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The Shockley-Read recombination statistics was recently generalisea to 

include the effects of a finite relaxation time of the captured carrier 

as it settles into the ground energy state of the trap, Auger effects and 

the so-called extra carriers supplied by the neighbouring material. The 

combined result of these effects is studied here theoretically at a 

surface together with consideration of a single trap energy level and a 

simple trap spectrum. This model of surface trap occupation is utilised 

in calculations of the potential barriers at grain boundaries in poly- 

crystalline semiconductors and these calculations are compared with some 

recent experimental results. The recombination rate at a grain boundary, 

resistivity and capacitance of polycrystalline semiconductors are studied, 

Another problem concerning the recombination of electrons and holes is 

found in quantum well laser diodes. It is suggested that the processes 

giving rise to radiation in quantum well heterostructures can be 

described by a no k-selection model for the electronic transition. The 

reason is contained in the similarity of experimental gain curves and 

those obtained using the no k-selection model, 

For lifetime measurements in solar cells, the minority carrier 

diffusion equation is solved. Results are given of treatments by Sturm- 

Liouville transform and Green's function for the excess minority carrier 

concentration in photovoltage decay and in the steady-state in mono- 

crystalline and polycrystalline semiconductors. The effects of surface 

recombination and grain boundary recombination on lifetimes in solar 

cells are examined using this theory, 
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CHAPTER 1 
1 

A BRIEF SURVEY OF RECOMBINATION IN SOLAR CELLS AND QUANTUM WELL LASERS 

A semiconductor solar cell is a device which directly converts 

energy radiated by týe sun into electrical current. The main assets 

of solar cells are that there are no running costs after the initial 

production expense and the only waste product is heat. Solar cells have 

been used extensively in space satellites because they are an inexhaustible 

supply of energy. ' In space, the weight of a solar cell array is of 

prime importance, and for this reason high efficiency designs have been 

made. However, the cost of making solar cells is so high as to make 

them unattractive for widescale power generation on earth. A possible 

way of making solar cells attractive for earth use is to trade-off a 

little of the efficiency of power generation for much cheaper production 

costs. One method of doing this is to use polycrystalline silicon or 

cadmium sulphide to construct all or part of the device. In this work, 

some of the problems associated with polycrystalline solar cells are 

studied theoretically. 

There is a variety of mechanisms by which incident photons never 

enter the solar cell. For example, some photons are reflected by the 

top surface, and the top contact shades a portion of the front of the 

cell from incident photons. Since antireflective coatings for the front 

surface and small area top contact are well-known (Hovel, 1975), these 

effects are not studied here. It is the loss of photogenerated electrons 

and holes by recombination inside the solar cell which is-examined in 

Part A of this work. 

Ideally, when a photon penetrates the solar cell and with energy 

greater than the semiconductor band-gap, it is absorbed, promoting an 

I 
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electron into the conduction band. An empty state, known as a hole, is 

left behind in the valence band. The electron and hole diffuse in 

opposite directions to be collected at the external contacts to the 

solar cell and then they generate photocurrent into a load. Before 

reaching the contact, some of the photogenerated electrons fall back into 

vacant states in the valence band by processes known collectively as 

recombination of electrons and holes. 

Recombination occurs either by an electron making a direct 

transition from the conduction band into the valence band or by an 

electron falling into an empty defect level in the energy gap and from 

there the electron falls in a second step into the valence band. The 

first process is known as band-to-band recombination and is unavoidable 

once the semiconductor material for the device is chosen. The second 

process is called band-to-trap recombination and may be avoided by 

reducing the number of defect levels in the energy-gap. A trap is an 

isolated energy level in the energy-gap brought about by a random impurity 

or by lattice damage for example. 

There are three electronic transitions considered in this work. 

Either a single electron transition is involved in the recombination 

'process or an Auger electron (Evans and Landsberg, 1963) or Auger hole 

takes up the energy released in the electron transition by moving deeper 

into its own energy band. A model of recombination in the bulk of a 

semiconductor device was presented over thirty years ago (Shockley and 

Read, 1952) and has been generalized since to include Auger effects 

(Landsberg, 1982a) and the finite relaxation times of traps immediately 

after the capture of an electron or hole (Dhariwal, Kothari and Jain, 

1981). In Chapter 2, this work is extended to a distribution of trap 

levels in the energy-gap at a simple surface. The concentration of 

traps is larger at a surface than' in the bulk material because the 
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discontinuity of the lattice at the surface gives rise to surface traps 

and because chemical residues tend to collect at the surface causing 

isolated defect levels. 

The steady-state recombination of electrons with holes involving 

donor or acceptor-like surface states leads to a net charge on the 

surface. The surface state charge is balanced by an equal and opposite 

charge in the neighbouring bulk semiconductor. This accumulation of 

space-charge near the surface causes a potential barrier to form in the 

region. The potential barrier impedes the transport of electrons and 

holes over it. The barrier height also affects the carrier (electron 

and hole) concentrations at the surface and hence alters the surface 

recombination rate. These effects amongst others are considered in 

Chapter 3 where a model of the potential barrier and recombination rate 

at. a grain boundary in polycrystalline silicon or in cadmium sulphide 

is given. This model uses the surface recombination statistics given 

in Chapter 2 and applies with minor alterations to other surfaces in 

semiconductor devices. 

Unlike a solar cell, in which recombination has to be avoided for 

high efficiency, recombination involving the stimulated emission of a 

photon is encouraged in a laser diode. The radiative recombination 

process in a quantum-well laser diode is also studied here. The object 

of a laser is to provide a source of light with a narrow range of 

wavelength. Large electron and hole concentrations are created in the 

laser diode by passing an electrical current through it. In an active 

region with narrower band-gap than the surrounding semiconductor, the 

carrier concentrations are especially large and radiative recombination 

preferentially takes place.. The active layer in a quantum-well laser 

diode is so narrow that the energy levels-in the conduction and valence 

I 
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bands become a series of two-dimensional sub-bands. The advantage of 

the quantum well structure lies in the laser possessing fewer longitudinal 

modes in operation. The theoretical energy and wavevector (k) dependence 

of radiative recombination in quantum well structures are compared with 

experimental results (Dutta et al., 1983, Kobayashi et al., 1983) 

obtained recently. Thereby evidence is presented for no conservation 

of the electronic wavevector in the radiative recombination process 

because good agreement is obtained with experiments using this premiss. 

In Part B of this work, the effects of recombination at the front 

and back surfaces and at grain boundaries on the carrier concentrations 

of a s_olar cell are treated. In Chapter 5, the electron and hole 

transport and continuity equations are explained and their steady-state 

solution with-low injection of excess carriers is presented. The low 

injection condition is the main restriction on the validity of the 

solutions presented in Chapters 5 to 8, but Hovel (1975) has shown that 

this condition is appropriate for up to twenty times the illumination 

intensity of the sun. The surface recombination statistics of Chapter 2 

is used to yield a simple boundary condition in low injection conditions 

at a surface. 

Accurate representation of the solar spectrum under different 

meteorological conditions by mathematical functions is quite difficult. 

In this work, the carrier transport equations are solved with a general 

photogeneration rate. One is then able to solve the electron diffusion 

equation with a new mathematical representation (Hsieh, Hu and Drowley, 

1980) of the sun's spectrum and this is done in Chapter 6. 

New methods of lifetime measurement in solar cells have been given 

recently which utilize the transient decay of photovoltage from the 

steady-state (Sharma and Tewary, 1982) and following a short-pulse of 
I 



light. Solutions of the electron diffusion equation for these methods 

are shown in Chapter 7. 
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In recent years, there has been much interest in polycrystalline 

semiconductors for use in low cost solar cells, thin-film resistors 

and polycrystalline emitter transistors. A theoretical understanding of 

the ways in which polycrystalline semiconductors differ from single 

crystal semiconductors is desirable. A step towards this better 

understanding is made in Chapter 3 where a simple model of the barrier 

height and recombination rate at a grain boundary is presented. Also, 

in Chapter 8 the effects of surface recombination velocity at a grain 

boundary (using the work of Chapter 3) and grain size on the current- 

voltage relationship of a polycrystalline solar cell are examined. 

The conclusions of this study are summarized in Chapter 9 where 

a few suggestions for future research are made. These future topics 

involve both theoretical and experimental points of interest. Detailed 

conclusions and reviews of previous work are presented in the appropriate 

chapters. 

Although the functions and parameters are defined in the text 

as they are introduced, it may be helpful to have a list of the basic 

parameters on hand and this is done in Table 1.1. Further parameters 

are defined from those of Table 1.1 in the text as they are required and 

so Table 1.1 should not be regarded as a comprehensive list of the 

parameters used here. 

II 
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Table 1.1 Notation of the Basic Parameters 

D Diffusion coefficient of electrons. 

D(E) Density of states as a function of energy in the band-gap. 

d Width of the base of the solar cell in Figure 5.1. 

E Energy. 

E Electric field. 

E 
A' 

E 
AS 

Energy levels of acceptors in the bulk and at a surface 

respectively. 

E Conduction band edge energy. 
C 

E 
D' 

E 
DS 

Energy levels of donors in the bulk and at a surface 

respectively. 

E Valence band edge energy. 
v 

e Modulus of the electronic charge. 

F Electron quasi-Fermi level. 
e 

Fh Hole quasi-Fermi level. 

F Fermi level of electrons in equilibrium. 
0 

f eE/2k B 
T. 

f Probability of occupation of a trap level in the energy gap. 

f Fermi-Dirac probability for electrons in the conduction band. 
C 

f Fermi-Dirac probability for electrons in the valence band. 
v 

G Electron (band-to-trap) capture coefficient. 

g(x) Photo-generation rate of electrons and holes. 

H Hole (band-to-trap) capture coefficient. 

h Planck's constant (also 'h E h/27T) 

Current density. 

0 
Dark current of a solar cell. 

L Light generated current of a solar cell (sometimes 

called J or short-circuit current). sc 
k Electron wavevector. 

kB Boltzmann's constant. 
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L Diffusion length in a solar cell (VID-T). 

L Width of active layer in a quantum well laser diode. 
z 

L Self7adjoint operator. 

m Effective mass. 

m Conduction band effective mass. 
c 

mh Heavy-hole valence band effective mass. 
v 

Mt Light-hole valence band effective mass. 
v 

m Free electron rest mass. 
0 

NA, N 
AS 

Concentration of acceptors in the bulk or at a surface 

respectively. 

Nc Effective density of states in the conduction band. 

N 
D' 

N 
DS 

Concentration of donors in the bulk or at surface respectivel] 

Nv Effective density of states in the valence band. 

N0 Flux of incident photons in a solar cell. 

Nt Concentration of traps. 

n, n02 n 
e' 

n Electron concentration (with appropriate suffices to 

denote equilibrium (0), in excess (e) and when the Fermi 

level is at a trap level (1)). 

Pj, PO) Pi Hole concentration (with suffices as above). 

R Reflectivity of the end mirrors in a laser diode. 

r Radial coordinate. 

r 
Stim 

(E) Rate of stimulated emission from a laser diode. 

S, SOD S 
n' 

SpS 
gb 

Surface recombination velocity (with suffices to indicate 

for equilibrium (o), electrons (n), holes (p) and at 

a grain boundary (gb)). 

T Temperature. 

SS TI, T2, TV 

T 2' T 3' T4 Trap single electron and Auger capture coefficients of 

Figure 2.1. 
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t Time. 

t Duration of short pulse. 

U Recombination rate. 

V Voltage across solar cell p-n junction. 

v d' v D' YR Drift (d), diffusion (D) and recombination (R) velocities. 

W, wil w2 Widths of one side of grain boundary space-charge region. 

x Spatial coordinate. 

y Spatial coordinate. 

z Canonical partition function. 

z Spatial coordinate. 

Greek Alphabet 

CL Absorption coefficient. 

r Optical confinement factor in a laser diode. 

Y With appropriate suffices, Fermi levels (F) divided by 

kBT. 

6 Relative dielectric constant of bulk semiconductor. 

E Permittivity of free space. 
0 

T) With appropriate suffices, Energy levels (E) divided by 

kBT. 

Wavelength. 

Effective diffusion length (see Chapter 5). 

V Frequency. 

P Resistivity. 

Pc (E), pv (E) Density of states in the conduction and valence bands. 

CY Conductivity. 

T Lifetime in a semiconductor. 

U Mobility. 

ý(X) Electrostatic potential. 
I 

B 
Potential barrier height. 

P1 or-t- rnn i r- wn"Pfitnrr ; nn 
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CHAPTER 2 

RECOMBINATION STATISTICS FOR SURFACE TRAPS 

2.1 Introduction 

The widely occurring recombination via traps in semiconductor 

devices has rendered the Shockley-Read-Hall recombination statistics 

of considerable importance. It has been extended in a number of ways 

in the thirty or so years that have elapsed since it was proposed. 

(a) Some effects of Fermi degeneracy have been included (Landsberg, 1957 

and Von Roos, 1978). This effect is not treated here. 

(b) The possibility of more than two charge states, and of excited 

states of the traps has been incorporated (Landsberg, 1956; Landsberg, 

1960; and Sah and Shockley, 1958). In this work only two charge states 

and two excited states were considered theoretically. 

(c) The effect of Auger transitions has been studied (Evans and 

Landsberg, 1963). 

In recent papers, two new effects have been added to this list: 

(d) The effect of finite relaxation times of the traps immediately 

after capture of an electron or hole (Dhariwal, Kothari and Jain, 1981; 

Agarwal, Jain and Harsh, 1982). It has been suggested that this leads 

to an increase of the minority carrier lifetime with injection. The 

reason is that injection, by saturating the traps, leaves a smaller 

number of them available to mediate the electron-hole recombination 

traffic. 

(e) The effect of extra carriers entering the semiconductor from 

neighbouring material or leaving to neighbouring material (Landsberg, 

1982a). The result of this effect can also act to either increase or 

decrease the recombination rate. This effect is of importance in for 



example MIS structures and Cu 
x 

S-CdS heterojunction interfaces by 

adding additional recombination traffic. 

Recent reviews of several of the effects have been given by Look 

(1981), Landsberg (1982b) and Nimtz (1980). 

11 

In this work, a single discussion incorporates the effects (c) to 

(e). Effect (b) could readily be incorporated but it would make the 

discussion algebraically rather heavy. By dropping effect (a), an 

essential simplification is gained: one is able to use the normal mass 

action laws in the formulation of the rate equations and this is done 

in the theory presented in Section 2. 

The effect on the recombination rate of variation in the Fermi level 

and of variation in the excess carrier density is considered. In each 

case, we also contrast the case of Nt traps at a single level with 

the case when these Nt traps are uniformly distributed over a range 

of levels. The latter case tends to produce the bigger changes. 

The work is presented in the language of surface recombination. 

If the trap concentration Nt has dimension L- a, where a=2 (or 3), 

it can also be regarded as taken per unit area (or per unit volume). 

-a -1 . Then the dimension of U, the recombination rate is 4T. i. e. it 

is a recombination rate per unit area (or per unit volume). In this way, 

the recombination formula is applicable to surfaces: all one needs is 

to interpret Nt as a trap concentration per unit area (instead of 

volume). The amendments needed to apply the work to bulk recombination 

are indicated throughout. The surface recombination language is 

advantageous because one can use it to treat recombination at grain 

boundaries in polycrystalline material and this is done in Chapters 3 

and 8. 
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2.2 General Theory 

A small range of energies (E 
19 ,E 1g + dE 

Ig 
) will be considered 

for the occupied traps in their ground states. This will imply an 

appropriate, but different, small range of energy for the empty traps 

in their ground state. Similarly, it will imply other small, and 

different, ranges of energies for the empty traps in their first 

excited state and the full traps in their first excited state. It is 

of course necessary for these three energy ranges to go to zero with 

dE 
1g , but they need not be specified in any other way at this stage. 

The following notation will be adopted: 

M dntg , the number of 

in the energy range (E 
19 2 

(ii) dp 
tg , Xhe number of 

energy range corresponding 

(iii) dn 
te ' the number of 

the energy range corresponi 

state; 

occupied traps per unit area which lie 

E 
Ig 

+ dE 
1g 

) and are in the ground state; 

empty traps per unit area which lie in the 

to (i) and are in their ground state; 

occupied traps per unit area which lie in 

ding to (i) and are in their first excited 

(iv) dpt, , the number of empty traps per unit area which lie in the 

energy range corresponding to (i) and are in their first excited state. 

It is assumed that the capture of an electron by an empty trap in its 

ground state, Og leaves it in its first excited state, le and that 

the electron, e comes from the conduction band. There can then be 

a relaxation of the trap into its ground state, 1g , and thermal 

excitation from the ground state is also possible. These processes can 

be represented by the reactions 

Og +e1e (2.1) 

le Ig (2.2) 
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Similarly, the capture of a hole, h, by a full trap in its ground state 

1g leaves it in its first excited state, Oe , and it is assumed that 

the hole comes from the valence band. Also, the empty excited trap 

can relax into its ground state or be thermally excited into its first 

excited state: 

(2.3) lg + h-0--Oe 

Og (2.4) Oe . 

In this model, inter-trap transfers and the contributions of higher 

excited states are regarded as negligible. 

The rate of change in the number of occupied traps in the first 

excited state can be written as: 

dn G ndptg -n dn dn dn (2.5) 
te 2 te 

ln 
te t tg 

The first bracket takes account of the reaction given in (2.1), G being 

the reaction constant for the forward reaction and Gn 2 for the reverse 

reaction. The second bracket describes the reaction (2.2) where t 
n 

and t' are the mean times for the decay of the excited state into'the 
n 

ground state and for the reverse thermal excitation process. The quantity 

G takes into account the three processes shown in Figure 2.1: (i) 

The direct capture by a single-electron process with reaction constant 

s T1 (ii) The capture by an Auger process in which a second conduction 

band electron absorbs the energy released. This has reaction constant, 

say T, . so that the reaction proceeds at a rate T1n2 dp 
tg . This 

process contributes an additional term TIn to G. (iii) The capture 

by an Auger process in which a valence band hole takes up the energy and 

moves deeper into the valence band. This reaction contributes an 

additional term, Tp to G, so that: 21 
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G=Ts+Tn+Tp (2.6) 

112 

By similar arguments, and in an analogous notation, the capture rate 

into the first excited empty state of the trap is 

dý H(pdn P2 dp dp 
te - t, 

dp (2.7) 
te tg te TP 

p 
tgI 

Here the hole capture in the forward reaction (2.3) incorporates 

a single-electron transition (T s and two Auger processes (Figure 
2 

2.1). The first Auger process adds an extra capture rate T3 npdn tg 

and the second process adds an additional capture rate T4 p2dn tg 5 

thus 

H : -:: Ts+Tn+T (2.8) 23 4p 

HP2 is the reaction constant for the reverse process in (2.3). 

Also t and t' are the mean lifetimes for the ground state and for 
pp 

the reverse thermal excitation process. 

The rate at which the concentration of occupied ground state 

traps increases is 

dA 
tg =t dn 

te - ti, 
dn 

t. g- 
H(pdn 

tg -p2 dp 
te 

(2.9) 
nn 

and one also finds the capture rate into the empty ground state of the 

traps is 

dý =I dp --1 dp - G(ndptg -n dp (2.10) 
tg t te ýT tg 2 te 

pp 

by taking the appropriate terms from (2.5) and (2.7). 

One now imposes the steady state condition by requiring the four 

time derivatives to vanish. Any three of the four conditions (2.5, 

2.7,2.9,2.10) can then be used to deduce the fourth by addition. 
I 

Therefore, one has only three independent equations for the four 
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unknowns, namely dp 
te , 

dn 
te' 

dptg, dn 
tg . The fourth condition presumes 

that the number of traps is fixed 

d(ntg +n te + ptg + Pte )= D(E lg 
)dE 

Ig * (2.11) 

Here, D(E Ig 
) is the total number of traps per unit area whose 

occupied ground states lie in the energy range (E 
19 ,E 1g + dE 1g 

These equations will now be solved. 

Taking three of equations (2.5,2.7,2.9,2.10) and equation 

(2.11), writing these in matrix form one has 

Ax =y, 

where, 

1111 

-Gn - 1/t 1/t, 0 Gn 
A2nn 

1/t -1/t'-Hp Hp 0 
nn2 

0 Hp -H 1/t, P2-1/tP p 

dn 
te 

D (Elg)dE 
1g 

X 

dn 
tg 

and 
.y0 

dp 
te 

0 

dp 
tg 

0 

Since, 

A- 
1 

one can solve these equations by finding the inverse matrix of A. 

The inverse of A is given by (Lennox and Chadwick, 1.970) 

-1=I A -FAF adj A 

A 
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where the adjoint of A is the transposed matrix of cofactors of A. 

A cofactor A 
Ij 

of the matrix A is the signed minor of the 

element a Ij of A. The minor corresponding to a Ij 
is the 

determinant of the submatrix constructed by leaving out. the ith 

row and jth column (Lennox and Chadwick, 1970). Thus, 

dn 
te 

A 11 A 21 A 31 A41 D (E 
1g 

)dE 
1g 

dn 
tg I A 12 A 22 A 32 A 42 0 

dp 
te 

A T A 13 A 23 A 33 A 43 0 

dp 
t9 

A 14 A 24 A 34 A 44 0 

Because the first term of y is its only non-zero term, one need only 

find the co-factors (A AAA) and the determinant of A, 11' 12' 13' 14 

which is 

JAI =A 11 +A 12 +A 13 +A 
14 ' 

These co-factors are 

A 1/t(H +G, +Hp)(1/t +Hp )- H Hpl 11 n 
P2/t') 

nE(lltn p p2 P2 

A 12 ý (Gn 
2+ i/t 

n 
)HP2/t' + (HP21tn+'/tntp )Gn 

p 

(Gn +1/t )(Hp+l/tn)l/t' - 1/t t't + GHnp/t 13 2npnnp 

and 

A 14 ý (Gn 
2 +1/t 

n 
MHp 

2 +1/t 
p 

)(Hp+'/tn)-HP2 Hp} - (HP2+1/tp)l/tntn' 
* 

The determinant of A is 

JAI = 1/t t [GH[np(t +t )+bnp t +an +n '+l/t 
npnp2p 2ptn 2p2tntP(l/tn 

+ H(ap+bp2tP't ý) + G(bn+an 
2tn/tn, 

) ] 
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where a= 1+tp/tý , and b=1+t /t' . It therefore follows 
nn 

that 

dn 
te 

dn 
tg 

D(E Ig 
)dE 

lg 

dp 
te 

JAI 

dp 
tg 

A 12 

A 13 

A 14 

and so using the expression for the determinant and the co-factors, 

[GH(npt +n 
p 

')+H /t't'+Gnt /t'jD(E )dE 

dn n 
P2tnt /tn P2tntp npnn lg Ig 

te JAI 

[GH(n ptt /t , +np t )+Hp tp/t'+Gn}D(E )dE 

dn 
tg 

22npp2p 
JAI 

2p lg 1g. 

(GH(npt +n pt t /tý)+llptp/tp'+Gn 'tý}D(E, )dE 

dp 
te 

ýp2np JAI 
2tntpltn g lg 

and 

{GH(n ptt /t , +n pt')+HP+Gn t /t'}D(E )dE 

dp 
tg =22npn2n JAI 

2nn Ig lg 

In the steady-state, the bracketed terms of (2.5), (2.7), (2.9) and 

(2.10) are all equal to the steady-state recombination rate, dU, 

of electrons in the conduction band or holes in the valence band. 

The steady-state recombination rate is by (2.9) 

dU =1 dn dn 
t te tg 
nn 

that is 

GH(np-n tt /tt')D(E )dE 

dU= 
2P2 np 

-n 
p lg lg 

GH[np(t +t )+bn +an pt +n tt (1/t'+I/tý))+H(ap+b ý)+G(bn+anj /tn)* 
np 

p2tp 2n 2P2 npn 
P2tp/t 

n 

(2.12) 
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The statistics of charged centres by the grand canonical ensemble 

shows the number of electrons in centres with energy state, Z, which 

have captured r-electrons is given by (Landsberg, 1982b) 

m 
Np(P,, r) = NXr exp 

(-E (k, r) /k T) I xsz 
Z, r B 

S=o 
s 

where 

X= exp(F/k B 
T) 

and the partition function is 

zr exp(-E(k, r). k 
B 

T) 

with F the Fermi level, k 
B' 

Boltzmann's constant, T, the temperature 

and N is the number of centres. In the present case (k, r) = (0 or 1). 

Hence the difference between the trap quasi-Fermi level and the 

equilibrium Fermi level may be expected to be the main parameter for 

the left hand side of the following equation and this is why it is 

useful. One has 

dp GH(n tt /t'+n pt )+Hp+Gn t /t' 
t9 2P2 npP2n2nn 

dn 
tg 

GH(n 2P2 tntp /t +np 2tp 
)+HP2t 

p 
/t ý+Gn' 

From (2.5) using detailed balance in equilibrium 

dD 
t 

n2ýn 
t 

tej 

and 

dn t 
te 

1 
n 

dn t tg n 0 

(2.16) 

I 



19 
Thus, 

Itd 
n pt 

(2.17) 
dn 

tg 
0 

2otn 
11-1 

9 

and likewise from (2.7), 

t 
P2 ý Po t 

P- (2.18) 

p0 

Using (2.16), (2.17) and (2.18), 

d 
tg 

dntgl GH{n pt +n tt /t(p/po)I+H p2tp/tp' (p/po)+Gno po2p 2P2 npp 
dn 

tg ptg GH{n +n tt /tp'I+H +Gn 
0 

p2tp 2P2 np 
P2tp/tP 

(2.19) 

The steady-occupation of the traps in a given range of energy is 

determined by this relation relative to the equilibrium occupation 

[see also (2.28) below]. 

The four distinct brackets (2.5,2.7,2.9,2.10) introduce six 

"reaction constants" (n ' 
't 't t of which only the last two 2'p2'tn 

ý 
n' p 

will be taken as independent, the other four being determined by the 

four conditions of detailed balance. 

Although the argument has been in terms of the quantities 

introduced at the beginning of the section, i. e. per unit area, the 

whole treatment stands unchanged for volume recombination. In all 

cases G and H are of dimension L3 r- 1, 
so that Gn, Hp, Gn 2 

and Hp 2 are all of dimension T- I. Thus equations such as (2.9) 

are dimensionally homogeneous provided only the variables dn 
tg , dptgp 

dn 
te and dp 

te are all of the same dimensions: all per unit volume 

or per unit area. For a surface, D(E Ig 
)dE 

19 
is the density of 

trapping states per unit area in the energy range (Elg, E 1g +dE 1g 
), in 
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which case dU is the recombination rate per unit area. However, 

for volume recombination in the bulk, D(E 1g 
)dE 

1g 
is the density of 

states per unit volume and the recombination rate, dU , is per unit 

volume. 

2.3 Analogies with the Shockley-Read-Hall Statistics 

The notation of (Landsberg, 1982b) will be used with appropriate 

suffices, y for Fermi levels divided by kBT and n for energies 

divided by kBT. The four energy levels required for the theory of 

Section 2 are r and r+I electron energies, where r is the 

minimum number of electrons in the system. To represent these energies 

on an energy band diagram, which is made up of single electron energies, 

we find three independent energy differences which will be taken to be 

Tit =n lg - TI 
og 

6p = noe -n- Y) - nlg (2.20) 
og ' 6n = le 

This preserves some analogy with the notation of (Dhariwal, Kothari and 

Jain, 1981). The energy levels E 1g of an r+l-electron centre and 

E of an r-electron centre cannot be shown on a single-electron og 

energy diagram, as is usually employed for semiconductor bands. Also 

their energy zeros are different. However, the difference Et 

between them, although still referred to a general zero, can be 

shown as is done here in Figure 2.1. For donor-like traps it is 

appropriate to take the energy zero at the edge of the conduction band 

and for acceptor-like traps the energy zero is at the edge of the 

valence band. These are the analogues of the vacuum level for the 

free atom, and the ionization energies are either EC -E t 
for a donor 

or Et-E 
v 

for an acceptor. 
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Two possible arrangements of the r and r+1 electron energy 

levels are shown in Figure 2.2(a) for donors and (b) acceptors. 

Examples of Phosphorous (Martin, 1959) and Boron (Lineberger, 1976) 

which occur in silicon are given. These translate into the single 

electron energies of Figure 2.2 (c) and (d), where one remembers to 

divide the energy levels in a vacuum by the relative dielectric 

constant squared (see for example Landsberg, 1969). Thus, for 

phosphorous in Si (where c= 11.9), 

kBT=0.026 eV ,kB T6 
ný0.010 eV , 

k. 
B 

UP = 0.007 eV , 
Ec-Et = 0.074 eV , 

at normal room temperature of 300 K. 

From the first bracket of (2.5) using detailed balance in 

equilibrium, 

ndp 
- tg T: I) -I 

dn I te J 

expanding the contents of the bracket 

dp dn 
tg tg 

n n - - - 2 0 dn j n I 
tg te j 

o 

Using the statistics of charged centres (Landsberg, 1982b) and 

equations (2.13) to (2.15), 

T' t- I 6nj 

0 
0 nee 

It is useful to define 

v, =n0e 
T) t- YO 

(2.21) 
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to maintain the analogy with n1 of Shockley-Read-Hall statistics. 

Likewise from the first bracket of (2.7), 

dntg dp )p 

eyo-T'te6P E 7T e6p (2.22) P2 ptg -ýPtej p FD- 
tg 

0 
0 

That v1 and 7T 1 are not the same as the familiar n and p1 

may be seen as follows. The general expression for n in this 

statistics, if the centre can be in two states of charge is obtainable 

from the canonical partition functions Z0 and ZI for empty and 

occupied centres respectively [Landsberg, 1982b, e. g. (15.13)]. 

Hence, from equation (2.15) 

ri 
og Tloe 

Z0e+e 

TI I Ti 

and by definition, the Shockley-Read parameter n1 is 

(Z /Z 
1 

)ne 

hence, using the above expressions for Z0 and Z, . in equilibrium 

+e- P T) t -Y 0 n 
I+e-6n 

xexn0e 

so that the new parameter v1 (2.21) yields 

1+e (2.23) 

, 
1+e P, 

Yh 
(Z 

1 
/Z 

0 
)pe 

9 

hence, using the expressions for Z and Z, . in equilibrium 
10 
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1+e n -n t YO 

-6 - k'o- 

1+e P 

so that the new parameter n1 yields 

Tr 
+exp 

pp (2.24) 
+exp 

n 

One sees that the product v IT, ==2 1n 1p, ni q but v1 and n,, 7T 

and p1 may be identified only if 6n=6p, in which case both 

n, . 
7T, =pI 

In passing, note that the fraction of traps filled can be calculated 

from (2.13) and in the steady-state this is 

xz 

Z0 +ÄZ 11 +X 

where 

1 -6 1 
x=X -1 zo/z, = 

1+e 
-6 

Pe nt-yt 
(2.25) 

, 
1+e nj 

Note here the analogous form of (2.25) to the Fermi-Dirac probability 

of occupation of the trap which is (I+X)- where 

X 
rlt-yt 

Hence, if 6ný 6p or if 6n and 6p tend to infinity One recovers 

the Fermi-Dirac form of the occupation probability in equilibrium. 

Otherwise, the addition of the trap excited states gives rise to an 

additional factor 

+exp 
p 

texp 
n 
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whichhas an effect not unlike a shift of the trap level to a new 

position 

1 -6 1 

E+kT ln 
1+e P 

tB -6 

, 
1+e n 

In addition, the latter bracketed terms of equations (2.5) and (2.7) 

give, using detailed balance together with equations (2.20) and (2.13), 

dn t16 
tnn 

Tn 
g' 

te 
(2.26) 

el 0n 

, Idp l t 
tg 

- 
p 6p 

rd p j t e 
te p 

0 

Hence, the shifted trap level in equilibrium is given by 

E+kT ln(a/b) 
tB 

Given the energy level system, as for example 

relations determine the excitation times tI 
n' 

relaxation times t 
n' 

tp' Thus, from (2.21) 

nt /tv 
nn 

and 

TTI = P2 tp /t 

Putting these expressions into (2.12), 

in Figure 2.2, these 

ts in terms of the 
p 

and (2.22) 

dU = 
GH(np-v 

I Tr 1 
)D(E 

lg 
)dE 

Ig 

IGH[np(t +t )+av ptn+bTr nt'+v 7r (t'+tp')]+H(ap+bffl)+G(bn+avl)} 
np11pIIn 

which can be written as 
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dU = 
GH(np-v 1 Tr 1 

)D(E 
Ig 

)dE 
lg 

-. (2.27) 
GH(np-v 7T )(t +t )+H(ap+bn )(l+Gv tl)+G(bn+av )(H7T t1 +1) 11np11n11p 

Also., from (2.19) and (2.13), 

d dn 
tg ptg 

optg exp(y -y ntgj 

100t 

GH(n 
o 

Tr 1 
tý+v 

1 Tr I tn(p/po)}+Hnl(p/po)+Gn 
0 

GH (nTr 
I 

tý+v 
1 

Tr 
1 tn) +Hn 1 +Gn 

These relations give the steady-state 

area and the energy difference of the 

steady-state trap quasi-, Fermi level. 

the non-equilibrium steady-state and 

ground state lies in the energy range 

by (I+X)- I 
where 

(2.28) 

recombination rate per unit 

equilibrium Fermi level and the 

The fraction of traps filled in 

whose energy of the occupied 

E 1g to E 1g + dE 1g 
is given 

X= 
dp 

te +dp tg 
dn +dn te tg 

Using the results for dn 
te' 

dntg, dp 
te' 

dp 
tg given in Section 2, 

X can be put in the form 

rl t-y GH[ (np-v Tr )(t I'a+v ii tp'+vlptn']+Gvl+Hp 
X=eoa1pIII b Ti t-Y 0 Ti t-yo 

I 
GH[(np-v 1 Tr 1 

)(t 
n 

/b)e +np 
0 

tp+vlpotn']+Gne +Hpo 

for the steady-state. In equilibrium, the braced term equals unity, 

X 
rlt-yo a 

0b 

as before, since nopo =v iTl =n2 1i' 
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For ordinary bulk recombination per unit volume one can make 

the replacements 

dU -U, D(E 
Ig 

)dE 
lg -Nt (2.29) 

where U is a recombination rate per unit volume and Nt is a trap 

concentration per unit volume. One can regain the structure of the 

Shockley-Read-Hall recombination rate from (2.27) (Landsberg 1982a, 

equation (11)): 

U= 
GIIN 

t 
(np-n 

lpi (2.30) 
G(n+n I 

)+H(p+p 

where n, =n0e 
nt-yo 

) P, =p0e 
Yo-nt 

. It is necessary in addition 

to (2.29) that the excited states become far removed from their ground 

states at the temperature considered while the excitation and 

relaxation times go to zero: 

68 
66 --> Co {ttte= tr 

n' Pn 

The Shockley-Read probability of finding a trap at energy Et occupied 

is then given by (1+X)- 1 
where 

Gn +Hp 
X=-1 

Gn+Hp 

multiplying X by en 
t-yh in the denominator yields 

Xe 
T' t-yh 

Gn 
1 +Hp 

(2.31) 

. 
Gn 

Ie 

Ye-yh 
+Hp, 

In equilibrium, (Ye = Yh ýY0)X reduces to the Fermi-Dirac 

probability x, i. e. 

t-yo 
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Thus, in some sense the Fermi-Dirac. statistics are a special case 

where the Shockley-Read statistics for steady-state are applied to 

equilibrium conditions. 

2.4 Extension and Special Cases 

(a) The Effect of Extra Carriers 

The effect of extra carriers supplied by the neighbouring material 

on the recombination rate was proposed by Landsberg (1982a), and 

can be easily incorporated in the preceding theory. This technique 

may be useful when recombination is modelled at the interface between 

two dissimilar materials, e. g. the interface between insulator and 

semiconductor in an MIS structure or at the interface between Cu S 
X 

and US layers in a heterojunction solar cell. In both cases, the 

tunnelling of electrons and holes to the interface through potential 

barriers is important. The first brackets in (2.5), (2.7), (2.9) 

and (2.10) are all affected by the extra capture rates and emission 

rates. Attention will be confined to the first brackets in (2.5) 

and (2.7). These terms become 

G[(n+ct 
n 

/G)dp 
tg -(n 2 +ý 

n 
/G)dn 

te 
I 

and 

H[(p+a 
p 

/H)dn 
tg -(P 2 +ý 

p 
/H)dp 

te] - 

Here increased capture and emission rates of electrons by the traps 

has been denoted by an dptg and ýn dn 
te respectively. The increased 

capture rate of holes has been denoted by apdntg and the emission 

rate by ýp dp 
te* 

Thus, by applying detailed balance to the square 

bracketed terms one sees that the analysis goes through with the 

replacements 

(n, p, n 2'P2 
(n+a 

n 
/G, p+a 

p 
/H, n 2 +1 

n 
/G, P2+6P/H) 
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and the contents of the latter set are defined to be 

(n*, p*, n*, p*) (2.32) 
22 

Also, 

(Vjj Tr (v +6 t /Gt', Tr +ý t /Ht') (v*, Tr*) (2.33) 
1nnn1ppp11 

Note that the replacement of n and p by n* and p* is not 

needed in the expressions (2.6) and (2.8) for G and H, and that, 

with this proviso one just finds again (2.12) for the recombination 

rate and (2.19) for the steady-state occupation of the traps with 

n, p, n 2' P2 asterisked. From there one goes to (2.27) and (2.28) 

with n, p, no, poý v1 and Tr I asterisked. For the sake of 

completeness, the resulting equations are 

GH(n*p*-v*Tr*)d(E )dE 
dU* =11 

Ig Ig 

GH(n*p*-V*Tr*)(t +t )+H(ap*+b7T*)(I+Gv*t')+G(b-+av*)(l+HTr*t) 
11np11n11p 

and 

dp dn GH{n*n*t ' +v*17r*lt,, (p*/p*) }+Hn*(p*/p*)+Gn* 

-ä-n 
tg 

dp 
tg 01p0100 

tg tg GH(n*r*t +V*u*t'}+Hu*+G*n 
01ý11n1 

d dn ptg tg 
= exp(y*-y*) ntg 

Id 

ptg 

10 

ot 

Thus, the equilibrium Fermi level and the trap quasi-Fermi level are 

also affected bythe extra carriers. Turning to equation (2.25), 

in the presence of extra carriers the fraction of traps filled is 

(I+X)- 1 
where 

p Ti -Y* 1+e tt 
6e 

1, +e n 
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(b) Discussion of the Recombination Rate- 

The interpretation of the recombination rate equation (2.27) is 

simplified if one considers equal numbers of excess electron and holes. 

ne=n- no =p- po . 

Nt traps per unit area will be assumed with energy levels 

(E 
og ,E 19 ,E oe' 

E le 
). Then 

np -nn +p +n )n 
ooee 

One can define the surface recombination in an analogous way to the 

lifetime in bulk recombination, 

Hence, using (2.27) 

1-ne 

GH(n 
0 

+PO +n 
e 

)N 
t 

GH(n 
0 

+p 
0 

+n 
e 

)n 
e 

(t 
n 

+t 
p 

)+H(ap 
0 

+an 
e 

+biT I 
)(l+Gv 

1 tn)+G(bno+bn 
e 

+av, )(I+HTr, tý) 

Rearranging this equation, 

(t +t ) ap +b-rr +an v t, bn 
0 

+bn 
e 

+av 11 InpI+01eI+In+-+ 
sen0 +p 

0 
+n 

e 
GN Ntn0 +p 

0 
+n 

e 
TNt 

and it is possible to define 

I tn 11+ vltý 
GN 

tNts 
HN 

tNt 

ltn 
Nt1 

(2.34) 

(2.35,2.36) 

Thus, sn is the surface recombination velocity in a strongly p-type 

material and sp is the recombination velocity in a strongly n-type 

material, where in both cases, the number of excess carriers ne 

or the time delays tn and tp are sufficiently small as to allow 

the neglect of the first term of (2.34). For thermal equilibrium, 

+ 

0, 
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apo+biT bno+avl 1 
s0 no+po sn no+po sp 

(2.37) 

Note that s0 is a superposition of two extreme recombination 

velocities for heavy n-type and heavy p-type doping. By noting 

pýn2 /no 
p and using the forms of G and H given by (2.6) and 

oi 
(2.8), 

tn 

snN [TS+T n +T n2 /n +(T +T )n Nt 
t11o2io12e 

-rr tI 
+ 

'l-P 

spN [TS+T n +T 
2 /n +(T +T )n Nt 

t23o 4ni o34 el 

One can differentiate these expressions for sn and sp with respect 

to the equilibrium Fermi level (y 
0) 

through n0. Note that the 

definitions of vI and 7r, 1 
(2.21) and (2.22) show that vI and Tr 

are independent of y0* Hence, they will be regarded as independent 

of n0 in the differentiation, although at first sight this appears 

not to be the case. 

ds v t, T -T n2 /n 2 
n=N1+1 nj 12io 

dn 
0t [TS+T n +T n2 /n +(T +T )n Nt [TS+T n +T n2 /n +(T +T )n 12 

,11o2io12eIIo2io12e 

and for an extremum, 

Tn2 /n 2 
10 

If; - no= ni 

N 



31 

Differentiating again, 

d2S. 
,n=N 2t2 dn [TS+T n +T n. /n +(T +T )n 
011o2io12e 

V1 t -2 2T n2 /n 3 

+n, 
21o 

Nt [Ts+T n +T n2 /n +T +T )n- 
I1112io12 

di 

1v ti (T -T n2 /n 2)2 

-2N +1n, 
12io 

t [TS+T n +T n2 /n 2 
+(T +T )n Nt [TS+T n +T n2 /n 2 

+(T +T )n 
11o2io12e11o2io12e 

v tv -3. T -T n2 /n 2 

+2N +1n, 
2io 

t22N22 [TS+T n +T ni/n +(T +T )n t [TS+T n +T n /n +(T +T )n 11o2012e111o2io12e 

At the extremum, 

Tn2n2 
10 

and so 

ds 2 
n 

dn 2 
0 

indicating that this is a minimum of sn. One can find a minimum 

also for sp, by symmetry of the two expressions for sn and sp 

this occurs when 

Tn2 /n 2 
4io 

Thus, the minimum values for sn and sp are 

N 
(s 

n) min 
= 

[Ts+(T +T )n 
t 

+2rT -T- n 1-1+v tv 
(2.38) 

112e12oIn 

(Si, ) 
min 

= 
[Ts+(T +T )n +2v'T-T. n +Tr tl 

(2.39) 

234e34o1p 
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The surface recombination velocities s and s can be shown to be 
np 

mainly constant across the band gap and almost equal to their mimimum 

values, unless the electron or hole concentration is very large. 

