by

T = T*.
r

To complete the system, a condition on u as x tends to

plus or minus infinity, a condition on T as x tends to

minus infinity and also an initial condition on T , are

required. The following conditions are imposed:
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X -> ±00, 6.3.08

X -> ±oo, 6. 3 . 09

X -> -oo, 6. 3 .10

X > 0
t = 0. 6.3.11

X < 0

where T is known (T° < T < 0).

Solution

Solutions for the average velocity potential, <p, and

the average temperatures, T and T , of the form

uX

U
y

T
w

T
r

= — -> V
Sx

a<p
= > o

ay

-» 0

1 o

Tr(x,y,t) = TrQ(x,t),

Tw(x,y,t) = TwQ(x,t),

are sought and then small perturbations to these solutions

are considered and the stability of the free boundary is

investigated.

The <j> (x,t) problem is exactly the same as the

corresponding problem in section two of this chapter and so

the solution is

<P+Q = V(X - fo(t)), fQ = V(x - fjjt)) 6.3.12

The position of the interface, however, is not now

determined by the condition that the normal velocity of the

front is the same as the normal fluid velocity at the front.

Here the velocity of the front is governed by the change in

temperature of the surrounding rock. The position of the

undisturbed surface, x = f (t) , is determined implicitly by

the condition T = T .
r
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To solve the conservation of energy equations for the

rock and water temperatures the two expressions are combined

to get a single equation for T and a new boundary
rO

condition for T is also obtained,

(dT p c 32T ) 3T
p c V — r° + -1—- -° = - p c —-° 6.3.13
w w [ax h 3x31 J r r3t

p c 3T
——- — r ° + T -> 0 x->-co 6.3.14

h at r0

and recall the initial condition

C T° x > 0
T (x,0) = \ . 6.3.15
r0 [ 0 x < 0

Physically this means that water at zero temperature is

pushed from minus infinity through rock at zero temperature

for x < 0, and at temperature T° for x > 0.

Introducing the non-dimensional variables

p c _
x = Lx t = —^—- t T T°T

, r 0 rOh

enables the equations and boundary and initial conditions to

be rewritten in the following form

3T 32T 1 3T
r 0 , r 0 rO - _ . . , .— + > = -a— 6.3.16

ax 3x3t J at

3T
— r 0 + T -> 0 X->-OQ 6.3.17
at

( 1 x > 0
T (x,0) = \ _ = H(x) 6.3.18
r0 [ 0 x < 0

where H(x) is the Heaviside step function and a is the one

non-dimensional parameter in the problem and is given by

Lh
a = . 6.3.19

p c V
w w
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Equation (6.3.16) is a form of the Telegraph equation and it

can be solved using Laplace Transforms. Defining the

Laplace transform in the time variable to be

,t)] = T(x,p) = Tro(x,t) e~
pt dt 6.3.20

the transformed equation then becomes

— ^pT - T(x,0) \ + —; = -a 4

ax I. J ax v.

A _ _
pT - T(x,0) V ,

)
6.3.21

with boundary condition

T -> 0 x->-oo 6.3.22

Substituting the initial data into (6.3.21) gives

3T ap 1
— + T =

fdH
6.3.23

ax p + l p + l [dx

If a solution of the form

T = + <p(x,p) 6.3.24
p + 1

is sought, an equation for <p(x,p) is obtained,

dip ap aH
— + <p = 6.3.25p
ax p + l (p + i)

The solution for <p(x,p), consistent with (6.3.22) is then

found to be

<P =

1 -

x < 0

x >

6.3.26

The inverse Laplace transform is required, so let
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-ax „ 6.3.27

where

ax/ (p+i)

6.3.28

then the inverse transform of _ ,_ . ., N is trivially 1 - e

and, by convolution, the inverse transform of H(x,p) is

t

e ^ I (2\/(axT)) ) drj 6.3.29

where I (£) is the usual zero order, modified Bessel

function of the first kind. Substituting these inverse

transforms into the inverse transform of equation (6.3.24)

and simplifying gives

Tr0(x,t) =

1 - e

x < 0

-ax -7)e ' I (2v/(axTi) ) d7)

