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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF SCIENCE 

PHYSICS 

Master of Philosophy 

SURFACE CHARGE DECAY OF INSULATORS WITH TRAPS 

by 

Dariush Moayyed-Mohseni 

The aim of this research was to develop an understanding of 

the surface potential decay of corona charged insulating 

materials. The experimental results for polyethylene 

samples showed a remarkable crossover of the surface 

potential profiles, 

A quantitative theoretical description of the 

experimental results based on the concept of hopping 

transport of charge carriers between traps of identical 

energy in the sample was used. A computer programme based 

on a finite differece scheme was developed to solve the 

resultant transport equations. The solution was extended to 

cover several transit times of the charge passage in the 

sample. The transport and trapping parameters i.e. the 

injection factor, the charge carrier mobility, the trapping 

time before release and the free time before capture were 

determined by curve fitting techniques. The fitted 

transport and trapping parameters were used to determine 

the free charge distribution, the trapped charged 

distribution and the electric field in the sample. The 

derived transport and trapping parameters were field 

dependent: the value were for the trap energy 0.97 eV at 

field 83.3 MV/m to 1.136 eV at 16.4 MV/m and for the trap 
23 -3 23 -3 

concentration 5.35x10 m at 83.3 Mv/m to 0.45x10 m at 
16.4 MV/m. The Poole-Frenkel field lowering factor was 

-5 1X2 
(3.5±0.3)x10 CV m in good agreement with theory 

(5.04x10"^ 



CHAPTER 1: INTRODUCTION 

1.1 General Background 

In recent years considerable importance has been given to 

the study of insulating materials due to their numerous 

applications in different industries. The use of 

photoconductive insulators in electrophotography or use of 

insulators in the cable industry are two examples. The 

optimisation of their performance requires the investigation 

of the charge transport processes in the material. 

Surface-charge decay measurements have proven to be a 

convenient method for studying the processes involved. In 

this technique a thin film of an insulator 

(e.g.polyethylene) is charged on one surface either by 

corona discharge, ion bombardments or contact charging while 

the opposite surface is laid on a grounded electrode. The 

surface potential decay of the charged surface is then 

observed over a period of time using an electrostatic probe. 

Such decay profiles have been reported by many investigators 

(ref 1-29). Some have found that the surface potential 

decays faster for higher initial voltages, that there is an 

apparent levelling off in the curves for low initial 

potentials, and that the decay curves for various potentials 

cross each other at finite time after charging. Many authors 

have proposed physical models which attempt to account for 

this phenomenon. 

Batra and co-workers (ref 31-32) have developed various 

theories for surface potential decay; their work assumes 

space charge conduction, but they do not include the effect 



of partial instantaneous injection and trapping of the 

carriers. 

Wintle (ref 30, 33 and 34) has speculated on various 

explanations for the observed features of polyethylene decay 

curves. He has developed theories that include 

field-dependent mobilities of various forms as well as 

trapping. None of these models can account for the cross 

over effect. He derives some interesting results assuming a 

field-dependent depth of penetration of the initial charge. 

However Batra (ref 35) has shown that this model cannot 

explain the cross over phenomenon. 

Sonnostine and Perlman (ref 36) considered field 

dependent mobilities and both partial instantaneous and time 

dependent injection, but have not considered the effect of 

trapping and release of charges from the traps in the 

sample. 

Robins (ref 46) assumed a steady-state situation, where 

no time dependent change for charge density and the electric 

field can occur. He has not considered charge trapping in 

the sample, hence his analytically derived solution for the 

surface potential decay only applies to high initial surface 

potential where no trapping occurs. 

Chudleigh (ref 2) has considered the effect of trapping 

and release, but has not considered partial injection from 

the surface and his numerically solved model does not cover 

times beyond the transit time of charge passage through the 

whole sample. 



von Seggern (ref 7) suggested a model based on surface 

and bulk traps and considered time dependent surface 

injection, but again his model does not cover times greater 

than the transit time. 

Campos and Giacometti (ref 12) have assumed instantaneous 

injection and trapping of charges but their model does not 

allow liberation of the charges from traps. 

Arkhipov and co-workers (ref 40) considered a model 

characterised by a system of traps whose energies are 

distributed within a wide region into the band gap. In this 

model they considered partial injection of charges from the 

surface but, in order to solve the transport equations 

analytically, they had to resort to approximation methods. 

Cossequently when the injection factor 1 (i.e. ratio of 

injected charge to total surface charge 4 1), their method 

became very inaccurate . 

von Berlepsch (ref 24-26) considered a model in which 

surface and bulk traps exist and he assumed partial 

injection of charges from the surface, but he had to use 

approximation methods in order to find analytical solutions 

for the transport equations. His model does not allow times 

greater than the transit time. 

Detection of surface and charge traps by von Seggern (ref 

37-38) and Mizutani and co-workers (ref 45) and measurements 

of their positions and energies in the sample have lent 

credibility to the models which are based on surface and 



bulk traps. 

