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THE DESIGN AND USE OF GAUGES IN LIFE TESTING

by Albert Battil

Gauges define classes and the usze of gauges leads to the
observatlon of freguencies 1in the defined classes. The
advantages of gauges over exact measurement are simplicity,
speed of cobservation., and the pogsibllity of automa tion.

The use of gauges 1In industrial life testing of items
g explored with the Welbull distribution particularly in
mind.

The issue of the time value of a gauge is discussed for
the case of one and two gauges. The context 1s the need to
make declislions about the goodness of a large batch of
items. ©Single and Double Acceptance Sampling plans for
making the neceggary decisgions are discussed.

The choice of one or two gauges and the type of
sampling plan is essentially an economic lssue.
Appropriate cost functlions can help In the quest for good
solution.

The progress made in this study can act as a foundation
for further work. Some suggestlion are made for further

WOrk.
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Chapter 1.

INTRODUCTION.

The useful ness of a gauge In some appllcations
statistics hasg long been reallized. It can be used for any
measurable quantity that can be arranged in an order. The
use of a gauge leads to a clasglification of the
observations. Hence., the observations are frequency counts
in each clags rather thaﬁ exact measurements. We uge these
obzerved freguencles in the analysis. Since the method 1s
bazed on freguency  counts we can have a simple statistic
and we would expect 1t to retain most of the robustness of
the test statistic. These two attractive features
motivated us to study of the use of gauges.

As a simple example., we conglder a single dimension
of a manufactured item. We suppose that the length of this
i1tem, z. il important and because of the iInherent
variabllity., X hag to be regarded as a random variable. In
practice the form of the probability density function of X
will be known., or it will be assumed. Suppose f(x:6) 1s
the density functlon and the parameter.(or parameters), ©
iz unknown. Obgervatlons Xq.Xp,-e.ovoenn.. ,¥y Will be made
to make inferences about 8 and the concern could be with
estimating @ or with testing hypotheses about 0.

With exact measurcments X ,Xos..e-eaoene.. s %p we
would work with a suitable test statlistic 1n order Lo make

inferences about ©.



With gauges we have the poszibllity of one or more
gauges. With one gauge., set at length L. we would simply
note the number of obsevations that are less than or equal
to L. Thus In the sample of n., we would have an
observation on the random varlable Y which is the number of
X value< L. The followling Filgure 1llustrate one gauge for

a slingle dimension.

No. of values <L i Ry | No. of values > L 1s (n-Ry)

i
4

i

length.
L

It will be readlily appreclated that observing Ry 1s much

simpler than collecting the neasurements

A more general example 1s the case of K gauges 1n
several dimensions. A sample of n ig obtalned on a random
vector X and the k gauges result in the observation of the
freqguencies in defined c¢lasses. For a two dimensional
vector with two gauges for each of the dimension we get
classes as Indlcated in Flgure 1.1.

Several statlstlilcal theorles based on the gauge
method have been developed. Steven (1848) has used this
method for estimating the mean and the standard deviation
of a normal distribution. He Investigated the use of both
symmetrical and asymmetrical gauges. Shahanl (19638) has
used gauges for testing hypotheses about correlation
coefficient in a bivarliate normal case. He showed that the

test which is based on the frequency counts 1s a



..BW

substantlal improvement over the medlal test. Taj Hirji
and Shahanl (1978) have used the technligue for testing

hypotheses about bthe mean of a

X2
““““““““““““““““““““““““““““““““““““““““““““““““ LZB
g
“““““““““““““ e R
%
Ly Lyo
Fig.1.1 Gauges for a two dimensgional random vector.
For X.., the gauges are set at Ly, and Lyop.
For X5, the gauges are set at Log and Laog.
normal distribution. With an eytensive numerical

investigatlion they suggest that for a symmetrlical positlon

Of LWO Zauges zpout the population mean and sample size
nz20. should be adeguate for the use of a normal
approximation. Taj Hirgji (1979) pointed out that working
with the exact probability distribution of the statistic
based on gauges may not be a practical proposition. He
also considered the use of gauges 1n the sequential tests
for the mean of a normal distribution and testing
hypotheses about means of two related variables.

In gquality control where it is easy to collect large a
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number of samples  but  difficult to obtain accurate
measurement the use of gauges has obvious application.
Where the absolutely accurate measurement of an item ig not
reguired a gauge method should be suiltable. In a factory
for example, 1t may be easler to operate a gauge by
mechanical devices without the intervention of an operator.
It 1is possible to construct a device that will take
measurements on a series of ltems and record the results.
It would be even easler to construct a machine which has
only to classify and record the 1tems Iinto pre-defined
clasesex. Therefore we can apply the technique to a fully
automatic ¢guallty control system to replace nonproductive
Ingpection work.

Steven (1848) suggest a wide varlety of a gauge that
can be used on anything whose values can be arranged 1In a
serlal order, even if 1t 1s not measureable. He also usged
the two gauges to construct the control chart. Tlppett
(1844) pointed out that the efficlency of a gauge method
depends very much on the setting of the gauge. He pointed
out that if we desired to control only the average
dlameter., a one gauge may be made so that 50% of the items
have a 1large diameter (defective). Then 1f the frequency
distribution of the diameter 1s approxmately normal, a
control chart of the fractlon defective based on a sample
of about 160 items glves as good a control chart of actual
mean based on measurements of sample 100 items. He also
pointed out that 1t 1s more economical to gauge 160 I1tems
than to measure and calculate the mean for 100 items.

In this thesis, we consider the design and use of
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gauges in the life time tests. The deslign of gauges 1is
concerned with the setting of gauges to the optimal
position where the c¢riteria 1z the maximisation of the
power of test. The value of gauge 1< the fised time at
which the optimal posistion of gauge occurs. However., for
practical purposes we prepare to use the probability term
rather than a fixed time to express the poslition of gauges.
We also conslder the applicatlion of gauges in an acceptance
sampling plan.

In Chapter 3, we consider the design and use of one
gauge and two gauges for testing hypotheses about mean life
time T of a Welbull distribution. Since the euponential
distribution 1s a speclilal case of the Welbull distribution
it will be covered in this study. Numerical investigation
for variougs values of shape parameter suggests that we can
probably take values of about p=0.65 and py=p3=0.30 as
values for one gauge and two gauges, respectively. However
In the practical purposes. since the power of test 1s quite
pretty flat around the optimal position then there 1is
probably room for compromise 1in setting the gauges.
Furthermore, when the power of test 1% 1large enough,(say
greater or equal to 0.9399) we may be able to reduce elther
the lengthtime of observation or the sample size.
Alternatively, we may be able to reduce both of them at the
Ssame time.

The application of gauges 1in acceptance sampling
plang is considered in Chapter 4. It 1¢ shown that for a
given producer s risk « and consumer’s rilsk B we may have a

number of plans: i.e palrs of n and T. to satisfy the



reguired conditlions. The minitmum of the sample 3ize 1
achleved when the gauges are set around the optimal
position.It is also shown that in order to determine the
plan that =atizfles the required conditions in a double
sampling case then we can set the gauges as 1in a slngle
sampling plan. It will probably be easigr to predict the
parameters requlilred for a double sampling plan by reference
to the solutlon in a single sampling plan and use a random
walk diagram. It 13 shown that the first rejection number
Co will depend on the chosen value of ny proportional to n
and the total =sample ny will depend on the second
acceptance number Ca.

The results in Chapter 5 suggests that 1t seems dquite
reasonable to expect that the efficliency of test would
further improve 1if more gauges are used. With reference to
the number reguired it shown that the effliclency of gauging
relative to exact measurement 1s over 70%. It 1s also
shown that the R test when based on two gauges, 1s  of
relatively high efficlency and more robust than when based
on the one gauge. However. 1in some cages 1t will probably
be more economical to use one gauge. Perhaps when the
probability distribution ig exactly known or well predicted
then 1t might be a practlcal proposition to use one gauge.
particularly when the cost per unit time 1s quite large.

Further developments of the methods based on gaugling

are suggested in Chapter 6.



BASIC PROBABILITY FUNCTIONS

2.1. General Comments.

In general, the lengthlife or 1life time of an ltem,
a device, or a system 1§ a random variable. If we use the
symbul T to denote the 1lilfe time, then like any other
random variable, € has a probabllity density function. In
practice, the form of the probability density function iz
often assumed and the parameters Involved are estimated
from the appropriate data.

AlsO, the distribution of 1lifetlime. can be
described by the other functions such ag the survivors
function (5) and the the fallure rate function (h). In
practice., the gsurvivor function gives the proportion of
items surviving longer then time t., and fallure rate
function gilves the proportion of ltemg sgurviving 1in an
interval per unit time, glven that they have survived at
the beginning of the interval.

There are many physlical causes which influence the
life time of l1ltems. However., it 1is very difflicult to
lsolate these physical causes, hence choosing a theoretlical
distribution to approximate the distribution of 1life data

s a difficult process. It may be that some of the



condltlions of the experiment are simply unknown or cannot
be controlled. For example, two light bulbs may have bheen
manufactured by the same process and used under the <game
general conditions but still fall at different times. In
this case the phenomena can only described 1in probabllity
terms.

Several theoretical distributions have been wldely
used to describe the survival time phenomena. Amongst the
most Important distributions are the Welbull and Ramberg
distrihutlons. These distributions are characterlized by
three and four parameters, respectively.In general, those
parameters are known ag location. scale and Shape

parameters. Since 1t 1 always possible to choose many

|4

different values for those parameters, a wide varlety of
curve shapes 1s possible with these distributions. For
example when the Welbull shape parameter approximates 3.25,
Makino (1984), then the Welbull density function 1s duite
similar to the normal density functlon. When the shape
parameter of Weibull distribution edgual to 1 and 2, then
the resulting distributlong are known as Exponential and
Rayleligh distributions., respectively. Similarly. Ramberg
and Schimeiser have shown that Ramberg distribution can
als provide good approximations to other well Xknown
distributions. For example Ramberg dligtribution can be
conslder as a normal distributlon when location parameter
ia zZero, =scale parameter ig 0.1975 and shape parameter 1s
0.1349.

In the following sections we study of the effect of

the ¢hape parameter on the shape of the density functlilon



and the fallure rate function.

2.2, Welibull Distribution.

This distributlion was sugggested by Welbull (1951)
and it has been used in a wilde variety of applications.The
probability density function of a random variable T having

three~-parameter Welbull distribution given by:

Fty=fref(t-6),01B" 1 oxpl-{(t-6) 03P ; 0z6:t, 0<e,s

where, the parameters o, B and & are referred to ag gcale.,
chape and location parameter, respectively. The survivor

funotion and the failure-rate functlion are, reapectlively :

S(t)= expl-{(t-8)/83P]

hit)= fs6 {(t-6)s61F 1

And, the cum ulative distribution functlion is glilven by:

F(t)= 1-expl-{(t-6)r8}F]

As we have mentlioned 1in the beginning of this
chapter, we are lInterested in exploring the relatlionshlp
between shape parameter and fallure rate function. For the
sake of simplicity, we take the particular case where the
Welbull 1location parameter 6 hag been assumed to be Zero.
However. when &6 has a non-zero value, all that 1s necessary

ig to substract the value of 6 from the wvalue of L. in
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order to get the correct value for t.

