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ABSTRACT 

Prestressed concrete suspension bridges can be regarded as conventional 
prestressed concrete structures whose main girders are prestressed by 
cables which have large eccentricities. Alternatively, they are 
self-anchored suspension bridges with concrete superstructures which 
are prestressed by the horizontal component of the cable tension ap- 
plied at their ends. Due to the possible large eccentricities. 
prestressed concrete suspension bridges can be used for long span 
crossings. 

The aim of this study is to investigate the use of this type of 
bridge for medium length crossings in the form of a two-span 
prestressed concrete suspension bridge. Amongst the special problems 
studied in this thesis is the contribution of changing cable tension, 
due to live loading, to the stress state of the structure. As this 
effect can be significant, a new approach is developed which is based 
upon modifying earlier research carried out by Timoshenko to suit the 
requirements of prestressed concrete theory. Subsequently, the method 
is compared with the commonly used Steinman approach which was slightly 
altered to suit prestressed concrete suspension bridges. This leads to 
the formulation of a new analysis to describe the various characteris- 
tic features of structural behaviour. 

Another problem is the influence of grouting the main cable in the 
regions where it passes within the suspended beam. This is also studied 
in the thesis as it causes modifications to the standard analysis. An 
important aspect of the behaviour of prestressed concrete suspension 
bridges is their mode of failure under excessive live- load. A theory 
is proposed to analyse this condition. In addition, a new approach in 
prestressing the suspended beams by shortening their suspenders is 
suggested. 

In order to verify the validity of these analyses, two tests have 
been carried out on model bridges in which measurements were made 
within both elastic and failure stages of the structure. In one case 
ungrouted main cable was used and in the other the cable was grouted 
for a proportion of the span length. The results of these experiments 
confirmed the applicability of the theories which had been developed 
and enabled the stresses and deflections to be predicted with accepta- 
ble accuracy. The theoretical analysis and the experimental results 
indicated the advantages which arise from the use of grouted main 
cables. 

Although there was no opportunity to carry out prolonged tests, a 
theoretical study has been given for the time effects on the 
prestressing force which might be expected with this form of structure 
based upon well known concepts in the behaviour of standard prestressed 
concrete construction. The thesis also comments upon the practical 
problems of the construction of such bridges and draws attention to the 
similarities with the commonly used self-anchored suspension bridge 
system. Various systems of developing the prestressing force are described. 
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rbm-rbn-rc-rs-rT- 

spans 

The total depth of the suspended beam. 

The distance between the top fibre and the bottom 

reinforcement of the suspended beam (the effective 
depth). 

The distances between the line of centroid and 
both top and bottom fibres of the beam. 

The ratio of the depth of the upper flange 

reinforcement to the effective depth of the beam. 

The ratio of the depth of the bottom flange 

reinforcement to the effective depth of the beam. 

The ratio of the flange thickness to the effective 
depth of the beam. 

The ratio of the total depth to the effective 
depth of the beam. 

The distances of the boundaries of a general 
loading from the left end support when divided by 

the left hand span length. 

The distances of the boundaries of a general 
loading from the right end support when divided by 

the right hand span length. 

The thermal coefficient of expansion for the 

concrete and steel. 

The gaps between the two cut ends of a severed 

cable which is generated due to bending moments of 
the beam, axial stresses in the beam. cable 
forces. suspenders forces and the tower force 

respectively when divided by 
HII 
Ri- 

)I 

Y The factor by which the preliýinar prestressina 
force is increased to overcome the reduction 
produced by time effects. 
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The gap between the two cut ends of the imaginary 

severed cable produced by the live loads. 

16HP = The increase in the prestressing force after the 

formation of the first plastic hinge. 

At = The different between the design temperature 

value, 200C, and the ambient temperature. 

Ad (AP) = The load required to exceed the first plastic 

hinge load to cause the failure of the structure. 

6 - The gap between the two cuvends of the imaginary 

severed cable produced by the forces in the 

various parts of the structure as a result of a 

unit prestressing force. 

Sc = The gap produced by the cable force in an 

ungrouted suspended beam and it represents also 

the flexibility of the cable. 

Scf = The gap produced by the cable force in its free 

ungrouted part in a grouted suspended beam. 

cc = The strain in the bottom flange fibre of the cross 

section of the beam. 

Co = The initial plastic strain of the concrete 

Cs = The shrinkage strain in the concrete of the 

suspended beam. 

C = The yield strain of the reinforcement. y 
csl, cs2lcs3 = The strains in the three layers of reinforcement 

in the cross section of the beam. 

= The vertical deflection of the suspended beam (and 

the cable). 

0,01, E)ggE)gl = Constants. 

A = The ratio by which the suspenders are shortened to 

produce the initial prestressing force in the 

cable. 

= The ratio between the length of the right hand 

span to the left hand span. 

92 = The total prestressing force when divided by the 

flexural rigidity of the suspended beam. 

V, Vl, vg$vgl M Constants. 

E = The horizontal displacement of the cable. 
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P = The ratio of the change in the prestressing force 

produced by the live loading to the preliminary 

value of the prestressing force. 

6161 =A uniformly distributed load (partial or 

continuous) which is called a general loading 

applied in the left or right hand spans. 

dp. h = The load required to form the first plastic hinge. 

dult = The failure load. 

T = The factor y as reduced by the time effects. 

= Constants. 

= The coefficients by which Young's modulus of 

elasticity of the concrete, the main cable and the 

suspender decrease due to creep respectively. 

= The internal energy stored in the superstructure. 

= The ratio of the dead loads in both right and 

left hand spans. 
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CHAPTER I 

1. Introduction 

1.1 The Concept of Prestressed Concrete Suspension Bridges 

It is well known that large gaps can be bridged by means of 

prestressed concrete structures. However, the span length of 

prestressed concrete beams is necessarily limited and the longest 

span so far constructed is about 114m, (30). The girders are very 

deep at the supports, about 6m, and the prestressing force needed is 

thousands of kilonewtons, 

For long spans, the dead load is usually larger than the live 

load, which causes difficulty in keeping the cable within the space 

limited by the upper and lower fibres of the beam throughout its 

length. To achieve this, the designer often has to increase the 

depth of the beam beyond the value which the live load moments 

require, solely to accommodate the cable, (9) and (13). 

- However. increasing the depth of the beam can be avoided by 

simply abandoning the requirement to keep the cable within the beam 

section or. in other words, the cable will be allowed to exceed the 

normal upper and lower limits, (31 and 32). As a result of this, it 

would be possible to increase the range of spans available without 

the need to increase the beam depth. Moreover, the use of a smaller 

prestressing force would be possible due to the larger eccentricities 

and cables will therefore be cheaper. Figure (1.1a) shows a 

three-span continuous prestressed concrete beam where the cable has 

descended well below its lower fibre especially in the centre span, 
As it is essential to transmit the vertical reactions resulting from 

the cable curvature to the beam, vertical struts would need to be 

used, as shown in the figure. 

Although this scheme appears to be perfectly rational from a 

theoretical point of view, it would most certainly prove to be 

impractical for many reasons. Firstly, the required clear height 
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under the beam would compel the designer to raise its elevation in a 

way which would rarely be compatible with the topography of the 

surroundings. Secondly, a complex bracing system would be necessary 
between cable and beam in order to prevent lateral- movement of the 

highly tensioned cable. It would certainly be difficult to produce a 

stable system of struts between cable and beam. 

These practical disadvantages can be eliminated by means of 

adding the linear transformation profile shown in Figure (1.1b) to 

the concordant profile of Figure (1.1a), which-is obtained form the 

dead load bending moments. As a result of this, the cable profile 

will be transformed so that it ties wholly above the centroidal axis 

of the suspended beam in the manner shown in Figure (1.1c). This 

will not alter in any way the cable curvature within each span nor 

the distribution of prestress for the beam, (8,10 and 11). Although 

the cable slopes at both ends of the beam have changed, the magnitude 

and point of application of the horizontal component of its tension, 

prestressing force, remains unaffected. The vertical components of 

the cable tension at the beam ends, although altered, do not 

contribute to the stress state of the beam as they are directly 

picked up by the end supports. Furthermore, the vertical forces that 

the struts transfer from cable to beam remain unchanged since they 

depend on the cable curvature and the horizontal component of the 

cable tension. 

Naturally, in the process of displacing the cable, what had 

previously been struts between cable and beam, now become ties, 

suspenders. Moreover, the cable has now to be supported by columns, 
towers, above the intermediate supports where its slope changes and 
the vertical forces become concentrated. Thus, we obtain, in an 

entirely natural way, a suspended concrete beam which is prestressed 
by the main cable. This type of bridge can also be regarded as a 

conventional prestressed concrete bridge whose main beams are 

prestressed by cables which have large eccentricities, much larger, 

in fact, than the depth of the main beams themselves. 
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One can also arrive at the concept of prestressed concrete 

suspension bridges in another, but equally, natural way. Many 

self-anchored suspension bridges, with steel stiffening girders, have 

been constructed over the., years, none of which had very long spans. 
(14 and 29). The reason for this is that due to increasing cable 

tension, the steel girders need larger cross sections, more than the 

bending moments alone would require, in order to prevent buckling of 

the whole span in the horizontal plane as well as local buckling. On 

the other hand, if the steel-girders are replaced by concrete ones. 

the large compressive force can be employed as a prestressing force. 

Moreover, as concrete beams are generally designed with massive cross 

sections, larger than an equivalent steel section, buckling in the 

horizontal plane or local buckling is always a remote possibility. 

1.2 Inherent Advantages of Prestressed Concrete Suspension 

Bridges with Respect to Alternative Structures 

Prestressed concrete suspension bridges have some definite 

advantages when compared with alternative structures for bridging 

across the same appropriate gap. The cost of the superstructure for 

a prestressed concrete suspension bridge is cheaper than that of a 

conventional prestressed concrete structure due to shallower 

stiffening girders and a smaller cable which results from the 

possibility of using large eccentricities for the cable. 

Furthermore, the live load-moments in a prestressed suspended 
beam are smaller than those in a prestressed conventional one due to 

the interaction which takes place between the cable and the beam in 

the former type. Similarly to ordinary suspension bridges, when the 
live load deflects the suspended beam, the suspenders force the cable 
to deflect also, hence to elongate and increases its tension. This 

means that the cable directly carries part of the live load, thus 

partly relieving the beam. The importance of this effect increases 

with the span length as in the suspension bridge built at Merelbeke 

near Gent, Belgium, with a main span of 56m, the live load moments 
are reduced by about 10% but in another one, Mariakerke, which was 
also built near Gent with a main span of 100m, the decrease amounts 
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to 25%, (31 and 33). It is worth noting that interaction, also exists 

theoretically in conventional prestressed concrete structures, but 

both the increase of cable tension and its lever am with respect to 

the centre line of the beam are so small that the resulting relieving 

moment is entirely negligible. 

If the alternate structure is ordinary steel suspension 

bridge, a prestressed concrete suspension bridge is more feasible for 

the following reasons. Firstly, the latter does not need external 

anchorages to resist the large horizontal tension of the cable like 

the former. Secondly, the concrete superstructure for our type of 

bridge is cheaper than the steel one in ordinary suspension bridges 

as the amount of steel used for the former, including the 

prestressing steel and suspenders, is considerably less than the 

latter. Finally, our type of bridge is generally much more rigid 

than an equivalent steel suspension bridge, provided that the spans 

are long enough, due to larger cross sections, (36). 

The feasibility of our type of bridge increases even further, 

if a self-anchored steel suspension bridge is proposed. Although the 

latter does not need external anchorages, it still costs more than 

the former as it requires considerable amount of additional steel in 

order to avoid buckling, as mentioned before,, and resist the increase 

in the live load moments due to thrust, (14). 

Obviously, in order to decide the preference of a certain 

type of bridge with respect to others, an accurate cost analysis must 
be carried out for each one. 

1.3 Disadvantage of Prestressed Concrete Suspension Bridges 

Due to large eccentricities, prestressed concrete suspension 
bridges are only suitable for sufficiently long crossings. However. 

since the concrete superstructure is heavier than that used in 

ordinary steel suspension bridges, the former will most certainly 

need larger foundations to carry the vertical loads. This is 

regarded to be disadvantageous as foundation work is always 
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considered to be expensive. (32). It is worth noting that this 

disadvantage is also shared by conventional prestressed concrete 

structures. 

As a result of the aforementioned transformation scheme the 

vertical components of the cable tension at the ends of the beam will 

have the tendency of lifting them above their design elevation, 

Figure (1.1b). This effect can be prevented by means of using 

weights at these ends exceeding the values of the upward forces. The 

cheapest solution for this problem was undertaken by employing heavy 

concrete boxes filled with sand as abutments for the bridge, (32 and 
35), (Section 6.3) in order to keep the beam ends at the desired 

elevation by their sheer weight, Figure (1.2). For the same reason, 
ties are used to connect the suspended beam with the foundation at 
the tower position, Figure (6.9). This clearly represents one of the 

unique features of prestressed concrete suspension bridges and is, 

indeed, disadvantageous due to the additional costs of constructing 
these abutments. 

Finally. some increased complexity of construction may arise 
due to the erection of the various parts of the bridge especially the 

placing of the main cable with the designed eccentricities. Such 

work requires skilled labour and expert supervision which always 

proved expensive. However, this disadvantage is also shared by 

ordinary suspension bridges. 

1.4 Range of Application of Prestressed Concrete Suspension Bridges 

From-the preceeding sections, it is clear that a prestressed 

concrete suspended beam has some definite advantages over alternative 
structural systems and it therefore, can provide an economical 
solution to bridge problems. Three-span prestressed concrete 
suspension bridges are only feasible for crossings which lie in the 

range of 90 - 900m according to Vandepitte, (34). 
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These limitations do not ref lect any technical impossibility 

to exceed the specified limits but derive from economical considera- 

tions. For example, it is not feasible to build. a three-span 

prestressed concrete suspension bridge for a total length less than 

90ms, as a continuous conventional prestressed concrete bridge would 

provide the best solution. Moreover, an ordinary steel suspension 

bridge is more appropriate for spans longer than 900m than our type 

of bridge due to foundation cost. as mentioned earlier. 

Nevertheless. prestressed concrete suspension bridges can be 

feasible in the range 50 - 150m when using two-span suspended beams, 

Figure (1.3). The main concept of this type of bridge is, clearly, 
identical to that of the three-span type and they share the same 

advantages and disadvantages. However, the two-span type can be used 

more effciently in the aforementioned range of lengths than the 

three-span type. For example, if a two-span bridge was constructed 

at Merelbeke, (32), instead of the present three-span type. it would 
have certainly been more efficient and economical. As the total 

length is 92ms, the interaction between cable and beam could have 

produced about 35% reduction in the live load moments. Moreover, 

only one pier and tower are required for the two span type as well as 

a lesser prestressing force, Section (6.5). 

1.5 The Main Objectives of this Thesis 

Early research was carried out in this topic by the inventor 

of prestressed concrete suspension bridges, Professor Vandepitte, (29 

- 36), of the University of Gent, Belgium. He developed the theory 

and design procedure for three-span suspension bridges as well as the 

time effects on the magnitude of its prestressing force. His theory 
is based on Steinman's approach, (20 and 21), in order to calculate 
the effect of the live loading on the prestressing force and to 

evaluate the internal forces of the structure (bending moments, 
deflections and shear forces). In doing so, the effect of the axial, 

prestressing, force was ignored, (29). 
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The first objective of this thesis is to present, in simple 

terms, an accurate and reliable procedure for the design and analysis 

of two-span prestressed concrete suspension bridges. - In doing so, 

the effect of the axial, prestressing, force has been included in all 

stages of the calculations, Chapter 2. Furthermore. Steinman's 

approach. (20 and 21), has been modified to include this effect as 

well as to suit two-span bridges. In addition. a new approach to 

evaluate the change in the prestressing force due to the applied live 

loading is introduced. It is an expansion of earlier research 

carried out by Timoshenko. (23 - 28), which has been modified to suit 

two-span prestressed concrete suspended beams with its accuracy 

theoretically investigated. Thereafter, a comparison has been 

carried out to specify the preference of either of the two approaches 
for accurate application. 

Figure 0.3) shows the cable passing through the ends of the 

suspended beam with the lengths gi and glil. Thi second objective of 

this thesis is to investigate the effect of grouting these lengths on 

the performance of the structure. In doing so, this effect has been 

included in the computation for the cable deformations due to various 

effects, the interaction between cable and beam and the internal 

forces of the structure, Chapter 3. Thereafter, an approximate 

method is given to determine the failure loads for both ungrouted and 

grouted types of structure when a single loading is applied on either 

of its spans, Chapter 4. During this, an exact method to calculate 

the ultimate moment of resistance of a general cross section is 

introduced for both hogging and sagging moments. 

The time effects, such as shrinkage, creep and relaxation of 
the different parts of the structure, on the magnitude of the 

prestressing force are investigated in Chapter 5. The theory used is 

similar to that used for three-span bridges, (34), but with the 

necessary modifications in order to suit two-span prestressed 

suspended beams. Moreover. the special features of the construction 

of this type of bridges are described in Chapter 6 as well as a new 

approach to prestress the suspended beam by shortening its 

suspenders. The idea behind this approach is inspired by the 

contribution of the suspenders in forcing the cable to deflect. as a 
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result of any applied live loading, and to change its tension. Hence, 

this effect, when controlled, can be used to produce the desired 

tension in the cable by virtue of geometrical calculations as will be 

shown in Chapter 6. 

Two experiments have been performed in order to check the 

validity of the design equations in both elastic and plastic stages 
for ungrouted and grouted test beams, Chapter 7. Furthermore, the 

aforementioned new technique in prestressing suspended beams by 

shortening their suspenders has been examined. Each of the two 

experiments comprises two stages, the first is intended to simulate 
the service life of the bridge as loads less than half the failure 

loads have been applied. The second stage has been carried out by 

applying an increasing load on one of the spans until the failure of 
the structure. For both stages, the cable tension, deflections and 

stresses of the test beams were monitored and compared with the 

calculated ones. 

As the analysis throughout the thesis has been introduced in 

the form of equations, it was necessary to write a computer program, 

Appendix 28, which is capable of analysing both ungrouted and grouted 

two-span prestressed concrete suspended beams under any form of 
loading. The program can also calculate the failure loads of both 

types of bridge when a single loading is applied an either of their 

spans. 
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CHAPTER 2 

Theory and Design of Two-Span Prestressed Concrete Suspension 

Bridges with Ungrouted Cables 

2.1 Introduction 

In this chapter, we give a complete solution for the design 

and analysis of this type of bridge. In the following chapter, the 

main differences between this type of bridge and prestressed concrete 

suspension bridge with grouted tables will be discussed. 

The design procedure for both types of bridge is based upon 
the following realistic assumptions: 

1. The spacing d and dl between the suspenders in the left and right 
hand spans is so small compared with the span lengths I and 11, 

that the suspenders may be replaced by a membrane or screen 

without resistance to shear, i. e. the forces between the cable 

and the suspenders are assumed to be continuously distributed. 

(see Ficure 0.30). 

2. The cable curve is parabolic for the dead load and remains 
parabolic after the application of live load. 

3. The extensions of the suspenders is ignored so that the downward 

displacement of the cable can be assumed to be equal to the beam 

deflection. 

4. The deformation of the suspended beam due to shear may be ig- 

nored. 

5. The flexural stiffness of the suspended beam El is constant for 

both its spans. 
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The sign convention chosen will define a bending moment as 

positive when it tends to make the axis of the beam concave 

downwards, i. e. a hogging curveture. Consequently, the downward 

deflection and clockwise rotations are also defined as positive 

quantities. All the positive actions are shown in Figure (2.1). 

The fundamental equations for the internal forces of the 

suspended beam can be written, as a result of the sign convention 

used, as follows: 

d2i 
+ MX - EI i 

dx 2 (2. la) 

Qx ý- 
dM 
U - -- EI -3 

11 (2.1b) 
X dx 3 

dQ d4 11 qx -_ -+ EI (2.10 

where I- The second moment of area of the cross section of the sus- 

pended beam 

E- The modulus of elasticity for the concrete 

9- The vertical deflection of the beam 

Mx, Qx - Bending moments and shear forces of the beam 

qx - Rate of loadinc of the beam. 
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2.2 The Evaluation of the Dimensions and the Preliminary 

Prestressing Force of the Prestressed Concrete Suspended 

Beam 

The design of prestressed concrete suspended beams, as with 

conventional prestressed concrete beams, depends mainly on the moment 

conditions to which the beam will be subjected. More accurately, the 

range of moment variation is of greater importance than the absolute 

values of the bending moments themselves. 

It is therefore convenient to start by defining certain 

moment conditions for any section of the beam. The dead load moment, 
denoted MD, is a moment applied to the beam which remains of constant 

value and exists from the time of'prestressing throughout the life of 
the beam. The dead loads are denoted by W and W, in the lef t and 

right hand span respectively. The dead load moments are usually much 

greater than the live load moments and therefore they are used to 
find the initial cable eccentricities, Figure (1.1a). After trans- 
forming the cable and finding its final eccentricities, Figure 
(1.1c). it will be proved that the cable at its present position is 

exerting upward forces exactly in balance with the dead loa ds and the 

beam does not experience any bending stresses, Figure (2.3a). Thus, 

similar to conventional prestressed beams, the section dimensions are 
determined to sustain the live load moments alone. 

The extremes of bending moments due to live load are deter- 

mined throughout the structure. In doing so, all the cases of live 
loading to which the suspended beam will be subjected must be consid- 
ered. The maximum moment envelope is denoted M, and the minimum 
moment envelope M2, with hogging moments considered positive. The 

variation of live load moments, (Ml - M2), can then be established 
everywhere and the maximum value, ML, determined as shown in Figure 
(2.2). 

Assuming working stress limits of zero and fC9 compression. 

the minimum section modulus, B, is calculated f rom the expression, 
(see Figures (2.3)), 
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1 (2.2) min ý -z ýf 

where fC is the maximum allowable stress and Zn is the largest of the 

two quantities Z, and Z2 which are the distances between the line of 

centroid and the upper and lower extreme fibres of the cross section 

of the suspended beam. Prestressed concrete suspension bridges can 

operate on low working stresses because of the possibility of having 

large cable eccentricities. Therefore, the maximum allowable working 

stress can be chosen as one half of that used in conventional 

prestressed concrete bridges. In other words, fc can be chosen as 

one quarter of the cube strength of the concrete, fult* 

From the chosen cross section satisfying the condition in 

Equation (2.2), it is possible to calculate I, A, Z, and Z2 where A 
is the cross sectional area of the suspended beam. The required 

prestressing force Hw is then established from the expression, 

Z1fAZ 

Hw =f 
i- c1< Z2 

(2.3) Z2fAZ>Z 

i- c12 

where Hw, the preliminary prestressing force, is also known as the 
horizontal tension as it is the horizontal component of the cable 
tension and Z is the total depth of the suspended beam (see Figure 

2.3). It will be shown in Section 2.4 how to improve the stress 
distribution when the dead loads are applied in order to increase the 

efficiency of our structure. 
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2.3 The Parabolic Cable 

2.3.1 Introduction 

Similarly to ordinary suspension bridges, the cable eccen- 

tricities are obtained directly from the dead load bending moments. 

Usually the dead load is uniformly distributed which gives a 

parabolic bending moment diagram and consequently the cable geometry 

is also parabolic. 

This section describes the properties of the parabolic cable 

in a series of formulae which are given in both exact and approximate 

version. Moreover, it discusses the effect of the cable deformation 

an its shape and tension. 

2.3.2 The Properties of Parabolic Cables with No Eccentricities at 

their Ends 

As mentioned in Chapter (1), the initial cable eccentricities 

are found by dividing the dead load bending moments MD by the 

prestressing force Hw as shown in Figure (1.1a). Then, the shape is 

transformed by adding the linear system shown in Figure (1.1b) to the 

initial cable eccentricities. The final cable shape is shown in 

Figure (1.1c) for the whole length of the suspended beam. 

Figure (2.4) shows the cable shape in the left hand span. In 

the figure we see that the cable is nearly coincident with the beam 

axis at the end support A, but has af inite eccentricity h at the 

intermediate support B. h can be defined as the height of the tower 

above the centre line of the beam. 

Hence, the equation of the cable curve can be obtained as: 

MD 

H 
w 
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and y-h ?S-I 
IIy 

but since 
1 wx (I - X) MD 2 

The cable shape equation can be written as, (see Figure 2.4) 

wx (£-x) 
42 Hw 

Similarly for the right hand span, 

(2.4a) 

Y, -hX! - 
"'X' 

(X (2.4b) 
412Hw i-Xi) 

where W, W, are the self-weights of the suspended beam to which are 

added the weights of the main cable and the suspenders for both left 

and right hand spans. Equations (2.4) express the general formula 

for the parabolic cables with transformation. To find the cable sags 

f and fi, see Figure (2.6), at the mid-points of the left and right 

hand spans we substitute 

x-± and y-ý-f in Equation (2.4a) and x" and yý-f in 
2212121 

Equation (2.4b). This gives: 

fw1 (2.5a) 
8H 

w 

wII 

8H (2.5b) 

From Equations (2.5), it is evident that because of the equal 
horizontal tension of the cable in the two spans, we have: 

wl 2wI11 

81 8f. 
I 

Consequently: 

wx f (2.6) 
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where U=1 (2.7) 
W 

and 1 (2.8) 

Substituting from Equations (2.5) into Equations (2.4) we have, the 

following expressions for the cable shape: 

f 
x (1 412 

X' 4f I 
A12 --1 1- XI) 

Rearranging these expressions, we have: 

I 4n 2 Fx+ I- x (2.9a) 

yFx+ 
4n Ix2 (2.9b) 

where F and F are the cable slopes at the ends of the beam. 

FIh 4f (2.10a) 

h 4f 
F, I (2.10b) 

and n-f (2.11a) A 

n, (2.11b) 

To check the validity of Expressions (2.9), we note that the 
bending moment produced by the cable forces Mc, is: 

Mc = Hwy 
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Thus, from Equation (2.1c), the rate of loading for the cable forces 

can be obtained as, 

qc 
d2 mc 

+ Hw 
d2y 

dx 2 dx 2 

which yields: 

qc 
8f 

Hw W for the left hand span 
12 

and similarly q cl wl for the right hand span 

From the previous check, we deduce that by tensioning the 

cable by a force the horizontal component of which is Hw, the cable 

exerts upward uniformly distributed forces on the structure equal to 

the dead loads in both spans. To generalise the equations for the 

upward forces exerted by the cable, qc and qcl, in left and right 

hand spans, we have: 

qc 
8f 

H H- H (2.12a) 
A2 Hw 

8f IwI 
qcl 2HH 

(2.12b) 

where H is the horizontal component of the cable tension, the 

prestressing force at any time. From Equations (2.12), the ratio 

between the forces exerted by the cable in the left and right hand 

spans is: 

q 
cl 

qc 

The tension, T or Tl, at any section of the cable in the left 

or right hand spans can be calculated f rom the expression obtained 
from studying the cable element shown in Figure (2.5): 

H 
ds 
dx 
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but ds 1+C dy )2] 
1/2 

dx dx 

which gives, from Equation (2.9): 

8n 2 1/2 
T=H I' +(F, +Tx)I (2.13a) 

[l F 
8n 12 1/2 

(2.13b) 
1 i-- x, )1 

From Equations (2.13), it is clear that T and T, are directly 

proportional to the cable slopes. 
dy dy, HRY ) and I -dxl ). This means that 

T and T, are maximum at the top of the tower and minimum at the end 

supports. 

The exact lengths of the cable S and S, for left and right 

hand spans can be calculated from the expression deduced from the 

cable element shown in Figure (2.5), 

122 
Sf[ 1+ 

[ dy dx dx 

Carrying out this integration gives the exact lengths of the cable to 

be: 

x (F 1 
+8n)+[1+(F 

t 
+8n) 

21 1/2 2 1/2_ 1'2 1/2 
+(F'+8n)[1+(F'+8n) F [l+F 

n 

[ln 
LF+ [l+F' 21 1/2 

1 

(2.14a) 

for the left hand span and similarly, 

9t12 1/2 
s-1 

1[ln'(F, 

+8n, )+[1+(FI+8n, ) 12 
1/2 2 1/2 lý 1-gn 8 --- +(F 

' 
+8n )[1+(F ' 

+8n )1 -Fl(l+F 1 
F+ [l+F 21 1/2 

1111 

(2.14b) 

for the right hand span. The derivation of the above formulae is given 
in Appendix 1, where F' & (F'+8n) and F& (F +8n-') are the slopes 1 

19 



at the ends of the cable in each span and can be obtained from Equa- 

tions (2.10) and (2.11). The magnitudes of these slopes are small 

due to the fact that the spans are usually long with-respect to the 

height of the tower. This means that Formulae (2.14) can be simpli- 
f ied by series expansion, see Appendix 2. Thus, the approximate 

lengths of the flat cable can be written as: 

ý822 (F +4n) 
222 

n (5-12n +8 [4-32n (F +4n) 

for the left hand span and similarly, 

(2.15a) 

(F +4n )2t 
+, 

8 
n2 (5-12n 2) 

+11 [4-32n 2- (F 
1 +4n )2 11 i-5 11811 

for the right hand span. 
(2.15b) 

2.3.3 The Properties of Parabolic Cables with Eccentricities at 

their Ends 

The range of span application can be increased for our type 

of bridge by using eccentricities at the ends of the suspended beam. 

Figure (2.6) shows that these eccentricities, denoted 'a', introduce 

bending moments of opposite signs to those produced by the applied 
live loads. Therefore, their contribution in relieving the suspended 
beam is significant. The designer is free to choose the value of 'a' 

for which the suspended structure benefits most. Generally, lal must 
be chosen to have the maximum possible value which is the downward 

core limit in order to avoid tensile stresses developing at a section 

of zero applied moment. Hence, we have: 

AZ, (2.16) 

To determine the effect of 'a' on the geometry of the 

parabolic cable, we have the cable shape in the left hand span, as 

shown in Figure (2.7). In the f igure we see that the cable has a 
downward eccentricity, 'a', from the beam axis at the end support A 
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but has an upward finite eccentricity h to the top of - the tower at 

the intermediate support B. Hence, following the aforementioned 

procedure we have: 

h+a 
tx- 

ly'l 

where 
t MD 

-I- (I-X) yý T- ý-1H 
ww 

Thus, we arrive at the final expression for the cable shape: 

FI 4n 2 
x+rX (2.17a) 

for the left hand span and similarly, 

n2 
Yl =F1x+4 Xi (2.17b) 

for the right hand span where: 

F 
h+a 4f (2.18a) 

F 
h+a 4f 1 (2.18b) 

and where n, n, can be obtained from Equations (2.11). 

Obviously, Equations (2.17) and (2.18) are identical to 

Equations (2.9) and (2.10) when deleting the end eccentricities, a= 

o. 
-Therefore. 

all the formulae used to determine the properties of 

the cable with no eccentricities at its ends, are applicable here 

when replacing F and F, by F and Fl. Furthermore, we will consider 

the use of a cable with eccentricities at its ends as the general 

case on which the calculations will be based. Thus, a cable with no 

eccentricities at its ends will be regarded as a special case with a 

= 0, 
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2.3.4 The Deformation of the Cable 

The effect of the deformation of the cable on-its tension is 

evaluated in this section. These deformations result from the fol- 

lowing effects: 

2.3.4.1 Tower Flexure 

Tower flexure could be affected by powerful wind, earthquakes 

or imbalance of horizontal forces at the top of the tower. The 

latter could result from a cable slip at one of the anchorages at any 

of its ends. 

As shown in Figure (2.8), tower flexure produces a change in 

the span length At which forces the cable to change its length, shape 

and tension. The changes in the cable lengths AS and AS, can be 

found as follows: 

AS = 
as 
at 

as 1 
,ýa14 

Obviously, if At is produced when the tower bends to the 

left, this would mean a decrease in the left hand span length and an 
increase in the right hand span length and vice versa, see Figure 
(2.8). Thus, we have the exact change in the cable length as: 

AS Al) 
ln (F+8n)+ [1+(F+8n) 21 1/2 

(2.19a) 8n 

IF+ 

[1+F 21 1/2 

1 

AS - 
(T- W 

ln 
(F 

1 +8n 1)+ 
tl+(F 

1 +8n 1)21 
1/2 

(2.19b) 8n 
F+ [l+F 21 1/2 

111 
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for left and right hand spans respectively. Full derivation of these 

formulae is given in Appendix 3. For flat curves, approximate formu- 

lae have been derived as shown: (for details see Appendix 4) 

AS 1-8n2 (5-36n 2 (F+4n) 2 
[4-96n 2 

-3(F+4n) 
2 (±Ao 15 8 

(2.20a) 

822 (F 1 +4n 1)2 2_ 2 6s 11-i -5 n1 (5-36n 
1)--8[ 4-96n 13 

(F 
1 +4n 1)11 

(Tät) 

(2.20b) 

for left and right hand spans respectively. 

The effect an the cable shape can be represented as the 

change in the cable sags Af and Af, for left and right hand spans, 

Figure (2.8). It can be proved that: 

as Af = 
as 

'ý-f "5T 

Therefore, the relationship between 6f and At is given as: 

Af = 
as/at (± A0 as / af 

for the left hand span and similarly, 

Af , 
FJS 1/ Fj A 

C; AO i as 1 /Fif 

for the right hand span. 

Thus, carrying out these calculations, the final value for Af 

and Af, can be determined exactly as: (see Appendix 5) 
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Af = 

Af 1 

2n 

(F+8n) [1 +F21 
1/2 

-F [1+(F+8n) 21 1/2 

ln 
[ (F+8n) + [1+(F+8n) 1/2 

F+ [1+F 21 1/2 

2n I 

(F 
I +8n I) 

[I +F121 
1/2 

_FI [1+(F 1 +8n I)21 
1/2 

ln 
[ (F, +8n, ) + [1+(F, +8n, ) 21 1/2 

F+ [1+F 21 1/2 

1 

for left and right hand spans respectively. For flat curves, the 

approximate version of Formulae (2.21) are: 

Af (±Af) 120-64n 2 (5-36n 2 )-15 (F+4n) 2 [4-96n 2 
-3(F+4n) 

2 
(2.22a) 

[5 [2-3 (F+4n )21 - 48n 21 

(T- äi) ä 
1 120-64n 12 (5-36n 12 )-15 (F 1 +4n 1)2 [4-96n 1 

2_3 (F 1 +4n 1)211 
1 

f 1 64n 1 

1[5[ 

2-3 (F 1 +4n 1 )21 - 48n, 21 

(2.22b) 

for left and right hand spans respectively where F, Fl, n and n, can 

be computed from Equations (2.18) and (2.11). The derivation of 

Formulae (2.22) is given in Appendix 6. 

Finally, the change in the cable tension AH corresponding to 

the variation of the cable lengths AS and AS, can be computed from 

Equation (2.35) as will be shown later in this section. 

2.3.4.2 Construction Errors 

The performance of the bridge depends on placing all of its 

elements correctly in the designed position. An error in the length 

of one, or more, of the suspenders could result in changing the 

(± A0 (2.21a) 

(T A£) (2.21b) 
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position of the cable with respect to the centre line of the beam and 

consequently affecting the bending moments produced by the cable 

tension. Therefore, it is essential to be able to calculate the 

effect of that error on the length, shape and tension of the cable 
(see Figure 2.9). 

The lengths of the suspenders can be obtained from the fol- 

lowing expressions which are deduced from Equations (2.17) and Figure 

(2.9): 

Iw Fxm + 
Ln 

X2 _ (a+Zl) (2.23a) sm Im 

IsIm ,F x1m + 
4n Ix2- (a+Z (2.23b) I Tl-- Im 

for suspenders in the left and right hand spans respectively where: 

m is the suspender number, or numbers. at which the error took 

place. 

Ism and Islm is the theoretical length of suspender number m. in the 

left and right hand spans. 

xm and xlm is the distance from the end supports to the faulty 

suspender in the left and right hand spans. 

ým is the error in the faulty suspender length where: 

Cm - Actual Length - Theoretical Length. 

Thus, from Equation (2.23a), we obtain the corresponding 

change in the cable sag: 

sm 42 
-- w (X - xxm) afx2m 

which yields, 

Af 
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However, if there is more than one faulty suspender, the change in 

the cable sags can be obtained as: 

2E 
äf m-4m (2.24a) 

z- 7. XM (i-XM)- 

j2 
Af Im (2.24b) 

1 v- (4 c, --) -Xim i-, Im 

for either, or both, the left and right hand spans respectively. 

The corresponding changes in the cable lengths AS and &S, can 

be found exactly from the following relationships: 

Ls ,- 
Af 

[,, r, (F+8n) + [1+(F+8n)211/2 
+F [1+(F+8n)211/2_ (F+8n)[l+F2 1 1/2] 

-2 211/2 ý6n LF+ [1+F 

(2.25a) 

Af ln 
(FI+8n, ) + [1+(FI+8n, )211/ 

21't? FI+8n, )[I+F 211/2 
2 +F, [I+(FI+8n, ) 1 2 1/2 T6n7 

Fl+ [I+Fl I 

(2.25b) 

for the left and right hand spans respectively. The derivation of 

these formulae is given in Appendix 5. For flat curves, the approxi- 

mate versions of these equations are found to be: (see Appendix 6) 

AS =8n Af 5 [2-3 (F+4n) 2 48n (2.26a) T5 
II 

ý6s =8n Af 5 12-3 (F +4n )21- 48n 2] (2.26b) I T-5 II1111 

for left and right hand span respectively where F, Fl, n and n, can 
be calculated from Equations (2.18) and (2.11). 

26 



Figure (2.10) shows that a construction error in the tower 

height 6h will also force the cable to change its length, shape and 

tension. The change in the cable lengths can be established from the 

following relationships: 

AS ýahý 6h Fj h 

6s 13 
ris 1 Ah 1 U-h 

where Ah - Actual Height - Theoretical Height 

FJS as I 
Hence, calculating the quantities ýj-h and ah Appendix 7, we have: 

AS = 'ý"' [[l+ (F+8n )211/2 _ [1+F 21 1/2 (2.27a) 
8n 

M Ah [l+ (F +8n )21 1/2_ (l+F 21 1/2 (2,. 27b) 
1ý Un 

jl 

The effect an the cable shape can be represented, as men- 

tioned earlier, as the change in the cable sags Af and MI. Simi- 

larly to the procedure followed in the preceeding section, we have: 

Af FJS/Bh 
asizif 

Af 
Fis 11 Fjh 

M 
1M11 ci f 

for left and right hand spans respectively. Hence, from Equations 

(2.25 and 2.27), we obtain the exact relationship between the change 

in the cable sags Af & Af I and the error in the tower height Ah as 

follows: 
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Af - 2n 6h 
[[I +F21 

1/2 
_ [I + (F+8n) 21 1/2 1 

In F+8n) + tl+(F+8n) 2112+F 
[1+(F+8n) 21 1/2 (F+Bn) [I+F 21 1/2 

F+ [I+F 21 1/2 
11 

(2.28a) 

for the left hand span and similarly, 

Af - 2n M 
[[I +F121 

1/2 
_ 11 + (F I +8n I)21 

1/2 1 

II 

In 
F1 +8n I )+11+(F I +8n 1)21 

1/2 

+F [1+(F +8n )21 1/ ?F 
+8n )tl+F 21 1/2 

1 

F+ tl+F 21 1/2 11 

(2.28b) 

for the right hand span. For details see Appendix 5. 

For f lat curves, the above equations can be approximated to 

the following simplified versions: 

Af 
[1+ (F+8n) 21 1/2 

_ [I+F 21 1/2 

(2.29a) 
5 [2-3 (F+4n) 21- 48 n21 

[ [l+ (F +8n) 
21 112_ ll+F 21 1/2 

Af 1- 15 M[5 
[2-3 

1 

(F 1 +4n 1)21- 
48 

1 

n, 
2 

(2.29b) 

for left and right hand spans respectively where F, Fl, n and n, can 

be determined from Equations (2.18) and (2.11). (For details see 

Equations (2.26 & 2.27) and Appendix 6). 

The corresponding change in the cable tension 6H for all the 

aforementioned changes in the cable length &S and AS, can be evalu- 

ated from Equation (2.35) as will be mentioned later in this section. 
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2.3.4.3 The Temperature Effects 

The effects of temperature changes, ± At, on the stresses in 

this type of bridges will generally be small. However, the internal 

capacity and thermal conductivity of concrete dif f ers considerably 
f rom that of the steel part of the structure. Hence, ambient tem- 

perature changes may lead to more significant stress changes than 

would arise in more conventional forms of structures constructed from 

homogeneous materials. 

Starting with the suspended beam, the roller supports will 

force the total change in the beam length to take place in one of its 

spans. Denoting this change At, we have: 

At -± otc At I (1+X) (2.30) 

where (kc is the thermal coefficient of expansion for the concrete, 

n, 0.0001 per V. 

Thus, the corresponding change in the cable length and shape can be 

evaluated from Equations (2.19) and (2.21) for exact values or Equa- 

tions (2.20) and (2.22) for approximate ones. 

For the main cable, if the thermal coefficient of expansion 
for steel is denoted (x,,. zc. 0.000011 per C", the change in the cable 
lengths for the left and right hand spans AS and &Sl can be calcu- 
lated as: 

As -± otc 6t s 

AS i-± otc At sI 

(2.31a) 

(2.31b) 

where S and S, can be calculated exactly from Equations (2.14) or 
approximately from Equations (2.15). The corresponding change in the 

cable sags Af and Af, can be evaluated from Equations (2.25) or 
(2.26). 
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Each suspender will respond to the temperature variations by 

elongating or contracting by amounts Alsm and Alslm, where from 

Equations (2.23) we have: 

Al ± ot At [Fxm + 
4n 

x2 (a+Z 
sm sFm 

Al =± ot At [F x+ 
4n 1x2- (a+Z s1m s1 lm lm 

for suspenders in the left and right hand spans respectively. Hence, 

assuming the total number of the suspenders to be equal to i and J 

for left and right hand spans respectively, the corresponding changes 
in the cable sags Af and Af, can be obtained from Equations (2.24) by 

replacing em by Alsm and cim by Alsim (see Figure 2.9) which gives: 

ot At 121 [Fx +4nx2 (a+Z )l 
Af = T. ,mim1 (2.32a) 4 

:E 
Ix 

m 
(A - xm)j 

M=l 

21 nl 
x2 _ 

Af s 
6t 41, [F 1x im +4 11 im (a+Z 01 

(2.32b) 4 
m=l 

[x im (1 1- Xim)i 

for the left and right hand spans respectively. Having found Af and 
Af 1, Equations (2.25) may be used to determine the corresponding 

change in the cable lengths AS and AS, due to the effect of tempera- 

ture variation on the suspenders. 

The temperature variation may force the tower to change its 

height by an amount Ah where: (assuming that the tower is made of 

concrete) 

Ah =± otc At h (2.33) 

The corresponding change in the cable lengths &S and AS, can directly 

be calculated from Equations (2.27). The change in the cable sags Af 

and Af, may be computed by using Equations (2.28) for exact values or 
Equations (2.29) for approximate ones. 
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It is worth noting that Equations (2.27 and 2.28) may be 

applied again to determine the effect of the elastic deformation of 

the tower on the behaviour of the cable. In other words, the tower 

may be subjected to some axial compression under the vertical force 

NT, see Figure (2.15). This may result in a small change in its 

height which can be determined and substituted into Equations (2.27 

and 2.28) to evaluate the effect an the cable lengths and shape. 

The vertical force NT is the sum of the vertical components, 
V and Vl, of the cable tensions for the left and right hand spans 

where: 

N=Hr dy 
T=V+ Vi U -dx 

x=£ 

dy i 
dx I 

which gives from Equations (2.17): 

NT =H[ (F+8n) + (F 
1 +8n 1)] (2.34) 

Finally, having found the total values of the change in the cable 
lengths AS and 6S1, the corresponding change in the cable tension 6H 

can be evalulated from Equation (2.35) as will be shown in the fol- 

lowing section. 

2.3.4.4 The Effect of the Elastic Deformation of the Cable on its 

Tension 

For the previous changes in the cable lengths, * the cable is 

forced to change its tension by an amount 6H. This change can be 
determined from the following formula, as derived in Appendix 8: 

AH -AcEc 
&S AS 

1 
(2.35) 44 i7 +)+ L4 2 [l+F (F+8n) + 

L3 
n1 X[l+F (F +8n n1 3111311 

where Ac and Ec are the cross sectional area and young's modulus of 
elasticity for the main cable respectively. 
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Equation (2.35) may be used to determine AH corresponding to 

a change, or changes, for the cable length, or lengths. which may 

occur in either, or both, of the left and right hand spans. 

2.4 The Detemination of the Initial Prestressing Force 

From Equations (2.12), it can be seen that the preliminary 

prestressing force Hw produces upward distributed forces exactly in 

balance with the dead load in both left and right hand spans. Conse- 

quently, the suspended beam axis will be a straight-line with zero 

bending stresses and axial compressive stresses 

H 
w 

T_ , Figure (2.3a). However, for loads of such long duration, the time 

effect such as shrinkage, creep and relaxation of the various parts 

of the structure will most certainly take place. Consequently, the 

prestressing force will decrease below the value of Hw and the sus- 

pended beam will deflect under the dead load alone and some tension 

stresses may develop. 

For this reason, efficient design of prestressed concrete 

suspension bridges requires the prestressing force to be such that 

the upward forces exerted on the suspended structure exceed the self 

weight of that structure. In other words, the prestressing force 

must exceed Hw by an amount which ensures that it remains larger that 

Hw after the time effects take place. Thus, the initial prestressing 
force is assumed to be Hi, where: 

Hi = Ilw (1+y) (2.36a) 

and the final prestressing force, after the time effects take place, 
is Hf where: 

Hf = Hw (I+T) (2.36b) 

and y> -[ (2.36c) 
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The value of the initial prestressing force Hi can be ad- 

justed in order to increase the efficiency of the prestress distribu- 

tion under the dead load, Figure (2.3a). Figure (2.11) shows the 

resultant of the upward forces exerted by the initial prestressing 

force, which are W(l+y) and Wl(l+y), and the dead loads in the left 

and right hand spans. The figure also shows the end moments Hia 

applied at both ends. Hence, by virtue of the three moments equation 

we have, 

Hia W1 2 
m1ý2+y -8 e 

where e is a constant which can be evaluated as follows: 

e= 
(1 +WX) (2.37) 

(1 + X) 

and 

LWj2 2HIa 
- (4-e) +- (4+3e) 

2 128 16 

at x2 [4-el 

It can be proved that M, is the maximum moment and the criti- 

cal section is located at the intermediate support B. Thus, the 

stresses of the cross section are as shown in Figure (2.12a), and 

must comply with the following conditions: 

m1z2 
) 

M1z1 

where f is, the maximum allowable compressive stress, f c ult* 
Hence, 

substituting for Hi and Ml, and rearranging the above equation, we have: 

[TI 
_aCa Z9 Z2 HwZ AZ 2 

4y4f'11 

I_ 

ef +a ef +I+a AZ 2211 AZ 21 

where f=W1 8 Hw 
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The above equation gives the lower and upper limits for y. 
To ensure that no tension stresses will develop, under the dead load, 

after the time effects take place, the value of T must comply with 

the following condition: (Equation (2.36c)) 

I_a 
YZ 

22 (2.38a) 

ef -I+a AZ 2ýI 

Hence, y can be calculated from the following relationship: 

T= Gy - 

where G and D are constants which can be evaluated f rom Formula 

(5.15) as will be discussed in Chapter (5). Then, the value of y 

must be checked to comply with the following condition, so that the 

compressive stresses will not exceed the maximum allowable stress fc: 

fIa 

AZ 2 
L 

y <, 
zi 1 (2.38b) 

a ef ++ AZ 1 
71 

Figures (2.12) show the stress distribution under the dead 

load and maximum live load. They also show that the prestressed 

concrete suspended beam now operates in the most efficient and eco- 

nomical manner. It is worth noting that the prestressing force can 
be reduced, in order to employ a cheaper cable, when allowing for 

small tension stresses to develop, under the maximum live load, which 

can be sustained by the tensile reinforcement. However, such ap- 

proach should be supported by sufficient investigation in all cases 

of live loading likely to affect the bridge in order to ensure that 

any tension stresses developing will remain less than the allowable 

ones. 
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2.5 The Behaviour of the Main Cable Under Applied Live Loading 

2.5.1 Discussion 

As mentioned in Chapter (1), the horizontal tension of the 

cable consists of two parts. The first part is the initial 

prestressing force Hi which is generated in the cable by means of 
hydraulic Jack or any other method, as will be discussed later in 

Chapter (6). It independently exists to sustain the dead load as 

well as the time effects on its magnitude. The initial prestressing 
force indirectly sustains part of the applied live load through the 

upward forces it produces, as mentioned in the preceding section and 
it permanently remains in the structure for its entire working life. 

The second part of the horizontal tension of the cable is 

denoted by Hp and it can be defined as the part which the horizontal 

tension of the cable gains or loses due to the application of live 

loading in any of the beam spans. As mentioned before, the suspend- 

ers force the main cable to deflect with the suspended beam and 
hence, elongate and increase its tension by the amount HP, obvi- 

ously, Hp depends entirely on the type, location and magnitude of the 

applied live loading. It is also governed by the geometry of both 

the main cable and the prestressed concrete suspended beam. The 

value of Hp may contribute significantly to the stress state of the 

suspended structure providing that the spans are long enough. There- 

fore, it must be calculated with best possible accuracy. 

Early research was undertaken in this field by Steinman and 
Timoshenko (20,23,25 and 26). However, their work was developed to 

cover ordinary suspension bridges which do not include the effect of 
the axial force. Therefore, it was essential to modify that work to 

suit prestressed concrete suspension bridges. Hence, two modified 
approaches will be described in this section to determine the change 
in the prestressing force Hp due to the applied 1 ive loading. There- 

after, a comparison will be carried out in order to decide upon the 

preference of either of them for best accuracy. 
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2.5.2 The Modified Steinman's Approach 

2.5.2.1 The Principle Used 

Hp is a statically indeterminate quantity. Hence, the re- 

quired equation for its determination must therefore be deduced from 

the elastic deformation of the system. 

We imagine the cable to be cut at a section close to one of 

its anchorages, see Figure (2.13). Then, with HP = o, under the 

action of any load applied on the structure, the two cut ends would 

be separated by some horizontal distance A. If a unit horizontal 

force. H=1, is applied between the cut ends, it would pull them 

back towards each other a small distance 8, Figure (2.14). Thus, the 

required change in the horizontal tension, HP, would evidently be the 

ratio of these two imaginary displacements, or: 

Hp= (2.39) 

The quantity A can be calculated directly by integrating the bending 

moments produced by the live loading Mx with the initial cable tension 

multiplied by the bending moments produced by a unit horizontal tension 

and no loading mx over the two spans. Thus we have: 

m xx dx 
1 

EI (2.40) 

where the negative sign is introduced as a result of the sign conven- 
tion used as shown in Figure (2.1). 

A similar procedure can be adopted to determine G. It is 

defined as the change in the imaginary distance A produced by a unit 
horizontal tension and no loading is applied. Therefore, 9 can 
directly be computed by virtue of Castigliano's first theorem (2) 

where it can be redefined as the derivative, with respect to H, of 
the internal energyfl stored in the superstructure at H=1. Thus we 
have: 
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2 mx 
dx + 

N2 dS i EI 2 EA 

dn 1 
dm dN SM --3 dx +N jH- dS (2.41a) 

dH EI Mx dH EK 21 

where, N is The direct forces in the suspended beams, the main 

cable, the suspenders and the tower at H=I and no 

applied loading. 

Hence, Equation (2.41a) can be rewritten as: 

S= Sbm + Sbn + Sc +8S, +6 (2.41b) 

where, Sbm, Sbn' Scl. Ss and ST are the gaps produced by the moment 

of the suspended beam, the direct forces in the suspended 

beam, the main cable, the suspenders and the tower respec- 

tively at H=1. 

2.5.2.2 The Evaluation of the Total Gap 9 

a) The Determination of the Gap Produced by the Bending Moments of 

the Beam 9 bm 

From Equations (2.41): 

Sbm ý 
I- :jf MX 

dm 
'x dx EI dH 

mx is the bending moment produced by a unit prestressing force 

and no live loading is applied, see Figure (2.14). 

Thus, ignoring the effect of unit axial force, the bending moment 

equations can be determined as; 

= 
dm 

x=a 0- + 
4f 

x( I-X) (2.42a) MX ii- T2 
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dm 
xi 

=a (1- 
xI)+ 4f 

1x (I x)-E 
xi 

(2.42b) Mxl ý d-H 7_1 
1121 1- 111 

for left and right hand spans where Fa is the moment at the intermedi- 

ate support and can be calculated from the following expression: 

Fn = fe +a (2.42c) I 

and where e is a constant and can be determined from Equation (2.37). 

Thus, 

dm m2 
9L1mX dx dx at H bm ý EI x dH 

Carrying out this integration, the final result is: 

i (1+N) ý f2 (1+w 2x5)3a 
Ebm 

3EI 
[5 

(1 + X) - (fe -7 a) (fe +j)1 (2.43) 

The full derivation of this formula is given in Appendix 9. 

b) The Determination of the Gaps Produced by the Axial Forces in the 

Various Parts of the Structure 

1. The gap produced by the direct force in the suspended beam 9 bn 

The normal force in the suspended beam is obviously equal to 

the horizontal tension of the cable. Hence, we have 

N=H and 
dN 
dH 

Thus we find: 

612fN dN dx = --ý (I + bn Ej 'd-H EA 

At H=1, we obtain: 

Sbn ý jý (1 + X) 

where 

(2.44) 
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2. The gap produced by the direct force in the the main cable 9c 

From Figure (2.5), 

H 
ds 
dx 

and 

dN ds 
dH dx 

Hence, Sc 1N dN ds =H2fC 
ds )2 ds 

AcEc 
f 

THI AcEc dx 

At H=1, we find: 

912f( ds 3 
dx 

c ACEC dx 
) 

where Ac and Ec are The cross sectional area and young's modulus of 

elasticity of the main cable. 

Thus by performing this integration, the following exact 

formula can be obtained: (see Appendix 10) 

i f, (F+8n) + [1+(F+8n) 21 1/2 2 1/2 2 
sc = '6Tn AE 

3 ln 
LF+ [1+F 21 1/2 +(F+8n) [1+(F+8n) [5+2(F+8n) 

-F [1+F 21 1/2 (5+2F 2) 
+13 ln 

(F, +8n, )+ [1+(F, +8n, ) 21 1/2 

wF+ [1+F 21 1/2 
111 

(F 
1 +8n 1) [1+(F 1 +8n 1)21 

1/2 [5 +2 (F 1 +8n 1) 
21 

-F1 [1+F 
121 

1/2 (5+2F 2)1 

(2.45) 

where F, Fl, n and n, can be evaluated from Equations (2.18) and 
(2.11) respectively. 
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For flat curves, an approximate formula has been derived, see 

Appendix 11, to serve the same purpose: 

9=4 
[(, 

+X)+ 
3 (F+4n) 2 

[412( 1+X)+ 32X 3n2 (l+W 2 1) +(F+4n) 
2 

cAcEc8 13 

O+X 3)] 
+8n2 [5 O+w 2x3+ 12n 2 O+w 4x5 (2.46) 5 

W111 
where w= T- and X=4 

3. The gap produced by the direct forces in the suspenders 9s 

From Figures (2.9) and (2.14), it is clear that each 

suspender approximately carry a load equal to: 

PS = 
Lf 

Hd 2 

P 
8f 1 

Hd sl 421 

Hence, 

where 

Hence, 

in the left hand span 

in the right hand span. 

ss NM ds p 
dP 

E ds A 
su 

E 
su 

f 
dH A 

su 
E 

su 

fS 
dH 

dP 
s 8f dP dH 12 

at H=1 

dP 
sl 

8f 1dp 
dH 121 sl at H=1 

ls ls 
1fp2 

ds +1fp2 ds s Esu As Asul. si I 
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where Asu and Asu, are the average cross sectional area of the sus- 

penders in left and right hand spans respec- 

tively. 

and Esu is Young's modulus of elasticity for the material of the 

suspenders. 

Hence, 

Ss = 
64f 2d+ 64f, 2 d, 

-2 is 
x4 

TS-UESU 2 is 
414 Asu Esu 1 

Ss = 
64f 2 

is + Asul 
ý is (2.46a) 

14 Esu 

[ 

ASU 11 

where 2 is and :E is, are The sum of the lengths of the suspenders in 

both left and right hand spans. 

d and dl are The spacing between the suspenders in left and 

right hand respectively, see Figure (2.9). 

ý is and ý is, can be calculated directly by using Equations 

(2.23) which gives: 

iiI 4n 2 )3 n[2 ls= :ý [Fx + 7- x- (a+z F 
m] +L2x (a+z 

M=l mmI M=l 
i 

M=l m 

(2.46b) 

ls 
4n 12+ 4nl j2 

212, ['i'im 
+Ix im - (a+Z 1) F2x12 x1m 

]- 
J(a+Zl) lm 

] 

M= 1 1=11 M=l M=l 1 

(2.46c) 

where i and j are the total number of the suspenders in the left and 

right hand spans, Figure (2.9). 
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4. The gap produced by the direct force in the tower ST 

As mentioned earlier, Equation (2.34), the iotal vertical 

force applied on the tower is found to be: (see Figure (2.15)) 

NT =V+ Vl =H[ (F+8n) + (F 1 +8n 1)] 

Hence 
dN 

T (F+8n) + (F +8n dH 
11 

h dN 
T ds Thus, ST - T--ET NT dH T 

which at H=I yields: 

2 
h (F+8n) + (F, +8n, ) (2.47) ATETI 

where, h is The height of the tower above the axis of the suspended 

beam. 

AT and ET are The average cross sectional area of the tower and the 

modulus of elasticity of the tower material (usually 

concrete). 

Finally from Equation (2.41b), the total gap 9 can be calcu- 
lated. It can be proved that Sbn' Ss and ST are very small and may 
be ignored. Evidently, the cable behaviour under applied live loading 

is predominantly governed by the deformability of the cable Sc and 
the rigidity of the suspended beam Sbm* Nevertheless, Sbm may also 
be ignored in most cases depending on the span length. We can gener- 

ally calculate 9 with sufficient accuracy as: 

9= SC +8 bm (2.48) 
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From Equations (2.45 or 2.46), it can be seen that the value 

of Sc decreases with the increase of the span length. Consequently, 

the total value of S decreases with the increase of the span length 

since it is dominated by Sc. This will result in a larger HP, see 

Equation (2.39), which explains why the interaction between the main 

cable and the prestressed cable suspended beam increases with the 

increase of the span length. In other words, Sc can be redefined as 

the term which represents the flexibility of the cable. The more the 

span length is, the more rigid the cable becomes and accordingly the 

cable gains more force. 

Finally, all formulae used to determine the total gap 9 may 

be applied to cables with no eccentricities at their ends when sub- 

stituting the end eccentricities zero, a=a. 

2.5.2.3 The Evaluation of the Gap 

From Figure (2.13). the value of the gap A will differ ac- 

cording to the type, magnitude and location of the applied live 

loading. Therefore, it must be evaluated for each type of loading 

separately. 

As mentioned in Section (2.4), the initial prestessing force 

Hi will exert upward forces which are equal, after substracting the 

dead loads, to yW and yWl in left and right hand spans. These forces 

are included in the calculation for A as their contribution can be 

significant to the change in the cable tension, Hp. In this section, 

the exact value of A is calculated for selected cases of loading. 

a) A Concentrated Load 

1. Applied in the left hand span 

Figure (2.16a) shows a concentrated load P applied at a 

distance tI from the left hand end support. Thus, A can be evaluated 

as: (Appendix 12) 
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vi +v ii) 8f (E) +wO, i) 
2 [4(1+1) (ýi+fli) 

I142i 

. 
Pi tf P. 12 

sin -2- sin :L (1-0 r oc 
(0 

2P 2 oj' +a] - 2ft (1-t) - 
P' 

Hi Pi 42124 

2i 

8f 1(1+1)+(o i +0 ii sin ptIf12 "i yw f1 
+w 2f +a+ 

we 

['s 
i -np 

,At[ 

L12 [-2 

pi, 
2 

113. 

- 
(0 

i +WO li )43 
(l+W 2x3) ]+ 

a 
ýi 

- 
)ii [x (l+1) 

4 12 

(2.49) 

where we have: 

H. 2 : i. 
= 

Hi = Hw (1+y) 

(2.50) 

and where vI, vi II 
ý11 ýiil 0i and 0 ii are constants which can be evaluated 

as follows: 

Vi =1-1l[ 
ill 

1 (2.51a) 
sin pII 

vii 11 sin pill 

P iI 
(2.51b) 

tan pit tan pill 

tan pit tan pI 
2 ()Ji = 11 1 (2.51c) it: 

122 

and where f, fl, w and X can be computed from Equations (2.5), (2.7) 

and (2.8) respectively. 
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2. A concentrated load applied in the right hand span 

Figure (2.16b) shows a concentrated load Pl. applied at a 

distance tjIl from the right hand end support. Thus, A can be ob- 

tained from: 

A=-a1- 
(v i +V li Lf (0 +woli) +a vi 

2 [X(l+X) + (0 +E) 

.. Vi t191pi112 
2P 1 sin -2 sin 2( 

1-t 18f Pi +we 1i 
Hi -p4 

12 
+a)- 2f 

1tI 
(1-t 1 

)- 
4w (ýj+ýIj) 

Cos i 
2 

sin ptI 
O-L +a11i11 -t 

1 (() +w2 )Wf 
22 (e +we sin pit 1]]- 

F 
[Lt2 

2i 
pit i li) 

I11i- 

Pi 

(0 i +wo li 
)2t3231 )ii 

2 ti(, +X) + (9 i +() li 
1 

4 12 
(l+W 1a (E)i+wOli) 1 

where Equations (2.50) and (2.51) apply. 
(2.52) 

b) A General Fom of Loading 

1. Applied at the left hand span 

Figure (2.16c) shows a general loading 6 occupying that part 

of the left hand span which is bounded by the distances x= pt and x 

= %I from the left hand end support. Hence, A is found as: (Appendix 

12) 

(vi+vli) f+ 
Ili2 

f (Oi+wO, i) a (ýj+ýJj) 
12 
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a) 

-[sin 14'1(1-2p)-sin L'1(1-2ot)] 

111 8f 22 ((X-P) f [Ot2 (3-2ot) 
Hi 

[. 
-2 13 

Ili 12 Pit Cos Pi 

2 

-p2 (3-2p) 
Pi 

2 (0 i +WO li 8f 
+a 

[I (1+X)+(O i +0 li -(COSp i pl-cosp i (XI) 
2 

P412 
(oi+weli) pil sin pit 

I 

22 (()i+w2eli) _ 

(oi+woli)2 130 
+w2X3) (OL 

2 
yW[ Ljf2 [ 

Pi 
4 (ýj+ýjj) T-2 

Pi 
2 [1 (1+1) + (E) i +() li)) 11 

4i+'ýIi) (2.53) 

where Equations (2.50) and (2.51) apply. 

To evaluate the gap A for a continuous uniformly distributed 

load 6 applied in the left hand span, we substitute ot = 1, and p=o 
in the above equation. 

2. A general form of loading applied in the right hand span 

Figure (2.16d) shows a general loading 61 occupying that part 

of the right hand span which is bounded by the distances x, = p1l, 

and x, = all, from the right hand end support. Thus, we have the gap 
A as follows. - 

(v i +V 
+a pi 

2+ (0 +E) 

pI Pi A1 
8f [sin '(1-2.1) 

- sin -2 (1-2ftl)l 
+ a) 

2 
1-P 

Pit 1 Cos Pi A1 

2 
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21 [ot12 
_ p12 

Pi (E) 
i +wo li 

)8f 

3f (3-2ot, (3-2j31 2w (ei+eli) 
[ 
-2 + 

4ii2 

[1(1+X) + (E)i+O li Cos p iPl 11- COS )Aiot 14 1) 1 2_P2 
(()i+wO'li) Pi 11 sin pit 1ý 

Cot 
Ii 

YW Lf 1 «)i+ w 
201i) 

(0 i +wE) li ) 2_ 
4323 

Hi j2 

[2 
1-2 

Pi [I (1+X) + (0 
i (2.54) -4- 4i+ýii) 

where Equations (2.50) and (2.51) apply. 

To evaluate A for a continuous uniformly distributed load 61 

applied in the right hand span, we substitute ml =1 and p, =o in 

the above equations. The derivation of A for a general case of 
loading is given in Appendix 12. Moreover, this expression is used 

to obtain A for a concentrated load in the same appendix. 

As mentioned earlier, Formulae (2.49 - 2.54) are applicable 

to cables with no eccentricities at their ends when substituting a= 

o. Furthermore, HP can be calculated after the time effects take 

place by replacing y by T in the above formulae. 

Finally, Formulae (2.49 - 2.54) can also be used to calculate 
Hp for practically every possible case of live loading. This can be 

achieved by using the principle of superposition for cases such as 
series of concentrated-forces applied in both spans, different combi- 

nations of loading . ...... etc. 
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2.5.3 The Modified Timoshenkols Approach 

2.5.3.1 The Principle Used 

Figure (2.17) shows an arbitrary element of the cable which 

has the length (ab = ds) before applying the live load. It elongates 

after applying the live load and its length becomes (a b ds+Ads). 

Tj and E are the vertical and horizontal displacements of point a. 

The initial length of the element (ab) is obtained f rom the 

equation: 

(ds) 2= (dx) 2+ (dy) 2 (1) 

The length of the same element after the application of live load is 

found from the equation: 

(ds+Ads) 2= (dx+dO 2+ (dy+dTI) 2 (ii) 

where Ads is the elongation of the element produced by live load and 

can be computed as follows, Figure (2.17): 

Ads Tp 

ds ACEC 

where Tp is the part of tensile force in the cable produced by live 

load. 

Thus, similarly to Equations (2.13) we have: 

Tp= H1+ 
Ly 

+ 
dil ]2 ] 

1/2 

pI( dx dx 

Neglecting the small change in the slopes of the cable produced by live 

load, Lq 
, (see Section 2.5.3.4) we have: dx 

H ds Ads P ds ax- ACEC 

Since T is usually much smaller than Ti, =H 
ds, 

the elongation pi dx 
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Ads is small and therefore (Ads)2 in Equation (ii) can be ignored. 

For the same reason, and from the fact that the cable exhibits a flat 

curve, we also neglect (dt)2 in the same equation. Therefore, we 

obtain from Equations W and (ii): 

dsAds = dxdt + dydq +I (dri )2 

which yields: 

dt = 
ds Ads - 

ýy dn +1 
dTl dn dx dx 2 dx Uv) 

Substituting from Equation (iii) in this equation and integrating, we 

obtain: 

Hx3xx2 
Pf( ds ) 

dx - 
Ly L" dx + 'I 

f[ dT' ) 
dx (2.55) 

cc"a 
AE dx 

f 
dx dx dx 

If we perform this integration over the whole span length 1, 

would vanish at the ends of the cable. Thus, we obtain: 

H13A42 
p f. [ ds ] 

dx 
f dy d" dx +1f[ 

Ll ] 
dx (v) 

AE Tx- dx dx 2 dx 
c C. 

By making integration by parts to the first term of the right hand 

side of the equation, we have: 

y d" dx = 
LY 

r, 

I- 
d2yw Ly 

Tjdx il dx 

,f 
dx dx dx 

1. 

.f 
dx 

2 
Of 

where the deflection vanishes at the ends of the cable (x = o, f) and 

d2yW 

dx 2 

Hence, substituting back into equation (v) and by expanding 
it over both spans of the suspended beam we have: 

H32 
pf( ds dx rldx +f) dx (2.56) AcEc dx 

)Hwf2 
dx 
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As will be shown in Section 2.5.3.4, the magnitude of the second term 

of the right hand side of this equation is almost negligable when 

compared with the first term. Thus, we have the final expression for 

the change in the cable tension due to live load as: 

Hpf ds 3 
dx =ý 

W 
Tjdx (2.5"7) 

AE dx R- 
Ccwf 

Obviously, the term of the left hand side of this equation is equal 

to Hp Sc where, 

sc =12f( 
ds )3 

dx AE dx 
cc 

and can be calculated directly by using Equation (2.45) for an exact 

value or Equation (2.46) for an approximate one. 

2.5.3.2 The Evaluation of the tem 
(2Lf 

Tjdx Hw 

This tem is calculated for both spans as, 

W !L HW 
f 

r1dx = HW 
If 

ildx +wf Tj 1 dx 11 
(2.58) 

The prestressing force in the structure is equal to H after applying 

the live load where: 

H= Hi + Hp = Hw (1 + y) +Hp 

For simplicity, let: 

H= Hw (1 +y (2.59) 

where pp (2.60) Hw 

so 



The total upward forces exerted on the suspended beam, after 

subtracting the dead loads, are W (y+p) and W, (y+p) for left and 

right hand spans respectively. These forces must be included in the 

calculation as their contribution can be'ý--significant to the total 

value of the tem -W f ildx In this section, the value of the Hw 

term (ý ýL f 11dx ) is given for selected cases of loading. Hw 

a. A Concentrated Load 

1. Applied in the left hand span 

Fi, -, ure (2.18a) shows a concentrated load P applied at a distance 

tt from the left hand end support. Thus the tern Wf 
qdx ) is 

found as: 
ýCý Hw 

in '" sin 22 w 
Tjdx 

Wa (O+wo + 2KfKI 

p Cos PA 

2 (O+WO 
sin ptl t 44 sin pt 

1W213 
(2.61) 4 F2- (l+ 

where we have: 

2H 
Pý -ff y (2.62) 

H 
H= Hw (1+y+p) and pHp 

w 

and where similarly to Equations (2.51), we have the constants v, vl, 
0 and 01 as follows: 

1 pt I]1 (2.63a) I sin pf sin pil 

51 



tan 

t an pt 

pf 
2 

2 

W 
and where w W- and X 

1- (2.63b) 
tan pt, 

tan Pl 
2 (2.63c) 

2. A concentrated load applied in the right hand span 

Figure (2.18b) shows a concentrated load P, applied at a 

distance tIll from the right hand end support. Thus, we have: 

pt 1f1 pt I 2wP sin sin -O-t W fTldx 
=Wa (o+Wel)[i +-122 

Hw Wý H2. 
p Cos Pýll 

2 

2 1, 
U-t 

(O+wo sin Iltl 11-tw (y+ P) 1 (()+w2E)l) 
4 sin pt 1H92 

(E)+w0,2 x3 (l+W 2x3 

where Equations (2.62) and (2.63) apply. 

b. A General Form of Loading 

1. Applied in the left hand span 

(2.64) 

Figure (2.18c) shows a general load d occupying that part of 

the left hand span which is bounded by the distances x= pf and x 

al from the left hand end support. Thus, we have: 

Wa' 
[sin EI (1-2p)-sin 

W 
ildx (O+wo 

[1 22 
Hw 

f 
441 H 

P2 pf Cos pt 
2 
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OL-13 
122 (3-2ot)-p 2 (3-2p)]- 

(O+wo 
12 (cos ppi - cos poLl) 

12 
lot 

4 (ý+ý L pt sin pi 

2 
221 (G+w2e 

(O+WO 
11323 

- (ot _p 
P) 

214f -2 

(2.65) 

where Equations (2.62) and (2.63) apply. 

To evaluate the term 
Wf 

ildx for a continuous uniformly Hw 
distributed load 6 applied in the left hand span, we substitute ft 

and p=o in the above equation. 

