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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF MATHEMATICAL STUDIES 

OPERATIONAL RESEARCH 

Master of Philosophy 

THE DESIGN AND USE OF GAUGES IN LIFE TESTING 

by Albert Batti 

Gauges define classes and the use of gauges leads to the 

observation of frequencies In the defined classes. The 

advantages of gauges over exact measurement are simplicity, 

speed of observation, and the possibility of automa tlon. 

The use of gauges In Industrial life testing of items 

is explored with the Welbull distribution particularly in 

mind. 

The issue of the time value of a gauge is discussed for 

the case of one and two gauges. The context is the need to 

make decisions about the goodness of a large batch of 

items. Single and Double Acceptance Sampling plans for 

making the necessary decisions are discussed. 

The choice of one or two gauges and the type of 

sampling plan is essentially an economic issue. 

Appropriate cost functions can help in the guest for good 

solution. 

The progress made in this study can act as a foundation 

for further work. Some suggestion are made for further 

work. 
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Chapter l 

INTRODUCTION. 

The useful ness of a gauge in some applications 

statistics has long been realized. It can be used for any 

measurable quantity that can be arranged in an order. The 

use of a gauge leads to a classification of the 

observations. Hence, the observations are frequency counts 

in each class rather than exact measurements. We use these 

observed frequencies in the analysis. Since the method is 

based on frequency counts we can have a simple statistic 

and we would expect it to retain most of the robustness of 

the test statistic. These two attractive features 

motivated us to study of the use of gauges. 

As a simple example, we consider a single dimension 

of a manufactured item. We suppose that the length of this 

item, X, is important and because of the Inherent 

variability, X has to be regarded as a random variable. In 

practice the form of the probability density function of X 

will be known, or it will be assumed. Suppose f(x;e) is 

the density function and the parameter,(or parameters), e 

is unknown. Observations will be made 

to make inferences about 8 and the concern could be with 

estimating o or with testing hypotheses about e. 

With exact measurements Xi,X2' Xn we 

would work with a suitable test statistic in order to make 

inferences about e. 



With gauges we have the possibility of one or more 

gauges. With one gauge, set at length L, we would simply 

note the number of obsevatlons that are less than or equal 

to L. Thus in the sample of n, we would have an 

observation on the random variable Y which is the number of 

X valuel L. The following Figure illustrate one gauge for 

a single dimension. 

No. of values <L is I No. of values > L is (n-Rj_) 

length 
L 

It will be readily appreciated that observing Ri is much 

simpler than collecting the measurements 

%n" 

A more general example is the case of k gauges in 

several dimensions. A sample of n is obtained on a random 

vector X and the k gauges result in the observation of the 

frequencies in defined classes. For a two dimensional 

vector with two gauges for each of the dimension we get 

classes as indicated in Figure 1.1. 

Several statistical theories based on the gauge 

method have been developed. Steven (1948) has used this 

method for estimating the mean and the standard deviation 

of a normal distribution- He investigated the use of both 

symmetrical and asymmetrical gauges. Shahanl (1969) has 

used gauges for testing hypotheses about correlation 

coefficient in a blvariate normal case. He showed that the 

test which is based on the frequency counts is a 
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substantial improvement over the medial test. Taj Hirji 

and Shahani (1978) have used the technique for testing 

hypotheses about the mean of a 

Fig.1.1 Gauges for a two dimensional random vector. 
For , the gauges are set at L a n d 
For Xg' the gauges are set at L21 and L22-

normal distribution. With an extensive numerical 

investigation they suggest that for a symmetrical position 

of two gauges about the population mean and sample size 

n>20, should be adequate for the use of a normal 

approximation. Taj Hirji (1979) pointed out that working 

with the exact probability distribution of the statistic 

based on gauges may not be a practical proposition. He 

also considered the use of gauges in the sequential tests 

for the mean of a normal distribution and testing 

hypotheses about means of two related variables. 

In quality control where it is easy to collect large a 
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number of samples but difficult to obtain accurate 

measurement the use of gauges has obvious application. 

Where the absolutely accurate measurement of an Item Is not 

required a gauge method should be suitable. In a factory 

for example, it may be easier to operate a gauge by 

mechanical devices without the intervention of an operator. 

It is possible to construct a device that will take 

measurements on a series of items and record the results. 

It would be even easier to construct a machine which has 

only to classify and record the items into pre-defined 

classes. Therefore we can apply the technique to a fully 

automatic quality control system to replace nonproductive 

inspection work. 

Steven (1948) suggest a wide variety of a gauge that 

can be used on anything whose values can be arranged in a 

serial order, even if it is not measureable. He also used 

the two gauges to construct the control chart. Tippett 

(1944) pointed out that the efficiency of a gauge method 

depends very much on the setting of the gauge. He pointed 

out that if we desired to control only the average 

diameter, a one gauge may be made so that 50% of the items 

have a large diameter (defective). Then if the frequency 

distribution of the diameter is approxmately normal, a 

control chart of the fraction defective based on a sample 

of about 160 items gives as good a control chart of actual 

mean based on measurements of sample 100 items. He also 

pointed out that it is more economical to gauge 160 items 

than to measure and calculate the mean for 100 items. 

In this thesis, we consider the design and use of 



gauges In the life time tests. The design of gauges Is 

concerned with the setting of gauges to the optimal 

position where the criteria is the maximisation of the 

power of test. The value of gauge is the fixed time at 

which the optimal posistlon of gauge occurs. However, for 

practical purposes we prepare to use the probability term 

rather than a fixed time to express the position of gauges. 

We also consider the application of gauges in an acceptance 

sampling plan. 

In Chapter 3, we consider the design and use of one 

gauge and two gauges for testing hypotheses about mean life 

time T of a Welbull distribution. Since the exponential 

distribution is a special case of the Weibull distribution 

it will be covered in this study. Numerical investigation 

for various values of shape parameter suggests that we can 

probably take values of about p=0.G5 and Pi=P3=0.30 as 

values for one gauge and two gauges, respectively. However 

in the practical purposes, since the power of test is quite 

pretty flat around the optimal position then there is 

probably room for compromise in setting the gauges. 

Furthermore, when the power of test IS large enough,(say 

greater or equal to 0.999) we may be able to reduce either 

the lengthtlme of observation or the sample size. 

Alternatively, we may be able to reduce both of them at the 

same time. 

The application of gauges in acceptance sampling 

plans is considered In Chapter 4. It Is shown that for a 

given producer's risk & and consumer's risk /S we may have a 

number of plans; l.e pairs of n and T, to satisfy the 



required conditions. The minimum of l.he sample size Is 

achieved when the gauges are set around the optimal 

posltlon.lt Is also shown that In order to determine the 

plan that satisfies the required conditions in a double 

sampling case then we can set the gauges as In a single 

sampling plan. It will probably be easier to predict the 

parameters required for a double sampling plan by reference 

to the solution in a single sampling plan and use a random 

walk diagram. It is shown that the first rejection number 

Cg will depend on the chosen value of n^ proportional to n 

and the total sample n^ will depend on the second 

acceptance number Co. 

The results in Chapter 5 suggests that It seems quite 

reasonable to expect that the efficiency of test would 

further Improve if more gauges are used. With reference to 

the number required It shown that the efficiency of gauging 

relative to exact measurement Is over 70%. It Is also 

shown that the R test when based on two gauges, is of 

relatively high efficiency and more robust than when based 

on the one gauge. However, in some cases It will probably 

be more economical to use one gauge. Perhaps when the 

probability distribution Is exactly known or well predicted 

then it might be a practical proposition to use one gauge, 

particularly when the cost per unit time Is quite large. 

Further developments of the methods based on gauging 

are suggested in Chapter G. 



Chapter 2 

BASIC PROBABILITY FUNCTIONS 

2.1. General Comments. 

In general, the lengthlife or life time of an item, 

a device, or a system Is a random variable. If we use the 

symbol T to denote the life time, then like any other 

random variable, t has a probability density function. In 

practice, the form of the probability density function is 

often assumed and the parameters involved are estimated 

from the appropriate data. 

Also, the distribution of lifetime, can be 

described by the other functions such as the survivors 

function (S) and the the failure rate function (h). In 

practice, the survivor function gives the proportion of 

items surviving longer then time t, and failure rate 

function gives the proportion of items surviving in an 

interval per unit time, given that they have survived at 

the beginning of the interval. 

There are many physical causes which influence the 

life time of items. However, it is very difficult to 

isolate these physical causes, hence choosing a theoretical 

distribution to approximate the distribution of life data 

is a difficult process. It may be that some of the 
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conditions of the experiment are simply unknown or cannot 

be controlled. For example, two light bulbs may have been 

manufactured by the same process and used under the same 

general conditions but still fail at different times. In 

this case the phenomena can only described in probability 

terms. 

Several theoretical distributions have been widely 

used to describe the survival time phenomena. Amongst the 

most Important distributions are the Weibull and Raraberg 

distributions. These distributions are characterized by 

three and four parameters, respectively.In general, those 

parameters are known as location, scale and shape 

parameters. Since it is always possible to choose many 

different values for those parameters, a wide variety of 

curve shapes Is possible with these distributions. For 

example when the Weibull shape parameter approximates 3.25, 

Makino (1984), then the Weibull density function is quite 

similar to the normal density function. When the shape 

parameter of Weibull distribution equal to 1 and 2, then 

the resulting distributions are known as Exponential and 

Raylelgh distributions, respectively. Similarly, Ramberg 

and Gchimeiser have shown that Ramberg distribution can 

also provide good approximations to other well known 

distributions. For example Ramberg distribution can be 

consider as a normal distribution when location parameter 

is zero, scale parameter is 0.1975 and shape parameter is 

0.1349. 

In the following sections we study of the effect of 

the shape parameter on the shape of the density function 
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and the failure rate function. 

2.2. Welbull Distribution. 

This distribution was sugggested by Weibull (1951) 

and it has been used in a wide variety of applications.The 

probability density function of a random variable T having 

three-parameter Weibull distribution given by: 

f(tJ=#/8{(t-6)/e}P'l exp[-{(t-6)/8}# ; 0<6<t, 0<8,# 

where, the parameters 8, 0 and 6 are referred to as scale, 

shape and location parameter, respectively. The survivor 

function and the failure-rate function are, respectively : 

S(t)= exp[-{(t-5)/e}^] 

h(t)= #/e {(t-6)/8}#'l 

And, the cum. .ulatlve distribution function is given by: 

F(t)= l-exp[-{(t-G)/8}#] 

As we have mentioned in the beginning of this 

chapter, we are interested in exploring the relationship 

between shape parameter and failure rate function. For the 

sake of simplicity, we take the particular case where the 

Weibull location parameter 5 has been assumed to be zero. 

However, when 6 has a non-zero value, all that is necessary 

Is to substract the value of 6 from the value of t, in 
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order to get the correct value for t. 

Figures 2.1a and 2.1b show the probability density 

Function and the falulure rate function with shape 

parameter #={0.2,0.6,1,(.5),2.5}. As can be seen from 

these Figures the density function has no mode and decrease* 

monotonically when P<1 and the distribution is uniraodal 

when /3>i. When )3 = 1 the failure rate remains constant as 

time Increases and this is the exponential case. The 

failure rate decreases when p<i and Increases when /3>l as 

time t increases. Therefore the Weibull distribution can 

be used for the lifetime distribution of a population with 

decreasing, constant, or increasing failure rate. 
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2.3. Ramberg Distribution. 

