THIE DESIGN AND USE OF GAUGES IN TIEETESTING

by

Albert Batti

Thesis submitted for the degree of Master of Philosophy of the University of Southampton

To my dearest,

Father : J. S. Batti
\&
Mother : A. D. Mantone

CONTENTS

page no.
ABSTRACT 111
ACKNOWLEDGEMENTS iv
Chapter 1: Introduction 1
Chapter 2: Basic Probability Functions
2.1 General Comments 7
2.2 We1bull Distribution 9
2.3 Ramberg Distribution 11
Chapter 3: The Design of Gauges
3.1 General Comment On The Design 26
3.2 One Gauge 27
3.3 Two Gauge 33
Chapter 4: Application In Acceptance Sampling plans
4.1 Single Sampling plan 39
4.2 Double Sampling Plan 47

Chapter 5: Efficiency and Robustness of Test

5.1 Efficiency 53
5.2 Robustness 56
5.3 Cost Function 58
Chapter 6: Suggestion For Further Work 61
Appendixes:
Appendix 1 Gaussian Qudrature 63
Appendix 2 GINOGRAF 72
Appendix 3 Computer listing for sampling plan 79
Refferences 83

UNIVERSITY OF SOUTHAMPTON

ABSTPACT

FACULTY OF MATHEMATICAL STUDIES
OPERATIONAL RESEARCH
Master of Philosophy

THE DESIGN AND USE OF GAUGES IN LIFE TESTING
by Albert Batti.

Gauges define classes and the use of gauges leads to the observation of frequencies in the defined classes. The advantages of gauges over exact measurement are simplicity, speed of observation, and the possibility of automa tion.

The use of gauges in industrial life testing of items is exploted with the welbull distribution particularly in mind.

The issue of the time value of a cauge is discussed for the case of one and two gauges. The context is the need to make decisions about the goodness of a large batch of items. Single and Double Acceptance Sampling plans for making the necessary decisions are discussed.

The cholce of one or two gauges and the type of sampline plan is essentially an economic issue. Appropriate cost functions can help in the quest for good solution.

The progress made in this study can act as a foundation for further work. Some sugeestion are made for further WORK.

Acknowledgments

It is my deep pleasure to record my debt to my supervisor Dr. A.K. Shahani for the help and guldence he has given me during the course of this research.

I wish to thank to my friends Mr. M.K Fahmouni and Mr. Y.Ouinten for the assistance they have aiven me, especially in the computer problems.

I also wish to thank to Mr. Niok May for his careful editing of this work and to The Eritish Council for the financial support.

I would like to express my sincere thanks to all my family and friends for the encouraghent they have given me.

Finally, my special thanks to my wife Ace Gurniasin and my sons Rafilia Massau Batti and Dinar Eisenhart Batti for the love and patience they have shown through at all time.

Chapter 1.

INTRODUCTION .

The useful ness of a gauge in some applications statistics has long been reallzed. It can be used for any measurable quantity that can be arranged in an order. The use of a gauge leads to a classification of the observations. Honce, the observations are frequency counts In each class rather than exact measurements. We use these observed frequencies in the analysis. Since the method is based on frequenoy counts we can have a simple statistio and we would expect it to retain most of the robustness of the test statistic. These two attractive features motivated us to study of the use af gauges.

As a simple example, we consider a single dimension of a manufactured item. We suppose that the length of this item, x, is important and because of the inherent variabllity, X has to be regarded as a random variable. In practice the form of the probability density furnction of x W111 be knowr, or it w111 be assumed. Suppose $f(x ; \theta)$ is the density function and the parameter, (or parameters), θ is unknown. Observations $x_{1} \times x_{2} \ldots x_{n}$ will be made to make inferences about θ and the concern could be with estimating θ or with testing nypotheses about θ.

With exact measuroments $x_{1}, x_{2}, \ldots x_{n}$ we Would work with a suitable test statistic in order to make inferences about θ.

With gauges we have the possibility of one or more gauges. With one gauge, set at length L, we would simply note the number of obsevations that are less than or equal to L. Thus in the sample of n, we would have an observation on the random variable Y which is the number of X values L. The following Figure illustrate one gauge for a single dimension.

It will be readily appreciated that observing R_{1} is much Simpler than collecting the measurements $x_{1}, x_{2} \ldots \ldots x_{n}$.

A more general example $1 s$ the case of k gauges in several dimensions. A sample of n is obtained on a random vector X and the k gauges result in the observation of the frequenoies in defined classes. For a two dimensional vector with two gauges for each of the dimension we get classes as indicated in Figure 1.1.

Several statistical theories based on the gauge method have been developed. Steven (1948) has used this method for estimating the mean and the standard deviation of a normal distribution. He investigated the use of both symmetrical and asymmetrical gauges. Shanani (1969) has used gauges for testing hypotheses about correlation coefficient in a bivarlate normal case. He showed that the test which is based on the frequency counts is a
substantial improvement over the medial test. Taj Hirji and Shahani (1978) have used the technique for testing hypotheses about the mean of a

Fie.1.1 Gauges for a two dimensional random vector. For X_{1}, the gauges are set at L_{11} and L_{12}. For X_{2}, the gauges are set at L_{21} and L_{22}.
normal distribution. With an extensive numerical investigation they sugeest that for a symmetrical position of two gauges about the population mean and sample size n220. should be adequate for the use of a normal approximation. Taj Hirji (1979) pointed out that working with the exact probability distribution of the statistic based on gauges may not be a practical proposition. He also considered the use of gauges in the sequential tests for the mean of a normal distribution and testing hypotheses about means of two related variables.

In quality control where it is easy to collect large a
number of samples but difficult to obtain accurate measurement the use of gauges has obvious application. Whore the absolutely accurate measurement of an item is not required a sauge method should be suitable. In a factory for example, it may be easier to operate a gauge by mechanical devices without the intervention of an operator. It is possible to construct a device that will take measurements on a series of items and record the results. It would be even easier to construct a machine which has only to classify and record the jtems into pre-defined classes. Therefore we can apply the technique to a fully automatic quality control system to replace nonproductive inspection work.

Steven (1948) suggest a wide variety of a gauge that can be used on anything whose values can be arranged in a serlal order, even if it is not measureable. He also used the two gauges to construct the control chart. Tippett (1944) pointed out that the efficiency of a gauge method depends very much on the setting of the gauge. He pointed out that if we desired to control only the average diameter, a one gauge may be made so that 50% of the items have a laree diameter (defective). Then if the frequency distribution of the diameter is approxmately normal, a control chart of the fraction defective based on a sample of about 160 items glves as good a control chart of actual mean based on measurements of sample 100 items. He also pointed out that it is more economical to eauge 160 items than to measure and calculate the mean for 100 items.

In this thesis, we consider the design and use of
gauges in the life time tests. The design of gauges is concerned with the setting of gauges to the optimal position where the criteria is the maximisation of the power of tost. The value of $\&$ auce is the fixed time at Which the optimal posistion of gauge occurs. However, for practical purposes we prepare to use the probability term rather than a fixed time to express the position of gauges. We also consider the application of gauges in an acceptance sampling plan.

In Chapter 3, we consider the design and use of one gauge and two gauges for testing hypotheses about mean life time T of a weibull distribution. Since the exponential distribution is a special case of the welbull distribution it will be covered in this study. Numerical investigation for various values of shape parameter suggests that we can probably take values of about $p=0.65$ and $p_{1}=p_{3}=0.30$ as values for one gauge and two gauges, respectively. However In the practical purposes, since the power of test is quite pretty flat around the optimal position then there is probably room for compromise in setting the gauges. Furthermore, when the power of test is large enough, (say greater or equal to 0.999) we may be able to reduce either the lengthtime of observation or the sample size. Alternatively, we may be able to reduce both of them at the same time.

The application of gaures in acceptance sampling plans is considered in chapter 4. It is shown that for a given producer's risk α and consumer's risk β we may have a number of plans: i.e pairs of n and T, to satisfy the
required conditions. The minimum of the sample size is achieved when the gauges are set around the optimal position.It is also shown that in order to determine the plan that satispies the required conditions in a double sampling case then we can set the gauges as in a single Sampling plan. It will probably be easicr to predict the parameters required for a double sampling plan by reference to the solution in a single sampling plan and use a random walk diagram. It is shown that the first rejection number C_{2} will depend on the chosen value of n_{1} proportional to n and the total sample mt will depend on the second acceptance number \mathbf{C}_{3}.

The results in Chapter 5 sugeests that it seems quite reasonable to expect that the efficiency of test would further improve if more gauges are used. With reference to the number required it shown that the efficiency of gauging relative to exact measurement is over 70\%. It is also shown that the R test when based on two gauges, is of relatively high efficiency and more robust than when based on the one gauge. However, in some cases it will probably be more economical to use one gauge. Perhaps when the probability distribution is exactly known or well predicted then it might be a practical proposition to use one gauge, particularly when the cost per unit time is quite large.

Further developments of the methods based on gauging are suggested in Chapter 6.

Chapter 2.

BASIC PROBABILITY FUNCTIONS

2.1. General Comments.

In general, the lengthlife or life time of an item, a device, or a system is a random variable. If we use the symbol T to denote the life time, then like any other random variable, t has a probability density function. In practice, the form of the probability density function is often assumed and the parameters involved are estimated from the appropriate data.

Also, the alstribution of lifetime, can be
described by the other functions such as the survivors fumction (s) and the the fallure rate function (h). In practice, the survivor function gives the proportion of items surviving longer then time t, and fallure rate function elves the proportion of items surviving in an interval per unit time, given that they have survived at the beginning of the interval.

There are many physical causes which influence the life time of items. However, it is very difficult to isolate these physical causes, hence choosing a theoretical distribution to approximate the distribution of life data is a difficult process. It may be that some of the
conditions of the experiment are simply unknown or camot be controlled. For example, two light bulbs may have been manufactured by the same process and used under the same gemeral conditions but still fall at different times. In this case the phenomena can only described in probability terms.

Several theoretical distributions have been widely used to describe the survival time phenomena. Amongst the most important distributions are the Weibull and Ramberg distributions. These distributions are characterized by three and four parameters, respectively. In general, those parameters are known as location, scale and shape parameters. since it is always possible to choose many different values for those parameters, a wide variety of curve shapes is possible with these distributions. For example when the weibull shape parameter approximates 3.25, Makino (1984), then the Weibull density function 15 quite similar to the normal density function. When the shape parameter of Weibull distribution equal to 3 and 2 , then the resulting distributions are known as Exponential and Rayleigh distributions, respectively. Similarly, Ramberg and Schimeiser have shown that Ramberg distribution can also provide good approximations to other well known distributions. For example Ramberg distribution can be Consider as a nomal distribution when location parameter 1s zero, scale parameter $1 s 0.1975$ and shape parameter is 0.1349.

In the following sections we study of the effect of the shape parameter on the shape of the density function
and the fallure rate function.

2.2. Welbull Distribution.

This distribution was sugggested by welbull (1951) and $1 t$ has been used in a wide variety of applications. The probability density function of a random variable T having three-parameter Weibull distribution given by:

$$
f(t)=\beta / \theta\{(t-\delta) / \theta\}^{\beta-1} \exp \left[-\{(t-\delta)<\theta\}^{\beta} ; 0 \leq \delta \leq t, 0<\theta, \beta\right.
$$

where, the parameters θ, β and s are referred to as scale, shape and location parameter, respectively. The survivor function and the fallurewrate function are, reapectively :

$$
\begin{aligned}
& S(t)=\exp \left[-\{(t-\delta) / \theta\}^{\beta}\right] \\
& \mathrm{h}(\mathrm{t})=\beta / \theta\{(\mathrm{t}-\delta) / \theta\}^{\beta-1}
\end{aligned}
$$

And, the cum ulative distribution function is given by:

$$
F(t)=1-\exp \left[-\{(t-\delta) / \theta\}^{\beta}\right]
$$

As we have mentioned in the beginning of this chapter, we are interested in explorine the relationship between shape parameter and fallure rate function. For the sake of simplicity, we take the particular case where the Weibull location parameter δ has been assumed to be zero. However, when δ has a non-zero value, all that $1 s$ necessary is to substract the value of σ from the value of t, in

Abstract

order to get the correct value for t. Figures 2.1 and 2.1 b show the probability density function and the falulure rate function with shape parameter $\beta=\{0.2,0.6,1,(.5), 2.5\}$. As can be seen from these flgures the density function has no mode and decreases monotonically when $\beta \leq 1$ and the distribution is unimodal when $\beta>1$. When $\beta=1$ the fallure rate remains constant as time increases and this is the exponential case. The fallure rate decreases when $\beta<1$ and increases when $\beta>1$ as time t increases. Therefore the Weibull distribution can be used for the ifetime distribution of a population with decreasing, constant, or increasing fallure rate.

