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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
OPTOELECTRONICS RESEARCH CENTRE

Doctor of Philosophy

A theoretical study into the fundamental design limits of devices based on
one- and two-dimensional structured fibres

by Vittoria Finazzi

The sub-wavelength perturbation of an originally uniform material in order to manipu-
late light is the basis of two of the latest key technologies used to produce optical fibre
devices for telecommunication system applications. The first technology (fibre Bragg
gratings) concerns the 1-dimensional pertﬁrbation of the refractive index of an opti-
cal fibre (i.e. along the propagation axis of the fibre), whereas the second technology
(microstructured optical fibres) concerns a 2-dimensional perturbation of the refractive

index (i.e. in the transverse plane of the fibre).

This thesis concerns the modelling of different fibre structures that exploit these two
technologies, in order to improve the performance of existing devices, give a clearer
insight and understanding of the physical mechanisms on which the devices are based

and open the route to new studies and ideas for novel fibres and fibre components.

Regarding the fibre Bragg gratings, the effect of background losses on uniform gratings
and of cladding mode losses on linearly chirped gratings have been studied by means
of two extended versions of coupled-mode theory. The possibility of compensating the
cladding mode losses acting on the chirped grating profile is also analysed. Considering
the microstructured optical fibres, an extensive study of highly nonlinear, small-core,
silica holey fibres has been performed with the implementation of the multipole methéd,
which was chosen after a careful consideration of other available modelling techniques.
Guidelines were produced for optimising the design of holey fibres for particular device
applications especially when trade-offs between small effective mode area and low con-
finement loss are important. The work on modelling highly nonlinear holey fibres was

extended to include a preliminary study of the use of higher refractive index glasses and

their future device applications.
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Chapter 1

Introduction

Optical fibres have assumed a dominant role in telecommunication systems over the last
20 years, allowing low-loss transmission of a huge amount of data over many kilometres.
The erbium-doped fibre amplifier (EDFA) has in particular opened the route towards a
wide range of new optical devices, and has been used to replace traditional electronic
devices such as repeaters. A fully-optical telecommunication system is preferable in
order to avoid the penalties and bandwidth restrictions related to electronic-to-optical
and optical-to-electronic conversions of the signal. A large number of optical devices are
now available, however the means of improving the performance and cost of such devices

are still required in many instances.

This thesis deals with what can be called “microstructured materials”. Specifically I
have studied two technologies that exploit the sub-wavelength perturbation of an orig-
inally uniform material in order to manipulate the light. The first technology, fibre
Bragg gratings (FBGs), concerns the 1-dimensional perturbation of the refractive index
of an optical fibre (i.e. along the propagation axis of the fibre). The second technology,
microstructured optical fibres (MOFs), concerns a 2-dimensional perturbation of the
refractive index (i.e. in the transverse plane of the fibre). The fabrication challenges
involved in both these technologies have been largely overcome in the past few years,
allowing the realisation of novel and innovative devices. The cost of implementing novel
technologies can however be very high, thus having the possibility of studying and re-
liably targeting the design and performances of novel devices a priori is always highly

desirable.

Theoretical modelling is de facto an important part of scientific research, especially when
dealing with complex and expensive technologies. Modelling can be used not only to
design new devices or improve the performance of existing devices, but it is also useful
in giving a clearer insight and understanding of the physical mechanisms on which the
devices are based, and therefore in opening the route to new studies and ideas for new

devices. Of course one has to keep in mind that every model is only an approximation

1
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of the “real world” and that the only proof that the model is right is when the resulting

predictions match (within the model assumptions) the experimental results.

1.1 Thesis outline

This work started in September 1999. I was first involved in the fibre Bragg gratings
project under the supervision of Prof. Michalis Zervas. However, in January 2001 Prof.
Zervas moved to a position within a local spin-off company along with most of the other
senior members of the ORC’s grating team. Consequently I had to change my research
focus. Since January 2001 I have been involved in the microstructured optical fibres
project supervised by Dr. Tanya Monro and Prof. David Richardson. This thesis thus

contains work in two distinct areas as outlined below.

1.1.1 Part I:. Fibre Bragg gratings

Part T of this thesis deals with the effect of losses on Fibre Bragg gratings (FBGs). Two
kinds of losses only are considered: the background loss and the loss due to coupling to

cladding modes.

In Chapter 2 the interaction between a uniform refractive index and a uniform loss
grating with the same spatial periodicity is analysed. The loss pattern affects the features
and symmetry of the FBG reflection, transmission and loss spectra according to the value
of the de-phasing between the index and loss patterns. An extension of the coupled mode
theory [1], already developed for studying distributed feedback structures [2], has been
used to achieve this analysis. The resultant spectral asymmetry has been successfully
explained by considering the overlap between the standing-wave intensity distribution
and the periodic loss pattern. The latter approach has then been used in the appendix,
at the end of the chapter, to give physical insight into the effective index medium picture

often used to address some of the FBGs properties associated with the band-gap region.

In Chapter 3 the interaction between cladding and core propagating modes is analysed
in linearly chirped FBGs (which are often used as dispersion compensators). The chirp-
ing of the FBG results in a spectral overlap of the resonant coupling of the forward-
propagating core mode to a particular backward-propagating cladding mode. A new
extension of the standard coupled-mode theory has been developed to study the resul-
tant mode dynamics. Coupling of light into cladding modes results in a loss on the
short-wavelength side of the reflection spectrum that affects the performance of the dis-
persion compensator. A technique to equalise the spectrum by means of a properly

designed apodisation profile is analysed here, and the fundamental limitations of this

approach are also derived.
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1.1.2 Part II: Microstructured optical fibres

Part II of this thesis deals with microstructured optical fibres (MOFs) and the modelling
of their properties. Most of this study is centred on highly-nonlinear small-core silica
holey fibres (HFs). This class of fibre can be used to improve the performance of devices
for many nonlinear applications previously demonstrated with standard fibre types and

also opens up new device possibilities.

Chapter 4 of the thesis presents a background on MOFs and on the varieties of model
that can be used to predict their optical properties. Chapter 5 explains the Multipole
Method which has been chosen to model MOF's in the remainder of this work. The choice
has been made bearing in mind that the majority of this study will concern small-core
HFs. The implementation of the multipole method is first addressed, the accuracy and
convergence of the solutions found by applying the method are analysed in detail, and

the advantages and disadvantages of this choice of method are then discussed.

In Chapter 6 and 7 a novel study on highly nonlinear small-core silica HFs is pre-
sented. In single-material HFs the core has the same refractive index as the material
beyond the finite holey cladding region, and so every propagating mode is therefore
intrinsically leaky. This loss, named confinement loss, is determined by the geometry
of the structure. As the scale structure of the HF is reduced compared to the optical
wavelength, the confinement loss penalties can become significant. Chapter 6 illustrates
several guiaelines for the optimisation of practical HF designs, in terms of achieving high
values of nonlinearity and the desired dispersive properties, and reducing the confine-
ment loss penalties. As the scale structure of the HF is reduced compared to the optical
wavelength, also the efficiency with which light can be coupled into these extreme fibres
degrades. Chapter 7 investigates the fundamental limitations of this regime of HFs, in
terms of mode coupling and polarisation properties of the fundamental mode. Chapter 6
also presents a preliminary study on the effective nonlinearities theoretically achievable
when glasses with a higher refractive index (thus a higher intrinsic nonlinearity) than
silica are considered, although this analysis concerns air-suspended rod structures only.

In Chapter 8 the multipole method is successfully validated against previous results pre-
dicted by the multipole method present in the literature, experimental results relative to
several fabricated HF structures (including small-core silica HFs) and results predicted
by other techniques. In this chapter the multipole method is also applied to the anal-
ysis of a number of other MOF designs, including applications within structural design
regimes different from the small-core regime, and to the study of the single-modality of

finite cladding HFs.

Finally, Chapter 9 summarises the main findings of the thesis and illustrates possible

future works.
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Fibre Bragg gratings



Chapter 2

Effect of periodic background loss

on grating spectra

2.1 Fibre Bragg gratings: an introduction

Fibre Bragg gratings (FBGs) are optical fibres in which the refractive index in the
core has been {quasi)-periodically perturbed. Every index perturbation can scatter
light guided in the fibre, and part of the light is thus back-reflected. Since in an FBG
the index modulation profile is periodic, the maximum reflection is achieved when the
different contributions from each grating plane are in phase with each other, i.e. when
the Bragg condition is fulfilled. The light wavelength A is then equal to the Bragg
wavelength Ap = 2n.zs A where n. s is the effective index of the propagating mode and
A is the perturbation period. Although the scattering from an individual grating plane
is weak and broadband the resultant back-reflection from a grating containing many
thousands of planes can be very strong over a narrow bandwidth, and the precise shape
and strength of this reflection can be modified by a correct design of the (quasi)-periodic

index perturbation.

The formation of permanent gratings, by photosensitivity, in an optical fiber was first
demonstrated by Hill et al. [3]. The photosensitivity is characteristic of some of the
glasses used to dope fibre cores. These glasses experience an increase in their refractive
index after exposure to UV light. The index change magnitude usually ranges between
107 to 10723, but can be enhanced up to 10~2 using techniques such as hydrogen load-
ing [4] and flame brushing [5]. Despite a vast number of studies on photosensitivity, its

physical mechanism is not yet fully understood.

Bragg gratings were first fabricated using the internal writing technique [3]. The latest
holographic technique [6] introduced the concept of UV side-exposure of the fibre and
this is the basis of all the different grating writing techniques in use nowadays. The
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phase-mask approach was then introduced [7] and improved into a phase-mask scanning
technique [8]. A technique for fabricating truly continuous fibre gratings was developed
at the ORC [9]. This versatile system involves the translation of the fibre through a
phase-mask generated UV field pattern and an appropriate de-phasing of sequential
exposures (the UV laser is strobed on and off as the fibre is moved). The capability to
write structures of arbitrary length and profile has been achieved whilst maintaining a

high level of positional and induced index change accuracy.

The FBGs unique filtering properties and versatility as an in-fibre device is illustrated by
their use in wavelength-stabilised lasers, fibre lasers, remotely pump amplifiers, Raman
amplifiers, phase conjugators, wavelength converters, passive optical networks, wave-
length division multiplexers (WDMs), demultiplexers, add/drop multiplexers, dispersion
compensators, and gain equalisers [10]. Moreover FBGs have also become popular as

sensing devices, ranging in use from structural monitoring to chemical sensing [11].

2.2 Background losses

Background losses, intrinsically present in various optical devices, are generally consid-
ered to be & parasitic effect that degrades the device performance. In optical waveguides,
background losses result simply in uniform attenuation of the transmitted power. In
more complex structures, such as interferometric optical devices, however, the effect of
background losses on the device performance is more complicated. For example, when
the background loss is the same in both waveguides of an optical coupler, although
the total transmitted power is attenuated, the cross-coupling efficiency is not affected.
When, on the other hand, the losses are present in one of the waveguides only, in addition

to total power attenuation, the cross-coupling efficiency is also affected [12].

Fibre Bragg gratings (FBGs) are wavelength selective devices that find extensive use
throughout the field of optical technology [13]. The most evident effect of uniformly
distributed background losses on gratings is the uniform decrease of the reflectivity
spectrum, in particular of the reflectivity saturation value at the Bragg wavelength,
and the increase of the out-of-band transmission (insertion) loss [14]. Also, uniform
background loss disturbs the destructive multiple interference at the edges of the stop-
band resulting in non-zero reflectivity at these wavelengths, broadening of the reflectivity
spectrum and decreasing the device wavelength selectivity [14].

However, a quite different response is observed when the loss, instead of being uniformly
distributed, is localised inside the grating structure. It has been shown [15] that in this
case the effect of loss on the grating performance depends on the relative position of
the localised loss. In addition, the grating loss spectrum also changes significantly with
the loss position. This is due to the dispersive nature of the grating and the wavelength
dependence of the detailed power distribution inside the grating [16]. This effect has
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been proposed as a method of discriminating between the two otherwise degenerate
spatial modes in distributed-feedback (DFB) lasers [17]. In addition to introducing /2
phase shifts in uniform gain structures [2], DFB laser single-mode operation can be
achieved by combining dephased index- and gain-grating structures [18], which rely on
the differential electric-field/gain-medium overlap to reduce the gain threshold of one of

the spatial modes.

The FBG writing process involves side-illumination of the fibre with a periodic UV
radiation pattern [6]. In addition to the induced refractive index changes, UV illumi-
nation increases the propagation mode background losses around 1550 nm. The level
of background losses depends on the fibre type, photosensitisation process and writing

conditions.

For a hydrogen-loaded fibre (3mol% Hs) exposed to uniform UV light at 244 nm, the
measured average background loss at 1550nm was 0.2 dB/cm [19]. This average loss is
known to scale with the UV fluence and therefore with the induced refractive change [20)].
It is, therefore, expected that exposure to periodically varying UV intensity, in addition
to periodic refractive index change, will result in a periodic modulation of the induced
background loss. It should also be stressed that depending on the way it is introduced,
the periodic loss can be in-phase or anti-phase with the periodic refractive index pattern.

Combined metal/dielectric periodic layers are also used as photonic band gap structures
to produce optical filters with enhanced transmissivity at various wavelength ranges [21,
22]. These filters rely again on the presence of the periodic loss to selectively suppress

certaln transmission windows.

Refractive index (photorefractive) gratings and loss (photochromic) gratings are also
known to coexist in various photorefractive materials [23, 24, 25, 26]. Photorefractive
and photochromic gratings are spatially separated by some spatial phase ¢, which de-
pends on the physical mechanisms of charge transport and charge trapping, the grating
writing conditions and material properties. The spatial phase ¢ affects the overall cou-
pling process and diffraction data and may lead to erroneous conclusions.

In the following sections, the effect of the periodic modulated background loss on the
spectral response of FBGs is considered and analysed thoroughly. The theoretical study
is achieved by extending the standard coupled-mode theory (CMT) to include the effect
of periodic loss. It is shown that, as in the case of the localised scattering centre [15],
the grating spectrum is affected non-uniformly by the presence of the periodic loss. In
Section 2.3, the extended CMT equations are developed. In Section 2.4, numerical calcu-
lations of grating spectra and internal power distributions under different loss conditions

are presented. In Section 2.5, the final conclusions are presented.
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2.3 Coupled-wave Model

In the following analysis, a coexisting refractive-index and background-loss perturbation

of period A [1, 18] (shown schematically in Figure 2.1 it is assumed, expressed by

n(z) =n+nicos2Pgz (2.1a)

a(z) = a+ ay cos(2Bgz + @) (2.1b)

where By = w/A. The Bragg wavelength is given by Az = 2nA. The parameters n
and a(> 0) represent the background effective refractive index and propagation loss,
respectively. ny and a1(> 0), on the other hand, give the amplitudes of the refractive
index and loss gratings, respectively. A phase difference ¢ has been introduced between
the index and loss grating structures. This is to allow for the refractive-index grating to
be in phase (¢ = 0) or in anti-phase (¢ = ) with the loss grating. The former occurs
when UV exposure increases both refractive index and loss. The latter, on the other
hand; can correspond to the case where UV -exposure has opposite effects on refractive

index and loss modulation {e.g., negative index gratings [27]). The spatially varyin

o

propagation constant is then given by
K(z) = kon(z) + jo(2) (2.2)

with ky = wp/c = 2/ Ap (Ao is the free space wavelength). Note that the loss wavelength
dependence has been neglected. The substitution of (2.1) into (2.2), with the following

small-perturbation assumptions [1]
ny <K n o L Bo = kon a1 K fo (2.3)
allows us to write K?(z) in the form

K%(2) ~ B2 + j2B0c + 48y (ke cos 20s2 — kg sin 2652) (2.4)

Ficure 2.1: Schematic illustration of the refractive-index and back- ground-loss A-
periodic perturbation patterns discussed in the text.
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where [y = kgn and

T Neal
== 2 2.
Ke /\nl—i-j 5 cos ¢ (2.5a)
K = j—O; sin ¢ (2.5b)

are the expressions of the extended coupling constants. When the Bragg scattering

dominates (By ~ Og), the wave equation
V2E + K*(2)E(2) =0 (2.6)

can be analytically solved, because only two of the infinite set of diffraction orders are in
phase and have significant amplitude. So the total electric field can be written as the sum
of two counter-propagating waves of complex amplitudes A(z) and B(z), respectively,

namely
E(z) = E¢(z) + Ep(2) = A(2)e%? 4+ B(z)e™IP? (2.7)

where (3 is the propagation constant of the uncoupled waves (n;, a1 = 0) defined as
B> = (6o + je)? = B3 + 72800 (2.8)

Substituting (2.7) into the wave equation (2.6), equating synchronous terms and us-
ing the slowly-varying envelope approximation [1}, the following pair of coupled-wave

equations can be obtained:

dA ‘
— = j(Kke+ jms)ejzAzB
dz
(2.9)
dB .
P —j (ke — jrs)e A% A

with A = B — 8 = Bs — Bo — jo. The integration of the system (2.9), with boundary
conditions Ey(L) = 0 and Ef(0) = Ei,, leads to the following expressions for the forward

and backward components of the electric field

_ , peosh(p(z — L)) — jAsinh(p(z — L)) ;4.
B1(2) = Biae pcosh(pL) + jAsinh(pL) ¢ (2:102)
Ey(z) = —jB,,, e =) Sth(p(z = L)) —jgp: (2.10b)

pcosh(pL) + jAsinh(pL)
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with p = \/k2 + k2 — A2, The reflection and transmission coefficients are then given by

_ Ep(0)  j(kc— jrs)sinh(pL) .
T = = — (2.11a)
E¢(0)  pcosh(pL)+ jAsinh(pL)
EL JBsL
o Brll) _ per (2.11b)
Ef(0)  pcosh(pL) + jAsinh(pL)
with which the reflectivity and the transmissivity can be obtained as
R=lr? (2.12a)
T = ¢, (2.12b)

The total loss, calculated in dB as 10 times the base 10 logarithm of the ratio between

the input and output power, is equal to
Qloss = —10 1OglO(T + R) (2'13)

The reflection and transmission phase-time delays are calculated by using the expres-

sion [28]:
X2 db,,
S e

where 0. is the phase of the reflection and transmission coefficient, respectively.

(2.14)

It is worth noticing that the coupling coefficients appearing in the coupled-wave equa-

tions (2.9) are equivalent to

o

Kf = Ke+ jrs = gnl +j?1@7¢ (2.15a)

Kp = Ko — JKg = gnl —}—j%e'M. (2.15b)
A

The two coefficients xy and k; are basically equal to the sum of the coupling coefficient
due to the refractive index grating (7mn1/)) and to loss grating (joq /2) only, taking into
account the phase difference (¢) between the two patterns.

2.4 Numerical Results

The reflection and transmission coefficient formulae, developed in the previous section,
are now employed to calculate the mixed refractive-index/loss grating response. The
effect of the amplitude and relative spatial phase of the loss grating on the obtained
reflectivity and loss spectra is studied in detail. The physical insight into the resulting

spectra is also provided.

Figure 2.2 shows the spectral characteristics of a uniform-loss grating with n = 1.45,
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ny = 1074 L =2 cm, A = 1550 nm, o = 0.023 em™! and o; = 0. This value of o
corresponds to the power loss coefficient o, = 0.2 dB/cm that has been experimentally
measured in [19], for an hydrogen loaded germanosilicate fibre (3mol% Hs), through the
relation afcm™!] =1n10/20 - a[dB/cm]. All the curves are plotted as a function of the
wavelength detuning AX = A — Ag. The lossless case (o = 0, dashed line) is also plotted
for comparison. Figures 2.2(a) and (b) show the reflectivity and transmissivity spectra.
1t is confirmed that the uniform background loss reduces both the grating reflectivity
and transmissivity. The latter results in an increased device insertion loss. The effect
is most severe around the wavelengths of maximum transmission at the edges of the
stop-band. Figures 2.2(c) and (d) show the spectra of the phase-time delay of the re-
flected and transmitted light, calculated by using (2.14). It is shown that the presence of
uniform background loss breaks the time-delay degeneracy between reflected and trans-
mitted light that otherwise exists in lossless one-dimensional band gap structures. The
phase-time delay (especially of the transmitted light) is reduced considerably around
the stop-band edges, as marked in Figure 2.2(d). This is equivalent to the reduction
of the Q factor of resonant cavities, e.g. Fabry-Perot interferometer, in the presence
of intra-cavity losses (after all, Bragg gratings are distributed resonant cavities). Fig-

re 2.2(e) shows the corresponding grating total-loss spectrum in the presence of uniform

propagation background loss.

It is shown that the loss spectrum is quite non-uniform across the grating bandwidth.
The minimum loss occurs at the Bragg wavelength (AX = 0), since at this wavelength
the incident light is predominantly reflected (R >> T') without penetrating deep into the
lossy grating structure. The penetration depth is inversely proportional to the grating
strength [29] and, therefore, the minimum loss decreases with the grating reflectivity.
The maximum loss, on the other hand, is shown to occur at the edges of the stop-
band. At these wavelengths, the reflectivity is almost zero and the incident light is
predominantly transmitted (I > R). However, transmission at these wavelengths is
a resonant effect that involves many round-trips inside the grating (as demonstrated
by the corresponding increased phase-time delay ~ see Figure 2.2(d)), which inevitably
results in increased transmission losses. The dotted line represents the average single-
pass loss level given by o, L (dB). The further from the Bragg wavelength, the smaller
the grating (i.e. multi-reflection) effect is, and the total loss converges to this average
value. Finally, it should be pointed out that, due to spatial symmetry, the response of
a grating with uniform background loss, including its loss spectrum, remains symmetric

with respect to wavelength detuning.

Next, the effect of periodic background losses on the grating response is considered. Fig-
ure 2.3 shows the spectral characteristics of a similar grating but with fully modulated
periodic loss (o = a3 = 0.023 cm™!). The refractive index and loss modulations are
considered to be in phase (i.e. ¢ = 0). The presence of a fully modulated loss not only
decreases the amplitude R, but also modifies the spectral shape. Figures 2.3(a), (b)
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FIGURE 2.2: Spectral characteristics F1cURE 2.3: Spectral characteristics
of a uniform-loss grating (solid lines) of a fully-modulated loss uniform
with n = 1.45, ny = 10™*, L = 2 cm, grating, with the same specifications
As = 1550 nm, o = 0.023 cm™! as the previous figure, but o = a1 =
and og = 0: (a) reflectivity, (b) 0.023 cm™! and ¢ = 0: (a) reflec-
transmissivity, (c) reflection time de- tivity, (b) transmissivity, (c) reflec-
lay (ps), (d) transmission time delay tion time delay (ps), (d) transmis-
(ps), (e) loss (dB), the straight dot- sion time delay (ps), (e) loss (dB),
ted line represents the average single- average single-pass loss level in dot-
pass loss level; the lossless case is re- ted line; all plots are expressed as a
ported in dashed line for comparison; function of the wavelength detuning
all plots are expressed as a function of AX =X —Ag (nm).
the wavelength detuning AXA = A—Ag
(nm).

and (e) show that the reflection and transmission spectra, and consequently the total-
loss spectrum, are asymmetric with respect to Bragg wavelength (AA = 0), with the
long-wavelength side (AX > 0) experiencing larger losses than the short-wavelength one
(AX < 0). Surprisingly, in the short-wavelength side, the total loss becomes gradually
smaller than the average single-pass loss. This is in clear disparity with the case of sim-
ilar uniform background loss, where, although the grating total loss undulates, it always

remains larger than the single-pass value (cf Figure 2.2(e)). As it will be explained
later, this total-loss asymmetry (see Figures 2.7 and 2.8) is due to the wavelength de-
pendence of the overlap be’cvveen the total field intensity and the periodic loss pattern
inside the grating. Figures 2.3(c) and (d) show that the phase-time delay spectra are
also asymmetric, with the long-wavelength side showing smaller peak values than the
short-wavelength one. Using similar arguments as in Figure 2.2, it can be easily seen
that the presence of higher losses at the long-wavelength side (see Figure 2.3(e)) results

in effective cavities with lower-Q, which translates into fewer round-trips and, there-
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fore, smaller phase-time delays. Finally, it should be stressed that, in the case that the
background-loss modulation is in phase with the refractive-index modulation, despite

the spatial symmetry, the response of a grating is clearly asymmetric.

This asymmetry is further demonstrated in Figure 2.4 where the differences in reflectivity
(a), equivalent time delay (b) and total loss (c), between the periodic (with ¢=0) and
uniform background loss cases, are plotted as a function of the wavelength detuning.
The grating parameters are the same as the ones in Figures 2.2 and 2.3. Despite the
fact that the average propagation loss coefficient is equal in both cases (o = 0.023 em™1),
the total loss in the periodic case is larger (Acyes, > 0) than the uniform one at the long-
wavelength side (A > 0). The opposite is true at the short-wavelength side (AX < 0).
It is also shown that the part of the spectrum experiencing higher (lower) losses is also
associated with lower (higher) reflectivity as well as equivalent timé delay.
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FIGURE 2.4: Comparison between the periodic (p) and uniform (u) loss case: (a) AR =
RP — R* (b) A, =77 — 7 and (¢) Acuess = ahs — 0%, are plotted as a function of
the wavelength detuning AX (in the case of periodic loss, ¢ = 0).

The origin of the asymmetry in the grating response, in the presence of periodic loss,
can be understood by considering the dispersive nature of the grating structure and
its effect on the total field intensity distribution along the grating. Figure 2.5 shows
the total electric-field intensity distribution (solid line) for five different wavelengths in
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five different grating regions. The shaded area shows the corresponding refractive-index
modulation in each region. To better visualise the spatial dephasing between the two
patterns, the total field intensity in each region is expressed in arbitrary units. Fach
column corresponds to the same location along the grating, specified by the z-coordinate
shown on the top, while each row corresponds to the same wavelength, indicated at the
far left. A is the Bragg wavelength, while A\ and A correspond to the resonant
wavelengths at the first and second reflectivity zero (R = 0, T = 1), respectively, at the
long-wavelength side of the spectrum (the superscript (—) denotes the corresponding

wavelengths at the short-wavelength side). Each grating subregion is 5-periods long.
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FIGURE 2.5: Total intensity field (black line) and refractive index pattern (gray area)
versus grating length in five different zones (specified by the z coordinate on the top
of each column) at the five wavelengths: Ag (a-e), A{ (£), As (k-0), A (p-t) and
A (u-y); the intensity field is expressed in arbitrary units, to indicate the de-phasing
between the total-field-intensity and refractive-index patterns.

For all wavelengths, the spatial dephasing at the grating far end (¢ = L) is equal to —m/2
(see Section 2.6). This is due to the boundary condition at z = L and the nature of the
elementary partial standing-wave pattern formed by the last refractive-index-modulation
fringe. Inside the grating, however, the spatial dephasing depends strongly on the wave-
length and the relative grating position. For example, the total-field-intensity periodic
pattern at the first resonant wavelength A" on the long-wavelength side, around the
grating centre (z = L/2), is in-phase with the refractive index periodic perturbation,
i.e. intensity maxima coincide with refractive-index maxima (see Figure 2.5(r)). How-
ever, for the symmetric first resonant wavelength A in the short-wavelength side, at
the same position (z = L/2), the total-field-intensity and refractive-index patterns are
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In anti-phase, with the intensity maxima aligned with the refractive-index minima (see
Figure 2.5(h)). Similar spatial phase relations are observed between the second res-
onant wavelengths A} and ); around the grating positions z = L/4 and 3L/4 (c.f.
Figs. 2.5(v), (x) and (b), (d)). For the resonant wavelengths, the spatial dephasing
shows a 7 discontinuity at the points corresponding to the standing wave nodes. This
is due to the fact that, at these points, the backward propagating field is zero and the
spatial dephasing acquires a different limiting value (+7/2), depending on whether the
node is approached from the right or left side (see Section 2.6 for a full discussion).
For all these wavelengths, the spatial dephasing varies along the grating length. At the
Bragg wavelength, however, the spatial dephasing remains constant and equal to —7/2

throughout the grating length.

The full spatial dephasing dependence on position, in the lossless case, for the wave-
lengths Az, A¥ and A\ is summarised in Figures 2.6(a), (b) and (c), respectively. The
bottom of each figure shows the corresponding total field intensity envelope (normalised
to the input field intensity). In Figures 2.6(b) and (c), the solid lines correspond to
wavelengths A\ and A, respectively, while dashed lines correspond to )\ and A, Te-
spectively. The total-field-intensity envelopes at wavelengths A7 and A are identical to

the ones at A\; and A;, respectively.

Figures 2.5 and 2.6 clearly show that the total overlap between the intensity periodic
pattern and refractive index modulation will vary with wavelength. Therefore, the loss
spectrum, in the case of periodic loss, is expected to depend on the relative phase
¢ between the two periodic patterns. In the case where the modulated background
loss is in phase with the refractive-index modulation (¢ = 0), the total loss spectrum
asymmetry can be explained by considering Figures 2.5 and 2.6. On the long-wavelength
side (c.f., \f and Aff) the high-intensity fringes are predominantly aligned with the high-
loss ones and it is expected to impart maximum loss. On the short-wavelength side (c.f.,
Ar and Ap) the high-intensity fringes are predominantly aligned with the low-loss ones
and it is, therefore, expected to impart minimum loss. This also explains why the short-
wavelength total loss for the modulated case is even lower than the corresponding value

for the equivalent uniform one (see Figure 2.4(c)).

The effect of the dephasing factor ¢ between the refractive index and loss modulation on
the total loss spectrum is illustrated in Figure 2.7. The grating parameters are similar
to the ones in Figure 2.3 and ¢ = 0, /2, 7 and 37/2. The corresponding reflectivity
spectra are shown in Figure 2.8, where the peak has been magnified in the inset. It is
first shown that the ¢ = 7 case (dashed line) is a mirror image of the corresponding
¢ = 0 one (solid line). This is due to the fact that by shifting the modulated loss
pattern by 7 with respect to the modulated index pattern, the overlaps between the
intensity pattern (which remains unchanged with respect to index modulation) and the
loss pattern is now maximised in the short wavelength side. At the Bragg wavelength,

due to resulting spatial symmetry, the ¢ = 0 and ¢ = 7 cases give the same response
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FiGUrRE 2.7: Spectral loss (dB) as
a function of the wavelength detun-
ing (um) for different dephasing fac-
tor values: (a) ¢ = 0 in solid and
¢ = 7 in dashed line; (b) ¢ = 7/2
in dot-dashed and ¢ = 37/2 in dot-
dot-dashed line; the uniform-loss case
is also shown in dotted line. All the
other parameters are as in Fig 2.3.
The straight dotted line, that ap-
pears in both (a) and (b), represents
the average single-pass loss level.

(equal to the uniform loss case). This is further demonstrated in Figure 2.9, where

-1

~ i~ S L I I LU N S I Y £1 e - . fl /1 h : e N\ 12
the total intensity distribution at the Bragg wavelength (thick solid line), refractive

index variation (thin solid line) and loss modulation (shaded area) are plotted over five
grating periods, for ¢ = 0, 7/2, = and 37/2. For ¢ = n/2 and 37/2, although the

reflectivity and loss spectra become symmetric with respect to wavelength detuning,

they acquire different peak values at the Bragg wavelength. In fact in Figure 2.7, the
¢ = m/2 case (dot-dashed line) shows smaller loss and higher reflectivity compared to
¢ = 37/2 case (dot-dot-dashed line). It also appears that the uniform-loss case (dotted
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line) performance corresponds to the average of the ¢ = 7/2 and 37/2 cases. This
is again related to the spatial relation between the corresponding field-intensity and
modulated-loss patterns (c.f., Figures 2.9(b) and (d)). Spatial shifts of ¢ = 7/2 and
37/2 align the field-intensity maxima with the modulated-loss minima and maxima,

respectively.
1.0 R
L —— 40 L
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FIGURE 2.8: Reflectivity spectra ver- FIGURE 2.9: Intensity distribution
sus wavelength detuning correspond- (thick line) refractive index pat-
ing to the four full modulated-loss and tern (thin line) and background loss
the uniform-loss cases illustrated in pattern (shaded area) versus grat-
Figure 2.7. The reflectivity peak has ing length over five periods, at the
been magnified in the inset. Bragg wavelength and for a dephas-

ing factor equal to: (a) ¢ = 0, (b)
¢ =m/2, (c) ¢ =m, (d) ¢ = 3n/2
(the three quantities are expressed
in arbitrary units).

Background loss (uniform or modulated) not only affects the reflectivity and time-delay
spectra, but also limits the maximum attainable (saturated) peak reflectivity. Fig-
ure 2.10 shows the Bragg wavelength reflectivity variation as a function of the grating
length, for refractive-index modulation amplitudes n; = 1073, 107* and 1075, and a
fixed uniform background loss of 0.2 dB/cm. It is shown that for the same uniform
background loss, the gratings with smaller refractive-index modulation acquire lower
saturated reflectivity, due to the longer physical lengths required. Figure 2.11 shows the
Bragg wavelength reflectivity variation as a function of the grating length, for refractive-
index modulation amplitude n; = 1075, fully modulated background loss of ap = 0.2
dB/cm and for ¢ = 0, 7/2, m and 37/2. The lossless case (dotted hne) is also shown for

L S A B /O ana]
ions, ¢ = 7/2 and 37/2 result

nnnnnnnnnn TTnd n the maximum and

compar ison. Under

minimum saturated reflectivity, respectively. The corresponding values for ¢ = 0 and
7 are identical and appear to be equal to the average of the ¢ = 7/2 and 37/2 values.
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This is in accordance with the findings of Figure 2.8.

The loss-spectrum asymmetry can be quantified by considering the difference of the loss
peaks at the two first-order resonant wavelengths (AF), Atpens = |(AF)— a(A7)|. The
parameter is shown schematically in the inset of Figure 2.12, together with the difference
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modulation amplitude is analysed in two different cases.

Firstly, the performance of gratings with fixed loss e, (fully modulated) as n; increases is
considered. The reflectivity at the Bragg wavelength is always kept constant by adjusting
the grating length appropriately. Figure 2.12 shows the variation of Ax peaks 28 & function
of the refractive index modulation amplitude, for a peak reflectivity of 0.999 (in the
absence of loss). The background loss is fully modulated with ¢ = 0 and amphtude 0.1

dB/cm (solid line), 0.2 dB/cm (long dashed line), 0.3 dB/cm (medium dashed line) and
0.4 dB/cm (short dashed line). It is shown that, for each loss-modulation amplitude,
the loss asymmetry peaks at a different refractive index modulation amplitude. The
maximum is due to the fact that by increasing n; the effect of the index grating overcomes
that of the loss grating (c.f. equations (2.15)), while by decreasing n; the effect of the
loss grating dominates that of the index grating. Moreover, for very weak gratings the
resonance effects at the edges of the stop band are very small and the loss peaks diminish.
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FIGURE 2.11: Reflectivity peak Rp versus xL for four ¢ values (solid lines), with n; =
1073, ap = 0.2 dB/cm, @ = o (fully modulated loss); the dotted line corresponds to
the lossless case (o = 0); & is the real part of &,.
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For this reason the four plots have different starting points. As the value of the loss o
is increased, the maximum position shifts to a higher n; value because a stronger value

of the index coupling coefficient is required to overcome that particular loss grating.
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FIGURE 2.12: Amplitude difference Acyeais 0f the two loss peaks (shown in the inset)
as a function of the refractive index modulation, for a (lossless) grating reflectivity of
0.999, ¢ = 0 and for four different values of the power loss coefficient: o = 0.1 dB/cm
(solid line), o, = 0.2 dB/cm (long dashed line), a, = 0.3 dB/cm (medium dashed line),
cp = 0.4 dB/cm (short dashed line).