When the equilibrium Fermi level is near one of the bands, or for a 
17 -3 very large number of excess electrons and holes (about 10 cm in 

the velocities sn and sP rise steeply. 

For very large excess carrier concentration, ne' the surface 

recombination velocity given by (2.34) tends to the approximate form 

ne(tn +t )a 
p+-+ 

Ntsn 

Using the approximate forms of sn (2.35) and sp (2.36) at large 

excess carrier concentrations 

1. ne (t 
n 

+t 
p+a+b 

sNtN [TS+T n +T nN [TS+T n +T n t1e2et23e4e 

and the first term dominates the expression for large enough n e 
This leads to the maximum steady-state recombination rate, 

N 
(n s) 

t (2.40) 
max e max t +t 

np 

This reflects the inability of the traps to act infinitely rapidly in 

recombination because of the finite time required for the trap to 

relax to the appropriate ground state once an electron or hole is 

captured. 

As noted at the end of Section 2.2, the discussion goes through 

substantially unchanged for bulk (rather than surface) recombination 

However, because of the different dimensions of the recombination rate 

in the bulk, ne /U is a time Crather than a reciprocal of velocity). 
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Thus 11s is then to be replaced by a recombination lifetime T. 

2.5 A Simole Trap Svectrum 

The position on the energy scale of the level E 1g 
determines 

the positions of the other three levels (E 
og ,E oe' 

E le through the 

physics of the centre as explained in Section 2.2. In order to 

integrate over the trap spectrum, E 1g will be varied but it will be 

assumed that 6n and 6p of (2.20) remain constant during this 

variation. This is unlikely to be correct, but for a small range of 

integration it may be an acceptable approximation. Also, the density 

of surface states has to be specified. The simplest approach is to 

put, using (2.20), 

dE 
D (E 

1 g) dE 
t 

dEt =D1 (E 
t 

)dE 
t 

and 

Ds dE 
t, 

E. 
Z <Et<Eu 

D1 (E 
t 

)dE 
t0 

otherwise 

(2.41) 

This assumption eliminates the. need to know precisely how E 
og 

varies 

as E Ig 
is changed, since D1 is stipulated and it depends on the 

difference between them. Equation (2.27) can now be integrated to 

yield the total recombination rate per unit area, U, 

Eu CH(np-v 1 Tr I 
)D 

s 
dE 

t Lk 
GH(np-v 1 IT (t 

n+tp) 
+H (ap +b7T 1) 

(I+Gv 
1tn) +G (bn+av 

I) 
(I +HTr 

Writing nt =Et /k 
BT and denoting 

A= CH(np-v I 7r I 
)D 

skBT, 

I 
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B= GH[(t +t )np+v Tr (tn+t')) + Hap + Gbn 
np11p 

C= {GHapt'+Ga}N e-rlc nc 

rl v D= {GHbnt'+Hb}N e pv 

then, 

f riý, Adil t 

T1 91 
B+C e 

Ti t+ De 
-ri t 

TI 
Multiplying both the numerator and denominator by e and completing 

the square, 

rl 

U 
rl 

u 
Ae dnt f 

T) 
t22 

rl . C(e -tB/2ý) +D-B AC 

Splitting the integral up by partial fractions, 

U= 
[rju Ae dnt 11 

-2. rl t22nt2 2_ P, B -4CD e +B/2C- B /4C -D/C e +B/2C+ B /4C D/C 

Performing the two integrals, 

r- -2. 

UA1 Ce t+ J(B- B -4CD 

vr -2- vf-2 B -4CD 
'j 

CeTIt+ I(B+ B -4CD) 
Ij 

Hence, 

kB TD 
s 

(np-v 
1 7T 

I[ye T1 
U- 

y0 
+1 (X-V) I (y 

e 

T1 Cy 0 +1 (X+Y) I' 
Uv In, 

TIU-YO ; nk-yo 
-3, (2.42) 

.ye+I 
(X+V)][ye +I(X-Y)I, 

where 
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X2 -4WY 

Wp b(nt'+l/G) 
0p 

n a(pt'+I/H) 
0n 

and 

X= np(t +t )+ bn/H + ap/G+v Tr (t I+tl 
np11np 

As in Section (2.4ý), the interpretation of this result is 

simplified by assuming equal numbers of excess holes and electrons: 

ne=n- no =p- po . 

The steady-state surface recombination in this case is 

where 

I 
k- T(n +p +n )Ds 

., 
Iy, e 

11 
u -Y O+j(X, _V, ) I[Y'e 

11 Yl-yo 
+I(X'+V')]' Bo 

vt 

oe 
-In 

rl n Cy -1 (2.43) 
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X' =n (n +p +n )(t +t )+b(n +n )/H+a(p +n )/G+v iT (t +t +t ' +t1) , eooenpoeoe11npnp 

Y' =n a{(p +n )t' + 
0oen 

V, = )/X, 2 
-4W'Y' , 

and 
+TnTp+ (T +T )n 102o12e 

H=T+Tn+T+ (T +T )n 23a 4po 34e 

In a similar way to (2.37), one can write in thermal equilibrium 

e 

s() =kB 
TD 
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0 
+p 

0) ln- 
2Y 

0e 

rlu-yo 
+X 

0 -V 0 
2Y 

0en 

Cyo 
+X 

0 
+V 

0, 
v0 

2Y ,e rlu-yo 
+X +V 2Y e 

ri 9-yo 
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(2.44) 
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I 
where Vo PW02 Xo IY0 are the equilibrium values of V, Wp X and 

Y. Expanding the bracketed term and dividing both the numerator and 

denominator by Yo 9 

kB TD 
s 

(n 
0 

+p 
0 

0v 0 

ye 
Ti u 

+11 9, - 
2y 

0+1 e-yo«X +V )e 
Ti u+(X 
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ri 9. } +ii 
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In[ 0 
ri 2y 

-i 

-y 
0 0,0 

ri 
0 

Yeu o+ 1e 0{(X 
-V ). u+(X +V )e +w 

10i0000 

01 

Now, 

v2=x2 -4W Y= (bn /H )2+ (ap IG )2 
00000000 

(2an p2 Xt +t +t ' +t') 
00npnp 

- 4abn 2p2 
tlt' - 4abn 2 

oonp0 
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oonpnp00 
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0H0 
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or alternatively 

V0= bn 
0 

(p 
0 
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(n 

0 
tý+l/Go) 

One finds 
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Finally, from the definitions of W0 and Y0, the equilibrium 

recombination velocity is 
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For large excess carrier concentrations, (2.43) tends to the following 

expression, 

V' e 
liu+Tiz- 2y 

0 e-YO{ (xll+vlt) enuenZ1+ 
S ln 0 

v99 V' er'u+ 
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p 

W11 I. p bn t' Y" n an 
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and using the binomial expansion of V', 

x1l - vil x1l 
2 
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2n p (bt ' atý)ne2 
xgt - vif 00n« x" + vif 2 
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hence for large excess carrier densities 
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TI C Yol 

and therefore U has an upper limit given by 



38 

(U) = (n s) IV 
kB TD 

S 
(ri 

U- 
rl 

max e max (t +t 
np 

Note that kB TD 
S 

(n 
U-TI P, 

) is the total number of traps in the distribution, 

and the above result is very similar to (2.40) for a single trap level. 

2.6 Discussion of the Figures 

Some results using the data of Tables 2.1,2.2 and 2.3 are 

presented in Figures 2.3,2.4 and for Si and 2.6 and 2.7 for CdS 

The curves are terminated at Fermi levels which lie 3kBT from the 

band edges because the effects of degeneracy have not been included 

in this work. 

The features of curve (a) of Figures 2.3 and 2.6 can be broadly 

classified into four ranges of the Fermi level, Fo 2 using the 

intrinsic Fermi level, F, . as follows: 

(i) E+ 3k T<F<E 
vB0t 

In this case p0 >> 71 >> no 3, vI by (2.21) and (2.22) because the 

Fermi level F0 is well below the trap level situated at mid-gap. 

From (2.37), s nu s /a 
, since p is large. The recombination rate 0n0 

is limited by the rate at which electrons can be captured from the 

conduction band, since these are the minority carriers. Electron 

capture provides the surface recombination velocity sn /a 
. The 

traps are largely unoccupied and any which become filled are rapidly 

emptied because of the large hole density in the valence band. The 

velocities sn and sP, given by (2.35) and (2.36) together with 

(2.6) and (2.8) rise in virtue of Auger effects as the valence band 

edge Ev is approached. sn and sp remain fairly constant in the 

intermediate region. Thus, sn is largely determined by the Auger 

process T2 (Fig. 2.3) near the valence band. 
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In this case 
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IT 1 >> p0 >> nolv I and s0 -u posnh1b from (2.37).. (2.45) 

By (2.25) with (2.22), a fraction 

I+exp(-6 
pp0, 

1+exp(-6 
nuI 

of the traps are filled, which decreases with falling po . Also, 

the recombination velocity falls further with the increase of Fo 

as fewer traps are available to capture electrons. One finds a 

minimum surface recombination velocity , so when the Fermi level, 

Fo 9 is near the intrinsic Fermi level, F, associated with the change 

of minority carriers from electrons to holes. By (2.45), the minimum 

velocity will depend on the trap level, Et . through 71* Thus, 

a lower trap level leads to a smaller minimum value of s0 

(iii) FI-Et<F0-Et< 2(Fi-E 
t)- 

In this case 

IT 1 >> n0 >> Po$v 1 and s0 -- snno /Tr 
1b. 

Because the traps are largely full, hole capture has an appreciable 

contribution to the recombination velocity (s 
p 

/b). However, there 

are insufficient electrons to recombine with every trapped hole 

and electron capture provides the larger contribution to the overall 

recombination velocity given by (2.46). 

2F i-E<F<E- 3k 
BT. 

Here, 
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no ý>> 7T, >> PO)v 1 and s0-. sp /b 
. (2.47) 

This region is the converse of region (i), with the roles of electrons 

and holes interchanged. The Auger process T3 (Fig. 1) gives the 

larger term in H (and hence sp (2.36)) as the Fermi level 

approaches the conduction band. 

The description of curve (b) follows similar lines. In the 

order of increasing Fermi level, the four regions are 

E+ 3k T<F<E, 
vB0 

E, <F<F. 
X, 01 

(iii) <F0< Eu I 

E<F 
(T 

<E- 3k 
BT 

so that n0 << p0 in regions (i) and (ii) and n0 >> P0 in regions 

(iii) and (iv). The surface recombination velocity is effectively 

a superposition of recombination velocities, so 3 derived from 

curve (a) for different trap levels. The lower trap levels produce 

a greater reduction in the minimum recombination velocity through 

the central regions (ii) and (iii) as explained by (2.45) for curve 

(a) and as displayed in Figure 2.4. For trap levels in the upper 

half of the gap, the argument is simply a mirror of the description 

for a trap level in the lower half of the energy gap. Figure 2.4 

shows that the smaller lying trap levels lead to a lower minimum 

value of s0. This is because v1 is larger for lower trap levels 

and thus s npo 
/7T 

1b 
is smaller. Also, for Fermi levels higher in 

the gap, the term snno /7T 
Ib 

is then smaller. The contribution (smaller) 

of the majority carriers to the recombination velocity is shown 

dotted in each case. 
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A description of similar processes in bulk (volume) recombination 

was given by Blakemore (1962), where a recombination lifetime was 

considered and Auger effects were not examined. 

Curve (c) of Figure 2.3 can be explained in the same way as 

curve (a). However, the recombination velocities, sn and sp are 

constants throughout the band gap if Auger transitions are neglected 

and curve (c) is otherwise identical to curve (a). 

The curves of Figure 2.6 for cadmium sulphide tend to fall to a 

smaller minimum recombination velocity in the middle of the band-gap 

because of the wide energy gap in CdS. This leads to a much wider 

variation in n0 and p0 and hence in s0 through (2.37). 

Turnin& to Figures 2.5 and 2.7, curve (a) in each figure shows a 

increase of s with excess carrier density as a result of increased 

Auger transitions. The recombination velocity drops again for larger 

values of ne. The reason is that large values of ne tends to 

saturate the traps thus reducing the number of traps which are 

available for recombination traffic. If one has a distribution of 

traps, about the single level envisaged in curve (a), the spread of 

traps makes saturation more difficult to achieve. Hence the maximum 

of s in the resulEing curve (b) of Figure 2.5 lies higher and also 

occurs at a higher excess carrier concentration. One would expect 

an increase in s if the traps relax more easily to their ground 

states (smaller tn and tp) as this makes it again more difficult to 

saturate them. The algebraic form of the upper limit of (2.40) of 

the recombination velocity confirms this expectation. A lower Auger 

effect reduces the maximum in s, and it is removed altogether if 

the effect is negligible [curves (c) and (d)]. 

I 
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ln Figure 2.7, curve (b) is shown the effect. of reducing the 

relaxation time of the traps, the rise of s owing to Auger effects 

dominates. The smaller value of t makes it more difficult to 
p 

saturate the traps and so the recombination continues to rise. 

Suppose the extra carriers of Section 4(a) qualify to represent 

part of the excess concentration 6n 
e of electrons and holes 

considered in Section 4(b). Figure 2.5 then shows that their effect 

is to increase s if n+ 6n lies below the maximum of s ee 

Their effect could be to decrease s if n+ 6n lies above this 
ee 

maximum. 

2.7 Conclusions 

It hasbeen shown that the Shockley-Read Hall statistics can 

be generalised to include Auger effects, trap relaxation, extra 

carriers and a simple trap spectrum. The surface recombination velocity 

s tended to dip to a minimum value for near intrinsic material, 

due to a combination of the occupation of the traps and the lack of 

electrons to recombine with every trapped hole. Near the band 

edges s rose owing to Auger effects. A simple trap distribution 

increased these tendencies. 

As a function of excess carrier concentration, it is found that 

s passes through a maximum which occurs as a result of an increase 

of s due to Auger effects and a decrease due to a saturation of 

the traps. A trap distribution again makes this maximum more 

pronounced. Earlier work of Dhariwal, Kothari and Jain (1981) and 

Landsberg (1982a) is thus confirmed and extended. Note that if 

time delays and Auger effects are important, then experimental curves 

corresponding to Figure 2.5 should enable one to infer valuable 

I 
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information concerning the magnitude of these effects. 

The present work has used an energy level model which is 

basically that due to Dhariwal, Kothari and Jain (1981) and more 

complicated than in the Schockley-Read model. The parameters n1 

and pI of Shockley-Read statistics, which one is tempted to use 

here are therefore not quite appropriate. The relation has been 

clarified by the use of new parameters v1 and 7T 1 
[see eg. (2.21) 

and (2.22). ] 
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TABLE 2.1 

DATA USED IN THE GRAPHS FOR SILICON 

Parameter Numerical 

EG 

kB 

T 

N 
c 

N 
v 

1.1 

8.625x 10- 
5 

300 

2.9x 10 19 

11 10 19 

1.12xlO- 
8 

Ts 

T2 

T3 

T4 

t 
n 

t 
p 

n 

p 

N 
t 

D 
s 

E -E uv 
Ek-E 

v 

-8 1.12x10 

3.66x10- 25 

3.66x10- 25 

3.66x10- 25 

3.66x10- 25 

10 x10- 
10 

1 Ox 10- 10 

8.0 

8.0 

10 13 

2x10 13 

0.8 

0.3 

Dirnensions 
Value 

ev 

eVK- 

K 

-3 cm 

cm 

3 -1 cm s 

3 
cm s 

cm s 
6 -1 cm s 

cm s 

cm s 

S 

S 

-2 cm 

-2 cm ev 

eV 

ev 

References and Notes 

Sreedhar et al., 1969 

Boltzmann's constant 

Temperature 

Landsberg and Klimpke, 1980 

Landsberg and Klimpke, 1980 

From capture cross-section X 
thermal velocities (Barrett and 
and Vapaille, 1976) 

Evans and Landsberg , 1963 

and Robbins and Landsberg, 1980 

Dhariwal, Kothari and Jain, 

1981. 

Lane, 1968 

When Nt traps at a single energy level are used, it is assumed 

that they are at mid-gap. When a trap spectrum is used it has constant 

density Ds per unit area per unit energy and extends symmetrically by 

0.25eV about the mid-gap position. 
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TABLE 2.2 

NUMBERS DERIVED FROM TABLE 2.1 

Parameters Numerical Dimensions 
Value 

t1 3x10- 7 
s n 

t1 3x10- 7 
s 

p 
9 -3 n, =v1 8.1x10 cm 
9 -3 IT 1 3.1x10 cm 
13 -3 n2 2.4x10 cm 

p2 9.2x10 12 
cm -3 

Z /Z 3.58x10 9 
1 
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TABLE 2.3 

DATA USED FOR FIGURES 2.6 AND 2.7 (FOR CdS 

Parameter Numerical 
Value 

EG 

N 
c 

N 
v 

2.42 

1.76xlO 18 

1.17xlO 19 

Ts 1 1.66xlO- 11 

Ts 2 1.66xlO- 11 

T1 2.87xlO- 26 

T2 1.24xlO- 
26 

T3 2.87xlO- 26 

T4 1.24x 10-26 

Dimensions References and Notes 

eV 

-3 cm 

cm 

3-1 
CM Z 

3-1 
cm S 

6-1 
cm S 

6-1 
cm S 

6--1 
cm. s 

6-1 
cm S 

Robbins and Landsberg, 1980 

t1 Oxlo- 12 
s n 

t1 ox lo- 17 
p 

6 30.4 
n 

6 13.0 
p 

13 
N 10 . cm t 

E -E 0.34 eV tv 

ALL OTHER DATA AS TABLES 2.1 AND 2.2 
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(a) Donors, r-electron 
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r etectrons 

P 
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E k8 Ts 

4p Ev 

(b) Acceptors, r-electron 
energies 

1 Oe 5-33eV 

F- -- Og 

r+l etectrons 
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-, E r-" Ie 1-26eV 

lg 
0.28 

-r 

r electrons 

-n eut rat 

(d) Acceptor single electron 
energies 

Ec 
4 .. kEiT 5w' 

k 71ýp 

Figzwe 2.2 Trap r-electron energy levels and single-electron energy 

representations of these r-electron energy levels. 

N 



49 

107 

s0 

(CMS-1 

io6 

10, 

loý 
----0' 

0.2 0-4 0.6 0.8 1-0 

F0 -E v 
(eV) 

Figure 2.3 Thermal equilibrium surface recombination velocity as a 

function of Fermi level for the data of Table 2.1. (a) Nt traps at mid- 

gap, using (4.6). (b) Nt traps uniformly distributed about mid-gap, 

using (5.4). (c) As (a) without Auger effects. 

I 



50 

t 
s 0 

s 
n 

s p 

(s P/av 1) 

\ (s 
pp0 

/bn 
0) 

np oj 
ftv 

1 

EvE ti E t2 Et3 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

// 

(s 'n 
n0 

/Trlb) 

E 
c 

Figure 2.4 Surface recombination velocity for three trap levels as a 

function of equilibrium Fermi level. Auger effects are neglected. 
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Figure 2.6) Thermal equilibrium surface recombination velocity as a 

unction of Fermi level for the data of Table 2.3 for CdS. (a) N 
t 

-raps per unit area at Et-E 
v 

=0-34 eV, using (4.6). (b) As (a) 

without Auger effects. 
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CHAPTER 3 

EFFECTS OF SURFACE STATES AND OF EXCITATION 

ON BARRIER HEIGHTS AT A GRAIN BOUNDARY 

3.1 Introduction 

The recent wide interest in the electrical properties of grain 

boundaries is largely due to the considerable potential of polycrystalline 

devices. Examples are polysilicon emitter transistors, thin-film 

resistors and solar cells. Because of these applications the main 

interest is in transport properties across grain boundaries. These 

are strongly affected by the barrier height, due to charged 0B' 

interface staýes and compensating spape-charge regions on either side. 

Such a comparatively crude model of a grain boundary dates back to 

1952 (Taylor et al., 1952), has proved relatively successful, and is in 

fact similar to Schottky-type barriers which form for the same reason 

between semiconductors or between a metal and a semiconductor. The 

very crudeness of the model is responsible for the possibility of its 

wider use. 

This model is adopted also in the present work, which is rigorously 

confined to a theoretical study of how the barrier height is affected 

by the obvious parameters: Doping density, Fermi-level separation and 

the number of surface states and their position in the energy gap. 

This leads to a straight-forward problem in electrostatics whose only 

complication is due to the non-linearity of the Poisson equation: The 

electrostatic potential, ý is determined by the carrier concentrations 

n and p whose values depend themselves on ý. This has led to 

the use or the depletion approximation in which only the fixed space-charge 

I 
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q(N+ - N_ ) of donors and acceptors is used in the Poisson equation. 
o A. 

The present work jettisons this approximation but does not solve the 

problem in all generality since an assuroption of parallel quasi-Fermi 

levels is made. The approach used here dates from 1955 (Kingston and 

Neustadter, 1955) where it was used to model Schottky barrier heights 

at a surface in equilibrium and later for parallel flat quasi-Fermi 

levels (Garrett and Brittain, 1955). This model (see Section 3.3), 

which was first proposed as a solution to the grain boundary problem 

by Fossum and Lindholm (1980a) and Fossum and Sundaresan (1982). is 

treated here exactly and analytically (Section 3.4). It thus removes 

the need for computer solutions and the need to assume the surface level 

to be at mid-gap. Our approach leads to simple interpretations of 

the behaviour-of ýB (Section 3.5) and enables one to obtain approximate 

analytical expressions for some cases (Section 3.6). 

Although excellent summaries of work up to 1979/80 are given by 

Kazmerski (1980) and by Orton and Powell (1980), it may be helpful to 

review briefly work relevant to the present study. The popularity of 

the depletion approximation is illustrated for example by transport 

studies in polycrystalline silicon (Baccarani et al., 1978a, 1978b; 

Seager and Castner, 1978, Seto, 1975). Both single surface levels and 

a distribution of surface levels were considered. Because of the neglect 

of p-n in Poisson's equation the variation of the quasi-Fermi levels 

with distance plays little part in such models. Strictly, one neglects 

p and n separately, but this was relaxed to the neglect of p-n 

by Seager (1981) where barrier heights and currents were obtained both 

experimentally and theoretically in the presence of illumination. 

Experimental and theoretical studies on illuminated grain boundaries 

were also carried out partly to elucidate the behaviour of polysilicon 
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solar cells (Card and Yang, 1977, Panayotatos and Card, 1980). In the 

work by Panayo'tatos and Card, 11,1980) the depletion approximation was 

used and it was inferred that the minority quasi-Fermi level is not 

flat. Indeed the behaviour of the quasi-Fermi levels in Schottky barrier 

solar cells had been studied earlier (Klimpke and Landsberg, 1979 and 

1981) and the existence of extrema in both majority and minority 

quasi-Fermi levels had been emphasized (Pimpale and Landsberg, 1982). 

The experimental determination of the spectrum of surface surface 

states in the energy gap at grain boundaries has also been very active 

(Cheng and Shyu, 1981, Shyu and Cheng, 1982, Srivastava et al., 1982, 

de Graaf et al., 1982). All of this work has been carried out in 

polysilicon, with the exception of the work of Taylor et al. (1952), 

which dealt with Germanium. In Gallium Arsenide, two surface states 

were found (Spencer et al., 1983) and measurement of the mobility and 

conductivity in Cadmium Sulphide evaporated thin films has been 

reported (Wu and Bube, 1974, Ma and Bube, 1977). 

Continuing this work, parallel quasi-Fermi levels are considered 

here since this must be a reasonable approximation if bulk and surface 

recombination occur at comparable rates. At first, a single level of 

surface states is taken as one is interested in bow the properties of 

barrriers depend on the energy level of the states. The effect of a 

distribution of states can in principle be synthesized from this informat 

and this is examined in later sections. The barrier heights, 
B' 

calculated with this model are utilised in a simple calculation of the 

mobility and diffusion length in a grain. 

N 
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3.2 Main Assumptions 

The assumptions required to analyze the grain boundary recombination 

and the dependence of the barrier height on surface state density, 

doping and recombination are as follows: 

Al The grain boundary is a flat surface with separated identical grains. 

This makes a one-dimensional treatment appropriate. A p-type grain 

will be assumed so that the energy bands bend according to Figure 3.1. 

A2 The system is non-degenerate and both surface and bulk recombination 

occur via a generalized form of the Schockley-Read-Hall mechanism. 

A4 The bulk trap density makes a negligible contribution to the space 

charge. 

This model leads to analytical, though transcendental, results for the 

barrier height, surface recombination rate and surface recombination 

velocity. 

It was convenient for our numerical work to add the following 

assumptions: 

B1 The acceptors in the space-charge region are assumed fully ionized. 

This would automatically be the case for a non-degenerate sample with 

shallow acceptor levels. 

B2 The surface states of the grain boundary are assumed to be N DS 

donors at a single energy level E DS* 

B3 The same values of the capture coefficients G and H which occur 

in the Shockley-Read-Hall statistics are used throughout (see the last 

two entries in Table 3.1). i. e. G and R are independent of the 

position of the energy level of the state E DS* 
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There is a third group of assumptions which is often made, but 

is not required here: 

C1 Surface recombination dominates the bulk recombination in the 

space-charge region so that the latter is neglected. 

C2 The depletion approximation is not needed to solve Poisson's 

equation here. However, it will be introduced at various points in 

the curve descriptions (Section 3.5) to illustrate the underlying 

physics of some results. 

The departure from equilibrium in the theory is imposed by taking 

various specific separations between the Fermi levels as given. This 

separation can be established by injection or by optical excitation 

which has to overcome recombination in the bulk of the grain. In this 

I way of looking at the problem it is therefore not necessary to introduce 

bulk recombination explicitly. 

3.3 FormZation of the ModeZ. 

To obtain the barrier height, eh ' 
(Figure 3.1) an integration 

of Poisson's equation is required, where Poisson's equation takes 

the form 

e (p-n-N ), [ý (0) =- ý 2 CE A B' 
MW) = 01 

dx 0 

Here S. I. units, assumptions Al and A4 are used, NAW is the 

concentration of charged acceptors, n and p are the electron and 

holle concentrations and cc 0 
is the permittivity of the semiconductor. 

Also,, using A2, 

NA (x) 'g- NA (exp[n 
A 

W-y 
h 

1+1} -1 =N Aft-xp[nA 
(w)+ý(x)/k 

B 
T)-y 

h 
]+J}- 11 

(3.2) 
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n (x) =Nc exp[y 
e-tlc 

(x)] E- n(w) p(x) , 

p(x) =Nv exp(n 
V(x)-Yh] -= p(w)/Vl(x) . (3.4) 

A standard notation has been used with yF /k T, yF /k T and eeBhhB 

p(x) =- exp[eý(x)/k B T) .- (3.5) 

Note, in writing (3.2) it has been assumed that the occupation of the 

acceptors may be obtained using Fermi-Dirac statistics and that the 

effect of the minority Fermi level on the acceptor level occupation can 

be neglected. 

By introducing the readily obtained quantities n(w) and p(w) 

the two variables n(x) and p(x) have been replaced by a single 

variable p(R) whose value at x=0 will yield the barrier height , 

eý B' 
later. Two boundary conditions are needed to integrate Poisson's 

equation. At the edge of the space-charge region, x=w in Figure 3.1, 

dý i=0 (3.6) 
dx I X=w 

At the grain boundary surface, x=0, Gauss's theorem is used; 

taking a small "pill box" of unit area which crosses the grain boundary 

surface as in Figure 3.2, 

E. R dS 
q, f 

E: E: 
0 s 

Taking the limit as, k, the length of the pill box tends to zero, 

the charges qi contained within it are equal to the charge density 

of the surface states, Q per unit area. Also, the field, E, emerges 
s 

from the end of the pill box, so that one may write, 



-2 
ýt1 QS 

31 (3.7) 

6o 

dx E F- 
x=O 0 

where the charge per unit area on the surface is an integral over the 

energy levels, E. . of surface states in the energy gap, 

E 

Qs 
CS + 

DS 
(E 

S 
)(I-f(ESýeý 

B 
))-N 

AS 
(E 

S 
)f(ES2eý 

B 
+ES 

(3.8) 

E 
vs 

Here, N DS and N AS are the numbers per unit area (of the grain boundary 

surface) per unit energy range of donor and acceptor traps; f(E 
S 

eý B 

is the occupation probability of a surface energy level ES in the 

presence of a barrier height eý B* 

The Shockley-Read-Hall probability f(ESjeý 
B) 

is displayed as 

a generalisation of the Fermi-Dirac distribution utilizing assumptions 

A2 and A3. Using standard notation, this probability is given by 

(see Chapter 2, equation 2.31)), 

f (ES) eý B)= 

G(o)n(w)ii(o)+H(o)p 
1 

(E 
s) (3.9) 

C(o)[n(w)ii(o)+n 
1 

(E 
S 

)1+H(o)[P(W)/P(0)+p 
1 

(E 
S 

)] 

Here (0) indicates evaluation of a parameter at the grain boundary 

surface x=0, and (3.3) and (3.4) have been used. Dividing the right 

hand side of (3.9) throughout by the numerator, one can write f in 

the form 

f= (1+x) 

where 

G(o)n 
1 

(E 
s 

)+H(O)P(W)/11(0) 

G(o)n(w)vi(o)+H(o)p, (ES) 

Using 
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n(w)p(w)exp(y n (E )p (E n2 (3.10) 
h-ye IsIsi2 

the denominator of X can be rearranged to give 

G(o)rr 
1 

(ES)+H(o)p(w)/p(o) 

xp (w) /11 (0) 
2 G(o)n 1 

(E 
s )exp(y 

e-yh 
)+H(0)P(W)/P(0) P, 

j 

where also (3.4) and the definition of pI (see equation (2.30)) have 

been used. A function g(Esp eý B) 
is defined by 

g(ES$eý )= 
G(o)n 

I 
(E 

s 
)+H(o)p(w)/Ii(o) 

B G(o)n 
1 

(E 
s 

)exp(y 
e-yh)+H(O)P(w)/"(O) 

and f(E 
Se 

ýB ) may therefore be displayed as 

f (ES, eý )=1 (3.12) 
B g(ES>eý B 

)exp(TI 
S-yh 

)+i * 

It is seen at once that the equilibrium condition leads to the implications 

Ye ý Yh (=y 
0)- g(ESqeý B)=i. 

(3.13) 

The occurrence of the reduced majority carrier Fermi level in (3.12) 

is convenient as it will be assumed unchanged by the disturbance (see 

Panayotatos and Card, 1980). However, the display of the steady-state 

Shockley-Read type of probability (3.9) as a generalized Fermi-Dirac 

distribution is always possible, even for bulk recombination. As this 

may be of wider interest, it is useful to develop a formulation of 

f(E eý which is symmetric in n and p, using the neutral notation SB 

ft $ nt Et /k 
BT 

instead of f(E 
S eý B) and E for surface and 

bulk recombination: 

ft =1 h exp(TI t-Y 0 
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where 

h= exp(y 

G(O)n 
I 

(E 
s 

)+H(o)p(w)/Ii(o) 

ot G(o)ýl%(, w)jl(o)+H(o)pl(E s 

Rearranging h, 

h 
G(o). n 0 

(w)p(o)+H(o)p 
1 

(E 
s 

)exp[-y 
o-yh3 

G(O)n(W)P(O) + H(o)p, (ES) 

or alternatively using (3.3) 

G(o)n(w)p(o)exp[y 
o-ye 

]+H(o)p 
I 

(E 
s 

)exp[y 
0-Y hI. 

h(E 
t eýB'ye'yh'yo) = G(o)n(w)p(o) +11(0)p I 

(E 
s) 

This is the ýimplest form in which to express h, but one can go 

further to emphasize the symmetry, 

h= expty - (y +y )/21 

[G(o)n(w)li(o)exp[(y 
h-ye 

)/21+H(o)p 
I 

(E 
s 

)exp[y 
e-yh 

)/2) 

aehI G(o) (w)p(o)+H(o)p 
1 

(E 
s) 

and hence using 

coshO = (e a 
+e- 

e )/2 , 

h= expty (y +y )/2! cosh (a+ I (y ))/cosha (3.16) 
o- eh -f e-yh , 

where a is given by 

a= 1/2 ln[H(o)p 
1 

(E 
s 

)/G(o)n(w)p(o)] . 

However, 

Ye-yo 

and then 

h= exp[y (y +yh )/2)cosh[a 
0 

+1/2 
ý 

-Y )I/cosh[a 
0 

+1/2(y y )l (3.17) 
0- e 

(yo 
h o- e 
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where 

cto = 1/2 ln[H(o)p 
1 

(E 
s 

)/G(o)n 
0 

(W)II(O)l 
- 

Note, in (3.17) the term p(o) in a0 is the steady-state value and 

not the equilibrium value p0 /(o). 

In Section 3.6, one uses the Shockley-Read recombination rate 

(Chapter 2, equation (2.27)) via the grain boundary surface states in 

the non-equilibrium steady-state and this is per unit area 

G(o)H(o)tn(w)p(w)-n 
2 }[N (E )+, N S(ES)]dES 

dUS =i 
DS SA 

G(o){n(w) (0)+n 
I 

(E 
s 

)J, -flxo)tp(w)/P(O)+p I 
(E 

sW 

It is useful to define a surface recombination velocity s(o) by 

E 
es 

s(o) EE 1/n 
e 

(0)} 
1 

dU 
s 

(3.19) 

E 
vs 

where ne (o) is the number of excess carriers per unit volume at the 

surface of the grain, 

ne (o) = n(o) -n0 (o){ = n(w)p(o) -n0 (W)p 
0 

(O)} 
- 

Also the recombination current density is defined by 

J (o) = eU s 
/2 (3.20) 

The factor of one half arises because of the assumption of identical 

grains giving two equal current densities on either side of the grain 

boundary. The factor of a half has to be omitted if a simple surface 

is discussed. 
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3.4 The Barrier Height 

From the equations of Section 3.3, an analytic, though transcendental 

equation for the barrier height, ýBI at x=0 in equilibrium and in 

the steady-state will be developed. 

Equations (3.2) to (3.5) are used to write Poisson's equation (3.1) 

in the following form, 

de 
p(w)exp[-eý/k T]-n(w)exp[eý/k T) A (3.21) 

dx 
2 EE 0BB exp[ri A 

(w)-eý/kBT-y 
h]T'' 

Multiplying both sides of (3.21) by (dý/dx) and integrating from x=0 

to x=w, 

)21 [dý (dx) 

X=w 
I(jx- 

I X=o 

kB T- 

-p(w)exp[-eý/k T]-n(w)exp[eý/k T]+N lnfexp[n (w)-eý/k T-y ]+11 

lw 

EEBBAABh 
01 

X=o 

Using-the boundary condition (3.6) at x=w, one has 

dý 
f2k 

B T11 
P(W)11-p(o)- 

I }+n(w){p(o)-I}+N lnf 
exp[rl A(w)-Yh 

]+l 

- 

-1 

-j ý-x [CCO 

I- 

A 

lx=O 

L 
111(o)- 

exp[ri A 
(w)-y 

h 
1+1 

where the negative root has been chosen in order to give the correct 

sign of the barrier height. Introducing the boundary conditions (3.7) 

and (3.8) at x=0, a transcendental equation is obtained for the 

barrier height, (k 
B T/e) Inji(o): 

n(w){p(o)-I}+p(w){p(o)- 
I- 1}+N 

[In 

(o)-ln 
exp [ T'A (w) 

-Y 
h 

]+I 

.IE CS 

AI 
lp 

(0) 1 
exp[ri A 

(w)-y 
h]+', 

e2N DS 
(E 

SN AS 
(E 

S) dE 8k 
B 

TcE: 
0 

JE 

I+g(E eý )- 1 
exp 

1+g(Esjeý B)exp[rls-yh s 
vs SBý 

Eyh-ns] 

(3.22) 
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The equilibrium barrier height, ý 
Bo ' is obtained in the limit (3.13). 

Writing the Shockley-Read occupation probability in the form (3.12) 

of the Fermi-Dirac statistics together with utilization of the limit 

(3.13) has allowed the display of the equilibrium result as a special 

case of the steady-state equation; separate treatments of the equilibrium 

and steady-state barrier heights are then avoided. Note, if the 

depletion approximation was used to solve (3.1) one would arrive at 

equation (3.22) with effectively 

pM= 

in the left hand side. Thus, the depletion approximation yields also 

a transcendental equation for the barrier height. Physically, equation 

(3.22) expresses charge balance between the space-charge and the charge 

on the surface states. 

To simplify the numerical calculations, the additional assumptions, 

BI, B2 and B3 are made. Neutrality in the grain bulk is assumed, 

locating the positions of the quasi-Fermi levels in the energy gap at 

x=w via 

p(w) --n(w) -NA=0. (3.23) 

A quadratic equation for p(w) is formed from equations (3.23) and 

(3.10), 

P(W) 
2-n2 

exp[-y -y I-N p(w) iehA 

The solution of this quadratic equation is 

22(I 
p(w) =NA /2 ± [N 

A 
/4+n 

i exp[y 
e -Y h 

11 

Using assumptions B1 to B3, where we see that the acceptors-in the bulk 

are all ionized, the surface traps are all donor type at an energy, E DS ' 
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and that G(o) and H(o) are not functions of E DS ' equation (3.22) 

becomes 

eN DS 
[n(w){ji(o)-l}+p(w){p(o) -1}+N A 

lnll (o) I- 
(Bee 

okB 
T) I+g(E 

DS' eý B expfy h-T'DS' 

Defining two dimensionless parameters by 

a =- (8E: c 
okB 

TN A 
)'/eN 

DS 
(3.24) 

and 

vE p(w)IN A 
(1-v = n(w)/N A 

by (3.23)) , 

then one has 

IJ+Inp(o)] = 
I-If 

I+g(E 
DS' eý B exp (y 

h-T'DS 

Utilizing equation (3.11) for g(E DS' eý B) and noting that 

P(W)11(0) -1 /P 
1 

(E 
DS) = exp[ri DS-yh] ' 

equation (3.22) yields 

11(o)p (E G(o)n (E )+H(o)p(w)v(o)- 
1 DS 1 DS 

PN-5- G(o)n 1 
(E 

DS 
)exp[y 

e -Y h 
]+H(o)p(w)p(o)- 

a[(I-v){P(o)-I}+vfii(o) 1}+Inp(o)] 

Finally, dividing the numerator and denominator by NA and rearranging 

factors, 

P(O) -- 
vN A 

G(o)(n I 
IN 

A 
)p(o)+H(o)v 

ap, G(o)(n I 
IN 

A 
)p(o)exp [Telyh3 +H(o)v 

al . 
(3.25) 
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In equations (3.24) and (3.25), the quantities regarded as given are 

those of Table 3.1 and also N A' NI)S2 E 
DS -E VS and Fe-Fh* The 

values of n1 and pI may then be deduced. Next, p(w) is obtained 

by solving the quadratic resulting from (3.23) and (3.10). This gives 

Fh referred to the standard energy EvM. From this Fe is determined 

since Fe-Fh is regarded as given. Equation (3.25) is then solved 

iteratively for the barrier height, eý B' and solutions are presented 

in Figures 3.3 to 3.14. The theory can be easily extended to n-type 

grains and this form of it has been used below in Figures 3.12 and 3.13. 