Ramberg distribution Is a generalization of Tukey's 

lambda distribution. It was developed by Ramberg and 

Schmeiser (1979) to a four-parameter distribution defined 

by the percentile function. Hence, Ramberg distribution is 

defined in the terms of the inverse of its distribution 

function, which is here denoted by I. The inverse function 

is given by: 

p^3-(l-p)^4 
I(P)= Li + { } ; 0<p<l,L2=f=0 

^2 

Where is a location parameter, Lg is a scale parameter 

and Lg and L4 are shape parameters. 

The probability function is given by: 

f(t)= ; — , ; 0<p<l 
L3P 3 +L4(1-P)L4 

hence, I(p)=t. The lower and upper bounds of t are, 1(0) 

and 1(1), respectively. The density function can be 

graphed by letting p take any values between zero and one, 

plotting f(t) versus I(p). The density function is 

symmetrical about when hence the mean of Ramberg 

distribution is equal to L^, which is not true in 

unsymmetrical case. In general the mean of Ramberg 

distribution is given by: 
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1 1 
M = + —-—- - — )/L2 ' L2=5=0 

L'-t + l L/i + 1 

As In Weibull distribution, we would be Interested ,"n the 

effect of shape parameter to the shape of the density-

function and failure function. 

Now, consider L3 and L4 as coordinates. Figure 2.1 

shows the four regions of the shape parameter values. For 

the reference purposes these regions we numbered as 1,2,3 

and 4, repectlvely. In each region we have indicated where 

the density function is a valid one in the sense that 

density function f(t) Is nonnegative for all values of t. 

In the region 1 and 3 the density function Is for all 

values of L3 and L4. On the other hand the density 

function is nonnegative when L3<-1 and L4>1 In the region 2 

and when L3>1 and L4<-1 in region 4. The U-shape of 

distribution is also possible when liL3,L4<2 and the 

uniform distribution occure when and 2. 

In region 1 the distribution has a negative 

skewness when L3<L4 and has a positive skewness when L3>L4 

except the sub-region where given by: 

r (L3-l)2+(L4-i)2 k 1 

0< L3 <1 

- 0 i L4 i 1 

In this sub-region the density function has a positive 

skewness when L3<L4 and has a negative skewness when L3>L4. 
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As an illustration the probability density function of 

Ramberg distribution has been plotted for several values of 

L3 and L4 with Li=l and Lg-O.l In region i and L2=-0.1 in 

region 2, 3 and 4. 

Figures 2.2a and 2.2b show the Ramberg density 

function and failure rate function for the values of L3 and 

L4 as shown in Table 2.1. 

Table 2.1.Values of L3 and L4 for Fig.2.2a 
and Fig.2.21b. 

Curve No. 1 2 3 4 1 5 

L3 0.05 0.10 0.20 0.30| 0.35 

L4 0.35 0.30 0.20 o.ioj 0.05 

Figures 2.3a and 2.3b show the Ramberg density function and 

failure rate function for the values of L3 and L4 as shown 

in Table 2.2. 

Table 2.2.Values of L3 and L4 for Fig.2.3a 
and Fig.2.3b. 

Curve No, 

L4 

1 

0.25 

1.25 

2 

0.50 

1 . 0 0 

3 

0.75 

0.75 

4 

1 . 0 0 

0.50 

5 I 

1.251 

+ • 
0.251 ̂ 
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pos. pdf 

pos. pdf 

Fig.2.1 The four regions of the shape parameter values 
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Figures 2.4a and 2.4b show the Ramberg density function and 

failure rate function for the values of Lg and as shown 

in Table 2.3. 

Table 2.3.Values of Lg and for Pig.2.4a 
and Fig.2.4b. 

! Curve No. 

^ 3 1 1 . 0 5 | 1 . 2 5 1 . 5 0 j 1 . 7 5 1 i . 9 5 

L 4 1 1 . 9 5 ! 1 . 7 5 1 . 5 0 1 . 2 5 ; 1 . 0 5 

Figures 2.5a and 2.5b show the Ramberg density function and 

failure rate function for the values of Lg and as shown 

in Table 2.4. 

Table 2.4.Values of Lg and for Fig.2.5a 
and Fig.2.5b. 

! Curve No.! 
! i 

1 j 2 j 
i 

3 j 4 j 5 

! ^ 3 j 1 . 7 0 j 2 . 1 o i 
f 

2 . 5 0 } 2 . 9 0 { 3 . 3 0 

1 L 4 1 3 . 3 0 | 2 . 9 0 i 2 . 5 0 | 2 . 1 o | 1.70 
+ -

In region 3 the density function has a positive 

skewness when L3>L4 and has a negative skewness when L3<L4 

with a very long tall to the right and to the left, 

respectively. Also, the mode of distribution shifted very 

fast to the right as Lg decreases and L4 increases. Figures 

2.6a and 2.Gb show the Ramberg density function and the 

failure rate function for the values of L3 and L4 as shown 

In Table 2.5. 



20 

(N 
I 
O 

X 

s 

-co 

£ 
O 

• + J 

U 
c 
3 
Cj_ 

Qj 
-P 
d 
L 

L 
3 

d 
LL 

n 
in 
CN 

CD 

LL 

C 
O 

u 
c 
3 
Cl 

zn •+J 

1 / 1 
C 
(D 
Q 

d 
in 

CN 

CD 

Li_ 

CO in m (N 



21 

C 
O 

u 
c 
3 
a_ 

Qj -p 
d 
L 

0) 
L 
3 

d 
LL 

-Q 
CD 

(N 

cn 

LL 

C 
0 

H-> 
U 
C 
3 
IL 

m 

I/I 
c 
01 
Q 

d 
CD 

(N 

cn 
• r - H 

LL 



22 

Table 2.5.Values of L3 and L4 for Fig.2.6a 
and Fig.2.6b. 

+ —- — h 

! 
+ -

Curve No. 1 2 3 4 5 

0.05 0.10 0.20 0.30 0.35 

-L4 0.35 0.30 0.20 0. 10 0.05 
- + 

In region 2 the distribution has a negative 

sKewness with a very long tail to the left, while in region 

4 the distribution has a positive sKewness with a very long 

tail to the right. Figures 2.7a and 2.7b show the Raraberg 

density function and failure rate function in region 2 for 

the values of L3 and L4 as shown in Table 2.6. 

Table 2.6.Values of L3 and L4 for Fig.2.7a 
and Fig.2.7b. 

+ + 
Curve No.1 1 1 2 2 i 

' I 
5 

-L3 i 1.30| 1.40 1.50| I.60I 1.70 

L4 1.70j 1.60 1.50| I.40I 1.30 

Figures 2.8a and 2.8b show the Ramberg density function and 

failure rate function in region 4 for the values of L3 and 

L4 as shown in Table 2.7. 

Table 2.7.Values of L3 and L4 for Fig.2.8a 
and 2.8b. 

+ + 
Curve No. i 2 1 3 1 4 

i i 
5 

L 3 1.30 
1 i 

1.40! 1.501 l.GO 1.70 

-L4 1.70 1.60j 1.50| 1.40 1.30 
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As we can see from the graphs that Ramberg distribution can 

be used for the life time distribution with a wide variety 

of failure rate models Including a unlmodal failure rate 

model. 



Chapter 3. 

THE DESIGN OF GAUGES. 

3.1 General Comment On The Design. 

Gauges can be used for any measurable quantity that 

can be arranged In an order. The use of a gauge leads to a 

classification of a set of Items. It means that the 

observations are frequency counts In each class rather than 

exact measurements. The observed frequencies have to be 

used In the analysis. The physical form of gauges will 

depend on the nature of the observations. For Instance, if 

our Interest is In the weight of the Items then a device 

like a balance can be a gauge. Similarly if our Interest 

is in the life time of the material then probably an 

Instrument that can check whether or not the life time of 

an Item Is greater than a particular value can be a gauge. 

Now, consider an observation, using gauge, on the 

life time distribution in order to test the hypothesis 

about a parameter of distribution, say, for example the 

characteristic life of an item. Since the observation is 

concerned with a life time , we can place the Instrument on 

the certain value of time T as a gauge wlch will classify 

the items in the experiment into classes. The 

classification of the Items would be based on whether or 

not an Item passed the gauge. The number of classes will 

depend on the number of gauges being used in the 
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experiment. For example if we use one gauge then we should 

have two disjoint regions where the items will be 

classified. If we use two gauges then we whould have three 

disjoint regions where the items will be classified, etc. 

In the following discussion we will study of the 

setting of the gauges on the optimal position in the sense 

of maximizing the power of test, the optimal position of 

gauges would be as a fixed time being the value of gauges. 

Therefore, the design of gauges is concerned with the 

setting of gauges in the optimal position if possible, 

otherwise a good position would the result of the study. 

The study covers the use of one gauge and two gauges, 

respectively. 

3-2 One Gauge. 

Suppose n independent observations, using gauge, 

are made on the Weibull distribution in order to test the 

hypothesis about characteristic life e. Suppose further, 

that one gauge has been chosen to be used in the 

observation. This means it would be similar to the life 

time test truncated at a preassigned time T. Therefore the 

observations would be classified into two classes Aĵ  and 

Ag. The two classes would be defined as follows: 

AjL is a set of the nonsurvival items prior to time T 

A2 is a set of the survival items beyond time T 
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Let n^; 1 = 1,2, be the number of items falling into Aj^>and 

suppose we would like to to test the hypothesis: 

Hg: 8= 00 agianst 

6= 0 / 0ĵ <0o 

Consider Ri = nĵ  as a test statistic. Clearly, if Hg is 

false then we would like > C; C is an integer and 

commonly called acceptance number. Under both null and 

alternate hypothesis has a binomial distribution, hence 

the hypothesis test could be made equivalent to a test on 

the parameter in a binomial distribution. 

Suppose, under null hypothesis Hg, Pĵ ; 1 = 1,2 denote 

the probability of an item falling into Aj_, then Hg implies 

the following binomial distribution: 

n 
P(Rl=r) s P(r) =( )Pi^P 

When PCrejection of Ho|0g)=&; l.e Type I error, then 

P(Rl>C)=a 

or 
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Now, under alternate hypothesis Hj_, suppose qj_; 

1 = 1,2 denote the probability of an Item falling Into Aj_, 

then implies the following binomial distribution: 

n 
P(r) = ( 

r 

When PCacceptance of Hol0j_)=/3̂  i-e Type II error, then 

P(Rl<C)=p 

or 

c 

The power of test is given by Pw=l-#. 

It is likely that we could not expect a completely 

general solution of the value of gauge in terms of time t. 

However, when the probability term is used to express the 

position of a gauge, then we should be able to choose the 

single value of gauge such that the power of test is still, 

orclose enough to the maximum. Therefore we would express 

the position of a gauge in the probability terms rather 

than in the fixed time. 

AS an illustration of this argument, consider the 

case of n-50 with hypothesis as follows: 

^0'®0~ 1-000 hours against, 

Hi:8i= {1.000,(-50),450} hours, respectively. 
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By using a normal approximation to the binomial 

distribution, the optimal position of one gauge has been 

carried out for a given Type I error a-.050 with the shape 

parameter ^^l,(.l),1.5,2,3 as shown In Table 3.1a. As we 

can see, the positions of gauge are slightly different. 

However, we should be able to choose a single value as a 

common value of a gauge. Table 3.1b shows the power oF 

test when the gauge is set at time t such that the 

probability of an item not surviving prior to time t is 

equal to 0.65. 

It can be seen that the difference of the power of 

test In Table 3.1a and Table 3.lb is less than or equal to 

0.002. Therefore, in this case, it is quite reasonable to 

take the probability p=0.65 as the value for one gauge. 