2.3. Ramberg Distribution.

Ramberg distribution is a generalization of Tukey's lambda distribution. It was developed by Ramberg and Schmelser (1979) to a four-parameter distribution defined by the percentile function. Hence, Ramberg distribution is defined in the terms of the inverse of its distribution function. which is here denoted by I. The inverse function is glven by:

$$
I(p)=L_{1}+\left\{\frac{p^{L_{3}}-(1-p)_{4}^{L_{4}}}{L_{2}}\right\} ; 0 \leq p \leq 1, L_{2} \neq 0
$$

where L_{1} is a location parameter, L_{2} is a scale parameter and L_{3} and L_{4} are shape parameters.

The probability function is given by:

$$
f(t)=\frac{L_{2}}{L_{3} p^{L_{3}}{ }^{-1}+L_{4}(1-p)_{4}^{L_{4}}} \quad ; 0 \leq p \leq 1
$$

hence, $I(p)=t$. The lower and upper bounds of t are, $I(0)$ and $I(1)$, respectively. The density function can be graphed by letting p take any values between zero and one, plotting $f(t)$ versus $I(p)$. The density function is symmetrical about L_{1} when $L_{3}=L_{4}$, hence the mean of Ramberg distribution is equal to L_{1}, which is not true in unsymmetrical case. In general the mean of Ramberg distribution is given by:

$$
\mu=L_{1}+\left(\frac{1}{L_{3}+1}-\frac{1}{L_{4}+1}\right) / L_{2} ; L_{2}+0
$$

As in weibull distribution, we would be interested in the effect of shape parameter to the shape of the density function and fallure function.

Now, consider L_{3} and L_{4} as coordinates. Figure 2.1 shows the four regions of the shape parameter values. For the reference purposes these regions we numbered as $1,2,3$ and 4 , repectively. In each region we have indicated where the density function is a valid one in the sense that density function $f(t)$ is nonnegative for all values of t. In the region 1 and 3 the density function $1 s$ for all values of L_{3} and L_{4}. on the other hand the density function is nonnegative when $L_{3}{ }^{-1}$ and $L_{4}>1$ in the region 2 and when $L_{3}>1$ and $L_{4}<-1$ in region 4 . The U-shape of distribution is also possible when $1 \leq L_{3}, L_{4} \leq 2$ and the uniform distribution occure when $L_{3}=L_{4}=1$ and 2 .

In region 1 the distribution has a negative skewness when $\mathrm{L}_{3}<\mathrm{L}_{4}$ and has a positive skewness when $\mathrm{L}_{3}>\mathrm{L}_{4}$ except the sub-region where given by:

$$
\left[\begin{array}{l}
\left(L_{3}-1\right)^{2}+\left(L_{4}-1\right)^{2} \geq 1 \\
0 \leq L_{3} \leq 1 \\
0 \leq L_{4} \leq 1
\end{array}\right.
$$

In this sub-region the density function has a positive skewness when $\mathrm{L}_{3}<\mathrm{L}_{4}$ and has a negative skewness when $\mathrm{L}_{3}>\mathrm{L}_{4}$.

As an illustration the probability density function of Ramberg distribution has been plotted for several values of L_{3} and L_{4} with $L_{1}=1$ and $L_{2}=0.1$ in region 1 and $L_{2}=-0.1 \ln$ region 2,3 and 4 .

Figures $2.2 a$ and $2.2 b$ show the Ramberg density function and fallure rate function for the values of L_{3} and L_{4} as shown in Table 2.1 .

Table 2.1. Values of L_{3} and L_{4} for Fig.2.2a and F1g.2.21b.

Curve No.	1	2	3	4	5
$\mathrm{~L}_{3}$	0.05	0.10	0.20	0.30	0.35
$\mathrm{~L}_{4}$	0.35	0.30	0.20	0.10	0.05
		$-\cdots$	$-\ldots$		

Figures $2.3 a$ and $2.3 b$ show the Ramberg density function and fallure rate function for the values of L_{3} and L_{4} as shown in Table 2.2.

Table 2.2.Values of L_{3} and L_{4} for Fig.2.3a and Fig.2.3b.

Curve No.	1	2	3	4	5
L $_{3}$	0.25	0.50	0.75	1.00	1.25
L $_{4}$	1.25	1.00	0.75	0.50	0.25

Fig.2.1 The four regions of the shape parameter values

 Fig.2.4b. Failure rate function

Figures 2.4a and $2.4 b$ show the Ramberg density function and failure rate function for the values of L_{3} and L_{4} as shown in Table 2.3.

Table 2.3.Values of L_{3} and L_{4} for Fig.2.4a and Fig. 2. 4 b.

Curve No.	1	2	3	4	5
L_{3}	1.05	1.25	1.50	1.75	1.95
L_{4}	1.95	1.75	1.50	1.25	1.05

Figures 2.5 and $2.5 b$ show the Ramberg density function and fallure rate function for the values of L_{3} and L_{4} as shown in Table 2.4.

Table 2.4.Values of L_{3} and L_{4} for Fig. $2.5 a$ and F1g.2.5b.

In region 3 the density function has a positive skewness when $\mathrm{L}_{3}>\mathrm{L}_{4}$ and has a negative skewness when $\mathrm{L}_{3} \mathrm{~L}_{4}$ with a very long tall to the right and to the left, respectively. Also, the mode of distribution shifted very fast to the right as L_{3} decreases and L_{4} inoreases. Figures 2.Ga and 2.6b show the Ramberg density function and the fallure rate function for the values of L_{3} and L_{4} as shown in Table 2.5.

$$
\begin{aligned}
& 20 \\
& 18 \\
& 16 \\
& 14 \\
& 12 \\
& 10 \\
& 8 \\
& 6 \\
& 4 \\
& 2 \\
& 0 \\
& \text { FIG.2.5b.Failure rate Function } \\
& 0
\end{aligned}
$$

Fig.2.6b. Failure rate Function

Table 2.5.Values of L_{3} and L_{4} for Fig.2.6a and Fig.2.6b.

In region 2 the distribution has a negative skewness with a very long tall to the left, while in region 4 the distribution has a positive skewness with a very long tall to the right. Figures 2.7a and 2.7b show the Ramberg density function and failure rate function in region 2 for the values of L_{3} and L_{4} as shown in Table 2.6 .

Table 2.6.Values of L_{3} and L_{4} for Fig. 2.7a and Fig.2.7b.

Figures 2.8 and 2.86 show the Ramberg density function and failure rate function in region 4 for the values of L_{3} and L_{4} as shown in Table 2.7.

Table 2.7.Values of L_{3} and L_{4} for Fig.2.8a and 2.8 b .

| Curve No. | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~L}_{3}$ | 1.30 | 1.40 | 1.50 | 1.60 | 1.70 |
| $-\mathrm{L}_{4}$ | 1.70 | 1.60 | 1.50 | 1.40 | 1.30 |
| - | | | | | |

As we can see from the graphs that Ramberg distribution can be used for the life time distribution with a wide variety of fallure rate models including a unimodal fallure rate model.

Chapter 3.

THE DESIGN OF GAUGES.

3.1 General Comment on The Design.

Gauges can be used for any measurable quantity that can be arranged in an order. The use of a gauge leads to a classification of a set of items. It means that the observations are frequency counts in each class rather than exact measurements. The observed frequencies have to be used in the analysis. The physical form of gauges will depend on the nature of the observations. For instance, if our interest is in the weient of the items then a device like a balance can be a gauge. Similarly if our interest is in the life time of the material then probably an instrument that can check whether or not the life time of an item is greater than a particular value can be a Eauge.

Now, consider an observation, using gauge, on the Iffe time distribution in order to test the hypothesis about a parameter of distribution, say, for example the characteristic life of an item. Since the observation is concerned with a life time, we can place the instrument on the certain value of time T as a gauge wich will classify the items in the experiment into classes. The classification of the ltems would be based on whether or not an item passed the eauge. The number of classes will depend on the number of gauges being used in the
experiment. For example if we use one gauge then we should have two disjoint regions where the items will be classified. If we use two gauges then we whould have three disjoint regions where the items will be classified, etc. In the following discussion we wlll study of the setting of the gauges on the optimal position in the sense of maximizing the power of test. The optimal position of gauges would be as a fixed time belng the value of gauges. Therefore, the design of gauges is concerned with the setting of gauges in the optimal position if possible, otherwise a good position would the result of the study. The study covers the use of one gauge and two gauges, respectively.

3.2 One Gauge.

Suppose n independent observations, using gauge, are made on the Weibull distribution in order to test the hypothesis about characteristic life θ. Suppose further, that one gauge has been chosen to be used in the observation. This means it would be similar to the life time test truncated at a preassigned time T. Therefore the observations would be classified into two classes A_{1} and A_{2}. The two classes would be defined as follows:

```
A}\mp@subsup{A}{1}{}\mathrm{ is a set of the nonsurvival items prior to time T
A2 is a set of the survival items beyond time T
```

Let n_{i} : $1=1,2$, be the number of items falline into A_{i}, and suppose we would like to to test the hypothesis:

$$
\begin{aligned}
& H_{0}: \theta=\theta_{0} \quad \text { agianst } \\
& H_{1}: \theta=\theta_{1}, \quad \theta_{1} \leq \theta_{0}
\end{aligned}
$$

Consider $R_{1}=n_{1}$ as a test statistic. Clearly, if H_{0} is false then we would like $R_{1}>C$; C is an integer and commonly called acceptance number. Under both null and alternate nypothesis R_{1} has a binomial distribution, hence the hypothesis test could be made equivalent to a test on the parameter in a binomial distribution.

Suppose, under null hypothesis $H_{O}, p_{i} ; 1=1,2$ denote the probability of an item falling into A_{i}, then H_{0} implies the following binomial distribution:

$$
P\left(R_{1}=r\right) \equiv P(r)=\left({ }_{r}^{n}\right) p_{1} r p_{2} n-r
$$

When $P\left(r e j e c t i o n ~ o f ~ H_{0} \theta_{0}\right)=\alpha ; 1$ e Type I error, then

$$
P\left(R_{1}>C\right)=\alpha
$$

or

$$
\sum_{i=c+1}^{u} P\left(I_{i}\right)=\alpha
$$

Now, under alternate nypothesis H_{1}, suppose q_{1}; $i=1,2$ denote the probability of an item falling into A_{i}, then H_{1} implies the collowing binomial distribution:

$$
P(r)=\left({ }_{r}^{n}\right) q_{1} r_{q_{2}} n-r
$$

When $P\left(\right.$ acceptance of $\left.H_{0} \theta_{1}\right)=\beta$; 1.e Type II error, then

$$
P\left(R_{1} \leq C\right)=\beta
$$

or

$$
\sum_{i=0}^{c} P_{i}\left(r_{i}\right)=\beta
$$

The power of test is given by $\mathrm{PW}=1-\beta$.
It ls likely that we could not expect a completely general solution of the value of gauge in terms of time t. However, when the probabllity term is used to express the position of a gauge, then we should be able to choose the single value of gauge such that the power of test $1 s$ still, orclose enough to the maximum. Therefore we would express the position of a gauge in the probability terms rather than in the fixed time.

