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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SCIENCE
PHYSICS

Master of Philosophy

SURFACE CHARGE DECAY OF INSULATORS WITH TRAPS
by

Dariush Moayyed-Mohseni

The aim of this research was to develop an understanding of
the surface potential decay of corona charged insulating
materials. The experimental results for polyethylene
samples showed a remarkable crossover of the surface
potential profiles.

A guantitative theoretical description of the
experimental results based on the concept of hopping
transpcrt of charge carriers between traps of identical
energy in the sample was used. A computer programme based
on a finite differece scheme was developed to solve the
resultant transport equations. The solution was extended to
cover several transit times of the charge passage in the
sample. The transport and trapping parameters 1i.e. the
injection factor, the charge carrier mobility, the trapping
time before release and the free time before capture were
determined by curve fitting techniques. The fitted
transport and trapping parameters were used to determine
the free charge distribution, the trapped charged
distribution and the electric field 1in the sample. The
derived transport and trapping parameters were field
dependent: the value were for the trap energy 0.97 eV at
field 83.3 MV/m to 12;36 eV at 16.4 MV/m and for the }rap
concentration 5.35x10 m at 83.3 Mv/m to 0.45x10 m~ at
16.4 MV/m. The Poole-Frenkel field 1lowering factor was
(3.5%0. 3) 10~ Cngmh21n good agreement with theory

1.2

(5.04%10 ~ ¢V ' “m %),



CHAPTER 1: INTRODUCTION

1.1 General Background

In recent years considerable importance has been given to
the study of insulating materials due to their numerous
applications in different industries. The use of
photoconductive insulators 1in electrophotography or use of
insulators 1in the cable industry are two examples. The
optimisation of their performance requires the investigation
of the charge transport processes 1in the material.
Surface-charge decay measurements have proven to be a
convenient method for studying the processes involved. In
this technique a thin film of an insulator
(e.g.polyethylene) 1is charged on one surface either by
corona discharge, ion bombardments or contact charginguwhile
the opposite surface is 1laid on a grounded electrode. The
surface potential decay of the charged surface 1is then
observed over a period of time using an electrostatic probe.
Such decay profiles have been reported by many investigators
(ref 1-29). Some have found that the surface potential
decays faster for higher initial voltages, that there is an
apparent levelling off 1in the curves for 1low initial
potentials, and that the decay curves for various potentials
cross each other at finite time after charging, Many authors
have proposed physical models which attempt to account for

this phenomenon.

Batra and co-workers (ref 31-32) have developed various
theories for surface potential decay; their work assumes

space charge conduction, but they do not include the effect



of partial 1instantaneous injection and trapping of the

carriers.

Wintle (ref 30, 33 and 34) has speculated on various
explanations for the observed features of polyethylene decay
curves. He has developed theories that include
field-dependent mobilities of various forms as well as
trapping. None of these models can account for the cross
over effect. He derives some interesting resuits assuming a
field-dependent depth of penetration of the initial charge.
However Batra (ref 35) has shown that this model cannot

explain the cross over phenomenon.

Sonnostine and Perlman (ref 36) considered field
dependent mobilities and both partial instantaneous and time
dependent injection, but have not considered the effect of
trapping and release of charges from the traps 1in the

sample.

Robins (ref 46) assumed a steady-state situation, where
no time dependent change for charge density and the electric
field can occur. He has not considered charge trapping in
the sample, hence his analytically derived solution for the
surface potential decay only applies to high initial surface

potential where no trapping occurs.

Chudleigh (ref 2) has considered the effect of trapping
and release, but has not considered partial injection from
the surface and his numerically solved model does not cover
times beyond the transit time of charge passage through the

whole sample.



von Seggern (ref 7) suggested a model based on surface
and bulk traps and considered time dependent surface
injection, but again his model does not cover times greater

than the transit time.

Campos and Giacometti (ref 12) have assumed instantaneous
injection and trapping of charges but their model does not

allow liberation of the charges from traps.

