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The Shockley-Read recombination statistics was recently generalised to
include the effects of a finite relaxation time of the captured carrier
as 1t settles into the ground energy state of the trap, Auger effects and
the so-called extra carriers supplied by the neighbouring material. The
comblned result of these effects 1s studied here theoretically at a
surface together with consideration of a single trap energy level and a
simple trap spectrum. This model of surface trap occupation is utilised
in calculations of the potential barriers at grain boundaries in poly-
crystalline semiconductors and tﬁese calculations are compared with some
recent experimental results. The recombination rate at a grain boundary,
resistivity and capacitance of polycrystalline semiconductors are studied,

Another problem concerning the recombination of electrons and holes 1is
found 1n quantum well laser diodes. It 1s suggested that the processes
giving rise to radiation in quantum well heterostructures can be
described by a no k-selection model for the electronic transition, The
reason is contained in the similarity of experimental gain curves and
those obtained using the no k-selection model,

For lifetime measurements 1in solar cells, the minority carrier -
diffusion equation 1s solved. Results are given of treatments by Sturm-

Liouville transform and Green's function for the excess minority carrier

concentration in photovoltage decay and in the steady-state in mono-

crystalline and polycrystalline semliconductors, The effects of surface
recombination and grain boundary recombination on lifetimes 1in solar

cells are examined using this theory,
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CHAPTER 1

A BRIEF SURVEY OF RECOMBINATION IN SOLAR CELLS AND QUANTUM WELL LASERS

A semlconductor solar cell 1s a device which directly converts
energy radiated by the sun into electrical current. The main assets
of solar cells are that there are no running costs after the initial
production expense and the only waste product is heat. Solar cells have
been used extensively 1in space satellites because they are an 1nexhaustible
supply of energy. In space, the weight of a solar cell array 1is of
prime 1importance, and for this reason high efficiency designs have been
made. However, the cost of making solar cells 1s so high as to make
them unattractive for widescale power generation on earth. A possible
way of making solar cells attractive for earth use 1is to trade-off a
little of the efficiency of power generation for much cheaper production
costs. One method of doing this is to use polycrystalline silicon or
cadmium sulphide to construct all or part of the device. 1In this work,

some of the problems associated with polycrystalline solar cells are

studied theoretically.

There 1s a variety of mechanisms by which incident photons never
enter the solar cell. For example, some photons are reflected by the
top surface, and the top contact shades a portion of the front of the
cell from incident photons. Since antireflective coatings for the front
surface and small area top contact are well-known (Hovel, 1975), these
effects are not studied here. It is the loss of photogenerated electrons
and holes by recombination inside the solar cell which iS*examﬁned 1n

Part A of this work.

Ideally, when a photon penetrates the solar cell and with energy

greater than the semiconductor band-gap, it is absorbed, promoting an

"



electron into the conduction band. An empty state, known as a hole, 1s
left behind in the valence band. The electron and hole diffuse in
opposite directions to be collected at the external contacts to the

solar cell and then they generate photocurrent into a load. Before
reaching the contact, some of the photogenerated electrons fall back into
vacant states in the valence band by processes known collectively as

recombination of electrons and holes.

Recombination occurs either by an electron making a direct
transition from the conduction band into the valence band or by an
electron falling into an empty defect level 1in the energy gap and from
there the electron falls in a second step into the valence band. The
first process is known as band-to-band recombination and 1s unavoidable
once the semiconductor material for the device 1s chosen. The second
process 1s called band-to-trap recombination and may be avoided by
reducing the number of defect levels in the energy-gap. A trap is an
isolated energy level in the energy-gap brought about by a random impurity

or by lattice damage for example.

There are three electronic transitions consldered in this work.
Either a single electron transition is involved in the recombination
process or an Auger electron (Evans and Landsberg, 1963) or Auger hole
takes up the energy released 1n the electron transition by moving deeper
into its own energy band. A model of recombination in the bulk of a
semiconductor device was presented over thirty years ago (Shockley and
Read, 1952) and has been generalized since to include Auger effects
(Landsberg, 1982a) and the finite relaxation times of traps immediately
after the capture of an electron or hole (Dhariwal, Kothari and Jain,
1981). 1In Chapter 2, this work 1s extended to a distribution of trap
levels in the energy—-gap at a simple surface. The concentration of

traps is larger at a surface than in the bulk material because the



discontinuity of the lattice at the surface gives rise to surface traps
and because chemical residues tend to collect at the surface causing

1solated defect levels.

The steady-state recombination of electrons with holes involving
donor or acceptor-like surface states leads to a net charge on the
surface. The surface state charge is balanced by an equal and opposite
charge 1in the neighbouring bulk semiconductor. This accumulation of
space-charge near the surface causes a potential barrier to form in the
region. The potential barrier impedes the transport of electrons and
holes over 1t. The barrier height also affects the carrier (electron
and hole) concentrations at the surface and hence alters the surface
recombination rate. These effects amongst others are considered 1in
Chapter 3 whrere a model of the potential barrier and recombination rate
at. a grain boundary in polycrystalline silicon or in cadmium sulphide
1s given. This model uses the surface recombilnation statistics given
in Chapter 2 and applies with minor alterations to other surfaces 1n

semiconductor devices.

Unlike a solar cell, in which recombination has to be avoided for
high efficiency, recombination involving the stimulated emission of a
photon is encouraged in a laser diode. The radiative recombination
process in a quantum-well laser diode is also studied here. The object
of a laser 1s to provide a source of light with a narrow range of
wavelength. Large electron and hole concentrations are created in the
laser diode by passing an electrical current through it. In an active
region with narrower band-gap than the surrounding semiconductor, the
carrier concentrations are especially large and radiative recombination
preferentially takes place. The active layer in a quantum-well laser

diode is so narrow that the energy levels in the conduction and valence

ﬁ



bands become a series of two-dimensional sub-bands. The advantage of

the quantum well structure lies in the laser possessing fewer longitudinal
modes in operation. The theoretical energy and wavevector (k) dependence
of radiative recombination in quantum well structures are compared with
experimental results (Dutta et al., 1983, Kobayashi et al., 1983)

obtained recently. Thereby evidence 1s presented for no conservation

of the electronic wavevector 1in the radiative recombination process

because good agreement 1s obtalned with experiments using this premiss.

In Part B of this work, the effects of recombination at the front
and back surfaces and at grain boundaries on the carrier concentrations
of a solar cell are treated. In Chapter 5, the electron and hole
transport and continulty equations are explained and their steady-state
solution with- low injection of excess carriers 1s presented. The low
injection condition 1s the main restriction on the validity of the
solutions presented in Chapters 5 to 8, but Hovel (1975) has shown that
this condition 1s appropriate for up to twenty times the illumination
intensity of the sun. The surface recombination statistics of Chapter 2
1s used to yield a simple boundary condition in low injection conditions

at a surface.

Accurate representation of the solar spectrum under different
meteorological conditions by mathematical functions 1s quite difficult.
In this work, the carrier transport equations are solved with a general
photogeneration rate. One 1is then able to solve the electron diffusion
equation with a new mathematical representation (Hsieh, Hu and Drowley,

1980) of the sun's spectrum and this is done in Chapter 6.

New methods of lifetime measurement in solar cells have been given
recently which utilize the transient decay of photovoltage from the

steady-state (Sharma and Tewary, 1982) and following a short-pulse of

1
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light. Solutions of the electron diffusion equation for these methods

are shown in Chapter 7.

In recent years, there has been much interest in polycrystalline
semiconductors for use i1n low cost solar cells, thin-film resistors
and polycrystalline emitter transistors. A theoretical understanding of
the ways in which polycrystalline semiconductors differ from single
crystal semiconductors 1s desirable. A step towards this better
understanding 1s made in Chapter 3 where a simple model of the barrier
height and recombination rate at a grain boundary is presented. Also,
1n Chapter 8 the effects of surface recombination velocity at a grain
boundary (using the work of Chapter 3) and grain size on the current-

voltage relationship of a polycrystalline solar cell are examined,

i

The conclusions of this study are summarized in Chapter 9 where
a few suggestions for future research are made. These future topics
involve both theoretical and experimental points of interest. Detailed
conclusions and reviews of previous work are presented in the appropriate

chapters.

Although the functions and parameters are defined in the text
as they are introduced, it may be helpful to have a list of the basic
parameters on hand and this 1s done in Table 1.1, Further parameters
are defined from those of Table 1.1 in the text as they are required and
so Table 1.1 should not be regarded as a comprehensive list of the

parameters used here.



Table 1.1 Notation of the Basic Parameters

D Diffusion coefficient of electrons.

D(E) Density of states as a function of energy in the band-gap.

d Width of the base of the solar cell in Figure 5.1.

E Energy.

E Electric field.

EA’ EAS Energy levels of acceptors in the bulk and at a surface
respectively.

EC Conduction band edge energy.

ED’ EDS Energy levels of donors in the bulk and at a surface
respectively.

Ev Valence band'edge energy.

e ~ Modulus of the electronic charge.

Fe Electron quasi-Fermi level.

Fh Hole quasi-Fermi level.

F0 Fermi level of electrons in equilibrium.

£ eE/ZkBT.

f Probability of occupation of a trap level in the energy gap.

fC Fermi-Dirac probability for electrons in the conduction band.

fV Fermi-Dirac probability for electrons in the valence band.

G Electron (band-to-trap) capture coefficient.

e(x) Photo—-generation rate of electrons and holes.

H Hole (band-to-trap) capture coefficient.

h Planck's constant (also h = h/2w) .

J Current density.

Jo Dark current of a solar cell.

JL Light generated current of a solar cell (sometimes
called Jsc or short-circuilt current).

5 Electron wavevector.

1

kB Boltzmann's constant.



Diffusion length in a solar cell (VD1) .

Width of active layer in a quantum well laser diode.
Self-adjoint operator.

Effective mass.

Conduction band effective mass.

Heavy-hole valence band effective mass.

Light—-hole valence band effective mass.

Free electron rest mass.

Concentration of acceptors in the bulk or at a surface
respectively.

Effective density of states 1n the conduction band.

Concentration of donors in the bulk or at surface respectivel

Effective density of states in the valence band.

Flux of 1incident photons in a solar cell.

Concentration of traps.

Electron concentration (with appropriate suffices to
denote equilibrium (0), in excess (e) and when the Fermi
level 1s at a trap level (1)).

Hole concentration (with suffices as above).
Reflectivity of the end mirrors in a laser diode.

Radial coordinate.

Rate of stimulated emission from a laser diode.

Surface recombination velocity (with suffices to indicate
for equilibrium (o), electrons (n), holes (p) and at
a grain boundary (gb)).

Temperature.

Trap single electron and Auger capture coefficients of

"

Figure 2.1.



t Time.

t, Duration of short pulse.

U Recombination rate.

V Voltage across solar cell p-n junction.

Vi Vpr VR Drift (d), diffusion (D) and recombination (R) velocities.
Wy Wy W, Widths of one side of grain boundary space-charge region.
X Spatial coordinate.

y Spatial coordinate.

Z Canonical partition function.

z Spatial coordinate.

Greek Alphabet

o - Absorption coefficient.

I Optical confinement factor in a laser diode.

Y With appropriate suffices, Fermi levels (F) divided by
kBT.

€ Relative dielectric constant of bulk semiconductor.

€ Permittivity of free space.

M With appropriate suffices, Energy levels (E) divided by
kBT.

A Wavelength.

u Effective diffusion length (see Chapter 5).

V Frequency.

0 Resistivity.

pC(E), DV(E) Density of states in the conduction and valence bands.

g Conductivity.

T Lifetime i1n a semiconductor.
U Mobility.

d(x) Electrostatic pote?tial.

¢ Potential barrier height.

i Tlortraniliec wavofiineriAan -



PART A

RECOMBINATION OF ELECTRONS AND HOLES AT SEMICONDUCTOR

SURFACES AND IN QUANTUM WELLS
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CHAPTER 2

RECOMBINATION STATISTICS FOR SURFACE TRAPS

2.1 Intquuctﬂgg

The widely occurring recombination via traps in semlconductor
devices has rendered the Shockley-Read-Hall recombination statistics
of considerable importance. It has been extended in a number of ways

in the thirty or so years that have elapsed since 1t was proposed.

(a) Some effects of Fermi degeneracy have been included (Landsberg, 1957

and Von Roos, 1978). This effect 1s not treated here.

(b) The possibility of more than two charge states, and of excited
states of the traps has been incorporated (Landsberg, 1956; Landsberg,
1960; and Sahfand Shockley, 1958). 1In this work only two charge states
and two excited states were considered theoretically.

(c) The effect of Auger transitions has been studied (Evans and
Landsberg, 1963).

In recent papers, two new effects have been added to this list:

(d) The effect of finite relaxation times of the traps immediately
after capture of an electron or‘hole (Dhariwal, Kothari and Jain, 1981;
Agarwal, Jain and Harsh, 1982). 1t has been suggested that this leads
to an increase of the minority carrier lifetime with injedtion. The
reason is that injection, by saturating the traps, leaves a smaller

number of them available to mediate the electron-hole recombination

traffic.