Secondly, the performance of gratings with fixed length when both the refractive index
modulation and loss modulation amplitudes increase proportionally (fixed a/n; ratio)
is considered. This is a situation most likely to be encountered in practice when the UV
writing process introduces additional losses [20]. Figure 2.13(a) shows the variation of
Alpeqs 28 a function of the refractive index modulation amplitude, and for L = 2 cm, a
fully modulated background loss with ¢ = 0 and five different values of the ratio a/n;.
The value of oy, at n; = 3-107* is equal t0 0.3 dB/cm (solid line), 0.2 dB/cm (long dashed
line), 0.1 dB/cm (medium dashed line), 0.05 dB/cm (short dashed line) and 0.01 dB/cm
(dotted line). As the index modulation increases, the function Ay, after an initial
increase, decreases again. Now the index/loss coupling coefficients grow proportionally,
but the average value of the loss is always increased. Due to the spectrum asymmetry
the reflectivity peak shifts to a wavelength A, shorter than Az. The wavelength shift
Aldgirs = [Ap — Ag| is plotted in Figure 2.13(b), while in Figure 2.13(c) the shift AN,
has been normalised to the peaks difference A\,...., proportional to the grating spectral
bandwidth. However, this shift is a very small proportion of the total band gap.



Chapter 2 Effect of periodic background loss on grating spectra 20

0.05

Ay (nm)

—

0.00

0.3
0.3 1

02+

A)‘shiﬂ / A)"peaks

Ta-ce ; : T 1
0.3 0.6 0.9 1.2 1.5 1.8 21 2.4 2.7 3.0

refractive index modulation n, (x10

FIGURE 2.13: (a) Amplitude difference Acv,..1s, (b) peak wavelength shift Adgue =
|Ap — Ag| and (c) normalised peak wavelength shift Az /AXpeaxs as a function of the
refractive index modulation amplitude, for L = 2cm and five different values of the
ratio R,, = a/n; .The value of o, at ny = 3-107* is equal to 0.3 dB/cm (solid line),
0.2 dB/cm (long dashed line), 0.1 dB/cm (medium dashed line), 0.05 dB/em (short
dashed line) and 0.01 dB/cm (dotted line).

2.5 Conclusions

In all cases so far reported, the total loss was calculated by using equation (2.13) and
the resulting spectral asymmetries were explained physically by considering the spatial
relation and overlap (Or,) between field intensities and loss modulation at specific wave-
lengths and certain positions along the grating. To further endorse the idea that the
loss spectra details are due to the exact overlap Oy, a perturbation approach (outlined
in Section 2.7) that gives identical results has been adopted. However, it should be
stressed that the perturbation technique only applies to small background-loss modu-
lation. When the loss is large and the effect of the loss grating (see equation (2.15))
is comparable to the refractive-index one, the simple perturbation technique becomes
inaccurate. In Section 2.3, the analytical solution of the wave equation, considering a
loss medium with a periodic modulation of both the real and imaginary part of the
refractive index, was reported. For the sake of generality a dephasing factor ¢ has been
considered between the two patterns. The expressions for the field distributions along
the grating length and for the reflection and transmission coefficients have been deter-
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mined. In Section 2.4, the simulation results obtained with the help of these expressions
are reported. The comparison between the lossless and the lossy cases has shown an
asymmetric spectral behaviour in the latter case. An explanation of this asymmetry in
terms of overlap between the total field intensity and the loss zones, strongly dependent
on the wavelength, has been developed. Moreover the importance of taking into account
the periodicity of the background loss, in those cases in which the dephasing factor value

results in a usual symmetric spectral shape, has been underlined.
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2.6 Appendix A: Grating standing-wave patterns

In the following only the lossless case is considered with o = a3 = 0 and, therefore,
ke = £ =mm/A, ks = 0. The total electric-field intensity inside the grating is given by:

I(z)=|B(x)" = B (2) + Ey(2)|” (2.16)

where F(z) and Ej(z) are the forward- and backward-propagating electric fields, respec-
tively. Taking into account equation (2.7), and substituting the slowly-varying ampli-
tudes A(z) = |A(z)| exp[joa(z)] and B(z) = |B(z)|exp[jés(z)], the total field intensity

is expressed as:
I(z) = |BE(2)]" = |A(2)|" + |B(2)|” + 2| A(2)| | B(2)| cos(2Bz + Agus(2))  (2.17)

where S = By = nko = n(2rx/)\) is the propagation constant in the unperturbed lossless
waveguide and Ag,p(z) = ¢a(2) —@s(2). It should be emphasised that under the slowly-
varying envelope approximation (SVEA), both the moduli and phases of A(z) and B(z)
are slow-varying parameters (i.e., they show infinitesimal changes over a grating period).
Equation (2.17) describes a generalised standing-wave pattern with local fringe contrast:

F(z) = — gt = AR A (2.18)

The fringe contrast will vary along the grating length. The local period of the standing
wave (Agy) is determined by the total spatial phase of equation (2.17) as follows:

z 27
O(z)=20z+A = / d 2.19
from which it is obtained:
20 d®(z) doa(z) dos(z)
Asw(z)  dz 26+ dz dz (2.20)

Under the SVEA, dé, /dz ~ dds/dz ~ 0 and, therefore,

'

— 2.21
2n, 2 ( )
where A\, = A/n is the optical wavelength in the propagation medium with refractive
index n. The standing wave period is constant along the entire grating length and is
proportional to the optical wavelength of the incident wave. It is, therefore, expected
that there will be a spatial dephasing between the standing-wave and refractive-index

periodic patterns that depends on the incident optical wavelength.

The spatial dephasing can be determined by starting from the full expressions for E(z)
and Ey(z) given by equations 2.10(a) and (b). Expressing the forward- and backward-
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propagating electric flelds as E¢(z) = [Ef(2)| expligs(2)] exp(j8sz) and
Ey(z) = |Ep(2)] explign(2)] exp(—j B 2), the total electric-field intensity can be re-written

as:

1(z) = |BE) = |Ep(2) 2+ |By(2)? + 2 [Bp(2)] | Eo(2)| cos(2Baz + Agpp(2)).  (2.22)

The standing-wave pattern is now expressed in terms of the grating spatial phase 28s2
(c.f. equation 2.1(a)). The term Adp = ¢¢(z) — ¢u(2) gives, therefore, directly the
spatial dephasing between the total field intensity and the fixed periodic refractive-index

modulation, at any point within the grating.

The spectral region outside the band-gap is firstly considered, where A2 > k2 and
p = jVA?% — k2 = jp is imaginary. The expressions for ¢ 5 and ¢, are

$7(2) = axcta —PA sin pz \
L8 = BER AT cospz — K2 cospL cosplz 1))
+ 18(A% cos Pz — K2 cospL cos Pz — L) < 0) (2.23a)
/5 \ R
¢p(z) = arctan (% cot]‘)L) + m0(AxsinpLsinp(z — L) > 0) (2.23b)

where 5(3/) is equal to 1 when the condition y is verified, otherwise it is zero. Using the

low reflectivity approximation (i.e. p & |A|[), the equation (2.23) can be simplified as

¢7(2) ~ Fpz (2.24a)

¢F(2) = £ (g - ﬁL) + 76(£sinpLsinp(z — L) > 0) (2.24b)

where the superscript (&) denotes A = A\*. The low reflectivity approximation affects
mainly the expression of ¢¢ that at higher reflectivity, due to the multi-reflections, is no
longer a linear function of 2. From equation (2.24a) is appears that ¢; is a continuous
function of z and that ¢T = —¢ . This is anyway also verified by equation (2.23a). In
both the expressions (2.23b) and (2.24b), ¢ is composed of two terms. The first one is
z-independent, while the second consists of a 7 shift added to the grating sections where
4(z) = 1. From (2.23b) and (2.24b) it is in addition evident that ¢j = —@; + T, so
A¢>}'rb =—A¢s +

The 7 phase discontinuities in A¢y, are due to ¢y only. The 7 shift condition of ¢y, argu-
ment of § in (2.24b), depends on z through sin (z— L), so when sinB(z— L) changes sign
there is a discontinuity. Moreover |Ey(2)| o« sinp(z— L), so each w phase discontinuity is
localised in the z-coordinate, denoted by z,, where the backward-propagating electric
field goes to zero. From the condition sinp(z, — L) = 0 it follows that z, = L — mm/p,
where m is a whole positive number. With this notation, the boundary condition is

placed at the “first node” zp = L. Depending on whether z,, is approached from the
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higher (z}) or the lower (z;,) values, from (2.24) it is derived that

@‘J?(z;;) = FpL+mm (2.25a)

o5 (z %) = $-72£ FpL+ (m; 1) s (2.25b)
and

¢? (2) = FPL + mm (2.25¢)

st =FgFoi+ (7 ) (2.254)

where the upper (lower) part is valid for the long (short) wavelength side. It is now
easily deduced that A¢sp(z}) = +7/2 and Adp(z,) = —7/2. So at 2, precisely, the

local dephasing shows a 7 phase discontinuity.

Considering a grating made by a positive whole number of periods M (i.e. L = MA)

the resonance wavelengths are expressed by

Ay = (2.26)

where the integer w denotes the order (i.e. /\g'E = Ax1, AIiI = Aio, etc.). According
to the low reflectivity approximation P, = w|w|/L. For each resonance wavelength,
given two consecutive field nodes z,, and z,.1, the value of the local dephasing at
Zm = (#m + 2Zm+1)/2 = L — (2m + 1)7/2P is calculated, starting from

7 (zm) = FPL £ w (2.272)

L % m
(Zn) =%[=—7p , .
otom) = = pL> ¥ (m " 1)vr (2.270)
Therefore, for the short-wavelength side A¢y,(Zm) = m, while for the long-wavelength
one A¢ty(Zm) = 0.

The spectral region inside the band-gap is now considered, where A? < 2 and p =
vk?* — A? is real. The following expressions for ¢; and ¢y are obtained

—2pAsinh pz
T\ (p? — A2) coshpz + k2 coshp(z — 2L) )

®p(2z) = arctan <—Z— cothpL> +76(A < 0). (2.28Db)

Since the denominator of the arctangent argument of ¢ is always positive, its sign is
determined by the numerator, so that q’;}" = —gb]T is verified. For ¢, the justification
used for (2.23b) can be repeated, so gf){f = —¢, +m and Aqﬁ}rb = —A¢, + 7. Moreover,
the 7 shift condition of ¢ is z-independent, so inside the band-gap ¢ is constant along
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the grating length.

At the Bragg wavelength A = 0, so ¢ = 0 and ¢, = 7/2 from which the spatial
dephasing is equal to A¢s, = —7/2 at any position along the grating length.

For all the wavelengths, both inside and outside the band-gap, at a point infinitesimally
close to the grating far end (2 — L) A¢sp = —m/2. Outside the band-gap it has already
been demonstrated that A¢ysy(z;) = —n/2, where zp = L. Inside the band-gap, at
z — L the equations 2.28(a) and (b) can be approximated as:

$5(L™) = —arctan (% tanhpL) (2.29a)
by(L) = arctan | 2 — - 78(A < 0) (2.20b)
b — arctan Zm -+ T .

that lead to A¢p(L7) = —m/2.
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2.7 Appendix B: Loss perturbation calculation

In case of a weakly absorbing medium, the fraction of the dissipated power can be
calculated by considering the spatial overlap between the loss profile and the power
distribution corresponding to the lossless case (therefore, k. = & = ni7/\, ks = 0).
This approach is quite accurate provided that the presence of loss constitutes only a
weak perturbation and does not change considerably the final power distribution. In

this case, the local intensity change over an infinitesimal section dz is given by:

I(z, N

Ty % (2.30)

Alss(N) = 20(2)

where o(z) is the local field absorption coefficient, Ln.(X) = |Ef(0, )| = |Finc|” the
incident field intensity and I(z,\) the local field intensity, corresponding to the lossless
case [30]. The fraction of the input power, dissipated due to losses along the entire

structure, is then given by:
2 L o
o) = = [ ale) B0 e (231)
inc 0

where the background-loss perturbation is given by equation (2.1b).

Expressing the total electric-field intensity as in equation (2.22), under the SVEA the

integral (2.31) can be simplified as

20

Iloss(A) ~ |E ’2

L
/D (B4 N2 + | Bl NP)dz

2 L
+Eoz1|2 / \Ef(z, \)] | Ey(2, A)] cos(¢ — Adss(z, \))dz. (2.32)
inc O

In the cases considered in this work, the integral (2.32) gives the loss spectrum as
obtained from I, = 1 — R — T. Studying the wavelength dependence of [E(z, A,
|Ey(z, A)|, and A¢pp(z,A), it is possible to justify the symmetrical/anti-symmetrical
behaviour of the grating loss spectrum according to the value of the dephasing fac-
tor ¢. Since the moduli of the forward- and backward-propagating fields are sym-
metrical with respect to the Bragg wavelength, the first term in (2.32), that i ¢-
independent, is also symmetrical with respect to Ag. The asymmetry observed for ¢ = 0
and 7 is then due to the second term in (2.32), and particularly due to the fact that
Adsp(z, \T)==Ad (2, A7) + 7, as demonstrated in Section 2.6.
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2.8 Appendix C: Effective index medium

In a uniform grating the maximum reflection occurs when the Bragg condition is fulfilled,

Le. abt Ag = 2ngprA, where n.;; = n if the refractive index perturbation is n(z)
n + nicos2Bsz (cf. equation (2.1)). Considering the analogy of propagation in a
homogeneous medium of refractive index n. s, the wavelength of the light in the medium

(M ness) equals twice the grating periodicity A.

Increasing the strength of a 100% reflectivity grating at Ag broadens and squares off the
grating spectral response (c.f. Figure 2.15). The reflection is maximum and equal to 1
over a band centred on the Bragg wavelength, here called saturation band. Does this
mean that the Bragg condition is satisfied not only at the Bragg wavelength, but also

N(

at all the wavelengths included in the saturation band?
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FIGURE 2.14: Not-saturated grating
{(~ 5 dB): (a) reflectivity R as a func-
tion of the wavelength detuning A);
(b) spatial dephasing Ag¢ys, (c) nor-
malised power envelope, (d) reflec-
tivity of the “right grating” R, and
(e) phase of the reflection coefficient
for the “right grating” as a func-
tion of the position along the grating
length (z/L) at the three wavelengths
marked in (a) by the asterisks.

FIGURE 2.15: Saturated grating (~
31 dB): (a) reflectivity as a func-

tion of the vvrava]annfk Adatiinine A )

tion of the wavelength detuning A\;
(b) spatial dephasing Adys, (c) nor-
malised power envelope, (d) reflec-
tivity of the “right grating” R, and
(e) phase of the reflection coefficient
for the “right grating” as a func-
tion of the position along the grating
length (z/L) at the three wavelengths
marked in (a) by the asterisks.
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As already pointed out in Section 2.6, the grating standing-wave pattern can be expressed

in terms of the grating spatial phase 20zz as:
I(z) = |E(2)* = |E¢(2) + | Bo(2)[* + 2| B ()| | By ()] cos(2Bsz + Aga(2))  (2:33)

where the term A¢p, = ¢p(z) — ¢p(2) gives directly the spatial dephasing between the
total field intensity and the fixed periodic refractive-index modulation, at any point
within the grating. It is worth noticing that at A # Ag this is an “equivalent” standing-

wave pattern, since the real one has a periodicity equal to 25z.

As shown in Figure 2.9, at Ag the field intensity pattern is locked at 7/2-dephasing with
respect to the refractive index pattern, independently from the grating strength. This
is confirmed by the green lines in Figures 2.14(b) (not-saturated grating) and 2.15(b)

(saturated grating).

For the not-saturated grating (Figure 2.14) at wavelengths nearby Az (red and blue)
the spatial dephasing is never constant in any position along the grating length. The
grating seen by a forward-propagating wave as it propagates deeper into the structure,
here called “right grating” (R,), is always below 100% reflectivity (Figure 2.14(d)). The

rating strength is not sufficient to completely reflect the forward-propagating wave,

o 09

nd results in an intensity pattern always travelling along the index one. The spatial

dephasing A¢yy is anyway fully determined by the reflection phase of the “right grating”
(Figure 2.14(e)).

In the saturated grating (Figure 2.15), the “right grating” reaches 100% reflectivity
at a wavelength belonging to the saturation band (red and blue in Figure 2.15(d)).
This results in the creation of a real standing-wave pattern localised in the first part
of the grating (Figure 2.15(b)), where the total power that is rapidly decaying to zero
is still present (Figure 2.15(c)). In this zone the spatial dephasing A¢y is locked to a
value different from /2, still determined by the reflection phase of the “right grating”
(Figure 2.14(e)). The spatial dephasing is smaller (bigger) than 7/2 at wavelengths
bigger (smaller) than Ag, resulting in a bigger (smaller) overlap of the intensity pattern
on the index pattern. This picture can be analytically verified by calculating the overlap
between the index n(z) and intensity I(z) patterns with the following expression:

Jin(@) Bz, V) dz

ngff,m,(k = (2.34)

ol SN2 g
Jo 1Bz, A)[" az

that truly represents the effective index experienced by I(z), so called neffy. Under

the slow-varying envelope approximation n.gs o, results in:

foL \Ef| | Ey| cos(Adyp)dz
SEE + | Bol?)dz

Neff,on(A) BN+ 11
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Figure 2.16 shows the plot of n.fs0y for the not-saturated (n,s) and saturated (n;)
grating (thick solid lines). The effective index resulting from the Bragg condition n.s; =
A/2A is also plotted (thin solid line). While nps coincides with nezr at Ag only, ng
coincides with it all over the saturation band and the Bragg condition is clearly satisfied

all over the saturation band.

1.451

1.450

refractive index

1.449 / '
-1.5

-1 -0.5 0 0.5 1 1.5
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FIGURE 2.16: Effective refractive index as a function of the wavelength detuning (nm)
for the not-saturated (n,s) and saturated (n,) grating (thick solid lines); the thin solid
line is the effective index derived from the Bragg condition (nesy).

It is worth noticing that with the help of the local fringe contrast expression (c.f. equa-

tion (2.18)) mefop can be re-written as:

Jo F(Ef® + |Bs[) cos(Adp)dz

2.36
2 Jy (15 + | B[z 230

neff,ov()\) ~n+ny

In the case of finite one-dimensional photonic band-gap structures another method has
been developed to calculate the effective refractive index [31, 32]. In the analogy of
propagation in a homogeneous medium, the total phase associated with the transmitted
field can be expressed by:

Br = k(W)L = Tnegy o) (2:37)
where k(w) is the effective wave-vector and consequently neys 4 is the effective refractive
index attributed to the layered structure of length L. Applying the same approach
to the gratings considered in this section results in a graph that doesn’t coincide with
Neffov (and with ness in the saturated case). nefs oy and neys,p are superimposed, in the
saturation band, only when the length of the grating is increased to simulate an infinite

grating. In the case of propagation in periodic stratified media, the effective index can
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be derived by the Bloch mode theory as

K(w)

w

(2.38)

NegsBM (W) = ¢

where K (w)) is the Bloch wave number [33, 34]. It is worth noticing that in the bandgap

TNeff, BM equa,ls Neff -



Chapter 3

Cladding mode losses in chirped

fibre Bragg gratings

3.1 Chirped FBGs for dispersion compensation

Chirped FBGs can be used to compensate the dispersion of fibres used in fibre trans-
mission lines, including SMF-28 the most commonly used. Transmission fibres have a
dispersion zero at 1300 nm at wavelengths in the erbium-doped fibre amplifier (EDFA)
gain bandwidth, which is centre at ~ 1550 nm [35]. Chirped gratings “refocus” the spec-
tral components of a chirped incident pulse directly by reflecting the longest wavelength
at the start of the grating and shorter wavelengths at position progressively deeper into
the grating. The continuous writing technique [9] allows long gratings to be written,
therefore providing the possibility to compensate the dispersion resulting from the trans-
mission along long lengths of fibre. As well as having a dispersion profile matched to
the fibre to be compensated (i.e. the right phase response) it is also important that the
reflection spectrum (amplitude response) of the device is flat. In the following, cladding
mode losses which can affect the reflection spectrum of such devices are analysed. It is
shown also how to design the chirped FBGs in order to counteract this loss.

3.2 Cladding mode losses

Cladding mode losses in fibre Bragg gratings (FGBs) have been addressed in several
papers [28, 36, 37, 38] and shown to limit the performance of FBG devices. In unchirped
gratings the resonant coupling of the forward-propagating core mode to a particular
backward-propagating cladding mode is considered independently and the effect on the
total transmissivity spectrum is obtained by simply multiplying the individual responses.

The presence of cladding mode losses in chirped gratings affects the grating performance

31
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in a much more complicated manner. Cladding mode losses interfere with the core mode
within the main reflection band and introduce additional transmission loss on the short-
wavelength side. This effect is independent of the grating input side. The corresponding
effect on the reflection spectrum, however, depends on the grating input side. Entering
the chirped grating from the “red” end (longer local period) results in a pronounced
reflection spectrum slope, while entry from the “blue” end (shorter local period) leaves
it unaffected. An experimental demonstration of this effect has been presented for

broad-band chirped gratings in [39].

Several techniques can be used in order to minimise the overlap between core and
cladding modes. Observe that increasing the extent (outer diameter) of the cladding
results in reducing the confinement of the cladding modes, thus decreasing the cladding
mode coupling strength. Ideally a fibre with an infinite cladding cannot guide cladding
modes. However, due to integration with the standard fibre system, it is not possi-
ble to increase the cladding outer diameter over the extent needed to suppress all the
cladding modes. Another approach consists of using high numerical aperture (high-NA)
fibres [40]. The high-NA does not substantially affect the cladding modes, but allows the
confinement of the core mode into a smaller area. Thus the overlap between core and
cladding modes is reduced. The spectral distance between the first cladding mode and
the core is also increased due to the higher refractive index in the core region with respect
to the cladding region. The operation band is therefore larger than that achieved using
standard fibres, but not wide enough for most applications. An alternative approach
consists of extending the photosensitivity to the cladding region [41]. From the orthogo-
nality principle of the modes, the overlap of the modal fields and the grating index would
be zero in this case. Thus the core mode will not couple into any of the cladding modes.
It is however very difficult to obtain the same photosensitivity over both cladding and
coré. Depressed cladding fibres reduce the cladding mode field strength over the core re-
gion and therefore reduce the coupling strength between the core mode and the cladding
modes [42]. In [43] the resonant excitation of cladding modes is damped by introducing
a propagation loss into the cladding modes. This is achieved by depositing a thin lossy
layer on the cladding surface: a layer which does not affect the propagation of the core
mode but only that of the cladding modes. All these approaches can also be combined
for total elimination of cladding mode losses. However they require the fibre design to

be properly modified.

nalising
by cladding mode losses, with the help of a proper apodisation profile has been shown.
This can be directly applied to standard fibre types. This chapter present a study of
the interaction and power exchange between core-cladding and cladding-cladding fibre
modes due to the grating chirp. To account for the complex effect of cladding modes
on the performance of chirped FBGs, the basic coupled mode theory [1] should be

extended to properly consider the mode interaction. The model is then used to study
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the equalisation of the reflection spectrum by means of a proper apodisation profile,

defining also the limitation of this approach.

3.3 Theoretical model

The refractive index perturbation of a linearly chirped fibre Bragg grating can be ex-

pressed by
n(z) = Negs + ANggp = Nepr + dness{l + v(z) cos[Koz + ()1} (3.1)

where nggy is the background effective refractive index of the fibre core, 6n, 7 and v(z)
are respectively the effective amplitude and the slowly varying envelop function of the
induced change in index An.ysr, Ko = 21/Ap is the reference Bragg wavevector (Ao is
the reference Bragg period), #(z) is the slowly varying grating phase. In order to have
a linear chirp, the grating phase is defined as:

K
8(z) = — T (32

where Cgr (in nm/cm) is the chirp rate. Note that the values of negs and dneys are
both related to the propagating mode characteristics. In the following it is assumed
that the induced index change n., is uniformly distributed across the core of a step-
index profile fibre. For a propagating mode with a core power confinement factor I,
8negs = ['dn.,. The apodisation profile, given by v(z), has been introduced in this way
so that the average index change is constant along the grating length. In the following,
T, nesr and dnegs are indexed according to the propagating mode combinations. Thus

I'ynn represents the core confinement factor of the n and m modes.

The model is based on coupled-mode theory and describes the coupling between the
forward-propagating core mode, the backward-propagating core mode, and N backward-
propagating cladding modes [28] (see Figure 3.3). The following two approximations
have been introduced: (i) no forward-propagating cladding modes are considered and
(#3) the cladding mode cross-coupling is considered to take place exclusively through
the forward-propagating core mode. This is justified by the fact that the coupling
constant between core-cladding and cladding-cladding modes is much weaker than the
corresponding core-core parameter so that only one scattering event is required (Born

approximation) to completely describe this multimode interaction.

According to the coupled-mode theory [28, 44], the electric field, present in the fibre
grating, can be expressed as a superposition of ideal modes. In this case only N + 2

modes are considered, so the electric field is given by

E(2) = Ey(2) + Ey(2) = A(2)e™® + B(z)e 7P + > Cp(z)e™Pn? (3.3)
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FI1cURE 3.1: Schematic of the fibre modes considered in the model.

where A(z) and B(z) are the slowly varying amplitudes of the core forward- and backward-
propagating modes, C(2) is the n-th cladding backward-propagating mode (n = 1,..., N),
B and 3, are the propagation constants of the uncoupled waves. The presence of a re-
fractive index perturbation causes the coupling between the modes, so that the change

in amplitude of each mode along z depends on the perturbation Aneysr (3.1) and on the

amplitudes of all the other modes:

C;_A — jAKo + jBKooe 1% + 5 CrKpge 1P t0)? (3.4a)
yA
n
diB 28z - . —i(Ba—B)2
— = ~JAKo0e™ ~ jBKo0 - j > CnKnpe™ P (3.4b)
n
% = —jAKgnel B+bn)z jBKope 7(B—Fn)
=3 Y, CmEne™ =002, (3.40)
m#n

The coupling coefficients Ky, (2) are given, for the all mn-pairs present in (3.4), by
Kmn(2) = Omn + 26mn(2)cos Kz + ¢(2)] (3.5)

as a function. then, of a “dc” coupling coefficient omy, (z-independent) and a “ac” cou-
) ) P D

27
Omn = Téneff,mn (3'6)
kmn(z) = %z)amn‘ (3.7)

The system (3.4) can be simplified applying the synchronous approximation and ne-
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glecting the effect of backward co-directional contributions in (3.4b) and (3.4c). The

substitution
alz) = A(Z)ej(5oz—%¢(2)) (3.8a)
b(z) = B(Z)e—j(5oz—%¢(z)) (3.8b)
en(2) = Cp(2)ei0n=29(2)) (3.8¢)
leads to the following system
d ” . .
= = i80(2)a(z) + roo(2)b(2) + 5 3 wno(2)en(2) (3.92)
db . .
7, = ~J80(2)b(2) — jroo(2)a(z) (3.9b)
d ” .
L joa(e)enl) = Gron(2)alo) (3:90)

The wavenumber de-tuning coefficients &, and the local de-tuning coefficient &,(2) are

given by

bo =8~ (3.108)
0
5= B — Aio (3.10b)
R 1d
O'n(z) =0y + Opn — E‘cg (3.11)

From the system (3.9) is clear that kmn(z) assumes also the meaning of local cou-
pling coefficient between the n-th forward-propagating mode and the m-th backward-

propagating mode. The conservation of total power can be expressed as

y {lalQ— oI* = > leal®| =0 (3.12)

which, using (3.9) and taking into account that in a lossless structure & is real, is satisfied

when
KOn = AnQ- (313)
Introducing N + 1 local reflection coeflicients rg,71,...,75 and the local transmission
coefficient (%), respectively defined as
b(2)
= — 3.14a,
7’0(2) CL( Z) ( )
o) = 2) (3.14b)
a(z)
() = 22 (3.14¢)
0 - CL(O>’ M
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the system (3.9) can be re-written as:

% = —j260(2)ro(z) — jroo(2)[1 + r2(2)] — jro(z Z kno(2)rn(2) (3.15a)
%‘ = —j[60(2) + n(2)]ra(2) — jrno(2)[1 + 77 (2)]
—jra(2) Y kmo(2)rm(2) (3.15b)
m#n
% = Jbo(2)to(2) + gto(z Z“no(z Tn(2 (3.15¢)

Observe that equations 3.15(a) and 3.15(b) are an extended version of the Riccati equa-
tion. From these equations it is obvious that the cladding-mode to cladding-mode cou-
pling has been ignored. This is a second-order interaction and introduces small errors.
The case without cladding-mode excitation (rkno = 0, n = 1,2,..., N) reverts equation

3.15(a) to the well known Riccati equation.

The system (3.15) is solved via integration with boundary conditions to(0) = 1 and
ra(L) = 0 for n = {0,...,N}. Note that this is equivalent to the integration of (3.9)
with boundary conditions a(0) = 1 and b(L) = c,(L) = 0. The integration results in
the expression of the grating reflection and transmission coeflicients as a function of A.

b

Entering the grating from the “blue” end (c.f. Figure 3.2) the transmission coefficien

and reflection coefficient r can be obtained respectively as 7(A) = r0(0) and t(/\) = to(L),
while entering from the “red” the reflection coefficient p is obtained in the same way as r
by reversing the chirp sign. The transmission coefficient is not affected due to reciprocity.
From these coefficients, the grating transmissivity T(\) and reflectivity Z(}) from the

“plue”-“red” end can be calculated as T(X) = [t(\)[?, R(\) = r(N)%, RN = (V)2

—1

r—o T[] <P

{t—

FIGURE 3.2: Schematic of the grating transmission and reflection coefficients ¢, r and
o

3.4 Study of the mode interaction

The theoretical model is first applied to demonstrate the interaction between cladding
modes and core modes in an unapodised chirped grating, i.e. v(z) = 1 for every z in
equation (3.1). For the sake of simplicity and better visualisation the coupling into
one (Figures 3.3(a)-(c)) and two (Figures 3.3(d)-(f)) cladding modes only is considered.
The grating parameters are shown in the figure caption. The first column in Figure 3.3
shows the reflectivity of the core and cladding modes when light is launched from the
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“red” grating end, while the second column shows the corresponding spectra from the
“blue” grating end. The third column gives the corresponding transmission spectrum.
Figure 3.3(a) shows that the cladding mode spectrum (light blue line) overlaps with
the main reflection band (red line) and affects its shape. However, when the grating is
reversed (Figure 3.3(b)) the role of the modes is reversed too and as a result the cladding
mode reflection spectrum is affected while the main reflection band remains intact. In
the presence of two cladding modes (Figure 3.3(d)) a similar interaction is observed
between cladding mode spectra with the shorter-wavelength reflection spectrum (dark
blue line) affecting the longer-wavelength reflection spectrum (light blue line) and the
combined effect passed on to the main reflection band (red line). As before, reversal of

the grating results in a reversal of the role of the three modes (Figure 3.3(e)).

Reflectivity (dB) Reflectivity (dB) Transmissivity (dB)
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FIGURE 3.3: Spectral characteristics of an unapodised linearly chirped grating 5 cm
long, with refractive index modulation 2.7 X 10~% and chirp rate 0.6 nm/cm. (a-c)
One cladding mode, (d-f) two cladding modes; main reflection spectra (red line), first
cladding mode (light blue line), second cladding mode (dark blue line).

3.5 Equalisation of the reflectivity spectrum

The model was then used to study the possibility of equalising the reflection spectrum
according to that reported by [39]. A 10 cm long grating has been considered, 40 percent
apodised (raised sine apodisation profile) with a chirp rate of 0.44 nm/cm that results in
~23 dB of reflectivity. Three cladding modes were taken into account, located ~ 2 nm
below the fundamental Bragg wavelength and separated by 0.5 nm. The cladding mode
to core mode coupling constant ratios are 0.15, 0.20, and 0.25, respectively. These

cladding modes’ features closely resemble real fibre ones. In Figure 3.4 the reflection
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spectrum (a) from the “blue” grating end R = 7|?, reflection spectrum (b) from the
“red” grating end R = |p|® and transmission spectrum (c) from both ends 7 = | #? are
shown. The loss induced on the short wavelength side of the reflection spectrum (b) is

~ 2 dB.

Reflectivity (dB) Reflectivity (dB) Transmissivity (dB)
0 0 0
(@) (b) ()
-10 -10 -10
-20 -20 -20
-30 -30 -30
-3 -15 0 15 8 -3 -15 0 15 83 -3 -15 0 15 3
Wavelength detuning (nm) Wavelength detuning (nm) Wavelength detuning (nm)

FIGURE 3.4: Reflection spectrum (a) from the “blue” grating end, (b) from the “red”
grating end, (c¢) transmission spectrum from both ends.

The raised sine apodisation profile v(z) used for all the calculations reported here is
defined as

/

zL ¢ r
or z < L
. oy 2L, ¢
w(iz) = Sin2 l;r!-—J with = = z2— L+ 2La (3.16
v \"L/ — I forz>L-1, : )
1 otherwise

\

where L, = ArL/2, and A is the apodisation fraction. To perform the spectral equali-
sation the apodisation profile (3.16) has been multiplied by the function, written for the

negative chirp case (i.e. entering from the “red” grating end), as

[”Y for z < z
[P

flz) = 1(1—7)(z—L+20)2

~~
w
[y
-3

~—

+v forz> 2

where z is the location in the grating where the effect of cladding-mode loss disappears
and 7 is the relative strength of the grating in the “lossy” region z < 2o [45]. To equalise
the spectrum it is necessary to reduce the grating coupling constant at the “red” grating
end. Since these grating sections are also responsible for the coupling with the cladding
modes a loss reduction occurs at the same time. Figure 3.5(b) shows a magnified view
of the reflection spectra obtained for different apodisation conditions, entering from the
“red” end. The dashed line shows for comparison the unaffected spectrum entering from
the “blue” end. The initial irregular and the final flattened spectra are shown in blue
and red lines, respectively. The apodisation profile used to perform the equalisation is
shown in Figure 3.5(a). The green and black lines show the spectra under sub- and



Chapter 3 Cladding mode losses in chirped fibre Bragg gratings 39

over-compensation, respectively. The corresponding apodisation profiles are also shown
in Figure 3.5(a). The transmission spectra for all the cases are plotted in Figure 3.5(c).
The grating profile has been lowered by up to 40 percent of the original value in order
to perform the reflection spectrum equalisation, reducing the grating strength by ~ 8

dB, but maintaining the same dispersion characteristic.

Apodisation profile Reflectivity (dB) Transmissivity (dB)
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FIGURE 3.5: (a) Apodisation profiles; (b) reflection spectra obtained from the “red”
grating end; (c) transmission spectra. The different colours refer to: the initial grat-
ing (blue), compensated grating (red), sub-compensated grating (green) and over-
compensated grating (black); the dashed line in (c) represents the unaffected reflection
spectrum when entering from the “blue” end.