6.3.30

X > 0

This equation, (6.3.30), represents the leading order

non-dimensional average of the temperature in the rock. The

corresponding water temperature is obtained from the

non-dimensional version of the heat conservation equation,

3T
T = — r ° + T
wo d-

6.3.31

(where T = T T ) and isv wo wo'

0, x < 0

1 - e
-ax -7)e ' I (2v^(axT)) ) drj

6.3.32

-[«x+t)Io(2/(axt)) x > 0
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In dimensional variables the temperatures are given by

*r0(x,t) j
= 0t 6.3.33

[l - e" a x / L e 71IQ(2v'(ctXT)/L) ) drj, x > 0

T.(x,t) f0'
J3t 6 .3 .34

To
"11

where

e ' I (2\/(axT)/L) ) dT)

- e~^ t"OCx/LIo(2v/(a^xt/L) ) , x > 0

/3 = h / (p c ) . 6.3.35
r r

Graphs of the non-dimensional expressions for the rock

and water temperatures are given in figures 6.3 and 6.4 and

it is seen that the functions behave as expected.

The unperturbed interface position, x = f , defined by

the rock temperature T , is then given implicitly by

T_ = 1 - e-
aVL

o e ^ Io(2T/(afoVL) ) dr). 6.3.36

o

A small (e « 1) , harmonic perturbation to the solution

is imposed and solutions of the form

T = T (X,t) + cT (X,t) e lny 6.3.37
r ro rl

T = T (x,t) + sT (x,t) einy 6.3.38
w w o V ' ' w l V ' '

<P = <pjx - fo(t)) + e^a(x,t) einy 6.3.39

are sought, where the free boundary is now given by

f = x - fQ(t) - ce l n yf a(t) . 6.3.40
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The position of the free boundary is determined by the
*

condition T = T ,

lny inyee l n yf i #t) + eeinyTri( ^ t ) = T*.

Expanding as a Taylor series about x = f (t) and equating

terms of 0(e) gives

ST
f — r° + T = 0 x = fo(t) 6.3.41

and so f has the form

f = -
rl

3T /Sx
rO

x=f

6.3.42

Solutions for the velocity potentials are found in the same

way as in section two to be

= _ V r f e"
n(x-fo(t))

I
6.3.43

,- TT r- n(x-f (t))

<p = Vrf e o
6.3.44

The conservation of energy equations , can be combined

together to give a second order, partial differential

equation for the rock temperature

[3T p c a T
rl , r T r rlp c V<— +

w w ax h axat

aT a<p S T
rl 1 wOpc — =-pc — — .

r r_. w w^ _at ax ax

6.3.45

This equation is non-dimensionalised in the following way

x = Lx, t,
a<p a<p
-1 = v — ,
ax ax

T = T°T ,
wO wO

f = Lf ,
l l '

f = Lf ,o o'
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to get

3T

ax

32T

axat

3T

at
6.3.46

where

Lh
a =

and

p c V
w w

3T 86
,- 7, wO 1

g. (x,t) = - — — .
ax ax

6.3.19

6.3.47

The non-dimensional boundary and initial conditions are

Tpi(x,0) = 0 Vx 6.3.48

Tri(O,t) = 0 Vt 6.3.49

(this is true since for -oo < x < 0 water at T = 0
_ w l

is flowing through rock at T = 0) .

Equation (6.3.46) with conditions (6.3.48) and (6.3.49)

can be solved using Laplace Transforms in both the x and t

variables. The Laplace transforms are defined by

CO

= T(x,p) = T (x,t) e~pt dt
r 1

6.3.20

= T(s,p) =
A - -sx —

T(x,p) e dx
6.3.50

and so taking Laplace Transforms in x and t gives

(s + ps + <xp) T = g^ 6.3.51

Using the convolution integral this transform can be

inverted to obtain
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-t

Tri(x,t) =% ^ ^ T ) g2(x

6.3.52

where

-nL x-f (t) - ax
' o >

- /(atx a

6.3.53

and

g2(x,t) = i
s + ps + ap

t (2v/(axt) ) .