3.5 Explanation of Figures 3.3 to 3.10 

Figures 3.3 and 3.4 can be understood physically if one recognizes 

that the curves of each figure are of similar shape and differ only as 

regards the donor concentrations 
_N DS * Thus, an intuitive argument for 

one of the curves will describe the nature of them all. A physical 

understanding will enable the development of some simplified mathematical 

formulae for the barrier height in Section 3.6. 

19 -3 For small enough acceptor concentrations (N 
A <10 cm the Fermi 

level at x=0 lies above the- surface donor levels, E 
DS 

Their 

(small) degree of ionization cau ses some band bending. At the acceptor 

concentration increases one may think of the band edges and the donor 

level to move down rigidly in Figure 3.1, pulled by the faster moving 

Fermi level. This process causes more ionization and eý Bo 
increases 

as in Figure 3.3. The barrier height reaches a maximum when the Fermi 

level and E DS are at the same energy. 

Note,. this iszwhere the model developed here differs from those 

of Baccarani et al., (1978a, 1978b), Seager (1978), Seager and Castner 

(1978), Seto (1975) which use the depletion approximation. Using the 
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depletion approximation, as the number of acceptors (N 
A) tends to 

zero, the space-charge (also NA) tends to zero; whereas in our model 

there is a contribution to the space-charge (p-n-N 
A) 

from the electrons 

and holes. Thus, the depletion approximation incorrectly calculates 

very large band-bending for small NA in order to very largely neutralize 

the charge on the donor surface state. As NA is increased from zero 

in the depletion approximation, the barrier height falls in opposition 

to our result which rises. 

In Figures 3.3 and 3.4, once the Fermi level lies below E DS' the 

donors are almost fully ionized while the ionized acceptor concentration 

continues to increase as acceptors are added. The balance of (positive) 

charge on the surface with that in the space-charge region then requires 

the (negativP) charge per unit area 

w 

qBýef (p-n-N 
A 

)dx 

0 

(3.26) 

to remain almost constant. It follows from (3.26) that p-n increases 

(w decreases) and hence p(o) and ýB increase. Alternatively, using 

the depletion approximation 

QS eN Aw2 
(3.27,3.28) 2eN 

AB 
2ce 

verifying the decrease in wI and showing also that ýB decreases as 

more acceptors are added. 

Consider next the barrier height for fixed NA but different surface 

donor concentrations and at two different energy levels (Figures 3.5 and 

3.6). For high enough surface donor concentrations (N 
DS ý: 10 16 

cm, -2 

if N q, 10 21m-3 
A 

in the grain boundary surface, the/equilibrium Fermi 
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level lies above the donor level. Injection of electron-hole pairs 

raises the quasi-Fermi level for electrons above that for holes as in 

Figure 3.1. The occupation of the surface donors increases. The 

decrease in QS is expected in (3.27) and (3.28) to lead to a decrease 

in w and hence in ýB* This explains the general slope of the curves 

in Figures 3.5 and 3.6. [Strictly. speaking, raising Fe increases n 

and hence the surface donor occupation by virtue of increased 

recombination traffic. It is assumed that this is understood in the 

further comments made below. ] 

The flat parts of the curves can be understood as follows: The 

Fermi level lies below the donor level in equilibrium. As the Fermi 

level for electrons detaches itself from the hole quasi-Fermi level 

with increasing electron-hole pair injection, the effect on the space- 

charge region is comparatively slight as the donors remain largely 

ionized. Further injection raises the electron quasi-Fermi level 

above the donor surface level E 
DS and the donors begin to fill with 

electrons. The barrier height then falls with increasing Fermi level 

separation as was seen before. 

The generally larger barrier heights observed in Figure 3.6 above 

those in Figure 3.5 are due to the greater value of Qs for the higher 

donor level (if other things are equal). Note that the position of 

Fh is not fixed by the value adopted for NA by virtue of (3.10) and 

(3.23) is then assumed largely unaltered by electron-hole pair injection 

in this discussion. This is satisfactory for F. -F h :ý0.5 eV when 

the excess hole concentration reaches IOZ of the equilibrium concentration, 

at which point the hole quasi-Fermi level moves slowly down towards the 

valence band edge. 
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The depletion approximation is not involved in the present theory, 

it is used merely for discussion purposes in the form of equations 

(3.27) and (3.28). Nonetheless it is of interest to estimate the 

kind of error which can occur by making this approximation. Quite 

simply, the depletion approximation is equivalent to setting: 

n (w) =p (w) =0, 

in the left hand side of equation (3.22). A comparison of the two 

models is given in Figures 3.7 and 3.8. One sees from Figure 3.7 

curves (a) and (b) that the depletion approximation (b) overestimates 

the barrier height by 6% in equilibrium. Using a flat Fermi level 

and including the space charge contribution from electrons and holes as 

the present theory of curve (a) does, the barrier height so calculated 

is exact in equilibrium. 

The error in the barrier height calculated by the depletion 

approximation is expected to be greater when the barrier is low or for 

very low doping concentrations. Since the charge density is given by 

q(x) = p(w)p(x)- n(w)p(x) -N- 

the depletion approximation calculation will be in error when the 

contribution to the total space-charge by n(w)p(x) is large (i. e. 

for very large barriers), or when p(w)p(x)- 
I is large (i. e. for 

small barriers). 

Turning to the non-equilibrium steady-state barrier height, curves 

(a) and (b), the depletion approximation progressively underestimates 

the space-charge by a larger amount because it neglects the electron 

contribution and therefore too large a barrier is calculated. In 

curves (c) and (d), initially the depletion approximation neglects the 

hole contribution thus overestimating the space-charge, calculating 
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too small a barrier. As the quasi-Fermi level separation increases, 

the electron concentration becomes larger until it exceeds the hole 

concentration; this leads to an overestimate of the barrier height 

when the depletion approximation is used. 

In Figures 3.9 and 3.10 the barrier height is shown as a function 

of surface donor energy and they indicate again that higher donor 

levels have a greater degree of ionization leading to larger barriers. 

The reference energy is chosen to be Ev (w) since this is unaffected 

by barrier height. As a result, the hole quasi-Fermi level is a fixed 

vertical line, and the electron quasi-Fermi levels are displaced from it 

as shown. The straight sloping lines represent the surface band edges; 

one sees, for example that EE (w) becomes more negative as the 
v 

barrier height increases. In this representation any horizontal (or 

vertical) distance from E 
CS 

to E 
vs gives the value of the energy 

gap. 

In equilibrium (F 
e=Fh 

curve of Figure 3.9), one sees that as 

the donor surf ace energy is raised f rom a point low in the energy gap, 

the barrier height increases. However, the degree of ionization of the 

donor state has only a slight increase (the donor level moves a little 

closer to the Fermi level in Figure 3.9). From (3.26) using the 

depletion approximation in the crudest sense, the total space-charge 

per unit area remains fixed because NA is constant. Hence, as the 

donor surface level is raised in the energy gap, -the barrier height 

increases in such a way as to keep E 
DS -F0 constant and the balancing 

space charge is constant. Of course, as the barrier height is increased, 

electrons flow into the space-charge region,. holes flow out of it and 

the surface donors become a little more ionized to balance the increased 

space-charge. 

I 
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Turning to any curve of fixed positive Fe-Fh" it is seen to 

consist of three parts each of which may be specified by the two 

dominant electronic transitions involving the donor surface level. 

Passing from left to right: 

(i) Donor-valence band interactions dominate, so that 

H(o)p 1 >> G(o)n(o), H(o)p(o) >> G(o)n 
1* 

(3.29) 

(ii) The downward electronic transitions (i. e. electron and hole 

capture) dominate, so that 

G(o)n(o) >> H(o)pl . H(o)p(o) >> G(o)n 1* 
(3.30) 

(iii) Donor-conduction band interactions dominate, so that 

G(o)n(o) >> H(o)p, . G(o)n 1 >> H(o)p(o) . 
(3.31) 

In part (i), ýB follows the equilibrium curve since the conduction 

band is hardly involved and Fh is fixed. One can see this result 

mathematically from (3.25), 

p(w) -27 N n(w) 4- (n 2 
exp[y -Y ])IN 

A'IehA 

thus 

v -I- I, 1-v --I- (n 2 
exp[y -Y ])IN 2 

IehA 

The Fermi level dependence of the second factor of (3.25) is normally 

22 
negligible because of the small factor ni IN 

A, while G(o)n 1 
in 

thefirst factor is negligible by the assumption for part (i). Part 

(iii) is analogous to part (i) with the roles of the conduction band 

and the valence band reversed. The flatness of part (ii) of the curve 

is expected from (3.30) and the first factor of (3.25). 
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The three parts of the curves discussed above lead one to look 

for a case in which the upward electronic transitions dominate, 

G(o)n I >> H(o)p(o) , H(o)p 1 >> G(o)n(o) . (3.32) 

This is indeed realized if Fe<Fh for part (iv) of the curve shown 

in Figure 3.9. 

Complete ionization can be reached in Figure 3.9 only if the surface 

donor level and the equilibrium Fermi level enter the conduction band. 

However, complete ionization is possible for the lower surface donor 

concentration used in Figure 3.10. The flat part of the curves on 

the right hand side represent this case. 

3.6 Approxýýmations for the Barrier Height 

Approximate relations for most parts of the curves of Figures 3.3 

to 3.14 will be obtained in this section. Considering first equilibrium 

conditions, as shown in Figure 3.3, an approximate expression for the 

barrier height in the region to the right (larger N) of the maximum A 

has already been obtained by Seager and Castner (1978). It was shown 

that the barrier height is proportional to 11N 
A 

in this region because 

the surface donor traps are all ionized. 

To the left of the maximum (smaller NA) in Figures 3.3 and 3.4, 

the bracketed factor of (3.25) is equal to unity. Equations (3.23) 

and (3.10) have the approximate solutions 

2 
p(w) --! - NA, n(w) A- n1 IN 

A 
(« NA) (3-33,3.34) 

and therefore 

e il 
!. T In(N (n 22 -1- 1- '-al 

ý. kBA /ap 
1+kBT In i 

IN 
A 1}+lnp(o) 
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22 -3 15 -2 Using the data of Table 3.1, (also NA< 10 m for NDS > 10 m 

and a single trap level at mid-gap, one finds a << 1. Also, since 

n2 IN 2 
<< 1 and p(o) >> 1 (from Figures 3.3 and 3.4) 

1A 

eý kT ln(N /ap (k T/2) lnflnp(o)} 
Bo BA1B 

The last term of the above equation is very small in comparison with 

the first two terms and hence 

eý kT ln(N IaN )+EE (3.35) 
Bo BAv DS vS 

Equation (3.35) explains the straight line regions of Figures 3.3 

and 3.4. 

For larger NA' approaching the maximum barrier height value of 

max NA, one can rely on (3.33) and (3.34) which enables (3.25) to be 

recast in equilibrium as 

2-I-2 lp 
I p(o)/N A +1) lp(o) - I+Inp(o)] =a (3.36) 

The maximum of ý Bo 
in Figures 3.3 and 3.4 can be estimated by 

differentiating (3.36) with respect to NA 

hu (0) 1 +lnp (o) 
2p 

1p 
(0) 

[p p(o)/N +1]+ 
2p 

1 dii (o) 
p p(o)/N +1] + 

N21A- 
jN -A E' 

IA 
A 

RA- 

plp(o)/N 
2 [P(0)- 1-P(0)- 21 dp(o) 2 da 

A+lý dN 
A3 

dN 
A 

At t he maximum, 

dp (o) 
dN 

A 

and from equation (3.24), 
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da a 
dN 

A 
2N 

A 

which yields 

'A p p(o)N 
1 
+1 [. U(O)- 

1- 1+lnp(o)] =a -2 (3.37) 2plp(o) NIAI 

Dividing (3.37) by (3.36) leaves 

Pi p(o)N A 
1+1 

2p N -1 
1AP . '0) 

and therefore at the maximum, 

N max /P 
max A 

Now, using (3.4) and (3.33) yields 

v 
exp (T'vS-r'DS lp, = 

ýN 

Alo(o)ýmax[ = Nvexp(nvS-yo)] (3.38) 

The expressions in square brackets in (3.38) show that the Fermi level 

lies approximately at the surface donor level for this condition. To 

max calculate P(o) 
max ' we first obtain NA, the doping density which 

leads to the maximum barrier height; thus (3.37) is recast into an 

equation for N max using (3.3 . 8) 
AI 

+Nvexp 
ET'vS-' IN max) 

-1+ln(N 
maxexpf "DS-TIvS3 /Nv) a -2 

DS' AA 

Neglecting ln(N max IN ) by virtue of (3.33), 
Av 

2 ýT'DS-nvs 
+(N 

v 
exp[r, 

vS-r'DS 
]IN 

A max)-i 1/4a 

or alternatively using (3.24), 

(e 2N2 /32cc k T) -N exp[TI -n 
N max DS oBv vS DS 

(3.39) An 
DS - TI 

vs 
-1 
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Using again equation (3.38), the maximum barrier height is given by 

(e 2N2 /32ce k TN )exph -1 
I 

DS oBv DS-rlvSl (eý 
Bo 

) 
max ýkBT ln I T'DS-r'vS- 1 (3.40) 

Equations (3.39) and (3.40) are in reasonable agreement with the maxima 

of Figures 3.3 and 3.4, the error between (3.40) and (eý 
Bo 

) 
max 

taken from Figure 3.3 for N 
DS ý 10 16 

m- 
2 is 4.5%. 

Turning now to non-equilibrium, Figures 3.5 to 3.10, some additional 

results can be derived. These relations are obtained in a similar 

way to (3.35). In addition, equations (3.36) to (3.38) are used to 

simi-pplify the second factor of (3.24). These results can be used to 

understand the curves of Figures 3.5 to 3.10. 

Considering the steep region W of Figures 3.9 and 3.10, we 

have the inferred condition of (3.29) because E DS 
is low in the 

energy gap. These conditions are inapplicable to Figures 3.5 and 3.6. 

Using (3.29) the second factor of (3.25) is unity. Equation (3.23) 

has the approximate solutions 

p(w) -71- N n(w) =n2 exp[y -Y IN << N (3.41,3.42) 
A'1. e hl AA 

in low injection. Thus, one again finds (3-35) for the barrier height, 

eý eý -. k Tln(N IaN )+EE 
B Bo T3 Av DS vs 

From equation (3.18), using (3-29), (3.23) and (3.10) as above., the 

recombination rate Us is given approximately by 

G(o)H(o)N n2 (exp[y -y 1-1) 
uZ DS ieh 

s H(o)IN A/"(0)+pl 
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Utilizing the form of p(o) given by (3.35), 

usi, G(o)N DS n1 (exp[y 
e-yh 

1-1)/(a+l) 
. 

The surface recombination velocity in this case is given by (3.19) 

where the number of excess electrons is 

n (o) = (n 2 IN )(exp[y 
eiA e-yh 

(0) 

Using equation (3.42), but from (3.35) 

p(o) =NA /ap 
1 

and hence 
S 

s(o) = G(o)N 
DS a/(a+l) . (3.43) 

Similarly, the recombination current J(O) was given by (3.20), 

which in this case is 

J(o) = eG(o)N DS nI lexp(y 
e-Yh 

)-11/2(a+l) 
. 

Note, the units of US are m -2 s -1 
. of s(o) are ms- 

1 
and J(o) 

has units Am- 2 in the S. I. system. 

Turning to the flat regions (ii) of Figures 3.9 and 3.10, the 

conditions of (3.30) are inferred because E DS 
is near mid-gap. This 

set of conditions also applies to figure 3.5 for Fe -F h>0.3 eV when 

16 -2 N DS > 10 m Taking high enough carrier injection, the second 

factor of (3.25) (in round brackets) is approximately 

H(o)N 
A 

/G(o)n 
I p(o)exp[y 

e-yh 
I- 

Thus 
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H (o) N2 

2A 
p (0) =-a 

aG(o)n 
2 

exp[y (1-v)fp(o)-I}+Vfp(o)- I- 1}+Inp(o) i e-yh 
I 

Again, appealing to 

a << 1, n2 exp[y -Y ]IN 2 
<< 1 

IehA 

and neglecting the third factor of (3.25) (in square brackets) on 

taking logarithms because 

1 np (o) <<p (o) 
, 

thebarrier height for an energy level of donor traps near mid-gap is 

given approximately laq 

eý i- (k T/2)ln{H(o)N 
2 /aG(o)n 2}- (F -F )/2 

. 
(3.44) 

_BBAieh 

Equation'(3.44) is similar to equation (17) of Fossum and Lindholm (1980a) 

but has an extra factor of a. This factor provides closer agreement 

of the approximate result with a detailed solution of (3.25) under 

the appropriate conditions. Equation (3.44) applies only to the non- 

equilibrium steady-state. The recombination rate (3.18) using the 

conditions of (3.30)is approximately 

Us 

and hence using (3.44) 

G(o)H(o)n 
2 [exp[y -y ]-I}N 
ieh DS 

G(o)n(w)p(o)+Il(o)p(w)p(o)- 
I 

u 
[G(o)H(o))ln 

i 
{exp[y 

e-yh 
I-ON 

DS 
s ;, I 

exj)((y 
e-Yh 

)/2)/a +a exp{(y 
e-yh 

)/2} 

Dividing throughout by a-lexp (y 
e-Yh 

)/2 yields 

us= 2N 
DS 

[G(o)H(o)}'n 
I 
alsinhf(y e-yh 

)/2}/(a+l) (3.45) 

1 
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Assuming the carrier injection creates equal concentrations of excess 

electrons and holes, i. e. 

ne (o) = n(o) -n0 (0) = p(o) -p O(o) , (3.46) 

thus, 

2 
n(o)p(o) -ni= fn 

0 
(0) +pa (o) +ne (o)}n 

e 
(0) 

Then the recombination velocity at the grain boundary using equation 

(3.19) is 

G(o)H(o)N 
DS 

fn 
0 

(0)+p 
0 

(o)+n 
e 

(0)} 

S(O) =- (3.47) 
G(o){n 

0 
(o)+n 

e 
(o)+n 

I 
}+H(o)[p 

0 
(o)+n 

e 
(o)+p 

1 

Letting the n_umber of excess carriers tend to zero defines, in the 

limit, an equilibrium surface recombination velocity, 

G(o)H(o)N 
DS 

(n 
o(W)p 0 

(o)+po(W)po(0) -1 } 
s0 (0) =-1 (3.48) 

G (o) (n 
0 

(w) J-1 
0 

(o) +n 1 
}+H(O) (P 

0 
(w) p0 (0) +p 1) 

Utilizing the conditions of (3.30) for a trap near mid-gap, and (3.35) 

for the barrier height, the recombination velocity at the grain boundary 

near equilibrium is 

G(o)H(o)N 
DS 

(n 
1 a- 

1 
+ap 11 

s0 (0) =-1 (3.49) 
G (o) n1a +H (o) p1a 

Equation (3.48) is quite general, and may be used for a donor surface 

level at any energy in the band-gap, providing po(o) is known. In 

particular, for a donor level near the valence band edge, the conditions 

of (3.29) allow one to use equation (3.35) for p0 (0) and (3.48) 

gives again the recombination velocity of equation (3.43). 
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Away from equilibrium, equation (3.47) is needed for the steady-state 

recombination velocity. For a donor level near mid-gap, equations (3.44) 

and (3.35) are used for the barrier heights, (3.46) for the number of 

excess carriers and (3.10) for n(w) , thus 

22 
n. H(o» 

AN 
AniA 

n (0) = n(w)p(0)-n (w)p (0)= --'exp exp[(y y )/21- - -- 9 e00NA 
'«ye-Yhl[aG(O) 

)ni h- eNA ap, 

noting equation (3.44) yields the non-equilibrium steady-state barrier 

height and equation (3.35) yields the equilibrium barrier height. 

A little simplification of the excess carrier density gives 

ne (0) =n1 exp[(y e-Yh 
)/2]{H(0)/aG(0)} n1a-, . 

Thus, the recombination velocity (3.47) in the steady-state, utilizing 
the conditons of (3.30) and ne (0) above, is 

S(O) --' 
G(O)H(O) 

-N 
DS 

fn 
i exp[ (Ye_Yh )/21[H(O)/aG(O)}'+ap 

I 

. {G(O)H(O)/a)lniexp[ (Ye_Yh )/21+[G(O)H(O)a}in 
I 

exp[Y 
e -Y h 

)/21 

Dividing the denominator and numerator by ni exp[(y 
e_Yh 

)/21[G(O)H(O)a- 

s(O) ir (G(O)H(O)a} 
IN 

DS 
f(H(O)/aG(O)) 

I 
+ap 1niI exp [yh-ye )/2]}/(a+l) 

and utilizing equations (3.44) and (3.35), the non-equilibrium steady-state 

grain boundary recombination velocity is 

s(O) A- N 
DS 

{H(O) + aG(O)p(O)p 0 
(0)_ 1 }/(a+l) 

, 
(3.50) 

for a donor surface level near mid-gap. The recombination current 

density from equation (3.20) and (3.4S) is 

z- en N (G(0)H(O)a} sinh[y )/2]/(a+1) - J (0) -7 i DS e-Yh 
(3.51) 

Considering the steep regions (iii) for Figures 3.9 and 3.10, 

the conditions of (3.31) are inferred because the donor surface level 

is high in the energy-gap. These conditions also apply to Figure 3.6 

for N DS > 10 16 
m -2 

. For low enough injection, the round bracketed 

factor of (3.25) is equal to exp[ Yh-ye I and also, 

I 
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A'IehAA 

hence, 

81 

p (0) --1. -NA1- a] 
ap exp[y III 

111 

I e-yý 1)+lnjj(O)l 

The third factor of (3.25) [in square brackets here) is neglected on 

taking logarithms because its largest term is ln[lnp(O)]/2 which is 

much less than p(O) . Thus, 

eý B -I- kBT ln(N 
A 

/aN 
v)+E DS -E vs 

+Fh-Fe' (3.52) 

is the approximate barrier height for a donor level near the conduction 
band edge and in the grain boundary surface. Note that this equation 
is the same as (3.35) in equilibrium, which confirms the extended region 
M in Figures 3.9 and 3.10 for equilibrium. In the steady-state, 

the barrier height in region (iii) is identical in shape to region (i), 

but it is displaced by Fe-Fh as equation (3.52) confirms. 

Utilizing (3.31), the recombination rate (3.18) is given by 

TI 
G(O)H(O)N n2 texp[y -Y I-l} 

DS ieh 

s G(O){n(w)p(O)+n 1 
The barrier height expression (3.52) and also (3.42) for n(w) yield 

Us -I- H(O)N DS ap I 
{exp[y 

e-Yh 
]-11/(a+l) . (3.53) 

In a similar way, the surface recombination velocity (3.47) at the grain 
boundary under the conditions (3.31) is obtained, 

G(O)H(O)N {ap +(n 
2 IN )exp[y -Y I(N /ap )exp[y -ye]} DS 1iAehA1h 

S(O) 
G(O){(n 

2 IN )exp[y -y I(N /ap )exp[y -y I+n 

_iAehA1heI 
where (3.42), (3.52) have been used. Dividing throughout the above 

expression by G(O)n,, 

* 
H(O)N 

DS 
(ap 

1 
/n 

1 +I/al 
(3.54) S(O) . {I/a+ll 

It is interesting to note that for energy levels of donor states low 

in the energy gap or high in the energy gap the approximate forms, 

(3.43) and (3.54) respectively, for the grain boundary recombination 

velocity are independent of the quasi-Fermi level separation in the 
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steady-state. For a trap level near mid-gap, the grain boundary 

recombination velocity (3.50) is a weak function of the quasi-Fermi 

level separation. 

The recombination current density (3.20) is given by 

J(O) --ý- eap 1 
R(O)N 

DS(explye-Yh 
1-1}/2(a+l) (3.55) 

for a trap level high in the energy gap, where equation (3.54) has 

been used. 

3.7 Comparison with Experiments 

The theory of Section 3.4 has been used to fit some recent 

experimental results. In each case it is necessary to obtain values 
for the parameters required by equation (3.25). Where this data has 

not been supplied by the authors of the experimental work, the accepted 

values for silicon have been used and are given in Table 3.1. 

In Figpres 3.11 and 3.12 each experimental point corresponds to a 

differently doped sample, but nonetheless the present theory has been 

used in Figure 3.12 with a single value of the surface state density 

and energy position and, in Figure 3.11, with two values of surface 

state density (at one and the same level). The reason is that there 

is a greater spread of values in Figure 3.11 so that de Graaff and his 

co-authors (1982) have also used two theoretical curves to fit the data. 

They chose one surface state density and two different energy levels. 

The satisfactory fit represents an experimental check on the 

theoretical curves of Figures 3.3 and 3.4. Note that only one type of 

surface state - donors on a p-type grain or acceptors on an n-type 

grain has been used. This removes one additional fitting parameter 

arising from the possibility of both donor and acceptor states being at 

the same level, as for example in Seager and Castner, (1978). Also, the 

depletion approximation was not used here. 

We turn lastly in this section to non-equilibrium barrier heights 

as a function of illumination (Figures 3.13,3.14). The satisfactory 

fit here represents an experimental check on the theoretical curves of 

Figures 3.5 and 3.6. The experimental results of Figure 3.13 have been 

fitted equally well by Seager (1981) using diffusive transport and an 
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infinite grain boundary recombination velocity. It is interesting that 

such good fits are possible based on such different premises. 

For a general explanation of the curves, see Section 3.5. 

The numerical data of Seager (1981) and Card et al., (1982) for 

the generation rate by illumination was given in the units of suns 
-2 and Wm respectively. It is necessary to convert this data into an 

equivalent separation of Fermi levels. For the data of Seager (1981), 

equation (2.3) there was used to find the number of minority carriers 
(holes in an n-type grain) at the edge of the depletion region, and this 

equation is 

p (w) = p. 
1/-fr 

-B (3.56) 
e iN 

01 
x 

Here p. is the number of holes at infinity, 

p. = LT 
, 

Where L is the uniform generation rate of carriers (m-3 S- I) and 

T is the lifetime(s). Also, ND is the number of donors in the 

bulk and xL is the diffusion length (m). Equation (23) of Seager 

was obtained by solution of the minority carrier diffusion equation 

with uniform generation rate in an infinite half plane of a silicon 
bicrystal. From (3.56) and (3.10) the separation of the Fermi levels 

is obtained, using also 

N (3.57) 

The following numerical data from Seager (1981) was adopted: generation 
26 -3 -1 -7 rate L= 10 mS for I sun, lifetime T= 10 s diffusion length 

-6 22 3 
xL= 10 m, and number of donors, ND=1.3 x 10 m 

Calculation of the Fermi level separation for Figure 3.14 involves 

converting the power density 

p= hvN 

where N0 is the number of incident photons and hv the energy 

of a single photon, into an equivalent number of photo-generated carriers 

using 
412 

ti H == oc (kjý 
x L 
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Again, Seager's (1981) equation (23) was used to find n(w) and hence 
21 -3 the Fermi level separation by (3.10). In this case, NA =3x 10 m 

was used. Throughout the work of this section, all other data was 

taken from Table 3.1. 

3.8 A Simple Surface State qpecti-um 

Some recent experimental work (Sah, 1976, Singh and Srivastava, 

1983) has examined the surface-state energy levels at the interface between 

between the oxide and semiconductor layers of MOS devices. In general, 

the distribution of states found in U-shaped (Sah, 1976, Herman and 

Kazowski, 1981, Nicollian, 1977) with more states near the band edges 

than in the centre of the energy gap. Few authors (Brown and Gray, 

1968) have indicated which levels are donor-type and which are acceptor- 

type in their results. In the absence or any firm results for the 

distribution of surface states at a grain boundary, one can only 

postulate 
Jhat 

similar results to the above will be found. The nearest 

approximation to the U-shaped distribution for which the right-hand 

side of equation (3.22) for the barrier height can be integrated is 

the constant distribution of energy levels (Chapter 2, Section 2.5). 

Introducing constant distributions N DS of donor states and N 
AS 

of acceptor states, and the probability of occupation f (ES 
peý B) 

from 

equation (3.9), the charge on the grain boundary surface per unit area 
is by equation (3.8), 

e(N +N )[G(O)n(w)p(O)+H(O)p (E )IdE 
Qs = eN DS 

(E 
CS -E vs 

fEc s DS AS IS-1S (3.58) 

E 
vs 

G(O)[n(w)p(O)+n 
I 

(E 
S 

)]+H(O)[P(W)P(O) +p I 
(E 

S 
)) 

To integrate equation (3.58), it is useful first to change variables to: 

z exp(ns-rivS), A G(O)N 
c 

exp (-rl 
GBEG 

(0) n (w) p (0) 

c H(O)P(W)P(O)- 
1D 

=- H(O)N 
v. 

Then one has 

, 
expri G e(N DS +N AS 

)Bz+D)k 
B 

Tdz/z 
QS = eN DS 

EG-I 
Az 

2 
+(B+C)z+D 

(3.59) 
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Completing the square in the denominator of (3.59): 

where 

QS = eN E-fxG 
(N 

DS +N AS 
)(B+Dz- I )k 

B 
TdzA- 

(3.60) 
DS GI fz+(B+C)/2A) 2_ 

02 /4A 2 

a2= (B+C) 2_ 4AD . 
Factorizing the denominator of (3.60), 

expr) G ek B 
T(N DS +N AS 

)(B+Dz- I )dz 
1 

Qs eN DS EGJBI 
z+(B+C-ý)/2A z+(B+C+B)/2A 

One can then factorize the numerator and integrate the terms containing 

ý in the numerator, 

QS = eN E- 
e(N DS +N AS 

)k 
13 

T [ln 
2Az+B+C-ý 

expn G+ 

DS C. -L (2Az+B+C+ý'ýIl 

e(N DS +N AS 
)k 

BT 
6 

expri G Ddz fII 

z tz+(B+C-ý)/2A z+(B+C+ý)/2Aý 

Continuing to separate the remaining integral into partial fractions 

QS = eN E- 
e(N DS +N AS 

)k 
B 

TB [ln 
2Az+B+C-B 

-ýj 

expri G+ 

DS G t2Az+B+C+ý 
1 

e(N DS +N AS 
)Dk 

BT expn Gý11 2A 
)+[I 

I 2A J, 
(z+(B+C-M A z, (B+C-0 z z+(B+C+ý)/2Aj(B+C+Oj) 

Integrating the latter terms and rearranging, 

e(N DS +N AS 
)k 

BT (B-C) 2Az+B+C-B Az 
2 

+(B+C)z+D 
expri G 

QS = eN DS E G- 2 In (2Az+B+C+ 
)+ 

In 
Az 2 

and finally, 

e(N DS +N AS 
)k 

BT 
[(B-C 

) 2Aexpi) 
G +B+C-a 2A+B+C+ý 

QS = eN E lnf .1 +ln AS G2L t2Aexpn 
G +B+G+B 2A+B+C-a 

+ In 
Aexp2q G +(B+C)expn G +D 

A+B+C+D 
(3.61) 
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The equation (3.22) for the barrier height, ýB' in the presence of 

a constant distribution of states becomes 

n(w){p(O)-I)+p(w){jj(O)- 
1- 1}+N lnjj(O)-ln 

exp[TI A 
(w)-y 

h 
]+I 

- A 

eQ 
2 P(O) -1 exp[n A(w)-Yh 

3+11 

S (3.62) 
86t 

okBT 

where Qs is given by equation (3.61). Equations (3.61) and (3.62) 

when combined, yield a transcendental equation for the barrier height 

in the case of a constant distribution of levels. The process for 

solving this equation follows exactly the process for obtaining solutions 

to equation (3.25) when a single donor level in the surface was 

considered. 

Sample thoeretical curves are shown in Figures 3.15 for equilibrium 

and 3.16 for the steady-state. In Figure 3.15 donor surface states only 

are used. One sees the general shape of the curves in equilibrium is 

similar to-Figures 3.3 and 3.4. However, to the right of the maximum 
barrier height (larger NA), the barrier height falls less rapidly 

than it did for a single level of donor states. This is because not all 

of the higher lying donor states are filled unlike the case when a 

single level of donors near mid-gap was used (see Section 3.5). 

In Figures 3.16, the barrier height falls with increasing Fermi 

level separation. The reason is broadly that electron injection into 

the bulk region begins to fill the surface traps with electrons and 

thus the positive surface charge on the donor traps decreases. This 

decrease in QS in turn leads to a decrease in the space-charge region 

width and hence in ýB* For a complete description of the nature of 
Figure 3.16, which is similar to Figures 3.5 and 3.6, see Section 3.5. 

As an experimental test of this theory in equilibrium, comparison 
is made with the results of Seager and Castner (1978) and de Graaff 

et al., (1982) and is shown in Figures 3.17 and 3.18. In Figure 

3.17 donor and acceptor states were used, but in Figure 3.18 donor 

states only were used. The slower decrease of the barrier height with 
NA increasing beyond the maximum barrier, with a distribution of donor 

states (curve a), than the fall of ýB with a single level of donors 

(curve b), allows a better fit to the experimental data. 
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In the steady-state, the procedure of Section 3.7 is followed to 

convert experimental data (Wu and Bube, 1974), of the barrier height in 

US evaporated thin films as a function of the quasi-Fermi level 

separation. In Figure 3.19 is shown the barrier height using the data 

of Table 3.2 for CdS. It is interesting to find good agreement in a 
different material and further substantiates the use of a distribution 

of acceptor states in the grain boundary. 

3.9 Some AppLications for the Barrier Height CalcuZation 

In the present work, the barrier height has been calculated at a 

grain boundary as a function of the obvious parameters (N 
A' E DS, N DS 

The barrier height is an important parameter in the study of grain 

boundary recombination (Fossum and Lindholm, 1980a, Seager, 1981) and 

of thermionic emission-diffusion currents over the barriers (Seager and 

Castner, 1978, Baccarani et al., 1978a). 

The barrier height at a grain boundary is not an item which can 
be directlý measured by experiment, it is calculated from measurements 

of resistivity, conductivity and Hall-effect mobility (Orton and Powell, 

1980). In! -JOS devices (Ando et al., 1982) the potential barrier at the 
interface between the oxide and semiconductor layers is calculated from 

capacitance or conductance measurements. This section calculates the 

grain boundary or surface barrier height as a function of (a) mobility 

and (b) capacitance. This allows comparison of the present work with 

resistivity measurements in polysilicon (Ghosh et al., 1980, Seto, 1975) 

and also shows how the mobility and capacitance depend on the basic 

parameters (N 
A' 

E 
DS' 

N 
DS 

). 

(a) Mobility and Resistivity in Polysilicon 

The "over-the-barrier" current is calculated using Thermionic 

emission-diffusion theory for two barriers back-to-back with a 

recombination plane separating them. This approach is derived from the 

condition of a thermionic recombination velocity vR near the interface. 

The configuration of the potential barriers with an applied voltage V 

is shown in Figure 3.20 for a p-type semiconductor, the origin of-the 
barriers in equilibrium has been considered inthe previous section. 

Throughout the barrier regions between x=0 and x=w2 

the edge of the barrier region, and between x=-W, and x0 as 
in Figure 3.20, the hole current' density is given by 
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dF 
i= up (x) 

dx 

(see for example, Sze, 1969) where u is the mobility and p(x) 

is the hole concentration 

(3.63) 

p(x) =Nv exp[ri v-yh] - 
(3.64) 

The current flow is described also by an effective recombination 

velocity vR at the potential barrier maximum: 

i= ev R 
(p 

M-po 
) (3.65) 

where pm is the total hole density at x=0 when the current is 

flowing, also p0 is the equilibrium hole density at x=0. Thus, 

for non-degeneracy, 

pm =Nv exp[rl 
v 

(0)-y 
h 

(0)1 
, 

(3.66) 

and p0 is given by 

po =Nv exp[n 
v 

(w 
2)-Yh(w2) 

]exp[-e ýBo /k 
B 

TI 

or 

p, =Nv exp[n 
v 

(-w 
1) -yh (-w ý ]exp[-eýBo /kB T) . 

Evaluating (3.63) at general x together with (3.64) to eliminate 

p(x) , one has 

Jexp[-nv(x)] dy h 
uN kBT= exp[-y h 

W] 
dx 
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Integrating this equation from x= -w 1 to x=0 yields 

-J/(eN vv DI 
)= exp[n 

v 
(o)-y 

h 
(0)1-expfn 

v 
(o)-y 

h 
(-W 

I 

where an effective diffusion velocity is defined by 

0 

v (e/uk T)expfn (0)-n (x)]dx 
DI Bvv 

w1 

Utilizing equation (3.66), the hole current density is given by 

-JI(eN vv DI 
)= -exp[q v 

(-W 
1)-Yh 

(-W 
1 

)lexpf-eý 
Bl 

/k 
B 

T}+p 
m 

IN 
v 

where ý BI 
is the barrier height between x= -w I and x=0 in 

the steady-state. Hence, by equation (3.65) 

i=-i+ 
%{exp(e -e /k T-11 

ev Dl ev R 
ýB ýBd B 

and f inally 

ep 
ovR fexp(eý -eý )/k T-l} (3.67) I+v 

R/vDl Bo Bl B 

The corresponding current flow'over the barrier region for O= <x<x2 is 

ep ovR j 
+v R7: 

ýD2 
ýexp(eý 

Bo- eýB2 )/k 
B T-1 

where ý 
B2 

is the barrier height and where 

v -1 e 
expfrlv(o)-rlv(x)ldx D2 kBT 

Near equilibrium, one makes the assumption that 



go 

vVv D DI D2 

the net current flow from left to right in Figure 3.20 is 

ep 
ovR 

exp(eý Bo 
/k 

B 
T)(exp(-eý 

Bl 
/k 

B 
T)-exp(-eý 

B2 
/k 

B 
T)) 

j 
1+v 

R 
/V 

D 

Assuming that the applied voltage is equal to the difference of the 

two steady-state barriers, i. e. 

vý 
B2 

ýB 
I 

.Lý!. ý 
as in Figure 3.20, then near equilibrium (w =wI --! - w 2' ýB2 . BI 7 Bo 

ep(w)exp(-eý Bo 
/k 

B 
T)vRlexp(eV/k 

B T)-l} 

1+v R 
/V 

D 
(3.68) 

where equation (3.4) has been used for po . 

If the diffusion velocity is very much larger than the recombination 

velocity, the thermionic emission dominates the current, i. e. 

J= ep (w) 
(A*T 2 

exp(-eý /k T){exp(eV/k T)-I} (3.69) J. -e N-,, Bo BB 

where the recombination velocity is given by 

, T2 
v R eNvj 

(3-70) 

and A*0 4Tremhk 21t3) is the effective Richardson constant (Sze, 1969). 
vB 

However, if the diffusion velocity, vD' is much smaller than the 

recombination velcoty, vR' then the diffusion of carriers in the 

barrier limits the current flow. Near equilibrium the diffusion 

velocity is equal to the drift velocity of holes (see Chapter 5, 

Section 5.2), i. e. 



91 

-Z. vD. UJEJ 

where JEJ is the modulus of the electric field in the barrier. Thus 

the diffusion current over the barrier is 

i= ep(w)uIElexp(-eý Bo 
/k 

B 
TI(exp[eV/k 

BT -1}. (3.71) 

In summary, equation (3.68) calculates an excess current density, 

i, which is a synthesis of a diffusion current and an emission current. 

It predicts a current in agreement with thermionic emission in equation 

(3.69) if vD /V 
R >> 1 and a current in agreement with diffusion theory 

in equation (3.71) when vD /V 
R << I. If the grain boundary barrier 

height is large, there is a large electric field, E, and the diffusion 

velocity is large. Under these conditions, thermionic emission currents 

dominate. -Conversely, if the barrier is small, the diffusion current 

will dominate. 

For very small voltages, V(<< kB T/e) , across the grain boundary 

space-charge region, the exponential on the right hand side of the 

equation (3.68) may be expanded (Seto, 1975): 

e2 p(w)v Vexp[-eý /k TI 
R Bo B 

kB T(l+v R 
/V 

D) 
(3-72) 

This leads to an Ohmic current voltage relationship for very small 

voltages and a barrier resistance may be defined by 

J= V/R 
B* 

The resistivity of the barrier region near equilibrium is therefore 

RB /2w 

and thus 
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2 

pBýkB T(l+v R 
/V 

D) exp (eý 
Bo 

/k 
B T)fe p(w)v R 

2w} (3.73) 

The total crystal resistivity, p, of the polycrystalline semiconductor 

is the sum of the barrier resistivity, pB' and the bulk resistivity, 

pc p and is given by 

p= 2p 
B W/z +Pc (1-2w/JZ) (3.74) 

where Z is the grain size. 