Arkhipov and co-workers (ref 40) considered a model
characterised by a system of traps whose energies are
distributed within a wide region into the band gap. In this
model they considered partial injection of charges from the
surface but, 1in order to solve the transport equations
analytically, they had to resort to approximation methods.
Cossequently when the injection factor y+ 1 (i.e. ratio of
injected charge to total surface charge 5 1), their method

became very inaccurate

von Berlepsch (ref 24-26) considered a model 1in which
surface and bulk traps exist and he assumed partial
injection of charges from the surface, but he had to use
approximation methods in order to find analytical solutions
for the transport equations. His model does not allow times

greater than the transit time.

Detection of surface and charge traps by von Seggern {(ref
37-38) and Mizutani and co-workers (ref 45) and measurements
of their positions and energies 1in the sample have Ilent

credibility to the models which are based on surface and



bulk traps.

The aim of this study is to provide solutions for the
tansport equation based on the considerations that partial
injection of charge from the surface occurs and that the
sample has surface and bulk traps. It is also desirable to
extend the solutions to times greater than the transit time,
and to find the relevant parameters by fitting the
theoretically produced surface potential decay curves to the
experimental results. But before proceeding any further it is
instructive to give a brief review of the possible conduction

mechanisms in polymers.

1.2 Conduction mechanisms in polymers

Polymers are not the simple covalent or 1onicé11y bonded
crystals of conventional solid-state physics. For
example polyethylene 1is a covalentliy-bonded, 1long chain
molecule, where the chains are weakly bonded by van der
Waals’ forces to form a semicrystalline solid: i.e a mixture
of crystalline and amorphous parts. The carrier mobility in
these materials is very low and so there are difficulties in
the use of band theory. These difficulties arise from the
fact that two of the conditions in the the band model,
namely the weak eleciron-lattice interaction and the extended
nature of the electron states, are violated because of the
strong int ra-molecular 1localisation of the electron
states and the weak electronic coupling between molecules
which exist in these materials (ref 42). An alternative
model based on electron hopping through the states 1is more

applicable (ref 41). A carrier can move from one chain to



another by jumping over the potential barrier which exists
between the two chains. However, the bonding between
molecules of one chain 1is strong and covalent, and
electron-lattice interaction rather weak therefore a band
scheme is appropriate for a PE chain (ref 39). The band
structure of a PE chain has been modelied theoretically and
the calculated band gap of 7.6 eV is in good agreement with
the experimental value of about 8 eV (ref 39). A sample of
PE consists of a large number of PE chains and carriers move
across the sample with repeating band conduction along a PE
chain and hopping to the next chain alternately. In a
semicrystalline material like PE, carriers travel through
crystalline parts and amorphous parts, hence several
different possible transport mechanisms may exist in
par allel. Furthermore the exist nce of carrier traps in the
material (which may be caused by defects, 1mburities,
etc...) adds new complications to : the transport
phenomenon in PE. These mechanisms are shown in Fig 1.1
However, many authors (see for example ref 9 and ref 26)
consider the thermally-activated hopping to be the ‘dominant
transport mechanism in PE. Assuming the band mode]i with a
band gap of 8 eV for PE, the energy the level diagram of PE
is shown in Fig 1.2. The trap 1levels are caused by defects,
unstable oxidation products, stable oxidation products,
crosslinks and antistatic agents(ref 39). For a thorough
discussion of the transport mechanisms in polymers see for
example Kao and Hwang (ref 41), M. Ieda (ref 39) and
G.G.Roberts et al.(ref 42).
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CHAPTER 2 : THE PHYSICAL MODEL

2.1 Injection process

Consider a thin insulator in a plane -parallel geometry
of thickness L and dielectric constant sso with one surface
in contact with a grounded electrode and the other free. At
time t=0, a surface charge of density 00 is deposited
"jnstantaneously” on the free surface from a corona
discharge unit. Instantaneous charging means that the charge
be deposited before a significant portion of it moves into
the bulk. The charge is deposited in the form of positive
(or negative) ions. These jons may remain stable on the
surface or, depending on the polarity of the incident ions,
the surface states of the insulator may be ionised producing
acceptors or donors. Consequently we assume that a part of