The aim of this study is to provide solutions for the 

tansport equation based on the considerations that partial 

injection of charge from the surface occurs and that the 

sample has surface and bulk traps. It is also desirable to 

extend the solutions to times greater than the transit time, 

and to find the relevant parameters by fitting the 

theoretically produced surface potential decay curves to the 

experimental results. But before proceeding any further it is 

instructive to give a brief review of the possible conduction 

mechanisms in polymers. 

1.2 Conduction mechanisms in polymers 

Polymers are not the simple covalent or ionically bonded 

crystals of conventional solid-state physics. For 

example polyethylene is a covalently-bonded, long chain 

molecule, where the chains are weakly bonded by van der 

Waals' forces to form a semi crystal 1ine solid; i.e a mixture 

of crystalline and amorphous parts. The carrier mobility in 

these materials is very low and so there are difficulties in 

the use of band theory. These difficulties arise from the 

fact that two of the conditions in the the band model, 

namely the weak eleclron-lattice interaction and the extended 

nature of the electron states, are violated because of the 

strong int ra-molecular localisation of the electron 

states and the weak electronic coupling between molecules 

which exist in these materials (ref 42). An alternative 

model based on electron hopping through the states is more 

applicable {ref 41). A carrier can move from one chain to 



another by jumping over the potential barrier which exists 

between the two chai nS. However, the bonding between 

molecules of one chain is strong and covalent, and 

electron-lattice interaction rather weak therefore a band 

scheme is appropriate for a PE chain (ref 39). The band 

structure of a PE chain has been modelled theoretically and 

the calculated band gap of 7.6 eV is in good agreement with 

the experimental value of about 8 eV (ref 39). A sample of 

PE consists of a large number of PE chains and carriers move 

across the sample with repeating band conduction along a PE 

chain and hopping to the next chain alternately. In a 

semicrystalline material like PE, carriers travel through 

crystalline parts and amorphous parts, hence several 

different possible transport mechanisms may exist in 

par allel. Furthermore the exist nee of carrier traps in the 

material (which may be caused by defects, impurities, 

etc...) adds new complications to the transport 

phenomenon in PE. These mechanisms are shown in Fig l.i 

However, many authors (see for example ref 9 and ref 26) 

consider the thermally-activated hopping to be the dominant 

transport mechanism in PE. Assuming the band model with a 

band gap of 8 eV for PE, the energy the level diagram of PE 

is shown in Fig 1.2. The trap levels are caused by defects, 

unstable oxidation products, stable oxidation products, 

crosslinks and antistatic agents(ref 39). For a thorough 

discussion of the transport mechanisms in polymers see for 

example Kao and Hwang (ref 41), M. leda (ref 39) and 

G.G.Roberts ei at.(ref 42). 
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CHAPTER 2 : THE PHYSICAL MODEL 

2.1 Injection process 

Consider a thin insulator in a plane -parallel geometry 

of thickness L and dielectric constant with one surface 

in contact with a grounded electrode and the other free. At 

time t=0, a surface charge of density is deposited 

"instantaneously" cm t̂ ie fn&s surface from a corona 

discharge unit. Instantaneous charging means that the charge 

be deposited before a significant portion of it moves into 

the bulk. The charge is deposited in the form of positive 

(or negative) ions. These ions may remain stable on the 

surface or, depending on the polarity of the incident ions, 

the surface states of the insulator may be ionised producing 

acceptors or donors. Consequently we assume that a part of 

the total deposited charge where 0<y<1, is 

instantaneously injected frcm the surfapa states smd the 

remaining part (l-yicQ is trapped in the surface states for 

a longer period of time than the duration of the experiment. 

For the purpose of modelling the injection process we 

exclude the possibility of direct molecular ion migration in 

the insulator. Transport of charge from the surface states 

into the bulk requires hole or electron transfer into the 

valence or conduction band states. In polymer structures 

like polyethelyne, the bands will be sets of localised 

states energetically close together. Electron or hole 

transport is possible by activated hopping from one 

localised state to another.The tails of bands are extended 

into the band gap to give a "mobility edge". This model is 



applicable for transport phenomena in amorphous materials. 

In addition to the localised states ,it is considered that a 

set of deeper traps , with a single energy level E^,exists 

in the band gap and are uniformly distributed across the 

bulk. These traps may be characterised by means of and 

for carrier trapping time before release and free carrier 

time before capture, respectively. 

Once the carriers are in the bulk, they move towards the 

opposite grounded electrode with mobility p under their self 

induced electric field. While moving, some of them are 

captured by these traps and then subsequently released into 

the transport states. So at any time after the injection 

some trapped charge exists in the sample (Fig.2.1). 

2.2 Transport equations 

To simplify the model, the following assumptions are 

made: 

1) Part of the total chargeCcy)^ deposited at the surface 

is assumed to be injected instantaneously into the 

bulk and the remainder is assumed to stay at the 

surface states. 

2) The transport of injected carriers is assumed to occur by 

activated hopping between localised states under the 

influen&aof their own electric field. 

3) Injection of counter charges into the sample from the 

substrate is assumed to be insignificant compared to charge 

injection from the surface. 