It is interesting to note that for the practical 

purposes, when the power of test is greater or equal to 

0-999 then may be we can reduce either the lengthtime of 

observation or the sample size. Alternatively, we can 

probably reduce both of them at the same time. Table 3-2 

shows the power of test with 0={ 1, 1.5, 2, 3} as an 

illustration for this argument. The final decision would 

depend on other consideration such as the cost of the 

observation. 
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Table 3.1a. The optimal position of one gauge. 
- I 

1 1 . 1 1.2 1.3 1-4 1.5 

® 1 1 P Pw. P Pw. 

i . o o o l .050 - .050 

950! .65 .083 .65 .087 
900: .65 .134 .65 .147 

850| .65 .210 .65 .236 
8OOI .65 .315 .65 .360 
750! .65 .450 .65 .515 
700! .65 .606 .66 .685 
650| .67 .763 .67 .838 
GOOi .68 .890 .68 .942 
550l .68 .966 .68 .988 
500! .68 .995 .68 .999 
450l .68 • - t 

P Pv. P 

- .050 -

65 .091 .65 
65 .160 .65 
65 .263 .65 
65' .407 .65 
66 .581 .65 
66 .757 .66 
67 .897 .67 
68 .974 .68 
68 .997 .68 
- » -

- * -

Ptf. Pv. Pv. Pv. 

.050 

.036 

.173, 

.2931 

.45G| 

.645' 

.821 

.940 

.990 
* 

+ -
note: *- equal or nearly to 1 

.65 

.65 

.65 

.65 

.67 

.67 

. 6 8 

. 6 8 

.050 
J40 
JB8 
.3241 
.5061 
.707: 
.8751 
.969! .997' 

» ' 

.65 

.65 

.65 

.66 

.66 

.67 

.67 

.050 

.203 

.356 

.557 

.764 

.917 

.985 
t 
t * 

* 

65 
65 
66 
66 
67 
67 

.050 

.131 

.292 

.535 

.791 

.952 

.997 * 

* 

* 

• 

.66 

. 6 6 

.66 

.66 

.66 

.050 

.514 

.858 

.990 

Table 3 
+ 

•lb. The pover of test when the gauge Is set on p:.65 

1 1 1.1 1.2 1.3 1.4 1.5_ 3 
81 ' I I 

3 

1.000 .050 ! .050 .050 .050 .050 .050 .050 .050 
950 .083 I .087 .091 .096 .100 .105 .131 .197 
900 JJ4 1 .147 .173 JB8 .203 .292 .514 
850 .210 1 .236 .263 .293 .324 .356 .534 .857 
800 .315 } .360 .407 .456 .506 .556 .790 .990 
750 .450 1 .515 .580 .645 J06 .763 .950 
700 .606 1 .684 .756 .820 .873 .916 .996 * 

650 .762 1 .836 .896 .938 .967 .984 t * 

600 .888 ! .940 .972 .989 .996 .999 * * 

550 .965 1 .987 .997 .999 * i * * 

500 .994 I .999 ' 
* * • * 

450 * 1 * * * * * * 

note: equal or nearly to l 
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Table.3.2.The power of test with n=50, p-
n=40, p=.35f n= 30, 25, p=.G5. + + 

2G; 

" 
50 40 30 25 

p 

Qi 

.26 . 35 .65 .65 

1 
450 
400 
350 

.963 

.991 

.999 

.968 

.993. 

.999 

.979 

.998 
* 

.949 

. 990 * 

GOO 
550 
500 

.948 

.988 

.999 

.954 

.991 

.999 

.967 

.997 
* 

.927 

.986 

.999 

2 
650 
GOO 
550 

.982 

.998 *-

.985 

.999 
* 

.993 
* 

* 

.977 
* 

* • 

3 
750 
700 
G50 

.982 

.999 
* 

.986 
-k 
* 

.993 * 

* 

.977 1 
* 1 
• ! 

+ 

note *- equal or nearly to 1 
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3.3 Two Gauges. 

As before, suppose n Independent observations, 

using gauge, are made on the Welbull distribution in order 

to test the hypothesis about characteristic life e. Now, 

Instead of using one gauge, suppose two gauges have been 

chosen to be used in the observation. As a result of this, 

the • observations would be classified into three disjoint 

classes A , Ag and A3. Let and Tg denote the positions 

of the first and the second gauge, respectively, the three 

classes would be defined as : 

Ai is a set of the nonsurvival Items prior to 

Ag is a set of the nonsurvival items between and Tg 

Ag is a set of the suvlval items beyond Tg 

Suppose nj_ nd Pj, , 1 = 1,2,3; denote the number of the 

Items In each group and the probability of an Item falling 

Into 1th class, respectively. Consider the statistic 

%2=nl'H3 as the test statistic. There are 2n+l possible 

values of Rg, l.e -n,-(n-l), 0 ,(n-l),n. 

Consider the trinomial: 

PCni^ng): 9l*'lP2'^2P3^3 
ni!n2!n3! 

where ng^n-Cni+n^) 
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The probability distribution of R^, Taj Hljrl (j979). Is 

given by: 

P(Rn=r) = 

[(n r)/2] 
Z P(n?+r,n' 

'V-r 

[(a-r)/2] 
S P(n3+r,n3 

for r <0 

for r>0 

The exact distribution of Rg may be generated by summing 

the trinomials probabilities. 

As an illustration consider the case of n=5. The 

possible values of Rg are -5,-4 ,0, 4,5. 

Suppose the t\̂ 3 gauges are setting such that Pi=P3=.20. 

The probability of is given by: 

P(R2^-3)=P(R2=-5)+P(R2=-4)+P(R2=-3) 

Using the obove formulae we find. 

P(R2^-3)=0.03552 

Taj Hljrl (1979) has been investigated that a 

normal approximation can be used for Rg where the 

symmetrical position of gauge. In the sense Pi=P3, Is 

desirable. In the study of the optimal position of two 

gauges, we will refer to this result by setting the gauges 

on the symmetrical position and assuming Rg has a normal 

distribution. The first four moments of Rg are given by. 
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E(R2)=^=n(Pi-P3) 

^^=n{(Pi+P3)-(Pi-P3)2} 

M3 = n(pj^-p3){2(pj^-p3)^~3(pj^^-p3) + l} 

^4=3u^2-Gn(Pi-P3)4+n{3(Pi+P3)-l}{4(Pi-P3)2-(Pi+P3)} 

For two gauges the leng^k-tlme of observation being 

conducted would be determined by the position of the second 

gauge, i.e Tg. However like the one gauge, it would not be 

a practical proposition to use t]̂ 2 fixed time to express 

the position of gauges, in the sense that it would be 

difficult to obtain a single value of a fixed time as a 

value of gauges. Therefore, we use probability terms for 

the position of two gauges, i.e p^=p3=p. 

As an illustration, consider the case of testing 

the hypothesis about a as In the one gauge example. Table 

3.3a shows the optimal position of gauges for a given Type 

I error a=.050. From this table we can see that this is 

quite reasonable if we take p=0.30 as a value for two 

gauges. 
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Table 3.3a. The optimal position of two gauges. 
f - -

1 1 .1 .2 
' 
.3 -5 2 3 

6] P Pw. P Pw. P Pw. p Pw. P Pw. P Pw. P Pw. P Pw. 

1.000 - .050 - .050 - .050 - .050 - .050 .050 - .050 - .050 
950 .30 .086 .30 .091 .30 .095 .30 .100 .30 .105 .30 .110 .30 .140 .30 .213 
900 .30 J43 .30 .157 .30 .171 .30 .187 .30 .203 .30 .220 .30 .315 .30 .557 
850 .30 .228 .30 .256 .30 .287 .30 .320 .30 .354 .30 .389 .30 .578 .30 .886 
800 .30 .344 .30 .393 .30 .444 .30 .496 .30 .543 .30 .601 .30 .827 .30 .993 
750 .30 .490 .30 .558 .30 .625 .30 .689 .30 .749 .30 .802 .30 .963 .30 t 

700 .30 .651 .30 .728 .30 .796 .30 .854 .30 .900 .31 .936 .30 .997 - i 

650 .30 .801 .30 .868 .30 .919 .30 .954 .30 .976 .31 .989 .30 * - t 

GOO .30 .913 .30 .955 .31 .979 .31 .992 .31 .997 .31 * - * - * 

550 .30 .974 .30 .991 .31 .997 .31 * .31 i - - i -

500 .30 .996 .30 * .31 * 
_ * - * i - t - * 

450 .30 * - t * - * * - t - * 

- + 

note: *= equal or nearly to 1. 

It should be noted that it is possible to reduce 

the lengtktime of observation with a relatively small 

effect on the power of test. For instance if we set the 

gauges at the time and Tg such that Pi=P3=P=0-35, then 

the resulting power of test will be decreased only less 

than or equal to 0.006. Table 3.3b shows the power of test 

when the gauges are set such that p=0.35. 

Table 3.3b. The power of test iftien gauges ate set such that 9=0.35. 

g 1 1.1 1.2 1.3 1.4 1.5 2 3 

1.000 .050 .050 .050 .050 .050 .050 .050 .050 
950 .086 .090 .095 .100 .104 .110 .138 .211 
900 J42 .156 .170 .185 .201 .218 .315 .551 
850 .226 .254 .284 .316 .349 .385 .573 .884 
800 J41 .390 .439 .490 .543 .595 .823 .993 
750 .487 .554 .619 .684 .744 .798 .962 * 

700 .647 .725 .792 .851 .898 .934 .997 * 

650 J98 .867 .917 .953 .976 .383 * * 

600 .912 .955 .979 .992 .997 i t 

550 .974 .991 .997 • * * * * 

500 .996 t i t t 
450 * * 

* * k * * * 

note *= equal or nearly to 1 
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As in the one gauge case, when the power of test Is 

greater or equal to .999 then we can either reduce the 

lengthtjme of observation or the sample size. 

Alternatively we can probably reduce both of them at the 

same time. Table 3.4 shows the power of test with fi- l, 

1.5, 2 and 3 as an illustration of this argument. 

Table 3.4. The power of test with n=50,p=.45; 
n=40,35,p=40; n-25,p=.30>.40. 

+ 
! n 50 40 30 25 25 

P .45 .40 .40 .40 .30 

/3 01 

450 .999 .997 .984 .963 .964 
1 400 * * .998 .993 .993 

350 * * * .999 

600 .998 .995 .975 .947 .949 
1.5 550 -k * .997 .991 .990 

500 * *• * .999 .999 

650 • .999 .995 .984 .984 
2 600 - * .999 .999 

550 * • 

* 

* • •k 

750 * .999 .995 .984 .984 
3 700 * * * * 

* 

+ 
note: 

- + 

•*- equal or nearly to 1. 
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Chapter 4. 

APPLICATION IN ACCEPTANCE SAMPLING PLANS. 

Gauges are most likely to be used when the quality 

of the items refer to the measurement on a continuous 

scale. This means the application of gauges In the 

acceptance sampling plans is concerned with the average 

quality and not with the fraction defective of the items. 

Therefore the operating characteristic (OC) function will 

give the probability of acceptance as a function of the 

average quality of an item. In the life testing case, 

since we are interested on the characteristic life or the 

mean life of the items, the OC function will give the 

probability ofacceptance as a function of this parameter. 

Since the OC function is complement of the power 

function, the optimal position of a gauge in the acceptance 

sampling plans is the same as in the testing hypothesis. 