Let’s now consider the design of the apodisation profile, that results in the equalisation of
the reﬁecti\}ity spectrum, from the opposite perspective of increasing the grating coupling
constant at the “blue” grating end, rather than reducing it at the “red” grating end.
The blue line in Figure 3.6(a) represents the apodisation profile of the initial grating.
The corresponding reflection and transmission spectra entering from the “red” grating
end are plotted (in blue) in Figure 3.6(b) and (c), respectively. It is here assumed that
v(z) = 1 corresponds to the maximum change in refractive index that can be induced in
the fibre. In order to compensate the loss at the short-wavelength side of the reflection
spectrum, the strength at the grating on the “blue” grating end is therefore enhanced.
This is equivalent to say that the number of photons that go through the “lossy” region
is increased, photons which due to coupling with the cladding modes are eventually
lost. If the number of photons has been properly increased, the reflection spectrum is
equalised (as shown by the red lines in Figure 3.6(a)-(c).

Given a certain grating strength, the number of photons available for the equalisation is
represented by the transmissivity of the grating, while the photon deficit, that needs to be
compensated by the available photons, is represented by the reflectivity loss. Clearly, the
reflectivity loss depends on the ratio between the cladding/core mode coupling strength
(i-e. Kem/Kcore)- The blue line in Figure 3.7 represents the available photons (i.e. trans-
missivity) as a function of the grating strength. The stronger the grating, the smaller the
number of photons available to compensate the short-wavelength loss. The three green
lines correspond to the photon deficit for different values of cladding coupling strengths.
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FIGURE 3.6: Apodisation profiles (first column), reflection spectra obtained from the
“red” grating end (second column) and transmission spectra (third column) for a grating
(A) equalised at reduced reflectivity (a-c), at (B) critical reflectivity (d-f) and (C)
impossible to equalise (g-i). The different colours refer to: the initial grating (blue) and
equalised grating (red).

The stronger the grating and the cladding coupling are, the larger the deficit (i.e loss)
is. Three different scenarios can be encountered. First, when the number of available
photons exceeds the photon deficit it is possible to equalise the reflection spectrum and
this occurs within the white area in Figure 3.7. The case represented by the red trian-
gle (A) corresponds to Figure 3.6(a)-(c) and equalisation is said to be obtained at the
reduced reflectivity of 7.5 dB. Second, when the number of available photons equals the
photon deficit the reflection spectrum can still be equalised. This case is represented by
the red square (B) in Figure 3.7 and corresponds to Figure 3.6(d)-(f). The equalisation
is obtained at the critical reflectivity of 9.5 dB. Third, when the photon deficit exceeds
the number of available photons it is impossible to equalise the reflection spectrum and
this occurs within the azure area in Figure 3.7. The example represented by the red

circle (C) corresponds to Figure 3.6(g)-(i) and a reflectivity of 17 dB.

The graph in Figure 3.7 shows the fundamental limitation of using an apodisation profile
to equalise the short-wavelength loss in chirped FBGs. In the case of relatively weak
gratings the apodisation profile can be properly designed to provide enough photons to
replace the ones lost through coupling to cladding modes, also when the coupling badly
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FIGURE 3.7: Graph representing the fundamental limitation of the loss equalisation
process by means of apodisation profile

affects the spectrum (i.e. when the cladding modes coupling strength is high). However
in the case of strong gratings, both the number of photons lost into cladding modes
increases and the number of photons available to compensate them decreases. This can
easily lead to a situation in which it is impossible to equalise the reflection spectrum by

means of redesigning the apodisation profile.

3.6 Conclusion

A full theoretical model that accounts for the effect of coupling modes on the performance
of chirped FBGs have been presented here. The model reveals the dynamic interaction
between successive cladding mode spectra and the main grating reflection spectrum
under different launching conditions. The model is also used to study reflection spectrum
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of this approach is also shown, it cannot be used to equalise strong gratings.
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Microstructured optical fibres
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Chapter 4

Holey ﬁbres: Background

4.1 Introduction

4.1.1 History and background

Microstructured optical fibre {MOFs) are fibres typically made from a single material
in which the guidance of light is obtained by structuring the fibre profile. The first
examples of microstructured optical fibre dates back to 1973, and a fibre produced
by Kaiser et al. [46, 47] is shown in Figure 4.1. The fibre consists of a small-diameter
rod supported on a thin, polished plate in the centre of a larger-diameter protective tube,
all made from fused quartz. The rod acts as the fibre core and is almost surrounded
by air that acts as the fibre cladding. Thus this silica single material fibre guides light
within the core by means of the refractive index difference between the silica core and
the air cladding. The technology of the time allowed fabrication of doped-silica fibres,
that is fibre structures consisting of a central glass core surrounded by a cylindrical glass
cladding of lower refractive index (as current conventional fibre), but at the cost of very
high loss values. The refractive index difference between the two glasses is obtained using
different chemical compositions, but at the time the fabrication process of such a device
did not allow impurities to be kept out of the glass. In particular, the concentration
of OH impurity introduced during the fabrication process was significantly affecting the
fibre transmission loss. Before 1968 the doped-silica fibre loss was of the order of 1000
dB/km, this was reduced to 20 dB/km at 0.8 — 0.85 um in 1970 [48]. In 1972 Kaiser
et al. [49] fabricated unclad round fibres from fused silica and measured a loss at 1.1 um
of 2.5 dB/km only in up to 32 m of unsupported length. The next step was structuring
the pure silica fibre profile as in Figure 4.1 and, taking advantage of the purity of pure
silica, allowing loss of the order of 3 dB/km at 1.1 um to be achieved in 1974 [47]. In
the same years single material MOFs were proposed as a low-loss alternative solution
to doped-core fibres, the doping technologies have been significantly improved with the
development of, amongst others, the outside vapour deposition process (OVD) in 1973,
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modified chemical vapour deposition process (MCVD) in 1974 and vapour-phase axial
deposition (VAD) in 1977 [50]. Thus the loss of single-mode doped-silica fibres was
further reduced to 4 dB/km at 0.8-0.85 um in 1973 [51] (fibre fabricated by OVD) and
finally to 0.2 dB/km at 1.55 um in 1979 [52] (single-mode fibre fabricated by MCVD).
Once the transmission loss was lowered to an acceptable level, making doped-silica fibres
was more attractive than making single-material structured fibres because the fabrication
of the latter is more difficult and the fibre itself is less robust. Therefore the idea of

MOF was set aside.

FIGURE 4.1: Single material fibre fabricated in 1974 by Kaiser and Astle [47].

The structuring of optical materials has been widely used since 1968 [53] to fabricate
distributed feedback lasers, dielectric mirrors and Fabry-Perot filters. These devices
rely on a 1D periodic or quasi-periodic structure, typically made of alternating layers
of different dielectric materials. All these devices relies on the total reflection of optical

wavelengths which fulfills the Bragg condition (see Part I).

In 1987 Eli Yablonovitch discovered an analogy between electrons and photons: in a
periodic structure photons can in fact be described in terms of a band of structure
just as electrons in a crystal [54]. The work of many researchers was then applied
to convert the knowledge about semiconductors to optics, that is to study photonic
crystal and photonic bandgap materials. Structuring optical materials with 3D periodic
configurations can allow the formation of photonic bandgaps, the prohibition of wave
propagation for specific band of wavelengths. When light is launched into the material, it
cannot propagate if the light wavelength belongs to the bandgap due to Bragg diffraction

within periodically arranged materials.

From 1995 the interest in microstructured optical fibres was renewed, with the proposal
of a new structured fibre configuration: a single material fibre that contains a periodic
arrangement of air holes that run along the fibre length [55], basically a 2D-extended
periodic structure with out of plane light propagation. The first working example of
MOF, shown in Figure 4.2, was fabricated at Southampton University by Knight et al.
[56] in 1996. The central hole is missing, thus defining the fibre core. This fibre,
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however, does not rely on the existence of a bandgap to guide the light, but on the
reduced refractive index of the cladding, due to the presence of air holes, with respect
to the central silica core. In this case, the way of structuring the single-material fibre
resembles the fibre in Figure 4.1, produced more than 20 years before, in which light

was guided in the silica core by the air cladding.

FICURE 4.2: Endlessly single-mode single material fibre fabricated at Southampton
University in 1996 by Birks et al. [55].

MOFs are made with materials (glass and air) with a refractive index contrast nearly two
orders of magnitude higher than that used for conventional fibres and are characterised
by a two dimensional microstructure. The presence of wavelength-scale holes in the
transverse profile of a microstructured optical fiber can lead to novel optical properties
(explained in Section 4.2) that cannot be achieved in more conventional forms of optical

fibre and has widely motivated their study ever since 1995.

4.1.2 Guidance mechanisms

Light in microstructured optical fibres can be guided by two different guidance mecha-
nisms: average-index and photonic bandgap effect. The average-index effect is charac-
teristic of structures in which a solid core is surrounded by an arrangement of air holes
that act as the fibre cladding, as in Figure 4.2. Light is basically guided by a modified
form of total internal reflection. The effective refractive index of the cladding region is
lower than that of the solid core due to the presence of the holes. Light can also be
guided by randomly distributed air holes in the cladding [57].

Microstructured optical fibres can guide light by an alternative guidance mechanism if
the air holes that define the cladding region are arranged on a periodic lattice. Periodic
cladding structures can exhibit photonic bandgaps, and frequencies located within the
bandgap cannot propagate within the cladding [55, 58]. By breaking the periodicity of
the cladding (e.g. by adding an extra hole to form a low-index defect), it is possible to

introduce a localised mode within this defect. Such a defect can act as the core, and
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guide light within well-defined freqﬁency windows. These photonic bandgap fibres can
be designed to have transmission windows centred at near-infrared wavelengths [59].

Within this thesis, MOF's that guide llight by means of the average index mechanism are

considered.

4.1.3 Nomenclature

Historically, the first name used for MOF was photonic crystal fibre (PCF), used for
both classes, because the periodic arrangement of the holes of the cladding region is
an example of a photonic crystal [56]. Microstructured optical fibre (MOF) is a more
general definition, since fibres with non periodic features have been produced, and should
also be used to describe microstructured fibres with a doped core or any other variations
if based on a microstructured fibre. In particular, air-silica microstructured fibre is
sometimes used to refer to MOFs made of silica [60]. To distinguish the two guidance
mechanisms, the index-guiding fibres are more generally called holey fibres (HFs) because
their operation does not depend on having a periodic structure [61], while the others
are quite obviously addressed as photonic bandgap fibre (PBGFs) [55]. Note that in the
literature it is possible to find several of these terms addressing one or both kinds of
MOF in a somewhat arbitrary way, but within this thesis, these definitions are used.
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4.1.4 Fabrication

The vast majority of silica holey fibres produced to date have been fabricated using
stacking techniques. Capillary tubes are stacked in a hexagonal configuration, and the
central capillary can then be replaced with a solid silica rod, which ultimately forms
the fibre core. This preform is then reduced in scale on a fibre drawing tower. This
can either be done in a single step, or, if small-scale features are required in the final
fibre, two scale reduction stages can be used. The parameters that characterise a HF
profile are the hole-to-hole spacing (A), the hole diameter (d) and the number of rings
of holes used to define the cladding region. In order to avoid the collapsing of the air-
holes, the capillary end is sealed. The stacking procedure is a flexible one: holey fibres
suitable for active devices can be made using a doped core rod, and multi-core fibres
can be produced by introducing multiple rods into the stack. Although stacking is the
principal technique that has been used to make holey fibre preforms thus far, other
techniques have recently been demonstrated. Silica holey fibres have been made using
sol-gel casting techniques [62], and the preform can also be extruded directly from bulk
glass using glasses with low-softening temperatures [63]. Extrusion offers the prospect
of fibre designs that could not be envisaged with stacking techniques (and vice versa).
Both techniques allow the hole pattern, size and spacing to be altered independently and
avoid the creation of interstitial holes. Although the arrangement of holes of HF can
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be random, the holes are usually arranged in a hexagonal lattice (also named triangular
lattice), both to have control of the optical properties of the final structure and for

fabrication reasons. Honeycomb lattices are also used, mainly for photonic bandgap
fibres [58].

4.2 Properties

In a conventional optical fiber, the light travels through the core by constantly reflecting
from the cladding because the refractive index of the core is higher than that of the
cladding. The light propagation is due to total reflection at the core /cladding interface,
thus the optical fibre is said to guide light via total internal reflection. In a conventional
step-index fiber with core radius p and core and cladding indices 1., and ng, the number

of guided modes is determined by the normalised frequency V [30]:

V= =r/nd —nj (4.1)
which must be less than 2.405 for the fiber to be single-mode. Thus conventional single-
mode fibres, in which the core and cladding indices are only weakly wavelength depen-

dent, are in fact multi-mode for light of sufficiently short wavelength A.

ntrary to conventional fibres, in a HF the effective refractive index of the cladding
is strongly.dependent on the optical wavelength. This allows the fibre to be single-
mode over a range of wavelengths not possible in conventional fibres. Qualitatively, as
the wavelength decreases, the overlap between the mode and the holey-cladding region
decreases, therefore the effective cladding index increases and the normalised frequency
V is kept almost constant, as shown by the equation 4.1 which can be also applied
to HFs [64]. This additional dispersion counteracts the explicit dependence of V on
wavelength \ and so extends the single-mode range. If the fibre structure is designed
to have V < Vigroff, Where Vousog i the cut-off normalised frequency (equal to 2.405
for step-index fibres), the fibre is endlessly single-mode. The strong dependence of
the cladding effective index on the wavelength also allows the HE optical properties to
be tailored to values and combinations not possible in conventional fibres. The optical
properties depend on the design of the arrangement of holes, on the scale of the structure
too, and clearly on the material used to fabricate them. This allows more degrees of
freedom in the fabrication of fibres with specific optic i

conventional fibres.

The dispersion and polarisation properties of a HF can be particularly strongly influ-
enced by the cladding configuration, particularly when the hole-to-hole spacing is small.
Simply by scaling the dimensions of the features within the fibre profile, HEs can have
mode areas ranging over three orders of magnitude [61]. Fibres providing tight mode
confinement can be used as the basis for devices based on nonlinear effects '[65}, whereas
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large mode area fibres allow high power operation (66, 67]. The large refractive in-
dex contrast also allows a new generation of high-precision measurements in optical
frequency metrology [68]. In addition, these fibres can exhibit properties not readily at-
tainable in conventional fibres, including the already mentioned broadband single-mode
guidance [64], anomalous dispersion at wavelengths down to 550nm [69], novel fibre de-
vices [70] and sensors [71] (based on evanescent fleld and a high percentage of field in

the holes).

Also unlike conventional fibres, HF can be made of a single material, typically silica,
although recently chalcogenide glasses [72] and polymers [73] have also been used. The
core region can be doped either to help the guidance or to make use of the dopant
properties. Both Yb3* [74] and Ge [60] doped HFs have been reported, the former to

realise an active device (laser), the latter to allow grating structures to be written in the

core region.

Another characteristic not yet fully exploited, mainly for technology reasons, is the
filling of the holes. For HF structures where the mode significantly overlaps with the
holes-cladding region, filling the holes with a highly nonlinear material could enhance
the effective nonlinearity of the fibre [65]. Active materials, such as polymers, have been
infused into the relatively large air-holes of a silica doped-core HF, realising tunable
i tured fibre devices [70].
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4.2.1 Dispersion

A series of light pulses are used to transmit information in optical fibre systems. The fibre
dispersion, when different from zero, induces a temporal broadening of the pulses which
propagate along the fibre. This is due to the fact that the various frequency components
of the signal propagating along the fibre have different propagation velocities within the

physical medium (i.e. the fibre).

Physically, four mechanisms contribute to the total dispersion of an optical fibre:

1. multimode dispersion: present in multimode fibres only and due to the different

group velocity of different modes

2. polarisation mode dispersion: present in birefringent fibres and due to the different

group velocity of the two orthogonally polarised modes

3. material dispersion: caused by the frequency dependence of the refractive index of

the material that the fibre is made of

4. waveguide dispersion: caused by the frequency dependent confinement of light in

the waveguide structure, as explained at the beginning of Section 4.2.
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In this thesis, only the dispersion of the HF fundamental mode has been calculated, thus
the first mechanism has not been considered. Also, the dispersion of the fundamental
mode of hexagonal lattice HF's is not affected by polarisation mode dispersion because
the fundamental mode of the idealised structure is degenerate, as illustrated in detail in
Section 4.2.5. Therefore the dispersion values present in the thesis are due to material
and waveguide dispersions only. The material dispersion can be evaluated by using the
Sellmeier equation [75] which defines the refractive index of the material as a function
of the wavelength. Note that by using the Sellmeier equation, the material dispersion
can be included in the calculation of the effective index of the mode of the fibre from
the outset, and this has been done for all the calculations concerning HF structures.

Mathematically, the derivation of the fibre dispersion begins from the expansion of the
mode propagation constant § in a Taylor series about the centre frequency wp [75]:

Blw) = neff(w)% = o + Bi{w —wo) + %ﬁg(w —wg)+ - (4.2)

where ngr(w) is the frequency dependent effective index, c is the velocity of light and

dm g3
5m—_—(—m) for m=0,1,2,.... (4.3)
dw wW=wg

N\

The first three terms of the Taylor series can be related to three physical quantities.

The phase velocity vy of the pulse carrier wave at the centre frequency is expressed by:

wo ,
vy = — 4.4
F= % (4.4)

whereas the pulse envelop moves at the group velocity v, which is defined as
dw -1 < dne ff) -1 N
Vo= | == =067 =cC Nepr +w . 4.5
9 ( dﬁ)wzwo 1 b dw (4.3)

Finally, the dispersion D is defined by
_dB 2mc, /\d2neff

D= =">h="Cp (46)

where the last expression is the one that has been used in the thesis.

4.2.2 Nonlinear properties

Nonlinear effects in fibre can be used for a wide range of optical processing applications
in telecommunications and beyond. Consequently, there is great interest in the develop-
ment of fibres with high values of effective nonlinearity per unit length in order to reduce
device lengths and the associated optical power requirements for fibre-based nonlinear

optical devices.
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There are three main classes of nonlinear effects observed in fibres, stimulated Brillouin
scattering, stimulated Raman scattering, and optical Kerr effects [75]. The optical Kerr
effect, which is the refractive index change that occurs due to high light intensities, leads
to various secondary effects, such as self phase modulation, cross-phase modulation and
four-wave mixing [75]. Examples include optical regeneration, wavelength conversion,

optical demultiplexing, and Raman amplification.

Even though silica is not intrinsically a highly nonlinear material, its nonlinear prop-
erties can be utilised in silica optical fibres if high light intensities are guided within

the core [75]. A commonly used measure of the nonlinearity of a fibre is the effective

nonlinearity v [75], given by

2r ng
= — 4,
Ll wrye (4.7)

where ns is the nonlinear coefficient of the material, Ayt is the effective mode area and
X the optical wavelength. For example standard SMF28 fibre has an Az of ~ QO/,um2
at 1550 nm, and since the ng of silica is ~ 2.2 X 10720 m?/W, v is of the order of
1 W—lkm~!. One way in which the nonlinearity of conventional silica fibres can be
enhanced is to reduce the effective mode area by producing fibres with a smaller core
diameter and higher index contrast. An higher index contrast corresponds to a larger
numerical aperture, defined as NA = /n?, — nzl where ng, are ng the refractive index

ad hxr manAifs

of the fibre core and cladding, respectively. Okuno et al. [76] showed that by modifying
as 20 W—km~! can be achieved. In this example, the addition of Ge to the fibre core
increases ng to ~ 5.4 X 10720 m? /W within the core and increases ne, to a value equal to
~ 1.03 of the refractive index of silica resulting in a larger NA of 0.37. Enhancing both
NA and ns reduces the effective mode area to ~ 11 pm?. Using this enhanced NA and
na, and assuming for simplicity a step-index fibre design, the largest v that is possible is
~ 26 Wlkm™1 (corresponding to a core diameter of 2.4 prn and an effective mode area
of ~ 8 um?). To my knowledge, this result represents the largest NA and « reported
for a small-core conventional fibre. When even smaller core diameters are used, this

NA becomes insufficient to confine the mode, and so the effective mode area increases,

the composition of & silica fibre and reducing the core diameter, values of v as large

leading to smaller values of 7.

Silica holey fibres (HFs) can have a significantly larger NA than conventional silica fibre
types because the cladding region can be mostly comprised of air. An example is shown
in Figure 4.3. Making use of the large NA possible in these fibres, HFs can offer tighter
mode confinement than conventional fibres. Hence HFs are attractive for nonlinear fibre
devices [65]. Effective mode areas as small as Agpy ~ 2.8 pm? have been achieved at
1550 nm corresponding to v ~ 60 = 10 W™ km™" (Figure 6.1(b)) [77). This is the best
result in terms of nonlinearity reported to date in a silica fibre. In Section 6.3 it will be
shown that pure silica HFs can be designed to have Ass at least as small as 1.7 pm? at
1550 nm. Hence nonlinearities as high as y ~ 52 W™'km ™! are practical in these fibres,

more than 50 times higher than in standard telecommunications fibre and 2 times higher
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than the large NA conventional fibres described above.
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FIGURE 4.3: Typical small core silica holey fibre with 12 rings of regularly spaced air
holes (only the central region is shown).

The mode propagating in a HF interacts both with glass and the air in the holes. How-
ever, air has a low nonlinearity (ns ~ 3 x 1072 m?W~1 [78]), three orders of magnitude
smaller than that of silica. The nonlinear effects in HFs are induced by the portion
of the field located in the glass. In order to properly account for the overlap of the
field with materials with different nonlinear characteristics, the usual definition of the

effective nonlinear mode area A given by Agrawal [75] as
/ % 7 2
Agrawal __ {ff Ey(z, y) - B} (:C, y)dmay} (4 8)
= > .
Bl y) - B ()] dedy

has been modified here to give:

na [[f Eelz,y) - Bf (e, y)dady]” (49)
[[ 7a(z,y) [Ei(z,y) - Bf (z,y)]* dzdy

Aejf =

where 7ig(z, ) is the nonlinear-index coefficient of the material at position (z, y), and
ng is the nonlinear-index coefficient of the core region (to be used with v = 27“ A’:if .
In a single-material HF with air holes, this expression removes the contribution to the
predicted mode area, and hence to the effective nonlinearity, of any field located in

the holes. Note that this is essential when the percentage of the field in the holes is

significant, as for small-core HF structures.

Although these results indicate that HFs can dramatically enhance the achievable v,
the successful application of these fibres has been limited to date by loss, which is a
consequence of the fact that these fibres are in an early stage of their development. This

issue is discussed in the next section.
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4.2.3 Confinement loss

The loss in HFs occurs for a variety of reasons: intrinsic material absorption, additional
losses arising during the fabrication process (water contamination, absorption due to
impurities, scattering, etc.) and confinement loss [79]. Fabrication-related losses can be
reduced by careful optimisation of the fabrication process, as shown recently by NTT
(the Nippon Telegraph & Telephone company) in Ref. [80], which reports a loss of 1
dB/km, and BlazePhotonics in Ref. [81], which reports a loss of 0.58 dB/km. The latter
represents the lowest loss achieved so far in a HF. Confinement loss is an additional form
of loss that occurs in single material HFs. In single-material HF's the core has the same
refractive index as the material beyond the finite holey cladding region, and so every
propagating mode is therefore intrinsically leaky. It has been proven that increasing
the number of rings of air holes that surround the solid core, and thereby increasing
the physical separation between the solid core and the external environment, reduces
the confinement loss [79]. Thus confinement loss is determined by the geometry of the
structure, and in Section 6.2 it is shown that it can contribute significantly to the loss
for these fibres, unless care is taken with the fibre design. The propagation constant 8
of leaky modes is complex and the imaginary part of the propagation constant can be
used to estimate the attenuation of the mode. The power loss at a position z along the
fibre axis is given by P(z) = P(0)e~2"™8} where P(0) is the initial modal power in the
core [30].

4.2.4 Polarisation properties

In [82] one of the first full-vector calculations of the fundamental mode of HF's is pre-
sented. The fundamental mode is regarded as a polarisation-doublet, formed by two
orthogonal states of almost-well-defined linear polarisation. The first higher order mode
also appears as a multiplet, actually formed by four modes that are almost degenerate
and that resemble the TEgl, TMol and HEs; (2-degenerate) modes of a conventional
step-index fibre. Calculations of the HF spectrum show a tendency of the HF modes to
be approximately arranged according to the multiplets of a step-index fibre. However,
the paper also states that for the fundamental mode polarisation doublet, the two di-
rections are not equivalent for the triangular distribution of holes characterising HF -(or
hexagonal lattice). As a result of this asymmetry, there is a breaking of the degeneracy
of the fundamental polarisation doublet. Hence this paper predicts that idealised HFs

with hexagonal hole arrangements exhibit form birefringence.

This form birefringence has been proved to be false in [83], according to an analysis of
the fibre modes based on the group representation theory Mclsaac [84] (this analysis
is illustrated in detail in the following section). In the same paper [83], the multipole
method has been applied to perform calculation of the HF modes and confirms the
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absence of form birefringence. Recall that, as shown in Section 4.3 the multipole method
also eliminates the false birefringence introduced by other methods which are based on
a cartesian grid, as is the one used in [82]. The following section explains the proper

theoretical symmetry classification of the hexagonal-lattice HF modes.

4.2.5 Symmetry and degeneracy

The group representation theory has been applied to study the symmetry-induced modal
characteristics of uniform waveguides by Mclsaac [84] in 1975. The hexagonal lattice
HF has 6-fold rotational symmetry and at least one reflection plane, thus it must have
6-reflection planes and therefore belongs to the Cg, group. For a waveguide with Cp,
symmetry, there are n + 1 (n odd) or n + 2 (n even) distinct mode classes. The modes
in each class are either 2-fold degenerate, or non-degenerate. Any non-degenerate mode
must exhibit the full symmetry of the structure, and any degenerate pair of modes must
together reflect that symmetry. For a given mode class, a minimum waveguide sector can
be assigned, which is the smallest sector sufficient to determine the fields of all the modes
of the mode class, by applying the appropriate boundary conditions at either edge of the
sector. For a Cg, waveguide, there are eight mode classes: four classes are degenerate and
four form two degenerate pairs. Figure 4.4 shows the minimum sectors for the eight mode
classes. The boundary lines of the minimum waveguide sector lie along one of the planes
of reflection and on the sector boundaries either the tangential electric field (solid line) or
the tangential magnetic field (dashed line) is zero. This proves that the idealised 6-fold
symmetric fibre profiles are not birefringent [83]. Note that the modes of any waveguide
with rotational symmetry of order n > 2 either exhibit the full waveguide symmetry
and are non-degenerate or occur in degenerate pairs that support this symmetry only
in combination. Thus, such symmetric waveguides are not birefringent, and only the

intentional breaking of the symmetry does lead to birefringence [85, 86].

p=3  p=4 =8

FIGURE 4.4: Minimum waveguide sectors for waveguides with symmetry Cs,. The
non-degenerate mode classes, defined on a 7/6 sector, are p = 1,2,7 and 8, whereas
the 2-fold degenerate classes, defined on a 7/2 sector, are p = 3,4 and p = 5,6. Solid
and dashed lines represent zero tangential electric and magnetic field, respectively.
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4.3 Modelling of MOFs

Several techniques have been adapted or developed to model the optical properties
of MOFs. Although the high refractive index contrast between the glass and air re-
quires full-vector methods, a qualitative description of the operation can be given by a
scalar method based on analysis of the effective index of the cladding (effective index
method). However, the high index contrast between air and glass and the presence of
sub-wavelength details in the structure require a more complex method to be used to
accurately predict the MOF optical properties. In the following, a wide range of tech-
niques will be reviewed highlighting their applicability to model the fibre properties and
their intrinsic limitations. Typically, many techniques complement one another and can
be used in combination to have a complete picture of the MOF optical properties.

4.3.1 Effective index method

The effective index method has been first proposed and applied to the first working
example of HF by Birks et al. [64]. The index-guidance of the HF is based on a
modified total internal reflection. Thus, the HF can be equivalent to a conventional
fibre with the refractive index of the core equal to that of the solid core region 7n.o,
while the refractive index of the cladding must be properly defined according to the
hole pattern. In order to do that, the fundamental mode of the infinite photonic crystal
cladding when the core is absent, also named fundamental space-filling mode (FSM), is
considered. Its propagation constant Spsy is the maximum 3 allowed in the cladding.
Consequently the effective index of the holey-cladding can be defined as n. s = Brsm/k,
where k£ = 2m/A. Similarly to conventional fibres, the propagation constant § of any
propagating mode of the HF is therefore ascertained to be kne, > 8 > OBrsm. The
propagation constant of the FSM is determined by solving the scalar-wave equation in
a cell region centred on one of the holes of the photonic crystal lattice. For a hexagonal
lattice HF, the cell is hexagonal and has a diameter equal to A. Note that for the sake
of simplicity, the hexagonal cell is then approximated to a circular one, a reasonable
approximation if the holes are not too large [64]. This limits the accuracy of the results
predicted by this approach in case of large holes. Note though that for structures with
a significantly large air-filling fraction, the HF fibre can be considered equivalent to an

air suspended rod [69].

Once the effective refractive index of the cladding n.yss is determined as a function of
the optical wavelength, the study of the HF proceeds similarly to that of a conventional
fibre. Note that, as mentioned above, the effective refractive index of the cladding has a

strong dependance on the optical wavelength. The V-parameter, expressed by equation
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(4.1) for conventional fibres, is more appropriately defined by Birks et al. [64] as

2m
Vesr = Ay nZ =N (4.10)

where the core radius is taken to be equal to A. After the Birks et al. [64] paper,
there were several discussions about the proper definition of the HF core radius. For
example for the structure analysed in [87], the core radius is approximately equal to
0.62A to 0.63A, in [88] it is taken to be 0.64A, and in [89] it is claimed to be 0.625A.
As a matter of fact, the coefficient that multiplies A should be fixed according to the
specific case. A comparison with predictions from other models can eventually help
in the definition of this coefficient, reducing however the usefulness of this approach.
The V-parameter is used to predict whether a HF structure is single-mode or not.
Approximated dispersion and bending analysis has also been performed by means of
the effective index method [90]. However, all the properties that strongly depend on
the exact HF design, such as dispersion, birefringence or other polarisation properties,

cannot be accurately predicted.

4.3.2 Plane wave technique

To analyse the modal properties of photonic bandgap guiding fibres it is necessary to
calculate the photonic bandgaps of the full periodic structure and the modes allowed
within the photonic bandgap by the defect(s). The plane wave method is the first method
proposed to find a photonic bandgap in & photonic crystal, with an approach analogous
to the finding of electronic bandgaps in semiconductor crystals [91]. For a full periodic
structure, according to Bloch’s theorem, the solution to the full-vector wave equation of
the magnetic field can be written as a plane wave modulated by a periodic function with
the same periodicity as the structure (Bloch function). The magnetic field is therefore

expanded in a sum of plane waves such as

Hy =Y hx-gexp(iG -r) (4.11)
G

where k represents the wave propagation vector of the mode and G is a lattice vector in
the reciprocal space, describing the periodic structure. The position dependent dielectric

constant £(r) is also expressed as a Fourier series expansion:

1 .
5—(7'_) = Z; Vo exp(iG - r) (4.12)

where ) )
Vo = 7 / e exp(—iG - r)dr (4.13)
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and A, is the area of the smallest region used to represent the periodic structure (unit
cell). With these assumptions, the Maxwell’s equations result in an eigenvalue equation
where for a fixed wave vector k the frequencies of the allowed modes are found as
eigenvalues [92]. In order to account for the presence of a defect in the otherwise periodic
structure, a supercell with a periodically repeated defect must be considered instead of
the unit cell. This approximation works if the supercell is large enough to uncouple
the defects [93]. However, to achieve the required accufacy, the number of plane waves
that must be retained in the expansion is of the order of 10 thousand or more. The
inefficiency is mainly due to not taking advantage of the localisation of guided modes
(contrary to the orthogonal functions techniques). This results in very large matrices
and difficulties in the selection of the physically relevant eigenvalues. For example the
study of a HF with elliptical holes performed in [94] requires 2'® basis functions and
results in an accuracy of ~ #+0.0003 in the effective index. Another inefficiency of
the approach is that the eigenvalues produce the frequency of the mode for a specified
propagation constant. If the medium is dispersive the value of £ needs to be modified for
each frequency. Though simple to implement and use, this method has the draw back
that the time taken for the calculation scales as the cube of the number of plane waves
used and so rapidly becomes impractical as the complexity of the problem increases.
Moreover, the plane wave expansion is based on a cartesian coordinate system, and if
t00 few basis are retained, false-birefringence can be introduced in structures that have
more than 2-fold symmetry and thus are not birefringent (see Section 4.2.5). Finally, the
supercell imposes a periodicity to the structure of holes, therefore the modes found by
this approach are bound and the confinement loss cannot be predicted (see Section 4.2.3).
Despite these deficiencies, this technique has been widely used and applied to both kinds
of MOF. It can also be used to model arbitrary HF profiles.

4.3.3 Beam propagation method (BPM)

The beam propagation method (BPM) uses a simple numerical algorithm to simulate
the propagation of a coherent beam of light along a fibre [95]. An initial field profile is
propagated using classical diffraction formulas for a short distance along the propagation
axis and is then sent through a phase/amplitude mask. The properties of the mask are
defined according to the fibre profile on the transverse axis. The process is repeated
until one or more excited modes are stabilised. The medium between two masks is
homogeneous, isotropic and has the average refractive index of the fibre. The modes are
not solved explicitly and there is no guarantee that all the modes are found. This can
be computationally inefficient, but any arbitrary fibre profile can be modelled by BPM.
The BPM does not require a periodic arrangement of holes, and in the realistic case of
a finite number of holes it can therefore predict the confinement loss. This results from
the observation of the attenuation of the fields as the mode propagates. However, if the

mode is slightly leaky, it must propagate for a long distance before the attenuation is
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measurable. The BPM has been successfully applied to investigate the cladding modes of
a Ge-doped core HF with a Bragg grating written in the fibre core [60] and to investigate

the modes and the dispersive properties of a silica HF [96].

The imaginary-distance beam propagation method (ID-BPM) is a variation of the BPM.
The conventional BPM is applied to the imaginary axis of the paraxial wave equation
and gives the fundamental mode of a lossy optical waveguide and its complex effective
index quite efficiently [97]. If the propagation distance is along an imaginary axis (i.e.
z is substituted with iz), the phase oscillations turn into gain (i.e. eif% is substituted
with e7%) and the fundamental mode, characterised by the largest propagation constant,
is amplified the most. With optimised parameter sets, and especially with very large
imaginary distances per propagation step, the fundamental mode can be determined
within a few ID-BPM steps. The conventional BPM only obtains the fundamental mode
if the structure is single-mode, and generally it takes longer to converge [98]. Higher order
modes can be obtained by means of the ID-BPM using an orthogonalisation procedure
to subtract contributions from lower order modes while performing the propagation [98].

4.3.4 Direct numerical analysis techniques

ll-vector models for MOF's are based on an indirect, modal decomposition ap-
proach using sinusoidal functions (plane wave expansion method) [99], Hermite-Gaussian
functions (localised function method) [61, 100], or cylindrical functions (multipole method)
[101]. The first direct numerical analysis applied to HFs is the finite element method
(FEM) by Brechet et al. [88], followed by the finite-difference time-domain method [102].

Direct approaches can treat arbitrarily shaped and arbitrarily arranged holes.