(e) The effect of extra carriers entering the semiconductor from
neighbouring material or leaving to neighbouring material (Landsberg,
1982a). The result of this effect can also act to either increase or

decrease the recombination rate. This effect 1s of importance in for
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example MIS structures and CuXS—CdS heterojunction interfaces by

adding additional recombination traffic.

Recent reviews of several of the effects have been given by Look

(1981), Landsberg (1982b) and Nimtz (1980).

In this work, a single discussion incorporates the effects (c) to
(e). Effect (b) could readily be incorporated but it would make the
discussion algebraically rather heavy. By dropping effect (a), an
essential simplifiéation 1s galned: one 1s able to use the normal mass
action laws 1n the formulation of the rate equations and this 1s done

in the theory presented in Section 2.

The effect on the recombination rate of variation in the Fermi level
and of variation in the excess carrier density 1is considered. In each
case, we also contrast the case of Nt traps at a single level with

the case when these Nt traps are uniformly distributed over a range

of levels. The latter case tends to produce the bigger changes.

The work 1s presented in the language of surface recombination.
I1f the trap concentration Nt has dimension L ° , where a =2 (or 3),
it can also be regarded as taken per unit area (or per unit volume).
Then the dimension of U , the recombination rate is L T . i1.e. it
1s a recombination rate per unit area (or per unit volume). In this way,
the recombination formula is applicable to surfaces: all one needs 1s
to interpret N as a trap concentration per unit area (instead of
volume). The amendments needed to apply the work to bulk recombination
are indicated throughout. The surface recombination language 1is

advantageous because one can use 1t to treat recombination at grain

boundaries in polycrystalline material and this is done in Chapters 3

and 8.
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2.2 General Theory

A small range of energies (E E, + dE, ) will be considered

1g? “1g g

for the occupied traps in their ground states. This will imply an
appropriate, but different, small range of energy for the empty traps
in their ground state. Similarly, it will imply other small, and
different, ranges of energies for the empty traps 1in their first
excited state and the full traps in their first excited state. It 1s
of course necessary for these three energy ranges to go to zero with
dE , but they need not be specified in any other way at this stage.

18
The following notation will be adopted:

(1) dntg , the number of occupied traps per unit area which lie

in the energy range ( E, + dEIg) and are in the ground state;

Eig’ g

(11) dptg , Lhe number of empty traps per unit area which lie in the
energy range corresponding to (i) and are in their ground state;
(111) dnte , the number of occupied traps per unit area which lie 1n
the energy range corresponding to (i) and are in their first excited
state;

(1v) dp-té , the number of empty traps per unit area which lie in the

energy range corresponding to (i) and are in their first excited state.

It is assumed that the capture df an electron by an empty trap in 1ts
ground state, Og , leaves it 1n 1its first excited state, 1e , and that
the electron, e , comes from the conduction band. There canhthen be

a relaxation of the trap into its ground state, 1g , and thermal
excitation from the ground state 1s also possible. These processes can

be represented by the reactions

e , (2.1)

1k

Og + e

le (2.2)

1
0o
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Similarly, the capture of a hole, h , by a full trap in its ground state
lg leaves it in its first excited state, Oe , and it is assumed that
the hole comes from the valence band. Also, the empty excited trap

can relax into its ground state or be thermally excited into its first

exclited state:

lg + h=a:0e , (2.3)

Oe 2= Og . (2.4)

In this model, i1nter—-trap transfers and the contributions of higher

exclted states are regarded as negligible.

The rate of change in the number of occupied traps in the first

excited state can be written as:

dn_, = Gindp__ - m dnt - |7 dng - — dn : (2.5)

The first bracket takes account of the reaction given in (2.1), G being
the reaction constant for the forward reaction and an for the reverse

reaction. The second bracket describes. the reaction (2.2) where tn

and t; are the mean times for the decay of the excited state into the

ground state and for the reverse thermal excitation process. The quantity
G takes 1nto account the three processes shown in Figure 2.1: (1)

The direct capture by a single-electron process with reaction constant

T . (11) The capture by an Auger process in which a second conduction

]

band electron absorbs the energy released. This has reaction constant,

. 2 :
, So that the reaction proceeds at a rate T,n dpt . Thas

1 1 g

process contributes an additional term T1n to G . (111) The capture

say T

by an Auger process in which a valence band hole takes up the energy and

moves deeper into the valence band. This reaction contributes an

additional term, sz to G, so that:
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G =T, +T,mn+Tp . (2.6)

By similar arguments, and in an analogous notation, the capture rate

into the first excited empty state of the trap 1is

1 1
pzdpte) t—p' dpte 'E-I-')- dptg . (2.7)

dp = H(pdnt

te g

Here the hole capture in the forward reaction (2.3) incorporates

: . S :
a single—electron transition (T2) and two Auger processes (Figure

2.1). The first Auger process adds an extra capture rate T.npdn

3 tg

and the second process adds an additional capture rate quzd“tg

)

thus

S
H=T, + T3n + Tap . (2.8)

[

Hp, 1s the reaction constant for the reverse process in (2.3).

Also tp and t; are the mean lifetimes for the ground state and for

the reverse thermal excitation process.

The rate at which the concentration of occupied ground state

traps 1ncreases 1S

. _ 1 _ b . a
dntg c dnte té dntg H(pdntg pzdpte) . (2.9)

and one also finds the capture rate into the empty ground state of the

traps 1s

. ] _ b a
dptg - tp dpte té dptg G(ndpt

o ~ n2dpte) (2.10)

by taking the appropriate terms from (2.5) and (2.7).

One now imposes the steady state condition by requiring the four
time derivatives to vanish. Any three of the four conditions (2.5,

2.7, 2.9, 2.10) can then be used to deduce the fourth by addition.

1

Therefore, one has only three independent equations for the four
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. dptg’ dntg . The fourth condition presumes

that the number of traps 1is fixed

unknowns, namely dpte’ dnte

d(n. +n +p +p

te ‘o te te) = D(E1g)dE : (2.11)

g

Here, D(Elg) 1s the total number of traps per unit area whose
occupied ground states lie in the energy range (EIg’ E1g + dE1g)'

These equations will now be solved.

Taking three of equations (2.5, 2.7, 2.9, 2.10) and equation

(2.11), writing these 1n matrix form one has

AX = vy ,
where,
1 1 1 |
—_— — !
- an 1/tn l/tn 0 Gn
_ '_ | ,
I/tn 1/tn Hp Hp, 0
0 H ~Hp., -1/t 1/t
P Py D D
dnte D(E]g)aE1g
dnt | 0
X = 5 and y =
dpte 0O
dptg 0
Since,
X = A—1y

one can solve these equations by finding the inverse matrix of A.

The inverse of A 1is given by (Lennox and Chadwick, 1970)

1 1 .
A =-l—|-ad_‘|A,
A

%
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where the adjoint of A 1is the transposed matrix of cofactors of A.

A cofactor Aij of the matrix A 1s the signed minor of the

element aij of A. The minor corresponding to aij 1s the

determinant of the submatrix constructed by leaving out.the 1ith

row and jth column (Lennox and Chadwick, 1970). Thus,

dn (A Ay Ay A, D(E, JdE,
Wea | 1 | P12 Bz A3 Ay 0
P, 1al B3 B3 A3y Ay 0
Py, Mo Bay B By 0

Because the first term of y 1is its only non-zero term, one need only

A A, ,) and the determinant of A,

find the co-factors (A 19 A13, 4

11’

which 1s

Al = Ay F Ay F At Ay,

These co—-factors are

Ay S 1/t;(Hp2/t;) + Gn[(1/t;+Hp)(1/tp+Hp2)" ﬁszp] ,
A12 = (Gn2 + 1/tn)Hp2/t; + (sz/tn+1/tntp)Gn .
Ay = (Gn2+1/tn)(Hp+1/t;)1/t; - l/tntr'ltp + Gan/tn :
and
Ay = (Gn2+1/tn){(Hp2+1/tp)(Hp+1/t;)—HpZHp} - (Hp2+1/tp)1/tnt; :

The determinant of A 1is

-— | |
A | I/tntP[GH{np(tn+tp)+bnp2tp+an2ptn+n2p2tntp(1/tn+1/tp)}

+ H(ap+bp2tp/t;) + G(bn+an2tn/t;)]



Y|

where a = 1+t /t' , and b =1+t /t' . It therefore follows
P P n n

that

dnte AII

D(E
dntg ) (Fig)dE1g AIZ
IAI
dpte A13
dptg AIA

and so using the expression for the determinant and the co-factors,

{GH(npt _tnp,t ot /t')+Hp2t t /tntp+Gnt /t }D(E )dE

= p np n n " 1g  1g
dnte |A|
GH(n t t /t'+np. .t )+Hp. .t /t’ +Gn}D(E )dE
in ={ 2P2 np’ Fp P2 p” P2 T 1g” 1g
tg Al
GH(npt +n.pt t /t')+Hpt /t'+Gn.t t /t t D(E )dE
q ={(pp 2P np’ p’ TP p 2" p } g 1g
P
te |A|
and
o - {GH(n 2tntp/t n,pt’ )+Hp+Gn2t /t }D(E g) Elg
tg |A]

In the steady-state, the bracketed terms of (2.5), (2.7), (2.9) and
(2.10) are all equal to the steady-state recomblnation rate, dU,
of electrons 1in the conduction band or holes i1n the valence band.

The steady-state recombination rate is by (2.9)

dU = — dn - ——dn
t te t tg

that 1s

GH(np—nzpzt t /t tp)D(E )dE1g

dU=

) GH{np(t +t )+bnp2t +an pt +n

o Fan, Pyt t (1/t +1/t' )}+H(ap+bp 7t )+G(bn+an2t /t )

2

(2.12)
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The statistics of charged centres by the grand canonical ensemble
shows the number of electrons in centres with energy state, £, which

have captured r-electrons is given by (Landsberg, 1982b)

M
v, _ = Np(2,r) = Nx"exp(-E(%,1)/k, T) Yy A°z (2.13)
2,r B - S
s=0
where
A = exp(F/kBT)
and the partition function 1s
Z = Z exp(—E(R,r).k T) (2.15)
r B
L
with F the Fermi level, kB’ Boltzmann's constant, T, the temperature
and N 1s the number of centres. 1In the present case (&,r) = (0 or 1).

Hence the difference between the trap quasi-Fermi level and the

equllibrium Fermi level may be expected to be the main parameter for
the left hand side of the following equation and this is why it is

useful. One has

!
-iptg ) GH(nzpztntp/tp+n2ptn)+Hp+Gn2tn/tn 5 163
B _ n + '+Gn’ '
dntg GH(nzpztntp/tp npztp) sztp/tp Gn

From (2.5) using detailed balance in equilibrium

and
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Thus,
th [9Peg
n,= nO-E;- dnt (2.17)
5) o
and likewise from (2.7),
t' dnt ]
. P tg o
Using (2.16), (2.17) and (2.18),
| |
dptg dntg ) GH{I_‘lppztp-l-nzpztntp/tp(p/po)}+Hp2tp/tp(P/po)+Gn0
'—_'_"'__-—_——'-T'—_-__'—-'-—-"-'_“____——__-—-__
dntg dptg GH{npztp+n2p2tntp/tp}+Hp2tp/tp+Gn
© (2.19)

The steady-occupation of the traps in a given range of energy 1is

determined by this relation relative to the equilibrium occupation

[ see also (2.28) below].

The four distinct brackets (2.5, 2.7, 2.9, 2.10) introduce six

11 s 1" | 7 .
re tant n t t ,t of w h only the 1
action constants' ( 23P o n’tp’ iy p) hich only the last two

will be taken as independent, the other four being determined by the

four conditions of detailed balance.

Although the argument has been in terms of the quantities
introduced at the beginning of the section, i.e. per unit area, the

whole treatment stands unchanged for volume recombination. In all

: : 3 -
cases G and H are of dimension L T ! , S0 that Gn, Hp, an

and sz are all of dimension T“1 . Thus equations such as (2.9)

are dimensionally homogeneous provided only the variables dntg’ dptg’

dnte and dpte are all of the same dimensions: all per unit volume

or per unit area. For a surface, D(E1g)dE 1s the density of

g

trappilng states per unit area 1n the energy range (Elg’ E1g+dElg)’ 1n
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which case dU 1s the recombination rate per unit area. However,

for volume recombination in the bulk, D(E1g)dE is the density of

g
states per unit volume and the recombination rate, dU , 1s per unit

volume.