The optimal position In this case has as criteria the 

minimisation of type II error /3 or consumer's risk. 

However, the use of a gauge In the acceptance sampling 

plans is also concerned with a setting of a gauge in order 

to meet the required conditions of the plans. For instance 

we can specify the sample size n, the type I error a or 

producer's risk and the position of gauge (T) to find the 

critical point (C). Or to take another example, we can 

specify n, & and p to find T and C, etc. 
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Since C Is cost Independent, the plans are likely 

to specify a and 0 in order to find n and T. There may be 

a number of plans:i.e pairs of n and T which satisfy the 

required conditions. Therefore we shall impose an 

additional condition which will lead to a unique plan. The 

additional condition can be the minimum sample size n or 

the minimum of the cost function of observation. If a plan 

criteria is cost then from these several possibilities we 

can choose a pair of n and T such that the total cost of 

observation is at a minimum- We will discuss this problem 

later, in Chapter 5. 

We consider a single sampling plan and a double 

sampling plan respectively. 

4 .1 Single Sampling Plan. 

In a single sampling plan we will study the use of 

one gauge and two gauges. 

a.One gauge. 

Suppose a batch of items is presented for 

inspection. A single sampling plan, using one gauge, 

consists of a random sample of n items from the batch for 

inpection. The decision on the batch will depend on the 

result. If we decide to either accept or reject the batch 

then the batch would be accepted if the number of 

defectives d found prior to time T in the n items were less 

than or equal to the acceptance number c; T is the position 
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of the gauge. 

We have seen that for a given a then the gauge can 

be set as In the testing hypothesis to meet the minimum 

value of However In the practical use of acceptance 

sampling plans a and 0 are normally specified. For this 

plan we may have a number of pairs of n and T that satisfy 

the given conditions. Since one gauge is used we can 

consider that d has a binomial distribution hence we can 

use a binomial table to find the solutions that satisfy the 

required conditions. 

For practical purposes, however, we can probably 

use either the Polsson or the normal approximation to the 

Binomial. Extensive examples of this case have been 

published in a number of text books. Guenther (1977) for 

example, pointed out the conditions in which the Polsson 

distribution can be use. In our case we will consider of 

the use of a normal approximation to calculate the plans; 

i.e the pair of n and T that satisfy a given condition. 

The related acceptance number of the plan can be calculated 

afterwards by putting mean M=np and standard deviation 

a=Jnp(l-p). As an illustration of how good a normal 

approximation can be in use, consider the case of a single 

sampling plan consists of n=50 drawn from an exponential 

distribution with one gauge set at several positions. 

Suppose we wish the probability of acceptance at the rmean 

life time 8=1000 hours to be about 95%, hence a=0.05. 

Table 4.1 shows the OC-curves which are calculated by using 

a binomial and a normal approximation. As we can see. 
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as T Increases the difference becomes smaller. 

Therefore, it is quite reasonable to use a normal 

approximation In this case. 

Table 4 

+ • 

1 OC-curve for a single sampling plan using 
binomial and normal approximation 

Gauge position T hours 
85 .56 119 91 238 .26 

8 Bin. Nor . Bin. Nor. Bin. Nor. 

!1,000 0.951 0.960 0.949 0.957 0.950 0 . 955 
1 950 0.937 0.946 0.934 0.941 0.929 0.933 
1 900 0.920 0.928 0.913 0.919 0.900 0 . 902 
t 850 0.899 0.904 0.886 0.889 0.859 0.860 
! 800 0.870 0.872 0.850 0.850 0.804 0.802 
! 750 0.834 0.832 0.804 0.800 0.731 0.726 
1 700 0.788 0.781 0.745 0.736 0.G39 0.631 
1 650 0.729 0.717 0.671 0.658 0.527 0.519 
1 600 0.656 0.639 0.579 0.565 0.401 0.395 
1 550 0.566 0.548 0.473 0.458 0.272 0.269 
I 500 0.462 0.444 0.355 0.344 0.157 0.157 
I 450 0.345 0.333 0.236 0.232 0.071 0.073 
1 400 0.227 0.223 0.131 0.133 0.023 0.024 
! 350 0.123 0.126 0.055 0.059 0.004 0.005 
1 300 0.048 0.054 0.015 0.018 0.000 0.000 

We will now investigate the determination of 

single sampling plans for situation in which 8Q,8i,a and 13 

are specified. As an illustration consider the case of 

hypothesis : 

Ho:Go=l'000 hours, against 

Hi:8i={700,(-50),350} , respectively 

For a given cx and fi and assuming life time T has an 

exponential distribution the plans that satisfy the 

required conditions have been calculated using a normal 

approximation as shown in Table 4.1a, b and c. Table 4.1a 
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shows some of the plans that satisfy a=0.05 and 0=0.05. 

Table 4.1b shows some of the plans that satisfy a=0.05 and 

0=0.10. Table 4.1c shows some of the plans that satisfy 

of = 0.10 and 0=0.10. As we can see from these Tables the 

sample size n decreases when the position of a gauge T 

increaseas. The minimum sample size n will occur when the 

gauge is set around optimal position. 

Having determined the plans that satisfy the 

required conditions we can calculate the related acceptance 

number C for each plan. For example, if we take the case 

of alternate hypothesis Hĵ :ej|̂ =500 with a=0.05 and 0=0.05 

then for the plan with n=38 and T=693.15 the acceptance 

number is about 24. 

Table 4.1a Some of the plans that satisfy *:0.05 and p=0.05 
for a single saaplisg plan, using one gauge. 

Gauge position 

P T(6rs.) 700 650 600 550 500 450 400 350 

0.50 693.15 158 106 74 52 38 27 20 15 
0.51 713.35 156 105 73 52 37 27 20 15 
0.52 733.97 154 103 72 51 37 27 20 15 
0.53 755.02 152 102 71 50 36 27 20 14 
0.54 776.53 150 100 70 50 36 26 19 14 
0.55 789.51 148 99 69 49 36 26 19 14 
0.56 820.98 146 98 68 49 35 26 29 14 
0.57 843.97 144 97 68 48 35 26 19 14 
0.58 867.50 143 96 67 48 35 26 19 14 
0.59 891.60 141 95 66 48 35 26 19 14 
0.60 916.29 140 94 66 47 34 25 19 14 
0.61 941.61 139 93 65 47 34 25 19 14 
0.62 967.58 137 93 65 47 34 25 19 14 
0.63 994.25 136 92 65 46 34 25 19 14 
0.64 1021.65 135 91 64 46 34 25 19 14 
0.65 1049.82 134 91 64 46 34 25 19 14 
0.66 1078.81 133 90 64 46 34 25 19 14 
0.67 1108.66 133 90 63 46 34 25 19 15 
0.68 1139.43 132 90 63 46 34 25 19 15 
0.69 1171.18 132 89 63 46 34 26 19 15 
0.70 1203.97 131 89 63 46 34 26 20 15 
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b. Two gauges. 

Suppose we choose to use two gauges in observation 

for a single sampling plans consisting of a sample of n 

items. Our decision on the batch will depend on the 

results of R2=nj^-n3. If the decision is to either accept 

or reject the batch then the batch would be accepted if Rg 

were less than or equal to the acceptance number h. 

Since we use a normal approximation to Rg then 

under null hypothesis Hg the acceptance number should be: 

h= ZaJ2np. 

where Zq, is the appropriate normal deviate. This figure 

can be calculated for practical use, after we have decided 

on the most suitable plan. Since the lengthtime of the 

observation being conducted is determined by the position 

of the second gauge (Tg) the plan should be the pair of n 

and Tg. 

As before, we investigate the determination of 

single sampling plans for situation in which Sg,©!," and p 

are specified. As an illustration consider the 

hypothetical case in the one gauge example. For a given a 

and 0 and assuming life time T has an exponential 

distribution the plans that satisfy the required conditions 

have been calculated as shown in Table 4.2a, b and c. 

Table 4.2a shows some of the plans that satisfy a=0.05 and 

0=0.05. Table 4.2b shows some of the plans that satisfy 
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(v=0.05 and 0 = 0.10. Table 4.2c shows some of the plans that 

satisfy a=0.10 and #=0.10. 

Table 4.2a Some of the plans that satisfy o-0.05 and ̂=0.05 
for a single sampling plan, using two gauges. 

Gauge Position 9] 

P T2(hrs.) 700 650 600 550 500 450 400 350 

0.25 1386.29 128 87 61 44 33 25 19 14 
0.26 1347.07 127 86 61 44 32 24 . 18 14 
0.27 1309.33 126 86 60 43 32 24 18 14 
0.28 1272.97 126 85 60 43 32 24 18 13 
0.23 1237.87 126 85 60 43 31 23 17 13 
0.30 1203.97 126 85 59 43 31 23 17 13 
0.31 1171.18 126 85 59 43 31 23 17 13 
0.32 1139.43 127 85 59 42 31 23 17 13 
0.33 1108.66 127 85 59 42 31 23 17 12 
0.34 1078.81 128 86 60 43 31 23 17 12 
0.35 1049.82 128 86 60 43 31 23 17 12 
0.36 1021.65 129 87 60 43 31 23 17 12 
0.37 994.25 130 87 61 43 31 23 17 12 
0.38 967.58 132 88 61 43 31 23 17 12 
0.39 941.61 133 89 62 44 32 23 17 12 
0.40 916.29 134 90 62 44 32 23 17 12 

Table 4.2b Some of the plans that satisfy «=0.05 and p=0.10 
for a single sampling plan, using two gauges. 

Gauge Position 8l 

P Tgfhrs.) 700 650 600 550 500 450 400 350 

0.25 1386.29 102 70 49 36 27 20 15 12 
0.26 1347.07 102 63 49 35 26 20 15 11 
0.27 1309.33 101 63 48 35 26 19 15 11 
0.28 1272.97 101 68 48 35 26 19 14 11 
0.29 1237.87 101 68 48 35 25 19 14 11 
0.30 1203.97 101 68 48 34 25 19 14 11 
0.31 1171.18 101 68 48 34 25 13 14 11 
0.32 1139.43 101 68 48 34 25 13 14 10 
0.33 1108.66 101 68 48 34 25 19 14 10 
0.34 1078.81 102 69 48 34 25 18 14 10 
0.35 1049.82 102 69 48 34 25 18 14 10 
0.36 1021.65 103 69 48 35 25 19 14 10 
0.37 994.25 104 70 49 35 25 19 14 10 
0.38 967.58 105 70 49 35 25 19 14 10 
0.39 941.61 106 71 49 35 26 19 14 10 
0.40 916.26 107 72 50 36 26 19 14 10 
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Table 4.2c Soae of the plans that satisfy (r=0.10 and P̂O.IO 
for 8 single sampling plan, using two gauges. 

+ 

Gauge position 8l 

P TgfhfS.) 700 650 600 550 500 450 400 350 

0.25 1386.29 78 53 37 27 20 15 11 9 
0.26 1347.07 77 53 37 27 20 15 11 8 
0.27 1309.33 77 52 37 26 19 15 11 8 
0.28 1272.97 77 52 36 26 19 14 11 8 
0.29 1237.87 77 52 36 26 19 14 11 8 
0.30 1203.97 77 52 36 26 19 14 - 10 8 
0.31 1171.18 77 52 36 26 19 14 10 8 
0.32 1139.43 77 52 36 26 19 14 10 8 
0.33 1108.66 77 52 36 26 19 14 10 8 
0.34 1078.81 78 52 36 26 19 14 10 8 
0.35 1049.82 78 53 37 26 19 14 10 8 
0.36 1021.65 79 53 37 26 19 14 10 8 
0.37 994.25 79 53 37 26 19 14 10 8 
0.38 967.58 80 54 37 26 19 14 10 8 
0.39 941.61 81 54 38 28 19 14 10 8 
0.40 916.29 82 55 38 28 19 14 10 8 

4.2 Double sampling p lan . 

Suppose for the same required conditions we wish to 

replace a single sampling plan by a double sampling plan. 