the total deposited charge yo where 0%y<1, is

0’
instantaneously injected from the surfaqe states and the
remaining part (1—y)00 is trapped in the surface states for
a longer period of time than the duration of the experiment.
For the purpose of modelling the 1injection process we
exclude the possibility of direct molecular ion migration in
the insulator. Transport of charge from the surface states
into the bulk requires hole or electron transfer into the
valence or conduction band states. In polymer structures
1ike polyethelyne, the bands will be sets of localised
states energetically close together. Electron or hole
transport is possible by activated hopping from one

localised state to another.The tails of bands are extended

into the band gap to give a "mobility edge”. This model is



applicable for transport phenomena in amorphous materials.
In addition to the lTocalised states ,it 1is considered that a
set of deeper traps , with a single energy level Et,exists
in the band gap and are uniformly distributed across the
bulk. These traps may be characterised by means of Tt and Tf
for carrier trapping time before release and free carrier

time before capture, respectively.

Once the carriers are in the bulk, they move towards the
opposite :;grounded electrode with mobility u under their self
induced electric field. While moving, some of them are
captured by these traps and then subsequently released into
the transport states. So at any time after the injection

some trapped charge exists in the sample (Fig.2.1).

2.2 Transport equations

To simplify the model, the following assumptions are
made:
1) Part of the total charge(c'f)O deposited at the surface
(yao), is assumed to be 1injected 1instantaneously 1into the
bulk and the remainder (1—y)00, is assumed to stay at the
surface states.
2) The transport of injected carriers is assumed to occur by
activated hopping between Jlocalised states under the
influence of their own electric field.
3) Injection of counter charges 1into the sample from the
substrate is assumed to be insignificant compared to charge
injection from the surface.
4) Contributions by diffusion, Ohmic conduction, thermal

generation are assumed to be insignificant

™~
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[Similar to G. Lederer et al, ref. 10].



5) During the passage of carriers through the sample it is
considered that the carriers are repeatedly captured and
released by traps which are situated in a single energy
level, characterised by T_, the mean free time before

.F
capture and T, , the mean capture period before release.

Transport between trapped states is characterised by carrier
mobility u¢. With these assumptins we can now write the

transport equations. In one dimension we have,
The conduction current Jc(x,t)
Jc(x,t)zpf(x,t)uE(x,t). (1)
where pf(x,t) is the free charge density,
E(x,t) is the electric field strength,
¢ 1s the carrier mobility.
The displacement current density JD(x,t)

JD(x,t):££ 8E(x,t)/8t. (2)

0
The total current density J(t) 1is equal to the sum of
Jc(x,t),and JD(x,t),and furthermore for an open circuit
configuration J(t)=0. Hence,

ppf(x,t)E(x,t)+ssan(x,t)/0t=0. (3)

For trapping centres located at a single energy level, the

rate of change of trapped charge density 1is:
dp, (x,t) /ot =p (x,t)/ Te —pt(x,t)/ T, - (4)

where pf(x,t)/ TF represents the rate of increase of pt(x,t)
due trapping of free carrier and pt(x,t)/ Tt represents the
rate of decrease of pt(x,t) due to release of trapped

carriers.



The surface potential is given by:

L
V(t)zf E(x,t)dx. (5)

0

The initial surface potential is

VO:aOL/sso (6)

2.3 Formulation of the equations in reduced quantities

The computational stage of all numerical methods for
solving problems of any complexity generally 1involves a
great deal of arithmetic. It 1is usual therefore to arrange,
whenever possible, for one solution to cover a variety of
different situations. This can be done by expressing all
equations 1in terhs of non-dimensional variables.In this

particular case we can write:
* * * R
x=x/L , t =t/ty o, T T/t 0 T =T/t
XXk Xk x o
Py (x,t )= pf(x,t)L/fyo ,opy (Xt )-—pt(x,t)L/ffo ,
X Kk X L O
E (x,t )—E(x,t)L/ VO . VvV (t )—V(t)/ VO'

The variables on the left side of the equations are the non-
dimensional equivalent of the transport equations. Here to
is the transit time of a carrier at the leading edge of the

charge distribution in the absence of trapping (ref. Batra)
and is related to the carrier mobility u by

t ‘L2 v (7)

0o / 0’

*
The equivalent transit time in the reduced model is t =1.