4) Contributions by diffusion, Ohmic conduction, thermal 

generation are assumed to be insignificant 

/ 
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Fig. 2.1: Scheme for charge transport from ions into 

surface and bulk states under self induced 

electric field. The traps have trapping 

time and release time T_ . 
t f 

The activation energy for release is E.. 

[Similar to G. Lederer et a l , ref. 10]. 



5) During the passage of carriers through the sample it is 

considered that the carriers are repeatedly captured and 

released by traps which are situated in a single energy 

level, characterised by T^, the mean free time before 

capture and , the mean capture period before release. 

Transport between trapped states is characterised by carrier 

mobility id. With these assumptins we can now write the 

transport equations. In one dimension we have, 

The conduction current J (x,t) : 
c 

J (x,t)=p (x,t)pE(x,t). ( 1 ) 

where p (x,t) is the free charge density, 

E(x,t) is the electric field strength, 

u. is the carrier mobility. 

The displacement current density J^(x,t) : 

jQ(x,t)=c^Q <?E(x, t )/(?t. (2) 

The total current density J(t) is equal to the sum of 

J^(x,t),and J (x,t),and furthermore for an open circuit 

configuration J(t)=0. Hence, 

/jp^(x,t)E(x,t)+££^c?E(x,t)/dt=0. (3) 

For trapping centres located at a single energy level, the 

rate of change of trapped charge density is: 

ap^(x,t)/at =Pf(x,t)/ T^ -p^^x.t)/ T^. (4) 

where p^(x,t)/ T^ represents the rate of increase of p (x,t) 

due trapping of free carrier and p^(x,t)/ T^ represents the 

rate of decrease of p (x,t) due to release of trapped 

carriers. 

8 



The surface potential is given by: 

L 

V(t ) = J E(x,t)dx. ( 5 ) 

0 

The initial surface potential is : 

"O^'O'-A^O (61 

2.3 Formulation of the equations in reduced quantities 

The computational stage of all numerical methods for 

solving problems of any complexity generally involves a 

great deal of arithmetic. It is usual therefore to arrange, 

whenever possible, for one solution to cover a variety of 

different situations. This can be done by expressing all 

equations in terms of non-dimensional variables.In this 

particular case we can write: 

x* = x/ L , , T % = T y t ^ , . 

Pf*(x*,t*)= pY(x,t)L/bQ , p^*(x*,t*)=p^(x,t)L/yQ , 

E*(xTt*)=E(x,t)L/ , V*(t*)=V(t)/ V . 

The variables on the left side of the equations are the non-

dimensional equivalent of the transport equations. Here t 

is the transit time of a carrier at the leading edge of the 

charge distribution in the absence of trapping (ref. Batra) 

and is related to the carrier mobility by : 

(7) 

The equivalent transit time in the reduced model is t*=1. 



Substituting the dimensionless variables into the transport 

equations (1-6) we have: 

* * * * * * * * * * 

p^(x ,t )E (X ,t )+aE (x ,t )/dt =0, (8) 

* * * * * * *, * * * 
dE (x ,t )/dx =p^ix ,t )+p (x ,t ), ( 9 ) 

*. * * ̂  , * * * * . * * * * , * 
JPt (X ,t )/dt (X ,t )/ (X 't )/ T^, (10) 

* * * * * * 
V (t ) = j E (x ,t )dx. ( 1 1 ) 

0 

2.4 Boundary and initial conditions 

Equations (8-11) are subject to the following boundary 

and initial conditions : 
* 

At t =0, charges are injected into the sample so there is a 

surge of free carriers into the sample. Hence, 

* * * * 
p (x ,0)=y6(x ) 0<x <1 (12) 

* 
where 6(x ) is the Dirac delta function. Recall that: 

+C0 

6(x)dx=1 . 

—'X) 

and y is the ratio of injected charge to total surface 

charge, so: 

C^:y<1. 

The electric field inside the sample is : 
*, * * 

E (x ,0)=1. 0<x <1 (13) 

and on the free surface of the sample : 

E*(0,t*)=1-y. (14) 

10 



Prior to injection of carriers, there is no trapped charge in 

the sample, so 

p *(x*,0)=0. 0<x*<1 (15) 
i/ 

2.5 Approximation methods for the reduced transport equations 

There appears to be no analytical solutions to these 

equations with the given boundary conditions, so 

approximation methods must be used. Analytical approximation 

methods often provide useful information about the variables 

and a few authors have used these methods (ref. 40, 25). But 

their solutions are limited to less than the transit time of 

the carrier passage. Of the numerical approximation methods 

available for solving partial differential equations those 

employing finite differences or finite elements are more 

frequently used, and are more applicable to these problems. 

In the present case the finite difference approximation 

method is used. Before outlining this method however, it is 

necessary to mention that finite difference methods are 

"approximate" in the sense that derivatives at a point are 

approximated by difference quotients over a small interval, 

i.e. if U is a function of x and y,then dU/dx is replaced by 

6 u / 6 x where 6x i x small and y is constant. The data of the 

experiment are inevitably subject to errors of measurement, 

and all arithmetical calculations are subject to a finite 

number of significant figures, and so even complete 

analytical solutions are subject to uncertainty in numerical 

comparison with experiment. 