Flgures 2.1a and 2.1b show the probabllity density
function and the falulure rate function with shape
parameter  £={0.2,0.6,1,(.5),2.5}. As can be ceen from
these Flgures the density function has no mode and decreases
monotonically when f££1 and the distribution 1g unimodal
when B>1. When B=1 the fallure rate remains constant as
time Iincreasesz and thisz 1z the exponential case. The
fallure rate decreases when <1 and increases when g>1  as
time t Increases. Thepefore the Welbull distribution can
be used for the lifetime distribution of a population with

decreasing., constant, or increasing fallure rate.
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2.3. Ramberg Dlstribution.

Ramberg distribution 1s a generalization of Tukey’s
lambda dlstribution. It was developed by Ramberg and
Schmelser (1978) to a four-parameter distribution deflned
by the percentlle functlon. Hence. Ramberg distributlion 1s
deflned 1in the terms of the 1nverse of 1ts distribution
functlion., which 1s here denoted by I. The inverse function

1s glven by:

PL3"(1*p)L4
I(p)= Lg+{ } : 0<p<1,Lp#0
Lz

where L, 1s a locatlon parameter., L, 1s a scale parameter
and L3 and Ly are shape parameters.

The probabllity function 1ls gilven by:

L2
f(t)= ; 0=Zp=<i
Laply i+, 01-prl,t

hence, I(p)=t. The lower and upper bounds of t are, I(0)
and I(1), respectlvely. The density functlon c¢an be
graphed by letting p take any values between zero and one.
plotting f(t) wversus I(p). The density function is
symmetrical about Ly when Lz=L,. hence the mean of Ramberg
distribution 1s equal to Ly, which 18 not true 1n
unsymmetrlcal case. In general the mean of Ramberg

dlstribution 1is given by:



1 1
r=Lg+( - Y/Lo Lgéﬂ
Lq+1 L4+1

o

As  1n Welbull distributlon., we would be interested ;n the
effect of shape parameter to the shape of the density
functlion and fallure functlon.

Now, consider Lz and Ly as coordinates. Figure 2.1
shows the four regions of the shape parameter values. For
the reference purposes these reglons we numbered as 1.2.3
and 4. repectively. In each region we have indicated where
the density function 1is a wvalld one in the sense that
denslity function f(t) 1s nonnegatlve for all values of ¢t.
In the region 1 and 3 the density function 1is for all
values of L3 and Lg. On the other hand the density
function 1s nonnegative when Lg<-1 and Ly>1 in the region 2
and when Lgz>1 and Lg<-1 In reglon 4. The U-shape of
distribution 1is also possible when 12£L4.,Ly<2 and the
uniform distributlon occure when Lz=Ly=1 and 2.

In region 1 the distribution has a negatlve
skewness when L3<Lg and has a positive skewness when Liz>Lg

except the sub-reglion where given by:

- (L3t (Lg-1)2 2 1
; P <
L0z Ly 21

In this =sub-region the density functlion hag a positive

skewness when L3z<Lg and has a negative skewness when Lg>Lg.
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As an illustration the probablility density function of
Ramberg distributlion has been plotted for several values of
L3z and Ly with Ly=1 and Lp=0.1 1n region 1 and Lp=-0.1 in
region 2., 3 and 4.

Figures 2.2a and 2.2b show the Ramberg density
function and fallure rate functlion for the values of Lg and
Ly as shown 1in Table 2.1.

Table 2.1.Values of Lg and Ly for Flg.2.2a
and Flg.2.21b.

| Curve No.% Ty 2 1 3 i 4 f 3 |
| T A o I A A
L Ly | 0.05, 0.10/ 0.20| 0.30, 0.35|
i e I B !
L Ly . 0.35| 0.30/ 0.20{ 0.10] 0.05]
_},~__._.-_..._--_—‘-w..«.__.‘f_*,.-_.,_;.._Aﬂ._»,_.-n__-..'_ ______ +

Figures 2.32a and 2.3b show the Ramberg denslity functlon and
fallure rate function for the values of L3 and Ly as shown

in Table 2.2.

Table 2.2.Values of L3 and Ly for Fig.2.3a
and Fig.2.3b.

Curve No.| 1 i 2 | 3 % 4 | 5
| |- |- R | ————-
| Lg i 0.25| o.5o§ 0.75% 1.00| 1.25
[T o PO A R R R |
I Lg L1.25 0 1.00) 0.75] 0.50i 0.25]



La

pos. pdf

[ U PV

pos. pdf

Fig.2.1 The four regions of the shape parameter values
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Flegures 2.4a and 2.4b show the Ramberg density function and
failure rate function for the values of L3 and L4 as shown
in Table 2.3.

Table 2.3.Values of L3 and Ly for Flg.2.4a
and Flg.2.4b.

| Curve No.y 1 1 2 + 3 | 4 ; 5
P e | =~ | I [ OO
: | o i ‘

A | 1.05 1.25 1.50; 1.75; 1.85]
b e e S S P N SRR |

| | | : '
. Ly L 1.95 1.75, 1.50 1.25 1.05)
e e e e o o e e e e o o e e e s +

Figures 2Z.5a and 2.5b show the Ramberg density function and
fallure rate function for the values of L- and Lg as shown

.

in Table 2.4.

Table 2.4.Values of Lj and Ly for Flg.2.5a
and Filg.2.5b.

| Curve No.; 1 | 2 | 3 { 4 | 5 |
. Lg | 1.70] 2.10] 2.50, 2.90; 3.30]
il bt et Sl Sttt Bl i
. Lg | 3.30) 2.90 2.50] 2.10| 1.70]
e +

In reglon 3 the denslity functlon has a positive
skewness when Liz>Lg and has a negative skewness when Lg<ly
with a very 1long tall to the right and to the left.
respectively. Alsc., the mode of distribution shifted very
fast to the rilght as Lg decreases and Ly lncreases. Flgures
2.6a and 2.6b show the Ramberg density function and the
fallure rate functlion for the values of Lz and Ly as shown

In Table 2.5.
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Table 2.5.Values of Lg and Ly for Fig.2.6a
and Flg.2.6b.