4.3.4.1 Finite element method (FEM)

According to the finite element method (FEM) [88], the classical Maxwell differential
equations must be solved for a large set of properly chosen elementary subspaces, taking
into account the condition of continuity of the fields. The fibre cross-section is divided in
distinct homogeneous subspaces, resulting in a mesh of simple finite elements. To accu-
rately model the fields, the subspaces closest to the fibre core are typically the smallest
in dimension. Maxwell equations are then discretised for each element, resulting in a
set of elementary matrices, that properly combined produce a global matrix system for
the entire structure. Taking into account the condition of continuity of the fields at
the boundary of each subspdce, the effective index and the distribution of amplitudes
and polarisations of the modes are numerically computed. Given the symmetries of
the modes of a hexagonal lattice HF, it is possible to study only a quarter of the fibre
profile, thus reducing the computational time required for the calculation. According to
the mode, different boundaries conditions are imposed at the boundary of the quarter
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region. The cladding effective index of the fundamental space-filling mode nrsy can also
be determined by applying the FEM to an elementary piece of the cladding that acts
like a boundless propagation medium. For the calculation of npsy;, contrary to the effec-
tive index method [64], this approach does not require any approximation. Single-mode
behaviour, group velocity dispersion [88], modal birefringence [103] and confinement
losses [104] have been analysed by means of the FEM. The technique is relatively ineffi-
cient computationally because the matrix size is proportional to the number of nodes and
degrees of freedom. The choice of the subspace features is one of the critical parameters.
Curvilinear subspaces can model curved boundaries with more accuracy and improve
the computational efficiency [103]. The accuracy of the FEM depends also on the mesh
discretisation. Recently a full-vectorial imaginary-distance beam propagation method
based on a finite element scheme has been newly formulated and applied to the study
of confinement loss in HFs [105]. It is possible to use nonuniform finite element meshes,
and these meshes can be adaptively updated depending on the optical field distributions
so that computational efficiency can be improved without degrading numerical accuracy.

Moreover it produces the complex effective index of the modes, thus confinement loss

can be readily predicted.

4.3.4.2 Finite-difference time-domain method (FDTD)

Expanding the fields on a discrete real-space lattice results in equations that can be
rearranged into the form of a transfer matrix which relates the fields in one layer of the
lattice to the fields in the next. This method scales not as the cube of the number of
real space points (as the plane wave method), but rather as the square. The optimum
scaling is a linear scaling with the system size and it is possible to achieve this by
discretising Maxwell’s equations not only spatially but also in the time domain. This
technique is known as either the finite difference time domain method (FDTD) or the
Order(N) method. Both time and memory requirements scale linearly with the system
size [106]. The FDTD has been applied to the analysis of splice loss in HFs [107],
tapered HFs [102] and dispersive properties of HFs [108]. It is possible to apply open
boundary conditions in the FD methods and model leakage loss of guided modes, though

complicated formulation and iterations are needed [108].

4.3.5 Orthogonal functions technique

Techniques like the plane wave method, first introduced to study perfectly periodical
photonic crystals, deal with HFs (photonic crystal with defects) considering supercells
and thus are very inefficient in the number of terms retained in the field expansions.
Guided modes in HF's are localised in the fibre core. Thus modelling the field as a sum
of functions localised near the core significantly reduces the number of functions that are
needed to accurately represent the mode. The first scalar localised functions technique
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was introduced by Mogilevtsev et al. [109] using orthogonal Hermite-Gaussian functions.
The full vector version of the technique is presented in [100]. The Maxwell equations are
reformulated as an eigenvalue problem for the propagation constant of the mode. The
expansion coefficients contain overlap integrals between the localised functions and the
distribution of refractive index of the fibre profile. The fibre profile can be represented
as the sum of the perfectly periodic part (e.g. as a discrete Fourier series) and the part
corresponding to the localised defect, allowing the integrals to be performed analytically.
In [100] a second solution is proposed, that is to define a supercell, thus imposing a
periodicity to the entire profile. The refractive index (¢ and loge in the paper) is
therefore expanded in discrete Fourier series and the overlap integrals are performed

analytically.

Another version of this approach is.the hybrid approach presented in a scalar and full
vector version by Monro et al. in [61] and [110], respectively. The hybrid approach
describes the lattice of air holes with periodic functions (plane waves), while both the
central index defect and the electric field are decomposed into localised Hermite-Gaussian
functions [61]. This results in a very efficient method because different quantities are
decomposed using functions chosen ad hoc, thus the number of terms retained in each
expansion is relatively small. The coefficients of the decompositions are evaluated per-
forming overlap integrals based on the decomposition functions. An advantage of using
Hermite-Gaussians as localised functions is that their overlap integrals are analytically
solvable, thus making the technique more efficient. For the fundamental mode of ide-
alised periodic structures, only even order Hermite polynomials need to be used in the
expansions. For HFs with asymmetric profiles or higher-order modes, both odd and even
functions need to be included [111]. For more complex profiles, describing the localised
core separately from air holes is no more advantageous, and the best combination of
efficiency and accuracy is obtained by describing the entire refractive index distribution
using a plane-wave expansion, using localised functions only for the modal fields [110].
The hybrid approach has been applied to HFs and used to model their dispersive prop-
erties and effective areas [61, 65], the effective area of and the role of interstitial holes in
large air fraction HF's [110], HF's with random cladding distribution of the air holes [57],
bend loss in large-mode HF's [67] and design requirements for effective field devices [71].
However, this approach cannot be accurate unless the refractive index is well repre-
sented. It can be applied to arbitrary fibre profile, but it cannot predict the confinement

loss.

4.3.6 Multipole method

The multipole method is a multiple scattering technique time applied to the study of
confinement loss in finite MOF's for the first time in [79]. The method allows confinement

loss predictions because it does not use periodic boundary conditions and produces the -
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complex propagation constant. It can be applied to both holey and photonic bandgap
fibres [112], with the only requirement of circular (at most elliptical) non-overlapping
holes. All the previous techniques are based on a cartesian grid and typically predict
a small degree of birefringence, that can be reduced (but not eliminated) by using a
finer grid, even in the case of non-birefringent structures. The multipole method instead
makes use of polar coordinate systems, thus the birefringence can be correctly calcu-
lated [83]. Moreover, the use of polar coordinate systems centred in each holes allows
the method to be highly efficient since few terms are retained in the field expansions.
Dispersive properties of HFs [113], polymer MOF's [73], modal cutoff in MOFs [114] and
silica MOF with inclusions of a higher refractive index than silica [115] have also been
studied by means of the multipole method. More details about the multipole method
and its implementation will be given in Chapter 5. Here a general review of scattering

techniques is presented.

Surprising or not, one of the earliest presentations of the basic features of multiple-
scattering theory was given in the Avatamsaka Sutra (The Flower Ornament Scripture),
an Indian Buddhist doctrine previous to the seventh century A.D., with the allegory of
the Indra’s Net. In the text the Indra’s Net is described as: “Far away in the heavenly
abode of the great god Indra, there is a wonderful net which has been hung by some
cunning artificer in such a manner that it stretches out infinitely in all directions. In
accordance with the extravagant tastes of the deities, the artificer has hung a single
glittering jewel in each eye of the net, and since the net itself is infinite in dimension,
the jewels are infinite in number. There hang the jewels, glittering like stars of the first
magnitude, a wonderful sight to behold. If we now arbitrarily select one of the jewels
for inspection and look closely at it, we will discover that in its polished surface there
are reflected all the other jewels in the net, infinite in number. Not only that, but each
of the jewels reflected in this one jewel is also reflecting all other jewels, so that there is

an infinite reflecting process occurring” [116].

From a more scientific point of view, the question is how the infinite (and multiple)
reflections that take place at each scatterer can be related in order to find a solution
of the problem. The multiple scattering method has its origin in the works of Lord
Rayleigh [117]. In this paper he developed a method for the solution of electrostatic
problems involving lattices of spheres or arrays of cylinders. From that, methods in
which field quantities are expanded in multipole expansions are called Rayleigh methods.
The inger i
of any scatterer to fields radiated by scatterers and external sources (also called Rayleigh
identity). Originally applied to electrostatic problems for periodic systems, the technique

has been adapted to dynamic problems involving both finite and periodic systems.

enious idea is to apply a field identity that relates the regular field in the vicinit

1
(9t

The multipole method has been applied to finite systems with applications in fiber
optics since 1973 [118]. Both Wijngaard [118] and, more recently, Lo et al. [119] have
considered the propagation of light along several parallel dielectric cylinders embedded in
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a background uniform material. The applications involved were couplers and multicore
optical fibres, thus at least one of the cylinders must have a refractive index larger than
that of the background material, so that the models accounted for bound modes only.
The findings of these and other publications [120, 121] allow the formulation by White
et al. [101] of the multipole method which accounts for the propagation of leaky modes.

4.3.7 Fourier decomposition algorithm

Recently, a new technique that can model leaky (and bound) modes of arbitrary profile
MOF's has been developed. The scalar algorithm is presented in [122] and the full vector
in [123]. The Maxwell equation is reduced to an eigenvalue equation for the transverse
magnetic field, so that the mode effective index appears in the eigenvalue. The algorithm
is based on a polar-coordinate Fourier decomposition method with adjustable boundary
conditions (ABC-FDM), capable of accurately determining the outward radiating fields.
The MOF structure is enclosed in a circular computational domain. Qutside the compu-
tational domain fields are expanded using modified Bessel functions of the second kind,
that results in evanescent fields for bound modes and outward radiating fields for leaky
modes. This expansion depends on the effective index only. Inside the domain fields are
expanded using a set of complete basis functions, chosen to be a modified Fourier series
for computational efficiency reasons. The Fourier series is modified by two adjustable
parameters that allow any boundary condition to be satisfied. After setting an initial
guess of the value of the effective index, the external field is determined and provides
the boundary conditions for the internal field. A mode solver can find the internal field
that satisfies these boundary conditions and generates an improved estimate of the ef-
fective index. The process is iterated using the new effective index value until required
accuracy of the solution is reached. The Maxwell eigenvalue equation contains several
inner products. Inner products that depend on basis functions only can be readily solved
(and pre-tabulated) since they contain simple trigonometric functions. Inner products
that depend on the structure can be done analytically if the holes are in the shape of
annular sectors, otherwise they can be done numerically. However, the number of terms
retained in the field expansions is small, thus the solution of the method is very effi-
cient even in the case of numerically solved integrals. This algorithm has been applied
to predict the confinement loss of HF structures with holes in the shape of an annular
sector [122], circular and elliptical holes [123]. The use of a polar coordinate system
allows the birefringence to be properly calculated, as already shown for elliptical holes
HFs [123].
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4.4 Conclusion

Holey fibres can have a significantly larger numerical aperture than conventional fibre
types because the cladding region can be mostly comprised of air. When this is combined
with a wavelength-scale core, HF's can provide tight mode confinement (i.e. small values
of the effective mode area, A.fr). In such fibres, high light intensities are guided within
the core. Thus even though silica is not intrinsically a highly nonlinear material [75],
silica holey fibres can offer high effective fibre nonlinearities  (see also Section 4.2.2).
However, the successful application of these small-core HFs has been limited to date
by loss, partly due to fabrication related losses, partly to confinement losses (see also
Section 4.2.3) that can significantly affect the propagation of light when the scale struc-
tures is reduced. In the following chapters a study of the properties and limitations of
these fibres is presented. The study is performed by means of the multipole method and
Chapter 5 highlights the basic principles of the method and the way it has been imple-
mented and used. Chapter 6 contains the study of confinement loss, effective area and
dispersive properties of small-core HFs, whereas Chapter 7 presents the study of their
modal properties, in particular of their polarisation properties. Finally Chapter 8 deals
with the application of the multipole method to HF cases exempted from the small-core
regime, highlighting the versatility of this method.



Chapter 5

Multipole method

5.1 Method outline

The multipole method is a multiple scattering technique, such that every inclusion part
of the system is effectively regarded as a scatterer of light. As already mentioned in
Section 4.3.6, this method was applied for the first time to the study of confinement
loss in finite microstructured optical fibres in [79]. It has previously been successfully
applied to two classes of microstructured optical fibres, both index-guiding HFs [79]
and photonic bandgap fibres [112], to study their confinement loss, dispersive properties
and modal cut-offs. The multipole method for microstructured optical fibres has been
implemented as a full-vector modal approach, so that it can accurately represent the
large refractive-index contrast present in MOFs. Here the physical and mathematical
insight of the approach is outlined, according to the formulation given in White et al.

[101] and Kuhlmey et al. [113].

The method can be applied to any microstructured optical fibre with an arbitrary ar-
rangement of non-overlapping and circular inclusions or cylinders, as represented in
Figure 5.1(a). These restrictions are imposed by the use of the Graf’s addition theorem
in the implementation of the model, as further discussed in section 5.4. The cylinders
(indexed by !) are finite in number (N,) and can have diameter d; and refractive-index n;.
The inclusions are embedded in a uniform material of arbitrary refractive index n.. The
arrangement of cylinders is enclosed within a circular jacket of arbitrary refractive-index
nj. An arbitrary refractive index means that also complex values can be set for any part
of the MOF structure, allowing for material gain or absorption to be considered. The
jacket that surrounds the arrangement of cylinders has been introduced for a number
of reasons. For the method to be mathematically rigourous, the fields should be zero at
* infinity in order to ensure the square integrability of the fields on the transverse plane,
and this is enforced by the jacket. In addition, using a complex refractive index for the
jacket allows the confinement loss to be estimated because the jacket absorbs the por-
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tion of the mode that leaks. Hence this method produces complex values of the modal
propagation constants 3. Note that the choice of jacket radius r; and its imaginary
refractive index S{ns} should guarantee that the result of the calculation is insensitive
to them. Thus the jacket needs to be placed reasonably far from the microstructured

geometry and the its imaginary part needs to be small.

FIGURE 5.1: Schematic of the MOF geometry: (a) polar coordinate systems (in blue)
and (b) field contributions (red arrows) and annular regions of validity for the local
field expansions (dashed red lines) considered by the multipole method.

A physical picture of the multipole method is now given, followed by a brief summary
of the formulation (explained in detail in the next paragraphs). At the boundary of
each inclusion two different fields can be distinguished, the first transmitted through
the boundary from beyond it, the second reflected from the boundary itself and coming
from all the other inclusions. Therefore, even though no actual sources or sinks of
fields are present, the boundary of each inclusion in the microstructured optical fibre
is effectively a source of radiating fields. The problem is to find a relation between all
these fields that effectively results from multiple reflections at the boundaries of each
inclusion (scatterer). The essential idea of the multipole method, is to define a field
identity that relates the field incident on each inclusion to the fields scattered from all
the other inclusions; this identity is named Rayleigh Identity after Lord Rayleigh [117].

In summary, this method uses two different kinds of field expansions to represent the
electromagnetic field. The first kind of field expansion (local expansion) is valid just
ion and expresses the field components that are incident on the inclu-
sions and scattered away by the inclusions. The second kind of field expansion is valid
throughout the different parts of the structure (i.e. inside the inclusions, outside the
Jacket and throughout the host uniform material). The one that is valid throughout the
host uniform material (global expansion) is equal to the sum of all the field components
scattered away by all the inclusions. At the boundary of each inclusion, the electromag-

netic field must satisfy boundary conditions given by the Maxwell’s equations. A relation
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between the coefficients of expansions defined on the opposite side of a boundary can
therefore be found. A second relation between the coefficients is found by applying the
Rayleigh Identity. This finally results in a homogeneous system of algebraic equations
in one of the coefficients only. The system can be expressed in the form of a matrix
that depends on the propagation constant § of the mode propagating in the MOF. The
problem of finding modes propagating in the structure is therefore reduced to finding
the 8 that corresponds to a solution of the system.

The detailed mathematical formulation of the method is now presented. The coordinate
systems used to implement it are shown in blue in Figure 5.1(a). r = (r,0) is the
polar coordinate system of the jacket (global), while the polar coordinate system of
each cylinder (local) is r; = (7, 8;). The centre of each cylinder in the jacket coordinate
system is ¢;. Each mode propagating in the MOF is defined by the electric and magnetic
fields ‘

&(r,8,z,t) = E(r, )ed #z=b) (5.1a)
H(r,0,z,t) = H(r, §)el Bz« (5.1b)

where w is the free-space angular frequency, § the complex mode propagation constant
and the vectorial field are defined by E = (E,, E,, Eyp), H = (H,, H,, Hy). The longitu-
dinal components (E, and H,) of the electromagnetic field alone can be considered since
the transverse components (E,, Fy and H,, Hy) can be calculated from the longitudi-
nal via Maxwell equations [30], and these formulas are given in equations (5.32). The

longitudinal field of the mode propagating in the MOF satisfies the Helmholtz equation
(V2 + (k1)2)V =0 (5.2)

whereV=E,orV=H,and k| = \/k‘gnz — (32 is the transverse wavevector component
in the uniform material of refractive index n (ko = 27/, with free-space wavelength \).
Note that the equation is valid in a homogeneous region free of sources thus, according

to the field location, n equals the refractive index of the inclusions n;, the uniform host

material n, or the jacket n.

To efficiently describe the fields of inclusions with cylindrical geometry the basis sets that
yield cylindrical symmetry are chosen amongst all the possible basis sets that satisfies the
Helmholtz equation. These basis sets are cylindrical harmonic functions centred on each
inclusion and on the jacket. Considering now fields located in the uniform host material
only, in the proximity of the I*} cylinder, the longitudinal electric field is expanded in
terms of Bessel (J,,) and Hankel (H},} )) functions using the local cylindrical coordinate

centred at ¢ (position of the cylinder), resulting in the following local expansion [101]

o
Bu(r,0) = > [AﬁlJm(kirz>+B£ZH£§><kim} &mé (5.3)

m=—cC
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where k% = \/kgng——ﬁ? is the transverse wavevector component in the uniform host
material. The superscript El of the coefficients Ap, and By, corresponds to the electric
field of the I*® cylinder. The choice of functions used in the field expansion is justified
by the characteristic of the field component that each function represents. The Jp,
terms are finite everywhere and represent the part of the field £, incident on a cylinder
that comes from all the other cylinders. The Hp, ) terms, which diverge towards the
centre of the inclusion (i.e. the source) and die way with increasing distance from the
source, represent the part of the field propagating away from the cylinder boundary. The
local expansion (5.3) for each cylinder is a Fourier-Bessel expansion that satisfies the
homogeneous Helmholtz equation (5.2) valid in a homogeneous region free of sources.
Thus the local expansion is valid in an annular region around the cylinder that extends
to the perimeter of the nearest cylinder, as shown by the dashed red line in Figure 5.1(b).
Note that if the inclusions were overlapping each other, this annular region could not be
defined because the region around the inclusion was not homogeneous. Thus, this also
set the requirements of non-overlapping inclusions. A similar expansion can be written

for the jacket as

co
B(r6)= Y [AE,(k5r) + BEHD ()| e (5.4
m=—o0
valid in an annular region inside the jacket, the region that extends from the jacket to
the perimeter of the nearest inclusion, as shown by the dashed red line in Figure 5.1(b).

The H, T(n) terms represent outgoing fields from all the inclusions, and the Jm terms waves

that are reflected back towards the centre of the jacket from the jacket boundary.

To describe the field throughout the uniform host material, in which the inclusions are
located, a global expansion needs to be introduced. According to Wijngaard [118], the
field at any point within a material can be represented as superposition of outgoing waves
from all source bodies within the material (i.e. all the inclusions and the jacket) [112].

This can be expressed in the form:

N¢ co oo
E(r,6)=Y > BEHD(kr)e™ + ST AR (k)™ (5.5)
l=1 m=—00 m=—0

This global expansion is valid throughout the uniform host material (i.e. everywhere
apart from the inclusions and the jacket, that act as sources) and demonstrations of

(1)

re given in [101, 119]. The expansion (5.5) contains outgoing waves (Hm

Il Lia (AU Ly 1aJ ). 1L

terms) from each cylinder (superscript !) and waves (Jm term) reflected back towards
the centre of the jacket from the jacket boundary (superscript 0). The longitudinal
component of the magnetic field is expanded using the same approach as for the electric
field but with different expansion coefficients, labelled with the superscript H instead of
E (ie. AHl BHL AHO and BHO instead of AY, B, etc.).

The local expansion for the field in the vicinity of each cylinder needs to be equated
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with the global expansion for consistency, resulting in the following relation:

[o o] Nc X0 oo
ST AR (k)™ =" S BRI HD (kEr)e ™ + > AR (k)™
m=—00 j;l m=—o0 M=—00
G

(5.6)
where the term > Bﬁng)(kjrl)eimgl, which is present in both expansions, cancels in
(5.6). This relation is thus the mathematical expression of the Rayleigh Identity [117]
described earlier. This expression ensures that the Jp, (incident) parts of the field near
cylinder 1 (AE) result from the HY fields radiated (BE7) from all the other cylinders
(4 # 1) and from the Jp, fields back-reflected by the jacket (AE®). Indeed, as shown by
the red lines in Figure 5.1, the field radiated from the other cylinders can either arrive
directly on the cylinder I (line b) or via back-reflection with the jacket (lines a and c).
Note that the component related to line a, that is the outgoing H,g) fields radiated
{Bﬁj ) radiated from all the cylinders j towards the jacket, does not explicitly appear in
this equation (5.6). In the vicinity of the jacket, the field contributions approaching the
jacket (from the inside) are given by the HY terms (BE9) of the jacket local expansion
(5.4), and must therefore be equal to the sum of the outgoing fields from all the cylinders,

as defined by the following equation

0 N, o

_— PaTal IZAY . n L e 7 &R % Aana ) . N

Y BEHP K ™ =Y S BEHD (Rm)e ™. (5.7)
m=—00 =1 m=—00

The c¥lindrical harmonic functions on the left hand side of equation (5.6) are expressed
in the local coordinate system of the inclusion !, while functions on the right hand side
are expressed in the local coordinate systems of the inclusions j # [ or in the global
coordinate system of the jacket. To solve the problem it is necessary to translate the
cylindrical harmonic functions on the right hand side into the coordinate system of the
functions on the left hand side, that is the local coordinate systems of the inclusion /. In
a similar way, the cylindrical harmonic functions on the left hand side of equation (5.7),
that are expressed in the local coordinate systems of the inclusions [, must be trans-
formed to the coordinate system of the functions on the left hand side that is the jacket
coordinate systems. Three different changes of basis transformations are thus needed
in total. These transforms between coordinate systems that are linearly translated one
from the other can be performed by applying the Graf’s addition theorem [124], as

Jacnrilhad Talacr
QESCrined DEIOW.

The general form of Graf’s addition theorem states that a displaced cylinder harmonic
function is a linear superposition of undisplaced cylinder harmonic functions. The geo-
metrical meaning of this theorem is shown here with the support of Figure 5.2.

Consider a coordinate system placed in O, a second system Q displaced at a distance v
from O, and a point P at a distance u from O and w from Q where the displaced /undis-
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w = Vu2 + 02 — 2uv cos o
U — VCOSQ = WCOS X
vsino = wsin y

FIGURE 5.2: Geometrical meaning of the Graf’s addition theorem. O is the undisplaced
point of view, Q is the displaced point of view and P is the observed point.

placed functions are evaluated. According to Graf’s addition theorem, the displaced
cylinder harmonic function %, (w) is related to undisplaced cylinder harmonic functions
(gn-l—m (U) via ’

Cn(w)5in (mx) = Z Gtm (1) Jn (V)5in (n2) (5.8)

n=-—00

where % is a cylinder harmonic function and |ve®™| < |u| (note that when ¥ =
and m is an integer or zero this restriction is unnecessary, thus equation (5.8) is always
satisfied). The three forms of Graf’s addition theorem that will be used in the following

, .
va rdinate system the three

alaalat+s
CaiCliiavions, in order to evaluate in the most apprap“aw Co0Ta

field contributions indicated by the red lines in Figure 5.1, are reported here.

line a: The outgoing field from cylinder j is expressed in the jacket coordinate system
(r,6) via

x
HD (k)™ = Y HO (k) Jnm (B cj)em ) 2xeles) (5.9)

n=—o0
and the conversion is valid for u > v, which is true in the vicinity of the jacket.

line b: The outgoing field from cylinder j is expressed in the coordinate system of cylinder

1 (r1,6)) via
Bt r)e™ = 3 ) HD, (4 ap)emommmsta (510
n=-—oo
where ¢;; = ¢; — ¢; and the conversion is valid for u < v, which is true in the
vicinity of cylinder [.

line ¢: The field back-reflected by the jacket is expressed in the coordinate system of

cylinder ! via

(kS 7)™ = Z (= 1) T (kS 1) T (kS ¢ ) Ot nmm)argdet (5 17)

n=—c0
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Using the change of basis transformations just shown, equation (5.6), the Rayleigh Iden-
tity, can now be expressed entirely in the coordinate system of cylinder I. Let’s start
considering the second term on the right hand side of the equation, that is the field due
to the jacket incident in the proximity of cylinder [ (line ¢). By means of the change of

basis transformation (5.11) this term is now represented by:
AElO — JIOAED (512)

where AZ0 is the coefficient in the basis of cylinder I of the field radiated from the
jacket and the vectorial notation AP0 = [AE0] = [A50 ... ABOAFOAEY. .. ABOIT ang
AFD = [AB0] has been used (the superscript T indicates the matrix transpose operator).

The quantity
T =75 = (1) ™ T (k5 )™ "”g{q}] (5.13)

expresses the change of basis. Next let’s consider the first term on the right hand side of
the equation (5.6), that is the field radiated from cylinder 7 and incident in the proximity

of cylinder ! (line b). By means of the change of basis transformation (5.10) this term

is now expressed by

APY = HIBPI (5.14)
where Af ' is the coefficient in the basis of cylinder ! for the field radiated from cylinder
7 and the vectorial notation AFY = [AZY] and BPJ = [BZ/] has been used. The change
of basis is performed via HY = [ fafm} where

MY = HY (ke oy)ein—m) eraley) (5.15)
and Ag 17 is therefore defined as
AR =>"Hl BEI. (5.16)
m

Adding up the field contributions from all the cylinders, expressed by equation (5.14),
and of the jacket (5.12) it is obtained

Ne
APL=N"HUBEI 4 gOARO (5.17)

j=1

Gl
that is valid in the annular region in the vicinity of cylinder . Introducing the vector
components for both the electric and magnetic field coefficients for cylinder [ and the

AEZ BEZ _ AEO _ BEO
BHI and A0 = AKO , B0 = BKO , the

jacket, respectively, as Al = {A P B! =
equation for the electric field in the vicinity of cylinder I (5.17) and its magnetic field

)
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equivalent can then be written in the general form

N, )

A =S"H"BI+ 7 A° (5.18)
i=1
37l

where 7~ = diag(HY, HY) and J - diag(J%, J°). Finally, combining equation
(5.18) for all the cylinders results in

A=HB+ T A (5.19)

-~ - ~ ~1i = ~]
where A = [Al], B = [BY] and 7 = [H”), 7°° = (7).
As aforementioned, the outgoing field in the proximity of the jacket due to cylinder j
(line a) can also be represented in the basis system of the jacket as:

BEOZ — JOZBEZ (520)

where By, is the coefficient in the basis of the jacket for the outgoing field radiate

from cylinder | and the vectorial notation BZ% = [BEY] has been used. The term

T = (7% ] = [Jn_m(k_e,_ &)e=in=m) arg{cz}} (5.21)

expresses the change of basis transformation. Adding up the contribution of all the

cylinders it is then obtained:
Ne

BEO — Z jOlBEl (522)
=1

that is equation (5.7) now expressed in the coordinate system of the jacket. Using the
vector components for the electromagnetic field, equation (5.22) can be reduced to

B =78 (5.23)

where J - T Ol]. Note that H, J %9 and T °% are 2 x 2 block matrices composed of
four sub-matrices equal in size and the elements of the off-diagonal sub-matrix are all

equal to zero, so that:

......

So far relations or field identities between each field component individually have been
found, that is how the field in the vicinity of each cylinder is related to outgoing fields
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from all the other cylinders and the jacket, and how the field in the vicinity of the jacket
is related to outgoing fields from all the cylinders. It is now necessary to combine the
contributions from each cylinder and from the jacket in order to build up a consistent
description of the electric and magnetic fields from the local descriptions related to the
different cylinders and the jacket. This is done by applying electromagnetic boundary
conditions at the boundary of each inclusion and the jacket. The boundary conditions
require the continuity of the tangential electric and magnetic field components at the
boundary of each cylinder and of the jacket. Before this can be done, field expansions
valid inside each cylinder and outside the jacket must be introduced. The following
equation represents the internal expansion for the longitudinal electric field and is valid
inside cylinder [ (r; < d;/2)

oo}

EZ(T'Z,91> = Z Aﬁljm(kﬁ)roeim& (524)

m=—co

where kﬁ) = ,/k3n? — 32 and only bounded J,, terms are present since the field is finite

everywhere. The external expansion, valid in the jacket (r > ry), is

X
E(r,0)= Y BEHD (Kk{r)em (5.25)

m=—co

where k/ = v k3n% — (2 and only HY terms, propagating away from the jacket bound-
ary, are considered. Again, similar expansions can be written for the magnetic longitu-
dinal field component (expansion coefficients AZ! and BE®). The boundary conditions
can be conveniently written in terms of reflection coefficients, producing a reflection ma-
trix R! for all the cylinders and RP for the jacket [101]. Both the internal and external
expansion coefficients AZ' and BEC can be expressed as a function of the local expansion

coefficient for the cylinder (4Z and BEY) and the jacket (AZ° and BEP) as:

ABLIm (ks %) + BELHG (k¢ %)

AZ = (5.26a)
" (k%)

gE0 _ A In(kiry) + BEOUHR (kS ry) - 260
m (1) 7 ( : )

relations that straightforwardly derive from the continuity of the longitudinal compo-
nents (i.e. from the equality of equations (5.24) and (5.3), and of equations (5.25) and
(5.4), respectively). Thus the boundary condition equations relate the local expansion

coefficients by means of the reflection coefficients as:

B! = R!A! (5.27)
A% =ROBO. (5.28)
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Note that since the boundary conditions are referred to each cylinder separately Rlisa
2 x 2 block matrix, composed of four diagonal sub-matrices equal in size, and R is also

a diagonal matrix. Combining equation (5.27) for all the cylinders results in
B=TRA (5.29)

where R = diag[R] is a diagonal matrix.

Equations (5.19), (5.23), (5.28) and (5.29) can now be combined to form a homogeneous
system of equations that expresses the Rayleigh identity in terms of the coefficient B

only
~0B

MB=0  where M=I-R(H+J R'F") (5.30)

and I is the identity matrix. 7:1, T 08 and J B0 are translation matrices that express
the change of basis transformations previously considered. Note that the H term in the
matrix M describes direct cylinder to cylinder interactions, while the J Boﬁoj' 05 term
describes all indirect interactions between cylinders that take place via reflections (RP)
at the jacket boundary. In the following, the matrix A is referred to as field identity

matrix.

For a given material system, geometry and wavelength, the matrix M contains just
one unknown, the mode propagation constants § of the propagating mode(s). If the
MOF is multimode, as many values of § as the number of guided modes will satisfy
the field identity (each value of § corresponding to a different guided mode). The
propagation constant (3 is related to the effective index of the propagating mode n.gy
via B = koness, thus in the following, depending on the context, either 8 or n.fr will
be referred as the field identity unknown. By inspection, equation (5.30) indicates that
non-trivial solutions occur when the determinant of the matrix M is zero (i.e. when M
is singular). Since an absorbing jacket has been considered, this method yields complex
values of B, and hence complex effective index values. The imaginary part of 5 can be
used to estimate the attenuation of the leaky mode according to the power attenuation
law P(z) = P(0)e~2%{8}2, where P(0) is the initial modal power [30]. The leakage due
t0 the poor mode confinement can be calculated from the imaginary part of the effective

index of the mode, via the following formula:

2x 107 27

10 Npm] S{ness} (5.31)

L[dB/m] =

where £ denotes the confinement loss.

After finding a value of [ that results in M being singular, the null space or singular
vector B corresponding to this solution is evaluated by performing a singular value
decomposition. If the solution corresponds to a degenerate mode, according to the
symmetry of the MOF structure as discussed in Section 4.2.5, more than one singular

vector (two for 6-fold symmetry structures) can correspond to the same value of 5. Note
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that not all solutions to the singular value problem correspond to physical solutions for
the fibre modes: see Section 5.2 for a more detailed discussion. The singular vector(s)
B of physical solutions corresponds to propagating solutions for 8, and can be used
to construct the associated longitudinal electric and magnetic field distributions. The
transverse field components E; = (E,, Ey) and H; = (H,, Hp) can then be calculated

from the longitudinal ones using Maxwell equations [30] as

E, = k2n2i & :58;; 2+ 2 é%} (5.32a)
H, = k%; > :—Ziokfl) aa% + 585 z} (5.32b)
By = kzn; = g aa% ~ Zok%} (5.320)
Hy = k%; > Zok 28£ + gaggz} (5.32d)

where Zg = +/po/€o is the characteristic impedance of the free space. Once a solution
for 8 for a given mode is found, the transverse field components can be used to calculate
several useful physical quantities, like the effective mode area presented in Section 4.2.2,

and the Poynting vector, defined as
1 , ,
S, = -é(ETH; — EyH;) (5.33)

where * denotes the complex conjugate.

Note that in the case of silica MOFSs, by using the Sellmeier equation [75] to define
the refractive index of silica as a function of the operating wavelength, the material

dispersion can be included in the calculation of the effective index of the mode from the

outset.

5.2 Method implementation

The field identity (5.30) is an infinite system that must be truncated in order to find
a numerical solution of the problem. The series of field expansions are truncated to
the range — Mgz < m < Mgz, S0 that the total number of Bessel functions is Nbf =
2M oz + 1. When N, cylinders are present in the fibre cross-section, the truncated field
identity matrix M is a square matrix with dimension [2N,(2M ez +1)] X 2N (2M oz +
1)]. The accuracy of the solution is related to the number of terms retained in the
truncated series, and in the following the convergence of the solution of the truncated

matrix equation is described.

A non-trivial solution of the homogenous equation (5.30) occurs when the determinant
of the matrix M is zero (i.e. when M is singular). The corresponding field vector(s)
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B are therefore eigenvector(s) of the matrix M that have corresponding eigenvalue(s)
equal to zero, more appropriately named singular vector(s) (or null space) and singular
value(s) respectively. Since the numerical implementation of the model requires the
matrix to be truncated, a non-trivial solution occurs when det(AM) approaches zero,

and the corresponding singular value(s) is much smaller than all the other eigenvalues.

The typical procedure followed to find the fundamental mode of a MOF is represented
in the flowchart in Figure 5.3. The example of a HF comprised of 4 rings of hexagonally
packed air holes, with hole-to-hole spacing A equal to 1.2 um and hole diameter d equal
to 1.08 um (d/A = 0.9, see Figure 5.4) is considered in order to illustrate the algorithm.
Note that the structure is 6-fold symmetric, therefore the mode can be either non-
degenerate or 2-fold degenerate (see Section 4.2.5). For clarity, circled numbers have
been introduced in the following text and in the fowchart to indicate the different parts

of the procedure.