Substituting the dimensionless variables into the transport

equations (1-6) we have:

X X X
pr(x e IET (T, E e (xT, 87 fat” o, (8)
X Ok KKk kX X %k %
6E (X ,t )/LX -;;--'_F(x 1t )+pf(x 1t )1 (9)
X X X s ¥_ X, X X *x x X X X
gpy (X, )/at =0 (Xt )/ To e, (L)) T, (10)
* X ! X X X b S
Ve ) = [ E(x ,t)dx. (11)
0

2.4 Boundary and initial conditions

Equations (8-11) are subject to the following boundary
and initial conditions :
b 4
At t =0, charges are injected into the sample so there is a

surge of free carriers into the sample. Hence,
*® R
pf (x ,0)=y3(x ) 0<x =<1 (12)

* -
where #(x ) is the Dirac delta function. Recall that:-
+

j A{x)dx=1.
~0
and y 1is the ratio of injected charge to total surface

charge, so:

1A

0<y=1.
The electric field inside the sample 1is :
* X *
E (x ,0)=1. 0<x =1 (13)
and on the free surface of the sample :

p. 4 X
E (0,t )=t1-). (14)

10






2.6 Finite difference approximations to derivatives

Assume U is a function of the independent variabies x and
t. We subdivide the x-t plane into sets of equal rectangles
with sides &4x=h, &t=k,as shown 1in Fig.2.2 ,and let the

co-ordinates (x,t) of the mesh point R be
x=ih ; t=jk,
where i and j are integers. The value of U at R 1§

U=U(ih,jk):Ui

b

Then the derivatives for forward-differences are:

6U/0x = U (16)

. .~ U. ./ h,
i+1,3 1,3/

e

au/at (17)

u. . - Uu. ./ Kk,
1,J+1 1,J/
and for backward-differences we have:
6 Ix = U, - U, ./ h,
AU /ax us s 1_1,3/ , (18)
= uU., .~-UuU. . K,
Ju/at Ui 5 u1’J~1/ (19)

and for centeral-differences we have:

au/ax

fle

u. -~ UL ./ 2h, 0
1+1,] 1~1,J/ (20)

au/at

e

u. . - uU. . 2Kk.

i,5017 Ui, 51/ 2K (21)

These approximations have errors of order h2 for x
. . . 2 . . .

differentiation, and k  for t differentiation(for a thorough

discussion see ref 44).

Similar approximation schemes for electric field

strength, trapped charge density, and free charge density

12



are:

OE*(X*,t*)/at*zE*i,jH- E*i’j/ k (22)
ae*(x’ft*)/ax*:ej,j— Ex_y i/ b (23)
50, (xFt) for* = T R A (24)
%, *(x*, £ fat* - :,3+1" ; ’;"j/ K (25)

Before writing the Lax-Wendroff (ref 44) explicit method for
the set of equations (8-10) using equations (22-25), we have
to find the k/ h ratio by some means, in order to get stable

solutions.

As we shall see equations (8~10) make a system of
hyperbolic partial differential equations of first order,
and the condition under which this particular set of partial
differential equations has a stable and converging solution

is the Courant-Friedrichs~Lewy condition (ref 44) .

2.7 Characteristics and hyperbolic equatibns

A characteristic is a curve in the (x-t) plane along
which the integration of a partial differential equation
transforms to the integration of an ordinary differential

equation. For example if we have
a au/ax + b duU/dt=c,

where a,b and ¢ are in general a function of x and t and U
but not of 0U/0x and 8U/8t then the characteristic curve for

this equation is (ref 44)

dx/a = dy/ b = dU/c,

13



and the equation for the characteristic is simply
dx/dx = b/a,

and the differential equation for the solution along a

characteristic 1is either
adU = cdx or bdU = cdy.

this means that simply by integrating along this curve we
can generate the solution with a particular set of initial
and boundary conditions. Then we may ask why bother using
finite difference method for a solution? The answer is
that programming of the method of characteristics,
especially for problems 1involving a set of simultaneous
first order equations,such as equations (é~10), is much more
difficult than the programming of the finite difference
method. But knowing the characteristics 1is one way of
finding the k/ h ratio (The Courant -~ Friedrich - Lewy

condition).