Experimental measurements of the resistivity of p-type polysilicon 

have been performed by Seto (1975), these results are repeated here as 

crosses in Figure 3.21. These results were explained by Seto (1975) 

with a model of the barrier height using the depletion aprpoximation 

(curve b of Figure 3.21). The barrier heights inferred by Seto from 

his resistivity measurements are large enough that the diffusion 

velocity, VD (ý UýBo /w) 
, 

is greater than the effective recombination 

velocity and hence thermionic emission currents dominate diffusion. 

The largest contribution to the resistivity, p, is made by the barrier 

resistivity because the grain size, Z, is very small. Thus, the 

resistivity is given by 

Nk B exp(eý Bo 
/k 

B T)[eNAA*Tk} (3.75) 

where equations (3.70), (3.73) and (3.74) have been used and also 

equation (3.33) is used to obtain the majority carrier density at the 

edge of the barrier. Equation (3.75) together with equation (3.25) for 

the barrier height with a single donor level are used to calculate 

the resistivity as a function of NA in Figure 3.21 curve a. In 

addition to the parameters of Table 3.1, the following data was needed: 
h=0 

T= 300K, mv0.52m 0Z= 
200 A, E DS -E vs ý 0.44eV , and 

16 -2 N DS ý 2.40 x 10 M where m0 is the electron rest mass. Again, 
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the present theory yields reasonable agreement with the experimental 

results. One would expect closer agreement of the present theory 

with experiment than when the depletion approximation is used to 

calculate the barrier height because the approximation of a flat Fermi 

level used here is exact in equilibrium. 

The barrier region conductivity, aB' and mobility , -o B' are 

given in terms of the resistivity by 

cy Bý1 
/P 

B 

and 

uBý ci B 
/ep(w) 

. 

The effectiýie mobility, u, is determined by the barrier, uB' and 

bulk, uc 1, mobilities by 

1/(U- 1+u -1 
Bc 

(3.76) 

(3.77) 

One can write the diffusion coefficient, D, in terms of the mobility 

using the Einstein relation 

AB T/e 

and the diffusion length is given by 

L 1- (DT) 
I= 

(uk 
B 

T-u/e)l 

Hence, the effective diffusion length in polycrystalline seminconductors 

is 

TU uBkBT 
(3.78) 
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The mobility in the barrier region is given by equations (3.75), 

(3.76) and (3.77): 

Bý 
WT 2 

Z/ Nc )exp(-eý 
Bo 

/k 
B 

T) 

The diffusion length L is then by equation (3.78): 

(TV 
c 
A*T 

2 9,1eN 
c 

)exp(-eý 
Bo 

/k 
B 

T) 
L=ý-2 (3.79) 

Vc +(A*T £IN 
c 

)exp(-eý 
Bo 

/k 
B 

T) 

in Figure 3.22, curve I shows the diffusion length calculated from 

equation (3.79) using the data of Table 3.1 together with the following 

2-I-1h= 
parameters: r=1.0 Ps, vc= 1300 cm Vs, Mv0.52 m0, T= 300K, 

eý BO ý 0.18 eV , where m0 is the electron rest mass. The diffusion 

length as a function of grain size, has been measured by Ghosh 

et al., (1980) and the experimental results (circles and triangles) 

are shown in Figure 3.22. Also shown is the existing theory, curve Il 

is calculated using an effective barrier mobility and curve III is 

calculated using an effective lifetime and effective mobility. The 

effective lifetime (Ghosh et al., 1980) is calculated by assuming that 

the grain boundary recombination centres can be smeared throughout 

the bulk and then the single crystal theory is utilised. 

Capacitance at a Grain Boundary 

Taylor, Odell and Fan (1952) were the first to study the capacitanc3 

of a grain boundary. In their work, the effects of temperature and 

applied voltage on the capacitacne were used to measure the barrier 

height. In the study of surface states in MOS devices, deep level 

transient spectroscopy (Singh and Srivastava, 1983) and capacitance 

(Ando et al., 1982) have been used to obtain information about the number 

and energy distribution of traps. These techniques were used recently 
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to examine the surface states at a grain boundary (Shyuand Cheng, 

1982; Spencer et al., 1983; Werner et al., 1982). 

The capacitance per unit area of a grain boundary has contributions 

from the two space-charge regions on either side of the boundary, and 

is given by 

1: 1 (3.80) 
cc2 

Here, C1 and C2 are the differential capacitances defined by 

aq 1 Dq 2 
3ý 

Bl 
2 ýýB2 

where q V-q 2 are the space-charges per unit area of the grain boundary 

in each of the barriers and ý Bl' ýB2 are the barrier potentials. 

In equilibrium or under steady-state illumination the barrier heights 

are the same, i. e. 

ýBl ý ýB2 ý ýB * 

and the barriers contain the same space-charge density 

q2=qB' 

Thus, the grain boundary capacitance is 

I Dq 
B 

2 3ý 
B 

(3.82) 

where the grain boundary space-charge is obtained by Gauss's law (3.7) 

using also equation (3.22), 
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q=cE: 
ýt 1= 

(2c: E: k T)A[n(w){p(0)-11+p(w){, u(0)- 
1- 

1}+N lnp(0»i, (3.83) 
o dx 1 

x=O 
oB 

where the bulk acceptors NA are assumed fully ionized. Differentiating 

(3.83) with respect to ýB' and using the notation of (3.5), 

e2cE: 0 

8k 
BT 

n(w)p(O)-p(w)p(O) -1 +N A 

V-[n(w){Ij(O)-l}+p(w)[, u(O)- 
1- 

1}+N 
A 

Inp(O)l 
(3.84) 

For the data of Table 3.1, including N DS 
donors at a single energy 

level E DS equal to 0.91 eV above the valence band at the surface, 

the capacitance per unit area in equilibrium is shown in Figure 3.23. 

The increase of capacitance for larger NA can be understood 

as follows: the barrier height ýB is very small, i. e. 

Inji(O) = eý B 
/k 

BT 
<< I, 

so one may write 

/ p (0) =1+ Ap 

Using also (3.23), (3.84) can be rewritten as 

2 
e6E 

8k 
B TO 

n(w)fp(O)-I)+p(w){l-, u(O)- 
II 

Vj(w){p(O)-1np(O)-1}+p(w){p(O)'+1np(O)--1} 

and so using the expansion for small Ap , 

C=e 
EF-C) n(w)Ap+p(w)tAp-Au 

2 
+... ) 

8k 
B 'r /-[n(w){Ap 2 /2+Ap 3 /3+... }+p(w){Ap 2 /2-2Ajj 3 /3+... }] 

To first order in Ap , one obtains the "flat-band" capacitance 

(Ando et al., 1982) 

I 



e2 cc 0 
{n(w)+P(w)) 

fb 4k 
BT 

By (3.23) and (3.10), in p-type material for large NA 

p(w) 71- NA' n(w) << p(w) , 

thus C is proportional to NI and is rapidly increasing. 
A 

For smaller NA' the capacitance is largely independent of NA 

but depends strongly on N 
DS* 

The larger is N 
DS ' the greater 

is the charge stored at the grain boundary and so the capacitance is 

expected to be larger. 

3.10 Conclusions and Discussion 

A model of the grain boundary surface recombination and barrier 
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(3.85) 

height has been developed in which Poisson's equation was solved by 

assuming flat, parallel quasi-Fermi levels, and dropping the depletion 

approximation. The solution is a transcendental equation for the 

barrier height. 

In the course of the mathematical treatment, the Shockley-Read-Hall 

statistics was displayed as a 'generalization of the Fermi-Dirac 

statistics. This enabled a single treatment of the equilibrium and 

non-equilibrium steady-state conditons to be given. 

The work of Fossum and Lindholm (1980a) and Fossum and Sundaresam 

(1982) has been confirmed and extended by considering surface states 

at levels other than at mid-gap. Also, Auger effects have been 

included . In fact, for the data of Table 3.1 their effect on the 
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barrier height is negligible, the carrier concentrations being too low. 

Curves have been given for the barrier height under various 

equilibrium and steady-state conditions and their shape has been 

explained physically in Section 3.5, approximate relations for most of 

the curves have been derived in Section 3.6, and agreement with 

experiment was shown to be satisfactory in Sections 3.7 and 3.8. 

The equilibrium barrier height displays a maximum with respect 

to doping in the bulk, a feature noted by some authors (Fossum and 

Lindholm, 1980a, Seto, 1975, Baccarani et al., 1978b, Card and Yang, 

1977 for example) but not all (Seager and Castner, 1978). it was 

found in Section 3.6 that this occurs when the Fermi level lies 

approximately at the surface state level. The maximum occurs because 

of the two opposing effects discussed in Section 3.5. This feature 

appears to be of importance also in the steady-state case: The effect 

of the Fermi level separation is a marked drop in the barrier height 0 

if the doping concentration is less than that for the maximum, while 

the barrier height remains constant (prior to a drop) with Fermi level 

separation for doping concentrations above those for the maximum. 

The drop in barrier height with, for example, increasing illumination 

is due to the rapid surface recombination which keeps most of the 

surface states neutral and so reduces the width of the space-charge 

region. This is therefore not to be interpreted as an approach to 

single crystal behaviour. 

The potential barrier height calculated with a constant 

distribution of surface levels is an amalgam of the barrier heights 
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calculated using single surface levels. The surface states of donor 

type lying higher in the energy gap of p-type material contribute 

more to the barrier height because of their greater degree of ionization. 

Table 3.1: Data Used for Si 

ENcNvkBT 
0 

11.8 8.854xlO- 12 1.1 2.8xlO 25 
1.0X10 

25 4.67xlO 15 0.026 

- Fm- I eV m-3 m3m3 eV 

G (0) 11(o) Cc T liv 

10 -13 10 -15 6xlO 
5 

IX10- 
6 

1.1 
3 -1 3--l -1 

msmsms eV 

Table 3.2: Data Used for CdS 

ECEGNNkBT G(o) H (0) 

10 8.854x10 -12 2.42 2x10 24 
10 

25 0.026 2.5x10- 14 2.5x10- 14 

- Fm- 1 
eV m -3 m -3 eV m3s -1 m3s -1 

DT ct hv N 
AS 

I. lxlo 
23 

lo- 
7 6xlO 5 2.42 8.5xlO 15 

m -3 sm -1 eV M- 
2 

eV- 
1 

N 
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Fiaure 3.1 The Gaussian pill-box with its axis cutting through 

the plane x=O of the grain boundary. 
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Figure 3.5 The steady-state barrier height using the data of Table 3.1 

and equation (3.25), as a function of quasi-Fermi level separation. 
Various donor densities in the surface at a single mid-gap energy level 

and a doping density, N A=10 
21m-3, 

in the grain are considered. 
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(Seager, 1981). The curve is for the present theory, equation (3.25) 
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CHAPTER 4 

EVIDENCE OF NO k-SELECTION IN THE RADIATIVE RECOABINATION 
SPECTRA OF AlGaAs QUANTU14 WELL TA5, E, '? - DIODES 

4.1 Introduction 

GaAs semiconductor injection lasers (Casey and Panish, 1978) 

have been the centre of considerable research activity since their 

discovery more than twenty years ago (Hall et al., 1962). The gain 

curves of a GaAs laser can be calculated as a function of wavelength 

or energy by evaluating the theoretical stimulated emission rate 

(r 
stim 

(E) of Lasher and Stern, 1964). This radiative emission rate 

per unit energy per unit volume at an energy, E, is stimulated in a 

laser by photo-pumping an active layer with photons or by passing a 

large electrical current through the laser diode. In this work mainly 

the latter type of stimulating action has been considered. 

Normally one takes the radiative emission to be an average over 

the two directions of polarization and over the photon wavevector k 

For a review with special reference to the averaging process and the 

question of k-selection versus no k-selection rule, see Adams and 

Landsberg (1969). Marinelli (1965) and Unger (1967) have given 

approximate results to the integral for stimulated emission (Lasher 

and Stern, 1964). Russer (1980) used complex variable analysis to 

obtain an analytic solution for r 
stim 

(E) in the case of parabolic 

energy bands. A new result for r 
stim 

(E) in the case of constant 

density of states in each band is given here. 

Recent work by Dutta (1982) and Dutta et al., (1983) has examined 

the so-called "quantum-size effects" which are seen when the active 

layer of a GaAs - Al 
x 

Ga 
I-x 

As 'double heterostructure is made very 
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narrow (50 u 200 A). The energy of electrons in one dimension is 
0 

restricted to quantum well levels in all bands, but the energy 

bands retain their usual parabolic form in the other two directions. 

The conduction and valence bands are split into a series of parabolic 

sub-bands, each has a constant, two-dimensional like density of states 

function. A good review of quantum-well lasers was given by Holonyak 

et al., (1980), where radiative emission was treated experimentally 

and theoretically. 

As in the three-dimensional case, the argument for adopting 

k-selection or no k-selection rules in the transitions from band to 

band arises. It is suggested here, contrary to present views, that 

the processes which give rise to radiation in lightly doped or even 

undoped quantum-wells are not subject to strict k-selection rules. 

The reason is contained in the good fit of experimental TE polarization 

gain spectra of Dutta et al., (1983) and Kobayashi et al., (1983) 

which are obtained on the basis of no k-selection rules. In real 

systems one would expect partial k-selection, which follows from a 

finite relaxation time and allows a range of wavevectors to be involved 

in the transition. The two extreme cases of this are: (i) strict 

k-selection in which the relaxation time is very long, and (ii) no 

k-selection in which the relaxation time is very short. 

4.2 Energy Bands in a Quantum-Well Structure 

In a two-dimensional system (Ando et al., 1982), the energy bands 

are modified from their familiar form in the bulk material. Because 

there is one allowed state per volume (2n/L) 2 in a box of side L 

in k-space of two dimeA6ions, the total number of states with wavevector 

less than k is given by (L/27T) 2 
multiplied by the area of a circle 

of radius k 
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N(k) = 2(L/27T) 2 
Trk 

2 

where a factor 2 is included for spin degeneracy. If the electron 

energy can be written in the form 

22 
E+ 2m 

where t is the reduced Planck's constant and m is the effective 

mass, then 

dE 
2 

kdk 

m 

The density of states in two dimensions per unit volume and per unit 

energy is 

D(E) = 
dN(k) fdkl I mL 

2 
(E > E0 ý0 otherwise). dK 1. -j-Ej VA2v 

In this case, the volume V extends to L in the x and y directions, 

but only to Lz in the z-direction since it is confined by the 

quantum well, therefore 

D (E) m (E > Eo p0 otherwise). 2L 

z 

Note that the density of states per unit volume and per unit energy 

depends on the thickness of the quantum well in the third dimension, 

but it is independent of the depth of the well in energy. 

Dingle (1975) has given the depths of the quantum-wells in the 

conduction (AE ) and valence bands (AE as cv 

I 
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AE 
c= 

(0.85 ± 0.03)AE 
G (4.2) 

and 

AE = (0.15 ± 0.03)AE 
G 

(4.3) 

where AE 
G 

is the difference of the energy band gaps of the GaAs 

active layer and the Ga 
1-x 

Al 
x 

As barrier layers, see Casey and 

Panish (1978) where 

AE E (At Ca As) -E (GaAs) = 1.2470x (for x<0.45) GGx I-x G (4.4) 

The energy levels of a single quantum-well structure are determined 

by the energy eigenvalues to Sclirbdinger's equation, see Schiff (1955) 

,;, 22 
nd (V -E)ý 2m d20 

Inside the quantum well (-a ýzýa where a=Lz /2) , the wavefunction 

is 

ý3 ýA3 sina 3z+B3 cosý 3z 
[ý 

3 -ý (2m 
3E 

1ý2) 
111 

(4.5) 

where 3 
is the allowed wavenumber. Outside the quantum well 

(z < -a, z< a) the wavefunction is exponentially decaying, 

ý, =A1 exp(B 1 Z) (for z<-a) , 

ý2 ýB2 exp(-a 2 z) (for z>a), [ý, =B2= {2m 
I 

(VO-E )/. h2}1 I- (4.6) 

The solutions are matched on the boundaries (z =± a) by requiring 

and -1 
1) to be continuous. The latter boundary condition arises 

m dz 
I'L 

because the steady-state current of electrons across the boundary is 

continuous, e. g. 
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[i = ep/m=le(&Vý 1 
)/m, =e( -i 'ýVý3)/m3 

at z= -a. This boundary condition takes into account the change of 

effective mass in passing from one region into the next and leads to 

the following set of equations: 

AI exp[-O 1 a] = -A 3 sin5 3 d+B 3 cosý 3a, 
[ý(-a)l 

m 361 AI exp[-ý I a]= m1 {O 
3A3 cosý 3 a+ý 3B3 sin5 3 a! [M- 1 ý'(-a)] 

B2 exp[-ý 2 a) =A3 sin5 3 a+B 3 cosý 3a, [ý(a)l 

m32B2 exp[-6 2 a] =m2 (-ý 
3A3 cosý 3 a+B 3B3 cosý 3 a) . [M- I 

tp'(a)] 

By subtracting various of these equations and noting that m, =m2 

a, =B2' tl-ýe following sets are obtained: 

(Al-B 
2 

)exp[-a 
I a] = -2A 3 siný 3a 

(4.7) 

(A 
1 +B 2 

)exp[-ý 
I a] = 2B 3 cosý 3a (4.8) 

1m3 
(Al-B 

2 
)exp[-B 

1 a] =23m1A3 cosý 3a, 
(4.9) 

a13 (A 
1 +B 2 

)expf-ý 
1 a] =23m1B3 siný 3a. 

Unless A3ý0 and A, =B2' from (4.7) and (4.9) one has 

(m 
3 

/M 
I 
)ý, = -6 3 COO 3a, (4.11) 

similarly unless B3ý0 and A1+B2ý0, it is found from (4.8) 

and (4.10) that 

(m 
3 

/M 
I 
)a, =a3 tana 3a. 

Also, combining B1 and a3 from equations (4.5) and (4.6) 

I 



128 

2 /m )+ (ß 2 /m )= 2V /t2 
. 

(4.13) 
1133 

Equations (4.11) or (4.12) together with (4.13) are solved numerically 

for the wavenumbers ý1 and a3; a graphical estimate of the wavenumbers 

can be obtained from Figures such as 4.1 (see also Schiff, 1955) where 

the curves are given by equations (4.11) to (4.13) and they cross at 

permitted wavenumbers. The energy eigenvalues are given by 

22 /2m 
33 (4.14) 

When the barrier potential, Vo 2 is very large, one can use the 

approximation of an infinite barrier height. The wavefunctions in the 

barriers (AE 
c 

/e, AE 
v 

/e} are zero and the boundary conditions for 

Schrodinger's equation are ý(±a) =0. The wavefunction in the well 

is given by equation (4.5) with 

nTr/2a, A3ý 

where n is the principle quantum number and an integer. The energy 

levels associated with the quantum wells in the conduction and valence 

bands are 

Z, h t2 
niT 

. 

12 

na 9, ,h 
[a C, v; 

2m z 

and all levels with the same value of n have the same value of 

kz (= 63) in the wavevector. The superscripts Z, h here and in 

Tables 4.1 and 4.2 refer to light and heavy-hole quantities respectively. 

In real structures (Dutta et al., 1983; Kobayashi et al., 1983) the 

energy levels obtained numerically from equations (4.11) to (4.14) 

differ from the infinite well approximation given above and the latter 

calculation is inadequate to give good agreement with experiment. 
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Further complications are found in the multi-quantum well structure 

(Kobayashi et al., 1983) shown in Figure 4.2, the barriers are no 

longer infinitely wide and the energy levels of neighbouring wells 

are coupled by resonant tunneling Mittel, 1976). Here, an approximate 

result for the energy states of the multi-quantum well structure is 

obtained. The six inner wells of Figure 4.2 are symmetric, but the two 

outer or end wells are asymmetric with different barrier heights 

because of the different composition of the barrier and cladding layers. 

In this work, the barrier thicknesses are assumed to be large enough 

that the effect of tunneling between neighbouring wells on the energy 

levels of the quantum wells may be neglected 

For the quantum wells in the centre of the structure, the procedure 

of equations (4.11) to (4.14) is used to calculate the energy levels. 

The two end quantum wells are of finite depth with different barrier 

heights, V1 and V2' see Figure 4.3. Their energy levels are 

calculated with the assumption of no tunneling into neighbouring 

wells as follows: in the barrier regions, the wavefunctions of 

Schrodinger's equation are given by 

ýi =Ai exp(B i z) +Bi exp(-ý i z) , [i =1,2; 6i= f2m 
L 

(V 
I -E)/h') 

and in the quantum well, the wavefunction is given by equation (4.5). 

1 [dýi. ) 
One uses again the boundary conditions and - are continuous M. dz 

I 
at the walls, z= ±a , and requires ý(±z) to tend to zero for 

large z in the barriers. These conditions lead to the following set 

of equations: 
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B2 exp(-B 2 a) =A3 siný 3a+B3 coso 3a [iP(a)l 

m32B2 exp(-a 2 a) =m 2a3 
(-A 

3 cosý 3 a+B 3 siný 3 a) ý'(a)l 

together with 

(a2lm )+02 /m 2V /h 2 
11331 

(021m )+02 /m )= 2V A2. 
22332 

The first four equations can be transformed ito a matrix equation 

where 

and 

Q00 3' 
[A 

I 

R30B2 

003A3 

00B3 

I= 

Q exp(-ý I a)IO, /m, )sin ý3 a+ (Ym3)cosý3 a} 

R exp(-B 1 a)(0 1 
/M 

I 
)Cosý 

3 a-(ý 3 
/M 

3 
)siný 

3 a) 

S exp(-a 2 a)[(a 3 
/M 

3 
)COSO 

3 a+(a 2 
/M 

2 
)sina 

3 a} 

T= exp( -a 2 a){(O 3A3 
Vino 

3 a-(A 2A2 
Voss 

3Q. 

Using the Gauss elimination method on the matrix, one obtains 

(4.15) 

(4.16) 
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(Ai 

R -T 0B2 

0s 
31 

A3 

[B 
3 

which has a non-trivial solution if the determinant of the matrix is 

zero (Lennox and Chadwick, 1970), i. e. 

I Q -Sf 

L -T 

Thus, a solution of 

QT - SR = 

is sought. Using the expressions given above for Q, R, S and T 

the following transcendental equation is found: 

(ß 
3 

/m 
3 

)«ß 
1 
/m 

1 
)+(ß 

2 
/m 

2 
)lcosß 

3LZ +{(ß 1 
/m 

1)(ß2 
/m 

2)-(ß3 
/m 

3)2 
}sinß 

3LZ=0. 

This equation is solved numerically together with equations (4.15) 

and (4.16) for the allowed wavenumbers ý3 of the. asymmetric quantum 

well and the energy levels are obtained from equation (4.14). 

The minimum energy of transition, E* , from the conduction G 

band to the heavy-hole valence band is slightly larger than the energy 

gap, EG' of bulk GaAs because of the addition to EG of the quantum 

well ground state energies in each gand. Superimposed on this effect 

is the probable reduction of EC by band-gap shrinkage (see for example 

In-kson, 1976) since the carrier concentrations in a laser are high. 

This is assumed here to be of a similar magnitude in GaAs quantum 

well structures as it is in bulk GaAs material. 

I 
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The result of the quantization of the z-component of the wavevector 

is that the energy bands are split into a series of sub-bands as 

shown in Figure 4.4. The energy in the conduction band is divided 

up between the various wavevector components by 

E+ 
ý2 

k2+k2+k2 
c 2m 

Ixyz 

or in the valence bands by 

I 

E2 -k 
2+k2+k 2ý 

v 2m xyz 
v 

where kx and ky vary continuously and kz (= B3) is determined by 

the appropriate quantum well model. Each of the sub-bands has the 

same density of states (4.1) depending on the effective mass of the 

quantum well. This leads to a step-like function for the total 

density of states in each band and is shown in Figure 4.5. 

The electron and hole concentrations in this band structure are 

governed by the Fermi-Dirac statistics for the occupation probability 

and by the density of states (4.1) of each sub-band. The electron 

concentration, N, per unit volume is given by 

r 

NItM. c dE 

r=1 7T 
t2 L exp 1n _Ye1+I 

zE 
rc 

where n is the energy state, E, divided by kBT, kB (= 8.6171 x 10-5 eVK_ 
1 

is Boltzmann's constant T- is the temperature and ye is the electron 

quasi-Fermi level, Fe' divided by kBT. The hole concentration, 

P, is that given by the sum of the light and heavy-hole densities, 

I 
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11 .Ei s1 sv 
imv 

i=£, h i= 
1 iTh 

2L 

-Co 

dE 
exp (y 

h-n) + p 

where yh is the hole quasi-Fermi level, Fh' divided by kBT. 

The calculation of the electron and hole concentrations is simplified 

in a finite depth quantum well because the total number of levels 

kh {r 
t, sv, svI in each of the bands is usually small. 

In the present work, the energetic positions of the electron and 

hole quasi-Fermi levels are calculated by assuming that the separation 

of the Fermi levels is known, for example it can be found from the gain 

spectrum, and that there is charge neutrality in the quantum well. 

Hence, 

NA+ND 

where N- is the number of charged acceptors per unit volume and N+ AD 

is the number of charged donors per unit volume. In lightly doped or 

undoped quantum wells (Dutta et al., 1983, Kobayashi et al., 1983), 

one solves the simple equation, 

r tmc 
(N=P=) ln I+exp[y 

7ý2 r=1 Tý 
2 

e-r' rc z 

stmIT 
vB In 

I 

7ft2 
s 

i= 
1Lz 

1+exp[n 
sv-yhl 

where N and P are the electron and hole concentrations obtained 

from the integrals given above. Therefore, the following equation is 

solved iteratively for yh where Ye - Yh is known: 

i 
rtst 

l++exp Y ln I+exp[n Y "ýe-1h+lh-r1rcl 
sv- hf 

r=1 i=t, h i 

.5 
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Once Ye is also obtained, the electron and hole concentrations can 

be calculated from the expression above. 

4.3 The Stimulated Emission Rate 

In a quantum well laser the electron and hole populations in the 

well region described above are made very large by carrier injection. 

This gives rise to stimulated photon emission as the electrons and 

holes recombine in the active layer. The theory of optical absorption 

and emission permits radiative transitions which conserve the wavevectors 

of the electron, the hole and the photon. Since the momentum of the 

photon is very small in relation to the scale of the Brillouin zone, 

radiative transitions are allowed between energy states with effectively 

the same wavevector. When dopant impurities, for example, are added 

to the semiconductor the wavefunctions are modified and k-selection-* 

rules no longer apply. It was commonly presumed until now that 

k-selection rules could be relaxed only in heavily-doped quantum 

well structures, but recent'arguments put forward by Sugimura (1983) 

suggest that even under heavy-doping conditions the k-selection rules 

should be obeyed. 

(a) Electron Transitions with k-seZection rules 

The permitted transitions for stimulated photon emission shown in 

Figure 4.4 are either vertically up or down in energy to conserve the 

wavevector of the electron. Of course, the radiative transitions 

conserve k as well as k and k and so transitions are allowed 
zxy 

between sub-bands in the quantum well which have the same quantum number. 

If an infinite depth to the wells in both bands is assumed, the 

energy levels in each band with the same quantum number have identical 
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kz components of the wavevector. When a more detailed calculation 

of the energy levels is made assuming a finite depth to each quantum 

well, the kz components corresponding to energy levels with the 

same quantum number in the conduction and valence bands are slightly 

different. Thus, if k-selection is to be applied to radiative 

transitions from one band to another, some other process is needed to 

take up the slight change of electronic momentum. In support of this, 

Holonyak et al., (1980) have observed (I-LO) phonon assisted laser 

operation in quantum well structures and expect phonon participation to 

play a more important part in radiative transitions in quantum well 

structures than in bulk transitions in III-V semiconductors. 

The net rate of transition from an energy level A in the lowest 

conduction band to the energy level b in the highest heavy-hole 

valence band, see Figure 4.4, is 

stim 
(E) = C(E)p 

c 
(A)p 

v 
(B)[f 

c 
(A)(1-f 

v 
(B))-f 

v 
(B)(1-f 

c 
(A))] 

where C(E) incorporates the matrix element for transitions from A 

to B and Pc, Pv are the density of states in the bands. Here, 

fc and fv are the Fermi-Dirac probabilities of finding an electron 

each each of the bands, 

f (A) -If (B) =1 (4.18,4.19) 
c exp[O 

c 
/k 

B 
T1+I V exp[O 

V 
/k 

B 
T]+I 

where also 

0HE+E+ P- -F, Ov =E-Eh_ F- -F (4.20,4.21) 
cc Ic ceV IV Vh' 

E and E are the band edge energies, E and Eh are the 
cV lc IV 

I 
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first quantum-well energy levels, nc and rl v are the energies 

associated with the kx and k wavevectors for each band F and 

Fh are the electron and hole quasi-Fermi levels. Thus, the energy 

of level A is 

2 
E+E+E+ k2 +k2+k2, (4.22) 

cccc 2m xyz 

A similar expression (Ando, Fowler and Stern, 1982) for holes in the 

heavy-hole valence band at energy level B is 

h_: 2ý222 
EV-E IV E: V=EV- 2m 

V 

ik x+ky+kz 
(4.23) 

In the adopýted notation, the energy of transition from A to B is 

E+E, 
c 

+cI+EhE+ 
t2 1+I 

[k 
2 

+k 
2 

+k 
2 (4.24) 

Gc Iv + Ev GmhIxyz 

V) 

Eliminating the wavevector dependence of (4.20) and (4.21) using (4.22), 

(4.23) and (4.24), one has 

h 
m 

EF+vh (E-E 
G 

(4.25) 
m +m 

cv 

m 
0EFhch (E-E 

G 
(4.26) 

m +m 
cv 

Using equation (4.1), the density of states in the lowest conduction 

sub-band and in the highest valence (heavy-hole) sub-band are 
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h 
mchmv 

PC lTh2 
Pv 

t2 L rf IL 

Thus, one may write the stimulated emission rate with k-selection as 

h 

r (E) =C (E) cv (4.27) 
stim 7T 

2ý4 
L2 exp[Oc/k B 

T]+l exp(Ov/k B Tl+lj 
z- 

where 0c (4.25) and 6v (4.26) are given above. Equation (4.27) 

applies when the lowest sub-bands are the only bands involved in the 

transitions, i. e. for 

E<F -F <EEh+ 
eh 2c + 2v 

When higher-sub-bands are involved, the stimulated emission rate is 

v C(E)m 
cmh 

sinhi(y e-yh-rl) 
r 

stim 
(E) 

242 
n=l 7T Ti Lz coshl(y e -Y h-n) +coshl(n 

v-yh+rlc-ye 
+6(n-n G 

(4.28) 

where 6= (m h_m )/(mh +m denotes energies divided by kT and 
vcvcB 

Y's are Fermi levels divided by kBT. Here, the Fermi-Dirac probability 

functions have been rearranged over a common denominator to give 

hyperbolic functions. The limit v of the sum is given by 

E+Eh<F -F -E<E+Eh 
vc vv ehG v+lc v+lv 

for energy sub-bands separated by more than Fe -F h' absorption is 

found, but there is no stimulated emission (Pilkubn, 1968). It will 

be assumed here (Lasher and Stern, 1964) that the probability of 

transition C(E) is independent of energy. The shape of r 
stim 

(E) 

is given by the difference of the two probability functions and is 

(4.29) 

I 
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shown in Figure 4.6. It can be seen at once from equations (4.25) 

and (4.26) that fc (A) decreases and fv (B) increases with the energy 

of transition E; r 
stim 

(E) has a negative slope in all cases. This 

is in agreement with the simple theory of Burt (1983), but weakly 

bowed curves replace the downward sloping straight lines given in 

Figure 1 there. Kasemset et al., (1983) performed a more detailed 

theory of k-selection in radiative emission which also gave monotonically 

decreasing gain curves as a function of energy, E. 

In three dimensions, the density of states functions pc and pv 

are proportional to energy E in such a way as to pull r 
stim 

down 

to zero at E=EG* Hence, r 
stim 

(E) has a maximum at an energy 

greater than E 
G* 

The rise in the shape of r 
stim 

is due to the 

density of-states and the drop at larger energies is due to the density 

probability term. In two dimensions and in the simple case involving 

the lowest levels in the wells, the density of states functions are 

independent of the energy of transition, E. Since the probability 

term is largest at E=EG'r 
stim 

has its maximum at that energy. 

(b) Electron Transitions Without k-seZection RuZes 

If k-selection rules are relaxed because the process involved 

in the transition can take up significant parts of the electronic 

momentum, for example when many impurities are present, one finds the 

stimulated emission rate is given by (Lasher and Stern, 1964) 

E-E 
G 

r 
stim 

(E) 
fCpc 

(E')p 
v 

(E'-E)[f 
c 

(E')-f 
v 

(E'-E)]dE' (4.30) 

a 

Here, E' is the energy measured up from the edge of the conduction 

band. 

I 
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For k-selection to be relaxed, any transition of an electron from 

the conduction band quantum well to the valence band quantum well 

needs some process, for example Coulomb interaction, to take up the 

change in the electron wavevector. It is plausible that this may be 

possible for the kx and ky components because these components 

of the wavevector are continuous and then k-selection is relaxed in 

the way that it is in bulk transitions. However, the z-component of 

the wavevector is dictated by the discrete energy levels of the 

conduction band or valence band quantum wells. The probability of 

a process occurring by which the z-component of the electron wavevector 

changes by exactly the right amount for the electron to enter a 

sub-band of the hole quantum well with a different quantum number than 

the sub-band it lef t is negligibly small. For this reason, only the 

transistions which preserve the quantum number, n, of the well are 

permitted when k-selection is relaxed. 

Each of the sub-bands has a constant density of states for all 

energies above its quantum well level and the combined densitY of 

states of all the sub-bands has the step-like form shown in Figure 4.5. 

Thus, the stimulated emission rate is given by 

vi E-E -E -E 
1 

r (E) =1ji 
Cm 

cmvjG nc nv 
[f, (E')-fv(E'-E)]dE' (4.31) 

stim i=t ,h n=l 7r2. n4 L2 
'Z 0 

where the upper limit of the sub-bands Vi is given by (4.29), the 

index i denotes light and heavy-hole bands. 

In the simplest case, only the lowest (n=l) conduction band and 

highest (n=l) heavy-hole band quantum well levels are involved, and 

the stimulated emission rate is 

I 
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h -11 -n - ri 
h, I 

Cm mkBTG Ic Iv 
11 

stim 2h4 2f 
7T L expOl'+q +n 

75+1 
exp(n'+nc+n, c-n-y 

)+l 
z0c lc eh 

This integral may be performed exactly and the result is (Hess et al., 

1980) 

Cm mhkT I+exp[y 1)(I+exp[y h 1) 
r (E) cB In ec 1c hV IV (4.32) stim 

7T 
2h4L2 (1+exp[y h 

z e_T1v_T1 IV- nl)(l+exp[y h+n-11 -rl Ic 

for E>E+. E +EhV. The logarithm term of (4.32) has zeros at G ic 1 

E=E+E+Eh and E=F- Fh , this is the same as in the G Ic IV e 

three-dimensional emission (Pilkuhn, 1968). However, the shapes of the 

gain curves are different, in three-dimensional regions the gain curves 

are asymmetric with a maximum (Marinelli, 1965) at 

E (E +2(F -F )}/3 
Geh 

provided Fe-Fh<EG+ 2k 
BT. 

In two-dimensional regions, the 

maximum of the stimulated emission is found as follows: differentiating 

equation (4.32) with respect to E, 

= 

exp[rj+Tj +Tj 
h 

]+I ]+I 
v lv-ye exp[n 

c 
+n 

lc-Tl-y h 

at the maximum. Thus, 

h 
n+nv+ Ti 

lv - Ye ý nc + Tj Ic - Ti y 

and the maximum lies at 

EEh+ (F F )]/2 . (4.33) ic lv e- h 
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One finds a symmetric stimulated emission rate as a function of energy 

with a maximum situated in the centre of the energy range of emission. 

If transitions between the higher quantum wells of the conduction 

band and heavy- and light-hole bands occur because of larger energies 

of emission, E, equation (4.31) has the result 

stim 
(E) 

Here, the index 

Cm mIkT (1+exp[y 71 -TI 1)(I+exp[y 1 
CvB ln e- c nc h-rI v -TI nv] 

Tr 
2h4L20 

+exp[y -n -n 
i 

-n])(I+exp[y +rj-rj -n zev nv hc nc 
(4-34) 

refers to light and heavY-hole quantities and C 

is taken to be the same constant for all transitions. The stimulated 

emission rate again has zeroes at 

E+E+Eh G Ic IV 

and 

Fe- 

However, it is now asymmetric with a maximum at an energy greater than 

half-way up the energy range of emission. 

4.4 Gain Spectra 

The shape of the emission spectrum of a laser is altered by internal 

and external losses. For unpolarized gain spectra, the net gain per 

unit length (Hakki and Paoli, 1975) is given by 

rg - ra int - O-Oa 
ext - (1/L)ln(l/]R) 

. (4.35) 

Here, F is the optical confinement factor, g in the optical gain, 

cc int 
is the internal loss, CL 

ext 
is the external loss, L is the 

length of the laser cavity and R is the reflectivity of the end 

I 
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mirrors. The optical gain g is the same as the stimulated emission 

rate r 
stim given by (4.28) or (4.34). The internal loss, a is int ' 

a int anN+app 

- 18 -2 - 18 2 
where 3.0 x 10 cm and G=7.0 x 10 cm (Casey and Panish, 

nP 

1978) are the photon capture cross-sections in GaAs. One therefore 

expects the internal loss to depend on the separation of the quasi-Fermi 

levels through the carrier concentrations N and P. 

It is convenient in the numerical work to recast (4.35) in the form 

G(E)/r =AXIk (E) +AhIh (E)-B' =A 
91 

1k +A 
hIh 

-B-C(I-r)a ext+ 
(I/L)ln(l/R)i/r 

. 
(4.36) 

Here B' is the total of internal and external losses and B is the 

internal loss term only. The constants Ak and Ah contain the matrix 

element for the transitions to light hole and heavy-holes levels and 

also the appropriate density of states functions given by equation (4.1). 

In comparing theory with experimental results, Ah and B' , or B, 

are regarded as fitting parameters and Ak is fixed by the ratio (see 

for example, Dutta, 1982), 

Az /A h 
vv 

taken from the density of states in each valence band. It (E) , Ih (E) 

are the difference of Fermi-Dirac probability functions when k-selection 

rules are used and It (E), Ih (E) are integrals of the Fermi-Dirac 

probability functions as given in equation (4.31) when k-conservation 

is fully relaxed. 

Using this background information we have inspected recently 

determined gain spectra from quantum-well structures. The symmetry 

of the three gain curves measured by Dutta et al. , (1983, Fig. 1) 
N 
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using a single-quantum well laser diode persuaded us that the results 

should be representable by (4.36) using no k-selection rules (i. e. 

equation (4.34) for r stim 
) and emission from a two-dimensional region. 

As shown in Figure 4.7 the agreement is excellent using the parameters 

given in Table 4.1, the GaAs masses mc=0.067 m0mv=0.082 mot 

mh=0.45 m (Casey and Panish, 1978) and the AlAs effective 
v0 

masses m=0.15 m, mh=0.85 mm0.18 m (Hess et al., c0v0v0 
1973) where m0 is the free electron mass. Note that the effective 

masses for Al 
x 

Ga I-x As are a linear interpolation of the GaAs and 

AlAs effective masses using 

mi (Ga 
1-X Al 

X 
As) = xm 1 

(AlAs) + (1-x)m i 
(GaAs) 

The effective masses for GaAs have a range of values in the literature 

(see Blakemore, 1982) of which the set used here is a commonly utilised 

set of values. 

The nearly straight line in Figure 4.7 is the net optical gain 

spectrum calculated assuming strict k-selection rules. It is clear from 

this curve that the assumption of k-selection is not compatible with this 

set of experimental curves. For completeness, the full spectrum 

assuming k-selection rules is shown in Figure 4.8. The labels H 

indicate the peaks due to an electron transition from the ith 

conduction sub-band to th'eith heavy hole quantum-well sub-band. The 

labels LI indicate the equivalent transition to light hole levels. 

The curve indicates that the highest peak is due to the third heavy-hole 

level and occurs at the same wavelength as the peak of the experimental 

curves of Dutta (1983 and Figure 4.7). However, the width of the k-selection 

spectrum is far greater than the width (in wavelength) of the curves 

of Dutta et al., (1983). 
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Due to a larger density of states in the two-dimensional case, 

the separation of quasi-Fermi levels Fe-Fh corresponding to a 

given electron concentration is smaller than in three dimensions. 