2.6 Finite difference approximations to derivatives 

Assume U is a function of the independent variables x and 

t. We subdivide the x-t plane into sets of equal rectangles 

with sides 6x=h, 6t=k,as shown in Fig.2.2 ,and let the 

co-ordinates (x,t) of the mesh point R be : 

x=ih ; t=jk, 

where i and j are integers. T h e value of U at R Is 

U=U(ih,jk)=U. .. 
T ) J 

Then the derivatives for forward-differences are: 

du/ax s J- u. j/ h, (16) 

U^_./ k, (,7) 

and for backward-differences we have: 

JU/dx = U. U. , ./ h, (18) 
' 1 , J 1-1, j/ 

au/dt ^ u. u. . ,/ k, (19) 

and for centeral-differences we have: 

au/ax ^ u. , u. , ./ 2h, 
/ 1+1,J 1-1,j/ 

(20) 

au/at = u. . u. . ,/ 2k. (21) 
/ i,j+i i,j-i/ 

2 
These approximations have errors of order h for x 

2 

differentiation, and k for t differentiation(for a thorough 

discussion see ref 44). 

Similar approximation schemes for electric field 

strength, trapped charge density, and free charge density 

12 



are: 

E \ _ . / k (22, 

9 e ' ( X V , / 5 X * = E;_.- E;_,_y h (23) 

dp^. (X.t )/<?t* *_j/ k (24) 

(X ,t*)/at' + g *_j/ k (25) 

Before writing the Lax-Wendroff (ref 44) explicit method for 

the set of equations (8-10) using equations (22-25), we have 

to find the k/ h ratio by some means, in order to get stable 

solutions. 

As we shall see equations (8-10) make a system of 

hyperbolic partial differential equations of first order, 

and the condition under which this particular set of partial 

differential equations has a stable and converging solution 

is the Courant-Friedrichs-Lewy condition (ref 4 4 ) . 

2.7 Characteristics and hyperbolic equations 

A characteristic is a curve in the (x-t) plane along 

which the integration of a partial differential equation 

transforms to the integration of an ordinary differential 

equation. For example if we have 

a dU^dx + b duy'dt=c, 

where a, b and c are in general a function of x and t and U 

but not of dU^dx and then the characteristic curve for 

this equation is (ref 44) 

dx/a = dy/ b = du/c, 

13 



and the equation for the characteristic is simply 

dy/dx = b/a, 

and the differential equation for the solution along a 

characteristic is either 

adU = cdx or bdU = cdy. 

this means that simply by integrating along this curve we 

can generate the solution with a particular set of initial 

and boundary conditions. Then we may ask why bother using 

finite difference method for a solution? The answer is 

that programming of the method of characteristics, 

especially for problems involving a set of simultaneous 

first order equations,such as equations (8-10), is much more 

difficult than the programming of the finite difference 

method. But knowing the characteristics is one way of 

finding the k/ h ratio (The Courant - Friedrich - Lewy 

condition). 

2.8 The Courant-Friedrich-Lewy (C.F.L) condition 

Assume that a first order hyperbolic differential 

equation has been approximated by a difference equation of 

the form 

U. . .=aU. ^ .+ bU. .+cU. _ .. 

i,J+1 1-1,J i,j 1+1,J 

then Up( Fig.2.2) depends on the values of U at mesh points 

A, B , and C. Assume now that the characteristic curve 

through P of the hyperbolic equation meets the line AC at D 

and consider AC as an initial line segment. If the initial 

values along AC are altered then the solution value at P of 

14 
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Fig. 2.2: C.F.L condition for first order equations, 

[After G.D.Smith ref. 44] 



the finite difference equation will change, but tnese 

alterations will not affect the solution value at P of the 

differential equation which depends on the initial value at 

D. In this case cannot converge to u^ (the solution along 

characteristic) as h 4 0 and k 4 0. For convergence D must 

lie between A and C(The Courant-Friedrichs-Lewy 

condition)i.e the slope of the characteristic curve must be 

bigger or equal to k/ h, which is the condition for 

convergence. 

2.9 Finding the characteristics for equationsC8-103 

Recalling the equations 

* * * * * * *, * * 
f p (x ,t )E (x ,t ) + 5E (x ,t )/dt =0, (8) 

* * * , * * * * * * * 
ae (x ,t )/dx = P (X ,t ) + p (x ,t ), (9) 

* * * , * * * * * * * * * 

(X ,t )/at = ^ (X ,t )/ T^- (X ,t )/ T^. (10) 

Eliminating p *(x*,t*) and defining a and ft by 

a = (1+T^/ T*), and ^ = (1+T^/ T*). 
* * * * * * * * 

and abbreviating E (x ,t ) to E and p (x ,t ) to ,0 we 
t t 

have 

* , * * * * * 
' aE /Ox - /at - ^ =o, (26) 

* , * * *, * * * *. * 
a <?E /dt + E dE /dx + E dp /dt =0. (27) 

Now if we have a system of simultaneous equations 

15 



aidu/ax +biau/ay +ciav/ax +diav/ay +ei =o, (28) 

a2dU/ax +b2<?u/^y +c2^V/dx +d2JV/ay +e2 =0, (29) 

It can be shown (ref 44) that equations(28-29) have 

characteristics given by 

(a1c2-a2c1)(dy/dx)^-(a1d2-a2d1+b1c2-b2c1)dy/dx+(b1d2-b2d1)=0. (30) 

Here, if we have two real and distinct roots then the 

simultaneous system of partial differential equations (28-29) 

are called hyperbolic, and if one real root then they are 

called parabolic, and if no real root at all they are called 

elliptic. 

