UNIVERSITY OF SOUTHAMPTON

ADVANCED FIBRE BRAGG GRATING STRUCTURES: DESIGN AND APPLICATION

by Morten Ibsen

A thesis submitted for the degree of Doctor of Philosophy

FACULTY OF ENGINEERING AND APPLIED SCIENCE

OPTOELECTRONICS RESEARCH CENTRE

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

September 2001
UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

OPTOELECTRONICS RESEARCH CENTRE

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

ADVANCED FIBRE BRAgg GRATING STRUCTURES:
DESIGN AND APPLICATION

By Morten Ibsen

This thesis presents experimental and computational work on a variety of advanced fibre Bragg grating structures covering long dispersion compensating chirped Bragg gratings, superstructured Bragg gratings for identical multiple channel operation, Bragg gratings for pulse-shaping applications and Bragg gratings for add-drop applications in high bit-rate systems.

Development of the fabrication-technique developed and analysed as a part of this work has led to a number of experimental ‘firsts’, including the meter-long Bragg gratings with dispersion-characteristics designed to compensate simultaneous linear and higher order dispersion. Upon transfer of this technology to our industrial partners, a number of field-trial experiments utilising gratings written using this fabrication technique have been successfully performed. Some of the requirements identified from customers led to the discovery of the importance and understanding of high-quality reflection and time-delay profiles. Another product of the high flexibility provided by the developed fabrication technique have led to demonstrations of superstructured Bragg gratings for a number of exciting applications such as multiple-channel filters obtained through a periodic sinc modulation of the refractive index-profile in fibre Bragg gratings and pulse-reshaping from a soliton to square-pulse with applications in high-speed demultiplexing. Additionally, it is discussed how uniform apodised Bragg gratings filters for application in dense WDM networks, despite their near ideal spectral performance, suffer from non-linear phase attributes in the stop-band, that could limit their use in high bit-rate systems (10Gbit/s and above). Linear phase-filters for dispersion-free filtering are proposed and demonstrated as a solution to this problem for bit-rates up to 40Gbit/s and channel spacings as narrow as 25GHz.
Contents

Abstract ... i

Chapter 1 Introduction .. 1
1.1 Bragg grating history .. 1
1.2 Bragg gratings in optical fibre-systems .. 2
1.2.1 Applications of Bragg gratings in the transmitter 3
1.2.2 Bragg gratings in the transmission-section .. 5
1.2.3 Bragg gratings for receiving and regeneration ... 6
1.2.4 Bragg gratings for wavelength add and drop .. 7
1.3 Thesis overview ... 8

Chapter 2 Bragg grating theory and design .. 14
2.1 Background theory .. 14
2.2 Uniform Bragg gratings ... 18
2.3 Non-uniform Bragg gratings .. 20
2.4 Inverse-scattering Bragg grating design ... 22
2.5 Grating theory and design summary .. 26

Chapter 3 Bragg grating fabrication ... 28
3.1 1. Generation (restricted in wavelength) .. 28
3.2 2. Generation (restricted to beam-width) ... 29
3.3 3. Generation (restricted to length of phase-mask) 31
3.4 4. Generation (restricted to length of waveguide-translation equipment) ... 32
3.4.1 Principle of operation .. 32
3.4.2 Theoretical on/off duty-cycle optimisation ... 35
3.4.3 Experimental on/off duty-cycle optimisation 37
3.4.4 Apodisation ... 41
3.4.5 Wavelength-chirp with a uniform interference pattern 44
3.5 Grating fabrication summary ... 46

Chapter 4 Conclusions and future work ... 48

Chapter 5 Appendices ... 50
A Chirped fibre Bragg gratings ... 50
B Superstructured fibre Bragg gratings .. 52
C Bragg gratings for optical add-drop applications ... 54
D List of publications ... 58