Since also the minimum energy of transition in a quantum well structure, 

E* , is larger than the bulk energy gap, E, of GaAs, the width of GG 

the gain spectrum should be narrower in quantum well structures than 

in the standard double heterostructure lasers. Consequently, as 

theoretically shown by Burt (1983) and confirmed experimentally by 

Tsang (1984), quantum well lasers are more likely to operate in a 

single longitudinal mode than conventional lasers. This is expected 

irrespective of whether k-selection rules are obeyed or not. 

Anther pair of gain curves (TE polarization) at lower emission 

energies blut also at room temperature was given by Kobayashi et al. 

(1983, Figure 1). The no k-selection rule fit is again good as shown 

by curves (a) and (b) in Figure 4.9 using the data of Table 4.2. 

The first energy jevels in Table 4.2 correspond to the six quantum 

wells in the centre of the multi-quantum well structure and the 

second energy levels correspond to the two asymmetric quantum wells 

at the end of the structure. The values given correspond to finite 

depth quantum wells as described in Section 4.2. 

The two curves for DI polarization given by Kobayashi et al. 

(1983) exhibit a lack of symmetry which might at first suggest that 

the two-dimensional no k-selection theory cannot explain them. However, 

the fit (curves (c) and (d) in Figure 4.9) using this theory shows 

that the measured TM gain spedtra agree reasonably well with it. A 

polarization dependent selection rule is used (Kobayashi et al. , 

1983; Iwamura et al. , 1983). Only transitions between the conduction 

and light-hole bands contribute to the emission of TM-polarized 
I 
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light from two-dimensional structures, whereas transitions to both 

valence bands contribute to the TE polarization. Also, the matrix 

element for the TM polarization is expected to be about 2 times 

larger than for the TE polarization (Burt, 1984). Since the 

constants AZ and Ah are proportional to the matrix element squareds, 

At (TM) is about four times as large as A k(TE) 
. The theoretical 

curves of Figure 4.9 (curves (c) and (d) ) confirm that this model 

can account for the shift of the TM gain peak relative to the TE 

gain peak and for the asymmetry of the T11 gain spectra in multi-quantum 

well structure. 

In the above analysis of a multi-quantum well laser, the splitting 

of the levels caused by an interaction of bound states from adjacent 

wells separated by a thin barrier (Dingle, 1975) has been neglected. 

Also, the difference in the composition of the cladding and barrier 

layers has an effect on the energy levels in a multi-quantum well 

and this has been considered in an approximate way (see Section 4.2). 

Neither was any allowance made for well size fluctuations that may 

occur in practice when islands of different thickness are formed 

during crystal growth (Holonyak et al., 1981, Goldstein et al., 

0 1983). An increase of the well thickness by one atomic layer (,,, 3A) 

would pull down the first energy level in the inner well by 1.1 MeV 

for electrons, 0.2 meV for heavy holes and 0.4 meV for light holes. 

All of these effects should manifest themselves in some broadening of 

the gain spectrum, hence one can expect even better agreement of 

the no k-selection theory with the measured/'spectra of Figure 4.9 

if a more detailed examination was undertaken. 
i 
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4.5 Conclusions 

Current ideas that the processes leading to radiative emission 

involve k-selection strict rules are probably not always right in 

quantum well structures. Even in cases where the doping is low or 

when there is no doping of the active layer, gain spectra (Dutta et 

al. , 
1983, Kobayashi et al., 1983) have been measured which conform 

to the no k-selection theory. It was presumed until now that k-selection 

rules could be relaxed only in heavily doped quantum well structures 

(see for example Kasemset et al, 1983, Dutta, 1982) and it has been 

argued that even under heavy doping conditions the k-selection rule 

should be obeyed (Sugimura, 1983). A possible explanation of the no 

k-selection observation may be due to the strong carrier - carrier 

interaction, enhanced compared to conventional lasers by the higher 

carrier concentrations required at threshold in quantum well lasers 

(cf. Tables 4.1c and 4.2c). This interpretation seems to be supported 

by the fact that the emission spectra of lasers used by Dutta et al., 

(1983), and Kobayashi et al. , 
(1983) are shifted towards longer 

wavelengths than those calculated with no bandgap shrinkage. 

The involvement of strict no k-selection rules in stimulated 

emission of radiation from undoped or lightly doped quantum wells 

may not be as common as has been suggested previously, and special 

steps may have to be taken to obtain gain curves which represent 

such processes. While a partial k-selection theory using intraband 

relaxation processes (see for example Yamada, 1983) would be expected 

to yield good agreement with experiment, its extreme limit of no 

k-selection already does this and has the merit of gr 4/: ter simplicity. 
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Table 4.1 Parameters Used for the fit of the Gain Spectra 
of Dutta et al., (1983) 

A. Energy levels in meV 

n E Ek Eh 
nc nv nv 

1 9.79 1.51 6.21 

2 39.15 6.02 24.61 

3 87.96 13.52 53.28 

b. Current-independent parameters 

IAh 
(cm- 

I)AP, 
(cm- I) 

B' (cm- I)T (K) 

no k-selection theory 23.0 x 10 3 4.1 x 10 3 0.79 x 10 3 295 

k-select-lon theory 5.0 x 10 3 0.9 x 10 3 0.14 x 10 3 295' 

c. Current-dependent parameters 

I(m. A) EG (eV) F -F h 
(eV) N (cm-3 

e 

no k-selection theory 67 1.4190 1.5757 4.26 x 10 18 

63 1.4196 1.5749 4.23 x 10 18 

60, 1.4197 1.5742 4.19 x 10 18 

k-selection theory 67 1.4215 1.5757 4.24 x 10 18 

d. Quantum-well parameters 

Lz (A) x (of Al 
x 

Ga 1-x As barriers) 

both k-selection and 210 0.36 

no k-selection theories 
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Table 4.2 Parameters Used for the fit of the Gain Spectra of 
Kobayashi et al., (1983) 

a. Energy levels in meV 

nE0 Eh EE Eh 
nc nv nv nc nv nv 

1 27.2 4.3 12.5 28.4 4.5 13.6 

2 104.5 16.6 - 110.4 17.5 - 
3- 31.7 
L 

-- 
I 

b. Current-independent parameters 

Polarization A 11 (cm- 1) A 
Y, 

(cm- I 
B'(cm T(K: 

TE no k-selection theory 103.0 x 10 3 20 x 10 3 10 293 

k-aelection theory 50 x 10 3 
9.1 x 10 3 10 293 

DI no k-selection theory 0 73 x 10 3 10 293 

c. Current-dependent parameters 

I(m-A) EG (eV) F 
e- 

Fh (eV) N (cm-3 

no k-selection theory 101 1.3890 1.4645 2.42 x 10 18 

91' 1.3903 1.4579 2.22 x 10 18 

k-selection theory 101 1.3963 1.4645 2.41 x 10 18 

d. Quantum-well parameters 

Lz (A) x (barrier layer) x (cladding layer) 

both k-selection and 104 0.17 0.26 

no k-selection theories 
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Figure 4.1 Simultaneous solutions of equations (4.11) and (4.12) with 
(4-13) for the quantum-well levels in a GaAs single quantum-well 

structure. 
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F, ýgure 4.3 An asymmetric quantum-well. 
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Figure 4.4 Simplified electron energy bands as functions in k-space 

showing the higher sub-bands formed by the quantum-well levels for the 

conduction band and the heavy-hole band only. 
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Figure 4.5 The two-dimensional step function density of states as a 

function of energy for the conduction band and heavy-hole band in a 

single quantum-well. 
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Figure 4.6 The difference of the Fermi-Dirac probability functions as 

a function of energy for ene rgy levels A and B. This forms the shape of 

spectrum for the transition of electrons from A to B with k-selection 

rulesi, % &Ae 

e_ C 

eC 

, 
0, iý, -F. IN 

e. V, IFE, - F1, = 

Fe_6ý = 0.17(eV) 
,, 
C =F Vh 

o. ocf(, - 
v), ý, ) r- 

e C_ Y 
Fh =o-o8 5(e- V),, 

0.13 (. V). 

0 0-05 0-1 0.15 0.2 
E-E 

G 
(eV 



155 

10 

0 

Net 
Optical - 10 

Gain 

-20 
(c M-1) 

Al-B 1 -30 

-40 

-50 

-60 

67mA 

X06 3 

60 

0 

814: 810 806 

Wavelength Orn) 

Figure 4.7 Net optical gain for no k-selection rule model, as defined 

by equation (4-34) with the data of Table 4.1, at three currents; circles 

are experimental points (Duttaet al, 1983). Also shown (dotted line) is 

the gain spectrum with the k-selection rule as defined by equation (4.28). 
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PART B 

THE EFFECT OF SURFACE RECOMBINATION ON 

LIFFTDýES IN SOLAR CELLS 
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CHAPTER 5 

THE SOLAR CELL EQUATIONS AND THEIR STEADY-STATE SOLUTIONS 

5.1 Introduction 

The energy band diagram of an illuminated n-p junction solar cell is 

shown in Figure 5.1. There is a small concentration gradient in the p- 

type base with a lower acceptor concentration at the junction than at the 

back of the solar cell leading to a small constant electric field. The 

top region which faces towards the illumination is a diffused n-type 

layer. The diffusion process of n-type donors leads to a concentration 

gradient in this, the-emitter. region, and hence leads also to an electric 

field. 

When the physical junction between the n and p regions is formed, 

electrons flow out of the n-type region, attracted by the holes with 

which they recombine. This causes a negative space-charge region just 

inside the p-region and repels further electrons from moving into the p- 

region. Analogously holes flow from the p-region into the n-type emitter 

recombining with electrons and leaving a net positive charge in the n- 

region. In this way, further holes are repelled from moving across into 

the n-region. Equilibrium is established with a large potential barrier 

between the n and p regions. 

If a photon with energy greater than the band-gap penetrates the 

solar cell, it has a high probability of being absorbed and will give up 

its energy to promote an electron into the conduction band leaving a 

hole in the valence band. The majority carrier, an electron if the photon 

is absorbed in the n-layer, diffuses to the gontact-at the end of the 

solar cell and escapes to give rise to photocurrent into a load. The 

minority carrier, which is a hole if the photon is absorbed in the n- 

layer, is trapped unless it can diffuse to the junction before 
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recombining. Then the minority carrier is swept across the junction to 

become a majority carrier by the large electric field in the junction 

and it can escape from the solar cell as a majority carrier. 

Some photogeneration takes place in the depletion region as well. 

The electrons and holes created by the light absorption are swept by the 

electric field into the n-emitter and p-base respectively because of 

their opposite charges. The width of the depletion region is narrow 

enough and the electric field there is large enough that although few 

photons are absorbed there, the photogenerated carriers almost all leave 

the depletion region before recombination can occur. 

Thus, the current-voltage characteristic of the solar cell is 

determined by the number of minority carriers which move across the 

junction without recombinin_& together with a small contribution from 

carriers generated within thq junction depletion region. For this reason, 

the solar cell is known as a minority carrier device. 

Light absorption by the solar cell depends on the absorption 

coefficient of the semiconductor, the reflectivity of the top surface, 

and the thickness of the device. The photogenerated carriers are not all 

collected however because of bulk and surface recombination of electrons 

with holes. Bulk recombination occurs either by direct band to band 

recombination or by indirect recombination involving centres in the 

energy gap known as traps. Surface recombination is dominated by 

recombination through surface states in the energy gap which arise from 

electron orbitals that are not taken up by the lattice and from chemical 

residues, oxides and metal precipitates deposited at the surface. The 

statistics of surface recombination was discussed in chapter 2. The 

Shockley-Read model of bulk recombination including Auger transitions is 

in fact similar to the work of chapter 2, but has been discussed 

elsewhere (see for example Blakemore, 1962; Landsberg, 1982b). In part B 

of this work, the effect of recombination at the surfaces of a solar cell 
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on the-carrier densities within the solar cell is examined. Some simple 

results for the recombination at the back surface and at grain boundaries 

were obtained in part A, chapters 2 and 3, and will be used in this part 

of the work. 

In previous studies of carrier transport in solar cells, different 

solutions have been obtained for when there is no current flow (open- 

circuit conditions, see for example Sharma and Tewary, 1982) or no 

voltage (short-circuit conditions, see for example Dhariwal et al,. 1977). 

Here an abstract generalisation of the conditions at the surfaces of the 

solar cell is made so that it is possible to give a solution to the 

carrier transport equation which encompasses many of the operating 

conditions in the steady-state. Through the use of Green's function in 

the steady-state solution in chapter 5, a representation of the photo- 

generation rate of carriers by a new function is then possible in chapter 

6. The abstract generalisýLtion of the conditions at the physical 

boundaries is also possible for the treatment of transients when one uses 

a Sturm-Liouville transform in the carrier transport model as in chapter 

7. This method can be used to treat lifetime measurements by several 

experimental techniques using photovoltage decay. Carrier transport in 

polycrystalline silicon is examined in chapter 8 using a Sturm-Liouville 

transform and yields theoretical insight into the effects of grain size 

and grain boundary surface recombination on lifetimes and currents. 

5.2 The carrier transport equations 

In this section, the equations governing the electron and hole 

distributions are developed. 

There are two components to the electrical current density, J, in a 

semiconductor, the first is provided by the movement of electrons in the 

conduction band and the second is provided by the valence band holes. 

The current density due to electrons, J 
n' 

is the sum of the drift current 
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density. ah`dýthe . 
-diffusioni; current density. The drift current density for 

electrons is given by 

ýýri fC -en-ýýd 

where vd is the drift velocity of electrons in a steady. -state electric 

field, E, 

-u E 

Here, un is the mobility of electrons. Also in equation (5-1), n is the 

concentration of electrons and e is the modulus of the electronic charge. 

There is a diffusion current density in a semiconductor when there is a 

concentration gradient of electrons. The net flux of electrons through 

the solid is related to the gradient of the electron concentration by a 

phenomenological relation called Fick's law: 

4i 
f f= 

(-e) (-D Vn) 

where D is the diffusion coefficient for electrons. The total electron 
n 

current density is given by the sum of the currents in equations (5-1) 

ana (5.2), i. e. 

in= e(u n nE +D 
rr 

Vn) . (5-3) 

The current density due to holes has also a drift and a diffusion 

component, but holes are positively charged instead of negatively 

charged as are electrons and consequently holes drift in the opposite 

direction to electrons. Thus, the drift current density for holes is 

epvl (5.4) 
rift ý-d 

where vt is the hole drift velocity given by ý-d 

vl =uE 
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and is in the opposite direction to the electron drift velocity. The 

diffusion component of the hole current density is 

(-D V (5-5) 
ff", PýT 

where p is the hole concentration and D is the hole diffusion 

coefficient. Thus the total hole current density is the sum of the drift 

component (5.4) and the diffusion component (5-5), 

e (pu 
pE-DpY. P) . 

(5.6) 

Equations (5-3) and (5.6) show the electron and hole current densities in 

a semiconductor. The total current density is their sum: 

j+jp. (5-7) 

The two equations governing the continuity of electrons and holes 

are in fact very similar, therefore only the electron continuity equation 

will be developed here. Small changes necessary to obtain the hole 

continuity equation will be indicated in the text. An arbitrary volume, 

V, of a semiconductor device is shown in Figure 5.2. Inside the volume, 

the total number of electrons is 

111V 
n(r, t)dV. 

The rate of change of the number of electrons is equal to the number of 

electrons photogenerated, g n' 
inside V per unit time less the number of 

electrons, U 
n' which recombine with holes in V per unit time minus the 

number of electrons which leave V across the surface S because of drift 

and diffusion: 

dIt ffv 
n(r, t)dV = 

fffv 
(g 

n-Un 
)dV - 

ffs 
[-(l/e)J 

n 
J. fldS . 

(5.8) 

Here 7e is the electronic charge and fl is the unit normal to the surface 
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S. The equation of continuity for holes is very similar, except that the 

flux of holes across the surface involves a factor (+l/e)J instead of p 
(-l/e)J 

n. 
Of course, in the term on the left hand side of equation (5.8), 

the hole concentration p(r, t) replaces the electron density n(r, t). 

Returning to the electron equation of continuity (5-8), the 

divergence theorem is used and the volume V is made constant in time so 

that one may write, 

3n Dn('ýý"t) 
- gn + Un -( 1/e)V. J 

n 
dV = 0. (5-9) 

Ilf 

vf 
ýt 

1- 

The integral relation (5.9) holds for all choices of the material volume, 

V, which is only correct if 

3n(r, t) 
.g-U+ (1/e)V. J (5-10) 

at nn- --n 

This is the electron continuity equation. The hole continuity equation 

differs because the sign of the electron charge is negative and the sign 

of the hole charge is positive, and ihe hole equation is 

Dp(r, t) 
=g-U- (1/e)V. J 

at pp- -P 

An equation for n(r, t) is obtained by utilising the electron current 

density equation (5.3) in the continuity equation (5-10), 

Dn 
- r'n Un+u (Vn. E) +u n7. E +DV2n. (5.12) 

Dt nnn 

A similar equation for holes is obtained from equations (5.6) and (5-11), 

9-U-u pl. ýL +DV2p- (5-13) 
3t ppppp 

I 
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The electric field, E, is related to the electron and hole concentrations 

by Poisson's equation: 

j. (c c E) = e(p -n- N- + N+), (5.14) 
AD 

where, c is the relative dielectric constant of the semiconductor, c is 
s0 

the permittivity of the vacuum, NA is the dopant acceptor charge per 

unit volume and N+ is the dopant donor charge per unit volume. D 

Equations (5.12), (5.13) and (5-14) yield a complete solution for 

the electron and hole concentrations as well as the electric field, but 

in practice their combined solution is difficult and some simplifying 

assumptions are made. These assumptions for the bulk n and p regions are: 

(i) There is negligible space*-charge in the region of interest, i. e. in 

equilibrium 

p0-n0-N+N=O. 

T'he effect of this is to make equation (5.14) into 

V. E =0 

and therefore the electric field is a constant field. 

(ii) Assumption (i) applies away from equilibrium in the steady-state 

because equal numbers of excess electrons and holes are generated by the 

incident light, 

n- no =p-p 0' 

(iii) The semiconductor has only one dopant of either acceptor or donor 

type and all of the dopant is ionised. If these are acceptors, 

IN «N 02 D 

If these are donor dopants, 

I 
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n. -+- N=N no » Po D* D' 

(iv) Low injection conditions are assumed, then the total number of 

minority carriers is less than the number of majority carriers in 

equilibrium: i. e. in p-type regions 

n0 << n << p0<P, 

and in n-type regions 

PO << p << n0<n. 

The combined effect of assumptions (ii), (iii) and (iv) is to make 

fluctuations in the majority carrier density (e. g. holes in p-type 

emitters) so small that one can regard the majority carrier density as 

effectively constant. In this way, it is necessary to solve only the 

electron minority carrier equations. 

(v) Consistent with assumption (iv) is the assumption of the 

recombination rate for electrons and holes being written in terms-of 

constant lifetimes, -r 
n 

and -r 
p2 

n 0)/-Enll up= (p - Po)/-[ P, 

Assumptions (i) to (v) will be used here to reduce equations (5.12), 

(5.13) and (5.14) to a single equation known as the the minority carrier 

diffusion equation. In a p-type semiconductor, for example the base of 

the solar cell shown in Figure 5.1, this equation is the electron 

diffusion equation, 

2nn0 an 
DVn+ 2D (V n. f) +g (5-15) 

nn at 
p 

For an n-type region, for example the emitter of the solar cell shown in 

Figure 5.1, the minority carrier 'diffusion equation is for holes, 
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DV2p- 2D +gp- 
PO 3. p 

(5.16) 
ppTp 

5-t 

Here the Einstein mobility relations (Landsberg, 1978, equation (17.23), 

p-327) have been used 

eD 
n=unkBT, 

(5-17) 

where kB is Boltzmann's constant (k 
B"ý1-38416x, 

0-23 JK-1 ), T is the 

temperature and 

eD =ukBT. 

Also a vector field, f, is defined by 

f= eE/2k B 
T. , (5-19) 

In the junction depletion region of the solar cell in Figure 5.1, 

the assumptions (i) to (iii) do not apply. In this region one assumes: 

(vi) that the free electrons and holes are completely depleted because 

of the electric field, i. e. 

p=n=0. 

(vii) the separation of the Fermi levels is given by 

Fe-Fh= eV, 

where V is the applied voltage, Fe and Fh are the electron and hole 

quasi-Fermi levels. The quasi-Fermi levels are assumed to be flat in this 

region because the electron and hole currents are small and constant here. 

The result of these assumptions is to reducb equations (5.12) to (5.14) 

to Poisson's equation, 

V. (c E E) = e(N -N (5.20) 
s 0=1 DA 
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Equation (5.20) is solved for the potential distribution in the depletion 

region. This work has been detailed extensively in the literature-'(see 

for example Sze, 1969) and so will not be repeated here. The width of the 

junction region is usually very small in a diode or solar cell in 

comparison with the width of the base region. Thus the total generation 

and recombination rates in the junctionare negligible in comparison with 

those effects in the base and the junction region adds little to the 

current of the solar cell. 

Equation (5-15) will be solved here for the minority electron density 

in the base of a solar cell under a variety of conditions in the following 

sections and later chapters. The solution of equations (5.16) for holes 

in the emitter of the solar cell is in fact similar to the solution of 

equation (5-15), but with a change of sign of the electric field, E. Thus 

it will not be given fully in this work. 

In the following case, the minority carrier density in the emitter 

contributes negligibly to the current output of the solar cell and one 

need not examine the minority carrier density of holes in the emitter via 

equation (5.16). When a solar cell is constructed with a narrow,. highly 

doped emitter, relatively few photons are absorbed in this region. The 

lifetime is one or two orders of magnitude smaller in this region than in 

the base and many of the carriers generated by the absorption of photons 

are reabsorbed in the emitter before. they-can diffuse across the junction. 

Thus, the contribution of the emitter in this case to the current of the 

solar cell may be neglected. This case has been named the "neglect of p-n 

coupling" by Sharma and Tewary (1982). 

The diffusion equation for minority carriers (5-15) is treated in a 

region extending in one dimension from the junction region edge at x=O to 

the back surface at x=d of the base of the solar cell as in Figure 5.1. 

This theory allows for surface recombination at either surface; at x=d 

the surface recombination velocity is interpreted as taking the place of 
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the p+ -region which would be present when a back surface field is built. in 

to the solar cell. For an Ohmic contact at the back surface, the surface 

recombination rate is infinite. A simple geometry is adopted by assuming 

light is incident normally to the front surface and a single dimension, x, 

parallel to the incident light direction is used. However a second 

dimension will be introduced in chapter 7 because of time-dependence and 

in chapter 8 because of a radial coordinate dependence of the electron 

density introduced by grain boundary surface recombination. The photo- 

generation rate per unit volume and per unit wavelength range is denoted 

by g(x, t) where the dependence on wavelength, A, will not be given 

explicitly. 

A complete solution to equation (5-15) requires boundary conditions 

at the surfaces which define the edges of the bulk region of the solar 

cell base. A sample of possible boundary conditions which were used by 

previous authors is shown in Table 5.1. Basically, these conditions are of 

two types, in cases 1 and 2 at x=O, the r=ority carrier density is 

calculated in terms of the applied voltage, V. In all of the other cases, 

the minority carrier density is given in terms of a current flow across 

the surface. 

The electron density at the edge of the junction space-charge region 

is obtained as. a function of the applied voltage as follows: Boltzmann 

statistics are assumed because the semiconductor is non-degenerate, then 

n=Nc exp(y 
e- 

Ti 
c) 

and 
pN exp(n --y vvh 

where N and N are the effective densities of-states--, for the conduction cv 

and valence bands. Here ye and yh are the quasi-Fermi levels for electrons 

and holes divided by kBT, and n. abd nv are the conduction and valence 



170 

band edge energies divided by kBT. Thus, the product of n and p is 

np =n2 exp(y -y ieh 

where n2 is defined by i 

2 
ni=NcNv exp(nv - nc) 

Utilising assumptions (iii) and (vii) 

n=n0 exp(eV/k B 
T) 

where 

2 !. 2 
no =ni /Po .nI 

IN 
A* 

The boundary conditions of Table 5.1, case 2 at x=O arises when V=O. 

In one dimension x, using equation (5-17), the electron clirrent 

density equation (5-3) is 

. 
Ln jn= eD 

n 

(2fn 
+ ax 

where f is the modulus of the field f acting along the x-axis. At X--O in 

cases 3 and 4 the electron current at the junction is zero. This condition 

is representative of open-circuit conditions. At x=O in case 5, a more 

general condition is used, whereby the electron current density at the 

junction is J(t). 

At the back surface of the solar cell, x=d, in cases 1 to 5 of Table 

5.1, the electron current flow is determined by the recombination current: 

= -eU. 

For low injection conditions the recombination rate, U, at the back 

surface is defined (chapter 2) in*-terms of a constant surface 

recombination velocity, s, by I 
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s(n -n0). 

An Ohmic back contact causes an infinite back surface recombination 

velocity in case 

In case 6, general linear boundary conditions are given. These are 

used to develop a solution to the minority carrier diffusion equation that 

encompasses all of the other cases of Table 5.1. 

Because of the presence of an electric field acting along the x-axis 

of the solar cell the equilibrium electron and hole concentrations, n0 

and pO7 are not constants. In equilibrium the electron and hole currents 

are zero, thus integrating equations (5-3) and (5.6) with the Einstein 

relations (5 
. 17) and (5 

. 18) , 

n0 (x) =n0 (0)exp(-2fx) 

and 

PO (x) =p0 (0)exp(2fx). 

With these forms for the equilibrium concentrations, n0 (x) and p0 (x ), one 

can eliminate the equilibrium concentrations from equations (5-15) and' 

(5.16) 
. Therefore, the excess electron concentration, n-nO3 and the 

excess hole concentration, p-pO'j are calculated in practice fr 
. 
om (5-15) 

and (5.16). 

5.3 Solution of the diffusion equation by a change of variabZe 

In the steady-state, the minority carrier diffusion equation (5-15) 

for electrons in the base of the solar cell in Figure 5.1 is time- 

independent and is given by 

d2n dn 
g(x) n (x) 

D: -- -- ý-- +2fD+=0. (5.21) 
dx 2 dx, T 
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Here n is the excess minority carrier density (i. e. n-n 0 of the previous 

section), f is the magnitude of the vector field along the x-axis 

defined by equation*(5-19), and the subscripts n have been removed from 

the diffusion coefficient, D, and the lifetime, T, for convenience. 

Two methods of solving the diffusion equation (5.21) will be 

employed in this work, the first is a change of variable and the second 

uses Green's function (Courant and Hilbert, 1955). The first method is 

useful when the photogeneration rate has the form (Dunbar and Hauser, 

1976) of an exponential decay, 

g(x, X) = ct(X)N 0 
(A)expf-a(x)x} (5.22) 

where aM is the absorption coefficient Im-11 aýd N0M is the incident 

photon flux at x=O Im-2 s-11. In section 5.4, Green's function is used to 

obtain a general solution to equation (5.21) with the boundary conditions 

of case 6 of Table 5.1, but it is a rather complicated method of solving 

the inhomogeneous diffusion equation (5.21) with the simple photo- 

generation rate of equation (5.22). 

An easy method of solving the diffusion equation with equation (5.22) 

is to use the following change of variable to m(x) where 

m(x) = exp(fx)fn(x) + OaN 0 exp(-ax)}, (5.23) 

and 0 is an arbitrary parameter. The diffusion equation (5.21) is 

transformed by this change of variable into the following equation: 

2m 
-fx 

_ (f2 D+ 1/T)me-fx + aN e-ax[l - 6{1)a(2f-a) + 1/T}3=0. 
dx 

20 

If an appropriate value for 0 is chosen, for example 

6= 1/II)a(a-2f) - 1/Tj, (5.24) 
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then the diffusion equation above is simplified to 

dm- 
la 

2m=0, (5.25) 
dx 

2 

where 

22 2' {f + 1/L 12$ (5.26) 

and L (=AD-T) is the diffusion length. Equation (5.25) has the solution 

m(x) = m(O)coshpx + {m'(O)/plsinhpx (5.27) 

where m(0) indicates the first differential of m(x) at x=O. However, 

this way of writing the solution to equation (5.25) is not unique and the 

solution could equally well have been written as 

m(x) = m(d)cosho(d-x) - fm'(d)/p}sinhp(d-x). (5.28) 

This is why some form of boundary condition, like those of Table 5.1, is 

necessary. Using equations (5.23) and (5.27), the electron concentration 

is given by 

-fx[{n(O)+N Icosh' n(x) =e px + (In'(O)+fn(O)+N 
1 

(f-a)}/p)sinhox -Nle-'x],, 
(5.29) 

or using equation (5.28), 

n(x)=e 
f (d-x) [fn(d)+Ill 

1e 
-ad}coslip(d-x)-({nl(d)+fn(d)+N 

1e 
-ccd (f-a) } /I, ) 

x sinhp(d-x)] - 11 1 e-ax (5-30) 

where a concentration N1 is given by 

N, = aN 0 
/[Da(ct-2f) - 1/-u] . (5-31) 

As a simple example showing hoF the boundary conditions are used, when 

the electric field is zero (f=O)Iahd the boundary conditions of cases 2 
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and 5 of Table 5.1 are adopted at x=O, equation (5.29) yields 

ax n(x) =N1 coshpx + EWL /eD - aN 1 
)/pjsinhpx -N1 e- . 

where JL is the light generated current. Utilising the boundary condition 

of case 2 of Table 5.1 in the steady-state.. -at x=d, one has 

Dill(psinhpd - acoshpd + ae -ctd I+ 
(i 

L 
/e)coshtid 

(5-32) 

-sN, 
(coshpd 

- (cc/p)sinhpd -e -ad (si 
L /eDp)sinhpd. 

Rearranging equation (5-32), the short-circuit current is determined by 

a, 1117 L, d and s,: the back surface recombination velocity and the short- 

circuit photocurrent is, since v is equal to l/L, 

iL=- 
ell 1 

D[{l/L-(ccsL/D) )sinhd/L+(s/D-cc) [coshd/L-e-ucl}j 

(sL/D)sinhd/L + coshd/L 
- (5-33) 

Note there were two conditions at the junction, x=O, one condition 

involved n(O) and the other involved n'(0) and this is why it is useful 

to write the solution in a form containing n(O) and n'(0). However, the 

light generated current, J 
L' was unknown until the boundary condition at 

the back surface was imposed. 
. 

To use the general boundary conditions of Table 5.1, case 6, they 

must be transformed into equations utilising m(x). The inverse transform 

of equation (5.23) is 

and thus 

n(x) = m(x)e-fx -N1 e-ax 

n(O) = m(O) - Nlj nl(O) = ml(O) - fm(O) + aN 1* 

Hence the boundary condition at x=O given by case 6 of Table 5.1 yields 

a new equation: 
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al(m(O) - Nl) +a- fin(o) + aN a (5-34) 
2(m'(0) 11 3* 

At x=d, the boundary condition similarly becomes 

b1 
(m(d) 

e -fd -N 1e 
-ad I+b2 (m' 

(d)e-fd_fm(d)e -fd+al, 
le-9td 

I=b 
3' 

(5-35) 

In the steady-state, the time-dependent functions a3 (t) and b3 (t) are 

constants, labelled by a3 and b3 here. Rearranging equation (5-34) yields 

(a, -a2f)m(O) +a 2m'(0) =a3+ (al-a 
2a 

)Nl (5-36) 

and a second simultaneous equation for m(O) and m'(0) is found when 

equation (5.27) is substituted into (5.35), i. e. 

b3+ (bl-b 
2 a) N1e -cc d= 

(bl-b 
2 f)e -fd {m(O)coslilid+, -, -il (0) li-'sinhpd}+b 2e 

-fd (pm(0)sinhpd+m'(O)coshpd}. 

Rearranging the right hand side of this equation, 

b3 +(bl-b 2 a) N1e- ccd e 
fd 

= 

[(b 
1 -b 2 f)coshiid+b 2 psinhpdlm(O)+t(bl-b 2f)"-l sinhVid+b 2 coshpdlm'(0). (5-37) 

Substituting m'(0) from (5-36) into (5.371 an equation for m(O) is 

obtained, 

iý(O) -=- 
(a2e fd b4-a4f (bl-b 

2f)p-l sinhpd+b 2 coshljd})Xp (5.38) 

where 

a4 ='- a3+ (al-a 
2 a)N,, ) b4=b3+ (b 

1 -b 2 
ON 

1e 
-ad 

2 

X": -l/ [Via 
21 

(bl-b 2f) coshpd+b 2us 
inhvidl-(a 1 -a 2 f) 

f (b 
1 -b 2 f)sinhpd+b 2 pcoshpd}]- 

Hence an expression for ml(O) is derived from (5-38)and (5.36), 
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m, (0) =-X 
(a 

4( 
(b 

1 -b 2 f)coshvd+b 2 psinhpdl-(al-a 2 f)efb4]p. (5.39) 

Putting m(O) from (5-38) and ml(O) from (5-39) into (5.27), the 

transformed solution is 

fd 11 
m(x)=b4e 

(a 
2 coshpx-(al-a 2f)"- sinhpxj(-Xp)-Xpa 

( 
[(b 

1 -b 2f)p-l sinhljd+b 2 coshpd)coslipx-[(b 1 -b 2f)p-l coshljd+b 2 sinhpd}sinhpx]. 

Rearranging the second factor in terms of coshp(d-x) and sinhp(d-x), 

m(x) = {b 3 +(bl-b 2 CL)II 1e 
-ad le fd 

X[(a 1- a2 f)sinhpx-a 2 pcoshpx3 + 

[a 
3 +(al-a 2 CE)I. I, }X((bl-b 

2 
f)sinhp(d-x)+b 2 pcoshp(d-x)], 

where 

2 
X=l/ 

( 
{albl-(a 

1b2 +a 2 bl)f-a 2b2 
/L }sinhpd+(a 

1b2 -a 2 bl)pcoshpdi. (5.4b) 

Finally, the excess carrier density, n(x), is given by the inverse 

transform of m(x) , 

-fx -ax n(x) = m(x)e N1e 

thus 

n(x) = fa 
3 +(al-a 2 a)N, }X[(bl-b 

2 f)sinhp(d-x)+b 2 pcoshp(d-x)]e- 
fx 

+ 

{b 
3 +(bl-b 2 

ON 
1e 

-a d )X[(al-a 2 f)sinhpx-a 2 Vicoshpx] ef( 
d-x) 

-11 1 e-ax. (5.41) 

This is the most general form of the steady-state carrier concentration 

to be obtained in this section. 

The current density at any point, x, is obtained from equation (5.3) 

which in one dimension for electrons is 

J (x) = eD 
4(X) 

+ 2fn(x) 
n 

ýdx 
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Differentiating equation (5.41) one obtains the electron current density, 

in (x)=eDXe -fx 94 [fbl f-b 2(" 
2 

+f 
2 )}sinhp(d-x)+p(2b 

2 f-b 1 
)coshp(d-x)]+ 

fd 22 -ax 
4e 

[{a 
1 f-a 2(v +f )}sinhpx+p(al-2a 

2 f)coshpx]l+eDN 1 
(a-2f)e 

In an abrupt junction solar cell, the depletion region is negligibly thin 

and its contribution to the current output of the solar cell is neglected 

and so the current is the sum of the base electron current, Jn (0), 

passing across the junction and the hole current, Jp (0), passing across 

the junction from the emitter side. The electron current is separated 

into the current of carriers injected at the boundaries, J inj' and the 

current generated by the incident light within the bulk, J 
L' 

i. e. 

n ini 

(see for example Hovel, 1975, P-51) where 

i 
ini 

ý-- eDX[a 31 
(blf-b 

2(p 
2 

+f 
2 ))sinhpd+p(2b 

2 f-b 1 
)coshpd}+b 

3e 
fd 

ji(a 1-2a 2 f)] 

and 

iL": eDXN, 
ý(al-a 

2cý) 
[{b 

2( 112+f2 )-blflsinhljd+p(bl-2b 
2f) coshlid] 

+(2f-a)X-'+(b -b a)e 
(f-cc)d 

p(2a f-al) 122 

The hole concentration, p(x), is obtained by solving (5.16) in the steady- 

state, but this process will not be repeated here. Quite simply, one need 

change the sign of the electric field for holes in equation (5.41) and 

the hole concentration in the emitter is therefore 

paIf 
(x+w) 

-cc ( X+W) 
pýb2'llpcoshij x-(b'+b2lf )sinhp eP -N e hpx p1p PXJ lp 

b Xp((aj+aýf )sinhpp(x+w)-a2lppcoshli (x+w) efpx 4p p. p 
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Here the boundary condition at the front surface is 

alp(-w)+alf-qRll -. -=. a3l 2ýdxjjx=-w 

and the boundary condition at the junction, x=O, is 

b, 'P(O)+b2'f. qkll = b3l. 
ýdxj I x=O 

Note that the thickness of the emitter is w, f is the modulus of the 

electric field in the emitter divided by 2k 
BT and 

1 
(f 

p 
+1/L 

p 

N= all e Qw /[D a(a+2f )-1/L 21 
lp 0ppp 

remembering N0 is the incident photon flux measured at x=O and 

Xp =(albj'+(ajbý+aýbj)f 
p -aýbý/L p 

jsinhjipw+(ajb2l-a2lbj)V 
p 

coshp 
p 

w, 

where Lp is the diffusion length for holes. The hole current, Jp (0), 

across the junction is given by 

J (0) = J! .-jt p inj 

where using equation (5.6) and the expression above for p(x), 

fw22 
J! =eD x&ý, ppe P (bj+2býf )+bý[[ajf +a2l(p +f )]sinhp w inj pppppp 

- (al+Nf 
p 

)p 
p coshp p wl 

and 

JL = eD XN 
r(a+2f )e-c'wXp 1- (aj-aýa)e 

fpw 
(bj+2f bl)p 

pp lpi pp2p 

-(bj-b2l )e-aw(falf +al(p 
2 

+f 
2 )Isinhp w-(al+2aýf )lj coshii-w]). p2pppppp 

The usual form of the solar cell equation 
I 
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j=j0 fexp(eV/k 
B 

T)-l} -JL 

can be recovered by adopting the boundary condition - of case 1 of Table 

5.1 at the junction end of the base and similarly at the junction end of 

the emitter one adopts 

P(O) =p0 (exp(eV/k 
B 

T) -1) 

in place of bb and b' 3' 

For a general photogeneration rate g(x) one might expect the 

following transformation of variables to be useful: 

m(x) = (n(x) + Og(x)le 
fx 

. 

However, this transforms the diffusion equation (5.21) into 

o(g"(x)+2fgl (x) )e x= 
init (X) -v m(x) + g(x) 

f 

T 

For any given g(x) one would choose 0 so that 

g(x) 
( l+ý0 ]- o(g"(x)+2fg'(x» =0 

D 

to obtain the simple diffusion equation (5.25) for the carrier density. 

One can see that this operation is useful only when g(x) satisfies 

g" + 2fgi -g1+1= C), (3 6, 
Eyl 

1 

which restricts the choice of g(x) to functions of the form 

g= e-fx[Aeýx + Be-ýx}, 

where 

211 {1/DO +p2. 
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Since 0 is a constant and A and B are also constants, the function g(x) 

has to be a simple exponential to satisfy the transformation above. 

Thus, the method of a change of variable is seen to be of use only in 

cases where the generation rate decays exponentially from the front 

surface. 

Using the boundary conditions of case 4 of Table 5.1 on th6 carrier 

density (5.41) is equivalent to making the substitutions 

al=2f, a 2=1 , b. 1=2f+s/D, b 2=1 ,a3 =b 3=0' 

The result for these boundary conditions is 

n(x) +11 1 e-ctx = DII 1 e- 
fx 

x t5.42) 

(2f-a){(f+s/D-)sinhll(d-x)+pcoshp(d-x)}+e 
fd-ad {2f-a+s/D}(fsinhpx-pcoshpx) 

(Sf-l/T)sinhpd -spcoshpd 

Using the data of Table 5.2 for silicon, some sample excess carrier 

concentration profiles are shown in Figure 5.3. The relation between 

curves (a), (c) and (f) may be understood as follows: The surface 

recombination processes near the back surface act as a sink for the 

minority carriers, so reducing the excess carrier concentration towards 

the higher values of surface recombination velocity. 

The positive doping induced field present in curves (a), (c) and (f) 

aids carrier collection at the junction by drawing electrons away from 

the back surface and increases their density in the region of the 

junction, x=O. This makes plausible the relation between curves (a) and 

(b), (c) and (d) and (e) and (f). It is also apparent that in drawing 

electrons away from the back surface, the electric field raises the total 

number of electrons in the steady-state. This is because fewer electrons 

are in the region of the back surface and so the recombination rate is 

smaller there. This effect is particularly noticeable for the highest 

value of surface recombination velbcity used in curves (c) and (d). 
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5.4 Solution of the diffjision equation using Green's function- 

A solution of the minority carrier diffusion equation of the steady- 

state (5.21). for a non-exponential photogeneration rate is obtained as a 

linear superposition of a particular integral, n Pil and a complimentary 

function, n CF' 
in this section. The particular integral is a solution of 

the full equation (5.21) but with homogeneous boundary conditions, 

a1 n(o) +a2 nl(O) =0 (5.43) 

and 

b1 n(d) +b2n1 (d) = 0, (5.44) 

imposed and Green's function is utilised to find the particular integral. 