The first step is to define the field identity matrix M defined in (5.30). Thus the inputs
to the model are the MOF geometry, the optical wavelength (here A = 1550 nm), and
the number of Bessel functions (here M., = 5, so Ny = 11) @. The MOF geometry
is defined by the coordinate location, dimension and refractive index of each cylinder,
the refractive index of the glass matrix in which the holes are embedded (here undoped
silica), and the jacket characteristics (that, as already mentioned must be defined in
order to have a negligible impact on the solution). In this example the jacket radius ry
is taken to be 10 um, the real part of the jacket refractive index is equal to that of silica,

and its imaginary part ${ns} is 10712

The only unknown now present in the field identity matrix det(M) is the effective
index n.yfr. Finding the modes of a MOF corresponds to finding the zeros, or local
minima if the matrix is truncated, of the function det(M) as a function of the complex
variable n.rr. Note that since the determinant of M is complex, in reality its absolute
value |det(M)| must be minimised. For the cases under study, the imaginary part of the
minimum is usually smaller than the real part, thus the real part of the minimum can be
located setting the imaginary part to zero and then looking for the imaginary value that
further minimises the function |det(M)|. Thus, a lossless approximation @) of the MOF
is first considered (i.e. S{nesr} = 0). Since the propagation constant corresponding to
the fundamental mode is the largest of all the possible modes, the function |det(AM)]
is calculated for different values of the real part of nggs (R{nesr}) @ starting from the
value n; equal to the refractive index of silica (core region) (3) and then decreasing the
value of R{n.ss}. The next ness value is obtained from the previous by subtracting an
appropriate An. The scanning of the determinant is terminated when the first local
minimum is found @). Typically, from experience, steps of An of the order of 10™¢ allow
the minimum to be localised. If no minimum is found in this way it means that the value
of the imaginary part of nefs is not negligible, so that the lossless approximation fails.
This can happen for modes that are poorly confined to the core and thus are very lossy.
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INPUT
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(2) optical waveiength A
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F1Gure 5.3: Flowchart for the search of the 2-fold degenerate fundamental mode of
the MOF shown in Figure 5.4. The red circled numbers have been used in the text as
reference to the different part of the flowchart.
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FIGURE 5.4: Geometry of the MOF studied in this section.

Therefore the same process must be repeated assigning a non-zero value to S{ness} ®.

Once the local minimum in |det(M)| has been located, the precise value of the complex
fiefs corresponding to this minimum can be found via a minimisation routine @. The
minimisation of |det(M)| for complex values of ne¢y is first performed for the real part
of negp only (with S{neg} = 0, or equal to the value previously used to scan the deter-
minant when the lossless approximation is not satisfied), and then for its imaginary part
(with R{ness} equal to the value just calculated). The routine is composed of two steps:
. bracketing the minimum and golden section searching of the minimum [125]. Bracketing
the minimum of a function is an essential step in any one-dimensional minimisation rou-
tine. The minimum of a function f is known when there is a triplet of points a < b < ¢
(or a > b> c) such as f(b) < f(a) and f(b) < f(c). Thus the function f has a minimum
in the interval (a,c) and the triplet of points (a,b,c) is said to bracket the minimum.
Note that the bracketing of the minimum for the real part of neys is automatically deter-
mined when the local minimum is located (), but it is not known for the imaginary part
of nes. The second step of the minimisation routine basically consists of refining the
bracketing interval until the distance between the two outer points of the triplet a and
¢ is tolerably small, according to a previously set tolerance value. In order to refine the
bracketing, a new trial point z between the two outer points of the triplet is introduced
and the function f is evaluated here. The choice of z is made so that x lies in the larger
of the two segments |a — b| and |b — ¢|. For example, if the largest segment is |b — ¢,
according to the value of f(z), the new triplet can be (a,b,z) or (b,z,c). In order to
minimise the number of steps required to obtain the set tolerance, the choice of where
z lies in the interval (b, c) is not such that z is equidistant from the two ends b and ¢,
but such that |z — b = 0.61803 |b — ¢| and |z — ¢| = 0.38197 |b — ¢|. These fractions are
those of the so-called golden section (thus the name of golden section searching for the

minimisation routine), and guarantee a more efficient minimisation compared to equal
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subdivisions. In order to improve the precision of the (complex) value of nss, the de-
scribed minimisation process is always performed a second time setting ${n.ys;} to the
value found at the end of the first iteration (which considered {nes} =0) .

Note that in practice the function |det(M)] initially decreases as the imaginary part of
ness is decreased from a reasonably large value, until the local minimum is reached. If
the function keeps decreasing even for the smallest computable values of S{ness} (ie.
~ 10714 — 10715), it is possible that the local minimum corresponds to a real value of
neff, such that the local minimum is not a physical solution (false minimum). However,
if the MOF under study is characterised by negligible values of confinement loss, where
negligible implies that the imaginary values are lower than those that can be represented
by machine precision, a real value of ngs can also be found. Also note that when the
method is applied to the study of a bound mode, the imaginary part is zero. The

procedure for determining whether the solution is a physical one is described next.

When the precise value of fi.f corresponding to a local minimum of |det(M)| has been
determined, a singular value decomposition (SVD) routine can be used to calculate the
singular values and vectors of M(7.¢) ®. Since physical solution(s) for the mode
can only be non-degenerate or 2-fold degenerate (see Section 4.2.5), the singular value
decomposition should produce one singular value (for non-degenerate modes) or two
singular values (for 2-fold degenerate modes) that are significantly smaller than the
others. If there are more than two significantly smaller singular values, the calculated
Tieff corresponds to a false minimum (i.e. to an unphysical solution) (@. Figure 5.5
reports the 1320 singular values for the minimum corresponding to the fibre under study,
that is flfr = 1.2058442346151 + 13.6475 x 1071, The last two singular values, circled
in red, are more than 10 orders of magnitude smaller than the others, which suggests
that this is a genuine minimum (physical solution) that could correspond to the 2-fold

degenerate fundamental mode.
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FIGURE 5.5: Singular values of the field identity matrix M evaluated for fiep; =
1.2958442346151 + i3.6475 x 10~ and Mypez = 5. The red circle indicates the two
smallest singular values.

Using the singular vectors B associated with the two smallest singular values, the vector
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components of the electric and magnetic fields of these degenerate modes can be cal-
culated @. The two modes are arbitrary linearly independent solutions of the problem
and are plotted in Figure 5.6. They are described as arbitrary because no requirements
about the mode features have been imposed. The single-peaked Poynting vector clearly
indicates that fi.fs corresponds to the fundamental mode of the structure in each case.
A careful analysis of the plots shows that this pair of modes does not reflect the 2-fold
symmetry of the hexagonal structure. However, an appropriate linear combination of
the two modes will result in the pair of modes that hold the 2-fold symmetry, as shown
in the following. In order to conclude whether this value of fi.fs produces a genuine
solution, it is necessary to verify two more things: the consistency of the different field

expansions and the stability of the numerical solution.

1% mode

2" mode

FIGURE 5.6: Electromagnetic field and Poynting vector of the arbitrary pair of modes,
calculated for i = 1.2958442346151 + 13.6475 x 10711,

The agreement of the local and global (or Wijngaard) expansions @) defined in equations
(5.3) and (5.5) at the boundary of each cylinder is enforced by the Rayleigh identity when
the correct value of .z is used, thus it is not guaranteed unless a physical solution
is found. However, the agreement is perfect only for the untruncated field expansions
(Mypaz — o0). Therefore any disagreement between the two expansions on the boundary
of cylinders provides an indication of the accuracy of the choice of number of terms
retained. Figure 5.7 shows the expansions (5.3) and (5.5) as a function of the angular
position on the boundary of the cylinder shaded in red in Figure 5.4. The first and second
columns represent, respectively, the real and imaginary part of the expansions; the third
and fourth column the corresponding difference in magnitude of the local and global
expansions (i.e the error term). Each of the six field components have been here reported.
According to Kuhlmey et al. [113], when the two field expansions converge, the error
term is dominated by the first neglected term in the expansion of order m = M4, + 1,
where Mq. is the order of the highest term retained in the expansion. Thus when

the error term oscillates like exp{#(Mpmqz + 1)0}, enough terms have been included in
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the expansions. The error terms in Figure 5.7, where My, = 5 indeed exhibit 12
oscillations over a full period of 27. However I don’t find that this rule always applies,
because there are cases in which the error term oscillates like exp{i(Mpq, +1)6} but the
convergence of the two field expansions visually appears to be poor. Another measure
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FIGURE 5.7: Field expansions agreement at the boundary of the cylinder marked
in red in Figure 5.4 for the first mode shown in Figure 5.6, calculated for fi.sy =
1.2058442346151 + 43.6475 x 107 and Mynae = 5.

of the accuracy of the equality between the two expansions is expressed by the following

parameter:

W = Je

Euioca[ (91) = EzWijnglla’f‘dS(el) ‘ dal

Joi

W expresses the relative integral error and for this case W is equal to 4 x 1072, a
value that can be improved as shown in Section 5.3. From the plots in Figure 5.7,
the n.pr = 1.2958442346151 + ¢3.6475 x 10711 is clearly a genuine mode. Of course,
the accuracy could have been improved retaining more terms as further discussed in
Section 5.3. Note that the disagreement of the radial field components is even higher, as
the graphs in the third row of Figure 5.7 show. The continuity of the radial component
implies the use of the refractive index. The refractive index contrast is somehow modelled

(5.34)

E;/Vz‘jngaards ( 9l> } de,

by the expansion, thus is not perfect when only a few terms are retained because sharp
edges ideally require infinite terms to be completely described. This is also dependent on
the optical wavelength: the smaller the optical wavelength is, the better the convergency

of the method is.
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The study of the convergence of the solution as the number of terms retained in the
field expansions Ny is increased is the final test of the validity of the solution @. This

criteria (which is satisfied by the case now under study) will be further discussed in

Section 5.3.

Since the solution found for the fibre now under study verifies the agreement of the
field expansions and the convergence with increasing terms retained in the expansions,
fiesr = 1.2958442346151 +13.6475 x 1071 is the effective index of the 2-fold degenerate
fundamental mode @. As already mentioned when discussing the mode construction @,
the pair of modes calculated from the singular vectors B associated with the two smallest
singular values are two arbitrary linearly independent solutions because no requirements
about the mode features have been imposed. Thus they need to be linearly combined in
order to find the mode pair corresponding to one of the 2 degenerate classes allowed for
by the symmetry of the structure (see Section 4.2.5) @. In the literature both experi-
mentally (from the first working example of this fibre [56]) and theoretically (from the
first full vector analysis of MOF's [82]), the fundamental mode of hexagonal lattice HFs
has been shown to have two perpendicular preferred polarisation axes. More precisely,
the fundamental mode of this kind of structure is analogous to the HE;; pair of modes
of a step-index circular fibre. Thus for this case, this piece of information can be used
to decide a priori which class, of the 2 allowed for degenerate modes, the fundamental
mode belongs to. For both the classes, the minimum sector angle is equal to /2 and
the sector boundaries must lie along one of the planes of reflection of the MOF structure
as shown in Figure 4.4. For the sake of clarity, the two planes of reflection are chosen
to correspond to the z- and y-axis. According to the class, either the tangential electric
field or the tangential magnetic field is zero on the sector boundary. Since the electric
field is orthogonal to the magnetic field, this implies that on the sector boundary either
the longitudinal magnetic field or the longitudinal electric field must be zero, respec-
tively. Therefore the degenerate mode classes corresponding to the fundamental mode
should be the p = 3,4 (see Figure 4.4), which allow one mode to be approximately
“linearly polarised” along the z-axis and the other along the y-axis. Therefore, the pair
of arbitrary modes need to be combined to obtain a pair of modes with the tangential
electric field null along the z- and y-axis, respectively. To do that, a point @ along the
y-axis where E;’ (0,Q) # 0 is chosen and this point is used to determine the coefficient
of the first linear combination @ = —E.,(0, Q)/E, (0,Q). The first mode is thus equal
to ng) (z,y) = E; + X(”)EZ. Since its longitudinal electric field is null along the y-axis,

§$) (z,y) is linearly polarised along the z-axis. Similarly, the coefficient of the linear
combination for the second mode is x¥ = —E.(Q,0)/E, (Q,0), where Q is now a point
along the z-axis where E(Q,0) # 0. Thus Ez(,y) (z,y) = E + X(y)EZ is the second mode
of the pair and is linearly polarised along the y-axis. The pair of transverse modes is

shown in Figure 5.8.

Note that, looking again at the flowchart in Figure 5.3, if the 7.4 has not verified either
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15" mode

2" mode

FIGURE 5.8: Electromagnetic field and Poynting vector of the transverse pair of modes,
calculated for fiepr = 1.2958442346151 -+ i3.6475 x 10711,

the agreement of the field expansions or the convergency with increasing terms retained
in the expansions, the solution was not genuine. In this case the local minimum of
|det(M)| is a false minimum, and the procedure must commence again, scanning the

determinant (@ from 7.5 €9 downwards until another local minimum is localised and

In some HF cases characterised by a relatively small number of holes, as for example
the modified triangular lattice HF shown in Figure 5.9(a), a more efficient procedure
to localise the minimum corresponding to the fundamental mode can be followed. This
structure is comprised of 9 air holes only. The 6 larger air holes have hole-to-hole
spacing and diameter equal to 8 um and 7.6 um, respectively (d/A = 0.95), while the 3
interstitial holes have a diameter of 1 um. As discussed in Section 5.4, the computational
time scales with the square of the number of cylinders N2. Given the relatively small
number of holes within this structure, the calculation requires a significantly reduced
computational time with respect to structures comprised of more air holes. Therefore the
most efficient way of localising the fundamental mode minimum is to scan the magnitude
of determinant of the field identity matrix M over a wide range of n.s (starting from
that of silica and setting S{n.sr} = 0). Using Mpmar = 5, the bottom curve on the
graph in Figure 5.9(b) is obtained. Several local minima appear over the range in n.ss
considered here. If the procedure explained above is followed (i.e. the examination of
each minimum starting from the one with the largest n.yss) all these minima can be
shown to be false. Next, the scan can be repeated over the same range of ney values,
now retaining more terms in the expansion (Mmqz = 9), and the top curve on the graph
in Figure 5.9(a) is obtained. All the local minima present in the previous scan appear
also in the second one and should therefore be false. However a new local minimum,
indicated by the arrow, emerges, which could correspond to a guided mode. Indeed, the
analysis of this minimum confirms that this minimum corresponds to the fundamental
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mode of the structure. Note that, as discussed in Section 5.3, the number of terms that
are required in the expansion to achieve a reasonable degree of accuracy, varies according
to the distance between, and the dimension of, the cylinders. The reason why the local
minimum corresponding to the fundamental mode do not appear in the curve calculated
for Myez = 5 is that, given the large dimension of the air holes, M.z = 5 was not

sufficient to properly describe the MOF structure.
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FIGURE 5.9: (a) Modified triangular lattice MOF with, superimposed, the Poynting
vector of the fundamental mode; (b) Logarithm of |det(AM)| as a function of the real
part of the refractive index n. s (S{nepr} = 0), for Myse = 5 (bottom) and M. = 9
(top). The red arrow indicates the local minimum corresponding to the fundamental
mode.

Higher order modes of MOF's can be found following the procedure shown in the flowchart
(Figure 5.3). Since such modes have propagation constants that are smaller than that
of the fundamental mode, local minima of |det(M(n.¢s))| corresponding to higher order
modes must be located at smaller ness than the fundamental mode minimum. For
hexagonally-packed HF structures, according to the symmetry arguments presented in
Section 4.2.5, higher order modes can either be non-degenerate or 2-fold degenerate. In
the case of a 2-fold degenerate mode, the model results again in an arbitrary pair of
modes that need to be linearly combined in order to obtain a pair of modes belonging
to the classification reported in Section 4.2.5. Note that there are two different pairs
of degenerate modes, thus different linear combinations need to be performed according
to the appropriate degenerate mode class. In the case of a non-degenerate mode, only
one of the singular values is significantly smaller than the others. Clearly, no linear
combination needs to be performed in such cases. Note that according to the first
vector analysis of hexagonal lattice HFs presented by Ferrando et al. [82], it is possible
to classify the HF modes similarly to those of a conventional fibre. This might help in
choosing the right linear combination for a pair of degenerate higher order modes, if all

the previous modes have already been found.
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Similar arguments apply to MOF structures that are not characterised by a 6-fold sym-
metry. The modified triangular lattice of the fibre in Figure 5.9 presents a 3-fold sym-
metry. According to the classification presented by McIsaac [84], such structures possess
only 4 mode classes, composed of 2 non-degenerate classes and a 2-fold degenerate pair.
In contrast, the fibre shown in Figure 8.1 does not possess any symmetry, thus all the

modes are non-degenerate.

The process of locating the local minimum corresponding to the fundamental mode can
be facilitated by using an estimate for n.fr. A reasonably good estimate allows the range
of ne g over which the function |det(AM(ness))| needs to be evaluated to be significantly
reduced. The most obvious case is when the MOF structure has already been studied for
a limited number of Bessel functions (small M,,,,) and the same structure is analysed
for higher values of M., (e.g. to study the convergence or improve the quality of
the solution). Checking the determinant for n, ¢ values nearby the one resulting from
previous calculations provides an efficient starting point in this case. The same applies
to the meyss values obtained using different numerical methods, applied to the same
MOF structure, like the beam propagation method or other such bound calculation.
An estimate can also be extrapolated from the study of MOF structures ‘characterised
by the same scale. This approach has been widely used while performing the study
presented in the following part of the thesis, to evaluate both the real and the imaginary
part of negr. Moreover, it results that for the MOF scale structures under study here
(i.e. small-core hexagonal lattice HFs), the value of R{n.s} is essentially independent
of the number of rings of air-holes. Thus quick calculations for HFs comprised of just
2 rings of air-holes provide accurate starting estimates for predicting the properties of

HF's comprised of more rings.

5.3 Solution accuracy and convergence

The convergence of the solution for the fundamental mode of the MOF structure pre-
sented in the previous section (Figure 5.4) is investigated here in detail. The solution
is again calculated retaining different numbers of terms in the field expansions. The
results are summarised in Table 5.1. Increasing My,,4, it is clear that the value of n, 7
converges. Moreover, increasing M., the accuracy of the equality between the local
and global expansions is improved. This is shown by the decreasing of parameter W,
defined by equation (5.34), that measure this accuracy.

Figure 5.10 shows the field expansions for the six choices of M,,,, made in Table 5.1.
Note that the error terms oscillate more rapidly as Mg, increases. From M., = 5
onward, the number of oscillations is related to the first neglected term in field expansions

(ie. exp{i(Mmez + 1)8}), implying that enough terms have been included and the

solution is accurate.
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Mimaz R{nesr} S{ness} w ${Z}
1.2960958506153  3.5721360 x 10711 1.1792 x 10~  1.80490
1.2958863171001  4.2023025 x 10~ 1.9152 x 1072  1.80418
1.2958442346151  3.6475000 x 10~ 4.0174 x 1072 1.80403
1.2958364054258 3.7613404 x 1071 5.0320 x 1072 1.80401
1.2958360312080  3.7517420 x 1011 9.6928 x 10™*  1.80401
1.2058359820183  3.7520643 x 1071  8.2506 x 10™*  1.80401

0~ O Ot W

TABLE 5.1: Fundamental mode properties as a function of M., for the MOF- shown
in Figure 5.4.

According to Kuhlmey et al. [113], a second parameter used to evaluate the choice of
Mpnae is Z, the value of the largest argument of Bessel functions on the boundary of
the inclusions. Recall from Section 5.1 that inside the I*! inclusion the field is expanded
using only the bounded Bessel functions Jm(kg_i)rl) (5.24). If the internal field expansion
behaves as a electrostatic cylindrical multipole to leading order, then the solution rapidly
converges with increasing function order m. Note that the largest argument of the Bessel
functions in the series is Z) = kﬁ) (ness)d/2, and is therefore related to the dimension of
the inclusion via d. For the fibre under study all the inclusions have the same dimension
d, thus Z = Z®. For MOF structures comprised of inclusions of different dimensions
it might be necessary to use a larger value of M,y for the larger cylinders. Note that

{}\ . - - . 1 s A1
since k)’ is a pure imaginary number, also the value of Z is imaginary, thus in Table 5.1
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FIGURE 5.10: Expansions agreement as a function of My, for the MOF shown in
Figure 5.4.
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the imaginary value S{Z} is reported. The value of n.s predicted by the multipole
depends on the number of Bessel functions retained in the field expansions, thus the
value of the parameter Z varies with M4, as shown by Table 5.1. In Figure 5.11 the
maximum value of |J,(Z)| (term of the field expansion) normalised to |Jy(Z)| is plotted
as a function of the Bessel function order m. The point corresponding to a certain value
of m should be evaluated with the n.ss predicted by setting M,,,, = m. However, the
dependance of |Jn(Z)| on Mpee (Or nepr) results to be weak, thus the curve plotted
in Figure 5.11 can be evaluated by just considering the effective index resulting from
one calculation (e.g. Mpa, = 5). This is due to the fact that, at least for the fibre
under study, the value of n.fs is determined up to the third figure even when My, = 3.
The values marked with a dot have been actually retaining the proper number of Bessel
functions. Considering 11 Bessel functions only (i.e. Mpae = 5) implies that terms
discarded are less than the 0.3% of the leading term. According to Kuhlmey et al. [113],
Minaz should clearly exceed (by a factor of ~ 1.5, empirically evaluated) the value of
${Z} to guarantee the convergency of the solution. This is certainly true for all the
choices of Mpee reported in Table 5.1 for the fibre shown in Figure 5.4.

W (21 (Z)]

3 4 5 6 7 8 § 10 1
Order of the Bessel function m

FIGURE 5.11: Evaluation of the values of the terms included in the internal expansion,
that is |Jn(Z2)/Jo(Z)| as a function of m, for the MOF shown in Figure 5.4.

The dependance of this curve on the dimension of the air holes, for a range of structures
holding the same scale as the example considered here, is shown in Figure 5.12. Note
that Z is proportional to the dimension of the air holes d, and that the value of M.,
that is the number of Bessel functions that needs to be retained to obtain an accurate
solution, should exceed the value of Z. Thus an accurate solution is obtained for large

air holes retaining more Bessel functions than for small air holes.
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FIGURE 5.12: Evaluation of the values of the terms included in the internal expansion,
that is |Jm(Z)/Jo(Z)] as a function of m, for a range of MOF structures with air-filling
fraction corresponding to d/A = 0.9.

This is also true when holes of different dimensions are present in the HF structure.
For example, in [112, 113] the case of a photonic band MOF with a large air hole
(d ~ 13 pm) placed in the centre of a hexagonal lattice structure comprised of smaller
air holes (d ~ 4 um, A ~ 5.78 um) is presented. In order to obtain a good agreement for
the expansions at the boundary of the large air hole, a value of M., equal to 19 needs
to used, whereas M, ., = 5 suffices to model the field at the boundary of the small air

holes.

However, evaluating the largest argument of Bessel functions on the boundary of the
inclusions Z is not always sufficient to test the convergence of the expansions. Depend-
ing on the structure design, the expansion coefficients can weight the Bessel functions
in different ways, and an important parameter to take into account is not only the di-
mension of but also the distance between the air holes. In order to ascertain this, a
comparison between the example of a small core HF (SCHF) presented here and a large
mode HF (LMHF) characterised by 3 rings of hexagonally packed air holes with hole-to-
hole spacing A equal to 12 m (10 times larger then the SCHF one) and hole diameter d
equal to 2.4 um (more than twice as large as the SCHF one) is performed. The LMHF
properties have been evaluated for an optical wavelength of 1.064 um because this is a
particularly useful application wavelength for this class of HFs. The predicted effective
index for this LMHF is n. s = 1.44930894316107+11.2915368 x 10~7, resulting in a value
of Z = 1.825 only slightly larger than the SCHF one (~ 1.8), which should mean that
a similar number of Bessel functions must be retained in the expansion to sufficiently

describe the mode. Recall that kﬁ) (A nepr) = QT”, /n? — ngff, thus taking into account
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the different A and nesp, it results that kﬁ) is equal to ~ 3.34 for the SCHF and to
~ 1.52 for the LMHF, counteracting the difference in air hole size of the two structures.
However, this value of Z leads to values of |J,(Z)/Jo(Z)|, reported in the small graph
at the right in Figure 5.13, larger than the SCHF ones, which implies that the expan-
sions for the LMHF should converge more slowly than the SCHF one as the number of
terms retained in the expansions is increased. It results instead that for My = 5 the
value of W (evaluating the agreement between the local and global expansions) for the
LMHF is equal to 9.7669 x 10~8, that is six orders of magnitude better than the SCHF
case. This apparent inconsistency between the information given by Z and W about the
expansions’ convergence, can be explained considering also the expansion coefficients
when evaluating the expansion terms. The function |AZ\J,(Z)/ max(AE T, (Z ))| has
been evaluated as a function of m for both LMHF and SCHF for the same transverse
mode configuration, i.e. the first mode shown in Figure 5.8. The results are reported
in Figure 5.13 and clearly indicate that the LMHF expansions converge more rapidly
than the SCHF. Note how, when a new higher order term is added to the expansion,

the presence of the new term does not modify the value of previous term’s coefficients,
t
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FIGURE 5.13: Evaluation of the values of the terms included in the internal expansion
as a function of m, now weighted by the expansion coefficients, for the SCHF shown in
Figure 5.4 and LMHF. Note that the expansion coefficients AE! are denoted by ¢E! in
the figure.

Even though the apparently inconsistency between Z and W is here explained, the
reason why the SCHF and the LMHF exhibit two different behaviours is not clarified
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yet. This is clearly related to the significantly different distance between the holes of
the two structures. A large interference between the contributions coming from the
different holes when the holes are close to each other is expected, thus the convergency
of the expansion is slower for the SCHF than for the LMHF. Let’s therefore consider
two cylinders only in both structures, marked A and B in Figure 5.14, and explore the
expansions agreement in the host glass along the straight line that connects the two,
denoted with the dashed line x in the same figure. Figure 5.14 also summarises the
short-hand notation for the field expansions terms introduced in the following for the
sake of this analysis. Recall that, for each inclusion, the local expansion (5.3) is valid
in the annular region around each hole that extents to the perimeter of the nearest hole
(dashed circle in the figure). Thus, along the black dashed line, the local expansions
that refer to the two inclusions within both the regions of validity can be compared. The
local expansion is composed by two distinct field contributions The first (J,, term) is the
field converging on the cylinder I and is here named 1!, the second (H% term) is the
field diverging from the cylinder /, here named ¢éiv. Thus, the local expansion referred
to cylinder A is Ef ., = %&n, + ¥4, and similarly defined for cylinder B (EE_ ).

local

;7 \,\’\/ ) AN YA = field converging on cylinder A, i.e.
/ m . B ! right hand side of (5.6)
v NAKY / Ezﬁg;fA = sum of flelds diverging towards A and

“ z coming from all the other cylinders,

O‘ T ’/\ i.e. left hand side of (5.6)
u Eﬁcal =  local expansion (5.3) for cylinder A
valid in the marked annular region
Q O Egiobal =  global expansion (5.5)

FI1GURE 5.14: Schematic of the cylinder-to-cylinder interaction analysed in the text,
along with the definition, referred to cylinder A, of the different field contributions
considered in the analysis (similarly defined for cylinder B).

The agreement of the local and global expansions in the vicinity of each cylinder results
in equation (5.6), that for cylinder A (B) now reads ¢4, = Ezﬁéﬁ/A (VB = Zg{)éiB),
an expression that equates the converging term to the diverging terms (in the actual
calculation, also the field contribution back-reflected from the jacket, that appears in the
right hand side of (5.6), has been included though it is not explicitly specified with the
use of this short notation). The magnitude of the two sides of this equality are plotted as
a function of the number of terms retained in the expansions (i.e. of the corresponding
Mynaz) in the first column of Figure 5.15 for the SCHF and of Figure 5.16 for the LMHF.
"The second column of each figure reports the magnitude of the difference between the
two functions. For the LMHEF, even with few terms (M., > 3) the agreement is almost
perfect from the boundary till half way to the other hole. For the SCHF instead an
almost perfect agreement is obtained only with (M., > 8). This can be explained

by the fact that the closer the holes are, the stronger the contributions from the near
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cylinders perturb what would otherwise be a cylinder to cylinder relationship. For the
LMHF the agreement of converging and diverging terms is relatively poor, especially
when compared to the SCHF graphs, far from the cylinder boundary (improving though
for increasing values of My,,;). This is due to the perturbation, at large distance from

the cylinder, of the converging term on the cylinder, as it is shown next.

A 8 A neA __E* __gB — e g

Yeonv Yeonv Yoo ¥y local local local —global
o A n=B B _y,mB __E _ =
V¥ ¥ Yeony™ ¥ aiv global Eﬁcaj E gobal

i 0 0.9 [
-0.06 0 006 -0.08 0 006 -0.06 0 0.06 -0.08 0 0.08
X {um) X {um) X (umy X {wm)

FIGURE 5.15: Spatial plot of the different field contributions used for the cylinder-to-
cylinder interaction analysed in the text and referred to the SCHE. The two columns
on the left show the agreement of equation (5.6) for cylinders A and B, whereas the
two column on the right show the agreement of the global expansion (5.5) and the local
expansions (5.3) for cylinders A and B. In each row the field contributions have been
calculated for different M. values, as indicated at the end of each row.

The third column of Figures 5.15 and 5.16 shown local expansions for cylinder A and
B, defined as BA ; = ¥4, + ¥4, and BB, = 48, + ¥, respectively, and the global
expansion (5.5) Egiobal = Zwéiv that is the sum of all the diverging fields from all the
cylinders (again, including the field back-reflected from the jacket). The magnitude of
these functions have been plotted in the graphs, while the fourth column shows the
magnitude of the difference between the two expressions. The local field of cylinder A
is dominated in the half close to the boundary by the converging term %4 ., and in the

term 4 . The global expansion, in the

RS . REEE Ly Ll

half far from the boundary by the diverging
LMHF, lies exactly on the diverging terms coming from the two cylinders, behaviour
that is hinted in the SCHF case where the diverging field from each cylinder is not the
dominant, along the line that directly connects A to B, with respect to the ones from
the other cylinders. When an infinite number of terms is considered it is expected that

A _ B _
Elocal = Elocal = EgIObal‘

Going back now to the analysis of the SCHF example, it has been ascertained that
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FI1GURE 5.16: Spatial plot of the different field contributions used for the cylinder-to-
cylinder interaction analysed in the text and referred to the LMHFE. The two columns
on the left show the agreement of equation (5.6) for cylinders A and B, whereas the
two column on the right show the agreement of the global expansion (5.5) and the local
expansions (5.3) for cylinders A and B. In each row the fleld contributions have been
calculated for different M, ., values, as indicated at the end of each row.

the number of Bessel functions related to M., should be larger than 5 (value used
to find the fundamental mode) to improve the agreement of the expansions. However,
the convergence of the values of a range of physical properties which have a significant
importance for the application of these fibres have also been checked. Table 5.2 reports
the predicted values of confinement loss, effective nonlinear area as defined in equation
(4.9), effective area according to Agrawal [75] and percentage of the fields in the holes,
again for the six choices of My,,,. Although the accuracy of the results improves using
larger Mpq, than 5, these physically significant fibre parameters do not vary remarkably
beyond the first 3 significant figures. Indeed the variation is less than the typically
experimental error in physical measurements of these quantities. In this thesis a study of
MOF structures of the same scale as this fibre will be presented, and all the calculations
have been made with M., = 5. This choice of My, is therefore justified in terms of
obtaining reasonable predictions of the fibre properties and reducing the computational

time of the calculations (see following section).

5.4 Method discussion: advantages and disadvantages

The use of polar coordinate systems centred in every hole allows the symmetry properties
of the structure to be accurately described. The idealised structures considered in the
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fwmam L (dB/m> Aeff (:U‘mz) A?ﬁr&wal (/J'm2) PFho!es (%)

3 1.2577x 1073 1.7551 1.7088 14.915
4 1.4796 x 1073 1.7598 1.7104 15.017
5  1.2843 x 1073 1.7593 1.7095 15.031
6 1.3244 x 1073 1.7592 1.7093 15.035
7 1.3210x 1078 1.7592 1.7093 15.036
8  1.3214x 1073 1.7592 1.7093 15.036

TABLE 5.2: Fundamental mode properties as a function of M, for the MOF shown
in Figure 5.4.

majority of the cases included in this thesis consist of hexagonally-packed rings of circular
air holes. According to group theory [84], this kind of structure belongs to the Cgy
symmetry group (6-fold rotational symmetry with at least one reflection plane), and
so supports non-degenerate and 2-fold degenerate modes only (see Section 4.2.5). In
addition, idealised 6-fold symmetric fibre profiles are not birefringent [83]. All these
fibre characteristics are preserved by this model [83]. Moreover, the use of local polar
coordinate systems makes this approach efficient [79]. As seen in the previous section,

few terms need to be retained in the expansion to obtain an accurate solution.

index of the cylinder. The only requirement is for the inclusions to be circular and non-
overlapping, due to the fact that the Graf’s addition theorem, as described here, can only
be applied to this kind of problem. An extension of the Graf’s addition theorem for a
rectangular array of elliptical holes has been performed [126] which expands the range of
structures that can be investigated by means of the multipole method. This requirement,
that yields the method ideally suited for ideal perfect MOFs, restricts the applicability
of the method to imperfect real MOF structures. For real MOFs the solution is always
an approximation because the holes are not perfectly circular, as in the case of the fibres
shown in Figures 8.1 and 6.1. Note also that in a more regular fibre structure shown in
Figure 4.3, the 6 air holes close to the core have a “drop” shape, while all the others

have a hexagonal shape, and this is due to the extremely large air-filling fraction of the

structure.

The computational time required to calculate one value of |det(M(n.fr))| is plotted in
the 3 graphs in Figure 5.17 as a function of the number of cylinder NV, rings N, and Bessel
functions Nyps = 2Mpmqs + 1. For large values of N, and Ny, the computational time is
proportional to the square of the number of cylinders N, and the square of the number
of Bessel functions Ny, as shown in Figure 5.17(a) and (c). Quadratic interpolation
curves are superimposed on the data point in these figures. Note that the quadratic
interpolation t = O + aN? + bN,, where O, a and b are constant coefficients, is valid for
high values of N,. This scaling is determined by the fact that in order to implement this
approach (i.e. build the field identity matrix) N2N, b%c loop executions are required. Recall
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that, the size of the fleld identity matrix M is 2N, (2Mpmaq + 1)] X 2Ne(2Mmae + 1],
that for the example thoroughly studied in this chapter is equal to 1320 x 1320. Note
that for hexagonal lattice MOF the number of holes is related to the number of rings
via N, =6 27&1 n, an expression that can be reduced to N; = 3N, (N, + 1). Therefore
the computational time is proportional to N2, as shown by the forth-degree polynomial
interpolation in Figure 5.17(b) that is directly derived from the quadratic interpolation
of the N, curve. This can lead to a limitation in the total number of holes that can
be modelled, both in terms of computational time and also because of the memory
required to store the matrix. The size of the matrix M for a range of examples is given
in Table 5.3. Nevertheless, the multipole method is highly efficient when compared
to conventional techniques because of the relatively small number of terms retained in
the expansions and the efficiency resulting from the use of local coordinate systems, as

highlighted at the beginning of this section (see also Section 4.3).
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FIGURE 5.17: Computational time as a function of the number of: (a) cylinders (or
holes) N.; (b) rings of air holes N;; (c) Bessel functions Nys. The interpolation curves
are quadratic for the (a) and (c¢), forth-degree polynomial for (b).