e e e +
 Curve No.! 1 | 2 | 3 | 4 | 5 |
e mm e e R L—— e e ;
S ; o.osi 0 10% 0.20] 0.30] 0.35
~~~~~~~~~~~ el et T P I
L Ly | 0.35, 0.30] 0.20] o0 10{ 0.05
o e e +

In region 2 the dlstrlibutlon has a negative
sKewnese with a very long tall to the left, while in reglon
4 the distributlon has a positive skewness with a very long
tall to the right. Flgures 2.7a and 2.7b show the Ramberg
denslty function and failure rate function In region 2 for

the values of Ly and Ly as shown in Table Z.6.

Table 2.6.Values of Lg and Ly for Fig.2.7a
and Fig.2.7b.

e +
I Curve No.! 1 2 | 3 4 5
i | | ! i !
T T T T LT . |
I | 1.30; 1.40) 1.50{ 1.60| 1.70]
el Bl d Rebeed R S

Lg | 1.70] 1.60} 1.50] 1.40{ 1.30]

o e e e e L +

Flgures 2.8a and 2.8b show the Ramberg density functlon and
fallure rate functlion in reglon 4 for the values of Lg and

Lg as shown 1n Table 2.7.

Table 2.7.Values of Lz and Ly for Fig.2.8a

and 2.8b.
+ ___________________________________________ +
! Curve No.| 1 | 2 4 3 1 4 I 5 %
i f e i o o i
| Ly | 1.30] 1.400 1.50 1.60| 1.70
. -1, | 1.70, 1.60] 1.50] 1.40 1.30
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Ag we can see from the graphs that Ramberg distribution can
be used for the l1llife time digstribution with a wide variety
of fallure rate models including a unimodal fallure rate

model.



Chapter 3.

THE DESIGN OF GAUGES.

3.1 General Comment On The Deslgn.

Gauges can be used for any measurable guantity that
can be arranged In an order. The use of a gauge leadg to a
clasgification of a set of items. It means that the
obgervations are frequency countg in each class rather than
exact measurements. The observed freguencies have to be
used 1in the analysis. The physical form of gauges will
depend on the nature of the observations. For instance. 1if
our Iinterest 1s 1in the welight of the ltems then a device
like a balance can be a gauge. Similarly if our Iinterest
I In the 1life tflme of the material then probably an
Instrument that can check whether or not the 1ife time of
an item is greater than a particular value can be a gauge.

Now, consider an observatlion, uslng gauge. on the
life time distribution In order to test the hypothesls
about a parameter of distribution., <say., for example the
characteristlic 11fe of an ltem. Since the observation 1s
concerned wlth a 1ife time ., we can place the instrument on
the certain value of time T as a gauge wich wlll classify
the ltems in the experiment into classes. The
classgification of the 1l1ltems would be based on whether or
not an item passed the gauge. The number of classes will

depend on the number of gauges being used 1in the



experiment. For erxample 1f we use one gauge then we should
have two disjoint regions where the litems will be
classified. If we use two gauges then we whould have three
disjoint reglons where the ltems will be classifled., etce.
In the following dlscussion we will study of the
setting of the gauges on the optimal poslitlion in the sense
of maximizing the power of test. The optimal position of
gauges would be as a fixed time beling the value of gauges.
Therefore, the design of gauges 1s concerned with the
settling of gauges in the optimal position 1if possible,
otherwise a good poslition would the result of the study.
The study covers the use of one gauge and two gauges,

respectlively.

3.2 One Gauge.

Suppose n independent obgervations., using gauge.
are made on the Welbull distribution in order to test the
hypothesis about characteristic 1ife 6. Suppose further,
that one gauge has ©been chosen to be used 1in the
observation. Thls means 1t would be similar to the life
time test truncated at a preassigned time T. Therefore the
observations would be classified Into two classes Ay and

As. The two classes would be deflined as follows:

Ay 1s a set of the nonsurvival ltems prior to time T

As 1s a get of the survival ltems beyond time T



Let ny: 1=1.2, be the number of items falling into Aj.and

suppose we would like to to test the hypothesis:

Hg: 6= 84 aglanst

H1: o= 91 » 61S60

Conslder R4y=n4q as a test statlstic. Clearly., 1f Hg 1s
false then we would 1llke Ry > C; € 1s an lnteger and
commonly called acceptance number. Under both null and
alternate hypothesis R4 has a binomial distribution. hence
the hypothesis test could be made equivalent to a test on
the parameter in a binomial distribution.

Suppose, under null hypothesis Hgp, pjs 1=1.2 denote
the probablility of an ltem falllng Into A;., then Hp 1lmplles

the following binomial distribution:

n
P(Rq=r) = P(r) =( dpqFpp"7F
r

When P(rejectlon of Hp|®g)=w; 1l.e Type I error. then

P(Ry>C) =«

or

i
T P(r: )=«
j=gtl (ry)
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Now. under alternate hypothesis Hy» suppose dj
i=1.2 denote the probabllity of an item falling into Ay

then Hy implles the followlng binomial distributlion:

n
P(r) = ( daygFaph™r
r

When P(acceptance of Hoéel):ﬁ; i.e Type II error., then

P(Ry<C)=8

ar

¢
ZP(r; =4
te( i )=1

The power of test 1Is given by Pw=1i-8.

It 1s likely that we could not expect a completely
general solution of the value of gauge in terms of time t.
However, when tifhe probabillity term ig used to express the
position of a gauge, then we =should be able to choose the
single value of gauge such that the power of test 1s still.,
orclose enough to the maxlmum. Therefore we would express
the position of a gauge In the probability terms rather
than in the fizxed time.

AS an 1llustration of thls argument., conslder the

case of n=50 with hypothesgis as follows:

Hg:8p= 1.000 hours against,

Hy:84= {1.000,(-50),450} hours, respectively.



By wusing a normal approximation to the binomial
dlstribution, the optimal pogition of one gauge has been
carrled out for a glven Type I error «=.050 with the shape
parameter £=1,(.1),1.5,2,3 as shown in Table 3.1a. As we
can see, the positiong of gauge are slightly different.
However, we should be able to choose a single value as a
common value of a gauge. Table 3.1b shows the power of
test when the gauge 13 set at time t  such that the
probability of an item not surviving prior to time t 1s
egqual to 0.65.

It can be seen that the difference of the power of
test 1In Table 3.1a and Table 3.1b 1s less than or equal to
0.002. Therefore, in this case., it 1s guite reasonable to
take the probablllty p=0.65 as the value for one gauge.

It 1s 1Interesting to note that for the practical
purposes, when the power of test 1ls greater or edgual to
0.8988 then may be we can reduce elther the lengthtime of
observation or the sample <gize. Alternatively, we can
probably reduce both of them at the same time. Table 3.2
shows the power of test with £={ 1, 1.5, 2, 3} as an
Lllustration for this argument. The final declision would
depend on other consideration such as the cost of the

observation.



Table 3.1a. The optimal position of one gauge.

+ .......................................................................................................
B ! 1.1 L2oor L3 4 L 2 3
R R L LR L LN A PR R L2 I L2
e Rl A [ ' i A ey e e e h 1=
'L.ooo] - .050) - }.050, - .05, - }.050, - !.050) - :.050 - !.050| - }.080
| 9500 .65 | .083] .65 1 .087 .65 ! .081) .65 ) .086] .65 .100 .65 | .105 .65 | .131| .66 | .197
| 9000 .65 | .134] .65 1 .147) .65 | 160, .65 | .173] .65 | .188) .65 { .203 .65 | .292] .66 | .514
| 850 .65 | .210; .65 1 .236 .65 | .263; .65 | .293/ .65 .324) .65 | .356] .66 | .535 .66 | .858
©B00; .65} .315. .65 1 .360) .657) .407) .65 | .456; .65} .506° .66 ) .557, .66 ! .791} .66 .930
© 750 .65 1 .450) .65} 5150 .66 | 581 .65 | .645 .67 | .707 .G6 1 .7G4 .67} .952 .66} *
| 7000 .65 ! .606 .66 | .G85, .66 | .757) .66 | .021, .67 | .875, .67 ! .87, .67 ! .897, - ! ¢

. 650] .67 ) .763 .67 1 .038] .67} .897) .67 | .940) .68 | .969 .67 1 .985 - ! x | - | #

. 600 .68 ! .90, .68 } .942) .68 | .074| .68} .990] .68 { .897, - ! N

| 550/ .68 | .966) .68 | .988) .66 | .997 .68} * | - | * L L R
| 500 .68 .995 .68} .999 - 1 K 4 - § ¢ A L Pt
SRV L A L P L
+ ........................................................................................................

nofe: %= pqual or nearly to 1

Table 3.1b. The power of test when the gauge 1s set on p=.65

(2=
wn
<
<
o
[
o>
oo
-3
>
o
fowd
<
(7=
L=r]
——
<
L)
—
©
[,
o
(s
—
—
=
-~

700 606 684 1 756 ; .820 873 916 996 x

£50 762 ¢ .836 ; .896 938 967 984 4 t

500 888 | .940 | .972 989 996 999 k *

550 965 | .987 997 939 * x % *

500 1 .9%4 © .99% * * * * * X

458 x * % L % x %
L T IR SR PSR SRR SRR SRR +

note: *= equal or nearly to 1




Table.3.2.The

n=40, p=.35; n=
+
no 50 @ 40
o) .26 ; 35
+.,._.._. L U VS VU T
B 84
i 450 963 968
1 400 291 .893
350 939 . 999
600 . 948 . 954
1.5 550 988 991
| 500 339 3399
. 650 | .982 | .985
2 600 ; .998 . 999
550 * *
750 . 982 986
3 700 . 993 *
650 * *

note *= egual or

30, 25

nearly to 1

power of test with n=50,
p=.65.

»

p=.




3.3 Two Gauges.

As  before., suppoze n Independent observations,
using gauge., are made on the Welbull dlstribution in order
to test the hypothesls about characterlstic 1ife 6. Now.
Instead of using one gauge, suppose two gauges have been
chosen to be used In the observation. As a result of thils,
the - obsgservations would be classified into three dilsjoint
classes Ay, Ag and Az. Let Ty and Ty denote the positions
of the first and the second gauge., respectively., the three

classes would be deflined as

Ay is a set of the nonsurvival 1items prior to Ty
As i1s a set of the nonsurvival items between T, and Tp

Ag is a set of the suvival ltems beyond Ts

Suppose n; nd py., 1=1,2,3; denote the number of the
items in each group and the probablility of an item falllng
Into 1lth c¢lass., respectlvely. Consider the statistlce
Ro-pn1-n3 as the test statistlc. There are 2n+l possible

values of Ro, i.e -n,-(n-1),........ D »(n-1).n.
Consider the trinomlal:

nt
P(ng.ngzl)=———————— 0 My polopglig
Tigrpzing!

where ng—“—n"(n1+n3) .
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The probabllity distribution of Ro., Taj Hijrl (1979)., 1is

glven by:
- [(n-r)/2]
z F(ng+r.ng for r<Q
e,
P(Rz‘—'r) = 1
[{n-r)/2]
nz P(nztr.ng for rz0
L. 3;0

The exact distribution of Rp may be generated by summing
the trinomials probabillitlies.

As an illustration consider the case of n=5. The
possible values of Ro are -3,-4,..... 0,0 4,5.