As an lllustration of this argument, consider the case of $n=50$ with hypothesis as follows:

$$
\begin{aligned}
& \mathrm{H}_{0}: \theta_{0}=1.000 \text { hours against, } \\
& H_{1}: \theta_{1}=\{1.000,(-50), 450\} \text { nours, respectively. }
\end{aligned}
$$

By using a normal approximation to the binomial dlstribution, the optimal position of one gauge has been carried out for a given Type I error $\alpha=.050$ with the shape parameter $\beta=1,(.1), 1.5,2,3$ as shown in Table 3.1a. As we can see, the positions of gauge are slightly different. However, we should be able to choose a single value as a common value of a gauge. Table 3.1 b shows the power of test when the gauge is set at time t such that the probability of an item not surviving prior to time t is equal to 0.65.

It can be seen that the difference of the power of test In Table $3.1 a$ and Table 3.10 is less than or equal to 0.002. Therefore, in this case, it is quite reasonable to take the probability $p=0.65$ as the value for one gauge.

It is interesting to note that for the practical purposes, when the power of test is \&reater or equal to 0.999 then may be we can reduce either the lengthtime of observation or the sample size. Alternatively, we can probably reduce both of them at the same time. Table 3.2 shows the power of test with $\beta=\{1,1,5,2,3\}$ as an fllustration for this argument. The final decision would depend on other consideration such as the cost of the observation.

Table 3.1a. The optimal position of one gauge.

β	1	1.1	1.2	1.3	1.4	1.5	2	3
θ_{1}	p : PU.	P : PV	p P\%.	1 $\mathrm{P}_{\text {P }}$	P : PY.	p \| PY.	p : Py.	p : PV.
1.000	1.050	1. 050	- 1.050	- 1.050	- 1.050	1.050	1.050	1.050
950	. 65 1.083	.65 \| . 087	.65 - . 091	.65 - .096	. 65 : . 100	. 65 : . 105	. $65: .131$.66 197
900	. 651.134	. 65 : . 147	.65 - . 160	. 65 : . 173	. 65 : 188	. 65 : .203	. $65: .292$. 66 : . 514
850	. 65 : . 210	.65: 236	.65 1.263	. 651.293	. 65.1 .324	. $65: .356$.66 .535	. 66 - .858
800	.65	. 65 : . 360	.65: .407	. 65 - .456	. 65 - . 506	.66 .557	.66:.791	. 66 - . 990
750	. $65: .450$. 651.515	. 66 1.581	.65	. 67 - . 707	. $68 \quad 1.764$. 67 - .952	. 661
700	. 65 : 606	. 65 : . 685	.66 - .757	.66 \| . 821	. 67 : .875	. 67 : .917	. 67 . 997	1
650	. 67 : .763	.67: 838	. 671.897	. 67 : . 940	. 68 : . 969	. 67 - . 985	- * *	- ${ }^{\text {- }}$
600	. 68 : . 890	. 68 1. 942	. 68 - . 974	.68 : . 990	. 68 - .997	-	- 1	- 1 *
550	. 68 : . 966	. 68 1.988	. 68 : . 997	.68 : *	- \| *	- 1	- \| *	- 1 *
500	. 68 - . 995	. 68 1. 998	- \| *	- 1 *	-	- 1 *	\cdots - ${ }^{\text {- }}$	1
450	.681	1	- 1 *	- ${ }^{\text {* }}$	- 1	- 1	- 1 *	- 1

Table 3.ib. The power of test when the gauge is set on $p=.65$

A	1	1.1	1.2	1.3	1.4	1.5	2	3
${ }^{1} 1$								
1.000	. 050	. 050	. 050	. 050	. 050	. 050	. 050	. 050
950	. 083	. 087	. 091	. 096	. 100	. 105	. 131	. 197
900	. 134	. 147	. 160	. 173	. 188	. 203	. 292	. 514
850	. 210	. 236	. 263	. 293	. 324	. 356	. 534	. 857
800	. 315	. 360	. 407	. 456	. 506	. 556	. 790	. 990
750	. 450	. 515	. 580	. 645	. 706	. 763	. 950	*
700	. 606	.684	. 756	. 820	. 873	. 916	. 996	*
650	. 762	. 836	. 896	. 938	. 967	. 984	*	*
600	. 888	. 940	. 972	. 989	. 996	. 999	*	*
550	. 965	. 987	. 997	. 999	\star	*	*	*
500	. 994	. 999	*	*	*	*	*	*
450	*	*	*	*	*	*	*	*

Table.3.2.The power of test with $n=50, p=.26$; $n=40, p=.35 ; n=30,25, p=.65$.

	$\begin{gathered} \mathrm{n} \\ \mathrm{p} \end{gathered}$	50 50 $.26$	$\begin{aligned} & 40 \\ & .35 \end{aligned}$	$\begin{gathered} 30 \\ -.65 \end{gathered}$	$\begin{gathered} 25 \\ \hdashline .65 \end{gathered}$
β	θ_{1}				
1	450	. 963	. 968	. 979	. 949
	400	. 991	. 993	. 998	. 990
	350	. 999	. 999	*	*
1.5	600	. 948	. 954	. 967	. 927
	550	. 988	. 991	. 997	. 986
	500	. 999	. 999	*	. 999
2	650	. 982	. 985	. 993	. 977
	600	. 998	. 999	*	*
	550	*	*	*	*
3	750	. 982	. 986	. 993	. 977
	700	. 999	*	*	*
	650	*	*	*	*

3.3 Two Gauges.

As before, suppose n independent observations, using eauee, are made on the welbull distribution in order to test the hypothesis about characteristic life e. Now, instead of using one gauge, suppose two gauges have been chosen to be used in the observation. As a result of this, the observations would be classified into three disjoint classes A_{1}, A_{2} and A_{3}. Let T_{1} and T_{2} denote the positions of the first and the second gauge, respectively, the three classes would be defined as :
A_{1} is a set of the nonsurvival items prior to T_{1}
A_{2} is a set of the nonsurvival items between T_{1} and T_{2} A_{3} is a set of the suvival items beyond T_{2}

Suppose n_{i} nd $p_{i}, i=1,2,3$; denote the number of the Items in each group and the probablilty of an ltem falling into ith class. respectively. Consider the statistic $\mathrm{R}_{2}=\mathrm{n}^{-n_{3}}$ as the test statistic. There are $2 \mathrm{n}+1$ possible
 Consider the trinomial:

$$
P\left(n_{1}, n_{3}\right)=\frac{n!}{n_{1}!n 2!n_{3}!} p_{1} n_{1} p_{2} n_{2} p_{3} n_{3}
$$

where $n_{2}=n-\left(n_{1}+n_{3}\right)$.

The probabllity distribution of R2. Taj Hijrl (1979), is given by:

$$
P\left(R_{2}=r\right)= \begin{cases}{[(n-r) / 2]} \\ \sum_{n_{3}-r} P\left(n_{3}+r, n_{3}\right. & \text { for } r<0 \\ & \text { for } r \geq 0\end{cases}
$$

The exact distribution of R_{2} may be generated by summing the trinomials probabilities.

As an illustration consider the case of $n=5$. The possible values of R_{2} are $-5,-4, \ldots . .0, \ldots . .4 .5$. Suppose the two gauges are setting such that $p_{1}=p_{3}=.20$. The probability of $\mathrm{R}_{2} \leq-3$ is given by:

$$
P\left(R_{2} \leq-3\right)=P\left(R_{2}=-5\right)+P\left(R_{2}=-4\right)+P\left(R_{2}=-3\right)
$$

Using the obove formulae we find,

$$
P\left(R_{2} \leq-3\right)=0.03552
$$

Taj Hijri (1979) has been investigated that a normal approximation can be used for R_{2} where the symmetrical position of gauge, in the sense $p_{1}=p_{3}$, is desirable. In the study of the optimal position of two gauges, we will refer to this result by setting the gauges on the symmetrical position and assuming R_{2} has a normal distribution. The first four moments of R_{2} are given by,

$$
\begin{aligned}
& E\left(R_{2}\right) \equiv \mu=n\left(p_{1}-p_{3}\right) \\
& \mu_{2}=n\left\{\left(p_{1}+p_{3}\right) \cdots\left(p_{1}-p_{3}\right)^{2}\right\} \\
& \mu_{3}=n\left(p_{1}-p_{3}\right)\left\{2\left(p_{1}-p_{3}\right)^{2}-3\left(p_{1}+p_{3}\right)+1\right\} \\
& \mu_{4}=3 \mu_{2}^{2}-6 n\left(p_{1}-p_{3}\right)^{4}+n\left\{3\left(p_{1}+p_{3}\right)-1\right\}\left\{4\left(p_{1}-p_{3}\right)^{2}-\left(p_{1}+p_{3}\right)\right\}
\end{aligned}
$$

For two gauges the length time of observation being conducted would be determined by the position of the second gauge, i.e T_{2}. However like the one gauge, it would not be a practical proposition to use the fixed time to express the position of gauges, in the sense that it would be difficult to obtain a single value of a fixed time as a value of gauces. Therefore, we use probability terms for the position of two gauges, i.e $p_{1}=p_{3}=p$.

As an illustration, consider the case of testing the hypothesis about θ as in the one gauge example. Table 3.3a shows the optimal position of gauges for a given Type I error $\alpha=.050$. From this table we can see that this is quite reasonable if we take $p=0.30$ as a value for two gauges.

Table 3.3a. The optimal position of two gaves.

β			1.1		1.2		1.3		1.4		1.5		2		3	
${ }^{8} 1$	0	PY.	p	P4.	p	P\%.	p	PY.	p	PY.	p	Pr.	p	PY.	D	PY.
1.000	-	. 050	-	. 050	-	. 050	-	. 050	-	. 050	-	. 050	-	. 050	-	. 050
950	. 30	. 086	. 30	. 091	. 30	. 095	. 30	. 100	. 30	. 105	. 30	. 110	. 30	. 140	. 30	. 213
900	. 30	. 143	. 30	. 157	. 30	. 171	. 30	. 187	. 30	. 203	. 30	. 220	. 30	. 315	. 30	. 557
850	. 30	. 228	. 30	. 256	. 30	. 287	. 30	. 320	. 30	. 354	. 30	. 389	. 30	. 578	. 30	. 886
800	. 30	. 344	. 30	. 393	. 30	. 444	. 30	. 496	. 30	. 549	. 30	.601	. 30	. 827	. 30	. 993
750	. 30	. 490	. 30	. 558	. 30	. 625	. 30	. 689	. 30	. 749	. 30	. 802	. 30	. 963	. 30	*
700	. 30	. 651	. 30	. 728	. 30	. 796	. 30	. 854	. 30	. 900	. 31	. 936	. 30	. 997	-	*
650	. 30	. 801	. 30	. 868	. 30	. 919	. 30	. 954	. 30	. 976	. 31	. 989	. 30	*	-	*
600	. 30	. 913	. 30	. 955	. 31	. 979	. 31	. 992	. 31	. 997	. 31	*		*	-	*
550	. 30	. 974	. 30	. 991	. 31	. 997	. 31	*	. 31	*	-	*	-	*	-	*
500	. 30	. 996	. 30	*	. 31	*		*		*	-	*		*	-	*
450	. 30	*	-	*	-	*		*		*	-	*	-	*	-	*

note: $*=$ equal or nearly to 1 .
It should be noted that it is possible to reduce
the lengthtime of observation with a relatively small
effect on the power of test. For instance if we set the gauges at the time T_{1} and T_{2} such that $p_{1}=p_{3}=p=0.35$, then the resulting power of test will be decreased only less than or equal to 0.006 . Table 3.3 b shows the power of test when the gauges are set such that $\mathrm{p}=0.35$.

Table 3.3 b . The power of test when gauges are set such that $\mathrm{p}=0.35$.