This means we shall require both plans to possess the same 

or approximately the same OC curve. As we have observed in 

the previous section, there may be a number of plans whose 

OC curve satisfy the given conditions. In order to find a 

unique plan we have to impose an additional condition. 

For a situation in which and ^ are 

specified we have calculated the plans that satisfy the 

required conditions, using a normal approximation, in a 

single sampling plans. In a double sampling case however, 

we cannot use the same technique to find the plans that 

satisfy the required conditions, since a double sampling 
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plan requires 5 parameters for Its full specification. The 

five parameters are two sample sizes and ng and three 

decision numbers and C3; where C]_ and Cg are 

acceptance number and rejection number in the first 

sampling with sample size n^ and C3 is acceptance number 

for the combination of the first sample of n^ and the 

second sample of ng-

To overcome this problem we can use the information 

given by the solution of the single sampling plan. 

Guenther (1977) recomended the procedure of using the 

information from a single sampling solution for the double 

sampling case. The summary of the procedure as follows: 

i.Llst the single sample solutions and non solutions 

2.Select any Cg for which solution exist 

3.Select any such that 0<Ci<C2. In a number of plans 

used in practical situations we have Ci^o.SCg 

4.For chosen Ci^Cg determine bounds on n^ such the OC at 

ei<e 

5.By trial for the chosen Ci/Cg'hi find ng such that the 

two conditions on OC curve are satisfied. 

Repeat step 5 for another ni+Ci and Cg and terminate the 

trial by an additional condition. 

We will apply this same idea to our case, though 

probably not using excactly the same procedure as Guenther. 

We might determine the solution for a double sampling plan 

by reference to the single sampling plan chosen earlier; 

i.e a pair of n and T, from a number of plans that satisfy 

the required conditions in a single sampling plan. With 

the same position (T) of a gauge we can determine n^ 
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proportional to n. Also choose Ci^Cg and C3 such that 

C is the acceptance number in a single sampling 

plan. Using the fact that n<nj^+n2> we can find ng by trial 

for chosen CifCg'Cg and n^. Since no claim is made on the 

determinetion of all these figures then we can choose by 

trial. 

Let us suppose that the parameters of a double 

sampling plan are determine as follows: 

1.Select n^ to be about 0.8n 

2.select C 3 > C+i 

3.Select Cg to be about C-2 

4.Select Ci<0.5C 

for the case in which 8q = i,000 hours, 8^^=500 hours, a=0.05 

and #=0.05. Suppose the plan with n=i60 and T=105.36 

(p=0.i0) has been chosen from a number of plans that 

satisfy the given conditons in a single sampling plan. For 

this plan the acceptance number C=22. Table 4.3 shows the 

OC at Bq and for several combinations of C3 

with ni=0.8n. As a reference we put the OC of a single 

sampling plan in the first row. As we can see from the 

Table, we can have a number of plans that satisfy the 

required conditions. In order to find a unique double 

sampling plan we can use n2 as a criteria on parameter, 

since we have specified T and n^. In our example we can 

see that plans No.3 and 5 are most suitable choices for a 

double sampling plans. 
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Intuitively the results in Table 4.3 suggest that 

the total sample will depend on Cg, and Cg will 

depend on the chosen value of n^ proportional to n. This 

is probably much clearer if we describe our results using a 

random walk diagram as shown in Fig.4.1; see Hamaker(1955), 

by putting the total sample as abscissa and the number of 

defectives observed as ordinate. Hamaker (1955) pointed 

out that apart from random deviations a random walk created 

by the inspection of items taken from a homogeneous lot 

will move in a long straight line through the origin. 

Hence if we draw a stright line from the origin to the 

divided point C3 in the third screen it is preferable that 

this line should pass somewhere through the centre of the 

open area between and Cg, otherwise the judgements based 

on the first and the total sample are not balanced. 

Table 4.3 OC of a double sampling plan at eQ=l,000 hours 
81=500 hours for a given with ni=0.8n 

4-- — — "-"f 
single sampling plan 0.951 0.052 

Plan.No. Cl C 2 C 3 "2 OCOQ) O C O i ) 

1 5 21 23 40 0.950 0.051 
2 8 20 23 37 0.951 0.050 
3 a 21 23 40 0.950 0.044 
4 il 20 23 37 0.951 0.050 
5 11 21 23 40 0.950 0.045 
6 13 21 23 40 0.950 0.044 
7 15 20 23 38 0.950 0.051 
8 15 21 23 40 0.952 0.049 
9 15 21 24 49 0.950 0.042 
10 15 21 26 67 0.950 0.033 
1 1 18 21 23 80 0.950 0.092 

Since the plans for double sampling are made with 

reference to the solutions in a single sampling plan the 

sample size n and the acceptance number C in the single 
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sampling plans would be used as a reference for drawing the 

diagram. Hence if we draw a stright line from the origin 

to the dividing point C in the second screen then for any 

njL̂ n we can have pairs of Cĵ  and Cg. Since a str^ght line 

OC is fixed then the total sample n^ will increase as well 

as C3 on the third screen increased. 
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Chapter 5. 

EFFICIENCY AND ROBUSTNESS OF TEST. 

Clearly the advantages of gauging over exact 

measurement are its speed and ease of operation. Gauging 

can lead to an automatic quality control system that could 

replace nonproductive inspection work. Furthermore, the 

simplicity of the statistical results of gauging make it 

attractive. 

In this chapter we will consider the other measures 

of the merits of the test such as its relative efficiency 

and robustness of test. Also we will consider the costs 

that could be involved in observations using gauging. 

5.1 Efficiency. 

A comparison of gauges with exact measurement is 

obviously of interest. The efficiency of test is 

calculated for a given a and /B with reference to the number 

of observations required for a gauge based test and a test 

based on exact measurement. We will compare the test which 

is based on one gauge CRĵ ) and two gauges (Rg) with the U 

test, Bain(1978), which is based on exact measurement. 

According to Bain, for a random sample of size n from the 

Weibull distribution W(/3,e), the distribution of U is 

approximated to normal distribution as sample size n is 
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t 
increased. The qatlstlc U is given by: 

U=pln(8o/e)Jn 

Oq = observed characteristic life time 

Using a normal approxmation to U,Ri and Rg, we 

calculate the number of observations required for i = i,2 

and U tests, for a given a and /?. As an illustration 

consider the following hypothetical case: 

hours against, 

Hj[ :8i = {800, (-50), 500) , respectively. 

For a given cx and p the number of observations required has 

been calculated as shown in the Table 5.1a, b and c with 

shape parameter /3 = 1, i. 5 and 2. ny and nĵ  denote the number 

of obsevations for U and Rĵ  test, respectively. From these 

Tables we can see that the efficiency of gauging relative 

to exact measurement is over 70%. We can also see that the 

R test when based on two gauges, is of relatively high 

efficiency than when based on the one gauge. 
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Table 5.1a. The number of observations required 
for a=0.05 and #=0.05. 

n 1 1.5 2 

nt? nn _ n. i 
^1 "U o.g t .g "U O.g t .g "U O.g t .g 

800 267 351 341 119 153 147 67 84 80 
750 161 209 201 71 91 86 40 50 46 
700 105 134 128 47 58 54 26 32 29 
650 72 91 86 32 39 36 18 22 19 
600 51 64 60 23 28 25 13 15 13 
550 37 46 43 17 20 18 9 11 9 
500 28 34 31 12 15 13 7 9 7 

Table 5.1b. The number of observations reqiured 
for Qf=0.05 and 0=0.10. 

0 1 1.5 2 

np np np 
01 O.g t .g "U O.g t .g "U O.g t .g 

800 212 280 271 94 123 117 53 69 64 
750 127 168 160 57 73 67 32 41 37 
700 83 108 102 37 47 44 21 27 24 
650 57 74 69 25 32 29 14 18 16 
600 40 52 48 18 23 20 10 13 11 
550 30 38 34 13 17 14 7 10 8 
500 22 28 25 10 13 10 5 8 6 

Table 5.1c. The number of observations required 
for Of=0.10 and 0=0.10. 

1.5 

800 
750 
700 
650 
600 
550 
500 

"U 

163 
98 
64 
44 
31 
23 
17 

-m-
o.g 

214 
127 
82 
55 
39 
28 
21 

t .g 

208 
123 
78 
53 
37 
26 
19 

"U 

72 
44 
28 
19 
14 
10 
8 

o.g 

93 
55 
35 
24 
17 
12 
9 

t .g 

89 
52 
33 
22 
15 
11 
8 

"U 

41 
25 
16 
11 
8 
6 
4 

o.g 

51 
30 
19 
13 
9 
7 
5 

M- t .g 

49 
29 
18 
12 
8 
6 
4 
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5.2 Robustness. 

The use of a gauge In testing the hypothesis 

HQ:e=eo we assumed that the distribution of the parent 

population Is known. However> If the actual distribution 

of the parent population Is different from the assumption, 

then for the same critical region CR the actual type I 

errors will differ from the assumed type I errors. A test 

that Is less sensitive to the departures from assumptions 

made about the known distribution Is said to be more 

robust. 

Suppose, that In order to test the hypothesis 

Ho:8=l.OOO hours, a sample of size n has been drawn from 

the population with an exponential distribution. For 

sample size n=25,(5),75 and assuming a=0.050 the CR's are 

calculated. With the same CR, of's are calculated when the 

true parent population Is a Welbull distribution. Table 

5.2a shows the effect on type I error a of assuming T has 

an exponential distribution when T has a Welbull 

distribution, using one gauge set at time T such that P=p. 

P Is the probability of an Item nonsurvlve prior to time T. 

Table 5.2b shows the effect on oc of assuming T has an 

exponential distribution when T has a Welbull distribution, 

using two gauges set at time T^ and I2 such that Pi=P3=P. 

As we can see from Table 5.2a and 5.2b an R test 
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which is based on the two gauges is less sensitive than 

that based on one gauge to the departure from assumption 

about a known distribution as exponential. Therefore, we 

can say that the test using two gauges is more robust then 

the test using one gauge. 