Suppose the two gauges are setting such that pyo=p3z=.20.

The probabllity of Rp<-3 1is glven by:

P(R2£“3)ZP(R2:~5)+P(R2:-4)+p(R2:*3)

Using the obove formulae we find.

P(Ro<-3)=0.03552.

Taj Hijrl (1979) has been investlgated that a
normal approximatlon can be used for Rop where the
symmetrical position of gauge, in the sense pyi=p3, 1s
desirable. In the ztudy of the optimal position of two
gauges, we will refer to thils result by settlng the gauges
on the symmetrical poslitlon and assuming Rp, has a normal

distributlon. The flirst four moments of Rp are glilven by.



E(Ro)=u=n(pq1-p3)
Ho=n{(P1+D3) - (Py1-D3) 2}
u3:n(D1“D3){ECDl*p3)2“3(D1+p3)+1}

u4:3u22~6n(p1~p3J4+n{3(p1+p3)~1}{4(p1-p3)2~(p1+p3)}-

For two gauges the lengg. time of observatlion being
conducted would be determined by the pogition of the second
gauge, l1.e To. However 1like the one gauge, 1t would not be
a practical proposition to use the fizxed time to express
the position of gauges., in the sense that it would be
difficult to obtaln a single value of a fixed time as a
value of gauges. Therefore, we use probabllity terms for
the position of two gauges, 1.e py=p3=p.

As an lllustration, consider the case of testing
the hypothesis about @ as 1n the one gauge example. Table
3.3a shows the optimal positlon of gauges for a given Type
I error «=.050. From this table we can see that this is
gulte reasonable 1f we take p=0.30 as a value for two

gauges.



Table 3.33. The optimal positlon of two gauges.

!
650 .30 | .80t) .30 | .868) .30 | .918! .30 | .954| .30 | .976 .31 | .99 .30 | * | - | ¢
600) .30 | .913 .30 | .955! .31 .978) .3t | .9%2 .31 | 997 3| ¢ . - L& | - | 4
550 .30 | L9740 .30 | .091 .31 L9973 & |3 | - Lok Lo | e | -]
5000 .30 | L9960 .30 ¢ | 3t ¢ | - & ] - L] - S
T I R D I N T NI S SO S BT SN B O AR N S A R
A SN RN UL AL SO, SO SUUNS SRR L S R UL SRR SO SN SR !

note: *=z- equal or nearly to 1.
It should be noted that 1t is possible to reduce

the lengthhtime of observation with a relatively small
effect on the power of test. For instance if we set the
gauges at the time T4 and T, such that py=p3=p=0.35., then
the resulting power of test will be decreased only less
than or equal to 0.006. Table 3.3b shows the power of test

when the gauges are set such that p=0.35.

Table 3.3b. The power of test when gauges are sef suveh that p=0.35.




As in the one gauge case, when the power of test is
greater or egqual Lo .889 then we can elther reduce the
lengthtime of observatlon or the sample size.
Alternatively we can probably reduce both of them at the
same  time. Table 3.4 shows the power of test with 8= 1.
1.5, 2 and 3 as an 1llustration of this argument.

Table 3.4. The power of test with n=50.p=.45:
n=40.,35.p=40: n=25.,p=.30,.40.
e e e e +
! T 50 40 30 25 2 %
p .45 | .40 .40 | .40 .30
R R e il b bl e e
B ey
450 | .999 | .997 984 | .963 | .964
1 400 * § * .998 | 593 993
350 * ;o* * Px 999
e o et b e e e ek e | e i — g ____________________________
600 998 | .995 975 .847 949
1.5, 550 * * . 997 991 990
500 * * * 3389 . 9948

; 650 * . 999 . 8995 8984 984

;2 500 * * * 999 . 999

550 * * * * *

| 750 * .999 | .995 | .984 984

; 3 700 * * * * *

o e e +

note: *= pgqual or nearly to 1.




Chapter 4.

APPLICATION IN ACCEPTANCE SAMPLING PLANS.

Gauges are most likely to be used when the quallty
of the items refer to the measurement on a continuous
scale. This means the application of gauges 1in the
acceptance sgampling plans 1s concerned wlth the average
quallty and not with the fraction defectlive of the items.
Therefore the operating characterlisgtic (0C) function will
give the probabllity of acceptance as a function of the
average quality of an 1ltem. 1In the life testing cacse.
since we are interested on the characteristic 1life or the
mean life of the 1items., the OC functlion will glve the
probability ofacceptance as a function of this parameter.

Since the OC functlon iz complement of the power
function, the optimal position of a gauge in the acceptance
sampling plans 1is the same as 1In the testing hypothesis.
The optimal position In thils case has as criteria the
minimisation of type II error £ or consumer’s risk.
However, the use of a gauge 1in the acceptance sampling
plans 1g also concerned with a setting of a gauge in order
to meet the regqulred conditions of the plans. For Instance
we can specify the sample gize n, the type I error o« aor
producer s risk and the position of gauge (T) to find the
critical point (C). Or to take another example, we can

specify n, @ and B to find T and C., etc.
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Since C 1z cost independent., the plans are llkely
to specify o and 8 In order to find n and T. There may be
a number of plans:i.e palrs of n and T which satisfy the
reguired conditions. Therefore we shall impose an
addlitional condition which will lead to a unlque plan. The
addltional conditlion c¢an be the minimum gample size n or
the minimum of the cost function of observation. If a plan
criterla 1s cost then from these several posslibllities we
can choose a palr of n and T such that the total cost of
observation ig at a minimum. We will discuss thils problem
later, in Chapter 5.

We consider a single sampling plan and a double

csampling plan respectively.

4.1 Single Sampling Plan.

In a single sampling plan we will study the use of

one gauge and two gauges.

a.0One gauge.

Suppose a batch of 1tems 1s presented for
ingpectlion. A gingle s=ampling plan, using one gauge.
conglists of a random sample of n iltems from the batch for
inpection. The declsion on the batch wlll depend on the
result. If we declde to elther accept or reject the batch
then the batch would be accepted 1if the number of
defectiveg d found prior to time T in the n items were less

than or egqual to the acceptance number c¢; T 1s the position



of the gauge.
We have seen that for a glven « then the gauge can

be =zet ag 1In the testing hypothesis to meet the minimum

1923

value of f£. However 1in the practical use of acceptance
samplling plans « and £ are normally specified. For this
plan we may have a number of pairs of n and T that satlisfy
the given conditions. Slnce one gauge 1s used we can
consider that d has a binomial distribution hence we can
use a binomial table to find the solutions that satlsfy the
required conditions.

For practical purposes, however., we can probably
use elither the Polsson or the normal approximation to the
Binomial. Extensgive examples of this casze have been
published 1n a number of text books. Guenther (1977) for
example., pointed out the condltions in which the Polsson
distribution can be use. In our case we will consider of
the use of a normal approximation to calculate the plans:;
i.e the pair of n and T that satisfy a given condition.
The related acceptance number of the plan can be calculated
afterwards by putting mean wa=np and standard deviation
o=inp(i-p). As an 1illustratlion of how good a normal
approximation can be 1n use., consider the case of a single
sampling plan consigts of n=50 drawn from an exponentlial
disztribution with one gauge set at several positions.
Suppose we wish the probabllity of acceptance at the mean
life time 6=1000 hours to be about 85%, hence «=0.05.

Table 4.1 zshows the 0OC-curves which are calculated by using

a binomial and a normal approximatlion. As we can see.,
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as T increazes the difference becomes smaller.

Therefore., it 18 guite reasonable to use a normal

approximation Iin this case.

Table 4.1 OC-curve for a <ingle sampling plan using
binomlal and normal approximatlion

e +
Gauge position T hours
85.56 119.91 238.26
+ ___________________________________ v | e v o v wee e e Me e o i "
s) Bin. | Nor Bin. Nor Bln Nor
1,000 0.951 0.360 @ 0.949 0.957 0.950 0.955
950 | 0.937 0.946 | 0.934 0.941 0.929 | 0.933
300 0.920 0.928 0.913 0.819 0.900 0.902
850 0.899 0.904 0.886 0.889 0.859 0.860
800 0.870 0.872 0.850 0.850 0.804 0.802
750 0.834 0.832 0.804 0.800 0.731 0.726
L 700 0.788 0.781 0.745 0.736 0.633 ! 0.631
650 0.729 0.717 0.671 0.658 0.527 0.519
600 0.656 0.639 0.579 0.565 0.401 0.395
550 0.566 0.548 0.473 0.458 0.272 0.269
500 0.462 0.444 0.355 0.344 0.157 0.157
450 0.345 0.333 0.238 0.232 0.071 0.073
400 0.227 0.223 0.131 0.133 0.023 0.024
350 0.123 0.126 0.055 0.059 0.004 0.005
| 300 0.048 0.054 | 0.015 0.018 0.000 0.000
b o e e e e o +

We will now investigate the determination of
single sampling plans for slituatlon in which 65.64.« and B
are specified. Ag an 1llustration consider the case of

hypothesis

Hp:€g=1.,000 hours, agalnst

Hy:04={700.,(~-50).,350} . respectively

For a given o« and £ and assuming life time T has an
exponential distribution the plans that satisfy the
reguired conditions have been calculated using a normal

approximation as shown in Table 4.1a., b and ¢. Table 4.1a
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shows some of the plans that satisfy «=0.05 and B8=0.05.
Table 4.1b shows some of the plans that satisfy «=0.05 and
B=0.10. Table 4.1c shows some of the plans that satisfy
«=0.10 and B=0.10. As we can see from these Tables the
sample slze n decreases when the position of a gauge T
increaseas. The minimum sample size n will occur when the
gauge 1ls set around optimal position.

Having determined the plans that satisfy the
required conditions we can calculate the related acceptance
number C for each plan. For example, 1f we take the case
of alternate hypothesis H;:64=500 with «=0.05 and B=0.05
then for the plan with n=38 and T=693.15 the acceptance

number 1is about 24.

Table 4.13 Some of the plans that satisfy «=0.05 and B-D.05
for 2 single sawpling plan, using one gauge.

776.53 | 150 { 100 | 70} 50| 361! 26| 13} 14
789.50 | 148 ) 99| 69 43} 36| 26| 19| M
820.98 | 146 | 98| 68 49| 35| 26| 29 14
843.97 | 144} 97 68| 48} 35 26 191 14
867.50 | 143 | 96 67} 48} 35| 26 19} 14
B91.60 | 141 | 95 66| 48 35| 26| 19 14
916.29 { 140 | 94| 66 47| M| 25| 19 U
941.60 | 139 | 93 65| 47 34| 25} 19 U
967.58 | 137 | 93| 65 47 34| 25| 19 W4
994.25 | 136 ) 92| 65} 46| 34} 25] 194 M
1021.65 1 135 | 91| 64| 467 34 25 19 14
1049.82 | 134 | 91 64 ) 46 34 25} 19) U
1076.81 | 133} 90| 64 ) 46| 34| 25| 193¢ U
1108.66 | 133{ 90 63 ] 46| 34| 25 19| 15
1139.43 {1 132) 90| 63| 46| 34} 25 19 15