θ_{1}^{β}	1	1.1	1.2	1.3	1.4	1.5	2	3
1.000	. 050	. 050	. 050	. 050	. 050	. 050	. 050	. 050
950	. 086	. 090	. 095	.100	. 104	. 110	. 138	. 211
900	. 142	. 156	.170	. 185	. 201	. 218	. 315	. 551
850	. 226	. 254	. 284	. 316	. 349	. 385	. 573	. 884
800	. 341	. 390	. 439	. 490	.543	. 595	. 823	. 993
750	. 487	. 554	.619	. 684	. 744	. 798	. 962	*
700	. 647	. 725	. 792	. 851	. 898	. 934	. 997	*
650	. 798	. 867	. 917	. 953	. 976	. 989	*	*
600	. 912	. 955	. 979	. 992	. 997	*	*	*
550	. 974	. 991	. 997	*	*	*	*	*
500	. 996	*	*	*	*	*	*	*
450	*	*	*	*	*	*	*	*

note $t=$ equal or nearly to 1.

As in the one gauge case, when the power of test is sreater or equal to .999 then we can elther reduce the lengthtime of observation or the sample size. Alternatively we can probably reduce both of them at the same time. Table 3.4 shows the power of test with $\beta=1$. 1.5, 2 and 3 as an 111 ustration of this argument.

Table 3.4. The power of test with $n=50, p=.45$; $n=40,35, p=40 ; n=25, p=.30, .40$.

Chapter 4.

APPLICATION IN ACCEPTANCE SAMPLING PLANS.

Gauges are most likely to be used when the quality of the items refer to the measurement on a continuous scale. This means the application of gauges in the acceptance sampling plans is concerned wlth the average quality and not with the fraction defective of the items. Therefore the operating characteristic (OC) function will give the probability of acceptance as a function of the average quality of an ltem. In the life testing case, since we are interested on the characteristic life or the mean life of the items, the oc function will give the probability ofacceptance as a function of this parameter.

Since the OC function is complement of the power function, the optimal position of a gauge in the acceptance Sampling plans is the same as in the testing hypothesis. The optimal position in this case has as criteria the minimisation of type II error β or consumer's risk. However, the use of a gauge in the acceptance sampling plans is also concerned with a setting of a gauge in order to meet the required conditions of the plans. For instance we can specify the sample size n, the type I error α or producer's risk ard the position of gauge (T) to find the critical point (C). Or to take another example, we can specify n, α and β to find T and C etc.

Since C is cost independont, the plans are likely to specify α and β in order to find n and T. There may be a number of plans:i.e palrs of n and T which satisfy the required conditions. Therefore we shall impose an additional condition which will lead to a unique plan. The additional condition can be the minimum sample size n or the minimum of the cost function of observation. If a plan criteria is cost then from these several possiblilties we can choose a pair of n and T such that the total cost of observation is at a minimum. We will discuss this problem later, in Chapter 5.

We consider a single sampling plan and a double sampling plan respectively.

4.1 Single Sampling Plan.

In a single sampling plan we will study the use of one gauge and two gauges.
a. One gauge.

Suppose a batch of items is presented for inspection. A single sampling plan, using one gauge, consists of a random sample of n items from the batch for inpection. The decision on the batch wlll depend on the result. If we decide to elther accept or reject the baton then the batch would be accepted if the number of defectives d found prior to time T in the n items were less than or equal to the acceptance number c; T is the position
of the gauce.
We have seen that for a given o then the gauge can be set as in the testine hypothesis to meet the minimum value of β. However in the practical use of acceptance sampling plans α and β are normally specifled. For this plan we may have a number of pairs of n and T that satisfy the given conditions. Since one gauge is used we can consider that d has a binomial distribution hence we can use a binomial table to find the solutions that satisfy the required conditions.

For practical purposes, nowever, we can probably use either the polsson or the nommal approximation to the Binomial. Extensive examples of this case nave been published in a number of text books. Guenther (1977) for example, pointed out the conditions in which the poisson distribution can be use. In our case we will consider of the use of a normal approximation to calculate the plans: i.e the pair af n and T that satisfy a given condition. The related acceptance number of the plan can be calculated afterwards by putting mean $\mu=n p$ and standard deviation $\sigma=\sqrt{n p}(1-\mathrm{p})$. As an illustration of how good a normal approyimation can be in use, consider the case of a single sampling plan consists of $n=50$ drawn from an exponential distribution with one gauge set at several positions. Suppose we wish the probabllity of acceptance at the mean Ife time $\theta=1000$ hours to be about 95%, hence $\alpha=0.05$. Table 4.1 shows the oc-curves which are calculated by using a binomial and a normal approximation. As we can see,
as T increases the dlfference becomes smaller. Therefore it is quite reasonable to use a nommal approximation $1 n$ this case.

Table 4.1 oc-curve for a single sampling plan using binomial and normal approximation

We will now investigate the determination of single sampling plans for situation in which $\theta_{0}, \theta_{1}, \alpha$ and β are specified. As an illustration consider the case of nypothesis:

$$
\begin{aligned}
& \mathrm{H}_{0}: \theta_{0}=1,000 \text { hours, against } \\
& H_{1}: \theta_{1}=\{700,(-50), 350\}, \text { respectively }
\end{aligned}
$$

For a given α and β and assuming life time T has an exponential distribution the plans that satisfy the required conditions have been calculated using a normal approximation as shown in Table 4.1a, b and c. Table $4.1 a$
shows some of the plans that satisfy $\alpha=0.05$ and $\beta=0.05$. Table 4.1 b shows some of the plans that satisfy $\alpha=0.05$ and $\beta=0.10$. Table 4.1c shows some of the plans that satisfy $\alpha=0.10$ and $\beta=0.10$. As we can see from these Tables the sample size n decreases when the position of a gauge T increaseas. The minimum sample size n will occur when the gauge is set around optimal position.

Having determined the plans that satisfy the required conditions we can calculate the related acceptance number C for each plan. For example, if we take the case of alternate hypothesis $H_{1}: \theta_{1}=500$ with $\alpha=0.05$ and $\beta=0.05$ then for the plan with $\mathrm{n}=38$ and $\mathrm{T}=693.15$ the acceptance number is about 24.

Table 4.1a Some of the plans that satisfy $\alpha=0.05$ and $\beta=0.05$ for a single sampling plan, using one gauge.

Gauge position		${ }_{1}$							
p	7 (hrs.)	700	650	600	550	500	450	400	350
0.50	693.15	158	106	74	52	38	27	20	15
0.51	713.35	156	105	73	52	37	27	20	15
0.52	733.97	154	103	72	51	37	27	20	15
0.53	755.02	152	102	71	50	36	27	20	14
0.54	776.53	150	100	70	50	36	26	19	14
0.55	789.51	148	99	69	49	36	26	19	14
0.56	820.98	146	98	68	49	35	26	29	14
0.57	843.97	144	97	68	48	35	26	19	14
0.58	867.50	143	96	67	48	35	26	19	14
0.59	891.60	141	95	66	48	35	26	19	14
0.60	916.29	140	94	66	47	34	25	19	14
0.61	941.61	139	93	65	47	34	25	19	14
0.62	967.58	137	93	65	47	34	25	19	14
0.63	994.25	136	92	65	46	34	25	19	14
0.64	1021.65	135	91	64	46	34	25	19	14
0.65	1049.82	134	91	64	46	34	25	19	14
0.66	1078.81	133	90	64	46	34	25	19	14
0.67	1108.66	133	90	63	46	34	25	19	15
0.68	1139.43	132	90	63	46	34	25	19	15
0.69	1171.18	132	89	63	46	34	26	19	15
0.70	1203.97	131	89	63	46	34	26	20	15

Table 4.1b Some of the plans that satisfy $\alpha=0.05$ and $\beta=0.10$

Table 4.10 Some of the plans that satisfy $\alpha=0.10$ and $\beta=0.10$

b. Two gauges.

Suppose we choose to use two gauges in observation for a single sampling plans consisting of a sample of n items. Our decision on the batch wlll depend on the results of $R_{2}=n_{1}-n_{3}$. If the decision is to elther accept or reject the batch then the batch would be accepted if R_{2} were less than or equal to the acceptance number h.

Since we use a normal approximation to R_{2} then under null hypothesis H_{0} the acceptance number should be:

$$
\mathrm{n}=\mathrm{z}_{\alpha} \sqrt{2 n p}
$$

where z_{α} is the appropriate normal deviate. This figure can be calculated for practical use, after we have decided on the most suitable plan. Since the lengthtime of the observation being conducted is determined by the position of the second gauge (T_{2}) the plan should be the pair of n and T_{2}.

As before, we investigate the determination of single sampling plans for situation in which $\theta_{0}, \theta_{1}, \alpha$ and β are specified. As an illustration consider the hypothetical case in the one gauge example. For a given α and β and assuming life time T has an exponential distribution the plans that satisfy the required conditions have been calculated as shown in Table 4.2a, b and c. Table $4.2 a$ shows some of the plans that satisfy $\alpha=0.05$ and $\beta=0.05$. Table 4.2 b shows some of the plans that satisfy
$\alpha=0.05$ and $\beta=0.10$. Table $4.2 c$ shows some of the plans that satisfy $\alpha=0.10$ and $\beta=0.10$.

Table $4.2 a$ Some of the plans that satisfy $a=0.05$ and $\beta=0.05$ for a single sampling plan, using two gauses.

Gauge	Position	θ_{1}							
\square	T T_{2} (hrs.)	700	650	600	550	500	450	400	350
0.25	1386.29	128	87	61	44	33	25	19	14
0.26	1347.07	127	86	61	44	32	24	18	14
0.27	1309.33	126	86	60	43	32	24	18	14
0.28	1272.97	126	85	60	43	32	24	18	13
0.29	1237.87	126	85	60	43	31	23	17	13
0.30	1203.97	126	85	59	43	31	23	17	13
0.31	1171.18	126	85	59	43	31	23	17	13
0.32	1139.43	127	85	59	42	31	23	17	13
0.33	1108.66	127	85	59	42	31	23	17	12
0.34	1078.81	128	86	60	43	31	23	17	12
0.35	1049.82	128	86	60	43	31	23	17	12
0.36	1021.65	129	87	60	43	31	23	17	12
0.37	994.25	130	87	61	43	31	23	17	12
0.38	967.58	132	88	61	43	31	23	17	12
0.39	941.61	133	89	62	44	32	23	17	12
0.40	916.29	134	90	62	44	32	23	17	12

Table $4.2 b$ Soue of the plans that satisfy $\alpha=0.05$ and $\beta=0.10$ for a single saupling plan, using two gauges.

Gause	Position	θ_{1}							
0	T_{2} (hts.)	700	650	600	550	500	450	400	350
0.25	1386.29	102	70	49	36	27	20	15	12
0.26	1347.07	102	69	49	35	26	20	15	11
0.27	1309.33	101	69	48	35	26	19	15	11
0.28	1272.97	101	68	48	35	26	19	14	11
0.29	1237.87	101	68	48	35	25	19	14	11
0.30	1203.97	101	68	48	34	25	19	14	11
0.31	1171.18	101	68	48	34	25	19	14	11
0.32	1139.43	101	68	48	34	25	19	14	10
0.33	1108.66	101	68	48	34	25	19	14	10
0.34	1078.81	102	69	48	34	25	18	14	10
0.35	1049.82	102	69	48	34	25	18	14	10
0.36	1021.65	103	69	48	35	25	19	14	10
0.37	994.25	104	70	49	35	25	19	14	10
0.38	967.58	105	70	49	35	25	19	14	10
0.39	941.61	106	71	49	35	26	19	14	10
0.40	916.26	107	72	50	36	26	19	14	10

Table $4.2 c$ some of the plans that satisfy $a=0.10$ and $\beta=0.10$
for a single saupling plan, using two gauses.