Table 5.2a Effect on tt of assuming T has an exponential distribution when T has a Welbull 
distribution, one gauge set at tlie T. 

t 
n 25 30 35 40 45 50 55 60 65 70 75 

CR 6 7 8 3 10 11 12 13 14 15 16 

P 0.12 0.12 0.12 0.13 0.13 0.13 0.13 0.14 0.14 0.14 0.14 

P 

exp. 
1.1 
1.2 
1.3 

0.0500 
0.0157 
0.0037 
0.0006 

0.0500 
0.0146 
0.0031 
0.0005 

0.0500 
0.0136 
0.0026 
0.0003 

0.0500 
0.0128 
0.0923 
0.0003 

0.0500 
0.0120 
0.0019 
0.0002 

0.0500 
0.0113 
0.0017 
0.0002 

0.0500 
0.0107 
0.0015 
0.0001 

0.0500 
0.0101 
0.0013 
0.0001 

0.0500 
0.0095 
0.0011 
0.0001 

0.0500 
0.0091 
0.0010 
0.0001 

0.0500 
0.0086 
0.0009 
0.0001 

Table 5.2b Effect on a of assuming T has an exponential distribution when T has a Weibull 
distribution, tvo gauges set at Tj and Tg. 

n 25 30 35 40 45 50 55 60 65 70 75 

CR 3 4 5 6 7 8 9 10 11 12 12 

P 0.03 0.12 0.16 0.20 0.23 0.27 0.30 0.34 0.38 0.41 0.38 

; 
exp. 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 
1.1 0.0328 0.0353 0.0373 0.0390 0.0405 0.0418 0.0430 0.0441 0.0451 0.0460 0.0453 
1.2 0.0195 0.0233 0.0265 0.0294 0.0320 0.0343 0.0365 0.0385 0.0404 0.0421 0.0408 
1.3 0.0103 0.0142 0.0178 0.0212 0.0245 0.0276 0.0305 0.0332 0.0359 0.0383 0.0365 
1.4 0.0047 0.0078 0.0112 0.0147 0.0182 0.0216 0.0250 0.0284 0.0316 0.0347 0.0324 
1.5 0.0018 0.0038 0.0065 0.0096 0.0130 0.0165 0.0202 0.0239 0.0276 0.0312 0.0285 
1.6 0.0005 0.0016 0.0034 0.0059 0.0089 0.0122 0.0159 0.0198 0.0238 0.0279 0.0248 
1.7 0.0001 0.0006 0.0016 0.0034 0.0058 0.0083 0.0123 0.0162 0.0204 0.0248 0.0215 
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5.3 Cost function. 

Suppose the total cost associated with an observation 

Is represented by an equation: 

C= a ĵn + aght 

The constant a^ denotes the cost per item In the sample. 

This could be the cost of the sample unit, the part of the 

cost of test equipment which depends on the number of units 

tested, etc. The constant 82 denotes the cost per unit 

item In a unit time of conducted observation. It could 

represent the cost of carrying out the observations, the 

cost Incurred from waiting for the result, etc. 

We have seen In Chapter 4 that for a given a and fi In 

a sampling plans we can have several pairs of n and T that 

satisfy the required conditions. A minimum sample size n 

occured when the gauge Is set on the optimal position as In 

Chapter 3. However, we cannot say whether or not this plan 

is suitable one. In such a situation, perhaps a plan 

reflecting costs other than those associated with the 

sample size may be of more Interest. In other words we can 

chose a plan that can minimize the total cost of the 

observations. For example, suppose a single sampling plan 

consists of a sample of size n drawn from an exponential 

distribution. Let us suppose that we wish the probability 

of acceptance of a batch of an average quality 80=1.000 
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hours to be about 95%. At the same time, we wish the 

probability of acceptance of a batch of an average quality 

8i=700 hours to be about 5%. Hence, the plan specifies 

#=0.05 and 0=0.05. Let us also suppose ai=E1.50 and 

a2=£0.50. Table 5.3a shows the total cost of the 

observations using one gauge for each pair of n and T that 

satisfy the above specification. We can see from this 

Table that the minimum cost of £38>578.49 is achieved when 

n=1021 and T=72.57 hours. Compare this with the much 

greater total cost of £70,538.94 when the gauge is set on 

the optimal p o s i t i o n ; ! .e T=1049.82 and n=134. 

Table 5.3a Total cost of each plan using one 
gauge (single sampling plan). + + 

n T(hours) cost(£) 

1,426 51.29 38,708.77 
1,190 61.88 38,603.60 
1,021 72.57 38,578.49 
894 83.38 38,611.86 
795 94. 31 38,680.73 
717 105.36 38,847.06 
652 116.53 38,966.78 
599 127.83 39,183.59 
553 139.26 39,334.89 
514 150.82 39,531.74 

When the two gauges are used in a slnlge sampling 

plan, the minimum cost of the observation Is achieved when 

both gauges are set at the same position;!.e P i = P 3 = 0 . 5 0 . 

This would appear to suggest that we should use one gauge 

rather than two gauges, but since one gauge Is very 

sensitive to the assumption about the distribution of the 

parent population, this Is probably not a practical 
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proposition. On the other hand, when the two gauges are set 

on time T1 and T2 such that Pj^=P3<0.36, then the lengthtime 

of the observation being conducted is quite long. This of 

cause is something we are trying to avoid as far as 

possible. Therefore, for any practical purpose it might be 

a good compromise to set the two gauges at time T^ and T2 

such that 0. 36<Pji =P3<0.50. As an illustration of this, 

consider the case in the one gauge example. Table 5.3b 

shows the total cost of the observations using two gauge 

for each pair of n and T that satisfy given specifications. 

The minimum total cost is equal to £54,995.85 achieved when 

the two gauges are set in the same position, i.e Pi=P3=0.50 

(Tj^=T2 = 693.15 hours) which is equivalent to using one gauge 

such that the probability of an item failing prior to time 

T (position of the gauge) is p=0.50. 

Table 5.3b Total cost of each plan using two 
gauges (single sampling plan). + + 

n T(hours) cost(£) 

126 1,139.43 71,973.09 
127 1,108.66 70,590.41 
128 1,049.82 67,380.48 
129 1,021.65 66,089.93 
130 994.25 64,821.25 
132 967.58 64,058.28 
133 941.61 62,816.56 
134 916.29 61,592.43 
136 891.60 60,832.80 
138 867.50 60,064.50 
140 843.97 59,287.90 
142 820.98 58,502.58 
144 798.51 57,708.72 
147 776.53 57,295.46 
149 755.02 56,472.49 
152 733.97 56,009.72 
155 713.35 55,517.12 
158 693.15 54,995.85 
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Chapter 6. 

S U G G E S T I O N F O R F U R T H E R W O R K . 

In this thesis, we have considered the use of one 

and two gauges In life testing. We have considered the use 

of gauges to test hypotheses about the mean life time of a 

Weibull distribution. Since the exponential distribution 

is a special case of the Weibull distribution it will be 

covered in the study. As Hirji and Shahanl (1978) pointed 

out, it is shown that the test is of higher efficiency and 

greater robustness when based on two gauges than when based 

on one gauge. Therefore it would be reasonable to expect 

that the performance of a test would further improve if we 

use more gauges. 

We have considered the using gauges in both a 

single sampling plan and a double sampling plan. By 

reference to the solution in a single sampling plan and 

using a random walk diagram we might be able to predict the 

required parameters for a double sampling plan. It is 

shown that for a given set of conditions the minimum sample 

size reqiured is achieved when the gauges are set around 

the optimal position. It is also shown that although the 

use of two gauges substantially improved the performance of 

the test, in some cases it will probably be more economical 

to use one gauge, particularly when the cost per unit time 

is quite large. Since the required sample size for two 
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gauges is much less than for one gauge, it would be 

interesting to investigate the use of a gauge when the 

quality of items is not based on the time term. 

Perhaps gauges can be used to test hypotheses about 

the other parameters of parent population. Shahani (1979) 

has used gauges for testing hy^theses about correlation 

coefficient in a bivariate normal case. But as Hirji(1979) 

recorded/ apart from Stevens(1948) work on estimation of 

the variance, no work has been yet done on testing 

hypotheses about variance using gauges. In a life testing 

context it would be interesting to investigate the use of 

gauges on testing hypotheses about the other parameters of 

life time such as shape and scale parameters. Since our 

considerations have been limited only to certain 

distribution; i.e Weibull distribution, it would be 

interesting to investigate more generally the design and 

use of gauges in other life time distributions. 

It would be interesting to investigate the use of 

gauges in several dimensions random variable. 
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Appendix 1. 

Gaussian Quadrature. 

The Idea behind Gaussian Quadrature is to find an 

integration formula: 

I(f) = 

by. 

'b 
w(x)f(x)dx 

a 

The weights Wj and nodes xj are restricted to be real, and 

nodes must belong to the Interval of integration. The 

weight function should ,be nonnegative and satisfy the 

hypotheses: 

1. 
b 
]xj"w(x)dx, is Integrable and finite for all n>0 

a 

-b 
w(x)g(x)dx=o for some nonnegative 

a 
2. Suppose that 

continuous function then the function g(x)s o on (a,b). 

The weights wj and nodes xj are determine such that 

the error 
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En(f)= I(f)-In(f)=0 

This will be achieved for as high a degree polynomial f(x) 

as possible. 

As an illustration, consider the special case 

1 n 
f(x)dx = z Wjf(x) (1) 

-1 j = l 

The weights Wj and nodes xj are to be determined to make 

the error E^Cf) equal to zero. To derive equations for the 

nodes and weights, we first note that 

En(ao+aiX+ +8^%™) = aoE^Cl)+aiE(x) + +aij,En(x"̂ ). 

Thus Ejj(f)=0 for every polynomial of degree <m if and only 

if 

En(xl)=0 1=0,1,.... ,in. 

Now, suppose n=l, then we have two parameters wj: 

and Xj:. Since there are two parameters we consider 

requiring 

Ejl(1)=0 and Ej^(x)=0 

This gives 
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1 
Idx - Wi=0 and 
1 

•1 

xdx - WiXi=0 
1 

This Implies Wi=2 and xi=0. Thus the formula (1) becomes 

•1 
f(x)dx = 2f(0) 

-1 

which is similar to midpoint rule. 

Similarly, when n=2 then we will have four parameters 

Wĵ > wg, X X g and thus we put four constraints on these 

parameters: 

E2(xl) 
r 1 
x^dx - (Wj^XjL^+W2X2^)=0 

-i 
1 = 0 , 1 , 2 , 3 , 

or 

^1+^2=2 

WiXi+W2X2=0 

Wĵ x j^^+W2X2^=2/3 

WiXi^+W2X2^=0 

These nonlinear equations have the unique solution 

#1=^2 = 1 and X2 = -x jl = -J"3/3 

and the formula (1) becomes 
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n 
f(x)dX"f(-J3/3)+F(J3/3) 
1 

For a general n thereare 2n parameters Wj and xj, hence the 

equations to be solved are 

En(xi)=0 1=0,1 >2n-l 

or 

r 0 

Z W i X 
j = 1 J'" J 

2/(1+1) 

1 = 1,3, ,2n-l 

1=0,2, 2n-2 

Table I shows the values of weights wj and nodes xj 

for n=2,(l),10 for Gaussian integration. The details of 

the weights and nodes values can be seen In some references 

such as Abramowltz and Stegun (1976). 

In our case we take n=7 to calculate the Integral 

P(X) for a normal distribution. The list of the computer 

program used to calculate the OC curve using normal 

approximation Is given as an example. 

To obtain some Intuition the degree of precision of 

this method, the Integral P(X) of a normal standard have 

been calculated for x=0,(0.1),3. The results are compare 

with the Integral P(X) in Pearson & Hartley as shown in the 

Table II. 
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Table I. Nodes and weight factors for Gaussian 
integration. 