2.8 The Courant-Friedrich=~Lewy (C.F.L) condition

Assume that a first order hyperbolic differential
equation has been approximated by a difference equation of

the form

bU. .+cU. .
1,3 1i+1,]

i+ oy 57
then UP( Fig.2.2) depends on the values of U at mesh points
A, B , and C. Assume now that the characteristic curve
through P of the hyperbolic equation meets the line AC at D
and consider AC as an initial line segment. If the initial

values along AC are altered then the solution value at P of

14



j+1

Fig. 2.2: C.F.L condition for first order equations.

[After G.D.Smith ref. 44].



the finite difference equation will change, but these
alterations will not affect the solution value at P of the
differential equation which depends on the initial value at
D. In this case UP cannot converge to uP (the solution along
characteristic) as h » 0 and k » 0. For convergence D must
Tie between A and C(The Courant-Friedrichs-Lewy
condition)i.e the slope of the characteristic curve must be

bigger or equal to k/ h, which 1is the condition for

converdgence.

2.9 Finding the characteristics for equations(8-10)

Recalling the equations

2 KL OE (KT + o (X, e ot =0, (8)
oE (/o =g T E) + g TOC e, ()

b 3

*( * t*) T* 0
A X , / e (10)

x x X * x X X
a%; (x ,t )/0t = % (x ,t )/ T

. . *x X X .
Eliminating %: (x ,t ) and defining o and {3 by

% * x .
a = (1+Tt/ Tf), and 3 = (1+Tf/ Tt).

L x X X x X X X %
and abbreviating E (x ,t ) to E and p (x ,t ) to #k we
t
have
* * * x
IE Jax' - T. dp  Jot - o =0, (26)
f f t
X X x__x * x X X *
o GE [ot + ElaE /%X + T, E 6pt /dt =0. (27)

Now if we have a system of simultaneous equations

15



aldu/dx +b1du/dy +c1dv/ax +d1dVv/dy +e1 =0,  (28)
a2du/dx +b29U/3y +c20V/ax +d29V/ay +e2 =0,  (29)

It can be shown (ref 44) that equations(28-29) have
characteristics given by

2
(a1c2—a2c1)(dy/dx) —(a1d2—a2d1+b1c2-b201)dy/dx+(b1d2—b2d1)=0. (30)

Here, if we have two real and distinct roots then the
simultaneous system of partial differential equations (28-29)
are called hyperbolic, and if one real root then they are
called parabolic, andif no real root at all they are called

elliptic.

% * * *
If we take E =U, pt =V, x =y and t =y, then equation (30)

is

* x x 2 * X N X *
o Tf(dx /dt ) - (E Tt+ E Tf)(dx /dt ) =0, (31)
which has roots
% * * * *
dx /dt = 0, and dx /dt =E

Correspondingly, the system of equations (8-10) is
x X
hyoerbolic. Now in the (x ,t ) plane the slopes at the

characteristics have the forms
% X " * X *
dt /dx =0 (32) and dt /dx = 1/ E . (33)

This means that for a solution corresponding to (32) and
X * . )
x =0, the characteristic does not leave x axis. Applying the

C.F.L. condition we have k/hﬁm,which is a trivial condition

16



. X ] .
and for (33), k/ h = 1/ E ; with the biggest value for E1

(unity) the condition is simply h <k.
So if we choose the condition k=h, then for smaller values
of E1,we will have k£h, which means that the solutions are

always converging and stable.

2.10 Solution of the reduced partial differential equations(8-10)

Since the ratio, k/h is now known it is possible to use
the approximation derivatives (22-25) in (8-10), and find the
explicit solution. Putting (22-25) in (8-10) and solving the

X X X
resultant equations for ﬁ% , g; and E yields

* X b 3 X * *
(o . ., ,=(E, .-E. . hT + (1=
%;1,J+1 (E1,J 1—1,3)k/( f) 9t1,3(1 ﬁk/ Tf), (34)
* (E* E* )/ h * (35)
4 . - = » . e . . — . . y
f? 1sJ 1,3 1-1,3 Aid
E* _ E* * E*
CEiger T E T g i,d " (36)

Equations (34-36) are explicit Lax-Wendroff schemes (ref

44)for the set of equations(8-10).