2. A general load applied in the right hand span 

Figure (2.18d) shows a general load 61 occupying that part of 

the right hand span which is bounded by the distances x, = plil and 

x, ý ftlil from the right hand end support. Thus, we have: 

a( +,, J) 
[ 

['P2 (sin P'1(1-2p )-sin 1! 1 10-ot 
Lf 

qdx=L 01_]+, 
0" 1ý 112121 

Hw Hw H 4+ýl 
Cos 12 

- (0( -13 
412 

[ot12 (3-2(xl )_p 2 (3- 213 
(O+wE) -2(cos pp 1 il-ýOS potli 1) 

111 12 1)l- 4w (e+e 1) pl 1 sin lit 1 

22W (Y+P) (()+tj2(), 
(G+WG 11323 

1-Pl H214 -2 O+W x 

(2.66) 

where Equations (2.62) and (2.63) apply. 

To evaluate the term C :ý H- f ildx ) for a continuous uniformly Hw 
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distributed load dl applied in the right hand span, substitute al 

and p, =o in the above equation. 

The derivation of the term 
!Lf 

Tjdx )is given for a general Hw 

case of loading in Appendix 13. The case of a concentrated load is also 

shown in the same appendix as a special case to the general formula. 

w Fomulae (2.61 - 2.66) can be used to detemine the term ,C :ýKf Tjdx 

for any combination of live loading by using the principle of 

superposition The above formulae can also be used to evaluate this 

term for suspended beams with cables having no eccentricities at 

their ends, a=o. 

Finally the term ( :jWf qdx ). after the time effects take Hw 

place, can be calculated when replacing y by x in Formulae (2.61 - 2.66). 

2.5.3.3 The Detemination of the Change in the Cable Tension due to 

the Applied Live Load 

H can be calculated from Equation (2.57), where: p 

Hp =L ýL Tjdx sc Hw 
f 

However, when substituting from Formulae (2.61 - 66), we will find 

that HP appears on both sides of the equation and hence it can only 
be obtained by successive approximations. We start by neglecting Hp 

on the right hand side of the equation. Then, (p = o) and the quan- 
tities H, p, v, vl, ý, fl, 0 and 01 will be equal to those quantities 

which can be found from Equations (2.50) and (2.51) respectively. 
This will give a value for Hp as the first approximation. Substitut- 
ing this value is Equations (2.62) and (2.63), H can be found as well 

as p, v, vi, f, fl, 0 and 01. Consequently, a second value for HP can 
be obtained which is usually accurate enough for practical applica- 
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tion. Nevertheless, if more accuracy is required, the whole proce- 
dure can be repeated and further approximations can be determined in 

the same manner. 

2.5.3.4 The Accuracy of Timoshenkols Approach 

In this section, we investigate the accuracy of Equations 

(2.56) and (2.57) and the magnitude of error caused by neglecting 

various small quantities during their derivation. 

We begin with the discussion of the cable elongation. In the 

derivation of Expression (iii) of Section 2.5.3.1, the change in the 

cable slope produced by live load has been ignored. Taking it into 

account, we have: 

1/2 

Ads =Hp 
ds 

1+ dy 
+ 

dil )2 
ACEC 

[( 
U-x dx 

But since 
dy 

and 
L9 

are small'quantities, hence: dx dx 

1/2 
dy 

+ 
Lrj )2 +1( 

dy 
+ 

Lil )2 ,, 
Ls 

+ 
Ly Lil 

+1 (Lrj )2 
dx dx I dx dx dx dx dx -i dx 

(see Maclaurin's expansions in Appendix 2) 

Hence: Ads -- 

HP ds 
Ls 

+ 
dy LTI 

+I( 
Lri )2 

AcEc dx dx dx 2 dx 

Using this more accurate, expression for Ads we obtain, instead of 
Equation (2.56): 

H3H 
ps 2f ( dil )2pf(s )2 2fL )dx 

=2 
W 

lqdx .+1 
dx -L ACEC dx Hw 

f2 
dx ACEC dx 

dy LTI 
+ 

LTI 
)2 ] dx dx dx dx (2.67) 

Where the last term on the right hand side of the equation represents the 

H 
required correction. Since p is usually a very small quantity, AcEc 
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therefore we conclude that the error introduced by this tem can be 

disregarded in a practical analysis. 

We know that the horizontal displacement E, of the cable does 

not affect the value of Hp because it vanishes when integrating its 

equation over the span length. However, t slightly affects the 

values of the bending moment within the span length. To determine 

this effect, it is shown in Figure (2.17) that the downward vertical 

displacement of point 

'a' is actually(in -t 
Ly ). We also note that every element of loading 
dx 2 

transmitted to the cable is equal to(H 
dx 2 

dx). Hence, when 

displacing this element from its original position by a small distance 

a small moment will be generated for each element which is H, d2y dx) 
dx 2 

Therefore, the additional bending moment equation moment produced by t is 

found to be: 

x 

m Ht dy WH fE 
dx (2.68a) 

tý ax- - R; 

m Ht 
dy, 

_ 
WjH Xt 

dx (2.68b) 
1 dx 1 Hw 

f11 

for the left and right hand spans respectively. To take this addi- 

tional moment into consideration, we must find the value of Hp from 

Equation (2.57) and then the deflection equations for the suspended 
beam can be written. Thus, by using Equation (2.55), the expressions 
for t and tj can be obtained for left and right hand spans. Substi- 

tuting these expressions 
dy 

and -ýY into Equations 
- 
(2.68) and knowing dx dx: 

ME and ME, can be obtained. However, these additional moments are 

very small, because of the flatness of the main cable, and can be 

ignored for practical analysis. 

Finally, in Equation (2.57),. the tem 1ýf( dq )2 dx was 2 dx 
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ignored. It is worth noting that this tem represents the effect of 

the shortening of the beam length due to the applied axial, 

prestressing, force. The value of this tem is given, Appendix 14, 

for a concnetrated load P applied in the left- hand span as follows, 

Figure (2.18a): 

2 dx =1 
M2 

+a2] [2 Cv+vl) +i (v 2 
+IV 

2 
dx TH21 

Ma [2 (v +vl) -t (fv + Nýjvj) - 5-H 

W (Y+P) (M + Ha) [ vi(t+O) +wv141 (1 
1 +e 12 

(O+wO W 

w2 (Y+ P) 
22223 *1 23 

+ 
24 p2H2 

[6 vt (t+e) + 6w 11 (1 
1 +0 24(0+w 0+p1 (1 +w x 

4 co 12 2PI sin m ir t 2W (y+ p) I. 2 mir + 
ir E 2,2 

ýým. 

[m2 ir 
22422[ 

(-I)ln M Ha -m212 sin T- 

m=1,2,3 

+ 
pt 

sin mit (2.69a) 
2mv 

where M Ha +P 
rsin ptl 

_t (Y+P) 
(O+WO 

1 
Wýl 

1 sin pt 2 Teti 

(2.69b) 

and-Equations (2.62) and (2.63) can be used to find the quantities p, 

p, v, vl, ý, fl, 0 and 01. 

For a concentrated load P, applied in the right hand span, we 
have, Figure, (2.18b): 

I( Lil )2 dx =1[M+a2 [2 (Y+vl) +I (v 2 
+Xv 

2 
-f If 

dx 2ý W2- i)- 
(ý+Y I 

Ma [2 
Cv+vl) v 2H 1) 
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w (Y+P) (M+Ha) [ vi (4+0) +wvI (1 +0 2 (G+we 
4H 21111 

w2 (y+ p) 
2_ 

[6 vi (£+0) + 6w 2v4' (4 +0 )- 24(0+w 29 )+ p2 13 (l+(i 2x3 )] 
24 li 

2H211111 

14 00 2 2P sin m ir t 
(-l)m M- Ha 

2W 1 (Y+P) 112 
mi 

lr E2,2y 22222222 
m [m IImI 

m=1,2,3 

11 (2.70a) T- sin mirt, 
mlr mlr 

(v+v p sin pt 1 (O+wO, ) 
where M Ha + sin pt t2 (y+p) -(- 0+-o Teo, ) Teol) 

(2.70b) 

For a general case of loading 6 applied in the left hand 

span, we have as shown in Figure (2.18c): 

Lrj )2 dx. =1( 
M2 

+a2) [2 (v+vl) +I (v 2 
+Xv 

2 
dx 

H21) 

Ma 

W (y+p) (M+Ha) [ vi (4+0) +wvX (4 +0 )-2 (G+w0 )] 
4H 211111 

w2 (y + P) 
2222323 

24 p2H2- 
[6 vi (1+0) + 6w 11 (1 1 +0 24(0+w 0+pi (1+w X 

OD 

+ 
(cos mirp cos mvot) [(-l)m M- Ha - 

ý-W (Y+P) 12 
sin 

2 mir 

ir 
2E212 

Ym2 

[m 212p21212m212 

m=1,2,3 

+ (Cos mvp - Cos m1m) (2.71a) 
2m 21 

where M Ha + 61 2 [cos ppl - cos pmIl 
_ (ot 2_P2 

Wýl ) 2(f+Y L pt sin pt 
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(y P) 
(O+wo 1) (2.71b) 

For a general loading 61 applied in the right hand span, we 

have as shown, in Figure (2.18d): 

2 dx M2 
+a2) [2 (v+v ) +A (v 2 

+Xv 
2 

dx 4 
H2 

l 1 

Ma 
- 'f -H 

w (y+p) CM + Ha) [ vi (i+E» +wv4 (1 +0 )-2 (G+w0, ) ] 
4H 2.1111 

w2 (y+p) 2_ 
[6 vi (1+0) + 6w 2vI (I +E) 24(0+w 2() 

+ P2 13 O+w 213 

24 p2H2111- 

+ 
2oi 5 co 

-(Cos mvp Cos mlot 
[(-l) mM- Ha - 

2W 1( +p )1122 
mir 

2 212 
ý: 

222212 2- 22 
it EIm [m 11mI 

- m=1,2,3 

d2 

- (Cos mirp, - Cos milot, 
2m 212 

(2.72a) 

where M Ha 
(v+v 

+12 
[cos pp t 1- Cos got 111 (ot 2_ 

p2 
pf sin pt 1 

(y + P) (2.72b) 

For a continuous uniformly distributed load d applied in the 

left hand span, substitute ot =1 and 13 =o in Equations (2.71). 

Similarly, for a continuous uniformly distributed load 61 applied in 

the right hand span, substitute (xl =I and p, =o in Equations 

(2.72). 

The effect of the tem C12f( Lq )2 dx ) when included in the 2 dx 
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calculation for HP, does not exceed 5% and therefore, it may be ignored in 

a practical application. 

2.5.4 Comparison Between the Steinman and Timoshenko Approaches 

Starting with Steinman's approach, (20), we find that the 

method entirely ignores the effect of the change in the horizontal 

tension, HP, on the stress state of the structure when computing Hp. 

This effect does change the upward forces by amounts pW and pWl in 

the left and right hand spans. It also changes the magnitude of the 

prestressing force which consequently affects its value. 

One of the advantages of using Steinman's approachAs thaVit 

takes into account the effect of the axial deformation of the sus- 

pended beam, the suspenders and the tower as well as the cable when 

calculating Hpo Moreover, a final answer can be obtained for the 

change in the prestressing force, Hp. without the need for any 

iterative methods. 

Timoshenko's approach (23 - 26) however., takes into account 

the deformation of the cable alone when calculating HP, This can be 

explained as the cable deformation is the dominating value -compared 

with the negligible deformations of the rest of the structure. The 

method also takes into account the internal forces produced by Hp* 

The final value of the change in the prestressing force, Hp, is 

obtained after undertaking an iterative method as mentioned earlier. 

The values of HP when calculated for the test beams, Sections 

7.5 and 7.6, have been found to be within 15% of the measured ones 

when using both approaches. However, Timoshenko's approach gave 

results in closer agreement with the experimental ones as shown in 

.1 -Lrj )2 Figure (2.19). Moreover, when including the term [ý2f( 
dx dx] 

in the calculations, the calculated results came within about 9% of 

the measured ones. 
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Finally, we conclude that for prestressed concrete suspension 

bridges with short to medium spans, both approaches can be used to 

calculate the change in the cable tension, HP, due to live loading 

with sufficient accuracy, However, for long and very long spans, 

only Timoshenko's approach can be applied due to the increased sig- 

nificance of the effect of the internal forces produced by Hp on the 

structural system. 

2.6 Computation of the Internal Forces of the Structure 

Having found the value of the change in the cable tension, 

HP, due to live loading, it is easy to determine the internal forces 

for the various parts of the structure. In other words, the internal 

forces will be evaluated for the prestressed cable suspended beam, 

the suspenders and the tower in this section. For the prestressed 

cable suspended beam, the internal forces, which are the bending 

moments and the shear forces, are given in the form of equations 

covering any section of the beam in both spans. Furthermore, the 

deflection equations are also given so that the designer can check 

the value of deflections at any section of the prestressed cable 

suspended beam. Finally, these design equations are given in order 

of importance for the designer, i. e. bending moments, deflections and 

shear forces. 

2.6.1 The Bending Moments, Deflections and Shear Forces of the 

Suspended Beam 

In this section, the bending moments, deflections and shear 
forces equations have been derived for the same selected cases of 
loading shown in Section 2.5. The derivation is based on the funda- 

mental relationships shown in Equations (2.1). In, other words, the 
bending moments and shear forces equations have been formulated by 

using the obtained deflections equations as shown in Appendices 12 

and 13. 
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2.6.1.1 For a Concentrated Load 

a. Applied in the left hand span 

For a concentrated load P applied at a distance ti from the 

left hand end support, see Figure (2.18a), the bending moment equa- 

tions for the left hand span are: 

mx(j) Ha P sin )Ax sin )t(t-x) sin px ý-: -Ln -p t[p sin pf Teti) 
I 

I 
in pl(l-t) -p( 

sin ptl 
_t+w 

(y+p) 
sin px S (+++l) sin pt p2 sin pt 

[ 

P2 
(O+wO 

I+ 
sin p(I-x) - sin pt o4x N< ti (ý+f 1)I 

(2.73a) 

Ha 
(v+v 1)p 

Mx(2 )= sin pt 

[ 
sin p(I-x) - sin px p sin pt 

[Sin 
pti 

sin lat tw (Y+P) 
sin p(I-x) - sin px 

( 

sin )44 
p2 sin pt 

[ 

sin px 

2 (O+wE) 
+ sin p(t-x) - sin pi U N< x4t 2 (f++ 

1 

(2ý73b) 

and for the right hand span: 

Ha 
sin p(l x 

(v+v 1) 
s3. n )Ax +p 

sin )ix 1 Mxl = sin pl, sin pf I 

sin lAtf 1 (y+p) 
P2 

(G+wO [79in 
pt tl + 

W2 

1[ 
sin pxl 

[1 
2w 

p sin pt 
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sin P(l 1-x 1)- sin pt 11 
0 X1 

(2.73c) 

where the constants p, p, v, vp ý, ý1,0 and 01 can be calculated 
from Equations (2.62) and (2.63). Hence, the values of the bending 

moments can then be used to evaluate the stresses at any section of 
the beam from the following equations: 

fc =_H T- 
mx (Z (2.74a) 2i I-I or Z2) 

f=_H :ý!!, (Z (2.74b) cl x11 or Z2) 

where fC and fc, are the stresses produced by the various loads 

applied on the beam at any section of the left and right hand spans 

respectively providing that plane sections remain plane after the 

application of these loads. 

The deflections can be evaluated at any section of the left 

hand span from the following equations: 

r + sin p(I-x) + 
(V+vl) 

x sin px l 
sin pt Wýl )It sin pt 

P sin pt(l-t) p fsin ptl x 
pH sin pt px (1-0 + Ls-in -pt T tI 

I- 

sin Vx W (y+p) sin px P2 
(G+w9 

1+ sin p(I-x) 
sin pA p2HI sin pt 2 -wil ) sin pt 

-1- iL 2! M-X) -0<, x <, t9 24 

(2.75a) 
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ý sin p(I-x) + 
(V+vl) 

x ( sin )Ax +p 
[ 

sin pt 1 sin pt pH 

sin ptl sin p(I-x) - pt(I-x) + 14 r sin pti 
- sin pi L sin pt 7 

ItIIx 

sin px W (y+p) sin )Ax 1-p2 
(G+wO 

+ sin p(I-x) 
sin pi 2HI sin pf 

[2 
(ý+ý 1 sin pf 

-1- 
11 4(£-x) -1 ti <x4x 

11 Te-+ -e 
1) 

11 

and for the right hand span: 
(2.75b) 

TI a[ 
X1 sin p(li-xi) 

+ 
(V+V )x1 sin px 1 

1-1 + sin pt 1 
T-Ffl) 

It1 
sin pt 1 

x sin px w (y+P) sin px 
sin ptl I l 1 
sin pi 

t]( -I-, - sin pi l] 
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I 

sin pt p 

P2 
(()+wO I) sin p(l 1-x 1) vt 

2x (O+WO 1) 
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2w sin pt, 2 A! 11) 
11 

111 WWti 
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(2.750 

The shear forces can be obtained at any section of the left 

hand span from the following equations: 

pHa os P(A-X) + 
(v+v I) 

Cos )IX +p Cos px 
sin pt 

[c 
"Fý -+ ý 

17 

1 
sin pi 

pr sin ptl a W (y+p) 
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I 

Cos px 

I 

sinpt Wýl r p sin pt 
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[I 
-P Cos P(t-X) o <, x <, tI 

(2.76a) 

pHa Cos P(I-X) + 
(v+v 

1) 
Cos px 

p 
X(2) Tl- -np I[ T(F+ ý 17 

1 
sin pt 

sin ptl cos p(I-x) +p Cos px I( sin ptl tw 
(y+p) 

Wt L sin pt sin pf 

Cos px p2 
(O+wE) 

Cos P(A-X) ti (x4A 

(2.76b) 

and for the right hand span: 

p Ha 
(v+v 1)Ipp COS )AX 1 

Qxj 
- 

Cos -x +- vx sin p! 
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Wýl ) --- (ý+ý 1) sin pt 1 

sin lat t 
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Cos )IX 12 

(O+wO 1 
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I) 
F', 
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- Cos P(l 1-x 1o<X, 4 1, 

(2.76c) 

b. A concentrated load applied in the right hand span 

For a concentrated load- P, applied at a distance tjIl from 

the right hand end support, see Figure (2.18b), the bending moment 

equations for the left hand span is: 

Ha 
sin p(I-x) - 

(v+v 1 
sin )Ax +p sin px Mx ý sin pt 

[ 
Tf- -+ ýFl 

I 
-(V+vl sin pt 

sin pt 111-t+w (Y+P) 
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- 

14 
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+ sin P(I-x) sin pt 1 14 
2 

sin lit 

[2 
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I 
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- sin pf o <, x <, 

(2.77a) 

and for the right hand span; 

M 
(v+v 1)IP, sin )Ax L-- [sin 

p(t x TT+-ý px mx(l) -s-:: L' n- )i1 1- 1) 
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(2.77b) 
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1 
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2u 
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(2.77c) 

The stresses can be calculated at any section from Equations (2.74). 

The def lections can be computed at any section of the left 

hand span from the following equation: 

Tj a[x+ sin p(I-x) +(x sin lix 
sin pt Wýl sin pA 

66 



+p H (ý+ý 
sin pt 11 tj 

sin pt 
x sin px ] 
1 sin pl- _w 

(y+p) 
2 

sin px 
I 

sin pt H 

(O+w0 1) sin )t(£-x) 1 
sin )44 

0X£ 

(2.78a) 

and for the right hand span: 
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2 (O+wO 1) sin p(l 1 -x 1)1! 2xI (O+wo 1) 11 

-2-W -x ) -+ý -1) sin pt 12 
Tj- 

[111 

tA1K, x1 l< 

(2.78c) 

The shear forces can be determined at any section of the left 

hand span from the following equation: 

(v+v ) )AP sin pt 4 
pHa Cos P(L-X) + Cos p cos px 
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and for the right hand span; 
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w1 (Y+P) 
Cos )AX -'P 

2 (e+we 
Cos 

p sin gg 2w 

till < X, < I, 

(2.79c) 

2.6.1.2 For a General Case Loading 

a. Applied at the left hand span 

For a general loading d which occupies that part of the left 

hand span which is bounded by the distances x= pt and x= mi f rom 

the left hand end support, Figure (2.18c), the bending moment equa- 

tions for the left hand span are: 

Ha- 
-x) 

1 sin px mx (1) Tin pi 
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sin 14(l TF+Y sin lix 
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+ sin p(I-x) - sin pf pf 4, x 4, Ott 

(2.80b) 
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and for the right hand span; 

sin px, 
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sin p(l x sin )ix 
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_ ((x 2_P2 +wI 
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(2.80d) 

where p, p, v, YI, 0 and 01 can be obtained f rom Equations 

(2.62) and (2.63). The stresses can be computed at any section from 

Equations (2.74). 

The def lections can be evaluated at any section of the left 

hand span from the following equations: 

x+ sin p(f-x) + 
(v+v 
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(2.81c ) 

and for the right hand span, 
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(2.81d) 

The shear forces can be calculated at any section of the left 

hand span from the following equations: 
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and for the right hand span, 
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12 

-w Týi-+ -ý, 

(2.82d) 

The bending moments, deflections and shear forces equations can be 

written for a continuous uniformly distributed load 6 applied in the 

lef t hand span, when substituting a=1 and p=o in Equations (2.80 

- 2.82). 

b. A general-loading applied in the right hand span 

For a general loading dl which occupies that - part of the 

right hand span which is bounded by the distances x, = plil and x, = 

otlil from the right hand end support, Figure (2.18d), the bending 

moment equation for the left hand span is: 
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sin px +1 
sin px Mx ý T3. n -)A (TV 2 sin 

I 'pt 

[cos pp 111- Cos pot 1 11 12 

-13 
2W (y+p) 

sin px 
[l P 

pf 1 sin pi 
(Otl 

Ip2 
sin pt 

2 

(O+we 1)]+ 
sin p(I-x) - sin pf o <, x WY 

I 

(2.83a) 

and for the right hand span, 

(v+v sin )Ax Ha 
sin p(A -x sin )ixl]- Cos P110-ocl) sin pl, 

[1 
T-f-+Tl-T 2 sin pt I 

22 [cos pp I Cos pot 22 
- Cos PA 1 d- 2 pt sin pt 

(OL 
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w (y+p) 
in yx, 

[1 
-p2 

(O+wO 
+ sin )t(f -x sin pf 2 2w (ý+t 1 

sin pi 1 

IS 

111 

04x<, p111 
(2.83b) 

Ha 
(v+v 

Mxl(2)ý 
sin 1 )AA 

I 
sin P(f 1-x I sin pxl 

p2 sin pt I 

sin px 

2 

cos pf (1-ot + sin p(t x cos pp I sin pt 1 1- 11-1- 

2 [cos pp 1 Cos pot 1 11 22wI 
(Y+P) 

pt sin pt 
(mi-pi sin px 1+92 

sin'pt 

2 (O+wO 
sin px 1-P+ sin p(tl-xl) - sin pl, 2w (ý+ý PI 

Pi Ax4ot1 

(2.83c) 

Ha 
(v+v 1)d1 

sin p(t x TTI sin pxl 
]- [Cos )AP Mxl(3)ý 'iTTn-ptj 

[ 
1- +ýl )p2 

sin pt 1 

- cos pot 11] sin p(l -x )p211-2 
[cos pp 11- COS )AOL 

1112 (ý+ý 1T pf sin pt 1 

2_ 2 W, (Y+P) 2 (G+wO 
(OLI pi sin px Ip2 

sin pi 
sin pxl 1- 2u 

sin P(l 1-x 1)- sin pt 11 ot 141K, x1 l< A1 

(2.83d) 

The stresses can be evaluated at any section from Equations (2.74). 
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The deflections can directly be calculated for the left hand 

span from the following equation: 

ax+ sin p(I-x) + 2S sin px 
Ii 

sin pt 441 )II sin pf 

12 (cos pp 191- Cos )m 1 11 2_p 2 sin px 
2H (ý+ý pt 1 sin pt 1 

C(k 
11)I 

(IS 
sin pt 

w (Y+P) n ýp 14 
2 (O+wG 1) 

+ sin V(t-x) 
2 

2H in lixt 2 sin pA 21 

£(£-x) - 
(o+WO 1)0K, 

x <, 9 

(2.84a) 

and for the right hand span; 

TI a 
X, 

+ 
sin p(t 1-x 1) + 

(v+v 1) 
-X1 

sin px 1 
sin pt 1 wy t1 sin pt 

22 

2H 
[Cos pt 1 

(1-ot 
1 Cos pt 1 

(1-13 
1 

)] 
sin pt 12 

ot 1-13 1 

x22 (cos Cos pot 2 (oL +p + _p 
2 

12 sin pt 
cotl 

1 

X, sin px W, (y+p) F sin px, P2 
(O+wO 

sin pi T 2w pH 

sin p(A 1-x l') p2x 
(G+wo 1) 

-x sin 2 11 
[111W 

0 <, x, < Pli 
(2.84) 
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sin p(l 1 -. x 1 (v+v x, sin pxl 
rl a++ 1(2) 4 sin pt Mýl II sin pi 1 

sin px sin p(l x 
+ as pt O-ot + Cos pp 2H 

[c 

11 sin pt 1111 
"n p 

222 
xxP2 
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J3 1 
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1 sin pi 
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2H 
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x Oct Kx 
WWýl 11 

(2.84d) 

- The shear forces can be calculated at any section of the left 

hand span from the following equation: 

(v+v )p61 
)AHa os P(A-X) + Cos px Cos px 

x 
IC 

Tf--+ýKIT 
11f 

sin pt- 

2 (cos )Ap 111- Cos pot 111 2_132 w (Y+P) 
os px pt 1 sin pt 1 

(OCI 
Ip sin pt 

IC 

2 (O+wO ) 
Cos P(I-X) o4xK, 

(2.85a) 

and for the right hand span; 
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(2.85d) 

The bending moments, deflections and shear forces equations 

can be written for a continuous uniformly distributed load 61 applied 

in the right hand span, when substituting 1 and p, -o in Equa- 

tions (2.83 - 2.85). - 

2.6.2 The Forces in the Suspenders 

As mentioned in Section 2.1, the suspenders have been re- 

placed by a continuous screen or membrane and their forces are repre- 

sented in the calculations as upward uniformly distributed forces. 

The suspenders should be designed to sustain maximum forces. To 

calculate these forces, we, use the fictitious system shown in Figure 

(2.20) which comprises a fictitious beam with fictitious supports 
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which represent the suspenders. gt and glil denote the lengths-which 

the cable passes through the lef t and right hand spans of the sus- 

pended beam respectively. 

The maximum upward forces result from having the maximum 

increase in the horizontal tension, Hp, due to live loading. Knowing 

Hpmax, the maximum value of the upward forces can be exactly evalu- 

ated from the following equations: - 

q01- )1 1 (2.86a) 
smax ý-W ('+y + Pmax) 11+7)1 4- -Fe + -e, )1 

wI+ 
[1 

(2.86b) qslmax ('+y + Pmax) 4w 

H 
where Pmax -H 

pmax 

w 

for left and right hand spans respectively. The derivation of these 

formulae is given in Appendix 15. 

The approximate values for the maximum upward forces is found 

by simply ignoring the effect of the axial force which gives: 

qsmax ý-W (1 +y+p 
max 

) 

qslmax ý- Wl (1 +y+ Pmax ) 

(2.87a) 

(2.87b) 

The forces in the suspenders can then be obtained, as men- 
tioned earlier, by calculating the reactions in the fictitious system 

shown in Figure (2.20). For simplicity, the suspenders forces can be 

calculated as: (Similar to part 3 of Section 2.5.2.2) 

Psmax = qsmax d (2.88a) 

Pslmax ýq slmax 
d, (2.88b) 

for left and right hand spans respectively. 
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It is worth noting that the elongation in each suspender must 
be checked to ensure that it remains less than 10% of the average 
deflection of the beam at its position for any case of-loading, (19). 

The reason for this is that as the cable has been assumed to deflect 

by equal amounts to the beam deflections, assumption (3). Thus, any 

excessive elongations in the suspenders would decrease the cable 

deflections and consequently, its interaction with the beam due to 

live loading, (26). 

2.6.3 The Tower Force 

For suspension bridges generally, the towers are usually 

portal frames of great height. The main considerations in their 

design are stability against the vertical cable forces and wind. 

This is why the towers are. built with large cross sections which 

sustain the vertical forces applied by the cable and resist the wind 

by their sheer weight. 

From Figure (2.15) and Equation (2.34), we have the maximum 

vertical force applied on the tower: 

NT max ý Hw (1 +y+ Pmax) [ (F + 8n) + (F, + 8n, ) ] (2.89) 

Hence, the wind forces in addition to NTmax can be used to 

calculate the internal forces of the tower depending, of course, on 
the nature of each particular bridge. 
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CHAPTER 3 

3. Theory and Design of Two-Span Prestressed Concrete Suspension 

Bridges with Grouted Cables 

3.1 Introduction 

In the following. we give a description of the grouted type 

of bridge and the effect of grouting on the forces of the structure. 

Figure (3.1a) shows the grouted lengths of the cable denoted 

&I and gig, for the left and right hand spans respectively. The 

initial prestressing force Hi remains ef f ectively' unchanged through- 

out the grouted lengths after the application of live loading. How- 

ever, there will be a change in the cable tension, Tp, of the free 

ungrouted part of the cable due to the application of live loading, 

as shown in Figure (3.1b). The horizontal component of Tp is HP in 

both spans and the vertical components are CHP and CIH p in the left 

and right hand spans respectively. 

Figure (3.1c) shows all the forces on the suspended beam when 

arbitrary live loads are applied. We have, similarly to the 

ungrouted type, continuous upward uniformly distributed loads, yW and 

yW,, which result when subtracting the upward forces produced by the 

initial prestressing force, Hi, and the dead loads of the structure W 

and W, in the left and right hand spans. Furthermore. with the axial 
forces transferred to the centre line of the suspended beam, we have 

to add the end moments Hia to account for the end eccentricities of 
the cable. We also have concentrated moments Hp ZI. which are gener- 
ated by the change in the horizontal tension Hp and applied at dis- 

tances gi and glil from the end supports in the left and right hand 

spans. As mentioned earlier, Z, is the distance between the centre 
line and the top fibre of the suspended beam, see Figure (3.1a). 
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In addition, similarly to the ungrouted case, we have the 

partial upward uniformly distributed forces pW and pWl which are also 

generated by the increase in the prestressing force H P" and applied at 

the free ungrouted lengths of the cable, i. e. gi 4x41 and g1j, 4 

x, < 11, in the left and right hand spans. p is the ratio of HP to 

the preliminary value of the prestressing force Hw, see Section 2.2. 

., shown in Figure (3.1 c) is Obviously, the case of loading 

extremely complicated especially because of the existence of the 

change in the prestressing force HP within the span lengths. , An 

analytical solution is possible but only with an enormous amount of 

labour and time consuming computer programming. Nevertheless, the 

system can be simplified by adding Hp to the initial prestressing 
force Hi throughout the beam length. In other words, the system will 
have only one axial force which will be applied at its ends, which is 

Hi + Hp. 

This approximation seems to be reasonable when considering 

the fact that the grouted lengths gi and glil never exceed 10% of the 

span lengths I and 11 in full size bridges. Moreover, using H as the 

only axial force will undoubtedly give relatively greater values for 

moments, deflections ... etc, than the actual ones. Consequently, 

basing the design of the structure on those greater values will give 

an acceptable margin of safety. 

The procedures of dimensioning the prestressed cable sus- 

pended beam and evaluating its initial prestressing force for maximum 

efficiency, Hi, are identical to those used for prestressed concrete 

suspension bridges with ungrouted cables (see Sections 2.2 and 2.4). 

Therefore, we will start this chapter by discussing the properties of 
the main cable and its deformation when subjected to different ef- 
fects. 
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3.2 The Properties of the Parabolic Cable 

Figure (3.2) shows the main cable in the lef t hand span. 

Clearly, its geometry is identical to that used in prestressed con- 

crete suspension bridges with ungrouted cables. Therefore, Formulae 

(2.4 - 2.18) of the preceding chapter are applicable in this case and 

can be used to determine the required properties. 

Figure (3.2) also shows the grouted length gi. g can be 

defined as the ratio of the grouted length of the left hand span to 

the entire length of the same span. Similar definition can be writ- 

ten for g, of the right hand span. 

The grouted lengths ratios g and g, can be calculated by 

using Equations (2.17), where x= gI at y= Zl+a which gives: 

Zl+a =FIg+4ni g2 

9 
2+ F£ 

(Z 1 
4-f g- -4f ý0 

Rejecting the negative solution, we have for the left hand span: 

Z +a 
1/2 

--4-f )-U -f- ) 
(3. la) 

Similarly, for the right hand span: 

1/2 
C 

Fjýj 2+C Zl+a 
,IF111 --c (3. lb) 8f1)4f18fI 

where f and fI are the cable sags in the left and right hand spans 
and can be calculated f rom Equation (2.5). Moreover, F and F, are 
the cable slopes at the left and right hand ends of the suspended 
beam which can be evaluated from Equations (2.18). 
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From Figure (3.1b), C and C, can be defined as the slopes of 

the main cable at the ends, of the free ungrouted 'parts in,,, the left 

and right hand spans respectively. In other words, from Equations 

(2.17) we have the cable slope equations: 

dy F+ 
8n 

x 

dy 8n, 

dx F, + 11 X1 

Hence, at x= gi and x, = g1l, we have: 

C F+ 8ng (3.2a) 

C, F, +8 n1g, (3.2b) 

where n=f and ni 

From Equations (2.14), we see that the exact lengths of the 

ungrouted cable in the left and right hand spans have been expressed 

in terms of the slopes at their ends, F& (F +8n) and F& 
I. 

I 
(Fl +8nj) respectively. Taking advantage of that, the exact lengths 

of the free ungrouted parts of the main cable Sf and Sf, can be de- 

termined by replacing F by C and F, by C, in Equations (2.14) for 

left and right hand spans respectively. Thus, we obtain: 

(F+8n) + [1+(F+8n)2]1/2 
s 

[ln 

- 
]+ 

(F+8n)[1+(F+8n)211, /2 
C [1+C2,1/2 f -1U-n 

1.2 
1/2 

1 

x- (F +8n + [1+(F +8n )2 1 1/2 
(3.3a) 

s1 ln 111+ (F +8n, )[1+(F, +8n, )2]1/2 fl - 16n, C+ [j+C2 1 1/2 
11 

-c 1+C 21 1/2 

11 

(3.3b) 
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The values of the end slopes [C, Cl, (F+8n) and (F, +8n, )] are usually 

small due to the fact that the spans are long with respect to the 

tower height. Therefore, Equations (3.3) can be approximated by 

using series expansion, see Appendix 16, which gives: 

s=I (F+8n) [6+(F+8n)2] -C [6+C2 (3.4a) 
f -2ý8-n- 

[ 

1 (F +8n ) [6+(F +8n )2] _C [6+C 2)], (3.4b) fl -4"8 nj[111111 

for the left and right hand spans respectively. 

The lengths of the grouted parts of the main cable S9 and S., 

can simply be calculated as follows: 

s- Sf (3.5a) 

s 
gl =s1- Sfl (3.5b) 

for the left and right hand spans respectively. Exact values can be 

obtained when substituting S, Sl, Sf and Sf, from Equations (2.14) 

and (3.3) or Equations (2.15) and (3.4) for approximate ones. 

3.3 The Deformation of the Parabolic Cable 

In this section, we discuss the deformability -of the cable 
due to tower flexure, construction errors and temperature effects. 

Exact formulae as well as approximate ones are given to enable the 

designer to take into account these effects. 
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Tower Flexure 

The causes for this effect are described in Section 2.3.4.1 

and shown in Figure (2.8). Tower flexure can affect-the main cable 

by causing it to change its length, shape and tension. 

Starting with the changes in the main cable lengths ASf and 

ASfl, it is clear that they can only take place in the free ungrouted 

parts of the main cable for left and right hand spans respectively. 

Furthermore, they are governed by the following relationships: 

'6S = 

FJS 
f 

f 'ý -t 

AS 
CFJ s fl Cp AO tI Fit 1 

Thus, by performing these derivations or by simply replacing 

F by C and F, by C, in Equations (2.19), we find: 

AS At) 
ln 

(F+8n) + [1+(F+8n)2]1/2 (3.6a) 
r 8n 

Ic+ 

[1+c 21 1/2 
1 

AS - 
(T At) 

ln 
(F, +8n 1)+ 

[1+(F 
1 +8n1)2 1 1/2 

(3.6b) ri 8n C+ [j+C2 1 1/2 
11 

for left and right hand spans respectively. 

Approximate formulae are derived to give simplified versions 

of Equations (3.6) providing that the slopes are small enough, see 
Appendix 17. Hence, we have: 

&S (± At) (F+8n)[6-(F+8n)21 -C [6_C2 I (3.7a) fý T8- -n 
[ 

61) 22 Asfl 
I 

(FI+8n, )[6-(F, +8n, ) I-C, [6-C11 (3.7b) 
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for left and right hand spans-respectively where F. Fl, -C and C, can 
be found from Equations (2.18) and (3.2). 

The effect on the cable shape can be represented as the 

change in the cable sags Af and Af, for left and right hand spans 
(see Figure 2.8). Following the same scheme of calculations shown in 

Section 2.4.3.1, or by simply replacing F by C and F, by C, in Equa- 

tions (2.21), we arrive at the exact relationships between Af. 6f, 

and At as follows: 

Af 2n (3.8a) 

(F+8n) [1+C 21 1/2_ 
C [1+(F+8n) 21 1/2 

. ln (F+8n) + [1+(F+8n) 21 1/2 

c+ [i +c21 
1/2 

Af = 
2n 1 (T At) (3.8b) 1- 

(F +8n ) tl+C 21 1/2 
_C [1+(F +8n )21 1/2 

_- 
.111111-1 

ln 
(F 1 +8n 1)+ [1+(F 1 +8n 1)21 

1/2 

C+ [l +C21 
1/2 

11 

for the left and right hand spans respectively. 

The approximate forms of these relationships are, as derived 

in Appendix 18: 

Af = 2n 
[(F+8n)[6- (F+8n)2] - C[6_C2, ]- 

-f) (3.9a) 
[(F+8n) 3_ C3 _ 3C(F+8n)[(F+8n)-Cl] 

for the left hand span and: 

[(F +8n )[6- (F +8n )2, -C [6-C 2 11 
Af = 2n, 

111111 
z- M) (3.9b) 1 

[(F 
1 +8n 1)3_ 

C3 -3C1 (F 
1 +8n 1 

)[(F 
1 +8n 1 

)_c 
1 

l] 

for the right hand span. 
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The corresponding change in the horizontal tension AH of the 

cable can be calculated f rom Equation (3.16) as will be shown later 

in Section (3.3.4) 

3.3.2 Construction Errors 

A construction error in one, or more, of the lengths of the 

suspenders will change the cable sag, or sags, Af or, Afl by an amount 

which can be directly calculated from Equations (2.24), see Figure 

(2.9), for left or right hand spans. 

The corresponding change in the cable length can be obtained 

when substituting the calculated value of the change in the cable 

sag, or sags, in the following exact equations: (similar to Equations 

(2.25)) 

Af 
ln 

(F+8n)+ [1+(F+8n)2]1/2 
+ C[1+(F+8n)2 1 1/2_ (F+8n)[, +C2 1 1/2 

16n 21LC+ [l+C2]1/2 

II 

(3.10a) 

for the left hand span and: 

&S 
Af 1 ln 

(F 1 +8n 1 )+ [l+(F 1 +8n 1) 
21 1/2 

+C [1+(F +8n )21 
1/2 

fl 
16n 2c+ [j+C2 1 1/2 

111 

- (F +8n )[l+C 21 1/2 
1111 (3.10b) 

for the right hand span as shown in Appendix 18. The Appendix 18 

also gives the approximate forms of these equations. providing that 

the cable slopes are small, as follows: 

AS Af [ [(F+8n) 3_C3 I- 3C (F+8n)[(F+8n)-C] (3.11a) 2 fý ý6n2 
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Af 133 AS fC 2[ 
[(F 

1 +8n 1) -C 1 
1- 3C I (F 1 +8n 1 )[(F 

1 +8n 11 (3.11b) 
96n 1 

for the left and right hand spans respectively where F. Fl, C and C, 

can be evaluated from Equations (2.18) and (3.2). The corresponding 

change in the cable tension 6H can be calculated from Equation (3.16) 

as will be shown later in Section (3.3.4). 

Finally, for a construction error in the height of the tower 

hh, see Figure (2.10), the corresponding change in the cable lengths 

6Sf and ASfj can be obtained from the relationships: 

AS = 
Fis f Ah f 73 h 

and, 

'6S = 
FJS f1 Ah f1 ah 

where Ah = Actual Height - Theoretical Height. 

The relationship between 6Sf, 6Sf, and th can be directly 

established when replacing F by C and F, by C, in Equations (2.27) 

which gives: 

Asf = 
Ah [[l+(F+8n)2 1 1/2 

_ [1 +C21 
1/2 (3.12a) ýTni- 

Iýs 
1ýh [[l+(F +8n )2 1 1/2 

_ (I +c21 
1/2 

(3.12b) fl ý 8n, 1111 

for left and right hand spans respectively. 

Figure (2.10) also shows that the cable sags alter by amounts 
Af and Afl from the design values. These alterations can be calcu- 
lated from the following relationships: 

FJS f Af = 
3Sf 

Ah FJh 

as fl Nf = 
as 

Ah af 1 
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Thus, from Equations (3.10) and (3.12), Af and Af, can exactly be 

evaluated as follows: 

Af = 2n [[ ,+ C2 1 1/2_ [1+ (F+8n) 21 1/2 

r, (F+8n)+[1+(F+8n) 
21 1/2 2 1/2 2 1/2 

[in 

L C+ [ i+C 21 1/2 -1+ C[1+(F+8n )1- (F +8n) [l+C 11 

(3.13a) 
for the left hand span and, 

[[l +c21 
1/2_ [l + (F +8n )21 1/2 

Af 1= 2n 112 1/2 
111 

ln 
(F 1 +8n 1 

)+ [1+(F 1 +8n 1) 
1 

+C [1+(F +8n )21 1/2_ (F +8n )[1+C2 1 1/2 

c+ [j+C2 1 1/2 111111 
11 

(3 . 13b) 

for the right hand span. 

The approximate versions of these equations can be found from 

Equations (3.11) and (3.12) where we have: 

[[+(F+8n) 21 1/2 
_ (1 +C21 

1/2 1 
Af = 12n Ah (3.14a) 

[[(F+8n 
)3 _ C3 3C (F+8n) [(F+8n) -C 

Af 1= 12n 1 
[[I+(F 

1 +8n 1)21 
1/2 

_ [1 +C21 
1/2 

6h (3.14b) 

[(F +8n )3-c3- 3c (F +8n )[(F +8n )- 11,1111111 

for left and right hand spans respectively where F, Fl, C and C, are 
the cable slopes and they can be determined from Equations (2.18) and 
(3.2). 

The corresponding change in the cable tension AH can be 

computed from Equation (3.16) as will be shown later in Section 

(3.3.4). 
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3.3.3 The Temperature Effect' 

As mentioned earlier, in this form of construction the steel, 

and concrete posts are separated and therefore, ambient temperature 

changes, ±At, may lead to more significant stress changes than would 

arise in more conventional forms of structures. 

Thus, starting with the suspended beam, the effect-of tem- 

perature changes on its length is identical to that of the'suspended 

beam with ungrouted cables. Therefore, Equation (2.30) may be used 

to determine the change in the length At. Then, the corresponding 

changes in the cable lengths ASf and ASfl and shape, 6f and Afl, can 
be determined by substituting At into Equations (3.6) and (3.8) 

respectively for exact values or Equations (3.7) and (3.9) for ap- 

proximate ones. 

For the main cable, similar to Equations (2.31), the corre- 

sponding change in the cable lengths ASf and ASf, can be calculated 

as follows: 

Asf =± ots At Sf (3 . 15a) 

Asfl ý± ots 6t Sfl (3.15b) 

for the left and right hand spans respectively where ots is the ther- 

mal coefficient of expansion for steel, : -, 0.000011 per V. The 

corresponding change in the cable sags Af and Af, can be evaluated 
from Equations (3.10) or (3.11). 

The suspenders will respond to the temperature changes by 

elongating or contracting and consequently the cable sags will change 
by amounts Af and Af, which are governed by Equations (2.32). Thus, 
the corresponding changes in the cable lengths ASf and ASfl can then 
be calculated by substituting Af and Af Cý 1 in Equations (3.10) for the 

exact values or Equations (3.11) for the approximate ones. 
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The height of the tower will also be affected by the change 

in the temperature. It will be altered by an amount Ah which can be 

calculated from Equation (2.33). Thus, the corresponding change in 

the cable lengths 6Sf and 6Sf i as well as the changes in the cable 

shape Af and 6f I can be calculated f rom Equations (3.12) and (3.13) 

respectively. 

Finally, the total change in the cable lengths can be evalu- 

ated and then, the corresponding change in the horizontal tension hR 

of the cable can be computed from Equation (3.16) as will be shown in 

the following section. 

3.3.4 The Effect of the Elastic Deformation of the Cable on its 

Tension 

For the previous changes in the cable lengths ASf and ASf 1 
which result from the aforementioned effects, there will be a corre- 

sponding change in the cable tension 8H which can be evaluated f rom 

the following equation: (see Appendix 19) 

AcEc AS f AS fl 6H= + 4 2(1_g3)3 64 23 [(l-g)[l+F(C+8n)]+ Ln X[(l-g )[l'+F (C +8n )I+y-nl(l-g 31111 

(3.16) 

II 
where X and where A and E are the'cross sectional area and Young's cc 
modulus of elasticity for the main cable. The quantities n, nl, g 

and g, can be computed from Equations (2.11) and (3.1) respectively. 

Equation (3.16) may be applied to determine the change in the 
horizontal tension AH of the cable corresponding to a change, or 

changes, which might occur in the cable length, or lengths, in either 

one or both spans of the suspended beam. 

Finally, Formulae (3.1 - 3.16) are applicable to suspended 
beams with grouted cables and no eccentricities at their ends when 

substituting these eccentricities zero, a=o. Consequently, this 
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will change the cable slopes F, Fl, -C and Cl. Equation (2-. 18) and 

(3.2), and the new values can be substituted into the above formulae. 

Moreover, it can be proved that the above formula are applicable to 

ungrouted cables when substituting the grouted lengths by zero, g= 

91 ý 

3.4 The Behaviour of the Main Cable Under Applied Live Loading 

3.4.1 Discussion 

As mentioned in Section 3.1, the free ungrouted part of the 

main cable will respond to the applied live loading by changing its 

tension an amount Tp, Figure (3.1b). The horizontal and vertical 

components of TP will then act as external forces applied at dis- 

tances gi and g1l, from the end supports of the left and right hand 

spans respectively. As a result of effectively transferring the 

horizontal component HP to the centre line of the structure, external 

concentrated moments HpZ, will have to be added at the same positions 

for both spans. 

The change in the horizontal tension HP will also generate 

upward uniformly distributed forces pW and pWl which will operate in 

the ungrouted regions, gi <, x <, I and glil <, x, -<, fl, for the left 

and right hand spans respectively, Figure (3.1c). It has also been 

mentioned that the system is simplified by adding the horizontal 

component of the change in the cable tension, Hp, to the axial forces 

at the ends of the beam. 

Clearly, when applying Steinman's approach, (20) and (21), to 

evaluate HP, the problem is transformed to be identical to that of 

the two-span prestressed concrete suspension bridges with ungrouted 

cables and therefore, Formulae (2.39 - 2.54) may be applied without 

any alterations. The reason for this is that the method entirely 

ignores the change in the horizontal tension Hp as well as the forces 

it produces. To some extent, the method gives results with suffi- 

cient accuracy for suspended beams with ungrouted cables providing 
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that the spans are not too long. However, for suspended beams with 

grouted cables, the change in the horizontal tension Hp produced by 

the live loading is usually of greater value. Consequently, the 

forces it generates may be of -significant values and therefore can 

not be ignored. 

For the above reasons, Timoshenko's approach, (25) and (26), 

is the only method which can be used in this case to determine Hp and 

Equation (2.57) may be applied again where: 

H dS f3 
-) dx W 

Tjdx (3.17) TEf( ax 
f 

cc 

or simply: 

w H gcf f rldx (3.18a) pw 

where, 

3 
If dS f dx (3.18b) Cf ýAE( dx 

] 

Hence, we start this section by evaluating the different quantities 

of Equation (3.18). 

3.4.2 The Detemination of the Tem 9 
cf 

As mentioned earlier, only the f ree ungrouted part of the 

main cable will respond to the applied live loading by changing its 

tensions for both left and right hand spans. Therefore, the integra- 

tion of Equation (3.18b) must only be performed for the regions gi <1 

xCI and glil <, x, 4 il for the left and right hand spans respec- 
tively. Hence, Scf can be calculated from the following equations: 

6l[ 
fl [ dS f)3 dx + 

11 
[ dSfl 3 

dx cf ýAcEc dx 
f 

dx 1 
1 
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From Equation (2.45), the value of the'term Sc, is expressed in'terms. 

of the slopes at the ends of the cable. Taking advantage of that, 

Scf can be directly obtained by replacing F by C and F, by C, in this 

Equation which gives: 

r, (F+8n)+[l (F+8n)2 1 1/2 
2 1/ ? 5+2(F+8n)21 

cf ý -6-4- nAcEc 

[3 
In 

LC+ [1 + C211/2 
+(F+8n)[l+(F+8n) I 

2 1/2 

-c D+C 21 1/2 (5+2C 2) 
+13 ln 

(F 1 +8n 1 )+[l+(F 
1 +8n 1)I 

C+[, +C2 1 1/2 
11 

(F +8n )[l+(F +8n 
21 1/2 [5+2(F +8n 

2] 
C [, +C2 1 1/2 (5+2C 2 

1111111 

(3.19) 

where u=1 

For f lat curves, Equation (3.19) can be approximated, see 
Appendix 20, to give a simpler version for the determination of S cf 
as follows: 

sx (F+8n)[2+(F+8n) 21-C [2+C 2,1 
+1 (F +8n )[2+(F +8n )21' cf ý 16 nAE 

-C 2+C 2 
(3.20) 

where F, Fl, C and C, can be computed from Equations (2.18) and (3.2) 

respectively. 

Clearly,. the value of Gcf is less than Scl, as can be seen 
from Equation (2.45) and (3.19), depending on the grouted lengths gi 
and 9111. This means that the change in the horizontal tension Hp of 
the cable will have a greater value than that of a suspended beam 

with ungrouted cables when live load is applied, see Equations 
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(3.18). Consequently, there will be an improvement in the interac- 

tion between the main cable and the suspended beam as will be 

discussed later in this chapter. 

3.4.3 The Evaluation of the Tem 2Wf indx Hw 

From Figure (3.1c), it can be seen that the applied forces on 

the prestressed cable suspended beam can be divided into two groups, 

The first group is that of the forces which do not change their type 

or location throughout the life of the bridge. It comprises the two 

upward continuous uniformly distributed loads yW & yW,, the two 

upward partial uniformly distributed loads pW & pW,, the two upward 

concentrated forces CH p& CjHp, the two concentrated moments HPZ, and 

the two end moments. Hia for left and right hand spans respectively. 

The second group comprises the live loads which are applied to the 

structure. 

For simplicity, the term ýWf Tjdx will be evaluated separately Hw 
for each group of forces. Obviously, it will remain unchanged for 

the first group of forces and change its value according to the type 

and location of the live loading for the second group of forces. The 

principle of superposition can then be used to determine the final 

value of the tem :ýLf indx for each case of loading. 
Hw 

For the first group of forces, the subscript 1 will be used 

i. e. 
wf 

Tjdx to denote the required quantity. Thus, K 

from Appendix 21, it can be evaluated as: 

(2Lf 
ridx 

]W )LW L (()+w2C)l) 
(G+we 1)2_132x3 

Hw jKHp2- -1, q+-ý TF T-2 ('+w 

pgI 
I cos 2 sin PW 

-g ), 
P 

pt 
Cos 

P4 
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P91 11p11 
COS 2 Sln -2 (1-g 1 (9 

g 
+WO 

gl 
pt 1 pt 14 

22t 

t32232H [[l-g (3-2g)] +wX 11-g (3-2g H] + -i- 12 1112H 

gi 2 sin 
! L- 

sin 
"(1-2g) 

ý12,2r 
2 (O+wG 

22 
pt 22 

COS T 

2 sin sin 
P"(1-2g 

rsin PgI + wc 
-2 2 

s -ing 1 9)] 1 pi 1 
2 

212 
P2 

(O+wO sin pg IA 
21 

(1-g 
12 sin pt 

HPZ, 
I( 

sin -ý 
I (1-2g) 2- (1-2g) + wAl 
Cos T- 

)II 
sin (1-2g 1 (v +v 

gl 
pt PI 

(1-2g 
1 

(O+wE) 
1 

22 

H. a (V+Vl) 
+ --L- (O+wo ) (3.21) 

,2H11 
Wý 

1) 

in which 
1 

11 ý i, - 

H= Hi + HP = l1w (1+y+p), 

H 

HP 
w 

and where, 
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1[ pt 1 v1 sin pt 
I 

=i[1- pi 1 tan 

£ 
[tan 

_1] - 

)1L 

sin pt 

tan pi 

pi I 

As given in Equations (2.62) and (2.63). Some of the above used 

parameters have been extended to include the effect of grouting 

restraint as follows: 

PI 
Cos v OS P914 

sin pt gl tj 
[ 

sin pt I-111 

(3.22a) 

(Cos pgI - Cos pl) 2 -(COS pg 11 1- Cos pf 1 

sin pt I 
2 sin pl I 

(3.22b) 

We note that e., OP 
. 1, Y. and v., become equal to 0,01, v and 

v, respectively when the cable is ungrouted, i. e. g, g, =o in Equa- 

tions (3.22). 

Having found the tem 1WF 
f 

rjdx the total value of the 
w 

tem on the right hand side of Equation (3.18) can then be evaluated 

as follows for the shown selected cases of loading, Figure (3.3). It 

is worth noting that the term :EL fTldx for the live loads has been H 
w 

obtained as derived in Appendix 13. 
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1. For a Concentrated Load 

a. Applied in the Left Hand Span 

For a concentrated load P applied at a distance ti from the 

left hand end support, Figure (3.3a), we have: 

sin 411 sin E1 (1-0 2 
rldx= 

[: j f 
rldx] +2WP22 

ti 0-0 
wfwwp Cos pt 

(e+We 1) sin pti 
_t (3.23) 

sin pt 

where 
[2 W fTldx] 

can be determined from Equation (3.21). Hw1 

b. Applied in the Right Hand Span 

For a concentrated load P, applied at a distance t1l, from 

the right hand end support, Figure (3.3b), we have: 

pt 1t1 pt 2 
W fqdx=[ý W fTldx] 

+ 
sin 2 sin -2 (1-ti) tIt1 

HH pt 4 

Ip 

Cos 2 

(O+WO 1) sin pt 111-t (3.24) W-w(j7y 
I 

sin pt 1 11] 

2. A General Case of Loading 

a. Applied in the Left Hand Span 

For a general loading 6 which occupies that part of the left 

hand span which is bounded by the distances x= pt and x= (xi f rom 

the left hand end support as shown in Figure (3.3c), we have: 
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[ (sin ! L(1-2p) - sin !! 
-t(1-2ot)) W6t 

[1 

Tldx= 
W ýrjdx] 

+22 Hwf Rw 
1 

if Hwp2 pt Cos iLt 
.2 

-12[ ot 
2 (3-2ot) -p2 (3-2p) 

(O+wo I) 
f-2 T(T+ -ý, J 

2 (cos ppl - cos pmt) 
_ (OL 2 

-P 
2 (3.25) 

pi sin pt 

where 
(: ý L fTjdx) 

can be calculated from Equation (3.21). 
Hw1 

b. Applied in the Right Hand Span 

For a general loading 61 which occupies that part of the 

right hand span which is bounded the distances by x, = pli, and x, 

otlil from the right hand end support as shown in Figure (3.3d). we 

have: 

sin (1-213 sin (1-2ot 
W 

ildx= 
frldx] 

+22 Hw 
f 

Hw 1H Hw 2 
pf Cos 

pt 1 
12 

2 (O+wo 

- ((k 
l-P 

1[ 
ot 

2 (3-2ot p2 (3-2p )) - IF2- 111 4w(ý+ý 

2 (cos pp 111- Cos pot 1 
ot 

2_P2 (3.26) 
pt 1 sin lit I11 

The term 2W qdx can be evaluated for'a continuous uniformly Hwf 

distributed load for either left or right hand span by substituting 

ot =1 and p=o or ft, =1 and p, =o in Equation (3-25) or (3.26). 

Fomulae (3.23 - 3.26) can be used to evaluate the tem :ýL ildx Hwf 
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for any combinations of live loading such as a series of concentrated 

force, different loading in both spans .... etc, by the principle of 

superposition. Furthermore, the above formulae can also be used to 

evaluate this term for suspended beams whose cables are grouted and 

have no eccentricities at their ends, a=o. In addition, the term 

W 
ildx can be computed after the time effects take place by iTf 

w 
replacing y by T in Equation (3.21) and then substituting in Formulae 

(3.23-3.26). As mentioned in Section 2.4, y is the factor used to 

increase the initial prestressing force to overcome the time effects 

as well as to adjust the stresses in the beam for maximim efficiency 

and T is the value of y reduced by the time effects. 

Finally, the change in cable tension HP, due to the applied 
live loading, can be determined by successive approximations. The 

method used is identical to that described in Section 2.5.3.3. It is 

worth noting that the above formulae are applicable for ungrouted 

bridges when omitting the contribution of grout, g=g, = o. 

3.5 The Determination of the Internal Forces in the Structure 

Having found the change in the cable tension, HP, due to the 

applied live loading, the internal forces can then be evaluated for 

the suspended beam, the suspenders and the tower. 

3.5.1 Ihe Internal Forces of the Suspended Beam 

3.5.1.1 Description of the Method of Analysis 

As mentioned earlier, the bending moments. deflections and 

shear forces for the suspended beam are given in the form of equa- 
tions which cover all sections of the left and right hand spans of 
the structure. The derivation of these equations is based on the 
fundamental relationships: (see Equation 2.1) 

115 



2 
Mx = EI - 

11 

dx 2 

Qx =- EI 
d3 il 

dx 3 

In other words, the bending moments and shear force equations have 

been formulated by using the deflection equations obtained as shown 

in Appendices 12 and 22. Due to the number of external forces ap- 

plied on the structure, we will divide them into two groups, as 

before, and find the total internal forces from the algebric sum of 

each of them. A subscript 1 will denote the bending moments, 

deflections and shear forces produced by the first group of forces, 

i. e. [M. In ] and I- 
1 

[Qxl 

Due to the number of forces applied on the structure, it was 
inevitable to use large and several equations for the determination 

of the internal forces for different cases of live loading. 

3.5.1.2 For the First Group of Forces 

The bending moment equations for the left hand span are, 

Appendix 22, as follows: 

YW 
- sin )Ax p2 

(O+w() 
1)+ 

sin P(I-x) - sin pt IMXMI 
12 sin pl 

[2 

TT7+Fl-)- 
II 

pW sin px p2 
(0 

9 
+WO 

gl 
2 sin pA 

cos 2 (ý+ý 
1) 

Hp 
sinpx [C 

(sin pgf_ Cl 
( in pg 111 

t+ýJ) sin pf sin pf 
9 

sin pt 

p sin pl(l-g) sin px 
1T- -sin pt 

sin px +H PZI sin pt 

I 
Cos pt(l-g) 
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(v 
g 

+v 
gl +Ha[ sin p(I-x) - sin )Ax WY sin pt 441 )I 

o K, x<gI 

(3.27a) 

YW sin px 
[1-P2 (O+wO 

1) 
+ sin p(I-x) - sin pf [Mx(2)] 

2 
sin pt 

2 (ý 7ý1) 

PW in )4x 
[l P2 

(0 
9 

+we 
--l + cos pgf sin p(I-x) - sin pg 

14 
2 

sin )44 - 

IS 

2 (ý+ý 
1)I 

Hp 
sm px [CC sin pgf 

_)'. Cl 
( sin pg 1tI- 

99 
sin pt sin )41 sin pt 11 

11 

CHHZv +v 
+_p sin Vgf sin p(I-x) +p1 sin px 

Ig 
gl 

p sin pt sin pt 
[ 

Wýl ) 

- cos pgX sin p(I-x) 
] 

+. 
H1a[ 

sin p(I-x) - 

(v+v 
sin px sin pt (ý+ýl 

Y 

x£ 
(3.27b) 

and for the right hand span, 

YW 
in px 1[1 

2 (e+w6 
+ sin P(l x sin pt 

)12 sin pt 1S 
2w (ý; jj-) 

] 
1- 11 

pW sin px q2 (9 +wQ )IH 
+ [I i- Cos 91p 

2 sin p! 2w 
P 

sin px I), 
cl 

[ sin pgltl 
_ al 

[CC sin pgl 
sin pt sin pt sin pt 1 

cIHp sin pf 1 
(1-c 

sin px +HZ 
sin px 

Cos _5 - VI sin pt pIs: Ln pt 
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gl + sin p(l -x sin px sin pt 1111 

0 X1 g1L1 

(3.27c) 

p]+ sin p(Il-x sin pt [Mxl(2)] ý2 
wl 

l[sin 

pxl[l - 2w 1p sin pf 

+ 
PW 1 

in px 1-p2 
(9 

g 
+we 

gl + cos pgltl sin p(tl-xl) 
p2 sin pt 

IS 

11 2w (ý+t 
1) 

- sin pi 1-Hp 
sin Vx, [C( sin pgg 

_ g)+Cl 
sin pg I I 

Wýl sin pt I sin pt 

c1Hp sin pg 111 
sin p(l -x +HpZ sin )Ax 

(v 
9 

+v 
gl 

p sin pt 11 sin )41 Wý 

- cos I sin p(t x)+ ---r 
Hia 

in p(t x 
(V+V 

1 1- 11 sin p11 
IS 

1- Ti-+ýl 

sin px 11 g1Z1 xl Z 

(3.27d) 

where p, H, v, vl, 0 and el can be calculated from Equations 

(2.62) and (2.63) and where v., vgl, 09 and Og, can be evaluated from 

Equations (3.22). 

The - def lection equations f or the f irst group of f orces are 
found, Appendix 22, for the left hand span as follows: 

YW sin px p2+ sin p(t-x) p2X 
P2 H[ sin pi 2 sin pf 'T T 

cos 
)4X PW2 

[ZIMpt 

2 
pHý 
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2x12 
(1-g) 2_ (9 

g 
+we 

gl 
) ]] Hp[c[ 

sin pgt 
sin pt 

sin )ig 111-91 ]1 [xs: Ln lix 
CHp 

in pi(l-g) 
sin px 

sin pt 17 sin pt pH 

[s 

sin pt 

H Z, 
-p[X+ 

(vg+vgl) 
sin px 

Cos Hi 4+ýl ) sin pt 

[ 

(v 
9 

+V 
gl 

HIa+ 
sin p(I-x) + 

(v+v 
Ix sin )Ax 

H sin pt 4+ýl t sin )41 

0t gZ 

(3.28a) 

YW sin px P 
(O+wo 1) sin p(4-x) 

2 
+x 

1 

sin pt 21 
p2H[ sin pt 2 (ý+ý 1) 

x(£-x) - 
(G+we 

1) ]l 
- 

PW [1 14 
2 (0 

g 
+wo 

gl 
) 1 

(e+ei ) 
)1 

2H 7- 
1 

Cos , gt 
sin p(I-x) ý2-[12 

(0 
g 

+we 
gl 

sin pA 2t 
IX 

(x-gl) 2Hp sin pgt sin 

sin pt sin pt 

x sin px 
CHp 

sin pgt 
7 sin )41 pH 

[ 
sin pt sin p(I-x) - pg(J-x) 

HpZx+ (vg+vgl) 
sin px 

(vg+vgl ) 

HA 4+ý 
1) sin )AI Wý 

1)+ 
Cos 
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t 2 Hp 
C sin VgI +C 

sin Vg 111 
(x 1 -9 1 I 

] ] 

H(ý+t I 
[ [ 

sin )41 9) 
[ 

sin pt 

sin px, CHl) X, 
_[ 

sin pg 111 
sin p(l -x pg -x 11 sin pf 1 pH sin )41 11 

Hpz1 (v 
g 

+v 
gl 

sin px I 
(v 

g 
+v 

gl 
) 

-X1 ++ Cos pg H11 0+ýl sin pt 1 (ý41 ) 

sin p(l 1-x 1 
HIa x, sin p(l 1-x I (v+v 1 x1 sin px 1 

sin pt 1 H 
[ 

11 + + 
sin pt 1 t1 sin pt, 

x1 <1 11 

(3.28d) 

Finally, the shear forces equations can be written, for the 

first group of forces, Appendix 22, for the left band span as fol- 

lows: 

YW Cos )AX V2 
(e+wO 

1) 
Cos P(I-X) IQX(J)ý 

sin pt 2 (ý+ i-d 
I-I 

PW Cos )AX [1 - Cos PIU-01 -P2 

(0 
9 

+we 
gl +pHp 

p Cos pi 

12 
Wý 

1) 

cos px C( sin )jgt 
sin pg 111CH 

sin pt sin pt 
g+ Cl 

( 

sin PI 1p 

sin pl(l-g) 
cos px -pHZ 

Cos px 
Cos + 

(v 
g 

+v 

sin pt p1 sin pt 

I 

-Tý-+-y 

H. a (v+v ) 
14 os p(t-x) +) --- r" 0 e<, x iiiý-n)ii 

[c 
-( -e+ e11 

(3.29a) 

YW os )IX P2 
(G+wO 

Cos P(I-X) [Qx(2)] 
p sin pt 

IC 

2 (ý+ý 11 
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-- 
PW os px p2 

(0 
9 

+we 
gl Cos pgt Cos P(l X) p sin pt 

IC 

2 (ý-, ) 

I 

Hp 
cos px C[ sin'pgt )+ 

Cl 
[ sin pg1l, 

(ý+ý 
1) sin pi sin pt 

9 
sin pt 1 

sin pgA 
HpZI (v 

g 
+v 

gl CH Cos P(I-X) -p- Cos px 
p sin pi sin pt 

I 

Wýl 

H. a (v+v ) 
Cos pgf Cos P(I-X) + Cos P(I-X) + Cos px P sin pA 

[ 
4+ýl yI 

gi<, 

(3.29b) 

and for the right hand span: 

YW 1 
Cos )AX 14 

2 (G+wO 
Cos )A(t x [Qxi 

(1)] p sin pf 11 2w (ý+ý 1 1, 

PW 1 Cos )AX 
Cos )411(1-gi)] 

p2 
(0 

g 
+we 

gl 
p sin pt 2w WY 

Hp Cos )AX 1cI sin p. -t sin pg 111 
Ti+y sin pt sin pt +C1 sin pt 

sin pt 1 (1-g Cos px 
-c1 HP -. - sin pt 

px 1-pHpz1 sin )41 

[Cos 
PI I 

(1-g 
1 

(Y 
g 

+v 
gl +pHIa Cos x)+ 

(v+v 
1) 

Cos px - 4+Y sin pt 111 T(F+ -ý, J 11 
K, xI 

(3.29c) 

YW P2 
(O+wO 1) [Qxl(2)] 

sin pt 1[ 
Cos pxl 2w F Cos P(l I-x 1 

-- 
PW 1 

os px 1[1 -p2 

(0 
g 

+We 
gl 

Cos pg I Cos P(l x p sin pt 1 

IC 

2w (ý+ý 
1)11 1- 
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Hp Cos )AX 1C( sin pgI r[ 
sin lAg 111 

p (ýIl ) sin pf 1 sin pt .]+ Cl 
sin pt 1-9 

sin pg 111HpzI 
(v 

g 
+v 

gI 
) 

CH Cos P(l -x )-p- os )IX 1p sin pt 111 sin pt 1 

IC 
1 Wýl ) 

Hia (v+v 1) 
Cos pg I Cos p(l -x )+p os p(l -x )+-II 

11111 sin )41 1 

IC 
11 Wýl )I 

xI <1 11 

(3.29d) 

Having found the internal forces of the first group of forces, the 

total internal forces can then be obtained as will be shown in the 

following section. 

3.5.1.3 The Total Internal Forces for Selected Cases of Loading 

1. For a concentrated load 

If t 

For a concentrated load P applied at a distance tA from the 

left hand end support, Figure (3.3a). we have the bending moment, 

equations for the left hand span as follows: 

sin px in PAU-0 P fsin ptl 
_ EMX(I)l 

I- p sin pt 
[s 

4+ýl ) Fsin pt 
t) 

K, x4tI 
(3.30a) 

mp in ptl sin p(I-x) _ 
It sin px rsin ptl - 

x(2) ý [Mx(l)] 
1- p sin pt 

[s 
Wýl )-- sin pt 

t) 

K, xg 
(3.30b) 
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mp in pti sin p(I-x) _p 
sin px (sin ptl 

_ x(3) ý [Mx(2)] 
1- p sin pi 

[s 
Wýl F Fs-in pt 

tl 
I 

4xK, -I 
(3.30c) 

where IMX(, 
)] 1 

and [Mx(2)] 
I 

can be determined from Equations (3.27a & b) 

and for the right hand span; 

M= lmxl(l)l +-P- 
sin )Ax 1 sin ptl t0(x4g19 

xl(l) 17ý+ 
ii J sin pt, 

( 
sin )At 

(3.30d) 

p sin )Ax 1[ sin ptl t) r . 111 X1 m 
xl(2) ý [Mxl(2)] 

1+ 
Tý+ý, ) sin pl, sin 141 , 41 

(3.30e) 

where EM 
Xl(l)l I 

and EMxl(2)] 
1 
can be determined from Equations (3.27c & d). 

The stresses at any section of the beam can be calculated 

from Equations (2.74). The deflection equations for the left hand 

span are: 

sin pt(l-t) sin px - px(l-t) +p sin ptl 
_t pH 

[ 
sin pt (ý+ýl )I sin pt 

sin px 
sin pf 

)] 
o4x4tI 

(3.31a) 

p sin )Att sin p(I-x) - pt(I-x) + sin ptl "(2) 1110)] + pH 
[ 

sin pt sin pt t) 

sin px 
sin pt 

)l 
4,4 &1 

(3.31b) 

N sin ptl sin p(I-x) - pt(I-x) +p sin ptl [11(2)] ýpff [ 
sin pt Wýl sin pt 

x sin px 
1 sin pt 

]] 
g14x41 

(3.31c) 
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where [, I(, )] and 111(2)] can be evaluated from Equations (3.28a & b). 

Hence, for the right hand span: 

p sin ptl t] 
[ X, sin px 

11 10)ý 
ITI 

1(1+ H(ý+ý sin pt sin ptl! 

o4x1 N< g111 

(3.31d) 

p sin ptt t] 
( xl sin )jx 

rll(2)ý [T', 
(2)] 1 

ff(-F+-ý-j) 
[ 

sin pt 11 sin pli 

x1 l< II 

(3.31e) 

where [nl(, 
)] and Inl(2)] can be evaluated from Equations (3.27c & d). 