* * * * . 
If we take E =U, p =V, x =y and t =y, then equation (30) 

t 

is 

a T*(dx*/dt*)2 _ (E*T^+ E*T*)(dx*/dt*) =0, (31) 

which has roots 

* , * , * , * * 
dx y/dt = 0, and dx /dt =E . 

Correspondingly, the system of equations (8-10) is 
* * 

hyperbolic. Now in the (x ,t ) plane the slopes at the 

characteristics have the forms 

dt*/dx*=m (32) and dt*/dx*= 1/ E . (33) 

This means that for a solution corresponding to (32) and 
* * 

X =0, the characteristic does not leave x axis. Applying the 

C.F.L. condition we have k/h<oo,which is a trivial condition 

16 



and for (33), k/ h < 1/ E ; with the biggest value for El 

(unity) the condition is simply h <k. 

So if we choose the condition k=h, then for smaller values 

of E1 ,we will have k<h, which means that the solutions are 

always converging and stable. 

2.10 Solution of the reduced partial differential equations(8-10) 

Since the ratio, k/h is now known it is possible to use 

the approximation derivatives (22-25) in (8-10), and find the 

explicit solution. Putting (22-25) in (8-10) and solving the 

* * * 
resultant equations for p , p and E yields 

= A.j-

Equations (34-36) are explicit Lax-Wendroff schemes (ref 

44)for the set of equations(8-10). 

* 
If we divide the x axis into n equal segments and the 

* * 

t axis into m equal segments, with 0<x <1 and for special 
* 

case of times up to transit time (i.e 0<t <1), we have 

h =l/n, and k = l/m. 

* * 

Since k<h, the condition as the mesh points in the (x - t ) 

plane is 

17 



m >n (37) 

To extend the solution to times longer than the transit 

time (unity for the reduced model), we simply have to 

increase time divisions. For example m=40, and n=20 would be 

the right number of mesh points for times up to twice the 

transit time. 

2.11 Calculation of the surface potential 

Once the distribution of the electric field in the sample 

is known, then it is possible to find the surface potential 

variation,via equation (11). The integration is most 

conveniently done by Simpson's rule to sufficient accuracy. 

b 

f(x)dx2:h/3[f(a)+4f(x1)+f(b)] 

a 

where h=(a-b)/2 and x1 is the midpoint between a and b 

i.e.(a+b)/2. 

This method is unsuitable for use over a large interval, 

so a piecewise technique must be used. In this technique 

(a-b) is divided into 2m equal strips of width h, where m is 

an integer. 

Using the above approximation we have: 

^ m-1 m 

f ( x ) d x = h / 3 [ f ( a ) + 2 ^ r ^ ^ ) + f ( b ) ] . 

a i=1 i=1 

where a=x^<x^<X2--•<X2^=b,h={b-a)/2m,and x^=XQ+ih for each 

i=0,1...,2m (ref.47). 
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3̂  

In our particular case, the x axis is divided into 20 

segments (0<x*<1), hence m=10, a=0, b=1, and h=l/20. So for 

an arbitrary time t1 we have 

1 

V*(t1) E"(x\t")dx" ^ 1/60 <,t1+^";.05,t1 

0 

2Eo.1,t1+*Eo.,5,t,+ <38) 

2.12 Programming of the explicit Lax-Wendroff schemesC34-36) 

Recalling the boundary and initial conditions(12-15) 

p.*(x*,0)=/6(x*), for 0<x*<1 and 0<r<1 (12) 
f 
E*(x*,0)=1, for 0<x*<1 (13) 

E*(0,t*)=1-y, (14) 

p *(x*,0)=0. for 0<x*<1 (15) 
t 

And since we have only three Lax-Wendroff schemes(34-36), 

we need only three boundary conditions. As we shall see 

equation (12) is superfluous since it is generated by the 

calculation. Writing equations(13-15) using subscript 

notations 

E* =1, for i=1 to i=n (i being an integer) (39) 
1,0 

E* .=1-v, for j=0 to j=m (j being an integer) (40) 
0, J 

p * „=0. for j=0 to j=m. (41) 
^ 1 , 0 

The programming was implemented in BASIC on Apricot micro 
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computer during the early stages of development and later 

TM 
transferred to an IBM AT micro computer for larger 

addressable memory using the Microsoft™ c.5 Optimizing 

Compiler. The C language was used for its speed and 

compactness of code. 