1170.18 } 132 | 89| 63| 46 34} 26| 19| 15
1203.97 { 131 89| 63 ) 46 34| 26{ 20| 15

D O D O O O O D OO OO DO DOD O OO oo
- » . v - v v * . » - - - . - v - . - . v
~I ZH EH DN TH H OH H €N H H LN LN LN LI &KX LN LN LN LN W
T LD CO =3 €N LIt ¥ L) DN = D LD OO ~3 O LN s LI DO == O
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b. Two gauges.

Suppose we choose to use two gauges 1in observation
for a single samplling plans conslsting of a sample of n
ltems. Our declsion on the batch willl depend on the
results of Rp=nj;-n3. If the declslon 1ls to elther accept
or reject the batch then the batch would be accepted if Rgp
were less than or equal to the acceptance number h.

Since we use a normal approximation to Ry then

under null hypothesls Hg the acceptance number should be:

h= z,32np.

where 2z, 1s the appropriate normal deviate. This flgure
can be calculated for practical use., after we have declded
on the most suitable plan. Since the 1lengthtime of the
oObservatlon beling conducted ls determined by the position
of the second gauge (Tp) the plan should be the palr of n
and Tp-

As before., we Investigate the determination of
single sampling plans for situation in which 635.84.x and B8
are Speclifled. As an 1llustration consider the
hypothetical case 1n the one gauge example. For a given «
and B and assuming 1life time T has an exponential
distribution the plans that satisfy the requlred conditlons
have been calculated as shown in Table 4.2a, b and c.
Table 4.2a shows some of the plans that satlsfy «=0.05 and

B=0.05. Table 4.2b shows some of the plansg that satlsfy
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«=0.05 and B=0.10. Table 4.2c shows some of the plans that

satisfy o=0.10 and B=0.10.

Table 4.2a Some of the plans that satisfy «=0.05 and $=0.05
for a single sampling plan, vsing tvo gavges.

oo e t

Gavge Position 0y

P |Tolhrs.) | 700 | 650 | 600 | 550 | 500 | 450 | 400 | 350
0.25 | 1386.29 | 126 | 87| 61| 44| 33| 25| 19| 4
0.26 | 1347.07 [ 127 | 66| 61| 44 32| 24 18| U
0.27 | 1308.33 | 126 | 86| 60| 43| 32| 24 18| 14
0.20 | 1272.97 | 126 | 85| 60 | 43| 32| 24| 18} 13
0.29 | 1237.87 | 126 | 85| 60| 43| 31| 23} 17| 13
0.30 | 1203.97 y 126 | 85| 59| 43} 31| 23| 17| 13
0.3t | 1170.18 { 126 ¢ 85| 59| 43¢ 31} 23| 17} 13
0.32 | 1139.43 [ 127 ) 85| 53| 42| 31{ 23§ 17 13
0.33 | 1108.66 | 127 { 85| 537 42| 31{ 23| 17| f2
0.34 | 1078.81 | 128 | 86| 60 | 43| 31} 23| 17 {2
.35 | 1049.82 | 128 { 86 60| 43| 31| 23| 17| 12
0.36 | 1021.65 | 129 | 87| 60| 43| 31| 23| 17 12
0.37] 994.25 | 130 | 87| 61 | 43| 3} 23| 17} 12
0.38 | 967.58 | 132 | 88| 61| 43 3} 23| 17} 12
0.3 | 941.61 | 133 | 89| 62| 44| 32| 23| 17} 12
0.40 | 916.29 | 134 | 90| 62| 44 32} 23| 17} 12

b e o e e e e oo b

Table 4.2b Some of the plans that satlisfy «=0.05 and 8=0.10
for a single samplling plan, using two gauges.

1366.29 | 1021 70| 43 36| 27| 20| 13| {2
1347.07 | 102 | 69 49 35| 26| 20| 15| 11
1308.33 { 101 { 69| 48] 357 26) 19} 15 1
1272.87 | 164 | 68| 48 ¢ 35 26§ 134 14| U
1237.87 { 101 | 66 48} 357 25! 18] 14| 1
1203.97 { 101§ 68 { 48 34} 25( 19| 4 11
171,18 [ 108 | 681 48 34| 25} 18 4| U
1139.43 1 101 | 68 48 34| 25| 19 4| 10
1108.66 { 101 | 68 { 48} 34 25| 19| 14| 10
1078.81 | 102 | 69| 48| 34 25| 18| 14| 10
1049.82 | 102 7 69| 48| 34| 25| 18] 14 10
1021.65 | 103 63| 48 351 25| 18} 14| 10
994.25 | 104 | 70| 49 35 25| 18| 4] 10
967.58 { 105 | 70| 48| 3 25| 19 14| 10
941.61 | 106 | 7ty 49 35 26) 19} 14} 10
916.26 | 107 | 72 50| 36 26| 18 14| 10

OO O O O DD OD O Do D o
v . v . v v v - v v v v i3 v v -

e L) L) e Lad Bl L) Rad R L) LD DN DO DD DD DD
CO LD OO 3 TN W e LI DD = D W OO -3 N W
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Table 4.2c Some of the pians thal satisfy «=0.10 and p=0.10
for 2 single sampling plan, using tvo gauges.

e e o e e t

Gauge position 8y

p |Tolhes.) | 700 | 650 | 600 | 550 | 500 | 450 | 400 | 350
0.25 | 1386.29 { 78 | 53| 3} 27| 20| 15 M} 9
0.26 | 1342.07{ 77} 53¢ 3} 27| 204 15 1| 8
0.27 | 1308.33 { 77| 52 3} 264 19} 45 | 8
0.28 | 1272.97 77| 52| 36| 26| 18| 4 | 8
0.29 | 1237.87{ 77| 52} 36 26| 19 14| 44| 8
0.30 | 1203.97 { 77| 52 36| 26| 19} 14 10} @8
0.31 | 147048 1 77} 52| 36| 26 18} 14 10 8
0.32 | 1139.43 1 77| 52} 36| 26| 13| 14 10} 8
0.33 | 1108.66 { 77} 524 36| 26| 13| 14 10| 8
0.34 | 1078.81 | 78| 524 36) 26 19 14 10| 8
0.35 | 1049.82 | 78 53 37 26| 19} 14} 10} 8
0.36 | 1020.65 | 79| 534 37| 26| 13} 14 10| 8
0.37{ 994.25| 79| 53| 37| 26| 13| 14 10 8
0.38 | 967.58 | 80| 54 37 ) 26| 19| 14} 10 8
0.39| 941.61 | 81| 54 38| 28| 19, 144 10} 8
0.40 | 916.29 | 82 55! 38 28| 13| 14 10} 8

e Rl ]

4.2 Double sampling plan.

Suppose for the same requlred condltlions we wish to
replace a single sampllng plan by a double sampling plan.
Thls means we shall requlire both plans to possess the same
or approximately the same OC curve. As we have observed in
the previous section, there may be a number of plans whose
OC curve satlsfy the gilven conditlions. 1In order to find a
unique plan we have to 1mpose an additional conditlion.

For a situation 1in which #6&g.6;5.,a¢ and B are
speciflied we have calculated the plans that satlsfy the
required conditions., using a normal approximatlon, 1in a
single sampling plans. In a double sampling case however,
we cannot use the same technique to find the plans that

satlsfy the requlred conditions, since a double sampling
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rlan requires 5 parameters for 1lts full specification. The
flve parameters are two sample slzes ny and npg and three
declsion numbers C;.Cp, and C3; where C; and Cp, are
acceptance number and rejectlion number in the flirst
sampling with sample slze ny and C3 1s acceptance number
for the comblnation of the flirst sample of ny and the
second sample of no.

To overcome thls problem we can use the information
given by the solution of the single sampling plan.
Guenther (1977) recomended the procedure of using the
Iinformation from a single sampling solutlon for the double
sampling case. The summary of the procedure as follows:

1.L1ist the single sample solutlons and non solutlons
2.Select any Cp for which solution exist
3.Select any C4 such that 0<Cy<Cp. In a number of plans
used in practlcal sltuations we have C4<0.5Cp
4.For chosen C4.,Cp determine bounds on n; such the OC at
0,<B
5.By trial for the chosen Cy.Cp.ny find ns such that the
two conditlions on OC curve are satlsfled.
Repeat step 5 for another ny.Cy and Co, and terminate the
trlal by an addltional conditlon.

We will apply thlis same 1ldea to our case., though
probably not using excactly the same procedure as Guenther.
We might determine the solution for a double sampling plan
by reference to the single sampling plan chosen earller:
l.e a palr of n and T, from a number of plans that satisfy
the required conditions in a single sampling plan. With

the same position (T) of a gauge we can determine n;
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proportional to n. Also choose C3.Cp and Cz such that
C9<Cp<C<Cg3; C 1s the acceptance number 1n a single sampling
plan. Using the fact that nsiny+ns, we can find np by trial
for chosen C3.C5.C3 and ny. Since no claim 1s made on the
determinetion of all these flgures then we can choose by
trial.

Let us suppose that the parameters of a double

sampling plan are determine as follows:

1.3elect ny to be about 0.8n
2.select C3 2 C+1
3.Select Cy to be about C-2

4.8elect C150.5C

for the case 1ln whlch 63=1,000 hours. 6,4=500 hours, «=0.05
and £=0.05. Suppose the plan with n=160 and T=105.36
(p=0.10) has been chosen from a number of plans that
satisfy the given conditons in a single sampling plan. For
this plan the acceptance number C=22. Table 4.3 shows the
OC at 6p and 84 for several combinations of Cy.,Cy and Cg
with ny=0.8n. As a reference we put the OC of a single
sampling plan in the first row. As we can see from the
Table. we <c¢an have a number of plans that satisfy the
requlred conditions. In order to find a unlique double
sampling plan we can use ny as a criterla on parameter,
since we have specifled T and ny. In our example we can
see that plans No.3 and 5 are most sultable cholces for a

double sampling plans.



Intultively the results in Table 4.3 sugegest that
the total sample ng=ny+ny will depend on C3, and Cp will
depend on the chosen value of ny proportlonal to n. Thils
ls probably much clearer 1f we describe our results using a
random walk dlagram as shown in Fig.4.1; see Hamaker(1955).
by putting the total sample as absclsg.a and the number of
defectives observed as ordlnate. Hamaker (1955) polnted
out that apart from random deviations a random walk created
by the 1inspection of ltems taken from a homogeneous lot
will move in a long stralght 1line through the origin.
Hence 1f we draw a stright 1line from the origin to the
drvided point C3 in the third screen 1t 1s preferable that
thls 1line should pass somewhere through the centre of the
open area between C; and Cp, otherwlse the judgements based

on the first and the total sample are not balanced.

Table 4.3 OC of a double sampling plan at 63=1,000 hours
64=500 hours for a glven C4.Cn.C3 with ny4=0.8n

e e e e ——— +
slngle samplling plan 0.951 0.052
Plan.No.| C4 Co Cy no 0C(8g) 0C(84)
1 5 21 23 40 0.950 0.051
2 8 20 23 37 0.951 0.050
3 8 21 23 40 0.950 0.044
4 11 20 23 37 0.951 0.050
5 11 21 23 40 0.950 0.045
6 13 21 23 40 0.950 0.044
7 15 20 23 38 0.950 0.051
8 15 21 23 40 0.952 0.049
9 15 21 24 49 0.950 0.042
10 15 21 26 67 0.950 0.033
11 18 21 23 80 0.950 0.092
o e e e e e e e e e e e e e e e e e +

Since the plans for double sampling are made Wwith
reference to the solutlons in a slingle sampling plan the

sample =si1Ze n and the acceptance number € 1In the single
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sampling plans would be used as a reference for drawing the
dlagram. Hence 1f we draw a strlght line from the orlgln
to the divlding polnt C 1n the second screen then for any
ni*n we can have palrs of Cy and Cy. Since a strlght line
OC 1s flxed then the total sample ny willl increase as well

as C3 on the third screen 1lncreased.
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Chapter 5.

EFFICIENCY AND ROBUSTNESS OF TEST.

Clearly the advantages of gauglng over exact