The shear forces can be determined at any section of the 

prestressed cable suspended beam from the following equations for the 

left hand span: 

P Cos )AX sin pf(l-t) -P sin ptl QX(l) IQX(1)1 
1, 

"ý -1 -np 4[ Wýl sin pt t) 

tI 
(3.32a) 

p Cos px sin pti Qx(2) ý [Qx(l)] 
1- sinp pt 

[ 
sin )Atf cos p(I-x) + (lF+-i-j) 

[ 
sin pt 

t)] 

tt 4x -< gt 

(3.32b) 

sin ptl 
I- 

sin pti cos p(I-x) +V cos Px t)] Qx(3) ý [Qx(2)] 
sinp pt sin pt 

14x<, I 

(3.32c) 

where EQX(, 
)] 1 

and EQx(2)] 
1 

can be evaluated from Equations (3.29a & b). 

For the right hand span: 
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PP 
Cos px 1 sin ptl to<x<, g Qxl(l) ý [Qxl(l)l 

1- 
(TTKIT sin pl, 

[ 

sin pt 

(3.32d) 

PP Cos px 1 sin pti tx l< Qxl(2) ý [Qxl(2)] 70+01 ) sin pl, 
[ 

sin pt 1 

(3.32e) 

where 1&1(1)1 
1 

and [Qxl(2)] 
1 

can be calculated from Equations (3.29c & d). 

b. ift ig (see Figure 3.3a) 

The bending moment equations for the left hand span are: 

Im E sin px in pl(l-t) p (sin pti 
- X(I) XMI 1- p sin pt 

[S 
Wýl ) rsin pA 

t] 

o4x4gI 

(3.33a) 

m sin px in pl(l-t) -P 
sin ptl 

x(2) ý [Mx(2)] 
sin pt 

[s 
Wýl sin Vit 

tl 
I 

g14x<, tI 
(3.33b) 

mp in ptl sin p(I-x) _p 
sin px rsin pti 

_ x(3) ý [Mx(2)] 
I- p sin pt 

[S 
Wýl ) t) 

x41 
(3.33c) 

where EM 
XMI I 

and EMx(2)], 
. can be evaluated from Equations (3. '27a & b). 

The bending moment equations f or the right hand span are 
identical to Equations (3.30d & e). The stresses can be evaluated at 

any section of the beam from Equations (2.74). 

The deflections can be computed at any section of the 

prestressed cable suspended beam from the following equations for the 

left hand span: 
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sin pl(l-t) .P sin ptl 
sin pt sin )Ax - px(l-t) + 441 sin pt 

x sin px 
i sin pt 

]] 
a <, x <, gI 

(3.34a) 

TI I+P[ sin VIO-0 sin px - px(I-t) +P sin ptl 
_t (2) 

[T'(2)' 

. 
sin pt Wýl sin pA 

I 

sin px 
sin pf 

)] 
gi <, x <N ti 

(3.34b) 

NP[ sin ptl sin )4(1-x) '-pt(I-x' +p sin ptl t) 111(2)] + TH sin pi sin )41 1 (ý + 17 

x sin px 
1 sin pt 

]] 

where [il(l)] and IT' 
(2)] 

tC x£ 

(3.34c) 

can be evaluated from Equations (3.28a & b). 

The deflections can be calculated at any section of the right hand 

span from Equations (3.31d & e). 

The shear forces equations for the left hand span are: 

+P Cos px sin PIU-0 11 sin ptl Qx(l) ý EQX(1)1 
1 sin pt 

[+ 
-ý, 'Eil Inp T- t) 

(3.35a) 

+P Cos px sin pt(l-t) sin ptl ýx(2) ý [Qx(2)] 
sin pt sin PI t)] 

gi <x4 ti 

(3.35b) 
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in ptl cos p(I-x) +p sin ptA Qx(3) ý [Qx(2)] 
1- sipn pl[s (ý+tl ) Cos px 

[ 
sin pi _ t1l 

14x<, 4 
(3 . 35c) 

where 
'EQX(, 

)] 
1 

and EQx(2)] 
1 

can be computed from Equations (3.29a & b). 

As bef ore, the shear f orces can be evaluated at any section of the 

right hand span from Equations (3.32d & e). 

2. A concentrated load applied in the right hand span 

if t14g1 

For a concentrated load P, applied at a distance tjIl from 

the right hand end support, see Figure (3.3b), we have the bending 

moment equations for the left hand span as follows: 

m+p1 sin px s: Ln pt 
-t o4x lmx(l)l 

1 4+ýl ) sin pt 
I 

sin pi 1 1) 

(3.36a) 

p1 
sin px sin pt 111 m 

x(2) `3 [Mx(2)] 
I+ (f+fl ) sin pA 

I 
sin pt 1 

-t 1) gi 4, xU 

(3. '36b) 

where IMX(1)1 
1 

and [Mx(2)] 
1 

can be calculated from Equations 3.27a & b) 

and for the right hand span: 

pI sin px 1p sin pt 1A1 
Xl(W 

Emxl(l)l - sin pA 
in pt 1 (1-t 1t 1P1 

IS 
4+ýl sin pt 1 111 

o(x1 l< tA1 
(3.36c) 

mp1 
[sin 

ptli, sin p(l xp 
sin pxl 

xl(2)ý 
Emxl(l)l 

1- p sin yl 1 1- -ý -e-t 
1- 
T- 
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sin pt 111 
sin pt 1 1) 

] 
t1L1 g1L1 

(3.36d) 

p1p sin lix, 
m 

xl(3)ý 
[Mxl(2)] 

I- p sin pt I 
sin pt1l, sin p(l 1-x 1)-- Wýl ) 

sin py 

sin pt 1 
91114x1 

(3.36e) 

where EM 
X10)] 1 

and EMxl(2)] 
1 

can be evaluated from Equations (3.27c & d) 

The stresses can be evaluated at any section of ý the beam from Equations 

(2.74). 

The deflections can be evaluated at any section of the left 

hand span from the following equations: 

sin pt t 11tx sin )jý 
sin pt II sin pt 

(3.37a) 

sin pt 14x sin x 11(2)ý 111(2)] +H 
sin pt 

t7 
sin pt ,t 

I (3.37b) 

where [, 1(1)] and 111(2)], 
. can be computed from Equations (3.28a & b). 

For the right hand span, the deflection equations are: 

P, [ sin Pfi(l-ti) 
q- sin px px l(l), 

ITIM)l 
)AH sin pt 11- 

sin pt 111tX, sin pxl 
<1 sin pt 111 sin pt 

(3.3ic) 

p sin pA 1 (1-t 1) [TI 
V, sin Vx )Axl(l-t + 10)] + 

PRH sin 1 Wýl 
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sin pt X, sin px 
tIx4gI 

sin pi sin pt 111 

(3.37d) 

p sin pt 111p 
111(3)ý Ell sin p(l 1-x 1 pt I (I 1-x 1+ 1(2 + pH 

ý 
sin pf 1 Wýl 

sin pt X, Sln pxl 
<< 

sin pt tII sin pf 1,1111 

(3.37e) 

where [91(j)] and lrll(2)] can be obtained from Equations (3.28c & d). 
11 

The shear forces can be evaluated at any section of the left 

hand span from the following equations: 

Q 
PP Cos px 

sin pt 111 
-t o N< x 

X(l) ý 
EQX(1)1 

To+ý sin pi 

I 

sin pt 1 
11 

(3.38a) 

PP 1 Cos px sin pt 111 
tý) P, 14x Qx(2) ý [Qx(2)] 

1 
TPýl ) sin pt 

I 
sin pt 1 

(3.38b) 

where IQX(, 
)] 1 

and [Qx(2)] 
1 

can be evaluated from Equations (3.29a & b). 

The shear forces for the right hand span can be evaluated 
from the following equations: 

P Cos px sin pt I 
Q+1 in pf (1-t p11-t 
Xl(W 

EQX1(1)1 
Cos 111 1 

IS 
11 sin pt 1)] 

o N< x1 <1 t1A 

(3.38c) 

+pI 
Cos )IX 1 in pt (1-t 

sin pt 11 Qxl(2)ý [Qxl(l)l 
1 Cos )11 1 

IS 
1 sin pt 1 

x1(g111 

(3.38d) 
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in pt I cos p(l x+p 
Cos px 

Qxl(3)ý [Qxl(2)] 
1- sin pt 1 

IS 
11 1- 1 (0+01 ) 

sin pt 111 
sin pt 1 1)] g1L1 x1 

(3.38e) 

where IQX, 
(, )] 

1 
and [Qxl(2)] 

1 
can be calculated from Equations (3.29c & d). 

if t1l ), 91 (see Figure 3.3b) 

Th e bending moment equations for the left hand span will be 

identical to Equations (3.36a & b). Hence, for the right hand span, 

the bending moment equations are: 

m 
P, * 

in pt (1-t )-P 
sin pt 1A1-t 

xl(l)= 
[Mxl(1)11- 

p sin pt 1 

IS 
11 (ý+Y 

I 
sin pt 1 Ifl 

xg111 

(3.39a) 

mp in pt (1-t 
sin pt 

t, 
xl(2) 

IM. 
1(2)] p sin pl 1 

IS 
II Wýl sin pt, 

I] 

x1 &1 t111 

(3.39b) 

mp1 in pt I sin p(l -x )- 
)i sin px 11 sin pt III 

xl(3)ý 
[Mxl(2)'], - ý-sin pil 

[S 
1111 441) sin pt 

K, x1 l< 

(3.39c) 

where IMX, 
(, )] 

1 
and [Mxl(2)] 

I 
can be found from Equations (3.27c & d). 

The stresses can be evaluated at any section of the beam from Equa- 

tions (2.74). 
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The deflections for the left hand span can be obtained from 

Equations (3.37a & b). For the right hand span, the deflections can 

be evaluated from the following equations: 

TI ý ETI 
P1- sin pt 1 (1-t 1) 

sin )Ax (1-t ) '+ p 
10) 10)] 1+ pH 

_ 
sin pt 1- 1- pxl I Wýd 

sin pt 191tX, sin pxl 

sin pt 111 sin pt 1 
4g111 

(3.40a) 

P sin VA (1-t 
T11(2) ý (in + sin pt sin px 1- px 1 Q-t I+ 1(2) 1 VH 

II 
Wfl 

sin pt 19tX, sin pxl 
l< I sin pf A sin pl 111 

(3.40b) 

P1- sin pt AI 
sin p(A x pt (I x+p TII(3) ý lrll(2)] + -pH 

[ 
sin pt 1- 1 1- Wýl 

sin pt 191tX, sin pxl 
t14 l< I sin pt I sin pt 1111 111 

(3.40c) 

where and 1111(2)] can be evaluated from Equations (3.28c & d). 

The shear forces at any section of the left hand span can 
directly be evaluated from Equations (3.38a & b). For the right hand 

span. the shear forces equations are: 

Cos px 1 [sin 
pt (1-t p sin pt If1- Qxl(W [Qxl(l)l + Pl 'iý-inplj sin pt It 

I] 

o <, x1<, g 

(3.41a) 
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Q 
Cos px 1 [sin 

ptl(l-tl) p sin pt, 41 
_ tj 

xl(2)ý 
[Qxl(2)] + Pl 'iý: ýLn -pt, sin pf 

x1 <1 t1t1 

(3.41b) 

p [sin 
pt 4 Cos P(t x+p 

Cos )AX 
Qxl(3)ý" [Qxl(2)] 

sin pt 11 1- -wy 

sin pt I11 
sin pi 1 

1] K, x1 

(3.41c) 

where EQxl(, 
)] 1 

and [Qxl(2)] can be computed from Equations (3.29c & d). 

For the preceding formulae for the internal forces of the 

beam, under a concentrated load the constants p, H, 0,01,0 and el 

can be determined from Equations (2.62) and (2.63). 

A general case of loading 

a. Applied in the left hand span 

For a general loading 6 which occupies that part of the left 

hand span which is bounded by x= pt and x= at, see Figure (3.3c), 

we have the following cases: 

1. If 

The bending moments can be calculated at any section of the 

left hand span from the following equations: 

Em ý__ sin px It 
21 

-o) - cos "(1-13) - 2(ý+o X(l) XMI 2 Hn It I 

[Cos 
PI(l 

1) 
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2(cos ppl - cos pott) 
_ ((k 2_P2 

o <, x4gI 
pt sin pt 

(3.42a) 

2 
m sin px OS PM-00 - COS PM-13) 

p 

x(2) ý [Mx(2)] 
P2 sin pf 

IC 

2(cos P131 - Cos Pod) 
- (OL 

2_P2 
gi 4, x 4, pt 

pf sin pt 

(3.42b) 

m [m in px cos pi(l-(x) + sin p(t-x), cos ppl 
x(3) x(2)] p2 sin pt 

IS 

- sin pf 

2 
sin px 

2(cos ppl - cos pftl) 
_ (OL 

2_P2 
2(ý+ý 

I 

pt sin pt 

pi <x <, Ott 
(3.42c) 

m (cos ppl - cos pod) sin p(I-x) -p x(4) ý [Mx(2)] 
1-p2 sin pt 

sin px 
2(cos ppt - cos pmt)_ 

ot 
2 

-P 
2 

otl 4x4A 
I 

pt sin pt 

(3.42d) 

where EM 
XMI 1 

and NMI 
1 

can be evaluated from Equations (3.27a & b). 

For the right hand span, we have: 

m 64 sin )ix 1[ 2(cos ppi - cos pat) 2_P2 
XI(W 

lmxl(l)l 
sin -- pt sin pt - Cot 

4x14&1A1 

(3.42e) 
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m 61 sin px 1[ 2(cos ppl - cos p*l) 2_P2 
xl(2)ý 

[Mxl(2)] 
1+ 

Twil ) sin T-11 pA sin pt - (01 

x1 <1 11 

(3.42f) 

where IMX, 
(, )] 

I 
and [Mxl(2)] 

1 
can be evaluated from Equations (3.27c & d). 

The stresses can be evaluated at any section of the beam from Equa- 

tions (2.74). 

The deflections can be determined for the left hand span from 

the following equations: 

[rl 
)i [Cos PIU-00 - Cos pt(l-p)] sin px 

_p212 (OL-P) 2H[i; ln p12 

24 
2(cos ppl - cos pott) 22 [2- (ot+p) I ?S+ 14 

- ((X -13 ) 
I Tý+td 

I 
pt sin pt 

I 

sin px 
sin pt 

]] 
o4x4gi 

(3.43a) 

9(2) ý lT'(2 + --L 2 
[Cos pt(l-lk) sin px 

- Cos pt(l-p)] 
sin pt 

pt (ot-p) 
2 1 p H 

x+P2 2(cos ppi - cos pod) 
_ (OL 2_P2 

z -2 ( ý+ýl pt sin pt 

x sin px 
1 sin pt 

]] 
gi 4, x 4, pi 

(3.43b) 

cos )11(1_ot) sin px + Cos ppi sin p(I-x) p212 lq(2)] 
1p2H[ sin pf sin pt 2 
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(ot-p)[2 - (oL+p)]] X- J3) 
2] 

+ 
2(cos ppi - cos pott) Ii 

pi sin pt 

- (OL 2_132 ) 
I ?S I sin px )] 

I sin pf 
131 '-ý, 4 Ott 

(3.43c) 

]+ -L (cos cos pmi) sin p(I-x) 
242 

COL 2_J32 
TI(4) ý ITI(2) 

1p2H[ sin lit 2 

(I ý 2(cos ppl - cos poct) 2_ 2x sin lAx 
1) pt sin pl - (Ot P)IIj sin, pt 

)l 

OL 9 

(3.43d) 

where [, I(, )] and lln(2)], 
. can be computed from Equations (3.28a & b). 

For the right hand span, we have: 

(it 2(cos ppi - cos poti) 2_ 2xI 
rll(W Illml + 2H(ý+ý pt sin pi 

p 

sin px 1) 
sin pl, 

o K, x1 

(3.43e) 

TI + di 2(cos ppi - cos pott) (ot 2_132 
1(2)ý 

[T'1(2)] 
2H(ý+ý pt sin pt I 

1 
)l 

I x1l 

sin px 

sin pt 91414xI <1 41 

(3.43f ) 

where [ril(l)] and ITII(2)] can be calculated from Equations (3.28c & d). 

The shear forces can be computed at any section of the left 

hand span from the following equations: 

136 



6 Cos )AX os PIU-00 - Cos PM-P) [Qx(l)] 
1'p 

-sin pt 

IC 

2(cos ppl - cos potf)_ 
_ (ot 2_132 

o N< x 
pt sin pt 

(3.44a) 

2 
Qd Cos px os PM-OL) - Cos PM-P) -p x(2) ý [Qx(2)] 

I+p 
-sin pt 

IC 

2(0+ý 

2(cos ppl - cos poct) 
- (OL 2_,. 2 

gi <, x 
pt sin pi 

(3.44b) 

Q os px Cos PM-0t) - Cos P(I-X) Cos ppi x(3) ý [Qx(2)] + -psin pt C 

14 
24) 

--- Jýx 
2(cos ppl - cos poct) ot 

2_P2 
2(ý+ý 11 pt sin pf 

11 

x <, Ott 
(3.44c) 

(Cos ppi - Cos PoLt) Cos P(I-X) + P21 
x(4) ý [Qx(2)li - ý-sin pt 

1 

2(ý+ý 1) 

Cos )AX 
2(cos ppi - cos pod) ot 

2_P2 
44x 

pt sin pt 

(3.44d) 

where EQx(j)] 
I 

and [Qx(2)] 
1 

can be evaluated from Equations (3.29a & b). 

For the right hand span, we have: 
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pdt Cos "x 1 2(cos ppi - cos pNI) 
_ (OL 2_132 oxi(W [Qxl(l)l 

sin pt pt sin pt 

o <, x14 

(3.44e) 

pdt Cos px 1[ 2(cos ppf - cos VNI) 22 Cot -P 
1- 

ywýl ) sin p 41 pi sin pt 

xI <1 11 

(3.44f 

where EQX, 
(, )] 1 

and EQxl(2)] 
1 

can be obtained from Equations (3.29c & d). 

If p<g< OL 

The bending moments can be evaluated at any section of the 

left hand span from the following equations: 

m6 sin px OS PM-00 - COS Pl(l-J3) 
p2 EMX(1)1 

p2 sin pt 

Ic 

2(ý+ý 

2(cos ppl - cos poti)_ 
ot 

2_P2 
0(xA pt sin pt 

(3.45a) 

m 
X(2) ý CMXMI - -2 

61[ 
sin px cos pt(l-%) + sin p(t-x) cos ppl 

Ip sin p 

- sin pt -p21 sin px 
2(cos ppl - cos pat) 

- (a 2_P2 
2()+) 1)I pt sin pt 

4x4, gI 
(3.45b) 

m 
x(3) ý [Mx(2)] -2 

6S in yx cos pl(l-ot) + sin p(I-x) cos ppl 
Ip sin pt 
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- sin pt 
21- 2(cos ppl - cos poLl) 

_ 
2_ 2 

sin )tx pt sin pt 
(OL p 

gi N<x 4OU 

(3.45c) 

mý [Mx(2)] -6 (cos ppi - cos pml) sin p(I-x) -p x(4) Ip2 sin pl 
2(ý+ý 

sin px 
2(cos ppl - cos pott) 

_ ((k 2_P2 
ot 44xK, I 

I 

pt sin pt 

(3.45d) 

where IMX(, 
)] 

I 
and [Mx(2)] 

1 
can be obtained from Equations (3.27a & b). 

For the right hand span, the bending moments can be directly com- 

puted, at any section, from Equations (3.42e & f). The stresses can 

be evaluated at any section of the beam from Equations (2.74). 

The deflections can be calculated at any section of the left 

hand span from the following equations: 

sin px pA T]( [Cos pt(l-lx) - Cos pt(1-01 T-- 
(OL-P) 

p2H sin pt 

2(cos ppf - cos pott) 
- (oc 2 

-P 
2 

pt sin pt 

x sin px 
7 sin pt 4 

(3.46a) 

T'(2) ý + 11 IT'(1)] 
2 

COS PIU-00 sin 
[ 

px + Cos PPI sin p(I-x) p2t2 
1 14 H sin pt sin pt 2 

(ot-p) [2 - (oc+p)] Xx 2] 
+ 

F, 2(cos ppt - cos pott) 22 1i7 
2(ý+ý, ) L pt sin pf - COL -P )] 
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x sin px 
i sin pt 

)] 
PA N< gi 

(3.46b) 

, -1- os PIU-00 sin px + Cos ppi sin )4(1-x) p212 
140) ý IT'(2 

1 )A 
2HC sin pt sin pt 2 

[(oc-p)[2 - (ct+p)] P) 
2+ 2(cos ppt - cos pott) 1 

2(ý+ý 1)I pt sin pt 

2_P2 )I I ?S sin Vx 
t sin pt 

gI<, x <, ot I 

(3.46c) 

T) sin p(I-x) (cos pol _ cos pod) -p2t22 -P 
2X) 

(4) ý Ir'(2)] 
2H sin pt 2 

COL 

2(cos ppl - cos p(xi) 
_ Cot 2_P 2x sin px 

pt sin pt Z sin pt 
)I 

Ott <N x <, I 

(3.46d) 

where [ij 
(1)] and 1"(2)] can be evaluated from Equations (3.28a & b). 

For the right hand span, the deflections can be computed, at any 

section, from Equations (3.43e & f). 

The shear forces can be found at any section of the left hand 

span from the following equations: 

Q (1) 
+6 EQ 

(1)1 
Cos 

i 
lIx 

t os )IM-00 - Cos pf(l-p) 
IC 

x X 1p s n p 

2(cos Vpf - cos pott) ot 
2_J32 

0<xK, p pt sin pt 

(3.47a) 
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os px Cos PA(l-ot) - Cos P(A-X) Cos PPI Qx(2) ý [Qx(1)31 +p sin pt 

IC 

p2A Cos px 
2(cos ppl - cos pat) 

- (ot 2_P2 
PI <, x4 gA 2(ý4T, -T pt sin pt 

(3.47b) 

os vx Cos Cos P(I-X) Cos ppi x(3) - [Qx(2)] 
1+ 

-psin pi 

IC 

Fýx 
2(cos ppi - cos pmt) ot 

2_P2 1 
pt sin VA 

x <, ot I 

(3.47c) 

6p2 Qx(4) ý [Qx(2)], - ý-sin pt 

[(Cos 
Cos pott) Cos p(t-x) 

Cos pX 
2(cos ppi - cos poU) 

_ (OL 2_P2 
Oct <, x -<, I 

I 
pt sin pt 

(3.47d) 

where IQX(, 
)] 

1 
and [Qx(2)] 

1 
can be evaluated from Equations (3.29a & b). 

For the right hand span, the shear forces can directly be calculated, 

at any section, from Equations (3.44e & f). 

Ifs) OL 

The bending moments can be determined at any section of the 

left hand span from the following equations: 

6 sin px p2 m 
X(l) ý EMX(1)1 

p2 sin pt Cos PIU-00 - Cos PM-P) - 2(ý+ý 
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2(cos ppi - cos pott) ot 
2_P2 

o4x, 4, p 
pt sin pt 

(3.48a) 

m 
x(2) ý IMXMI - -2 

d sin px cos pf(l-ot) + sin p(I-x) cos ppi 
1p sin pt 

- sin pi sin px 
2(cos ypt - cos pmt) 

ot 
2_P2 I 

pt sin pt 

131 `, ý X klý Oct 

(3.48b) 

(cos ppt - cos pott) sin p(I-x) 
x(3) ý EMX(1)1 - -2 

1p sin pt 

sin px 
2(cos ppf - cos put) 

_ (ot 2_P2 I 
pt sin pf 

ot t4x4&I 
(3.48c) 

P21 m 
x(4) ý [m 

x(2)] 2 
sin pt 

I(cos 
ppi - cas poti) sin p(I-x) 

sin px 
2(cos ppl - cos pmf) ot 

2-13 2x41 I 
pf sin pt 

(3.48d) 

where EM 
XMI 1 

and 1Mx(2)1 
1 

can be computed from Equations (3.27a & b). 

For the right hand span, the bending moments can be evaluated, at 

any section, from Equations (3.42e & f). The stresses at any section 

of the beam can be found from Equations (2.74). 

The deflections can be obtained at any section of the left 

hand span from the following equations: 
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22 
+ -L [Cos )IM-00 - Cos PM-P)l sin px p [T] 

p2H 
sin pt 2 

[2 - (ot+13)] x+p24 2(cos ppi - cos pott) 2_P2 
i T(ý+f 

1)I pt sin pt - (Ot )I 

sin px 
sin pt 

]] 
I< X 4,13 1 

(3.49a) 

sin p sin p(I-x) p212 + Cos pt(1-0() + Cos TIM ý 1"(1)1 
1p2H[ sin pt sin pt 2 

2+ 2(cos ppi - cos pott) [(ot-p) [2- (ot+p) Ix-Cx P) I 
pt sin pt i7- 2(ý+ý 1) 

1 

22 
- cot I [ sin px 

I sin pt 
Pi 'ý( X '(, Ott 

(3.49b) 

6[ sin p(I-x) (cos Vol _ cos pot, ) _ 
112j2 (cL2 2) (1 INUI +- 

12H sin pt 2 

2 2(cos PPI - cos pott) 2_ 2x sin px 
pt sin pt 

Cot pt sin pt 

ot I <, x -<, gI 

(3.49c) 

11 1+ -L 
sin )4(1-x) (Cos Cos p(XI) - 

)4212 (ot 2_p2) (1 _ 
'x 

111(2) 
1p2H[ sin pt 2T 

24 2(cos PPI - cos PoLl)- (OL 2_132 x sin px I 
pt sin pt I sin pt 

)] 

44 

(3.49d) 
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where [TI(l)] and IT'(2)] can be found from Equations (3.28a & b). 

For the right hand span, the deflections can be evaluated, at any 

section, from Equations (3.43e & f). 

The shear forces can be determined at any section of the left 

hand span from the following equations: 

2 
Cos )IX os PIU-00 - Cos EQX(1)1 

I+p 
-sin pt 

IC 

2(cos ppi - cos pott) ot 
2_P2 

0x4pI pt sin pt 

'' (3.50a) 

os px Cos Pt(l-(X) - Cos P(I-X) Cos PPI -p x(2) ý IQX(1)1 T-9 ln-p p sin pI 

IC 

Cos px 
2(cos ppt - cos pmA) 

_ (OL 2_,, 
ý2 pt <x <, Ott 

I 

pt sin pt 

(3.50b) 

6p2 
..... . ........ :- (Cos )IPI - Cos Po(l) Cos P(I-X) Qx(3) ý [Qx(l)] 

,p sin pI 

Cos px 
2(cos ppl - cos pott) ot 

2_132 
ot I <, x 4, 

I 
pt sin pt 

(3.50c) 

Qx(4) ý [Q 6 (Cos ppi - Cos poti) Cos P(I-X) + p2j 
x(2)], p sin pt 

1 

2(*+ý 1) 

Cos )AX 
2(cos ppl - cos pat) ot 

2_J32 4x41 
1 

pf sin pt 

(3.50d) 
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where [Qx(, 
)] 

1 
and [Qx(2)] 

1 
can be determined from Equations (3.29a & b). 

For the right hand span, the shear forces can directly be computed 
from Equations(3.44e & f). 

Finally, the bending moments, deflections and shear forces 

equations can be written for a continuous uniformly distributed load 

applied in the left hand span when substituting ot =1 and p=o in 

the equations given for the case when p<g< ot. 

b. A general loading applied in the right hand span 

For a general loading dl which occupies that part of the 

right hand span which is bounded by the distances x, = plil and x, = 

otlil from the right hand end support, see Figure (3.3d), we have the 

following cases: 

1. If p1)g1 

The bending moments can be evaluated at any section of the 

left hand span from the following equations: 

mý Em 
)] +61A1 sin px 

2(cos Vp 1f1- Cos pot I11 (Ot 2_P2 
x(l) X(l 1 2(ý+ý 1) sin pt 

[ 

pt 1 sin pt 111 

4 &1 
(3.51a) 

m )] +dI11 sin Vx 
(Cos pp 111- Cos pot 

Cot 2_13 2 
x(2)ý 

[Mx(2 
1 2(ý+ý sin pA 

I 

pt, sin pt 11 1)] 

41 

(3.51b) 

where EM 
XMI I 

and EMx(2)] 
I 

can be found from Equations (3.27a & b). 

For the right hand span, we have: 

lmxl(l)l 
61 sin px 

Cos pil(l-(Xl) - Cos P11(l-pl) 
p2 

12 sin pt 2(ý+ý 
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2(cos )413 11- Cos pot 22 
pt sin pt 1 

OLI-131) 
11 

o4x14g111 

(3.51c) 

sin px p2 
m 

xl(2)ý 
[Mxl(2)] 

1-P2 sin pt 1 
Co s )II I (1-ot Cos PA 1 (I-P 

2(cos pp 11- Cos )AOL 
OL 

2 
-P 

2xK, 

sin pt 

(3.51d) 

m 
xl(3)m 

[Mxl(2)] 
21 in px 1 Cos pt 1 (1-ot I+ sin P(l 1-x 1 

p sin pt 1 

IS 

p2 2(cos Vp 11 Cos pa III 
- sin pt, -ý Cos VP t i'l ) sin px 11 Pli sin pt 1 

22 (oti-pi) 131 1 
<. x1<, ot 11 

(3.51e) 

m 
xl(W 

[Mxl(2)] 
2 (Cos VP 191- Cos pot 1t1) sin p(l I-x 1 

p sin Vtf 11 

211 2(cos pp 1A1- Cos pot 111 2_ 2 
Sln px p +tl )11 pt 1 sin pt 

(Otl 
1)1] 

ot K, xI l< 

(3.51f) 

where IMX, 
(, )] 

I 
and [Mxl(2)] 

1 
can be found from Equations (3.27c & d). 

The stresses at any section of the beam can be determined from Equa- 

tions (2.74). 

The deflections can be obtained at any section of the left 

hand span from the following equations: 
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Cos pot 22x ! Liýn 
2(cos ppli 

Cot 
s __ 

Ix' 

pi 1 sin pf 1 In jp t) 

0,4 x4 gi 

(3.52a) 

+6111 
2(cos pp 111- Cos )AOL 111 2_P2 x sin 

11(2)ý 111(2)] 
1 2H(ý+ý 1 )l pt 1 sin pt 1 

(Oll 
1) 

11 
1- 

g14x41 

(3.52b) 

where [TI(l)] and IT'(2)] can be evaluated from Equations (3.28a & b). 

For the right hand span, the deflection equations are: 

rl 
d 

[Cos pt (1-ot Cos pl, (1-13 
sin )Ax 

I(W 
Illml ,-11 01 ýsin pi 1 p2H 

212xp2 2(cos pp t Cos pot I 
1 (ot -p 2- (ot +p +11 211 2(ý+ý pt 1 sin pt 1 

22x sin px 
-P sin pt, - (Oll 

1)] 
1,1 

0 X1 g1t1 

(3.52c) 

+6l 

[[Cos 

pYl-(ki) - Cos 
sin )Ax 

111(2)ý [T'1(2)] 
2H sin pf 

p212x2 2(cos pp I Cos pot 1 1 (Otl-131) (2- (ot +p )II+11 21111 2(ý+ý 1) pt 1 sin 144 1 

22 sin yx 1 11 
1 sin pt - (Ot 
x1l 

1 
9111 

(3.52d) 

147 



61 
os pt (1-ot ) 

sin px 
+ Cos pp I 

sin p(A -x 
111(3)ý 1111(2)] 

1+p2H 

IC 

11ý ýin ) -il 11 sin pt 1 

P212 
2 

1 [(Ot -p )[2 - (ot +p 
X1 X1 

- 131) 
2+p1 

2111 

2(cos yp 111- Cos pot 111 (ot 2_P2 x1 sin px I I 
pt I sin pt 11 

1)] 
191 

sin pt, 

Pi 114x14 ot 111 

(3.52e) 

6 sin p(l -x p212 
+ 

-1 (Cos pp Cos got I)11 Tll(W [T'1(2)] 
Ip2H[11 sin pt 2 

222 2(cos Vp 111- Cos pot 11122 X, 
+ 1- 

Cot (Ot p pt sin lit 13 1 

X, . sin px 1 
A1 sin pl, 

ot 1114x1 

(3.52f ) 

where [T11(j)] and 1111(2)] can be evaluated from Equations (3.28c & d). 

The shear foces can be determined at any section of the left 

hand span from the following equations: 

Qxmý [Q 
)16 111 co s )4x 

2(cos pp 141- Cos POL II 2_p 2 
XMI 1- 2(ý+ý 1) sin pi 

[ 
)AX 1 sin pt 11 1)] 

o K, x K, gI 

(3.53a) 

pd 111 Cos px 
2(cos pp 111- Cos pot 111 2_p 2 Qx (2 

1Qx 
(2)1 '2 , Ff+- ý -,, ) ]ýIL fnp 1[pf1 sin pt 1- 

(OLl 
1 

gIK, I 

(3 . 53b) 
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where [Qx(j)] 
1 

and [Qx(2)] 
1 

can be evaluated from Equations (3.29a & b). 

The shear forces equations for the right hand span are. i 

61 COS PX 1pAI 
Qxl(W [Qxl(l)l + ý- sin pt 1 

Cos pil(l-otl) - Cos P41(l-pl) Tý -+ý 1J 

2(cos pp 111- Cos pot 14 
ot 

2 
-P 

2o4x 
pt 1 sin pt 11 1) 

11 

(3.53c) 

61 Cos px p 
0 [Q +-1 

[Cos 
ptl(l-otl) - Cos )411(1-Pl) xl(2) xl(2)] 1p sin pt 1 2(ý+ý 

2 (Cos pp 1tI- Cos pot IA 
ot 

224xp4 
)41 1 sin pA 1 1-P, 11 

(3.53d) 

os 141 (1-ot ) Cos px Cos pp I Cos P(l x Qxl(3)ý [Qxl(2)] +p 
sin pi 1 

IC 

111-11 1- 1 

Cos )AX 
2 (cos pp 11- Cos pot 11 1) 

- C(k 2 
-J3 

2 
11 pt sin pt 11 1)1] 

x1 <N ot 111 
(3.53e) 

1 (Cos pp Cos pot Cos p(l x Qxl(W [Qxl(2)] 
1- p sin pt IIC1 

p291s 
)AX 

2 (cos pp I11- Cos pot 2_p 2 
2(ý+o 1) -- 11 pf 1 sin pt 1 

(Otl NI 

ot x1 l< A1 

(3.53f 
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where EQX, 
(, )] 1 

and EQxl(2)] 
1 

can be calculated from Equations (3.29c & d). 

If pI 

The bending moments can be evaluated at any section of the 

left hand span by using Equations (3.51a & b). For the right hand 

span, the bending moment equations are: 

lmxl(l)l 
I', sin Vtx I 

os )II (1-OL Cos pt (1-P )-p291 
x1o) 

p2 
sin pA 1 

IC 

111-1 2(ý+ý 
1 

2(cos yp 111- Cos pot III COL 2_P2 
0<x pt 1 sin pf 111 

(3.54a) 

m 
xl(2)ý 

EMX1(1)1 -21 os pt 1 
(1-OL 1) sin px I+ Cos pp 141 sin p(l I-x I 1p sin pt 1 

IC 

- sin pf 
p2 

sin px 
2(cos pp III- Cos pot III 2_132 

2(ý+ý 11 pt 1 sin pt 1 
Cal 

1)]l 

p K, x14 

(3.54b) 

m 
XIMý 

[Mxl(2)] -21 os pt 1 (1-ot 1) sin Vx 1+ Cos pp 111 sin p(l 1-x I 1p sin pi 1 

IC 

- sin pf 

24 

sin px 
2(cos pp 11- Cos P(k 

(Ot 2_p 2 
2(ý+ý 11 pt sin pt 11 

N] 

x14 ot 19 
(3.54c) 

mI (Cos pp I cos pot sin p(l x xl(4)ý 
[Mxl(2)] -2.11- I- 1p sin pt II 
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sin px 
2(cos pp 111- Cos pot 111)- 2_P2 ]] 

ot I <, x <1 1 yl 1 sin pt 1 
(Otl 

1) 111 

(3.54d) 

where EM 
Xl(l)] 1 

and [Mxl(2)] 
I 

can be evaluated from Equations (3.27c & d). 

The stresses at any section of the beam can be determined from Equations 
(2.74). 

The def lections can be computed at any section of the left 

hand span from Equations (3.52a & b). For the right hand span, the 

deflection equations are: 

Illml + [Cos pt (1-(x Cos pt 1( 1-P P] 
sin pt 10) 12H11 

14212 
2 

1 (ot -p )[2 - (ot +p 
xp 2(cos pp 1 Cos pot 19 

2111T 2(ý+ý, ) pt sin pt 1 

2_P2 xi sin px 1 
- Cal 

1)] 
1A1 

sin pl, 
0 X1 p1L1 

(3 . 55a) 

T11(2)m DI + Cos pt (1-ot 
sin px 1 

)AP 
sin )t(l l_x 1) 

I p2H 
1 T: Lr-n ýp t+c0s -sin pt 

212 2 
x X, 2p 

otl-13 1 
2-(oL 

I +p I pi) + 2Tý-+ 

2 (Cos pp III- Cos pot 141 2_ 2 X, sin pxl 
13 

pt 1 sin Vit 
Ok 

11 sin pt, 

13 111 N< x1<, &111 

(3.55b) 

+ 
sin px sin p(t I-x 1 

IC 
os (1-ot 1) sin pf Cos pp 

sin pt 
tll(3)= [T'1(2)] 

Ip2H 
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11212 
2 

1 [(0( -p )[2- (ot +p )1 
x' 

-( 
x' 

- 13 
2+1 

2111141x1 1) 
1 

2(4+e 1) 

2(cos pp III- Cos pot I11 2_p 2x1 sin px 1 1 

pt 1 sin pf 1 
(Otl 

1)] 
(II 

sin pl, 

N< x1K, ot III 

(3.55c) 

d, sin p(l -x 
212 

(Cos Cos POL I)11 2H[11 sin pt 12 

22x 2(cos pp 11 Cos P(x 1122 Cal -pl) C 
41 pi 1 sin pt 1 

Cot 
1 _p I 

X, sin px 1 
11 sin pl, ot 1114x1 <1 11 

(3.55d) 

where [ill(, 
)] 

1 
and 11nIMI 

1 
can be determined from Equations (3.28c & d). 

The shear forces can be calculated at any section of the left 

hand span from Equations (3.53a & b). For the right hand span, the 

shear forces equations are: 

Cos yx 1 
[Cos 

pll(l-otl) - Cos yll(l-pl) QXI(W [Qxl(l)l + 
sin 1 pf 

2(cos ppli 1- Cos pot 111 2_p 2o<, 
x <, pI PI 1 sin pi 

CoLl 
1) 

(3.56a) 

+1 os pt (1-OL ) Cos px Cos pp t Cos P(-l x Qxl(2)ý [Qxl(l)l 
1 

ý-sin pt 1 

IC 

111-11 1- 1 
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2(cos Vp 111- Cos pot 11122 
Cos px PA 1 sin pA 1 

x14g11 

(3.56b) 

1 
os pi (1-ot ) Cos lix Cos pp I Cos P(l x Qxl(W [Qxl(2) +p sin pi 1 

IC 

111-11 1- 1 

p2 
Cos )AX 

2(cos pJ311, - Cos Pot, 11) 
_ Cot 2_P2 

2(ý+ý 11 pt 1 sin Vil 11 

NI 

4xI <N OL 
I11 

(3.56c) 

1 
(COS )IJ3111- COS )Iotltl) Cos P(l x Qxl(4)ý [Qxl(2)] 

1- p sin pt 11 
1- 

Cos )IX 
2(cos ppli, - Cos potli I Cot 22 

)11 1 sin pt 

x1 l< 11 

(3.56d) 

where IQX, 
(, )] 

1 
and [Qxl(2)] 

1 
can be evaluated from Equations (3.29c & d). 

If gI) OL 1 

The bending moments can be determined at any section of the 

left hand span from Equations (3.51a & b). For the right hand span, 

the bending moment equations are: 

mý lmxl(l)l 
16, sin px [Cos 

pfl(l-al) - Cos P41(l-pl) -p2 X10) 
P2 

sin pt 
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2 (cos pp 111- Cos pot 1) 
- (Ot 2_P2 

o <, x 4, P 
I 

pt 1 sin pl 1111 

(3.57a) 

m 
xl(2)ý 

[Mxl(l)l 
2 os PI 1 (1-OL 1) sin px 1+ Cos pp 111 sin p(Il-x I 

p sin pf 1 

IC 

- sin pt 
p211 

sin px 
2(cos pp 11- Cos pot 111 (OL 2_P2 

1 2(ý+t 17 pt sin )41 111 

4x14 ot 11 

(3.57b) 

m 
xl(W 

EMX1(1)1 -21 (Cos pp 111- Cos pot 111) sin p(l 1-x 1) 
1p sin pt 11 

p211 
-y sin pxl 

2(cos pp 1t1- Cos pot 1t1 Cot 2_P2 
2(ý+t 11 pf 1 sin p4 111 

ot x14gI11 

(3.57c) 

mI (Cos up I cos pot I sin p(l x xl(W 
[Mxl(2)] 

1- p2 sin pli 

111-1 

1- 

sin px 
2(cos pp 111- Cos pot 111)- 2_P2 14x <1 I 

PA 1 sin pt 1 
(Otl NI 

F. 1111 

(3.57d) 

where EM 
X10)] I 

and [Mxl(2)] 
I 

can be determined from Equations (3.27c & d). 

The stresses at any section of the beam can be determined from Equa- 

tions (2.74). 

The deflections can be evaluated at any section of the left 

hand span from Equations (3.52a & b). For the right hand span, the 

deflection equations are: 
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sin px 
TI 1(1 

[Til(l)] [Cos 
)AX 1( 1-ot I Cos pt 1 (1-P 1)] sin pt I p2H 

[1 

V212 
2 

1xV 2(cos pp f Cos )IOL 11 1) (otl-131)[2 - (ot +pl)l + 2111 2(ý+ý sin pA 

22x sin px 
- Cot 

I 'Sin pt 
0 X1 p1L1 

(3.58a) 

rll(2)ý Ell 
d 

Cos pt (1-ot 
sin )Ax 

+ Cos pp 

sin p(l 1-x I 
1(1 )l 

I+ 112 H 
i-In pt, 1 sin pt 

212 2 
P1 

+p 
xI X1 

_ 13 
2 

- [(Ot 2-(ot + 

2(cos pp I11- Cos pot 111 2_ 2 X, sin pxl 

pt 1 sin pi 1 
(ot 

1 J31 41- sin pil 

Pi 41<, x1<, ot I11 

(3.58b) 

sin p(l x212 
TI [TI + (Cos pp Cos pot I) 

1- 1 

10) 10) 1p2H11 sin pt 12 

2_)32 x 2(cos pp 111- Cos pot 2_ 2 (Ot 
11 pt 1 sin pt 

COL p1 

x sin yx 
ot xg t sin ptj 11 

(3.58c) 

di sin p(l -x p292 
+ (Cos pp Cos 140C A)11 1(4)m 

lrll(2) 
1p2H11 sin pt 12 
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Cot 2 
-13 

2x+ 14 
2 11 2(cos pp 141- Cos pot 191 

C(k 2_13 2 
1 1) 

(l- 
Al 

) -2Tj-+F-j7j-T 
I 

pt 1 sin pt 111 

X, sin px 
11 sin pt 91A1 ý<, x1 

(3.58d) 

where [ql(, 
)] and [T'1(2)] can be obtained from Equations (3.28c & d). 

The shear forces can be determined at any section of the left 

hand span from Equations (3.54a & b). For the right hand span, the 

shear forces equations are: 

Cos px p 
+ -1 Cos pfl(l-otl) - Cos PAJU-pl) Qxl(W IQXI(l) 

1 sin pf 1 2(ý+ý 

2(cos pp 11- Cos pot II 
ot 

2 
-J3 

2o4xp1A 
pt sin pt 111 

11 

(3.59a) 

1 
os pt (1-ot ) sin px Cos pp Cos P(l x Qxl(2)ý [Qxl(l)l 

1+ 
-psin pt IC111- 1- 

p2f1[ 2(cos vp 111- Cos )AOL 1t1) 2_ 2 
ý"-(ý+ilj COS px 1 pt I sin pf 1 

(Ot 
1 13 1)I] 

4xI( ot 11 

(3.59b) 

61 
(Cos Cos pot Cos -x Qxl(3)"4 [Qxl(l)l 

p sin pt 
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p2 
Cos )AX 

2(cos pp 11- Cos pot 111 C(k 2_132 
11 pt sin pt 11 1)1] 

ot K, x14g111 

(3.59c) 

1 (Cos pplil- Cos pot, 11) Cos p(Il-xj) Qxl(W [Qxl(2)11- -psin )AA, 

I 

P291[ 2(cos pp 11- Cos pot 111)2.2- 
Cos px 1 pt sin pt 1-- 

cotl -pl)- 

K, I <1 11 

(3.59d) 

where EQxl(, 
)] I 

and [Qxl(2)] 
1 

can be calculated from Equations (3.29c & d). 

The bending moments, deflections and shear forces equations 

can be written for a continuous uniformly distributed load applied in 

the right hand span when substituting (xl =1 and p, =o in the equa- 

tions given for the case when p, < g, < ftl. 

Finally, Formulae (3.27 - 59) can be used to determine the 

bending moments. deflections and shear forces for any different 

combinations of live loading by employing the principle of 

superposition. Furthermore, they can be used to find the internal 

forces for suspended beams with no eccentricities at the ends of 
their cable when substituting a=o in these formulae. In addition, 
Formulae (3.27 - 59) can also be used after the time effects take 

place by replacing y by T in Equations (3.27), (3.28) and (3.29). It 
is worth noting that these formulae can also be used for ungrouted 
beams when omitting the contribution of grout, g=gI=o. 
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3.5.2 The Forces in the Suspenders 

Similar to Section 2.6.2, the forces in the suspenders must 
be evaluated for the maximum possible values. This can be achieved 
by knowing the maximal possible value of the increase in the 

prestressing force Hpmax which can be calculated when studying all 

possible cases of live loading to which the structure may be sub- 

jected. Hence, Pmax can be determined from Equations (2.60), where: 

H 
pmax Pmax H 

w 

From Appendix 23, the maximum suspenders load qsmax can be 

computed for the left hand span as follows: 

qsmax w[ (J+Y)(J+ 
[1 

-p2 

(O+wC)l) 
+ 

Pmax 
(, + 

2 

T4212 

(0 +we sin 
!! 

--(1-2g) 9 gl 2 
+ 

pi pt . 
11 

(3.60a) 
MF 

T COS T- 

and for the right hand span, the maximum suspenders load is: 

0, 
p2 

(O+wG 
1 ! max 

2 
) 

(i 
- qslmax W (1+y)(l+ 1 4w (ý+ýjT- + 2 (1+ 

2w 

(e 
9 

+WO 
91 sin -2 (1-2g 

1 
- 4+ýl +1 

Cos I 
(3.60b) 

22 

W, 
where W1 and where e, 01,0 

9 and E)., can be obtained from 
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Equations (2.63) and (3.22) respectively. It is worth mentioning 

that the suspenders load in this type of bridge becomes equal to that 

of the prestressed concrete suspension bridge with ungrouted cables 

when omitting the grout restraint, i. e. by substituting g, g, =o in 

Equations (3.60). 

Finally, as shown 'in Figure (2.20), the forces in the sus- 

penders, which are represented as the reactions in, the fictitious 

supports of the system, can then be determined. For simplicity, the 

average force in each suspender can be obtained from Equations (2.88) 

for left and right hand spans. The extension in each suspender must 

be checked to ensure that it does not exceed 10% of the beam 

deflection at its position in order to prevent any reduction in the 

interaction between'cable and beam as mentioned earlier. 

3.5.3 The Tower Force 

As mentioned in Section 2.6ý4, the tower must be designed to 

sustain the maximum vertical tower force NTmax 'as well as the wind 

loads. Therefore, knowing Pmax, as from the preceding section, ýthe 

maximum vertical tower force is: (similar to Equation (2.89)). 

N Tmax ýHw (J+y+p 
max 

) [(F+8n) + (F, +8n, )] (3.61) 

Hence, the stability of the tower can be checked for different combi- 

nations of this force and the wind loads. 

3.6 The Ef f ect of Grouting on Prestressed Concrete Suspension 

Bridges 

3.6.1 Introduction 

In this section, we will discuss, the main differences between 

prestressed concrete suspension bridges with ungrouted and grouted 

cables. To achieve the benefits of the comparison, we will consider 
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the ef f ect of grouting on the behaviour of the main cable when sub- 

jected to the various effects, e. g. tower flexure, construction 

errors, ... etc, as well as due to live loading. Furthermore, we 

will also discuss the effect of grouting on the internal forces of 

the prestressed cable suspended beam, the suspenders and the tower. 

Finally, basing our conclusion on the results obtained f rom 

both experiments, Chapter (7), we will be able to recommend the use 

of either types of bridge for practical application. 

3.6.2 The Effect of Grouting-on the Main Cable 

3.6.2.1 The Deformations of the Main, Cable 

The effect of grouting is basically causing restraint to part 

of the length of the main cable in both spans and therefore, reducing 

its f ree lengths to Sf and Sf i in lef t and right hand spans respec- 

tively as can be seen from Equations (2.14) and (3.3). The value of 

this restraint depends on the lengths of the spans and the dimensions 

of the suspended beam as shown in Figure (3.2) and Equations (3.1). 

For short spans, the effect of the grouted lengths is greater and 

vice versa. 

For the, above reasons, tower flexure, construction errors or 

temperature changes have, a lesser effect on the change in length and 

shape of the grouted main cable than the ungrouted one as can be 

deduced from Equations (3.6 - 15) and (2.19 - 33) respectively. 

However, for the grouted case, the corresponding change in the cable 

tension AH is greater as can be deduced when comparing Equations 

(2.35) and (3.16). This can be verified by the fact that the change 
in the cable tension M is inversely proportional to the length 

ds 2- function( aR ) as shown in Appendices 8& 19. Consequently, for the 

grouted case, a smaller free length of the cable means a more rigid 

cable and therefore the cable experiences larger changes of force. 
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Obviously, any increase in the cable tension is a'bonus as it 

increases the prestressing force and consequently improves the per- 
formance of the entire system. Sometimes the change in the cable 

tension AH may be negative. e. g loose suspenders resulted from'a 

construction error. This means that for the grouted case, more 

reduction in the prestressing force might take place than the 

ungrouted one. Even though the value of this reduction is usually 
insignificant, it will be always absorbed by the value of the initial 

prestressing force Hi, = Hw (I+y). In other words the value of y 

will overcome that reduction as well as the time effects. 

3.6.2.2 The Behaviour of the Main Cable when Live Loading is Applied 

As mentioned in the preceding section, the effect of grouting 
is basically to increase the rigidity of the main cable and make it 

capable of gaining more force. This is more obvious when comparing 

the values of. SC and 8cf, Equations (2.45) and (3.19). as these terms 

represent the flexibility of the main cable. The more the grouted 
lengths are, the less flexible the cable becomes and consequently the 

grouted main cable gains more force, Hp. due to the application of 

live loads. 

r 

From the observation of the two experiments, Sections 7.5 and 

7.6, we measured more increase in the tension of the cable of the 

grouted case than the ungrouted one. A specimen of the results, when 

an increasing concentrated load P has been applied in the mid-point 

of the left hand span of the test beams, is plotted for both cases as 

shown in Figure (3.4). The figure clearly shows the difference in 

the rate-of increase for the cable tension in both cases due to the 

applied load. 

Therefore, we finally conclude that grouting the lengths 

through which the main cable passes within the prestressed cable 

suspended beam, undoubtedly improves the interaction between the 

cable and-the beam. This can be considered as one of the advantages 

of grouting prestressed concrete suspension bridges. 
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3.6.3 The Ef f ect of Grouting on the Internal Forces of the Sus- 

pended Beam 

As a result of the greater value of the change in the cable 

tension Hp due to live loading, the prestressing force H will in- 

crease as well as the upward uniformly distributed forces pW and pWl 

in both spans. Accordingly, this will relieve the structure and 

therefore, reduce the bending moments, deflections and shear forces 

caused by the applied live loading. 

The measured results of the two experiments confirmed this 

fact as lesser values for bending moments and deflections were re- 

corded for the grouted test beam than the ungrouted one, Tables (7.1 

- 20) This can be regarded as another advantage of grouting 

prestressed concrete suspension bridges. 

3.6.4 The Effect of Grouting on the Suspenders Forces and the Tower 

Force 

From Equations (2.86), (2.89), (3.60) and (3.61), it is clear 

that. the greater value of Hp will most certainly increase both the 

suspenders forces and the tower force for the grouted case. Conse- 

quently, suspenders with larger diameters and towers with bigger 

cross sections will be needed to accommodate these extra forces. 

This represents one disadvantage of grouting prestressed 

concrete suspension bridges as suspension bridges generally produce 

very large vertical forces on their towers. 

3.6.5 Final Conclusion 

From the previous analysis, we conclude that grouting 

prestressed cable suspension bridges redistributes the forces applied 

on that structure. It relieves the prestressed concrete suspended 
beam and accordingly increases the forces in both the suspenders and 
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the tower. Furthermore, more lifting forces will affect the two end 

supports and therefore, heavier concrete boxes of sand may be re- 

quired (see Section 1.3). 

Hence, the advantages of the method of grouting for 

prestressed concrete suspension bridges can be summarised as follows: 

a. Tower flexure, construction errors and temperature changes have a 

lesser effect on the length and shape of the main cable but a 

favourable one to increase the cable tension. 

b. Grouting improves the interaction between the main cable and the 

prestressed cable suspended beam which means that a greater part 

of the live loading is directly sustained by the main cable and 

consequently the beam will experience less internal stresses. 

c. Grouting improves the overall rigidity of the structure and makes 

it more stable against wind and vibrations (see References (7), 

(8), (9) and and (22)). 

The final decision whether to use grouting in prestressed 

concrete suspension bridges should be based on a cost analysis for 

each particular bridge and comparing the savings in the cost of the 

superstructure with the extra cost of the substructure to achieve the 

most economical design. 
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CHAPTER 4 

The Failure Mechanisms and Loads of Two-Span Prestressed 

Concrete Suspension Bridges 

4.1 Introduction 

This chapter is concerned with the analysis of post-elastic 
behaviour of both grouted and ungrouted two-span prestressed concrete 

suspension bridges, and includes a comparison of the two systems. 

As the bridges studied here are of a two-span continuous 
form, the formation. of two plastic hinges will be needed to bring 

about complete failure, Figure (4.1). We shall base our analysis 

upon the concept of plastic hinges in which the ultimate moment of 

resistance of a concrete section, Mult, is assumed to be sustained 
for a sufficient range of increasing curvature, Figure (4.2). Fur- 

thermore, we shall assume that the moment -curvature relationship of 

the cross section is linear up to this ultimate moment value so that 

our previously developed linear analysis of the two types of bridge 

may be used to determine the position of the first plastic hinge. 

From the above, it is evident that loading in excess of that 

causing. the development of the first plastic hinge, may be considered 

as being applied to a different structural system which will also be 

linear but significantly less stiff. In other words, the indetermi- 

nate structural system will become a determinate one due to the 
formation of the first plastic hinge. Thereafter, the internal 

stresses will develop for this system until the total moment at a 
second point of the structure reaches the ultimate value, Mult, for 

that section. At this stage, the structure is converted to a mecha- 
nism, for any increased loading, and is considered to have collapsed. 

Thus, the following assumptions have been made in the devel- 

opment of the analysis: 

168 



The suspended beam behaves linearly before and after the 

formation of the first plastic hinge noting that it becomes a 

determinate structure prior to its failure. 

2. The connections between the suspenders and both of the main 

cable and the beam will not fail before the flexural failure 

of the suspended beam. 

3. The cross section of the beam behaves in an under-reinforced 

fashion, i. e. the tensile reinforcement will yield before the 

concrete reaches its ultimate strain. 

4. The reinforcement is made of a perfect mild-steel' material 

which exhibits a distinct yield stress-strain pattern, Figure 

(4.3). 1- 

In the following section, we develop expressions from the 

ultimate moment of resistance, Mult, for the cross sections of the 

beam which,, for purpose of generality, are assumed to be of T-shaped 

sections and reinforced with three layers of mild steel. 

4.2 The Determination of the Ultimate Moment of Resistance for 

the Cross Section of the Beam 

4.2.1 For Sagging Moments (Top Fibre Lies in the Compression Stress 

Zone) 
f 

Figure (4.4a) shows the T-shaped cross section with all of 
its dimensions expressed 'in terms of its effective depth, Z', which 

can be defined as the distance between the top fibre and the main 

reinforcement, AsP of the beam. Figure (4.4b) indicates the stress 
distribution of the cross section where fsl is the stress in the top 

flange reinforcement AS,, at a depth zjZ and fs2 is the stress in 

the bottom flange reinforcement A s2, at depth z2Z'. The figure also 

shows the compressive force Fc in the concrete stress block which is 

effectively at a depth k2Z from the top fibre of the beam. In addi- 
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tion, we have the prestressing force H applied at the line of 

centroid of the cross section at a depth of Z, which can be evaluated 

from the following expression: 

I (b -b) z2+ bz 2 

zz134 1T (bl-b) z3+ bz 4 
l a) 

z 
where Z=- (4.1b) 4z 

and where z3 is the ratio of the flange thickness to the effective 

depth. It is worth mentioning that for rectangular cross sections, 

z 
the distance Z, is simply found as y which confirms the above expression 
b, = b. 

Figure (4.4c) shows the strain distribution of the cross 

section where the strain at the top fibre is assumed to have reached 

the ultimate strain, 0.0035, B. S. (5) and (18). Meanwhile, f rom 

assumption (3), the strain at the main reinforcement is greater than 

the yield strain cy but its stress remains equal to the yield stress 

fy, Figure (4.3). The figure also shows the axis of zero strain, 

natural axis, which is at a depth kjZ' from the top fibre of the 

beam. 

Hence, from Figure (4.4c), the strains at all of the top and 

bottom flange reinforcements as well as the bottom concrete fibre of 

the flange, csl' cs2 and cc, can be expressed in terms of the ulti- 

mate strain, by similar triangles, as follows: 

ck 
1-z 1 0.0035 (4.2a) 

sl kI 

ck 
1-z 2 0.0035 (4.2b) 

s2 k1 

k 1-z 3 
cck0.0035 (4.2c) 
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Thus, taking advantage of the linear stress-strain relationship for 

the reinforcement- prior to yield, the stresses fs, and fs2 can be 

evaluated as follows: 

k 1-z 1 0.0035 E 
sl k1s 

(4.3a) 

fk 1-z 2 0.0035 E (4.3b) 
s2 k1s 

where Es is Young's modulus of elasticity of the reinforcement. 

The sum of the forces in the reinforcements9 Fsq can then be 

obtained as follows: 

Fs=A 
s3 

fyA 
sl 

f 
sl 

A 
s2 

f 
s2 

which gives: 

F: 
0.0035 E 

S- [[A cy-A-A]k+zAzA 
(4.4) 

sk s3 0.0035 sl s2 11 sl 
+2 

s2] 

f 
where cy (4.5) 

yEs 

Assuming that the depth of the neutral axis lies below the 

flange, i. e. k, > and by taking advantage of the similarity 1 Z3, 
between the stress block of the concrete and its general 

stress-strain relationship, Figure (4.5), (as specified in B. S. (5) 

and (18)) the compressive force in the concrete, Fc, can be found as 

follows: (for details see Appendix 24) 

2f ult Z' 0.0035 c0c0.0035 
F=-- 

[[b, (3 -0)- (b b) (3 - c9yk2c0.0035 0.0035 c 
1 

k3+ (b -b) [3z (2 0.0035 )k2- 3z 2 (1 _ 
0.0035 )k z30.0035 113c013c01-3c0 

1] 

z3 (4.6) 

171 



where co is the initial plastic strain of the concrete, Figure (4.5), 

and can be calculated from the following expression: ((5) and (18)) 

(4.7) 12-5 

1 

-uyml 
t 

where fult is the cube strength of the concrete (N/mm2) and where y. 
is a partial factor of safety for the concrete and is taken as 1.3 

for effects of excessive loads or damage, (5). 

Hence, the following step is to consider the longitudinal 

equilibrium of the beam in which the effect of the prestressing force 

H must be included. However, for simplicity, we ignore the part of 
the prestressing force , Hp, which is generated as a result of the 

interaction between the main cable and beam. Thus, we have: 

Fc-Fs-HI-o (4.8) 

From Equations (4.4) and (4.6), we arrive at the following expres- 

sion: 

20 f 
Ult Z' 0c00.0035 3 [b (3 -iiZ, j- (b -b) (3 

ii Esc10.0035 5». 0035 1k1 

I 
20 f 

ult z3z 
(b -b) (2 0.0035 )+ AA1Hk2 39 Esc0c0 sl 

+ 
s2 - 0.0035 Es 

(As3fy 
j) 

11 

fz2Z, 'I 20 ult 3 0.0035 
+zA+zA1k0.0006 ult a-9 - -E 

sc0- 
(bl-b) 

c01 sl 2 s2 E 

z, 3 
T- (bi-b) 

c 0 
z (4.9) 

where the only unknown in this equation is the depth ratio, kl, of 
the neutral axis. Thus, k, can be evaluated as well as the concrete 
force Fc and the top and bottom flange reinforcement forces As, fs, 

and A s2 fs2, Equations (4.3) and (4.4). 
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Whence, the ultimate moment of resistance, Multl. of the 

cross section, when the top fibre lies in the compression stress 

zone, can be evaluated by taking the sum of the moments, for the 

internal forces of the cross section, about the tensile reinforce- 

ment. Thus, from Figure (4.4), we have: 

t1te 
m 

Ulti 
FcZ (1-k 

2)A sl 
f 

sl 
Z (1-z 

1)A s2 
f 

s2 
Z (1-z 

2)Hi 
(Z -Z 1) 

where the depth ratio, k2l of the point of application of the con- 

crete's compressive force, Fco can be calculated from the following 

expression: (see Appendix 24) 

2 
0.021 ccc [b, 

+-4 )+(b -b) 
C-C (8-3 

cc +4 
C! 

l 12] 
kc6.0035 

12ý. 0035 

k 242 
0.0105 ccc 

-C 
[b 

I(. c01)- 
(bl-b) 

c2 
(3 -I co 

I 

z (4.11) 

where cc -is the strain at the bottom fibre of the flange and can be 

evaluated from Equation (4.2c). 

If the neutral axis is within the flange, i. e. k, 'ý Z31 the 

contribution of the web to the values of Fco k, and k2 would have to 

be omitted. As Equations (4.6), (4.9) and (4.11) have been arranged 
in terms of the difference between the breadths of the flange and the 

web, this modification can be easily carried out when substituting b 

bl, which yields: 

F 20 fbZt (3 
c0)k 

c 117 ult 1 0.0035 1 I<z3 (4.12) 

1 
20 f 

ult 
b1zc021 

117 E 0.0035 
(3 - 0.0035 

)k 
1+ 

[AS, +A 
s2 1 0.0035 E 

(A 
s3 

fy+Hi )]k 

A 
si Z 2* A 

s2 
)0 

1<z3 (4.13) 
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*021 
E04) 

kk11c00.0035 k<Z (4.14) 
240.0105 113 

Whence, the ultimate moment of resistance, Multl, can be evaluated 

when substituting these quantities into Expression (4.10). it is 

worth mentioning that the above formulae can also be used to calcu- 

late the ultimate moment of resistance for rectangular cross sections 

of breadth b, and with up to three layers of reinforcements. 

4.2.2 For Hogging Moments (Top Fibre Lies in the Tensions Stress 

Zone) 

Figures (4.6) show the stress and strain distributions for 

the cross section of the beam, where we see that the strain of the 

bottom fibre has reached its ultimate value, 0.0035, with the strain 

at tensile top flange reinforcement greater than the yield strain, 

cy, However, the stress there remains equal to the yield stress, fy, 

for increasing values of the strain, Figure (4.3). Thus, from Figure 

(4.6c), the various strains of the cross section can be expressed in 

terms of the ultimate strain of the concrete, 0.0035, by virtue of 

similar triangles, which gives: 

ck 
I-z 2 0.0035 <C (4.15a) 

s2 z 4- k1y 

0.0035 (4.15b) 
s3 z 4- k1 

where z4 

Hence, from assumption (3), the stresses in the bottom flange 

and bottom beam reinforcements, fs2 and fs3, can be obtained as: 

k 1-z 1 0.0035 E fs2 ý -zk s 41 
<fy (4,. 16a) 
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f10.0035 E (4.16b) 
s3 ý -zk s 41 

The sum of the forces, F Is in the reinforcements can then be obtained as: 

Fs=A 
sl 

fy+A 
s2 

f 
s2 

A 
s3 

f 
s3 

which yields. 

F-0.0035 
Es+A- 

As, 
cy 

]k zAAAzcy 
s 

[[A 
6.0035 +40.0035 - -Tzý ýd s2 s3 1 s2 s3 sl 

(4.17) 

where cy is the yield strain, Equation (4.5). 

Thus, by taking advantage of the similarity between the 

concrete's stress block and its general stress-strain relationship, 

Figure (4.5), ((5) and (18)), the compressive force, Fcj can be ex- 

pressed in the following equation: (see Appendix 25) 

F= 20 f bZ 
1 (3 -c0 )(Z -k c 117 ult 0.0035 4 1) 

where co is the initial plastic strain of the concrete, Equation (4.7). 

Whence, f rom the longitudinal equilibrium of the beam, Equa- 

tion (4.8), the following formula can be obtained for the determina- 

tion of the depth ratio, kl, of the neutral axis: 

20 1c02 40 c 
fU)k, fl-7 fult U (3 -0 117 ult 

(3 - 0.0035 0.0035 

20 c 
0.0035 E+A+Hk+fz bZ (3 -0 s 

(As2 
s3) - (Asl fy i) 

11[ 
F-17 ult 4 0.0035 

0.0035 Es CZ2 AA+A 
s3) - Z4 (Asl fy +H i)] =o (4.19) 

For excessively under reinforced cross sections, the bottom 

flange reinforcement, A. 2, might yield as well. Therefore, to ensure 

the validity of the scheme of analysis, it is essential to compare 
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the value of the stress in this reinforcement, fs2l with the yield 

stress, fy, If fs2 > fy, hence Equations (4.17) and (4.18) would 

have to be modified as a result of taking fs2 ý fy, Figure (4.3). 

Thus, we have: 

Fs (z k 0.0035 EsA 
s3 - (AS, +A 

s2) 
fy]k, + Z4 (AS, +A 

s2) 
fy 

41 

- 0.0035 EsA 
s3l 

(4.20) 

and the expression for k1 becomes: 

20 f bZ 1 (3 -c0)k2 
40 

fult U (3 - -co + 0.0035 E 117 ult 0.0035 1 117 0.0035 
)s 

[(AS, + A+ Hi] k+[ 20 fult z4 bZ (3 -c+0.0035 E 
s3 s2) 

fy 
11i 

1-7 s 

A 
s3 -z4 [(AS, +A 

s2) 
fy +H ill =0 (4.21) 

Having found the final value of the depth ratio, kj, of the 

neutral axis, the compressive force, Fc, in the concrete as well as 

the forces, As2 fs2 and As3 fs3l in the reinforcements can be evalu- 

ated. Consequently, the ultimate moment of resistance, Mult2l of the 

cross section, when the top fibre lies in the tension stress zone, 

can be obtained when taking the sum of the moments of the internal 

forces about the tensile reinforcement. Hence, from Figure (4.6), we 
have: 

ttt 
m 

ult2 ýFcZ (k 
2- Z1)+A 

s3 
f 

s3 
Z (I-z 

1)-A s2 
f 

s2 
Z (Z 

2-zi 
)-H 

9 
Z1Z) f 

S2 
<fy (4.22a) 

or alternatively: 

1tt 
m 

ult2 ýFcZ (k 
2- Z1)+A s3 

f 
s3 

Z (1-z 
1)-A s2 

fyZ (Z 
2-zi )-H 

1 
Z1Z) f 

s2 
)fy (4.22b) 
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where the depth ratio, k2, of the point of application of the con- 

crete's compressive force, Fcq can be calculated as* follows: (for 

details see Appendix 25) 

k, [6 0 (4 0 
-- 

0 
ccc2 

0.0035 0.0035 z4 [6 
0.0035 

k2c (4.23) 
4 (3 0 

0.0035 

where co is the initial plastic strain for the concrete, Figure (4.5) 

and Equation (4.7). 

4.2.3 Comments 

The effect of the axial (prestressing) force on the cross 

section of the beam, clearly increases its ultimate moment of resis- 

tance as can be deduced from Formulae (4.1 - 23), if Hi = o. Thus, 

as the loads increase. the strength of the beam, slightly, improves 

as a result of the interaction between the main cable and the sus- 

pended beam. This improvement can be considered in the calculations 

of the failure loads, as will be discussed in the following section. 

Formulae (4.1 - 23) can be extended to evaluate the ultimate 

moment of resistance, Mult, for I-shaped and rectangular cross sec- 
tions exhibiting any arrangement of reinforcement layers. This is 

achieved by modifying the expression for the sum of the reinforcement 
forces, Fs9 Equations (4.5), (4.17) or (4.20), to accommodate the 

required number of layers. Then, this modified expression can be 

included in the longitudinal equilibrium Equation (4.8), in which the 

term for the compressive force, Fcj of the concrete remains un- 

changed. Obviously, for symmetrical cross sections, with respect to 

their centre lines, the values of the ultimate moments of resistance 

are the same for either sagging or hogging moments. 
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4.3 The Detemination of the Failure Loads for Two-Span 

Prestressed Concrete Suspension Bridges 

4.3.1 Discussion 

In this section, we describe the procedure for evaluating the 

failure loads when a single load is applied on either of the two 

spans of an ungrouted and grouted prestressed concrete suspension 

bridges. 

As mentioned earlier, failure takes place in two stages, the 

first is when the value of the maximum moment, Ml, increases with the 

increase of the applied loading, 6, until it reaches the ultimate 

moment of resistance, Mult. of the cross section at its position, 
Figure (4.7b). Therefore, from the first assumption, Section 4.1, 

the value of the first plastic hinge load 6p. hI is directly obtained 

as follows: 

p. h = 
mult 

R, (4.24) 

where the value of M, is calculated f rom the linear analysis de- 

scribed in the preceeding two chapters. A more accurate value for 

dp. h is obtained when taking into account the contribution of the 

change in the prestressing force Hpl, which results from the first 

plastic hinge load, to the value of Mult. To do so, we replace the 

initial prestressing force Hiq by the more accurate value of Hl, 

where: 

Hi+H 
P1 

(4.25) 

in the expressions for the ultimate moment of resistance Mult. Formu- 
lae (4.1 - 23). Hence, a more accurate value for Mult can be ob- 
tained and substituted in Equation (4.24) to find the final value of 

dp. h. This cycle of calculations can be repeated any number of times 

until exact values are'obtained for the first plastic hinge load and 
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the ultimate moment of resistance. However, as the axial force 

effect on the value of Mult is quite small, one cy cle of-'calculations 

is sufficient for accurate results. 