The complimentary function is a solution of the homogeneous diffusion 

equation, i. e. equation (5.21) where g(x) is set equal to zero, and the 

complimentary function satifies the inhomogeneous boundary conditions of 

case 6 6f Table 5.1. The homogeneous diffusion equation is 

d2n dn n 
D-- + 2fD- -0 (5.45) 2 

dx dx T 

which has the general solution 

n= (Ae lix + Be-"x)e-fx (5.46) 

where p was given by equation (5.26). To obtain the complimentary function 

one requires that the general solution satisfies the boundary conditions 

of case 6 of Table 5.1. This determines the constants A and B through, at 

X=O' 

a1 (A+B)+a 
2 

(A(vi-f)-B(v+f)) =a3 (5.47) 

and at x=d, 

b1 (Ae pd +Be -pd )+b 
2 

{A(jj-ý)e pd 
-B(p+f)e 

-lid le -fd =b3 (5.48) 
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Equations (5.47) and (5. h8) may be rearranged into two simultaneous 

equations for A and B; 

fa 
1 +a 2 

(vi-f)IA+{al-'(p+f))B =a3 

and 

[b 
1 +b 2 

(vi-f))Aell d 
+fb 1 -b 2 

(V+f)lBe-lid =b3e 
fd 

. 

Solving the two simultaneous equations by eliminating B, which involves 

multiplying the first equation by 

{bl-b 
2 

(ij+f)}e- lid 

and the second by 

{al-a 
2 (v+f)} 

and subtracting the resulting equations, one has 

1- vd_ - fd A= -2Xu [a3 [bl-b 2(11+f) 
}e I al-a 2ý "+f) }b 

361 

where again 

X=-2/p[{a 1 +a 2 
(p-f)}{bl-b 

2 
(p+f)}e -pd_ fal-a 

2 
(p+f)l{b 

1 +b 2 
(p-f)}e pd I. 

If A is substituted back into one of the simultaneous equations above, an 

expression for B is obtained, 

I fd pa B= 2XIj [b 
3e 

[a 
1 +a 2 

(p-f) I-a 
3 

(b 
1 +b 2 

(Ii-f) Je 

The complimentary function, n CF 
(x), which is a solution to the 

homogeneous equation (5.45) with inhomogeneous boundary conditions is 

therefore from equation (5.46) 

n CF 
(x) = 

ýa 
3 

(fbl-b 
2(P+f) 

}elj( x-d) 
- {b 

1 +b 2 
(p-f) }e p(d-x) 1- 

fd ' lix b3e tal-a 
2 

(p+f))e - {a 
1 +a 2 

(ji-f) }e-"Xl x0 
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This expression can be recast in terms of hyperbolic functions 

n CF 
(x) x 

{a 
3[ 

(b 
1-b 2f) sinhli(d-x)+b 20 coshp (d-x) ] +b 3e 

fd C(al-a 
2 f)sinhljx-a 2 pcoshpxj} 

(5.49) 

where X is given by equation (5.40). Note that the above equation'(5.49) 

for the complimentary function is independent of the light generation of 

carriers and that in the following work the light dependence is contained 

within the particular integral, n PI(x). 

To obtain the particular integral of equation (5.21), it is 

necessary to find Green's function, u(x; y), associated with the operator 

L, 

df 2fxdj 
_ 

. 
2fxj 

ct dxj 'r 
L, lul = 

ýD 
3-x eu (5-50) 

Green's function is a solution of 

Llul = 6(x - Y) (5-51) 

which also satisfies the conditions of equations (5.43) and (5.44). Full 

details of Green's method of solving differential equations can be found 

in (Courant and Hilbert, 1955). Green's function is constructed from 

solutions of (5-51) on either side of x=y, where the delta function is zero 

in the regions Oýx<y and y4x, <d. The two solutions, c u-(x) and clul(x), 00 

in the separate regions contain arbitrary constants c and c and must 0 .1 

be continuous at x=y, thus 

cu (y) -cu (y) =05 (5-52) 
0 0.1 1 

and Green's function is given by 

u(x; y) = 
COUOW for 0, <x, <y, 

Ic1u 

I(X) for y, <X, <d. 
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Also, the first derivative of Green's function at x=y has a jump 

discontinuity given by 

Lim dul x=y+c 
=e 

2fx 
(5-53) 

E: --ý'O dX I X=Y-E: D 

where c is a small 1--no-th. This may be understood by integrating (5.51) 

using (5-50) from x=y-c to x=y+c: 

Lim X=Y+ý' 2fx du(x; y) e 
2fx 

U( dx = 

fx=Y+E6(x-y)dx jd (e 
D C-0 X=Y-E: 

dx dx D-r JX=Y-F- 

After an integration of the first factor, one has 

ý 2fx ly+E_ (y+F- 2fx 
Lim 

[e 
du 

X F-+O -ýx, -JY-c ly-E`ý-ýU 

and this expression-simplifies to equation (5.53) because u(x; y) is 

continuous at x=y. Hence, equation (5.53) is obtained and it yields 

c1u1 (y) - c. uý(y) =e -2 

This equation together with (5-52) are solved for c0 and c 1, 
One requires 

for a solution that the determinant or Wronskian of the coefficients of 

c0 and c1 is non-zero, i. e. 

2 fy 
_, K --«: D[u 0 

(y)ul(y) - ul(y)uý(y)]e r 0, (5-54) 

where K is the Wronskian of u0 and u1 for the self-adjoint operator, L 

(Courant and Hibert, 1955). The solutions for c0 and c1 are 

-1 -1 co=u 1 
(y)K 

. cl=u 0 
(y)K , 

and therefore Green's function is 

u O(x)ul 
(Y)K-l for 0, <x<y, 

u(x; y) u1 (x)uo(y)K 1 for y, <x<d. 
(5-55) 
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The functions u0 (x) and u1 (x) are solutions of the homogeneous diffusion 

equation (5.45), u0 (x) satisfies the boundary condition (5.43) at x=O and 

u1 (x) satisfies the boundary condition (5.44) at x=d. Hence, one uses the 

general solution (5.46) to it and obtains u0W: 

u0 (x) = (A 
0e 

px +B0 e-px)e-fx (5-56) 

where (5.43) yields 

a1 (A 
0 +B 0)+a2 

{(lj-f)A 
0- 

(p+f)B 
0}=0 

therefore, equation (5.56) yields 

uo = 2A 0e 
-fx {(a 

1 -a 2 f)sinhpx-a 2 pcoshpxl. 

Similarly, 

(A 
1e 

px +B1 e- px )e-fx (5-57) 

and this satisfies (5.44), which yields 

b1 (A 
1e 

pd +B 1e 
-lid )+b 

2 
{A 

1 
(p-f)epa-B 

1 
(p+f)e-pd) = 

Hence u1 (x) may be rewritten using (5.57), 

u1 (x) = 2A 1 e-fxl (bl-b 
2 f)sinhp(d-x)+b 2 pcoshp(d-x)1. 

The factors A0 and A1 remain arbitrary, but one sees from (5-54) and 

(5-55) that these factors will cancel out of the Green's function. The 

Wronskian of u0 and u1 is obtained by substituting the above expreusions 

for u0 and u1 into equation (5.54), and one obtains 
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K/(4A 
0AI D) = 

f(al-a 2 f)sinhpy-a 2P coshpy}[{b 2(f 
2_V2 )-b 

1 
}sinhp(d-y)-b 

1 pcoshp(d-y)] 

+-{(b 
1 -b 2 f)sinhp(d-y)+b 2 peoshp(d-y)}[{a 1 f-a 2 

(f 2_P2 )Isinh y-apcoshpy]. 

Hence, multiplying together the sinh and cosh terms, one finds 

K-= 
-p[(a bab )pcoshpd+falbl-(alb +a2b, ) b /L 2}si 

nh li d] =--11 4A 
1A0D1 2- 212 f-a 22 x* 

Note that the Wronskian, K, is a constant (Courant and Hilbert, 1955) 

because the operator L is self-adjoint. Thus, Green's function (5-55) is 

given by 

-e-f(x+y){(bl-b 2 f)sinhp(d-y)+b 2 pcoshp(d-y)} 

U(X; Y)= xXI(al-a 2 f)sinhpx-a2pcoshpx}/Dp for 0, <x<y, 

-e-f(X+Y)I(bl-b 2 f)sinhp(d-x)+b 2 pcoshp(d-x)l 

xX{(al-a 2 f)sinhpy-a 2 pcoshpy}/Dp for y<x, <d. (5-58) 

The rdnority carrier diffusion equation (5.21) with the operator 
-L 

in 

self-adjoint form is 

Llul = -g(x)e -2fx 

and therefore the particular integral is given by (Courant and Hilbert, 

1955) 

n PI(x) 
(d 

g(y)e 
2fy 

u(x; y)dy 10 

Hence, using equation (5-58) the particular integral is 

n,, (x) = Ilxe-fxf(b 
1 -b 2 f)sinhp(d-x)+b 2 licosh)j(d-x)} + 

12 Xe -fx {(a, -a2f)sinhpx-a 2 pcoshpx}, (5-59) 

where the integrals 11 and 12 have been constructed as follows; 
I 
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In the addition of the particular integral to the complimentary function 

(5.49), it is convenient to define two parameters 11 and 12 by 

d 
f(al-a 2 f)sinhpy-a2pcoshpy)g(y)efydy/Dlj. (5.60) 

o 

and 

I-d {(b b f)sinhp(d-y)+b coshp(d-y)}g(y)e: 
rydy/Dp. (5.61) 

2 ý: 
fo 

1- 2 2p 

The complete solution to the steady-state minority carrier diffusion 

equation is the sum of the particular integral (5-59) and the complimentary 

function (5.49). Thus, the steady-state excess electron density is 

n(x) = xe-fx 
( 
(a 

3 +1 1 
)I(bl-b 

2 f)sinhp(d-x)+b 2 pcoshm(d-x)) + 

(b 
3e 

fd 
+1 2 

){(a 
l7a 2 f)sinhpx-a 2 pcoshpxl (5.62) 

using the expression for x given in equation (5. hO) and the integrals 11 

and 12 given in equations (5.60) and (5.61). These integrals incorporate 

a general photogeneration rate. If the photogeneration rate has the usual 

form of an exponential decay as in (5.22), the integrals 11 and 12 may be 

evaluated readily. The result is identical to equation (5.41) where the 

excess minority carrier density was calculated using the change of 

variable and so will not be repeated here. In the following chapter, 

equations (5.6o), (5.61) and (5.62) will be used with a special photo- 

generation rate (11sieh et al., 1980) which more accurately approximates 

the absorption of the Sun's spectrum by a silicon solar cell. 

5.5 Concksions 

It has been shown here that even in cases where a general photo- 

generation rate is used as well as the general linear boundary conditions 

one can obtain a solution to the minority carrier diffusion equation. 
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This result is displayed in the form of hyperbolic functions. The use of 

abstract general linear boundary conditions leads to the most general 

solution which may be obtained from. the diffusion equation as given by 

equation (5.21). Substitution of physical parameters in place of the 

abstract quantities (ai2 b,,, i= 1,22 3) enables a solution given here in 

equation (5-62) to be representative of all of the different steady-state 

operating conditions of a silicon solar cell in low injection (Hovel, 

1975). The inclusion of an electric field in the base, which can be 

realised through an exponential doping profile, is preferential to carrier 

collection at the junction. The steady-state model given here in section 

5.3 indicates that there are two benefits. The drift of electrons towards 

the junction aids the diffusion process and therefore increases the 

number of minority carriers collected. Also, the drift field keeps 

electrons away from the back surface where there is often a high surface 

recombination velocity and the drift field aids carrier collection by 

preventing recombination. 

By developing a solution with a general photogeneration rate the 

examination of different types of illumination spectra is possible. For 

example, a new spectral representation of the absorption of sunlight by a 

silicon solar cell is given in chapter 

N 
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Table 5.1 Boundary conditions for the diffusion eguation in a solar cell 

Case At x=O At x=d References 

1 n=n exp(eV/k T) D dn+2fD n---s(n-n 0 Mallinson and 0B ndx n 
(Voltage V across j1n) n= n(d) Landsberg, 1977. 

2 n=n 0 D an = -s(n-n Dhariwal et al., nT 0 
x x 

(Short-circuit) n= n(dt) 1977; de Vos and 

Pauwels, 1977. 

3 Dn(O, t) 0 n(d, t)=O, s=-, Von Roos, 1981 
ax 

(Open-circuit) (Ohmic back contact) 

or 

3n(d, t) 
=O, s=O. ax 

(BSF solar cell) 

4 D an + 2fD n=0 
n n 

D an + 2fD n=-s(n-n 
n n0 

Sharma and Tewar, 
ax ax 

(open-circuit) 
= (d t) 1982. 

n n , 

5 eD an = JW 
n 

D an = -s(n-n n 0 
Dhariwal and Vas- 

ax ax 
(Current J across j1n) n n(d, t) 1981 

a1n+a2 2n =a3W b1n+b2 an b3 (t) General linear 
;X ax 

boundary condIns 

n= n(O, t) n= n(d, t) 
see text. 

1, 
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Table 5.2 Parameters used for the curves 

CL 60oo cm - 1 Ei 1 2.2 x 10 - Vcm 

N0 3.8 x 1017 CM-2 s -1 f 44.0 cm -1 

T 4.0 x 10-6 s t1 1.0 x 10-8 s 

D 35.0 cm 
2s -1 T 300 K 

16 -3 d 100 jim NA 1.0 x 10 cm 

s 
3 -1 6.0 x 10 cms kB -2 1.38o6xio 3JK-' 
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Eo 
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0 

ev 
Fh 

ý-VL- 
n-type 
emitter 

dep(etion 
layer X=o 

p-type 
x=d base 

Figure 5.1 The energy bands in an n-p solar cell with constant electric 
fields in the emitter and in the base. 

a 
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p. ' 

- (1 /e)J 
n 

Figure 5.2 The volume element, V, in a region of bulk semiconductor 

with a concentration n of electrons inside V, recombination rate U, and 
generation rate, g, and an electron current, J 

n' 
out of V through the 

surface, S. 



193 

24 

n 
1,103cm--- 

20 

16 

12 

8 

1. 

0 2 1. 6 8 10 XPO -3 cm 

Figure 5.3 Excess carrier density profiles for steady-state illumination 

using equation (5.42) and the data of Table 5.2 (curve (a)). In the 

following curves: (b) E=O, (c) s=co, (d) s=oo, E=O, (e) s=O, E=O, (f) 

S=O. 
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CHAPTER 6 

GREEN'S FUNCTION AND THE ANALYSIS OF SOLAR CELL PHOTOCURRENT 

6.1 Introduction 

The efficiency of conversion of solar energy into electrical energy by 

a photovoltaic cell depends on (i) the nature of the incident radiation, 

(ii) the energy and (iii) position dependence of the absorption of the 

incoming light. In addition, there are (iv) the effects of the material 

parameters, i. e. the thickness of the device, its junction depth and 

doping concentrations. For a brief review of effects (i), (ii) and (iv) 

see Mallinson and Landsberg (1977). Attention will be focussed in this 

chapter on the effect (iii) of the position dependence of the light 

absorption, but it will be useful to briefly review the other effects. 

(i) Measurements of the solar spectrum have been taken at many 

locations on the Earth's surface (see for example Dixon, 1978; Condit and 

Grum, 1964; Henderson and Hodgkiss, 1964) and for different meteorological 

conditions. The air mass zero W, 10) spectrum (NASA, 1971) is the estimated 

Sun's spectrum outside the Earth's atmosphere. Air mass one (A111) (Dunbar 

and Hauser, 1976) is the solar spectrum under a clear sky with the Sun 

vertically overhead, at a position on the Earth's surface. The A1.2 

spectrum (Fossum,, 1976) represents average weather conditions with the Sun 

600from vErtically overhead. Higher air mass spectra have been calculated 

for progressively more diffuse and weaker intensity sunlight. 

(ii) Germanium and Gallium Arsenide (a direct band-gap semi- 

conductor) have relatively good and constant absorption 

coefficients for all energies of incident light greater than their 

energy gaps (Hovel, 1975). A negligible amount of incident light with 

energy less than the band-gap is absorbed. Silicon however is not a 

direct gap semconductor and has a poor absorption coefficient for 

energies just above its band-gap ýDunbar and Hauser, 1976). For higher 
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energies, Silicon is a good absorber of sunlight (Hovel, 1975). 

(iii) When the absorption coefficient of a material is high, light is 

absorbed, generating electrons and holes close to the front surface of 

the solar cell. Reducing the ! ýiirfar-e--rrecombination-: -, ýit the front -of the' 

device is then important, as is the case in Germanium and Gallium 

Arsenide solar cells. If the absorption coefficient is weaker, more of 

the light is absorbed in the base region and the properties of 

recombination in the base are of emphasised importance. This is the case 

in Silicon solar cells (Hovel, 1975). 

(iv) If one chooses to make the thickness of the cell large, the 

solar cell absorbs more of the light falling on it, but the device loses 

more of the extra carriers generated un the increased size because of 

larger bulk recombination. Bigger doping concentrations on either side of 

the junction can lead to poorer lifetimes of the photogenerated electrons 

because of extra Auger transitions (see for example Schmid and Reiner, 

1982). For a good review of the material effects on solar cell efficiency 

see Hovel (1975). 

Returning to the effect (iii) of the position dependence of light 

absorption, it is usual to write the generation function, g(x,, \) of 

electron-hole pairs in a solar cell as a function of position, x, and for 

a given wavelength range, X to ; ktdX, by 

g(x, X)dX == a(X)N 0 
(X)dXexp{-a(X)x} 

where 11 0 
(A) is the incident flux of photons in the wavelength range and 

01(X) is the absorption coefficient (see for example Cummerow, 1954 for 

this equation). One integrates over all wavelengths to obtain the total 

generation rate inside the solar cell. A new form for the total rate of 

carrier generation inside the solar cell was recently given (Hsieh et al, 

1980) for the Ml and P142 sprectra and this is 

%n 
g(x) g 

1/(x+cl). 
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Note that there is no dependence on wavelength, X, and that good agreemeilt 

with experiment is obtained for n equal to 1,2 or 4. This new form of 

g(x) lends itself to analysis of the steady-state diffusion equation when 

Green's method is utilised. It has the advantage over the usual 

exponential generation rate of possessing only a few terms and an 

integration over the range of incident wavelengths is not required in a 

full solution. 

6.2 The diffusion equation solution. 

The mnority carrier diffusion equation for electrons in the p-type 

base of a solar cell where the electric field, E, is negligibly small is 

d2n_n+ g(x) = 0, (6.2) 
dx 

2L2D 

where L is the diffusion length, D is the diffusion coefficient and n(x) 

is the excess electron density. Note that the drift field, E, has been 

set equal to zero, this is not necessary to solve equation(6.2), but it 

does simplify the equations which follow and this is why it has been done. 

Using the general linear boundary conditions of case 6 of Table 5.1, the 

general solution to equation (6.2) was obtained in chapter 5, equation 

(5.41) and it is 

(a 
3 +1 1 

){b 
1 sinh(d-x)/L+b 2 /Lcosh(d-x)/L}+(b 

3 +1 2 
)fa 

1 sinhx/L-a 2 
/Lcoshx/L} 

[a 
1b1 -a 2b2 

/L 2 }sinhd/L+{(a 
1b2 -a 2b1 

)/L}coshd/L 
(6-3) 

where f is zero and the parameter)j is the reciprocal of the diffusion 

length, L. Here the integrals 11 and 12 have new forms because of the 

function g(x) given in (6.1) and these are 

xn iLI'alsinhy/L-a 2 
/Lcoshy/L 

-1 dy (6.4) 
0 Y+C i 



197 

and 

dn liLl'blsinh(d-y)/L+b 2 
/Leosh(d-y)/L 

dY. (6-5) 
Y+c 11 

Although the integrals 11 and 12 cannot be performed explicitly one can 

recast equations (6.4) and (6-5) in terms of the exponential integral 

(Gradshteyn and Ryzliik, 1980), 

-fmx(e-t/t)dt for x<O, 

Ei(x) 
-E: 

(6.6) 

-lim x 
(e-t /t)dt + (e-t /t)dt for x>O. 

E-)-O 

f FE: 

The exponential integrals are evaluated from tables (Abramowitz and 

Step, un, 1970) or by the infinite series (Gradshteyn and Ryzhik, 1980) 

m 
Ei(x) =y+ lnlxl +ýxk /(k. kl) (6-7) 

k=l 

where Y(=0.57722) is Euler's constant. Expanding the hyperbolic functions 

of I and I in terms of exponentials and utilising the exponential 12 

integral, 

n (giL 
I 

i=l 2D 

/L ci/L -C. 

+[ al4fi -a2le-c' Ei 
X+c 

-Ei 
c jEi 

L .1 -Ei L 
ci ]ei -X+Cil 11 

1 
(6.8) 

L 

n (g Ll i 

iQ'2D-l 
(6.9) 

ci+d)/L b (C +d)/L d+c 02xc [(b 

j_F4b 
i 

Ei -L) 
L 

l'e ýEi 
- 4b 

-X+Cil- 
+Ei 

(-"+ei] l+ 
ý bl+F] e 

(LLL 

It is useful to define functions K(y) and H(y) by 
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K(y) --: Ei(y)e-y - Ei(-y)ey (6.1o) 

and 

H(Y) E 
dK(y) 

= -Ei(y)e-y - Ei(-y)ey. 
dy 

Utilising equations (6.8) to (6.11), the integrals 11 and 12 are 

n (g, Lj [ c'j 
ýýak(c .11 

-c i /L 
c +a 

ci/L 
i -x+c 

M, 
I, = I- -a K 

-i 
.I+a7! 2 e Ei + ill, 

IEi 

i=1 
r2D 1[ 1LLLLLL 

nL 
Zý 

(gl-] 
x 

2D 
(c +d)/L -(C +d)/L d+c b du+c 

+r 
b1 i(-X+C. )+ bu 1 

-b 1K 
i)-.. ýýHf c: i) b1 +ý2, j eE1 bl- 2)e Ei(x+'ijj. 

I 

117; ýj 
LýL)ýL( EL [Lj 

As a consequence of the above expressions, the minority carrier density, 

n(x), from equation (6.3) can be written in the following form 

n L 

=1 2DI[KI(x+ci)/Ll 
+ n(x) =15 

fd-xl b2 rd-x 
+Bas inh2ý -a2 oshýý (6.12) Ai 

ýb 
I sinhý L j+tý-cosh L1L 

where 

A. 
a3 2D/(giL) alK(ci/L) -ýa 2 

/L)H(ci/L) 
(6.13) 

1 (a 
1 bl-a 2b2 

/L 2 )sinhd/L + (a 
1b2 -a 2b1 

)/Lcoshd/L 

and 

b 2D/(giL) - blK {(d+c. ) /L) - (b /L)H {(d+ci'). /L) 
B. 

3 
.. .-12 

1 (albl-a 
2b2 

/L2)sinhd/L + (alb 
2-a2 bl)/Lcoshd/L 

Note that it has been assumed that the electric field is zero. If it is 

not zero, one can include its effect in the diffusion equation (6.1) as 

was shown in chapter 5 or as in thp literature (Ellis and Moss, 1970). 
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one must however regard the electric field as constant in such work. 

In equation (6.12) the excess minority carrier concentration of 

electrons in the p-type material has been calculated, and the total 

electron concentration is 

nT (x) = n(x) +n0; (6-15) 

similarly the hole concentration is 

PT (x) = P(x) +p 0* 
(6.16) 

The material is assumed to be. uncharged, i. e. in equilibrium 

PO -n0-NA=0 (6.17) 

and in the steady-state 

PT (x) -nT (x) -NA= 

where NA is the concentration of charged acceptors. Hence subtracting the 

two equations (6-17) and (6.18), using also (6-15), (6.16) 

P(x) - n(x) = 0. 

One finds in equilibrium, a large concentration of holes, such that 

PO �! *' NA»n 0* 
(6.19) 

Away from equilibrium, providing the excess electron concentration is not 

too large, (6.19) still applies and one may also write 

p (x)n (x) =n2 exp(. y -y ) (6.20) 
TTieh 

where n2 =nOpO and and yI are the electron and hole quasi-Fermi levels ie 

divided by kBT where kB (=8.6171 x 10-5 eVK-1) is Boltzmann's constant. 

Thus utilising (6.20) and (6-15) 
, 

I 
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n(x) = (n 2 IN ){exp(y 
iA e-yh 

where it has been assumed that all of the acceptors are charged. Finally, 

(6.19) allows one to assume Fh is flat, 

F (x) = Fh +k Tlnf(n(x)N /n 2)+ j}; (6.21) B 

here n(x) is calculated using (6.12). Equation (6.21) has been used to 

show Fe -F h as a function of x in the quasi-neutral base region of a solar 

cell in Figure 6.1 using the parameters of Table 6.1 for Si. The data for 

the solar spectra AMI and AP2 was taken from Hsieh et al.., ( 1980, Table 

1). The upper curves show open-circuit conditions where the boundary 

conditions are 

eD ýý i(o) =o (6.22) 
dx 

I 

x=O 

and 

J(d) = eD dx 
I 
X=o = -esn(. d) (6.23) 

The lower curves are for short-circuit conditions where the boundary 

conditions are given by 

n(O) =0 

together with (6.23) for x=d. Under open-circuit conditions, using (6.12), 

(6.22) and (6.23) 

n +c4 i+Di -D .. hxJ]giL 
x1 

osh 
(d-X-] 

f n(x) Krx + Aiýs sinhrx -ýC UL +B -ýC 
2D l[ 

1L ýLL 

where 

N 
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(D/L)H(c 

i 
/L) 

(D/L) 2 
sinhd/L + (sD/L)coshd/L 

using (6.12) and also, using (6.14), 

sK((d+c i 
)/Ll + (D/L)Hf(d+c i 

)'ý/-L} 
B1 

(D/L )2s inhd/L + (sD/L), coshd/L 

Under short-circuit conditions, utilising (6.23) and no excess carrier 

density at the junction, (6.12) becomes 

n giL[Kfx+c '. (d-xl D 
LAit 

sinh + osh +B sinh (6.24) n (x) =ý -7 
_X 1 

,' 
F-j sU -L X] 

iLLjv 

(L 
if 

=l 2D L 

qL 

where (6.13) gives 

A. 1 

and (6.14) gives 

-K(c i /L) 

s sinhd/L + D/L coshd/L 

-[sK{(d+c i 
)/L}+(D/L)H{(d+c 

i 
)/L}] 

s sinhd/L + D/L coshd/L 

The general slope of the curves in Figure 6.1 for open-circuit 

conditions is caused by the position dependence of the carrier generation. 

The absorption rate of photons is high towards the junction end of the of 

the base region, x=O, and is low in the back surface region of the base as 

fewer photons are available to be absorbed. This gives rise to a larger 

separation of the quasi-Fermi levels near. the junction and a smaller 

separation of the quasi-Fermi levels near the back of the device. The 

high back surface recombination rate influences the carrier concentration 

and hence the separation of Fermi-levels in the neighbouring region is 

small. When a large surface recombination velocity exists at the back 

surface, for example because of an'Ohmic metal contact to the semi-, 
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conductor , there is a large carrier current towards the back surface. 

Consequently, the gradient of the carrier concentration or of the Fermi 

level separation is large near the back surface. 

Under short-circuit conditions, as in the lower curves of Figure 6.1, 

there is a large carrier current out of the base into the junction 

region. This current sweeps a large proportion of the excess electron 

density out of the region of the base adjacent to the junction, so 

reducing the separation of the Fermi levels at small x values. 

In both short-circuit and open-circuit cases the curves for the A141 

spectrum lie above those for the PJ42 spectrum. The reason for this lies 

in the AM1 spectrum having a higher concentration of photons. At a 

distance of 0.1 pm from the front surface, there are 50% more photons in 

the AM1 spectrum (Ifsieh et al., 1980, Figures 1 and 2) than in the AIR 

spectrum. At 1 um from the front surface however, the difference is 

reduced to 20%; thus, the difference in the curves is reduced towards the 

back of the cell. Physically, this change in the relative intensity of 

the two spectra with increasing diatance from the front surface can be 

understood as follows: Silicon is a poor absorber of photons with ' 

energies just above its energy-gap, but it is a good absorber of higher 

energy photons. The extra photons that the AM1 spectrum has over the PM 

spectrum tend to have higher energy (in the ultraviolet region). Hence, 

these photons are easily absorbed by silicon near the front surface, the 

remaining photons being of smaller energy are absorbed towards the back 

of the diode. Note that the other main difference in the P141 and AM2 

spectra is that the latter has a larger diffuse component of radiation. 

Thus, more of the AM2 spectrum is reflected by the front surface of the 

solar cell and does not penetrate into the device. This effect is not 

considered here because the data given by Hsieh et al., (1980, Table 1) 

refers only to measurements made of the spectrum inside the solar cell. 
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6.3 The eurrent-voltage characteristie 

The total current density flowing across the junction of a solar cell 

has two contributions. one contribution from the minority carriers in the 

base and a second contribution from the minority carriers in the emitter 

region. In this case, the base is p-type and the first contribution is by 

electrons. The second contribution is from holes flowing out of the 
- 

n-type emitter into the base, but here it will be assumed to be negligibly 

small (Dhariwal and Vasu, 1981) because the emitter is usually thin and 

more strongly doped than the base, giving a smaller carrier lifetime. 

The electron current from the base at the junction, x=O, is given by 

J(O) = eD 
dn I 
dx X=o 

where n(x) was written- in equation (6.12). Thus, using (6.11) 

nc 
J(O) = 2'e gi HiA ýb coshfýj + sinh 

[ýj 
+Ba (6.25) 

[ (E 
i. 1 ýLj ýL)j i 11 

where A1 and B1 were given in equations (6-13) and (6.14). Utilising the 

boundary conditions of case 1 of Table 5.1, one has 

en c'j {sL/Dcoshd/L+sinhd/Ll 
1(0) gi KL 

{sL/Dsinhd/L+coshd/L} 

-sL/DK{(d+c i 
)/L}+H{(d+c 

i 
)/L} 

{sL/Dsinhd/L+coshd/L} 

'il eDno sL/Deoshd/L+sinhd/L 
H 

ýL'i IL 

SL/Dsinhd/L+coshd/L, 
{exp(eV/k T)-l}- (6.26) 

Note that the current flow is towards negative x and that is! 
-why the 

sign of the dark current is negative. This occurs here because of the 

choice of an n-p junction diode. -In the simplest solar cell) the. back 

surface recombination velocity, s, is infinite because of an Ohmic back 

contact and also the thickness of the cell, d, is many times larger than 
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the diffusion length, L. Thus, the current density is 

n] eDno ( 
J(O) = l2e 

gi H(c i /L)+K(c i /L) L exp(eV/k B T)-l 

using also (6.10) and (6.11) 

nci /L 
- 1(0) = 2'e gi Ei(-c i 

/L)e (eDn 
0 

/L){exp(eV/kBT)-l}. (6.27) 

Using the series expansion (6-7) for Ei(c i 
/L), the data for the 

coefficients c1 from Hsieh et al., ( 1980, Table 1) together with the 

data of Table 6.1 and the conventional forward current direction, the 

current density (6.27) as a function of applied voltage and of 

illumination spectrum is shown in Figure 6.2. The difference between the 

two curves for M1 and M, 2 spectra is because the weaker intensity PJ42 

spectrum gives a smaller light generated current, J L' Note equation (6.27) 

can be written in the form 

i(o) =iL-10 fexp(. eVjk B T)-l}, 

where one identifies JL as the first term on the right hand side of . -- 

(6.27), J0 is the so-called dark current and first factor of the final 

term of (6.27). The open-circuit voltage, V 
OC7 

is given by 

v (k T/e)ln(l+J /i 
oc BL0 

one notices that the change in JL has little effect on V 
oc 

because the . 

ratio of light current to dark current is very much larger than unity. 

The dashed lines indicate the current as a function of voltage when the 

15 -3 doping is reduced by a factor of five (N 
A =10 cm , v=15ýs, D=36 

cm 
2S -1 ), here the dark current is larger and there is a smaller open- 

circuit voltage for both AM1 and PM spectra. 

de Vos and Pauwels (1977) define the collection efficiency of a 

solar cell by I 
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Q =- iL /eG 

where 

n 

i=, 0 +c 
gi 

Hence, by equation (6.26) when the back surface recombination velocity is 

infinite, because of an Ohmic contact for example 
n 
Y 2g. [H(c. /L)+K(c 

i /L)cothd/L-KI(d+c i 
)/L}cosechd/L] 

Q (6.28) 
n 

gI ln(l+d/c i) 

Using the data of Table 6.1, equations (6.10) and (6.11) for K and 11, 

(6-7) for Ei and the spectral data of Hsieh et al., (1980, Table 1) 

results for the collection efficiency are given in Table 6.2. Care with 

the choice of d must be taken because of the nature of the integrated 

generation rate, G. If 

incident photons fall on the cell, when d is made too large, the total of 

electron-hole pairs generated 

n 
giln(l + d/c i 

J---L 

exceeds the number of incident photons and that is impossible. Hence, one 

must set an upper limit on d. 

One finds from Table 6.2 a higher collection efficiency for the AM1 

spectrum than for the AM2 spectrum. This is largely due to the light 

current produced by the AMI spectrum being larger. 

6.4 Conclusions 

Solution of the minority carrker diffusion equation using Green's 
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function provides the benefit of a general solution with general linear 

boundary conditions. This solution allows one to examine more complicated 

generating functions (Hsieh et al., 1980) as well as the regular 

exponential generating function'(Mallinson and Landsberg, 1977). In the 

example shown here there is no wavelength dependence of the generation 

function (Hsieh et al., 1980) used to represent the Air Mass one (AMl) 

and Air Mass two (AM2) spectra. This is a disadvantage over existing 

models (Mallinson and Landsberg, 1977) of atmospheric illumination 

because one cannot attribute features of the excited carrier population 

to the various regions of the wavelentgh range of sunlight. However the 

treatment of the position dependence and size of carrier generation by 

sunlight explains the magnitude of the short-circuit current under 

different weather conditions. Also the new representation (Hsieh et al., 

1980) of the solar spectrum has so far been published only for the AM1 

and AM2 spectra and would be of wider interest if it was available for 

other solar spectra, particularly for the commonly used A140 and A141.5 

spectra. 

Another feature of the general solution is the adoption of general 

linear boundary conditions. This has enabled the examination of a whole 

class of possible boundary conditions with a single solution. It has been 

found from Figure 6.1 that the choice of boundary condition at the 

junction has a large effect on the carrier concentration and hence on the 

Fermi level separation near the junction. The slope of the Fermi level 

for electrons is a measure of the current flow (shown in Figure 6.2) and 

is strongly affected by changes in the physical processes at the 

boundaries which are represented here by the boundary conditions. 
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Table 6.1 Parameters used for the curves of Figures 6.1 and 6.2. 

N 19 -3 2.8 x 10 cm D 2 -1 35 cm s c 

N 1.0 x 1019 cm- 
3 L 1.18 x 10-?. ---. cm v 

EG 1.12 eV 0.1 cm 

kBT 0.026 eV n 
10 -3 1.6 x lo cm 

s 10 
4 

cm s -1 NA 5x 1015 cm-3 
T 4.0 ps n0 

4 -3 5.12 x 10 cm 

Table 6.2 Collection efficiency, Q, as a function of the illumination 

sDectrum and solar cell thickness, d. 

Qd=1.0 mm d=1.0 cm 

AM1 o. 86 0.80 

AP2 0.83 0.72 

I 
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-r (-, --; --21 

- li 1.0 

Figure 6.2 The solar-cell current-voltage characteristic, using 

equation (6.27) and the data of Table 6.1, as a function of the 

illumination spectra. The dotted curves show the effect of reducing 

the doping concentration, N A' to 1015cm-3. 



210 

CHAPTER 7 

THE TRANSIENT ffNORITY CARRIER DIFFUSION EQUATION FOR A SOLAR CELL 

7.1 Introduction 

The recent development of the photovoltage decay method (Dhariwal et 

al, 1977) and the current induced voltage decay method (Dhariwal and Vasu, 

1981; Von Roos, 1981) for measuring lifetimes in semiconductor-solar 

cells and diodes has led to renewed interest in the time-dependent 

minority carrier diffusion equation (Sharma and Tewary, 1982). Interest 

centred initially on the steady-state (see for example Mallinson and 

Landsberg, 1977). The theory of short-circuit current decay followed, 

firstly for time-independent boundary conditions (Dhariwal et al, 1977) 

and secondly for time-dependent boundary conditions (Dhariwal and Vasu, 

1981). Fourier (Dhariwal et al, 1977; Dhariwal and Vasu, 1981), Laplace 

(Von Roos, 1981) and Sturm-Liouville transforms (Sharma and Tewary, 1982) 

have been utilised in solutions of tile diffusion equation in a solar 

cell. This work shows that one can advance further in this direction to 

display the hyperbolic functions in the solution for the minority carrier 

density, n(x,, 't), for a whole class of boundary concitions. One can with 

a single treatment of the diffusion equation then find a solution which 

fulfils all of the operating conditions of a solar cell. 

The present work is indebted particularly to the theory of Sharma and 

Tewary (1982) and incidentally a simplification of their expressions 

(A20) to (A32) for photovoltage decay from the steady-state has been 

obtained. An analogous expression has been developed here for the decay 

of photovoltage following a short pulse of light which confirms and 

extends their work on lifetimes. Also, a new problem relating to the 

effect of grain boundary reco . mbination on lifetime in polysilicon (Bohm 

et al, 1982) is examined with the belp of Sturm-Liouville transforms. 
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7.2 Sotution, of, the transient diffusion equation with a Sturm-Liouville 

transform. 

The diffusion equation for minority carriers is examined in a region 

extending from the junction at x=O to the back surface at x=d of the 

solar cell or n-p junction diode. This theory allows for surface 

recombination at either boundary; at x=d, surface recombination is 

interpreted as taking the place of ap+ -region when a back surface field 

is used. A simple geometry is adopted by assuming light is incident 

normally to the front surface and a single dimension, x, normal to the 

front surface is considered. The photogeneration rate of carriers per 

unit volume per unit wavelength range is denoted by g(x, t) where the 

dependence on wavelength A will not be given explicitly. 

A generalised diffusion equation for the p-type base of the solar 

cell in Figure 5.1 is given by equation (5-15) with one positional 

dimension, x, and time-dependence, 

D 
22-n 

+ 2fD 
i-n 

+ gýxm - 
n(x, t) 

= 
an 

ax 
2 

ax T @t 

where D is the diffusion coefficient, T is the lifetime and f is a 

measure of the electric field, E (f=eIEI/2k 
B T). Equation (7-1) is 

transformed with finite Sturm-Liouville transforms (Sneddon, 1972 and 

Appendix A). The boundary conditions of Table 5.1, case 6 are used where 

the parameters a3 and b3 are time-dependent (see Appendix B). The finite 

Sturm-Liouville transform, -n(t), of the function n(x, t) is given by the 
r 

inner product of n(x, t) with the r-th eiSenfunction ýrW of the Sturm- 

Liouville problem. The eigenfunctions ýr (x) are solutions of the 

following equations: 

1! ýr - Yr : -- 0, a1r (0) +a 2ý rI(O)=', 
b 

lýr 
(d) +b 2ý rt 

(d) =O, (7.2) 
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where 

LDe 
2fx., 

- (7-3) 
2 ýxj 

c xi c e 

ýýClx 
ax 

is the cigenvalue and dashes on indicate differentiation with 
r 

respect to x. The prefactor of L (De -2fx) is used as a weight function in 

the inner product. Thus, the Sturm-Liouville (SL) transform of a function 

n(x, t) is given by 

n 
fd,, 2fx, (x)n(x, t)dx. (7.4) 

r-r 0D 

There are infinitely many SL transforms of n(x, t), each one being 

labelled by a subscript r because of the infinite number of 

eigenfunctions ýr of the SL problem. 

Equation (7.2) is an equation for the eigenvalues and eigenfunctions 

of the SL problem and it is in fact very similar to the homogeneous 

steady-state diffusion equation (5.45), (ýr +J/T) replaces 1/T there, i. e. 