measurement are 1ts speed and ease of operation. Gauging
can lead to an automatlic quallity control system that could
replace nonproductive 1nspectlon work. Furthermore., the
simpliclity of the statlistical results of gauging make 1t
attractive.

In this chapter we will consider the other measures
of the mer:its of the test such as 1ts relative effliclency
and robustness of test. Also we will consider the costs

that could be involved 1in observatlions using gauging.

5.1 Efficliency.

A comparison of gauges with exact measurement 1is
obviously of Interest. The efflciency of test 1s
calculated for a glven o« and B with reference to the number
of observations requlired for a gauge based test and a test
based on exact measurement. We wlll compare the test which
ls Dbased on one gauge (Ry) and two gauges (Rp) wlth the U
test, Bain(1978), whlich 1s based on exact measurement.
According to Balin, for a random sample of size n from the
Welbull distributlion W(B.6), the distribution of U 1s

approximated to normal dlstributlon as sample size n 1is
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t
increased. The 7atlstic U 1s glven by:

U=B1n(8,/6)4n

8y = observed characteristic 1life time

Using a normal approxmation to U,Ry; and Ry, we

calculate the number of observatlons requlred for Rj; j=1,2

and U tests, for a given o and fB. As an illustration

consider the following hypothetical case:

H0:60=1.000 hours agalnst.

Hy4:84={800.,(-50).,500)., respectively.

For a given « and B the number of observatlons required has
been calculated as shown 1n the Table 5.1a, b and ¢ with
shape parameter B=1, 1.5 and 2. ny and ng denote the number
of obsevatlons for U and Rj test, respectively. From these
Tables we can see that the efflclency of gauglng relative
to exact measurement 1s over 70%. We can also see that the
R test when based on two gauges., 1s of relatively high

efficlency than when based on the one gauge.



Table

5.1a.
for «=0.05
1
nR
ng { o.-& | t.g
267 351 341
161 209 201
105 134 128
72 31 86
51 64 60
37 46 43
28 34 31
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and B=0.05.
1.5

n-
ny 0. t.g
119 153 147
71 91 86
47 58 54
32 39 36
23 28 25
17 20 18
12 15 13

for o=0.05 and £=0.10.

1
ngp
ny 0.2 | t.g
212 280 271
127 168 160
83 108 102
57 74 69
40 52 48
30 38 34
22 28 25

1.5
BR
ng | o.g | t.g
94 123 117
57 73 67
37 47 44
25 32 29
18 23 20
13 17 14
10 13 10

for «=0.10 and B£=0.10.

1
R
ng | o.& | t.g
163 214 208
98 127 123
64 82 78
44 55 53
31 39 37
23 28 26
17 21 19

1.5
nRp

ng | o.g | t.g
72 93 89
44 55 52
28 35 33
19 24 22
14 17 15
10 12 11
8 9 8

The number of observations required

The number of observatlions reglured

The number of observations required

2
ng
ny .8 t.g
67 84 80
40 50 46
26 32 29
i8 22 18
13 15 13
9 11 9
7 9 7
2
ng
ny 0.& t.g
53 69 64
32 41 37
21 27 24
14 18 16
10 13 11
7 10 8
5 8 6
2
ng
nu 0.8 t»g
41 51 49
25 30 29
16 18 18
11 13 12
8 9 8
6 7 6
4 5 4
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5.2 Robustness.

The use of a gauge 1in testlng the hypothesis
Hg:©6=65 we assumed that the dlstributlion of the parent
population 1s known. However, 1f the actual distribution
of the parent population 1s different from the assumption,
then for the same critical regilon CR the actual type 1
errors will differ from the assumed type I errors. A test
that 1s 1less sensitlve to the departures from assumptions
made about the KkKnown distrlbution 1s sald to be more
robust.

Suppose, that 1n order to test the hypothesis
Hp:©=1.000 hours, a sample of size n has been drawn from
the population with an exponentlal distribution. For
sample size n=25,(5).,75 and assuming «=0.050 the CR’s are
calculated. With the same CR, «’s are calculated when the
true parent population 1s a Welbull distribution. Table
5.2a shows the effect on type I error « of assuming T has
an exponentlal distribution when T has a Welbull
distribution. using one gauge set at time T such that P=p.
P is the probability of an ltem nonsurvive prior to time T.
Table 5.2b shows the effect on « of assuming T has an
exponential distribution when T has a Welbull distributlon.
using two gauges set at time Ty and T, such that Py=P3=p.

As we c¢an see from Table 5.2a and 5.2b an R test



whlich 1s based on the two gauges 1s less sensitlve than
that based on one gauge to the departure from assumption
about a known dlstribution as exponential. Therefore, we
can say that the test using two gauges 1s more robust then

the test using one gauge.

Table 5.2a Effect on & of assuming T has an exponential distributlon when T has a Weibull
distribution, one gauge set al time T.

Table 5.2b Effect on & of assuming T has an exponential distribution vhen T has a Welbull
distribution, two gauges set at Ty and Ty.

..............

....................................................................

$

exp.| 0.0500( 0.0500{ 0.0500{ 0.0500{ 0.0500{ 0.0500{ 0.0500] 0.0500, 0.0500{ 0.0500| 0.0500
1.1 | 0.0328) 0.0353] 0.0373] 0.0390{ 0.0405; 0.0418} 0.0430] 0.0441] 0.0451] 0.0460| 0.0433
1.2 | 0.0195] 0.0233] 0.0265; 0.0294] 0.0320{ 0.0343; 0.0365] 0.0385! 0.0404] 0.0421} 0.0408
1.3 | 0.0103] 0.0142} 0.0178; 0.0212] 0.0245] 0.0276] 0.0305| 0.0332} 0.0358; 0.0383| 0.0365
1.4 | 0.0047| 0.0078] 0.0112} 0.0147} 0.0182} 0.0216; 0.0250{ 0.0284| 0.0316] 0.0347 0.0324
1.5 | 0.0018] 0.0038; 0.0065 0.0096/ 0.0130] 0.0165| 0.0202} 0.0239] 0.0276; 0.0312] 0.0285
1.6 | 0.0005] 0.0016; 0.0034] 0.0058] 0.0089] 0.0122] 0.0153} 0.0198] 0.0238) 0.0279 0.0248
1.7 | 0.0001| 0.0006] 0.0016 0.0034] 0.0058/ 0.0089) 0.0123) 0.0162] 0.0204} 0.0248} 0.0215
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5.3 Cost function.

Suppose the total cost assoclated with an observation

1s represented by an equation:

C= a;n + agnt

The constant a4y denotes the cost per item In the sample.
This could be the cost of the sample unit, the part of the
cost of test equipment which depends on the number of units
tested, etc. The constant aj; denotes the cost per unit
ltem in a unit time of conducted observatlion. It could
represent the cost of carrying out the observations., the
cost Incurred from walting for the result., etc.

We have seen 1n Chapter 4 that for a gilven o and 8 in
a sampling plans we ¢an have several pairs of n and T that
satisfy the requlired conditlions. A minlmum sample sizZe n
occured when the gauge 1s set on the optimal position as 1n
Chapter 3. However. we cannot say whether or not this plan
1s sultable one. In sSuch a situation. perhaps a plan
reflecting costs other than those assoclated with the
sample size may be of more interest. In other words we can
chose a plan that c¢an minimlze the total cost of the
observations. For example, suppose a single sampling plan
consists of a sample of size n drawn from an exponentlal
distribution. Let us suppose that we wlish the probabllity

of acceptance of a batch of an average dquallity 63=1.000



i
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hours to be about 95%. At the same time, we wish the
probabllity of acceptance of a batch of an average gquality
64=700 hours to be about 5%. Hence., the plan speciflies
®=0.05 and B=0.05. Let wus also suppose a;y=£1.50 and
a»=£0.50. Table 5.3a shows the total cost of the
observatlions using one gauge for each palr of n and T that
satlisfy the above speciflication. We can see from this
Table that the minimum cost of £38,578.49 1s achleved when
n=1021 and T=72.57 hours. Compare this with the much
greater total cost of £70.538.94 when the gauge 1s set on

the optimal position:l.e T=1049.82 and n=134.

Table 5.3a Total cost of each plan using one
gauge (single sampling plan).

e e —————_— +
n T(hours) cost (L)
1,426 51.29 38.708.77
1,190 61.88 38.603.60
1,021 72.57 38.578.49
894 83.38 38.611.86
785 94.31 38.680.73
717 105. 36 38.,847.06
652 116.53 38.966.78
599 127.83 39.,183.59
553 139.26 39.334.89
514 150.82 39.531.74
o e e e ¢

When the two gauges are used In a sinlge sampling
plan, the minimum cost of the observation 1s achieved when
both gauges are set at the same posltlionili.e py=p3=0.50.
This would appear to suggest that we should use one gauge
rather than two gauges., but since one gauge 1is very
sensitlive to the assumptlon about the distribution of the

parent population. this 1s probably not a practical
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proposition. On the other hand, when the two gauges are set
on time T1 and T2 such that p;=p3<0.36, then the lengthtime
of the observatlon belng conducted 1ls quite long. This of
cause 1s something we are trylng to avold as far as
possible. Therefore, for any practical purpose 1t might be
a good compromlse to set the two gauges at time Ty and Ty
such that 0.36<p;=p3<0.50. As an 1lllustration of this,
consider the <case 1n the one gauge example. Table 5.3b
shows the total cost of the observations uslng two gauge
for each palr of n and T that satlisfy glven speclflications.
The minimum total cost 1s equal to £54.995.85 achleved when
the two gauges are set 1n the same posltion, l.e py=p3=0.50
(T41=T5=693.15 hours) whlch 1s equlvalent to using one gauge
such that the probablllty of an iltem failling prior to time

T (poslition of the gauge) 1ls p=0.50.

Table 5.3b Total cost of each plan using two
gauges (single sampling plan).

o e e e e ——————— +
n T(hours) cost(£)
126 1.139.43 71,973.08
127 1,108.66 70.590.41
128 1.049.82 67.380.48
129 1,021.65 66.,089.93
130 894.25 64.821.25
132 967.58 64.,058.28
133 941.61 62.816.56
134 916.29 61.,592.43
136 8491.60 60.832.80
138 867.50 60.,064.50
140 843.97 59,287.90
142 820.98 58.502.58
144 798.51 57.708.72
147 776.53 57.,285.46
149 755.02 56.472.49
152 733.97 56.,009.72
155 713.35 55.,517.12
158 693.15 54.,995.85
e e +
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Chapter 6.

SUGGESTION FOR FURTHER WORK.

In this thesls, we have consldered the use of one
and two gauges in life testing. We have consldered the use
of gauges to test hypotheses about the mean 1ife time of a
Welbull distribution. Slince the exponentlal distributlion
Is a speclal case of the Welbull distribution it will be
covered in the study. As Hirjl and Shahanl (13878) polnted
out, 1t 1s shown that the test 1s of higher efficlency and
greater robustness when based on two gauges than when based
on one gauge. Therefore 1t would be reasonable to expect