The second stage of failure, starts after the formation of 

the first plastic hinge as the suspended beam is still capable of 

sustaining more load in excess of dp. h* However, the structural 

system, as mentioned earlier, now behaves as a determinate one in its 

response to that load. Therefore, we can no longer use our previ- 

ously derived formula, for linear analysis, to calculate the extra 

amount of load, 6dult, required to bring about the complete failure 

of the structure. For this reason, the new structural system is 

analysed separately to determine its bending moments and change in 

the prestressing force, AHP, which result for the loading 66, Figure 

(4.7c). Thus, the value and position of the maximum moment can be 

determined for this case of loading and consequently, the required 

loading 66ult is evaluated when the total value of this moment, when 

added to that corresponding to the first plastic hinge load, reaches 

the ultimate moment of resistance for the beam cross section at its 

position, Figure (4.7d). In doing so, the effect of AH 
p must be 

included as well as the forces it generates as will be shown in the 

following section. Hence, the failure load dult is found as follows: 

0 
ult 

6 
p. h 

Ad 
ult 

(4.26) 

To explain the above procedure further, we give in the fol- 

lowing sections two examples for a general case of loading applied on 
the left hand span of an ungrouted and grouted T-shaped prestressed 

concrete suspended beams. 
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4.3.2 The Detemination of the Failure Loads f or a General Case of 

Loading Applied on the Left Hand Span of a T-Shaped Two-Span 

Ungrouted Prestressed Cable Suspended Beam 

Figure (4.7a) shows a general loading d which occupies the 

part of the lef t hand span that is bounded by the distances x pi 

and x -ý otl from the left end support. Clearly, the maximum absolute 

value of the bending moment, Ml, is expected to develop in the left 

hand span under the applied load. i. e. in the region pf 4x4 ott. 

Figure (4.7b) shows the bending moment diagram where the position of 

the maximum moment, Ml. is marked by the distance ri from the left 

end support. Thus, from Equation (2.80b) the value of M, can be 

found as follows: 

m" Ha in pA(l-r) 
(v+v 1) 

sin pr 
6 in pri cos pf(l-%) !;: i7'-n ýp , 

[s 
- Tf +-ý -13 11 

p2 sin pt 

[S 

sin pAO-r) cos ppf - sin pf p212 (cos ppi - cos pod) 
2(ý+ý pt sin pt 

- (ot 2_132 
sin prt + 

W(Y+P) in pri (1 P2 
(O+wO 

1) 
sin pri 

Ip2 

sin pf 

Is 
2 (ý+ý 1)2 

cos M10 - r) 21 (4.27) 

where p. ' p, Y, v19 ý, ýjv 0 and 01 can be determined from Equations 

(2.62) and (2.63) respectively. The distance rt can be calculated 
from Equation (2.80b), as follows: 

tan pr =I[6 
[COS 

pf(I-00 P2,2(cos ppi - cos pod) 
ot 

2 
-J3 

2 
K 2(ý+ý 1)I pt sin pi 

2 (v+v 1)-_ ý2 
(()+wO 1) 

p Ha W (y+p) (1 
2- (ý+ý ) 

)] - cot pi 

where: 

(4.28a) 
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K= sin )44 lo cos ppl -p2 Ha -W (y+p)] (4.28b) 

The first plastic hinge load 6p. h can be evaluated when 

undertaking a trial and error approach, as mentioned in the preceding 

section. We begin by assuming any value for the first plastic hinge 

load, dp. h and obtain the corresponding increase in the prestressing 
force Hpl, Formula (2.65). Consequently, the total prestressing 
force HI, the distance ri and the maximum bending moment M, can be 

evaluated by making use of Equations (4.25), (4.27) and (4.28) re- 

spectively. Thus, knowing the initial value for the-ultimate moment 

of resistance Multl. Expression (4.10), when the top fibre lies in 

the compression stress zone, it will be possible to find an initial 

value of the first plastic hinge load 6 p. h, Equation (4.24) and 
Figure (4.7b). Whence, we can use this value as a start for another 

cycle of calculations to obtain new values for Hp, and MI. Thus, the 

change in the prestressing force can be taken into account toýfind 

the ultimate moment of resistance Mult, which is subsequently com- 

pared with the maximum bending moment MI. No more than one, cycle of 

the above calculations is necessary to evaluate the final first 

plastic hinge load dp. h with sufficient accuracy. 

Having found the first plastic hinge load 6 p. h and the corre- 

sponding increase in the prestressing force Hpl, the total 

prestressing force, Hl, can be finally evaluated from Expression 

(4.25). The position of the second plastic hinge is obviously at the 
intermediate support where the value of the bending moment, M2, can 
be calculated when substituting x=t in Equation (2.80c), which 
gives: (see Figure 4.7b) 

H 
(v+v 1)6p. h I 2(cos ppt - cos pml) 

_ (ot 2_P2 
2 1, TT+-y , -2-6-y 

1 
pt sin pt 

w (y+Pj) (4.29) i Wýl 

2H1 
where Pý -f -I- , 
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H 
Pi 

H 
w 

and where the quantities v, vl, 1,0 and 01 can be computed from 

Equations (2.63). 

Figure (4.7c) shows the loads applied on the structure after 

the formation of the first plastic hinge, where we have Ad, which is 

the live loading exceeding dp. h, and the forces generated by the 

increase in the prestressing force, AHP. These forces are the end 

moments AH 
Pa and the upward distributed forces ApW and 6pWI applied 

in both left and right hand spans. The value of the prestressing 
force now affecting the structure is: 

H2 = H, + 6H 
p (4.30) 

Hence, to evaluate the increase in the prestressing force 

AHP, after the formation of the first plastic hinge, corresponding to 

the applied loads, we use Timoshenko's approach, (23), (25) and (26), 

which its general formula is: 

AH Sc = :ý !Lf 
Tj dx 

pH 
w 

where Sc can be determined from Formula (2.45) for an exact value or 
Formula (2.46) for an approximate one. Thus, from Appendix 26, we 

obtain the following expression: 

AH 
p=w 

661 2 [[2ot 
- (ot2_ 132) _I (r 2+P2 

ff 
w8c 

2p H2r 

r rt Cos )lt(l+X Cos L-- [w+(l-w) Cos pf 2+ 

sin pt Cos 
Prx 

12 

2 sin -ý 
I 

sin E1 (1-0 
_2 

2- [(I+X)[2ot (r 2+132), 
(lx2_132)] 

pf C, S 12 
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sin (2ot-r) - sin EI (2p-r) 
pt 2 (3-2ot) -p2 (3-2p)] +22 IOL 
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.2 
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LPW12 
[ cos P, (, +, _ 

r)4 sin PI 

-( OL-13 )- 
(1-0 

os pt - 2p H2 sin pt 1 

IC 
1 

Cos prl 
Ip212 

Cos pri 
22 

pf pt [cos pAU-0 -w tan 
"2l 

sin T(1-0] - 

Ii 2 sin 1L sin !! 
-(l-r) 22 

PA Cos 12 

1! 1 [ 12 (, +(j2X) + W, (wX2 - 30-01 
212 

pf 
11 

31 
AHa [2 sin ! L(1+2X) sin !! 

-(l-r) 
- (2-30] +w tan 

r--l [0-0 - 
4w p22 

222 pr H rt 
p2 sin pf cos ,'z 

12 

pf x tz 
sin i- Cos sin ý- sin E-0-0 

tan 2r -T --- _ 
20 + 1) 22 

2 pt 1 prt Cos prt 
cos -2 Cos 22 

[w tan (4.31) 

2 H2 
where )1 = EI ' 

W 
W 

AH 
isp p 

H 
w 

and where 

The new value of the moment at the intermediate support M3. 

Figure (4.7d), can be calculated from the following expression, as 

derived in Appendix 26: 
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2 
m= 

A(; x [2(x-«k 2_132 )-1 (r 2+P2 )] - 
Ap (1-r) (wri 2+ 2Hwa) (4.32) 

32r2r 

We notice from this equation that the axial, prestressing, force does 

not affect the value of the moment at the intermediate support. The 

reason for this is that, for determinate structures, secondary mo- 

ments, developed by the axial force, are solely due to the 

deflections of the system noting that there is no deflection at the 

intermediate support. 

To evaluate the part of the loading required to exceed the 

first plastic hinge load to cause the complete failure of the struc- 

ture, Adult. we first calculate the ultimate moment of 
- 

resistance, 
Mult2l for the cross section above the intermediate support. This is 

carried out by using the more accurate value of Hl, which is now 
known, instead of Hi in Expression (4.22). Hence, considering the 

condition for failure, which is the total value of the moment at the 

intermediate support to reach the ultimate moment of resistance, 

Mult29 Figure (4.7d), we obtain the following expression from Equa- 

tion (4.32): 

m 
ult2 

M2+M3 

which yields: 

Ad =A1+A2 AH (4.33a) 

where A, and A2 are the constants governing the failure condition and 

can be evaluated-from the following expressions: 

2 (M 
ult2 

m2) 
(4.33b) 

t2 [2oL - OL 2_J32 l (r 2+P2 
r 

A- 
(1-0 (Wrl 2+2Hw 

a) 
(4.33c) 2rH92 [2oL - ((x 2_P2 )-1 (r 2+P2 

wr 

and where M2 can be calculated from Equation (4.29). 
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We start by assuming a value for Ad and from Formula (4.31), 

we determine the corresponding increase in the prestressing force, 

AHP9 by using the successive approximations procedure described in 

Section 2.5.3.3. Hence, assuming that the relationship between Ad 

and 6H 
P 

is linear, we plot a straight line using the obtained AHp. 

and the point of origin, Figure (4.8). We also plot the other 

straight line relationship given in Equations (4.33)-between AH 
P and 

Ad. The point of interception between the two straight lines is the 

required value for Adult as shown in Figure (4.8). Whence, the 

failure load can be evaluated from Expression (4.26). A more, accu- 

rate result can be obtained,, when using the value of 6HPult, Figure 

(4.8), to calculate the total prestressing force at failure, Equation 

(4.30). This value can subsequently be used to determine another 

value for the ultimate moment of resistance, Mult2, as mentioned 

earlier. Thus, following the above procedure, the two straight lines 

can be drawn and the failure load can be obtained. 

The above procedure is a quick approximate solution to deter- 

mine the failure load dult* However, to determine the exact value of 
Adult, we continue assuming values for Ad and find the corresponding 

increase in the prestressing force 6HP9 from Expression (4.31), until 

the condition in Equation (4.33) is satisfied. In doing so, we may 

also calculate the new values of Mult2 corresponding to the obtained 

values of the axial forces. 

Formulae (4.24 - 33) can be used to determine the failure 

loads when a continuous uniformly distributed load is applied on the 
left hand span. This can be achieved by substituting (x =I and p=o 
in all of these formulae and then following the aforementioned proce- 
dures. Furthermore, the above formulae can also be used to find the 

failure loads for a concentrated load P applied on the left hand span 

at a distance ti from the left end support, Appendix 26. Clearly, 

the first plastic hinge will most certainly form under the applied 
load, i. e. r=t. Therefore, the maximum moment M, can directly be 

obtained from Equation (2.73a) as follows: 

M= Ha 
sin pf(l-t) 

1 
sin ptl 

t sin ptl 
sin pl(l-t) 1 sin pt p sin pt 
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p[ sin ptl 
_ t]] + 

W(y+p) 
sin ptl 1- )A 

2 (O+wO 1 

T(F+ -ij sin pi 14 
2 

sin pt -2- TqF+Tl -) 

-2 sin Ht' Cos 1! 1 (2-0 
221 

(4.34) 

We then apply the aforementioned procedure to determine the 

first plastic hinge load Pp. h with the only difference of using 

Formula (2.61) instead of (2.65) to determine the change in the 

prestressing force, Hpl. Thus, we obtain the moment, M2, at the 

intermediate support corresponding to the first plastic hinge load, 

Pp. h, as follows: 

(v+v 
1)pp. h sin ptl w 

(()+WO 
1) 

mHa TT- -t (y+p) (4.35) 2ý-1 +ýJ) + Teýjj 
( 

sin pt 
I- 

'ý WY 

Whence, the failure load can be determined, as before, by using the 

following formulae instead of Formulae (4.32 & 33): (full derivation 

is given in Appendix 26) 
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2 pt 1 Cos )Att 2 2p H2 
21 

Cos P10+1 -t sin pt 
(1-o r 
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122 

p12 sin 1! 1 
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sin Pl(l-t)] 
-22 22 

Cos pti 
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+ pf 12 (l+w2X) + wX [wX2 - 3(1-01 - (2-3t) +w tan 
pf 

61p2t212 
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31 
&1 a2 sin hI (1+2X) sin 1! 4 (1-0 4w p22 pti 

242 pt H2 
sin pi cos pti -+ tan 2- 

2t 

12- 

sin Elf cos 1! 1 (1+X-t) sin Et sin 1! t (1-t) 
22 2(1+X) 22 

p ptl 
pt I Cos Ptl 

cos -2 Cos 22 

[w tan (4.36) 

where H2 can be obtained from Equation (4.30). The new expression for 

the moment at the intermediate support, M3, after the formation of 

the first plastic hinge is given as : (Appendix 26) 

m= APM-t) - 
Lp (, _t)(Wt, 

2 
+ 2H a) (4.37) 

3 2t w 

and the condition for failure is as follows: 

m 
ult2 

M2M3 

which gives: 

AP =A1+A2 08H (4.38a) 

where A1 and A2 are constants which can be evaluated from the followinz 

expressions: 

(M 
ult2 

m2 
(4.38b) M-0 

Wl +a (4.38c) 2 2H ti w 

where Mult2 and M2 can be evaluated from Equations (4.22) and (4.35) 

respectively. 

Finally, a similar approach can be adopted for the determina- 

tion of the failure loads of any type of loading applied in the right 
hand span. 
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4.3.3 The Determination of the Failure Loads for a General Case of 

Loading Applied on the Left Hand Span of a T-Shaped Two-Span 

Grouted Prestressed Cable Suspended Beam 

Figure (4.9a) shows a general loading 6 which occupies the 

part of the left hand span that is. bounded by x= pt and x= mi from 

the left end support. The figure also shows the forces which result 

from combining the dead loads, W and WI, of the beam with the forces 

and moments produced by the initial prestressing force Hi as well as 
its increase HP, due to the applied general loading 6, in both left 

and right hand spans (see description of forces in Section 3.1). 

For the case of loading shown, the maximum absolute bending 

moment M, is, again, expected to develop under the applied loading at 

a distance ri from the left end support, Figure (4.9b). Thus, M, can 
be evaluated from Equation (3.42c) which gives: 

H. a (v+v ) 
+I in pt(l-r) 

I 
sin pri sin pri sin pt 

[s 
Wtl )Ip2 

sin pf 
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Wý 22212 

11p sin pt 
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(T T 
cos pgI sin pl(l-r) - sin pi 
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sin pri C( sin pgt I 
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where p, p, H, v, vl, ý, ý1. e and 01 can be evaluated from Equations 

(2.62) and (2.63) and where v,,, vgl, 09 and eg, can be determined 

from Equations (3.22). g and g, can be defined as the ratios of the 

grouted lengths to the span lengths at left and right hand spans and 

can be evaluated from Equations (3. '1). Moreover, C and C, are the 

slopes at the ends of the free ungrouted parts of the main cable at 

the left and right hand spans and can be evaluated from Equations 

(3.2). 

The distance ri, can be determined by making use again of 

Equation (3.42c), which yields: 

tan pri 6 Cos PIU-00 - W(Y+P) -p[ 
It [ 2(cos ppl - cos pott) 

4+ýl 2 pt sin pt 

- (OL 2_P2 )] -W [y(E)+wO, ) + p(08+wOgl)] -Hia (v+v 1)-Hp 

c[ sin vigg Cl 
sin p, -, ltl 

_S sin pt sin pt 1"1 

11 
+HpZI (v 

g 
+v 

gl cot pt 

(4.40a) 

where: 

K= sin pt 6 Cos ppi - W(y+p Cos p2Hia- pCH p sin pgA +p2HpZ 

(4.40b) 

We then apply the aforementioned procedure beginning by 

assuming a value for the first plastic hinge load dp. h and obtain the 

corresponding increase in the prestressing force Hpi, Formula (3.25). 

Hence, the maximum bending moment M, can be evaluated as well as its 

distance, ri, from the left end support, Equations (4.39) and (4.40). 

Thus, knowing the ultimate moment of resistance, Multl, at this 

position of the beam, the initial value for the first plastic hinge 

load can be obtained, Equation (4.24). Whence, we can repeat this 
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scheme of calculation once more to evaluate more accurate values for 

HP, and M. 1t, until the value of the maximum moment, Ml, is precisely 

equal to Multl- 

Having found the first plastic hinge load, dp. h, and the 

corresponding increase in the prestressing force, HPI, we hence, 

calculate the final value of the total prestressing force, Hl, Equa- 

tion (4.25). Whence, the corresponding bending moment M2 at the 

intermediate support is found when substituting x=I in Equation 

(3.42d), which gives: 

1 p. h 2(cos ppi - cos pod) 22 yW m H. a -+- pt sin pt 
OL -13 2 21 Wýl ) 2(ý+ý 

1)I 

(O+WO 
1 plw (E) 

g 
+we 

gl 
HpC( 

sin pgt +C 
sm pg 111 

TF+ ý -1) 2 (ý+ý, ) ý+T-J) sin pt 9) 11 sin pt 1 

+HZ 
(v 

9 
+v 

91 (4.41) 
p1 WY 

2H1HWI 
where Pý fj- P1 =H -pi and wW 

w 

and where the quantities v, vl, ý, ý,, 0,01, Vgs Vgl, 09 and 0.1 can 

be evaluated from Equations (2.63) and, (3.22) respectively. 

The structure changes, as mentioned earlier, to become a 
determinate one in its response to the load Ad which exceeds the 

first plastic hinge load dp. h* Furthermore, the forces generated by 

the increase in the prestressing force AHP, after the formation of 
the first plastic hinge, are affecting the new structural system, 
Figure (4.9c). These forces are the partial upward uniformly dis- 

tributed forces, ApW and LpWl, which are applied in the ungrouted 

regions, gt 4x4t and g, 4 x, N< 11, and the concentrated moments 
6H 

P Z, in the left and right hand spans respectively. Z, can be de- 

fined as the distance between the top fibre and the line of centroid 

of the T-shaped cross section of the beam. In addition, we have the 

new value of the prestressing force, H 2, affecting the system where 
H2 can be evaluated from Equations (4.30). 
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We now determine the value of the increase in the 

prestressing force Mp for the case of loading shown in Figure 

(4.9c). In doing so, we once more make use of Timoshenko's Formula, 

(23) (25) and (26), where: 

6H 
p=1wf il dx 9 

cf 
Hw 

in which 8cf can be evaluated from Formulae (3.19) or (3.20) for an 

exact or an approximate value. Hence, from Appendix 27, we have the 

following expression: 

AH w A61 2 
[2oL - (ot2_02) (r 2+132), 

pý Nw- Scf Tp- H2r 

Cos )4t(l+X- r)- Cos Er I [w +(l-w) Cos pt I 1+ )II 

sin pi cos pri 
12 

2 sin 
" 

sin -ý-1(1-0 
+22- [(l+X)[2ot -I (r 2 

+p 
2 (ot 2_P2 '01 

Cos 
6 

2 

222 sin -H 
I (2ot-r) - sin 

"(2p-r) 
lot (3-2N) -p (3-2p)] +22 (ot-P) Tt 

pt Cos prt 
2 

2 Cos pM+X-. K) 
1-0 (r-g) 

Cos pt - 
2' 2r 

2 rp H2 sin pt 11C., ý-rj 2t2 
2 

II 
sin ý (r-2g) sin ! L(2-r) (Cos pg Cos pf 2-+2 2w 1 

sin pt 
Cos pri Cos prt sin pt cos prt 2 

2212 

P91 112 
sin sin 2 

sin 
22 sin ! L(l-r) +2 w2 

1 Cos Cos 22 
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[(r-g 2 Xr(l-r) + wrX 
2 

(1-g 2) 
+ lit [ 12r 

+ w2X 1 6- 
p212 

+3 (1+wX)(r 2+g2 
r [2+3wX +g2 [3(2+wX) - 2g] -w2x3 [1-3g 2 

1 

2g 3+w (1-r)(r-& 2) 
tan +2 

AH 
pc 'Oct (1-0 

122H sin pi 2r 

cos pi(, +X_ r sin pgt 
2 [O-W) Cos pt 1+W2 sin pf 

Cos pri Cos pri 
22 

sin pt 22 
sin -H 

x (r-g) g (1+X-r) 2 
sin pt (1-0 -pI 2 IT 

Cos pri 4r 
2 

in 1! 1 
sin ý1 (1-0 p212 

+ cl 22 
llrx sin pg It1- 91 sin )it, ) +W -7 

1 
910-gi 

sin )4t 1 Cos 2 

P91 11t tz 
sin pi in E sin ý-O-r) 

21 2(1+1) s22 
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sin 2 (1-gi +pH21 prt I Cos ýrl 

Cos 22 

tt tl(l 
sin -H (r-2g) 2 sin E cos pg t sin )lt(l-r) sin 

L 
-2g 

+22112+W2 
Cos prt sin pt cos prt pt 1 212 Cos 2 

2 sin 1! 1 (1+2X)sin 111(1-r)+sin pt sin E-rl +w cos Prl (1-co, PI (1-0 22122 
-1 r sin pt cos pre 

12 

[1-2r(I-g) + wX (1-2r(I-g (4.42) 2r 

where P2 =H2 and Ap = 
AH 

EI H 
w 
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and where g, gl, C and C, can be evaluated from Equations (3.1) and 

(3.2) respectively. 

From Appendix 27, the value of the moment at the intermediate 

support M3, after the formation of the first plastic hinge, can be 

computed as follows: (Figure 4.9d) 

Ldl 2 2_ 2122p O-r) 22 
m= [2ot - (ot p- (r +13 

L [WI (r-g + 2H (C91 -Z 32r2rw 

(4.43) 

Thus, as before, considering the condition of failure for the struc- 

ture, which is the total value of the bending moment at the interme 

diate support to reach the ultimate moment of resistance Mult2l we 
find the following expression: (Figure (4.9d)) 

Mult2 ý M2 + M3 

which yields. 

66 = A, + A2 46HP (4.44a) 

where A, and A2 are constants governing the failure condition and can 

be obtained from the following expressions: 

2 (M 
ult2 

m2 
A, 2 Pot - ((x 2_P2 1 (r 2+p2) (4.44b) 

r 

22 

A 
(1-r)[W, (r )+2Hw (Cgt -Z 

(4.44c) 2rH12 [2ot OL 2_132 )-1 (r 2+P2 
wr 

where the more accurate value of Mult2 can be evaluated from Equation 

(4.22) when replacing Hi by Hl* 

Hence, as mentioned earlier, we assume a value for Ad and, 
from Expression (4.42), find the corresponding increase in the 

prestressing force AHp. We then use these values to plot a straight 
line from the origin point which intercepts the other line drawn from 
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Equations (4.44), Figure (4.8). The point of interception gives the 

approximate value of the load Adult required to cause the collapse of 
the structure. Consequently, the failure load dult is: 

dult ý dp. h + Adult 

Alternatively, an exact value for the failure load dult can be ob- 
tained when we continue assuming values for Ad and find the corre- 

sponding 6H 
p and Mult2l until the condition in Equation (4.44) is 

satisf ied. 

Formulae (4.39 - 44) can be used to determine the failure 

loads for uniformly distributed and concentrated loads applied in the 
left hand span by performing the aforementioned modifications,,, Sec- 

tion 4.3.2. Furthermore, for loads applied in the right hand span, a 

similar approach can be adopted to find their failure values. 

4.4 Comparison between the Behaviour of Ungrouted and Grouted 

Prestressed Concrete Suspension Bridges at Failure 

From Section 4.3, it is obvious that the main cable behaves 

elastically (linearly) up to the formation of the first plastic 
hinge, as it steadily increases its tension, due to the applied live 

loading, according to the Formulae derived in Sections 2.5 and 3.4. 

Thereafter, the cable response to the increase in the live loading 

remains linear but at a much faster rate, Formulae (4.31) and (4.42), 

as a result of the loss in the stiffness of the structure due to the 

plastic hinge. Consequently, the forces generated by the increase in 

the cable tension will also increase and thereforet contribute sig- 
nificantly to the overall resistance of the suspended beam to the 
failure loads. Furthermore,, the ultimate moments of resistance of 
the beam cross section at the different positions will increase as 
well, resulting into an additional improvement in the beam strength. 

It has been established that grout increases the interaction 
between the main cable and the suspended beam. Consequently, we 
would intuitively expect grout to also improve the performance of the 
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suspended beam when failure load is applied. This has been clearly 

demonstrated during the test to failure stage of the experimental 

work. Figure (4.10) shows the relationships between the increase of 

the cable tension Hp and increasing concentrated loads P which have 

been applied in the mid-points of the left hand span of the ungrouted 

and grouted test beams. The figure clearly indicates the relatively 

slow increase in the cable tension, before the formation of the first 

plastic hinge, which is followed by a sharp rise, for both types of 

beam. The figure also shows that the grouted test beam gained more 
force than the ungrouted one all through the range of loading. 

Consequently, the former failed at a higher load than the latter. 

Furthermore, less bending moments, deflections and shear forces have 

been measured for the grouted beam, see experimental results. We 

therefore, conclude that at failure, grouting improves the interac- 

tion between cable and beam which results in a more rigid structure. 

195 



Ha Ha p(x) 

-- ultl 

The failure stages of a prestressed concrete 

concrete Suspended beam 

Figure 

196 

(Y+P) WýI. II "i 



Moment 

ult 

load 

ult 

The assumed load-curvature relationship for the beam 

Figure (4.2) 

stress 

Strain 

The assumed stress-strain relationship for the reinforcerp-ent 

Figure (4.3) 

197 



CN 

4.3 
r-4 

44 

CN Ire) 

N 
CN 

if ;4 

1-4 
i 

.X 

A 

z 

,Zz k7zz z -4 

,Zz TZ 

I 

T 
1 

Iz 
z '1 

,a 

r. 

$4 
4. ) 
U) 

E-4 

ra 

En 

4-J 
Ul 

E-4 

r: 3 rd 

CD 
4 
41 

4-4 
0 

z 
0 

., j 
4J 

U) 

En 
En 
0 
H 
u 

E-f 

-a 

13 

cl) 

198 

r-q N 

44 
En 

44 
U) 

44 

-1 * C*-j m 
in 0 En -. 4 ul 



stress (Nlnm 
2) 

2f ult 
3ym 

stress = 5500 x strain 
4125 

2 

_\_ --- 

ssool ult 
.m 

0 

NIMM 
2) 1 

C 
0 

0.0035 

The stress-strain relationship of the concrete 

Figure (4.5) 

strain 

strain 

199 



>1 
w 

to 
Cýn 

r=; 
(Tj 

ra 

(a 
ý-j 
4-) 

E-1 

a 

(0 
4. )l 

r 
., I 

r-q =: rci 

cn 
U) 

C, 4 a) ý4 
41 
U) 

E-4 

44 

1.4 

LI 

z '4 

1-1 CN 
En 

U 

lz z 

z 

zz 

OZ 

i? 

I 
I 

E 
(0 

41 

44 

0 
., j 
4-J 
U 
0) 
Eaý 

U) 
U) 

E-4 

200 

(N m6 >4 m En 44 44 44 

r-I C14 m 
ul U) ul 

;4 
r-I 



at N. 
cr 

-I-- 
�- 

Pu- 

Ha 

'I 
Ell It T-A 

(Y+P) -w (Y+P) w1x 

r9,0 

1a 
Ha 

N".: z m 
ultl 

(a) 

�___ 

(b) 

AH 
pa Acr 

Apw 

ý-- r9.9 ! 

AH a 
pA 

(d) 

The failure staces of an unqrouted prestressed concrete susDended 

beam 

Figure (4.7) 

APW 
1 

(c) 

H1a 

Ha 

AH 

(M 
ult 

m2 

AH a 

201 



Aa 

Acr 
ul 

The assumed 
value for Aa 

11 

Approximate method for the determination of the 

load reguired to exceed the first plastic hinge 

load for the failure of the structure 

Fiaure (4.8) 

Ali 

202 

The calculated AH 
pult AH 



HH 

at CH 
ý9, -, bH 1pHa 

H. a p01 
HZH HZ T) H 

pw 
x 

yw 

x PW 
gi zlk- 

(a) 
m 

rk 

H. 
1 

AH Z Lcr AH Z 
r% 1m1 

H2 

Hi 

H 
-4 

Cc) 

(m 
ult2 

m2 

(d) 

The failure stages of a grouted prestressed concrete suspended beam 

Figure (4.9) 

203 

"ultl 
(b) 

-1 %-"n pC AH 
14 rk 01 



H. +H 
Ip kv 

2136 

178o 

1424 

2 
p4 
ro 
(0 1068 ß 

712 

356 

H +H 
4- 

increase in the prestressing force H 
Ip The grouted test beam 

The ungrouted test beam 

The effect of arout on the increase in the prestressina 

force at failure 

Figure (4.10) 

204 

25o 500 750 1000 1250 1500 



CHAPTER 5 

The Influence of Time Effects on the Magnitude of the 

Prestressing Force 

5.1 Introduction 

Efficient design of prestressed concrete suspension bridges 

requires the prestressing force to be such that the upward forces' 

exerted by the main cable on the suspended 'structure, via the 

suspenders, exceed on the whole the self weight of that structure. 

The reason for this can be deduced, as mentioned earlier, from the 

W1 2 
fact that a prestressing force equal to H g-f , will exert upwards 

forces W and W1 in the left and right hand spans, Equations (2.12). 

These forces are exactly in balance with the dead loads at those 

spans. After a period of time the magnitude of the prestressing 
force will most certainly diminish below the value of Hw due to time 

effects such as shrinkage, relaxation and creep of the various parts 

of the structure. Consequently, the upward forces will also decrease 

to a value less than W and W, for both spans and the suspended 

structure will deflect under its dead loads alone. 

For the above reason, the magnitudes of the initial and final 

prestressing forces have been assumed to be Hi and Hf respectively, 

where from Equations (2.36) we have: 

Hi = Hw (1+y) (5.1a) 

Hf = Hw (1+T) (5.1b) 

y>T (5.1c) 

y and -r are factors used to increase the value of the prestressing 
force to ensure that it remains higher than RW after the time effects 
take place. These factors have also been used to adjust precisely 
the magnitude of the initial prestressing force in a way which cause 
the suspended beam to operate in the most economical and efficient 
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manner, see Section 2.4. The main purpose of this chapter is to 

establish a relationship between y and T to enable the designer to 

choose the correct value for the initial prestressing. force. 

It is essential to keep in mind that time effects on the 

magnitude of the prestressing force of prestressed concrete 

suspension bridges, differ significantly from the corresponding 

problem for conventional prestressed concrete structures. This is 

due to the contribution to the analysis of the cable upward forces on 
the suspended beam as well as the forces in the suspenders and the 

tower. Therefore, special considerations are required to evaluate the 

loss in the prestressing force due to time effects for our type of 
bridge. Subsequently, we will give a comparison between the losses 

in the prestressing force for conventional prestressed concrete 

structures and our type of structure. 

Early research was undertaken in this field by the inventor 

of prestressed concrete . suspensions bridges, Vandipette, (33) and 
(34). However, his theory was developed solely for three-span 

prestressed concrete suspension bridges and therefore, it was 

necessary to modify his work to suit two-span bridges. It is 

convenient to start this chapter by defining some of the quantities 

which will be used in the analysis as follows: 

CS is the shrinkage strain of the concrete of the suspended beam 

occurring after prestressing is carried out. It can be 

evaluated experimentally but may be assumed to be 0.0001 if 

the concrete is several months old at the time of 
prestressing in a moderate climate, (34). 

E 
-is the final value of the modulus of elasticity of the 
concrete for loads of very long duration applied after the 

prestressing operation. In other words, the strain 
instanteously produced by a constant compressive stress fC is 
f 

C 
E_ , but increases with time due to creep, and its final value 

qf c- is E-- , where # is supposed to be independant of fc. It may 
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be-determined experimentally or assumed to be in the order of 

2.25 to 2.75 for good quality concrete, depending on its age 

at prestressing time, (34). 

Ic is the creep strain of the main cable under the average 

H. 
permanent working stress -1 sustained in the structure. In A 

c 

other words, the magnitude of strain produced by this constant 

H. 
stress is AE, 

but it gradually increases slightly and its 
cC 

H. 
final value becomes I (1+jc). #c can be determined exper- AE 

CC 

imentally or assumed about 0.01 to 0.02 for cables'made up of 

0.01 to 0.02 for cables made up of parallel galvanized wires 

of good quality with a working stress equal to, or slightly 

exceeding, half of their ultimate strength, (34). 

E 
su is the final value of the modulus of elasticity of the suspenders Vs 

under the average permanent working stress as affected by creep. 

Is may be obtained experimentally or assumed as 1.0 for 

suspenders made of solid steel bars or 1.30 for strands', 
(34). 

L is the average loss in the prestressing force and, L=!:: " 
J+y 

5.2 The Defomability of the Superstructure 

Clearly, time effects only take place for loads of very long 

duration applied on the suspended beam after prestressing is carried 

out. Therefore, we will only consider the combination of the dead 

loads, W and Wl, and the forces produced by the initial prestressing 

force, Hi, in this analysis, Figure (5.1a). The resultant of these 

forces are yW, yWl and the end moment, Hia in the left and right hand 

spans as shown in Figure (5.1b). 
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Due to the fact that the suspended beam is a once indetermi- 

nate structure, the deformability of its different parts, due to the 

loads shown in Figure (5.1b), is evaluated by adopting a similar 

principle to that used in the determination of the increase of the 

cable tension by Steinman's approach, (20) and (21), (Section 2.5.2). 

We imagine the cable to be severed at a section close to one of its 

anchorages, Figure (5.1a). Due to the action of the applied loads, 

the two cut ends would be separated by some horizontal distance S. 

This gap can be defined, according to Castigliano's first theorem 

(2), as the derivative, with respect to Hi, of the internal energy 

n stored in the superstructure. Hence, similarly to Equation (2.41), 

we have: 

8= Sbm + Sbn + Sc +8s+6T 

which can be rearranged as: 

H. I 
[rb. + rb +r+r+ rT (5.2) 

ncs 

H. I 
where rrr, r and r represent, in terms of --L , the bm' bn' csT EI 
gaps generated by the bending moments of the beam, the direct forces 

in the beam, the main cable, the suspenders and the tower respec- 

tively. EI can be defined as the flexural rigidity of the suspended 

beam. 

Hence, by making use of Formulae (2.43 - 47), the above 

quantities can be directly evaluated for the loads shown in Figure 
(5.1b). Thus, the gap Sbm, produced by the bending moments of the 
beam can be obtained from Equation (2.43) which gives at H= Hi: 

H. 9 
1 rbm bm EI * 

=1 (1+X) ý f2 (1+w 2x5 
(f e_3 a) (f e+1 a) (5.3) rbm -5 

[5 
(1+X) 121 

in which: 
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f is the cable sag at the left hand span and equal to 
W12 
8H 

w 
a is the eccentricity at the ends of the main cable-from the centre 

line of the beam, 

x41v 

Wi 
U=� 

l+Wx 
an e= -- 1+X . 

The gap Sbnq developed by the normal (prestressing) force in 

the suspended beam, can be directly evaluated from Equation (2.44) at 

H= Hi. which yields: 

H. £ 
r bn bn EI 

(5.4) rbn 

The gap Scl generated by the tension of the main cable can be 

directly calculated from Equation (2.46), at H= Hip for ungrouted 
cables, as follows: 

EI 

r= EI ,+X+3 
(F+4n) 2 

[4X2(1+X) + 3iX 
3n2 

(l+W 2X) 
+'iF+4n) 

2 
cAcEc1813 

n2 [5(1+,. )2X3) + 12n 2-(, 
+w4X5)] (5.5) 51 

where Ac and Ec are the cross sectional area and Young's modulus of 

elasticity for the main cable respectively, 

is the slope of the main at its left hand end where 

F h+a-4f 
I 
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h is the height of the tower above the centre line of the 
beam, 

and where n 

For grouted cables, the gap Scf, produced by the tension in 

the free ungrouted part of the cable can be determined by using 

Equation (3.20), at H= Hi, which gives: 

H. X 
'r 

cf EI cf 

r EI (F+8n)[2+(F+8n) 21-C (2+C 2)+1 [(F +8n ) 
cf 16nA E1w11 

[2+(F +8n 
2] 

-C (2+C 2 (5.6) 

where (F+8n) and (FI+8n, ) are the cable slopes at the top of the 

tower in the lef t and right hand spans 

respectively, 

h+a-4f 1 
A1 

fl is the cable sag in the right hand span, 

C and C, are the cable slopes at the ends of its f ree ungrouted 

part in the left and right hand span and can be 

evaluated from Equations (3.2). 

The gap, Ssj. caused by the forces in the suspenders can be 

found from Equation (2.46a), at H= Hi. as follows: 

H. 1 
1 

EI 

r= 64 EI f2[_. I__ 2 JS + 
w2d, 

lsl] (5.7) 
SE SU 45A SU 

A 
Sul 
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where Esu is Young's modulus of elasticity for the material of 

the suspenders, 

d and dl are the spacings of the suspenders in the left and 

right hand spans, Figure (5.1a), 

Asu and Asul are the average cross sectional areas for the 

suspenders in the left and right hand spans, 

and where 2 1. and ý ls, are the sum of the lengths of the 

suspenders in the left and right hand 

spans and can be directly evaluated from 

Equations (2.46b and c). 

Finally, the gap STI produced by the force in the tower can 

be determined from Equation (2.47), at H= Hi, which gives: 

H. 1 
9, rT T EI 

EI [(F+8n) + (F +8n )] 
2 

rT ýATET (5.8) 

where AT and ET are the average cross sectional area and Young's 

modulus of elasticity for the tower. The tower 

material is usually concrete. 

It is worth mentioning that, for simplicity, the contribution 

of the secondary effect produced by the axial force, Hi, to the 
total value of the total gap 8, was ignored in this analysis. 
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5.3 Relative Displacements of the Ends of the Severed Cable due 

to Time Effects 

5.3.1 Discussion 

We now study the relative displacement of the imaginary cut 

ends of the cable which would gradually occur due to each time effect 

taken separately. The main reason for the development of these 

relative displacements is the gradual decrease of the initial 

prestressing force Hi, applied at the cut ends (Figure (5.1a)), until 

it reaches the final prestressing force Hf. 

Hence, in this section, we will consider, separately, the 

shrinkage of the concrete of the suspended beam, the creep 

contraction of the axis of the beam and the tower due to the applied 

axial forces, the relaxation of the main cable and the suspenders due 

to creep and the creep flexure of the suspended beam. 

5.3.2 Shrinkage 

Shrinkage of the axis of the suspended beam alone produces an 

overlap 61, at the cut ends of the severed cable, given by: 

A, = (l+1) x es (5.9) 

11 
where X 

5.3.3 Creep Contraction 

The immediate contraction of the axis of the suspended beam 

H .1 
generated by the prestressing operation 

3. r. After a period is li-I bn 

of time, the beam finally shortens a total amount 
Hit 

(as the EI 1r bn 

final value for the modulus of elasticity becomes section 5.1). 
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Consequently, the overlap A2 due to creep contraction is: 

AHf9-H11 r 
EI 1 bn EI 

rb. 

Substituting for Hi and Hf from Equations (5.1), we finally obtain: 

HI 
Awr [(V-1)*+ VT - y] (5.10) 

2 EI bn 

where rbn can be evaluated from Equation (5.4). 

Similarly, the immediate contraction of the tower axis generated 
H. I 

by the prestressing operation is Ir, Equation (5.8). After a period EI- T 

of time, the final value for this contraction becomes fr (providing EI T 

that the tower material is concrete) . Thus, the final overlap A3 can be 

evaluated as: 

HX 
w rT [(*-1) + *T-YI EI 

where rT can be computed from Equation (5.8). 

1 

5.3.4 Relaxation due to Creep 

Since the elongation of the main cable under the initial 

prestressing force Hi instantaneously produces a total gap 
HA HA 
-Ir for ungrouted cables and -1- r for grouted ones, the EI- c EI Cf 

overlap A4 studied here is: 

HftH. t 
(1+# )r'r 4 EI c C. EI c 

Substituting for Hi and Hf from Equations (5.1), we find for ungrouted 
cables: 

Hi 
-22- r T-y] EI cc 

where the final value of Young's modulus of elasticity of the main cable 
E 

c is 0+1 
c), 

(Section 5.1) and where rc can be evaluated form Equation (5.5). 
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A similar expression can be written for grouted cables as we 

replace rc in Expression (5.12) by rcf to find the overlap produced 

by the relaxation of the free ungrouted part of the cable. The term 

rcf can be determined from Equation (5.6). 

For the suspenders, their elongation due to the initial 

H. I 
prestressing force would produce a total gap Ir which becomes equal 

HI EI s 

to 1f #sr after a while. 
' Thus, the overlap A produced by the Is5 

relaxation of the suspenders due to creep is: 

H9 
65 wr T-Y EI ss 

(5.13) 

where the f inal value of Young Is modulus of elasticity f or the suspenders 
E 

is -I , Section 5.1, and where r can be evaluated from Equation (5.7). 
#S s 

Expression (5.13) slightly over estimates the overlap 65, for 

we calculated rs on the assumption that the full force in the cable 

induces tensile forces in the suspenders, Section 2.5.2.2. However, 

part of the actual tension of the cable, Hi or Hf, serves to carry 
its own weight and does not stress the suspenders. This error is 

almost negligible providing that the spans are not very long and the 

cable is not too heavy. Nevertheless, Expression (5.13) can be easily 

w 
corrected by' multiplying it by the correction factor [1 -Wc 

av 
where wC is the weight of the cable and Wav is the average dead load 

of the suspended beam, W 
W+W 

av 2 

5.3.5 Creep Flexure of the Suspended Beam 

Similarly, to the aforementioned procedures, the gap 

H. I 
immediately produced by the prestressing operation is --I- r. After EI bm 
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a period of time, the final value of this gap becomes f, Thus -ffI- I 'r b 
the overlap A produced by creep flexure of the beam is the difference 6 
between those gaps which yields: 

Ht 
w 

-Y] (5.14) 
EI 

rbm 1(1-1) + 'T 

where rbm can be calculated from Equation (5.3). 

Having found the different overlaps produced by time effects, 

we can now find a relationship between T and y as shown in the 

following section. 

5.4 The Relationship between T and 

To find this relationship, we have to consider the fact that 

there is no gap in the real structure, neither immediately after 

prestressing nor at any time afterwards. This is because the 

prestressing force varies in such a way that the imaginary cut ends 

permanently remain in contact. Therefore, the final value of the 

prestressing force Hf is precisely governed by that condition. 

Whence, we may write: 

6 
ý 

n=l 

I 

which yields, from Formulae (5.9 - 14): 

H1HX 
+ -22- 

wr 
EI 

[r 
bm + rbn + rT][(1-1) + 'T - yl + EI 

H9 
+ ý, 2 r r-y EI sss1 

Rearranging this equation, we obtain the relationship between T and y 
for ungrouted cables as follows: 

Gy -D 

where G= 
(r bm+ r bn + rc + rs 

r bm r bn +r T) 
(1+v, ) rcsr 

S] 

(5.15a) 

(5.15b) 
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I rrr+ *crc + (vs-1) r+Lc. (1+x) bm + bn T) sHs 
and D=w> 

IV (rbm + rbn +r T) + (1+v,, ) rc+#. rs] 

(5.15c) 

For grouted cables, this relationship can be determined by simply 

replacing rc by rcf in Equations (5.15). 

Expression (5.15a) gives an approximate linear relationship 

between T and y where G and D are constants as shown in Figure (5.2). 

These constants can easily be computed by using Formulae (5.3 - 8), 

provided, of course, that the properties of the materials, esp V, Vc 

and V., are known or assumed. Thus, as mentionedAn Section 2.4, we 

select a value for T and find the corresponding y, from Equations 

(5.15). Then, we check the value of y to comply with the condition 

(2.38b) to ensure that the stresses of the beam, at the initial 

prestressing force, are adjusted for maximum efficiency. The average 
loss, -L, in the prestressing force can then be evaluated as: 

L= Y-T 
J+y 

Figure (5.2), Expression (5.15). shows that at y=o the 

value of T becomes negative. This means that, as mentioned before, 

if the initial prestressing force is such that the forces acting 

upward on the suspended beam are exactly in balance with the dead 

loads, the beam will, after a while, deflect below its unstressed 

shape under the dead loads alone. For this reason, the minimum value 

of y must not be less than Ymin where: 

rrr+ icrc + (is-1) rs 
EI 

bm + bn + T) +H Es 

Yminm r+r+r+ 17 bm bn cs+ 
rT) 

The average loss in the prestressing force for ungrouted 

suspended beams is found to be higher than for the grouted ones. The 

reason is that grouting restrains the main cable and makes it less 
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likely to lose its force due to time effects. This represents 

another advantage for grouting prestressed concrete suspension 

bridges. 

Finally, it is worth mentioning that the average loss in the 

prestressing force decreases with the increase of the span length as 

can be deduced from Expression-0.15). This is due to the fact that 

for long spans, the flexibility of the suspended beam increases and 

consequently any loss taking place in the prestressing force would be 

lesser than for a more rigid form of structure. 

5.5 Comparison between the Losses in the Initial Prestressing 

Force for Conventional Prestressed Beams and Prestressed 

Concrete Suspended Beams due to Time Effects 

To achieve the benef it of the comparison, we consider a 

post-tensioned two-span conventional prestressed concrete beam with 

its tendon on the line of centroids. The initial prestressing force 

is denoted by H which, af ter a period of time, reduces to become H 

(1-L). Here L is the average loss of the prestressing force due to 

time effect. 

If the tendon is imagined to be detached from one end of the 

concrete beam, the time effects, as before, will cause the following 

gaps between the end of the beam and the end of the cable: 

1. due to shrinkage, we have: 

A, = (1+X) 4 es. 

2. Due to creep, the relaxation of the tendon produces the 

following gap. 

ä2ýAHE (1-L) (j+I 
c)(, 

+X) -AHE(, +x) 
cccc 

A2ýAHE(, +X) [ec - (l+# 
c) cc 
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3. Due to creep contraction of the beam, we have: 

HI I 
A O-L) # (1+1) -L (1+1) TE- AE 

A HI (1+X) [(V-l) - VLI 3 K-E- 

and the f lexure of the beam does not cause any gap in this case. 

Even if the tendon was assumed to have an eccentricity f rom the 

centre line, the value of the gap caused by f lexure would be very 

small. 

As there would be no gap in the real structure, we may write: 

3 
ýAn 

n=l 
which yields; 

Cc [c +H+ #Cl HAEs TE- 
(5.17) 

cc+1+ VC] 
AE 

This equation immediately gives the average loss L in the 

prestressing force due to time effects. 

The working stress in the tendon of a conventional 

post-tensioned beam is normally much larger than half its ultimate 

strength. Consequently, the value of Vc would be higher than for a 

prestressed suspended beam, Section 5.1, when its main cable is made 

up of parallel wires. This means that the average loss in the 

prestressing force is always higher for conventional prestressed 

beams than for the suspended ones. Even when identical values of csl, 

# and Vc are introduced in Expression (5.15) and (5.17), the average 

loss, L, of prestress turns out to be smaller for a prestressed 

concrete suspended beam than for a conventional one. This is because 

the former system is less rigid than the latter. For this reason, the 

average loss of prestressing force L in a prestressed concrete 

suspension bridge decreases with an increase of the span length. 
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CHAPTER 6 

Construction of Prestressed Concrete Suspension Bridges 

6.1 Introduction 

The construction of this type of bridge shares many of the 

characteristic features of the construction of both ordinary steel 

suspension and conventional prestressed concrete bridges. For 

example, the suspender connections with both the main cable and the 

suspended beam are virtually identical to those used in conventional 

steel suspension bridges. Moreover, the type of anchorages installed 

at the ends of the prestressed cable suspended beam are the same as 

those used for conventional prestressed concrete beams. For this 

reason, -we will concentrate, in this chapter, on the special features 

of the construction procedures of prestressed concrete suspension 

bridges. 

As mentioned earlier, only four three-span prestressed 

concrete suspension bridges have been constructed, these in the 

vicinity of Gent, Belgium, which is the home of the inventor of this 

type of bridge, Vandepitte, (30) - (36). These bridges represent 

virtually all ranges of application as they have short, medium, long 

and fairly long spans. However, to the best of this writer's 

knowledge, no two-span prestressed concrete suspension bridge has yet 
been constructed anywhere in the world. Nevertheless, it is 

reasonable to believe that there is no significant difference between 

the construction techniques needed for two and three-span prestressed 

concrete suspension bridges. 

Here, we give a brief description of. the construction of two 

of the four already built three-span prestressed concrete suspension 
bridges, (32). These two bridges have been selected from the short 

and long span ranges, in order to demonstrate the construction 

procedure as well as to stress the advantages of using this type of 
bridge in each range of span length in a more practical manner. 
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Furthermore, we will also describe a new technique of prestressing 

two-span bridges by means of shortening the suspenders to develop the 

initial prestressing force. 

6.2 The Methods of Construction for the Superstructure 

The superstructure of prestressed concrete suspension bridges 

can be built in two different ways, by using scaffolding or by 

prefabrication. Scaffolding was successfully used for the construc- 

tion of all the four bridges in the vicinity of Gent, Belgium, 

because they were all built across a canal which was not yet dug at 

the time of construction. 

However, it is possible to construct prestressed concrete 

suspension bridges without the use of any scaffolding. - (35), by 

dividing the suspended beam into a number of prefabricated segments. 

These segments can then be erected on a system of temporary trestles 

and stressed together by the main cable. 

If the construction is such that intermediate temporary 

support is difficult or expensive (deep rivers or valleys), it would 

be possible to use the Cantilever method which has been successful in 

constructing many ordinary prestressed concrete bridges. As shown in 

Figure (6.1a), construction starts at the two ends of the suspended 

beam as well as the tower. At the tower, we begin by erecting equal 

number of segments on both sides in a balanced cantilever way and 

Joining the new segments with the ones which precede them. At- a 

later stage, the cantilevers may become too long to be self-supported 

and therefore, they are given temporary support by inclined cables, 

stays, Figure (6.1a). The tower is usually a portal frame structure, 

Figure (6.9), and is designed to the vertical forces developed by 

the cable at the point where it changes its slopes between the two 

spans. 

The construction at both ends of the suspended beam begins by 

erecting the precast segments and supporting them by means of 

conventional auxiliary structures. (Figure (6.1a)). After establishing 
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the ends of the suspended beam, we lay down the main cable with the 

design eccentricities from the centre line of the suspended beam and 

start to install the suspenders in the designed positions (Figure 

6.1b). Eventually, the construction of the suspended beam is 

completed when its three parts join and all the suspenders installed. 

Whence, all the segments of the beam become permanently joined after 

performing the prestressing operation. Consequently, all stays and 

auxiliary supports are to be removed, Figure (6.1c). 

6.3 The Design and Construction of the Abutments 

Figure (6.2) shows 1 the lef t hand end of the suspended beam 

where the vertical and horizontal components of the cable tension are 

Vo'and H, see Figure (2.4). This vertical component, V., acts as an 

upward force applied on that end of the beam and its maximum value is 

equal to F Hmaxj Equation (2.18a) where F is the cable slope at this 

end. In addition, more upward forces will be generated at that-end 

as reactions, R, for the upward cable forces as well as the live 

loads applied in the right hand span and vice versa. Therefore, an 

extensive investigation must be carried out for all possible 

combinations of live loading which is likely to affect- the bridge. 

As a result of this investigation and by making use of the shear 

forces equations given in Chapters (2) and (3), it will, be possible 

to establish the values of the maximum upward forces applied at both 

ends of the bridge, Figure (6.2). 

Obviously, as mentioned earlier in Chapter (1), these upward 
forces would lift the ends of the suspended beam unless some means of 

applying downward forces are affected at those ends. The cheapest 

and most effective solution for this problem is provided by means of 
the sheer weight of heavy concrete boxes filled with sand which act 

as abutments for the bridge, (32). The weights of these concrete 
boxes must exceed, on the whole, the values of those maximum upward 
forces at the ends of the beam. 
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The connections between the abutments and each end of the 

beam can then be installed as the type of support required at this 

particular end of the structure. We recommend that two of the three 

supports of the structure must be of the rollers,, eye-bars, type with 

the third support a hinge of the Mesnager type. The reason for this 

arrangement is that the structure must be allowed to expand or 

contract freely due to temperature changes without any effect on its 

stresses. Furthermore, any small accidental horizontal reaction of 

the suspended structure would be transferred to one of the abutments 

through the hinged support. 

6.4 The Prestressing Operation 

6.4.1 The Methods of Prestressing 

The suspended structure can be prestressed in many different 

ways. One of the methods is the conventional way of installing one of 

the anchorages at one end and applying a hydraulic Jack at the-other 

end. The cable is then pulled until its tension reaches the initial 

prestressing force value, Hi, and the second anchorage is installed. 

One of the disadvantages of using this method is that the suspenders 

will deviate f rom the vertical as a result of the prestressing 

operation. However, the connections between the suspenders and the 

main cable allow for the possibility of straightening them back to 

the vertical after the prestressing operation, Figure (6.7). ' It is 

possible to avoid the deviation of the suspenders by installing them 
deviated in the opposite direction of the Jack pull prior to the 

prestressing operation. The amount of that deviation can be 

calculated for each suspender as a ratio of the total change in the 

cable length due to the initial prestressing force, Equation (2.35). 

Another method to prestress the suspended beam is by raising 

the towers, or tower, Vandipette (32) and (35). This method has been 

successfully practiced in prestressing all of the four, already 

built, three-span bridges near Gent, Belgium. It has been proved-to 
be the most efficient and economical method for prestressing 
three-span prestressed concrete suspension bridges. The basic idea 
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behind this technique is to take advantage -of the increa se in the 

cable length which results from raising the towers, or tower. This 

increase is always accompanied by an increase in the cable tension 

which can be calculated as mentioned in Section 2.3.4.4. Thus, a 

relationship between the tower rise and the cable tension can be 

established and used to precisely evaluate the amount of rise 

required to tension the main cable by the initial prestressing force. 

The prestressing operation is carried out when the f loor 

structure and the towers, or tower, are concreted, with the latter 

several centimetres below their, or its, design value depending on 

the span lengths. Hence, the main cables are strung without any 

tension and all their connections with the suspenders as well as 

their anchorages at the ends of the beam are installed. Then, the 

towers, or tower, are alternately jacked up in relation to the piers, 

or pier. by means of hydraulic jacks until they reach their design 

elevation, and steel hinges are subsequently inserted under the tower 

columns. The elevation of the road way above the piers remains 

unaltered by the prestressing operation as the towers, or tower, are 

entirely independent of both the road way and the piers, Figure 

(6.7). The suspenders are then straightened to the vertical as 

mentioned earlier. 

Although this method is also applicable to prestress two-span 

bridges, it can hardly be recommended for this purpose. The reason 
for this is that changing the tower height has a smaller effect on 

the geometry of parabolic cables which their ends are at different 

levels than those with their ends at the same level. Consequently, 

the cable would gain lesser tension for the former than for the 

latter if the towers, or tower, were raised by the same distance for 

both types of parabolic cables. This is clearly illustrated when 

performing the calculation for the test beams by using Equations 
(2.27) and (2.35). It has been found that to tension the cable by 

14.800 KN, the tower would have to be jacked up a distance of 51 mms. 
This is totally impractical when learning that the design height of 

the tower is 237.5 mms which means that it must be raised by more 
than 20% of its own height to produce the required cable tension. In 

other words, in full scale bridges we would need to Jack up the tower 
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by perhaps several metres to tension the cable by the desired initial 

prestressing force. For this reason, this method is abandoned for 

the prestressing of our type of bridge. 

An alternative method for prestressing two-span bridges is by 

shortening the suspenders. The principle behind this technique is, 

again, inspired by changing the geometry of the parabolic cable to 

produce the desired initial prestressing force. If we assume that 

each of the suspender lengths will be shortened by a ratio of A of 
its own design length, hence, the total change in the cable sags will 
be, from Equation (2.24): 

Af sm 

Z-- ýx( £-x ) 
m=l mm 

Af +' xý, 11 slm 4ýx (4-x 
m=l Im lm 

where positive signs in the equations indicate the increase in the 

original cable sags and where lsm and lsIm are the lengths of 

suspenders number m which are at distances xm and xlm from the left 

and right hand end. supports respectively. i and j in the equations 
denote the total number of the suspenders in the left and right hand 

span, Figure (2.9). 

i These changes in the cable sags will subsequently change the 

cable lengths by amounts AS and AS, in the left and right spans which 

can be evaluated from Equations (2.25) or (2.26) for exact or 

approximate values. Consequently, the cable tension will also alter 
by an amount AH which can be calculated from Equation (2.35) when 

substituting by the values of AS and AS,. Assuming no tension in the 

cable, thus, the ratio A by which the suspenders must be shortened to 

produce the initial prestressing force in the cable can be calculated 

as follows: 

[5[2-3 (F+4n) 2]- 48n 21i1 
sm + wx 

2 
[5[2-3 (F 

1 +4n 1)21- 48n, 21 

x (£-x 2 4 [l+F (F+8n) + 
64 

nmm [l+F (F +Sn +Ln 

13 

m=l 111311 
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h+a 4f 
1 

wx 
2fI 

wXn , 

Wi 

and 

(6.1) 

In practice, af ter laying down the cable, untensioned, the 

suspenders are installed with their lengths (1 + A) times their 

original design values. Hence, by shortening each suspender by a 
distance A times its design length, the main cable will be tensioned 

by the desired initial prestressing force and the final lengths of 
the suspenders will be equal to their design values. The suspenders 

can be shortened by means of any height adjustment device which is 

capable of sustaining the suspender load. 

When applying Equation (6.1) to the test beams, it has been 

found that each suspender needed to be shortened by 12.3% of its own 
design length to produce a force 14.800 KN in the main cable. After 

shortening the suspenders by the above ratio, the force in the main 

cable has been measured to be 14.200 KN. This error may have been 

due to increasing strains in the suspenders which effectively reduced 
the shortening ratio A or due to some initial slipe on the main cable 
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anchorages. Consequently, the ratio A had to be increased to the 

value 12.8% to produce the desired initial prestressing force. It is 

reasonable to assume that for a full size bridge this error would not 

take place as the suspenders are much more rigid than those used for 

the test beam. However, if such error should take place, it can 

easily be corrected by shortening the suspenders by a further 

distance and monitor the prestressing force until the correct value 

is reached. The effect of the extra shortening below the design 

lengths on -the behaviour of the structure can then be taken into 

account by making use of Equations (2.25 - 27) for ungrouted and 

grouted two-span prestressed concrete suspension bridges. 

One advantage of using this procedure is that by keeping 

record of the initial prestressing force as time passes. any losses 

due to time, effects in this force can easily be corrected by 

shortening each suspender a further distance LA times its design 

length, where L denotes the percentage loss in the prestressing force 

at this particular time. Moreover, as the bridge ages towards the 

end of its working life. all cracks can be eliminated by a further 

shortening of the suspenders to increase its prestressing force and 

consequently prolongs the bridge service life. 

Another advantage of prestressing the suspended beam by 

shortening the suspenders is that unlike the other methods of 

prestressing, the suspenders remain straight after being shortened. 
Therefore, no extra time of labour is required to straighten the 

suspenders back to the vertical position. 

6.4.2 The Methods of Checking the Value of the Prestressing Force 

The prestressing force can be checked in many different ways. 
The most accurate method is by using strain gauges at a particular 

position of the main cable. Hence, knowing the strain at this 

position, -the stress can be evaluated and consequently the cable 

tension can easily be obtained at this position. Ihen, from 

Equations - (2.13). the prestressing force can be determined. The 

advantage of using this method is that the strain gauges will 
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permanently remain on the main cables to monitor the decline in the 

prestressing force due to time effects which enable the designer to 

check the performance of the bridge during its working-life. -, 

Another method of checking the prestressing force is to 

measure it directly by using a load cell at one of the ends of the 

suspended beam. However, the readings of this load cell will most 

certainly be affected by the changes in the temperature. Therefore, 

we only recommend the use of strain gauges to monitor the 

prestressing force as they can be fully protected against any weather 

changes. 

6.4.3 The Procedure of Grouting (For Grouted Prestressed Concrete 

Suspension Bridges) 

Figure (6.3) shows the grouting duct through which the cable 

passes at both ends of the suspended beam. The grouting duct is 

usually made of spirally wound corrugated steel and has an internal 

area which must be at least twice the area of the main cable, (37). 

The figure also shows one of the injecting vents which are required 

at distances 600 mm from the anchorages. - These vents are highly 

recommended since the injection points at the cable anchorages are 

often found to be inadequate. 

The grout is usually made of cement and water with the ratio 
3: 1 in weight. The use of sand is not recommended unless ducts of 
exceptionally large section (greater than 150 mm diameter) are to be 

grouted. If a fine aggregate is necessary, it should pass a 1.18 mm 
sieve and consist of finely ground limestone or quartz, (37). The 

weight of fine aggregate added should not exceed 30% of the weight of- 
the cement. 

Admixtures may be used to improve the fluidity of the grout. 
Usually these admixtures contain aluminium powder as their main 
active ingredient. The weight of this powder should never exceed 
0.03%-of the weight of cement to avoid any chemical reaction taking 
place with the cement, (37). 
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Grouting starts after 6- 24 hours from the time -of 

prestressing. The grout is injected by using pumps at a steady rate 

beginning from the anchorages. The grouting operation 
is completed when the grout starts to f low out of the other end of 

duct, at the surface -of the beam. * If the length of the duct is more 

than 15 m, an extra vent would be essential at its midpoint to check 

the fluidity of the grout. After 3 days, the grout will become hard 

and the beam will be ready to start its service life, '(37). 

6.5 Examples of already Constructed - Three-Span Prestressed 

Concrete Suspension Bridges 

6.5.1 'The Bridge at Merelbeke , 

(a) Design and Construction 

Figure (6.4) shows the elevation of the structure built at 

Merelbeke near Gent, Belguim, (32). It was built to span across' a 

new canal that was not yet dug at the time of construction. Tenders 

were 'sought for this design and another one involving conventional 

continuous prestressed concrete beams. The prestressed suspension 

design was cheaper by about 8%. 

Figure (6.4) also shows the bridge with the centre span alone 
is- suspended. If the side spans were longer, they too would be 

suspended. The bridge comprises two prestressed concrete suspended 
beams which are continuous over their interior supports. The main 

cables are of parabolic geometry with their ends at the same level in 

the centre span. The cable sags'are 4.04 ms as shown in the figure. 

Figure (6.5) shows one half of the longitudual section. The 

superstructure always tends to lift up the abutments due to the steep 

slope of the -main cables in the side spans (a ifeature of the. 

transformed profile of the prestressing cable). For this reason, the 

abutments were designed in the 'form of heavy concrete boxes filled 
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with sand so that their weight exceed the upward reactions applied on 

them. The superstructure is pin-connected to the two piers and one of 

the abutments by means of eye-bars, roller supports, which allow it 

to shorten and lengthen freely. The other abutment is connected to 

the superstructure by a hinge of the Mesnager type, hinged support, 

which transfers any accidental horizontal reaction that the 

superstructure may experience to that abutment. 

Figure (6.6) shows a cross section of the roadway where the 

depth of the suspended beams is constant throughout their length and 

is equal to 1.60 m. The roadway slab acts as the upper flange of the 

suspended beams. The lower flanges, the webs and the slab were cast 

separately with shear keys along the joints between them. The floor 

beams are simply reinforced solely designed to carry part of the 

roadway slab as well as provide the connections between the 

suspenders and the suspended beam. 

The suspenders are bent rods bearing on the cable bands. 

Figure (6.7) shows one of the cable bands where it is almost 
identical to that used in ordinary steel suspension bridges. Each 

one comprises two semi-circular steel castings which are bolted 

together in order to clamp the cable tightly between them. The 

aggregate tension in the four bolts must develop sufficient friction 

between cable and band to prevent it from slipping towards the lowest 

point of the cable curve. As mentioned earlier, this type of 

connection between cable and suspender allows the latter to be 

straightened in case of any deviation from the vertical, due to the 

prestressing operation. 

Each cable is composed of 510 galvanized steel wires which 

are 5mm diameter each. Apart from the zinc coating, which protects 
it against the weather conditions, they hardly differ from those 

generally used in prestressed concrete structures. The wires were 

not twisted into strands, but are parallel forming a compact 

cylindrical cable of 125 mm diameter. In fact, the two main cables 

are parts of one endless strand which loops around the two end blocks 

of the bridge deck, Figure (6.8). At one point, the 510 - wire cable 
divides into three 170 - wire strands the lowest strand remains 
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parallel to the sloping plane defined by the cables in the side span. 

The other two strands are bent up in the manner showed in the figure. 

Each of the three strands is placed in a curved channel which is 

applied against the end block. Splicing of the individual wires was 

affected by wrapping their overlapping ends with fine wire. 

Figure (6.9) shows a cross section of the ý roadway,, its 

connections with one of the piers and one of the towers. The figure 

also shows the saddles on the top of the tower which are made of cast 
iron and solely designed in order to accommodate the cable. The 

concrete towers and their bracings were not cast in their design 

position as shown in the figure but were 37 cms, lower. They were in 

the latter position while the main cable was placed untensioned and 

all its connections with the suspenders and the anchorages were 
installed. The figure shows the ties between the suspended beam and 

the foundation at the tower position'which are designed 'in order to 

prevent the beam from lifting up due to the upward cable forces. 

The Prestressing Operation 

Prestressing of the entire superstructure was affected by 

raising the towers, as mentioned earlier in this chapter, by using 
hydraulicý jacks. - Two jacks were needed under each column, i. e. 
total number of jacks required were eight. Since the cables were 
tied to the roadway at the end blocks and by the suspenders, the 37 

cms rise of the towers forced the cable to elongate and thus produced 
in each cable the desired tension of 6984 KN. 

, When each tower had been jacked up 37 cms,. a cast-steel hinge 

was -inserted under each of its columns between the two jacks. The 

elevation of the roadway' was not altered by the prestressing 

operation as each tower was constructed entirely independent of the 

roadway and its connections with the piers, Figure (6.9). ý Before the 

prestressing operation, the suspenders were installed with each one 

of them deviating 94 mms, from the vertical starting of the towers and 
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reaching zero deviation at the midpoint of the centre span. As a 

result of the prestressing operation, all the suspenders became in 

plumb. 

In order to check the prestressing force in the cable, two 

rings spaced 2440 mms were clamped on each cable close to the 

mid-point of the centre span before the prestressing operation. 

Thereafter, the increase in the spacing between the two rings was 

measured to be 9.10 mm. By performing this simple operation, the 

average strain in the cable was known and consequently, the cable 

tension was checked. 

(C) Protection of the Wires 

The steel wires were protected against corrosion by using 

zinc coating. Additional protection of the cables was provided by a 
layer of soft galvanised wires of 3.50 mm diameter wrapped around the 

cable, under tension, after the prestressing operation. This method 

of screening the cables was borrowed from American suspension bridge 

construction practice. 

6.5.2 The Bridge at Mariakerke 

(a) Design 

Figure (6.10a) shows the elevation 'of the bridge at 
Mariakerke near Gent, Belguim, (32). It was built to span'across -the 
same canal-as the Merelbeke bridge. Both bridges are designed on the 

same lines, - but the one at Mariakerke is nearly twice as long and 

more than twice as wide as that at Merelbeke. 

The three spans are suspended. The cable sag in the 100 m 

centre span is 9 m. The suspended beams are 1.90 ms deep throughout 

their length. The cables have a diameter of 200 mm where each is 

composed of 1780 galvanised 5 mms wires. Each suspender consists of 
two eye-bars that are pin-connected to the cable band and to the end 
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of the f loor beams. The rest of the details of the structure are 

identical to those mentioned earlier for the Merelbeke bridge but, of 

course, at a much larger scale. 

The Prestressing Operation 

Prestressing was affected by raising the towers a distance of 

72 cms. This was achieved by the aid of eight 300 ton jacks, two 

placed under each column of the two towers. The prestressing, force 

for-the entire cross section of the bridge was 54713 KN. Most 

suspenders were out of plumb before the prestressing by a maximum 

deviation 200 mms at the towers and diminishing to zero deviation at 

mid-point of the centre span. 

The methods for checking the prestressing force and 

protecting the main cables against the weather conditions were 

identical to those used for the Merelbeke bridge. 

6.5.3 Comments 

Clearly, the choice of the aforementioned two examples with 

their main span lengths 56m and 100m demonstrates some of the 

advantages of this type of bridges. The interaction between the main 

cable and the suspended beam was found to decrease the live load 

moments by 10% for the Merelbeke bridge. On the other hand, the 

decrease was found to be as much as 25% for the Mariakerke bridge, 

(32). This clearly demonstrates that the bridge at Merelbeke is not 

a very representative specimen of this type of bridge. The reason for 

this is that the length of its spans is quite close to the lower 

limit of the range of span lengths defining the natural field of 

application of the system. 

A two-span grouted prestressed concrete suspension bridge 

might have provided a better solution for the bridge at Merelbeke. 

The left hand span could have been 60 ms with the right hand span 32 

ms, the depth of the suspended beam 1.30 m and remaining constant 
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throughout its length, Figure (6.11). The eccentricities at the ends 

of the main cable could have been 0.22 m from the centre line of the 

suspended beam. The shape of the cross section of the bridge would 

have been similar to that shown in Figure (6.6). The total 

prestressing force would have been in the order of 11390 KN., if 

using tower height equal to 8 m. The prestressing operation could 

have been carried out by shortening each suspender by a distance 

about 14% of its own design value. The interaction between the main 

and the suspended beam could have decreased the live load moments by 

as much as 38%. The cost of such design should have been cheaper 

than the Merelbeke bridge as only one tower and one pier are required 

as well as a lesser prestressing force. 
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CHAPTER 7 

The Experimental Work 

7.1 Introduction 

I As mentioned earlier, two experiments have been performed for 

the ungrouted and grouted types of bridge in order to check the 

validity of the analysis procedure as well as to demonstrate the 

effect of grout on prestressed concrete suspension bridges. In doing 

so, the two test beams were designed to be identical in every detail 

with the only difference of grouting the second test beam, in order 

to simplify the comparison between the two types of bridge. 

Each experiment comprises two stages, the first is intended 

to simulate the working life of the bridge as small increasing loads, 

with their maximum values less than half the first plastic hinge 

loads, -were applied at different positions, and the resulting changes 
in the prestressing force as well as the bending moments and 

deflections were measured. The second stage of theý experiments is 

concerned with the behaviour of the test beams at failure. 'To do so, 

a load was placed in the position which generated the maximum moments 
for the first stage and increased until the formation of the first 

plastic hinge and subsequently'the failure of the structure. During 

this, the first plastic hinge and failure loads were recorded as well 

as the corresponding changes in the prestressing force, bending 

moments and deflections. For the two stages of each experiment, the 

results'obtained and those found from the analysis, computer-proggram 
in Appendix 28, were tabulated and plotted side by side in order to 
illustrate the accuracy of the theory behind the analysis. 

The first test beam was prestressed by means of a hydraulic 

Jack and for the second, the prestressing operation was carried out 

by shortening the suspenders, as mentioned in Section 6.4.1. The two 

methods were performed in order to produce the same amount of 

prestress for the two test beams. 
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It is convenient to start this chapter by a description of 

the properties of materials used for the test beams. 