For practical considerations the number of mesh points 

chosen are n=20 and m=600, to give times up to 30 transit 

times. 

The central body of the programme is essentially two 

nested DO loops for i and j, within which the electric field, 

trapped charge density and free charge density are 

calculated. A second routine performs the integration of the 

electric field using Simpson's rule (38), to yield the time 

variation of the surface potential. 
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CHAPTER 3 : RESULTS AND DISCUSSION 

3.1 Results 

3.1.1 Experimental results 

Samples of polyethylene film of 30 micro meters thickness 

were held on an earthed metal backing electrode on a 

turntable, and subsequently positively charged using a corona 

discharge unit. 

Immediately after the cessation of charging successive 

decay measurements were taken, using an electrostatic probe, 

rotating the turntable below the probe. The time variation 

of surface potential was monitored using an X-Y point 

recorder. The first decay curve was recorded for films 

charged to the lowest voltage to be used. Then the charging 

voltage was increased and again the decay was recorded. This 

procedure was repeated 5 times altogether, and 30 minutes 

were allowed between each run. The decay profiles are shown 

in Fig 3.1. 

3.1.2 Curve fitting technique 

Once the solutions to the reduced model are found, it is 

possible to find the values for p^(x,t), p^(x,t), E(x,t) and 

V(t), provided that y, T^, T^, and p are known. Recall that 

these parameters are related to the reduced values by 
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Fig. 3.1: Experimental plots of surface potential 

versus time showing crossover phenomenon. A, 

975 volts; B, 1462 volts; C, 492 volts; D, 

2000 volts; and E, 2500 volts. Sample 

thickness=30um. 



x = x \ , t=t*t^ . T^=T* 

2 2 p^(x,t)=p^(x ,t ) VQfZq/ L , p^XX,t)=p^(x ,t ) VQgfq/ L 

E(x,t)=E*(x*,t*) V y L , V(t)=V*(t*) V 

^ = ' - V < V o ' -

In order to determine the four parameters we must resort 

to curve fitting techniques. One way of utilising this method 

is to use a function to fit the theoretical V(t) curve to the 

experimental data. As yet there is no function available to 

fit the four parameters to the experimental curves; so 

another method based on randomly generated numbers was used. 

In this method, four independent randomly generated 

numbers are produced and then weighted properly by some 

factor, in order to bring the search into a quicker 

conclusion. The run time library routine rand() function of 

the Microsoft C compiler, which generates a random integer in 

the range 0-32767, performed the task. 

The five different experimental data sets V(t) were each 

sampled every 10 seconds and the resultant voltages were 

stored as an array of integers in a version of the programme 

developed to perform the curve fitting. Since there are 600 

time intervals for the theoretical V(t) coresponding to 200 

seconds of experimental data, there is one theoretical point 

coresponding to every experimental point and therefore there 

is no need to perform any interpolations. When a theoretical 

voltage profile is produced using the randomly generated 

numbers, a comparison is made with the experimental results. 

The Chi square statistic is used as a test of "goodness of 
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2 
fit". After each random trial % is calculated and if it is 

found to be much larger than the number of experimental 

points a new set of numbers are generated and another value 

2 
of the % value is found. This process is reiterated , until 

2 
a good fit is found. % can be calculated using (ref 48) 

2 
g r—' ( o b s e r v e d - e x p e c t e d ) 

% = y , 
^—' v a r i a n c e 

where "observed" is the experimental value of voltage,and 

"expected" is the theoretical values. 

Errors for these particular experiments were assessed to 

be ±10 volts. 

A programme function named "chi_square" was developed to 

2 

calculate each % value for a particular set of transport 

parameters. 

3.1.3 Evaluation of the transport parameters 

For the 2500 voltage profile, the programme was set to 

2 
reject values of % bigger than 700. Then the computer was 

left to run overnight to accumulate sets of parameters with 

2 
X smaller than 700. Then by making a systematic search 

i.e.changing the value of one parameters slightly while 

2 

keeping the rest constant, it was possible to reduce % 

significantly. 

This procedure was repeated for the 2000 and 1462 voltage 

profiles. For the 975 and 492 voltage profiles the programme 
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2 
was set to reject % values bigger than 100 and, again by 

2 

systematically searching, the % values were further reduced. 

Table 1 shows the best fit transport parameters, from which 

the corresponding V(t) (Fig. 3.2-3.6), E(x,t), 

p„(x,t),p.(x,t) and total charge in the sample (i.e.p (t)) 
T t uOu 

can be plotted using the graphic facilities of Lotus™ 1 2 3. 

3.1.4 The von Berlepsch model 

Based on the transport equations (1-6) von Berlepsch (ref 

25)has derived an analytical approximation to V(t). The 

solution which has a time range up to the transit time t , is 

given by: 

V(t)=V - ,a(V /4L)^[1-( 1-r )^]—^ [rt+-(1-exp(-R/t)] (42) 

R R 

where 

t is the time, r=l/T^ , W=1/T^ , R=r+w and is the 

initial surface potential. 