X
If we divide the x axis into n equal segments and the
* ) R )
t axis into m equal segments, with 0ix =1 and for special

. . . . *
case of times up to transit time (i.e 0=t <1), we have
=1/n, and k = 1/m.

Since k=h, the condition as the mesh points in the (x - t )

plane 1is

17



m zZn (37)

To extend the solution to times 1longerthan the transit
time (unity for the reduced model), we simply have to
increase time divisions. For example m=40, and n=20 would be
the right number of mesh points for times up to twice the

transit time.

2.11 Calculation of the surface potential

Once the distribution of the electric field in the sample
is known, then it is possible to find the surface potential
variation,via equation (11). The 1integration is most

conveniently done by Simpson’s rule to sufficient accuracy.
b

J f(x)dxzh/3[f(a)+4f(x1)+f(b)]

N
where h:(a~b)/2 and x1 1is the midpoint between a and b
i.e.(atb)/2.

This method is unsuitable for use ovér a large interval,
so a piecewise technique must be used. In this technique
(a-b) 1is divided into 2m equal strips of width h, where m is
an integer.

Using the above approximation we have:

b m-1 m

Jf(x)dxzh/a[f(a)+22L\f(xzi)+4>A f(x2i~1)+f(b)].

a i=1 i=1

where a:x0<x1<x2...<x2m=b,h=(b~a)/2m,and x1=x0+1h for each

i=0,1...,2m (ref.47).

18



*
In our particular case, the x axis 1is divided 1into 20
X
segments (0<x <1), hence m=10, a=0, b=1, and h=1/20. So for

an arbitrary time t1 we have

1

V*(t1) = E*( * t*)d ¥ 1/60 E* + E* +4E* +
= X , X = / ( 0,t1 1,t1 0.05,t1
0
26 FaE + +2E +AE (38)
0.1,t1 0.15,t1 ~°°°°° 0.9,t1 0.95,t1]'

2.12 Programming of the explicit Lax-Wendroff schemes(34-36)

Recalling the boundary and initial conditions(12-15)

x % X X

;%» (x ,0)=yé&(x ), for 0£x €1 and 0%y=At (12)
* X *

E (x ,0)=1, for 0<x <1 (13)
X b 3

E (0,t )=1-y, (14)
X X% x_

p%‘(x ,0)=0. for 0=x =1 ‘ (15)

And since we have only three Lax-Wendroff schemes(34-36),
we need only three boundary conditions. As we shall see

equation (12) is superfluous since it 1is generated by the

calculation. Writing equations(13-15) using subscript
notations
* . , . ,
Ei 0:1, for i=1 to i=n (i being an integer) (39)
E0 j=1—y, for j=0 to j=m (Jj being an integer) (40)
* 0 f j=0 to j=m (41)
>, =0, or j= =m.
p% i,0 J J

The programming was implemented in BASIC on ApricotTM micro

19



computer during the early stages of development and later
transtferred to an IBMTM AT micro computer for Tlarger
addressable memory using the MicrosoftTH c.5 Optimizing
Compiler. The € language was used for its speed and

compactness of code.

For practical considerations the number of mesh points
chosen are n=20 and m=600, to give times up to 30 transit

times.

The central body of the programme 1is essentially two
nested DO loops for i and j, within which the electric field,
trapped charge density and free charge density are
calculated. A second routine performs the integration of the
electric field using Simpson’s rule (38), to yield the time

variation of the surface potential.
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CHAPTER 3 : RESULTS AND DISCUSSION

3.1 Results

3.1.1 Experimental results

Samples of polyethylene film of 30 micro meters thickness
were held on an earthed metal backing electrode on a
turntable, and subsequently positively charged using a corona

discharge unit.

Immediately after the cessation of charging successive
decay measurements were taken, using an electrostatic probe,
rotating the turntable below the probe. The time variation
of surface potential was monitored using an X-Y point
recorder. The first decay curve was recorded for films
charged to the lowest voltage to be used. Then the charging
voltage was increased and again the decay was recorded. This
procedure was repeated 5 times altogether, and 30 minutes
were allowed between éach run. The decay profiles are shown

in Fig 3.1.