7.2 The Properties of the Materials Used for the Two Test Beams 

Every precaution was taken to construct the two test beams to 

be identical in every respect. Therefore, they were both made of 

concrete with the following mix design: 

Cement Water Fine Aggregate Coarse Aggregate 

306 205 699- 1140 kg/m3 

where the cement was, of ordinary portland type and the maximum 
diameters for the sand particles and the gravel were found, by a 

sieve analysis test, to be 2360 pm and 10mm. the cube strength, 

fult, for the concrete was found to be 48.53 N/mm 2 for the first test 

beam and 50.12 N/mm 2 for the second one, at the time of the 

experiments. Their Young's moduli of elasticity, E, were determined 

from a bending test as three small beams, 1500 mms long, were cast 

with each test beam with identical cross section and reinforcement in 

order to eliminate any cause for errors. Whence, they were tested, 

as shown in Figure (7.1), and the values of Young's moduli of 

elasticity were computed from their load-deflection relationships to 

be-33.417 KN/mm2 and 35.162 KN/mm2 for the first and second test 

beams. - 

This bending test was also used to check the validity of the 

theory developed in Chapter (4) for the determination of the ultimate, 

moment of resistance of the cross section of the small beams, with 
the axial force taken zero. The failure loads of these beams were 

all in close agreement with the predicted ones. To minimize the 

errors in the experiments, the conventional value of the reinforced 

concrete density, yc = 25 KN/m3. was not used as the weight of those 

small reinforced beams provided its exact value to average 24.73 

KN/m3 for both test beams. 
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The reinforcement used was made of mild steel - with a 6mm 

diameter. Several specimens were pulled to determine its yield 

stress, fYII and Young's modulus of elasticity, Est as they were found 

to average 379.85 N/mm2 and 203.40 KN/mm2 respectively. The 

stress-strain relationship of the reinforcement, as automatically 

plotted by the testing machine, was distinct in the manner shown in 

Figure (4.3), B. S. (5) and (18), as its stress ceased to increase for 

loads higher than the yield load while its strains increased 

excessively (until the strain reached about triple the value of the 

yield strain). 

The main cable was made of a single wire indented high 

tensile steel of a 5mm diameter. Several specimens were 'tensioned 

and their Young's moduli of elasticity, Ecq and failure stresses were 
found to average 208.1 KN/mm2 and 1768.0 N/mm2. The theoretical 

yield stress, at 0.2% strain, was found to be 1682 N/mm2. The 

suspenders were made of stainless steel wires of diameters 0.90 mm. 
Young's modulus of elasticityq Esu, was found as a result of several 
tension tests to be 236.6 KN/=2 and the failure stress averaged 2326 

N/=2. 

The tower was made of welded hollow tubes with the dimensions 

shown in Figure (7.6). Its material was an alloy of aluminium and 

steel which its Young's modulus of elasticity, ET, was found by 

compressing several specimens, in order to simulate the stresses to 

which the tower will be subjected, to average 117.50 KN/mm2. 

7.3 The Design and Construction of the Different Parts of the Test 
Structures 

7.3.1 The Test Beam 

The suspended test beams were chosen to span for a total 
length of 5600 mm, with the left and right hand spans 3500 mm and 
2100 mm respectively. 'Their cross sections were of rectangular shape 

with the dimensions and reinforcement shown in Figure (7.2). The 
dead load of the suspended beams was calculated to be 185.50 N/m2 in 
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both spans. However, this value was regarded to be too small in 

comparison with reality, as the bending moments produced by the dead 

loads in full size bridges are usually of considerable values (more 

than the live load bending moments in most cases). Therefore, the 

dead loads were increased by means of hanging weights of 20 kgs to 

the bottom of the beam during prestressing in the manner shown in 

Figure (7.2) and Plate (1). The total value of the dead loads, W and 

Wl. became equal to 470.0 N/m is both left and right hand spans 

where this value includes the average weight of the main cable, 

suspenders and hangers. 

The value of the prestressing force was calculated with some 

allowance for small tension stresses to develop during the first 

stage of the experiments. The values of these tension stresses did 

not exceed 3 N/mm2 for the case when the test beams experienced the 

development of the greatest values for the bending moments, for the 

load applied in the mid-point of the left hand span, -as confirmed by 

the strain gauges at this position. The reason for allowing these 

tension stresses to develop was to simplify the task for the second 

stage of the experiment by bringing about failure sooner, as well as 

to minimise the prestressing force. Therefore, the most convenient 

preliminary value of the prestressing force, Hwq was found to be 

14.800 KN as the stress in the main cable was about half its 
2 theoretical yield stress, 754 N1mm It is worth mentioning that if 

the prestressing force was designed so that no tension stresses would 
develop, its value would have been 41.500 KN. 

As the experiments were performed in a short period of time, 

the factor y, which is used to increase the prestressing force to 

overcome the time effects, was not included in our design and 

consequently the initial prestressing force was also equal to, 14.800 

KN, Hi = Hw. Hence, the cable sags were calculated to be 49 mm and 
17.50 mm in the left and right hand spans. 

For simplicity, the main cable was chosen not to have any 

eccentricities at its ends for both test beams. The initial cable 

eccentricities, Figure (7.3b), were evaluated when the dead load 

bending moment diagram, Figure (7.3a), was divided by the preliminary 
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prestressing force. Then, as mentioned earlier, these initial cable 

eccentricities were transformed above the centre line of the beam by 

means of applying the linear transformation system shown in Figure 

(7.3c), It is worth noting that the system shown in this figure was 

chosen in order to produce the convenient tower height 237.50, mm 

above the centre line of the test beams. Consequently, the final 

cable eccentricities were obtained as shown in Figure (7.3d), where 

the suspender lengths can be calculated when subtracting half the 

thickness of the beam from the shown values. The figure also shows 

the lengths, gA and glil, through which the cable passes the ends of 

the test beams by means of two ducts with the lengths shown. These 

ducts were made of corrugated steel with a diameter 8.0 mm and they 

were used to grout the cable in the second experiment. 

The cable, at its final position, exerted upward forces 

exactly in balance with the dead loads, when tensioned by 14.800 KN 

(Equations (2.12)), for both spans of the test beams. This means 

that the test beams, at this stage, did not experience any internal 

bending stresses as they had straight centre lines, see Table 7.1. 

However, the ends of the beam had the tendency to rise above their 

supports due to the vertical component of the cable tension. For 

this reason, two clamps, which simulate the abutments, were provided 

at these ends in order to stop this effect in the manner shown in 

Figure (7.2) and Plate (2). Eacfi of these clamps was fitted with a 

small lubricated ball at its tip in order Io allow for rotations at 

the ends of the beam. 

The maximum shear stresses in the two test beams were checked 
in order to make sure that only 'flexure failure takes place in the 

experiments. From the computer program, Appendix 28, the maximum 

shear force was found at the left of the intermediate support, - for 

the ungrouted test beam, - to be about - 1750 N. Thus, according to 

B. S., (5), the maximum shear stress was found to be 0.27 N/mm 2 
which 

is very-safe when considering that the allowable shear stress, 

without the need for shear reinforcement, is 1.11 N/MM2. 
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The test beams were supported by three bearings, as shown in 

Figure (7.2), two of which were rollers with the third hinged so that 

any horizontal movements would not af f ect the stresses of the 

structure. They were made of good quality hardened steel plates and 

cylinders with the dimensions shown in the f igure. Moreover, due to 

the delicacy of the test beams, two auxiliary props were used for 

each one, one at the mid-point of each span, in order to decrease the 

dead loads stresses prior to prestressing. These were removed 

afterwards. 

Finally, it is worth noting that the test beams were cured by 

means of a chemical product, sealocure, which was regularly sprayed 

up to the time of the experiments, about 30 days after casting. The 

cubes and the aforementioned small beams were also cured in the same 

manner. 

7.3.2 The Design of the Suspenders 

The suspenders for the two test beams were designed to 

sustain the cable forces which developed as-a result of the failure 

loads, in order to ensure that they will not fail before the flexural 

failure of the test beams, assumption (2) Section 4.1. For full size 

bridges, the suspenders would be designed to sustain the maximum 

cable forces which result from an investigation in all cases of live 

loading likely to affect the bridge, Sections 2.6.2. and 3.5.2. 

Thus, from the computer program, Appendix 28, the total change in the 

prestressing force at failure was found to be 927 N and 1420.0 for 

the first and second test beams respectively. The corresponding 

maximum suspenders loads were calculated from Equations (2.86) and 
(3.60) to average 533- N/m and 559 N/m for the test beams. 

Consequently, the suspenders forces were evaluated as the reactions 
for the- fictitious structure shown in Figure (7.4) and the- maximum 

suspender force was found to be 462.0 N at suspender number (1). 

As mentioned before, the suspenders were made of stainless 

steel wires of 0.9 mm diameter and their connections with the main 

cable and the test beams were installed in the manner shown in Figure 
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(7.5) and Plate (3). The figure and plate show that the suspenders 

were bent around wheels, through which the cable passes, and a collar 

was provided for each wheel to prevent them from slipping towards the 

lower point of ý the cable curve. On the other end, the suspenders 

were joined to the top fibre of the test beams by means of-two hollow 

bolts, Figure (7.5), which were screwed into two small tubes of 

steel. These tubes were attached to the stirrups, of the test beam, 

and embeded in the concrete. 

' As two branches were used for each suspender, this resulted 

in a much stronger link between the main cable and the test beam as 

the -maximum stress in the suspenders was calculated for suspender 

number (1), Figure (7.4), to be only 365.0 N/mm2. Furthermore, as 

the suspenders extensions could reduce the upward forces exerted by 

the main cable on the structure, assumption (3) Section 2.1, they 

were calculated and their maximum value was found to be about 0.01 mm 

in suspender number (6). see Figure (7.4). Whence, by making use of 

Equations (2.24,25 and 35), their effect on the prestressing force 

was evaluated to be insignificant. In addition, the task of 

shortening the suspenders, to prestress the second test beam, was 

simplified as each of the aforementioned two bolts was screwed into 

the small steel tubes by half the required distances. as will be 

discussed later. 

In fact, the above procedure may suggest an economical 

alternative for the suspender connections with the main cable in full 

size bridges, as the use of wheels and collars requires less labour 

and materials than the other method described in Section 6.5.1, 

Figure (6.7). Consequently, the use of undivided suspenders will 

most certainly result in a more efficient link between cable and beam 

than having to use two lengths in the manner shown in Figure (6.6). 

Furthermore, if the suspenders became out of plumb, due to the 

prestressing operation, they can easily be adjusted by making use of 

the collars, Figure (7.5) and Plate (3). 
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7.3.3 The Design ofthe Tower 

As mentioned earlier, the tower was made of a number of 
hollow tubes which their material was an alloy of aluminium and 

steel. These tubes were welded together with the configuration and 

dimensions shown in Figure (7.6) and Plate (4). The figure also 

shows that the tower was provided with an adjustable screw at its top 

in order to correct the tower height to its designed value which is 

200 mm above the top fibre of the test beams. This adjustable screw 
head was also used for the purpose of checking the validity of the 

method of prestressing the test beams by raising the tower as the 

rise required to produce 14.800 KN in the cable was about 51 mm. 

Although the calculations proved accurate, it is not recommended to 

be used for full size bridges for the reasons mentioned in Section 

6.4.1. 

The tower was designed to sustain the forces produced by the 

main cable at failure, similarly to the suspenders. These forces 

were calculated by using Equations (2.89) and (3.61) to be 4.243 KN 

and 4.376 KN for the first and second test beams respectively. The 

maximum compression stress was calculated to be 16 N/MM2 for the 

tower with a corresponding change in its height about 0.03 mm. 
Clearly, the latter is very small and did not affect the cable 

tension. 

7.4 The Arrangement of the Measuring Devices and The Loading 

Stations 

Figure (7.7) and Plate (1) show positions (A - H) which were 

used, by means of hangers, to provide the extra dead loads as 

mentioned earlier. They were also used as loading stations for the 
f irst stage of the experiments as the live loads were hung to the 
bottom of the dead loads in the manner shown in plate (5). 

Displacement transducers were placed in positions (1 - 6) to measure 

the deflections as they were calibrated, prior ýto the experiments, 

and connected to a data logger, Figure (7.7) and Plate (6). 
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Strain gauges, 120 ohms, were also used in order to measure 
the stresses and bending moments at positions C, Tower and G, Plates 

(4) and (6). They were placed, two at each side, at -distances 10 mm 
f rom the top and bottom fibres of the beam. Each of the top and 
bottom pairs were connected together in parallel in order to produce 
two strain gauges of resistance 240 ohms each which effectively 

average the strains on the two sides of the beam at the specified 
distances. Thus, they were all connected to the same data logger, 

used for the transducers, in order to calculate the average 
differences of voltage for each one due to the applied loads. 

Subsequently, those voltages were translated into strains by means of 

a factor which was supplied with the strain gauges by the manufac- 
turer. 

The prestressing forces for the two experiments, were 

measured by two methods, the first was carried out by placing four 

strain gauges, in a full bridge arrangement, on the cable at a 

distance 175 mm from the tower in the right hand span, Figure (7.7) 

and Plate (4), these gauges were connected to a strain indicator in 

order to directly measure the strains in the cable at this position. 

From Equation (2.13b), the cable tension at this position was found 

to be equal to 1.01 the prestressing force. It is worth noting that 

both the cable gauges and the strain indicator were calibrated in 

relation to each other as a specimen of the cable, with the gauges 

placed in the same arrangement, was tested against an accurate 

recently calibrated loading machine prior to the experiments. 

The second method uses a load cell to measure the 

prestressing force directly at the right hand end of the test beams. 

It was made of a thin walled aluminium tube, in order to increase its 

sensitivity to small loads, with four strain gauges, two vertical and 
two horizontal, in a full bridge arrangement. The load cell was 

connected to the aforementioned strain indicator, by a switch box, as 

they were both calibrated in relation to each other against an 

accurate recently calibrated loading machine prior to the experi- 

ments. Then, the load cell was placed between the right hand cable 

anchorage and the end of the beam which was protected by a steel 

plate as shown in Figure (7.7) and Plate (2). 
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Finally, the load cell had a limited use for the second 

experiment as it did not register any changes in the initial 

prestressing force in both stages of the experiment due to the effect 

of grouting. Therefore, the cable gauges provided the only method 

used to determine the effect of the interaction between the cable and 

the grouted test beam on its prestressing force. 
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7.5 The First Experiment 

7.5.1 The Prestressing Operation for the Ungrouted Test Beam 

Prestressing this test beam was, carried out in the 

conventional way by using a hydraulic Jack, Plate (7), which was 

calibrated against an accurate recently calibrated loading machine. 

The cable was laid down with its design eccentricities and anchorages 

installed at its both ends. It is worth noting that each of the 

anchorages was made of a three piece wedge with a collar and wire 

clip to keep them in the same relative position as they were fixed 

around the cable and driven into the collar which was in a concentric 

position. 

Before the prestressing took place, the suspenders were 

deviated opposite the direction caused by the Jack pull, by the 

distances shown in Figure (7.8) which is calculated from Equation 

(2.35) in the left and right hand spans. Due to the delicacy of the 

test, beams, the extra dead loads were added in coordination with the 

prestressing operation as follows: 

1. The auxiliary props were removed leaving the test beam subjected 

to its own weight. 

2. The cable was tensioned by the first prestressing force 5.750 KN 

in order to exert upward forces of 186.0 N/m' and therefore, 

relieving the test beam of its self weight. 

3.8 kgs of the dead load were hung on the test beam. 

4. The value of the prestressing force was increased to 9.500 KN and 
the test beam was theoretically subjected to no load. 

5. The remaining 12 kgs were added leaving the test beam subjected 

to the full dead load, 470 N/m 

6. The cable was tensioned by the full amount of prestressing force, 

14.800 KN. 
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Table (7.1) shows all the readings iobtained from the 

displacement transducers, strain gauges, cable gauges and load cell 

as well as the calculated ones, computer programý Appendix 28. 

Although the test beam was theoretically relieved from any stresses 

at steps 2,4 and 6, the measuring devices registered small values of 

bending moments ýand deflections in the opposite of its loading 

direction, Table (7.1). This suggests that the prestressing force 

was slightly larger than the intended value. Moreover, the table 

shows that the cable responded to the increments of dead loads added 

on the hangers by changing its tension by small values as shown in 

steps (3) and (5). Clearly, this signifies the accuracy of both the 

load cell and the cable gauges as they were capable of detecting 

these small changes in the cable tension. Finally, it is worth 

noting that all the suspenders were exactly in plumb 'after the 

prestressing operation. 

7.5.2 Testing of the Working Life of the Ungrouted Test Beam 

The suspended test beam was subjected to concentrated loads 

applied one at a time at positions (A - H) by hanging weights in the 

manner shown in Plate (5). Each of these loads comprised eight 

increments of 89.0 N, 201b, as the maximum loading in each position 

was 712 N which is less than half the first plastic hinge load. 

Obviously, this value was chosen in order to ensure that no cracks 

will develop during this stage of the experiment. 

The test at each loading position was repeated several times 

and the final experimental values of the deflections, bending moments 

and changes in the prestressing force are shown in Tables (7.2 - 9) 

as well as the calculated ones obtained from the analysis, computer 

program in Appendix 28. The results were also plotted, Figure (7.9 - 
16), as each figure, comprises the calculated plot as well as the best 

fitting line for the experimental one which was obtained by means of 

a least square analysis. 
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When removing the loads at each position, the suspended test 

beam immediately recovered by almost 90% to its initial position 

prior to loading. Whence, as time passed, the beam slowly returned 

to its exact initial position. From the results, we also notice that 

the cable tension decreased due to loads applied in the right' handý 

span. This can be explained when examining the general formula, 

(2.57), for the determination of the change in the cable tension due 

to the applied live loading, Timoshenko (23), (25) and (26). As the 

formula is based on the energy produced by the live loads in 

calculating the sum of the areas under the deflection curves in both 

spans, a decrease in the cable tension is bound to occur as a result 

of a negative deflection in the larger span depending on the 

difference in the span lengths. 

Tables (7.2 - 9) and Figures (7.9 - 16) show that all the 

experimental results were within an acceptable margin of error from 

the values calculated by the computer program, Appendix 28. Finally, 

we note that no sign of cracks were detected anywhere in the test 

beam at this stage of the experiment. I 

7.5.3 Testing to Failure of the Ungrouted Test Beam 

From Table (7.4), it was clear that maximum deflections and 

bending moments were obtained when the load was applied at the 

mid-point of the left hand span, position C. For this reason, this 

position was chosen for increasing loading to cause the failure of 
the structure. From Sections 4.2 and 4.3, computer program Appendix 
28, the ultimate moment of resistance of the cross section of the 

test beam was calculated to be 1479.0 N. m for hogging and sagging 

moments. Furthermore, the first plastic hinge was expected to form 

under the applied load, position C, at a load 2081.0 N and the 
failure load was evaluated to be 2472.0 N with the second plastic 
hinge forming at the intermediate support. Therefore, the loading 

increments were chosen to be 178.0 N until the load reaches the value 
1780.0 N, and decreasing afterwards to 89.0 N in order to allow for 

an accurate assessment of the failure loads. 
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The experimental and calculated results are tabulated and 

plotted in Table (7.10) and Figures (7.17) in the manner described 

in the preceeding section. We observed that the first crack appeared 

at position C corresponding to the load 1246 N. Thereafter, cracks 
developed rapidly around this position and at the load 1780 N they 

became very wide and the rate of increase for the deflections and 

cable tension became much greater, Figures (7.17), which left little 

doubt that the beam had reached the ultimate moment of resistance at 

this section. When increasing the load to 1869 N, the section of the 

beam adjacent to the tower developed its first crack. As the load 

was increased further, more cracks appeared and became wider with the 

deflections also increasing rapidly until the load reached the value 
2047 N. Afterwards, the deflections increased out of control and the 

test beam collapsed, Plate (8). 

All the experimental results were close to the calculated 

ones found from the analysis, computer program in Appendix 28, until 

the formation of the first plastic hinge. Thereafter. the measured 

values were greater than the calculated ones especially when the beam 

was close to failure. Nevertheless, as shown in Table (7.10) and 

Figures (7.17), the experimental results were always within an 

acceptable margin of error when compared with the computed ones. 
Finally, it is worth noting that the suspenders carried the applied 
loads successfully up to failure as did the cable where its maximum 

recorded stress was about 800 N/mm2. Plate (9) shows position C as 
failed after the collapse of the beam. 
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Table 7.2 

DEFLECTIONS (ass) 

Station (1) Station (2) Station (3) Station (4) Station (5) Station (6) 

Applied Cal. Exp. Cal. Exp. Cal. Up. Cal. Exp. Cal. Exp. Cal. ExP. 
Load M 

89.00 0.130 0.111 0.164 0.141 0.129 0.111 0.062 0.056 - 0.026 - 0.029 -0.021 - 0.020 
178.00 0.261 0.236 0.329 0.275 0.258 0.215 0.123 0.119 - 0.052 - 0.064 -0.042 - 0.038 
267.00 0.391 0.290 0.493 0.494 0.389 0.312 0.185 0.169 - 0.078 - 0.089 -0.063 - 0.058 
356.00 0.522 0.427 0.657 0.657 0.517 0.450 0.246 0.209 - 0.104 - 0.121 -0.094 - 0.086 
445.00 0.652 0.531 0.822 0.919 0.646 0.566 0.308 0.273 - 0.130 - 0.154 -0.106 - 0.112 
534.00 0.7B3 0.659 0.986 1.085 0.775 0.638 0.370 0.301 - 0.156 - 0.173 -0.127 - 0.128 
623.00 0.913 0.771 1.151 1.346 0.904 0.799 0.431 0.383 - 0.182 - 0.204 -0.148 - 0.153 
712.00 1.044 0.273 1.315 1.458 1.034 0.965 0.493 0.406 - 0.209 - 0.262 -0.169 - 0.175 

BENDING MOMENTS (K. e. ) INCREASE IN TENSION (N) 

Position C Tower Position G 
C l L d C bl a . oa a e 

Applied Cal. Exp. Cal. Exp. Cal. Exp. Cell Gauges 
Load (N , 

89.00 -12.297 - 11.559 10.479 8.935 5.752 4.623 6.368 5.742 6.068 
178.00 - 24.597 - 20305 20.595 10.870 11.506 9.246 12.736 14.354 12.136 
267.06 -36.899 - 32.363 31.440 29.905 17.260 15.111 19.104 21.531 20.222 
356.00 -49.200 - 46.233 41.923 37.741 23.016 20.905 25.472 28.708 28.319 
445.00 -61.505 - 56.879 52.406 47.610 28.772 26.013 31.839 34.4550 34.387 
534.00 -73.811 - 67.039 62.891 59.922 34.533 30.225 38.207 41.627 42.479 
623.00 -86.119 - 92.908 73.376 69.363 40.289 37.004 44.575 48.804 46.524 
712.00 -98.429 - 94.778 83.863 B9. B56 46.048 44.555 50.943 54.545 52.593 

The calculated. and experimental -results when the load is applied at 

loading station A 
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Table 7.3 

DEFLECTIONS Imms) 

Station (1) Station (2) Station (3) Station (4) Station (5) Station (6) 

Applied 
I 

Ca 
T 

X P. *Cal. Exp. Cal. Up. Cal. Exp. Cal. Exp. Cal. Exp. 
Load (N) 

89.00 0.294 0.264 0.421 0.498 0.345 0.299 0.168 0.147 0.071 - 0.084 -0.058 - 0.058 
178.00 0.5Bs 0.497 0.841 0.963 0.690 0.589 0.335 0.275 0.143 - 0.164 --0.116 - 0.115 
267.00 0.283 0.712 1.262 1.436 1.035 0.859 0.503 0.426 0.214 -0.231 -0.174 - 0.184 
356.00 1.177 0.999 1.684 1.903 1.381 1.173 0.671 0.560 0.286 - 0.311 -0.232 - 0.257 
445.00 1.472 1.333 2.105 2.431 1.726 1.482 0.839 0.709 0.357 - 0.412 -0.290 - 0.310 
534.00 1.766 1.567 2.526 2.811 2.071 1.805 1.007 0.857 0.429 - 0.474 --0.348 - 0.371 
623.00 2.061 1.267 2.948 3.236 2.417 2.133 1.175 1.010 0.500 - 0.591 -0.406 - 0.421 
712.00 2.356 1.995 3.369 3.783 2.763 2.476 1.343 1.172 0.572 - 0.631 --0.464 - 0.479 

BENDING MOMENTS (N. m. ) INCREASE IN TENSION (N) 

Position C Tower Position G 
. C l L d C bl a . oa a e 

Applied Cal. Exp. Cal. Exp. Cal. Exp. Cell Gauges 
Load (N) 

89.00 -37.494 32.363 28.715 22.181 15.763 13.558 15.831 17.225 16.122 
178.00 -75.001 71.661 57.439 49.996 31.533 26.117 31.663 34.450 34.387 
267.00 -112.521 -113.271 86.170 80.168 47.310 38.363 47.494 48.804 49.547 
356.00 -150.053 -161.816 114.910 107.662 63.094 56.610 63.325 68.900 62.707 
445.00 -197.599 -211.919 143.655 131.843 78.885 73.414 79.156 83.253 80.912 
534.00 -225.257 -239.529 172.410 152.336 94.6B3 89.972 94.988 101.914 105.185 
623.00 -262.728 -291.004 201.172 184.547 110.4BO 104.699 110.819 114.02 117.322 
712.00 -300.311 -320.202 229.941 209.325 126.300 119.908 126.650 133.493 133.504 

The calculated and experimental results when the load is applied at 
16tLding station b 
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Table 7.4 

DEFLECTIONS (ass) 

Station (1) Station (2) Station (3) Station (4) Station (5) Station W 

Applied Cal. Exp. Cal. Exp. Cal. Up. Cal. Exp. Cal. Exp. Cal. Exp. 
Load M 

89.00 0.291 0.252 0.470 0.399 0.436 0.367 0.224 0.203 -0.097 -0.110 - 0.078 -0.081 
178.00 0.583 0.497 0.941 1.115 0.873 0.753 0.447 0.375 -0.194 -0.222 - 0.157 -0.171 
267.00 0.274 0.726 1.412 1.584 1.310 1.178 0.671 0.585 -0.291 -0.335 - 0.236 --0.268 
356.00 1.166 0.991 1.883 2.147 1.747 MBS 0.895 0.788 -0-389 -0.412 - 0.314 --0.329 
445.00 1.458 1.290 2.354 2.963 2.184 2.027 1.119 1.019 -0.485 -0.546 - 0.393 -0.429 
534.00 1.750 1.613 2.826 3.282 2.621 2.481 1.343 1.241 -0.582 -0.694 - 0.472 - 0.540 
623.00 2.042 1.739 3.297 3.991 3.058 2.954 1.567 1.478 -0.679 -0.782 - 0.550 -0.542 
712.00 2.334 2.003 3.769 4.301 3.497 3.393 1.791 1.700 -0.776 -0.911 - 0.629 -0.605 

BENDING MONENTS (N. m. ) INCREASE, IN TENSION (N)_ 
-. 

Position C Tower Position G 
C l C bl a . Load a e 

Applied Cal Exp. Cal. Exp. Cal. Exp. Cell Gauges 
Load. (N 

q ] 

89.00 64.503 - 62.414 39.014 31.428 21. 379 7.869 1 17.899 20.096 10.205 
178.00 -129.026 -136.388 79.039 67.168 42.769 37.740 35.799 37.321 40.459 
267.00 -193.567 -216.542 117.075 99.908 64.170 55.152 53.697 57.416 56.6,39 
356.00 -259.127 -281.762 156.123 139.336 85.592 73.349 71.597 80.383 74. B43 
445.00 -322.707 -340.982 195.123 176.453 107.005 96.999 89.496 101.914 93.049 
534.00 -387.306 -406.824 234.254 215.034 128.439 116. OB9 107.395 114.832 111.254 
623.00 -451.924 -478.333 273.336 252.103 149.884 140.001 125.294 132.057 127.436 
712.00 -516.562 -543.445 312.430 287.123 171.340 163.959 143.193 146.411 149.6B7 

The calculated and experimental results when the load is applied-at_ 
16acling station c 
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Table 7.5 

DEFLECTIONS (sits) 

Station. tl)-- Station (2) Station (3) Station -M Station (5). - Station (6) 

Applied Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. 

-Load M - - - - - 

89.00 0.186 0.162 0.315 0.345 0.334 0.300 0.199 0.176 - 0.091 -0.118 - 0.073 - 0.085 
178.00 0.372 0.333 0.630 0.781 0.669 0.628 0.398 0.380 - 0.181 -0.226 - 0.147 - 0.157 
267.00 0.558 0.514 0.946 1.165 1.002 0.961 0.574 0.574 - 0.272 -0.309 - 0.220 - 0.253 
356.00 0.744 0.691 1.261 1.470 1.336 1.304 0.797 0.787 - 0.362 -0.412 - 0.294 - 0.347 
445.00 0.930 0.876 1.577 1.961 1.670 1.665 0.996 1.010 - 0.453 -0.518 - 0.367 - 0.412 
534.00 1.116 0.949 1.892 2.197 2.005 2.037 1.196 1.236 - 0.544 - 0.700 - 0.440 - 0.499 
623.00 1.302 1.130 2.209 2.784 2.339 2.428 1.395 1.465 - 0.634 - 0.718 - 0.514 - 0.567 
712.00 

V 
1.489 

I- 
1.317 

I 
2.524 

I 
3.119 

I 
2.674 

I 
2.804 

I 
1.594 

I 
1.700 

II 
- 0.725 - 0.813 

II 
- 0.589 

' 
- 0.614 

I'I 

BENDING HOMENTS Ms. ) INCREASE IN TENSION M 

Position C. Tower Position 6 
C l L d C bl a . oa a e 

Applied Call Exp. Cal. Exp. Cal. Exp. Cell Gauges 
) Load (N 

89.00 -32.674 - 34.674 36.540 29.805 19.966 16.870 12.470 14.354 14.159 
178.00 ý 65.358 - 76.284 73. OB7 64.544 39.940 33.051 24.941 28.708 30.342 
267.00 -90.054 -107.894 109.640 68.349 59.921 53.545 37.411 43.062 40.459 
356.00 -130.760 - 142.946 146.201 129.024 77.908 73.973 49.882 54.545 56.638 
445.00 -2163.476 - 176.867 182.768 167.880 99.904 92.467 62.352 63.158 72.821 
534.00 -196.204 - 211.091 219.341 203.621 119.906 109.647 74.823 84.957 84.957 
623.00 -228.942 - 246.708 255.922 233.031 139.916 122.517 97.293 91.866 97.094 
712.00 -261.691 

1 
- 283.943 

1 
292.509 

1 
271.914 

i 
159.933 

I- 
150.322 

1 .1 
99.764 

1 
104.785 

F 
109.231 

I"I 

The calculated and experimental results when the load is applie Id at 
loading s-tation 1) 
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Table'7.6 

DEFLECTIONS (mms) 

Station (1) Station (2) Station (3) Station (4) Station (5) Station (6) 

Applied Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal. 
''Exp. 

Exp. 
- Load (N) 

89.00 0.053 0.048 0.092 0.079 0.103 0.082 0.074 0.060 -0.042 - 0.051 -0.034 7-0.030 
178.00 0.106 0.089 0.183 0.164 0.206 0.174 0.149 0.130 -ý0.085 - 0.106 - 0.068 -0.073 
267.00 0.159 0.137 0.275 0.240 0.309 0.265 0.221 0.199 -0.127 - 0.164 -0.103 -0.122 
356.00 0.212 0.184 0.367 0.412 0.411 0.357 0.295 0.269 -0.169 - 0.210 -0.137 -0.169 
445.00 0.264 0.236 0.459 0.515 0.514 0.449 0.369 0.343 -0.212 - 0.273 -0.171 -0.202 
534.00 0.317 0.291 0.550 0.543 0.617 0.550 0.443 0.421 -0.254 - 0.305 - 0.206 -0.225 
623.00 0.370 0.348 0.642 0.692 0.720 0.647 0.517 0.495 -0.296 - 0.377 - 0.240 -0.261 
712.00 0.423 0.385 0.734 0.816 '0.823 0.782 0.591 0.570 -0-339 - 0.411 - 0.274 -0.284 

----BENDING HOMENTS (N. m. ) INCREASE-IN TENSION 

Position C Tower Position 6 
Cal. Load Cable 

Applied Cal. Exp. Cal. Exp. Cal. Exp. Cell Gauges 
Load (N) 

89.00 R. 205 6.987 17.123 18.666 9.321 6.913 3.487 2.971 4.046 
178.00 -16.411 - 13.152 ' -34.247' 37.189 , 18.644 " 14.014 ' 6.974 , 7'177 -8.091 
267.00 -24.619 -20.012 51.371 53.795 27.968 23.363 10.462 11: 483 10.113 
356.00 -32.827 -27.334 68.497 71.796 37.292 33.000 13.949 15.789 14.159 
445.00 -41.037 -36.225 B5.622 91.232 46.619 40.992 17.436 18.660 20.228 
534.00 -49.247 -44.001 102.749 111.419 55.944 49.111 20.923 21.531 24.273 
623.00 -57.459 -51.973 119.877 130.018 65.272 58.762 24.410 25.837 26.296 
712.00 

11 -65.673 

-I 

-59.431 I 
137.005 

I 
151.355 

I 
74.600 

I 
67.515 

_ 

27.897 
L_ I 

31.579 
I 

30.342 

_j 

The: calculateýl and experimental results when'tbe-load is applied at 

loading station E 
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Table 7.7 

DEFLECTIONS (ass) 

Station (1) Station (2) Station (3) Station (4) Station (5) Station (6) 

Applied Cal. Exp. Cal. Exp. Cal. Up. Cal. Exp. Cal. Exp. Cal. ExP. 
Load M 

89.00 -0.034 - 0.034 -'0.060 -0.070 - 0.068 -0.072 - 0.050 -0.046 0.052 0.063 0.043 0.051 
178.00 -0.070 - 0.069 - 0.121 -0.136 - 0.136 -0.129 - 0.099 - 0.102 0.103 0.117- 0.085 0.091 
267.00 -0.104 - 0.099 - 0.181 -0.172 - 0.203 -0.188 - 0.149 -0.144 0.154 0.175 0.128 0.146 
356.00 -0.139 - 0.126 - 0.241 -0.269 - 0.271 -0.266 - 0.199 -0.203 0.206 0.237 0.171 0.213 
445.00 -0.174 - 0.154 -0.302 -0.289 - 0.339 -0.323 - 0.249 -0.250 0.257 0.308 0.213 0.255 
534.00 -0.209 - 0.183 - 0.362 -0.321 - 0.407 -0.396 - 0.298 - 0.301 0.309 0.364 0.256 0.300 
623.00 -0.244 - 0.222 - 0.422 -0.475 - 0.474 -0.459 - 0.349 - 0.352 0.360 0.411 0.299 0.361 
712.00 -0.279 -. 0.263 - 0.483 -0.536 - 0.542 -0.517 - 0.397 - 0.403 0.412 0.477 0.341 0.409 

BENDING MOMENTS Ms. ) INCREASE IN TENSION (N) 

Position C Tower Position 6 
Cal. Load Cable 

Applied C Exp. Cal. Exp., Cal. Exp. Cell Gauges 
Load (N 

89.00 5.330 4.623 8.520 7.623 -12.086 10.846 0.838 1.435 - 0.000 
178.00 10.660 11369 17.040 14.558 -24.172 21.393 1.676 2.971 - 2.022 
267.00 15.990 18.805 25.560 21.182 -36.259 33.005 2.514 2.871 -. 2.022 
356.00 21.321 24.739 34.080 29.739 -48.346 42.986 3.352 4.306 - 4.046 
445.00 26.651 30.363 42.599 32.363 -60.433 55.490 4.191 4.306 - 4.046 
534.00 31.982 34.675 51.119 46.234 - 72.520 - 69.350 5.029 5.741 - 6.068 
623.00 37.313 36.986 59.639 54.019 - 84.607 - 78.596 5.867 5.741 - 6.068 
712.00 42.644 46.233 69.158 62.314 - 96.694 - 89.623 6.705 7.177 - 8.091 

The, calculated-and eLc2erimental-'results when the load is applied at 
loading station F 
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Table 7.8 

DEFLECTIONS (mas) 

Station (1) Station (2) Station (3) Station (4) Station (5) Station (6) 

Applied Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal. Up. Cal. Exp. 
Load (N) 

89.00 -0.052 - 0.047 - 0.090 -0.099 - 0.101 - 0.089 - 0.074 - 0.068 0.101 0.114 0.107 0.117 
178.00 -0.104 - 0.095 - 0.180 -0.205 - 0.202 - 0.186 - 0.148 -0.130 0.202 . 0.228 0.214 0.244 
267.00 -0.156 - 0.137 - 0.270 -0.251 - 0.303 - 0.270 - 0.222 -0.195 0.302 0.333 0.320 0.362 
356.00 -0.207 - 0.189 - 0.359 -0.349 - 0.404 - 0.391 - 0.296 - 0.2B7 0.403 0.446 0.427 0.478 
445.00 -0.259 - 0.213 - 0.449 -0.432 - 0.505 - 0.467 - 0.370 -0.352 0.504 0.537 0.534 0.594 
534.00 -0.311 - 0.276 - 0.539 -0.528 - 0.606 - 0.555 - 0.444 -0.418 0.604 0.677 0.640 0.711 
623.00 -0.363 - 0.312 - 0.629 -0.615 - 0.707 - 0.626 - 0.519 - 0.487 0.705 0.784 0.747 0.833 
712.00 -0.415 - 0.385 - 0.719 -0-815 - 0.808 - 0.719 - 0.592 -0.551 0.806 0.906 0.854 0.924 

BENDING MOMENTS (N. m. ) INCREASE IN TENSION (N) 

Position C Tower Position G 
l l Ca . Load Cab e 

Applied Cal. Exp. Cal. Exp. Cal. Exp. Cell Gauges 
Load (N) 

89.00 7.977 8.493 12.675 13.870 - 42.172 - 38.363 -2.320 - 2.871 -2.023 
178.60 15.954 17.116 25.350 23.117 - B4.344 - 79.715 -4.639 - 5.742 -4.045 
267.00 23.932 27.051 39.025 35.363 - 126.517 -109.356 -6.959 - 8.612 -6.068 
356.00 31.911 34.167 50.700 50.856 - 168.692 -145.764 -9.279 -11.483 -8.091 
445.00 38.890 43.921 63.374 60.103 - 210.867 -187.439 -11.599 -12.919 - 10.110 
534.00 47.870 50.883 76.048 76.284 - 253.043 -228. BO2 -13.919 -19.660 - 12.137 
623.00 55.851 55.478 80.723 27.038 - 295.220 -265.840 -16.239 -20.095 - 16.182 
712.00 63. B32 62.415 101.397 99.001 - 337.397 -299.477 -19.558 -21.531 - 18.205 

The calculated. 'and experimental. results -when the load is applied at 

loading'station G 
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Table 7.9 

DEFLECTIONS (ass) 

Station (1) Station (2) Station (3) Station (4) Station (5) Station M 

Applied Cal. Exp. Cal. Exp. Cal. Up. Cal. Exp. Cal. Exp. Cal. Exp. 
Load M 

89.00 -0.022 - 0.017 - 0.039 -0.04h - 0.044 - 0.040 - 0.032 - 0.039 0.046 0.051 0.061 0.060 
178.00 -0.045 - 0.038 - 0.078 -O. OBI - 0.088 - 0.082 - 0.064 - 0.073 0.092 0.100 0.123 0.119 
267.00 -0.067 - 0.074 -0.117 -0.125 - 0.132 - 0.126 - 0.097 - 0.104 0.139 0.150 0.184 0.177 
356.00 -0.090 - 0.092 - 0.156 -0.161 - 0.175 - 0.199 - 0.129 - 0.140 0.184 0.203 0.246 0.239 
445.00 -0.113 - 0.104 -0.195 -0.216 - 0.219 - 0.245 - 0.161 - 0.177 0.230 0.255 0.307 0.289 
534.00 -0.135 - 0.119 -0.234 -0.271 - 0.263 - 0.296 - 0.193 - 0.213 0.276 0.304 0.369 0.355 
623.00 -0.158 - 0.133 - 0.273 -0.302 - 0.307 - 0.322 - 0.225 - 0.257 0.322 0.358 0.430 0.421 
712.00 -0.180 - 0.151 - 0.312 -0.370 - 0.351 - 0.373 - 0.257 - 0.307 0.360 0.409 0.491 

. 
0.480 

BENDING MOMENTS (N. m. ) INCREASE IN TENSION (N) 

Position C Tower Position G 
Cal. Load Cable 

Applied cal. Up. Cal. Exp. Cal. Exp. Cell Gauges 
Load (N 

89.00 3.473 4.623 5.506 6.935 13.705 12.313 -1.318 1.435 -2.022 
17B. 00 6.947 B. 146 11.012 13.869 27.411 24.907 -2.636 2.871 - 2.022 
267.00 10.421 12.493 16.518 18.493 41.116 38.015 -3.955 5.740 -4.045 
356.00 13. B95 16.234 22.023 25.429 54.822 52.701 - 5.273 7.177 -4.045 
445.00 17.369 20.805 27.529 30.363 68.528 65.334 -6.591 7.177 -6.068 
534.00 20.843 23.563 33.035 36.986 - 62.234 - 78.971 - 7.909 - 8.612 -6.068 
623.00 24.317 27.739 38.541 39.298 - 95.940 - 92.001 -9.228 -11.483 -8-091 
712.00 27.791 32.367 44.046 43.921 - 109.647 -105.662 -10.546 -14.354 10.114 

The calculated and expArimental results when the load is applied at 
loading station H 
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Table 7.10 

DEFLECTIONS Isms) 

Station (1) Station (2) Station (3) Station 14) Station (5) Station (6) 

Applied Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. 
Load IN) 

170.00 0.585, 0.519 0.944 1.111 0.876 0.811 0.449 0.412 -0.194 - 0.214 - 0.157 - 0.170 
356.00 1.170 0.992 1.1399 2.034 1.752 1.665 0.899 0.838 -0.388 - 0.425 - 0.315 - 0.359 
534.00 1.755 1.516 2.934 3.282- 2.629 2.534 1.347 1.269 -0.583 - 0.628 - 0.472 - 0.502 
712.00 2.341 2.128 3.780 4.285 3.506 3.533 1.796 1.769 -0.777 - 0.854 - 0.630 - 0.653 
B90.00 2.928 2.700 '4.727' 5.116 4.384 4.470 2.246 2.238 -0.972 - 1.150 - 0.787 - 0.795 

1068.00 3.514 3.606 5.674 6.861 5.262 5.956 2.696 2.908 -1.167 - 1.341 -: 0.945 - 1.030 
1246.00 4.101 4.575 6.621 7.121 6.141 7.070 3.147, 3.626 -1.362 - 1.562 - 1.103 - 1.248 
1424.00 4.688 5.173 7.570 9.064 7.021 7.937 3.597 3.999 -1.557 - 1.718 - 1.261 - 1.410 
1602.00 5.276 5.683 8.518 9.682 -7.900 8.415 4.048 4.427 -1.752 - 2.171 - 1.419 - 1.625 
1780.00 5.864 6.023 9.468 11.371 8.781 9.674 4.499 4.9139 -1.948 - 2.696 - 1.578 - 2.413 
1069.00 6.685 7.211 11.136 12.317 10.379 11.004 5.162 5.678 -2.207 - 2.813 - l. '780 - 2.633 
1958.00 7.242 8.456 13.485 14.679 12.631 13.109 6.097 7.212 -2.572 - 3.016 - 2.065 - 2.825 
2047.00 9.000 9.734 15.935 16.1383 14.893 15.311 7.031 8.111 2.937 - 3.362 - 2.350 - 3.080 
2136.00 10.157 13.613 18.185 22.951 17.134 20.913 7.966 10.041 -3.302 - 4.215 - 2.635 - 3.98q 

BENDING MORENTS (N. m. ) INCREASE IN TENSIýN, '(N)' 

Position C Tower Position 6 
l Cal. Load Cab e 

Applied Cal Exp. Cal. Exp. Cal. Exp. Cell Gauges 
Load (N 

178.00 -129.350 -143.323 78.423 69.856 42.790 39.051 35.798 30.144 32.365 
356.00 -258.761 -288.960 156.881 140.367 85.614 --, 79.480 71.597 63.158 68.775 
534.00 -389.231 -406 790' 235.376 203.997 128.472 117.154 107.395 94.737 101.140 

-712.00 -517.762 -561: 034 313.907 281.316 171.365 "162.894 143.193 129.187 129.459 
890.00 -647.353 -701.366 392.474 352.716 214.293 202.569 178.991 163.636 161.823 

1068.00 -777.004 -819.315 471.076 431.449 257.255 241.570 214.790 203.828 202.279 
1246.00 -906.715 -952.463 549.716 507.082 300.251 ý! 283.661 250.588 244.019 230.600 
1424.00 -1036.487 - 1092.764 62B. 391 569.368 343.282 317.632 286.386 275.598 262.963 
1602.00 -1166.319 - 1275.924 707.103 743.811 386.348 -372.526 322.10 301.435 295.328 
1780.00 -1296.215 785.850 836.720 429.449 433.436 357.891 373.906 364.103 
1869.00 906.582 987.361 490.555 523.655 428.600 410.815 404.559 
1958.00 1060.641 1251.760 567.896 641.486 528.005 501.621 495.121 
2047.00 1214.700 615.237 923.615 627.07 702.124 685.470 
2136.00 - 722.578 1105.221 727.000 815.351 

. 
789.130 

The calctilated and experimental results when the load to failure 

is pplied at loadircy station C 
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7.6 The Second Experiment 

7.6.1 The Prestressing Operation for the Grouted Test Beam 

As mentioned earlier, prestressing was carried out for the 

second test beam by means of shortening the suspenders. From 

Equation (6.1) and Table (7.11), the shortening ratio, A, required in 

each suspender in order to produce the desired prestressing force 

14.800 KN in the cable was f ound to be 12.3%. Therefore, every 

suspender was installed with its length 1.123 -times its design value 

as indicated in Table (7.11) and the cable was laid down without any 

tension with its anchorages installed. Whence, prestressing was 

carried out as half the required extra dead loads, 10 kg, were placed 

in position (A - H) with the auxiliary props supporting the structure 

in the mid-points of both spans. Then, the suspenders were shortened 

with the full distances, specified in Table (7.11), and-the auxiliary 

props were removed. The rest of the extra dead loads-were added and 

the prestressing operation was completed. 

Shortening the suspenders was carried out, as mentioned in 

Section 7.3.2, by screwing each of the two bolts, Figure (7.5) and 

Plate (3), by half the required distance into the small tubes. The 

prestressing force corresponding to 12.3% strain in the suspenders 

was measured by both the cable gauges and load cell to average 14.200 

KN. Therefore, the shortening ratio, A, needed to be increased to 

12.8% in-order to produce the desired cable tension 14.800 KN. Thus, 

the suspenders were shortened further by the distances calculated in 

Table (7.11). It can be shown that these distances do not have any 

significant effect on the value of the cable sags in both left and 

right hand spans, Equations (2.24). The reason for this error, about 
4%, could be due to the strains which develop-in the suspenders as a 

result of the applied forces and consequently, reduce the shortening 

ratio A, as mentioned in Section 6.4.1, or due to some initial slip 
in the main cable anchorages. It is worth, noting that- all the 

suspenders remained in plumb after the prestressing operation. 
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After 24 hours, the test beam was grouted using a cement 

and water mortar with the ratio 3: 1 in weight. As two steel plates 

were provided at the ends of the test beam to protect them from 

corrosion due to the cable anchorages, they were also used to inject 

the grout through channels which were engraved through them 

connecting the ducts, at their centre, with holes on their tops, 

Figure (7.18) and Plate (2). A manual pump was used for this purpose 

in-order to assist the flow of the grout from each of the ends of the 

beam to its top fibre. After three days, the grout became 

sufficiently hard, and the test beam was ready for the first stage of 

the experiment. 

7.6.2 Testing of the Working Life of the Grouted Test Beam 

The grouted test beam was subjected to increments of 

concentrated loading which were applied once at a time at positions 
(A - H) with the magnitudes and manner described in Section 7.5.2, 

Plate (5). Each test was repeated several times at each loading 

position and the final experimental and calculated deflections, 

bending moments and changes in the prestressing force are tabulated 

side by side as shown in Tables (7.12 -7.19)., The results are also 

represented in graph form as illustrated in Figures (7.19 - 26) with 

the same arrangement described in Section 7.5.2, Figures (7.9 - 16). 

When the loads were removed f rom each position, the grouted 

test beam seemed to recover to its exact position prior to loading. 

As the. load cell did not register any changes in the initial 

prestressing force, due to grouting, the results obtained from the 

cable gauges came in close agreement with the calculated ones. 
Furthermore, the results obtained for the deflections and bending 

moments were generally about 8% less than those obtained for the 
first ungrouted test beam as theýsecond one was more- rigid due to 

grouting. However, the changes in the prestressing force were greater 
than those found for the first test beam by about 30% due to the same 
reason. This perhaps explains the cause for the immediate recovery 

of the grouted test beam when the loads were removed, as the cable 
became more responsive to the loading or unloading of the beam. I 
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Tables (7.12 - 19) and Figures (7.19 - 26) show that the 

experimental results were within an acceptable difference from the 

calculated ones. Finally, no sign of cracks was found anywhere along 

the beam length at this stage of the experiment. 

7.6.3 Testing to Failure of the Grouted Test Beam 

ý As mentioned in Section 7.5.3, the load for this stage of the 

experiment was applied in position C to bring about earliest failure. 

From the computer program, Appendix 28, the theoretical value of the 

ultimate moment of resistance for the rectangular cross section was 

calculated to be 1502.0 N. m for hogging and sagging moments. 
Moreover, the first plastic hinge was expected to form at position C, 

under the applied load, at a load 2165.0 N and the failure load was 

computed to be 2601.0 N with the second plastic hinge forming at the 

tower position. For this reason, similar increments of loading to 

that described in Section 6.5.3 were used in this stage of the second 

experiment. 

The load was increased and the first crack developed at a 
load 1246.0 N at position C. The cracks spread as a result of 
increasing the load and the first plastic hinge formed at the load 

1869 N. This was confirmed by the sudden increase in the deflections 

and cable tension as can be seen from Table (7.20) and Figure (7.27). 

Cracks started to appear at the tower section of the beam when the 
load reached the value 1958.0 N. Afterwards, the increase in the 
deflections became out of control and at a load of 2136 N the beam 

completely collapsed as shown in Plate (8). 

Similarly to the first experiment, all the experimental 
results seemed to agree closely with the calculated ones up to the 
formation of the first plastic hinge. Thereafter, they increased in 

a rate greater than the calculated one, but with an acceptable margin 
of error. As before, the deflections and bending moments were 
clearly less than those obtained for the first experiment, by about 
8%, especially after the formation of the first plastic hinge. As 
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expected, the change in the prestressing force, measured by the cable 

gauges, was much larger than the corresponding one in the first 

experiment before and after the formation of the first plastic hinge. 

Moreover, none of the suspenders failed before the failure of the 

beam as did the cable whose maximum recorded stress was 860 N/mm2. 

Finally, when the failure loads were removed off both the 

collapsed test beams, they recovered, to our astonishment, by about 

60% for the ungrouted beam and about 70% for the grouted one as shown 

in Plate (10). 
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Table 7.12 

DEFLECTIONS lots) 

Station (1) Station (2) Station (3) Station (4) Station (5) Station (6) 

Applied 
77 

Exp Cal. Exp. Cal. Exp. Cal. Exp. Cal. 
I 

Exp Cal. Exp. 
Load M 

89.00 0.120 0.110 0.150 0.170 0.120 0.120 0.060 0.060 -0.030 -0.020 -0.020 -0.010 
178.00 0.230 0.230 0.310 0.270 0.240 0.240 0.120 0.110 -0.050 -0.040 -0.040 -0.030 
267.00 0.360 0.360 0.460 0.570 0.360 0.365 0.170 0.165 -0.080 -0.070 -0.060 -0.040 
356.00 0.480 0.480 0.620 0.600 0.490 0.510 0.230 0.230 -0.100 -0.090 -0.090 -0.0ho 
445.00 0.600 0.610 0.770 0.940 0.600 0.640 0.290 0.310 -0.130 -0.110 0.110 -0.085 
534.00 0.7600 0.740 0.920 0.990 0.730 0.770 0.350 0.360 -0.150 -0,135 -0.130 -0.100 
623.00 0.840 0.660 1.080 1.020 0.8150 0.890 0.400 0.420 -0.180 -0.165 -0.1500 -0.120 
711.00 0.950 1.005 1.230 1.270 0.970 1.020 0.460 0.470 -0.210 -0.195 -0.170 -0.140 

BENDING MOMENTS (N. m) INCREASE IN 

I F N G RES ESSIN 
Position C Tower Position G FORCE (11) 

Applied cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. 
Load (N) 

89.00 -12.114 -10.697 10.292 8.011, 5.667 3.321 8.777 7.125 
178.00 -24.230 -23.106 20.585 17.635 11.336 7.567 17.557 14.250 
267.00 -36.348 -34.213 30.879 27.090 17.006 11.873 26.339 23.4', l 
356.00 -48.469 -51.347 41.174 36.533 22.676 17.527 35.122 31.002 
445.00 -60.591 -63.794 51.471 47.466 28.349 22.013 43.908 39.511 
534.00 -72.716 -78.655 61.769 55.246 34.022 29.672 52.697 46.170 
623.00 -84. B42 -91.318 72.068 74.318 39.696 35.700 61,487 54.200 
712. Ou -96.971 -1011.429 82.368 83.087 45.372 41-819- 70.280 64.316 

The calculated and experimental results when the load is ap2lied at 
loadina station A 
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Table 7.13 

DEFLECTIONS (m2s) 

Station (1) Station (2) Station (3) Station (4) Station (5) Station (6) 

Applied -7-T Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal. 
I 

Exp Cal. Exp. 
Load (N) 

89.00 0.280 0.210 0.390 0.290 0.320 0.240 0.160 0.120 -0.070 -0.050 -0.060 -0.040 
178.00 0.550 0.520 0.790 0.710 0.650 0.570 0.310 0.270 -0.140 -0.110 -0.120 -0.100 
267.00 0.830 0.760 1.180 1.200 0.970 0.820 0.470 0.420 -0.210 -0.180 -0.180 -0.150 
356.00 1.100 1.170 1.580 1.750 1.290 1.130 0.630 0.590 -0.2BO -0.260 -0.230 -0.210 
445.00 1.380 1.440 1.970 1.930 1.620 1.430 0.790 0.730 -0.350 -0.350 -0.290 -0.260 
534.00 1.650 1.730 2.370 2.810 1.940 1.790 0.940 0.890 -0.420 -0,430 -0.3 00 -0.320 
623.00 1.930 1.900 2.760 3.040 2.270 2.150 1.100 1.000 -0.490 -0.510 -0.410 -0.380 
712.00 2.2110 2.130 3.160 3.530 M90 2.395 1.260 1.110 -0.560 -0,600 -0.470 -0.450 

BENDING MOMENTS (N. m) INCREASE IN 
PRESTRESSINS 

Position C Tower Position G FORCE (11) 

Applied C- Exp. Cal. Exp. Cal. Exp, Cal. Exp. 
Load (N ) 

89.00 -37.074 -33.336 23.305 29.938 155.545 19.178 21.650 23.236 
178.00 -74.162 -67.419 56.61B 60.013 31.098 36.230 43.714 47.018 
267.00 -111.263 -103.568 84.938 93.693 46.658 54.700 65.591 70.444 
356.00 -148.378 -, 14LO69 113.267 128.555 62.226 71.366 87.482 92.944 
445.00 -185.507 -169.2855 141.604 156.737 77.802 88.263 109.386 117.871 
534.00 -222.650 -206.060 161.949 184.706 93.386 106.789 131.304 139.416 
623.00 -259.806 -248.652 193.302 219.641 108.977 123.561 153.236 166.213 
712.00 -2ý6.977 -273.593 226.663 243.104 124.576 141.012 175.181 197.462 

The calculated and experimental results when the load is apy3lied at 
loading station B 
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Table 7.14 

DEFLECTIONS (sms) 

Station (1) Station (2) Station (3) Station (4) Station (5) Station (6) 

Applied Cal. Exp. Cal. Exp. Cal. Exp. Cal. 
1 

Exp. Cal. Exp. Cal. Exp. 
Load (N) 

89.00 0.270 0.270 0.440 0.350 0.410 0.420 0.210 0.200 -0.090 -0.080 -0.080 -0.060 
178. - 00 0.550 0.610 0.880 0.730 0.820 0.850 0.420 0.460 -0.190 -0.190 -0,160 -0.140 
267.00 0.8060 0.930 1.330 1.340 1.230 1.170 0.630 0.700 -0.280 -0.310 -0.230 -0.220 
356.00 1.090 1.260 1.770 I. B80 1.640 1.505 0.840 0.980 -0.380 -0.430 -0.310 -0.300 
445.00 1.360 1.570 2.210 2.370 2.050 1.930 1.050 1.260 -0.470- -0.550 -0.390 -0.400- 
534.00 1.640 1.810 2.650 2.820 2.460 2.310 1.260 1.490 -0.570 -0.630 -0.470 -0.490 
623.00 1.910 2.240 3.100 3.510 2.870 2.650 1.470 1.760 -0.660 0.720 -0.550 -0.5BO 
712.00 2.180 '11.560 3.9540 3.980 3.290 3.090 1.680 1.930 -0.760 -0.810 -0.630 -O. L6O' 

BENDING MOMENTS (N. m) INCREASE IN 
TRESS P E I S ING R 

Position C Tower ftsition 0 FORCE (N) 

Applied Exp. Cal. Exp. Cal. Exp. Cal. Exp. 
Load (N) 

89.00 -62.428 -51.715 38.621 3B. 41B 21.116 18.232 24.71B 27.752 
178.00 -124.873 -108.312 77.252 74.569 42.242 39.973 49.453 52.392 
267.00 -187.335 -175.796 115.895 109.248 63.380 c. 8.218 74.206 78.215 
356.00 -249.813 -263.198 154.548 149.139 84.529 79.450 98.976 111.906 
445.00 -312.309 -328.514 193.212 187.557 105.688 100.074 123.763 140.740 
534.00 -374.822 -375.565 231.887 239.527 126.859 137.972 148.568 158.5BO 
623.00 -437.353 -447.294 270.573 2BO. 206 148.040 171.958 173.371 182.367 
712.00 -499. B98 -511.214 309.270 323.136 169.233 192.190 198.230 206.713 

The calculated and experimental results when the load is applied at 

loading station C 
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Table 7.15 

DEFLECTIONS (sms) 

Station (1) Station (2) Station (3) Station (4) Station (5) Station 16) 

Applied Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. 
Load (N) 

89.00 0.170 0.180 0.300 0.260 0.320 0.360 0.170 0.210 -0.090 -0.080 -0.070 -0.060 
178.00 0.350 0.390 0.590 0.680 0.640 0.740 0.380 0.430 -0.180 -0.180 -0.140 -0.130 
267.00 0.520 0.500 0.890 0.960 0.950 1.030 0.560 0.670 -0.260 -0.300 -0.220 -0.215 
356.00 0.700 0.620 1.190 1.240 1.270 1.400 0.750 0.890 -0.350 -0.410 -0.290 -0.300 
445.00 0370 0.740 1.480 1.750 1.590 1.760 0.940 1.030 -0.440 -0.500 -0.360 -0.400 
534.00 1.050 0.890 1.780 2.030 1.910 2.170 1.130 1.260 -0.530 -0.590 -0.430 -0.490 
L23.00 W6 1.220 1.070 2.080 20 2.4L 2.230 2.530 1.320 1.440 -0.610 -0.670 -0.500 -0.560 
712.00 1.390 1.280 2.370 2.740 2.540 2.860 1.500 1.680 -0.700 -0.790 -0.580 -0.660 

BENDING MOMENTS Mik) INCREASE 14 
PRESTRESSING 

Position C Tower Position 6 FORCE (N) 

Applied Cal. Exp. Cal. Exp. Cal. Exp. Cali Exp. 
Load (N) 

89.00 -31.305 -24.769 36.350 33.152 19.761 19.191 17.231 14.203 
173.00 -62.618 -J58.820 72.706 75.768 39.528 355.983 34.471 36.925 
267.00 -93.940 -B6.685 109.067 116.025 59.301 555.166 51.719 49-237 
356.00 -125.270 -123.833 145.433 161.009 79.081 76.756 68.976 68.926 
445.00 -156.608 -144.188 181.806 201.265 98367 93.548 86.241 94.619 
534.00 -187.954 -175.706 218.183 246.250 118.660 117.537 103.515 119.3B9 
623.00 -219.309 -200.907 254.567 281.770 138.458 136.728 120.797 141.160 
712.00 -250.02 -233-292 290.956 322.018 158.263 163.108 139.088 162.363 

The calculated and e? Merimental results when the load is applied at 

loading station D 
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Table 7.16 

DEFLECTIONS (ass) 

Station (1) Station (2) Station (3) Station (4) Station (5) Station (6) 

Applied Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. 
Load M 

B9.00 0.050 0.040 0.090 0.060 0.100 0.100 0.070 0.065 -0.040 -0.030 -0.030 -0.020 
178.00 0.100 0.095 0.170 0.130 0.200 0.210 0.150 0,130 -0.0B0 -0.070 -0.070 -0.050 
267.00 0.150 0.150 0.260 0.200 0.290 0.320 0.220 0.200 -0.120 -0.120 -0.100 -0.090 
356.00 0.200 0.210 0.350 0.300 0.390 0.450 0,290 0.260 -0.160 -0.170 -0.130 -0.120 
445.00 0.250 0.260 0.430 0.340 0.490 0.550 0.370 0.330 -0.200 -0.220 -0.170- -0.160 
534.00 0.300 0.320 0.520 0.410 0.590 0.670 0.440 0.400 -0.240 0.270 -0.200 -0.200 
623.00 0.350 0.360 0.610 0.520 0.690 0.780 0.510 0.480 -0.2BO -0.330 -0.230 -0.240 
712.00 0.400 0.440 0.690 0.600 0.790 0.900 0.590 0.550 -0.330 -0.380 -0.270 -0.280 

BENDING MOMENTS Me) INCREASE IN 
T ESSI G PRES N R 

Position C Tower Position G FORCE IND 

Applied Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp- 
Load AN) 

89.00 -7. B6& -6.440 17.127 15.501 9.241 6.306 4.855 3.056 
178.00 -15.733 -13.015 34.255 30.013 18.500 14.067 9.710 7.216 
267.00 -23.600 -21.700 51.384 44.506 27.750 24.112 14.566 12.619 
356.00 -31.469 -26.006 68.513 61.689 37.002 33.900 19.422 17.414 
445.00 -39.337 -32.653 85.642 79.233 46.254 39.720 24.280 22.314 
534.00 -47.207 -40.832 102.772 107.615 55.507 47.313 29.138 26.555 
623.00 -55.077 -47.549 119.90,23 130.087 64.761 53.679 33.997 30.950 
712.00 -62.949 

1 
-53.616 

1 
137.033 

1 
143.764 

1 
74.015 

1 
60.454 

1 
38.8,56 

1 
35.345 

1 

The calculated and experimental results when the load is anplied at 
loading station E 
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Table 7.17 

DEFLECTIONS (ass) 

Station (1) Station (2) Station (3) Station (4) Station (5) Station (6) 

Applied Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. 
Load (N) 

83.00 -0.020 -0.010 -0.030 -0.020 -0.040 -0.030 -0.030 -0.020 0.040 0.035 0.060 0.045 
173.00 -0.040 -0.030 -0.070 -0.050 -0.080 -0.070 -0.050 -0.040 0.090 0.080 0.120 0.100 
267.00 -0.060 -0.060 -0.100 -0.080 -0.120 -0.120 -0.080 -0.060 0.130 0.125 0.170 0.150 
356.00 -0.080 -0.090 -0.140 -0.110 -0.160 -0.175 -0.110 -0.095 0.170 0.190 0.230 0.200 
445.00 -0.100 -0.110 -0.170 -0.135 -0.200 -0.230 -0.140 -0.120 0.220 0.250 0.290 0.240 
534.00 -0.120 -0.130 -0.210 -0.180 -0.240 -0.270 -0.160 -0.140 0.260 0.300 0.350 0.290 
623.00 -0.140 -0.155 -0.250 -0.220 -0.280 -0.310 -0.190 -0.170 0.300 0.345 0.410 0.370 
712.00 -0.160 -0.180 -0.280 -0.250 '120 -OA6 -0.360 -0.220 -0.175 0.350 0.390 0.460 0.410 

BENDING MOMENTS Me) INCREASE IN 
1 , PRESTRESSING 

Position C Tower Position 6 FORCE (N) 

Applied Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. 
Load (N) 

89.00 3.126 2.728 5.231 3.980 -12.335 -15.607 -1.8553 0.000 
172.00 6.251 4.774 10.461 8.135 -24.669 -32.214 -3.706 -4.5,34 
267.00 9.377 8.184 15.692 11.0B3 -37.003 -44.821 -5.559 -4.534 
356.00 12.503 11.378 20.923 16.764 -49.33B -55.017 -7.412 -7. B94 
445.00 15.622 13.013 26.153 21.380 -61.672 -72.220 -9.265 -7.894 
534.00 18.754 16.895 31.384 25.227 -74.007 -88.515 -11.119 -15.316 
623.00 21.880 19.093 36.615 30.002 -86.341 -102.251 -12.972 -15.316 
712.00 25.006 22.014 41.846 35.51 -98.676 -116.856 -14.825 -20.3655 

The calculated and experimental results when the load is apnlied at 
loading station F 
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Table 7.18 

DEFLECTIONS (ass) 

Station 11) Station (2) Station (3) Station (4) Station (5) Station (6) 

Applied Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. 
Load M 

89.00 -0.050 -0.040 -0.080 -0.070 -0.090 -0.060 -0.070 -0.045 0.100 0.075 0.100 0.070 
178.00 -0.100 -0.090 -0.170 -0.140 -0.180 -0.150 -0.140 -0.120 0.190 0.175 0.200 0.170 
267.00 -0.150 -0.130 -0.250 -0.200 -0.270 -0.250 -0.220 -0.200 0.290 0.280 0.300 0.270 
356.00 -0.200 -0.170 -0.330 -0.280 -0.360 -0.350 -0.290 -0.270 0.3so 0.390 0.410 0.320 
445.00 -0.250 -0.210 -0.410 -0.350 -0.450 -0.460 -0.360 -0.340 0.480 0.490 0.510 0.49ý 
534.00 -0.300 -0.270 -0.500 -0.420 -0.540 -0.560 -0.430 -0.420 0.590 0.600 0.610 0.590 
623.00 -0.350 -0.310 -0.580 -0.500 -0.630 -0.670 -0.5110 0.500 0.670 0.720 0.710 0.700 
712.00 0.390 -0.360 -0.660 -0.570 -0.720 -0.770 -0.580 -0.560 0.770 0.830 0.210 0.810 

BENDING MOMENTS Me) INCREASE IN 
R P ESTRESSINS 

Position C Tower Position 6 FORCE (N) 

Applied Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. 
Load (N) 

89.00 7.658 5.934 12.295 9.648 -37.212 -32.156 -3.262 -1.986 
178.00 15.316 11.868 24.589 19.296 -74.424 -70.736 -6.524 -5.013 
267.00 22.974 15338 36.594 31.356 -111.636 -113.611 -9.786 -6.761 
356.00 30.632 23.012 49.179 48.232 -148.848 -158.622 -13.048 -9.642 
445.00 
5ý. 00 

38.290 
45.947 

29.300 
37.212 

61.474 
73.76B 

ho. 272 
69.940 

-186.060 
-223.273 

-197.210 
-242.221 

-16.309 
-19.5571 

-14.586 
-16.333 

623.00 53.605 42.619 86.063 80.412 -260.485 -287.239 -22.833 -18.316 
712.00 61.262 51.708 98.359 87.884 '197.697 -334.395 -26.095 -21.431 

The calcula: ted and experimental results when the load is ap2lied at 
loading station G 
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Table 7.19 

DEFLECTIONS Imes) 

Station (1) Station (2) Station (3) Station (4) Station (5) Station W 

Applied Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. 
Load IN) 

89.00 -0.030 -0.010 -0.060 -0.040 -0.060 -0.030 -0.040 -0.030 0.050 0.050 0.040 0.050 
178.00 -0.060 -0.030 -0.110 -0.090 -0.130 -0.070 -0.090 -0.070 0.100 0.090 0.080 0.100 
267.00 -0.090 -0.070 -0.170 -0.120 -0.190 -0.120 -0.130 -0.100 0.150 0.140 0.120 0.160 
356.00 -0.120 -0.100 -0.230 -0.170 -0.260 -0.190 -0.170 -0.130 0.200 0.180 01170 0.210 
445.00 -0.150 -0.120 -0.280 -0.230 -0.320 -0.270 -0.210 -0.170 0.250 0.220 0.200 0.260 
534.00 -0.180 -0.150 -0.340 -0.280 -0.380 -0.320 -0.260 -0.200 0.310 0.280 0.250 0.320 
623.00 -0.210 -0.180 -0.400 -0.360 -0.450 -0.390 -0.300 -0.240 0.360 0.320 0.270 0.370 
712.00 -0.240 -0.210 -0.460 -0.420 -0.510 -0.450 -0.340 -0.290 0.410 0.360 0.330 0.410 

BEND1146 MOMENTS (N. 0 INCREASE IN 
I PRESTRESSING 

Position C Tower Position G FORCE (N) 

Applied Cal. T Exp. Cal. Exp. Cal. Exp. Cal. Exp. 
Load (N 

B9.00 4.930 2.630 7.470 5.853 -11.723 -9.865 -1.108 0.000 
178.00 9.861 6.216 14.941 12.601 -23.447 -22.129 -2.216 -2.863 
267.00 -14.791 11.001 22.412 19. B77 -35.170 -36.656 '35 -3.31 -2363 
356.00 19.721 15.516 29.882 28.512 -46. B94 -49. ZB7 -4.433 -5.726 
445.00 24.651 19.996 37.353 38.018 -58.617 -60.368 -5.541 -5.726 
534.00 2?. 581 23.432 44.823 49.010 -70.340 -75.462 -6.649 -8.589 
623.00 34.512 28.900 52.294 58.216 -82.064 -81.930 -7.758 -8.589 
712.00 39.442 31.227 59.764 67.476 -93.787 -99.181 -8366 -11.452 

The calculated and experimental results when the load is applied at 

loading station H 
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Table 7.20 

DEFLECTIONS (mms) 

Station (1) Station (2) Station (3) Station (4) Station (5) Station (6) 

Applied CIT Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. 
Load (N) 

178.00 0.55,10 0.640 0.880 0.700 0.820 0.870 0.420 0.470 -0.190 -0.210 -0.160 -0.140 
356.00 1.090 1.210 1.770 1.830 1.650 1.460 0.840 0.9550 -0.380 -0.430 -0.320 -0.290 
534.00 1.640 1.880 2.660 2300 2.470 2.310 1.260 1.460 -0.5570 -0.620 -0.470 -0.460 
712.00 2.180 2.570 3.540 3.930 3.290 2.990 1.680 1.900 -0.760 -0.810 -0.630 -0.650 
890.00 2.730 3.090 4.430 4.960 4.110 3. BBO 2.100 2.380 -0.950 -1.060 -0.790 -0.760 

1068.00 3.270 3.6BO 5.310 6.030 4.940 4.600 2.520 2.760 -1.140 -1.290 -0.9550 -0.930 
1246.00 3.820 4.370 6.200 6.990 5.760 5350 2.940 3.200 -1.330 -1.540 -1.100 -1.060 
1424.00 4.360 5. OBO 7.080 7.810 6.580 6.840 3.360 3.640 -1.520 -1.800 -1.260 -1.290 
16U. 00 4.910 5.630 7370 8.990 7.400 7.800 3.780 4.030 -1.710 -2.1550 -1.420 -1.560 
1780.00 5.450 6.210 8.8150 10.130 9.230 8.610 4.200 4.810 -1.900 -2.5520 -1.570 -1.840 
1869.00 6.090 7.000 10.280 11.650 9.670 q. 810 4.800 5.360 -2.130 -2.970 -1.740 -2.680 
1958.00 6.720 7.890 11.720 13.130 11.110 12.600 5.400 6.740 -2.370 -3.440 -1.910 -3.050 
2047.00 7.350 9.070 13.150 15.910 12.540 14.52-0 6.000 7.550 -2.600 -4.280 -2.080 -3.730 
2136.00 7.980 11.90wo 14.590 19.010 13.980 17.470 6.600 9.440 -2.830 -5.030 -2.260 -4.680 
22235.00 8.610 14.440 16.020 26.330 15.420 23.780 7.200 11.684 -3.0W -6.210 -2.430 -5.720 

PENDING MOMENTS U. 0 INCREASE IN 
PRESTRESSING 

Position C Tower Position G FORCE IN) 

Applied Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. 
Load IN) 

178.00 -124.973 -100.987 77.252 70.326 42.242 36.013 49.453 50.680 
356.00 -249.813 -249.155 154.548 153.894 84.5,08 74.482 98.976 117.333 
534.00 -374.822 -390.310 231. B87 248.650 126.851 146.575 149.568 163.232 
712.00 -499.89B -538.229 309.270 347.498 169.233 193.990 198.230 212.896 
B90.00 -624.906 -683.948 386.260 419.758 211.533 239.617 247.783 268.117 

1068.00 -749.915 -793.641 463.512 496.894 253.806 271.215 300.338 336.362 
1246.00 -B74.923 -913.474 540.764 585.629 296.120 304.312 352.890 410.716 
1424.00 -999.931 -1023.746 618.016 652.542 338.431 345.551 405.441 475.66B 
1602.00 -1124.940 -1188.445 695.268 743.871 330.799 396.526 457.992 530.310 
17BO. 00 -1249.948 -1333.855 773.520 816.540 423.038 451.066 510.543 612.881 
1869.00 -1374.821 888.215 986.724 475.584 517.307 639.797 726.705 
1958.00 -1499.694 1002.910 1236.586 528.135 597.411 769.051 847.458 
2047.00 1117.605 1492.012 580.696 720.000 899.305 942.775 
2136.00 1232.300 633.238 B76.199 1027.559 1158.342 
2225.00 685.788 1140.450 1156.913 1403.316 

The calculated and experimental results when the load to failure 
is a2plied at loading station C 
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Plate (4) The tower, the cable gauoes and the strain gauges at the 

tower position 
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Plate (5) The method of ý-lyinq the live loads 
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CHAPTER 8 

8. Conclusions and Suggestions for Future Research 

The thesis has shown the development of a theoretical 

approach to the problem of the analysis of the elastic and ultimate 

behaviours of an unusual form of prestressed concrete structure, 

namely the two-span prestressed suspension bridge. Small scale 

experiments have shown that the theory is able to predict the 

behaviour in both regimes with acceptable accuracy for no 
' 
mal, 

structural engineering design purposes. The analysis necessarily 
involves. long and complex expressions which is partly developed from 

the original work. of Steinman and Timoshenko, (20 - 28),, after being 

modified to include the effect of the axial, prestressing, force. For 

practical calculation purposes, it has been desirable to produce a 

general computer program, Appendix 28, 
-to evaluate numerical data. 