6.3.54

(r is given in 6.2). Let f = Lf , then (6.3.42) gives

f = rl

9T /ax
rO

6.3.55

x=f

rO
so to obtain f , — evaluated at x = f (t), is required,

= a
ax

*
1 - - - e o e

-f)

6.3.56

Substituting (6.3.52) (evaluated at x = f ) and (6.3.56)

into (6.3.55), gives an integral equation for f . This

could, presumably, be evaluated numerically, but

unfortunately time did not permit this to be investigated

for inclusion in the thesis.

Finally, note that the 0(e) water temperature term,

T , can be found by substituting the corresponding rock
wl
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temperature term, T , (6.3.52) into the following

non-dimensional equation,

9T
T = T + —rl. 6.3.57
wl rl at

So a problem whereby a cold fluid is pushed through a

hot porous medium is considered and the stability of an

isotherm is investigated. The position of the isotherm is

given by (6.3.36) and (6.3.40) and a triple integral

definition for the function f is obtained (defined by

(6.3.55), (6.3.52) and (6.3.56)), where |f | finite for all

time means that the front is stable and | f | -» co as t -» a>

means that the front is unstable.
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CHAPTER 7 - CONCLUDING SUMMARY

The mathematical modelling of geothermal energy

reservoirs is still very much in its infancy, albeit over

twenty years old. Much remains unexplained and although

some headway has been made in this thesis it is only a small

part of the complicated mathematics which has still to be

formulated.

A one-dimensional model of a fluid filled crack is

presented in chapter three and analysed in chapters four and

five, for the special case of a partially open crack with

zero elastic shear stress along the crack walls. Asymptotic

series solutions are obtained and the behaviour of the crack

in the region close to the tip is investigated. Singular

integral equations are obtained for local functions close to

the tip. These functions are introduced so that a more

accurate representation of the crack height near the tip can

be obtained. Future work may possibly include seeking a

numerical solution to the singular integral equations.

Numerical solutions of the partially open crack

equation are presented in chapter five. A finite difference

approximation to the flow problem is used along with a

boundary element technique to evaluate the elastic normal

stress along the crack. The numerical solutions compare

favourably with the analytical solutions obtained in chapter

four. A stability analysis for the numerical method is

carried out using Gerschgorin's theorem and limits for the

timestep are obtained and compared with limits obtained via

the numerical evaluation of the maximum modulus eigenvalues

of the governing matrix. The limits agree with observed

values of stability.

In chapter six, the problem of the long term heat

transfer effects on the flow paths is considered. The

geothermal energy reservoir is modelled as a porous medium

and the permeability of the rock and the viscosity of th<=

fluid are given simple temperature dependencies in order

that the stability of an isotherm in the rock can be

established. The analysis of the long term heat transfer

problem could be extended by the inclusion of some numerical

116



integration. This would enable graphs of the shape of the

free boundary, defined by an isotherm in the rock

temperature, to be plotted. A clearer understanding of the

stability of the flow paths would result. Additionally, the

solutions for the rock and water temperatures could be

analysed to determine the small and large time behaviour of

the temperatures.
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APPENDIX A - FOURIER TRANSFORMS

In this appendix a brief outline of the main properties

of Fourier Transforms used in this thesis is given.

If f(t) is such that the integral

dt (1)

exists for all real values of £, (It is sufficient that f(t)

is piecewise continuously differentiable and integrable on

the whole real line) , the Fourier Transform of f is defined

by the equation:

00

V(2n),
f(t) dt (2)

This says that the function f(t) is transformed by (2) to a

function of £, F(£). The Fourier Inversion theorem states

V(2n) .
= f(t). (3)

If F = ?[f(t);^] and G =

is
00

• (2ir) .

, the Convolution theorem

f(u) g(t-u) du. (4)

For Re(^) > 0, the following is a table of Fourier Transform

pairs, f(t) and F(£), used in chapter 2 (Sneddon (1972)):

f(t)

1

t-1

t"2

F(€)

• (271)6(0

V/(0.5TT) i sgn£

- •(0.57T) |C
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APPENDIX B

In section 4.4, in order to find the constant C , it is

necessary to integrate the function H (4.4.22) with respect

to T), between the limits (-1,1), i.e.