Number of rings N,  Size of M Size in bytes
3 792 x 792 9.6 Mb
4 1320 x 1320 26.6 Mb
5 1980 x 1980 59.8 Mb
6 2772 X 2772 117.3 Mb
7 3696 x 3696  208.4 Mb

TABLE 5.3: Size of the field identity matrix M as a function of the number of rings
of air holes, where M., = 5 and each element of the matrix is a complex number
expressed in double precision (i.e. the real and imaginary part require 8 bytes each).

The implementation of the multipole method presented here is not optimal because the
process of localising local minima and the minimisation itself requires a lot of human

intervention (steps from (@) to (@ in the flowchart reported in Figure 5.3). However a
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more engineered implementation of these steps would remarkably reduce the need for

human intervention.

A possible improved implementation is discussed in [113] and consists of two steps. First,
the function |det(M(nes))| is computed over the region of interest, for complex values
of negp. Second, the local minima found in this map of the determinant are used as
initial points for a mixed zooming and modified Broyden algorithm, that is an iterative
minimisation algorithm. All the local minima found in the first mapping are analysed
by the Broyden algorithm, and if it fails a refined map is computed around the local
minima (zooming), eventually finding new local minima and improving the values fed to
the minimisation algorithm. In this way all the possible local minima are analysed, and
when the minimisation algorithm converges a singular value decomposition is performed
to verify if the solution is physical. Note that the localised mapping of the determinant
has also been done in the method implementation performed here. Ideally, no human
intervention will be needed any more in performing the localisation and analysis of the

propagating modes.

J
discussed in Section 4.2.5, a further improvement of the method implementation in terms
of computational time and memory allocation can be done [113]. Recall that for these
CO

structures each mode belongs to a certain class and is completely defined by a minimum
sector. Only the coefficients corresponding to inclusions inside the minimum sector need
to be specified, thus reducing the size of each matrix and also the computational time.
A number of determinant maps equal to the number of possible mode configurations,
that for the 6-fold symmetric case is equal to 6 (i.e. four non-degenerate and two 2-fold
degenerate), need to be evaluated, but this is highly counteracted by the reduction in

matrix size.

5.4.1 Numerical implementation issues

All the routines used in the implementation of the program are double-precision, thus
the real and imaginary parts are defined by 8 bytes each. Therefore the effective index
of the mode predicted by the method is expected to have an accuracy of ~ 10713, both
on the real and imaginary part. In reality, especially in the case of MOF's characterised

by a high value of confinement loss, the accuracy can be less.

The field identity matrix M(n.f) needs to be carefully conditioned to avoid under-
and over-flows in calculating the determinant. Over-flow can occur when n.s — n. and
thus k¢, related to the difference between the squared values of n. s and n., approaches
zero and the value of the determinant of M(n,zy), due to the behaviour of the Jp, (k% r)
and H,g) (kS r) terms, can consequently diverge. A proper scaling of the field identity
can solve this problem [101] and the final matrix is said to be conditioned. However,
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the conditioned matrix can now exhibit underflow, especially for large matrices (i.e.
large Mgy Or many air holes). In order to avoid this, it is sufficient to multiply each
element of the matrix by a factor s, thus increasing the determinant value of sV, where

N = 2N,(2Mpqz + 1) is the number of rows/columns of the matrix.

5.5 Conclusion

After careful consideration of the available methods for modelling MOFs, bearing in
mind that the fibres under investigation in this part of the thesis are small-core HFs, the
multipole method has been chosen. In this chapter the theory of the method is explained,
highlighting the physical meaning of each part of the theory. Its implementation is then
described and several numerical issues are discussed. The accuracy and convergence
of the solution have also been analysed in detail. Note that the multipole method has
also been validated against other methods, as illustrated in detail in Chapter 8. The
multipole method can now be applied to the study of the properties of small-core holey

fibres, a study that is presented in the following two chapters.



Chapter 6

Small-core holey fibres:
Properties and trade-offs for

practical designs

6.1 Introduction

Holey fibres (HFs) can have a significantly larger numerical aperture (NA) than conven-
tional fibre types because the cladding region can be mostly comprised of air. When this
is combined with a wavelength-scale core, HFs can provide tight mode confinement (i.e.
small values of the effective mode area, 4, 7). In such fibres, high light intensities are
guided within the core. Thus even though silica is not intrinsically a highly nonlinear
material [75], silica holey fibres can offer high effective fibre nonlinearities v (see also

section 4.2.2).

Effective nonlinearities as large as v ~ 60 £ 10 Wlkm™! have been achieved at 1550
nm [77]. This is the best result in terms of nonlinearity reported to date in a silica fibre.
In the following it is shown that pure silica HFs can be designed to have 4, 77 at least
as small as 1.7 um? at 1550 nm. Hence, considering ny ~ 2.2 x 102 m?/W for silica,
nonlinearities as high as v ~ 52 W™km™! are practical in these fibres, more than 50
times higher than in standard telecommunications fibre and 2 times higher than the large
NA conventional fibres described in section 4.2.2. Note that this value is consistent with
the experimental result presented above because of the uncertainty in the measurement
of the value of ny for silica (ng &~ 2.2 — 2.7 x 10720 m?/W [75)).

Although these results indicate that HFs can dramatically enhance the achievable -,
the successful application of these fibres has been limited to date by loss, which is a
consequence of the fact that these fibres are in an early stage of their development.
The loss in HF's occurs for a variety of reasons: intrinsic material absorption, additional

95
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losses arising during the fabrication process (water contamination, absorption due to
impurities, scattering, etc.) and confinement loss [79]. Fabrication-related losses can
be reduced by careful optimisation of the fabrication process, as shown recently by
BlazePhotonics in Ref. [81], which reports a loss of 0.58 dB/km. This represents the
lowest loss achieved so far in a HF. Confinement loss is an additional form of loss that
occurs in single material fibres. In single-material HFs the core has the same refractive
index as the material beyond the finite holey cladding region, and so every propagating
mode is therefore intrinsically leaky. It has been proven that increasing the number
of rings of air holes that surround the solid core, and thereby increasing the physical
separation between the solid core and the external environment, reduces the confinement
loss [79]. Thus confinement loss is determined by the geometry of the structure, and it
is shown that it can contribute significantly to the loss for these fibres, unless care is

taken with the fibre design.

The losses so far measured in real small-core HF's are typically of the order 50 dB/km [127],
more than an order of magnitude larger than the best loss achieved by BlazePhotonics
for a larger core design [81]. For example, Figures 6.1(a) and (b) shows two small-core
fibres made at the ORC with similar effective mode areas (A.p = 2.6 um? and 2.8 pm?
at 1550 nm, respectively), values predicted from measurements of the effective nonlin-
earity vy (see Section 4.2.2). Fibre (a) has a cladding comprised of two rings of large air
holes and the measured loss is 1 dB/m at 1550 nm. Fibre (b), made using the same
fabrication procedure, but with the number of rings of large holes increased to four, has
a measured loss of 0.04 dB/m. Since it is reasonable to assume that they both suffer
similar absorption and scattering losses, it results that in the small-core regime, increas-
ing the number of rings has served to reduce the fibre loss by improving the confinement
of the mode. Thus confinement loss can significantly contribute to the total loss for
these fibres. Note that the structural irregularities (such as the fact that the holes are
not perfectly circular, the hole size is not constant and the lattice is not symmetrically

structured) do not contribute significantly to the loss for the fibres shown here.

FIGURE 6.1: Small core holey fibres with: (a) 2 rings of large air holes; (b) 4 rings of
large air holes.
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To make the fibre fabrication process practical, we ideally wish to limit the number
of rings that are required. It is therefore important to be able to reliably calculate
the confinement loss characteristics for these HFs. In this chapter the fibre designs
that produce low-loss highly nonlinear fibres are identified. Note that although fibre
loss limits the effective length of any nonlinear device, for highly nonlinear fibres, short
lengths (<10 m) are typically required, and so loss values of the order of 1 dB/km can
be readily tolerated.

The modified definition for the effective mode aresa defined by equation (4.9) is suitable
for calculating the nonlinear properties of fibres comprising different material inclusions
and is used to perform all calculations in this study. Unless otherwise stated, all calcu-
lations are performed for the fundamental mode at a wavelength of 1550 nm.

The multipole method is first applied to a HF structure containing 60 air holes. The
fibre is shown in Figure 6.2 and in the following of the chapter is called fibre A. The
hole-to-hole spacing (A) and the hole diameter (d) are equal to 1.2 um and 1.08 um
respectively (d/A = 0.9). Using these small-scale core dimensions reduces the effective
mode area to ~ 1.8 um? (equivalent to v ~ 50 Wlkm™1). The mode in Figure 6.2
is well-confined to the core region, and at these small scales an increased mode/air

overlap occurs, which is reflected in the significantly lower real part of n, 77 (Mepr =
1.295844234615065 + 3.6475 x 10~™). The predicted confinement loss for fibre A is
J p

~ 1 dB/km, comparable with the total measured loss for the larger core NTT fibre, as
shown in Table 6.1. Despite this, it is significantly lower than losses typically reported

to date in small core HFs.

+—t
d=1.08um A=1.2um

FIGURE 6.2: Fundamental mode (2-fold degenerate) of fibre A at 1550 nm: caleulated
Poynting vector (contours spaced by 2 dB).
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Fibre A(pm) d(um) N, Agg(pm?) Loss (dB/km) Reference
NTT 2.8 1.7 4 - 1 OFC 2002 [80]
BlazePhotonics 4.2 185 >5 - 0.58 ECOC 2002 [81]
A 1.2 108 4 ~18 ~ 11

TABLE 6.1: Low loss HF examples. T confinement loss only.

Next, the multipole method is applied to the study of a range of small-core large air-
filling fraction (highly nonlinear) HFs. The structures in the study contain between 1
and 5 rings of hexagonally-packed holes. Fibres with hole-to-hole spacings in the range
0.8um < A < 1.8 um and hole diameters in the range 0.6A < d < 0.9A, and thus the
air-filling fraction of the cladding is 33% < FF < 74% (FF = % (%)2) are considered.
Some typical examples are shown in Figures 6.3(a) and (b). Note from Figs. 4.3 and
6.1 that this range of large air-filling fractions can be produced in practice. Within
this study, it is useful to consider the extreme (theoretical) limit in which the air-filling
fraction is 1. This structure is shown in Figure 6.3(c) and named jacketed air-suspended
rod (JASR). It consists of a silica rod of diameter A fully suspended in air. The solid
core is surrounded by a circular silica jacket placed at a distance of (N, + 0.5)A from
the centre, where NN, is the number of rings of the holey fibre structure we wish to make

a comparison with.

d/A=0.6 FF=33% d/A=0.9 FF=74% JASR FF=100%
BN  eeeee
XXX Y]
AN YYYIXYY
o0000OOGS

XXX

I\ escecooe
OO
XYY X

~AA -2A 0 2A 4A ~4A -2A 0
(@) (c)
F1GURE 6.3: Typical structures considered in this study (dark regions are silica n ~

1.444, white regions air n = 1). N, is the number of rings of air holes, and is equal to
4 for the structures shown here.

2A  4A

The aim of the study is to optimise the design of highly nonlinear HFs without compro-
mising the fibre performance in terms of confinement loss. First, the results concerning
confinement loss only are presented (section 6.2), then the connection between loss and

effective mode area is explored (section 6.3).
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6.2 Confinement losses

The confinement loss at 1550 nm has been calculated for a range of fibre profiles. Con-
sider typical HFs such as those shown in Figs. 6.3(a) and (b). The confinement loss as
the structure’s dimensions are scaled down in size is investigated here. Two competing
effects might be expected to occur. Reducing the structure scale reduces the thickness of
the silica bridges between the holes. If these bridges are small relative to the wavelength
of light guided by the fibre, this might be expected to decrease the leakage along these
bridges. At the same time, reducing the scale decreases the distance between the core
and the solid silica region beyond the cladding (N, A + 0.5d) which can cause the mode
to be poorly confined.

In order to determine which effect dominates, let’s calculate the confinement loss as a
function of the hole-to-hole spacing (A) for different d/A ratios when 4 rings of hexago-
nally arranged holes are present, as shown in Figure 6.4. Using a bigger d/A (i.e. larger
air holes) always reduces the loss for all values of A. This is unsurprising since the mode
is always more tightly confined for larger air-filling fractions. However, regardless of
the air-filling fraction, observe that confinement loss increases when A is reduced, and
is the highest for the smallest-scale structures. In addition, note that for the smallest
hole-to-hole spacings considered, the degree of improvement resulting from using larger
d/A is reduced. To understand this trend, consider a structure in which the cladding is
completely full of air such as in Figure 6.3(c). This jacketed air-suspended rod (JASR)
corresponds to the limit of large air-filling fractions and thus represents the theoretical
best case in terms of loss for a HF with a given hole-to-hole spacing and number of rings.
Here the extent of the air region is chosen to be equivalent to a structure with 4 rings
of holes (i.e. N, = 4). The black line in Figure 6.4 represents the loss as a function of
the rod size for a range of JASRs with N, = 4. Observe that the confinement loss in
the JASR is significantly larger at small rod sizes. When the JASR is scaled to small
dimensions (small A), the physical extent of the cladding region is correspondingly re-
duced, because the cladding radius is equal to (N, +0.5)A. Observe that the JASR case
removes the contribution to the confinement loss of light leaking along the silica bridges.
Thus the result in Figure 6.4 demonstrates that at these small scales, the benefit that
can be obtained by increasing the air-filling fraction is limited because the mode can “see
over” the finite cladding structure. To validate the fact that JASR results are the lower
bound of HF results, consider the point representing a HF with d/A = 0.999: although
this is an unfeasible HF to fabricate in practice, it is useful because it represents the
real theoretical limit for HF structures. As expected, this point is located between the

HF and JASR loss curves.

Figure 6.5 shows again the confinement loss as a function of the hole-to-hole spacing
(A), now for different numbers of rings and for a fixed air-filling fraction (d/A = 0.9).
Regardless of the number of rings, observe that as the core size is reduced, the loss
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Loss vs. air-filling fractions

for 4 rings
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F1GURE 6.4: Confinement loss for different air-filling fractions as a function of the hole-
to-hole spacing A. The black line corresponds to the case of a jacketed air-suspended
rod (JASR) as defined in Figure 6.3(c). The dotted horizontal line represents the loss
of conventional fibres (0.2 dB /km). Two fibres (A and B) are labelled for reference
purposes.

increases. Again, unsurprisingly, increasing the number of rings also always decreases
the loss because the holey cladding extends over a larger region. Also note that the
degree of improvement resulting from using smaller A is reduced because the extent
of the cladding region increases at a slower rate as extra rings are added. Hence it
appears that in this small-core, large air-filling fraction regime the main confinement
loss contribution is caused by the finite extent of the cladding structure, rather than
leakage between the holes, and this is confirmed below.

Figure 6.6(a) shows the confinement loss as a function of thickness of the silica bridges
between the holes (which is equal to A — d) for different d/A ratios (red lines) and hole-
to-hole spacing A (green lines) when 4 rings of hexagonally arranged holes are present.
Figure 6.6(b) shows the confinement loss as a function of the microstructured cladding
extent (equal to 2(N,A + 0.5d)) for the same HF structures considered in Figure 6.4.
For a given hole-to-hole spacing (green lines), as the air-filling fraction is increased, the
thickness of the silica bridges is reduced and the HF cladding extent is increased. As
expected, the loss decreases. Note that the increase of the cladding extent can be quite
subtle, especially for the largest scale structures: increasing the air-filling fraction, for
a given A, implies a limited scaling down of the structure. Therefore the difference
in bridge thickness is what plays a role here. However, for a given air-filling fraction
(red lines), as the structure is scaled down reducing the hole-to-hole spacing, both the
thickness of the silica bridges and the HF cladding extent are reduced. Despite the

reduction in thickness of the silica bridges, the confinement loss increases. The dominant
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Loss vs. number of rings

Confinement loss (dB/m)
=

for d/A:O.rQ

1 ring

2 rings

@1550nm

FIGURE 6.5: Confinement loss for different number of air holes rings as a function of the
hole-to-hole spacing A. The dotted horizontal line represents the loss of conventional
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fibres (0.2 dB/km). Two fibres (A and B) are labelled for reference purposes.

contribution to the loss in the small-scale regime is hence given by the finite extent of

the cladding and not to the reduction of the silica bridge thickness. Hence it results

that in this regime, where the features that define the cladding are sub-wavelength, the
main loss contribution is due to the finite extent of the cladding structure, rather than

leakage between the holes.
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F1GURE 6.6: Confinement loss for different air-filling fractions (in red) and hole-to-hole
spacing (in green) as a function of the silica bridge thickness (a) and the microstructured
cladding extent (b). The black line corresponds to the case of a jacketed air-suspended
rod (JASR) as defined in Figure 6.3(c). The dotted horizontal line represents the loss
of conventional fibres (0.2 dB/km). Two fibres (A and B) are labelled for reference

purposes.

* 0.9

for 4 rings -

10 12 14
Cladding extent (um)

)



Chapter 6 Small-core holey fibres: Properties and trade-offs for practical designs 102

Note that with careful design the confinement loss can be reduced to values comparable
with, or less than, the loss of conventional fibres (0.2 dB/km), which is represented by
the dotted line at the bottom of both figures. For example, adding one extra ring to
fibre A is sufficient to lower the confinement loss below this level, from 1 dB/km to 0.01

dB/km.

6.3 Effective nonlinear mode area

Here the range of fibre profiles that lead to small effective mode areas, and hence high
effective nonlinearities, is identified. In order to ascertain the range of effective mode
areas that can be achieved in a given glass material, let’s begin by modelling the extreme
case of a silica rod of diameter A surrounded by air (as shown in Figure 6.3(c)). As the
diameter of the rod is reduced, the mode becomes more and more confined, and the
effective mode area decreases as shown by the black solid line in Figure 6.7. Once the
core size becomes significantly smaller than the optical wavelength (here 1550 nm), the
rod becomes too small to confine the light well and the mode rapidly broadens again.
Hence, as shown in the figure, for a given optical wavelength there is a minimum effective
mode area that depends on the refractive index of the rod only. For silica, Figure 6.7
shows that this minimum effective mode area is ~ 1.45 um?, and that this occurs when

the rod diameter A is ~ 1.2 ym.
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Fi1GURE 6.7: Effective mode area as a function of the effective core size (defined as
2A — d). The black solid line represents the case of a silica jacketed air-suspended rod
of diameter A (JASR) as defined in Figure 6.3(c). The black dashed line indicates the

minimum effective area.

Figure 6.7 also shows the effective mode area as a function of the effective core size
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(defined as 2A — d) for a range of HFs with different air-filling fractions. These HF
structures also exhibit a minimum effective mode area due to the same mechanism de-
scribed above for the JASR. Unsurprisingly, the smallest effective mode area is achieved
using the largest air-filling fraction (d/A = 0.9) that corresponds to the largest feasible
refractive index contrast considered in this HF study, thus to the best confinement of
the mode. [Note that structures characterised by a d/A ratio equal to ~ 0.95 have been
fabricated.] When d/A = 0.9, the minimum effective mode area value is ~ 1.7 ym?,
only slightly larger than the value found for the air-suspended rod. This minimum value
occurs when the hole-to-hole spacing A is ~ 1 um. Observe that for smaller air-filling
fractions, the minimum point, indicated by the black dashed line in Figure 6.7, is shifted
to larger core dimensions, which reflects the fact that for smaller air filling fractions, the
index contrast between core and cladding is reduced. Note that the JASR curve crosses
the HF curves at the left of the graph because the mode in the HFs can be confined
somewhat by the silica bridges near the core. Apart from this crossing that occurs for
very small core sizes, note that the JASR curve represents the theoretical lower bound
in effective area for the HF curves. To confirm this, observe the point representing a HF
with d/A = 0.999, which is located just above the JASR curve.

vauvil &/ 4 P2 v

Now that the ultimate limit in mode area that is possible in silica fibres is known,
let’s explore whether it is possible to design fibres with small effective mode areas and
reasonably low values of confinement loss. Figure 6.8 shows predictions for the loss as
a function of the effective mode area for structures with a fixed hole-to-hole spacing
A of 1.2 um and different d/A ratios. This particular hole-to-hole spacing has been
chosen because it results in an effective mode area close to the theoretical limit (see
Figure 6.7) and the loss can be reduced below the standard fibre value using just 5 rings
of air holes (see Figure 6.5). Each curve in Figure 6.8 corresponds to a different number
of rings. For a given d/A, as the number of rings is increased, the loss decreases, as
shown previously. However, observe that the effective mode area remains remarkably
constant regardless of the number of rings used. Effectively, although the tails of the
mode significantly influence the mode’s confinement loss, their impact on the effective
mode area is minimal. Indeed, when just one ring of holes is considered, the effective
mode area is only slightly larger than when two or more rings are present because the
mode is not well confined. For this hole-to-hole spacing (1.2 um) increasing the air-filling
fraction is clearly always advantageous both in terms of achieving small effective mode

areas and low confinement losses regardless of the number of rings.

To gain an understanding of how the tradeoffs between confinement loss and effective
mode area depend on the core dimensions, let’s begin by considering structures with
2 rings of holes only. The curves in Figure 6.9(a) show the loss as a function of the
effective mode area for four different values of the hole-to-hole spacing A. In Figure 6.9
the vertical lines at the left of the graphs represent the theoretical minimum effective

mode area that can be achieved in an air-suspended structure (JASR with N, = o).
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FIGURE 6.8: Confinement loss versus effective mode area for a fixed hole-to-hole spac-
ing A = 1.2 um when different numbers of rings and different air-filling fractions are
considered. The dotted horizontal line represents the loss of conventional fibres (0.2
dB/km).

The smallest hole-to-hole spacings are not plotted for smaller air-filling fractions because
they correspond to high loss values except when many rings of holes are used. For all
hole-to-hole spacings, larger air-filling fractions not only reduce the loss but also decrease
the effective mode area. The solid symbols in Figure 6.9 correspond to the extreme case
of a JASR, which represents the theoretical limit for the loss /area improvements that can
be obtained by moving to larger air-filling fractions. The shaded region in the lower part
of the graph therefore represents combinations of effective mode area and confinement
loss that cannot be achieved unless more rings of holes are added. This is confirmed in
Figure 6.9(b), which shows the effect of adding two more rings of holes.

Consider the fibre with the relatively small air-filling fraction d /A = 0.6 in combination
with a large core size A = 1.8 um. The guided mode of this fibre is filamented in shape
along the silica bridges, as shown in Figure 6.10(b). This is the reason why it has
a large value of the effective mode area compared with the other fibres considered in
Figure 6.9(b). The modes of the other fibres are more circular in shape, as the mode of

fibre A also shown in Figure 6.10(a).

Figure 6.9(b) includes the case of hole-to-hole spacing of A = 1um. Observe that
increasing the air-filling fraction beyond d/A = 0.9 does not substantially reduce the
achievable effective mode area in this case (although it does reduce the confinement
loss). This can also be seen in Figure 6.7 , since when A =1 ym, the curves for the JASR
and the d/A = 0.9 fibre cross. This occurs because, as already mentioned, the presence
of silica bridges near the core can help to confine the mode in this extreme regime.
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FIGURE 6.9: Confinement loss versus effective mode area for a range of A and d/A
with a fixed number of rings. Solid symbols represent values for jacketed air-suspended
rods. The dotted horizontal line represents the loss of conventional fibres (0.2 dB/km).
The shaded region represents combinations of effective area and confinement loss that
cannot be achieved using the specified number of rings.

Observe from Figure 6.9 that, regardless of the air-filling fraction, moving towards
smaller core dimensions there is a clear a trade-off between achieving small effective
mode area and low confinement loss in practical fibre design. Such graphs provide a
useful practical design tool. Given an effective mode area required for a certain device
and the magnitude of loss that can be tolerated (for a given device length) this repre-
sentation can be used to choose a structure that minimises the fabrication difficulties

(i.e. limits the number of rings that are required).

A=1.2um d=1.08um A=1.8um d=1.08um

F1GURE 6.10: Fundamental mode (2-fold degenerate) at 1550 nm of two HF structures
with the same hole size (d = 1.08 ym) and different hole-to-hole spacing: (a) A = 1.2um
(fibre A) and (b) A = 1.8um. The calculated Poynting vector is superimposed to the
core region of the HF structure (contours spaced by 2 dB).



Chapter 6 Small-core holey fibres: Properties and trade-offs for practical designs 106

6.3.1 Higher refractive index glasses

Moving to glasses with a higher refractive index than silica, it is possible to access
material nonlinearities that are orders of magnitude larger than that of silica. Some
examples are shown in Table 6.2. Schott lead-glass SF57 has a refractive index of
1.8 at 1550 nm, and is 20 times more nonlinear than silica (nz(SF57) ~ 4.1 x 1019
m?/W [128]). The chalcogenide glass AsySs has a refractive index of ~ 2.4 at 1550 nm
and is 100 times more nonlinear than silica glass (ng(As2S3) ~ 2 x 10718 m?/W [129)).
Note that for chalcogenide glasses the specific composition leads to different n and N9

values.

Glass n no(m?/W)  Amess (um) Ref.
Silica 144 22x107% 1.55 [75]
SF57 1.81 4.1x 10719 1.06 [
SF59 1.91 6.8 x 10719 1.06 [128]
[
[

AseSs 24  20x10718 1.55
GLS 241 2.16x 10718 1.52

TABLE 6.2: Measured values of refractive index n and nonlinear coefficient ns for several
optical glasses at the optical wavelength Aqeas.

High refractive index glasses are made of atoms with an atomic number (and therefore
weight) larger than Si. The enhanced nonlinearity of high refractive index glasses is
due to the increased electronic polarisation of the bound electrons that is present in
heavier atoms. When light, i.e. electric field that oscillates at high frequency, propagates
in a material, the field interacts with the bound electrons (that have a much smaller
mass than the atoms) and results in a displacement of the electrons relative to the
nucleus (electronic polarisation). The refractive index of the material is a measure of
the electronic displacement (polarisation) that is directly proportional to the intensity
of the light. The origin of the nonlinear response is related to unharmonic motion of the
bound electrons. All media interact to some extent with light in a nonlinear manner but
typically these nonlinear effects are too weak to be observed. The effect of electronic
displacement (or polarisation) increases with the size of the atoms because the bound

electrons are farther from the nucleus. Therefore, also their nonlinear response increases.

The relationship between linear and nonlinear electronic polarisation is expressed by an
empirical rule introduced by Miller [131]. The electronic polarisation is expressed by the
susceptibility coefficients (¥, where i defines the order, and each coefficient is a tensor
of rank 441 [75]. The linear susceptibility x(V represents the dominant contribution and
is related to the refractive index n via x(Y) = n2—1. The third-order susceptibility x(® is
the lowest-order nonlinear effect present in silica and is related to the nonlinear coefficient
Ny via ny = 3%9?{)((3)}. The empirically derived Miller’s rule reveals the approximate
relationship x® oc [x(V]4, shown by the solid line in Figure 6.11. On the same graph, the
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squares indicate the values of linear and third-order optical susceptibilities correspondent

to the different glasses considered here. These values fit Miller’s rule well.

2@ (esu)

x“ )=n?-1

FIGURE 6.11: Relationship between linear and third-order optical susceptibilities for
the glasses considered in Table 6.2. The line indicates the approximate relationship
x® o [xM]4, also known as Miller’s rule.

In order to compare the mode confinement possible in glasses with different refractive
indices, let’s consider air-suspended rod (ASR) structures (i.e. JASR without the jacket).
Figure 6.12 shows the effective mode area as a function of the rod diameter for a range
of practically relevant (linear) refractive indices for the rod material. Unsurprisingly, for
all rod sizes, the higher the refractive index, the smaller the achievable effective area.
As already mentioned, at a given wavelength the minimum effective area depends on
the refractive index only. Higher refractive index glasses can confine the mode well for
smaller rod diameters, and thus the minimum effective area achievable is lower than for
higher index glasses. This is also shown in Figure 6.13, where the minimum effective area
and the rod size at which it is achieved are plotted as a function of the ASR refractive

index.

For silica, the theoretical lower bound for the effective mode area is ~ 1.45 um?. For the
higher index SF57 glass, which has a refractive index of ~ 1.8, the minimum effective
mode area is substantially reduced to ~ 0.75 um?. Hence high nonlinearity glasses also
offer substantial improvements in terms of mode confinement relative to silica. Note
that it has been shown in section 6.3 that the minimum Az value achievable in realistic
silica HFs (~ 1.7 um?) is only slightly larger than the theoretical limit, and similarly it is
expected that the theoretical limit will provide a useful guide to the mode area possible

in other glasses.
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FIGURE 6.12: Effective mode area as a function of the core diameter for ASR with
different refractive index materials.

Improvements in the achievable value of effective nonlinearities + are therefore possible
when a high index/highly nonlinear glass is combined with the tight mode confinement
offered by an HF structure. Recently, using SF57 glass, HFs with a measured effective
nonlinearity v of 640 W'km™" have been produced [132], more than 600 times larger
than standard silica fibres and 10 times larger than the theoretical limit for pure silica
HEF structures. For this SF57 fibre, the material nonlinearity (ny) increases v by a factor
of 20 relative to silica, whereas the small mode area (A, #f ~ 3 um?) provides a factor
of ~ 28 improvement. A further factor of 4 enhancement in nonlinearity should be

achievable by using designs that reduce the effective mode area.

Figure 6.14 shows the maximum effective nonlinearity achievable at 1550 nm for ASR
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FIGURE 6.13: Minimum effective mode area and core size for ASR with different re-
fractive index materials.
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structures made of different glasses. In order to calculate these values, the minimum
effective mode area achievable for ASRs made of the specific glass has been extrapolated
from Figure 6.13. These values represent the (theoretical) upper bound limit for effective
nonlinearities achievable with HF structures. For each glass, the value of ny used to
calculate v can be found in Table 6.2. When chalcogenide glasses (As2S3) are considered,
a significant improvement, of three orders of magnitude in +, can be obtained with

respect to silica.

Air-suspended rod structure
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FIGURE 6.14: Maximum achievable effective nonlinearity v for the glasses considered
in Table 6.2.

The calculations performed so far, for the analysis of the effective nonlinearity for ASR
structures made of different glasses, have assumed that the refractive index in the core
is the linear refractive index of the material. However, another effect to be considered
in highly nonlinear glasses, is the Kerr-induced change in the refractive index of the
glass. The difference in refractive index caused by the propagation of light in the glass
is proportional to the nonlinear coefficient no, e.g An = ngy |E|* where E is the optical
field distribution. From further calculations this effect, negligible for silica, appears to

be negligible also for the high index glass considered here.

Besides the improvement in the achievable effective nonlinearities, let’s now consider
the impact on HFs confinement losses of the refractive index contrast being higher in
these glasses than in silica. That is, is it always true that for the same HF design, the
one fabricated with a high index glass will exhibit lower values of confinement loss than
the one made of silica? Several effects must be taken into account. In ASR structures,
higher refractive indices provide better confinement of the mode, as shown in Figure 6.12.
However, when jacketed ASR, or similarly HF structures are considered, observe that
the refractive index of the jacket, that causes the mode to be leaky, is also higher than
that of silica. Thus, the higher refractive index jacket could counteract the increased
confinement of light due to the central core. Moreover, in HF structures made of a high
refractive index glass, the effect of the glass bridges could also have a bigger impact on
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confinement losses than in silica HFs. Because the bridges are also characterised by a
higher refractive index than silica, they could increase the leakage of the light between
the air holes. All this could lead to confinement loss trends as a function of the core
size/cladding extent different from the ones obtained in the case of silica structures. On
the other hand, from the study of silica HFs, the higher the air-filling fraction is, i.e.
the higher the refractive index contrast is, the larger is the improvement due to the
addition of extra rings of air holes. Applying the same argument when comparing a
high refractive index glass HF with a silica HF, it should result that the high refractive
index glass HF should have a larger improvement than silica, in terms of confinement

loss, when an extra ring of air holes is present.

To answer some of these questions the confinement loss as a function of the core diameter
for JASR structures made of silica (n ~ 1.44) and SF57 (n = 1.81) are compared, as an
example, and this is shown in Figure 6.15. The ASR jacket location is defined so that it
is equivalent to 3 (dashed line) and 4 (solid line) rings of air holes. For all these designs,
the higher refractive index glass JASR always exhibits a lower confinement loss than
the corresponding silica one. As expected, the higher index glass structure also exhibits
a larger improvement of confinement loss when the jacket extent is moved farther away

from the core.

| —e~ silica JASR (N=3)
| - silica JASR (N=4) ||
- SF57 JASR (N =3)

| —— SF57 JASR (N=4)

Confinement loss (dB/m)
(o)

08 06 07 08 09 1t 11 12 13 14 15
Core diameter (um)

F1GURE 6.15: Confinement loss as a function of the core diameter for JASR structures
with NV, = 4, for two different glasses: silica and SF57.

When considering high index glasses, it should be recalled that their material-related
losses are typically larger than that of silica. Note that both the losses of the bulk glass
and the processing losses are higher than that of silica, thus an improvement is needed
both of the purification of the starting glass and of the consequent fabrication processes.
Conventional fibre types made of chalcogenide glasses have resulted in 1550 nm values
of transmission loss of 0.6 — 3 dB/m [129], 3-4 orders of magnitude larger than the 0.2
dB/km typical of conventional silica fibres. SF57 glass has a material loss in bulk of
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~ 0.3 dB/m at 1530 nm [133]. The HF extruded from SF57, reported in [63, 134], has
a transmission loss of 4 dB/m at 1550 nm, one order of magnitude larger than the bulk
material loss. The increased loss is accounted for by the fabrication process of these
fibres which is still in an early stage of development. Thus, the improvement of the
fabrication process will allow smaller values of material related loss, both in bulk and
later in the fibre fabrication. However it will never be possible to produce fibres with
losses as low as conventional silica fibres due to the relatively high bulk losses in these

glasses.

However, the enhanced effective nonlinearity resulting from the highly nonlinear prop-
erties of these glasses and the small effective areas achievable with HF fibre types, allow
the length of the fibre required for device applications to be short. One useful figure
of merit for the efficiency of the nonlinear process is the product /L.ss where I is the
optical intensity and L.ys is the effective length of the interaction region [75]. The inten-
sity I depends on the optical wavelength and incident optical power. In bulk material,
the effective length L.js depends on the focal region. In optical fibres, the extent of
the propagating mode is defined by the fibre design, thus the interaction length L.y
is limited only by the material linear loss « (accounting for both linear absorption and
scattering loss). L.jy is thus defined as L = (1 — exp(—alL))/a. Note that Logr ~ L
if the linear loss is small (oL < 1). If the material loss o is equal to 0.5 dB/m and a
fibre length of 10 m is considered, the resulting effective length is ~ 2 m. An order of
magnitude reduction in the linear loss values, to ~ 0.05 dB/m, allows 80% of the fibre

length to be exploited.

6.4 Dispersion properties

In section 6.3 it is shown that it is possible to design high effective nonlinearity fibres with
low confinement losses. It is shown here that by modifying the fibre profile, it is possible
to tailor both the magnitude and the sign of the dispersion at 1550 nm to suit a range
of device applications. For example, small-core fibres with (low) normal dispersion are
advantageous for optical thresholding devices (because it reduces the impact of coherence

degradation [135]), whereas anomalous dispersion allows soliton-based devices.