Gauge	position				${ }_{1}$				
p	T_{2} (hts.)	700	650	600	550	500	450	400	350
0.25	1386.29	78	53	37	27	20	15	11	9
0.26	1347.07	71	53	37	27	20	15	11	8
0.27	1309.33	71	52	37	26	19	15	11	8
0.28	1272.97	71	52	36	26	19	14	11	8
0.29	1237.87	77	52	36	26	19	14	11	8
0.30	1203.97	71	52	36	26	19	14	10	8
0.31	1171.18	71	52	36	26	19	14	10	8
0.32	1139.43	71	52	36	26	19	14	10	8
0.33	1108.66	71	52	36	26	19	14	10	8
0.34	1078.81	78	52	36	26	19	14	10	8
0.35	1049.82	78	53	37	26	19	14	10	8
0.36	1021.65	79	53	37	26	19	14	10	8
0.37	994.25	79	53	37	26	19	14	10	8
0.38	967.58	80	54	37	26	19	14	10	8
0.39	941.61	81	54	38	28	19	14	10	8
0.40	916.29	82	55	38	28	19	14	10	8

4.2 Double sampline plan.

Suppose for the same required conditions we wish to replace a single sampling plan by a double sampling plan. This means we shall require both plans to possess the same or approximately the same $O C$ curve. As we have observed in the previous section, there may be a number of plans whose OC curve satisfy the given conditions. In order to find a unique plan we have to impose an additional condition.

For a situation in which $\theta_{0}, \theta_{1}, \alpha$ and β are specified we have calculated the plans that satisfy the required conditions, using a normal approximation, in a single sampling plans. In a double sampling case however, we cannot use the same technique to find the plans that satisfy the required conditions, since a double sampling
plan requires 5 parameters for its full specification. The flve parameters are two sample $s i z e s n_{1}$ and n_{2} and three decision numbers C_{1}, C_{2} and C_{3}; where C_{1} and C_{2} are acceptance number and rejection number in the first sampling with sample size n_{1} and C_{3} is acceptance number for the combination of the first sample of n_{1} and the second sample of n_{2}.

To overcome this problem we can use the information given by the solution of the single sampling plan. Guenther (1977) recomended the procedure of using the Information from a single sampling solution for the double sampling case. The summary of the procedure as follows:
1.List the single sample solutions and non solutions 2. Select any C_{2} for which solution exist
3. Select any C_{1} such that $0 \leq C_{1}<C_{2}$. In a number of plans used in practical situations we have $C_{1} \leq 0.5 C_{2}$
4. For chosen C_{1}, C_{2} determine bounds on n_{1} such the oc at $\theta_{1} \leq \beta$
5. By trial for the chosen C_{1}, C_{2}, n_{1} find n_{2} such that the two conditions on $O C$ curve are satisfied.

Repeat step 5 for another n_{1}, C_{1} and C_{2} and terminate the trial by an additional condition.

We will apply this same idea to our case, though probably not using excactly the same procedure as Guenther. We might determine the solution for a double sampling plan by reference to the single sampling plan chosen earlier: 1.e a pair of n and T, from a number of plans that satisfy the required conditions in a single sampling plan. with the same position (T) of a gauge we can determine n_{1}
proportional to n. Also choose C_{1}, C_{2} and C_{3} such that $C_{1}<C_{2} \leq C \leq C_{3} ; C$ is the acceptance number in a single sampling plan. Using the fact that $n \leq n_{1}+n_{2}$, we can find n_{2} by trial for chosen C_{1}, C_{2}, C_{3} and n_{1}. Since no claim is made on the determinetion of all these figures then we can choose by trial.

Let us suppose that the parameters of a double sampling plan are determine as follows:

```
1. Select \(\mathrm{n}_{1}\) to be about 0.8 n
2. select \(\mathrm{C}_{3} \geq \mathrm{C}+1\)
3. Select \(\mathrm{C}_{2}\) to be about C -2
4.Select \(C_{1} \leq 0.5 \mathrm{C}\)
```

for the case in which $\theta_{0}=1,000$ hours. $\theta_{1}=500$ hours, $\alpha=0.05$ and $\beta=0.05$. Suppose the plan with $n=160$ and $T=105.36$ ($\mathrm{p}=0.10$) has been chosen from a number of plans that satisfy the given conditons in a single sampling plan. For this plan the acceptance number $\mathrm{C}=22$. Table 4.3 shows the OC at θ_{0} and θ_{1} for several combinations of C_{1}, C_{2} and C_{3} with $n_{1}=0.8 n$. As a reference we put the OC of a single sampling plan in the first row. As we can see from the Table, we can have a number of plans that satisfy the required conditions. In order to find a unique double sampling plan we can use n_{2} as a criteria on parameter, since we have specified T and n_{1}. In our example we can see that plans No. 3 and 5 are most suitable cholces for a double sampling plans.

Intultively the results in Table 4.3 suggest that the total sample $n_{t}=n_{1}+n_{2}$ will depend on C_{3}, and C_{2} will depend on the chosen value of n_{1} proportional to n. This is probably much clearer if we describe our results using a random walk diagram as shown in F1g.4.1; see Hamaker(1955), by putting the total sample as abscissa and the number of defectives observed as ordinate. Hamaker (1955) polnted out that apart from random deviations a random walk created by the inspection of items taken from a homogeneous lot will move in a long stralght line through the origin. Hence 1f we draw a stright line from the origin to the divided point C_{3} in the third screen it is preferable that this line should pass somewhere through the centre of the open area between C_{1} and C_{2}, otherwise the judgements based on the first and the total sample are not balanced.

Since the plans for double sampling are made with reference to the solutions in a single sampling plan the sample size n and the acceptance number C in the single
sampling plans would be used as a reference for drawing the diagram. Hence if we draw a stright line from the origin to the dividing point C in the second screen then for any $n_{1} \leq n$ we can have pairs of C_{1} and C_{2}. Since a stright ine OC is fixed then the total sample n_{t} will increase as well as C_{3} on the third screen increased.

Chapter 5.

EFFICIENCY AND ROBUSTNESS OF TEST.

Clearly the advantages of gauging over exact measurement are its speed and ease of operation. Gauging can lead to an automatic quality control system that could replace nonproductive inspection work. Furthermore, the simplicity of the statistical results of gauging make it attractive.

In this chapter we will consider the other measures of the merits of the test such as its relative efficiency and robustness of test. Also we will consider the costs that could be involved in observations using gauging.

5.1 Efficiency.

A comparison of gauges with exact measurement is obviously of interest. The efficiency of test is calculated for a given α and β with reference to the number of observations required for a gauge based test and a test based on exact measurement. We will compare the test which is based on one gauge (R_{1}) and two gauges (R_{2}) with the U test, Bain(1978), which is based on exact measurement. According to Bain, for a random sample of size n from the Weibull distribution $W(\beta, \theta)$, the distribution of U is approximated to normal distribution as sample size n is
increased. The sfatistic u is given by:

$$
\begin{aligned}
& \mathrm{U}=\beta \ln \left(\theta_{\mathrm{O}} / \theta\right) \sqrt{n} \\
& \theta_{\mathrm{O}}=\text { observed characteristic life time }
\end{aligned}
$$

Using a normal approxmation to U, R_{1} and R_{2}, we calculate the number of observations required for R_{i}; $i=1,2$ and U tests, for a given α and β. As an illustration consider the following hypothetical case:

$$
\begin{aligned}
& \mathrm{HO}_{0}: \theta_{0}=1.000 \text { hours against, } \\
& H_{1}: \theta_{1}=\{800,(-50), 500) \text {, respectively. }
\end{aligned}
$$

For a given α and β the number of observations required has been calculated as shown in the Table 5.1a, b and c with shape parameter $\beta=1,1.5$ and $2 . \mathrm{n}_{\mathrm{U}}$ and n_{R} denote the number of obsevations for U and R_{i} test, respectively. From these Tables we can see that the efficiency of gauging relative to exact measurement is over 70%. We can also see that the R test when based on two gauges, is of relatively high efficlency than when based on the one gauge.

Table 5.1a. The number of observations required for $\alpha=0.05$ and $\beta=0.05$.

β	1			1.5			2		
	nR			n_{R}			n_{R}		
θ_{1}	n_{U}	0.8	t.g	n_{U}	$0 . \mathrm{g}$	t.E	n_{U}	$0 . g$	t.g
800	267	351	341	119	153	147	67	84	80
750	161	209	201	71	91	86	40	50	46
700	105	134	128	47	58	54	26	32	29
650	72	91	86	32	39	36	18	22	19
600	51	64	60	23	28	25	13	15	13
550	37	46	43	17	20	18	9	11	9
500	28	34	31	12	15	13	7	9	7

Table 5.1b. The number of observations reqiured for $\alpha=0.05$ and $\beta=0.10$.

$\begin{gathered} \beta \\ \theta_{1} \end{gathered}$	1			1.5			2		
		n	-		n				R
	n_{u}	O.E	t.g	n_{U}	$0 . g$	t.g	n_{U}	O.g	t.g
800	212	280	271	94	123	117	53	69	64
750	127	168	160	57	73	67	32	41	37
700	83	108	102	37	47	44	21	27	24
650	57	74	69	25	32	29	14	18	16
600	40	52	48	18	23	20	10	13	11
550	30	38	34	13	17	14	7	10	8
500	22	28	25	10	13	10	5	8	6

Table 5.1c. The number of observations required for $\alpha=0.10$ and $\beta=0.10$.

The use of a gauge in testing the hypothesis $H_{0}: \theta=\theta_{0}$ we assumed that the distribution of the parent population is known. However, if the actual distribution of the parent population is different from the assumption, then for the same critical region $C R$ the actual type I errors will differ from the assumed type I errors. A test that is less sensitive to the departures from assumptions made about the known distribution is said to be more robust.

Suppose, that in order to test the hypothesis $H_{0}: \theta=1.000$ hours, a sample of size n has been drawn from the population with an exponential distribution. For sample size $n=25,(5), 75$ and assuming $\alpha=0.050$ the $C R$'s are calculated. With the same $C R, \quad \alpha^{\prime}$ s are calculated when the true parent population is a Welbull distribution. Table 5.2a shows the effect on type I error α of assuming T has an exponential distribution when T has a Welbull distribution, using one gauge set at time T such that $P=p$. P is the probability of an item nonsurvive prior to time T. Table $5.2 b$ shows the effect on α of assuming T has an exponential distribution when T has a Weibull distribution, using two gauges set at time T_{1} and T_{2} such that $P_{1}=P_{3}=p$.

As we can see from Table $5.2 a$ and $5.2 b$ an R test
which is based on the two gauges is less sensitive than that based on one gauge to the departure from assumption about a known distribution as exponential. Therefore, we can say that the test using two gauges is more robust then the test using one gauge.

Table 5.2a Effect on of assuming T has an exponential distribution when T has a Yelbull distribution, one gauge set at time 9 .

\square	25	30	35	40	45	50	55	60	65	70	75
CR	6	7	8	9	10	11	12	13	14	15	16
P	0.12	0.12	0.12	0.13	0.13	0.13	0.13	0.14	0.14	0.14	0.14
θ											
Exp.	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500
1.1	0.0157	0.0146	0.0136	0.0128	0.0120	0.0113	0.0107	0.0101	0.0095	0.0091	0.0086
1.2	0.0037	0.0031	0.0026	0.0923	0.0019	0.0017	0.0015	0.0013	0.0011	0.0010	0.0009
1.3	0.0006	0.0005	0.0003	0.0003	0.0002	0.0002	0.0001	0.0001	0.0001	0.0001	0.0001

Table $5.2 b$ Effect on a of assuming ithas an exponential distribution when i has a Melbull distribution, tro gauges set at T_{1} and T_{2}.