2 
D 12--r 

+ 2f D -ý4 -90. (7-5) 
dx2 dx 

(v 

T) 
r 

Using the result (5.46) of the homogeneous steady-state equation, the 

eigenfunctions of (7-5) are given by 

ýr ýe -fx {A 
r exp(p r x) +Br exp(-llrx)l (7.6) 

where the parameters vr involve the eigenvalues ýr through 

i 2 {f + (7-7) 

Putting equation (7.6) into the boundary conditions of equation (7.2), 

one finds at x=O, 
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a1 (A 
r +B r)+a2 

Wir-f )A 
r- 

(p 
r 

+f)B r)=0 

or alternatively 

{a +a }A +B (a a) 'ý 0' (7-8) 
1 2(pr-f) rr I- 2(Vlr-ý'f 

}' 

At x=d, the boundary condition requires 

rrrd bl 
[A 

re.. 
+, BrE+b2[Ae (pr- 

r 
+f ), 

1= 

or alternatively 

{b 
1 +b 2(pr -f)}A r 

exp(ii r 
d) + Ibl-b 

2 
(P 

r 
+f)IB 

r 
exp(-ii 

r 
d) = 0. (7-9) 

From elementary matrix theory (Lennox and Chadwick, 1970) equations (7.8) 

and (7-9) have a solution if the determinant of the matrix formed from 

the coefficients of Ar and Br is zero, i. e. if 

{al-a 
2 (V 

r 
+f)){b 1 +b 2(pr-f) 

le 
Pr d_ 

[bl-b 
2 (p 

r 
+f)jja 1 +a 2()Jr-f) 

}e-pr 
d=0 

which can be rearranged into a transcendental equation for the eigen- 

values Er through the parameters Pr, 

{a b (a b +a b) f-a b (p 22 (7-10) 
1 1- 122122 Pf )Isinhp 

r 
d+(a 1b2 -a 2b1 

)p 
r coshp rd=0, 

Equation (7.10) has 1r equals zero as one of its many real and imaginary 

roots. Putting zero for Vr into equations (7-8) and (7-9) requires that 

Br= 

thus the corresponding eigenfunction (7.6) is zero. The existence of real 

solutions to (7.10) and special roots leading to the excluded zero 

eigenfunction are discussed in Appendix C. 

Each root pr Of (7-10) is used in equation (7.8) to express Br in 

terms of A 
r5 



21h 

-[a 1 +a 2 
(Ij 

r-f)} 
r {al-a 

2(pr+f) 
,r 

Substituting Br into (7.6) and rewriting 
. 
(7.6). with hyperbolic functions 

yields 

2A 
re 

-fx {a 
21r coshvi r X+(a 2 f-al)sinhprxl 

fal-a 
2(ljr +f)l 

The constants Ar are obtained by normalising the eigenfunctions ýr using 

the weighted inner product, 

d 
(e 2fx /D)ý 

r 
Wýs (x)dx =6 rs 

(7.12) 
o 

where 6 is the Kronecker delta 
rs 

rs 

10 if r=s , 

if r0s. 

Using equation (7-12) on equation (7.11) defines Ar by 

4A2 /D -d r fa 2v2 
cosh 

2 
11 x+(a f-a )a p sinh2p x+(a f-a )2 sinh 

2p 
xldx=l. 

fa 
2 

(v 
r 

+f)-a 1} 
210 2rr212rr21r 

Performing the integral, 

r 
(7-13) 

{a 
2("r +f)-a 1} 

AD 1-2 

isinh2p dJ+a (a f-a )(cosh2p d-l)+(a f-al) {sinh(2p d)/21i -d} a2vr fil 
r 

d+2 ;r22122 

and hence the eigenfunction is 

2De-fx{(a 
2 f-a 

1 
)sinhii x+a 2 li r 

coshij XI 

(7.14) 

a2vr [v 
r 

d+! 2sinh2P r 
d) +a 2(a2 fýa 1 

)(cosh2p 
r 

d-l)+(a 2 f-a 1)21 sinh(2p r 
d) /2p 

r -d} 

The SL transform has the property that the transform of the self- 

adjoint operator, L, acting on n b--comes (Appendix A) 
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(Ln) =E n +a {a n(O, t)+a nl(O, t)1+5 {b n(d, t)+b nl(d, ý)J, (7-15) 
-rrrr12r12 

where (Sneddon, 1972) 

ct 
-a 21 ýr(o) 

(7.16) 
r a, 

1 (a, 
)=O), r 

and 

b-lý (d)e 2fd 

5r 
2 

-1 
r 

2fd 
(7-17) 

t -b 1 ýr'(d)e (b 
2': -0) 

Using (7-14) and (7.16), 

-2A rpr (7.18) 
{a (p +f)-a } 

2r1 

2A 
rllr 

/a a 2=0) 

and by (7.14) and (7-17), 

2A e 
fd {a 

2p cosbp r 
d+(a 2 f-a I 

)sinhp 
r 

d}, 

b2 (a 
2 

(V 
r 

+f)-a 1 (7-19) 

2A e 
fd {a V cosbp d7[a 

2_f2 )+alf]sinh dI 
r1rr 2("r Pr (b 

2: --0) 

b1 {a 
2 

(U +f)-a 1) 

where Ar was given above. Thus, when the diffusion equation (7-1) is 

transformed using (7.4), the boundary conditions of case 6 of Table 5.1 

and the result (7-15), one finds for a2 VO and b2 ýO (see Appendix B), 

dn (t) 

rnr 
(t) +ar aý(t) +ýrb3 (t) = 

-Y 
- gr(t) 

dt 

since 

(Ln) ! 
-(T r) at dt 
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and also gr (t) is the transform of the photogeneration rate. A simple 

time-dependent equation is obtained by transforming the diffusion equation 

d 
exp(& t)-dý: 'ýfexp(-C t)-n I= -g (t) +aa (t) +6b (t). 

rtrrrr3r3 

An initial condition at time t=O is required to integrate this equation. 

In th-e case of photovoltage decay, the steady-state solution (5.41) 

applies until t=O when the light source is switched off. One spe6ities 

that the initial carrier concentration n(x, O) is equal to the steady- 

state concentration of (5.41). However, if the solar cell is in the dark 

until a short pulse of light illuminates it at t=O, one specifies n(x, O) 

is zero. At this stage, it will be assumed that n(x, O) is known from the 

conditions before t=O, but these need not be specified at the moment. 

The_transform of the concentration is therefore 

(d r 
t' 

r n r(t) =1 jo e (ý 
r 

(t' )+ara3 (t' )+ ßrb3 (tl)}dt' + 7ý 
r 

(0 )] e2 

where n (0) is the transform of n(x, O). The inverse SL transform 

Co 
n(x, t) =j -n 

rr 
(x) (7.20) 

r=l 

provides the minority carrier concentration from the transformed 

solution, i. e. 

-f X+ý rt 2A 
re 

{a 
2pr coshp 

r x+(a 2 f-a 1 
)sinho 

r x}fG r 
(t)+i 

r(t 
)+n 

r(o)} n(x, t)= I 

r=l a2(Pr +f)-a 1 (7.21) 

Here nr (0) is given in Appendix D for a steady-state decay, 

Gr (t) = 
fd 

exp(-E rt 
') gr (tl)dt', (7.22) 

0 

and 

ft 
(t) exp(-E t')(a a +ý. b )dt'. (7.23) 

r 
jo 

rr3r3 

I 
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If one defines constants cr and dr by 

c 
2A 

ra2 11 rd= 
2A 

r 
(a 

2 f-a 1 
31 (7.24,7.25) 

r a 2("r +f)-a 1a 2(pr +f)-al 

the minority carrier density is displayed in its simplest form, showing 

the sinh and cosh terms, 

Co 
n(x, t) =j {c 

r 
coshp r x+d 

r sinhp 
r xl{G r 

(t)+i 
r 

(t)4-n 
r 

(0)Iexp(g 
r 

t-fx). (7.26) 
r=l 

This result (7.26) shows the excess electron concentration as an 

infinite sum of sinh and cosh terms with the dependence on the boundary 

conditions transferred to the parameters cr, d 
r' lir and to the functions 

Gr (t), Ir (t) and nr (0). The nature of the constants pr depends on the 

solutions of the transcendental equation (7.10) and for sufficiently 

large negativ; eigenvalues C 
r2 

the constants Vr will be imaginary (see 

Appendix C). Consequently the eigenfunctions will be trigonometric 

functions for all but a few eigenvalues. The result (7.26) lends itself - 

to further consideration of solar cell problems which are insensitive to 

individual boundary conditions. 

7.3 Application of the transient solution to lifetime measuremnts. 

In the voltage decay methods (Dhariwal et al, 1977) for lifetime 

measurements, an excess of minority carriers is created by current 

injection or by illumination. The lifetime is measured by following the 

decay in time of the natural modes of excitation (ý15 E2' ý3' ... 
). In 

these methods G (t), I (t) or -n(O) represent the amplitude of the 
rrr 

disturbance. Usually only one of these functions is involved in the decay 

and the other two functions are zero. For example, in the method of open- 

circuit voltage decay (Dhariwal. and Vasu, 1981) _n(O) is non-zero and 0 
rr 

and Ir are both zero at all timeso When a delta pulse of light (Dhariwal 
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and Vasu, 1981) is used to illuminate the device, Gr is non-zero, but Ir 

and nr (0) are both zero throughout the experiment. The general solution 

(7.26) developed above is used to examine and compare the open-circuit 

voltage decay methods following both the decay of steady-state illumin- 

ation and the decay after a short pulse of light (Tyagi et al, 1982). 

(a) The method of open-circuit voZtaqe decay from the steady-state. 

In the method of open-circuit voltage decay (OCVD) a steady-state 

excess minority carrier concentration is produced in the solar cell by 

either illumination or by carrier injection. The steady-state conditions 

are halted abruptly at time t=O and the subsequent decay of the open- 

circuit voltage is measured. At the junction, x=O, the excess carrier 

density is given by 

n(O, t) =n0 [exp(eV/k 
BT) -1} (7.27) 

where n0 is the equilibriwn electron concentration and V is the junction 

voltage. Since there is no current flow across the junction, the open- 

circuit voltage decays according to 

V(t) = (k 
B T/e)ln(l+n(O, t)/n 

0 
); (7.28) 

the excess electron density is measured from the above equation as a 

function of the voltage. 

Regarding equation (7.26) for the minority carrier concentration, the 

parameters a3 (t) and b3 (t), hence Ir (t) also, are zero because there is 

no current flow after t=O. The integral of the transforned generation 

rate, Gr (t) (equation (7.22)), is zero since there is no light after t=O. 

Thus, the excess carrier density is given by 

co 
n(x, t) I {c 

r 
coshp 

r ý+d rs 
inhprx }-n 

rý 
O)exp( ýrt-fx) (7.29) 

r=l 
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where 

rd 2A 
r 

n(x)efxdx{(al-a 2 f)sinhp 
r 

"x-a. cosh ljrxl 
nr (0) = 10 

D{a - (p +f)a 
-} 

1r2 

in which n(x) is the excess carrier density in the steady-state up to 

t=O. From equation (5.41) the steady-state excess carrier density is 

n(x) =N1e -fx x( (al-a 
2 ct) ( (bl-b 

2 f)sinhii(d-x)+b 2 -pcosh-p(d-x)) + 

(b 
1 -b 2 a)e 

(f-a)d 
J(al-a 

2 f)sinhpx-a 2 jjcoshpx}] -N1 e-ax 

where the following parameters are used: X from equation (5.4o), a3 and 

b3 are both zero because there is no current flow across the junction and 

N, = aN 0 
/[D(cc-2f)-l/-c] 

,v= 

(f 2 
+1/L 

2112 
. 

The evaluation of the integral in (7.29) is performed in Appendix D, and 

the result is 

(n C 

t-fx 1 
n(x, t)= XNeC- J(al-a sinhvr x-a 2ýlrc osh Prx' 1r2222 2f) 

r=l V -vir ( f-ct) -"r 
(7-30) 

where 'C 
r 

is defined by 

cr= 
2 [(a,, -a Z) ljr+( bl/b 2_cý 

)e(f -cc) d 
al-a 2 f)sinhp 

r 
d-a 2pr coshp r 

dl] 

I. 22 
a 2'jr{"r d+ýsinhjl 

r 
d}+a 2 

(a 
2 f-a 1 

)(cosh2p 
r 

d-l)+(a 2 f-a, ) Isinh2p 
r 

d/2p 
r -d) 

I 

(7-31) 
The open-cicuit voltage, at x=O, is therefore by M28), 

m 
V(t) = (k 

B 
T/e)ln 

1 (C 

rera2pr12 
+11- (7-32) 

ýno 

r=1 _a )2_, d 

Equation (7-32) allows direct measurement of the lifetime from the decay 

of the open-circuit voltage, V. The lifetime is interpreted from the 

eigenvalues ýr and equation(7.32) which allows the lifetime to be written 
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as 

2_f2 )D -E, (7-33) 
rr 

The higher terms of the series in equation (7-32) have large negative 

eigenvalues, these terms decay rapidly after the steady-state light source 

is switched off. Thus, the first few terms dominate the decay and the 

lifetime is interpreted from these (see section 7.3(c)). 

(b) The mthod of voltage decay following a short pulse of light. 

By this method, the lifetime is measured from the open-circuit 

voltage decay following a square pulse of light. At all other times, the 

solar cell is unilluminated and there is no current to SUDply minority 

carriers to the base of the solar cell. Thus the functions I (t) and r 

nr (0) are both equal to zero . The amplitude of the excess carrier 

distribution generated by the light pulse is Gr (t) of equation (7.22) 

and the excess carrier density is given by equation(7.21). 

An assumption is made here that the light pulse is square in shape 

and lasts for t1 seconds after t=O. The photogeneration rate of equation 

(5.22) then becomes 

g(x, t) = ceN 0 exp(-ax)[H(t)-H(t-t 1 
)} (7-34) 

where H(t) is the Heaviside function, 

1, t>, O, 
H(t) 

0, t<O. 

In practice the duration of the pulse is considerdbly less than the 

lifetime of carriers, the shape of the pulse is not square and the 

incident number of photons, No, is very high. This has led previous 

authors (Dhariwal and Vasu, 1981) 'to call the light pulse a delta pulse 
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because that is the limiting case as t1 tends to zero and as N0 tends to 

infinity. 

Equations (7.22), (7-34) and the SL transform (7.4) of g(x, t) show 

the function Gr (t) as a double integral 

Gt e-g rt1 {H(t')-H(t'-t )}dt' 

d 
2A 

r ctN 0 efx-ctx{(al-a 2f) sinhljr x-a 2'Jrc oshorx }dx. 

r1010 D{al-a 2(ljr+f)} 
(7-35) 

Utilising results from Appendix D, namely H5 and H 
10 of Table D. 1, the 

integrals above are evaluated, yielding for týltl, 

Gr (t) -er 
2A aN 0 '[(al-a 

2 f)Hlo-a 211 rH5 
(7-36) 

ýr Dfal-a 2(pr +f)l 

The results from Appendix D for H and H give the square bracket term 
5 10 

of equation (7-36) as 

(a, -a2f)[e 
fd-ad [(f-a)sinhlj 

r 
d-li 

r 
coshp 

r 
d]+Il 

r 
}+a 

2vre 
fd {(f-a)coshp 

r 
d-jj 

r 
sinhij 

r 
d}e -(xd 

f-a ) 2_112 

r 
-(f-cc)a p /{(f-(x) 2_112 

2rr 

The contents of the square bracket are rearranged to yield 

e 
fd-ad [{a (vt 2 

-f 
2 )+a 

lf+(' 
(a 

2 f-a 1 
)Isinhp 

r 
d-(al-a 2 a)p coshp d]+p (al-a CO 2rrrr2 

(f-a) 2_112 
r 

multiplying inside the braced term by b 2' so that the transcendental 

equation (7-10) may be used to eliminate terms, the square bracket is 

e 
fd-ctd [[a b (p 2_f2 )+a b f+ab (a f-a )}sinhp d-(a b -a2 b )p coshp d]-b p (a a a) 

_2 
2r12221. r12 2a rr2r 1- 2 

bf (f-(x) 2_IJ2 
2r 

which becomes 

e 
fd-ced [{albl-a 

2 blf-alb 2cc +a2b 2fa 
Isinhljr d-(bl-b 2 a)a 2orcoshpr d] -11 r 

(al-a 
2 a)b 2 

b [(f-aý 2_P2 
2r 
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Hence using (7.35), Gr (t) is given by 

G (t) = 
2A 

r 
aNjl-e-ý rt 11 [(b 

I -b 2 a)e 
fd-ad f(al-a 

2 f)sinhp 
rd-a2 Vrcoshpr d}+b 2pr 

(al-a 
2a)J 

rb D(a -a (p +f)){(f-a) 
2 

-P 
2 

r212rr 

Equation (7.21) shows the excess carrier density with Gr (t) above as 

CO CL 0Crer 

t-fx (1-e-ý 
rt 1] f (al-a 

2 f)sinhp 
r 

x-a 21jr coshp 
r 

X} 
n(x, t)= X2 (7-37) 

r=l f(f-U) 
rr 

where equation (7-31) has been used for Cr. Note that equation (7.37) 

applies for tItl. For t"O, n(x, t) is zero and for t"Il, the first 

integral in Gr (t) of equation (7-35) is given by 

fi-exp( -Y)}/Er* 

Thus for 0"%"ýtl, the excess carrier density is 

n(x, t) =- 
aN 0cr e-fx(e 

gr t-J{(al-a 

2 f)sinhp 
r x-a 21]r cöshii r x} 

. 
(7-38) 122 

r=l ýr«f_U) -pr 

The eigenvalues r of the SL equation (7.2) are predominantly large and 

negative (see the following section), thus one finds the excess electron 

density increases rapidly during the pulse (by equation (7-38)) and then 

falls off exponentially (by equation(7.37)) after the pulse is finished. 

(c) Some nwwricat results. 

Some sample calculations are performed by utilising the boundary 

conditions of Table 5.1, case 4. This is equivalent to making the 

substitutions 
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al = 2fD, a2= Dy a3=0, bl = 2fD+s, b3= 

in equations (7.30), (7-31) and (7-37). The excess Tainority carrier 

concentration for the decay of a steady-state profile using the boundary 

conditions of case 4 of Table 5.1 is 

co r 
t-fx 2_ 2 -1- 2_ 2- 

-Prcoshprxl (7-39) n(x, t) =IN1cre {p vr {(f-cc) I] rI 
ll{fsinhprx 

r=l 

where equation (7.31) yields 

2e fd-ad (f-a+s/D){fsinhii d-p coshp dl+ 2(f-a)p 
rrrr C= (7.40) 

r (V2 (d+sinh2p d/2p )+f(l-cosh2p d )+f2( sinh2v d/2vi -d)] 
112 

rrrrrr 

A similar expression to equation (7.39) is found for the response of the 

solar cell to a short light pulse, the excess electron density of 

equation (7.37) is 

Co ccN Cegr 
t-fx 

1-e 
Er t1) 

n(x, )=0r -{fsinhU x-p coshli x} ti-22rrr 
r=l 9 

r{(f-a) -pr} 

with Cr as given by equation (7.4o). 

The parameters Pr and hence the eigenvalues ýr are obtained from the 

transcendental equation (7-10) when the boundary conditions of case 4 of 

Table 5.1 are imposed on it, i. e. 

ff(f+s/D)-ii 2 }tanhp d- sp /D = 0. (7.42) 
rrr 

Taking the limit as the surface recombination velocity tends to zero, 

the transcendental equation becomes 

(f 2_112 )tanhp d=0 (7-43) 
rr 

which has roots 

f; iTi, 2Tri, 3Tri, 

I 
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The root p =ois excluded because it gives rise to an eigenfunction equal 
r 

to zero. Another limit of interest is the limit of s tending to infinity, 

then the transcendental equation is 

ftenhp d-pr=0 (7.44) 

and has roots 

Or ý 0, f, 1.2263i> 4.6174i, 7.7975i. (7.45) 

Here the data of Table 5.2 has been used. Again the root pr equals zero 

is excluded because the eigenfunction it corresponds to is zero. The root 

Prý f occurs in the limit as fd tends to infinity (Sharma afid Tewary, 

1982), but this also gives rise-to the zero eigenfunction because the 

term fsinhp 
r 

d--ji 
r 

coshp 
rd 

is zero in the numerator of Cr in equation (7.40) 

by the transcendental equation. In their equations (A34) and (A35) 

Sharma and Tewary (1982) suggest that this the root Vr =f dominates the 

decay of their experiments, but since the corresponding eigenfunction is 

zero, the first imaginary root is the important root. 

Some sample results of numerical calculations using the data of Table 

5.2 are given in Figures 7.1 to 7.3. Figure 7.1 shows the rapid converge- 

nce of the infinite sum (7-39) at t=O to the steady-state excess electron 

density of (5.42) where in both cases s is infinite. Good agreement is 

reached after only three terms in the series have been calculated (curve 

(c)). As the time proceeds from t=O, the decay of the higher terms is so 

rapid that after 0.5-ronly one term dominates the series. The larger 

imaginary roots of the transcendental equation (7-43) play a part for a 

much longer period when s is zero, about six terms in the series are 

needed in (7.39) to gain agreement with the steady-state distribution at 

t=O, but this is not shown in Figure 7.1. The initial decay following t=O 

for s=O is more rapid until the more slowly decaying first term dominates 

the sum. I 
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A sample time decay is given in Figure 7.2, curve (a) for the decay of 

the carrier concentration at open-circuit using equation (7.39), the data 

of Table 5.2 and an infinite s. The initial stages have many time 

constants giving rise to the slight curvature before t=10-7 sees. For 

later times, a single exponential dominates the decay and corresponds to 

the least negative of the eigenvalues, ý1 say. The response of the excess 

carrier density of equation (7-41) to a short pulse of light of duration 

t1 sees ending at t=O is shown in Figure 7.2, curve (b). The curve is 

lower than curve (a) because the short pulse generates fewer carriers 

than when steady-state is reached. However, both curve (a) and (b) have 

the same rate of decay because the same boundary conditions with s=O have 

been used. 

Curve (c) shows the effect of a short pulse of light when the back 

surface recombination velocity, s, is zero, which may occur when a p+- 

region at the back of the device blocks the minority carriers from 

reaching the contact. The initial concentration is enhanced relative to 

the case of infinite s, an effect noticed in chapter 5 in the steady- 

state also, since high surface recombination acts as a sink for minority 

carriers. Curve (c) shows a rapid non-exponential decay as the higher 

terms in the series fall off rapidly. After 10-6 secs, a single 

exponential dominates, but the curve decays more slowly than curve (b) 

where s is infinite. This is again due to the high recombination sink for 

minority carriers at the back surface in curve (b). From curves (b) and 

(c), the high surface recombination velocity has an effect similar to 

degrading the lifetime of the solar cell. 

Curve (d) indicates the rate of decay following the termination of a 

steady-state light source is the same as following a short light pulse in 

curve (c). However, the carrier density is enhanced at t=O over the short 

pulse because the steady-state concentration is higher. 

The development in time of theexcess carrier profile is shown in 
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Figure 7.3 at various times. The recombination rate is proportional to n/T 

and so is faster in the region of higher concentration near the junction, 

x=O. The carrier concentration is low at all times near the back surface, 

x=d, because the surface recombination velocity is infinite. 

7.4 Conclusions. 

A solution to the minority carrier diffusion equation has been 

obtained with general linear boundary conditions. This has enabled a 

single treatment of the diffusion equation to encompass the results of a 

number of previous authors (Dhariwal et al, 1977; Dhariwal and Vasu, 

1981; Von Roos, 1981; Sharma and Tewary, 1982). This method has shown in 

Figure 7.2 that the lifetime measured from the decay rate following a 

short light pulse or the termination of a steady-state light source is 

independent of the method of excitation. The rate of decay is however 

dependent on the chosen boundary conditions at the junction and at the 

back of the solar cell. These boundary conditions change with different 

operating conditions for the solar cell, for example case 2 of Table 5.1 

boundary conditions represent short circuit operation and case 3 

boundary conditions represent open-circuit operation. A single treatment 

of the diffusion equation using general linear boundary conditions yields 

a solution which fulfils all of the operating conditions of a solar cell 

and this is why it is useful. 

This work is indebted to the work of Sharma and Tewary (1982) which 

drew attention to Sturm-Liouville transforms as a way of solving the 

electron diffusion equation. Through equations (7-39) and (7.4o) a 

simplification of their results (A20) to (A32) was made. Also, some 

inaccuracy in their interpretation of roots of the transcendental 

equation for the eigenvalues of the Sturm-Liouville problem has been 

clarified. The work of Sharma and Tewary (1982) was extended to explain 
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the carrier density decay following a short pulse of high intensity 

illumination through equation 
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the steady-state excess carrier concentration (5.62) using Table 5.2 

data for Si but with infinite s. Curve(a) shows n(x, O), (b) shows the 

first term only and (c) shows three terms in the series. 
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CHAPTER 8 

THE STEADY-STATE*MrNORITY'CARRIER'DIFFUSION EQUATION OF A 

231 

POLYCRYSTALLINE SOLAR'CELL 

8.1 Introduction 

Recent theoretical interest (Bohm et al,. 1982 and Bohm et al, 1984) 

in the minority carrier diffusion equation has centred on its use within 

the bulk region of a single grain of a polycrystalline solar cell. 

Historically, Shockley (1950) was the first author to. describe a similar 

problem; a thin filament of semiconductor whose carrier density varied 

in three dimensions was treated without the effects of illumination. 

Later work has sought solutions where illumination affects the carrier 

concentrations and the problem has been simplified to two dimensions. 

This simplification was achieved by regarding the grain as an infinite 

region between two parallel recombination planes (Bohm et al, 1982 and 

Bohm et al, 1984) or as the interior of a circular cylinder surrounded 

by a curved recombination surface (Fossum. and Sundaresan, 1982). In the 

circular cylinder study, an approximate numerical solution was performed. 

An alternative way (Card and Yang, 1977; Ghosh et al, 1980) of 

looking at the problem is based on a transformation of grain boundary 

traps into a uniform distribution of states throughout the bulk of the 

grain. The polycrystalline semiconductor region is treated as though it 

was monocrystalline but with an effective lifetime due to the surface 

recombination. 

Here, it is assumed that the solar cell or diode is made out of 

columnar grains which run from the front of the device to the back 

contaot with an n-p junction part way along the columnar grain as in 

Figure 8.1. A circular cylinderical region is used to model the grain 

and the diffusion equation for the minority carriers in the steady-state 

is solved. The grain boundary occupies the curved surface (r=t) of the 
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cylinder, the junction is at the top of the cylinderical region (z=o) 

and the back contact is at the bottom (z=d) of the cylinder. The Sturm- 

Liouville transform (Sneddon', 1972 and Appendix A) is used to reduce the 

two dimensional problem in a cylinder into the one dimensional diffusion 

equation familiar in solar cell analysis. Two new parameters influence 

the minority carrier concentration: ý 

(i) the recombination velocity, s 
gb' 

at the surface of the cylinder, r=Z, 

representing the grain boundary and 

(ii) the size of the grain, Z, which is equal to the radius of the 

cylinder. 

The grain size, Z, also influences (Ghosh et al, 1980) the diffusion 

length, L, in polycrystalline material. 

The assumptions (Sharma and Tewary, 1982) made for single crystal 

devices will again be used here to apply the minority carrier diffusion 

equation. These assumptions are (i) that p-n coupling may be neglected 

and (ii) that the space-charge region has negligible effect on the 

regions which lead to the lifetime. Three further assumptions will be 

necessary in the polycrystalline material, (iii) no current flows across 

the grain boundary surface, (iv) the recombination rate, U 
gb' 

at the 

grain boundary can be displayed as 

gb 
s 

gb 
n (8.1) 

where s 
gb 

is the constant surface recombination velocity. Also, (v) an 

assumption is made that the grain size, Z., is larger than one diffusion 

length, L. 
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8.2 Solution of the diffusion equation in cyZinderical polar coordinates 

with'a Sturm-liouvilZe transform 

The most general form of the diffusion equation was given by equation 

(5-15) in chapter 5. This will be solved here with some simplifications: 

(i) steady-state will be assumed, i. e. 

ýn 
= 0, (8.2) 

at 

where n is the number of excess carriers per unit volume; (ii) the excess 

carriers, in this case electrons in the p-type base, are distributed 

axisymmetrically in the cylinder, i. e. 

n= n(r, z) (8.3) 

and (iii) the electric field, E, acts only in the direction of the z-axis. 

Hence, the diffusion equation to be examined is 

2 L- 
D_+ 32n 

+I 
Dn 

+ 2fD Dn + S(z) 0, (8.4) 
1 

3Z2 Dr2 r Dr 

I 

az T 

where 

f--: elEl/k BT. (8-5) 

The appropriate generalised boundary conditions are similar to case 6 of 

Table 5.1 of chapter 5, 

a1 n(r, o) +a4 
3n(r, z) lz=O 

=a3 (r) (8.6) 

at the junction plane z=O, 

I 
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b1 n(r, d) +b2 
2n(r, z) b3 (r) (8-7) 
az 

lz=d 
= 

at the back surface of the solar cell z=d, together with 

Z, z c n( +c 
3n(r, z) 0 (8.8) 
Dr 

lr=9. 

at the grain boundary surface r=X. In order to solve the diffusion 

equation (8.4) with the boundary conditions given by (8.6) to (8.8), the 

Sturm7Liouville transform will be used. As before, solutions to an 

eigenvalue problem are sought with which one produces a basis of 

orthonormal eigenfunctions. In this case, the eigenvalue problem is 

32ý 
+ 3ý (8.9) 

Dr2 Dr L2 

Equation (8.9) is Bessel's equation of or4er zero, this has the general 

solution (Watson, 1944) 

ý= AJ 
0 

(Xr) + BY 
0 

(; kr), 

where X is given by 

X2- ---: -l/L2 - (8.1o) 

and L is the diffusion length (VDT ). Since Y0 (Xr) tends to minus 

infinity as r tends to zero, one sets B=O because ý is expected to be 

coiAinuous at r=O. The boundary condition at r=2 (8.8) is used to 

determine the constants X, 

c110 (u) +c2 JO1(X£) = 0. 

I 
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From Watson (1944) or Sneddon (1972, P-513, (A25)) one has the following 

formula relating the derivative of the Bessel function of order zero to 

a Bessel function of order one, 

dJ C). 

dr 

and hence, 

110 
(Äz) -c2 xi 1 

(u) = 

Equation (8.12) is a transcendental equation with infinitely many roots 

X=A ( m= 1,2,3, ... 
). These roots yield the eigepfunctions 

M 

Im =AmJ0 (X 
m 

to (8.9). The inner product of two functions is defined by 

z 

n 

fo 
ým 

n 
rdr =6 mn 

(8.14) 

where r is the weight function in this case (like e 
2fx /D in chapter 

This allows one to find the constants Am which normalise the eigen- 

functions of (8.13), 

A2 {J (X r) 12 rdr =1 fo m0m 
Integrating by parts and using (8.12), 

2 'A 2Z2 
z) 12 2 2j li (x + 

f£A 
r (A r)X J (A r)dr= 1. 

m0m0m0mm1ým 

Also from Sneddon (1972, P. 513, (A24», 

`- ri 1 
(Xr) XrJ 0 

(Xr) 

art 
(8.15) 

thus , 



2 

22 iA2 22 
2 'A i (x Z) +2 91 1 (X Z) 

m 
Z? 0mm1m 

and finally 

2 
Am= ()1219, )(J 

1 
(x 

m 
Z) +10 (x 

m 
Z)}- . 

The eigenfunctions of (8.9) are therefore, 

2' -1 2J 0 
(X r) 

12 

+ 
cl 

10 (x 
m 

9) c2 Am 

(8.16) 

(8-17) 

where (8.12) has been used. The Sturm7Liouville transform is defined by 

n(r, -z) =ý iý 
m 

(-Z)ý 
m 

(r), nM (z) = f[p; m] E ný m rdr. (8.18,8.1g, ' 

m 

fo 

Using equation C8-4-23) of Sneddon (1972, p. 450), which. is 

, 
[ý2n 

,1 
ýn 

; rn 
1 2- 

= -X n (z) 
, 

är2 r ýr 1mm 

equation (8.4) is transformed and becomes 

2- 
dn (Z) dn (z) g (Z) 

2+2 f--jn n (Z) + 111-- =0 (8.20) 
dz dz D 

Also, it is necessary to transform the boundary conditions given in 

equations (8.6) and (8-7), and these are 

a1nm (0) +a2 
di7 

m 
(Z) 1=a 

3m 3 
dz Z=o 

b -n (d) +b 
dýý 

m 
(z ) 

ýý3m (8.22) 
m2 

dz z=d 

The transform, E-(z) 
, of the generation function, g(z) , will be given m 
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here for the regular exponential decay of photons as in equation (5.22). 

The transform of g(z) by equation (8.19) is 

-cc z aN 2e 
(8.23) 

where 

2i N2N0 v/2/(X m 
[(C 

2xm +1] 2 (8.24) 

The diffusion equation given in (8.20) is almost the same as the one 

dimensional steady-state diffusion equation (5.21) solved in chapter 5. 

The solution (5.42) was obtained with the usual generation function 

(5.22) and thus one needs only to make the replacements 

N0 -)- N2' (-l/DT) - ýM5 p -+ in 

in equation (5.21) and the solution to (8.20) is then given by 

nm (Z) + I'l 3e 
-ocz (8.25) 

fa 
3m +11 3 

(a 
2 a-a 1 

))[(b 
1 -b 2 f)sinhp 

m z+b 2vm coshp 
m Z] 

+{b 3m +N 3 
(b 

2 a-bl) e -ad }e fd [(al-a 
2 f)sinhp 

m z-a 2'p m coshij m zj] 

where 

', -[efz{(albl-Calb 2 +a 2 bl] f+a 2b 2ým) sinhp 
m 

d+(a 1b2 -a 2bI 
)p 

m coshp m 
d}] 

N3= ccN 2 
/[Dfa(a-2f)+ý 

m 
}1 

and 

m 
222 

pm 
ýf 

+l/L +X 
21i (8.26) 

The complete solution to the two dimensional equation (8.4) requires the 

inverse transform (8.18), together with (8.13) for the eigenfunctions, 

Co 
nm (z)A 

mJ0 
(X r), 

hence, 
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12J 
0(x r) e-f z 

r -N, e(f n(r, z) =m11 
aj (X £){i+(c /c x) 2)ý 

0m12m 

a4 f(b 
1 -b 2 f)sinh" 

m 
(d-z)+b 

2pm coshp m 
(d-z)+b 4 {(al-a 

2 f)sinhp 
m z-a 2vm coshp m Z) 

(8.27) 
a bl)lt coshp {albl-(a 

1b2 +a 2 bl)f+a 2b2ýml sinhpmd+(a Ib 2-, 2 in md 

where a4 =a 3m +N3 (a 
2 CE-a 1b4 =e 

fd {b 
3m +N3e -cEd (b 

2 cE-b 1 

This is the excess minority carrier density in a single grain of 

polycrystalline semiconductor due to the effect of illumination or 

current injection. 

8.3 The current-voltage relationship. 

The current along the axis of the cylinder at the juction plane (z=O) 

is calculated using the boundary conditions of case 1 of Table 5.1. That 

isil 

n(r, o) =n0 {exp(eV/k 
B T)-l} (8.28) 

at z=O where V is the applied voltage, kB is Boltzmann's constant, T is 

the temperature, e is the modulus of the electronic charge and n0 is the 

equilibrium electron concentration. At the back contact, z=d,, one has 

Dn (2fD+s)n(r, d) + DGýý- 0, (8.29) 
Z1 z=d Z 

and also on the curved surface (r=g) of the cylinder 

1n js n(£, z) + Dýý- 
r gb rl r=£ 

= 0. (8-30) 

The factor of one half arises because carriers are supplied to the 

surface from grains on either side. The parameters of the general linear 

boundary conditions become I 
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al=l, a 0, ane 
eV/k BT 

-1), bl=s+2fD, b D, b 0, cl=! 2ý 3= 0 2= 3= 2S 
gb" 

C2 =D. 

Note that in Appendix B it was shown that a2 =0 was not permitted except 

when a 3"-0 
if the linear boundary conditions (B. 1) and (B. 2) are used to 

determine the eigenfunctions of the Sturm-Liouville transform. Here the 

boundary condition (8-30) is the only boundary condition necessary to 

calculate the eigenvalues and eigenfunctions because the Sturm-Liouville 

equation (8.9) is a function of the radial coordinate, r. One can use 

equations (8.28) and (8.29) here because these equations are subsidiary 

boundary conditions which apply to the transformed diffusion equation 

(8.19). 

The 
z 
transformed parameters a 3m and b 3m are given by 

( eV/k B T_ 
-1 eV/k B T_ 

a 3m =0n0e 1JA 
mJ0(Xm r) rdr =Amn09AmJ1(xm9. ) 

(e 
1] (8-31) 

where equation (8.14) has been used and of course since b 
3: --0' 

b 
3M 

Utilising equations (8.1ý0 and (8.16), 

n0s gb 
[exp(eV/k 

B T)-l} 
a 3m = 

Y/2-D X2 fl+(s rzDX ) 
2121 

m 915 m 

Hence, from equation (8.27) the minority carrier concentration is 

n(r. z) = 
Co 

(s 

gb 
10(xm r)e -fz 

-. N*e 
( f-ct )Z+ 

12221 

m=l 
, 
ZDJ 0 

(x 
m 

9. ) {x 
m 

+s 
gb 

/4D } 

a*[(f+s/D)sinhp (d-z)+p coshp (d-z)j-(ot-2f-s/D)N e 
(f-a)d 

sinhp 
4 

-- -mmm 
(f+s/D)sinhll 

in 
d+p 

in 
coshp in 

d 
, 

(8-32) 

where 
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C*=N 
* 

+n e 
eV/k B T_j 

N*=ctN /Dfa(a-2f)+E 
41 0( 0m 

The current density of the minority electrons passing across the 

(8-33) 

junction plane, where the current direction is towards negative z, is 

given by 

an(r, o) i(r, o) = eDSý- + e2fDn(r, O). (8.34) 
z 

Thus, the electron current density using equation (8-32) is 

w es gb 
10 (X r) *+ 

aN* 2fN J(r, 0) =1- -- ra fa4 1 
m--1 9, J (X Z) IX2 +s 

2 /4D 2} 
0mm gb 

a* ((f+s/D)cosl-iji d+p sinhp d}+N (a-2f-s /D) exp f-ct) d} 4 
-1 

mmm (8-35) 
11 m 

(f+s/D)sinhp 
m 

d+coshp 
md 

The total current across the junction plane is obtained by integrating 

the current density over the area of the junction. One can then obtain 

an averaged current density, J, by dividing by the area of the 

junction of 
2, 

i. e. 

2/k 21 J(r, O)rdr (8-36) 
0 

Using equations (8.15) and (8.12) to intgrate (8.35), one has 

eli 
es2 

j1 gb f[notexp(eV/k T)-11-Nl*] + ccN* - 22222B 
m--1 X DÄ 

m 
(X 

m 
+s 

gb 
/4D }, 1 

Cno{exp(eV/k T)-11+N C(f+s/D)coshp d+p sinhp d 
B 11 mmm 

]+N 
1 

(a-2f-s/D)expt(f-a)d} 

P-1 (f+s/D)sinhp d+ coshp d 
mmm 

The usual form of the current-voltage relationship is obtained here by 
I 
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writing for the polycrystalline solar cell, 

10 fexp(eV/k 
B T)-ll -JL (8-37) 

where the dark current is 

Co en s2 (f+s/D)coshii d+P sinhii d 
i'=0 gb mmm (8-38) 

017 2-- 222 -2 1 
m=l Z DÄ 

m 
(X 

m 
+s 

gb 
/4D 1LpM (f+s/D)sinhp 

m 
d+coshp 

md1 

and the light current is 

eN 
*s2 (f+s/D)coshp d+p sinhp d+(a-2f-s/D)e 

(f-cc)d 
1 gb mmm 

a-f- L 
=l 9.2 DÄ 

2 (X 2 
+s 

2 /4D 2) 
11-1 (f+s/D)sinhp d+coshp d 

mm gb mmm 

(8-39) 

The form of the single crystal solar cell current-voltage relationship is 

contained within the square bracketed terms of equations (8.38) and 

(8.39), but with the diffusion length L replaced byll-1. The effect of m 
the grain boundary recombination velocity, s 

gb , and the grain size, 9,, is 

introduced by the parameters Xmjjj 
m. 

and N1 in the prefactors of equations 

(8-38) and (B. 39). The parameter pm is an inverse diffusion length given 

by equation (8.26). 