H dT) =

-l •• - I

2A

9

4AT)

Tjln
1 - 7 )

1 + 7 )

AT)

In

4 A. 7?
In

1 - 7 }

1 + TJ

1 - 7 ?

1 + 7 )

In I 1 -

- e

2 I
" T, |

(l)

To evaluate this integral, consider the following

simpler integrals and then substitute these back into (1) to

give the final result:

lnll - T)' = L 27) + (1 + 7))ln|l + r\

-l -1- 4(ln2 -

7) In

-1

1 - 7 )

1 + 7)
In | 1 - T) 37) - (1 + 7))ln| 1 + 7 )

+ (1 - Tj) In 11 - 7)| +

= 2(3 - 21n2)

- 1)
In

1 -
l n l l - T) I - 1

-1

To evaluate the double integral, (note that according to

Fubini's theorem the order of integration cannot be

reversed) infinite sum expressions for the natural logarithm

terms are used and lead to the solution

-1 0 i - C
= -2(1 - In2) .
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77 In

-l

1 - 7 ) - i)
In

1

1

- 7)

+ 7)
~ 7?

-, 1

-1 -l

Substituting these expressions into (1) above leads us to

the result

2A A
C = In2 - -.

9 9

120



APPENDIX C

In section 4.5 the limiting values of the functions H
dH

and — as TJ -> 1~ and as 7) -» -1+ are required. Recall that H
dn

is given by

H = Tjln

1 - 7 )

1 +
+ 2 4.4.26

where C is found to be
I

2X X
C = In2 . 4.4.29

Rewriting this as

H C I
1 3 *

Tjln
1 ~ TJ

1 + 7}

•nx
+ 21 + I.

where I and I are
1 2

r

0

£ l n
1 - £

1 + C
+ 2

T

+
+ 2

dH
leads to — given by

dH

d77
I

X

3

T
JL J- 11

1 -

1 +

7)

7)

2T)

1 "

X
+ - I

First, the limiting values of I and I as TTJ -> 1 are

121



evaluated. To do this let 7) = 1 - e and then let e -» 0,

.i-e

l i m

l i m
e-»o

I

3

3

l i m
e-»o

- 1)

+ 2

I n I 1 - TJ I
+ 1) 2T)

In I 1 + 7] I + —
3 3

2-,l-e

lim
e-»o

1

\i(1 - 2e + e ) ( l - e ) - 1 lne

- 3e + 3e - e | ln|2 - e| + - (1
3

- 2e + c

Since e is small, expand ln|2 - e| about the point 2 using

Taylor's theorem, so that

e e
In I 2 - eI = In2 - — - —

2 8

and so as e -» 0

I -> In2 + - + e I - lne + In2 - 11 + 0 (e ) .
1 3 3

In a similar way using dilogarithms it can be shown that

4 n2

lim I = - + - .
2 3 9

The following limits are also obtained

lim 7)ln
1 -

+ 2 = lim lne - In2 + 2

+

lim In
1 - 7 )

+ e [ln2 + - - ine]

= lim lne - In2 + - + 0(e2) ,
r-±r> V 0 )

and
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lim
-27]

1 "
= lim

e-»o

r x 1 c 2 i
- - + - + - + 0(e2)

V f 0 A >
2 4

Substituting these terms into the expressions for H and for

dH

dT)

dH

dT)

lead

3(1

us

X

-

to

X

3

•n)

the

n|l

2X

3

results

X
^ if i ™— _L

3

In
1 - 7 )

2

2 A ATT

I n 2 + — 7) -» 1 '
9 27

A 2A ATT2

— + — I n 2 + — 7) -> l"
18 3 27

dH
Since H is even and — is odd in TJ, the following are

dT)

consequential:

X X 2X Xn
H -> I n | 1 + 7) | + - I n 2 - — + —

3 3 9 27
T) -> - 1

dH 2A
> + — In

dT) 3 ( 1 + 7 ) ) 3

1 + 7) 2 A ATT

In2
18 3 27

-r.

1 2 3
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