2.3 Analogies with the Shockley—-Read-Hall Statistics

The notation of (Landsberg, 1982b) will be used with appropriate
suffices, Yy for Fermi levels divided by kBT and n for energies
divided by kBT. The four energy levels required for the theory of
Section 2 are r and r+1 electron energies, where r 1s the
minimum number of electrons in the system. To represent these energies
on an energy band diagram, which 1s made up of single electron energies,

we find three independent energy differences which will be taken to be

n,sn,-n_ . 6 =n _ -n_ 06 =n, (2.20)

t g og P oe og n e n1g

This preserves some analogy with the notation of (Dhariwal, Kothari and
Jain, 1981). The energy levels E1g of an r+l-electron centre and

Eog of an r—-electron centre cannot be shown on a single-electron
energy diagram, as 1s usually employed for semiconductor bands. Also
their energy zeros are differeﬁt. However, the difference E

between them, although still referred to a general zero, can be

shown as is done here in Figure 2.1. For donor-like traps it 1is
appropriate to take the energy zero at the edge of the conduction band
and for acceptor-like traps the energy zero is at the edge of the
valence band. These are the analogues of the vacuum level for the
free atom, and the i1onization energies are either E —Et for a donor

C

or Et—EV for an acceptor.
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Two possible arrangements of the r and r+1 electron energy
levels are shown in Figure 2.2(a) for dOIlO?f‘S and (b) acceptors.
Examples of Phosphorous (Martin, 1959) and Boron (Lineberger, 1976)
which occur in silicon are given. These translate into the single
electron enexrgies of Figure 2.2 (c) and (d), where one remembers to
divide the energy levels in a vacuum by the relative dielectric
constant squared (see for example Landsberg, 1969). Thus, for

phosphorous in Si (where ¢ = 11.9),

= = k = E— =
kBT 0.026 eV , kBTcSn 0.010 eV , ‘BTGp 0.007 eV |, - Et 0.074 eV

at normal room temperature of 300 K.

From the first bracket of (2.5) using detailed balance in

equilibrium

Using the statistics of charged centres (Landsberg, 1982b) and

equations (2.13) to (2.15),

I]t—ﬁg 5n
n., = n {e e
2 O
'
It 1is useful to define
n. -y
V. = n e t © (2.21)
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to maintaln the analogy with n, of Shockley-Read-Hall statistics.,

!

Likewise from the first bracket of (2.7),

L8] =p e teP=z=qelP | (2.22)

That V. and m, are mot the same as the familiar n, and P,

may be seen as follows. The general expression for n, in this
statistics, 1f the centre can be in two states of charge 1s obtainable
from the canonical partition functions Z0 and Z1 for empty and

occupied centres respectively [Landsberg, 1982b, e.g. (15.13)].

- Hence, from equation (2.15)

i
O
oQ
O
(0

and by definition, the Shockley-Read parameter n, 1S

n, = (ZO/Z1)ne :

hence, using the above expressions for Z0 and Z1 , 1n equilibrium

so that the new parameter v, (2.21) yields

(2.23)

<
I
-

Th
p, = (Z,/Z )pe )

hence, using the expressions for Z0 and Z1 , in equilibrium



so that the new parameter ™ yields

1+exp (-8 )
" p

"n':"

1 TIEEb(-anf'p1 (2.24)

One sees that the product v, 1, = n,p, = n? , but Vv and n_,, T
11 1t 1 | 1 1
and p, may be i1identified only 1f 6n = Gp , 1n which case both
v, =n., w = p,

In passing, note that the fraction of traps filled can be calculated

from (2.13) and in the steady-state this 1s

M
ZO+AZ1 1+X
where
) n-y
- +
X = A 1zo/z1 = | 9_5- e = & . (2.25)
n

Note here the analogous form of (2.25) to the Fermi-Dirac probability

of occupation of the trap which 1is (l-!-}'{)_1 , wWhere

Tlt"'Y

X = e t

Hence, 1f § =8 or 1if 8 and 5p tend to 1infinity one recovers

P
the Fermi-Dirac form of the occupation probability in equilibrium.

Otherwise, the addition of the trap excited states gives rise to an

additional factor

l+exp(—5p)
1$exP(-6n)
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whichhas an effect not unlike a shift of the trap level to a new

position

In addition, the latter bracketed terms of equations (2.5) and (2.7)

give, using detailed balance together with equations (2.20) and (2.13),

dnt té Gn
e T (2.26)
te n
O
d ] £
[ Prg . _P _ OP
ldpteJ t
o P

Hence, the shifted trap level in equilibrium 1s given by

S
!

4 Et + kBT In(a/b)

Given the energy level system, as for example in Figure 2.2, these

relations determine the excitation times ¢t', t' 1n terms of the

n P
relaxation times t s tp . Thus, from (2.21) and (2.22)
— '
v1 n2 tn/tn
and
— '
n1 p2 tp/tp
Putting these expressions into (2.12),
GH(np-v1w1)D(E1g)dElg

dU =

pt;+bﬂ nt'+v n1(t;+t;)]+H(ap+bﬁ1)+G(bn+av1)}

+t )+
{GH[np(tn tp) av RV,

i

which can be written as
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GH(np-v HI)D(E1 ) dE

dU SRRt W DL T MO | - SSS—— . (2.27)

GH(np-v1n1)¢ +t )+H(ap+bn )(1+Gv1t')+G(bn+av )(Hﬂit;+1)

Also, from (2.19) and (2.13),

dn dp - exp(yo—yt)

GH{n0ﬂ1tp+v1ﬂ1t (p/po)}+H1Tl(-p/p0)+Gn0

[l

'
GH(mrItp-l-v1 ] n)+H1T1+Gn

(2.28)

These relations give the steady-state recombination rate per unit
area and the energy difference of the equilibrium Fermi level and the
steady—-state trap quasi-Fermi level. The fraction of traps filled in
the non-equilibrium steady-state and whose energy of the occupied
ground state lies 1in the energy range E to E, + dE 1s given

g g g
by (1+X)--1 where

Using the results for dnte, dntg’ dpte’ dptg given 1n Section 2,
X can be put 1in the form
. ent_Yo.i GH[(np-v{n1)(tia+v m,t'+y Pt '1+4Gv  +Hp
b ( / nt—Yo ; Y0
GH[ Hp*v1n1)(tn b)e +np tp+v1p t ]+Gne +HpO

for the steady-state. In equilibrium, the braced term equals unity,

as before, since np = v 1, =n



26

For ordinary bulk recombination per unit volume one can make

the replacements

du > U , D(E1g)dE1g > Nt (2.29)

where U 1s a recombination rate per unit volume and Nt 1s a trap
concentration per unit volume. One can regain the structure of the

Shockley-Read-Hall recombination rate from (2.27) (Landsberg 1982a,

equation (11)):

_ o (memnypy)
G(n+nl)+H(p+p1)

(2.30)

LS Ll

where n, =ne » Py = P_e . It 1s necessary 1n addition

to (2.29) that the excited states become far removed from their ground

P

states at the temperature considered while the excitation and

relaxation times go to zero:

S 6

Gn,Gp > o {tn,tp,tne t' tpe tp}-+ 0 .

The Shockley—-Read probability of finding a trap at energy Et occupiled
1

1s then given by (1+4X) = where
Gn,+Hp
X = 1
Gn+Hp1 >
" h
multiplying X by e 1n the denominator yields
n._=y Gn, +Hp
X=e© D |— 1 (2.31)
Te™h
Gn1e +Hp
In equilibrium, (Ye =Yy, = YO) X reduces to the Fermi-Dirac
probability x , 1i.e.
n,_-y
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Thus, in some sense the Fermi-Dirac statistics are a special case
where the Shockley-Read statistics for steady-state are applied to

equilibrium conditions.

2.4 Extension and’SgeaiaZ Cases

(a) The Effect of Extra Carriers

The effect of extra carriers supplied by the neighbouring material
on the recombination rate was proposed by Landsberg (1982a), and
can be easily incorporated in the preceding theory. This technique
may be useful when recombination is modelled at the interface between
two dissimilar materials, e.g. the i1nterface between i1nsulator and
semiconductor 1n an MIS structure or at the interface between CuxS
and CdS layers in a heterojunction solar cell. In both cases, the
tunneyling of electrons and holes to the interface through potential
barriers is important. The first brackets in (2.5), (2.7), (2.9)
and (2.10) are all affected by the extra capture rates and emission
rates. Attention will be confined to the first brackets in (2.5)

and (2.7). These terms become

G[(n+an/G)dptg-(n2+8n/G)dnte]

and

H[(p+ap/H)dntg-(p2+8p/H)dPte]

Here increased capture and emission rates of electrons by the traps

has been denoted by andpt and Bndnt respectively. The 1ncreased

2 e

capture rate of holes has been denoted by apdntg and the emission

rate by depte' Thus, by applying detailed balance to the square
bracketed terms one sees that the analysis goes through with the

replacements

(n,p,n,,p,) (n+an/G,P+ap/H,n2+8n/G,P2+Bp/H)

‘
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and the contents of the latter set are defined to be

(n*, p*, n%, p% (2.32)

Also,

(vI, ﬂ1) +-(v1+8ntn/th, n1+8ptp/Ht;) = (v?, ﬂ?) : (2.33)

Note that the replacement of n and p by n* and p* 1s not
needed in the expressions (2.6) and (2.8) for G and H , and that,
with this proviso one just finds again (2.12) for the recombination
rate and (2.19) for the steady-state occupation of the traps with

n, p, 0,, P, asterisked. From there one goes to (2.27) and (2.28)

. po, vl and T asterisked. For the sake of

with n, p, n 1

O

completeness, the resulting equations are

.

kDK =y
GH(n*p vi“T)d(Elg)dElg

EApnE-—udmTX % %* %¢ ! X * %!
GH(n*p v1ﬁ1)(tn+tp)+H(ap +bn1)(1+Gv1tn)+G(bn+av1)(1+Hn1tp)

dU‘.": —

and

d d " kit +uiknie ! (p¥k /pk %(p*/p* *
Pro npg_ GH{n0ﬂ1tp v1ﬂ1tn(p /po)}+Hn1(p /p0)+Gn0

dn dp
Aokt ' +ukpht! k+C%
tg tg | GH{n n1tp v1ﬂ1tn}+Hﬁ1+G n

Thus, the equilibrium Fermi level and the trap quasi-Fermi level are

also affected by the extra carriers. Turning to equation (2.25),

in the presence of extra carriers the fraction of traps filled is

(l+}-:)_"I where
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(b) Discussion of the Recombination Rate

The interpretation of the recombination rate equation (2.27) 1is

simplified if one considers equal numbers of excess electron and holes.

Nt traps per unit area will be assumed with energy levels

(Eog’ Eig’ Eoe’ EIe) . Then

2
- n. = +p +
np — n (n P, ne)n

1 o e

One can define the surface recombination in an analogous way to the

lifetime in bulk recombination,

1.2
s U
Hence, using (2.27)
+p +
. GH(n0 P, ne)Nt
B +p + t +t )+ +an + ") + +bn + + '
GH(n0 P, ne)ne(tn tp) H(ap0 an | bﬂl)(1+Gv1tn) G(bn0 bne av])(l Hnltp)
Rearranging this equation,
+ +bw , + ' + '
- (tn tp) ap _ bﬂ1 an | vltn bno-i-bne av, 1 v]tn
s N e+ n +p +n GN * N ¥ n +p_+h 1 |BN T N
t O 0 e t t O 0 e t t
(2.34)
and 1t 1s possible to define
vt | L vt
LE"';T‘*;:H , —F e+ b (2.35, 2.36)
>n t t °p £ t

Thus, s 1is the surface recombination velocity in a strongly p-type
n

material and sp is the recombination velocity 1n a strongly n—type

material, where in both cases, the number of excess carriers n,

or the time delays . and tp are sufficiently small as to allow

the neglect of the first term of (2.34). For thermal equilibrium,

ne.-:(),-
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1 _ "o 1} 1 o 1| 1
. + = (2.37)

Note that S is a superposition of two extreme recombination

velocities for heavy n—-type and heavy p-type doping. By noting

P, = ni/no , and using the forms of G and H given by (2.6) and

(2.8),

'
_L_=______ j o vItn;
Sn N [TS+T n +7T n2/n +(T,+T.)n ] Nt ,

t-1 1o 21 0 1 27 e

| 1 ﬂ1t'
—— B ever— __.__________.______——-}-—DI_B
>p Nt[T +Ton +T, 0 /n +(T,+T,)n_] t

One can differentiate these expressions for S and Sp with respect

to the equilibrium Fermi level (YO) through n_ . Note that the

definitions of v, and L (2.21) and (2.22) show that v, and T

are independent of Y, - Hence, they will be regarded as independent
of n_ in the differentiation, although at first sight this appears

not to be the case.

/n

O N

] —
n 1 n LY

S 2
0 [T1+T]n0+T2ni/n0+(T1+T2)ne] t [T +T1n +T2n

He DO BN

and for an extremum,

2
/n0+(T1+T2)ne]
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Differentiating again,

B 2
dzs. v, t' 2 2T . .n /n3
,.n:N 1 + 1 n - 2 1 !
2 D —————| .
dn_ [T T n +T,n, /n +(T +T )n ] t [T ,+T.n +T,n 1/n + T +T )né l
| -2
| -
_2N 1 ) v, t! | (T Tznl/n )
2 N S 3
[T +T1n +T2n /n0+(T1+T2)ne] t [T1+T1no+T2ni/n0+(T1+T2)ne]
=3 2
v, t T. ~-T.n. /n
+IN ] + 1 n 1 2 1
t 2, 2 N S 2
[T1+T1n +T2n1/n0+(T1+T2)ne] t [T1+T1no+T2ni/no+(T1+T2)ne]

At the extremum,

i
-

T, - T n?/n2
10

and so -

indicating that this is a minimum of s - One can find a minimum

also for sp , by symmetry of the two expressions for S and sp 5

this occurs when

T3 ~ T4n1/n =

Thus, the minimum values for s and s are

n P
Nt
(s ) e T ——— : (2.38)
min [T +(T,+T . )n +2YT.T. n ] +v_t’
1 1 27 e 172 o 1 n
(s.) = (2.39)

P° . S -1
+ Y '
min [T2 (T3+T4)ne+2 T3T4 no] +1r1tp
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The surface recombination velocities sn and sp can be shown to be

mainly constant across the band gap and almost equal to their mimimum
values, unless the electron or hole concentration is very large.