The dispersion for some of the structures considered in this study is calculated accord-
deme b~ A AL LA PSRN P PN A D1 PRI NIy - mmmmes 2 A a2 2 L)
L1E VO L UCHILIVIOLN ZIVeIL 1D OCLLIVIL 4.4.1, COLICE 1bld;blllg OIl (ile Olies 1Aflliviied 1il vie
previous section as having the most desirable properties in terms of nonlinearity and
loss. In Figure 6.16 the dispersion is plotted as a function of the hole-to-hole spac-
ing A for a fixed large air-filling fraction (d/A = 0.9). The dispersion curves for one
(o), two (A), three (x) and five (O) rings of holes are shown on the graph. Observe
from Figure 6.16 that the dispersion for a 1 ring structure differs significantly from a

structure with 2 rings of holes, particularly for small hole-to-hole spacings. In addition
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observe that structures with 2 or more rings of holes have effectively identical dispersion
values. Recall from earlier that the mode area is similarly independent of the number
of rings of holes once at least 2 rings of holes are used. It results that once at least
2 rings are used, the mode is well confined to the core, and adding further rings does
not significantly impact the central part of the mode. Of course, adding further rings
reduces the confinement loss, as discussed previously, by acting to reduce the power in
the tails of the mode distribution beyond the cladding region. Note that the difference
in dispersion between 1 and 2 ring cases is more marked for small hole-to-hole spacings
because these structures have dimensions less than the wavelength of light, and so the 1
ring fibre provides relatively poorer confinement in this regime. The effective mode area
as a function of the hole-to-hole spacing for two or more rings of holes and d/A =09 is

superimposed in Figure 6.16 from Figure 6.7 for reference purposes.
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FIGURE 6.16: Dispersion and effective mode area at a wavelength of 1550 nm as a
function of the hole-to-hole spacing A when different numbers of rings are considered
for large air-filling fraction HFs.

For this fixed air-filling fraction (d/A = 0.9, FF = 74%), the zero dispersion point for all
curves is located near A ~ 1.2 um, whereas the minimum effective mode area point occurs
for smaller structures, i.e. near A ~ 1.05um (see the dashed line). Figure 6.16 shows
that large normal values of dispersion are predicted for structures with A < 1.05 pum.

For many nonlinear devices, low dispersion values are desirable, and so let’s now con-
centrate on structures near the zero dispersion wavelength. Consider two examples on
either side of the zero dispersion wavelength, fibre A (which was introduced earlier) and
B both have d/A = 0.9 and 4 rings of air holes. Fibre A has a hole-to-hole spacing of
1.2 ym, whereas B has a slightly smaller hole-to-hole spacing of 1.17 ym. Fibre A has
an anomalous dispersion of +14 ps/nm/km, whereas fibre B has a normal dispersion of
—14 ps/nm/km. These structures both exhibit effective mode areas of approximately
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~ 1.75 um?, only slightly larger than the smallest achievable mode area. Fibres A and
B both have similar confinement losses (order of ~ 1 dB/km). As already stated, the
addition of another ring of air holes reduces the loss below the loss level of conventional
fibres, but for the short fibre lengths typically required for nonlinear devices, the 4-ring
loss level can be readily tolerated. Thus small-core HF can be used to produced efficient
highly nonlinear devices characterised by near-zero values of dispersion, both normal

and anomalous.

Moving towards smaller core dimensions, the normal dispersion increases, and hence
fibre structures within this range could potentially be used for dispersion compensation.
For example, as Figure 6.16 indicates, in order to compensate the dispersion of 1 km
of standard SMF28 fibre (D = +17 ps/nm/km), just 2.8 m of a HF structure with a
hole-to-hole spacing of A ~ 0.9 um (D = —600 ps/nm/km) is required. Even using 5
rings of holes, the loss for this fibre is of the order of 1 dB/m, significantly larger than
for the near-zero dispersion examples given above. At least 3 more rings of holes are
necessary to reduce the HF loss below the loss value of standard fibres. Moreover, the
effective mode area for this HF is ~ 1.86 um?. Such small mode areas are undesirable for

a dispersion compensation device because nonlinear effects would limit the bandwidth

of the data stream that can be compensated.

The specific value of the air-filling fraction (d/A = 0.9) considered here was chosen
for these first investigations of dispersion in small-core HFs because large air-filling
fractions yield the highest effective nonlinearities. Further work is required to determine
whether the same trade-offs between loss, nonlinearity and dispersion apply to structures

containing less air (i.e. d/A < 0.9).

6.5 Conclusion

Using the multipole technique, a detailed numerical study of small-core microstructured
silica fibres in order to optimise their design for operation at 1550 nm have been per-
formed. Structures with large air-filling fractions (and hence small effective mode areas)
were considered. It results that single-material silica structures can have an effective
nonlinearity more than 50 times larger than that of standard telecommunications fi-
bre. However, the simulations indicate that these highly nonlinear fibres can suffer from
significant confinement loss unless certain rules are followed when designing the fibre

profile, as summarised here. Utilising these rules, the confinement loss of small-core

HFs can be reduced below the loss of standard fibres.

As shown in Figure 6.7, the hole-to-hole spacing (A) can be chosen to minimise the value
of the effective area of the fundamental mode (A.f¢), and this is true regardless of the air-
filling fraction. However, the loss calculations indicate that it is not always desirable to

use the structures with the smallest effective mode area, because they typically exhibit
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higher confinement losses. A relatively modest increase in the structure scale in this
small core regime can lead to dramatic improvements in the confinement of the mode
without significantly compromising the achievable effective nonlinearity. Note that the
loss can always be reduced by adding more rings of holes to the fibre cladding. In
the limit of core dimensions that are much smaller than the wavelength guided by the
fibre, many rings (>6) are required to ensure low-loss operation, which increases the

complexity of the fabrication process.

The coupling of light into holey fibres with a small-core and a large NA is practically
challenging when compared to fibres with a larger mode area. In order to achieve a good
coupling efficiency using free space coupling, lasers with high spatial quality beams, to
achieve small spot sizes, and high NA optics are required. In addition, without the
use of tapers or couplers, the direct splicing of conventional fibre types to these fibres
becomes impractical due to mode mismatch. Note that these issues are also important
for highly nonlinear conventional fibres, but because HFs can achieve smaller mode
areas than conventional fibre types, the coupling of light in holey fibre types can be

more challenging.

The multimode behaviour has not been studied for these regime of HFs. It has been cal-
culated that silica ASR structures are single mode for a core size smaller than ~ 1.2 um,

I SV S
structures,

and few-moded for the rest of the scale range considered here. These HF
which cladding refractive index depends on the wavelength and is always larger than 1
(air refractive index) for the presence of the silica bridges, are expected to be effectively
single mode for core sizes larger than ~ 1.2 um, thus all over the identified range of
interest for device application. Note that the higher order modes of a HF structure
are usually more separated in terms of propagation constant than conventional (weakly

guiding) fibre ones.

For a complete understanding of these HF structures, it is also necessary to consider
the polarisation properties for this range of fibre designs. The study of these properties,
presented in the following chapter, indicates that, unsurprisingly, polarisation effects can
be extreme in the small core regime. Of particular interest, the polarisation extinction
ratio degrades significantly when the core dimension is sub-wavelength, which can have

a major impact on device performance.

In this study only the properties of the fundamental modes of these HFs have been

considered. To estimate which of the fibres in the study are single mode, the V number
for a silica JASR has been calculated. It results that these structures are single mode
when the core diameter is smaller than ~ 1.2 um, and are at most few-moded for the
largest dimensions considered here. HF's have an effective cladding refractive index that
is always larger than 1 and so will be single mode for core sizes somewhat larger than
1.2 um. Thus for all of the device applications identified in these chapter, the fibres are

single mode. All these important issues regarding modal properties are discussed further
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in Section 7.2.

The dispersive properties of the structures have also been analysed in order to determine
which designs provide the most suitable dispersion for a range of different fibre device
applications. It results that when the air-filling fraction is large (d/A = 0.9, FF = 74%),
the zero-dispersion wavelength lies close to 1550 nm (within the 3rd telecommunications
window) for structures that have an effective mode area just 3% larger than the min-
imum achievable area. Conveniently, this promises the development of devices with
low dispersion values (both anomalous and normal) with near-optimum effective non-
linearity and reasonably low confinement loss (<1 dB/km). Structures that yield the
minimum effective mode area exhibit a large normal dispersion of the order of —300
ps/nm/km. Decreasing the scale further results in even larger values of normal disper-
sion. As described in Section 6.4, such structures are of potential interest for dispersion
compensation. However, as mentioned previously, penalties in terms of loss occur in this
regime, and so many rings of holes will be required to make a practical device.

Interestingly, when at least two rings of holes are present, the effective mode area of
the structure is essentially independent of the number of rings. This is useful because
it allows quick (but remarkably accurate) calculations of the modal properties of any
structure to be performed considering just two rings of holes. Once the basic properties
ilated in thi
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ted in this way, the confinement loss can always be reduced by adding

have been caler ]

more holes, and indeed the loss decays exponentially with the number of rings of holes.
Exploiting this fact, it is possible to extrapolate the loss calculations for structures with
1, 2 and 3 rings of holes to predict the confinement loss for structures with more rings

(which are computationally intensive to calculate directly using the multipole method).

The calculations performed here indicate that the effective nonlinearity () achievable in
pure silica HFs can be as high as 52 W~lkm~!. One way of enhancing the nonlinearity
further is by doping the solid core. Doping with Ge, for example, can increase the value
of ny by a factor of ~ 2. This technique has previously been exploited for conventional
fibres [76] as discussed in section 4.2.2. The preforms of most HF's fabricated to date have
been made by stacking silica capillary tubes around a solid silica rod, which ultimately
forms the core. HFs with doped cores can be fabricated by replacing the silica rod with
a doped rod, and both Yb3* [74] and Ge [60] doped HFs have been reported.

3 +hat ~failiae N Ada +hant
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it is here shown that the minimum A,z value achievable in realistic silica HFs is only
slightly larger than the theoretical limit, and similarly it is expected that the theoretical
limit will provide a useful guide to the mode area possible in other glasses. If so, the
effective nonlinearity achievable with chalcogenide HFs can be three order of magnitude

larger than that achievable with silica HF's.



Chapter 7

Small-core holey fibres:

Fundamental limits

b

n the previous chapter it is ascertained the fundamental limits of highly nonlinear small

holey fibres in terms of achievable nonlinearity. The issue of reduction of the con-
finement loss, which can become a significant penalty as the scale structure is reduced
compared to the optical wavelength, has also been addressed. The dispersive properties
for a range of structures, which are of great relevance for device applications, were also
analysed. Consideration of all these factors allow us to calculate the optimal design
for specific practical nonlinear devices. However another practical consideration is the
integration of highly nonlinear small core HFs with existing technologies. Although it
is possible to splice holey fibres with conventional fibre types [136], the mode mismatch
between small core HFs and standard telecommunications fibres tends to make this im-
practical. For laboratory-based device demonstrations, free-space coupling has generally
been used to launch light into small core HFs. Ultimately, any commercial development
of nonlinear devices based on small core HFs will require new techniques for providing
low-loss interconnection to existing systems. In either case, it is important to under-
stand the fundamental limits on the efficiency with which light can be coupled into these

extreme fibres.

7.2 Modal properties

The optical properties of small-core HFs in terms of their coupling efficiency and po-
larisation properties are investigated here. As a first approximation let’s first chose to
study these properties by applying a formulation that can be correctly adopted only in

116
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the case of weakly guiding fibres (thus ignoring the fact that HFs are in fact charac-
terised by a high numerical aperture and a complex fibre refractive index profile). More
appropriate approaches that allow a more exact analysis of the problem are described
in Section 7.3, where the extent of validity of the “approximated” approach and the
difficulties of performing a more exact analysis is also highlighted. Therefore all the
results contained in this section should at this stage be regarded as a preliminary study

on the modal properties of HF's.

The modal characteristics at 1550 nm for a range of small core, high NA, pure silica
HF's with 4 rings of hexagonally arranged holes are investigated here. Structures with
A ranging from 0.8 to 2.8 ym and d/A of 0.6 and 0.9 were considered.

The idealised 6-fold symmetric HFs considered within this study have fundamental
modes that are 2-fold degenerate, that is they are a pair of orthogonally polarised
modes with the same propagation constant [85] (see Section 4.2.4). These modes are
quasi-linearly polarised, meaning that the polarisation of the field varies across the mode
profile, resulting in a slightly curved vector field diagram. The multipole method allows
us to calculate this degenerate pair of fundamental modes, and any linear combination
of these solutions is also a mode. For the following analysis, it is chosen the linear com-
bination that results in a circular field distribution and transverse electric fields that are
approximately linearly polarised along the z-axis and y-axis, labelled mode (1) and (2)

respectively.

7.2.1 Percentage of the field in the holes

For some of the designs considered in this paper, the microstructured fibre core is smaller
than the optical wavelength, and so its fundamental mode overlaps significantly with the
air holes. Calculating this degree of overlap provides a useful way of understanding how
the mode properties depend on the fibre structure. For this purpose let’s define PF} s,
which is the percentage of the transverse modal field located in the air-holes (regardless
of the mode polarisation). In Figure 7.1 PFj., is plotted as a function of the hole-to-
hole spacing (A) for two different air-filling fractions (d/A = 0.6 and d/A = 0.9). For
structures with A larger than the wavelength (1550 nm), decreasing the structure scale
increases the mode/air overlap slightly. However, once A is smaller than 1550 nm, it is
clear that the mode/air overlap increases dramatically. Unsurprisingly, using a larger

air-filling fraction results in higher values of PFys [137].

7.2.2 Coupling efficiency

For the smallest hole-to-hole spacings (A) considered in this study, the fine silica bridges

that surround the core are substantially sub-wavelength in scale. For example, when
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FIGURE 7.1: Percentage of the transverse electric field in the air holes (PFhes) for a
range of HF structures.

A =12pm and d/A = 0.9, the thickness of these bridges is 120 nm (~ 0.078)). Hence
at first sight one might expect the mode to be less filamented along the silica bridges for
the smallest-scale fibre structures, and thus more similar to a Gaussian profile in shape.
For this reason, better coupling with the Gaussian profile mode of a conventional fibre

(or a free space beam) might be anticipated.

In order to test this assumption the mode coupling between the HF mode linearly
polarised along the z-axis (i.e. mode (1)) and a Gaussian electric field linearly polarised
along the z-axis is calculated here. The mode coupling efficiency CE, is defined to be:

|[] Ex(z,y) - Ej(z,y)dzdy|? (7.1)

CEy = JJ E(z,y) - E*(z,y)dzdy [[ Eo(z,y) - Ei(z,y)dzdy

where E, and Ey = exp{—(z® + y?)/w?} are the transverse electric field distributions
along the z-axis of the HF under study and of a Gaussian field respectively. The full
width at half maximum of the mode intensity for this Gaussian profile is FWHM =
wv2In2. For any choice of Gaussian width (w), CF, represents the fraction of the
power of the linearly polarised Gaussian field that is coupled into the HF mode. In order
to determine the optimal coupling that is possible in the HFs, w is chosen numerically
in order to maximise CE,. The coupling loss (CL,) can be determined from CE, via

Hence the best coupling is achieved when CL, is minimised. [Note that when considering
the mode coupling between the HF mode and a Gaussian electric field linearly polarised
along the y-axis, a similar formula is used simply by substituting the transverse electric
field distributions along the z-axis with the one along the y-axis. When the y-axis is
considered, results similar to the ones presented in the following, and calculated for the
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z-axis, have been obtained.]

Figure 7.2 shows the minimum coupling loss in dB for a range of HF structures along
with the choice of Gaussian beam FWHM that results in the optimum coupling for
each HF (solid lines). Regardless of the air-filling fraction, as the HF scale dimension is
reduced, the coupling loss increases (Figure 7.2(a)). Note that this is unexpected with
regards to previous discussions about mode filamentation. The two fibre cases, with
d/A = 0.9, at the extremes of the range of A under study are now considered. The two
cases are labelled in the following as fibre A and fibre B, and are characterised by a hole-
to-hole spacing A equal to 0.8 um and 2.8 um, respectively. For fiber A, which has an
effective mode area of Aoz ~ 2 pm?, the minimum coupling loss is 1.2 dB (corresponding
to 75% coupling efficiency), where for fibre B, which has a mode area of ~ 5 um?, the
coupling loss is reduced to 0.2 dB (& 95% coupling efficiency). The trend observed for
the coupling loss in Figure 7.2(a) is clearly related to the behaviour of the air/mode
overlap (Figure 7.1). Note from the graphs that the air-filling fraction has more impact
on the air/mode overlap than it does on the coupling loss. This occurs because the field
is always somewhat curved along the silica bridges, and so the relatively thicker silica
bridges that can be found for the smaller air-filling fractions compensates for the reduced
mode/air overlap. This is evident from the close-up view of the transverse electric fields
shown in Figure. 7.3. Compare in particular the two cases at the left of the figure, that
are fiber A and the fibre with the same hole-to-hole spacing as fiber A but with a smaller
d/A = 0.6. Figure 7.2(b) also shows that for the smallest structures, the spot sizes of
the Gaussian beams that lead to optimal launch conditions are sub-wavelength and the
coupling with sub-wavelength Gaussian beams is impractical. Hence in practice the
coupling loss would degrade more at small structure scales than Figure 7.2(a) suggests,
and so these predictions should be viewed as a upper bound on the coupling efficiency.

The dashed lines in Figure 7.2(a) show the coupling loss between mode (1) and a Gaus-
sian beam, ignoring the contribution from the mode polarisation, and thus describe
the contribution to the coupling loss purely due to the mode shape. This contribution
increases significantly for the smallest structures, and so the principal reason for the
coupling degradation is the non-Gaussian mode shape that results when a significant
fraction of the light is located in the holes. The loss difference between the solid and
dashed lines in Figure 7.2(a) reflects the deviation from linearity of the holey fibre mode.
The effect of the mode polarisation on the coupling loss worsens for small-scale HFs,
and to understand this trend, consider again Figure 7.3, which shows a close-up view of
the transverse electric field for the smallest and largest scale structures from Figure 7.2
(fibres A and B respectively, the two graphs at the bottom of Figure 7.3). Figure 7.3
shows that for each structure, the field is essentially linearly polarised throughout the
core region. For the largest fibre (B), the mode overlap with the air holes is negligible. In
contrast, observe that in the smallest structure (A), the mode extends further within the

air holes, and in the holes, the field curvature becomes significant. Hence the deviation
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FIGURE 7.2: (a) Mode coupling in dB and (b) full width at half maximum of the
Gaussian beam that optimises the coupling of a linearly polarised Gaussian beam (solid
lines) and non-polarised (dashed lines) into the HF fundamental mode, for a range of
HF structures. Note that the optimal FWHM is essentially the same for both coupling
into the linearly polarised and non-polarised Gaussian beam.

from linearity of the field in the air holes overwhelms any filamentation effects, which
explains why the coupling with a linearly polarised Gaussian beam is poorer when the

scale structure is decreased.

Figure 7.3 also shows the field for a jacketed air-suspended rod (JASR) with equivalent
dimensions to fibre A (upper right graph). The modal field exhibits less deviation from
linear polarisation than fibre A, even though a significant fraction of the mode is also
located in air. This difference is attributed to the different shape of the core/cladding
boundary. Hence it should ultimately be possible to improve the coupling to small
effective area holey fibres using more sophisticated cladding designs to modify the shape

of the core/cladding boundary.

7.2.3 Polarisation extinction ratio

The results given above indicate that the field curvature in the air holes can have a
significant practical impact for small scale HF structures. The implications of this field
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FIGURE 7.3: Vector diagrams of the transverse electric field for three different HF
structures (including fibre A and B) and the JASR equivalent to fibre A. Shading
denotes silica regions (thus the bottom left corner of each box corresponds to the centre
of the fibre). The contours represent the Poynting vector in dB.

curvature for practical devices are now further explored. Although it is known that
highly nonlinear HFs are typically birefringent, one related quantity of interest that has
not previously been explored in any detail is the polarisation extinction ratio. For many
applications, a large extinction ratio is crucial to avoid problems related to walk-off
effects from light coupled into the orthogonal mode. The polarisation extinction ratio

is defined in the usual way to be:

P,

min

where Prax (Prin) is the maximum (minimum) power that can be transmitted through
a linear polariser positioned at the output of the fibre when linearly polarised light is
launched onto one of the principal axes of the fibre, considered in the following to be

the z-axis of the fibre.

The function Lgn) is the overlap between a linear polariser oriented in the « direction
and the mode (n), defined by:

 JTEDP (@,y) - ESY () dedy

Lo = . 74
* JJE®™(z,y) - E™(z,y)dzdy (74

and the function C’E&n) to be the coupling efficiency between mode (n) and a Gaussian
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beam Ejy polarised in the « direction, defined by

. 2
OE™ — %ff EC(YH) (xa y) ‘E8<$,y)d:6dy|

* T [JE®(z,y) - E™(z,y)dzdy [[ Eo(z,y) - Bz, y)dzdy (7.5)

an expression that is the general version of equation (7.1). Equations (7.4) and (7.5)
represent the output and input functions of the considered optical system, respectively.

The maximum power Pnax is obtained when the output linear polariser is oriented along
the z-axis. The contribution to Pmax from mode (1) is expressed by CEM LY and the

contribution from mode (2) by cEA P , hence
Prax = CEVLY + CED L), (7.6)

Similarly, the minimum power Ppi, is obtained when the output linear polariser is
oriented along the y-axis. The contribution to Pmin from mode (1) is expressed by

CEél)Lg,l) and the contribution from mode (2) by CEQQ)L;(gQ), hence

Pain = CEP LY + CEP L. (7.7)

For the ideal case of a linearly-polarised mode, it is possible to avoid launching any light
into the orthogonal mode, and so ER, = ocodB. In real fibres, any field curvature reduces
the values of ER, that can be achieved. The polarisation extinction ratio can be readily

measured experimentally (and does not require an optimal coupling configuration).

In Figure 7.4 the extinction ratio is plotted for a range of HF structures. The extinction
ratio worsens significantly for the smallest-scale structures, which reflects the increasing
deviation from linear polarisation for the modes of these fibres. At first, it appears that
the extinction ratio is independent of the air-filling fraction (d/A). However, by plotting
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FIGURE 7.4: Polarisation extinction ratio in dB for a range of HF structures.
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the extinction ratio as a function of the effective mode area (see Figure 7.5) it is clear
that the use of larger filling fractions leads to fibres with smaller mode areas without
worsening the extinction ratio. In other words, for a specified mode area, the fibre
with larger air-filling fraction has a higher extinction ratio. Note that larger air-filling
fractions also produce fibres with lower confinement loss. Hence highly nonlinear HFs
with large d/A reduce the impact of coupling, polarisation and coupling penalties in this

sub-wavelength core regime.
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isation extinction ratio in dB as a function of the effective nonlinear
structures.

The actual calculations of each component indicate that the expressions for the maxi-
mum and minimum powers can be simplified when C’Eg(;l) > C 9(;2), which occurs when
the two modes are effectively quasi-linearly polarised along the orthogonal axis. It is
straightforward to see that, under this assumption, the maximum power (7 .6) is reduced

to

Prax = CED LY (7.8)

and that expresses the fact that the main contribution to Ppaye comes from mode (1).
Under the same assumption, the minimum power (7.7) can also be reduced to

Panin = CE( LM (7.9)

of the P, definition is at first sight less straightforward than that of the Py definition,
because obviously L?(,Q) > Lg(ll)‘ However, notice that the definition of C’Eén), when
compared to the definition of L&”') , effectively involves square values of the field integrals,
so the difference in magnitude between C’Eﬁl) and CES is considerably larger than that

between Lf) and Ll(,l). Thus the term C’Eg(gl)L?Sl) is larger than C’Ef) L?(Jz) even though
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L§2) > L?Sl), The extinction ratio expression is therefore reduced to

A
ER, ~ 10logy, - (7.10)
Ly

and is thus related to the modal linear polarisation of mode (1) only, in other words to
how well linearly polarised the mode is. This approximation holds for the largest scale
cases presented in this study, in particular for the cases with A > 1.2 um. As the scale
of the structure is reduced below this value, the exact ER, expressed by equation (7.3)
becomes smaller than the approximated ER; expressed by equation (7.10), because the
two modes are less well linearly polarised along the orthogonal axis and the contribution
originating from mode (2) cannot be neglected. Note also that when this approximation

holds, the extinction ratio is effectively independent of the field incident on the fibre.

7.3 Exact calculation of the modal properties

As already mentioned, the results so far presented have been derived making various
simplifying assumptions that are no longer valid as the structural scale of the fibre is
reduced. When considering the excitation of a guided mode through the facet of the fibre,
the incident field (Einc, Hine) is scattered into different field components, one of which
is the guided mode (B2, H®Y), however other of the various different propagating
and radiative modes can also being excited. The coupling efficiency is defined as the
ratio between the power that is launched in the guided mode under study and the total

incident power.

It is therefore needed to isolate the portion of the incident field that effectively couples
into the fundamental mode. In order to do that, reciprocity can be used and the problem
can be reversed, thus calculating first the field radiated from the fibre facet when the
guided mode arrives at it. It is known that the optimum coupling into the guided mode
occurs when a field (Eqpt, Hope) with the same characteristic of the radiated mode is
coupled into the fibre. Therefore, the ratio between the power carried by the guided
mode and the total power carried by the field (Eqps, Hopt), which corresponds to the
field radiated from the same guided mode, defines the optimum coupling efficiency CEqpt.
However, a generic incident field (Eine, Hiye) will achieve a coupling efficiency CF that
is less than the optimum coupling efficiency CEqps, and the measure of such reduction in

coupling efficiency is given by the mismatch between the optimum and incident fields.
Thus the coupling efficiency CF for a non-optimum incident field is expressed by [138]

| /] Byt % Hin - ndady|?

- 7.11
| [ Eopt % HY,, - ndzdy [[ Eye x HY, - ndzdy| (7.11)

CE = CEqp

where the vector n is normal to the facet.
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Note that for weakly guiding fibres, the impedance relationship E; ~ +Zn x H holds,
where E; is the transverse component of E and Z denotes the waveguide impedance. In

such a case equation (7.11) can be reduced to

Uf Egpt,t : Einc,t : dmdyf
ff Eopt,¢ 2 dzdy ff |Einc,t|2 dxdy

Note also that when the fibre profile at the facet is relatively uniform, the radiated
field (thus the optimum coupling field (Eqp, Hopt)) has essentially the same form as
the guided mode (E(?), H(12)). This implies two things: CEyp; reduces to the Fresnel
transmission formula at the interface of materials with different refractive index (thus
at the silica/air interface it is equal to 96%), and, more importantly, the integrals in
equation (7.12) can be done directly between the incident field and the guided mode.
All these approximations lead to the coupling efficiency formulation used in the analysis
presented in Section 7.2.2, where equation (7.1) can be derived from equation (7.12), by
neglecting the Fresnel transmission (note that CEop; ~ 1 when considering fiber-to-fiber
coupling) and by replacing the optimum coupling field (Eope, Hopt) with the fundamental

mode (EL2 712,

The analysis presented in Section 7.2.2 (that involves several simplifications valid for
weakly guiding fibre with a relative uniform profile) has been used to predict prelim-
inary results on coupling properties of small-core HFs since the exact analysis (7.11)
requires the knowledge of the field radiated from the fibre facet and this field that can-
not be evaluated by means of the multipole method. To calculate the field radiated
from the fibre facet it should also be considered that a portion of the guided mode is
also back-reflected and coupled into the back-propagating guided mode and other back-
propagating and radiative modes. An analytical solution of this problem, considering
also the complex HF profile, is not straightforward, although the field radiated from the
HF facet can in principle be numerically calculated with the beam propagation method.

As pointed out already in Section 7.2.2, the spot sizes of the Gaussian beams that achieve
the best coupling efficiency are sub-wavelength. This, apart from being impractical, also
means that the assumption of a simple Gaussian beam incident at the fibre facet is no
longer valid. The process of tightly focusing a linearly polarised Gaussian beam by
means of a high-NA lens, results in a beam that is no longer Gaussian and which also
can become significantly depolarised. That is, when a linearly polarised (e.g. along the
z-axis) Gaussian beam is tightly focused by a high-NA lens, the resultant beam exhibits
significant £, and E, components. An integral solution of the focal field of a tightly
focused plane wave was derived by Richards and Wolf [139] in 1959, and this approach
has been extended omly recently to a tightly focused Gaussian beam (actually by L.
Novotny) [140]. Such an integral solution can be solved numerically, but the simulation
can be computationally intensive. Moreover, the focal field depends on the spot size of

the Gaussian beam incident on the lens, and on lens characteristics (focal length and



Chapter 7 Small-core holey fibres: Fundamental limits 126

NA). Similar sub-wavelength spot sizes can be produced by different combinations of
these parameters and that result in different field profiles. Note also that there is not a
clear (analytical) definition of the spot size of the focal field.

An alternative way of calculating tightly focused Gaussian beams was presented by Bar-
ton and Alexander [141] in 1989, which although less accurate than the integral solution,
especially when the spot size is sub-wavelength, results in a faster implementation. Their
approach is based on a fifth-order corrected expression for the Gaussian field and allows
calculation of the field components in a closed analytical form as a function of the

parameter s defined as: =

$= oo (7.13)
where A is the optical wavelength and w the Gaussian beam waist radius. This formu-
lation involves a series expansion in even powers of the parameter s, that is stopped at
the third term for a fifth-order correction. Clearly the larger s is (i.e. the tighter the
focus is), the slower the convergence of the series is and more terms should be included
to accurately represent the solution. The spot size values resulting from the coupling
analysis presented in Section 7.2.2 are in the range 0.75-1.65, thus s varies between 0.15
and 0.33, which corresponds to an average percentage error of the fifth-order correction
that is less than ~ 2%. Thus using the fifth-order corrected Gaussian fields in the cal-
culation of the coupling efficiency should allow us to predict with reasonable accuracy

the impact of tight focusing for the smallest scale structures considered here.

The impact of the non-Gaussian mode profiles on polarisation extinction ratio also needs
to be considered as the structural scale is reduced. As previously mentioned if it is
assumed that an z-polarised Gaussian beam is tightly focused by a high-NA lens to
efficiently couple light into the fibre, the field that is actually coupled into the fibre be-
comes depolarised with tight focusing, therefore the coupling of light into the y-polarised
mode (i.e. CE@) should increase with respect to the previous analysis. Therefore a fur-
ther degradation of the extinction ratio values is expected, especially for the smallest
scale structures. The use of the fifth-order correction for a Gaussian beam to assess the

magnitude of this effect is currently under investigation.

7.4 Conclusion

The results presented in this chapter represent the first study ever done of the funda-
mental limits on the efficiency with which light can be coupled into small core HFs.
These results highlight some practical penalties associated with the use of small core
HFs. For structures with core dimensions that are smaller than the optical wavelength,
it is shown that the achievable coupling decreases and the polarisation extinction ratio
is reduced. Since these small structures are required to achieve large normal dispersion
in silica HFs [142], these penalties will pose a challenge for the successful realisation
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of HF-based devices for dispersion compensation. Similarly, since the coupling/polari-
sation/loss penalties become significant for fibres with a substantial air/mode overlap,
they will impact the development of any devices that exploit evanescent field effects in
these fibres [137].

For other devices such as those used for optical data regeneration and switching, wave-
length conversion and Brillouin and Raman-based devices, it is possible to design fibres
that represent an acceptable compromise between nonlinearity and these penalties. For
example, for a fibre with A = 2.2 um and d/A = 0.9, the extinction ratio is > 20 dB,
the coupling loss can be < 0.5 dB and the effective area is still small (Aeps ~ 4pm?).
Hence the effective fibre nonlinearity is still high (v ~ 30 Wlkm™! compared to the
values that can be achieved using conventional fibre types. Such fibres reduce the typical
power length product requirements of devices based on nonlinear effects to the 10 W.m
level. In the future, by combining the higher material nonlinearity possible in compound
glasses with the mode confinement offered by HF structures[134], it should ultimately

be possible to realise sub-(W.m) devices.



Chapter 8

Multipole method: Examples of

applications

In the following chapter examples of the application of the multipole method are pre-
sented. First, the method is tested in order to validate it. The method is then applied to
the analysis of several MOF cases that do not form part of the study of small core HF's,
presented in the following two chapters, because these cases concern different structure

regimes or designs. Motivations related to the analysis of each case are given.

8.1 Testing of the multipole method

Firstly, the implementation of the multipole method was tested against previous results
reported in the literature. The multipole method was then applied to the study of a range
of fabricated MOF's, and its findings compared with available experimental results. The

agreement of the multipole method with other prediction techniques is then discussed.

8.1.1 Testing against previous results

The implementation of the multipole method, presented in Chapter 5, is based on the
formulation given in White et al. [101] and Kuhlmey et al. [113]. The method imple-
mentation used for the work presentedin this thesis has therefore been validated against
all the results given in White et al. [101]. Perfect agreement with the solutions found for
the MOF structure present in the paper was obtained, for all the figures reported there.
From this, it can be concluded that the method has been implemented correctly. Note
also that both [79] and [113] present studies of the confinement loss of HF structures
performed by means of the multipole method, but for structural scales larger than that

considered in this thesis (i.e. small-core regime).
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8.1.2 Testing against experimental results

In order to be proved to be valid any theoretical method needs to be compared to
experimental results. A comparison between the measured values of loss and effective

area for three different HF's is here performed.

The first fibre has been fabricated at the ORC and is a small-core HF, which is the class
of HF's studied in Chapters 6 and 7, and the same fibre has been already introduced in
Chapter 6, see Figure 6.1(a). Figure 8.1(a) shows the surface topography of the small-
core HF (~ 1.25 um core diameter) obtained by scanning the cleaved fibre end using an
atomic force microscopy (AFM) [143]. Note that this fibre contains just two rings of large
holes surrounding the core. The measured effective area is 2.8 um? at 1550 nm [144].
The measured fibre loss at 1550 nm is ~ 1 dB/m, considerably more than in similar
fibres with more rings of holes, such as the fibre shown in Figure 6.1(b) which has a loss
of 0.04 dB/m. Here an AFM image of the fibre is used because it provides a precise
knowledge of the dimensions and topography of the finest structural details of the fibre
profile. In order to apply the multipole method, the circular holes arrangement reported
in Figure 8.1(b) has been chosen to match to the real HF structure. In this approximated
structure, some of the interstitial and outer holes have been neglected for simplicity, and
so it is expected that this approach should somewhat overestimate the confinement loss
and the effective area. The Poynting vector of the calculated fundamental mode at 1550
nm for the approximated HF is also shown in Figure 8.1(b). The resulting effective index
is nesr = 1.318854368247964 + 13.6072222 x 1077, that corresponds to a loss of ~ 12.7
dB/m and an effective area of ~ 2.4um?®. Despite the approximation in the modelled
structure, the predicted value for the effective area is relatively close to the measured
one of 2.8 um?. Although it is expected that this could be made to agree more closely
with observations if more small holes were included to improve the representation of the
structure in this model, these estimates show that this method can provide a useful guide
to the magnitude of the confinement losses in these structures. This has been recently
confirmed by Koshiba and Saitoh [145] where a full-vector FEM has been applied to
study the same fibre. According to [145], accounting for the presence of interstitial holes
does significantly reduce the confinement losses, because they increase the air-filling
fraction. In the same paper modelling of the fibre with the same hole arrangement
reported in Figure 8.1(b) but allowing for the actual noncircular shape of the holes has
also been performed. The result confirms that replacing circular holes with the actual
noncircular holes does not affect significantly the confinement loss calculation.