\square	25	30	35	40	45	50	55	60	65	70	75
CR	3	4	5	6	1	8	9	10	11	12	12
p	0.09	0.12	0.16	0.20	0.23	0.27	0.30	0.34	0.38	0.41	0.38
0											
exp.	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500
1.1	0.0328	0.0353	0.0373	0.0390	0.0405	0.0418	0.0430	0.0441	0.0451	0.0460	0.0453
1.2	0.0195	0.0233	0.0265	0.0294	0.0320	0.0343	0.0365	0.0385	0.0404	0.0421	0.0408
1.3	0.0103	0.0142	0.0178	0.0212	0.0245	0.0276	0.0305	0.0332	0.0359	0.0363	0.0365
1.4	0.0047	0.0078	0.0112	0.0147	0.0182	0.0216	0.0250	0.0294	0.0316	0.0347	0.0324
1.5	0.0018	0.0038	0.0065	0.0096	0.0130	0.0165	0.0202	0.0239	0.0276	0.0312	0.0285
1.6	0.0005	0.0016	0.0034	0.0059	0.0089	0.0122	0.0159	0.0198	0.0238	0.0279	0.0248
1.7	0.0001	0.0006	0.0016	0.0034	0.0058	0.0089	0.0123	0.0162	0.0204	0.0248	0.0215

5.3 Cost function.

Suppose the total cost associated with an observation is represented by an equation:

$$
c=a_{1} n+a_{2} n t
$$

The constant a_{1} denotes the cost per item in the sample. This could be the cost of the sample unit, the part of the cost of test equipment which depends on the number of units tested, etc. The constant a_{2} denotes the cost per unit Item in a unit time of conducted observation. It could represent the cost of carrying out the observations, the cost incurred from walting for the result, etc.

We have seen in Chapter 4 that for a given α and β in a sampling plans we can have several pairs of n and T that satisfy the required conditions. A minimum sample size n occured when the gauge is set on the optimal position as in Chapter 3. However, we cannot say whether or not this plan is suitable one. In such a situation, perhaps a plan reflecting costs other than those associated with the sample size may be of more interest. In other words we can chose a plan that can minimize the total cost of the observations. For example, suppose a single sampling plan consists of a sample of size n drawn from an exponential distribution. Let us suppose that we wish the probability of acceptance of a batch of an average quallty $\theta_{0}=1.000$
hours to be about 95%. At the same time, we wish the probability of acceptance of a batch of an average quality $\theta_{1}=700$ hours to be about 5%. Hence, the plan specifies $\alpha=0.05$ and $\beta=0.05$. Let us also suppose $a_{1}=£ 1.50$ and $a_{2}=E 0.50$. Table 5.3a shows the total cost of the observations using one gauge for each pair of n and T that satisfy the above specification. We can see from this Table that the minimum cost of $£ 38.578 .49$ is achleved when $\mathrm{n}=1021$ and $\mathrm{T}=72.57$ hours. Compare this with the much greater total cost of $£ 70.538 .94$ when the gauge 1 s set on the optimal position;i.e $T=1049.82$ and $n=134$.

le 5.3a	Total co gauge (s	$\begin{aligned} & \text { of each } \\ & \text { igle sampl } \end{aligned}$	an using o plan).
	n	T (hours)	cost (E)
	1,426	51.29	38,708.77
	1,190	61.88	38,603.60
	1.021	72.57	38,578.49
	894	83.38	38,611.86
	795	94.31	38,680.73
	717	105.36	38,847.06
	652	116.53	38,966.78
	599	127.83	39,183.59
	553	139.26	39,334.89
	514	150.82	39.531.74

When the two gauges are used in a sinlge sampling plan, the minimum cost of the observation is achieved when both gauges are set at the same position;i.e $p_{1}=p_{3}=0.50$. This would appear to suggest that we should use one gauge rather than two gauges, but since one gauge is very sensitive to the assumption about the distribution of the parent population, this is probably not a practical
proposition. On the other hand, when the two gauges are set on time $T 1$ and $T 2$ such that $p_{1}=p_{3} \leq 0.36$, then the lengthtime of the observation being conducted is quite long. This of cause is something we are trying to avoid as far as possible. Therefore, for any practical purpose it might be a good compromise to set the two gauges at time T_{1} and T_{2} such that $0.36<p_{1}=p_{3}<0.50$. As an $11 l u s t r a t i o n$ of this, consider the case in the one gauge example. Table 5.3b shows the total cost of the observations using two gauge for each pair of n and T that satisfy given specifications. The minimum total cost is equal to $£ 54.995 .85$ achleved when the two gauges are set in the same position, i.e $p_{1}=p_{3}=0.50$ ($T_{1}=T_{2}=693.15$ hours) which is equivalent to using one gauge such that the probability of an item falling prior to time T (position of the gauge) is $\mathrm{p}=0.50$.

Chapter 6.

SUGGESTION FOR FURTHER WORK.

In this thesis, we have considered the use of one and two gauges in life testing. We have considered the use of gauges to test hypotheses about the mean life time of a Weibull distribution. Since the exponential distribution is a special case of the Weibull distribution it will be covered in the study. As Hirji and Shahani (1978) pointed out, it is shown that the test is of higher efficiency and greater robustness when based on two gauges than when based on one gauge. Therefore it would be reasonable to expect that the performance of a test would further improve if we use more gauges.

We have considered the using gauges in both a single sampling plan and a double sampling plan. By reference to the solution in a single sampling plan and using a random walk dlagram we might be able to predict the required parameters for a double sampling plan. It is shown that for a given set of conditions the minimum sample size reqlured is achleved when the gauges are set around the optimal position. It is also shown that although the use of two gauges substantially lmproved the performance of the test, in some cases it will probably be more economical to use one gauge, particularly when the cost per unit time is quite large. Since the required sample size for two
gauges is much less than for one gauge, it would be interesting to investigate the use of a gauge when the quality of items is not based on the time term.

Perhaps gauges can be used to test hypotheses about the other parameters of parent population. Shahani (1979) has used gauges for testing hypitheses about correlation coefficient in a bivarlate normal case. But as Hirji(1979) recorded, apart from Stevens(1948) work on estimation of the variance, no work has been yet done on testing hypotheses about variance using gauges. In a life testing context it would be interesting to investigate the use of gauges on testing hypotheses about the other parameters of life time such as shape and scale parameters. Since our considerations have been limited only to certain distribution: 1.e Welbull distribution, it would be interesting to investigate more generally the design and use of gauges in other life time distributions.

It would be interesting to investigate the use of gauges in several dimensions random variable.

Appendix 1.

Gaussian Quadrature.

The 1dea behind Gaussian Quadrature is to find an integration formula:

$$
I(f)=\int_{a}^{b} w(x) f(x) d x
$$

by,

$$
I_{n}(f)=\sum_{j=1}^{n} w_{j}(x) f\left(x_{j}\right) .
$$

The weights w_{j} and nodes x_{j} are restricted to be real, and nodes must belong to the interval of integration. The welght function should be nonnegative and satisfy the hypotheses:

1. $\int_{a}^{b}|x|^{n_{W}(x) d x}$, is integrable and finite for all $n \geq 0$ 2. Suppose that $\int_{a}^{b} w(x) g(x) d x=0$ for some nonnegative continuous function then the function $g(x) \equiv 0$ on (a,b).

The welghts w_{j} and nodes x_{j} are determine such that the error

$$
E_{n}(f)=I(f)-I_{n}(f)=0
$$

This will be achleved for as high a degree polynomial $f(x)$ as possible.

As an lllustration, consider the special case

$$
\begin{equation*}
\int_{-1}^{1} f(x) d x=\sum_{j=1}^{n} w_{j} f(x) \tag{1}
\end{equation*}
$$

The welghts w_{j} and nodes x_{j} are to be determined to make the error $E_{n}(f)$ equal to zero. To derive equations for the nodes and welghts, we first note that

$$
E_{n}\left(a_{0}+a_{1} x+\ldots .+a_{m} x^{m}\right)=a_{0} E_{n}(1)+a_{1} E(x)+\ldots . .+a_{m} E_{n}\left(x^{m}\right)
$$

Thus $E_{n}(f)=0$ for every polynomial of degree $\leq m$ if and only 1f

$$
E_{n}\left(x^{1}\right)=0 \quad 1=0,1, \ldots ., m
$$

Now, suppose $n=1$, then we have two parameters w_{1} and x_{1}. Since there are two parameters we consider requiring

$$
E_{1}(1)=0 \text { and } E_{1}(x)=0
$$

This gives

$$
\int_{-1}^{1} 1 d x-w_{1}=0 \quad \text { and } \int_{-1}^{1} x d x-w_{1} x_{1}=0
$$

This implies $W_{1}=2$ and $X_{1}=0$. Thus the formula (1) becomes

$$
\int_{-1}^{1} f(x) d x=2 f(0)
$$

which is similar to midpoint rule.

Similarly, when $n=2$ then we will have four parameters $w_{1}, w_{2}, x_{1}, x_{2}$ and thus we put four constraints on these parameters:

$$
E 2\left(x^{1}\right)=\int_{-1}^{1} x^{1} d x-\left(w_{1} x_{1}^{1}+w_{2} x_{2}^{1}\right)=0 \quad 1=0,1,2,3 .
$$

or

$$
\begin{gathered}
w_{1}+w_{2}=2 \\
w_{1} x_{1}+w_{2} x_{2}=0 \\
w_{1} x_{1}^{2}+w_{2} x_{2}^{2}=2 / 3 \\
w_{1} x_{1}^{3}+w_{2} x_{2}^{3}=0
\end{gathered}
$$

These nonlinear equations have the unlque solution

$$
w_{1}=w_{2}=1 \quad \text { and } \quad x_{2}=-x_{1}=\sqrt{3 / 3}
$$

and the formula (1) becomes

$$
\int_{-1}^{1} f(x) d x=f(-\sqrt{3} / 3)+f(\sqrt{3 / 3})
$$

For a general n thereare $2 n$ parameters w_{j} and x_{j}, hence the equations to be solved are

$$
E_{n}\left(x^{1}\right)=0 \quad 1=0,1, \ldots \ldots, 2 n-1
$$

or

$$
\sum_{j=1}^{n} W_{j} x_{j}^{1}= \begin{cases}0 & 1=1,3 \ldots \ldots, 2 n-1 \\ 2 /(1+1) & 1=0,2 \ldots \ldots, 2 n-2\end{cases}
$$

Table I shows the values of weights w_{j} and nodes x_{j} for $n=2$, (1), 10 for Gaussian integration. The detalls of the welghts and nodes values can be seen in some references such as Abramowitz and Stegun (1976).

In our case we take $n=7$ to calculate the integral $P(X)$ for a normal distribution. The list of the computer program used to calculate the oC curve using normal approximation is given as an example.

To obtain some intuition the degree of precision of this method, the integral $P(X)$ of a normal standard have been calculated for $x=0,(0.1), 3$. The results are compare with the integral $P(X)$ in Pearson \& Hartley as shown in the Table II.

Table I. Nodes and weight factors for Gaussian integration.