When the equilibrium Fermi level is near one of the bands, or for a

very large number of excess electrons and holes (about 1017 cm_3 1n

Si), the velocities s and S rise steeply.

For very large excess carrier concentration, n_ , the surface

e

recombination velocity given by (2.34) tends to the approximate form

Using the approximate forms of s_ (2.35) and S (2.36) at large

excess carrrer concentrations

l. emn »p = a N b

S
+ + + +
t N [T.+T n +T ne] Nt[T2 T3ne Tane]

and the first term dominates the expression for large enough n

This leads to the maximum steady—state recombination rate,

(n s) =l ' (2.40)

max € " max t +tC

(U)

This reflects the 1nability of the traps to act infinitely rapidly in
recombination because of the finite time required for the trap to

relax to the appropriate ground state once an electron or hole 1is

captured.

As noted at the end of Section 2.2, the discussion goes through
substantially unchanged for bulk (rather than surface) recombination
However, because of the different dimensions of the recombination rate

in the bulk, ne/U is a time (rather than a reciprocal of velocity).



Thus 1/s 1is then to be replaced by a recombination lifetime =

2.5 A Simple Trap Spectrum

The position on the energy scale of the level E1g determines

the positions of the other three levels (E
| og oe fe

physics of the centre as explained in Section 2.2. In order to
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, E , E, ) through the

‘integrate over the trap spectrum, E will be varied but 1t will be

g

assumed that Gn and 6p of (2.20) remain constant during this

variation. This 1s unlikely to be correct, but for a small range of

integration it may be an acceptable approximation. Also, the density

of surface states has to be specified. The simplest approach 1is to

put, using (2.20),

dE
D(EIg) dEt dE D1(Et)dEt

and

DAE , EE <E <E |,

s t L t u
D,(E)dE_ = (2.41)

0O , otherwise
This assumption eliminates the need to know precisely how Eog varies
as E is changed, since D, 1s stipulated and it depends on the

lg [

difference between them. Equation (2.27) can now be integrated to

yield the total recombination rate per unit area, U ,

- GH(np- v1ﬂl)D dE_

u
JE GH(np—v1n )(t +t )+H(ap+bﬂ ) (1+Gv
9.

U =

1t )+G(bn+av )(1+Hnt )

Writing n, = Et/kBT and denoting

A = GH(np_vlﬂl)DskBT .



B = GH{(tn+tp)np+v ﬁ1(té+t;)} + Hap + Gbn ,

]

C = {GHapt'+GalN e ¢ ,
n c

nV
D = {GHbnt'+Hb}N e :
P VvV
then,
n Adn
t
vs [ ) N -1
n, B+C e = +De
e
Multiplying both the numerator and denominator by e and completing

the square,

nt
nu Ae dnt
N

C(e C4B/2C)°+D-B%/4C

U =

Ny

Splitting the integral up by partial fractions,

r]t
n_  Ae dn
U — u —_._-—-_-E_. S ._.l._..__..__._ —_— - 1
N /2, 2 _, ;
i) BZ-ACD e t+B/ZC— B2/402—D/C e t+B/20+ BZ/ACZ—D/C
Performing the two integrals,
n
u
[ e 3 (B-"B2-4CD
A Ce -
U = — - |1n o
S A
B2-4CD Ce t+ 1 (B+ B2-4CD)
i)
Hence,
k. TD (np-v, m,) [Y +1 (X-V) ]{Y +3 (X+Y) ]
B s 11 e e
vg=———————1n — , (2.42)
v nu_Yo- ; nR_Yo
(Y, " WY, C O+ (X))

where
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BGIAT

<
I!

W= pob(nt;+1/G) .

<
i

1
noa(ptn+1/H) ;
and

(t'+t’)

X = np(tn+tp) + bn/H + ap/G+v1ﬁ1 oty

As in Section (2.4b), the interpretation of this result is

simplified by assuming equal numbers of excess holes and electrons:

n = n-—n = - .
e O P pO

The steady-state surface recombination in this case 1is

- p n HY nz’—Yo - :
kBTkno"'po'*'ﬂe)DS fy'e & 943 (x'-v') }Y'e +3(X'+V") ]
. - o — 1 (2.43)
A n -y . LR Loy
[Y'e U O+p(xt4vh) 1¥'e ¥ C+i(x'-v")]
where
W' =

pob{(n0+ne)t; + 1/G} ,

Y _ P
X ne(n0+p0+ne)(tn+tp)+b(n0+ne)/H+a(po+ne)/G+v1ﬂ1(tn+tp+tn+tp) ,

't '
Y noa{(p0+ne)tn + 1/1} ,

S —————
v'o= Tkt
and
s
= +
G T1 T1n0 + szo + (T +T2)ne .

In a similar way to (2.37), one can write in thermal equlilibrium

N =Y n,=yYy
kBTD (n +p ) 2Y e u 0+X -V 2Y e . 0+X +V
c = S 0 '0 1 o) O O O O o
o ————ﬁg——————- n T oy ey (2.44)
u 'o £ "o
2Y +X + -
Oe XO VO ZYOe +X0 VD
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where V , W , X , Y are the equilibrium values of V, W, X and
Y. Expanding the bracketed term and dividing both the numerator and

denominator by Y ,

o
n +n, =2y =Y n n
u £ o 1 0 u ' L
+ + — —~
o kBTDS(n0 po) . Yoe 5 e {(X0+V0)e +(XO Vo)e }+W0
0 v n_+, -2y =Y n
2
© 1Y e - Oy 1-e 0{(X -V Je 1L1+(X +V e £}+W
O 2 O O 0
Now,
2 2 2 2 2 2 2
V — - — | '
5 = X AWOYO (bno/Ho) + (apO/GG) + nopa(tn+tp+tn+tp) + ZaanpO/GH +
2 ! | 2 t I
(zanopo)(tn+tp+tn+tp) + (2bnopo/H)(tn+tp+tn+tp)
- 4abn2p2t't' - 4abn2p t'/H - 4qgbn pzt'/G -4abn p /C H
ofonp ocfop o© occon o 000 0 O
Thus,
= —_ LA™ I
v, bnO/HD apO/G0 + nopo(tn+tn tp tp) ,
or alternatively
— ' _ r
V. bno(potn+1/H0) apo(notp+1/CO)
One finds )
— = 5 W
X -V 2(ap0/G+anopOtP) ZWOa/b .
— ! —
X +V_ Z(bnO/H+bnopotn) 2Yob/a :
Hence,
nu+n£—2Yo nu_YO nR_Yo
k_ TD (n +p ) Y e +Y e b/a+W e a/b+W
B s o0 "o O e, O 0
SO = -——-———-———V In n_+n "'2Y n.—y n -y ’
© Y e o . 4y e . 0b/a+w e 0a/b+w
0 0 0 0
and so
n,~Y n =Y
2 0 u ‘o
o kBTDs(no+po)1n (e +b/a) (a/b W +Y e )
o b/aY(;a?bWD n,”Y, Np~Y,
(e +b/a) (a/b WD+Y0e )

Finally, from the definitions of wo and Y0 , the equilibrium

recombination velocity 1s
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B n,~Y
¢ = GoHo(anpo)kBTDs(nu nR) In ae . D+b
O ' 3 L1 I
G R b(1+H0p0tn) —-H oPo a(1 Gonotp) - u 0.1,

YN
[(1+H pt!) Gn +H p_(1+G n t e 0 U
O OPp

Y 'ﬂg
(1+H Pt )Gn +H_p (1+G0n0tp)e

For large excess carrier concentrations, (2.43) tends to the following

expression,
n _+n,—2Y ~Y n n
kD (v e Lo, -;- e O{(x™vMe ¥ (x"-vMe *} + W
Y" o u + E o {(X""‘V")e + (Xll_i_v‘ll)e }+ wo
where
- Xll o= V” = nz(t +t )
e n p
W'=pbn t' , Y'=nant
O € P O e n

and using the binomial expansion of V',

X” — V" = X"(l_(1_2"J"Y"/X'12+_._)) :
) AR | AL = ZW"Y”/X” )
One finds
Vo2
2n p (bt'at')n
XII — vli __:: O g n p e << Xll + V" .
(t +t )
e n p

hence for large excess carrier densitiles

k TD_ [kX"+V")e -
§ V——o—">o lp|—
n (t +t ) n,-Y
e n ')
(X”"I'V”) o

and therefore U has an upper limit given by



kBTDS(nu—ng)
(U) = (n_s) N ——
max e “max (tn+t )

P

Note that kBTDs(nu_ni) 15 the total number of traps in the distribution,

and the above result is very similar to (2.40) for a single trap level.

2.6 Discusston of the Figures

Some results using the data of Tables 2.1, 2.2 and 2.3 are
presenéed in Figures 2.3, 2.4 and for Si and 2.6 and 2.7 for CdS
The curves are terminated at Fermi levels which lie 3kgT from the
band edges because the effects of degeneracy have not been included

in this work.

The features of curve (a) of Figures 2.3 and 2.6 can be broadly

W

classified i1nto four ranges of the Fermi level, FD , using the

intrinsic Fermi level, Fi , as follows:

' +
(1) Ev BkBT < F0 < Et

In thilis case P >> H1 >> oo vI by (2_21) and (2.22) because the

Fermi level Fo 1s well below the trap level situated at mid-gap.

From (2.37), s, v sn/a , since p_ is large. The recombination rate

1s limited by the rate at which electrons can be captured from the
conduction band, since these are the minority carriers. Electron

capture provides the surface recombination velocity sn/a . The

traps are largely unoccupied and any which become filled are rapidly
emptied because of the large hole density in the valence band. The

velocities s_ and S, given by (2.35) and (2.36) together with

(2.6) and (2.8) rise in virtue of Auger effects as the valence band

edge Ev 1s approached. s and sp remain fairly constant in the

intermediate region. Thus, S_ 1s largely determined by the Auger

process T, (Fig. 2.3) near the valence band.

2
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(11) Et < F0 < Fi .

In this case

me >> p_>> 0,V and s v posn/n1b from (2.37).. (2.45)

By (2.25) with (2.22), a fraction

~1
1+exp(-5p) P

0
1+exp(-6n) ﬂ1)

1 +

of the traps are filled, which decreases with falling P, - Also,
the recombination velocity falls further with the increase of F o,

as fewer traps are available to capture electrons. One finds a

minimum surface recombination velocity , S, when the Fermi level,

|9

FO , 1s near the intrinsic Fermi level, Fi , associated with the change
of minority carriers from electrons to holes. By (2.45), the minimum
velocity will depend on the trap level, Et , through ™, Thus,

a lower trap level leads to a smaller minimum value of S,

(111) Fi ~ Et < FO ~ Et < Z(Fi_Et)

In this case

™ >> n_ >> P sV, and S " Snno/ﬁlb . (2.46)

Because the traps are largely full, hole capture has an appreciable
contribution to the recombination velocity (sp/b). However, there
are insufficient electrons to recombine with every tfapped hole

and electron capture provides the larger contribution to the overall

recombination velocity given by (2.46).

(1v) 2Fi -~ Et < FO < Ec - BRBT .

Here,



e

n 2> T

5 { 2% PV and s " sp/b . (2.47)

] 0

This region is the converse of region (i), with the roles of electrons
and holes interchanged. The Auger process T3 (Fig.1) gives the

larger term 1in H (and hence s, (2.36)) as the Fermi level

approaches the conduction band.

The description of curve (b) follows similar lines. 1In the

order of increasing Fermi level, the four regions are

(1) Ev + 3kBT < Fo < Ei .

(ii) E, <F <F,,
(iii) F. <F_<E_ ,

(iv) E <F,<E_ - BkBT

SO that: n_ << P, in regions (1) and (i1) and n_ >> P in regions
(ii1) and (iv). The surface recombination velocity is effectively

a superposition of recombination velocities, S, derived from
curve (a) for different trap levels. The lower trap levels produce
a greater reduction in the minimum recombination velocity through
the central regions (i1) and (i11) as explained by (2.45) for curve
(a) and as displayed in Figure 2.4, For trap levels in the upper
half of the gap, the argument is simply a mirror of the description
for a trap level in the lower half of the energy gap. Figure 2.4
shows that the smaller lying trap levels lead to a lower minimum
value of 5. This 1s because ™ 1s larger for lower trap levels
and thus Snpo/ﬂlb is smaller. Also, for Fermi levels higher in
the gap, the term snno/ﬂ1b 1s then smaller. The contribution (smaller)

of the majority carriers to the recombination velocity is shown

dotted 1n each case.
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A description of similar processes in bulk (volume) recombination

was given by Blakemore (1962), where a recombination lifetime was

considered and Auger effects were not examined.