Nodes (±Xj) n Weight factors (wj) 

0.57735 02691 89626 2 1.00000 00000 00000 

0.00000 00000 00000 
0.77459 66692 41483 

3 0.88888 88888 88889 
0.55555 55555 55556 

0.33998 10435 84856 
0.86113 63115 94053 

4 0.65214 51548 62546 
0.34785 48451 37454 

0.00000 00000 00000 
0.53846 93101 05683 
0.90617 98459 38664 

5 
0.56888 88888 88889 
0.47862 86704 99366 
0.23692 68850 56189 

0.23861 91860 83197 
0.66120 93864 66265 
0.93246 95142 03152 

6 
0.46791 39345 72691 
0.36076 15730 48139 
0.17132 44923 79170 

0.00000 00000 00000 
0.40584 51513 77397 
0.74153 11855 99393 
0.94910 79123 42759 

7 
0.41795 91836 73469 
0.38183 00505 05119 
0.27970 53914 89277 
0.12948 49661 68870 

0.18343 46424 95650 
0.52553 24099 16329 
0.79666 64774 13627 
0.96028 98564 97536 

8 
0.36268 37833 78362 
0.31370 66458 77887 
0.22238 10344 53374 
0.10122 85362 90376 

0.00000 00000 00000 
0.32425 34234 03809 
0.61337 14327 00590 
0.83603 11073 26636 
0.96816 02395 07626 

9 

0.33023 93550 01260 
0.31234 70770 40003 
0.26061 06964 02935 
0.18064 81606 94857 
0.08127 43883 61574 

0.14887 43389 81631 
0.43339 53941 29247 
0.67940 95682 99024 
0.86506 33666 88985 
0.97390 65285 17172 

10 

0.29552 42247 14753 
0.26926 67193 09996 
0.21908 63625 15982 
0.14945 13491 50581 
0.06667 13443 08688 
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Table II. The integral P(X) for a normal standard 

P(X) 
X Pearson & Harteley Gaussian quadrature 

0.0 0.500 000 0 0.500 000 0 
0.1 0.539 827 8 0.539 827 8 
0.2 0.579 259 7 0.579 259 7 
0.3 0.617 911 4 0.617 911 4 
0.4 0.655 421 7 0.655 421 7 
0.5 0.691 462 5 0.691 462 5 
0.6 0.725 746 9 0.725 746 9 
0.7 0.758 036 3 0.758 036 3 
0.8 0.788 144 6 0.788 144 6 
0.9 0.815 939 9 0.815 939 9 
1.0 0.841 344 7 0.841 344 7 
1.1 0.864 333 9 0.864 333 9 
1.2 0.884 930 3 0.884 930 3 
1.3 0. 903 199 5 0.903 199 5 
1.4 0.919 243 3 0.919 243 3 
1.5 0.933 192 8 0.933 192 8 
1.6 0.945 200 7 0.945 200 7 
1.7 0.955 434 5 0.955 434 5 
1.8 0.964 069 7 0.964 069 7 
1.9 0.971 283 4 0.971 283 4 
2.0 0.977 249 9 0.977 249 9 
2.1 0.982 135 6 0.982 135 6 
2.2 0.986 096 6 0.986 096 6 
2.3 0.989 275 9 0.989 275 9 
2.4 0.991 802 5 0.991 802 5 
2.5 0.993 790 3 0.993 790 3 
2.6 0.995 338 8 0.995 338 8 
2.7 0.996 533 0 0.996 533 0 
2.8 0.997 444 9 0.997 444 9 
2.9 0.998 134 2 0.998 134 2 
3.0 0.998 650 1 0.998 650 1 
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03 REM ******************************************* 
10 REM • PROG OC-CORVE FOR SINGLE SARPLIKG PIM. * 
20 REN * USING BINOMIAL AND NORMAL APPROXIMATION * 
25 REM ******************************************* 
30 DIM PO(7),»G(7) 
40 INPOT-MEAN LIFE TIME HO";MO 
50 INPUT-LOWER MEAN LIFE TIME H1";MI 
60 INPOT"STEP';S 
70 INPOT'SAMPLE SIZE";N 
80 INPUT-CRITICAL POINT';C 
90 INPUT'GAUGE POSITION';P 
100 INPUT-SHAPE PARAMETER';B0 
110 PRINT'tfHICH ONE DO YOB LIKE" 
120 PRINTTAB(5)"1.BINOMIAL' 
130 PRINTTAB|5)'2.N0RMAL' 
140 INPUT TABdOl'Type 1 or 2';A% 
150 PRINT' 
160 IF A%:1 THEN PROCbln 
170 IF Al=2 THEN PROCnor 
180 END 
190 REH*******************d*l*D*a*f********************** 

200 DEF PROCnor 
210 Pi=l'P 
220 I0=LN(1/P1) 
230 %l:LN%Q/80+LNM0 
240 T--EIPn 
250 H=*2020A 
260 PRINT'T=";T 
270 @*=10 
280 R=C+.5 
290 FOR K0=M0 TO Ml STEP -S 
300 H=T/KO 
310 01:EIP-H 
320 0=1-Q 
330 N=S0R(N*Q*Q1) 
340 2=(R N*0)/N 
350 IF Z<0 THEN PROCneg ELSE PROCpos 
360 PRIITTAB(10)"CH.=';K0; 
370 #%=*2030A 
380 PRINTTAB(30)"OC1--';OC1 
390 @%=10 
400 NEIT KO 
450 ENDPROC 
460 REM*******************B*a*s*s*a*u********************* 
470 DEF PROCbln 
480 PM-P 
490 X0=LN(1/P1) 
500 I1=LNIO/BO+LNMO 
510 T=EIPI1 
520 M--S2020A 
530 PRINT"T=';T 
540 #%=10 
550 FOR K0=M0 TO Ml STEP -S 
560 H=T/KO 
570 Q1=E%P-H 
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580 Q-l-Q 
590 P0--0 
600 FOR 1=0 TO C 
610 P0=F;G(I)*Q'I*01*(I-I)+P0 
620 NEXT I 
630 PRINTTAB(10)'CH.=";K0; 
640 *t=*2030A 
650 PRIKTTAB(30)"OC1=";OC1 
670 @%=10 
680 lEIT K 
634 ENDPRK 

710 DEF PROCpos 
720 1=7 
730 B=Z 
740 P0(l)=0.0:p0(2):.230458315955135:p0(3)=.448432751036447 
750 P0(4)=.642349339440340:P0(5)=.801578090733310 
760 P0(6)=.917598399222978:P0(7)=.984183054718588 
770 lfG(l)--.232551553230874t»G(2)=.226283180262897 
780 WG(3)=.207816047536883:*G(4)=.178145980761346 
730 *G(5):.138873510219787:WG(6)=.092121499837728 
800 WG(7):.040484004765316 
810 SDH=0 
820 FOR J:1 TO I 
830 I=((B A)*P0(J)+A+B)/2 
840 Y=((A-B)*P0(J)+A+B)/2 
850 SUM:SDM+WG(J)*FNF(%) 
860 IF P0(j)<>0 THEN SDM=SUM+WG(J)*F;F(Y) 
870 NEXT J 
880 0Cl=(B-A)*SDM/2+.5 
890 ENDPROC 
900 REH****************e*l*s*e*n*l)*a*r*t******************* 
910 DEF FNG(I) 
920 SDH=1 
930 IF 1=0 THEN GOTO 970 
940 FOR L+1 TO I 
950 SB«=(N-(L-1))*SDH/L 
960 NEXT L 
970 =SDM 
380 REM***************************************************** 
390 DEF PROCoeg 
1000 DEF PROCpos 
1010 1=7 
1020 B=-Z 
1030 P0(l)=0.0:p0(2)=.230458315955135:p0(3)=.448492751036447 
1040 P0{4)=.642343339440340tP0{5)=.801578090733310 
1050 P0(6)=.917598399222978tP0{7)=.984183054718588 
1060 BG(l)=.232551553230874t«G(2)=.226283180262897 
1070 lfG(3)=.207816047536889tifG(4)=.178145980761946 
1080 *G(5)=.138873510219787:*G(6)=.092121499837728 
1090 «G(7)=.040484004765316 
1100 SBH=0 
1110 FOR J=1 TO I 
1120 I={(B-A)*P0(J)+A+B)/2 
1130 Y=((A 8)*P0(J)+A+B)/2 
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1140 SBH=S8B+WG(J)*PIF(X) 

1150 IF P0(J)<>0 THE* SDM=SDH+*G(J)«FNF(Y) 

1160 *EIT 3 
1170 0Cl=.5-(B-A)«SDH/2 

1180 EIIDPROC 

IISO REM**************************************************** 

1200 DEF FIF(I) 

1210 S1=1/(SQR(2*PI) 

1220 T0:I*2/2 

1230 =S1*E%P-T0 
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Appendix 2 

GINOGRAF. 

GINOGRAF was developed at the Computer Aid Design 

Centre, Cambridge. It Is a library of subroutine used in 

conduction with the graphics package GINO-F. 

GINO-F stands for graphical Input/output-FORTRAN 

version. It Is a graphics package that takes the form of a 

library of drawing and administrative subroutines. Most of 

the routines are written In standard ANSI FORTRAN making 

GINO-F virtually Independent. GINO-F Is also device 

Independent a change to one line of a user program being 

all that Is required to convert the program to produce 

output on a different device. The routines In GINO-F that 

produce this output are code generators, there being one 

for each device available on each line. 

GINOGRAF has facilities for producing graphs, 

histogram, bar charts and pie charts by two different 

methods. The first method,Is produced the graph by a simple 

single call routine which automatically performs all the 

scaling and annotation. The second method. Is produced the 

graph built up from series of routines which allow the user 

to define each aspect of the graph and axis system 

Independently. A set of defaults Is available for Items 

not expllclty set by the user program. 
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GINOGRAF assumes the GINO-F defaults for all 

drawing. Thus graphs are drawn in unilimeters. The space 

co-ordinate system is the same as the picture co-ordinate 

system with the origin at the bottom left-hand corner of 

the device. The X axis horizontal and the Y axis vertical. 

The graphical axis system is with respect to this space co-

ordinate system. GINOGRAF has a set of defaults for any 

aspect of the built-up axis system which have not been 

defined by the user, for example the position and scaling 

of a pictural axis. The axis system of the composite 

routines, which is provided automatically, is made up of 

these default. 

The list of the computer program using GINOGRAF 

used to draw the graphs of the density function and the 

failure rate function for the Weibull and Ramberg 

distributions is given as an example. 

In this program, several routines have been used, 

they are: 

- axis definition 

- axis drawing 

- graphical drawing. 

The axis definition consists of two routines which 

define the position and scaling of an axis. The position of 

the axis is defined by: 

AXIPOS(lOR,XOR,YOR,AXLEN,IXORY) 
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The current and the length of axis are specified by IXORY 

and AXLEN. For the current X axis IX0RY=1 and the current Y 

axis IX0RY=2. The IOR indicates the starting point 

(XOR,YOR). If I0R=1, the axis starts at the point (XOR,YOR) 

and if IOR=0 then the axis is positioned such that the 

point (XOR>YOR) is at the natural origin as defined In the 

data. 

The scale of axis is defined by: 

A X I S C A C I S C A L E , M I N T S , V B E G , V E N D , I X O R Y ) . 

This routine gives a choice of linear,log or histogram 

scales indicated by ISCALE. The axis including the step of 

interval (MINTS) and a range of data values specified by 

VBEG,VEND. 

The axis drawing is to draw an axis with or without 

tick marks and scale values. It will depend on the values 

of ITICK and IVAL. The axis drawing is specified by: 

AXIDRACITICK,IVAL,IXORY). 

The graphical drawing represent the data in a graph 

form. The data may be represented in a number of ways, such 

as: 

- points joints by stright lines. 

- points joints by a smooth curve-

- symbol at the points. 

- histogram. 

- bar charts. 
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In our case, the data are representad by a smooth curve and 

specified by routine: 

GRACUR(X>Y,NPTS). 

GRACUR draws a smooth curve through a number of points 

(NPTS) in arrays X and Y. 

