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ABSTRACT

Prestressed concrete suspension bridges can be regarded as conventional
prestressed concrete structures whose main girders are prestressed by
cables which have large eccentricities. Alternatively, they are
self-anchored suspension bridges with concrete superstructures which

are prestressed by the horizontal component of the cable tension ap-
plied at their ends. Due to the possible 1large eccentricities,

prestressed concrete suspension bridges can be used for 1long span
crossings.

The aim of this study is to investigate the use of this type of
bridge for medium length crossings in the form of a two-span
prestressed concrete suspension bridge. Amongst the special problems
studied in this thesis is the contribution of changing cable tension,
due to live loading, to the stress state of the structure. As this
effect can be significant, a new approach is developed which is based
upon modifying earlier research carried out by Timoshenko to suit the
requirements of prestressed concrete theory. Subsequently, the method
1s compared with the commonly used Steinman approach which was slightly
altered to suit prestressed concrete suspension bridges. This leads to
the formulation of a new analysis to describe the various characteris-
tic features of structural behaviour.

Another problem is the influence of grouting the main cable in the
regions where it passes within the suspended beam., This is also studied
in the thesis as it causes modifications to the standard analysis. An
important aspect of the behaviour of prestressed concrete suspension

bridges is their mode of failure under excessive live: load. A theory
1s proposed to analyse this condition. In addition, a new approach in

prestressing the suspended beams by shortening their suspenders is
suggested.

In order to verify the validity of these analyses, two tests have
- been carried out on model bridges in which measurements were mnade
within both elastic and failure stages of the structure. In one case
ungrouted main cable was used and in the other the cable was grouted

for a proportion of the span length. The results of these experiments
confirmed the applicability of the theories which had been developed

and enabled the stresses and deflections to be predicted with accepta-
ble accuracy. The theoretical analysis and the experimental results

indicated the advantages which arise from the use of grouted main
cables.

Although there was no opportunity to carry out prolonged tests, a
theoretical study has been given for the time effects on the
prestressing force which might be expected with this form of structure
based upon well known concepts in the behaviour of standarad prestressed
concrete construction. The thesis also comments upon the practical
problems of the construction of such bridges and draws attention to the
similarities with the commonly used self-anchored suspension bridge

systen, Various systems of developing the prestressing force are
described.
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The upward forces exerted by the cable, via the

suspenders.

The maximum total forces in the suspenders in a
distributed load form.
The ratio of the distance of the first plastic

hinge from one of the end supports to the length

of the span at which it forms.

The total lengths of the cable in the left and
right hand spans.,

The lengths of the free ungrouted parts of the
cable in the left and right hand spans.
The cable tension at the left and right hand span.

The ratios of the distances between the
concentrated live loads and the end supports to the
span length where the live load is applied.

The vertical components of the cable tension for

the left and right hand spans at the tower

The vertical component of the cable tension at the

left and right hand end supports.
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The dead loads of the suspender beam in the left
and right hand spans including the self-weight of
the cable and suspenders per unit length.

The distance between either left or right end
support to each suspender in the respective span.
The cable eccentricities from the centre line of
the suspended beam in the left and right hand
spans.

The total depth of the suspended beamn.

The distance between the top fibre and the bottom
reinforcement of the suspended beam (the effective
depth).

The distances between the line of centroid and
both top and bottom fibres of the beam.

The ratio of the depth of the upper flange
reinforcement to the effective depth of the beam.
The ratio of the depth of the bottom flange
reinforcement to the effective depth of the bean,
The ratio of the flange thickness to the effective
depth of the bean.

The ratio of the total depth to the effective
depth of the bean.

The distances of the boundaries of a general
loading from the left end support when divided by
the left hand span length.

The distances of the boundaries of a general

loading from the right end support when divided by
the right hand span length.

The thermal coefficient of expansion for the

concrete and steel.