that the performance of a test would further improve 1if we
use more gauges.

We have considered the using gauges 1in both a
single sampling plan and a double sampling plan. By
reference to the solution In a single sampling plan and
using a random walk dlagram we might be able to predict the
required parameters for a double sampling plan. It 1s
shown that for a given set of conditions the minlimum sample
size reqlured is achleved when the gauges are set around
the optimal poslition. It 1s also shown that although the
use of two gauges substantlally lmproved the performance of
the test, 1n some cases i1t will probably be more economlcal
to use one gauge, particularly when the cost per unit time

1s quite 1large. Since the requlired sample silze for two
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gauges 1s much 1less than for one gauge., 1t would be
Interesting to lInvestligate the use of a gauge when the
quallty of items 1s not based on the time term.

Perhaps gauges can be used to test hypotheses about
the other parameters of parent population. Shahani (1879)
has used gauges for testing hyqiheses about correlation
coefflclent 1n a blvarlate normal case. But as Hirji(1979)
recorded., apart from Stevens(1948) work on estimation of
the varlance, no work has been yet done on testing
hypotheses about variance using gauges. In a 1life testing
context 1t would be lnteresting to investigate the use of
gauges on testling hypotheses about the other parameters of
life time such as shape and scale parameters. Since our
consliderations have been limited only to certaln
distribution: l.e Welbull distribution. it would be
Interesting to investigate more generally the deslgn and
use of gauges in other 1life time distributions.

It would be Ilnteresting to investligate the use of

gauges 1n several dimensions random varlable.



Appendix 1.

Gaussian Quadrature.

The 1ldea behind Gaussian Quadrature is to find an

Integration formula:

‘b

I(f)= w(x)f(x)dx

Ja

by.

n
In(f)zjfiwj(X)f(xj)-

The welghts W j and nodes Xj are restricted to be real, and
nodes must belong to the 1interval of 1integration. The
welght function should .,be nonnegative and satisfy the

hypotheses:

‘b
1. I [xgnw(x)dx, 1s integrable and finlte for all n20
a

b
2. Suppose that wW(x)g(x)dx=0 for some nonnegative
a

A

continuous functlion then the functlion g(x)= 0 on (a.b).

The welghts W and nodes Xj are determine such that

the error
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Ep(f)= I(£)-I,(f)=0

This will be achleved for as high a degree polynomial f(x)
as posslible.

As an illustration., conslder the speclilal case

n
f(x)dx%x = X w;if(x) (1)
j-1 i=1

The welghts W3 and nodes Xj are to be determined to make

the error En(f) edqual to zero. To derive equations for the

nodes and welights, we first note that

Thus Ep,(f)=0 for every polynomlal of degree <m if and only

if
E,(x1)=0 1=0,1,.....m.
Now, suppose n=1, then we have two parameters w,
and Xq. Since there are two parameters we conslider
requiring

E4(1)=0 and E;(x)=0

Thls glves
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t 1 " 1
1dx - wy4=0 and Xxdx - wyx4q=0
J1 -1

A

Thils 1mplles wy=2 and X,=0. Thus the formula (1) becomes

"1
f(x)dx = 2f(0)
-1

which 18 simllar to midpoint rule.

Similarly., when n=2 then we will have four parameters
Wi, Wo, X3, ¥g and thus we put four constralnts on these

parameters:

1
xldx - (wyxgt+waxs1y=0 1=0,1.2,3.

r.
E2(x1)=]
J-1

or
Wqitwo=2
WiX4tWoxo=0
WXy 2+waxs2=2/3
w1x13+w2x23=0
These nonlinear equations have the unlque solutlon

W1=wo=1 and xp=-x34=43/3

and the formula (1) becomes
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"1
f(X)dx=f(~-33/3)+£(343/3)
-1

For a general n thereare 2n parameters W3 and Xje+ hence the

equations to be solved are

En(x1)=0 12001 eennn.. .»2n-1
or
4] 121131 ...... ,Zn"‘l
S
SEWI%GTE A
27(1+1) 1=20.2,.00... .2n-2

Table I shows the values of welghts wj and nodes X;
for n=2,(1).,10 for Gausslan Integration. The detalls of
the welghts and nodes values can be seen 1n some references
such as Abramowlitz and Stegun (1976).

In our case we take n=7 to calculate the integral
P(X) for a normal distributlion. The list of the computer
program used to calculate the OC curve using normal
approximation 1s glven as an example.

To obtaln some intultlion the degree of preclsion of
thls method., the 1ntegral P(X) of a normal standard have
been calculated for %x=0.(0.1}.3. The results are compare
with the 1integral P(X) 1ln Pearson & Hartley as shown 1n the

Table II.
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Table I. Nodes and welght factors for Gaussian
Integratlion.

o e e +

Nodes (th) n Welght factors (wj)
0.57735 02681 89626 2 1.00000 00000 00000
0.00000 00000 00000 3 0.88888 88888 88889
0.77459 666382 41483 0.55555 55555 55556
0.33998 10435 84856 4 0.65214 51548 62546
0.86113 63115 84053 0.34785 48451 37454
0.00000 00000 00000 0.56888 88888 88889
0.53846 893101 05683 5 0.47862 86704 99366
0.90617 98459 38664 0.23692 68850 56189
0.23861 91860 83197 0.46781 39345 72691
0.66120 93864 66265 6 0.36076 15730 48139
0.93246 85142 03152 0.17132 44823 78170
0.00000 00000 00000 0.41795 91836 73469
0.40584 51513 77397 7 0.38183 00505 05119
0.74153 11855 99393 0.27970 53914 89277
0.94910 79123 42759 0.12948 49661 68870
0.18343 46424 95650 0.36268 37833 783862
0.52553 24099 16329 8 0.31370 66458 77887
0.79666 64774 13627 0.22238 10344 53374
0.96028 98564 97536 0.10122 85362 90376
0.00000 00000 00000 0.33023 93550 01260
0.32425 34234 03809 0.31234 70770 40003
0.61337 14327 00580 9 0.26061 063964 02935
0.83603 11073 26636 0.18064 81606 9894857
0.96816 02395 07626 0.08127 43883 61574
0.14887 43389 81631 0.29552 42247 14753
0.43339 53941 29247 0.26926 67193 099396
0.67940 95682 98024 10 0.21908 63625 15982
0.86506 33666 88985 0.14945 13491 50581
0.97390 65285 17172 0.06667 13443 08688
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Table II. The integral P(X) for a normal standard

_______________________________________________ +
P(X)

X Pearson & Harteley Gausslian quadrature
0.0 0.500 000 O 0.500 000 O
0.1 0.539 827 8 0.539 827 8
0.2 0.579 259 7 0.579 259 7
0.3 0.617 911 4 0.617 911 4
0.4 0.655 421 7 0.655 421 7
0.5 0.691 462 5 0.691 462 5
0.6 0.725 746 9 0.725 746 9
0.7 0.758 036 3 0.758 036 3
0.8 0.788 144 6 0.788 144 6
0.9 0.815 939 9 0.815 939 9
1.0 0.841 344 7 0.841 344 7
1.1 0.864 333 9 0.864 333 9
1.2 0.884 930 3 0.884 930 3
1.3 0.903 199 5 0.903 189 5
1.4 0.919 243 3 0.919 243 3
1.5 0.933 192 8 0.933 192 8
1.6 0.945 200 7 0.945 200 7
1.7 0.955 434 5 0.955 434 5
1.8 0.964 069 7 0.964 069 7
1.9 0.971 283 4 0.971 283 4
2.0 0.8977 249 9 0.977 249 9
2.1 0.982 135 6 0.982 135 6
2.2 0.986 096 6 0.986 0396 6
2.3 0.889 275 9 0.989 275 9
2.4 0.991 802 5 0.991 802 5
2.5 0.893 790 3 0.993 790 3
2.6 0.995 338 8 0.995 338 8
2.7 0.896 533 0O 0.996 533 0
2.8 0.3897 444 S 0.997 444 9
2.9 0.898 134 2 0.998 134 2
3.0 0.998 650 1 0.998 650 1

o o e e e e e e ] -
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40

50

60

70

80
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100
110
129
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140
150
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260
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320
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REM ARRXRARhRdhthRhRARRRRARARRARRRRRRARARERRAAR

RER * PROG OC-CURYE FOR SINGLE SANPLING PLAR. *
RE * USING BINOMIAL AND NORMAL APPROXIMATION *
REH RARhkthh bRtk kRt hd kR kR AR AR ARARE
DIK PO(7).¥G(7)
INPUT“HEAN LIFE TIHE HO":MO
INPUT"LOWER MEAR LIFE TIME H1":M{
INPUT"STEP":§
THPUT"SAMPLE SIZE”:N
IRPUT"CRITICAL POINT":C
INPUT*GAUGE POSITION”:P
INPUT"SHAPE PARAMETER" ;RO
PRINT"WHICH ONE DO YOD LIKE®
PRINTTAB(5)"1.BINOHIAL"
PRIATTAB(5)"2. RORMAL®
INPUT TAB(10)"Type 1 or 27:MX
PRINT*
IF Av=} THER PROChbin
IF Ax=2 THEN PROCnor
END
REHilRiiiiiiitilti!iltdiliniairittiiiiil*iiliiiittiii
DEF PRGCnor
Pi=1-P
10-LE{1/P1)
11=LE10/BO+LEHD
T=EYPI1
83320204
PRINT"T=":T
8%:10
R=Ct.5
FOR KO=KD TO Hi STEP -§
H=1/K0
QI=EXP-H
e=i-Q
H=SQR{N*Q*Q1)
2=(R-N*Q)/H
IF 2<0 THEM PROCneg ELSE PROCpos
PRIETTAB(10)°CH.=":K0:
#1:-320304
PRINTTAB(30)"0CL=":0Ct
=40
NEIT KO
EXDPROC
REH!!ltiitttiti*iiitilltais*sﬁaiutktiitiiliitiitliiiii
DEF PROCbin
Pi=i-p
X0=LN(1/P1)
X1=LNX0/BO+LNMO
T=EXPIY
#%:420204
PRIKT"T=":T
8310
FOR K0=M0 TO B STEP -§
H=17K0
Qi=EIP-H



580
590
600
610
620
630
640
850
670
680
594
100
"o
120
730
740
750
160
170
780
790
800
810
820
830
840
850
860
870
880
830
300
910
320
930
940
950
960
870
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
110
1120
1130
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Q=1-Q
Po=0
FOR I=0 TO C
PO=FRG(I}*Q*T*Q1*(K-1)+P0
XEXT 1
PRINTTAB(10)"CH.=":KD:
84:520304
PRINTTAB(30)"0C1=";0C1
n-{0
FEXT K
EXDPROC
Rgnutuunununurtaiquqtannntnnnnnxn
DEF PROCpos
I=7
B=2
PO{1)=0.0:P0(2)=.230458315955135:P0(3)-.448492751036447
P0(4)=.642349339440340:P0(5)=.801578090733310
PO(6)=.917598399222978:P0(7)=-.98418305471 4588
HG(1)=.232551553230874:¥6(2)=.226283180262897
WG(3)=.207616047536889:¥G(4)=.176145980761946
NG(5)=.138873510219787:W6(6)-.092121439837728
WG(7)=.040484004765316
SUK=0
FOR 3=1 T0O I
L=({B-R)*P0(J)+A+B}/2
Y=({A-B)*P0O(J)+AtB)/2
SUM=SUMH¥G(J)RENE(Y)
IF PO(J)<>0 THEN SUM=SUMH¥G(J)*FNF(Y)
XEXT J
0Ci=(B-A}*5DH/2+.5
EXDPROC
REHM““MNMMMQ!!tste*nintatritnn“tnn*ntnn
DEF FEG(I)
SUK=1
IF 1=0 THEE GOTO 970
FOR L+1 TO I
SUB=(N-(L-1))*50W/L
NEXT L
=54
Rgﬂtunnntuunntntntnnunnuunununnn
DEF PROCneg
BEF PROCpos
=7
B=-%
PO(1)=0.0:P0(2)=.230458315955835:P0(3)=.448492751036447
PO(4)-.6423493394403406:P0{5)-.001578096733310
PO{6)=.917598399222978:P0(7)--984183054718588
BG(1)-.232551553230874:¥G¢2)-.226283180262897
NG(3)=.207816047536889:¥6(4)=.178145380761946
NG{5)-.138873510219787:¥6(6)=.092121499837728
¥G6(7)-.040484004765316
SliM=0
FOR J=1 T0 1
I=((B-A)*PO(J)+A1B)/2
Y={(A-B)*PO{J}+A4B)/2
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SBH=SURHNG(J)*FRE(X)

IF PO(J)<>0 THEN SUN-SDMtHG(J)*FRF(Y)

NEIT 3

0C1=.5-(B-A)*500/2

ERDPROC
RENREAAARRRRRRRAAARARARRIRRRARRRRARARRRRARRARRRRERAAAR
DEF FRF(X)

S1=1/7(5QR(2*P1)

T0=X*2/2

=SI*EIP-T0
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Appendix 2.

GINOGRAF.

GINOGRAF was developed at the Computer Ald Design