The method was then tested for the low-loss holey fibre presented by NTT in Tajima
et al. [80]. The fibre cladding is comprised of 60 air holes, hexagonally-packed into 4
rings. Contrary to the previous case, this HF presents almost circular air holes. The hole
diameter d is 1.7 um and the hole-to-hole spacing A is 2.8 um (and so d/A ~ 0.6). The
multipole method predicts an effective mode index n.sr of 1.422361568456178 + 12.9 x
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F1GURE 8.1: (a) AFM surface topography of a HF with 1.25 pum core; (b) arrangement
of circular holes corresponding to the previous real HF and calculated Poynting vector
in dB (contours spaced 2 dB) of the fundamental mode at 1550 nm.

1074, The predicted effective mode area is ~ 9 um?. Note that this value is comparable
with the smallest effective mode area achieved in conventional fibre (~ 11 um?). The
predicted confinement loss for the fundamental mode at 1550 nm is ~ 107 dB/km,
consistent with, and significantly smaller than, the total measured loss of 1 dB/km

reported in Ref. [80]. Hence even though the fabrication, scattering and material-related

losses have been reduced dramatically in this fibre relative to previous fibres, they still

dominate the confinement loss here.

BlazePhotonics Ltd. recently presented a fibre with a loss of 0.58 dB/km at 1550nm [81].
The HF has a hole diameter d of 1.85 um and hole-to-hole spacing A of 4.2 ym (and so
d/A ~ 0.44). They determined that 0.18 dB/km of the total loss was due to Rayleigh
loss (or scattering from particles loss, that is the fundamental limit for loss) and 0.13
dB/km to OH™ absorption. The excess loss (0.27 dB/km) that remains unaccounted for
has been primarily attributed to scattering at the air/glass interfaces due to nanometre-
scale surface roughness. Table 8.1 reports the predicted values of the effective index and
confinement loss of this fibre design using structures with different numbers of rings.
Since for 4 rings the confinement loss is predicted to be still larger than the excess loss,
these results indicate that the fibre must have at least 5 rings. The results in Table 8.1
indicate that for 5 or more rings the contribution of the confinement loss to the excess
loss becomes negligible (the confinement loss for the 5 rings structure is 7.1 x 1073
dB/km). The analysis of the different loss contributions performed on this fibre in [81]

have therefore correctly ignored the confinement loss contribution.

8.1.3 Testing against other methods

In Ref. [79] the multipole method was tested against the beam propagation method
(BMP). Good agreement was found between the multipole method and the vector BPM
in both the real and the imaginary parts of the effective mode index n.yy.

Testing the multipole method against the orthogonal function technique [61, 110] is here
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Number of rings R{nesr} S{nesr} L (dB/km)
1 1.436197380970710  7.8754847 x 107> 2.8 x 108
1.436202669564560  5.6330104 x 10~7 2.0 x 10*
1.436202773109870  3.9731529 x 107° 1.4 x 102
1.436202774050850 2.8035070 x 107 9.9 x 107!
1.436202774058195  2.0108 x 1071  7.1x 1073
1.436202774058251 ~Qx 10718 3.4 x 1073

S O s W N

TABLE 8.1: Effective index and confinement loss of the BlazePhotonics fibre structure
for different numbers of rings.

performed for large mode HFs. The results are presented in Section 8.4 of this chapter.

8.2 Effect of relative location of two circular rings of air-

holes

The effect of the relative position of two circular rings of air-holes on the confinement
loss is under investigation here. Since the extent of the cladding region does not vary,
the confinement loss is expected to be affected by the presence of glass routes, created
by the relative position of the two rings, which can allow the light to be guided out of

the core region.

The multipole method has been applied to study a structure with two rings of air holes,
where the rings have a circular shape. As shown in Figure 8.2(a), the inner ring has 6
holes equally spaced at a distance of 1.8 ym from the centre of the structure, while the
outer ring is comprised of 18 holes located at a distance of 3.6 um from the centre (so
that A = 1.8um and d/A ~ 0.72). The outer ring is rotated with respect to the inner
ring, in order to evaluate the effect of the relative location of the two circular rings on
the total confinement. Figure 8.2(b) shows the difference in the real part of the effective
index as a function of the dephasing between the two rings. The corresponding values
of confinement loss are plotted in Figure 8.2(c). As expected, the loss is minimum when
the holes of the outer ring are aligned with the silica bridges of the inner ring, because
this alignment counteracts the leakage of the light along the bridges.

8.3 Effect of interstitial holes

The presence or absence of interstitial holes in MOFs can now largely be controlled
during fibre fabrication. The interstitial holes can be eliminated by sealing each capillary
before performing the stacking into the desired design. The interstitial holes are retained
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FIGURE 8.2: (left) Schematic of the mutual rotation between two circular rings of air
holes, where ¢ represents the dephasing between the two rings; (right) Confinement loss
(left axis) and difference in effective index (right axis) as a function of the dephasing

angle ¢.

if the sealing is not performed and their size can be controlled by varying the temperature

and pressure conditions during the drawing of the fibre.

In Monro et al. [110] the effect of interstitial holes is studied for a HF structure with hole-
to-hole spacing A equal to 3.2 um and air-filling fraction equivalent to a d/A ~ 0.6. The
small interstitial holes are present between the larger air holes over the entire structure.
Given their location, it might be expected that the interstitial holes will act on the tails
of the propagating mode, improving its confinement. This can also be confirmed by
the analysis presented in Section 8.2 where it is shown that the confinement improves
when the outer air-holes are aligned to the silica bridges created by inner air-holes. As
expected, Ref. [110] shows that when the size of the interstitial holes is increased from

zero, the mode area decreases.

Here, the effect of the interstitial holes on a smaller scale design than that considered
in [110] is under investigation. In particular, consider a HF structure comprised of 4
rings of air holes and characterised by A = 1 um and d = 0.9 um. Only six interstitial
holes of dimension d; = 0.1 um are considered, first located close to the core and then
between the first and second ring of larger air holes, as shown in Figures 8.3(b) and
(c) respectively. In this way, it can also be ascertained, for this small-core regime, the
impact on the mode of the different locations of the interstitial holes within the HF

structure.

The results are summarised in Table 8.2. Despite the tiny dimension of the interstitial
holes compared to the optical wavelength (A = 1.55 um, thus d; ~ 0.065 x }), their
presence affects the mode. In the first case (b), where the interstitial holes are present
very close to the core, both the effective area and the confinement loss increases when
compared to the case in which the interstitial holes are absent, shown in Figure 8.3(a).
The second case (c¢) results in smaller effective area and confinement loss values. There-
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fore it seems that when the interstitial holes are located close to the core they somehow
push out the light rather than confining it more tightly. However, this is strictly re-
lated to the small scale of the overall structure and the sub-wavelength dimension of
the interstitial holes, which act as a perturbation of the mode confinement. For larger
hole-to-hole spacing, as reported in Monro et al. [110], the presence of interstitial holes

close to the core improves the confinement of the mode, as for case (c).

15

FIGURE 8.3: Small core HF without interstitial holes (a), with interstitial holes located
close to the core (b) and between the first and second ring of air holes (¢). Contours of
the Poynting vector in dB of the fundamental mode are superimposed to each structure.

Fig 83 R{neg}  L(dB/m) Aoy (um?) AN (um?®)  PRhoses (%)
(2)  1.2519591173638 0.63 1.72 1.61 24.3
(b) 1.2438882803565 0.89 1.75 1.61 26.4
(c) 1.2516104712842 0.61 1.71 1.60 24.1

TABLE 8.2: Predicted properties of the fundamental mode for the three HF cases shown
in Figure 8.3.

8.4 Large mode area holey fibres

Large mode holey fibres (LMHF's) have been successfully analysed by applying the scalar
version of the orthogonal functions technique (OFT) [61, 110]. It is, in general, not neces-
sary to apply the vector version of this approach when the MOF exhibits a low numerical
aperture and the structure scale is large compared to the wavelength, because the result-
ing mode is essentially transversal. Comparing predictions for LMHFs computed by the
orthogonal function technique and the multipole method can therefore lead to a further

validation of the multipole method.

The first example studied here by means of the multipole method is a hexagonal lattice
structure characterised by a hole-to-hole spacing A of 8.87 um and air holes diameter d
of 2.3 um. These structural parameters corresponds to a fabricate HF and have been
measured with scanning probe microscopy [143], the same technique used for the fi-

bre presented in Section 8.1.2 and described there. The effective mode area A.fs of
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A(pm) d(pm) N, Ri{nesr} S{nesr} £ (dB/m)
887 2.3 3 1.45677486042102 1.0125821 x 10~  ~ 0.87
887 23 4 145677486585686 3.64791 x 1010 ~ 0.031
10.00 2593 3 1.45682479679682 7.464727 x 10~°  ~ 0.64
10.00 2593 4 1.45682480076638  2.62010 x 10710~ 0.023

TABLE 8.3: Multipole method predictions at 633 nm for LMHFs with d/A = 0.2593.

the fundamental mode of this fibre at an optical wavelength of 633 nm has also been
measured via scanning probe microscopy and with standard knife-edge techniques [146],
which both estimated A.fr ~ 90 um?®. This result was in disagreement with a prediction
computed via the orthogonal function technique, according to which A, #f 140 um?. The
value of the effective mode area of the fundamental mode predicted by the multipole
method is under investigation here, in order to understand whether the orthogonal func-
tions technique is somehow failing or the real HF structure is different from the modelled
one. Even though the real fibre is comprised of 7 rings of air holes, only structures with 3
and 4 rings of air holes have been considered for the sake of reducing the computational
time. This can be done because, due to the large scale of the structure compared to
the optical wavelength, the confinement losses are small and the mode is already well
confined for a reduced number of rings. The fundamental mode characteristics are sum-
marised in Table 8.3 (first two rows). Both the designs lead to an effective ares of the
order of 147 ym?, implying that the mode is well confined despite the limited number of
rings considered here. Note also that the first nine figures of the real part of the effective
index are exactly the same, as shown in the table. The result is compatible with the
OFT prediction of 140 ym?, whereas it is 39% larger than the measured one. Therefore
it results that the real fibre is somehow different from the modelled one, not in terms
of the structural characteristic (i.e. A and d) finely described by the AFM image, but
of the material characteristics. Indeed it has subsequently been proven that the heat
treatment of the glass resulted in a non-uniformity of the material refractive index.

Table 8.3 also reports a second HF design characterised by the same d/A ratio of 0.2593
and a larger hole-to-hole spacing of A = 10 um. This second case has been computed to
ascertain the degree of increase of the propagation constant as a function of the scale
of the structure in the regime where A\/A << 1. This analysis was then performed at a
wavelength of 1.064 um (that is the emission wavelength of Nd-glass based power-lasers)
for which a wider range of results computed via OFT was already available. Large
mode area HF structures comprised of 3-4 rings of air-holes, with an air-filling fraction
corresponding to d/A = 0.2 and hole-to-hole spacing equal to 7 and 12 um are considered.
The predictions obtained via the multipole method are summarised in the upper half of
Table 8.4, whereas the ones computed via the orthogonal functions technique are shown
in the lower half. Considering that the OFT was used in its scalar version and applied on
an infinite cladding HF structure, the fact that the effective indexes agree up to the ffth
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A(um) d(pm) Ny F{nesr} S{nesr} £ (dB/m)
7.00 1400 3 1.44871772881362 6.0192484 x 10~7  ~ 30.87
7.00 1400 4 1.44871819573661 6.3421836 x 1078  ~ 3.25
7.00 1400 5  1.44871824686663 6.711785 x 107°  ~ 0.34
12.00 2400 3 1.44930894316107 1.2915368 x 10=7  ~ 6.62
12.00 2400 4 1.44930903720589 1.1133351x 1078  ~ 0.57
12.00 2400 5 1.44930904563108  9.62204 x 10710  ~ 0.049
7.00 1400 -  1.44871855725142 - -
12.00 2400 - 1.44929614308265 - -

TABLE 8.4: Predictions at 1.064 um for LMHFs with d/A = 0.2, computed with the
multipole method (upper half of the table) and the orthogonal functions technique
(lower half).

figure is a very good result. For the smallest scale structure, the effective areas predicted
via multipole method and via OFT are equal to ~ 127 um and ~ 123 um, respectively;
whereas for the largest scale structure they are equal to ~ 344 um and ~ 313 um. The
agreement between the results produced by the two methods is again good. Figure 8.4
shows a comparison between the cross sections of the transverse field F; along the two
main axes of the fibre for the fundamental mode predicted by the two methods. The
agreement between the mode profiles calculated by the two methods is almost perfect in
the core region and the profiles slightly differ only on the tails of the mode, consistent

with the good agreement between the effective indexes and the effective mode areas.
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Ficure 8.4: LMHF A =12 - d/A = 0.2 at 1.064 um.
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8.4.1 Fundamental space-filling mode

The effective refractive index of the MOF cladding strongly depends on the optical
wavelength, as mentioned already in Section 4.2. The effective cladding index can be
used to determine whether the fibre is single- or multi-mode, and also in bend loss
calculations. For periodic lattice HFs, the cladding index has always been estimated
by calculating the fundamental space-filling mode (FSM) of the periodic lattice of the
HF, i.e. replacing the HF core with an air hole and thus considering the cladding to be
infinite. The effective index of the FSM is considered to be the effective cladding index
of the HF. Several methods can be used to calculate the FSM, such as the plane wave
technique [99], and some of them rely on the study of the unit cell of the periodic lattice,
such as the beam propagation method or the fully analytical vector approach presented
in Midrio et al. [147] which approximates the hexagonal unit cell with a circular one.

However, HFs are actually comprised of a finite number of air holes, and practical HFs
are preferably made with a limited number of air holes. Thus the effective index of the
FSM estimated with the assumption of an infinite cladding extent could not be accurate.
The multipole method can be applied to the study of the fundamental space-filling mode
for HF structures comprised of a finite number of air holes, again replacing the core with
an air hole. A hexagonal lattice (large mode) HF is considered here, characterised by
3 rings of air holes, a hole-to-hole spacing A of 12 um and an air hole diameter d of
4.8 um (thus d/A = 0.4), and analysed at a wavelength of 1064 nm. Figure 8.5 shows
the arrangement of holes that act as the cladding of this fibre, along with the transverse
electric intensity distribution of the fundamental mode of this structure (i.e. the FSM of
a finite extent lattice) predicted by the multipole method. The mode profile is essentially
zero within the air holes and is somehow localised into the central part of structure, due
to the finite extent of the periodic lattice. Note that the FSM for an infinite periodic
structure is essentially zero within the air holes but is clearly not localised. The mode
is a two-degenerate mode with polarisation characteristics similar to that of the HE;

mode for a conventional fibre.

In order to analyse how the effective cladding index, calculated in this way, is affected by
the cladding dimension, the calculation is repeated for the same scale structure but with
a different number of rings of air holes. Figure 8.6 shows that the effective cladding index
increases as more rings are added to the structure. This curve is expected to converge
towards the effective index of the FSM calculated for the infinite lattice. Indeed, for all
the cases considered here, it always results that the effective index value predicted for
the FSM of the infinite lattice is larger than that predicted by the multipole method for
a finite lattice. This convergency can be easily visualised when considering that when
the cladding extent is increased, the mode spreads more and becomes less localised to

the central part of the structure.

The multipole method can be used to study the single/multimode behaviour of HF
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F1GURE 8.5: Cladding profile corresponding to a HF comprised of 3 rings of air holes.
The transverse electric intensity distribution of its fundamental mode is superimposed
to the structure profile.

structures. Figure 8.7 shows the scan of the determinant of the field identity ma-
trix |det(M (n.zs))| for the HF previously presented (blac& line) and its corresponding

cladding (red line), as a function of the real part of the effective index nesr. Each sub-
figure refers to a different number of rings. The derivative of the function |det(AM(n.zs))]

adi
is actually plotted on the graphs, in order to better highlight the presence of local min-
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of a local minimum in the function. In the curves plotted in Figure 8.7, this point of
discontinuity appears as a “glitch” on an otherwise smooth curve. The glitch (labelled
FM in the figure) on the black curve located at the largest n.ss is the HF fundamental
mode. Note that no glitches are present on the red curve at that position, because the
HF fundamental mode is clearly not a mode of the corresponding cladding structure.
The glitch (labelled FSM in the figure) on the red curve located at the largest n, s corre-
sponds to fundamental mode of the cladding structure. If the fibre is multimode, other
glitches appears on the HF (black) curve at negs values included between n. ¢ (FSM) and
neff(FM). In the case presented here, the fibre is single-mode. It results that to have

an indication on the single-modality of the fibre, it is usually enough to analyse the HF
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FIGURE 8.6: Effective cladding index as a function of the number of rings.
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structure comprised of 2 rings of holes only (recall from Section 5.4 that the computa-
tional time required by the multipole method scales as the fourth-power of the number
of rings, in a hexagonal lattice, and considering 2 rings only results in a relatively quick
calculation). However, it also results that a fibre can be just multi-mode for 2 rings and

single-mode when more rings are considered.
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FIGURE 8.7: Derivative of function |det(M)| as a function of R{n.ss} for a HF struc-
ture (black line) and the corresponding cladding structure (red line). Three different
number of rings are considered, as indicated in each sub-figure. FM indicates the posi-
tion of the fundamental mode of the HF structure, whereas FSM indicates the position
of FSM (i.e the effective cladding index).

8.5 Solid holes (SOHO) microstructured optical fibres

A new MOF design has recently been fabricated at the ORC by Feng et al. [148]. It
consists of a usual HF structure in which the holes have been filled with a low refrac-
tive index glass and has therefore been named SOHO (solid holes) fibre. Two glasses
with similar thermal properties were chosen for this purpose. It is essential that the
two glasses have similar softening and melfing temperature in order to allow the mi-
crostructured material to be kept as it is during all the steps of the fibre fabrication
process. The background glass is SF6 whereas for the inclusions the LLF1 glass has
been used, they are characterised by a refractive index of 1.76444 and 1.5347 at 1530
nm, respectively [133]. In'order to fabricate the MOF, rod-in-tube composites were first
fabricated, the rod consisting of the lower refractive index glass (LLF1). The composit

rods were then stacked together in a hexagonal lattice, with the central part made of
rod of the high refractive index glass (SF6) to form the core of the fibre.

o

The main problem of using capillaries, as in single material HF, is the collapsing of
the air-holes during the fibre drawing, that is usually avoided by sealing the end of the
capillaries, as discussed in Section 4.1.4. However, even with sealing, the geometry can
change under the drawing process. Thus, the use of solid “holes” should result in more
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A(pm) d(pm) d/A N, B{nesr} S{rness } L (dB/m)
4.00 1.144 0.286 2  1.75964843990176 4.0396586 x 1073 ~ 1.420
4.00 1.144 0286 4 1.75968287145702 6.4078192 x 107 ~22.6
400 2.000 05 2 1.75715497146709 3.2445199 x 10~7 ~11.4
400 2.000 05 4 1.75715501728467  9.287 x 10712~ 3.27x 107*
4.00 3200 0.8 2 1.75247212693672 3.55 x 10713 ~1.25x 1075

TABLE 8.5: Predictions for SOHO fibres at 1550 nm.

perfect structures and help to maintain almost circular inclusions. The background glass
should also fill the interstitial spaces between the tubes. As a side effect, because of the
circular inclusions, the multipole method will ideally yield very reliable predictions for
the optical properties of SOHO fibres. This can be an important issue when optimisation

of the fibre design for a particular application is required.

Since this is a new class of MOFs, predictions for the confinement losses of several
structures need to be done in order to give guidelines for the fabrication of a design
not affected by this kind of loss. Calculations are performed here at 1550 nm for MOF
structures characterised by a hole-to-hole spacing A of 4 pm, a range of d/A of 0.286—0.8
and 2 to 4 rings of holes, as reported in Table 8.5. This range was chosen because these
ratios have been fabricated into rod-in-tube mono-structures. Note that although the
refractive index contrast of the two glasses is smaller than the silica-air combination,
which might be expected to lead to a worse mode confinement, the refractive index of
the background glass (SF6) is higher than silica, that might instead lead to a better
mode confinement. Thus the confinement of the SOHO fibre compared to a single-
material silica HF results from a trade-off between these two effects. Observe also that
the nonlinear index of SF6 is approximately 10 times higher than that of silica, thus this
MOF design potentially leads to higher value of effective nonlinearity ~.

Figure 8.8 shows the confinement loss as a function of the number of rings for the
SOHO fibre cases studied here. The confinement loss values for the silica HF presented
in Section 8.1.2 (low-loss fibre made by BlazePhotonics) have also been plotted on the
graph (dashed line) for comparison, because this HF is characterised by a scale structure
similar to the SOHO cases, i.e A = 4um and d/A ~ 0.44. For these SOHO fibre
cases, despite the reduced refractive index contrast, the degree of improvement as extra
rings of inclusions are added seems to be only slightly worse than the silica HF case.
However, comparison with silica HF predictions reported in [113] shows that the degree
of improvement, when the air-filling fraction is increased, is significantly reduced for the
SOHO structure, therefore the higher refractive index glass does not counteract enough

the reduced mode confinement offered by the lower refractive index contrast.

In order to ascertain what values of effective nonlinearity can be achieved with a SOHO

fibre design, an step-index fibre design is considered here. This design represents the
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FIGURE 8.8: Confinement loss as a function of the number of rings for the SOHO fibre
cases reported in Table 8.5. The dashed line represents the silica HF presented in
Section 8.1.2, characterised by A = 4 um and d/A ~ 0.44 .

ultimate limit of a SOHO design, where the cladding inclusions fill up all the cladding
region and thus provide the largest possible NAs. The core and the cladding are made
of SF6 and LLF1, respectively. The solid line in the inset of Figure 8.9 shows the
effective nonlinear area as a function of the core diameter, calculated by applying the
effective area definition (4.9) which accounts for the presence of glasses with different
nonlinear properties. The nonlinear coefficients of the two glasses considered here are
no(SF6) = 2.2 x 1071 m?/W and no(LLF1) = 2 x 107%° m?/W [133]. The curve in
Figure 8.9 represents a lower bound of the effective area achievable with a SOHO MOF
design. The minimum effective area is ~ 1.7 um? corresponding to a core diameter of
~ 1.2 pym. The effective nonlinearity corresponding to the minimum effective area is
v ~ 520 W~tkm™!, more than 500 times higher than in standard telecommunications
fibre (which, as discussed in Section 4.2.2, has a y ~ 1 W~km™). On the same graph
is also reported the case of a silica ASR, showing how the confinement of the mode
is similar despite the use of materials with different refractive indexes. However, the
gain in effective nonlinearity -y, due to the fact that SF6 glass is ten time more nonlinear
than silica, is remarkable, as shown by the main graph in Figure 8.9 where the effectively
nonlinearity v is plotted as a function of the core diameter for the two cases air/silica
and LLF1/SF6. The triangle indicates the fundamental mode of the 2 rings SOHO fibre
with d/A = 0.8 reported in Figure 8.8, the case which exhibits the lowest loss amongst
the ones considered here. The effective core size of the fibre, defined as 2A — d, is equal
t0 4.8 um. The multipole method predicts for this fibre an effective nonlinear area of the
order of ~ 12.8 um?2, which corresponds to an effective nonlinearity of ~ 70 W~ tkm 1.

Ag it is shown in Chapter 6, the maximum nonlinearity achievable with a silica single
material HF is of the order of ~ 52 Wlkm™!, smaller than the one achieved by this
particular SOHO fibre and ten times smaller than the maximum achievable with the
two glasses MOF here presented. Note that in both cases, the maximum nonlinearity is
obtained for a similar core sizes. However, for this scale structure, the confinement loss
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FIGURE 8.9: Effective nonlinearity (inset: effective nonlinear area) as a function of
the core size for LLF'1/SF6 step-index fibres (solid line) and silica air-suspended rod
structures (dashed line). The triangle represents the case of a 2 rings SOHO fibre with
d/A = 0.8 (also shown in Figure 8.8).

penalties for the SOHO design might be more severe than for single material silica HF,

h
as previously discussed.

8.6 Conclusion

In this chapter it is shown that the multipole method can be successfully validated
against previous results present in the literature (i.e. predicted by the a different imple-
mentation of the multipole method), experimental results relative to several fabricated
HF structures (including small-core silica HFs) and results predicted by other techniques
(in particular, by the orthogonal function technique [61, 110]). It is also shown the large
versatility of the multipole method, by successfully applying the method to the analysis

of a wide range of fibre geometries and materials.



Chapter 9

Conclusion and future work

In this thesis several theoretical models have been applied to the study of “microstruc-
tured materials” in order to: ascertain the properties of different designs, give an insight
into the physical mechanisms involved and eventually highlight the fundamental limita-
tion of a certain design. In particular, fibre Bragg gratings (FBGs) and microstructured
optical fibres (MOF's) have been considered. The main findings of the work are sum-

marised and possible future works are illustrated in the following.

Part I of this thesis deals with the effect of losses on FBGs. First, the effect of background
loss on uniform FBGs is considered. The FBG writing process induces, in addition to
refractive index changes, an increase in the propagation mode background losses. The
level of background losses depends on the fibre type, photosensitisation process and
writing conditions. The interaction between a uniform refractive index and a uniform
loss grating with the same spatial periodicity is analysed by means of the coupled mode
theory [1, 18]. It is shown how the loss pattern affects the features and symmetry of the
FBG reflection, transmission and loss spectra according to the value of the de-phasing
between the index and loss patterns. Even in the case of symmetric spectra, the pres-
ence of background losses limits the maximum attainable peak reflectivity. In the case
of modulated background losses this maximum reflectivity depends on the de-phasing
between the two patterns. It is also demonstrated that the resultant spectral asymmetry
can be explained by considering the overlap between the standing-wave intensity distri-
bution and the periodic loss pattern. It would be interesting to analyse the effects of
background losses on more complicated grating designs, such as apodised and chirped
gratings. The case of an apodised, unchirped grating is expected to be affected in a
way similar to the uniform, unchirped FBG case. The main contribution to the spectra
asymmetries however originates from the central (stronger) part of the grating only. The
case of chirped gratings looks more interesting, because light at different optical wave-
lengths is back-reflected at a different position within the grating length. The longer the
light travels along the grating, the more the background loss affects it. An asymmetry in

the reflection spectrum is therefore expected, asymmetry that depends on which grating
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end the light is launched into. A spatial-averaging effect is also expected to take place
owing to the gradual change of the underlying grating periodicity. This is expected to
reduce the impact of the loss on the reflection spectrum, when compared to the worst
case where the field distribution inside the grating is always in phase with the modu-
lated loss pattern. Due to the spatial-averaging effect, the transmission spectrum is not
expected to show any asymmetry. The impact of the periodic loss on the transmission

spectrum becomes equivalent to the averaged constant background loss.

Next, the effect of cladding mode losses on linearly chirped FBGs used as dispersion
compensators, thus launching the light from the long-wavelength end of the grating, has
been considered. The chirping of the FBG results in a spectral overlap of the resonant
coupling of the forward-propagating core mode to a particular backward-propagating
cladding mode. A new extension of the standard coupled-mode theory has been devel-
oped here to study the resultant mode dynamics. Coupling of light into cladding modes
results in a loss on the short-wavelength side of the reflection spectrum that affects
the performance of the dispersion compensator. A technique to equalise the spectrum
by means of a properly designed apodisation profile is also analysed [39]. This tech-
nique consists of making the grating stronger on the short-wavelength side, so that more
photons are available in the lossy region and the resultant reflection spectrum is flat-
tened. The fundamental limitations of this approach is here derived: According to the
strength of the cladding modes that interact with the core mode, there is a limit in the
maximum strength of the grating that can be equalised. When the grating strength is
above this limit, it is physically impossible to equalise the reflection spectrum, because
there are not enough photons available to compensate for those lost. The apodisation
profile should be targeted to the particular fibre used to fabricate the dispersion compen-
sator. However the extended coupled-mode theory used here results in significantly time
consuming simulations. Thus it is not advisable to use this approach to optimise the
apodisation profile according to the fibre characteristics. Inverse scattering techniques
based on the layer-peeling algorithm [149] allow the synthesis of Bragg gratings with
complex spectral responses in reasonable simulation times. The standard layer-peeling
algorithm requires the knowledge of the desired reflection spectrum, and consequently
reconstructs the grating profile layer after layer. However, in the presence of cladding
modes, the “desired” reflection spectrum of each cladding mode is also required, and
clearly this information is not available (since this depends on the grating profile, which
has not been identified yet). Only an iterative solution is therefore possible and this has
recently been developed at the ORC by Ghiringhelli and Zervas [150].

Part IT of this thesis deals with modelling the properties of microstructured optical fibres.
In particular, a detailed study on highly nonlinear silica holey-fibres for applications at
1550 nm is presented. After a careful consideration of the available modelling techniques
and their advantages, the multipole method first demonstrated by White et al. [101],
Kuhlmey et al. [113] is chosen to perform this study, and a considerable part of the work
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has been dedicated to the implementation of the method, as described in Chapter 5.
The multipole method is chosen for a variety of reasons, such as the fact that it allows
the calculation of complex values of the propagation constant of the mode, that is that
it allows the prediction of the confinement loss of the mode. The multipole method is
also highly efficient, when compared to other methods, because it makes use of polar
coordinate systems centred in each air-hole, thus few terms are retained in the field

expansions. In addition, the use of polar coordinate systems avoids the introduction of

any false birefringence.

Even though silica is not intrinsically a highly nonlinear material [75], silica holey fibres
(HF's) can provide high effective fibre nonlinearities y when the large numerical apertures
possible in these fibres are combined with a wavelength-scale core. It results that effective
nonlinearity more than 50 times larger than that of standard telecommunications fibre
can be achieved in silica single-material holey fibres. However, at such small scale
structure, holey fibres can suffer from significant confinement loss unless certain rules
are followed when designing the fibre profile. Utilising these rules, the confinement loss
of small-core HFs can be reduced below the background loss of standard fibres (0.2
dB/km). It results that in this regime the main contribution to confinement loss comes
from the finite extent of the cladding region more than the leakage of light between the
(sub-wavelength) silica bridges. Thus the loss can always be reduced by adding more

rings of holes to the fibre cladding (albeit with an increase in fabrication complexity).

In the small-core regime, it results that regardless of the air-filling fraction the effective
mode area (effective nonlinearity) can be minimised (maximised) by a certain value of
the hole-to-hole spacing. However, this occurs at a scale structure where the confinement
loss penalties can become significant. In particular, for the largest air-filling fractions,
the core dimension which achieves the maximum effective nonlinearity is sub-wavelength.
Although on one hand, the loss can always be reduced by adding more rings of holes to
the fibre cladding, on the other hand, for ease of fabrication, we wish to limit the number
of rings of air-holes that need to be stacked in the fibre preform. There is a clear trade-off
between achieving small effective mode area and low confinement loss in practical fibre
design. Graphs providing useful guidelines when choosing the design parameters for a
particular device performance (i.e. required effective nonlinearity and magnitude of loss
that can be tolerated) are presented in the thesis. Another useful finding is that, when at
least two rings of holes are present, the effective mode area of the structure is essentially
independent of the number of rings. Quick but remarkably accurate calculations of the
modal properties of any structure can be performed considering just two rings of holes.
Once the basic properties have been calculated in this way, the confinement loss can

always be reduced by adding more holes.

Fibre device applications also require particular sign and magnitude of fibre dispersion.
The dispersive properties of small-core HF's for the range of structures included in this

study which achieves the largest nonlinearities (air-filling fraction equal to 74%, i.e.
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d/A = 0.9) have been analysed. It results that the zero-dispersion regime at 1550
nm is achieved for scale structures that have an effective mode area just 3% larger
than the minimum achievable area. This allows devices with low dispersion values
(both anomalous and normal) to exploit the fibre designs with near-optimum effective
nonlinearity and reasonably low confinement loss (<1 dB/km). An anomalous dispersion
allows soliton-based devices, whereas a low normal dispersion is required to improve the
performances of optical thresholding devices. A large normal dispersion of the order
of —300 ps/nm/km can be achieved at the structural scale that maximises the effective
nonlinearity, and further decreasing the scale of the structure makes even larger values of
normal dispersion available for dispersion compensation devices. However, as mentioned
previously, penalties in terms of loss occur in this regime, and so many rings of holes

will be required to make a practical device.

The coupling of light into holey fibres with a small-core and a large NA is practically
challenging when compared to fibres with a larger mode area. In order to achieve a good
coupling efficiency using free space coupling, lasers with high spatial quality beams, to
achieve small spot sizes, and high NA optics are required. In addition, without the
use of tapers or couplers, the direct splicing of conventional fibre types to these fibres
becomes impractical due to mode mismatch. Note that these issues are also important
for highly nonlinear conventional fibres, but because HFs can achieve smaller mode
areas than conventional fibre types, the coupling of light in holey fibre types can be

more challenging.

For a complete understanding of these HF structures, it is also necessary to consider
the polarisation properties for this range of fibre designs. Our studies indicate that,
unsurprisingly, polarisation effects can be extreme in the small core regime. Of particular
interest, the polarisation extinction ratio degrades significantly when the core dimension
is sub-wavelength, which can have a major impact on device performance. However it
results that, for a specified mode area, the fibre with larger air-filling fraction has a
higher extinction ratio. Note that larger air-filling fractions also produce fibres with
lower confinement loss. Hence highly nonlinear HFs with large d/A reduce the impact of

confinement loss, polarisation and coupling penalties in this sub-wavelength core regime.

Note that the analysis of the coupling and polarisation properties of small-core HFs
presented in Chapter 7 was performed by applying a formulation that is no longer
valid as the structural scale of the fibre is reduced. In particular, it is not considered
that an initially linearly polarised Gaussian beam, when tightly focused by a high-NA
lens, can become significantly depolarised and its shape is no longer Gaussian. A more
accurate approach to study the problem is currently under investigation, as discussed in
Section 7.3, and a further degradation of the extinction ratio values, especially for the

smallest scale structures, is expected.

The natural progression of the study on highly nonlinear HFs consists in considering
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fibre made with glasses with a higher refractive index than silica. Using such materials
it is possible to access material nonlinearities that are orders of magnitude larger than
that of silica. Recently, using SF57 glass, HFs with a measured effective nonlinearity
of 640 W~lkm™! have been produced [132], more than 600 times larger than standard
silica fibres and 10 times larger than the theoretical limit for pure silica HF structures.
In the thesis a preliminary study on such glasses is indeed presented, but air-suspended
rod structures only have been considered to date. The fabrication of HFs made of highly
nonlinear glasses with low-softening temperatures (such as SF57) is so far performed via
direct extrusion of the preform, thus the final fibre is comprised of non-circular holes.
In this case the multipole method cannot be successfully applied to the study of these
designs. Given the small-scale of the fibre structures the confinement loss can still be
a significant penalty in the performances of the device. Thus models that can give
confinement loss predictions for non-circular holes designs must be considered, such as
the beam propagation method and the Fourier decomposition algorithm, in order to
perform an accurate study of their optical properties, especially when targeted to a
particular device application. However, the extrusion of highly nonlinear glasses can
also be used to fabricate capillary elements, which are then stacked to form a traditional
HF lattice. In this case the resulting fibre is comprised of circular air holes and the
multipole method can be applied to study these designs. Regardless of the particular
fibre design, the results of the study on small-core silica HFs presented in this thesis will
also provide a useful guide to the analysis of small-core HFs made of highly nonlinear

glasses.
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