The experimental results confirmed the suitability of 
Timoshenko's approach, (23 - 26), to calculate the interaction 

between the main cable and the suspended beam due to applied live 

loading. Not only is the approach capable of analysing both 

ungrouted and grouted types of bridge,, but it is also applicable to 

both elastic and plastic stages of the structure. Furthermore, the 

approach can be used for all ranges of span lengths. Although the 

interaction between cable and beam was not very obvious in the first 

stage of the experiments, as the maximum reduction in the live load 

moments, was about 7%, it did contribute considerably, to the values of 

the failure loads as the live,, load moments reduction amounted to 

about 12% for, the grouted. test beam. 

Although the theory suggested for the determination of the 
failure loads is approximate., -it proved sufficiently accurate as the 
failure loads, obtained experimentally, were, within an acceptable 
margin of error form the calculated ones., The formulae derived for 

the calculation of the ultimate moment of resistance were able to be 

used for any concrete section with any number of layers of 

reinforcement whether or not subjected to external axial force. 
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The- experiments also showed that'' grouting , the main cable 

ameliorates the, performance of the prestressed concrete suspended 

beam in' many different ways. It certainlyý'improves the interaction 

between cable and beam and hence, the cable' directly carries more 

live load. Consequently, less'deflections, bending moments and shear 

forces would be generated in the case of grouted suspended beams as 

confirmed by the experimental results. - This also results in an 

overall increase in the rigidity and strength of prestressed concrete 

suspended beams'. Grouting appears to have another advantage which 

has not been'able to be shown experimentally. This is that due to 

the partial "'restraint of the main cable ' time ef f ects - on the 

magnitude of its" tension are less. Consequently, a smaller initial 

prestressing force can be used resulting in a cheaper cable. 

I The experiments also showed the success of the technique of 
'allowing for small tensile stresses to develop in the concrete which 

C an be sustained by the main reinforcement of the beam and do not 

cause any'cracks during the service life of the structure. ', -This 

results in a considerably smaller prestressing force, Section 7.3.1., 

and hence, -a further reduction in the cable cost. However, such 

approach must be supported by sufficient investigation in all 

possible 'cases of live loading likely to affect the structure in 

order to'determine its maximum tensile stresses. 

The second experiment showed the feasibility of prestressing 

suspended, beams by shortening their suspenders. This innovative 

technique can be used' for practical purposes but will require the 
development of a height adjustment device which is capable of 

sustaining maximum -suspender load in full sized bridges. Conse- 

quently, as the bridge ages towards the end of its service life, all 

of its cracks can be eliminated and its life prolonged when 
increasing its prestressing force by further shortening its 

suspenders. The development of this height adjustment device 

represents a good subject for future research. 
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As noted in the body of the thesis, whilst very few bridges 

have been built, notably by Professor Vandepitte in Belgium (29 -36). 
there has been very little experimental research carried out 

previously to validate the theoretical approach to their design. It 

would seem therefore that if the very considerable economies which 

these bridges are capable of giving are to be made, further studies 

should be carried out. Clearly, one of the most useful directions 

for future research would be to instrument larger scale, or 
hopefully, full sized bridges. Even so. laboratory work to study 

modes of failure under different loading conditions, the time effects 

on the magnitude of the prestressing force (based upon the theory 

given in Chapter 5) and the dynamic behaviour should yield valuable 

additional information. 

One of the most attractive subjects for future research is to 
investigate the use of prestressed concrete suspension bridges for 

very long cI rossings, over I km, in the form of a multi-span bridge. 

This form of structure would certainly improve the applicability of 

our type of bridge in the span range where a three-span bridge become 

uneconomical due to foundation cost. However, a problem needing 

study is the development of deflections increasing with the number of 

spans and due partly to the horizontal movements of the tower tops. 

One way of decreasing these deflections would be to link the main 

cables horizontally with the suspended girders at the centre of each 

span. Another way to control the deflections could be to connect the 

tops of the towers with the abutments and with'each other by means of 
bracing systems. The effect of such systems could influence the 

structural analysIs considerably and must 'be included in the 

calculations. 
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APPENDIX 1 

1. The Detemination of the Exact Length of the Cable 

From the shown element, it is obvious that the exact length of the 

cable S can be evaluated from the following expression: 

I dy 2 112 
Sf1+( dx dx 

dv 

where: 
dx 

dy 8n 
UR F+ 1- X (Equation (2.9)). 

To solve this integration let: 

8n F+ j- x where t is a variable, 

Hence, dt 
_ 

8n 
aR-T- 

and'at x=o 

xF +8n 

Thus, substituting into equation (i), we obtain the simplified 

integration: 
I F +8n 

S=4 ll+t 2]1/2 dx (ii) 
,f F 

This integration can be solved by substituting: 

E= sinh ý 

and dt = cosh ý dý where ý is another variable. 

Thus, equation (ii) becomes: 

cosh2 ý dý ý-n 
f 

which yields, 

11 
16n + -ý sinh 41 (iii) 
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but sinh- 
I 

and sinh 2ý sinh ý cosh 
21 1/2 

Thus, expression (iii) becomes. 

S sinh-lt +t ll+t 21 1/2 ]F 
I 

+8n 

16n F 

I -'(F'+8n) - sinh-1 
2,1/2 2 1/2 

S T6 ni- sinh F' +, (F'+8n)[l+(F, +8n) IF [1+F' II- 

But sinh -1 =, in 21 1/2 

Thus, the"-final expression for the exact cable'length, in the left 

hand span, is: 

S-1[ in '''(F'+8n) + [i+(F'+8n) 2112+ 
(F I +8n) El+(F 1 

+80211/2 16n F'+ [1+F'2]1/2 

F, I( 1+F' 21 1/2 1 

IIII,,; 
where F and, (F +8n) are the cable slopes at its ends (x - o, 4). A 

similar procedure can be used for the determination of the exact 

cable length"in the right hand span. 
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APPENDIX 2 

2. The Determination of the Approximate Cable Length by Series 

ý Expansions 

We know that the exact length of the cable has been expressed 

in terms of the slopes at its ends. We also know that the cable 

curves for suspension bridges are usually flat, due to the long spans 

with respect to the height of their towers, and consequently their 

slopes are small. Therefore, we can express the cable length in 

terms of series expansions. 
. 

To do so, we have from Maclaurin's 

formula of expansions the well known expansion: 

x [I+x2 1 1/2 
.x+ x3 

_ 
X5 + x7 

28 16 

However, the expansion for ln [x+(, +x2 ) 
1/2 

or sinh-, 
lx,, is needed- 

and therefore it has to be calculated from first principle. The 

general form for Maclaurin's expansion is: 

yý YO + XY I+ X2 so 1 X3 #it 
..,, + xn n 

0 Yo + r, YO + Yo 

where the primes. denote the derivative with respect to x and the 

subscript o denotes at x-o. 

Hence we have: 

y= sinh -1 x 

.11 

+ X2 ) 
1/2 

99 

(l+x 2) 3/2 

y 
off 

= -(2x 

2_ 1) 

O+x 2)5/2 

3 

y iv 
= 

3x (3-2x 2 

O+x 2) 712 

v (9-72x 2+ 24x 4 

O+x 2)912 

y0 0 

+ y0 

y0 

y0 

y iv 
0 0 

yv+9 
0 
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y vi = -15x[15-40x 
2 

+8x 
4 

O+x 2 )1112 

vii = 
720x 6 

-5400x 
4 

+4050x 
2 

-225 
(1+x 2) 1312 

vi 
0 

yv" = -225 0 

Substituting into the general equation for Maclaurin's expansion we 

obtain: 

sinh-lx ln (x+ (l+x 2) 1/2 1=x33557 x- JG- +ZJ. - x- 1-1 -2 x 

He . nce, by substituting'into Equation (2.14a). by these expansion using 

only 3 tems, we bave: 

s=4 (F t +8n) - (F'+8n) 3+3 (F'+8n) 5+ (F'+8n) + 
(F'+8n) 

16n 
[ 

To- 8 

F 13 3F 15 FIF 
13 

+F 
15 

6- W-0 2 -8 

5 
S= 6' 

[16n 
+" t(F'+8n)3- F 131 

-L [(F'+8n) F 20 16n 

F 12 32 2F 14 
13 2 12 31 512 4 

+2+ 4nF +n- -8 2nF 16n F- 64n Fn 

Rearranging this expression, we obtain 

s=41+ 
l' (F "+4n') 2'+8n2_1 (F'+4n) 4_ 4n 2F 92 

_ 32n 3 
F' -'352 n4- 

2 8,2 32 4 (F +4n) 22 S+5n- 5- n+8 [4-32n - (F +4n) 

which finally gives the approximate length of the cable at the left 

hand span to be: 

S+8n2 (5-12n 2+ LF +4n) 
2 

14-32n 2_ (F I +4n) 
21 

s81 

A similar approach can be adopted to determine the approximate length 

of the cable for the right hand span. 
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APPENDIX 3, 

3. The Determination of the Exact Relationship Between the Changes in 

the Span and Cable Lengths 

Starting with the expression: 

AS ýs (±Af) 734 (1) 

we have: I ,,, 1 

73S 73 [ýinh-l (F+8n) - sinh-lF + (F+8n)[I+(F+8n )211/2 F [1+F 2]1/2 

where F h+a 4f 
and nf 

which yields: 

d(F+8n) dF 2 
C)S I di dt 

+ 
(F+8n) d(F+8n) 

[1+(F+8n) 21 1/2 [I+F 21 1/2 ll+(F+8n) 21 1/2 dt 

[1+(F+8n) 21 1/2 d(F+8n) F2 dF 2 1/2 dF 
dt D+F 21 1/2 U 1+F IuI 

infi-'(F+8n) - sinh-lF +(F+8n) [1+(F+8n )211/2 -F [I+F 211/2 
8n 

[s I 

as I [1+(F+8n) 21 1/2 d(F+8n) [1+F 21 1/2 dF 
+L sinh-1 (F+8n) - 

. 
15 -1 -9 -n 

[ 
di VI 8n 

[ 

sinh- 
IF 

+(F+8n) [1+(F+8n) 21 1/2 
_F [I+F 21 1/2 1 

73S 
=1 inh-'(F+8n) - sinh-lF + [1+(F+8n )211/2 A d(F+8n) 

+ (F+8n) at 8n 

IS 
I 

dA 
I 

(l+F 21 1/2 [1 dF 
+ F] 

] 

d4 (ii) 
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But: 

d(F+8n) h+a+4f h+a+4f (F+8n) 
di di II 

LF d 1[ h+a-4f ]-- : h+a-4f 
di aI -x F 

Substituting by these values into expression (ii) gives: 

as 1 ln 
(F+8n)+ [1+(F+8n) 21 1/2 

'ý I 
-ý 

"En 
1 

1. F+ [1+F 21 1/2 
1 

(iii) 

Hence, from equation (i) we have the final relationship between At 

and AS as follows: 

AS - 
(±AI) ln 

(F+8n)+ [1+(F+8n) 21 1/2 
(iv) 

8n 
I 

F+ [I+F 21 1/2 - 

A similar procedure can be undertaken to determine the exact 

relationship, between the changes in the span and cable lengths for', 

the right hand span. 
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APPENDIX 4 

4, '-The -Determination of - the, Approximate Relationship, Between the 

- Changes in the Span, and, Cable Lengths 

From Appendix 2, we have, the, approximate, length.. of the cable: - 

8n2, 
_ 

32 
n4+ 

(F+4n) 2 
[4-32n 2 (F+4n) 2 

5 T- -8 

Hence, 

as 242 [6 n222 L6 2ý- + 
128 n+ (F+4n) 4+2 (F+4n) (F+4n) 

ýi-l 395 -8 44 

2_2++ý2 32 4 (F+4n) 2,2. 
- (F+4n) 2 [4-32n (F+4n) 11Yn-n+8 [4-32n 

BS 8n2+ 96 
n4_ 

(F+4n) 2 
[4-32n 2 (F+4n) 2 64n 2_2 (F+4n) 2 

T 5- -8 

Thus, substituting into expression M Appendix 3, we obtain: 

222_2 AS 1 L15 
n (5-36n [4-96n 3 (F+4n) 

A similar procedure can be applied for the right hand span. 
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APPENDIX 5 

5. The Determination of the Exact Relationship Between the Changes in 

the Span Length and the Cable Sag 

The derivative of cable exact length equation with respect to the 

cable sag f is: 

d(F+8n) dF 
2; "' as I df HE (F+8n) d(F+8n) 

ýfff 
[1+(F+8n) 21 1/2 [1+F 21 1/1 + 

[1+(F+8n) 21 1/2 df 

[1+(F+8n) 21 1/2 d(F+8n) 
_F2 

dF 
_ [I+F 21 1/2 dF 

df [1+F 21 1/2 df df 

12 [sinh-'(F+8n) 
- sinh-lF +(F+8n) [1+(F+8n )211/2 -F [I+F 21 1/2] 

16n 

which yields: 

FJS A [1+(F+8n) 21 1/2 d(F+8n) [I+F 21 1/2 dF 121 
sinh- 

1 (F+8n) 'ý -f 18 -n 
[ 

df Tf- 
I 

16n 

- sinh- 
1F 

+(F+8n) [1+(F+8n) 21 1/2_ 
F [1+F 21 1/2 1 

But, we have: 

d(F+8n) d h+a+4f 4 
df df 

[III 

dF d[ h+a-4f 4 
Tf- Tf II 

Substituting these values into the above expression gives: 

as 
=- 

l [sinh-'(F+8n) 
- sinh-lF + [1+(F+8n )2]1/2 [F+8n-8n) -[l+F 

2]1/2 [F+8n) 
caf 16n 21 

FJS 
=-1 ln 

(F+8n)+ [1+(F+8n) 21 1/2 
+F [1+(F+8n) 21 1/2_ (F+8n) [I+F 21 1/2] 

Fif 16n 2[( 
F+ [I+F 21 1/2 
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Substituting this expression into the basic formula: 

Af asial U 60 Fis/af 

which yields: 

Af 
2n 

(F+8n) [I+F 21 1/2 
-F [1+(F+8n) 21 1/2 

(F+8n) + [1+(F+8n) 21 1/2 

F+ (1 +F21 
1/2 

1 

A similar procedure can be employed for the right hand span. 
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APPENDIX 6 

6. The Approximate Relationship Between the 'Changes 'in the 

Length and the Cable Sag 

The derivative of the'cable approximate length equation with respect 

to the cable sag f is: 

t 

; is 
= 

ý' [I [I +8n2 (5-12n 2) 
+ [4-32n 2 

-, (F+4n )23]] af U 15 8 

ZiS 16 n 128-n 3n 
(F+4n) 2 

ý-f 3 -1 - -5 T--8iI 

where; 
d(F+4n) 

.d( 
h+a 

0 df U-f I 

-II) 11 ý 

as 8_ 
n[5 [2-3(F+4n) 2 48n 2 

ýfff ý T-5 I 

We then substitute into the basic fomula: 

asla, (-ý . 64) as/af - 

which gives: 

Af = 
(± Al) 

[120-64 n2 [5-36 n21- 15(F+4n) 2 [4-96 n2_ 3(F+4n) 2 

64 n5 [2-3(F+4n) 2 48 n2 

A similar approach can be adopted-for the right hand span. 
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APPENDIX 7 

7. The Detemination of the Exact Relationship Between the Changes in 

the Tower Height and the Cable Length 

The exact cable length equation is: 

1[ 
sinh 

l(F+8n) 
- sinh-lF + (F+8n) [1+(F+8n )211/2_ F [I+F 21 1/2 

S= -- 
i 

1 Fn 
I 

Hence, the derivative with respect to the tower height is: 
I 

d(F+8n) 2 FJS I dh (F+8n) d(F+8n) 
+.. [l+(F+8n) 2 

.1 
1/2 

; ý-h T ii Fjh 16n- [1+(F+8n) 21 1/2 + 
[1+(F+8n) 21 1/2 dh 

dF 2 d(F+8n) U-h 
_FO 

dF [1+F 21 1/2 dF 
dh [1+F 21 1/2 [l+F 21 1/2 dh dh 

] 

But, 

d(F+8n) dF 
dh ilh- 

and the basic formula is: 

as 
, 6s = ýi-h (± Ah) 

Thus, the final expression for AS is: 

AS 6h) [1+(F+8n) 21 1/2_ [1+F 21 1/2 
8n 

A similar procedure can be followed for the right hand span. 
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APPENDIX 8 

8. The Determination of the Relationship Between the Changes in the 

Cable Tension and Length 

From the figure, it is clear that: 

AT = Ali ds 
ax- 

and, strain = stress 
Ec 

&S AT 611 ds 
A-E ý A-E -dx 

cccC 
Hence, we have for the left hand span: 

12 

6S = 
6H f[ ds dx 

ACEC dx 
0 

AH 

But ds 2 dy 2 
+( Tx ) 

ds )2 1F2+ l6n 
F + 

64 n22 
2 

Thus; 

AS = 
AH [(l+F 2)+ l6n f 

Fx+ 
64 ný x2 ] dx 

ACEC 2 
0 

&S 611 2) 8n [(l+F -F 
2 64 n3 x x1 XCEC i 3A2 

0 

6S Mt [1+F (F+8n) + 
64 

n2 ACEC 3 

A similar expression can be written for the ri, -, ht hand span, hence 

the total change in the cable tension corresponding to the elastic 

deformation of the cable is the algebraic sum of the expressions for 

the two spans, which gives: 

AcEc AS &S 1 
AH + 

[1+F(F+8n) + 
64 2 64 2 
S- n]X [1+F 

1 
(F 

1 +8n 1+Tn, 
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APPENDIX 9 

9. The Detemination of the Term 9 bm 

2 
X dx bm ý2 EI 

Hence. 
-. 

911m2 dx +11m2 dx bmý Tj- 
fxfx11 

where mx and mxj are given in Equations (2.42). Thus, we have: 

il 
ýI 

m2 dx - 
Lf (IX _ x2) - (9+a) +a dx 

Of 
xI 

Of 

[121-1, 

= 
16f (4 2x2 

-2£*x 
3 
+x 

4)+ (Fn+a) 2x2+a2_ 
iý 
8f (i+a) 

Of 

1192x3 

(£x 2_X3 )+ 8f 
a (ix_x2) - 2a (g+a) 2! dx 

x241 

16f 292x3 £x 4+ý5) 
(i+a) 2x32 8f (ii+a) 5 3x 2 71 

3432 
xx !x+ 'f 

a( 
4x2 

a (Tn+a n] 
3 j2- 24 

Lf 2+ 1 (; 2 
+2rna+a 

2) 
+a2_2f 6i+a) +ýfa- a(Z+a) 15 'S 31 

1 

m dx 5 f2 +2 fa +a2+(; 
2 

- rna - 26m)] 
f2 

x3 

Similarly, for the right hand span: 

m2 dx = 
11 [8f2+2fa+a2+ 

(Fa 2_ Ea - 2f Fn) 

ol 
X1 35111 
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Hence. by summing these expressions. we have: 

fMx 
dx =A8 f2 +8 Xf2 + 2fa +2 Xfla +a2+ Xa 2 

i -EI 551 

Fn(Fn-a) +X FaUH-a) - HE -2Xf lifil 

1 8 f2 (, + w215) 2f (Fn-a) (, + wX3) 3EI 5 

O+X) [a 2+ 
m(m-a)]] 

where fX2f (Equation (2.6)) 

1+ WX 
3 

Hence, knowing that e- T+-x where e is a constant, we find: 

2 
fMX 

dx f2 (, + tj2XS) (1+ X) [a 2+ (in--a) (g-ffe)l fi- 3EI 51 

a Substituting by Ta = fe +ý gives: 

9 -L (1+x) ý f2 
(1+ w2x5)+a2_ (f e- -1 )2 

bm 3EI 
15 

(IT XF 2 

From which, we arrive to the final expression for 9 bm : 

f2 0+ w2x5 (fe a) (fe + bm 3 EI 5 (IT IT 22 
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APPENDIX 10 

10. The Determination of the Exact Expression for the Term 9c 

We know that: I 

3 
s L s 

f ) 
dx 

c AE dx 
cc 

and: 

C ds 312 312 
) dx 

f+C Ly dx ux- dx 

where 
dy 

.F+ 
8n 

x dx A 

(i) 

Hence, to determine this . 
integration, we use a similar 

approach to that used in Appendix 1 as follows: 

dy 8n 
let ax- F+Ix 

hence dx 
L dt where t is a variable. 8n 

Thus, we find at xoF 

xI F+8n 

Substituting by these quantities, equation M becomes: 

ds 
31 F+8n 

2 3/2 
) dx gf[1+E dt Tx- '9-n 

0F 

To solve this simplified integration, 

let t= sinh dt - cosh f df 

and substitute in equation (ii), we give the following more 

simplified integration: 

ts34 
fL) 

dx cosh ý dý 
n dx nf 
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But cosh 
2 11+ cosh 2fl 

cosh 
41 [1+ 2 cosh 2ý + cosh 

2 201 

[1+ 2 cosh 2ý ++ cosh 4f] 
421 

41 
cosh ý= ýj [3 +4 cosh 2ý + cosh 4f 

Thus, substituting into the equation (iii), we find: 

3,1 
dx 3ý +2 sinh 2ý +W sinh 4f ds 

-4n Tx- 

A[ 3ý + sinh 2ý (4 + cosh 2*)] '64 n2 

=I[ 3+ + sinh 2ý (4 +2 cosh 
2 

-64-n- 2 

=I[ 3f + sinh ý cash f (5+2 sinh 
2 f)] T-4n 

Ls312 1/2 2 
dx = -6-4 3ý + sinh ý (I + sinh +1 (5+2 sinh f)] Uv) 

dx n 

Hence, substituting by ý in terms of t into the above equation 
gives: 

3 F+8n 
Ls2 1/2 2 

dx 3 sinh-1 + 1+ (5+2 t 
dx T-4n 

F 

I[3 (sinh- 1 (F+8n) - sinh-lF + (F+8n) tl+(F+8n) 21 1/2 
; 4-n 

[5+2(F+8n) 2F [1+F 21 1/2 (5+2F 2)I 

I ds 3 
Similarly for the right hand span the expression for 

fC 
dx 1 can 

be written. Consequently, the final expression for SC is obtained by 

summing the two expressions as follows: 
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&=13 ln F+8n + [1+(F+8n) 21 1/2 
+ (F+8n) [1+(F+8n) 21 1/2 [5+2(F+8n) 2 

c 64nA 
cEcIF+ [I+F 21 1/2 - 

2 1/2 

-F [1+F 2 1/2 (5+2F 2)+13 
ln 

(F 
1 +8n I)+ 

[1+(F 
I +8n I)I) 

F+ [I+F 21 1/2 

(F +8n ) [1+(F +8n )21 1/2 [5+2 (F +8n )21-F [l+F 21 1/2 (5+2F 2 )]j 111111111 

where 
1xf 

In112f 

and W-1 w 
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APPENDIX 11 

11. The Determination of the Approximate Expression for the Term 9c 

By virtue of Maclaurin's formulae for expansions, see 

Appendix 2, the series expansion of the following expression is: 

3 sinh-lx +x fl+x2,1/2 (5+2x2) =3 [x -x3+3x51+ (5+2x 2) [x +ý2-h3] u- ZU 2-8- 

8x + 4x 3+35x 
ýx- -4- 

where x7 can be ignored. Hence, substituting in the expression for 

the left hand span: 

A3 
ds ) dx -1 

[8 
(F+8n) +4(F+8n )3 +ý (F+8n )5 - 8F - 4F 3_3F5 

dx '64-n 5yI 

2 24 43 [64n 
+ 32n OF + 24nF + 64n) + y- n OF + 8OnF '64- n5 

640 n2F2+ 2560 n3F+ 4096 n4 )l 

1+1 (F+4n )2+ 8n 2+3 (F+4n )4 + 12n 2F2+ 96n 3F 
29 

1056 4] 
5 

m41+A (F+4n )2+ 8n 2+2 (F+4n )4 + 12n 2 (F 2+ 8nF + 16n 2) 128 

96 4] 
5- n 

dx =II+3 (F+4n) 2 [4 + 32n 2+ (F+4n) 2+ýn2 (5 + 12n 2) fc Ls ) 
dx 

I 
iý 5 

Similarly, for the right hand span cable, we have: 
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,41[ ds, j3322282 
dx 1 

dxl =X1 
Ij 

+ «ä (F 1 +4n 1) 
[4 + 

132n 1+ (F 1 +4n 1)1+ -ý n, 

(5+12n 2 
1 

By summing the two expressions and considering: 

II (F 
1 +4n 1)1n, X= -T I (F+4n) T and n= wx 

we arrive to the final approximate formulae for the term 9c: 

+3 
(F+4n) 2 

X2 322 [4 (l+1) + 32 1n X) 
AcEc1 

(F+4n) 2 (I+X 3+ýn2 [5 (, +w2X3) + 12n 2 (1+w 4x5 
5 
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APPENDIX 12 

12. The Detemination of the Discrepancy A for a General Case of 

Loading 

Ile a9---------- 

HaI, - amHa 

I t-Tn- 
fttff IF Ittf IF 71 

The above figure shows the forces applied on the suspended beam when 

separated f rom the main cable., Becaus'e of the complexitý 'of the 

shown case of loading, the general loading d will be studied 

separately I from the other applied loads. Then, the different 

equations will be superimposed to determine the final value of the 

moment at the intermediate support M 

Mm 
and the gap A, 

fx 
EI 

x dx. 

1. For the General Load 

1-1 
The bending moments produced by d in the lef t hand span can be 

evaluated from the following equations, (1): 

mx(l)d ý7Hi 11 16- - 
ý2 1 (oL-P), 

' 
( 2- (%+P) Ix0(x4pI 

mH Tj 
61 (ot-p) 2- (ot+p) Ix+ (X-PA) 2 

pi 4x4 Ott x(2)d i 26 T 

H Tj (OL-P) [2- (ft+p)) x+ 
ol (%-p) j2x-I (m+p)] 

x(3)d i 36 2 

ot I <, x <, I 

where Hi is the initial prestressing force. 
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d 
Hence, knowin. - that M= 

x we obtain the following equations: El 2 dx 

d2 

2 
2 

+p TI i 16 
61 
2EI 

(ot-p) [2-(ot+13)) x0(x4pI 
d 
d 11 26 

2 
2 
i -26 

61 
ý -EI OL-P) [2-(ot+p)l x+d (X-PI) 2p4x4 

Ot I ý -EI 
d 

d 1136 
+ p2 11 

di- (ot-13) (2-(ot+p» x+ 
di «x-p) (2x-£(*+p» 

2i3dý- 7-EI - 2EI 

ot 14x41 

where 

The solution of these differential equations consists of two parts as 

follows: 

General Solution = Complementary function + particular integral 

Thus, to determine the first part of the general solution, we consider the 

left side of the equations alone and substitute qc. Fý AIe ax where A$ 

and a are constants, (1). Thus, we have: 

2A ax 2A ax 
i 

I ax 22t ax e [a +p il =0Ae 79 0 

Thus, api 

Hence. 

Tlc. F =A1e 
ip i+A; e-'Pi 

(cos x+i sin x) +A2 (cos px-i sin Vx) 

(A, - A2 )] si 
-npIx+ 

[A, + A2] cos pix 

T'c. F ýA sin pix+B cos pix 
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Where A and B are constants to be evaluated f rom the boundary 

conditions. Obviously, different constants must be used for each of 

the three equations. 

To determine the second part of the general solution, we substitute 

11 Ax2+Ax+ A" into each of the three equations which gives P. I 13 

for the first equation: 

t1 
)J2 

,, 2, II' 
(ot-p) [2-(ot+p)) x 2A+ [A, x+Ax+ A3 123 2EI 

By comparing the coefficients of x2, x and absolute term on both sides 
I1 11 of 

of the equation, we determine the constants A, 9, A2 and A3 as follows: 

A1 =0 

di 
TH- 

#I 

And the general solution for the first equation is 

ri A sin pix +B cos px 
61 (m-p) [2-(%+p)) x0(x( PI 16 2H. 

I 

Similarly, for the other two equations: 

C sin px+D cos p 
df 

(x-p) [2-(%+p)] x+ ýL- (x-pl3 (% 
26 iix- TH- 2H. 2 

3. piHi 

x 4, ot 

E sin px+F cos px- yH- (m-p) [2-(oL+p)] x+ -ý-' (ft-p) [2x-A (m+p)) 3d iii 2H 

ot I(x<, A 
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Where the constants A. B. C, D. E and F can be determined by 

considering the boundary conditions as follows: 

a. at x=o 

at x= pi 

c. at x- pi 

d. at x= oLl 

e. at x= oti 

f. at x=i 

a. at x=o T) id = 

flid ý 
T'16 ý T126 

dTl 
16 

dq 
26 

dx dx 

ln2d = 1136 

drl 2d drl 36 
dx dx 

1136 ý 

Bo 

b. at x pt TlId ý T126 

From which, we arrive to the equation: 

which gives 6 

equations in 6 

unknowns as follows. 

A sin pi pt =C sin pipf +D cos pip, 26 H. ii 

c. at x pf 
drIl. dri 26 

dx dx 

which yields; 

A cos pi PI =C Cos pi pi -D sin pi PI 

From equations (i) and (ii) 

D26 Cos Pi PI 
i Hi 

d. at x= ml n- n- 

(1) 

(ii) 

(iii) 

C sin piat +D cos piaE sin pI at +F cos pi at Uv) 

e. at x= oLl 
d 926 dTj 3(% 

dx dx 
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Cos pi ott +D sin pi oLl =E cos pi at -F sin pi ot f (V) 

From equations (iv) and (y) 

(Cos pi pt - Cos pi Ott) 

at x=1 1136 =o and from Equation (iv) 

Cos Pit 
(Cos p pt - Cos p Ott) (Vii) 

2 sin I 
.H 3.3. 

Substituting in Equation (v) 

sin I 
(Cos pi 40-0t) - Cos piI Cos pi pil (Viii) 

Substituting in Equations (i) by Equations (viii) and (iii) 

26 s3. n p. I 
[Cos f(I-ft) - Cos 

IHII 

Substituting from Equations (i), (iii), (vi), (vii), (viii) and (ix) 

into the deflection equations we obtain: - 

22 

[Cos P 40-00 - Cos 40-01 
sin pixPiI 

(oL-P) [ 2- (ot+p) 
2 H. i sin p1 -2 
i 3. 

i 0 4, x(pI 

I sin px sin )i. (I-x) 
292 

TI Cos p 10-00 
1+ 

Cos P. pf 
Ii 

26 2 
H. 

iI sin 42 

,ii 

ot-p) ( 2-(ot+13) p) 
2] 

131 (X4 Ott 

2ý2 
sin pI( A-X) p1122x 

r13 
p2H. 

[(Cos 
pi PA - Cos pi Ott) sin A2- 

(ft -P 0 

ii 

ot t ý<, x41 
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2. For the Upward Distributed Forces (yW and yW, ) 

For the Left Hand Span 

The deflection equation can be directly obtained by substituting, 

- yW, ot =1 and p=o in the deflection equation for the general 

loading at the region pt 4x4 ott which gives: 

12 
- YW p. x 

l1w ý -2 
-- sin t+ sin pI12 

(I-X) o K, x(t 
), i H, 

IiI 

Similarly for the right hand span, 

YW 
+I 

1-x 12 
lw 2 sin I sin p12 )ji IiI 

o4x1491 

3. For the Applied Moments (M and Hia) 

Starting with the Left Hand Span, we have: 

M=-H Tj +Ha0tMo 
xm imi 

d2 TI 
m by substituting M 

xM 
- EI 

dx 
2 and carrying out the aforementioned 

procedure, we obtain: 

A sin x+B cos x+L !S+a 
H. I 

1 

where by using the boundary conditions, qm -o at x-o. 9, we arrive 
to the final expression for the deflections produced by the applied 
bending moments: 

rl 
M sin p, x 

+a+ 
sin pi (I-X) 

o K, x N< m T3'-Ln -p, sin pI 
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Similarly, for the right hand span: 

sin xs in pi (I 1-x 1) 

.( -X- i 1 X1 
lm 11 sin piIIII sin pi 11 

)l 

o4x1411 

Thus, the final deflection equations for the case of loading shown in the 

figure for the left hand span: 

(11), = ri 
m+ 

T) id + T) 
w0K, 

x <, pI 

(11) 2ý llm ' " 2,5 ' "w pi <xK, ett 

(11)3 -ý rl m+ 11 3a+ Ilw 0txK. x4x 

and for the right hand span: 

(q 1) , "Im, 91W o4x1 <1 I 

The bending moment at the intermediate support M can then be 

computed by taking advantage of the equal slope to the left and right 

of the intermediate support. Hence, we have: 

d(n) 3 (at x- 1) =- (at x dx dx 

d(TI) 
3d Tim 

+d 
Tj 36 

+d 
r1w d(Til) dTIlm dT)lw 

dx dx dx dx dx dx 

dq 
mM1 Cos x1 Cos Pi (I-X) 

-=( -i -P+a+ Pi dx ti Tin pit sin p, A 

at x-I 

"Im mIP. II 

dx =H7 Ta-n- Pi I+a -j ( 
sin pil 

Similarly at x=II 

dq Im MIP. IIpiA1 

-jj 
1) 

+all 
x an sin I 

For the upward distributed load, we have for the left hand span: 
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dTl p Cos px Cos p (I-X) 2 

w YW iii 1-2x) 
sin dx 2Hi sin 12 

11 

at x=I 

drj 
w YW t -2 Cos 14 dx I sin piI 

tan I 
YW 2 
ýH. PI Ii 

2 

Similarly, for the right hand span at x 

tan 
Pi 1 "llw 

= yw ,[2 dx 1 2H I 
2 

For the applied live loading 6, we have: 

d il Cos (I-X) 2 

dx 
36 

26H sin t 
(Cos pi pf - Cos pi otl) +p21 (ot2_p2 

Pi 

at x=A 

d il 36 61 
(Cos pi PI - Cos pi Ott) 

ot 
2_P2 

dx TH- 
I pit sin pit 

Hence, by substituting in the equation for the equal slope on both 

sides of the intermediate support, we obtain: 

m 61 [2 (cos pipt cos p, ott) 2_ 2 YW +av-- (01 + i2HI sin 2H 

m YW I 
H. li H 

which yields; 

M H. a 
(v 

i +V 2 (cos pi pf - Cos pI %1) 22 YW 
i TO-j-+ýIi) Pi I sin pit2 
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(0 +wo 

where, 

v=11 
"i Ii11 

ii sin pt 

Pill 
sin p 

ýi 1[1 
tan pifI 

Pi A 
tan 2 

wl 2 Hi 
and, where w. 's, o= i EI 

tan 

ta 
Pi 1 

21 

2 

Having found M, the next step is to calculate A as follows, 

6= xX dx EI = -1 
EI m dx 

ý 
fM 1 

+f mm dx i i, 
1 

o xx x x 

For simplicity, these integrations can be performed separately for 

each load, as before, where: (Equations (2.42)) 

m 
Lf 

X2 +1 Pfe +ý a) 4f] x-ao4x41 x2i21 

m 
4f, 

x2+ 
1- Pe + a) - 4fl] x-a04x <N 91 

xi 4211121 

1. For the applied live loading 6 

From the deflection equations, the bending moment equations can 
be obtained by making use of the following relationship; 

EI - 
11 

dx 
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which yields: 

m 
x(l)(% 21 co 

-sp M-a) - Cos p 40-P 
s3. n x0 

ii )3 
sin I 

6 sin x sin 

x(2)d 21 Cos 14 10-00 -. 'S )I. Pt i sin II sin 

pt <, x <Ott 

sin p (I-x)- 
x(3)d 

d21 
Cos It ipl - Cos pi OL11 sin 

ipI 
Ott 4x4A 

Pi i 

Ixmx 
pt Ott I 

Hence, dx Lfm 
dx +fM dx +fMmx dx] 

f 
EI EI X(1)6 mx x(2)d Mx x(3)d 

4ý pt Ott 

Thus, 

M. ot I sin pxp 
dx Cos 

f 
"x sin pI 

dx - cos p1 4(1-13) mx 
00 

EI 
f 

sin vx sin )j, (I-x) i Ix + Cos p pt m : L- dx - cos p at m sin 14 iAifx sin pi41fx 
J3 9 OLA 

sin 

.pi( 

I-X) 
dx - 

ot Am 

dx 
sin ji iI 

pf 

fxI 

Bearing in mind that: 

f2 -1 [2 2x 2]b 
x sin x dx = Pi x Cos pix- 

Pi S: Ln i-- 2 Cos xa 

ai 

bx 

sin x dx x Cos x 
sin pi'b 

afix 

]a 

b 
22x ]b 

sin V (I-x)dx L 
cos P (I-x) +L sin p (I-x) L 

cos p (I-x) 
fx 

i Pi 
IX 

i Pi ip21a 
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b 

sin p (£-x) dx =- cos )i '(£-x) + 
sin p1 (£-x) b 

i )i i- 
la IX li [X 

Iii 
a 

The above integration can be divided into the following: 

m xx dx +I+I+I EI 1 1) 34 

where I,. 1 2' 1 3$ 14 and 15 can easily be found as: - 

Cos )i i 10-00 4f 212 
Cos p OLI - 

2otl 
sin p ml -22 pi sin piA T2 i pi P2 

Cos pioLl +p2 

ii 

(fe +1s 
in pI Ott 

2 a) - 4f] (ott cos pioLl a (cos ya - 1) 3.1 

Cos Pi M-P) [ 4f 2222 I cos pipt - 
221 

sin p pt --- I-ipj + 2 Pi sin pi112 pi 122 
ii 

(fe'+ ý 
a) 4f] (pt cos p pt - 

sin pI PI 
)'- a (cos p pl 2i Pi i 

Cos Pi PI 4f 2_ 222 pt 
sin 422pI Cos pi M-p) -L sin pi 9(1-p) 

II 

Pi Pi 

Cos 11 1(1-p) + [(fe + 
12 

a) - 4f) (i- pf cos pi 10-p) 

sin pi f(I-P) 

Pi -)-a cos 10-P) 

Cos pi otl 4f [12_ 222 2otl 
p sin 22 OL A Cos pi M-00 sin pil(l-%) 

i Pil A Pi 

1 L 
Cos p 10-001 +j [(fe +ý a) - 4f] (I- od cos 

p2i2 i 

sin pi 10-00 

Pi -a cos 10-00 
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I=4f4 (OL 3_p3) 
+13a- f(4-e)) (ot 2_P2 

at (ot-p) 
532(2 

By collecting the different terms. the gap, Ad, due to the live 

load alone can be determined as: 

(sin (1-2p) - sin (1-40) 
8f 22 

22P1 
Pi I Cos 

i 
2 

2f. [Ot2 (3-2ot) -p2 (3-2p)] (f e+1 a) 
(Cos vi pt - Cos pi Ott) 

321 Pi 4 sin pil 

I( 
cc 

2_132 

2. For the upward uniformly distributed load 

The gap it produces, 6w, can be directly evaluated for the left 

hand span when substituting 6- -yW, a-I and p-o into the above 

expression, 'which gives: 

A=+ YW 2f [44 + 30i(e 16 )l - 3a 0 
w 12 H212 

i 

Similarly for the right hand span: 

YW I(e 16 2f, [41, + 301i --- )] - 3a G 
wi 12 H. 222 

II wx pI 
ii 

I 

2W 
Knowing that f ul f and w- 

ý'-' 
, the sum of the previous two equations W 

can be written as: 

6-+ YW 2f [41 (1+w 2x3+ 
3e (0 +wO 

48 
W+wl 12 H212 

i 

(0 i +tj 
20 

ii )] - 3a (0 i +we ii )I 
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3. For the bending moments, we have for the left hand span: 

d2 sin )4. x sin pI (A-X) 
M= EI 

'a Ilm 
=M1+H. a 

xm dx 2 sin piII sin piI 

Hence, integrating this equation multiplied by the equation for mx over 

the entire length of the left hand span yields: 

+m 
Lf f 

X2 
sin 14'x 

dx +a-f (4-e)] 
f sin pix 

dx 
m EI 2 sin pi112 sin pil 

-afI 
sin p, x 

dx +p2a 
4f f, 

x2 
sin pi (I-X) 

dx +1 
. 

sin piIIiI; -2 
. 

sin pit 

4 
SIP )4 1 

U-x) x 
sin pi (£-x) 

[Aa-f, (4-e)] 
1x 

dx -a- dx 20 sin pi4 
01 

sin p141 

knowing that, 

2 sin p. x 2 
x-" dx (0 1 

Of 
sin piA P2ii i 

sin x 
x- dx 

Of 
sin 2 

i 

dx (E) + 4) 
sin Ii 

x2 
sin pi (I-X) 

dx =-1v12 

Of 
sin 2 

(()i- 
i 

i 

.. 
sin pi( I-X) 

dx =v 
:11 

Of 
sin I 
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x 
sin li i (£-x) 

dx =1 (0 + x) 

01 
sin )i ixii 

We arrive to the final result as: 

OiI2 
e) +a[ 112 (0 +0 - 30 Lf 

4fC. i 2 

1 3v - -z- i[ pi i ill 
Similarly, for the right hand span; 

A--M[ 
4f, 

gli_ 
eli4 2 

e) +a[ p2 (0 +X 3e Im W. - 2(ii li 1 il 
i111 

2 

- 
4fl 

(01i - 
vl'l 

e) +a[ 02 (f + 3v 
1124 

-w i ii 1 il 

I 

Thus, the total value of these integrations for both spans is: 

A 
4f [ (E) +w0 )- (e +4 )42e]+a[ 112 ( x(l+1) 

M+lm H192 

Lf [ (e +WO ,)- (v +v 
121 ll i 

2e+a[ 
P2 [4(1+X) + (0 +0 A3 (v +v 4 

Substituting for the value of M we have: 

Aa (v +v )+d, 
(Cos pi PA - Cos pi Ott) 

-I( ot 
2_P2 

M+lm 

I- 

i li H 
3.1 Pi A sin pit -i 

YW (0 +WO )] 4f [ (Oi+wG, 
i) 

_2e+a 2H i ii 
A2 (f i +ý ii 

) -4 
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4f (9 +wo ) (v +v ) 

2e+a 

42 (0 i +0 ii 3 (v +v 

Hence, the final value of the gap 6 can be obtained as: 

AA6A 
W+wl 

A 
M+lm 

From which we obtain: - 

ai 
+v ii 81 (Oi+wE)li) +a A Ti7+ t ji) j2 i 

[sin 
""(1-2p) 

- sin 
L"(1-201 

8f 
+ a) 

222f 
H221 Pig 3 

Pi I 
)lil 

-C-- 2 

14 
2 

(0 +WO [4(1+iX) + (0 +() )] 

ot 
2 (3-2ot) -p2 (3-2p» -ii 

ii) ( 8f 
+ai 

ii 
,1 

i 
-+eji7- 

p2 
2 ii) i 

(Cos pi Pt - Cos pi Ott) 122 
w2C)li) - ((x _P ))] - 1, 

[ 
L, (L 

Pi I sin pit Hi12P2 
i 

(8 +wE) 
23 

14 
2 [1(1+X)+(O +E) iI 1+w 2x3+a (e +tjO I 

12 1 

The same expression can be used to determine the gap A for 

virtually all types of loading. Thus, for a continuous uniformly 

distributed load 6 covering the left hand span, we substitute ot - 1, 

p=o into this expression which gives: 

2 
an P (0 +WO 

A 64 8f 
+ a) 

t212fii ii 8f 
if 

1212p212 i tan 2i 
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tan 
Pi 

0i (0 i +wo li ) 8f 8f, ]": 
i -ý :E4- 

ll: i 
+ 2x234242 

ii 

(ei +we 
ii) * 

and the final value of A can be computed as follows: 

2 (o +wo +ap [4(1+1) + (0 +() i ii ii 

E, f ý 0. li 
2 

j3 ] )1 
2 

+a E)i 
[l 

-' 
j7- 

1-2 4- 
i 

I(I+X) + (o i +0 ii W[ Lf (I 
(0, +U'oli) 

oi +(Je ii) 
213 

ýIi)H122 12 
i 

)1 
2 [4(1+1) 

(l+W 2x3)+a (0 +w0 )1-ii li 

For a concentrated load, P, applied in the left hand span, we 

substitute ot = t+c, p t-c - and P= 261c where c is a very small 

quantity as shown in the figure. 
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Thus, we have for the gap A.: 

2cP. I. *-- 

Ha 
U 

i 0- X 
(t-C) k --01 
(t+c). t 

14- .. L ol 

dt 8f 
+ a) 

sin M-20+20 - sin -T-M-20 - 20 
2c Ad 

H212 Pi I 
i Pi t Cos 2 

p2 (0 +tiO ) [£(1+X) + (0 +e ) 
- 8fte (1-t) -ii 

li f 8f 
+ai 

li 
Tei -+e 

j ir g2 l2 (0 1 +WO li i 

Cos pi I(t-c) - Cos pi l(t+c) 
-2tc]] Pi X sin piI 

P. 1 
cos : 

-L(I-2t) p (e +We ) 
269c 2 

2 
8f 

2+ 1) - 4ft (1-t) -2 

Cos 2 

8f 
+ 

[1(1+X) + (0 sin Vi tt 

212 (e i +W() li sin pi 
tl 

i 

where sin pi cl -pi cl and c3 is ignored. 

Hence, the final value for A can be found as: - 

(vi +V ii )f 
(0 +L)O +ap2 (10+x) + (0 +() 

L 
M] 

I112i 
ii i 
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2 
2P sin sin 2 1-t) 8f 

+a 2ft (1-0 
(0 +we 

R2 
-2 P 

2 

8f 
+ 

[I(I+N) + (0 i +Oli)j )[ sin yl 
t1 22 (0 +we sin pIH2 -2 

1WH 
[8fI 

iI Pi 

(E). +w0 )23 14 
2 

+w 
20)-1 li 

-4 (l+U 2x3+ai 
li . 4(e i +4 li ) 12 Z 

[I(I+N) + (0 i +0 

Similarly, A can be calculated for loads applied in the right hand 

span, 
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AlnnVMlr%T%F I'l 

13. The Determination of the Term '2 L 
qdx for a General Case of Loading 

Hwf 

From Appendix 12, we have the deflection equations for a general case 

of loading as, (see figure in the preceding appendix) 

x sin px +a -1 sin pt 
?S+ sin p(I-x) W(y+p) [ sin px 

HI sin Vil p2H sin pf 

sin p(I-x) 
2x 

sin pt 2 -X)]] +2H [Cos PI(l-OL) - Cos P10 

o(x (I 

sin px p212 sin px 
sin pt - -T- (ot-p) [2 - (ot+p)) T+ Cos PA(1-00 sin pf 

.x) 

0(x<, pI-I 

Cos PPI sin p(I-x) 
_1-p212 (ot-p) 2- (ot+p) IH-C ?S- p) 

2 

sin pA 2A1 
11 

PI 4x4 Ott 

122 
(Cos Cos pott) sin P( I-x) A( 

ot 
2_P2 x 

sin pt 2i 
Ott 

14x4A 

for the left hand span and for the right hand span we have; 

mx sin px W1 (y+p) [ sin pxl sin p(l 1 -x I 

1 sin pt 1p2H sin pl, 
+ 

sin pl, 

2x sin p(t -x ) 
-px (I-x) +a, -(I+IL )] o (x 41 

sin pt II 

Thus, we have for the left hand span; 

f 
ildx I+12+13+14+15+16 
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where, 

I 
mf(x sin 'ox ) dx ff -i sin pi 

41 

Me 
H2 

(1-cos pl) 
p sin pt 

tan "I 

where pt 
2 

2 

I=af Lc + sin p(I-x) )] dx =a[I Cos pl) 
21 sin pt p sin pt 

0 

0 

A2 
w (y+p) sin px + sin p(I-x), 

_I- 
! Lx- (I-x) dx 32f[ sin pf sin pt 2 

pH. 

I=-w 
(Y+P) 2 (I-Cos PA) 

213 

32HIp sin pf 12 

I=w 
(Y+P) 0 , 

2,3 

32H1 12 

pt 22 
6f[ 'Cos pl('-O') - Cos Pt('-P)l sin px -p1 (ot-p)[2-(ot+p)1 dx 
2 H. sin pt 2 

d [Cos PAU-00 - Cos pl(l-p)) Cos -p2p2A3 (ot-p) 12-(ot+p) I ppl) 4 
p2H sin pt 

I 

OLA 22 
6 cos '01(1-0') sin px + cos Pol sin p(t-x) -1-p 

p2Hf sin pt sin pt 2 
pt 

(ot-p) [ 2-(ot+p) x2+ 2px 
_ 13 

2 1] dx 42A 

=6 
[COSPIU-00[cospPI - cospottl + cospPI [COSPIU-00 - cospg(l-p)] 

5 
P2 HIV sin pf 
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14 
2 2_ 22 3_ 3 2_ 22 

- COL-P)] -3( ot p)+ 2p(ot p)- 2p (ot-p)]] 

(Cos PPI - Cos pott) sin p(I-x) 
212( 

ot 
2_P2 ) 0- x dx 16 

HfI sin pt 2 
ot f 

16" 
(Cos PPI Cos potf) (1 - Cos PIU-00) p212( ot 

2_P2 1-2ot+ot 2 
2HL sin pi 4 

Cos PIQ-OL) - Cos pott - Cos + Cos PPI (OL-P) 
)42H 

[p 
sin pt 

4 
ot 

2 (3-2ot) -p2 (3-2p)]] 
12 

Hence, the total value of the deflection integration for the left 

hand span i-s: 

I[I[ [sin EA (1-2p) - sin EI (1-2ot)) , , 61 22 (ot - . 0) 
] 12 

Of 
TjdX 2 

pi Cos P'l 12 
T 

[(k 2 (3-2ot) -p2 (3-2p')' o' W (Y+P) 2,3 
IIH2a12H [E) 

12 

Similarly, we have for the right hand span-, 

,Im0101w 
I(y+p) v2 11 3 

Of 
Tll dx a2H 

10 
1- 12 

Hence rldx Tjdx + Tj dx HwfHwI 
Of of 

II 

I '(I pf 

vldx =w di 12 -2p) sin TO-201 
-2 2 

[sin 1! 

9' 12 wfwP PI -Cos 
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[* 2 (3-2ot) -p2( 3-213)] 
1 

L (E)+�() ) 1 -a i (E)+w0 ) 1 -w (y+p) ii 2H 

(()+w2() 
3 

(1+w 2X3 
21 T2 

But from Appendix 12 we have; 

a 
(v+v 1+ 61 1 2(cos ppi - cos pott) 

_ (m2_132) I TT+ TH Tý- T pf sin pf 

w (y+p) (O+wo 
1 

4H Wfl ) 

Hence, the final value of 
W 

qdx can be obtained with less labour 1F 
f 

w 

than expected as follows: 

I Wf 
rldx (E)+uO, ) 

[1 
iF H2 

ww 

PA pt [sin T(1-2p) - sin T(I-201 2 
(OL-P) L[ 

ot2 (3-2ot) 
Cos P, 

] 
12 

2 

-p2 (3-2p)) 
(G+Wq 1) 2 (Cos PPI - Cos POLI) _ (OL 2_P2 
-4Tj 7+$-j. -T 

[ 
pt sin pt 

W(Y+P) L_ (()+w2() 
(O+wo 1)2_A323 

H21 T-TF. 4-1-7 T2- 

From this expression, 
!L 

qdx can be found for a continuous unifromly Hwf 

distributed load d applied in the left hand span by substituting ot - 
I and p=o. which gives: 
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(v+v 1) (% 11pI Wf 
qdx 

W0+ 
-2 PA 

ý ff- iF 
wwp2 

2 (O+WO tan pf 
2w (Y+P) 1-2 -42 

2 

(O+wo 213213 

4 T-2 

(v+v 
indx + ! 

HL H 
(3 

24 
wfw 14 

1312 (O+we 124323 H (Y+P) 
I 

T2 H21 -4 7 T2 

For a concentrated load similar procedure to that used in 

Appendix 12 can be adopted by substituting p- t-c, a-t+c and P= 

2dIC into the general expression, we have for the first tem: (see 

figure at the end of Appendix 12) 

sin pt (1-2p)- sin -H 
I (1-2oL) sin Pl[(1-2t)+2c]-sin EI [(1-2t)-2c] 

2222 
-2c PI 

pt Cos pt Cos 2 

sint 
1 (1-20 cosptc+sinpic cosE 

I (1-2t)-sinE 1 (1-26) cosptc+sinpic cos! Lt(1-2t) 
22 

pi Cos Pf 
22 

-2c 
2 

where c is a very small quantity, Hence: 

sin pic = pic 

Thus, we have the final value of this term; 

Cos E1 (1-20 
2c 2 

pl- -II 
COS T- 

ptl I 
sin 2 sin ! L(l-t) 

4c 2 

Cos pt 
2 
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For the second term we have, 

12 [ot 2 (3-2ot) -p2 (3-2p)] = 
12 

. 
[12tc - 12 t2c -4 C3] 1-2- 12 

3 ignoring c, the final value is, 

=x 4et [1-tl 2; - 

For the third term, we have: 

2 (cos VpA cos potl) Ot 
2_P2 2 [cos pi(t-c) - cos pl(t+01 

_ 4tc 
pf sin pf pi sin pt 

2(cos ptl cos pic + sin ptl sin pic cos ptl cos pic + sin pic sin ptl) 
- 4tc 

pf sin pt 

4c sin ptl 
_t 

[ 
sin pt 

I 

w 
And the final value for ý R- 

f 
qdx for a concentrated load applied in the 

w 

left hand span becomes: 

II (v+v sin ! it sin ! L(l-t) 
rldx 

w (O+we 11+ lp 22 
2H 144 wI Cos T 

(O+wo I sin ptl t]] - 
H, (Y+P) (1-t 

I 
T(F+F, -F. 

[sin 
pt H . 1,1 P2 

2 (O+wE) 1) 
21323 

T-Ti+-f 11-T 12 

.1 11 w A similar procedure can be adopted to find :ý -H qdx for loads applied 
wf 

in the right hand span. 
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APPENDIX 14 

14. The Determination of the Error 1 :ýq 12 
dx 2f 

1 12 The difficulty of calculating 11 11 dx for algeneral case of, loading 

arises from having three equations for the deflections covering the 

whole left hand span length, Appendix 12, as follows: 

EI 
d2T112 

+H il dit (ot-p) (2-(et+p)Ix 
dx 21 (s i- 4x<, pi 

d211 2x tx_PX, 2 EI 22+H il 
1- (u-p) [2-(*+p»x +6 

dx 
222 13 x 

2 

EI 
d 1136 

+H (ot-p) [2-(ot+p»x + 14 (ot-P)[2x-X(ot+p) (X4 4x 
dx 2 3a 22 

The right hand side of these equations can be represented for the whole 

YX span length I by using trigonometric series in the form 2bm si'n where: 

co x 21rx x b sin 11--rx =b sin 1- + 'b sin 
M=l 

mIIA2 -4 

where, bm can be calculated as: 

2[_ ýl (oL-p) [ 2-(ot+p) 
PIK 

sin 
Mx dx +fx sin 

M-lrx dx 
m21 

pt 
I 

I 
MIX 6 OLI 222 fx sin , dx +f (x 2pix +pI) sin mlrx dx 

OLI pt I 

((X-13) f [2x - t(oL+p)] sin -ralFx dx 
OL II 

2 ot I 
b2 mirx [- ý-f (OL-j3)[2-(ot+p)1 x sin m'x dx + -6 fx sin -, dx m2J2 

PI 

oLl ot II MIX 22. MIX (%A MIX -2 pf fx sin , dx +pIf sin -, dx] +T (ot-p) [2 fx sin I dx 
PI pt ot I 
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- t(OL-P) fsin T-112c dx] 
ot I 

Bearing in mind that: 

b2. 
mix 12 mix 2xf . mix 21 2 

mix b 
x sin -, dx x Cos -j sin cos - MI 724 

]a 

am it 

x sin 
MIX dx =-Ix Cos 

MIX I 
in Mlrx b 

Mir 
1 

-1 iý -ir Ia 

b 
. MIX Ib 

sin , dx =-- Mir 
I Cos M"x 

a 
a 

and sin mi =o 

b 612 [ 
((x-p) [cos mi - (ot+p) cos Mir -2 cos mv + 2m cos mim M Mir 

.2 sin mirot + (oL+p) Cos mi - ft Cos mift -p Cos M16, ] - ft 
2 

Cos Mift Mir 

20' 
sin mlF(x +2 (Cos mlot _ Cos m1p) + 132 Cos m1p _ 

213 
sin mip Mir 22 MlF mI 

p 
132 C(3s m J3 + 103 

-2 2oLj3 cos miot -L sin mioL -21L sin mio 0 Cos MIOL MlF ml 

2 
p Cos mirp 

dt 
22 2ot 2p, 

ot Cos mlot - ap Cos m1ft -- sin mia + -. sin mim - oLp cos mift m Mir Mir Mir 

22 2ot .2 13 Cos MIOL - ot Cos mlot + 
Mir 

sin mim + T-2- (cos miot - cos mip) + 2mp 
m if 

cos miot - 
ý-p 

sin mim 
2 

Cos MIM MiF 

I 

b 
2di 2 

(COS mlrp - COS MIOL) m31 MI 

Hence, we have: 
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Co 
EI -+H rl� =2b sin miix 

x M=l m4 

The solution for this differential equation will be assumed as: 

00 

2a sin mlrx 

M=l mI 

Clearly, this solution satisf ies the condition q. =o at x=o, 1. Hence, 

substituting this solution in the above equation we have: - 

22 co OD OD 

EI m lr ýa sin mlrx +HIa sin mlx ,2b sin MIX 

12 M-- 1mI M=l mI M=l mA 

which yields: 

EI 2222 Co 
. mirx Co Ix Ix (m ir a sin b sin 

42 m=I m M=l m 

MIX Hence, by equating the coefficients of sin ,, for each value of m, on 

both sides of the equation we have: - 

-4 
2b 

m 

EI (m 2 
ir 

2- 
)1 

242) 

and the final value for the deflection becomes: 

T) 
62 

ol 
4 OD 

(Cos m1p - Cos m1m) sin mix o<x 332222A 
ir EI 

;m 

[m I-pII M=l 

Substituting this equation into the total expression for the 

deflection and taking the first derivative, we have: - 

m [I- 
II Cos vx Cos P(I-X) W(y+p) Cos px 

iff I i t 
I 

- 
[ 

s np sin pt pH sin pi 

Cos P(I-X) p 261 
3 OD 

Cos m1p - Cos m1a) lrx 
sin pf 

(A-2x) + 
IE Z- 

(m 

[m III 
Cos 

lr2 

7222224 

M=l 

4x41 
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for the left hand span and, 

rl 
Im1- 

PI 
]_aI_ 

,I 
cos p(l I-x 1, W I(Y+p cospx I 

111H[1 sin pf 1A sin pi I pH 
[ 

sinpi I 

Cos p(l I -x 1)-P (I -2x )]] o4x4A 
sin pt 12111 

for the right hand span where, 

--Ha 
(V+v 1)+ (%I 2[cos ppf - cos pottl 2 2, 

(O+we I 
7e-il J T(-f -" -I) 

I 

pt sin pt - (OL -P )] - 
H2 (Y+P) Wýl 

1,2 
Hence, to calculate j :jfq dx, we have for the left hand span 

12 dx +I 2 

where, 

22 
Cos px 

2 
Cos P(I-X) w2 (y+p) 2 

22 i-I np A+2 sin pi +22 
1HpH 

2 
Cos )IX Cos P(I-X) (1-2x) 2Ma 1 pt Cos px 
sin pt sin pt 2112HI sin pt 

Cos P(I-X) 2W (y+p) M 
pf Cos p Cos px 

- 
Cos P(I-X) 

sin pt 

I- 

pt H2_ 

11 

sin pl 

1[ 
sin pt sin pf 

- 
'o (4-2x) + 

2W (y+p) 
a cos P('-X) Cos px 

-, 
Cos P(I-X) 

21 pt H sin pi sin pf sin pt 

dx 

Bearing in mind that: 

Cos px Cos P(I-X) 
2 

1- pt dx pf dx L 

of 

I 
sin pl 

]. f[ 
sin pt 

12 
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12 
Cos )IX Cos 4-2x) dx =I [6vt (1+0) - 240+p 213 
sin pi sin pt 2 T-2 

Cos px Cos P(I-X) 4 
PI sin pA 

] [1 
- pl sin pt 

dx [0(1+vg) - 2v] 

Cos VIX Cos px Cos P(I-X) 
-p (1, -ý x) dx pf 

Of 
sin pt 

][ 
lgi-npt - sin pt 7-I 

Of 

[ 

Cos P(I-X) Ir Cos )AX Cos-P(I-X) )l (1-2x) dx = 111 [YI (1+0 - 20] 
sin pt JL sin pt sin pt 214 

where: 

v=i pt -I], 1 sin pf 

=i[1- pi ], 
i tan pt 

tan Pl 

pi 
2 

2 

2H 
and where 9 E-1 - 

v=1 '01 11 111 sin pt II 

tan pi 

tan 

pi 

2 

Thus, the final value for 11 becomes; 

2+a2] 
[v(2+vf) + 

H(Y+P) (M + Ha) [vt (A+E)) - 201 + 
Ma 

H24H2 2H 

[ý (1+vf) - 2y] +' 
24 p2H2 

[6vt (9+0) - 240 +p2431 

Similarly for the right hand span we have; 

f11 12 122 
11 

w1 (Y+P) 
Tj I dxl 4CL+a) 

[v (2+v I+ (M+Ha) [v, 9 2 -2 2 H4H 

410 



w2 (Y+P) 
(1 +0 20 1] + 

Ma 2v +I [6v I I TH 11 24 p2H211 

(4 24 0+ )1 
2x3 

111,1 

For the second integration of the left hand span, 1 2' we have: 

I 
2 613 

OD (Cos mirp - Cos M100 
Cos 

MIX COS PX Cos mix 
2ý222222 AH I sin pt A 

1F EI M=l M [M I 

a MIX Cos P(I-X) mirx W(Y+P) [ Cos px MIX [COS 
t- pt sin pt Cos t pH sin pt COS -t 

Cos P(t -X) MIX P 
7-t cos --I [I cos mlrx 

- 2x cos mlrx dx 
sin ttt 

Bearing in mind that: 

Cos 
mix 

=0 

I 
Cos px Cos mix dx pi 

2 Cos Mir f 

sin pf 2222 
4b 

[m IpII 

Cos P(I-X) Cos alx dx )41 f 
sin pt 12222 

0 
IM IpI 

I 
MIX 12 

.. 
ofx 

Cos I dx 
m2 it 

2 Cos MI) 

Thus, the final value'of I can be found as; 2 

4 

Im2 di 
5 co (Cos m1p Cos MTOL) cos mi - Ha - 

W(y+p) 42 (I-Cos MI) 22222222222 
IM 

22 
ir EI M=l m (m IpIImI 

Finally, 

2o246 co (Cos MIP Cos mlm)2 2 mirx 
422 

:ý422222 Cos dx 
ii EI M=l m [m IpIIý 

411 



but 

Cos 
2 mirx dx 

hence; 

I 
OD (Cos mirp Cos Mil(k) 

2 

3422 
:ý422222 

ir EI M=l m [m if pAI 

And the total value of the error 
(1 :jf Tj" dx for both spans becomes, 2 

121 
ll'2 dx =1( 

M2 
+a 

2) [2 (v+v )'+ 9 (v 2 
+x v2)- 44 )] + 

ýa 
4 -2 111 2H H 

I (fv + Xý )] + 
W(Y+P) (M+Ha) 1 4H 2 

[vi(£+0) + wv 9 (4 +E) )- 2(0+w0 )] +W2 
(y+p) 2 

[6 vi(t+0) 11111 
24 )1 

2H2 

621 (1 +0 24 (O+w 20 
+ )42 13 (1+w 2x3+2 59 

ir EI 

co (Cos mirp - Cos mirot) m 2W (y+p)l 22 
mlF 

222222 (-l) M- Ha -22 sin 
M=l M [M Ip41m if 

64 (Cos milp - Cos m1m) 
m2121 

whe re 
(v+v I+ 61 2(cos ppt - cos pal) 2_P2 
Ti--- M Ha 

+0, ) L( ot )l -H (Y+P) 
+01) pt sin VI 2 

12f 
q12 For a continuous uniformly distributed load, we can find 

( 
dx] 

by substituting ot =1 and p=o in the general expression. Hence, we 

obtain: 
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1ý1 
11 

'2 dx =1m+a2) [2 (v+v )+X (v 2 
+X v 

2) 
_ (e+e )] + 

Ma 
-2 2H' H 

[-2 (v+v +I (ýv + Xv + 
W(Y+P) (M+Ha) 

4H 2 

[vt(A+E)) + wv I (1 +0 2(0+wO +W2 
(Y+P) 2 

[6 vM+E)) 1111 24 p2H2 

2223234 ol 
5 

(1 24 (O+w 01+pA (1+w x+222 

Co 1 [- M-Ha + -12 f6 - 2W(y+p)]] 
222_22222 

m=I 3,5. .m (m ir li 41m ir 

where M Ha 
(v+v 1)+ 60 W 

(E)+wO 
I 

Ti-+Y 2(ý+ý Y (Y+P) 

For a concentrated load P, the aforementioned procedure in Appendix 

12 can be used herein. Thus, substituting by p- t-c, ot - t+c, and 

261c,, we have: 

121 
ll'2 dx =1( 

M2 
+a2) [2 (v+v )+4 (v 2 

+x v2)- 44 )] , 
Ma 

'i 4H2111 2H 

[-2 +I (fv + Xf + 
W(Y+P) (M+Ha) 

4H 2 

2 
[VI(1+0) + wy 111 2(0+wO 1+ 24 p2H2 

[6 vg(4+0) 

+6 w2 (A +0 24 (O+w 29 
+ P2 13 O+u 2x3 )3 +2 

P14 

lF EI 

00 2 
sin mirt 2W (y+p)l .2 mir 

22_ 
)12 

212 
[(-l)m M-Ha -22 si n 

M=l m [m Im 11 

pf 
sin mitt] m. g .g 

where M Ha 
(v+v I)+p sin ptl tW (y+p) 

(O+WO 1 
-4 sin pl 2 4+ý 
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Similarly, the error 2 
:if 11' 

2d 
can be calculated when live loads 

11 

X) 
are applied in the right hand span. 
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APPENDIX 15 

15. The Detemination of the Maximum Suspender Load 

The shear forces equations for maximum upward distributed suspende. r 

forces, including the dead loads, are as from formulae (2.79) and 

(2.85): 

W(J+Y+ Pmax) 
Cos px P2 

(O+wO 1) 
Cos P(I-X) smax p sin pt 2 

0X£ 

w 1('+Y+Pmax) 
Cos px 1 14 

2 (O+wO 1) 
Cos p(A I-x 01 

slmax p sin p4 1111 2u (ý+ý 1) 
,I- 

0 

From these equations the suspender load can initially be found by 

using the basic relationships as shown: 

q, 
dQ 

smax 
W(J+y+p 

max sin px I-p2 
(O+wO 

+ sin P(I-x) 
smax dx sin pA 

12( 
F+ -tj 

I 

dQ 
slmax 

w 1('+Y+Pmax) 2 (O+wO 1) 
qs I max dx sin )41 sin px 

11 
- 2w + sin p(Il-x 01 

However, these loads are not uniformly distributed and therefore, 

they do not comply with the basic assumptions stated in Section 2.1. 

Consequently, this non-uniform load must be approximated to a uniform 
load as follows: 

qlfq dx =-1 smax 
; 
max Qsmax 

Similarly, 
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q1q dx QI 
slmax F, 

of 
slmax slmax 

1. 