Using the parameters of table 1 and equation (42) a set of 

voltage decay graphs was produced for comparison with the 

numerical model. It should be noted that these parameters may 

not correspond to the best fit of the von Berlepsch model, 

nevertheless it is clear that there are significant 

differences between the two models (Fig. 3.7). 

24 



Initial surface 2500 2000 1462 975 492 

potent i a1(volts) 

Initial electric 83.3 66.67 48.7 32.5 16.4 

field (MV/m) 

r 1 0.9455 0.693 0.500 0.255 

(seconds) 8.72 22.80 79.44 372.6 1232.8 

(seconds) 6.21 17.70 25.83 1408.8 5424.5 

jj (m^ V ^ )x10 2.576 1.845 0.929 0.683 1.095 

transit time 13.9 24.3 64.5 131.6 164.3 

(seconds) 

69.38 59.84 59.79 7.02 0.964 

Table 1. Different transport parameters derived from the 

curve fittings. Sample thickness 30,urn. 
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3.2 The derived results 

3.2.1 The electric field strength 

As expected Fig. 3.8-3.12 show that the electric field is 

constant across the sample prior to injection of charge. 

Immediately after injection, the electric field at the 

surface drops to a level depending on the values of y and the 

initial surface potential. As time goes on the electric field 

at the opposite electrode starts to drop and for times far 

longer than the duration of the experiment the value of the 

field at this electrode eventually equals the electric field 

at the surface, as expected. 

3.2.2 The free charge density 

Immediately after injection, the free charge density in 

the sample is very large just inside the sample and, as time 

increases, the charge begins to spread out in the sample. For 

cases where the peak of the distribution moves towards 

the opposite electrode since the free charge is repelled by 

the remainig charge trapped at the surface. But when y=1, the 

peak remains at x=0 since no charge remains at the surface. 

As time increases, the peak of the distribution becomes 

smaller and eventually all the free charge leaves the sample. 

Fig. 3.13 - 3.17 show the free charge density distributions 

for different initial surface potentials. 
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3.2.3 The trapped charge density 

At t=0 we assumed that there was no trapped charge in the 

sample. Immediately after the injection when there is an 

upsurge of free charge into the sample, some of the charge 

carriers are trapped and later released as free carriers. The 

values of T^ and T^ may play an important role in determining 

the shape of the trapped charge distributions. For the 

highest surface potential where the peak of the free charge 

distribution does not move across the sample, it is to be 

expected that the peak of the trapped charge density 

distribution would behave in a similar manner. For the lower 

surface potentials, where the peak of free charge 

distribution moves towards the opposite surface, the degree 

of trapping increases across the sample as shown for the two 

lowest surface potentials in Fig. 3.21 - 3.22. 

3.2.4 The total charge in the sample 

Since no recombination of charges is considered the total 

amount of charge in the sample must remain constant while 

txtransit time. In other words the total trapped charge (i.e 

the area under the trapped charge density curve) plus the 

total free charge (i.e the area under the free charge density 

curve) in the sample at any time less than the transit time 

should be constant. This is clearly demonstrated in Fig. 

3.23. The calculation of the total free and trapped charge 

has been performed by simple summation of each distribution 
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(using the trapezium rule). 

3.2.5 Other transport parameters 

The transport parameters are directly related to the 

transport and trapping of carriers at the microscopic level. 

In our particular case we have(ref 43) 

Tt=l/(^* exp(-E^/kT)), (43) 

where 
$ 

V IS the frequency of attempts to escape, 

is the trap energy, 

and 

Tf=l/((N^-p^JSv). (44) 

where 

is the density of traps, 

p is the trapped charge density, 

S is the capture cross section of an unoccupied centre, 
V is the carrier velocity (v=pE). 

V is often regarded as the product of the highest lattice 

frequency and a constant less than or equal to unity, 

expressing the probability that a carrier exited 

energetically to the transport band, and another parameter 

which is the ratio of states at the energies of the transport 

band above the ground state, (these being the number of 

states into which the carrier can be excited) to the number 

of states in the ground state. It is worth mentioning 

this last factor because in principle v* can exceed the 

highest lattice frequency (ref 43). However, commonly chosen 

* 12 1 5 - 1 
values of v are in the range of 10 to 10 s (ref 25). 
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Initial surface 2500 2000 1462 975 492 

potential(volts) 

(eV) 0.97 0.99 1.002 1.102 1.136 

23 
N (m )x10 5.35 3.56 2.78 2.22 0.45 

Table 2. trap energy and concentration for various 

* 15 - 1 - I P 2 
initial surface potentials, p =10 s , S=10 m , 

t=290 K. 



This variation in y causes a variation of about 15% on the 

calculated values of E . 
t 

At the beginning of the experiment when no trapped charge 

exists in the sample equation (44) becomes: 

Tf=1/NtS^EQ (45) 

The capture cross section is taken to be S=1o"^^m^ (ref 25). 

Table 2 shows the derived values for E and N 
t t' 

3 . 3 D i s c u s s i o n 

The most important of the transport parameters is the 

injection factor y which accounts for the crossover effect 

(see for example ref 25 and ref 40). The values of y as 

shown in Fig. 3.24, suggest a linear field dependency for 

lower field values. Sonnonstine and Perlman (ref 36) assumed 

such a field dependency to account for the crossover effect. 