The gaps between the two cut ends of a severed
cable which is generated due to bending moments of
the beam, axial stresses in the beam, cable

forces, suspenders forces and the tower force

El
The factor by which the preliminary prestressing

force is increased to overcome the reduction

produced by time effects.

H.{
respectively when divided by [ - ].
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A = The gap between the two cut ends of the imaginary
severed cable produced by the live loads.

.AHP = The increase in the prestressing force after the

formation of the first plastic hinge.
At = The different between the design temperature

value, 20°C, and the ambient temperature.

Ac (AP) = The load required to exceed the first plastic
hinge load to cause the failure of the structure.

5 = The gap between the two cut ends of the imaginary
severed cable produced by the forces in the
various parts of the structure as a result of a
unit prestressing force.,

8c = The gap produced by the cable force in an
ungrouted suspended beam and it represents also
the flexibility of the cable,

Scf = The gap produced by the cable force in its free
ungrouted part in a grouted suspended bean,

€ = The strain in the bottom flange fibre of the cross
section of the beam.

€5 = The initial plastic strain of the concrete

€ = The shrinkage strain in the concrete of the
suspended beam.

Ey = The yield strain of the reinforcement.

The strains in the three layers of reinforcement
in the cross section of the bean.,

M = The vertical deflection of the suspended beam (and
the cable),

e,el,eg,egl = Constants.

A = The ratio by which the suspenders are shortened to
produce the initial prestressing force in the
cable.

A = The ratio between the length of the right hand
span to the left hand span.

u2 = The total prestressing force when divided by the
flexural rigidity of the suspended beamn,

v,vl.vg,vgl = (Constants.

3 = The horizontal displacement of the cable,
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The ratio of the change in the prestressing force
produced by the live loading to the preliminary
value of the prestressing force.

A uniformly distributed load (partial or
continuous) which is called a general loading
applied in the left or right hand spans,

The load required to form the first plastic hinge,
The failure load.

The factor y as reduced by the time effects.
Constants.,

The coefficients by which Young's modulus of

elasticity of the concrete, the main cable and the
suspender decrease due to creep respectively.

The internal energy stored in the superstructure,
The ratio of the dead loads in both right and
left hand spans.
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CHAPTER 1

1. Introduction

1.1 The Concept of Prestressed Concrete Suspension Bridges

It is well known that large gaps can be bridged by means of
prestressed concrete structures. However, the span length of

prestressed concrete beams is necessarily limited and the longest
span so far constructed is about 1l4m, (30). The girders are very

deep at the supports, about 6m, and the prestressing force needed 1s

thousands of kilonewtons.

For long spans, the dead load is usually larger than the live
load, which causes difficulty in keeping the cable within the space
limited by the upper and lower fibres of the beam throughout 1its
length., To achieve this, the designer often has to 1increase the
depth of the beam beyond the value which the 1live 1load moments

require, solely to accommodate the cable, (9) and (13).

- However, increasing the depth of the beam can be avoided by
simply abandoning the requirement to keep the cable within the bean
section or, in other words, the cable will be allowed to exceed the
normal upper and lower limits, (31 and 32). As a result of this, 1t
would be possible to increase the range of spans available without
the need to increase the beam depth. Moreover, the use of a smaller
prestressing force would be possible due to the larger eccentricities
and cables will therefore be cheaper. Figure (l1.l1a) shows a
three-span continuous prestressed concrete beam where the cable has
descended well below its lower fibre especially in the centre span.
As it is essential to transmit the vertical reactions resulting from
the cable curvature to the beam, vertical struts would need to be

used, as shown in the figure,

Although this scheme appears to be perfectly rational from a
theoretical point of view, it would most certainly prove to be

impractical for many reasons, Firstly, the required clear height



under the beam would compel the designer to raise its elevation in a
way which would rarely be compatible with the topography of the
surroundings. Secondly, a complex bracing system would be necessary
between cable and beam in order to prevent lateral movement of the
highly tensioned cable. It would certainly be difficult to produce a

stable system of struts between cable and beam.