Curve (c) of Figure 2.3 can be explained in the same way as
curve (a). However, the recombination velocities, s_ and sp are

constants throughout the band gap 1f Auger transitions are neglected

and curve (c¢) is otherwise identical to curve (a).

The curves of Figure 2.6 for cadmium sulphide tend to fall to a
smaller minimum recombination velocity in the middle of the band-gap
because of the wide energy gap in CdS. This leads to a much wider

variation in n_ and P, and hence in s, through (2.37).

Turning to Figures 2.5 and 2.7, curve (a) in each figure shows a
increase of s with excess carrier density as a result of increased
Auger transitions. The recombilnation velocity drops again for larger
values of n, . The reason 1s that large values of n, tends to
saturate the traps thus reducing the number of traps which are
available for recombination traffic. If one has a distribution of
traps, about the siﬁgle level envisaged in curve (a), the spread of
traps makes saturation more difficult to achieve. Hence the maximum
of s 1in the resulting curve (b) of Figure 2.5 lies higher and also

occurs at a higher excess carrier concentration. One would expect

an increase in s 1f the traps relax more easily to their ground

states (smaller t and ¢t ) as this makes it again more difficult to

0 P
saturate them. The algebraic form of the upper limit of (2.40) of

the recombination velocity confirms this expectation. A lower Auger
effect reduces the maximum 1n s , and it 1s removed altogether 1if

the effect 1s negligible [curves (c) and (d)].
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In Figure 2.7, curve (b) is shown the effect .of reducing the
relaxation time of the traps, the rise of s owing to Auger effects
dominates. The smaller value of t_  makes it more difficult to

P

saturate the traps and so the recombination continues to rise.

Suppose the extra carriers of Section 4(a) qualify to represent
part of the excess concentration ﬁne of electrons and holes
considered in Section 4(b). Figure 2.5 then shows that their effect
is to increase s 1if n_ + dn_ lies below the maximum of s .

e e

Thelir effect could be to decrease s 1f n, + 6ne lies above this

max1imum.

2.7 Conclusions

It has been shown that the Shockley-Read Hall statistics can
be generalised to include Auger effects, trap relaxation, extra
carriers and a simple trap spectrum. The surface recombination velocity
s tended to dip to a minimum value for near intrinsic material,
due to a combination of the occupation of the traps and the lack of
electrons to recombine with every trapped hole. Near the band

edges s rose owing to Auger effects. A simple trap distribution

increased these tendenciles.

As a function of excess carrier concentration, it i1s found that
s passes through a maximum which occurs as a result of an increase
of s due to Auger effects and a decrease due to a saturation of
the traps. A trap distribution again makes this maximum more
pronounced. Earlier work of Dhariwal, Kothari and Jain (1981) and
Landsberg (1982a) 1is thus confirmed and extended. Note that if
time delays and Auger effects are ilmportant, then experimental curves

corresponding to Figure 2.5 should enable one to infer wvaluable

“



information concerning the magnitude of these effects,

The present work has used an energy level model which 1s
basically that due to Dhariwal, Kothari and Jain (1981) and more
complicated than in the Schockley-Read model. The parameters n,
and P, of Shockley-Read statistics, which one 1s tempted to use

here are therefore not quite appropriate. The relation has been

clarified by the use of new parameters v, and ™ [see eg. (2.21)

and (2.22).]
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TABLE 2.1

DATA USED IN THE GRAPHS FOR SILICON

I - L T T " L I"-'"""""

Parameter  Numerical Dimensions References and Notes
Value
EG 1.1 eV Sreedhar et al., 1969
kB 8.b625=*<10--5 EVK—I Boltzmann's constant
T 300 K Temperature
19 -3 :
Nc 2.9x10 cm Landsberg and Klimpke, 1980
NV 1.1X1019 cm_3 Landsberg and Klimpke, 1980
S -8 3 -1 :
T 1.12x10 cm S From capture cross-section X

thermal velocities (Barrett and
and Vapaille, 1976)

Tg 1.12XI0_8 cm35_1
T 3.66X10-25 cm65_1

]

-25 6 —1

T2 3.66%x10 cm S Evans and Landsberg , 1963
T3 3.66XI0_25 c:.rn6sm1 and Robbins and Landsberg, 1980
T, 3.66x10 em®s ™!

tn 1..0->-:10—10 S Dhariwal, Kothari and Jain,
t {.0x10" 19 s 1981.

P .
0 8.0

n
S 8.0

P

N T em ©

DS ZXI013 cm_zeV_1 Lane, 1968

E -E 0.8 eV

u v

E£—EV 0.3 eV

i —— o e o Y ¥ = = S S — - o' " SRR S W R ———

When Nt traps at a single energy level are used, it 1s assumed
that they are at mid-gap. When a trap spectrum 1s used i1t has constant
density DS per unit area per unit energy and extends symmetrically by

‘

0.25eV about the mid-gap position.



TABLE 2.2

NUMBERS DERIVED FROM TABLE 2.t

Parameters

Numerical

Value

3x10"/

3x10~7

8.1x109

3.1x109

2.4XI013

9.2%1012

3.58x10°

Dimensions



Parameter

Numerical
Value

2.42

1.76x101°

1.17x10 "7

1.66x10 "

{.66x10 !

2.87x10 20

1.24x10"20

2.87x10 40

1.24x10 20

1.0x10" 12

1.ox 10/
30.4

13.0

1013_

0.34

6

cm S

~ 1

Cnl s

2.3

TABLE

Dimensions

Ciil

eV

DATA USED FOR FIGURES 2.6 AND 2.7 (FOR CdS)

References and Notes

L6

ALL OTHER DATA AS TABLES 2.1 AND 2.2

Robbins and Landsberg, 1980
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(a) Donors, r-electron (b) Acceptors, r-electron

energies energies
E . E
-— E—
1.06evE06 _ ey e
| (k; ———= -T____JE I E%EJ
10-523eV 3 5.33ev V¢ ozeiv
o
| ferwey |01 o
g 0g
r+1 electrons r electrons | r+1 electrons r electrons
I I1 I
P -neutral P -positive B -negative B -neutral

[c)Donor single electron (d) Acceptor single electron

energies energies
- & Ee
- ¥ ..
By X TSp e
— T
S Es . - :
V Ey

FPiqure 2.2 Trap r—electron energy levels and single-electron energy

representations of these r-—electron energy levels.
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Figure 2.3 Thermal equilibrium surface recombination velocity as a

function of Fermi level for the data of Table 2.1. (a) N_ traps at mld-

gap, using (4.6). (b) Nt traps uniformly distributed about mid-gap,

using (5.4). (c) As (a) without Auger effects.
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Figure 2.6/)Thermal equllibrium surface recombination velocity as a

\\\\HiUnction of Fermi level for the data of Table 2.3 for Cds. (a)‘Nt

raps per unit area at Et—Ev=O.3h eV, using (4.6). (b) As (a)
without Auger effects.
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CHAPTER &

EFFECTS OF SURFACE STATES AND OF EXCITATION

ON BARRIER HEIGHTS AT A GRAIN BOUNDARY

3.1 Introduction

The recent wide interest in the electrical properties of grain
boundaries 1is largely due to the considerable potential of polycrystalline
devices. Examples are polysilicon emitter transistors, thin-film
resistors and solar cells. Because of these applications the main
interest 1s in transport properties across grain boundaries. These

are stfongly affected by the barrier height, ¢_ ,due to charged

B
interface states and compensating space—charge regions on either side.
Such a comparatively crude model of a grain boundary dates back to

1952 (Taylor et al., 1952), has proved relatively successful, and 1is in
fact similar to Schottky—-type barriers which form for the same reason
between semiconductors or between a metal and a semiconductor. The

‘very crudeness of the model is responsible for the possibility of its

wider use.

This model is adopted also in the present work, which 1s rigorously

confined to a theoretical study of how the barrier height is affected

by the obvious parameters: Doping density, Fermi-level separation and

the number of surface states and their position in the energy gap.
/////#This leads to a straight—forward problem in electrostatics whose only

complication is due to the non-linearity of the Polsson equation: The

electrostatic potential ¢  1s determined by the carrier concentrations

n and p whose values depend themselves on ¢ . This has led to

the use or the depletion approximation in which only the fixed space-charge
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*) of donors and acceptors is used in the Poilsson equation.
The present work jettisons this approximation but does not solve the
problem in all generality since an assumption of parallel quasi-Fermi
levels is made. The approach used here dates from 1955 (Kingston and
Neustadter, 1955) where 1t was used to model Schottky barrier heights
at a surface in equilibrium and later for parallel flat quasi-Fermi
levels (Garrett and Brittain, 1955). This model (see Section 3.3),
which was first proposed as a solution to the grain boundary problem
by Fossum and Lindholm (1980a) and Fossum and Sundaresan (1982).1is
treated here exactly and analytically (Section 3.4). It thus removes
the need for computer solutions and the need to assume the surface level
to be at mid-gap. Our approach leads to simple interpretations of

the behaviour.of ¢B (Section 3.5) and enables one to obtain approximate

analytical expressions for some cases (Section 3.6).

Although excellent summaries of work up to 1979/80 are given by
Kazmerski (1980) and by Orton and Powell (1980), it may be helpful to
review briefly work relevant to the present study. The popularity of
the depletion approximation 1s illustrated for example by transport
studies in polycrystalline silicon (Baccarani et al., 1978a, 1978b;
Seager and Castner, 1978, Seto, 1975). Both single surface levels and
a distribution of surface levels were considered. Because of the neglect
of p-n 1in Poisson's equation the variation of the quasi-Fermi levels
with distance plays little part in such models. Strictly, one neglects
p and n separately, but this was relaxed to the neglect of p - n
by Seager (1981) where barrier heights and currents were obtained both
experimentally and theoretically in the presence of 1llumination.
Experimental and theoretical studies on 1lluminated grain boundaries

were also carried out partly to elucidate the behaviour of polysilicon

b
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solar cells (Card and Yang, 1977, Panayotatos and Card, 1980). 1In the

work by Panayofatos and Card, {1980) the depletion approximation was
used and it was inferred that the minority quasi-Fermi level is not
flat. Indeed the behaviour of the quasi-Fermi levels 1in Schottky barrier
solar cells had been studied earlier (Klimpke and Landsberg, 1979 and
1981) and the existence of extrema in both majority and minority
quasi-Fermi levels had been emphasized (Pimpale and Landsberg, 1982).
The experimental determination of the spectrum of surface surface
states in the energy gap at grain boundaries has also been very active
(Cheng and Shyu, 1981, Shyu and Cheng, 1982, Srivastava et al., 1982,
de Graaf et al., 1982). All of this work has been carried out in
polysilicon, with the exception of the work of Taylor et al. (1952),
which dealt fith Germanium. In Gallium Arsenide, two surface states
were found (Spencer et al., 1983) and measurement of the mobility and
conductivity in Cadmium Sulphide evaporated thin films has been

reported (Wu and Bube, 1974, Ma and Bube, 1977).

Continuing this work, parallel quasi-Fermi levels are considered
here since this must be a reasonable approximation 1f bulk and surface
recombination occur at comparable rates. At first, a single level of
surface states 1s taken as one 1s interested in how the properties of
barrriers depend on the energy level of the states. The effect of a
distribution of states can 1n principle be synthesized from this information
and this 1s examined in later sections. The barrier heights, ¢B’

calculated with this model are utilised in a simple calculation of the

mobility and diffusion length in a grain.

™~
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3.2 Main Assumptions

The assumptions required to analyze the grain boundary recombination
and the dependence of the barrier height on surface state density,

doping and recombination are as follows:

Al The grain boundary is a flat surface with separated identical grains.
This makes a one-dimensional treatment appropriate. A p—-type grain

will be assumed so that the energy bands bend according to Figure 3.1.

A2 The system 1is non-degenerate and both surface and bulk recombination

occur via a generalized form of the Schockley—-Read-Hall mechanism.

A4  The bulk trap density makes a negligible contribution to the space

charge.

This model leads to analytical, though transcendental, results for the
barrier height, surface recombination rate and surface recombination

velocity.

It was convenient for our numerical work to add the following

assumptions:

B1 The acceptors in the space—-charge region are assumed fully ionized.
This would automatically be the case for a non-degenerate sample with

shallow acceptor levels.

B2 The surface states of the grain boundary are assumed to be NDS

donors at a single energy level EDS'
B3 The same values of the capture coefficients G and H which occur
in the Shockley-Read~Hall statistics are used throughout (see the last

two entries in Table 3.1). 1.e. G and H are independent of the

position of the energy level of the state EDS'
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There 1s a third group of assumptions which is often made, but

1s not required here:

Ci Surface recombination dominates the bulk recombination in the

space~charge region so that the latter 1s neglected.

C2 The depletion approximation 1s not needed to solve Poisson's
equation here. However, 1t will be introduced at various points in
the curve descriptions (Section 3.5) to illustrate the underlying

physics of some results.

The departure from equilibrium in the theory 1is imposed by taking
various specific separations between the Fermi levels as given. This
separation can be established by injection or by optical excitation
which has to overcome recombination i1in the bulk of the grain. 1In this
way of 100kfhg at the problem it is therefore not necessary to introduce

bulk recombination explicitly.