Hence, for the left hand span, we have: 

+ 
W(J+Y+P 

max 
) [(Cos 

ýj 
(i 

-p2 
(O+wO 

(1 - cospl) smax p sin pi 2 (ý+ý 
II 

(I+Y+p 
pt 

2- )l 
2 (O+wO I 

max pt 2T F+-+ 
.1 
-) 

p2 
(O+wO 

smax 
W ('+Y+Pmax) ('+ 1) 4 

Similarly for the right hand span: 

P2 
(O+wO, ) 

slmax 
w1 ('+Y+Pmax) ('+ 

i 4w 
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Appendices (16 - 23) 

of Chapter 3 

417 



APPENDIX 16 

16. The Determination of the Approximate Free Ungrouted Length. of the 

Cable 

From Appendix 2, we have: 

ln [x+ (I+x 2) 1/2 1=x33557 x- U- + ZO- x- -F1-7 x 

2 1/2 
=1357 ll+x IX+ L- 

- 
ýL +X 28 16 

Substituting into equation (3.3), using only 2 terms: 

s= --- 
I (F+8n) -1 (F+8n) 3+ (F+8n) +1 (F+8n) 3_C+Ic3_c-Ic3 

f 16-n 
[ 

'6 '6 1 

11 )2) C2, sfý1 6n 
[(F+8n) 

[2+ -5 (F+8n -C [2+ 3 

which finally gives: 

S- -L 
[(F+8n) 

[6' +(F+8n) 
2C (6 +C2 f 48n 

Similarly, the approximate length of the free ungrouted cable in the 

right hand span can be obtained. 

418 



APPENDIX 17 

17. The Determination of the Approximate Relationship Between the 

Changes in the Span and Cable Lengths 

The basic relationship is: 

6s = 
FJS f (± At) f TT 

Hence, from the preceding appendix, we have: 

FJS fi- (F+8n) [6 +3 (F+8n) 2+c [6 + 3C 2+l[ (F+8n) TT ý W-8--n 
[IIT 

iTn 

(F+8n) 2]-C [6 +C2 1] 

=1 
[(F+8n) 

[6 - (F+8n )2, -C [6_C2) T8-n 
I 

Hence, 

AS . 
(± AA) (F+8n) [6 - (F+8n) 2c [6-c 2 

f 4-8n 
[ 

A similar approach can be adopted for the right hand span. 
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APPENDIX 18 

18. The Determination of the Approximate Relationship Between the 

Changes in the Span Length and the Cable Sag 

From Appendix 5, the exact value of the derivative of the f ree cable length 

with respect to its 
ZIS fn directly be found by replacing F by C 
af 

which gives, . 

as 
-1 [(F+8n)+[l+(F+8n) 

21 1/2 2 1/2_ 
(F+8n)[l+C 

21 1/2 
- ln +C [1+(F+8n) 

af 
16n 

2[[ 
C+ [I+C 21 1/2 

1 

For small values of the slopes at the ends of the free ungrouted 

cable, (F+8n) and (C), this formula can be approximated by using 

Maclaurin's expansions shown in Appendix 2. Thus we have, when using 

two terms of the expansion: 

bs. 

- )3 _C+I C3+ C )2 -f 
-1 [(F+8n) 

-1 (F+8n [1 +1 (F+8n 
Fj f 16n 2 Zý '6 2 

- (F+8n) [I +I C2 2 

+1 (F+8n )3 _ C3 C(F+8n) [(F+8n) - C) T; 
6n 22 

which finally gives: 

FJS f )3 _ C3 -= -1 
[(F+8n 

- 3C (F+8n) [(F+8n) - Cl af 96n 21 

To determine the relationship 

similarly to Appendix 5: 

between M and (t 61) we have, 

73S f as f 
af ; ý-l 

as 
Substituting from the preceding appendix by the value of ýjf we obtain: 
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[(F+8n)[6-(F+8n) 2 I-C[6-C 2 1] 
6f = 2n 33 61) 

[(F+8n) c 3C (F+8n)[(F+8n) - C]] 

A similar approach can be adopted to find the approximate relation- 

ship between Af, and (T 61) for the right hand span. 
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APPENDIX 19 

19. The Detemination of the Relationship Between the Changes in the 

Cable Length and Tension 

From Appendix 8, we know: 

Thus. 

strain = 
stress 

E 
c 

AS AT AH ds 
as- ý XC--Ec ý X-C-Ec 'Ex- 

LýS _ 
AH ds 2 

ACEC dx 

Integrating this equation over the free ungrouted part of the left 

hand span cable; 

&S = 
611 ( Ls )2 dx fAEf dx 

gi 

But das 
2+ dy 2 

( 
dx 

( U-x ) 

and 
Ly 

=F+ 
82 

x dx I 

Thus, we have: 

AS . 
6H f [(I+F 2) 

+ 
l6n 

Fx+ 64 n2x2] dx f AcEc 
gi 

142 

AH [(l+F 2)x+8Fx2+ L4 n2x31 
AcEc 3421 

gi 

AH 12242(, 
_g3) AE 

[(I+F M-g) + 8nF(l-g +Ln 
cc3 

Ml 2 64 23 
ACEC 

[(I-g)[l+F + 8nF (1+g)) +Tn (1-g 
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42( 
I_g3 AS = 

6111 [(I-g) [l+F (C + 8n)) +Ln f AcEc 3 

Similarly, for the right-hand span free ungrouted cable, we have: 

AS 
6HI 

[(l-g ) [1+F (C +8n + 
64 

n2 (1-& 
3 

fl ACEC I11 j- II 

Hence, the total value of the change in the tension 6H corresponding 

to changes in the cable length in both spans can be obtained from the 

following expression: 

AcEc 6s f4 
2(l 3)] + 

AS fl 
23 4 

[[(I-g)[l+F(C+8n)]+L 

n -r )[I+F (C +8n )]+L n (1-g 
3g. 1111311 
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APPENDIX 20 

20. The Determination of the Approximate Value of the Term G 
cf 

2 1/2 2 1/2 23+A517 3 ln [x+ (l+x )1+x D+x 1 (5+2x )- 8x + 4x 5X-ZX 

Substituting into Equation (3.19), using only 2 tems of this 

expansion, we have: 

8x8 (F+8n) + 4(F+8n) 3_ 8C - 4C 3+1, [8 (F +8n )+4 (F +8n ) 
cf 64 AE1 

- 8c I- 4C 3 1] 

which yields: 

s9 (F+8n) [2+ (F+8n) 21- C[2+C 21+1 [(F +8n ) [2+ (F +8n )21 
cf li; AE 

-c1 (2 +C 12 
1] 

1 
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APPENDIX 21 

21. The Determination of the Term 
(2Lf 

qdx) for the first group H 
-W 

of Forces 
1. The two upward continuous uniformly distributed loads, yW and yW 1 

From Appendix 13, the term f Tj dx] can directly be obtained 
H 

w 

for the two upward continuously uniformly distributed forces yW and yW 1 

as follows: 

w[ -yW (o+w2 0 
(0+, Je 11323 wf ndx ýFI H2 T-2 ('+tj 

ww 

2. The two upward partially distributed loads pW and pW I 

m 

x 

gp, pw 
t 

For the two upward partially distributed forces pW and pW see the 

figure, the deflection equations can be written by substituting ot -1 

and p=g and replacing 6 by -pW in the deflection equations for a 

generai"form of loading, see Appendix 12. Hence, we have for the 

left hand span: 

= 
M, 

sin px LW_ Cos sin px p212 91 ff- sin pt 2 li sin pt 2 
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2x 
iI 0X 

m22 
Tj = 

"l x sin px RW [ sin px + cos PC, sin p(t-x) pA 
2H[A sin pt p2H sin pt sin pt T 

[(l-g), x- (" - g), ] gI iTI 

Similar equations can be written for the right hand span. Hence, to 

calculate the moment M at the intermediate support, we will take 

advantage of the equal slope at both sides of this support. Thus, 

for the left hand span: 

dil 2m1 pw 
Ux-- - T- f+ 2H '19 

Similarly, for the right hand span: 

dq 21 mI PW 1 
--d-xl ý ff-, ol + -fH- egl 

where I and 
L11 

tan pl 1 tan pl I 

(cos pgI cos pl) 
r2 and 0 

pi sin pi 

and 
(COS YgIll - Cos 2 

pt I sin pt 11 
2 

It is worth noting that g and gI-0, become equal to 01 and 0 

tan 
P" 

where 0=I 
pi 

1 and 01 
pi 

2 

'T 

121 

Thus, 
dil 2 dri 

21 
dx dx I 
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which yields: 

m PW 
(0 

9 
+wo 

gl) 
12 (4+ei ) 

where 
I 

Hence, for the left hand span: 

m1fx 
sin w sin px 

rl dx = 
142S ] 

dx - 
L- [1 - Cos pt(l-g)] 

Of 
T0 sin pt p2H[, 

f I 
sin pi 

21 *2 
2x sin Vx sin p(I-x) 

IT 

(1-g) !I dx + 
sin pt 

+ Cos pgI 
sin pt 

292 

2 
[(, _g)2 

xx_ g)2 iT 

which gives: 

m1o Cos 
ýgl 

sin 
V'O-g) 2 

dx pw I[122- (1-9) 
1 

of 
iF 

P2 
ýl 

Cos 144 T-2 
22 

[I-g2 (3-2g)] 
I 

Similarly, for'the right hand span; 

4m0 
sin 

TI dx 
11 P'i 

4 
cos -2 -2 (1-gl 

OS 

111H2HP2p91p4111 

2c0 's -2 

,2 1 11 -g2 (3-2g T2- I 

but we know: 

:iTf Tldx = ff- j Tjdx + w. f qI dx wwwwI 

which yields when substituting for MI: 
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w ýw 
(0 +we ) Cos 

Egi sin 
EI (1-g) 

w9 gi 22 f fldx (O+wo + ff- H2 )11 
wwpI Cos 

Cos 2 sin -2 

2 Cos 2 

132 'j 
2- 4132 

12 
[1 -g (3-201 - 12 g1 (3-2g 

1 

3. For the two upward concentrated forces CHp and CIH 

H 

I cil 

qt 

ca 

CH 
x 

q 

For the two upward concentrated forces CHP and C, Hp. which are the 

vertical components of the increase in the cable tension Tp. we have, 

[see Equation (3.2)1: 

C=F+ 8ng 

C, + F, + 8n, gl 

Thus, by substituting m= t+c and p t-c and replaceing 2dIc by -CH P 
for the left hand span and then taking the limit for this expression 

when c=o (see end of Appendix 12). We have the deflection 

equaitons for the left hand span: 

m2[x 
sin px 

Of 
p sin pl(I-g) 

sin Vx - px o <, x T -i sin pt pH sin pt 
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TI =m2[x 
sin px ]_ CH 

p[ sin pgg 
sin p(I-x) - pg (I-x) 4x41 

2Hi 151 Inp 1 pH sin pi 

Similar equations can be written for the right hand span. Hence, the 

slope at the left of the intermediate support can be computed as 

fo1 lows: 

dq 2m2 CH 
p sin pgf 

dx HH[ sin pt 91 

Similarly for the slope at the right of the intermediate support, 

dq 21 m2 CjHp [ Sin pg 1 91 

dx H*I+H sin pi 

Thus, the condition of the equal slopes is: 

dq 2 dT'21 

dx dx 

which yields, 
Hp JC [sin pgi-_, sin pg III 

m2C P Ti- 7 sin pf I( sin pt 

Hence; the deflection integration for the left hand span: 

mx 
sin Ox Up [. 

f 
gi 

[ sin p10-0 
q dx fF dx - sin pt sin px 

of 

I 

Of 

[. 
t sin pt j pH 

sin pgl px (1-g) 
I 

dx +f 
.1 

sin pt 
sin p(I-x 

I 

pg(I-x dxl 

gA 

which gives: 

Im CH [2 sin Ml sin ý1(1-g) 22 
dx 20 ýP 22pIg O-g) 

of 
2H 

Cos PI 2 
2 

Similarly. for the right handýspan; t 
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0CH2 sin 
Vic 

sin 
pt 

p2f2 

Ti dx 
211p 

H22 pt 2 
Cos 2 

w 
Hence, the total value of the term jF 

f Tid is: 
w X) 

w 
Tldx 

wHp 
(O+WO 

C( sin pgI 
g) c 

sin pg 111 
:ý 

ff- F -H 2(ý+ý sin pt sin pt 
ww-I 

H sin 
Pgg 

2 
2H[ pt COS T- 

212 

2 

PC I11 
P212 2 sin sin 

Pli(l-g 

WC 
2 

Cos 

21291 (1-g I 

2 

For the two concentrated moments, HpZI 

HZmHZ 
p31 

-)o 
cr 

i- 5p, --e ý ---, ja 1t lt- 
i4L ob! �- 9,1 0 

For the concentrated moments, Hp ZI, the bending moment equations for 

the left hand span are: 

2 

M EI =- Hq +H Z' ý+M04x 
x dx 2p113A 

H Z, 
E1d 

2112 

H il - _E 
1 (£-x) +mg1 <x x4x 243x dx 

which gives; 

pt sin T(l-g 
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2 d r, 12HZIxm3x 
+p+ 

dx 2 -1 1 El- 7 

d2 T12 2HpZI I-x) 
+ 

M3 
x 

; --2 +P 112 EI EI I 
x 

The solution for these equations can simply be found as follows 

(see Appendix 12): ý 

Tj A sin px +B cos )Ax + 
HPZ Ix+ M3 

x 
H1HI 

TI =C sin yx +D cos )ix - 
HpZI (£-x) 

+ 
M3 

x 
2HxHi 

The constants A, B, C, and D can be calculated from the following 

boundary conditions. 

1. at x=o Til aB-o 

dTl 
I dq 2 2. at x= gi dx dx 

A Cos )191 -C Cos P94 -D sin pgI 

3. at x- gg TI I- T12 

HZ 
A sin pgt -C sin pgI +D cos pgt - -P ff- (ii) 

(Equations M sin pgg) - (Equation (ii) * cos pgf) 

D=p Cos H 

4. at x T12 0 

cHpZM H Cos pgf cot pf H1 cosec pi Uv) 

Substituting from (iv) into (i) 

HpZ M3 HPZI 
AH Cos pgI cot pt -H cosec pl -H sin pgI 
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3HpZ 
(V) 

sin pf H+H Cos 
ImI 

Hence, the deflection equations are: 

m3[x 
sin px + 

HPZI 
x in px rl =-7- Cos PAO-g) o <, x IHI sin pi 

]H 

sin pt 

] 

mHZ, -3 [x sin px +p 
(I-X) 

- Cos pgt sin p(I-x) gi 4x41 T12 ýHI sin pt 

]H[A 

sin pf 

I 

Similar equations can be written for the right hand span. Thus, the 

slopes at both sides of the intermediate support are equal, where: 

dil 2m3 HPZ, 

U- . ir- 0-H 

for the left hand span and similarly; 

dil 21 m3HpZ1 

dx 1 
W- 41 - _H vgl 

for the ri&ht hand span: 

where v-1[ PI Cos gI sin pt 

and v., =I Cos pg I 41 
[ 

sin pf 11 

It is worth noting that at g and gI. 0, v9 and v 91 
become equal to v and 

and vI where: 

pf 
-II and Y, -111. sin pt AI sin pt I 

Thus, 
dil 

2 
dTj 

21 
dx dx 

1 

which yields: 

mHZ 
(v 

g 
+v 

gI 
) 

3p1 441 F 
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Thus. for the left hand span: 

gg 

il dx 
m3x 

sin px dx +Hpz1x- Cos PI( _, ) sin lj'ý dx 

Of 

F 
Of 

II- 
'sin pt 

II 
-ff- 

Of 

II 

sin 149 

] 

Cos pgg sin d 
sin pi 

I 

gi 

X] 

which gives: 

ImHZ[ 
sin H-10-2g) 

dx =-30p12- 0- 2g) -2H pf pt 
Of COS 'T 

Similarly, for the right hand span: 

pi 
I 

vi dx 
m3 () 1-HpZ1 sin -2 (1-2g 1 (1-2g 

of 
H2 pt 1 pi 1 

2 --- 2 

Hence, the total value of the tem 
(ý ýI f r1dx) is: 

H 
w 

H Z, v +v ) sin 
E1 (1-2) 
2 !Lf 

rldx =WV (O+WO +I H iF 2H 
ww1 

(TfMiT 
lit Cos t 22 

sin 

PI I 

5. The end moments, HIa 

For the end moments, R a, the term 
( '2 Lf 

Tjdx] can be directly obtained iH 
w 

from Appendix 13, or by substituting g-g, -o in the above formula 

which gives: 

f ildx 
WHa (v+v 

H 2H 4++1 
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Finally. the total value of the tem 
( :ýwf rld for the first group of Hw X) 

forces can be obtained as by adding the five expressions obtained for 

the five applied loading. 
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APPENDIX 22 

22. The Detemination of the Internal Forces Produced by the First 

Group of Forces 

1. For yW and yW I 

For the two upward continuous uniformly distributed forces yW and yW,, 

the deflection equations are: (see Appendix 12) 

YW sin px P2 
(O+wO 1+ sin p(I-x) p2x 

2H sin pf 2 sin pt 24 

(e+we1) 1 
- 

(++i) ]j 0X£ 

for the left hand span and similarly; 

YWJ, 2 (O+wO, ) sin p(A I -x 2x 

2H sin pt 1 2w Fi + Ti- F sin pt 121 

(t I-x 1)- 

(O+wo I) 11 

for the right hand span. 

0 X1 

Hence, the bending moments equations can be obtained f rom the rela- 
tionship: 

EI and m» EI x dx xl dx 2 
1 

for left and right hand spans respectively, which yields: 

2 (O+wO ) 
YW sin px pI]+ sin p(I-x) - sin pl] 

p sin pA 

1 
2- 

4x4A 
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for the left hand span. and similarly: 

YW 2 (O+wO ) 
sin px + sin p(l x sin pt 

xl 2 1- 
p sin pt I1 

11 

4x4A 

for the right hand span. The shear forces equations can be evaluated 

from the relationships: 

dM dM 
xi Q. - -I and Q 

x dx X1 dx 1 

for left and right hand spans respectivley which yields: 

YW [I- 14 
2 (G+tjO 1) 

Qx sin pl 
[ 

Cos vix ý- '(Pil )]- Cos P(A-X) o4x44 

for the left hand span, and similarly: 

YW 12 (O+wO 1) 
Cos px 211ý T -x X1 p sin pt II- Cos p(l 

11 2w (iF+-+, -F 111 
o4x 

2. For pW and pW 1 

For the two upward partially distributed forces pW and pWI, the deflection 

equations are: (see Appendix 21) 

PW sin px 
Cos P2 

(0 
g 

+we 
gI p2x 

2 sin pf 2 
pH 

12 (1, -g) 
2_ 

(0 
9 

+we 
9) I 

WY 1] o4x4 cl 

PW sin px p2 
(E) 

g +we gI + Cos PgA sin p(I-x) P2x 
2H[ sin pA 2 sin pt ý2 

[I 

42 (1-g) 2_ 
(0 

g 
+wo 

g)1- (x-gl) 2]1 
g44xK, 4 
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for the left hand span, and similarly: 

PW I[ )1 
2 (0 

g 
+we 

gI p2xI 
-2 - sin pt 

Cos 11 2w 21 
pH1 

x2 (1-g )2 
(0 

g 
+WO 

gl 
) 

0 X1 g1C1 

Pw [ sin pxl [, 
l 

2 (0, +wO, sin P(l -x 1_P+ 
Cos P9 I T'1(2)ý - 

112 H sin pi 1 
2u (ý+ý I)111 sin pi 

2 
(0 +wE) 

gl 2]] [ xi 1 
f or the right hand span. The bending moment equations can be ob- 

tained from the aforementioned relationships which gives: 

pW sin Vx Cos P2 
(0 

9 +we gI o(x4 gi 2 sin pt T- 

m PW 
sin yx 

[I-p2 (0 +WO 
gl 

)+ 
cos pgg sin p(I-x) 

x(2) p2 sin pi 

[2 

0-7 -01 -) 
I 

- sin pt 
I 

gl (x41 

for the left hand span and similarly; 

m 
PW I sin px 

Cos 
p2 

(0 
9 

+we 
gI 

2 sin pl! l 
'K -TPý 

1) 

o .4xK 

4 
PW 1-[ 

sin px, 
[1-p2 (o 

g 
+we 

gI + cos pg A sin p(A -x xl(2) p2 sin pt 1 
2w 111 

- sin pt II 9111 
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for the right hand spans. The shear forces equations can be obtained 

for the left hand span, as before: 

aw Cos 14X 
Cos VIO-g) 

P2 
(0 

c 
+we 

gl o4xCgI 
V sin )AI 2 Wýl ) 

Q PW 
Cos )IX 

)l 
2 (9 

g 
+wo 

gI 
Cos pgI Cos P(I-X) 

x(2) 'p sin pf 

[2 
Wýl )I 

gi (x4A 

Similarly, for the right hand span; 

Q 
PW 1 Cos JAX l [[ 

1- Cos P110-gl) P2 
(0 

g 
+we 

gl 04xg 
Xl(l) P sin pi 1 2w (ý+ýl ) 

Qxl(2)ý 
PW 1 

Cos )AX P2 
(0 

9 
+we 

gl Cos )Ag I Cos )1(1 -x sin pt II 2w 7 -", J111 

91914x1411 

3. For CH and C1H 

For the upward concentrated forces CHp and C1Hp, we have the deflection 

equations for the left hand span: (see Appendix 21) 

HPC[ 
sin pgI r[ 

sin pglAl 
'(1) Met sin pi 

Cl 
sin pi 

gl 
X sin px 

1 

)] [I 

sin p-I 

CHp 
sin P10-g) 

sin px 
_ px(l-g) Q4x( gf'' 

pH 

[ 

sin pi 

I 

Hp[C( 
sin pgt +C 

sin V& It1r. s, in px 
9(2) H(++ý sin pt 1 sin pt t sin pf 

9) 
11 

1)] 
1X 

CHp 
sin pgt 

sin p(I-x) - gi x41 
pH 

[ 

sin pt 

Similarly, for the right hand span: 

HpC[ 
sin pgt [ sin pg1l, x sin )Ax 

cl III(W 
sin pt sin pt 1)] 

1 

41 sin pli 
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cIH sin px I p[ sin p110-z )-- Px (1-9 o<x4 
PH I sin pt 1111 

HpC[ 
sin pgI + Cl 

[ sin pglIl x1 sin px 
ill (2)ý --911 sin pt sin pt sin pil 1 1)] ti 

c1Hp[ sin pg 111 
sin -x -x x 

pH sin pt I 

The bending moment equations for the left hand span are: 

Hp[C( 
sin pgg Cl 

( sin pgltl 
_r 

sin px 
x(l), Wtl ) sin pt sin pf 1 

.1 
)] 

sin pt 

CHp 
sin pl(l-g) 

sin px p sin pt 

I 
4x4 gi 

mHpC( sin pgt 
- 

sin pg IA19 11 sin px 
x(2)m - -(ý+f sin pi 

g) + Cl 
[ 

sin pi I- 
ljj sin pt 

CHp 
sin pgI sin p(I-x) p sin pt 

Similarly,, for the right hand span; 

gi 4x41 

Hp 
sin pgl 

in pg I11 s in px s 
C m 

xi (1) Wf 
[ 

sin pi 
+C 1[ sin pf sin pt 

C1Hp sin )41 1 
(1-g 

s: Ln px 
14 sin pt II 

o .4x14gIII 

.1 

sin'px HC( 
sin pgI 

_ g] . Cl 
( sin pgIll 

_F 'M pI 
xl(2) (+++ I sin pt sin pt sin pf 1, 

CH sin )ig I 
P(l -x ) 

p sln px 111 
91114x14AI 

The shear forces equation can be determined for the left hand span: 

Qx(W , ), 
HpC[ 

sin pgA 
-+ Cl 

( sin lAgIll COS px 
T -f TiF, F sin VA sin pf 1 sin pt 

-CH 
sin P10-g) Cos px o(xK, gi p sin p 
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H( sin )jgl I 
sin pt 

p sin pgt 
sin pt 

Qx(2)ý + (f+fl )[C( sin pf 
91 +C1 . 1]] 

Cos ox 

CH sin Vgl 
Cos P(I-X) 

p sin pt 

Similarly, for the right hand spans: 

gI(x<, I 

Hp[c[ 
sin pgg 

sin pg 191 COS )IXJ 
Qx TFý -I) sin pf 

+ Cl 
[ 

sin pt 1 sin pf I 

-CH 
sin VA 1 (1-& 

--- px o4x Ip sin pt 11 

pHp[, C 
[ sin pgl + Cl 

( sin pg, 11 

_ gl 
Cos )AX 

Qxl(2)ý + 441 ) sin pf sin pt 1 

)] 

sin pt 

CH 
sin pg I11 

Cos -x x 1p sin pf 1 

4. For the concentrated moments HpZ 

For the two concentrated moments, the deflection equations are: (see 

Appendix 21) 

HZI (v 
g 

+v 
cl sin px 

Cos P10-g) + 
(v 

g 
+v 

gl PH 
I Wf sin pi --7f+f 

IX+11 

0X gL 

HZ1[ 
ýS (1+ (Y 

g 
+v 

gI sin px 
(v 

g 
+v 

gl + Cos Ygi 
sin p(I-x) PH 

1 4++1 ) 'H-npl --Tý+* 
I) sin pt 

I 

gi 4x4A 

for the left hand span and similarly; 

HZvg +v 
gI sin. px (v 

g 
+v 

gl p1+1( Cos P110-gl) + -T++f 1 
910) H1 44 sin pt 

I 
-X1 I 
1 ly I 4x14gIII 

11 
Hpz11+vg +v 

gI sin px (v 
9 +v 

+ Cos HI Wý ) 
[I 

_T+T -1-F 11 
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sin p(l I-x 1) 
sin pt 11 

for the right hand span. 

The bending moment equations for the left hand span are: 

HZ sin )Ax 
Cos pf(l-g) + 

(v 
g 

+v 
gl 

) 

p1 sin pt 

[ 

WY 

Hpz1 
sin px 

(v 
g 

+v 
gl 

cos pgf sin p(I-x) 
x(2) sin pf 

[ 

-Tý+ -Y 
I 

and similarly for the right hand span; 

HZ 
sin lix 1 

Cos 141 (1-g + 
(v 

g 
+v 

gl 
xi (1) pI sin pt 111 

-Tv+i-lT 

HZ (v +v ) 
p 

sin px cos V& 111 sin p(l I-x 1 xl(2) Sin pt 11 

The shear forces equations for the left hand span are: 

Cos JAX r 
(V ) 

HZ Cos P10- +-g gI Qx(l) pI sin pt 
[ 

441) 

HpZ, [ 
Cos )AX 

(v 
9 

+V 
gl + Cos PgA Cos x2 'TIT ýpl -Tey 

and similarly for the right hand span, we have: 

iHZ 
Cos )IX 

Cos pt (1-g + 
(v 

g 
+v 

gI Oxl(l)= -pp1 sin pt 1 441 ) 

a(x4 &A 

gI<, 

0X 

91A14xI(A1 

0X 

gi .(x41 

0 X1 

p Cos )AX g Cl + Cos Cos -x Qxl(2)ý -P1 -441 ) 

5. For the end moments H. a I 

g1L1 xi Li 

For the end moments Hia.. the deflection equation for the left hand 

F. IA1(xI 
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span is, (see Appendix 12), or by substituting z-g, -o in the above 

equation: 

H. a - (v+v Y 
I+ sin p(I-x) X'- sin px 

TI Ht sin pi 
+I 

sin pt 
o(x41 

and similarly for the right hand span: 

Ha X sin p(l I-x 1 
(v+v 

I sin px 
11 =- 1 

, 
+ sin pf 1 

+ Ti+ ý 17 

1 
T, sin pl, 

o4x1 

The bending moment equation for the left hand span is found to be: 

HIa (v+v 
1) 

sin p(I-x) - sin px o4x 
x sin pt 

[ 
4+ýl )I 

and similarly for the right hand span: 

m=H3. 
a 

sin p(I -x 

(v+v 1) 
sin )Ax 0x 

X1 sin pi 1 

The shear forces equation for the left hand span can be obtained as 

follows: 

I Cos P(A-X) + Cos px o4x Qx sin pt 
[ 

TP-i 
1-T 

and similarly for the right hand span: 

Cos )4(11-xl) +S pxl ox .41 Qxl =+ sin pt I 

where v, v, +1 9 0,01 9 Og 9 Ogj, v. and v., can be obtained 

from the preceding appendix. 

Finally, the total values of the deflections, bending moments and 

shear forces of the first group of forces can be, determined when 

superimposing the previous cases of loading as shown in Equations 

(3.27), (3.28) and (3.29). 
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APPENDIX 23 

23. The Determination of the Maximum Suspender Load 

The shear forces equations for the maximum upward distributed 

suspender forces, including the dead loads, are: (see Formulae 

(3.29)) 

W (1+y)- 
cosýpx Cos P(A-X) s(l)max p sin pt 

112 
Tt--+T*-,, ) 

)I 

Pmax w 
Cos yx Cos p2 

(0 
F, 

+we 
91 

p sin pA 2 (++ý 1) 
4, gi 

W (1+y) 
Cos px 

(I 
-p2 

(O+wO 1) 
Cos s(2)max p sin pi 

[2 
(ý TT -1-F 

)- 

Pmax w 
Cos px P2 

(0 
g 

+wo 
gl 

) 

Cos PCI Cos P(I-X) 
p sin pi 2 -TP-i 711- 

for the left hand span. Similar equations can be written for the 

right hand span. 

Thus the maximum suspender load can be initially found from 

the relationship (see Equations (2.1)): 

dQ 
smax q smax dx 

which gives; 

qw 
O+Y) 

sin px P2 
(O+wO 

sin p(I-x) s(l)max sin pt 2 

W sin px Cos p2 
(9 

9 +we gI 
max sin pf T 

4x 
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W (I+Y) 
sin )jx I-p 

(O+WO I+ 
sin P(A-x) qs Mmax sin pt 

11 
2' 

Pmax w 
sin px (1-p2 

(0 
g 

+we 
gI 

+ cos PO sin P(A-x) sin )41 2 

x 

Similar equations can be written for the right hand span. 

These load equations do not represent a uniformly distributed 

load and therefore, they do not comply with the basic assumptions 

stated in Section 2 . 1. Hence, the above equations must be 

approximated to a uniformly distributed load. To achieve this, we 

use the mathematical approximation: 

I 

qf qs' x 
d.. 

smax ma 

gi I 

qsl (1)max dx +f I qs Mmax dx 

-1 
gA 

= 7- 
[ [Qs(I)max]. 

I 
EQs(2)maxl,, 

Thus, the final maximum suspender forces for the left hand span can 

be evaluated as follows: 

qW (I+Y) (1+ P2 
(O+wG PmaxW 

smax 42 

(0 +tjO sin 
ý1 (1 - 2g) 

9 gl 
+ 

2_ 
4+ý PI- 

] 

COS -2- 

Similarly, for the right hand span: 

w (1+y) (1+ 
2 (O+wG Pmax w+o 

slmax 12 4w 

p2 
(0 

g 
+we 

gl sin -2-(1-2g 1 
2w pf pt 

22 
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Appendices (24 - 27) 

of Chapter 4 
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APPENDIX 24 

24. The Detemination of the Value and Position of the Force in the 

Concrete Stress Block when the Axis of Zero Strain Lies in the 

Web and the Strain at the Top Fibre of the Beam is Equal to 

the ultimate Plastic Strain 

x 
Lf 

ult 33 
Y 

0.0035 

xi 

T 
ze 

kZ 

f 

c 
x 31 

c0 
x2Tc 

xi 

To determine the equation for the parabolic part of the stress block, 

we assume its equation to be of the following form: 

fc= Ot Ix+ Ot 2x+ Ot 3 
where Ol 10'2 and - 0'3 are constants which can be evaluated from the 

following boundary conditions: 

1. at x= 

at x= 

fc 0 

df 
c 

a-x 0 

2ot Ix2+ Ot 20 

which gives'*3 ý0 

which yields: 
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at x=x 
2f ult 

ym 

2f ult 2_ 2ot x2 3ym -1--2 12 

2f ult ot 13 
m2 

which gives: 

and a4f ult 
23ymx 

Thus, the equation for the parabolic part of the stress block can be 

written as follows: 

2f ult 
2 

2 !L-x 
c3 Ym 

Ix2x22 (1) 

Hence, the area of the part bounded by x-o and x=x, can be evalu- 

ated as follows: 

xIfx2x 
2 ult I 

f dx = _9 
[3 

Of m 
-x 

22 

The total area of the parabolic part of the curve can be found as 

shown: 

24f 
ult Af dx =- 

Of 
c9Ym --2 

Hence, the area of the curve part bounded by x-x, and xý X2 can be 

evaluated as follows: 

-A2 =A-A, 

which gives, 

2f ult x2 
[2 

x' 

x2 

The area of the rectangular part of the stress block can be obtained 

as shown: 

(ii) 
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2f ult 
-(x-x 3ym32 

Thus, the total compressive force, FC, of the concrete is: 

F+F+F 
c C, c2 c3 

=Ab+Ab+Ab 2131 

Substituting for Ap A2 and A3, we have: 

bx2x2 
2f ult 

bx 1+2f ult 11 
F3- 

x' [2 
2 

(3 
3x xy3 c YM 212mx2 

2f ult b1 CN 
3- x 2) 'S YM 

fx2 xý 
- 3b F2 ult 

--5 
22b- (b - b) 

X, 
(3 -)+ 3b -' 

c YM 21x2x2 2 

Fc =ýf 
ult x[ bl (3 

X-3 
- 1) - (b -b) 

X' 
(3 - 

xl 
) 

9 YM 2x2x2x2 
2 

but from figure (b), it is obvious that: 

0.0035 C0Cc 

x3x2x1 

which yields, 

x30.0035 c0 
x 

xc2ý6.00-35 
X3 

xl CC 

I 
but x3ýk1Z.. Hence, substituting in the expression for Fcq we 

obtain: 

2f ult 1'0ct 
kZ 

[bl 
(3 -r -5-5 (b1- b) c 

y10.00 0.0035 c0c0)1 

The second term of the above equation can be written in another form 
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when knowing that: 

3 0.0035 
kI 

Thus, we have: 

c2t (k z) 
1) (k -z) c (3 c130.0035 [3 130.0035 

0.0035 cck2kIkIc0 

0.0035 [(3 
_ 

0.0035 )k3_ 3z (2 _ 
0.0035 )k 2 

k13c0c013c01 

3z 2 (1 _ 
0.0035 )k+ Z3 

0.0035 
3c13c 

00 

Consequently. the total value of Fc can be found as follows: 

2f ult Z' 0.0035 C0C00 0035 3 
F 

[[b, (3 -)- (b b) (3 - ý8ýý )]k 
c9Yk2C0.0035 0.0035 C1 

1 

(b -b) [3z (2 - 
0.0035 )k 2_ 3z 2 0.0035 )k z30.0035 13c013c01-3c0 

1] 

The distance xi, see the figure. can be evaluated for the first area A 

as follows: 

x1 

0f 
fc xdx 

2f ult x13 3x 1 
x13yA 12 x- 

(8 
1m 1- 2, x2 

) 

Similarly, the distance'ý for the second area is: 2 

x2 

xIffc xdx 
2f ult x23 X1 

3 
X, 

) 5E 
2A23yA2 12 

[5 
3 

(8 3x2 

and for the rectangular area. the distance R is: 3 

1 
" (x +X 32 

Thus. the distance x4 can be obtained as follows: (see the figure) 

cx4F cl xI+F c2 X2 +F 
c3 

x3 
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1) f 
bx 3xbx2 

FA- ult 1 (8 31)+2 ult 12 [5 X1 
(8 3 

X1 
) 

c4 'S y 12 x2x23y 12 3x21 

2f ult 
b1 

(x +) (x ) 
YM -2 32 

2f ult x2x1xx3 

c 
3i 4 -y 12 5bI-, (b C b) 3 

(8 -3x1+ 6b, 2 
mx22x2 

52 
ýult x2 [bl (6 

x3 
- 1)' - (b - b) 

X' 
(8 -3 

x' 

c43y 12 2 1. 
x3x2 22 

but F can be obtained as follows: 
c 

2f ult x2x1x1 
b (3 

X3 
1) (b b) " (3 

x 1- 2 3F2- YM 2x2 

Hence, the final expression for R4 is: 

23 
[b, (6 

X3 
1) (b b) 

Xl 
(8 3 

x! 
) 

x2x221x23x21 
3F4 ý '4- 

[b (3 
X3 

1) (b 

' 

b) 
Xl 

2 
(3 

X1 
) 

x21x22x2 

but k2zx3 4' see the figure, which yields: 

[b 
(6 

x"2- 
1) - (b -b) 

X' 
3 

(8 -3 
x' 

) 

kZ1x34 
x2 x231x23x21 

2 Z- x3- 

1) - (b -b) 
X' 

2 

(3 - 
x' 

) 
[b 

(3 
x3 

x21x22x2 

Rearranging the above expression, yields: 
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bl (6 
x3 

+ 
x2 

- 4) + (b -b) 
X' 

2[X, 

(8 -3 
X-' 

)+4 
X' 

- 12] 
X2X31X22X3X2X21. 

[b 
(3 

x3 X1X 

X2_ 
1) _ (b 

i- b) 
X22 

(3, - X2 

x30.0035 
where -. -7 x2c0 

xcc 

xc 20 

xcc 
and - x30.0035 
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APPENDIX 25 

25. The Detemination of the Value and Position of the Force in the 

Concrete Stress Block when the Strain at the Bottom Fibre of the 

Beam is equal to the ultimate Plastic Strain 

ff 

Ix2 

F ---4 
'fult 13 

f 

ýC2 

11 10. 0.0035 

The equation for the parabolic part of the stress block curve can be 

determined, similarly to Appendix 24', as follows: 

f2 
f2 ult [2 X 

c3yx2 M' x 

Thus, the area of'the parabolic Part of the'curve, "Al*, ': 
I's: 

Af ult A-x 19y 
,m 

The area of the rectangular part of the curve, A 2' is: 
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2f ult 
3ym 

Thus, the total area A is found to be: 

AA2f ult x2 
(3 

x' 
) 123ym3x2 

xc0 
but - x20.0035 

Hence, the total force, Fc =Ab, can be determined as follows: 

2f ult 
bx 2c 

F=--(30 
c3y30.0035- 

but x2Z-kIz 

t 
=Z 

Thus, the final expression for Fc is: 

F2f ult U1 [3 -c0- kl] 
c9y6.0035 

IIZ4 

To evaluate the position of this force, we find the distance for the 

parabolic area as follows: 

f fCx dx 5f ult x12 
x A 18. ymA 

For the rectangular area, the distance i is directly found as follows: 2 

-5i 1 
(x +X) 

12 

Thus, to find the distance R 
3' in order to determine the point of 

application of the resultant force FC, we have: (see the figure) 

cx3F cl x1F c2 x2 

Ax3ýAIRI+A2 5F 
2 
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f 
ult 21f ult 2 

i-8 
. YM 

X, «s YM 

1f ult 2 [6 2 /x 2 
18 YM 212 

x3-f 
2 ult [3 

y1 21 

x2 [6 x12 /x 
22 

73 ý4 
[3 x1 /x 21 

but 

II. - k2z=kIz+X3 

and 

x2k1z 

Hence, we have: 

kZ0-k1Z0+Zt (Z -k) 
[6 -x12 /x 221 

41 [3 -x1 /x 21 

k24Dx /-xT 
[4 k1 13 -x1 /x 21+ (z 4 -k 1 (6 -x12 /x 22 12 

which finally gives: 

x' 
(4 - 

x' 
» (6- 

x' 
x2-x2x2]. 

4 [3 - 
x' 

] 
x2 

where 
10 

-- x20.0035 
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APPENDIX 26 

26. The Determination of the Term': j'L f rl dx for a General Case of 
IHw 

Loading Applied on the Left Hand Span of an Ungrouted Prestressed 

Cable Suspended Beam af ter the Formation of its First Plastic 

Hinge 

AH 

H2 

! ei axi 

ý. - ßt -W Ao AH 

For simplicity, the case of loading shown in the figure will be 

divided into three cases of loading. The first, is the general 

loading Ad acting alone on the structure. Then, the second and third 

cases of loading are the upward uniformly distributed load and the 

end moments respectively. Thus, the final value of the term 

w 
ij- f Tj dx is obtained from the algebric sum of the terms found for 

w 
the three cases of loading. 

1. For the-general loading Ad 

The deflection equations are obtained similarly to Appendix 12 as 

follows: 

A(% f2 A sin Vx +B cos px - I- (r - p) xo4x4pI 
rH- 2 
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661 2x2x2222 
rl ýC sin px +D cos px +--- (r +p +p 

22H2[ 12 rl p212 

4x4, rI 

Adl 2[x2-x2 
+1 

22 
113 ýE sin px +F cos px +- (r p+p- 2H212 rl 212 

rl <, x4 otl 

6,112 222 
G sin )Ax +I cos px + (2 ot -r- 

2-' (ot 114 ý2H21r 

ot 14x41 

in =J sin px +K cos px + 
6(11 2 

[2ot - (ot 2_P2 1 (r 2+ 
p2+ 5 XH r 

Ix 

2H2 
where 2. - f-I 

and where A, B, C, D, E, F, G, I, J and K are constants which are computed 

from the following boundary conditions: 

1. at x=o T) I-0 

2. at x= pi 

dTj 
1 

dri 
2 

dx dx 

3. at x 131 T) 1 T12 

4. at x rl T12 T13 

5. at x mi 
drl 3 

dT'4 

dx dx 

at x= od T13 ý T14 

4 

7. at x=1 114 ý0 

8. at x=d 
T14 dq 

5 
dx dx 

at x=1 '15 = 
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10. at x= 9+1 1 715 =0 

which yields. 

G+I cot prf + 
Ad cos pl(ot-r) - cos pl(r-p) 

p2H1 sin pri 
I 

B =o 

G+I cot pri + 
Ad cos pl(a-r) - cos ppl cos prl_ 

p2H1 sin prX 

I 

66 
Cos ppi 2H2 

G+ 
Ad 

sin potl 
p2H2 

F=I+ Cos pott 
p2H 2 

t2 [[ 
2m _(ot2_132) 

22 Cos PAU+X) (1+1) OL 
2_P2 

2R (r +p )- Cos H2rII sin pi I PA 1 pt 

Cos pl, 
I 

22 X2 [[ 
2ot _(ot2_p2) r 

2+p2)] [ ('+X) 
sin oi _ 

sin pi(I+X) + 
(ot _p ) 

H2r )A£ 1 sin pl 11 )11 

sin )41 

6,512 Cos p (, +X) [ 2ot - (ot 2 
-P 

21 (r 2+P2 
2H2 sin pt 1r 

J tan pf(I+X) 

Thus, the integration :jLf il dx can be calculated as follows: H 
w 
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ww pt rl ot I1 9+9 1 

jF f il dx iF 
[f 

qldx +f T12 dx +f 113 dx +f 94 dx +wf95 dx 
ww pt rl Ott II 

This integration can be simplified to the following: 

w 
rl dx wGfA 

sin px dx +I [cot prij 
rl 

sin px dx +fA cos px dx] Rw 
rl 

Ad [ cos pl(ot-r) rl cos pl(r-p) pt 

14 
2H sin pri 0f 

sin px dx - sin pri 0f 
sin px dx 

rl rl 
- cos ppl cot pri f sin px dx + cos ppl f cos px dx 

pf pf 

ot Ip12 ot 12 
+f Cos PI(ot dx All I( 

r-p )2 fx dx + 
6(st x ]- 

2rH T-H fI T2 
rl 22 pi 

222212 (r +p +p] dx + 
6512 f [(2ot -r- 

L- )x 
p2122H2 ott rA 

2_ 2 wi 
1w Adz 2 

- (ot p dx - Cos P40+ Ky 
4f 

sin pl(l+X dx + 2X H2 

[2 (x 
2_j32 )-1 (r 2 

+j3 
2)1x1d 

r14f 
['+x - «i X] 

By working out these integrations and substitýting for the values of G, I 

and J, the final value for the term '2 14 f9 dx is: 
H 

w 

wf 
ii dx =W 

Adl 2 
2ot - (cc 2_p2) 

-1 (r 2+ 
p2 iF iF 2 pH r ww2 

[Cos P40+x -r Cos ý rl [w+(l-u) Cos pf 1] y21+ 
sin pt cos pri 

12 

2 sin ýA sin 1! 1 (1-r) 
+2 

Cos 
Dot -1 

2+ 
p2)1-X (ot 2_, 

02 ) 
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sin PA (2ot-r) - sin -E 
I (2p-r) 22+22_2 [ot (3-20 -p (3-2p)] 

pf A pri p Cos 2 

- (OL-13) 
11 

where p2= "Ef 

(1) 

and the expression for the moment at the intermediate support can be 

evaluated by substituting x-I in the following expression: 

EI 
[d r14 ) 

3 WO 
dx 2 

which yields: 

Ad£ 22212.2 

3 (Ad) ý i- [ 2ot - (et -p )-r (r +p )] (ii) 

2. For the continuous upward distributed forces &pW and 6pW I 

The deflection equations are obtained similarly to Appendix 12 as 
follows: 

A sin px +B cos px - 
APW 
2H x (x-rA) - 

L 
2 o4x 4 rl 

2 

c 1 sin px +D 1 cos px - 
&PW 
2 H x (x-rl) - 

1 L 
2 rl 4x 41 

2 
1 p 

rl ýE sin px +F cos px - 
'-P" [(I-r)14(1+1)- 

x) - wX [(x-1)[(I+X) 311 21H 2 

x2 +p2x4 1+1 

W2H2 

where p= EI ' 

and where the constants A,. B19 CIO Djv E1 and FI can be evaluted from the 
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following boundary conditions: 

1. at x=o TI 1=0 

2. at x= rA Til = 112 

3. at x=I T12 =0 

4. at x=A 
dyl 2d T13 
dx dx 

5. at x=I T13 =0 

6. at x, -I+11 T13 ý0 

which yields, 

A= APWj2 [0-0 s in PI(l+X-r) +21 [2 sin 
I 

sin P'(1-20 
12H2 sin pf I sin pri P22 sin pri 22 

+u sin P10-0 tan 
!"]_ sin pl(l-r), [(l+X)(1-r) +X (1+x)] 2 PI sin pr 

B 
APW 

.1P2H2 

C, D cot pt + 
APWt 2 

(1-0 2 
112t2 sin pt 

sin pt(I+X) 2 ti 
D, LPW-!! [ 

(1-0 [cos pt -w sin pt tan 
L Z' 

2H2 sin pt, P2 122 

sin pt 
Pt I 

EF cot pf + 
APWt 2 

0-0 2w 
1ý2H212t2] sin pt 

F APWt 2 
sin pt (1-0 sin pt(I+X) 2w sin pt(l+X) 

12H2 sin pt I sin pt P2t2 sin pt 

Hence, the value of the integration 2 !Lf 
Tj dx can be calculated H 

w 
from the following expression: 
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ww[ rt t t+t I 
f ii dx = R- 

*f 
Tj I dx +f Tj 2 dx +f T13 dx 

ww rt 

which finally gives: 

W212 L Cos 
r 

p wp (1-0 2 
!Iwf Tj dx = 2pll 2Hw sin pt I 

[Cos pt 1 
C., lirl 

2 

4 sin 
[ cos pIO-r) -w tan sin -ý±O-O] 

p242 Cos pri 22 
2 

pt I 
-2 sin F- sin E-0-0 

pf 12 
pri -72 

PI I Cos 2p 

2 1) + wx [UN 2_ 3(1-r)) - (2-3r)] +w tan 
1[ 

2 

4w 
212 

The bending moment at the intermediate support can be found when 

substituting x-I in the following expression: 

m EI 
(d 112 ] 

3 (, 6PW) dx 2 

which gives: 

6PW'2 
3(. 6pW) 2 (iv) 

3. For the end moments 6H a p 

The deflection equations can be determined similarly to Appendix 12, 

as follows: 

6H a 
A2 sin px +B2 Cos px + 

rl 
pH2 (rl - x) x49 

6H a 
T12 c2 sin px +D2 Cos px + 

rl 
pH2 (rl - x) rI<, x41 

I 
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6H a 
T13 ýE2 sin px +F2 Cos px + ri 

pH [x I(x 41+1 
12 

Thus, the constants A 2' B 2' C 2' D 2' E2 and F2 can be evaluated from the 

following boundary conditions: 

1. at x=o ill =0 

2. at x = rl III = T12 

3. at x = A T12 ý 0 

dri 2 dq 3 4. at x=A dx dx 

5. at x=A T13 =0 

6. at x=A 113 -0 

which yields, 

AD (cot cos pri) + 
AH 

pa (cot 14ri + 
0-0 

,22H2r sin pf 

, 6H a 

Hp 2 

AH a (1-r) C2D cot pt +H2r 
sin pi 

AH a Cos E1 (2+1) 
p sin pl(l+X) 

_r 
2_ 

-- 
(1+N) 

sin pt rH2 sin pt 
Cos PI 

2 

cot pt + 
AH 

pa (1-0 
2H2r sin pi 

bH a Cos 1! A (2+X) 
p sin pt(I+X) 2 

2rH2 sin pf I pt 
1 

Cos 2 

Hence, the value of the term 2Wf Tj dx can be evaluated from H 
w 
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the following expression: 

f Tj dx = 
H-- [f 

TI, dx dx +f il dx ýTHf T12 3 
ww rl 

I 

which yields: 

bH a[2 sin 1! 1 (1+2X) sin E1 (1-0 + sin pl sin )Art 
wfq dx wp222 
T iF ý-rH pri 

ww2 sin pt 1 Cos 2 

. pi I it 
sin Cos -ý-O+X-r) sin H sin ý-O-r) 

- 2r --2 
(1+1) 22 

pf pri pi I Cos ýrl 

2 Cos 22 

iII 
(1-20 [w tan 

n- 
1L (I+uX)l (V) 

221 

The moment at the intermediate support can be evaluated by substitut- 

ing x-I in the following expression: 

EI 
(d 112 ) 

(M 
p a) dx 2 

which yields: 

6H 
3 (, 6H 

pa 
(vi) 

The total value of the term 2Lf Tj dx can then be evaluated by adding H 
w 

the Equations (i), (iii) and (v). Similarly the total value of the 

moment at the intermediate support can be found by adding equations 
(ii), (iv) and (vi). 

Equations M and (ii) can be used for a concentrated load P when 

substituting AP = 2AdIc, a- t+c, p- t-c and r-t where c is a very 

small quantity as shown in the figure. 
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---f e 9.1*-- 

Ap 

AH a 

(t-C) R, 
(t+c) P, 

Hence, ignoring the high order terms of c, we obtain the following: 

2ot - (ot 2_132) 
-1 (r 2+13 2 

4c(l-t) 
r. I 

(l+X) [2ot -1 (r 2 
+l3 

2)1 
--X ( 0( 

2_132 )- 4c [i+I (1-t)] 

22 
ot (3-20 - ýp (3-2p) - 12tc (1'-t) 

sin (2ot-r) - sin llt(2p-r) 

pf Cos 9r, 
2ý 

and expressiong"M and (ii) becoMe: 

Cos pg(l+x- 1) 
- Cos Cos w Apt 22 dx T' ý-H (1-0 

w2[I sin pf 1 Cos 2 
P 

sin rl" sin ý' (I-tý 
ptl 

pt 2 Cos ptl -2 
2 

and,,, , 

m 3(AP) ý APAO-t) 
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APPENDIX 27 

27. The Determination of the Term 2Lfq dx for a General case of H 
w 

Loading Applied in the Lef t Hand Span of a Grouted Prestressed 

Cable Suspended Beam af ter the Formation of its First Plastic 

Hinge 

k ce 

AH Z 
Aa 

-T 
Pei 

AH Apw 
1c1 

AH 

. 0- 

H2 

For simplicity, 'the shown case of loading is to be divided into four cases 

of loading to determine the term 2 !Lf 
Tj dx. The first load to be 

H 
w 

considered is the general loading 6 for which the term 2Lfq dx 
H 

w 
and the bending moment at the intermediate support M3(6,5) can be 

obtained from Equations W and (ii) in Appendix 26. 

2. For -the two upward partial uniformly distributed forces ApW and 
APW 

I 

The def lection equations are obtained similarly to Appendix 12 as 
follows: 

A sin px +B cos px + 
6PW' 

(r - g)2x oýxý gi 2rH 
2 

AH-Z' ' 
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T12 ýC sin px +D cos px - '6PW 
2rH 2 

[(x-rl) (rx _ C2, ) - 
Lr 

gI(x(rI 2 

11 -E sin px +F cos yx 3 - 
6pw 
2rH 2 

[(x-rA) (rx _ g2l) _ 
2r 

rl 4x4A 2 

G sin px +I cos px T14 ý - 
6PW' 
2rXH 

2 

[0-0 
(r_g2) 1, ( 1+1) x] - wrX 

[(x-£) [l+x (1-g 2) 
_ý, 14 

p21 

] 
14x( 1+9 1 (I-C 1) 

Tj J sin px +K cos yx - 
APWI [0-0 (r-g 2 

wrl 
2 

(1-g 2 
2rXH 

21 

[ I(I+X) -x] 1+9 1 (1-g 1) 4x4 1+9 1 

The constants A, B, C, D. E, F, G, I, J and K can be evaluated from 
the following boundary conditions: 

1. at x=o TI 0 

2. at x= gi Tl T12 

3. at x= gi 
dTil dTj 

2 
dx dx 

at x= rl 

at x-I 

at x=A 

T12 = r13 

r13 ý0 

dri 3 dTl 4 
dx dx 

7. at x-A T14 =0 

8. at x= 9+9 1 (1-g 1) 
T14 = T15 

9. at x'= 1+1 O-g )d 
T14 dTj 5 

II U-x ý dx 

10. at x=I+11 115 =0 

which yields, 
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AC+ 
6PW 

sin pgA 
p2H2 

Bo 

6pwt 2 
_, 

2) sin Vl(I+X-r) + 
2r 

2r H2 
[(I-r)(r 

. sin pt 1 sin prt p212[ 
cot pri cos pgA 

cos vl(l-r) + sin VIO-0 
sin pri sin pf 1 sin pri 

(Cos )jg III- Cos P101 

sin p10-0 [ (r-g 2) (I+X-r) + rX 0-0 + wrX 
2 O-g 2 

)41 1 sin pri I 

6PW 
COS P9t 

p2H2 

EF cot PA + (1-r) (r-c 2 2r I 
2r H21212] sin 144 

, &PWI 22 
sin P10+X) 2r sin pi F= ý-rH2 (1-0 (r-g )----w 

sin pt 212 
1 Cos pt sin pf 

p 12 uI 

(Cos pg cos 
sin )19 [(r-g 2 

)(l+X-r) + rl(l-r) + wrX 
2 O-g 

2 

I cot PI + (1-0 (r-g 2 2wr I 
2r H212A2] sin pt 

APWI 
2 

sin pf 
2r H2 sin pt I 

- Cos 149 1 4111 

K cot PA(I+X) 

(r-g 2) sin plO+X) 2wr [ sin plO+X) 
sin pt 212 sin pA 

K= 06pw A2 sin pl(1+1) (1-0 (r-g 
2) 

_ 
2wr [1 _ cos P, 2r H2 sin pt I1212 

W 
Thus, the integration R- f9 dx can be evaluated from the following 

w 

expression: 
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gi ri x 
X+x 1 

(1-g 
1) 

'2 ýL f il dx 
Wj 

illdx +f dx dx 
H ü- 92 f n3 +w1f 114 

ww gi ri 4 

I+t 1 
+f T15 dx 

1( 
1-g 

1) 

which yields: 

r 
Wfq dx W APWI 2 (1-0 (r-g 2) ýCos 

)II 
Cos )JI(J., 

RwHw 2rpH 2 sin pf 1- 1 
Cos pri 

12 

sin 
EI (r-2g) sin E1 (2-0 [Cos PC I Cos pt I 

2r 
-2+2 2- 

11 
sin 

PI 

u212 

I 
pri pri rl 

p Cos 2 Cos 2 sin pt 1 Cos 11 
2 

11 
sin 

"'1(1-g 
2 sin EI sin (1-0 

sin (1-0 + 2w 2222 
2 pt 

COS 2 
C()s -2 

2) (1+X-r) + rX (1-0 + wrl 
2 (1-& 2)] 

+ pi [ 12r 
+w 

2X(, 
_Cl)] 1212 

3(1+wX)(r 
2 

+g 
2r [2+3wl +g2 [3(2+wl) -2c) -w213 [1-3g 

2+ 
3g 

3 
11 

,2, I pi 1 
WO-Wr g) tan 2 

(1) 

The moment at the intermediate support can be found from the follow- 

ing expression at x=1:, 

EI 
(d 113 ] 

3 (ApW) dx 2 

which yields: 

tpwl 2 
(1-0 (r-c 2 

3 (ApW) 2r (ii) 
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It is worth noting that by substituting g-g, -o in equations W 

and (ii), we can obtain equations (iii) and (iv) of Appendix 26, for 

continuous uniformly distributed loads. 

3. For the two upward concentrated forces CAli 
P and CI Ali 

P 

The deflection equations are determined similarly to Appendix 12 as 

follows: 

C AH 
T11 -A1 sin px +B1 Cos 14X + -rHP (r-g)x o4x 

2 

C 6H 
T12 ýD1 sin px +EI Cos px - rHP g(x-rl) gi 4x 

2 

C 6H 
113 -F1 sin px +G1 Cos px - HP z(x-rf) rl 4x4A 

r 2 

C AH 
114 I ý1 sin px +J 1 cos px - 

p 
H 9 

0-0 [1(1+x) - X] +9 (X-1) 
H 1 

2 r 2 

14x4 4+4 1 
(1-g I) 

K sin px +L cos lAx p (1-0 
H2rH2 

1+4 1 
(1-g 

1)4x4 
9+4 

1 

The constants A,. B19 C11, DII. E19 F19 G11.119 JI and KI can be evaluted 

from the following boundary conditions: 

1. at x=o TI I. 

2. at x= gi rl, ý 112 

3. at x= gi 
dri 

1 dil 2 
dx dx 

4. at x = rA 112 113 

5. at x = A r13 0 
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6. at x=i 
dri 3 dri 4 
dx dx 

7. at x= T14 ý0 

at x= I+f 
1 

(1-g 
I) 114 ý T15 

at xd 
94 d95 

Tx- 1dx 

10. at x= 4+1 1 T15 =0 

which yields, 

C AH 

pH 2P 
Cos pgt 

B1 =0 

C AH 

Tr-up Hp 
(1-r) sin pl(14-1-0 + Xr sin pgg cot pri 

2[ sin pA I sin pri 

sin pf(l-r) + sin pl(I-r) [sin pg Ig sin pt sin pri 
I 

)tH 2 sin pf I sin pri I1 11 

CM 
p 

-TH 
2 

sin pgI 

C AH (1-0 
FG cot yl +- &A 1 sin pt r2H 

C AH 
p9 (1-r) sin pl(l+X) - (1+X-r) sin pi + sin pf 

IrpH 
2[ sin pt 1pH2 sin pt 1 

[sin pg 111-91 sin p4l] 

cot pl-+ 
C 6H 

p gA 
(1-0 

sin pt F-H 
2 

CMP 
gA(I-r) 

sin PIO+X) 
+ 

sin pg 
sin pi rH2 sin pt 1pH2 sin pt 

LI cot PIO+X) 
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sin 
CAH 

p gt 
(1-r) C1 6H 

P sin pf (1-g 
sin pt H2r )4 112 

W 
Whence, the term g- fq dx can be evaluated as follows: 

w 

gi rl I 1+91(1-g 1) 
f il dx = 

LH 
qldx +f n2 dx +f n3 dx +uf 114 dx 

ww 91 ri I 

X+x 1 
+f 11 5 

dx 
X+x 

1( 
1-g 

1) 

which yields: 

2 6H 
p[r pgI (1-0 [(I_w) Cos pjj+ w f rl dx 

W 
HH2H sin pi 2r 2 

Cos pt(l+x -r sin PgA sin 2A (r-g) 
sin pf 1)--- 

-2 2g 

cos 
pri Cos 

pri Xr 
22 

sin 1! 1 
sin P10-0 

22 

Co pri 

242 

r 

[ sin EI sin "10-r) 22 
22 (sin f sin pA +U 

sin pi pri 
1 cos -2 

sin 
(1-g w sin pf 1 

cos -2 

The moment at the intermediate support can be determined by substituting 

x=i in the following expression: 

EI 
(d 113 ] 

3 (CM 
p) dx 

2, 

which yields, 
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M=-CM gi 
(1-0 (iv) 

3 (C 6H pr 
p 

4. For the two concentrated moments 6H Z 

The def lec tion equations can be writ ten, s imi 1 ar to Appendix 12, as fo1 lows: 

6H Z 
TI, A sin px +B cos px +- 122H2 rt 

0X gC 

TI c sin 
. 

px +D cos px + 
AH 

pzI (x-rl) 
gi 4x4 rl 222H2 rl 

6H z1 (x-rl) 
sin )Ax +F cos px +- rl 4x44 

22H2 rX 

G sin yx +I cos px +pI 
[4[1+X(l-r)) x) 

194 ý22H2 rl I 

4ýU( 1+4 
1 

(1-g 
I) 

T15 .J sin px +K cos px + 
AH 

pZI [A(I+N) - X] 
22H2 rl I 

t, 
X+x 

1 
(1-g 

1)4x4 
4+1 

1 

Hence, by using the aforementioned boundary conditions, the constants 

A 2' B 2' C 2' D 2' E 2' F 2' G 2' 1 2' 12 and K2 can be evaluted as follows: 

'AH 
Z 

pI 
sin pgI H2 

B2 0 

sin pAO-0 + 
O+X) sin pi(I-r) 0-0 

2 sin pt sin prt H2 pri I sin prt r sin pt 

- cos pgf cot pri 
I 

AH Z 
p Cos H2 
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cot p. ( I-r) 
2H2r sin pt 

mpz1 

(1+1)' .11.1 
1. 

F+ sin pt 
.22H2 pri I11 

-MpZ1 (1-0 
G2 -- 12 cot pt -H2r sin pt 

AHPZI [ sin pi cos "I 11 
+ 

O-r) sin pt(l+X) 
H sin pt r sin pi 21 

K2 cot P10+1) 

AH Z 
Kp1 sin plO+NY' 0-9 + 

O-r) 
2H2 sin pt I 

[Cos 
11r 

W 
Whence, the term 2 T- fq dx can be evaluated from the following 

w 

expression: 

Wf 
Tj dx 

W gi 
dx 

HHf Ti 1 

4+4 1 
115 dx 

X+i 
1( 

1-g 
1)1 

which yields: 

rX I 9+11(1-z I) 
f ln2 dx +f T13 dx +wf n4 dx 

gi rl 

pt pi 144 AH z in r sin (1-0 sin Fr-20 
:jLfq dx =Wp1[ 

2(1+, ) 2 
f. 

2 
Hw H2 pri I Cos pri Cos pri 

22 

2 sin 
EI 

cos I sin ! L'(I-r) 
sin 

Pll(1-2& 
212+2 

sin pf pri pt 1 , cos 2 Cos -2 

2 sin p! (1+21) sin p! O-r) + sinpi sin P" +w Cos pri (1-cas pt 0-0 22122 
r 

sin pi cos pri 
12 
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[[1-2r 0-01 + wX [1-2r (1-gl)]]] 
2r 

(v) 

The moment at the intermediate can be determined when substituting 

x=I in the following expression: 

m EI 
[ d2 112 ] 

3(M 
pZ1) dx 2 

which yields: 

3 Wi 
pZ 

(vi) 

It is worth noting that by substituting g=g, -o in the above 

equations, we can obtain equations (v) and (vi) of Appendix 26, for 

the end moments. 
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Appendix (28) 

A general computer program 
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APPENDIX 28 

28. The General Computer Program for the Analysis of Two-Span 

Prestressed Concrete Suspension Bridges 

a. The Structure of the Program 

The program has been written to analyse a two-span grouted 

prestressed concrete suspension bridge when a single general case of 

loading is applied on its left hand span. It comprises two major 

parts, the objective of the first part is to calculate the ýhanges in 

the prestressing force, the bending moments, deflections and shear 

forces which result from the applied live loading. The second part 

is concerned with the calculation of failure loads of the bridge 

which are the first plastic hinge and the failure loads. In addition 

the program also calculates the. loads at which the tensile 

reinforcement begins to yield at the first and second ýplastic hinges 

positions which are called the first and second yield loadsAthe 

procedure of the determination of these loads is the subject for a 

future paper by this writer). 

The program at its present form is capable of analysing both 

grouted and ungrouted types of bridge when any form of loading is 

applied on either of its left or right hand span. This is due to the 

fact that almost all of the grouted bridge formulae are applicable to 

the ungrouted one when omitting the contribution of grout in these 

formulae, i. e. at g= gl= o. Furthermore, the computer is instructed 

to ignore the upward concentrated forces, CH P and C, Hp,. as well as 

the concentrated moments, HP Zl, for the ungrouted type. In addition, 

the end moments, if any, are evaluated by using the initial 

prestressing force, i. e. Hia, for the grouted case, or the total 

value of the prestressing force, i. e. Ha. for the ungrouted type. 

The computer carries out all of the above modifications automatically 

after the type of bridge has been specified interactively. 
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For the applied general form of loading, denoted V in the 

program, ýits position is given, in the input-data, in the form of two 

ratios. -A. and B, of the span lengths which are denoted S and S1 in 

the, program, see the figure. The coordinates- of the system are 

located at the left and right hand end supports. 

v 
H1ý -ý 1 1111 11 H 

-da u 
i 0- x 
ý. - BS -bl 

AS , 
SS 

This f orm ý of , loading can also be used - as a continuous 

uniformly distributed Ioad, when substituting A -, 1 and B-o in the 

program. Moreover, a concentrated loadý denoted WW in the program, 

which, is applied atýa distance ratio T with respect to either of the 

span lengths, can : be transformed to the general - 
loading form when 

substituting A=T+ EPSL, 

B=T- EPSL and V= 
WW 

where EPSL, is a very small quantity, taken 
2 EPSL S 

as Ix 10 in the program. These transformations are performed 

automatically by the computer when it has been interactively informed 

of the type'of loading applied on the structure. 

As mentioned earlier, the program is capable of analysing the 

bridge for loads also applied in the right hand span. This is 

achievýd when rotating the bridge by 180 degrees so that the load 

will act as if it was applied in the left hand span. The computer 

does this rotation automatically when it is interactively informed of 

the span where the live load is applied. 

Having established the type of bridge as well as the' type. 

magnitude -and location of the applied live loading, the first stage 

of Me program starts by the determination of the corresponding 
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change in the prestressing force, denoted is HP in the program. This 

is achieved by using Formulae (3.25) 'and carrying out the successive 

approximations procedure described - in Section 2.5.3.3. Thus, HP is 

firstly assumed to be of a zero value,, then, the right hand side of 

Formula-(3.25) is calculated and compared with the value of HP. If 

the two values are not equal, the value of the right hand side is 

used as the starting value for another cycle. of calculations. The 

whole procedure is repeated until both sides of the formula are equal 

and the final value of HP is obtained. I 

The following step is to determine the total prestressing 

force and find the bending moments for, both spans of the structure by 

a straightforward substitution in the appropriate formulae given in 

Section 3.5.1. The values of the bending moments are calculated at 

the-intervals which are specified in the input, data as a ratio of the 

span lengths. For example, if the interval is given as 0.1. the 

program wilIevaluate the-bending moments at every one, tenth of-both 

of the span lengths starting from the left and - right- end supports 

where the coordinates are located. Having found the bending moments, 

the value and position of the maximum bending moment, denoted as XM 

and XR in the program, are calculated by using Formulae (4.39) and 

(4.40). 

Hence, the program proceeds to calculate the, deflections. -and 

shear forces at the same previously givený intervals for both span 

lengths. This is carried out by another straightforward substitution 

in the appropriate formulae specified in Section 3.5.1. Hence, -the 

first stage of the program ends and the second stage starts by 

requesting the type and dimensions of the cross section of the beam 

as ýthe program is, -capable of dealing with both T-shaped and 

rectangular, shaped cross sections. - The input data for, this part of 

the program also includes, informationý about the properties of the 

concrete and reinforcement, (see, list of notations within the 

program). 

Thus, the computer starts to calculate the ultimate moments of 

resistance, denoted as UM1 and UM2, for both cases when the top fibre 

of the beam lies in the compression and tension stress zone. 
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Moreover, ' it also calculates what is called the yield moments of 

resistance, ý denoted by YM1 'and 'YM2, which is the moment at which the 
tensile reinforcement 'begins to, yield, for "the two' mentioned cases 
(This is the subject for a future paper by the writer). It must be 

noted that the above values of the bending moments are obtained by 

using the initial prestressing force, denoted as HI in the, program. ' 

Hence, by- using the calculated value of the maximum bending moment, 

XM,; the'first plastic hinge and yield loads are initially found. 

Consequently, the corresponding changes in the prestressing force is 

evaluated as well as the total prestressing force. Hence,, the 

computer is instructed to substýitute'this value in the expressions 
for the ultimate moments of resistance instead of the initial 

prestressing force. This results in more accurate values 'for the 

ultimate and 'yield momentS. ''of resistance and consequently the final 

first plastic hinge and first yield loads as well as the correspond- 
ing changes in the prestressing force are obtained. From this part 

of the program, it can be proved that the differences between the 

initial and final values of the first plastic hinge and first yield 

loads are almost negligible for most cases. 

At this stage, the beam becomes a determinate structure and 

therefore the new formulae for the determination of the bending 

moments and the change in the prestressing force, denoted as DHP, are 

programmed. The main objective of the following part of the program 

is to calculate the load required to exceed the first plastic hinge 

load in order to cause the complete failure of the structure. This 

is carried out by firstly assuming the change in the prestressing 
force as zero and calculate the load, as specified in Equations 

(4.33) and (4.44). Whence, this value of the load is used to 

calculate DHP, from Formulae (4.32) or (4.42), and then compared with 
the assumed value. If they are not equal, another cycle of 

calculations starts by taking the change in the prestressing force 

equal to its calculated value. This procedure is repeated until two 

equal successive values for the change in the prestressing force and 
the load are obtained. 
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Having found the final value of DHP, it is added to the last 

obtained value for the total prestressing force. and the result is 

used to calculate the more accurate values for the ultimate and yield 

moments of'resistance. Whence, the whole procedure of calculations 

is repeated`ýonce more to find the final change in the prestressing 

force as well as the load required to cause the failure of the 

structure. Then, the total values of the second yield and failure 

loads are. computed as well as the total corresponding changes in the 

prestressing force. If the applied load was of a concentrated type, 

the computer automatically transforms the result back from the 

partial loading to the concentrated load form. 

In the following part of this appendix, the structure of the 

program is clearly illustrated in the form of a flow chart. 
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b. The flow chart e 
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Text cut off in original 



Calculate the corresponding 
changes In the prestressing 

I 

force 

Calculate the total value of 
the prestressing force 

N-N+I 

ý Ye Is -1 ! ýN 
- 2? 

No 

U20 tia oe" 

value of thel 
tot: l pro- I, I yea 
str asin <N 

14 
3ý? 

ý 

force 

Urite the first 
LOU and plastic 

hinKe load@ 

0 

WrLte the corres- /pondLug 
changes to 

the prestramoLng force 

Calculate the loads required 
to exceed the first plastic 

hinge load to cause the 
cross section at the 

Intermediate support to 
yield and subsequently 

develop the second plastic 
hinge as well as the 

corresponding changes in the 
prestressing force 

Calculate the total 
prestressing force using Its 

latest change due to the 
first plastic hinge load 

N-N+I 

Yes Is 
N 4? 