Nodes ($\pm \mathrm{X}_{\mathrm{j}}$)	n	Welght factors (w_{j})
0.577350269189626	2	1.000000000000000
0.000000000000000	3	0.888888888888889
0.774596669241483		0.555555555555556
0.339981043584856	4	0.652145154862546
0.861136311594053		0.347854845137454
0.000000000000000		0.568888888888889
0.538469310105683	5	0.478628670499366
0.906179845938664		0.236926885056189
0.238619186083197		0.467913934572691
0.661209386466265	6	0.360761573048139
0.932469514203152		0.171324492379170
0.000000000000000		0.417959183673469
0.405845151377397	7	0.381830050505119
0.741531185599393		0.279705391489277
0.949107912342759		0.129484966168870
0.183434642495650		0.362683783378362
0.525532409916329	8	0.313706645877887
0.796666477413627		0.222381034453374
0.960289856497536		0.101228536290376
0.000000000000000		0.330239355001260
0.324253423403809		0.312347077040003
0.613371432700590	9	0.260610696402935
0.836031107326636		0.180648160694857
0.968160239507626		0.081274388361574
0.148874338981631		0.295524224714753
0.433395394129247		0.269266719309996
0.679409568299024	10	0.219086362515982
0.865063366688985		0.149451349150581
0.973906528517172		0.066671344308688

Table II. The integral $P(X)$ for a normal standard


```
RE| *******************************************
REM * PROG OC-CURVE FOR SIMGLE SAMPLIMG PLAM. *
    REH * USING BINOMIAL AMD NORHAL APPROXIMATION *
    REM *******************************************
    DIM PO(7),\G(7)
```



```
    IMPOT"LOHER MEA LIFE TIME HI";MI
    IMPUT"STEP";S
    I#POT"SAMPLE SIRE*;|
    IHPUT"CRITICAL POIMS";C
    INPUT"GADGE POSITION";P
    IMPOT"SHMPE PARAKETER";BO
    PRINT"YHICH ONE DO YOU LIKE*
    PRIMTYAB(5)"1. BIROMIAL"
    PRIUTTAB(5)"2. HORMAL"
    IMPOT TAD(10)"Type 1 or 2";as
    PRIMT'
    If A&=1 THEL PROCbID
    IF A&=2 THEN PROCnOr
    END
    RE|*******************d\!*|*a*P**********************
    DEP PROCNOR
    PI=1-P
        10=L|(1/P1)
        \1=LHKO/BO+LHMO
    T=EXP\1
8-z2020合
PRIHT"T=";T
ef=10
R=C+.5
FOR RO=HO TO H1 STEP -S
        H=T/KO
        Q1=E1P-H
        Q=1-Q
        H=SOR(#*Q*QI)
        Z=(R-H*Q)/H
    IF Z<0 IHE| PROCneE ELSE PROCpOS
    PRIPTTAB(10)"CH.=";KO;
    0&=22030A
    PRIMTTAR(30)"OCI=*:OCI
    C:=10
    NETT KO
    EMDPROC
    REM*******************苜名*S*S*a*!*********************
    DEP PROCbIn
    P1=1-P
        x = LM(1/PI)
        II=LM10/BOtLMMO
        T=EXPII
    e8=22020&
    PRIMT"T=";T
    PA=10
    FOR KO=HO TO M1 STEP -S
        H=T/KO
        QI=EIP-H
```

```
580 Q=1-Q
590 PO=0
6 0 0 ~ F O R ~ I = O ~ T O ~ C ~
610 P0=FMG(I)*Q^I*QI^(H-I)+PO
6 2 0 ~ n E X T ~ I ~
630 PRIMTTAB(10)"CH. =";KO;
6 4 0 ~ e \& = \& 2 0 3 0 A ~
6 5 0 ~ P R I M T T A B ( 3 0 ) " O C I = " ; 0 C 1 ~
670 e:=10
680 IEIT R
6 9 4 ~ E M D P R O C ~
```



```
710 DEF PROCPOS
720 I=7
7 3 0 ~ B = 2
740 PO(1)=0.0:P0(2)=.230458315955135:PO(3)=.448492751036447
750 PO(4)=.642349339440340:PO(5)=.801578090733310
760 P0(6)=.917598399222978:PO(7)=.984183054718588
770 #G(1)=.232551553230874:#G(2)=.226283180262897
780 WG(3)=.207816047536889:WG(4)=.178145980761946
790 HG(5)=.138873510219787:#G(6)=.092121499837728
800 WG(7)=.040484004765316
810 SUM=0
8 2 0 ~ F O R ~ J = 1 ~ T O ~ I ~ I
830 X =((B-A)*PO(J)+A+B)/2
840 Y=((A-B)&P0(J)+A+B)/2
8 5 0 ~ S U M = S U H + W G ( J ) \ F H F ( \% )
860 IF PO(J)<>0 THE| SUM=SUH+HG(J)*FHF(Y)
```



```
8 8 0 ~ O C 1 = ( B - A ) * S O H / 2 + . 5 ~
890 EMDPROC
900 RE|****************ekI*S*e*B*h*akr*t*******************
910 DEF FIG(I)
920 SUK=1
930 If I=0 THE GOTO 970
9 4 0 ~ F O R ~ L + 1 ~ T O ~ I ~ I
950 SUH=(H-(L-1))*SUH/L
960 NEXT L
970 =SUH
```



```
9 9 0 ~ D E F ~ P R O C D E E ~
1000 DEF PROCpos
1010 I=?
1020 B=-&
1030 PO(1)=0.0:PO(2)=.230458315955135:PO(3)=.448492751036447
1040 PO(4)=.642349339440340:PO(5)=.801578090733310
1050 PO(6)=.917598399222978:PO(7) =.984183054718588
1060 |G(1)=.232551553230874:#G(2)=.226283180262897
1070 UG(3)=.207816047536889:WG(4)=.178145980761946
1080 HG(5)=.138873510219787:HG(6)=.092121499837728
1090 VG(7)=.040484004765316
1100 SUH=0
1110 FOR J=1 TO I
1120 I= ((B-A)*PO(J)+A+B)/2
1130 Y=((A-B)*PO(J)+A+B)/2
```

```
1140 SBH=SOH+NG(J)*PMF(X)
1150 IF PO(J)<>0 THEY SOK=SOH+NG(J) AFMF(Y)
1160 HEXT J
1170 OC1=.5-(8-A)*SOH/2
1180 EIDPROC
1190 RE##*****&*********************************************
1200 DEF FIF(X)
1210 SI=1/(SQR(2*PI)
1220 50=1^2/2
1230 =S1*EXP-TO
```

Appendix 2.

GINOGRAF.

GINOGRAF was developed at the Computer A1d Design Centre, Cambridge. It is a library of subroutine used in conjuction with the graphics package GINO-F.

GINO-F stands for graphical input/output-FORTRAN version. It is a graphics package that takes the form of a library of drawing and administrative subroutines. Most of the routines are written in standard ANSI FORTRAN making GINO-F virtually independent. GINO-F is also device Independent a change to one line of a user program being all that is required to convert the program to produce output on a different device. The routines in GINO-F that produce this output are code generators, there being one for each device avallable on each line.

GINOGRAF has facilities for producing graphs, histogram, bar charts and pie charts by two different methods. The first method,is produced the graph by a simple single call routine which automatically performs all the scaling and annotation. The second method, is produced the graph built up from series of routines which allow the user to define each aspect of the graph and axis system independently. A set of defaults is avallable for items not explicity set by the user program.

GINOGRAF assumes the GINO-F defaults for all drawing. Thus graphs are drawn in unllimeters. The space co-ordinate system is the same as the plcture co-ordinate system with the origin at the bottom left-hand corner of the device, The X axis horizontal and the Y axis vertical. The graphical axis system is with respect to this space coordinate system. GINOGRAF has a set of defaults for any aspect of the built-up axis system which have not been defined by the user, for example the position and scaling of a pletural axis. The axis system of the composite routines, which is provided automatically, is made up of these default.

The list of the computer program using GINOGRAF used to draw the graphs of the density function and the fallure rate function for the Welbull and Ramberg distributions is given as an example.

In this program, several routines have been used, they are:

- axis definition
- axis drawing
- graphical drawing.

The axis definition consists of two routines which define the position and scaling of an axis. The position of the axis is defined by:

The current and the length of axis are specified by IXORY and AXLEN. For the current X axis $I X O R Y=1$ and the current Y axis IXORY=2. The IOR indicates the starting point (XOR,YOR). If $I O R=1$, the axis starts at the point (XOR,YOR) and if $I O R=0$ then the axis is positioned such that the point (XOR,YOR) is at the natural origin as defined in the data.

```
The scale of axis is defined by:
```

AXISCA (ISCALE,NINTS, VBEG, VEND, IXORY).

This routine gives a choice of linear,log or histogram scales indicated by ISCALE. The axis including the step of interval (NINTS) and a range of data values specifled by VBEG, VEND.

The axis drawing is to draw an axis with or without tick marks and scale values. It will depend on the values of ITICK and IVAL. The axis drawing is specified by:

AXIDRA(ITICK,IVAL,IXORY).

The graphical drawing represent the data in a graph form. The data may be represented in a number of ways, such as:

- points joints by stright lines.
- points joints by a smooth curve.
- symbol at the polnts.
- nistogram.
- bar charts.

In our case, the data are representad by a smooth curve and specifled by routine:

GRACUR (X,Y,NPTS).

GRACUR draws a smooth curve through a number of points (NPTS) in arrays X and Y.

Before any of GINOGRAF routines is called, the output device must be nominated. The following calls to GINO-F subroutines as device nomination:
-CALL SAVDRA for the plotter
-CALL APDS4 for the Imlac 3205 terminal -CALL T4010 for the Tektronix 4010 terminal.

A call to subroutine DEVEND should be used to terminate graphical output in each case.

```
    IOC ********************************************************
    20C *PROGRAH USING GIMOGRAF TO DRAH YIEBULL AMD RAMBERG PDF*
    30C *HOMEYHELL TERHIHAL
    40C ********************************************************
    50*#FRM=(0LIB)LIBRARY/GINOGRAF;LIBRARY/GINO-F#A"01";B"02";C"03";D"04";
    60*:EE"05";F"06";A0"07":BO"09";CO"10";DO"11":EO"12";FO"13";DIMAR"08*
    70 DIHERSIOR \1(100),\2(100),\3(100),X4(100),\5(100),\6(100),X7(100)
80 DIHE|SIOR 48(100),\9(100),X10(100),X11(100),\12(100),113(100)
90 DIHESSIO: YI(100),Y2(100),Y3(100),Y4(100),Y5(100),Y6(100),Y7(100)
100 昭=12
110 00 1 1=1,25
120 READ(1,101)X,Y
130 101 FORMAT(V)
140 II(I)=1
150 Y(1)=Y
160 H1=1
170 1 continue
180 DO 2 I=1,30
190 READ(2,101)1,Y
200 X2(I)=\
210 Y2(I)=Y
220 12=I
230 2 COHTINOE
180 DO 2 I=1,30
ROD READ(2,101)X,Y
200 \2(I)=\
210 Y2(I)=Y
220 |2=1
230 2 CORTINOE
240 DO 3 I=1,30
250 READ(3,101)X,Y
260 \3(I)=\
270 Y3(I)=Y
280 界=1
290 3 CORTINUE
240 DO 3 I=1,30
250 READ(3,101)X,Y
260 13(I)=\
270 Y3(I)=Y
280 |3=1
290 3 COMTIHUE
300 DO 4 I=1,30
310 READ(4,101)X,Y
320 X4(I)=1
330 Y4(I)=%
340 4=1
350 4 COMTINUE
    DO 5 I=1,30
    READ(4,101)X,Y
    15(I)=又
    Y5(I)=Y
    |5=1
    5 COMTINUE
```