However, as the value of the electric field increases this 

linear dependency must break down at some point. The 

Schottky effect (field enhanced thermal detrapping, see ref 

41) might be an appropriate mechanism to account for the 

detrapping of carriers from the surface states into the bulk 

states but this cannot be confirmed because not enough data 

exists for such an analysis. 

The charge mobility values for PE appear not to fall into 

an obvious pattern in the range studied. However, the 

electric field dependency of carrier mobilities have been 

reported by von Berlepsch (ref 24) and Mizutani and leda (ref 

49). The magnitudes of mobilities derived here are in the 
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40 60 

electric field strength (MV/m) 

Fig. 3. 24 : Injection factor (v) versus initial 

electric field.(see Table 1.) 



range reported by these and other authors (see for example 

ref 9 and ref 25 and ref 36). Different methods of 

production, morphology, additives, humidity, etc , affect 

the charge mobility in PE. 

As indicated in Table 2 and show strong field 

dependency. Fig. 3.25 and 3.26 suggest linear dependencies 

between the logarithm of the electric field and the 

logarithms of T and T . Similar linear dependencies for T 
T t f 

and has also been reported by von Berlepsch (ref 25) and 

for other types of polymers by von Seggern {ref 7) and 

Chudleigh (ref 2). The values of T are in very good 

agreement with the values reported by von Berlepsch, but the 

values of T^ derived here are significantly smaller than the 

corresponding values reported by von Berlepsch. 

The average trap concentration of (2.87± 1. 79 )x 10^^ m~^ is 

in good agreement with the value of about 4x10^^ m ^ reported 

by von Berlepsch (ref 25). 

Assuming the validity of the band scheme for PE, then it 

is interesting to see that the trap energy value of 1.136 eV 

at field 16.4 MV/m is in good agreement with the peak trap 

energy of about 1.5 eV reported by Ieda(see Fig.1.2), and is 

in the range reported by Toomer and Lewis (ref 9) and von 

Berlepsch (ref 25). 

The effect of band lowering mechanisms (i.e.Poole-Frenkel 

effect) in high electric fields on trap energy has been 

indicated in Table 2. The amount of band lowering due to 

this effect is (ref 41): 
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c 
J 

17.2 17.4 17.5 17.8 18 18.2 

1 — r 

16.6 16.8 17 

Fig. 3. 25 . Ln—Ln plot of versus initial electric field 

The line is least square best fit. 



r 

5 

16.6 16.8 

Fig. 3.26 : Ln-Ln plot of versus initial electric field, 

The line is least square best fit. 



lowering of band (eV) 

0 . 1 6 -

0.12 

0 . 1 1 -

0.07 -

0.06 

0.04 

E"'(V/m) " X 1 0 0 0 

10 

Fig. 3. 27 : Lowering of the conduction band by electric field 

The line is least square best fit. The gradient 

represents /? constant. 
PF 



AE =fi E^' ^ 
PF PF 

where AE is the amount of conduction band energy which is 
PF 

lowered, ft is the Poole-Frenkel constant and it is given 
PF 

by: 

3 , .1/2 
= ( C 

PF 
:(q /n££ ) 

' o 

where q is the electronic charge. For PE where 

£ =2x10 ^F/m, we have: 
r'l / 

-5 ^/2 1/2 
ft =5.04x10 C V m . 
PF 

If we consider the trap energy of the lowest initial 

voltage (i.e.492 volts) as a reference, we can plot the 

1/2 
amount of the lowering of the band against E . This is 

o 

shown in Fig. 3.27. Using the least-square analysis, the 

—5 

gradient of the line is found to be (3.5±0.3)x10 C 

1 - 2 1 2 

V m which is in good agreement with the calculated value 

of /? 
PF 

3. 4 Conclusion 

The proposed transport model accounts for the main 

features of the experimental results in terms of four 

transport parameters i.e. charge mobility, injection factor, 

trapping time and release time. The transport and trapping 

values, and the derived values of E^, and ft^^, for PE are 

close to independently derived values in the literature, and 

in this respect the model is entirely satisfactory. However, 

there are areas that must be investigated more thoroughly. 

2 

As indicated in table 1, the values of % increase as the 

electric field increases which suggests that the model may 
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need improvement to account for high field behaviour. For 

example a better mechanism for surface charge injection may 

be time dependent charge injection and not the 

"instantaneous" model. Also it may be important to include a 

field dependent mobility rather than the field independent 

parameter as considered here. Another fruitful approach may 

be to consider multiple energy levels of the traps instead 

of a single energy model. The resulting transport equations 

may appear difficult to solve and finite difference methods 

may not be an appropriate approximation technique, but other 

numerical methods (e.g. finite elements methods) have proved 

to be very useful in solving complicated systems of partial 

differential equations. 

Experimentally there is a clear need for studying 

decay-charge profiles on other polymer materials to explore 

the area of applicability of the foregoing models. 
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