No 

? 



Calculate the total values 
of the second yield load and 

the failure load 

Calculate the corresponding 
total changes In the 

prestressing force 

Write the second 
yield load and 

the failure loads 

/ Write the total 
hanges In the 
tressing force 

. tp. 
r..... 

ond yield ank/d 
failure loads 

EKD 

485 



c. The Use of the Program 

As. mentioned earlier, the program is written to perform the 

elastic and plastic analyses for the bridge when a single loading is 

applied on either of its spans. However, it can also be used to 

carry out the elastic analysis when In' number of loads are applied 

on both spans of the bridge. This is carried out as we first run the 

program to perform the elastic analysis solely for the upward 

continuously distributed forces, yW and yWl, and the end moments, if 

any, Ha or Hia, with the live loads substituted zero. Hence, the 

program is to be run for In' times, according to the number of 

applied loads, to undertake the analysis for each load separately. 

Whence, the final results of the change in the prestressing force, 

the bending moments, the deflections and the shear forces can be 

obtained when finding the algebraic sum of these quantities for each 
load and subsequently subtract the results from those found 'earlier 

multiplied by (n - 1). The reason for this is that the upward 

forces, yW and yWl, and the end moments, Ha or Hia, only contribute 

once in the overall calculations and therefore. the extra forces they 

produce must be omitted as mentioned above. 

The above procedure can not be used to perform the plastic 

analysis of the bridge due to the fact that the live loads may not 

necessarily increase by the same rate with respect to each other. 
Therefore, in order to check the stress state of the structure under 

any combination of live loads, the values of the maximum bending 

moment and the total prestressing force are obtained as mentioned 

earlier. Whence, the program is used to calculate the ultimate 

moment of resistance of the cross section of the beam, with the 

obtained total prestressing force, and is subsequently compared with 
the maximum bending moment. The significance of this comparison is 

that it enables the designer to check the safety of the structure for 

all possible case of loading when knowing how far the stresses in the 

structure are from the ultimate stresses. 
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d. The co=uter program 

C 
C* This is a general program for the analysis of. two-span pre-* 
C* stressed concrete suspension bridges under any applied live* 
C* loading. The following notation is used within the program: * 
C S--The length of the left hand span (m). 
C S1---The length of the right hand span (m). 
C Z--The distance between the centre line of the suspended 
C beam and its top fibre (m). 
C EC--The eccentricities at the ends of the suspended beam(m)* 
C Hr=The height of the tower above the centre line of the 
C suspended beam (m) 
C * HW---The preliminary value of the prestessing force (N). 
C * ZE---The flexural rigidity of the suspended beam (N. sq m). * 
C * GA--The factor by which the preliminary prestessing force * 
C has been increased to overcome the time effects as well* 
C as to adjust the initial prestessing force, for maximum 
C efficiency. 
C W--The dead load of the suspended beam when added to the 
C weights of the main cable and the suspenders, in the 
C left hand span (N/m). 
C Wl---The dead load of the suspended beam when added to theý 
C weights of the min cable and the suspenders, in the 
C right hand span (NIm). 
C AC--The cross sectional area of the main cable (sq m). 
C ECA=Young's modulus of elasticity of the main cable(N/sqmm )* 
C TV=The intervals of the left and right hand, span lengths 
C at which the bending mome-nts, deflections and shear 
C forces are evaluated. i. e. if TV=O. l the output will be 
C given at an interval of one tenth of either of the two 
C HP--The change in the prestressing force corresponding to 
C the applied live loading (N). 
C BM--The bending moments at the various positions of the 
C left hand span MO. 
C M--The maximum bending moment which is usually located 
C in the span where the live load is applied (N. m). 
C XR=The position of the maximun bending moment as a ratio 
C of its distance from the end support to the span length* 
C RU--The bending moments at the various positions of the 
C right hand span (N. M. 
C DF--The deflections at the various positions of the left 
C hand span (m). 
C DF1=The deflections at the various positions of the right 
C hand span (m) . 
C SH--The shear forces at the various positions of the left 
C hand span (N). 
C, SHI--The shear forces at the various positions of the right 
C hand span (N). 
C BR1=The breadth of the flange of the T-shaped cross section* 
C (M). 
C BR=The breadth of the web for T-sec OR the breadth of the 
C rectangular cross section (m). 
C DP--The thickness of the cross section of the beam (m). 
C * EDP--The effective depth of the beam cross section (m). 
C * DA1=The distance between the top fibre of the beam and the 
C upper flange reinforcement for T. secORthe top 
C reinforcement of the R. sec (m). 

487 



C* DA2=The distance between the top fibre of the beam and the * 
C bottom flange reinforcement for T. sec, OR, the second 
C layer of reinforcement for the R. sec (m). 
C * FY---The yield stress of the reinforcement (N/sq m). 
C * Eln--The cube strength of the concrete of the beam (N/sqm )* 
C * ES--The modulus of elasticity for the reinforcement(N/sqM )* 
C * Asl=The area of steel of the upper flange reinforcement 
C for T. sec, OR, the top reinforcement for R. sec (sq mm). 
C AS2--The ai-ea of steel of the bott(xn flange reinforcement 
C for T. sec, CR, the second layer of reinforcement for 
C R. sec (sq rm). 
C AS3--The area of steel of the min beam reinforcement (sq m )* 
C YM1=The yield moment for the cross section when the top 
C fibre lies in the compression stress zone (N. m). 
C YM2=The yield moment for the cross section when the top 
C fibre lies in the tension stress zone MO. 
C UM1=The ultimate moment of resistance for the cross section* 
C when the top fibre lies in the compression stress zone 
C (N. m). 
C UM2--The ultimate moment of resistance for the cross section* 
C when the top fibre lies in the tesion stress zone(N. m) .* C YHP--The change in the prestressing force corresponding to 
C the first yield load (N). 
C UHP--The change in the prstressing force corresponding to 
C the first plastic hinge load (N). 
C HPTY--The total change in the prestressing force correspon- 
C ding to the second yield load (N). 
C HPTU--The total change in the prestressing force correspon- 
C ding to the failure load (N. m). 
C YV1--The first yield load (N). 
C UV1=The first plastic hinge load (N). 
C YV2--The second yield load (N). 
C UV2--The failure load (N). 
C 

c THE FIRST STAGE OF THE PROGRAM 

%RITE(6,2) 
2 FORMATVENTER S, Sl, Z, EC, HT, HW, ZE, GA, W, W1, AC, ECA, TVI) 

READ(5, *)S, SI, Z, EC, HT, HW, ZE, GA, W, W1, AC, ECA, TV 

c -Learn the type of bridge (ungrouted/grouted) as well as 
c the type, position and value of the applied live loading 

MITE(6,1000) 
1000 FORMAWSPECIFY TYPE OF BRIDGE (L1NGR0UTED=1/GROUTED=2)1) 

READ(5, *)ITYP 
hRITE(6,1001) 

1001 FORMATVIN NUICH SPAN IS THE LOAD APPLIED? (L. SPAN=1/R. SPAN=2)') 
READ(5, *)ISPAN 

C For loads applied in the right hand span, the suspended 
C beam is rotated 180 degrees so that the live loading 
C acts as if it was applied in the left hand span 

IF(ISPAN-EQ. 1)GO TO 1002 
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SY=S 
WY=W 
S=Sl 
Sl=SY 
W=Wl 
Wl=WY 

1002 WRITE(6,1003) 
1003 FORMAWSPECIFY TYPE OF LOADING (POINT=1/DISTRIBUTED=2)') 

READ(5, *)LTYP 
IF(LTYP. EQ. 2)GO TO 1004 
WRITE(6,1005) 

1005 FORMAWENTER VALUE AND POSITION OF POINT LQW) 
READ(5, *)WW, T 
EPSL=0.000000001 
V4M/(2*EPSL*S) 
A=T+EPSL 
B--T-EPSL 
GO TO 1010 

1004 WRITE(6,1006) 
1006 FORMAWSPECIFY DISTRIBUTED LOAD (PARTIAL=1/CONTINUOUS=2)') 

READ(5, *)LDWP 
IF(LDTYP. EQ. 1)GO TO 1008 
WRITE(6,1007) 

1007 FORMAWENTER VALUE OF DISTRIBUTED LOAD') 
READ(5, *)V 
A=l 
B=O 
GO TO 1010 

1008 %RITE(6,1009) 
1009 FORMAWENTER VALUE AND POSITION OF PARTIAL DIS. LOAD') 

READ(5, *)V, A, B 
1010 R=SI/S 

ACEC=AC*ECA 
F=(W*S**2)/(8*HW) 
Rl=FIS 
R2=Wl/W 
Fl=R**2*R2*F 
FF=(Hr+EC-(4*F))/S 
FF1= (HT+EC- (4*Fl)) IS1 

C Calculate the tem which expresses the flexibility of 
C -the main cable depending on the type of bridge 

IF(ITYP. EQ. 1)GO TO 3 
IF(ITYP. EQ. 2)GO To 4 

3 Z=O 
G=O 
Gl=O 
C=O 
Cl=O 
El=(FF+(4*Rl))**2 
E2=(4*R**2*(l+R))+(32*R**3*Rl**2*(l+(R*R2**2))) 
E3=(3/8)*(El/R**3)*(E2+(El*(l+R**3))) 
E4=(5*(l+(R**3*R2**2)))+(12*Rl**2*(l+(R**5*R2**4))) 
E5=1+R+((8/5)*Rl**2*E4) 
E=(S/ACEC)*(E3+E5) 
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GO TO 5 
4 G=(SQRT(((FF/(8*Rl))**2)+((Z+EC)/(4*F))))-(FF/(8*Rl)) 

Gll=SQRT((((FF1*Sl)/(8*F1))**2)+((Z+EC)/(4*Fl))) 
Gl--Gll-((FF1*Sl)/(8*Fl)) 
C=FF+(8*Rl*G) 
Cl=FF1+(8*R*Rl*R2*Gl) 
El=(FF+(8*Rl))*(2+((FF+(8*Rl))**2)) 
E2=(FF1+(8*R*RI*R2))*(2+((FF1+(8*R*Rl*R2))**2)) 
E3=(C*(2+C**2))+((l/R2)*Cl*(2+Cl**2)) 
E=(S/(16*Rl*ACEC))*(El+((l/R2)*E2)-E3) 

C Evaluate the change in the prestressing force which is 
C developed as a result of the applied live loading and 
C carry out the necessary modifications according to the 
C specified type of bridge 

5 HP=O 
Go To 6 

7 HP=HPI 
6 R3=HP/HW 

H=HW*(l+GA+R3) 
D=SQRT(H/ZE) 
DS=D*S 
DS1=D*Sl 
DG=DS*G 
DG1=DS1*Gl 
DSG=DS-DG 
DSG1=DS1-DG1 
DA=DS*A 
DB=DS*B 
DSA=DS-DA 
DSB=DS-DB 
FS=(l/S)*(l-(DS/TAN(DS))) 
FS1=(l/Sl)*(l-(DS1/TAN(DS1))) 
CS=S*((TAN(DS/2)/(DS/2))-l) 
CS1=Sl*((TAN(DS1/2)/(DS1/2))-I) 
FCS=(CS+(R2*csl))/(FS+FS1) 
VS=(l/S)*((DS/SIN(DS))-l) 
VS1=(l/Sl)*((DS1/SIN(DS1))-l) 
EVS=(VS+VS1)/(FS+FS1) 
CG=S*(((COS(DG)-COS(DS))/((DS/2)*SIN(DS)))-l+G**2) 
CG1=Sl*(((COS(DG1)-COS(DS1))/((DSI/2)*SIN(DS1)))-l+Gl**2) 
FCG=(CG+(R2*cGl))/(FS+FS1) 
VG=(l/S)*(((DS*COS(DG))/SIN(DS))-l) 
VG1=(l/Sl)*(((DS1*COS(DG1))/SIN(DS1))-l) 
FVG=(VG+VG1)/(FS+FS1) 
Qll=((l/D**2)*(CS+(R2**2*csl)))-((Fcs**2/4)*(FS+FS1)) 
Ql=(GA*(W/H))*(Qll-((S**3/12)*(l+(R**3*R2**2)))) 
Q21=(S/D**2)*(((COS(DG/2)*SIN(DSG/2))/((DS/2)*COS(DS/2)))-l+G) 
Q22=((COS(DG1/2)*SIN(DSG1/2))/((DS1/2)*CDS(DS1/2)))-l+Gi 
Q23=(-l)*((CS+(R2*csl))*(FOG/4)) 
Q24=(l-(G**2*(3-(2*G))))+(R**3*R2**2*(l-(Gl**2*(3-(2*Gl))))) 
Q2=(R3*(W/H))*(Q2l+(R2**2*(Sl/D**2)*Q22)+Q23-((S**3/12)*Q24)) 
Q31=((2*SIN(DG/2)*SIN((DS/2)-DG))/COS(DS/2))-((DS**2*G*(I-G))/2) 
Q32=((2*SIN(DG1/2)*SIN((DS1/2)-DG1))/COS(DS1/2)) 
Q325=Q32-((DS1**2*Gl*(l-Gl))/2) 
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Q33=(SIN(DG)/SIN(DS))-G 
Q34=(SIN(DG1)/SIN(DS1))-Gl 
Q35=C*(Q31-(D**2*(FCS/2)*Q33)) 
Q36=R2*Cl*(Q325-(D**2*(FCS/2)*Q34)) 
Q3=(HP/(D**2*H))*(Q35+Q36) 
Q41=(SIN((DS/2)-DG)/((DS/2)*COS(DS/2)))-l+(2*G) 
Q42=(SIN((DS1/2)-DG1)/((DS1/2)*COS(DS1/2)))-I+(2*Gl) 
Q4=(-l)*((HP*Z)/(2*H))*((S*Q41)+(R2*sl*Q42)-(FCS*(VG+VG1))) 
IF(ITYP. EQ. 1)GO TO 8 
IF(ITYP. EQ. 2)GO TO 9 

8 Q5=(EC/2)*(CS+(R2*CS1))*(l-FVS) 
GO TO 10 

9 Q5=(HW/H)*(EC/2)*(l+GA)*(CS+(R2*CS1))*(l-FVS) 
10 Q=Ql+Q2+Q3+Q4+Q5 

Q61=((SIN((DS/2)-DB)-SIN((DS/2)-DA))/(DS*COS(DS/2)))-A+B 
Q62=(-l)*(S**2/12)*((3*A**2)-(2*A**3)-(3*B**2)+(2*B**3)) 
Q63=((COS(DB)-COS(DA))/((DS/2)*SIN(DS)))-A**2+B**2 
Q6=(V*(S/H))*((Q61/D**2)+Q62-(FCS*(Q63/4))) 
HP1=(W/(E*HW))*(Q6--Q) 
IF(ABS((HPl-HP)/HPl). Gr. 0.00001)GO TO 7 
URITE (6,11) HPI 

11 FORMATOTHE CHANGE IN THE CABLE TENSION= 1, F10.5) 
ý%RITE(6,12) 

12 

c 
c 
c 
c 

Calculate the final values of the bending moments in the 
span where the live loading is applied at the given 
intervals of the span length and consider the necessary 
alterations required according to the type of bridge 

IF(ISPAN. EQ. 1)GO TO 131 
IF(ISPAN. EQ. 2)GO TO 133 

131 WRITE(6,132) 
132 FaRMATOTHE B. M=S FOR THE LEFT HAND SPAN 

Go M 135 
133 WRITE(6,134) 
134 FORMAT('THE B. MOMENTS FOR THE RIGHT HAND SPAN 
135 X=O 

Go M 14 
15 X=X+(TV*S) 
14 SX=SIN(D*X)/SIN(DS) 

-SX1=SIN(DS-(D*X))/SIN(DS) 
BM21=(SX*(l-((D**2/2)*FCS)))+SX1-1 
BM2---GA*W*(BM21/D**2) 
BM31=SX*(l-COS(DSG)-(D**2*(FCG/2))) 
BM3=R3*W*(BM31/D**2) 
BM41=(-l)*(HP/(FS+Fsl))*((C*Q33)+(Cl*Q34)) 
BM4=SX*(BM41+(C*(HP/D)*SIN(DSG))) 
BM5=HP*Z*SX*(COS(DSG)+FVG) 
IF(ITYP. EQ. 1)GO TO 16 
IF(iTyp. EQ. 2)GO TO 17 

16 BM6=H*EC*(SX1-(EVS*SX)) 
GO TO 18 

17 BM6=HW*(l+GA)*EC*(SX1-(FVS*SX)) 
18 BM71=(SX*(l-((D**2/2)*FCG)))+(COS(DG)*SX1)-1 

BM7=R3*W*(BM71/D**2) 

ARE') 

2ml) 
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BM8=(C*(HP/D)*SIN(DG)*SX1)+(BM41*SX) 
BM9=HP*Z*((SX*FVG)-(COS(DG)*SX1)) 
BM10=BM2+BM3+BM4+BM5+BM6 
BM11=BM2+BM7+BM8+BM9+BM6 
BMV11=(D**2*(S/2)*Q63)/(FS+FS1) 
BMV1=(-l)*(V/D**2)*SX*(COS(DSA)-COS(DSB)-BMV11) 
BMV21=(SX*COS(DSA))+(SX1*COS(DB))-l-(SX*BrýIV11) 
BMV2=(-l)*(V/D**2)*BMV21 
BMV31=((COS(DB)-COS(DA))*SX1)-(BMV11*SX) 
BMV3=(-l)*(V/D**2)*BMV31 
IF(G. LE. B)GO TO 19 
IF(G. Gr. B. AND. G. LE. A)GO TO 24 
IF(G. Gr. A)GO M 29 

19 IF(X. LE. (G*S))GO To 20 
IF(X. Gr. (G*S). AND. X. LE. (B*S))GO To 21 
IF(X. Gr. (B*S). AND. X. LE. (A*S))GO M 22 
IF(X. GT. (A*S))GO To 23 

20 BM=BM10+BMVI 
GO TO 34 

21 BM=BM11+BMV1 
GO TO 34 

22 BM=BM11+BMV2 
GO To 34 

23 BM=BM11+BMV3 
GO TO 34 

24 IF(X. LE. (B*S))GO To 25 
IF(X. GT. (B*S). AND. X. LE. (G*S))GO To 26 
IF(X. GT. (G*S). Ai'JD. X. LE. (A*S))GO To 27 
IF(X. Gr. (A*S))GO TO 28 

25 BM=BM10+BMV1 
Go 70 34 

26 BM=BMlO+BMV2 
Go TO 34 

27 BM=BM11+aMV2 
Go 70 34 

28 BM=BM11+BMV3 
Go To 34 

29 IF(X. LE. (B*S))GO To 30 
IF(X. Gr. (B*S). AND. X. LE. (A*S ))GO To 31 
IF(X. G'r. (A*S). AND. X. LE. (G*S ))GO To 32 
IF(X. GT. (G*S))GO To 33 

30 BM=BMIO+BmVl 
Go To 34 

31 BM=BMIO+DIV2 
Go To 34 

32 BM=BMIO+BMV3 
Go To 34 

33 IBM=Bmll+BMV3 
34 iF(ispAN. EQ. 1)Go To 341 

IF(ISPAN. EQ. 2)GO To 343 
341 WRITE(6,342)X, BM 
342 FORMATOAT X=', F8.3, ' B. M=' , Fl5.5) 

Go To 345 
343 WRITE(6,344)X, BM 
344 FORMATCAT Xl=', F8.3, ' B. M= ', Fl5.5) 
345 IF(X. LE. ((l-TV)*S))GO TO 15 
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C Determine the value and position of the maximum bending 
C moment in the span where the live loading is applied 
C taking into account the type of bridge 

XX11=(V*(COS(DSA)-BmVil))-(W*(GA+R3)) 
XX12=W*D**2*((GA*FCS)+(R3*FCG)) 
XX13=((-I)*BLM41*D**2)-(D**2*HP*Z*FVG) 
XX14=(V*COS(DB))-(W*(GA+(R3*COS(DG)))) 
XX15=(D**2*HP*Z)-(D*C*HP*SIN(DG)) 
IF(ITYP. EQ. 1)GO TO 355 
IF(ITYP. EQ. 2)GC) TO 356 

355 XX16=H*EC*D**2*FVS 
XX17=(-l)*D**2*H*EC 
Go To 357 

356 XX16=HW*(l+GA)*EC*D**2*EVS 
XX17=(-l)*D**2*HW*(l+GA)*EC 

357 Xxl=xxll+XX12+XX13+XX16 
XX2=(XX14+XX15+XX17)*SIN(DS) 
XX3=(XX1/XX2)-(l/TAN(DS)) 
XR=(l/DS)*ATAN(XX3) 
XX=XR*S 
IF(ISPAN. EQ. 1)GO To 331 
IF(ISPAN. EQ. 2)GO To 333 

331 WRITE(6,332)XX 
332 FORMATCTHE MAX. B. M. IS AT X=', F8.3, ' FROM THE L. H. SUPPORTI) 

Go To 335 
333 %RITE(6,334)XX 
334 FORMAV'THE MAX. B. M. IS AT Xl=', F8.3,1 FROM THE R. H. SUPPORTI) 
335 SXX=SIN(D*XX)/SIN(DS) 

SXX1=SIN(DS-(D*XX))/SIN(DS) 
XM21=(SXX*(l-((D**2/2)*FCS)))+SXX1-1 
XM2---GA*W*(XM21/D**2) 
XM31=(SXX*(l-((D**2/2)*FCG)))+(COS(DG)*SXX1)-l 
XM3=R3*W*(Xq3l/D**2) 
XM4=(C*(HP/D)*SIN(DG)*SxXl)+(B, m4l*SXX) 
XM5=HP*Z*((SXX*FVG)-(COS(DG)*SXX1)) 
IF(ITYP. EQ. 1)GO To 359 
IF(ITYP. EQ. 2)GO To 360 

359 )M6=H*EC*(SXX1-(FVS*SXX)) 
Go TO 361 

360ýXM6=HW*(l+GA)*EC*(SXX1-(FVS*SXX)) 
361 XMV1=(SXX*CDS(DSA))+(SXX1*00S(DB))-l-(SXX*BMVIJ) 

XMV=(-I)*(V/D**2)*NW1 
xi=XM2+X, 43+)m4+)m5+XM6+XMV 
IF(ISPAN-EQ-1)GO TO 336 
IF(ISPAN. EQ. 2)GO TO 338 

336 MITE(6,337)XM 
337 FORMATCTHE MAX. B. MOMENT AT L. H. SPAN=I, Fl5.5) 

Go To 340 
338 WRITE(6,339)XI 
339 FORMATCTHE MAX. B. MOMENr AT R. H. SPAN=I, Fl5.5) 

C Evaluate the bending moment at the intermediate support 
C taking into account the specified type of bridge 
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340 XMIJ=(-l)*((GA*W*(FCS/2))+(R3*W*(FCG/2))-BM41-(HP*Z*FVG)) 
IF(ITYP. EQ-1)GO To 209 
IF(ITYP. EQ. 2)GO TO 2'10 

209 XM12=(-l)*H*EC*FVS 
Go To 211 

210 XM12=(-l)*HW*(l+GA)*EC*FVS 
211 XMI=XMI1+XMI2+(BMV11*(V/D**2)) 

WRITE(6,226) 
226 FORMAT ( --------------- -- ----- - ----- - ---------- 

MITE(6,212)XMI 
212 FCRMAT('THE MOMENT AT THE INTERMEDIATE SUPPORT=, Fl5.5) 

WRITE(6,36) 
36 FORMAT( --------------------------------------------------- 

C Calculate the final values of the bending moments in the 
C other span at the given intervals of the span length 
C according to, the specified type of bridge 

IF(ISPAN. EQ. I)GO To 371 
IF(ISPAN. EQ. 2)GO To 373 

371 WRITE(6,372) 
372 FORMATCTHE B. Mg=S FOR THE RIGHT HAND SPAN ARE') 

GO TO 375 
373 WRITE(6,374) 
374 FORMATOTHE B. MOMENTS FOR THE LEFT HAND SPAN ARE') 
375 Xl=O 

Go To 38 
39 xl=xl+(TV*Sl) 
38 SlX=SIN(D*Xl)/SIN(DS1) 

SlXl=SIN(DS1-(D*Xl))/SIN(DS1) 
BM121=(SIX*(l-(D**2*(FCS/(2*R2)))))+SlXl-I 
BM12=GA*Wl*(EkMl2l/D**2) 
BM131=1-COS(DSG1)-(D**2*(FCG/(2*R2))) 
BM13=R3*Wl*SlX* (BL'4131/D**2) 
BM141=Cl*(HP/D)*SIN(DSG1) 
BM14=SlX*(BM141+Ekm4l) 
BM15=HP*Z*SlX*(COS(DSG1)+EVG) 
IF(ITYP. EQ. 1)GO TO 395 
IF(ITYP. EQ. 2)GO TO 40 

395 BM16=H*EC*(SlXl-(FVS*SlX)) 
Go To 41 

40 BM16=HW*(l+GA)*EC*(SlXl-(EVS*SlX)) 
41 BM171=(SlX*(l-(D**2*(FCG/(2*R2)))))+(COS(DGJ)*slxl)-1 

BM17=R3*Wl*(BM171/D**2) 
BM18=(Cl*(HP/D)*SIN(DG1)*SlXl)+(EkM41*SlX) 
BM19=HP*Z*((SlX*FVG)-(COS(DG1)*SlXl)) 
iBM20=BM12+]BM13+BM14+BM15+BM16 
BM26=BM12+BM17+BM18+BM19+BM16 
BMV4=(V/D**2)*SlX*BMV11 
IF(Xl. LE. (Gl*Sl))GO To 42 
IF(Xl. Gr. (GI*Sl))GO rfO 43 

42 Bml=BM20+]BW4 
Go To 44 

43 BM1=BM26+BMV4 
44 IF(ISPAN. EQ. 1)GO To 441 

IF(ISPAN. EQ. 2)GO To 443 
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441 WRITE(6,442)Xl, BM1 
442 FORMATCAT Xl=', F8.3, ' B. M. =', Fl5.5) 

GO To 445 
443 hRITE(6,444)Xl, BMI 
444 FORMATCAT X=', F8.3, ' B. M. =', Fl5.5) 
445 IF(Xl. LE. ((l-TV)*Sl))GO To 39 

WRITE(6,46) 
46 

C Determine the final values of the deflections in the 
C span where the live loading is applied at the given 
C intervals of the span length according to the specified 
C type of bridge 

IF(ISPAN. EQ. 1)GO TO 471 
IF(ISPAN. EQ. 2)GO TO 473 

471 WRITE(6,472) 
472 FORMATCTHE DEFLECTIONS FOR THE LEET HAND SPAN ARE') 

Go TO 475 
473 WRITE(6,474) 
474 FORMATCTHE DEFLECTIONS FOR THE RIGHT HAND SPAN ARE') 
475 X=O 

Go To 48 
49 X=X+(TV*S) 
48 SX=SIN(D*X)/SIN(DS) 

SX1=SIN(DS-(D*X))/SIN(DS) 
DF21=1-(D**2*(FCS/2)) 
DF22=(SX*DF21)+SX1-1 
DF23=DF22-(((D**2*X)/(2*S))*((S*(S-X))-FCS)) 
DF2=(-l)*GA*(W/H)*(DF23/D**2) 
DF31=1-(D**2*(FCG/2)) 
DF32=((D**2*X)/(2*S))*((S-(G*S))**2-FCG) 
DF33=SX*(DF31-ODS(DSG)) 
DF3=(-l)*R3*(W/(H*D**2))*(DF33-DF32) 
DF41=(BM41/H)*((X/S)-SX) 
DF42=(SX*SIN(DSG))-(D*X*(l-G)) 
DF4=DF41-(C*(HP/H)*(DF42/D)) 
DF5=(HP/H)*Z*(((X/S)*(l+FVG))-(SX*(COS(DSG)+FVG))) 
IF(ITYP. EQ. 1)GO To 50 
IF(ITYP. EQ. 2)GO TO 51 

50 DF6=(-l)*EC*((X/S)+SX1+(EVS*((X/S)-SX))-J) 

-Go To 52 
51 DF6=(-l)*(HW/H)*(l+GA)*EC*((X/S)+SX1+(EVS*((X/S)-sx))-J) 
52 DF71=((-l)*DF32)+((D**2/2)*(X-(G*S))**2) 

DF7=(-l)*R3*(W/(H*D**2))*((SX*DF31)+(COS(DG)*SX1)-l+DF71) 
DF8=DF41-(C*(HP/(H*D))*((SIN(DG)*SX1)-(D*G*(S-X)))) 
DF9=HP*(Z/H)*(((X/S)*(l+EVG))-l-(SX*FVG)+(coS(E)G)*SX1)) 
DF10=DF2+DF3+DF4+DF5+DF6 
DF11=DF2+DF7+DF8+DF9+DF6 
DFV11=((COS(DSA)-COS(DSB))*SX)+(BMV11*((X/S)-SX)) 
DEvl2=DS**2*(X/(2*S))*((2*(A-B))-A**2+B**2) 
DEV1=(V/(H*D**2))*(DEV11-DEV12) 
DFV21=(CDS(DSA)*SX)+(COS(DB)*SX1)-l+(BMVJJ*((X/S)-SX)) 
DEV22=DEV12-((DS**2/2)*((X/S)-B)**2) 
DEV2=(V/(H*D**2))*(DFV21-DEV22) 
DEv3l=((COS(DB)-COS(DA))*SX1)+(BMV11*((X/S)-SX)) 
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DFV32=(DS**2/2)*(A**2-B**2)*(l-(X/S)) 
DFV3=(V/(D**2*H))*(DFV31-DEV32) 
IF(G. LE. B)GO TO 53 
IF(G. GT. B. AND. G. LE. A)GO TO 58 
IF(G. Gr. A)GO TO 63 

53 IF(X. LE. (G*S))GO TO 54 
IF(X. Gr. (G*S). AND. X. LE. (B*S))GO TO 55 
IF(X. Gr. (B*S). AND. X. LE. (A*S))GO TO 56 
IF(X. Gr. (A*S))GO TO 57 

54 DF=DF10+DFV1 
GO To 68 

55 DF=DF11+DFV1 
GO TO 68 

56 DF=DF11+DEV2 
Go TO 68 

57 DF=DF11+DEV3 
GO To 68 

58 IF(X. LE. (B*S))GC) TO 59 
IF(X. GT. (B*S). AND. X. LE. (G*S))GO TO 60 
IF(X. Gr. (G*S). AND. X. LE. (A*S))GO TO 61 
IF(X. Gr. (A*S))GO TO 62 

59 DF=DF10+DEV1 
GO To 68 

60 DF=DF10+DFV2 
Go To 68 

61 DF=DF11+DFV2 
Go To 68 

62 DF=DF11+DEV3 
GO TO 68 

63 IF(X. LE. (B*S))GO TO 64 
IF(X. Gr. (B*S). ANI). X. LE. (A*S))GO TO 65 
IF(X. Gr. (A*S). AN'D. X. LE. (G*S))GO TO 66 
IF(X. Gr. (G*S))GO TO 67 

64 DF=DF10+DFV1 
Go To 68 

65 DF=DF10+DFV2 
Go To 68 

66 DF=DF10+DFV3 
Go TO 68 

67 DF=DF11+DFV3 
68 IF(ISPAN. EQ. 1)GO TO 681 

. IF(ISPAN. EQ. 2)GO TO 683 
681 WRITE(6,682)X, DF 
682 FCRMAWAT X=', F5.3, ' DF=', F8.5) 

Go TO 685 
683 %RITE(6,684)X, DF 
684 FORMATOAT Xl=', F5.3, ' DF=', F8.5) 
685 IF(X. LE. ((l-TV)*S))GO TO 49 

WRITE(6,70) 
70 FORMATC -------------------------------------------------- 

c 
c 
c 

Evaluate the final deflections in the other span at the 
given intervals of the span length according to the 
specified type of bridge 

IF(ISPAN. EQ. 1)GO TO 711 
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IF(ISPAN. EQ. 2)GO To 713 
711 WRITE(6,712) 
712 FORMAWTHE DEFLECTIONS FOR THE RIGHT HAND SPAN ARE) 

GO To 715 
713 WRITE(6,714) 
714 FORMATCTHE DEFLECTIONS FOR THE LEFT HAND SPAN ARE') 
715 xl=O 

Go To 72 
73 Xl=Xl+(TV*Sl) 
72 SlX=SIN(D*Xl)/SIN(DS1) 

SlXl=SIN(DSI-(D*Xl))/SIN(DS1) 
DF215=1-(D**2*(FCS/(2*R2))) 
DF315=1-(D**2*(FCG/(2*R2))) 
DF121=(SlX*DF215)-(((D**2*Xl)/(2*Sl))*((Sl*(Sl-Xl))-(FCS/R2))) 
DF12=(-I)*GA*(Wl/H)*((DF121+SlXl-l)/D**2) 
DF131=SlX*(DF315-COS(DSG1)) 
DF132=((D**2*Xl)/(2*Sl))*((Sl-(Gl*Sl))**2-(FCG/R2)) 
DF13=(-l)*R3*(Wl/(H*D**2))*(DF131-DF132) 
DF141=(BM41/H)*((Xl/Sl)-SlX) 
DF14=DF141-((Cl/D)*(IIP/H)*((SIN(DSG1)*SlX)-(D*Xl*(l-Gl)))) 
DF15=HP*(Z/H)*(((Xl/Sl)*(l+FVG))-(SlX*(COS(DSG1)+FVG))) 
IF(ITYP. EQ. 1)GO To 74 
IF(iTyp. EQ. 2)Go To 75 

74 DF16=(-l)*EC*((Xl/Sl)+SlXl+(EVS*((Xl/Sl)-SlX))-l) 
Go TO 76 

75 DF16=(-l)*(HW/H)*(l+GA)*EC*((Xl/Sl)+SlXl+(EVS*((Xl/Sl)-SJX))-J) 
76 DF171=(SIX*DF315)+(COS(DGI)*SlXl)-l 

DF172=DF132-((D**2/2)*(Xl-(Gl*Sl))**2) 
DF17=(-I)*R3*(Wl/(H*D**2))*(DF171-DF17'ý)) 
DF18=DF141-((Cl/D)*(HP/H)*((SIN(DG1)*SlXl)-(D*Gl*(Sl-Xl)))) 
DF19=(HP/H)*Z*(((Xl/Sl)*(l+E'ý. 'G))-l-(SIX*FVG)+(COS(DG1)*SlXl)) 
DF20=DF12+DF13+DF14+DF15+DF16 
DF26=DF12+DF17+DF18+DF19+DF16 

DEV4=(V/(D**2*H))*aMV11*((Xl/Sl)-SlX) 
IF(Xl. LE. (Gl*Sl))GO To 77 
IF(Xl. Gr. (Gl*Sl))GO To 78 

77 DF1=DF20+DFV4 
Go TO 79 

78 DF1=DF26+DEV4 
79 IF(ISPAN-EQ. 1)GO TO 791 

IF(ISPAN. EQ. 2)GO To 793 
791-WRITE(6,792)Xl, DF1 
792 FORMAWAT Xl=', F5.3, ' DF=', F8.5) 

Go TO 795 
793 WRITE(6,794)Xl, DF1 
794 FORMATCAT X=', F5.3, ' DF=', FB. 5) 
795 IF(Xl. LE. ((l-TV)*Sl))GO TO 73 

hRITE(6,81) 
81 

C Determine the final values of the shear forces in the 
C span where the live loading is applied at the given 
C intervals of the span length according to the 
C specified type of bridge 

IF(ISPAN-EQ. 1)GO 70 821 
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IF(ISPAN. EQ. 2)G0 TO 823 
821 WRITE(6,822) 
822 FORMT('THE SHEAR FORCES FOR THE LEFT HAND SPAN ARE') 

Go TO 825 
823 WRITE(6,824) 
824 FORMATOTHE SHEAR FORCES FOR THE RIGHT HAND SPAN ARE') 
825 X=O 

Go TO 83 
84 X=X+(Tv*s) 
83 CX=COS(D*X)/SIN(DS) 

CX1=COS(DS-(D*X))/SIN(DS) 
SH2=(-l)*GA*(W/D)*((CX*DF21)-CX1) 
SH3=(-l)*R3*(W/D)*CX*(DF31-COS(DSG)) 
SH4=((-l)*D*CX*BM41)-(C*HP*CX*SIN(DSG)) 
SH5=(-l)*D*HP*Z*CX*(COS(DSG)+FVG) 
IF(ITYP. EQ. 1)GO To 85 
IF(ITYP. EQ. 2)GO TO 86 

85 SH6=D*H*EC*(CX1+(FVS*CX)) 
GO To 87 

86 SH6=D*HW*(l+GA)*EC*(CX1+(FVS*CX)) 
87 SH7=(-l)*R3*(W/D)*((CX*DF31)-(COS(DG)*CXI)) 

SH8=((-l)*D*CX*BM41)+(C*HP*SIN(DG)*CX1) 
SH9=(-l)*D*HP*Z*((CX*FVG)+(COS(DG)*CX1)) 
SR10=SH2+SH3+SH4+SH5+SH6 
SH11=SH2+SH7+SH8+SH9+SH6 
SHV1=(V/D)*CX*(COS(DSA)-COS(DSB)-BMV11) 
SHV2=(V/D)*((CX*COS(DSA))-(CX1*00S(DB))-(BMV11*CX)) 
SHV3=(-l)*(V/D)*(((COS(DB)-, COS(aA))*CX1)+(BMV11*CX)) 
IF(G. LE. B)GO TO 88 
IF(G. GT. B. AND. G. LE. A)G0 TO 93 
IF(G. GT. A)G0 TO 98 

88 IF(X. LE. (G*S))GO TO 89 
IF(X. Gr. (G*S). A, ND. X. LE. (B*S))GO TO 90 
IF(X. GT. (B*S). A, Nl). X. LE. (A*S))GO TO 91 
IF(X. GT. (A*S))GO TO 92 

89 SH=SH10+SHV1 
Go To 103 

90 SH=SR11+SHV1 
Go M 103 

91 SH=SH11+SHV2 
Go TO 103 

92-SH=SH11+SHV3 
Go TO 103 

93 IF(X. LE. (B*S))GO TO 94 
IF(X. Cr. (B*S). AND. X. LE. (G*S))GO TO 95 
IF(X. GT. (G*S). AND. X. LE. (A*S))GO TO 96 
IF(X. Cr. (A*S))GO TO 97 

94 SH=SH10+SHVI 
Go TO 103 

95 SH=SH10+SHV2 
Go To 103 

96 SH=SH11+SHV2 
Go To 103 

97 SH=SH11+SHV3 
Go To 103 

98 IF(X. LE. (B*S))GO TO 99 
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IF(X. Gr. (B*S). AND. X. LE. (A*S))GO TO 100 
IF(X. GT. (A*S). AND. X. LE. (G*S))GO TO 101 
IF(X. Gr. (G*S))GO TO 102 

99 SH=SH10+SHV1 
GO TO 103 

100 SH=SH10+SHV2 
Go To 103 

101 SH=SH10+SHV3 
Go TO 103 

102 SH=SH11+SHV3 
103 IF(ISPAN. EQ. I)GO TO 1031 

IF(ISPAN. EQ. 2)GO TO 1033 
1031 WRITE(6,1032)X, SH 
1032 FORMAWAT X=', F5.3, ' S. F=', F15.5) 

GO TO 1035 
1033 WRITE(6,1034)X, SH 
1034 FORMATCAT Xl=', F5.3, ' S. F=', Fl5.5) 
1035 IF(X. IE. ((l-TV)*S))GO TO 84 

WRITE(6,105) 
105 FORMATC -- --- -------------- 

c 
c 
c 

1061 
1062 

1063 
1064 
1065 

Calculate the final values of the shear forces in the 
other span at the given intervals of the span length 
according to the specified type of bridge 

IF(ISPAN. EQ. 1)GO 
IF(ISPAN. M. 2)GO 
WRITE(6,1062) 
FORMATOTHE SHEAR 
GO TO 1065 
WRITE(6,1064) 
FORMAT('THE SHEAR 
Xl=O 

To 1061 
To 1063 

FORCES FOR THE RIGHT HAND SPAN ARE') 

FORCES FOR THE LEFT HAND SPAN ARE') 

GO To 107 
108 Xl=Xl+(TV*Sl) 
107 ClX=COS(D*Xl)/SIN(DS1) 

ClXl=COS(DS1-(D*Xl))/SIN(DS1) 
SH12=(-l)*GA*(Wl/D)*((ClX*DF215)-ClXl) 
SR13=(-l)*R3*(Wl/D)*ClX*(DF315-COS(DSGl)) 
SH14=((-l)*D*ClX*BLM41)-(Cl*HP*ClX*SIN(DSGI)) 
SH15=(-l)*HP*D*Z*ClX*(COS(DSG1)+FVG) 

. IF(ITYP. EQ. 1)GO TO 109 
IF(ITYP. EQ. 2)GO TO 110 

109 SH16=D*H*EC*(ClXl+(EVS*ClX)) 
GO TO 111 

110 SH16=D*HW*(I+GA)*EC*(ClXl+(FVS*CIX)) 
111 SH17=(-l)*R3*(Wl/D)*((ClX*DF315)-(COS(DGI)*clxl)) 

SH18=((-l)*D*CIX*BM41)+(Cl*HP*SIN(DG1)*ClXl) 
SH19=(-l)*HP*D*Z*((ClX*FVG)+(COS(DG1)*ClXl)) 
SH20=SH12+SH13+SH14+SH15+SH16 
SH26=SH12+SH17+SH18+SH19+SH16 
SHV4=(-l)*(V/D)*ClX*BMV11 
IF(Xl. LE. (Gl*Sl))GO TO 112 
IF(Xl. Gr. (Gl*Sl))GO TO 113 

112 SH1=SH20+SHV4 
Go To 114 
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113 SH1=SH26+SHV4 
114 IF(ISPAN. EQ-1)G0 TO 1141 

IF(ISPAN. EQ. 2)GO TO 1143 
1141 WRITE(6,1142)Xl, SH1 
1142 FORMATCAT Xl=', F5.3, ' S. F=', Fl5.5) 

Go To 1145 
1143 WRITE(6,1144)X1, SH1 
1144 FORMATCAT X=', F5.3, ' S. F=', Fl5.5) 
1145 IF(Xl. LE. ((l-TV)*Sl))GO TO 108 

WRITE(6,116) 
116 

C THE SECOND STAGE OF THE PROGRAM 

WRITE(6,120) 
120 FIORMATCIS THE ANALYSIS FOR FAILURE REQUIRED? (YES=I/NO=2)') 

READ(5, *)IY 
IF(IY. EQ. 2)GO To 213 

C Learn the shape of the cross section of the suspended 
C beam (T-shaped/rectangular-shaped) and start the 
C procedure for the analysis at failure 

WRITE(6,227) 
227 FORMATCWHAT SHAPE IS THE X. SEC. OF THE BEAM? (T. SEC=1/R. SEC=2)1) 

READ(5, *)ISH 
IF(ISH. EQ. 1)GO TO 228 
hRITE(6,229) 

229 FORMAVIENTER BR, DP, EDP, DA1, DA2, FY, FUT, ES, AS1, AS2, AS3') 
READ(5, *)BR, DP, EDP, DAI, DA2, FY, FUT, ES, AS1, AS2, AS3 
BR1=BR 
FLT=0.0 
GO To 230 

228 MITE(6,121) 
121 FORMAVIENTER BR1, BR, DP, EDP, DA1, DA2, FLT, FY, FUr, ES, AS1, AS2, AS3') 

READ(5, *)BR1, BR, DP, EDP, DA1, DA2, FLT, FY, FUr, ES, AS1, AS2, AS3 

C Calculate the yield moment of the cross section for the 
C case when the top fibre of the beam lies in the 
C compression stress zone 

230. ZI=DAI/EDP 
z2=DA2/EDP 
Z3=FLT/EDP 
Z4=DP/EDP 
EPY=FY/ES 
EPO=SQRT(FUT)/4703.224 
RE=EPY/EPO 
R4=0.17094*(FUr/FY)*EDP 
DP11=(EDP/2)*(((BR1-BR)*Z3**2)+(BR*Z4**2)) 
DPI=DPII/(((BR1-BR)*Z3)+(BR*Z4)) 
N=1 
Go TO 606 

707 HI=HI+UHP 
N=N+1 
GO TO 909 
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808 HI=HI+DHP 
N=N+l 
GO TO 909 

606 HI=HW*(l+GA) 
909 R5=HI/FY 

Tll=RE*R4*BR 
Tl=(-l)*Tll*(3+RE) 
T211=(3*Tll)-AS1-AS2-AS3 
T2--T211-(3*RE*R4*Z3*(2+RE)*(BR1-BR))-R5 
T311=(AS1*(l+Zl))+(AS2*(l+Z2))+(2*AS3)+(2*R5) 
T3--T311+(3*RE*R4*Z3*(BR1-BR)*(2+(Z3*(l+RE)))) 
T41=(AS1*Zl)+(AS2*Z2)+AS3+R5 
T4--T41+(R4*RE*Z3**2*(BR1-BR)*(3+(Z3*RE))) 
T5=Tl*(BRI/BR) 
T6=(3*Tll*(BR1/BR))-AS1-AS2-AS3-R5 
T71=R4*BR1*(3+(l/RE)) 
T7--T71+(R4*RE*(BRI-BR)*(3+RE)) 
T81=((-3)*R4*BR1*(2+(l/RE)))-AS1-AS2-AS3-R5 
T8--TB1-(3*R4*RE*(BR1-BR)*(I+(Z3*(2+RE)))) 
T91=T311+(3*R4*BR1*(l+(l/RE)))+(2*R5) 
T9--T91+(3*R4*RE*Z3*(BR1-BR)*(2+(Z3*(I+RE)))) 
T101=((R4/RE)*BR1)+T41 
T10--TlOl+(R4*RE*Z3**2*(BR1-BR)*(3+(Z3*RE))) 
7Tl=(SQRT(T3**2+(4*T2*T4))-T3)/(2*T2) 
Go TO 123 

122 TT1=7Tl3 
123 7Tll=(Tl*TT1**3)+(T2*Trl**2)+(T3*Trl)-T4 

7Tl2=(3*Tl*Trl**2)+(2*T2*7Tl)+T3 
Trl3=Trl-(Trll/Trl2) 
IF(ABS((TT1-Trl3)/Trl3). Gr. 0.00001)GO To 122 
EPC=(TT1/(l-Trl))*EPY 
EPC1=((IT1-Z3)/(l-Trl))*EPY 
EPCO=EPC/EPO 
EPC01=EPC1/EPO 
EPCC=EPC1/EPC 
Fcll=(-l)*BR*(3+RE)*Trl**3 
FC12; =3*(BR-((BR1-BR)*Z3*(2+RE)))*Trl**2 
FC13=3*Z3*(BR1-BR)*(2+(Z3*(l+RE)))*TTi 
FC14=Z3**2*(BR1-BR)*(3+(Z3*RE)) 
FC=R4*FY*(RE/(l-Trl)**'-ý)*(FC11+FC12+FC13-FC14) 
Tr2l=(-l)*(BR1-BR)*EPCC**2 

-TT22=TT21*(12-(4*EPCO)-(8*EPCC)+(3*EPC01*EPCC)) 
Tr23=(BR1*(4-EPOD))+TT22 
TT24=(BR1*(3-EPCD))+(Tr2l*(3-EPCOI)) 
7T2= (Trl/4) * (rfr23/Tr24) 
IF(TT1. Gr. Z3. AND. EPC. LE. EPO)GO T10 1330 
IF(TT1. LE. Z3. AND. EPC. LE. EPO)GO TO 124 
IF(Trl. Gr. Z3. AND. EPC. Gr. EPO)GO TO 127 
IF(TT1. LE. Z3. AND. EPC. Cr. EPO)GO TO 1300 

124 Trl=(SQRT(T311**2+(4*T6*T41))-T311)/(2*T6) 
Go M 126 

125 Trl--Trl3 
126 Trll=(T5*Trl**3)+(T6*TT1**'-))+(T311*TT1)-T41 

TT12=(3*T5*lTl**2)+(2*T6*lTl)+T3ll 
TT13=TT1-(Trll/Trl2) 
IF(ABS((Trl-Trl3)/Trl3). GT. 0.0001)GO To 125 
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EPC= (Trl/ (1-Trl)) *EPY 
Epcl=((Trl-z3)/(l-Trl))*EPY 
EPCO=EPC/EPO 
FC11=RE*Trl**2*(3-((3+RE)*TT1)) 
FC=R4*FY*(BR1/(l-Trl)**2)*FC11 
Tr2=(TT1/4)*((4-EPCO)/(3-EPCO)) 
Go To 1330 

127 Trl=(SQRT(T9**2+(4*T8*TlO))-T9)/(2*T8) 
Go TO 129 

128 TT1=TT13 
129 Trll=(T7*TT1**3)+(T8*TT1**2)+(T9*Tri)-TlO 

TT12=(3*T7*TT1**2)+(2*T8*Trl)+T9 
Trl3=TT1-(Trll/Trl2) 
IF(ABS((TT1-TT13)/7rl3). Gr. 0.0001)GO To 128 
EPC=(Trl/(l-Trl))*EPY 
EPC1=((Trl-Z3)/(l-Trl))*EPY 
EPCD=EPC/EPO 
EPC01=EPC1/EPO 
EPCC=EPC1/EPC 
Fcll=(((BR1/RE)*(3+(l/RE)))+((BR1-BR)*(3+RE)))*TT1**3 
FC12=(((BR1/RE)*(2+(l/RE)))+((BR1-BR)*(l+(Z3*(2+RE)))))*Trl**2 
FC13=3*(((BR1/RE)*(l+(l/RE)))+((BR1-BR)*Z3*(2+(Z3*(l+RE)))))*TrI 
FC14=(BR1/RE**2)+(Z3**2*(BR1-BR)*(3+(Z3*RE))) 
FC=R4*FY*(RE/(l-Trl)**2)*(FC11-(3*FC12)+FC13-FC14) 
Tr2l=(BR1-BR)*EP001**2 
Tr22=BR1*((6*EPCO)+(l/EPCO)-4) 
Tr23--N21*((EPCC*(8-(3*EPCol)))+(4*EPCOl)-12) 
7r24=(BR1*((3-EPCD)-l))+(TT21*(3-EPCOl)) 
Tr2=(Trl/4)*((Tr22+TT23)/Tr24) 
Go M 1330 

1300 Trl=(SQRT(T91**2+(4*T81*TlOl))-T91)/(2*T81) 
Go To 1320 

1310 Trl=Trl3 
1320 TT11=(T71*Trl**3)+(T81*Trl**2)+(T91*TT1)-TlOl 

Trl2=(3*T71*Trl**2)+(2*TB1*Trl)+T91 
TT13=Trl-(Trll/TT12) 
IF(ABS((Trl-Trl3)/TT13). Gr. 0.0001)GO TO 1310 
EPC=(TT1/(l-Trl))*EPY 
EPCO=EPC/EPO 
FCII=((3+(l/RE))*IT1**3)-(3*(2+(l/RE))*Trl**2) 
FC12=(3*(l+(l/RE))*Trl)-(l/RE) 

-FC=R4*FY*(BR1/(l-Trl)**2)*(FC11+FC12) 
Tr2=(TT1/4)*(((6*EPCO)+(l/EPCO)-4)/((3*EPCO)-l)) 

1330 FS1=((TT1-Zl)/(l-Trl))*FY*AS1 
FS2=((Trl-Z2)/(l-Trl))*FY*AS2 
Ymll=((FC*EDP*(l-Tr2))+(FS1*EDP*(I-Zl))+(FS2*EDP*(l-Z2)))*0.001 
YMI=YM11-(R5*F'Y*(EDP-DP1)*0.001) 

C Calculate the yield moment of the cross section for the 
C case when the top fibre of the beam lies in the tension 
C stress zone 

T110=R4*BR*RE*(3+RE) 
T121=Asl+AS2+AS3+R5 
T12=((-3)*R4*BR*RE*(Zl+(Z4*(2+RE))))-Tl2l 
T131=3*R4*BR*RE*Z4*((2*Zl)+(Z4*(l+RE))) 

502 



T13=Tl3l+(2*Zl*Asl)+(AS2*(Zl+Z2))+(AS3*(l+Zl))+(2*Zl*R5) 
T14=(R4*BR*Z4**2*RE*((3*Zl)+(Z4*RE)))+(Zl*T41)+(R5*Zl*(Zl-l)) 
T15=(-l)*R4*BR*(3+(l/RE))-RS 
T16=(R4*BR*((3*Z4)+(Zl*(3+(2/RE)))))-Tl2I 
T17=(R4*BR*Zl*((3*Z4)+(Zl/RE)))-T41 
TT30--Tl6**2+(4*Tl5*Tl7) 
Tr3=(SQRT(TT30)+Tl6)/((-2)*Tl5) 
GO To 1360 

1350 TT3=7r33 
1360 Tr3l=(TllO*TT3**3)+(Tl2*Tr3**2)+(Tl3*Tr3)-Tl4 

rIT32=(3*TllO*Tr3**2)+(2*Tl2*Tr3)+Tl3 
Tr33=TT3-(Tr3l/TT32) 
IF(ABS((TT3-IT33)/W33). Gr. 0.0001)GO To 1350 
EPC=((Z4-TT3)/(Tr3-Zl))*EPY 
EPCO=EPC/EPO 
FC21=((3+RE)*Tr3**3)-(3*Tr3**2*(Zl+(Z4*(2+RE)))) 
FC22=(3*Z4*((2*Zl)+(Z4*(l+RE)))*Tr3)-(Z4**2*((3*Zl)+(Z4*RE))) 
FC1=R4*FY*(BR/(Tr3-Zl)**2)*RE*(FC21+FC22) 
Tr4l=(Tr3*(4-EPCO))+(Z4*(8-(3*EPCO))) 
Tr4=Tr4l/(12-(4*EPCO)) 
IF(EPC. LE. EPO)GO TO 137 
Tr30=Tl6**2+(4*Tl5*Tl7) 
W3=(SQRT(TT30)+Tl6)/((-2)*Tl5) 
EPC=((Z4-Tr3)/(Tr3-Zl))*EPY 
EPOC=EPO/EPC 
FC1=R4*FY*BR*((3*Z4)+(Zl/RE)-(TT3*(3+(l/RE)))) 
TT41=(Tr3*(6-(EPOC*(4-EPOC))))+(Z4*(6-EPOC**2)) 
TT4=IT41/(12-(4*EPOC)) 

137 FS3=((l-TT3)/(TT3-Zl))*FY*AS3 
FS4=((TT3-Z2)/(Tr3-Zl))*FY*AS2 
)M2l=(FC1*EDP*(TT4-Zl))+(FS3*EDP*(l-Zl))-(FS4*EDP*(Z2-Zl)) 
YM2=(YM21-(R5*FY*(DPl-DAl)))*0.001 

C Determine the ultimt nxxr&--nt of resistance of the cross 
C section when the top fibre of the beam lies in the 
C corpressin stress zone 

T181=R4*FY*BR1*(285.714/ES)*(3-(EPO*285.714)) 
T18--Tl8l-(R4*(FY/(ES*EPO))*(BR1-BR)*(3-(0.0035/EPO))) 
T191=AS1+AS2-(285.714*EPY*(R5+AS3)) 
T19=(3*R4*(FY/(EPO*ES))*Z3*(BR1-BR)*(2-(O. 0035/EPO)))+Tl9l 

-T201=(AS1*Zl)+(AS2*Z2) 
T202=3*R4*FY*(Z3**2/(EPO*ES))*(BR1-BR)*(l-(0.0035/EPO)) 
T20=((-l)*T20l)-T202 
T21=R4*FY*(Z3**3/(ES*EPO**2))*(BR1-BR)*0.0035 
Tr5=(SQRT(Tl9**2-(4*Tl8*T20))-TI9)/(2*Tl8) 
Go rM 140 

139 TT5--TT53 
140 TT51=(Tl8*TT5**3)+(Tl9*TT5**2)+(T20*IT5)-T21 

TT52=(3*Tl8*Tr5**2)+(2*Tl9*7r5)+T20 
TT53=Tr5-(Tr5l/TT52) 
IF(ABS((Tr5-Tr53)/IT53). Gr. 0.0001)GO TO 139 
EPCI=((TT5-Z3)/TT5)*0.0035 
EPC01=EPC1/EPO 
FC31=BR1*EPO*285.714*(3-(285.714*EPO)) 
FC32=(FC31-((BRI-BR)*(3-(0.0035/EPO))))*Tr5**3 
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FC33=(3*Z3*(2-(0.0035/EPO))*TT5**2)-((Z3**3/EPO)*0.0035) 
FC34=(BR1-BR)*(FC33-(3*Z3**2*(l-(0.0035/EPO))*Tr5)) 
FC2=R4*(FY/TT5**2)*(0.0035/EPO)*(FC32+FC34) 
Tr6l=(BR1-BR)*EPC01**2 
TT62=BR1*((0.021/EPO)+(285.714*EPO)-4) 
TT63=Tr6l*((EPC1*285.714*(8-(3*EPCOl)))+(4*EPCOl)-12) 
TT64=(BR1*((0.0105/EPO)-l))-(TT61*(3-EPCOl)) 
TT6=(Tr5/4)*((Tr62+Tr63)/Tr64) 
IF(Tr5. Gr. Z3)GO To 141 
TT5=(SQRT(Tl9l**2+(4*Tl8l*T201))-Tl9l)/(2*TlBl) 
FC2=R4*FY*TT5*BR1*(3-(285.714*EPO)) 
Tr6l=((0.021/EPO)+(285.714*EPO)-4)/((0.0105/EPO)-l) 
TT6=(TT5/4)*TT61 

141 FS5=((TT5-Zl)/TT5)*0.0035*ES*AS1 
FS6=((Tr5-Z2)/Tr5)*0.0035*ES*AS2 
UM11=((FC2*EDP*(I-TT6))+(FS5*EDP*(l-Zl))+(FS6*EDP*(l-Z2)))*0.001 
UMI=UM11-(R5*FY*(EDP-DP1)*0.001) 

C Determine the ultimate moment of resistance of the cross 
C section when the top fibre of the beam lies in the 
C tension stress zone 

T22=R4*FY*BR*(3-(285.714*EPO)) 
T231=(-2)*R4*FY*z4*BR*(3-(285.714*EPO))+(R5*FY) 
T23=T231+(0.0035*ES*((AS1*EPY*285.714)-AS2-AS3)) 
T241=R4*FY*BR*Z4**2*(3-(EPO/0.0035))-(Z4*R5*FY) 
T24--T241-(0.0035*ES*((AS1*EPY*285.714*Z4)-(AS2*Z2)-AS3)) 
TT7=(((-l)*T23)-SQRT(T23**2-(4*T22*T24)))/(2*T22) 
FS7=((Tr7-Z2)/(Z4-TT7))*0.0035*ES 
IF(FS7. LE. FY)GO TO 143 
T23=(T231/FY)+(AS1+AS2-(AS3*(0.0035/EPY))) 
T24=(T241/FY)-(((AS1+AS2)*Z4)-(AS3*(0.0035/EPY))) 
T25--T22/FY 
TT7=(((-l)*T23)-SQRT(T23**2-(4*T25*T24)))/(2*T25) 
FS7=FY 

143 FC3=R4*FY*BR*(3-(285.714*EPO))*(Z4-TT7) 
FS8=((l-TT7)/(Z4-TT7))*0.0035*ES*AS3 
TT81=TT7*(6-(285.714*EPO*(4-(285.714*EPO)))) 
TT82=Z4*(6-((EPO*285.714)**2)) 
Tr8=(Tr8l+TT82)/(12-(1142.857*EPO)) 
UM21=(FC3*EDP*(TT8-Zl))+(FS8*EDP*(l-Zl))-(R5*FY*(DPl-DAl)) 
UM2=(UM21-(FS7*AS2*EDP*(Z2-Zl)))*0.001 
IF(N. Gr. l)GO To 234 
IF(ISH. EQ. 1)GC) To 231 
WRITE(6,232)YM1 

232 FORMATOTHE Y. MOMENr (TOP FIBRE IN C. S. ZCNE)=', FIS. 5) 
WRITE(6,235)YM2 

235 FORMATCTHE Y. nX= (TOP FIBRE IN T. S. ZONE)=', Fl5.5) 
MITE(6,238)UMI 

238 FORMATOTHE ULT-M-RESISTANCE (TOP FIBRE IN C. S. ZONE)=', Fl5.5) 
WRITE(6,241)UM2 

241 FORMATOTHE ULT-M-RESISTANCE (TOP FIBRE IN T. S. ZONE)=, Fl5.5) 
Go To 242 

231 WRITE(6,1340)YM1 
1340 FORMAVITHE Y. MMENT (FLANGE IN C. S. ZONE)=', Fl5.5) 

WRITE(6,138)YM2 

504 



138 FORMAWTHE Y-MMENT (FLANGE IN T. S. ZOLNEW, F15.5) 
WRITE(6,142)UMI 

142 FORMAWTHE ULT. M. RESISTANCE (FLANGE IN C. S. ZONEW, F15.5) 
IVRITE(6,144)UM2 

144 FORMATCTHE ULT. M. RESISTANCE (FLANGE IN T. S. ZONE)=', Fl5.5) 
242 WRITE(6,243) 
243 

C Calculate the first yield load and the first plastic 
C hinge load 

234 YV1=ABS(()Ml*V)/XM) 
UV1=ABS((UMI*V)/XM) 
UMI=(ABS(UM1/XM))*XMI 

C Evaluate the changes in the prestressing forse which 
C are generated as a result of the first yield load 
C and the first plastic hinge load 

YHP=(ABS(YM1/NM))*HP1 
UHP=(ABS(UM1/XM))*HP1 
IF(N. LT. 2)GO TO 707 
IF(N. EQ. 3)GO To 999 
WRITE(6,221)YHP 

221 FORMAWTHE CHANGE IN THE CABLE TEN. AT FIRST Y. LOAD=', FI5.5) 
WRITE(6,215)UHP 

215 FORMATOTHE CHANGE IN THE CABLE TEN. AT FIRST P. H. IOAD=', FI5.5) 
999 Hl=(HW*(l+GA))+UHP 

All=S**2*((2*A)-A**2+B**2-((l/XR)*(XR**2+B**2))) 
A12=(W*S**2*(XR-G**2))+(2*HW*((C*G*S)-Z)) 
Al=((l-XR)/(XR*HW))*(All/Al2) 
Go To 223 

222 A2=(2*(UL142-UMV)/A11 
Go To 224 

223 A2=(2*(YM2-UMI))/All 

C Determine the changes in the prestressing force and the 
C loads exceeding the first plastic hinge load in order 
C to yield the tensile reinforcement at the intermediate 
C support and subsequently cause the second plastic and the 
C complete failure of the suspended beam 

224 DHP=O 
GO TO 201 

200 DHP=DHP1 
201 DV=(Al*DHP)+A2 

UR=DHP/HW 
H2=Hl+DHP 
UD=SQRT(H2/ZE) 
UDS=UD*S 
UDS1=UD*Sl 
UDG=UDS*G 
UDG1=UDS1*Gl 
UDSG=UDS-UDG 
UDSG1=UDS1-UDG1 
UDX=UDS*(XR/2) 
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UDSX=(UDS/2)-UDX 
UDR=UDS*(l+R-(XR/2)) 
ZZ11=00S(UDR)-(COS(UDX)*(R2+((l-R2)*COS(UDS1)))) 
ZZ12=(ZZ11/(SIN(UDS1)*COS(UDX)))+((UDS/2)*(l+(R*R2))) 
ZZ13=ZZ12*(All/S**2) 
ZZ14=(2*SIN(UDS/2)*SIN(UDSX))/(UDS1*COS(UDX)) 
ZZ15=ZZ14*(((l+R)*((2*A)-XR-(B**2/XR)))-(R*(A**2-B**2))) 
ZZ16=(-l)*(UDS/6)*((3*A**2)-(2*A**3)-(3*B**2)+(2*B**3)) 
ZZ17=(SIN((UDS*A)-UDX)-SIN((UDS*B)-UDX))/(UDS*COS(UDX)) 
ZZ18=(2/UDS)*(ZZ17-A+B) 
ZZ1=((DV*S**2)/(2*UD*H2))*(ZZ13+ZZ15+ZZ16+ZZ18) 

ZZ21=(l-XR)*((XR-G**2)/SIN(UDS1))*(CDS(UDS1)-(CD$(UDR)/COS(UDX))) 
ZZ22=SIN(UDX-UDG)+SIN(UDS-UDX) 
ZZ23=2*R2**2*COS(UDGI/2)*SIN(UDSG1/2)*(COS(UDX)/CC)S(UDS1)) 
ZZ24=(COS(UDG1)-COS(UDS1))*(SIN(UDS/2)/SIN(UDS1))*SIN(UDSX) 
ZZ25=(-2)*(XR/(UDS**2*COS(UDX)))*(ZZ22+ZZ23+((-2)*R2*ZZ24)) 
ZZ26=((-2)*SIN(UDS/2)*SIN(UDSX))/(UDSl*CDS(UDX)) 
ZZ27=((XR-G**2)*(l+R-XR))+(R*XR*(l-XR))+(R**2*R2*XR*(l-Gl**2)) 
ZZ28=ZZ26*ZZ27 
ZZ29=((12*XR)/UDS**2)*(l-G+(R2**2*R*(l-Gl))) 
ZZ30=2+(3*R*R2)+(G**2*(6+(3*R*R2)-(2*G))) 
ZZ31=ZZ30-(R**3*R2**2*(l-(3*Gl**2)+(2*Gl**3))) 
ZZ32=(3*(I+(R*R2))*(XR**2+G**2))-(XR*ZZ31) 
ZZ33=(UDS/6)*(ZZ29+ZZ32) 
ZZ34=R2*(l-XR)*(XR-G**2)*TAN(UDS1/2) 
ZZ2=((UR*W*S**2)/(2*XR*UD*H2))*(ZZ21+ZZ25+ZZ28+ZZ33+ZZ34) 
ZZ35=(R2*(l-((UDS1/2)*SIN(UDS1))))-(COS(UDR)/COS(UDX)) 
ZZ36=(UDG/SIN(UDS1))*((l-XR)/(2*XR))*(ZZ35+((l-R2)*COS(UDS1))) 
ZZ37=SIN(UDG/2)*SIN(UDX-(UDG/2)) 
ZZ38=(G/(R*XR))*(l+R-XR)*SIN(UDS/2)*SIN(UDSX) 
ZZ39=UDS**2*(G/(4*XR))*CDS(UDX)*(I-(XR*(2-G))) 
ZZ40=C*(ZZ36-((l/COS(UDX))*(ZZ37+ZZ38+ZZ39))) 
ZZ41=SIN(UDS/2)*SIN(UDSX)*(SIN(UDG1)-(Gl*SIN(UDS1))) 
ZZ42=(ZZ41/(SIN(UDS1)*COS(UDX)))+(R2*UDS1**2*(GI/4)*(l-Gl)) 
ZZ43=(-l)*R2*SIN(UDG1/2)*(SIN(UDSG1/2)/COS(UDS1/2)) 
ZZ44=Cl*(ZZ42+ZZ43) 
ZZ3=((2*DHP)/(UD**2*H2))*(ZZ40+ZZ44) 
IF(ITYP. EQ. 1)GO To 202 
IF(ITYP. EQ. 2)GO TO 203 

202 ZZ45=(2*SIN((UDS/2)+UDS1)*(SIN(UDSX)/SIN(UDS1)))+SIN(UDX) 
ZZ46=(-2)*XR*(SIN(UDS/2)/COS(UDS1/2))*COS((UDS/2)*(l+R-XR)) 
ZZ47=(-2)*((l+R)/UDS1)*SIN(UDS/2)*SIN(UDSX) 
ZZ48=(l-(2*XR))*((R2*TAN(UDS1/2))-((UDS/2)*(l+(R*R2))))*COS(UDX) 
ZZ4=((DHP*EC)/(UD*XR*H2))*((ZZ45+ZZ46+ZZ47+ZZ48)/COS(UDX)) 
GO To 204 

203 ZZ45=2*((l+R)/(UDS1*XR))*SIN(UDS/2)*SIN(UDSX) 
ZZ46=SIN(UDX-UDG)+(R2*SIN((UDS1/2)-UDG1)*(CC)S(UDX)/COS(UDS1/2))) 
ZZ47=(-2)*SIN(UDS/2)*CC)S(UDG1)*(SIN(UDSX)/SIN(UDS1)) 
ZZ48=(2*SIN((UDS/2)+UDS1)*SIN(UDSX))+(SIN(UDS1)*SIN(UDX)) 
ZZ49=ZZ48+(R2*COS(UDX)*(l-COS(UDS1))) 
ZZ50=((XR-1)/(XR*SIN(UDS1)))*ZZ49 
ZZ51=1-(2*XR*(l-G))+(R*R2*(l-(2*XR*(l-Gl)))) 
ZZ52=(UDS*COS(UDX)*ZZ51)/(2*XR) 
ZZ4=((DHP*Z)/(UD*H2*COS(UDX)))*(ZZ45+ZZ46+ZZ47+ZZ50+ZZ52) 

204 ZZ5=zzl+zz2+ZZ3+ZZ4 
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DHP1=(W/(E*HW))*ZZ5 
IF(ABS((DHPl-DHP)/DHPI). Gr. 0.0001)GO To 200 
IF(A2. Gr. ((2*(YiM2-UMI))/All))GO To 225 

c 
c 

Calculate the total-values of the second yield and the 
failure loads 

YDV=DV 
YDHP=DHP1 
Go To 222 

c 
c 
c 

Determine the total values of the changes in the 
prestressing force corresponding to the second 
yield and failure loads 

225 IF(N. LT. 3)GO To 808 
HPTY=UHP+YDHP 
HPTU=UHP+DHP1 
YV2=UV1+YDV 
UV2=bVl+DV 
WRITE(6,205)HPTY 

205 F'ORMAT('THE TCTAL CHANGE IN CABLE TEN. AT SECOND Y. LOAD=', FI5.5) 
; %RITE(6,207)HM 

207 FORMAT('THE TIOTAL CHANGE IN CABLE TEN. AT FAILURE=', Fl5.5) 
; NRITE(6,244) 

244 

c 
c 
c 

For concentrated loadstransform the obtained results 
of the partially distributed second yield and failure 
loads back to the point load form 

IF(LTYP. E)Q. J)GO To 216 
T%RITE(6,145)YVI 

145 FORMATOTHE FIRST Y. LOAD=', F15.5) 
URITE(6,146)UV1 

146 FORMATOTHE FIRST P. H. LOAD=1, F15-5) 
h'RITE(6,206)YV2 

206 FORMAT('THE SECOM, Y-LOAD=', F15.5) 
h, RITE(6,208)UV2 

208 FORMATCTHE FAILURE LOAD=', F15.5) 
Go To 245 

216 YMq=2*YV1*S*EPSL 
UMq=2*UV1*S*EPSL 
YM2=2*YV2*S*EPSL 
um2=2*UV2*S*EPSL 
wRiTE(6,217)YM1 

217 FoRmAT(ITHE FIRST Y. TDAD=, Fl5.5) 
WRITE(6,218)UWW1 

218 FORMT(ITHE FIRST PLASTIC HINGE IOAD=I, Fl5.5) 
wRITE(6,219)YWW 

219 FORMT(ITHE SECOND Y. LOAD=', F15.5) 
wRiTE(6,220)UWW2 

220 MRMAT(wTHE FAILURE LOM=, F15.5) 
245 WRITE(6,246) 
246 
213 STOP 

END 
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