Before any of GINOGRAF routines is called, the 

output device must be nominated. The following calls to 

GINO-F subroutines as device nomination: 

-CALL SAVDRA for the plotter 

-CALL APDS4 for the Imlac 3205 terminal 

-CALL T4010 for the Tektronix 4010 terminal. 

A call to subroutine DEVEND should be used to terminate 

graphical output in each case. 
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]0C ******************************************************** 
20C 'PROGRAM USING GIKOGRAF TO DRA* IflEBOLL AND RAfiBERG PDF* 
30C »HOIEy«ELL TERHI8AL • 
40C ******************************************************** 
50*fFH=(QLIB)LIBB&BY/GIIOGKAF;LIBRAR?/Gi:0-F#A"01';B'02';C'03";D'04'; 
60»fE"05';F'O6';A0'O7";B0"0r;C0'ir;D0"ir;E0"12';F0"13';DII(AR"O8' 
70 DIBEISIOI 11(100),12(100),13(100),X4(100),15(100),16(100),17(100) 
80 DIHEISIOK 18(100),19(100),110(100),111(100),112(100),113(100) 
90 DINEISIOI Yl(100),Y2(100),y3(lQ0),Y4(100),Y5(100),Y6(100),Y7(100) 
100 ;;=i2 
110 DO 1 1=1,25 
120 READ(1,101)1,? 
130 101 FORMAT(V) 
140 %1(I)=I 
150 Yl(I)=y 
160 11=1 
170 1 COITIiDE 
180 DO 2 1=1,30 
190 READ(2,101)LY 
200 X2(I)=I 
210 Y2(I)=Y 
220 12=1 
230 2 CONTINDE 
180 DO 2 1=1,30 
190 READ(2,101)1,y 
200 I2(I)=X 
210 Y2(I)=y 
220 #2=1 
230 2 COSTIHOE 
240 DO 3 1=1,30 
250 READ(3,101)%,Y 
260 I3(I)=I 
270 Y3(I)=¥ 
280 K3=I 
290 3 COUTIIDE 
240 DO 3 1=1,30 
250 READ(3,101)I,y 
260 %3(I)=% 
270 Y3(I)=Y 
280 113=1 
290 3 CONTINUE 
300 DO 4 1=1,30 
310 READ(4,101)1,y 
320 X4(I)=X 
330 Y4(I)=y 
340 84=1 
350 4 CONTINUE 
360 DO 5 1=1,30 
370 READ(4,101)LY 
380 15(1)=I 
390 Y5(I)=y 
400 15 I 
410 5 CONTINUE 



-77-

420 DO 6 I--l,30 
430 READ(6,101)X,Y 
440 %G(I)=% 
450 Y6(I)=Y 
460 I6--I 
470 6 COSTIHOE 
480 DO 7 1=1,30 
490 READ(7,101)1,Y 
500 I7(I)=I 
510 Y7(I)=Y 
520 17=1 
530 7 COBIIPE 
540 DO 8 1=1,30 
550 READ(3,101)1,Y 
560 %3(I)=X 
570 Y3(I)=Y 
580 119=1 
530 8 COKTmUE 
600 DO 9 1=1,30 
610 READ(10,101)X,Y 
620 no(i)=i 
630 Y10(I)=Y 
640 110=1 
650 9 CONTINUE 
660 DO 10 1=1,30 
670 READ(11,101)X,Y 
680 I11(I)=X 
690 Yll(I)=y 
700 111=1 
710 10 COHTUDE 
720 DO 11 1=1,30 
730 READ(12,101)X,Y 
740 X12(I)=X 
750 Y12(I)=y 
760 112=1 
770 11 COITUDE 
780 DO 12 1=1,30 
790 READ(13,101)X,Y 
800 %13(I)=% 
810 Y13(I)=Y 
820 1113=1 
830 12 COSTIHflE 
840 CALL SAVDRA 
850 CALL CHASBHl) 
860 CALL PICCLE 
870 CALL DE¥PAP(1000.,280 .,0) 
880 CALL AXIPOS(1,10.,60. ,80.,1) 
830 CALL AXIPOS(1,10.,60. ,90.,2) 
900 CALL AXISCA(1,.01,0., 1.6,2) 
910 CALL AXISCA(1,.01,0., 3.,1) 
920 CALL AXIDRA(1,1,1) 
930 CALL AXIDRA(-1,-1,2) 
940 CALL GRAC0R(Xi,yi,25) 
950 CALL GRACDR(X2,Y2,30) 
960 CALL GRACDR(X3,Y3,30) 
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970 CALL GR&CDR(%4,?4,30) 
980 CALL GRACDR(X5,Y5,30) 
990 CALL GRAC0R(XG,YG,30) 
1000 CALL AXIPOS(l,105.,GO.,8O.,l) 
1010 CALL AIIPOS(l,105.,60.,S0.,2) 
1020 CALL AIISCA(1,.1,0..2.,1) 
1030 CALL AIISCA(1,.01,0.,5.,2) 
1040 CALL AIIDRAd.Ll] 
1050 CALL AIIDRA(-L-1.2) 
1060 CALL GKACBR(I7,Y7,2Q) 
1070 CALL GRACBR(I9.Y9>20) 
1080 CALL GRAC8R(I10,yi0,20) 
1090 CALL GRAC0R(I1LY11.20) 
1100 CALL GRACBR(X12,Y12,20) 
1200 CALL GRACOR(X13.Y13,20) 
1210 CALL B0fT02(15.0.45.) 
1220 CALL CHAHOL( Fig.2.la.Density Function*.') 
1230 CALL MOVT02(105.0,45.) 
1240 CALL CHAHOL('Fig.2.lb.Failure Rate Function*.') 
1250 CALL DEVEiD 
1260 STOP 
1270 EID 
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Appendlx 3 

Computer Listing for Sampling Plan. 

10 REM **********************«*********#****** 
20 REM »PROG FOR PlAX OF SUGLE SAMPLING PLAX* 
30 REM *************************************** 
40 IIPOT'SHAPE PARAHETER";BO 
50 mPOT'MEAl LIFE TIME HD";MO 
60 IIPOT'ABSISCA FOR A GIVE* ALPHA";A 
70 IIPBT'ABSISCA FOR A GIVEI BETA';B 
80 PRUT' 
90 PRIiT'DO YOO WISH AiOTHER ALPHA AND BETA?" 
100 IF GET$="y THEN 40 
110 PRINTTAB(5)"SELECT ONE PLEASE:" 
120 PRINTTAB(5)"1.0NE GAUGE' 
130 PRINTTAB(5)"2.T*0 GAUGES' 
140 INPUT TAB(5)/TYPE 1 or 2";A% 
150 PRINT' 
160 IF A%=1 THEN PROCone 
170 IF A%=2 THEN PROCtVO 
180 REM***************************************** 
190 DEF PROCone 
200 PRINITAB(15)"sample size for a single sampling plan using one gauge' 
210 FOR P=.5 TO .75 STEP .01 
210 Pl=l-P 
220 %0=LN(1/P1) 
230 I1=LNXO/BO+LNMO 
240 T=E%P%1 
250 N=*2020A 
260 PRINTTAB(0)"p=';P;TAB(10)"T=';T 
270 @%=10 
280 FOR Ml=700 TO 350 STEP 50 
290 H=(T/M1)*B0 
300 ei=EIP-H 
310 0=1-01 
320 I=8*SQR(Q*Q1) A*S@R(P*P1) 
350 N=X*2/(P Q)*2 
360 
370 @%=»2020A 
380 PRINT N; 
390 #%=10 
400 NEXT Ml 
410 NEXT P 
420 PRINTTAB(25)'Do you like another procedure' 
430 IF GET$='Y" THEN 90 
440 PRINT 
450 END 
460 REM******************************************************** 
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470 DEF PROCtW 
480 PRIHTTABdSl'saaple size for single sampling plan using t¥0 gauges" 
490 FOR PI:.25 TO .46 STEP .01 
500 P3=1-P1 
510 C04I(1/P3) 
520 C1=L;(1/P1) 
530 Y0=L;C0/80+LIM0 
540 yi=LICl/BO+LIHO 
550 T1=EIPY0 
560 T2=EIPY1 
570 *%=&2020* 
580 PRimAB{0)'p=';Pl;TAB(10)"Il--';Tl;TAB(25)"T2=';T2 
590 «--10 
600 FOR Ml=700 TO 350 STEP -50 
610 G=(T1/M1)*80 
620 GO=(T2/M1)*BO 
630 01=1 EIP-G 
640 C3--EIP-G0 
650 D=(Q3+Q1)-(Q3-Q1)*2 
660 ::(A*S0R(2*P1)-B*SQRD)*2/(Q3-Q1)'2 
670 H=*2020A 
680 PRINT #; 
690 @%:10 
700 lEIT HI 
710 lEIT PI 
720 PRIITTAB(25)'Do you want another procedure' 
730 IF GET$='Y' THE* GOTO 90 
740 PRINT 
750 END 
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10 REN A****************************************************** 

20 REM *PROG FOR PLAN OF DOUBLE SAHPLIKG PLM OSIIG ONE GAUGE* 
30 REN **************************************#******#*#******* 
40 IIPOY'SHAPE PARAHETER";B5 
50 IKPOT'GAOGE P0SITI0K';P5 
60 mPOI'SAHPLE SIZE (SIIGLE)';! 
70 mPOT'RATIO FOR THE FIRST SAHPLE'JRI 
80 IIPflT'FIRST ACC. IOHBER'jF 
90 IMPBT'FIRST REJ. KflHBER'jS 
100 IIPflT'SECOID ACC. #DNBER';C 
110 IIPBT'BEAI LIFE TIME H0';H0 
120 IIPDT'LOifER HEAD LIFE TIME H1';M1 
130 IiPBT"STEP';S5 
140 I0=R1«I 
150 :i=i*T(:o) 
160 13=1-11 
170 D=F+1 
180 G--S-1 
190 P6=l-P5 
200 X0-LI(1/P6) 
210 Xl=L;%0/85+L#N0 
240 T=EIPI1 
250 PBi;T'll=';ll; 
250 H=*2020A 
260 PRI*TTA8(15)"T=';T 
270 H:10 
280 FOR *2=#3 TO 2*11 
290 PRi;T'*2:";;2 
300 FOR R=MO TO Ml STEP -S5 
310 P=1 EIP( T/R) 
320 Pr=0 
330 FOR J=D TO S 
340 Q--C-3 
350 SDH=1 
360 Al=(l-P)**2 
370 P1=0 
380 FOR K=1 TO Q 
390 S0M=(I2-(K-1))/K*SBH 
400 P1=SUN*P*K*(1-P)*(B2-K)+P1 
410 BEIT I 
420 B1=A1+P1 
430 P2=FIF(J)*P*J*(1 P)*(I1'J) 
440 B2=B1*P2 
450 Pr=Pr+B2 
460 HEIT 3 
470 A=(l P)';i 
480 1=1 
490 P0=0 
500 IF F=0 THE; GOTO 550 
510 FOR 1=1 TO F 
520 %=(;i-(I-l))/!*% 
530 PO=X*P*I*(l-P)*(;i-l)+PO 
540 BEIT I 
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550 BO=PO+A 
560 OC=Pf+BO 
570 #%=*2040A 
580 PRIIIT OC; 
590 H=10 
600 REIT R 
610 PRUT' 
620 lEIT 12 
630 PRUT 
640 EID 
650 REM************************************************** 
660 DEF FIIF(J) 
670 M=1 
680 IF J=0 THE* 720 
690 FOR L=1 TO J 
700 M=(;i-(L-1))/L*M 
710 REIT L 
720 --H 
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