420	D0 $61=1,30$
430	$\operatorname{READ}(6,101) \mathrm{X}, \mathrm{Y}$
440	X $6(1)=1$
450	Y6(1) $=Y$
460	\% $6=1$
470	6 continue
480	D0 $71=1,30$
490	READ $(7,101) \mathrm{X}, \mathrm{Y}$
500	17(I) $=1$
510	Y7(1) $=Y$
520	17=1
530	7 conjinue
540	DO $81=1,30$
550	READ (9,101) 1 , Y
560	19(I) $=1$
570	$Y \mathrm{P}(\mathrm{I})=Y$
580	\|9:1
590	8 Continue
600	D0 9 I $=1,30$
610	$\operatorname{READ}(10,101) \mathrm{X}, \mathrm{Y}$
620	$\mathrm{X} 10(1)=1$
630	$Y 10(1)=Y$
640	$10=1$
650	9 comilive
660	D0 $10 \mathrm{I}=1,30$
670	READ (11,101)X,Y
680	111(1)=1
690	$Y 11(1)=Y$
700	$111=1$
710	10 Contille
720	D0 $111=1,30$
730	READ (12,101)X, Y
740	X 12 (1) $=1$
750	$Y 12(\mathrm{I})=Y$
760	$112=1$
770	11 continue
780	D0 12 I $=1,30$
790	READ (13,101)X, Y
800	$\boldsymbol{1 1 3}(1)=1$
810	$Y 13(\mathrm{I})=Y$
820	\|13-I
830	12 COMTIMEE
840	CALL SAVDRA
850	CALL CHASHI(1)
860	CALL PICCLE
870	CALL DEYPAP(1000.,280.,0)
880	CALL AXIPOS 1.10 .60 .680 .1$)$
890	CALL AXIPOS $(1,10.60 ., 90.2$)
900	CALL AIISCA $(1, .01,0 ., 1.6,2)$
910	CALL AXISCA $1 . .01,0,3 ., 1)$
920	Call axidra $(1,1,1)$
930	CALL AXIDRA $(-1,-1,2)$
940	
950	CALL GRACOR ($\times 2, Y 2,30$)
960	CALL GRACOR $(X 3, Y 3,30)$

```
970 CALL GRACOR(X4,Y4,30)
980 CALL GRACOR(X5,Y5,30)
990 CALL GRACOR(X6,Y6,30)
1000 CALL AXIPOS(1,105.,60.,80.,1)
1010 CALL AXIPOS(1,105.,60.,90.,2)
1020 CALL AXISCA(1,.1,0.,2.,1)
1030 CALL AIISCA(1,.01,0.,5.,2)
1040 CALL AXIDRA(1,1,1)
1050 CALL AXIDRA(-1,-1,2)
1060 CALL GRACUR(X7,Y7,20)
1070 CALL GRAC0R(19,Y9,20)
1080 CALL GRac日R(I10,Y10,20)
1090 CALL GRACDR(XI1,Y11,20)
1100 CALL GRACOR(X12,Y12,20)
1200 CALL GRACIR(XI3,Y13,20)
1210 CALL HOVTO2(15.0.45.)
1220 CALL CHAHOL('F1E.2.1a.Density Function*.')
1230 CALL HOVTO2(105.0.45.)
1240 CALL CHAHOL('FIg.2.Ib.Fallure Rate Function*.')
1250 CALL DEVEND
1260 STOP
1270 EID
```


Appendix 3.

Computer Listing for Sampling Plan.

```
10 RE| ***************************************
20 REM *PROG FOR PLAM OF SIMGLE SABPLIMG PLAR*
30 RE| ****************************************
40 IMPOT"SHAPE PARAMETER";BO
50 IMPOT"HEAR LIFE TIHE HO"; HO
60 IHPOT"ABSISCA FOR A GIVEM ALPHA*;A
70 I|POT"ABSISCA FOR A GIVE| BETA";B
80 PRIIT'
90 PRIMT"DO YOO HISH AMOTHER ALPHA AND BETA?*
100 IF GETs="Y* THE| 40
110 PRIMTTAB(5)"SELECT OHE PLEASE:*
120 PRIMTTAB(5)"1.ONE GAUGE*
130 PRIITPAB(5)"2.jMO GAUGES*
140 IMPUT TAB(5),"YYPE 1 Or 2":A&
150 PRIHT'
160 IF A$=1 THE| PROCODE
170 IF A&=2 THE| PROCLvo
180 REM*****************************************
190 DEF PROCODE
200 PRIMTTAB(15)"sample slze for a single sampling plan using one gauge"
210 FOR P=.5 50 . }75\mathrm{ STEP . 01
210 PI=1-P
220 10=LM(1/P1)
230 II=LHXO/BO+LHMO
240 T=EXP\1
250 0*=2020A
260 PRIMTTAB(0)"p=";P;TAB(10)"T=";T
270 8:=10
280 FOR H:=700 50 350 STEP-50
290 H=(T/M1)^BO
300 QI=EXP-H
310 Q=1-01
320 I= B*SOR(Q*Q1)-R*SQR(P*P1)
350 |=\^2/(P-Q)^2
360
370 8%=82020A
380 PRIHT M;
390 at=10
400 HEXT M1
410 NETS P
420 PRINTTAB(25)"Do you llke another procedure"
430 IF GET$=`\" THE| 90
4 4 0 ~ P R I H T ~ T
450 EHD
```


470 DEF PROCtyo
480 PRIHtyab(15)"sample size for single sampling plan usige two gages*
490 FOR PI=. 25 TO . 46 STEP . 01
$500 \mathrm{P} 3=1-\mathrm{Pl}$
$510 \quad C O=L /(1 / P 3)$
$520 \quad \mathrm{Cl}=\mathrm{L}(1 / \mathrm{P} 1)$
530 YO=LICO/BOLLIHO
540 YI=LRCI/BOLLIKO
$550 \quad \mathrm{~T}=$ EYPYO
560 T2=EXPY1
570 B $=\$ 2020 \mathrm{~A}$
580 PRIHTHAB(0)"p=";P1;TAB(10)"T1=";T1;TAB(25)"T2=";T2
$590 \mathrm{P}=10$
600 FOR H1=700 TO 350 STEP -50
$610 \quad \mathrm{G}=(\mathrm{T} 1 / \mathrm{H} 1)^{\wedge} \mathrm{BD}$
$620 \quad 60=(T 2 / H 1)^{\wedge} B 0$
$630 \quad$ QI $=1-$ EIP-G
640 Q3=EXP-GO
$650 \mathrm{D}=(\mathrm{Q} 3+\mathrm{Q} 1)-(Q 3-Q 1)^{\wedge} 2$
$660 \mathrm{~B}=\left(\mathrm{A}^{\star} \operatorname{SQR}(2 \star \mathrm{P} 1)-\mathrm{B}^{\star} \operatorname{SQRD}\right)^{\wedge} 2 /(Q 3-Q 1)^{\wedge} 2$
670 e8 $=22020 \mathrm{~A}$
680 PRIIT H:
690 9 $4=10$
700 IEIT MI
710 VETT P1
720 PRIMTTAB(25)"Do you want another procedure"
730 IF GET\$="Y" THEI GOTO 90
740 PRIKT
750 END


```
    20 REM *PROG FOR PLAN OF DOUBLE SABPLIMG PLAM USIIG ONE GAUGE*
    30 RESH
    40 IMPOY"SHAPE PARAMETER";B5
    50 IMPOT"GAUGE POSITIOR";P5
    60 IMPOT"SAMPLE SIRE (SIIGLE)";
    70 INPUT"RATIO FOR THE FIRST SAMPLE";RI
    80 IIPUT"FIRST ACC. VUMBER";P
    90 IMPUT"FIRST REJ. NOHBER";S
100 IIPUT"SECOMD ACC. RIMBER*;C
110 IMPGY"HEAI LIFE TIHE H0";员
120 IIPOT"LONER HEA| LIFE TINE HI";H1
130 IMPGT"STEP*:S5
140 10=R141
150 |1=INT(10)
160 |3=|-||
170 D= P+1
180 G=$-1
190 P6=1-P5
200 र0=L1(1/P6)
210 X1=LHYO/B5+L|HO
240 T=ETPXI
250 PRIMT"HI=";|l;
250 0: = 22020A
260 PRINTTAB(15)"T=";T
270 85=10
280 FOR N2=13 50 2*|1
290 PRIMT"|2=";县2
300 FOR R=NO TO H1 STEP -S5
310 P=1-EXP(-T/R)
320 Pr=0
330 FOR J=1 TOG
340 Q=C-J
350 SUH=1
360 AI=(1-P)^N2
370 PI=0
380 FOR K=1 T0 Q
390 SOM=(12-(x-1)//R*SOH
400 PI=SUH*PAR*(1-P)^(#2-K)+P1
4 1 0 ~ D E X T ~ K ~
4 2 0 ~ B 1 = A 1 + P 1 ~
430 P2=FIF(J)*P^J*(1-P)^(II-J)
440 B2=81*P2
4 5 0 \mathrm { Pr } = \mathrm { Pr } + \mathrm { B } 2
460 NEIT J
470 A=(1-P)A|1
480 I=1
490 PO=0
500 IF F=0 THE| GOTO 550
510 FOR I=1 TO F
520 *=(#1-(I-1))/I*K
530 PO=X*P^I*(1-P)^(HI-1)+P0
540 EEXT I
```

```
550 BO=PO+A
5 6 0 ~ O C = P r + B O
570 8=82040A
580 PRIIT OC;
590 P%=10
6 0 0 ~ H E X T ~ R ~
6 1 0 ~ P R I I T ' '
620 HEXT :2
6 3 0 \text { PRIIT}
6 4 0 \text { EllD}
650 RE|**kt**************t*********************************
6 6 0 \text { DEF FMF(J)}
670 N=1
680 IF J=0 THER }72
600 FORL=1 T0 J
700 #=(#1-(L-1))/L*
710 \EXT L
720=1%
```


References

Abramowitz, M. and Stegun, I.A. (1976). Handbook Of Mathematical Functions. Dover Publications, Inc., New York.

Atkinson, K.E. (1978). An Introduction To Numerical Analysis. John Wiley \& Sons, New York.

Bain, L.J. (1978). Statistical Analysis of Reliability and Life-Testing Models. Marcel Dekker, Inc., New York and Basel.

Chao, L.L. (1969). Statistic: Methods and Analyses. Mc Graw Hill Book Company, New York.

Chatfield, C. (1978). Statistics For Technology. 2nd Ed., Chapman and Hall, London.

Duncan, A.J. (1965). Quality Control and Industrial Statistics. 3rd Ed. Richard D Irwin, Inc., Homewood, Illinois.

Guenther, W.C. (1977). Sampling Inspection In Statistical Quality Control. Charles Griffin and Company Ltd., London and Wycombe.

Hamaker, H.C. and Von Strik, R. (1955). The Efficiency of Double Sampling For Atributes. J. Amer. Stat1st. Ass., 50, pp.830-49.

Hirj1, T. (1979). Testing of Hypotheses With Trinomials Generated by Gauges. Ph.D. Thesis, University of Southampton, Unpublished.

Hirji, T. and Shahani A.K. (1978) Testing Hypothesis With Trinomials Generated by Gauges, Biometrika, In Press.

Kapur, K.C. and Lamberson, L.R. (1977). Rellability In Engineering Design. John Willey \& Sons, New York.

Makino, T. (1984). Mean Hazard Rate and Its Application to The Normal Approximation of The Weibull Distribution. Naval Research Logistics Quarterly, Vol. 31. pp.1-8.

Mann, N.R., Schafar, R.E. and Singapurwalla, N.D. (1974). Methods For Statistical Analysis of Reliability and Life Data. John Willey \& Sons, New York.

Pearson, E.S. and Hartley, H.O. (1966). Blometrika Tables For Statisticians. Vol.I, 3rd Ed., Cambridge University Press.

Ramberg, J.S. and Schmeiser, B.W. (1972). An Approximate Method For Generating Symmetric Random Varlables. Comm. ACM, 15, pp.987-990.

Ramberg, J.S. and Schmeiser, B.W. (1974). An Approximate Method For Generating Asymmetric Random Variables. Comm. ACM, 17,pp.78-82.

Ramberg, J.S., Dudewicz, E.J., Tadikamalla, P.R. and Mykytha, E.F. (1979). A Probability Distribution and Its Uses In Fitting Data. Technometrics Vol. 21 No.2. pp.201-209.

Shahani, A.K. (1969). A Simple Graphical Test of Association For Large Samples. App. Statist.. 18. pp. 185-90.

Stevens, W.L. (1948). Control by Gauging. J.R. Statist. Soc. B, 10, pp. 54-108.

Tippett, L.H.C. (1944). The Efflcient Use of Gauges In Quality Control. Engineer, 177,pp. 481-83.

Walpole, R.E. and Myers, R.H. (1972). Probabllity and Statistics For Engineers and Scientists. The Macmillan Company, New york.

Wetherill, G.B. (1977). Sampling Inspection and Quality Control. 2nd Ed., Chapman and Hall, London.
(1976). GINOGRAF User Manual, Computer Alded Design Centre, Cambridge.