Centre, Cambridge. It 1s a library of subroutine used 1n
conjuction with the graphlecs package GINO-F.

GINO-F stands for graphical input/output-FORTRAN
version. It 1ls a graphics package that takes the form of a
library of drawing and adminlstrative subroutines. Most of
the routlines are wrltten in standard ANSI FORTRAN making
GINO-F virtually 1independent. GINO-F 1s also device
independent a change to one llne of a user program belng
all that 1ls required to convert the program to produce
output on a different device. The routines 1n GINO-F that
produce this output are code generators, there being one
for each devlce avallable on each 1llne.

GINOGRAF has facllitles for producing graphs.,
histogram, bar charts and ple charts by two different
methods. The first method.ls produced the graph by a slmple
single call routlne whlich automatically performs all the
scaling and annotation. The second method, 1s produced the
graph bullt up from serles of routlnes which allow the user
to define each aspect of the graph and axls system
independently. A set of defaults 1s avallable for ltems

not exprlicity set by the user program.
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GINOGRAF assumes the GINO-F defaults for all
drawing. Thus graphs are drawn in unilimeters. The space
co-ordlinate system 1s the same as the plcture co-ordinate
system wlth the origin at the bottom 1left-hand corner of
the device, The X axls horlizontal and the Y axls vertical.
The graphlcal axls system ls wlth respect to this space co-
ordinate system. GINOGRAF has a set of defaults for any
aspect of the bullt-up axls system which have not been
deflned by the user., for example the position and scaling
of a plctural axis. The axis system of the composite
routines. which 1s provided automatically., 11s made up of
these default.

The 1list of the computer program using GINOGRAF
used to draw the graphs of the denslity function and the
fallure rate function for the Welbull and Ramberg
distributions 1s given as an example.

In this program, several routines have been used.,

they are:

- axls definition
- axls drawing

- graphical drawing.

The axls deflnition consists of two routines whlch

define the positlon and scaling of an axis. The position of

the axlis 1s defined by:

AXIPOS(IOR.,XOR.,YOR,AXLEN,IXORY)



The current and the length of axls are specified by IXORY
and AXLEN. For the current X axls IXORY=1 and the current Y
axls IXORY=2. The IOR 1ndicates the starting point
(XOR,YOR). If IOR=1, the axls starts at the polint (XOR.,YOR)
and 1f IOR=0 then the axls 1s positioned such that the
point (XOR.YOR) 1is at the natural orlgin as defined in the
data.

The scale of axls is defined by:

AXISCA(ISCALE,NINTS,VBEG,VEND, IXORY).

This routlilne glilves a choice of linear.,log or hlstogram
scales indicated by ISCALE. The axls Iincludling the step of
Interval (NINTS) and a range of data values speclifled by
VBEG.,VEND.

The axls drawlng 1s to draw an axls with or without
tick marks and scale values. It wlill depend on the values

of ITICK and IVAL. The axlis drawlng 1s specifled by:

AXIDRA(ITICK,IVAL,IXORY).

The graphical drawing represent the data In a graph
form. The data may be represented in a number of ways, such
as:

- points joints by stright lines.
- polnts jolints by a smooth curve.
- symbol at the polnts.

~ histogram.

- bar charts.



In our case., the data are representad by a smooth curve and

specifled by routine:
GRACUR(X.Y.,NPTS).

GRACUR draws a smooth curve through a number of points
(NPTS) in arrays X and Y.

Before any of GINOGRAF‘ routines 1s called. the
output device must be nominated. The following calls to

GINO-F subroutines as device nominatlon:

—-CALL SAVDRA for the plotter
~CALL APDS4 for the Imlac 3205 terminal

-CALL T4010 for the Tektronix 4010 terminal.

A call to subroutine DEVEND should be used to terminate

graphical output 1n each case.
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RARRRRRRRRNARRRAZRRRRRARNARRARRRRARRARRRRRRARRRAZRRRRRAR

*PROGRAM USING GIROGRAF TO DRA¥ WIEBULL AND RAMBERG PDE*
*HONEYKELL TERMIRAL '

ARRRARARRRRRRARRRARRARARRARRRARRRRRRRRRARKRARRRRRRRRRAAR

SO*#FRN=(OLIB)LIBRARY/GINOGRAF ;LIBRARY/GINO-F#A"01" :B"027:C"03":D"04";
GO*#E"05" ;F"06"2A0707":B0"087:C0"10":D0"11";E0"12" ;F0"13"; DINAR 08"

10

80

30
100
110
120
130
140
150
160
170
180
190
200
210
220
230
180
190
200
210
220
230
240
250
260
210
280
299
240
250
260
210
280
290
300
310
320
330
340
350
360
370
380
390
400
410

DIMENSION X1(100},X2(100),X3(100),X4¢100),X5(100),16¢100),X7(100)
DINEKSIOR X8(100),X9(100),X10(100),X15(100),X42¢100),X13(100)
DIMENSION Y1(100),Y2(100),Y3(100),Y4(100),Y5(100),Y6(100),Y7(100)
=12
Do 1 11,25
READ(1,101)X.Y
101 FORMAT(Y)

II=x
Yi(I)-Y
Ni=1

1 CONTIRUE
Do 2 1-1,30
REAB(2,101)1.Y
2(1)=1
12(1)=Y
K2:1

2 CONTINUE
Do 2 I-1,30
READ(2,101)1.Y
12(1)=X
Y2(1)=Y
K2-1

2 CORTINDE
Do 3 I-1,30
READ(3,100)1.Y
I31)=1
13(1)=Y
K31

3 CORTINUE
Do 3 I-1,30
READ(3,101)X.Y
13(1)=1
13(1)=Y
13=1

3 CONTINUE
D0 4 1:1,30
READ(4,101)X.Y
IHI)=X
Y4(1)=Y
M-I

4 CONTIRBE
Do 3 I-1,30
READ(4,101)1.Y
I5(1)=1
Y5(1)=Y
K5=1

5 CONTINUE



420 Do 6 I-1,30

430 READ(S.101)X.Y
440 16(1)=X

450 Y6(1)=Y

460 K6-1

470 6 CONTINUE
480 D0 7 I=1,30
490 READ(7,101)X.Y

500 mn-1

510 Y1(I)=Y

520 B=1

530 7 CONTINUE

540 Do 8 I-1,30
550 READ(S,10)X.Y
560 19(1)=1

510 Y9(1)=Y

580 ¥9=1

580 8 CONTINUE

609 Do 9 1=1,30

610 READ(10,101)X.Y
620 no(n=x

630 Yi0(1)-Y

640 ¥10-1
650 9 CONTINUE
660 Do 10 I=1,30

670 READ(11,101)X.Y
660 HiIn=x
690 Y(I)=y

700 M=
710 10 CONTINOE
720 DO 1t I=1,30

730 READ(12,101)X.Y

740 2(1)=x

750 Y12(1)-Y

760 §12=1

770 11 CONTINDE

180 Do 12 I=1,30

780 READ(13.101)X.Y

800 U1

810 113(1)=¢Y

820 013=1

830 12 CONTINUE

840 CALL SAVDRA

850 CALL CHASKI(1)

860 CALL PICCLE

870 CALL DEVPAP(1000.,280.,0)
880 CALL AXIPOS(1.10.,60.,80.,1)
890 CALL AXIPOS(1.10..60.,90.,2)
300 CALL AXISCA(1,.01,0.,1.6.2)
919 CALL AXISCA(1,.01.0..3..1)
920 CALL AXIDRA(1.1.1)

930 CALL AXIDRA(-1,-1,2)

940 CALL GRACUR(X1.Y1,25)

950 CALL GRACUR(X2.Y2,30)

360 CALL GRACUR(X3,Y3,30)



970

980

930
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1200
1210
1220
1230
1240
1250
1260
1270
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CALL GRACUR(X4.Y4,30)

CALL GRACUR(X5.Y5,30)

CALL GRACUR(X6,Y6,30)

CALL AXIPOS(1.105.,60.,80.,1)
CALL AXIPOS(1,105..60.,90.,2)
CALL AXISCA(!..1.0.,2..1)
CALL AXISCA(1,.01.0..5..2)
CALL AXIDRA{1.1.1)

CALL AXIDRA(-1.-1.2)

CALL GRACOR(X7.Y7,20)

CALL GRACUR(X9.Y9.20)

CALL GRACER(X10.Y10,20)

CALL GRACUR(X11.Y11,20)

CALL GRACUR(X12.Y12,20)

CALL GRACUR(X!3.Y13,20)

CALL MOVTO02(15.0,45.)

CALL CHAHOL('Fig.2.1a.Density Functiond.’)
CALL MOVT02(105.0.45.)

CALL CHAHOL('Fig.2.ib.Failure Rate Funetion®.)
CALL DEVEND

STOP

EXD
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Appendlx 3.

Computer Listing for Sampling Plan.

10 REK ARA4ARAARAXXAAARRARZARRAIRAARRARIIRRIAR

20 REM *PROG FOR PLAN OF SINGLE SAMPLING PLAN*
30 REH ARARARRRRARARRARRRRARARKARRARARRARRRRARR
40 INPOT"SHAPE PARAHETER”:BO
50 INPUTMEAR LIFE TINE HD":NO0
60 INPOT"ABSISCA FOR A GIVEN ALPHA":A
70 INPUT”ABSISCA FOR A GIVEN BETA:B
80 PRINT'
90 PRINT“DO YOO WISH ANOTHER ALPHA AND BETA?"
100 IF GET3="Y" THEN 40
110 PRINTTAB(%)"SELECT ONE PLEASE:"
120 PRINTTAB(5)"1.0KE GAUGE"
130 PRINTTAB(5)"2.THO GAUGES"
140 INPUT TAB(5)."TYPE 1 or 2":M8
150 PRINT'
160 IF Ax=1 THEN PROCone
170 IF As=2 THEN PROCLwo
180 Rgntittitttit!lttttiititttt*tt*ttiitiitititt
130 DEF PROCone
200 PRIETTAB(15)"sample size for a single sampling plan using one gange”
210 FOR P=.5 TO .75 STEP .01
210 Pi={-P
220 X0=LK(1/P1)
230 XI{=LEX0/BOLEMO
240 T=EIPX{
250 #%=32020A
260 PRINTTAB{0)"p=":P:TAB(10)"T=":T
270 8s:=10
280 FOR M1=700 TO 350 STEP-5H0
290 H=(T/H1)*BO
300  Qi=EIP-H
e 1Y
320 X=B*SQR(Q*Q1)-A*SQR(P*P1)
350 N=X*/(P-Q)2
360
370 8%:-520204
380 PRINT X;
390 8s:=10
400 NEXT H{
410 NEXT P
420 PRINTTAB(25)°Do you 1like another procedure’
430 IF GET$="Y" THEK 90
440 PRINT
450 END

460 REURRARRARARRARRAAAKARRRKRRRRRRARARRARARARRRARARRKRRRRR AR AR
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470 DEF PROCtwo

480 PRIKYTAB(15)"sample size for single sampling plan using two gauges”
430 FOR P1=.25 TO .46 STEP .01

500 P3:1-P1

510 CO=LN{1/P3)

520 Cl=LN(1/P1)

530  Y0=LKCO/BO+LNAD

530  Yi=LECL/BO+LNNO

530  Ti=EIPYD

560 T2:=REIPY1

570 8%:=320204

580 PRINTTAB(D)"p=":PL:TAB(10)"Ti=":T1;TAB(25)"T2-":12
530 83=10

600 FOR ¥1=700 TO 350 STEP -50

610 G={T1/41)*B0

620 G0=(T2/%1)*B0

630 Qi:1-EIP-6

640 Q3=EXP-GO

650 D=(Q3+Q1}-{Q3-Q1)*2

660 H-=(A*SQR(2%P1)-B*SQRD)*2/(Q3-Q1)*2

670 8%=320204

680 PRINT K:

630 es=10

700 BEIT M{

710 BEIT P§

720 PRINTTAB{25)"Do you want another procedure”
730 IF GET$="Y" THEN 60TO 90

740 PRINT

750 END
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10 REB AR 2R RARRARRRRRRARARARARRRARAARRRRARRRARRRARRARRARRAS

20 REN *PROG FOR PLAN OF DOUBLE SAMPLING PLA¥ USIRG ONE GAUGE*
30 REH RARRRRARARRARRRRARRRARRRRARRARRRRAARAARARARARRARNRRARRRS
40 TEPUY"SHAPE PARAMETER”:B5

50 INPUT"GAUGE POSITION”:PS

60 INPOT"SAMPLE SIZE (SINGLE)“:N
70 INPUT"RATIO FOR THE FIRST SAMPLE”:R!
80 INPUT"FIRST ACC. RUMBER":F

90 INPUT"FIRST REJ. NUMBER":S
100 INPOT"SECORD ACC. NUMBER":C
110 IRPOT"REAR LIFE TINE HO":NO
120 IRPOT"LOWER MEAR LIFE TINE Hi“:ML
130 INPBT"STEP":S5

140 RO=R1*R

150 RI=INY(X0)

160 N3-K-M

170 D=FH

180 G-§-1

190 P6=1-PH

200 X0=LE(1/P§)

210 X1=LNX0/B5+LENOD

240 T=EXPI!

250 PRINT"Ni=":Ki:

250 8%-320204

260 PRINTTAB(15)"T=":T

270 86=10

260 FOR N2-03 TO 2*Hi

290 PRINT"N2:";K2

3060 FOR R=M0 TO M1 STEP -55

310 P=1-EIP(-I/R)

320 Pr=0

330 FOR =D Y0 G

340 Q=C-3

350  SiK=t

360  Al=(1-P}*N2

370 Pi=0

380 FOR XK={ T0 Q

390 SUN-(N2-{K-1))/K+SUN

400  P1=SUN*PK*{1-P)*(K2-K)1P!
410 KEXT K

420 Bi=A11P}

430 P2=FRF(J)*PAJ*{1-P)*{R1-])
440 B2-B1*P2

450 Pr=PrtB2

460 KEIT J

470 A=(1-P)*M1
480  I=t

430  PO=0

500  IF F=0 THEN GOTO 550
510 FOR I-1 TOF

520 I=(M-(I-1))/1%1

530" PO=X*PAI*(1-P)*{N1-1}+P0
540 REXT I



..82...

550 BO-PO+A

560 OC-Pr+B0

570 8%=32040A

580 PRIRT OC:

580 ea-10

600 NEIT R

610 PRINT’

620 NEXT X2

630 PRIRT

640 END

650 RENARRRRRRRKRRKKRRRRRRRRRRAAKRRRRRRRRRRRRRRRRRRRRRRAR
660 DEF FRF(J)

670 -1

680 IF J=0 THEN 720
630 FOR L=1 TO J

700 K=(K1-(L-1))/L*8
710 BEIT L

720 =M
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