These practical disadvantages can be eliminated by means of
adding the linear transformation profile shown in Figure (1.1b) to
the concordant profile of Figure (l1l.la), which is obtained form the
dead load bending moments. As a result of this, the cable profile
will be transformed so that it ties wholly above the centroidal axis
of the suspended beam in the manner shown in Figure (1l.1lc). This

will not alter in any way the cable curvature within each span nor
the distribution of prestress for the beam, (8, 10 and 11). Although
the cable slopes at both ends of the beam have changed, the magnitude
and point of application of the horizontal component of its tension,
prestressing force, remains unaffected. The vertical components of
the cable tension at the beam ends, although altered, do not
contribute to the stress state 0of the beam as they are directly
picked up by the end supports. Furthermore, the vertical forces that
the struts transfer from cable to beam remain unchanged since they

depend on the cable curvature and the horizontal component of the

cable tension.,

Naturally, in the process of displacing the cable, what had
previously been struts between cable and beam, now become ties,
suspenders. Moreover, the cable has now to be supported by columns,
towers, above the intermediate supports where its slope changes and
the vertical forces become concentrated. Thus, we obtain, in an
entirely natural way, a suspended concrete beam which is prestressed
by the main cable. This type of bridge can also be regarded as a
conventional prestressed concrete bridge whose main beams are
prestressed by cables which have large eccentricities, much larger,

in fact, than the depth of the main beams themselves.



One can also arrive at the concept of prestressed concrete
suspension bridges 1in another, but equally, natural way. Many
self-anchored suspension bridges, with steel stiffening girders, have
been constructed over the. years, none of which had very long spans,
(14 and 29). The reason for this is that due to increasing cable
tension, the steel girders need larger cross sections, more than the
bending moments alone would require, in order to prevent buckling of
the whole span in the horizontal plane as well as local buckling. On
the other hand, 1f the steel girders are replaced by concrete ones,
the large compressive force can be employvyed as a prestressing force,
Moreover, as concrete beams are generally designed with massive cross
sections, larger than an equivalent steel section, buckling in the

horizontal plane or local buckling is always a remote possibility.

1.2 Inherent Advantages of Prestressed Concrete Suspension
Bridges with Respect to Alternative Structures

Prestressed concrete suspension bridges have some definite
advantages when compared with alternative structures for bridging
across the same appropriate gap. The cost of the superstructure for
a prestressed concrete suspension bridge is cheaper than that of a
conventional prestressed concrete structure due to shallower
stiffening girders and a smaller cable which results from the

possibility of using large eccentricities for the cable.

Furthermore, the live load moments in a prestressed suspended
beam are smaller than those in a prestressed conventional one due to

the interaction which takes place between the cable and the beam in
the former type. Similarly to ordinary suspension bridges, when the
live load deflects the suspended beam, the suspenders force the cable

to deflect also, hence to elongate and increases its tension. This

means that the cable directly carries part of the live load, thus
partly relieving the beam. The importance of this effect increases
wWith the span length as in the suspension bridge built at Merelbeke
near Gent, Belgium, with a main span of 56m, the live load moments

are reduced by about 10% but in another one, Mariakerke, which was

also built near Gent with a main span of 100m, the decrease amounts



to 25%, (31 and 33). It is worth noting that interaction-also exists
theoretically in conventional prestressed concrete structures, but
both the increase of cable tension and its lever arm with respect to
the centre line of the beam are so small that the resulting relieving

moment is entirely negligible.

If the alternate structure is ordinary steel suspension
bridge, a prestressed concrete suspension bridge is more feasible for
the following reasons. Firstly, the latter does not need external
~anchorages to resist the large horizontal tension of the cable like
the former. Second;y, the concrete superstructure for our type of

bridge is cheaper than the steel one in ordinary suspension bridges
as the amount of steel used for the former, including the

prestressing steel and suspenders, 1is considerably 1less than the
latter, Finally, our type of bridge is generally much more rigid
than an equivalent steel suspension bridge, provided that the spans

are long enough, due to larger cross sections, (36).