The electron concentration n(r, z) can be averaged in the same way 

over the radius, r, from e4uations (8-32) and (8-36), 

n(r, z) = 
'j 

9W0 (X 
m r)rdrs gb 

e- 
fz 

N* expf(f-a)z} + 
ur----L 2,3 J (X t)DIX 2 

+s 
2 /4D 21 

00 in m gb 

(f-cc)d 
a, [(f+s/D)sinhp (d-z)+p coshp (d-z))+(a-2f-s/D)N e sinhvi z 4mM.. m M- 

(f+s/D)sinhp 
md+vm coshp md 

Using equations (8.12) and (8.15), the averaged minority carrier density 

is 

A 



242 

-fz c" e (f-ct)z 
n(r, z) =i-Ne+ 222221 

in-1 ZXm {X 
mD 

/s 
gb 

+ ri 

a* (f+s/D)sinhp (d-z)+u coshp (d-z)}+(a-2f-s/D)N*e (f-ce)d 
sinhij Z' 

-4f mmmm. (8.4o) 
(f+s/D)sinhp 

md+Vm coshp md 

Again, the form of the single crystal result (equation (5.42)) is 

contained in the square bracketed term, but with p-l replacing the 
m 

the diffusion length. The effect of surface recombination velocity, s 
gb' 

and grain size, Z, is contained in the prefactor of equation (8.4o). 

Considerable simplification of these results (8-37) to (8.40) is 

achieved by assuming that the back contact of the. solar cell is Ohmic, 

i. e. the back surface recombination velocity, s, tends to infinity and 

also assuming the electric field, E, is zero, then f is zero. Hence, the 

averaged dark current density is 

10=i (en 
0 

Dp 
m 

cothli 
11 

d)/[Z 
2x2 (X 2D2 /s 2 

+ili, }1, 

M=l 
mm gb 

and the averaged light current density is 

Co 
e-ctd /(92X2(ý2 22, )} J eN*D a+p -p cothp�ldl D /s +4 (8.42) 

L 
m--i 

11mminm gb 

where the current-voltage relationship is given by equation (8-37). The 

radially averaged minority carrier concentration is 

m0 eeV/kI3T_ll +11 
*' (d-z)+Il*e -ceds inhp -11* -CLZ 

(nj 

1 sinhp 
m1mz1e sinhp md n(r, z) 22222 

M=l iAm {X 
mD 

/s 
9ý 

+4 Isinhij 
md (8.43) 

The diffusion coefficient, D, is a function of the grain size in 

polycrystalline semiconductors (Ghosh et al, 1980). The Einstein relation 

is 

D= uk B T/e (8.44) 

I 
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and it gives the diffusion coefficient in terms of the bulk mobility, 1102 

and the grain boundary space-charge region, u, via the polycrystalline gb 

mobility (Orton and Powell, 1980), x), 

u0u gb 
(8.45) 

The space-charge region mobility is given by thermiopic emission (Seager 

and Castner, 1978) in chapter 3 as 

i 
u 

gb 
= eZexp(-eý BO 

/k 
B 

T) (2Tim 
ckB 

T) 2 (8.46) 

where ýBO is the potential barrier height at the grain boundary and mC is 

the effective mass of electrons in polycrystalline material. Hence, 

putting these results together, the diffusion coefficient is given by 

i 

D= 
-u 0 zexp(-eý BO 

/k 
B T)(k B T/2nm 

c 
)2 

(8.47) 
u0 +ekexp(-e4) BO 

/k 
B T)(2Trm 

ckB 
T)2 

Note that the diffusion coefficient tends to the bulk value for large 

grain sizes or when the barrier height is very small. For small grains or 

for a large barrier at the grain boundary, the diffusion coefficient is 

proportional to the grain size. 
. 

Using equations (8-37), (8.41), (8.42) and (8.47) some numerical 

results for polycrystalline silicon are presented in Figures 8.2 to 8.5. 

In addition to the data of Table 5.2, the following data is used: 
2 -1 -[--l. Ops, D=34cm s, d=50OWn, eýBO=0.18eV, mc=O. lgm 0 

where m0 is the free electron rest mass. 

8.4 Biscussion of the figures. 

IrL. -Figure 
8.2 there is a general decrease in the light generated 

current, J L' with the reducing grain size, k , and with increasing surface 

recombination velocity. For small, recombination velocities (s 
gb 

<10MS-1 ), 
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the effect is slight because there are few centres available for trapping 

minority carriers. As the number of surface states is increased, so more 

minority carriers recombine at the grain boundary. This leaves fewer of 

them to reach the junction plane in order to contribute to the current. 

For high surface recoffbination velocities, the grain boundary acts as an 

infinite sink for the minority carriers. The recombination rate is then 

limited by how rapidly the carriers can diffuse from the bulk into the 

grain boundary. This effect has also been observed for point and line 

defects in silicon (Wight et al, 1981). Thus, the light generated current 

tends to fall to a fairly constant minimum value with further increase in 

the surface recombination velocity. 

For smaller grain sizes, J 
L' 

is smaller because there are more grain 

boundaries at which minority carriers are trapped, an effect also noted 

by Ghosh, Fishman and Feng (1980). 

The effect of increasing grain boundary recombination velocity on the 

reverse saturation current, JO, is like reducing the lifetime. One finds 

in effect, that To- increases with larger recombination velocities Novel, 

1975, P-105). Using equation (8-37), the open-circuit voltage as shown in 

Figure 8.3 is given by 

V 
oc 

= (k 
B T/e)ln(l+-J L/JO)' (8.48) 

Thus in Figure 8.3, the open-circuit voltage tends to decrease with 

larger surface recombination velocity because of the tendency of JL to 

fall and for J0 torise. Again for high surface recombination velocities, 

V reaches a constant minimum because the recombination rate is limited 
oc 

by carrier diffusion to the traps in the grain boundary surface. By the 

nature of the dependence of V 
oc on TL and J0 through equation (8.48), the 

change inV 
oc 

is smaller than the change in J0 or J L* 

For smaller grains, the-. diffusion coefficient is less by equation 

(8.47). Thus the reverse s4turatidn current of (8.41) becomes smaller in 
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smaller grains. However the light generated current of (8.42) is less 

affected by the reducing 4iffusion coefficient because N is proportional 

to l/D by equation (8-33). Hence for small surface recombination 

velocities at the grain boundary, the open-circuit voltage increases 

slightly with reducing grain size. This effect has been noted in 

experiments by Neugroschel and Mazer (1982), but Fossum and Lindholm 

(1980b) found that the open-circuit voltage reduced with smaller grains. 

The results of Fossum and Lindholm (1980b) may be interpreted from Figure 

8.3 if a larger surface recombination velocity is assumed at the grain 

boundary. 

The aspects of Figures 8.2 and 8.3 are combined in Figures 8.4 and 8.5. 

The flat region of the current-voltage characteristic near short-circuit 

conditions is strongly affected by grain boundary recombination in small 

grains in Figure 8.4, but for larger grains in Figure 8.5, it is less 

strongly affected. There is also a wider variation in the open-cicuit 

voltage in the smaller grain material in Figure 8.4 than in a larger 

grain in Figure 8-5. 

8.5 Conclusions. 

The minority carrier diffusion equation has been solved in a cylind- 

erical region representing the bulk region of a columnar grain (see 

Figure 8.1) in a polycrystalline solar cell. The effects of changes in 

the grain size and the surface recombination velocity at the grain 

boundary on the light generated current and the open-circuit voltage 

were examined. 

Larger surface recombination velocities reduced the light generated 

current and to a lesser extent, reduced the open-circuit voltage. For 

large surface recombination velocities, increasing the grain size 

improved both JL and Voc. The effect of surface recombination on JL was 
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smaller in large grains because the recombination rate is probably 

limited by how fast carriers can diffuse towards the grain boundary. 

The results obtained here are in agreement with the work of Bohm et 

al (1984) and their work is extended here by including the shrinkage of 

the diffusion length (Ghosh et al, 1980) observed in polysilicon to be a 

function of the grain size. Also, the more realistic model of a 

cylinderical grain has been adopted here instead of the infinite region 

sandwiched betweentwo flat recombination planes (Bohm et al, 1982). 

It has been shown that in principle one can include the effects of a 

small constant electric field in the grain and a finite back surface 

recombination velocity; these effects were considered in chapter 5 for 

single crystal semiconductors and were not repeated since they were of 

secondary importance in polycrystalline devices. 

For smqll recombination velocity at the grain boundary, the open- 

cicuit voltage increased in smaller grains. This result was in agreement 

with the experimental work of Neugroschel and Mazer (1982). However for 

large recombination rate at the grain boundary, the open-circuit voltage 

was smaller in all grain sizes, see section 8.4 or Fossum and Lindholm 

(1980b). 

A slight loss of generality in the model explained here lay in the 

choice of boundary condition (8.28) at the junction. This boundary 

condition was adopted from the single crystal study, but an implicit 

assumption was made that grain boundary recombination in the junction 

space-charge region had a negligible effect on the quasi-Fermi level 

separation. Techniques for grain boundary removal by laser recrystalliz- 

ation (Young et al, 1980) and passivation of grain boundaries (Seager et 

al, 1980) are likely to make this a plausible assumption. If this is not 

the case, Bohm et al (1982) took an alternative approach by using a 

simple radial function for the voltage, V. Their reduction of V near the 

grain boundary accounted for recombination. and grain. size. 
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Figure 8.1 A polysilicon n-p junction solar-cell with columnar grains. 
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Figure 8.4 The current-voltage characteristic of a polysilicon solar 

cell with a grain size of 10 
Ip 

m. Equation(8-37), Table 5.2 data and 

extra data given in the text are used. 
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Figure 8.5 The current-voltage characteristic of a polysilicon solar 
3 

cell with a grain size of 10 pm . Equation (8-37), Table 5.2 data and 
extra data given in the text are used. 
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CHA PTER 9 

SUMMARY OF CONCLUSIONS AND TOPICS FOR FUTURE RESEARCH 

The purpose of this chapter is to summarise the main points of the 

conclusions which were given in detail with the appropriate chapters and 

to outline a few research topics that might either enhance or follow on 

from this project. 

9.1 Sur=anj of conclusions. 

In chapter 2, the Shockley-Read statistics was generalised to include 

Auger effects, trap relaxation times, extra carriers from the neighbour- 

ing material and was applied to two simple surface trap distributions. 

The recombination velocity at the surface tended to fall to a minimum 

for near intrinsic material because the traps were largely occupied and 

there were insufficient electrons left in the conduction band to 

recombine with every hole that was trapped. When the equilibrium Fermi 

level lay close to one of the energy bands because of a large doping 

concentration, the recombination velocity rose by virtue of extra Auger 

transitions. Away from equilibrium, the recombination velocity increased 

with the excess carrier concentration because of Auger effects until a 

maximum was reached. Then the recombination vv. ]. ocity decreased because of 

trap saturation. A simple trap spectrum increased all of these tendencies 

when it was used in place of a single level at mid-gap. 

The surface recombination statistics developed here was employed in 

chapter 3 to calculate the potential barrier height at a grain boundary. 

Poisson's equation was solved for the barrier potential with the 

assumption of flat, parallel quasi-Fermi levels and this model led to 

good agreement with experimental results. The Shockley-Read statistics 

was displayed as a generalisation of the Fermi-Dirac statistics. A single 

treatment was then possible for both equilibrium and steady-state 

conditions using only the Shockley-Read statistics. The equilibrium 

barrier height displayed a maximuff with respect to doping in the bulk and 
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this was found to occur when the Fermi level lay approximately at',. the 

same energy as the surface-state. 

In addition, the recombination rate at a grain boundary, the resist- 

ivity and capacitance in equilibrium were investigated in polysilicon. 

The radiative recombination rate in quantum well laser diodes was 

studied in chapter 4. Good agreement of the experimental gain curves and 

a theory based on complete relaxation of k-selection rules was found. One 

cannot rule out the possibility of the gain curves being fitted equally 

well by a model based on partial k-selection, involving intraband 

relaxation times (Yamada, 1983). Until now, it has been argued that strict 

k-selection rules should be obeyed even in highly doped structures 

(Sugimura, 1983), but a possible explanation of our results may be due to 

the strong carrier-carrier interaction. Since experimental work on single 

and multi-quantum well structures is very active, in time gain curves 

may be obtained which no longer resemble the simple no k-selection model 

and a more detailed theoretical investigation may be needed. 

In the model of a quantum well structure described here, the effect 

of band-gap shrinkage has been included because of the large carrier 

concentrations present during laser operation. Also, a more detailed 

calculation than before was made of the energy levels in a multi-quantum 

well laser to take account of the shifted levels in the asymmetric 

quantum wells at the end of the structure. 

General solutions to the minority carrier diffusion equation in the 

steady-state and time-dependent cases were derived in chapters 5 to 8 for 

a simple p-n junction solar cell. These solutions allowed one to 

calculate the excess carrier densites in low injection and therefore;. to 

obtain the current or the voltage for most of the operating conditions of 

the solar cell. The use of a general photogeneration rate in the steady- 

state solution enabled a new function (Hsieh et al, 1980) to represent 

the variation with distance of the solar spectrum inside the solar cell 
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in chapter 6. An advantage of the new function for the generation rate was 

that fewer terms were involved in the solution than when the conventional 

exponential decay (Dunbar and Hauser, 1976) was used. However, this new 

representation of the solar spectrum was independent of the wavelength of 

the incident light and was not available for more than the AM1 and P142 

spectra. 

The use of transient photovoltage decay from the steady-state to 

measure lifetimes in solar cells has been examined here in chapter 7. The 

work of Sharma and Tewary (1982) on open-circuit voltage decay was 

confirmed and extended to more general current flow conditions. Also, the 

carrier density decay following a short pulse of light was studied and it 

was shown that the same lifetime can be inferred from the results as would 

be obtained from the -steady-state decay. Some confusion over the 

eigenvalues of the Sturm-Liouville problem and their use in the transform 

in the work of Sharma and Tewary (1982) was clarified here by considering 

the amplitudes of the concomitant eigenfunctions. 

The effect of the electrons in the p-type base of an n-p solar cell 

on the current was considered here. The contribution to the current by 

holes in the n-type emitter was neglected purely to simplify the 

mathematics, but the effect of the hole current could easily be included 

because the diffusion equations for electrons and holes are very similar. 

However, the effect of high injection either by a large electrical 

current passing through the solar cell or by a concentration of the 

incident light is more complicated and necessitates computer solutions of 

the carrier transport equations (see for example Fossum, 1976). 

In a polycrystalline solar cell grown with columnar grains running from 

the front to the back of the cell and passing through the junction, the 

diffusion equation for electrons in the p-type base was solved in the 

steady-state. A finite Sturm-Liouville transform was employed to transform 

the two dimensional electron diffusion equation into a one dimensional 
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equation of the type studied in chapter 5. Then, the, current-voltage 

characteristic was obtained and the effects on it of variation in the 

grain size and recombination velocity at the grain boundary were examined. 

It was found that for large grain boundary recombination velocity, the 

light current and therefore the open-circuit voltage were both reduced. 

This effect has been noted in experiments with polysilicon solar cells 

(Fossum and Lindholm, 1980b). For large recombination velocities, smaller 

grain sizes further reduced the open-circuit voltage. However, for 

smaller recombination velocities at the grain boundary, reducing the 

grain size had the unexpected effect of improving the open-circuit 

voltage. This effect was found in experiments by Neugroschel and Mazer 

(1982). 

9.2 Topics for Luture research 

MA comparitive study of the recombination rate using a single trap 

state and a simple distribution of surface states would yield valuable 

information concerning the distribution of surface traps when compared 

with similar experimental results, both for a simple surface and for a 

grain boundary. 

(ii) Experimental curves which correspond to the theoretical curves of 

Figures 2.5 and 2.7 would give valifable insight into the magnitude of 

Auger effects, trap saturation because of the finite time of relaxation 

and to the validity of a constant recombination velocity used in low 

injection conditions in chapters 5 to 8. 

(iii) The study of the potential barrier at a grain boundary showed that 

it was important to know the concentration of donor and acceptor-like 

traps in the surface. The sign of the trapped charge determines whether 

the barrier blocks the'flow of the majority or minority carriers. 

Previous studies of the grain boundary surface state distribution have 

been made (Shyu and Cheng, 1982; Srivastava et al, 1982), but these 
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have not yielded the donor or acceptor-like nature of the traps. Such 

information would be very useful to the application of the theory given 

here. 

(iv) A calculation of over the barrier current at a grain boundary was 

not attempted here because that requires jettisoning the assumption of 

flat quasi-Fermi levels away from equilibrium. This calculation is 

however necessary to understand the behaviour of polysilicon emitter 

transistors and thin-film resistors. 

(V) Results have been gathered (Shyu and Cheng, 1982) of the variation 

with temperature of grain boundary capacitance in polysilicon. Another 

check on the theory given here could be made by examining the temperature 

variation of the capacitance obtained in section 3.9(b). 

(Vi) The nature of radiative recombination in AlGaAs quantum wells will 

be made clear as gain curves are made available for doped and undoped 

active layers and for polarized or unpolarized emissions. Further 

experiments are necessary before either strict k-selection rule or no k- 

selection rule models are rejected for quantum well lasers. 

(vii) For a complete understanding of the rate of radiative transition 

in quantum wells, a calculation of the. matrix element in a two dimension- 

al structure for TE and T14 polarizations is required. 

(viii) In chapters 5,6 and 8, the diffusion equation for electrons in 

the p-type base of a solar cell was given in the steady-state. For a 

complete understanding of the operation of the solar cell-shown in Figure 

5.1, a calculation of the much smaller contribution to the current by 

holes in the emitter is desirable, especially when the emitter is quite 

wide or when the doping in the emitter is low. 

(ix) A new function representing the AM1 and AM2 spectra was given in 

chapter 6. This function would be more useful if data for it was 

available for other spectra, for examDle for the AMO spectrum. 

(X) This new function (Hsieh et'al, 1980) for the photogeneration 
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rate in a solar cell has no wavelength dependence, but this would be 

desirable if one wishes to understand fully the way in which the sunlight 

is absorbed by a solar cell. 
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APPENDIX A 

FINITE STURM-LIOUVILLE TRANSFORMS 

The eigenfunctions of the Sturm-Liouville (SL) problem are utilised 

as an orthonormal basis to transform problems involving a self-adjoint 

operator, L, in an inhomogeneous or time-dependent differential equation. 

One first obtains the eigenvalues, C., and eigenfunctions, ý 
r" 

of the SL 

equation 

lý - gý = 

together with the boundary conditions 

+a 2((3ý 
0 (A. 2) 

I 
-IX) 

Ix0= 

and 

X=o 
ý(0) +b 

(dý 1, 
=0 (A. 3) 2 dx) 

'The self-adjoint operator, L, is defined by 

__Afq(x) 
d' + r(x) 

p(x)dxý -ti 'I 

The finite SL transform of a function, fýis' given by the inner product of 

f with one of the eigenfunctions, ý 
r' 

of the SL problem defined by 

equations (A. 1, A. 2, A. 3)where a weight function, p(x), is used, 

d 

r 
=fo P(X)ý]ý (x)f(x)dx 

Applying this formula to the operator,. L, acting on f, one has I 

d( df 
x 

rfldx. p(X)ý (x) qýd-- 
r dx 

fo ýT 

X) 
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Integration by parts yields 

fd d 
f 1d (x)q(x)f' (x) q(x) +p(x)ý (x)r(x)f dx + fIkf; 9 

rl= ix r1 dx r[r 

10 

and after a second integration, 

q( X)-dýr(x)] 
1+ 

r( f (x) dx 'lf; Erl =f 
ýAax-( 

dx P(X) 
x)ýr(x+(x) 

d [ýr(x)q(x)f'(x) 
- ýrl(x)q(x)f(x)jo 

Therefore, using equation (A. 1) 

f[Lf; E I=ý I[f; ýj q(d) (d)f(d)-ýI(d)f(d)j 
r 

-q(0) 
K (O)v (o)-ý �(0) f (0)] 

- 

Providing a2 00, 

a2 
l(f(o)[. ýr'(O)+al 

. 
{alf(O)+a 

2 ýr(()) 1- ýr(ol 2f'(O)ll 

using (A. 2)one has 

ýr'(0)f(O"r(O)f'(0) -"a2 
1r (0){a 

1 
f(o)+a 

2 
f, (O)} 

and sindlarly providing b -JO, 2'r 

ýrl(d)f(d) -ýr (d)fl(d) = -b 21 ýr (d)fblf(d)+b 
2f' 

(d)}. 

On the other hand, if a 2=0' 

(O)f'(0) = ýaj-lfp(O)a (0)-ýr'(O)alf(o)) 
r 

(0){a f(o)), 
r1 
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and similarly if b 27'0' 

ýrl(d)f(d) -ýr(d)f' (d) =b11 ýrl(d)jb 1 f(d)}. 

Finally, the SL transform of Lf is given by 

+b2r (d)q(d)(b 
1 

f(d)+b 
2 

f(d)) 

-a -1ý (O)q(O)fa f(O)+a fl(O)} 2r12 

Taking into account the possibility of a 2ý0 or b 
2ý-O' parameters ar and ýr 

are defined by 

-Jo, a2 (O)q(O), a2r 
(A-5) 

a1 ýr(O)q(O), a 2=0' 

and 

b-lý (d)q(d) 
,b-, 

tO 
2r2 (A. 6) 

-b- 1 (d) q(d) ,b -ri0; 1r2 

then one has 

I (! 
if; crI=ýr7r+arf alf (0) +a 2 fl(O)} +0r lb 

1f 
(d) +b 2f(d)) - 

In the case of interest here, one takes the SL transform of the minority 

carrier density and so the formula above yields 

I [Ln(x, t) ;ýr]=cr -n 
r 

(t) +ara3 (t) +arb 3(t) 
(A-7) 

using the boundary conditions of case 6 of Table 5.1. The function n(x, t) 

is represented using the transform of n and the basis of SL eigenvectors, 

n(x, t) = cEo 
<n(yt) r(y)>ýr(x) r=l 

where 
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d 

r 
(Y)> = 

fo 
p(y)n(y, t)ý 

r 
(y)dy 

is the inner product of n with one of the eigenfunctions, Thus, the 

inverse SL transform is given by 

w 
n(x, t) =inr (t)ý 

r 
(x). (A. 8) 

r=l 

Equations (A-5, A. 6, A-7, A. 8) are used to transform the inhomogeneous 

and time-dependent diffusion equation and to obtain its solution in 

chapters 7 and 
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APPENDIX B 

THE USE OF INHOMOGENEOUS BOUNDARY CONDITIONS WITH FINITE STURM- 

LIOUVILLE TRANSFORMS 

The eigenfunctions (ýr (x), r= 1,2,3, ... 
) are developed for the 

Sturm7-Liouville (SL) problem of equation(7.2) of chapter 7 where linear 

homogeneous boundary conditions of the form 

(0) +a ýl(0) = 1r2r 

and 

b 1ýt 
(d) +b2 ýr'(d) =0 (B. 2) 

are utilised. The eigenfunctions form an orthonormal basis of infinite 

dimension for the Euclidean space of continuous functions on the interval 

[0, d], thus the carrier concentration is represented (Kreider et al, 

1966) by 

n(x, t) <n(y, t). ý 
r(Y»ýr 

(x). 

r=l 
(B. 3) 

However, the boundary conditions of case 6 of Table 5.1 which are applied 

to the diffusion equation are not homogeneous. That the. method may be 

used with inhomogeneous. boundary conditions is not obvious at first 

sight. Equation (B. 3) may also be applied to the derivative of the 

minority carrier density and this gives 

n'(x, t) <n(y, t) 'ýr 
(YN 

r 
(x), 

r=l 
hence one finds the boundary condition of Table 5.1, case 6 at x=O 

yields 

CO d CO d 
a (t)=a n(y, t)ý, (y)p(y)dyý (0)+a nl(y, t)ý, (y)p(y)d, 0 (0). 

311-rr21-rr 
r=lfo r=lf 0 

Defining a function h(x, t) by 
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h(x, t) =a1 n(x, t) +a2 nl(x, t) 

one has 

w 
h(0, t) =i {<h(y, t). ý 

r 
(YN 

r 
(O)} 

r=l 

or alternatively usin6 the notation of the SL transform 

h(O, t) : -: 
co 
ý "Er(t)ýr(o)' 

r=l 

(B. 1) 

ProvidinE; ýr (0) is not zero for at least one value of r then one needs no 

restriction on a3 (t) since the right hand side of (B. 4) is not 

automatically zero. Sinalarly at x=d, one finds 

Co 
b3 (tý) = k(d, t) =-j iý 

r 
(t) 

r 
(d) 

r=l 

iqhere 

k(x, t) =b1 n(x, t) +b2 nl(x, t) 

and again if b3 (t)ýO then one must have ýr (d)'rO. 

Note that the boundary condition at x=O for case I of Table 5.1 sets 

a1=1, a2=0, a3=n0 {exp(eV/k. T)-11, 

and one may not use this boundary condition with the method of finite SL 

transforms. This is because a2 ýO and the homogeneous boundary condition 

(B. 1) at x=O implies ýr (0)=O for all values of r and hence a3 (t)=O by 

(B. 4). 
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APPENDIX C 

SOLUTIONS OF THE TRANSCENDENTAL EIGENVALUE EQUATION FOR THE STURM- 

LIOUVILLE PROBLEM 

In this appendix, the nature of the real and complex roots of the 

transcendental equation (7-10) of chapter 7 will be examined. The 

transcendental equation in its general form, 

talbl-(a b +a2b, )f+a b 2_112 )Isinhp d+ (a b -a b )p coshp d=0, 
122 2(ýý rr1221rr 

has the obvious root, p r=0 
; however, equation (7-11) shows that the 

eigenfunction, ýr (x), corresponding to the eigenvalue 

C= _f2 D- l/T 
r 

is everywhere zero. Thus, the solution V rýo 
of the transcendental 

equation is excluded from the set of parameters pr which lead to 

eigenfunctions. 

The boundary conditions of case 4 of Table 5.1 have been widely used 

in the numerical examples of section 7.3, using them, equations (7.8) 

and (7.9) defining the constants Ar and Br become 

(f+IJ 
r 

)A 
r+Br( 

f-P 
r)= 

and 

1) 

{f+ s/D +p 
r 

}A 
r 

exp(p 
r 

d) + {f+ s/D -p r 
}B 

r 
exp(-p 

r 
d) = 0. (C. 2) 

Supposing p r= 
f is a solution of the transcendental equation in this case, 

as it is in equations (7.43), for s=O, and (7.44), for s=oo, then equations 

(C. 1) and (C. 2) yield 

ljr=f => fA 
r=ol 

(s/D)B 
r exp(-fd)=O}. 

Thus for all positive surface recombination velocities the root p rýf' 
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when it occurs, yields an eigenvector equal to zero. When the surface 

recombination velocity is zero, the roots V 
rý- 

(f, -f) give the same 

eigenvalue 

ýr ý- 

and they give the same eigenvector as a consequence. One of the roots is 

excluded, pr =-f say, and the other root, ji r=f' 
is included in the set of 

parameters [p 
r} yielding eigenvalues fE 

r 
}. 

For non-zero back surface recombination velocities a further real 

root of the transcendental equation, 

ff(f+s/D)-p 2 Itanhlj d- sp /D = 
rrr (c. 3) 

formed from the equations (C. 1) and (C. 2) at the boundaries x=O and 

x=d, exists as follows: From Figure C. 1, if the gradient of the first 

term on the left hand side of equation (C. 3) is larger than s/D at p rý-O' 

I the lines cross at a real root ,p1, Since the curve is symmetric in 

negative pr the negative root -p 1 yields the same eigenvalue. That is, 

if one has 

{ff (f+s/D) _112 ] dsech 2 
li d- 211 tanhlj d) = f(f+s/D)d >-s/D rrrrI lj--=O 

.. r 

then a real root exists. In the limit as s tends to infinity the 

requirement is that f4>1, but the root p r=f 
is then given by (C-3) which 

as before gives an eigenvector of zero. 

All other roots of the transcendental equation are imaginary, i. e. 

they are real roots of the following equation: 

[a b- (a b +a b )f+a b (f 2 
+v 

2 )}tanv d+ (a b -a b )v -0 (C. 4) 11122122rr1221r ý' 

where iv -ýv rr 

A 
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anhprd 

Figure C1 Graphical solution for real roots of the transcendental 

equation (C-3). 
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APPENDIX D 

THE STURM-LIOUVILLE TRANSFORM OF THE STEADY-STATE EXCESS MINORITY 

CARRIER DENSITY- 

The Sturm7-Liouville (SL) integral transform of the excess minority 

carrier density in the steady-state as defined by equation (5.41) is used 

in equation (7.29) to calculate the decay of the carrier concentration 

once the light source is switched off. The integral iT 
r 

(0) is given by 

d 
2A 

re 
fx 

n(x)[(a, -a 2 
f)sinhp 

rx-a 21jr coshp 
1: 1 

x}dx 
nr (0) = 

10 

Dfa 1-a2 
(v 

r 
+f)} 

(D. 1) 

where n(x) is the steady-state carrier density (5.41) and Ar is given by 

equation (7.13). The most general form of nr (0) to be used here is 

dr 

2' 
[ 

2A efxf(al-a -r) sinhýlrx-'120rc oshorx 

Dfal -a 2(ljr+f) 
1 

x 

fa 
3 +(al-a 2 a)ll I 

1{(bl-b 
2 

f)sinhli(d-x)+b 2 pcoshp(d-x)}e- 
fx 

{a 
1b1 -(a 1b2 +a 2b1 

)f-a 
2b2 

/L 2 }sinhpd+(a 
lb2 -a 2 

bl)pcosh d 

{b 
3 +(bl-b 2 a)N 1e 

-ced }e f 
(d-x) 

f (al-a 
2 

f)sinhpx-a 2 licoshlixl_ 
_ -ax 

2N1e dx. 
{a 

1b1 -(a 1b2 +a 2b1 
)f-a 

2b2 
/L Isinbpd+(a 

1b2 -a 2b1 
)pcoshpdl'- 

I 

The parameters a3 and b3 are of course constants in the steady-state. It 

is possible to define constants 01, () 
2,0 3' and () 4) which simplify the 

integral, i. e. 

0, 
[a 

3+N1 
(a 

1-a 2 ct) } (bl-b 
2 f) (D. 2) 

- 
[a 

1b I- 
(a 

1b2 +a 2b1 
)f-a 

2b2 
/L }sinhpd+( aýb2 -a 2 

bl)pcoshpd 

]' 

fa 
3 +11 1 

(al-a 
2cl) 

)b 
2 11 

(D-3) 
{a 

1 
bl-(a 

lb2 +a 2 
bl)f-a 

2b2 
/L2 

I 
Isinhpd+(alb 

2 -a 2 
bl)pcoshvd 

]' 
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. {b +(b -b a)N e 
-ad )e fd (a -a f) 

312112 (D. 
jalbl-(a lb2 +a2b, )f-a 

2b 21L2 
}sinhpd+(a 

1b2 -a 2 bl)ljcoshpd- 

an ýl 

0=. 
{b 

3 +(b 1 -b 2 a) N1e -ad Ie fd (-a2p) 
(D-5) 

a1b 1- 
(alb 

2 +a 2 
bl)f-a 2b2 

/L 2 
sinh0d+(a lb2 -a 2 bl)ljcoshpd. 

Hence, the integral becomes 

ýd 
n 

r(0) 
=0 {c 

r 
coshp 

r 
x+d r 

sinhp 
r 

x} 
[ei 

sinhp(d-x)+0 2 coshp(d-x)+ 

0 sinhijx+04coshlix-Nle 
(f-(X)x 

dx (D. 6) 
31 

where also 

2A 
ra 21r 

/D{a 
2 

(p 
r 

+f)-a 1 
}1 

and 

dr= 2A 
r 

(al-a 
2 f)/D{al-a 2(pr+f)}' 

Multiplying out the factors contained within the integral (D. 6) and 

performing the separate integrals one has 

(D-7) 

(D. 8) 

nr (0) =cr61H1+cr62H2+cr03H3+cr04H4- cr 11 1H5+ 

dr01H6+dr02H7+dr03H8+dr04H9-drN1H 101 
(D. 9) 

where the H1 {i= 1,2,3,..., 10} are the simple integrals of the product 

of two hyperbolic functions and are performed by repeated integration by 

parts, for example 

= 
fd d 

H coshp xsinhp(d-x)dx = (V/p )fosinh oshp(d-x)dx. 10rr Prxc 
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A second integration by parts yields 

d 2,2 (p/pr) 
[coshii 

r xcoshp(d-x) 
10 

+* (P/ljr ) 

and finally, 

H122 pcoshp rd- pcoshpd] 

r- 

I 

Likewise, 11 2 to H 10 are calculated by repeated integration by parts or - 

are obtained from standard integral tables (Gradshteyn and Ryzhik, 1980). 

The results are collected in Table D. l. 

From the integrals If 
1 to 11 

10, the parameters 01 to 04 and Or and d 
r' 

the transform of the steady-state carrier density is obtained using 

equation (D. 9). The two factors cra1H1 and dr01H6 combine to give the 

following result: 

2A 
r01 

{p [(a 
1 -a 2 f)sinhv 

r 
d-a 2Vr coshp A -or [(al-a 

2f) sinhvid-a 211 oos ho dj 

D(li 2_V2 Ma -a (p +f)} r12r 

where equations (D. 7), (D. 8) and Table D. 1 were used. Similarly addition 

of cr02H2 to drb2H7 yields, 

2A 
r0 2{"r 

[(al-a 
2 f)coshp 

r 
d-a 2pr sinhlj 

r 
d] -"r 

[(al-a 
2 f)coshlid-a 

2 iisinhljd]) 

D(li 
2_IJ2 Ma -a (p +f)} 
r12r 

Using the expressions (D. 2) and (D. 3) for 01 and 0 2' the two factors 

above are combined and one obtains 

(b 
1 -b 2 f)pf(al-a 

2 f)sinhp 
r 

d-a 2or Cos hp A +b 21'r" 
[(al-a 

2 f)coshp 
r 

d-a 2V'r sinhu 

-b 2prP 
[ (al-a 

2 f)coshpd-a 2'j sinhlld] -(b 1 -b 2f) "r [(a 
1-a 2 f)sinhpd-a 2 licoshlid] 

2A 
r 

[N 
1 

(al-a 
2 a)+a 3} 

D(jj 2_P2 ) {a -a (p +fD[{a b- (a b +aýbl)f-a b 11,2 }sinhpd+(a -a2b, )pcoshpd] 
r12r111222 1ý2 
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The first two square bracketed terms in the above expression combine to 

give an expression which is the same as the left hand side of the 

transcendental equation (7.10) and that is equal to zero. The third and 

fourth square bracketed factors combine to yield an expression the same 

as the square bracketed term in the denominator. Thus, the above 

expression simplifies to 

(c 
rH1 

+d 
rH6 

)o 
1 +(C 

rH2 
+d 

rH7 
)o 

2 :- 2A 
rpr 

[a 
3 +(al-a 2 a)N 1} 

(D. 10) 

22 
D( pr -P )ja 

1 -a 2 
(p 

r 
+f)} 

The next four terms of (D. 9) are 

3H3 +0 4 11 4)+dr (0 
3118 +0 4 11 9) 

using Table D. 1 for HH, H8 and H., together with (D. 4), (D-5), (D-7) 
3' 41 

and (D. 8) for 0 3' 0 4' cr and dr the above terms yield 

[b +(b -b a)N e -ctd }e fd 2A (p 2_112 )-l 
3121r 

_r x 
D{al-a 2 

(11 
r 

+f)}[{albl-(alb 2 +a 2 bl)f-a 2b 21L2 
}sinhpd+(a 

1b2 -a 2b1 
)Vcoshpd] 

[sinhij d{(a -a f)a (vt 2_P2 )sinhpd+a 2v2 
pcoshpd-p(a -a f) 

2 
coshpd r122r2r12 

li coshp d{(a -a f) 2 
sinhpd-a 

2p2 
sinhpd}] (D. 11) 

rr122 

Here, the contents of the square brackets have been rearranged into 

multiples of coshp rd and sinhM r 
d. One adds the left hand side of the 

transcendental equation (7-10), multiplied by 

-(l/b 2 
)f(al-a 

2 f)sinhtjd-a 2 pcoshpd}, 

to the square bracketed term. This is possible because the right hand 

side of (7-10) is zero, and the result of the addition inside the 

square bracket is 

[sinhij dfljcoshlid(a ab /b -a 
2 

-a a f-a 2b f/b )-(a -a f)/b sinhpd r12121 112 212122 
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(a 

1ý1-( a1b2 +a 2 bl)f+a 2b 2(f 
2 

-P 
2 ))J+p 

r 
/b 

2 coshp r 
d(a 2 vcoshpd(alb 2 -a 2 bl)+ 

2222 
sinhlid( ý -2a ab f+a-b f-a bp -a2-b +a ab albla -a-b f)}] aib2 12222221212 2f+ 221 

Addition of the sinhpd and coshpd terms above yields the square bracket 

term of the denominator of (D. 11) and so (D. 11) becomes 

2A 
re 

fd fb 
3 +(bl-b 2 a)N 1e 

-ad }{(al-a 
2 f)sinhp 

r 
d-a 21-'r coshp r 

d} 

Db (Ij 2_ 
p2 ){a -a (p +f)} 

(D. 12) 
2r12r 

The last two terms of( D. 9) are -N 1cr 
11 

5 and -N 1dr 
11 

10 and equation (D-7) 

and (D. 8) with H5 and H 
10 from Table D. 1 gives 

{(f-C() 2_ 
11 

2 )-l A, [(f-cc)[(al-a 
-a coshp d}+ {P-21'r sinhp rd r 2f) sinhil rd 21r r 

D{al-a 2(pr +f)4 
-(al-a 2 f)coshp 

r 
djp 

r 
]e (f-a)d 

+11 
r 

(a 
1-a 2 a) 

I 
(-2N 

Expanding the square bracket term only, one obtains 

f(a -a f)(f-a)sinhp d+a li 
2 

sinhp d+(a p p-a p )coshp d) 12r2rr2r1rr 

adding to it the the transcendental equation divided by b 2' 
i. e. 

{ajbj/b - (al+a2b, /b )f-a (Ij 2_ 
f2 )}sinhp d+(al-a2b, /b coshp d, 222rr 2)llr r 

reduces the square bracket term to 

(b 
1 

/b 
2-a) 

f(al-a 
2 f)sinhp 

r 
d-a 

2pr coshp 
r 

d). 

The last two terms of (D. 9) are therefore given by 

e 
(f-a)d (b 

1 
/b 

2-ct) 
f(al-a 

2 f)sinhp 
r 

d-a 21jr coshli 
r 

dl+p 
r 

(a, -a2a) 
-2A rND (a a (11 +f)}{(f-et) 

2_V2 
(D-13) 

1- 2rr 

Combining the results (D. 10) , 
(D. 12) and (D. 13), the transform of the 

steady-state excess carrier density is 
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- (0) 
2A 

r 
fa 

3 +(al-a 2 a)N 1 
lb 

2 11 r 
+{b 3 +(b 1 -b 2 a)N 1e 

-ad }e fd {(al-a 
2 f)sinhp 

r 
d-a 2pr coshp r 
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nr 
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(al-a 
2 cE)N ? 2'lr+(b 1 -b 2 a)Nle 

( f-a) d {(al-a 
2 f)sinhvi 

r 
d-a' 2 vt r coshji rd (D. 14) 

{a -a (v +f)){(f-a) 
2_P2 

12rr 

In the method of open-circuit voltage decay, there is no current flow 

across the junction, x=O, or across the back surface, x=d, i. e. 

b3 "'- 

and therefore the transform of the initial (steady-state) excess carrier 

density becomes 

21A 
rN11 n (0) = r22 D{al-a 2 

(P 
r 

+f) Ij _ýIr) 

p [(a 
1 -a 2 ct ), 11 r 

+(b 1 
/b 

2 -a) e 
(f-ot)d 

f (al-a 
2 f)sinho 

r 
d-a 2'prc oshor d)] . 

(D-15) 

the expression (D. 14) is used in section 7.2(a). of chapter 7 as the 

transform of the steady-state carrier density which applies until time, 

t=O, when the light source is switched off. The integrals H and H of 5 10 

Table D. 1 are used also in chapter 7, section 7.2(b) to obtain the 

transform of the photogeneration rate after a short light pulse at time, 

t=O 
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Table D. 1 Integrals of hyperlýolic functions and exDonentials used in the 

Sturm-Liouville transform of the steady-state carrier density. 

Integral Result 

H, 
d 

coshp xsihhp. ý. d-x)dx = (p 2_p2)-lp [coshp d-coshpd] 
fo 

rrr 

Hd coshp xcoshp(d-x)dx = (p 2_P2 )-'[p sinhv d-psinhpd] 
2 

fo 

rrrr 
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fo 
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fo 
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H=d sinhp xcoshp(d-x)dx = (Ij 2_U2 )-l li [cosh d-coshlid] 7 
fo 

rrr "r 
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fo 

rrrrr 
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fo 
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