3.3 Formulation of the Model.
To obtain the barrier height, e¢, , (Figure 3.1) an integration
of Poisson's equation is required, where Poisson's equation takes

the form

2

g—%—=-;§—~(p—n-N;) , [4€0) = ¢
dx O

, 9(w) = 0] . (3.1)

Here S.I. units, assumptions Al and A4 are used, N;(x) 1s the
concentration of charged acceptors, n and p are the electron and

hole concentrations and e¢ 1s the permittivity of the semiconductor.

O
\L

Also, using A2,

N

N (x) 2 N (expln, (0)-y, 1+137" = N (expln, ()= (ed () /i, T) ~y, 141} 7",

~
(3.2)
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n(x) = N, exp[Ye—nc(x)] = n{w) uw(x) , (3.3)
p(x) = N_expln (x)-v. 1 = p(w)/u(x) . (3.4)
A standard notation has been used with Y, = Fe/kBT Yy = Fh/kBT and

‘i

u(x) = expled(x)/k,T] (3.5)

Note, in writing (3.2) it has been assumed that the occupation of the
acceptors may be obtained using Fermi-Dirac statistics and that the
effect of the minority Fermi level on the acceptor level occupation can

be neglected.

By introducing the readily obtained quantities n(w) and p(w)
the two variables n(x) and p(x) have been replaced by a single
variable u(X) whose value at x =0 will yield the barrier height,
e¢B+:later. Two boundary conditions are needed to integrate Poisson's

equation. At the edge of the space-charge region, x = w 1in Figure 3.1,

ey -9 . (3.6)
dx|x=w |

At the grain boundary surface, x = 0 , Gauss's theorem is used;
taking a small "pill box" of unit area which crosses the grain boundary

surface as in Figure 3.2,

dS
€€

Sy
|t
e

!
PR
0
-

Taking the limit as, £ , the length of the pill box tends to zero,

F .
the charges| q. contained within it are equal to the charge density

\ 1
of the surface states, QS , per unit area. Also, the field, E, emerges
. L

from the end of the pill box, so that one may write,
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_p 49 = 2 (3.7)

dx <=0 eeo

where the charge per unit area on the surface 1s an integral over the

energy levels, ES , of surface states in the energy gap,

E
CcS
Qs = I E{NDS(ES)(1—f(ES,e¢B)]*NAS(ES)f(ES,eéB)}dES . (3.8)

E
vS
Here, Noo and NAS are the numbers per unit area (of the grain boundary

surface) per unit energy range of donor and acceptor traps; £(E ,e¢B)

1s the occupation probability of a surface energy level ES in the

presence of a barrier height e¢B :

The Shockley—-Read—-Hall probability f(ES,e¢B) 1s displayed as
a generalisation of the Fermi-Dirac distribution utilizing assumptions

A2 and A3. %YUsing standard notation, this probability is given by

(see Chapter 2 equation 2.31)),

G(o)n(w)yu (0)+H(0)p1 (ES)

f(ES,e¢B) = — — — . (3.9)
G(o) [n(w)ulo)+n (E.) ]+H(0) [p(w) /ulo)+p, (E) ]

Here (0) 1indicates evaluation of a parameter at the grain boundary
surface x =0 , and (3.3) and (3.4) have been used. Dividing the right

hand side of (3.9) throughout byithe numerator, one can write f 1in

the form
-1
f = (1+X)
where
| G(O)n1(ES)+H(0)p(w)/u(0)
\ - G@nulo)+Hi(o)p (Ey)
Using
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n(w)p(w)exp(y, -y ) = n1(ES)p1(ES) =n; , (3.10)
the denominator of X can be rearranged to give
G(O}n-1 (ES)fH(O)p(w)/p(O) b () /1 (o)

&= G(o)nlfES)eXp(Ye-Yh)+Hf0)p(w)7u(o) P ?

where also (3.4) and the definition of P, (see equation (2.30)) have

been used. A function g(ES, e¢B) 1s defined by

G(D)n1 (BS) +H (o) p(w) /u(o)
¢(E ,e ) = i mooo-—o——o
S’ "B G(G)n1(Es)exp(ye-yh)+H(o)p(w)/u(0)

and f(ES,e¢B) may therefore be displayed as

- _ 1
f(ES"E':#’B) g(ES,e¢B)exp(nS-Yh)+1 ' (3.12)

It 1s seen at once that the equilibrium condition leads to the implications

Yo = Yh(=YO)'+ g(ES,e¢B) =1 . (3.13)
The occurrence of the reduced majority carrier Fermi level 1n (3.12)
1s convenient as 1t will be assumed unchanged by the disturbance (see
Panayotatos and Card, 1980). Hoﬁever, the display of the steady-state
Shockley-Read type of probability (3.9) as a generalized Fermi-Dirac
distribution 1s always possible, even for bulk recombination. As this

may be of wider interest, it 1s useful to develop a formulation of

f(ES,e¢B) which is symmetric in n and p , using the neutral notation

£, n, ,e¢B) and ES , for surface and

. Et/kBT instead of f(E

S

bulk recombination:

|
f, = (3.14)
t h exp(nt Yo)jl

\



62

where

G(O)ni(ES)+Hfo)p(W)/n(o)
h = EXP(Yo_nt) G(O)ﬁ{w)u(o)+H(0)p1(ES)

Rearranging h ,

G(o)no(w)n(0)+ﬂ(0)p1(ES)eXP[YO“Yh]
G(o)n{w)u(o) + H(o)p1(ES)

or alternatively using (3.3)

G(D)“(W)”(O)EXP[YO"Ye]+H(°)p1(ES)EXP[YQ_Yh] |
h(E !e¢' :Y :Y :Y ) -7 ~_ 7 N R S A ————
t’> "B’'e’'h’'o G(o)n(w)u(o) +H(o)p1(ES)

(3.15)

This 1s the Simplest form in which to express h , but one can go

L =

further to emphasize the symmetry,

[G(O)n(w)u(o)exp[(Yh-Ye)/2]+H(o)p1(ES)EXP[YE-Yh)/Z]
h = exp{Yo—(Ye+Yh)/2}16——-————"—“"“510) (Wu(o)+H(o)p, (E)

and hence using

coshf = (ee+e-e)/2 .

h = exp{yo—(ye+yh)/2}cosh[a+ %(Ye‘Yh)J/COShG (3.16)

where a 1s given by

}

a = 1/2 1n[H(0)P1(ES)/G(O)H(W)H(O)] .

However,

and then

h = eXp{yO-(Ye+yh)/2}cosh[ao+1/2(}o-yh)]/cosh[a0+1/2(yo-ye)] (3.17)



where

Il

a

= 1/2 1n[H(0)p, (E.) /G(0)n_(w)u(o) ]

Note, in (3.17) the term wu(o) in o 1s the steady-state value and

not the equilibrium value uO/(o).

In Section 3.6, one uses the Shockley-Read recombination rate
(Chapter 2, equation (2.27)) via the grain boundary surface states 1in

the non-equilibrium steady-state and this 1s per unit area

o G(0)H(0) {n(w)p(w)=ni }N (B +N, ¢ (Ey) JdE, e
S G(o){n(w) (0)+n (Ex)}+Ho) {p(w)/u(o)+p (EQ)} '

It 1s useful to define a surface recombination velocity s(o) by
EcS
s(o) = {1/ne(0)} J dUS (3.19)
EVS

where ne(o) is the number of excess carriers per unit volume at the

surface of the grain,

ne(O) = n(o) - no(o){ = n(w)u(o) - no(w)uo(o)}

Also the recombination current density 1s defined by

J(o) = eUS/2 (3.20)

The factor of one half arises because of the assumption of i1dentical
grains giving two equal current densities on either side of the grain
boundary. The factor of a half has to be omitted if a2 simple surface

is discussed. //”
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3.4 The Barrier Height

From the equations of Section 3.3, an analytic, though transcendental
equation for the barrier height, ¢B cat x =0 1n equilibrium and in

the steady-state will be developed.

Equations (3.2) to (3.5) are used to write Poisson's equation (3.1)

in the following form,

d2¢ . [ : NA
- = e p(w)exp[-e¢/k T]-n(w)exp[e¢/k T] —*Egi[ngfgngg/kéfz;;T:T'

dx

(3.21)

Multiplying both sides of (3.21) by (d¢/dx) and integrating from x = O

_1_[.42]2 Kl Q_Jzi =
2 dx ,}{=W 2 LdX ‘X'—'O
. ‘ Jo
— EE—O—-—p(w)exp[—e¢/kBT]—n(w)EXp[ecp/kBT]-l-NA ln{exP[nA(w)—e¢/kBT—Yh]+1}

x=0

Using ‘the boundary condition (3.6) at x = w , one has

} }
2k_T - exp[n, (w)-y, ]+1 1
e . [——p(w){l-‘u(o) "Yin(w) (1 (o) =1 }+N ln[-—-—————-—————-——_ A~ h
X A , A |
x=0 O L 111(0) EXP[nA(W)'Yh]"’]

where the negative root has been chosen in order to give the correct
sign of the barrier height. Introducing the boundary conditions (3.7)
and (3.8) at x = 0 , a transcendental equation 1s obtained for the

barrier height, (kBT/e) 1nu (o) :

:
[ EHP[HA(W)-Yh]+l

I /
-1}+NAllqu(o)—ln :

n(w) {u(o)-1}+p(w) {u(o)

n(o) expln, (w)~y, 1+1
E
, S
e J o Mos'R o My
8k_Tee -1 } 1+g(E_,ed_)expln -v, ]| s
B o EVS 1+g(ES,e¢B) e;p[yh nS] s B s 'h

(3.22)
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The equilibrium barrier height, ¢_ , is obtained in the limit (3.13).

Bo
Writing the Shockley-Read occupation probability in the form (3.12)

of the Fermi-Dirac statistics together with utilization of the limit
(3.13) has allowed the display of the equilibrium result as a special
case of the steady-state equation; separate treatments of the equilibrium
and steady-state barrier heights are then avoided. Note, if the

depletion approximation was used to solve (3.1) one would arrive at

equation (3.22) with effectively
n(w) = p(w) = 0

in the left hand side. Thus, the depletion approximation yields also
a transcendental equation for the barrier height, Physically, equation
(3.22) expresses charge balance between the space-charge and the charge

on the surface states.

To simplify the numerical calculations, the additional assumptions,

B,, B, and B, are made. Neutrality in the grain bulk 1i1s assumed,

17 72 3
locating the positions of the quasi-Fermi levels in the energy gap at

X = w vla

p(w) - nw) - N; =0 . (3.23)

A quadratic equation for pfw) 1is formed from equations (3.23) and

(3.10),

2 2 )
p(w) - n, exP[ye—Yh] ~ NA p(w) = 0 .

The solution of this quadratic equation 1s

p(w) = N /2 + {Ni/4+ni exp[Ye_Yh]}i

A

Using assumptions Bl to B3, where we see that the acceptors in the bulk

are all ionized, the surface traps are all donor type at an energy, EDS

?
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and that G(o) and H(o) are not functions of EDS , equation (3.22)

becomes

— DS !
() () =1 Hp @ (u () =138, Inp(o))? = —25 o T
(BEEORBT) 1 g(EDS,e¢B) exp[Yh“nDS]
Defining two dimensionless parameters by
_ :
a = (BEsokBTNA) /eNDS (3.24)

and

v = p(w)/NA (1-v H(W)/NA by (3.23)) ,

then one has

1 1

3 _

al (1-V) {po)-1}+v{p(o) '—-1}+lnu(o)]?® = {1+g(EDS,e¢B)-

[y, -] b
S*PLYL ps '

Utilizing equation (3.11) for g(EDS, e¢B) and noting that

p (o) /p, (B ) = explnpg-v,]

equation (3.22) yields

u(o)p, (E |

p(w)

) G(O)n1(EDS)%H(O)P(W)u(O)—

DS

— e e g —— e e ————— .—_—x

G(o)m, (E)exply =y, J+H(0)p (@ (0) "

1 ) ‘I
1 7, |

al (1-v) {u(o)-1}+v{p(o) —1}+1lnp(o)] |

Finally, dividing the numerator and denominator by N, and rearranging

factors, //

A

vN G(o)(n,/N, )u(o)+H(0o)v n
(0) = —= L X
H ap G(O)(nl7NA)“(°)EXP[Ye_Yh]+H(°)” -~

. |
_— ~ al . (3.25)
(=) (n (o) =1} +v{u (o) " '=1}+1np(0) ] *
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In equations (3.24) and (3.25), the quantities regarded as given are

those of Table 3.1 and also N The

E - E and Fe - Fh .

A’ NDS’ DS VS
values of n, and p, may then be deduced. Next, p(w) 1is obtained
by solving the quadratic resulting from (3.23) and (3.10). This gives
Fo referred to the standard energy Ev(w) . From this Fe 1s determined

since F - F, is regarded as given. Equation (3.25) 1s then solved
iteratively for the barrier height, e¢B , and solutions are prescnted

in Figures 3.3 to 3.14. The theory can be easily extended to n-—-type

grains and this form of it has been used below in Figures 3.12 and 3.13.