3.1.2 Curve fitting technique

Once the solutions to the reduced model are found, it is
possible to find the values for pf(x,t), pt(x,t), E(x,t) and

V(t), provided that y, T T and u are known. Recall that

_FT t,
these parameters are related to the reduced values by
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Fig. 3.1: Experimental plots of surface potential

versus time showing crossover phenomenon. A,
975 volts; B, 1462 volts; C, 492 volts; D,
2000 volts; and E, 2500 voits. Sample
thickness=30um.
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XL BER Ly s TeETe by TETL
X % % 2 _ X x 2
pf(x,t)—pf(x ,£) Vosso/ L , pt(x,t)-pt(x ,t ) Vosao/ Lo,
x x x X %
E(x,t)=E (x ,t ) VO/ L . V(t)=v (t ) vO

u=L2/(tOVO).

In order to determine the four parameters we must resort
to curve fitting techniques. One way of utilising this method
is to use a function to fit the theoretical V(t) curve to the
experimental data. As yet there is no function availabile to
fit the four parameters to the experimental curves; so

another method based on randomly generated numbers was used.

In this method, four independent randomly generated
numbers are produced and then weighted properly by some
factor, in order to bring the search into a quicker
conclusion. The run time library routine rand() function of
the Microsoft C compiler, which generates a random integer in

the range 0-32767, performed the task.

The five different experimental data sets V(t) were each
sampled every 10 seconds and the resultant voltages were
stored as an array of integers in a version of the programme
developed to perform the curve fitting. Since there are 600
time intervals for the theoretical V(t) coresponding to 200
seconds of experimental data, there is one theoretical point
coresponding to every experimental point and therefore there
is no need to perform any interpolations. When a theoretical
voltage profile 1is produced using the randomly generated
numbers, a comparison is made with the experimental results.

The chi square statistic is used as a test of “goodness of
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fit". After each random trial zzis calculated and if it is
found to be much Tlarger than the number of experimental
points a new set of numbers are generated and another value
of the xz value is found. This process is reiterated , until

a good fit is found. xz can be calculated using (ref 48)

2
5 — (observed - expected)
&

e varitdance

where "observed” 1is the experimental value of voltage,and

"expected” 1is the theoretical values.

Errors for these particular experiments were assessed to

be ¥10 volts.

A programme function named "chi_square” was developed to
2 .
calculate each y value for a particular set of transport

parameters.

3.1.3 Evaluation of the transport parameters

For the 2500 voltage profile, the programme was set to
reject values of XZ bigger than 700. Then the computer was
left to run overnight to accumulate sets of parameters with
xz smaller than 700. Then by making a systematic search
i.e.changing the value of one parameters slightly while
keeping the rest constant, it was possible to reduce 22

sighificantly.

This procedure was repeated for the 2000 and 1462 voltage

profiles. For the 975 and 492 voltage profiles the programme
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. 2 . .
was set to reject y values bigger than 100 and, again by

. 2
systematically searching, the y values were further reduced.
Table 1 shows the best fit transport parameters, from which
the corresponding vV(t) (Fig. 3.2-3.6), E(x,t),
pf(x,t),pt(x,t) and total charge in the sample (1.e.ptot(t))

can be plotted using the graphic facilities of LotusTM 1 2 3.

3.1.4 The von Berlepsch model

Based on the transport equations (1-6) von Berlepsch (ref
25)has derived an analytical approximation to V(t). The

solution which has a time range up to the transit time t_, is

0
given by:
2 2. 1 0
V(t)=vO - ,u(v0/4L) [1-(1=y ) ]— [rt+=(1-exp(-R/t)] (42)
R R
where
t 1is the time, r=1/Tt , <;.\:1/Tf , R=r+»s and Vo is the

initial surface potential.