The feasibility of our type of bridge increases even further,
if a self-anchored steel suspension bridge is proposed. Although the
latter does not need external anchorages, it still costs more than
the former as it requires considerable amount of additional steel 1in
order to avoid buckling, as mentioned before, and resist the increase

in the live load moments due to thrust, (14).

Obviously, in order to decide the preference of a certain

type of bridge with respect to others, an accurate cost analysis must

be carried out for each one,

1.3 Disadvantage of Prestressed Concrete Suspension Bridges

Due to large eccentricities, prestressed concrete suspension
bridges are only suitable for sufficiently long crossings. However,
since the concrete superstructure is heavier than that used in
ordinary steel suspension bridges, the former will most certainly
need larger foundations to carry the vertical 1loads. This 1is

regarded to be disadvantageous as foundation work is always



considered to be expensive, (32). It is worth noting that this

disadvantage is also shared by conventional prestressed concrete
structures.,

As a result of the aforementioned transformation scheme the
vertical components of the cable tension at the ends of the beam will
have the tendency of 1lifting them above their design elevation,
Figure (1l.1b). This effect can be prevented by means of using
weights at these ends exceeding the values of the upward forces. The
cheapest solution for this problem was undertaken by employing heavy
concrete boxes filled with sand as abutments for the bridge, (32 and
J5), (Section 6.3) in order to keep the beam ends at the desired
elevation by their sheer weight, Figure (1.2). For the same reason,
ties are used to connect the suspended beam with the foundation at
the tower position, Figure (6.9). This clearly represents one of the
unique features of prestressed concrete suspension bridges and is,

indeed, disadvantageous due to the additional costs of constructing
these abutments,

Finally, some increased complexity of construction may arise
due to the erection of the various parts of the bridge especially the
placing of the main cable with the designed eccentricities. Such
work requires skilled 1labour and expert supervision which always

proved expensive., However, this disadvantage is also shared by

ordinary suspension bridges.

1.4 Range of Application of Prestressed Concrete Suspension Bridges

From the preceeding sections, it is clear that a prestressed
concrete suspended beam has some definite advantages over alternative
structural systems and it therefore, can provide an economical
solution to bridge problenms. Three-span prestressed concrete
suspension bridges are only feasible for crossings which lie in the
range of 90 - 900m according to Vandepitte, (34).



These limitations do not reflect any technical impossibility
to exceed the specified limits but derive from economical considera-
tions. For example, it 1is not feasible to build- a three-=-span
prestressed concrete suspension bridge for a total length less than
90ms, as a continuous conventional prestressed concrete bridge would
provide the best solution. Moreover, an ordinary steel suspension

bridge is more appropriate for spans longer than 900m than our type

of bridge due to foundation cost, as mentioned earlier.

Nevertheless, prestressed concrete suspension bridges can be
feasible in the range 50 = 150m when using two-span suspended beams,
Figure (1.3). The main concept of this type of bridge is, clearly,
identical to that of the three-span type and they share the same

advantages and disadvantages. However, the two-span type can be used
more effciently in the aforementioned range of 1lengths than the
three-span type. For example, if a two-span bridge was constructed
at Merelbeke, (32), instead of the present three-span type, it would
have certainly been more efficient and economical. As the total
length is 92ms, the interaction between cable and beam could have
produced about 352 reduction in the live load moments. Moreover,

only one pier and tower are required for the two span type as well as

a lesser prestressing force, Section (6.5).

1.5 The Main Objectives of this Thesis

Early research was carried out in this topic by the inventor
of prestressed concrete suspension bridges, Professor Vandepitte, (29
- 36), of the University of Gent, Belgium. He developed the theory
and design procedure for three-span suspension bridges as well as the
time effects on the magnitude of its prestressing force., His theory
is based on Steinman's approach, (20 and 21), in order to calculate
the effect of the live loading on the prestressing force and to
evaluate the internal forces of the structure (bending moments,
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