3.6 Explanation of Figures 3.3 to 3.10

Figures 3.3 and 3.4 can be understood physically 1f one recognizes
that the curves of each figure are of similar shape and differ only as
regards the donor concentrations NDS . Thus, an intuitive argument for

one of the curves will describe the nature of them all. A physical

understanding will enable the development of some simplified mathematical

formulae for the barrier height in Section 3.6.

. 19 - :
For small enough acceptor concentrations (NA§10 cm 3) the Fermi

level at x = 0 1lies above the surface donor levels, EDS . Thelr

(small) degree of ionization causes some band bending. At the acceptor
concentration increases one may think of the band edges and the donor

level to move down rigidly in Figure 3.1, pulled by the faster moving

Fermi level. This process causes more ionlzation and E¢Bo Lncreases

as 1n Figure 3.3. The barrier height reaches a maximum when the Fermi

level and E are at the same energy.

DS

Note, .this 1s:where the model developed here differs from those

of Baccarani et al., (1978a, 1978b), Seager (1978), Seager and Castner

/

(1978), Seto (1975) which use the depletion approximation. Using the

- /
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depletion approximation, as the number of acceptors (NA) tends to

zero, the space-charge (also NA) tends to zero; whereas in our model
there is a contribution to the space-charge (p-n-NA) from the electrons
and holes. Thus, the depletion approximation incorrectly calculates

very large band-bending for small N in order to very largely neutralize

A

the charge on the donor surface state. As N, 1s increased from zero
in the depletion approximation, the barrier height falls in opposition

to our result yvhich rises.

In Figures 3.3 and 3.4, once the Fermi level lies below EDS’ the
donors are almost fully 1onized while the 1onized acceptor concentration
continues to 1ncrease as acceptors are added. The balance of (positive)
charge on the surface with that in the space-charge region then requires
the (negative) charge per unit area

W

qp = e J (p-n-N;)dx (3.26)

0
to remain almost constant. It follows from (3.26) that p-n 1increases
(w decreases) and hence p(o) and dq increase. Alternatively, using

the depletion approximation

LA R S (3.27, 3.28)

verifying the decrease in w, and showing also that ¢B decreases as

!

more acceptors are added.

Consider next the barrier height for fixed NA but different surface

donor concentrations and at two different energy levels (Figures 3.5 and

3.6). For high enough surface donor concentrations (N__ > 1016cmf2,

DS ~
. 21 =3, . , e :
1 NA'% 10" m ") 1in the grain boundary surface, th? equllibrium Fermi

ﬁ




level lies above the donor level. Injection of electron-hole pairs
raises the quasi-Fermi level for electrons above that for holes as in
Figure 3.1. The occupation of the surface donors increases. The
decrease 1in QS is expected in (3.27) and (3.28) to lead to a decrease
in w and hence in ¢B . This explains the general slope of the curves
in Figures 3.5 and 3.6. [Strictly speaking, railsing Fe lncreases n ,
and hence the surface donor occupation by virtue of increased
recombination traffic. It is assumed that this 1s understood in the

further comments made below. ]

The flat parts of the curves can be understood as follows: The
Fermi level lies below the donor level in equilibrium. As the Fermi
level for electrons detaches 1tself from the hole quasi-Fermi level
with increasing electron-hole palr 1injection, the effect on the space-
charge region 1s comparatively slight as the donors remain largely
ionized. Further injection raises the electron quasi-Fermi level
above the donor surface level EDS and the donors begin to fill with

electrons. The barrier height then falls with increasing Fermi level

separation as was seen before.

The generally larger barrier heights observed in Figure 3.6 above
those in Figure 3.5 are due to the greater value of QS for the higher
donor level (i1f other things are equal). Note that the position of
Fh 1s not fixed by the value adopted for NA by virtue of (3.10) and
(3.23) 1is then assumed largely unaltered by electron-hole pair injection
in this discussion. This 1s satisfactory for Fe-Fh < 0.5 eV when

the excess hole concentration reaches 107 of the equilibrium concentration,
at which point the hole quasi-Fermi level moves slowly down towards the

valence band edge.
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The depletion approximation is not involved in the present theory,
it 1s used merely for discussion purposes in the form of equations
(3.27) and (3.28). Nonetheless it is of interest to estimate the
kind of error which can occur by making this approximation. Quite

simply, the depletion approximation 1s equivalent to setting:

n(w) = p(w) = 0,

in the left hand side of equation (3.22). A comparison of the two
models 1s given in Figures 3.7 and 3.8. One sees from Figure 3.7
curves (a) and (b) that the depletion approximation (b) overestimates
the barrier height by 67 in equilibrium. Using a flat Fermi level

and 1ncluding the space charge contribution from electrons and holes as
the present theory of curve (a) does, the barrier height so calculated

.

1s exact in equilibrium.

The error 1in the barrier height calculated by the depletion
approximation 1s expected to be greater when the barrier is low or for

very low doping concentrations. Since the charge density is given by

1 —

q(x) = p(Wp(x) ' - n(wWplx) - N,

the depletion approximation calculation will be 1n error when the

contribution to the total space-charge by n(w)p(x) 1is large (1i.e.

]

for very large barriers), or when p(w)p(x) = is large (i.e. for

small barriers).

Turning to the non—-equilibrium steady-state barrier height, curves
(a) and (b), the depletion approximation progressively underestimates
the space-charge by a larger amount because it neglects the electron
contribution and therefore too large a barrier i1s calculated. 1In
curves (c) and (d), initially the depletion approximation neglects the

hole contribution thus overestiméting the space-charge, calculating



L
too small a barrier. As the quasi-Fermi level separation increases,
the electron concentration becomes larger until it exceeds the hole
concentration; this leads to an overestimate of the barrier height

when the depletion approximation is used.

In Figures 3.9 and 3.10 the barrier height is shown as a function
of surface donor energy and they indicate again that higher donor
levels have a greater degree of ionization leading to larger barriers.
The reference energy is chosen to be Ev(w) since this is unaffected
by barrier height. As a result, the hole quasi-Fermi level is a fixed
vertical line, and the electron quasi-Fermi levels are displaced from 1t
as shown. The straight sloping lines represent the surface band edges;
one sees, for example that EvF - Ev(w) becomes more negative as the

barrier height increases. In this representation any horizontal (or

vertical) distance from E to EvS gives the value of the energy

cS
gap.

In equilibrium (Fe = Fh curve of Figure 3.9), one sees that as
the donor surface energy 1s raised from alpoint low in the energy gap,
the barrier height increases. However, the degree of 1onization of the
donor state has only a slight increase (the donor level moves a little
closer to the Fermi level in Figure 3.9). From (3.26) using the
depletion approximation in the crudest sense, the total space-charge
per unit area remains fixed because NA 1s constant. Hence, as the
donor surface level 1s raised in the energy gap, the barrier height
1ncreases in such a way as to keep EDS - F0 constant and the balancing
space charge is constant. Of course, as the barrier height is increased,
electrons flow into the space-charge region, . holes flow out of 1t and

the surface donors become a little more 1onized to balance the increased

space-charge.
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Turning to any curve of fixed positive Fe -~ Fh , 1Lt 1s seen to
consist of three parts each of which may be specified by the two

dominant electronic transitions involving the donor surface level.

Passing from left to right:

(1) Donor-valence band interactions dominate, so that
H(o)p1 >> G(o)n(o), H(o)p(o) >> G(o)n1 . (3.29)

(11) The downward electronic transitions (i.e. electron and hole

capture) dominate, so that
G(o)n(o) >> H(o)p1 , H(o)p(o) >> G(o)n1 . (3.30)

(111) Donor-conduction band interactions dominate, so that

i

G(o)n(o) >> H(o)p1 . G(o)n1 >> H(o)p(o) . (3.31)

In part (1), ¢ follows the equilibrium curve since the conduction

B

band 1s hardly involved and Fh 1s fixed. One can see this result

mathematically from (3.25),

p(w) = NA , n(w) = (niexp[Ye—Yh])/NA .

thus

. s 2 )
v =1, 1-v = (niexp[ye Yh])/NA .

Tﬁe Fermi level dependence of the second factor of (3.25) 1is normally
negligible because of the small factor ni/Ni , while G(o)n1 1n

the first factor is negligible by the assumption for part (i). Part
(i11i) 1s analogous to part (i) with the roles of the conduction band
and the valence band reversed. The flatness of part (ii) of the curve

is expected from (3.30) and the first factor of (3.25).
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The three parts of the curves discussed above lead one to look

for a case 1n which the upward electronic transitions dominate,
G(o)n1 >> H(o)p(o) , H(c::;)p1 >> G(o)n(o) . (3.32)

This is indeed realized 1if F, <F for part (iv) of the curve shown

h

in Figure 3.9.

Complete ionization can be reached in Figure 3.9 only if the surface
donor level and the equilibrium Fermi level enter the conduction band.
However, complete 1onization 1is possible for the lower surface donor

concentration used i1in Figure 3.10. The flat part of the curves on

the right hand side represent this case.

3.6 Approximations for the Barrier Height

i e —

Approximate relations for most parts of the curves of Figures 3.3
to 3.14 will be obtained in this sectign. Considering first equilibrium
conditions, as shown 1n Figure 3.3, an approximate expression for the
barrier height in the region to the righ; (larger NA) of the maximum
has already been obtained by Seager and Castner (1978). It was shown
that the barrier height 1s proportidnal to 1/N, 1in this region because

A

the surface donor traps are all 'ionized.

To the left of the maximum (smaller NA) in Figures 3.3 and 3.4,
the bracketed factor of (3.25) 1s equal to unity. Equations (3.23)

and (3.10) have the approximate solutions

p(w) = N, , n(w) = n?/NA(<< NA) (3.33,3.34)

and therefore

1

edn = kBT ln(NA/apI) + kBT In {(ni/Ni){u(o)-1}+{u(o)- -1}+1np(0)}"£—a

\




Th

Using the data of Table 3.1, (also NA < 1022m_3 for Npg > 1015 m—2)

and a single trap level at mid-gap, one finds a << 1. Also, since

ni/Ni << 1 and p(o) >> 1 (from Figures 3.3 and 3.4)
eon., = kBT ln(NA/apl) - (kBT/Z) In{lnu(o)}

The last term of the above equation 1s very small 1n comparison with

the first two terms and hence

edn = kBT ln(NA/an) + EjoE o - (3.35)

Equation (3.35) explains the straight line regions of Figures 3.3

and 3.4.

For larger NA , approaching the maximum barrier height value of

max

NA , one can rely on (3.33) and (3.34) which enables (3.25) to be

recast in equilibrium as

~2

1—1+lnu(0)] = 2 . (3.36)

{p]u(O)/NA+1}2[n(o)ﬂ

The maximum of ¢B in Figures 3.3 and 3.4 can be estimated by

O

differentiating (3.36) with respect to N, :

A
_ -2p . p (o) 2p
[u (o) 1-1+1np(o)]{5-——1§- [p1u(o)/NA+l}+ ﬁ—l-dESO) [plu(o)/NA+1]} +
N A A

A

{Plu(o)/NA+1}2[u(o)_l—u(o)_2 _dulo) _ _ 25-———-

At t he maximum,

du(o) _
dN

l
-

and from equation (3.24),



>

da __a
dNA 2NA
which yields
-1 f -2
2p p(o)W {pu(o)N }[M(O) ~1+1lnu(o)] = a . (3.37)

Dividing (3.37) by (3.36) leaves

Plu(O)N“1+1

= 1
-1
213’1NA p . 0)

and therefore at the maximum,

(o)) = N""/p,

Now, using (3.4) and (3.33) yields

[N exP(nVs DS) = ]p1 = {NA/”(D)}max[z NVEXp(nVs-YO)] : (3.38)

The expressions 1in square brackets in (3.38) show that the Fermi level

lies approximately at the surface donor level for this condition. To

max

calculate u(o)max , we first obtain NA , the doping density which

leads to the maximum barrier height; thus (3.37) 1s recast into an

equation for Niax using (3f38) ;

{(N expln_~n  J/N"7)~1+1n (N, “expln, .~ VS]/NV)} = a

max/N

Neglecting 1In(N ) by virtue of (3.33),

_ 2
{“Ds “vs+(NvexP[”vs"”DS]/NAmax)"I} = 1/4a

or alternatively using (3.24),

2 2
Nmax _ (e NDS/32§EokBT) - NvexP[n S nDS] (3.39)
A nDS - nvS - '
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Using again equation (3.38), the maximum barrier height 1s given by

2. .2
e N 32c¢e k. TN )ex - -1
_ [( pg/32e€ kgTN Jexplnyo—n (]
(ed_ ) = k. T lny——m —_— . (3.40)
Bo  max B n..—n .—1
DS 'vS

Equations (3.39) and (3.40) are in reasonable agreement with the maxima

of Figures 3.3 and 3.4, the error between (3.40) and (ed_ )
Bo" max
16 -2

taken from Figure 3.3 for NDS = 10 " m 1s 4.57.

Turning now to non-equilibrium, Figures 3.5 to 3.10, some additional
results can be derived. These relations are obtained i1n a similar
way to (3.35). In addition, equations (3.36) to (3.38) are used to
simplify the second factor of (3.24). These results can be used to

understand the curves of Figures 3.5 to 3.10.

[

Considering the steep region (i) of Figures 3.9 and 3.10, we

have the 1nferred condition of (3.29) because EDS 1s low 1n the

energy gap. These conditions are inapplicable to Figures 3.5 and 3.6.
Using (3.29) the second factor of (3.25) is unity. Equation (3.23)

has the approximate solutions

2

p(w) = N, , n(w) =.ni exply -Yh]/NA << N (3.41, 3.42)

e A

in low injection. Thus, one again finds (3.35) for the barrier height,

: K, T -
epp ¥ edp, ¥ KqTIn(N,/aN ) + Ejo = E o

From equation (3.18), using (3.29), (3.23) and (3.10) as above, the

recombination rate US 15 given approximately by

2
. EFO)F(O)NDSni(exP[Ye“Yh]~1)
s H(o){NA/u(o)+p1}



T

Utilizing the form of u(o) given by (3.35),

US z G(O)NDSn1(exp[ye-yh]—1)/(a+1)

The surface recombination velocity in this case is given by (3.19)

where thaanber of excess electrons 1is
n_(0) = (ng/N,)(exply -y, 1)y (0)
e 1 A e 'h
Using equation (3.42), but from (3.35)
p(o) = NA/aP1
and hence

s(o0) = G(O)NDS a/(a+1) . (3.43)

P

Similarly, the recombination current J(o) was given by (3.20),

which in this case 1is

J(o) = eG(o)NDSn1{EXp(Ye—Yh)—1}/2(a+1)

Note, the units of US are m_'zs._-1 , of s(o) are ms

- and J(o)

has units Am_z 1n the S.I. system.

Turning to the flat regions (ii1) of Figures 3.9 and 3.10, the

conditions of (3.30) are inferred because E g 1s near mid-gap. This

set of conditions also applies to figure 3.5 for F -F, > 0.3 eV vwhen

e h
NDS > 1016m-2 .  Taking high enough carrier injection, the second

factor of (3.25) (in round brackets) is approximately

H(Q)NA/G(O)H1M(o)eXp[Ye-Yh]

Thus
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H(o)Ni [

po)? —— A1 -a]
aG(o)n’exply v, ] [{(1-v){u(o)-1}+v{u(0) -1}+1nu(o)}§ J

Again, appealing to
a << 1, n exply —y, /N> << 1
G 1 e 'h™" A ?

and neglecting the third factor of (3.25) (in square brackets) on

taking logarithms because

Inp(o) << p(o) ,

the barrier height for an energy level of donor traps near mid-gap 1is

given approximately Ly

e, % (kBT/Z)1n{H(0)Ni/aG(0)n§} - (F ~F)/2 . (3.44)

i

Equation (3.44) 1s similar to equation (17) of Fossum and Lindholm (1980a)
but has an extra factor of a . This factor provides closer agreement

of the approximate result with a detailed solution of (3.25) under

the appropriate conditions. Equation (3.44) applies only to the non-
equilibrium steady—-state. The recombination rate (3.18) using the

conditions of (3.30)is approximately

2
G(O)H(o)ni{exP[Ye"Yh]-1}NDS

-1

U. = —m ——
> G(o)n(w)u(o)+(o)p(w)n (o)

and hence using (3.44)

(G(0)H(0) Hn, {exply -y, 1-1}N,

exp[(ye—yh)/Z}/a£+ai

S

US =z -
exp{(Ye"Yh)/Z}

Dividing throughout by aﬂiexP (Ye-yh)/Z yvields

U = 2NDS{G(0)H(0)}5niai

o sinh{(Ye—Yh)/Z}/(a+1) : (3.45)

1
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Assuming the carrier injection creates equal concentrations of excess

electrons and holes, 1i.e.

n (o) = n(o) ~n (o) =plo) -p (o), (3.46)
thus,
n(0)p(e) - n: = {n (o) + p_(0) + n_(0)}n_(0)

Then the recombination velocity at the grain boundary using equation

(3.19) 1is

G(o)H(o)N_. .{n (o)+p (0)+n (0)}
. Do o " "o c (3.47)

s(o) = -
G(O){n6(0)+ne(0)+n1}+H(0){p0(0)+ne(0)+p1}

Letting the number of excess carriers tend to zero defines, in the

limit, an equilibrium surface recombination velocity,

G(O)H(O)NDS{no(w)uo(O)+p0(w)u0(o)_]}
]

s (o) = (3.48)
o

G(O){HO(W)MO(0)+H1}+H(0){pO(W)uo(o)_ +pl}-

Utilizing the conditions of (3.30) for a trap near mid-gap, and (3.35)
for the barrier height, the recombination velocity at the grain boundary

near equilibrium 1is

G(o)H(o)NDS{n1a_1+apl}

s (0) = ———8 — —— (3.49)

O

Equation (3.48) is quite general, and may be used for a donor surface
level at any energy in the band-gap, providing po(o) 1s known. In
particular, for a donor level near the valence band edge, the conditions

of (3.29) allow one to use equation (3.35) for uo(o) and (3.48)

gives again the recombination velocity of equation (3.43).
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Away from equilibrium, equation (3.47) is needed for the steady-state

recombination velocity. For a donor level near mid-gap, equations (3.44)

and (3.35) are used for the barrier heights, (3.46) for the number of

excess carriers and (3.10) for n(w) , thus

2 2
Y 1(0)) 2 VA N Np
n (0) = n(W)u(O)—no(w)uo(O)— EZEXP[Ye_Yh][aG(O)] ;;-EXP[(Yh-Ye)/Z]“‘ﬁ;';E:',

noting equation (3.44) yields the non-equilibrium steady-state barrier
height and equation (3.35) yields the equilibrium barrier height.

A little simplification of the excess carrier density gives

_ _ 3 -1
'ne(O) = n, exP[(Ye Yh)/2]{H(O)/aG(O)} n a

Thus, the recombilnation velocity (3.47) in the steady-state, utilizing

the conditons of (3.30) and ne(O) above,1s

GO H(IN, ¢ (n, expl (v_, ) /2] {H(0) /aG(0) } +ap }

s(0) = — —
" {G(0)H(O)/a}

niexp[(Ye-Yh)/2]+{G(0)H(0)a}iniexp[ye-yh)/2]

Dividing the denominator and numerator by niexp[(y —Yh)/2]{G(O)H(O)a_1}£,

e

) 1

s(0) # {6(0)R(0)a) N {(H(0)/aG(0)) *+ap.n  'exply, -y ) /2]1}/(a+1)

and utilizing equations (3.44) and (3.35), the non-equilibrium steady-state

grain boundary recombination velocity 1s

s(0) % N {H(0) + aG(0)u(0)1, (0) ™ Ma+1) (3.50)

for a donor surface level near mid-gap. The recombination current

density from equation (3.20) and (3.45) 1is

: b >
J(0) eniNDS{G(O)H(O)a} 51nh[Ye—Yh)/2]/(a+l) : (3.51)

Considering the steep regions (i1ii) for Figures 3.9 and 3.10,

the conditions of (3.31) are inferred because the donor surface level

1s high in the energy-gap. These conditions also apply to Figure 3.6

16 -2 . :
for N_ ., > 10 m . For low enough injection, the round bracketed

DS
factor of (3.25) is equal to exp[yh-ye] and also,
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-
~~
-
et
1l

N
_,_____EL_____L___________———ﬂ—L“———————————~————— - a
apxexP[Ye'Yh]L{(1-v)(p(o)-1)+u(u(o)"1-—1)+1nu(0)}i

The third factor of (3.25) [in square brackets here] 1s neglected on
taking logarithms because its largest term is 1In[1lnp(0)]/2 which is

much less than p(0) . Thus,

DS VS h e ’ (3.52)

e¢B = kBT ln(NA/an) +E _~-E +F =~F
1s the approximate barrier height for a donor level near the conduction
band edge and in the grain boundary surface. Note that this equation
1s the same as (3.35) in equilibrium, which confirms the extended region
(1) 1n Figures 3.9 and 3.10 for equilibrium. In the steady-state,

the barrier height in region (ii1i) 1is identical in shape to region (i),

but it 1s displaced by Fe - F

[

Lo as equation (3.52) confirms.

Utilizing (3.31), the recombination rate (3.18) 1is given by

G(O)H(o)ND

U = —
S

2
Sni{EXp[Ye-Yh] 1}

G(O){n(W)u(0)+n1}

The barrier height expression (3.52) and also (3.42) for un(w) vyield

Us = H(O)NDSap1{EXp[Ye-Yh]—1}/(a+1) , (3.53)

In a similar way, the surface recombination velocity (3.47) at the grain
boundary under the conditions (3.31) is obtained,
2
G(O)H(OIN, {ap +(n /N, Jexply v, J(N, /ap Jexply, v 1}

s(0) = —_—
G(O){(ni/NA)exP[Ye_Yh](NA/ap1)exp[Yh_Ye]+nl}

where (3.42), (3.52) have been used. Dividing throughout the above

expression by G(O)nl,

H(O)N . {ap,/n +1/a}
s(0) = Wmm;_‘l’" . (3.54)

It 1s interesting to note that for energy levels of donor states low
in the energy gap or high in the energy gap the approximate forms,
(3.43) and (3.54) respectively, for the grain boundary recombination

velocity are independent of the quasi-Fermi level separation in the

“



82

steady-state. For a trap level near mid-gap, the grain boundary
recombination velocity (3.50) is a weak function of the quasi-Fermi

level separation.

The recombination current density (3.20) 1is given by

J(0) = eapIH(O)NDS{eXp[Ye-Yh]—I}/2(a+1) (3.55)

for a trap level high in the energy gap, where equation (3.54) has

been used.

3.7 Comparison with Expertments

The theory of Section 3.4 has been used to fit some recent
experimental results. In each case it 1s necessary to obtain values
for the parameters required by equation (3.25). Where this data has
not been supplied by the authors of the experimental work, the accepted

values for silicon have been used and are given in Table 3.1.

In Figures 3.11 and 3.12 each experimental point corresponds to a
differently doped sample, but nonetheless the present theory has been
used in Figure 3.12 with a single value of the surface state density
and energy position and, in Figure 3.11, with two values of surface
state density (at one and the same level). The reason is that there
1s a greater spread of values in Figure 3.11 so that de Graaff and his

co~authors (1982) have also used two theoretical curves to fit the data.

They chose one surface state density and two different energy levels.

The satisfactory fit represents an experimental check on the
theoretical curves of Figures 3.3 and 3.4. Note that only one type of
surface state - donors on a p-type grain or acceptors on an n-type
graln has been used. This removes one additional fitting parameter
arising from the possibility of both donor and acceptor states being at
the same level, as for example in Seager and Castner,(1978). Also, the

depletion approximation was not used here.

We turn lastly in this section to non-equilibrium barrier heights
as a function of i1llumination (Figures 3.13, 3.14). The satisfactory
fit here represents an experimental check on the theoretical curves of
Figures 3.5 and 3.6. The experimental results of Figure 3.13 have been

fitted equally well by Seager (1981) using diffusive transport and an
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infinite grain boundary recombination velocity. It 1s interesting that

such good fits are possible based on such different premises.
For a general explanation of the curves, see Section 3.5.

The numerical data of Seager (1981) and Card et al., (1982) for
the generation rate by illumination was given in the units of suns
and Wﬁiz respectively. It 1is necessary to convert this data into an
equivalent separation of Fermi levels. For the data of Seager (1981),
equation (2.3) there was used to find the number of minority carriers
(holes 1n an n-type grain) at the edge of the depletion region, and this
equation 1s
/= lee, 4 (kBT)i

—_— (3.56)

p(w) = p_  — |
e eND XL

Here p_  1is the number of holes at infinity,

p. =Lt ,

: . : : -3 -~
Where L 1is the uniform generation rate of carriers (m °S ') and

T 1s the lifetime(s). Also, ND 1s the number of donors in the
bulk and x is the diffusion length (m). Equation (23) of Seager

L
was obtained by solution of the minority carrier diffusion equation
with uniform generation rate in an infinite half plane of a silicon
bicrystal. From (3.56) and (3.10) the separation of the Fermi levels

1s obtained, using also

n(w) = ND (3.57)
The following numerical data from Seager (1981) was adopted: generation
rate L = 1026111”38“1 for 1 sun, lifetime 1 = 10_75 , diffusion length
Xp = 10—6m , and number of donors, ND = 1.3 x 1022 m_3.

Calculation of the Fermi level separation for Figure 3.14 involves

converting the power density
p = thO

where NO 1s the number of incident photons and hv the energy

of a single photon, into an equivalent number of photo-generated carriers

using
JE Jr)
h(WO ==(X:h£;t“£fi: f;gb. l}gﬁjil. ' N\
c G?NA X

L



8l

Again, Seager's (1981) equation (23) was used to find n(w) and hence

the Fermi level separation by (3.10). 1In this case, NA 3 X 1021111“3

was used. Throughout the work of this section, all other data was

taken from Table 3.1.

3.8 A Simple Surface State Spectrum

Some recent experimental work (Sah, 1976, Singh and Srivastava,
1983) has examined the surface-state energy levels at the interface between
between the oxide and semiconductor layers of MOS devices. 1In general,
the distribution of states found in U-shaped (Sah, 1976, Herman and
Kazowski, 1981, Nico<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>