Using the pérameters of table 1 and equation (42) a set of
voltage decay graphs was produced for comparison with the
numerical model. It should be noted that these parameters may
not correspond to the best fit of the von Berlepsch model,
nevertheless it dis clear that there are significant

differences between the two models (Fig. 3.7).
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Initial surface

potential(volts)

Initial electric
field (MV/m)

v
4

Tf (seconds)

Tt (seconds)

3] Uf leswi),\:ﬁo'14

transit time
(seconds)

2
X

2500

83.3

6.21

2.576

69.38

2000

66.67

0.9455

22.80

17.70

1.845

24.3

59.84

1462

48.7

0.693

79.44

25.83

0.929

64.5

59.79

975

32.5

0.500

372.6

1408.8

0.683

131.6

492

16.4

0.255

1232.8

5424.5

1.095

164.3

0.964

Table 1. Different transport parameters derived from thé

curve fittings. Sample thickness 30um.
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3.2 The derived results

3.2.1 The electric field strength

As expected Fig. 3.8-3.12 show that the electric field is
constant across the sample prior to injection of charge.
Immed?ate]y after injection, the electric field at the
surface drops to a level depending on the values of y» and the
initial surface potential. As time goes on the electric field
at the opposite electrode starts to drop and for times far
longer than the duration of the experiment the value of the
field at this electrode eventually equals the electric field

at the surface, as expected.

3.2.2 The free charge density

Immediately after injection, the free charge density in
the sample is very large just inside the-sample and, as time
increases, the charge begins to spread out in the sample. For
cases where y#1, the‘peak of the distribution moves towards
the opposite electrode since the free charge is repelled by
the remainig charge trapped at the surface. But when y=1, the
peak remains at x=0 since no charge remains at the surface.
As time 1increases, the peak of the distribution becomes
smaller and eventually all the free charge leaves the sample.
Fig. 3.13 - 3.17 show the free charge density distributions

for different initial surface potentials.
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3.2.3 The trapped charge density

At t=0 we assumed that there was no trapped charge in the
sample. Immediately after the 1injection when there 1is an
upsurge of free charge into the sample, some of the charge
carriers are trapped and later released as free carriers. The
values of Tf and Tt may play an important role in determining
the shape of the trapped charge distributions. For the
highest surface potential where the peak of the free charge
distribution does not move across the sample, it is to be
expected that the peak of the trapped charge density
distribution would behave 1n a similar manner. For the lower
surface potentials, where the peak of free charge
distribution moves towards the opposite surface, the degree

of trapping increases across the sample as shown for the two

lowest surface potentials in Fig. 3.21 - 3.22.

3.2.4 The total charge in the sample

Since no recombination of charges is considered the total
amount of charge in the sample must remain constant while
t<transit time. In other words the total trapped charge (i.e
the area under the trapped charge density curve) plus the
total free charge (i.e the area under the free charge density
curve) 1in the sample at any time less than the transit time
should be constant. This 1is clearly demonstrated 1in Fig.
3.23. The calculation of the total free and trapped charge

has been performed by simple summation of each distribution
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(using the trapezium rule).

3.2.5 Other transport parameters

The transport parameters are directly related to the
transport and trapping of carriers at the microscopic level.

In our particular case we have(ref 43)

T,=1/(0" exp(-E /KT)), (43)
where
v* is the frequency of attempts to escape,
Et is the trap energy,
and
T.=1/((N -p )SV). (44)
where

Nt is the density of traps,
pt is the trapped charge density,
S is the capture cross section of an unoccupied centre,

v is the carrier velocity (v=uE).

v* is often regarded as the product of the highest lattice
frequency and a constant 1less than or equal to unity,
expressing the probability that a carrier exited
energetically to the transport band, and another parameter
whichis the ratio of states at the energies of the transport
band above the ground state, (these being the number of
states into which the carrier can be excited) to the number
of states in the ground state. It is worth mentioning
this 1last factor because 1in principle v* can exceed the
highest lattice frequency (ref 43). However, commonly chosen

* . 12 15 -1
values of v are 1in the range of 10 to 10 S (ref 25).
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This variation in v causes a variation of about 15% on the

calculated values of Et'

At the beginning of the experiment when no trapped charge

exists in the sample equation (44) becomes:
To=1/N, SUE (45)
The capture cross section is taken to be s:1o‘“ﬂf (ref 25).

Table 2 shows the derived values for Et and Nt'

3.3 Discussion

The most important of the transport parameters is the
injection factor y which accounts for the crossover effect
(see for example ref 25 and ref 40). The values of ¥ as
shown 1in Fig. 3.24, suggest a linear field dependency for
lower field values. Sonnonstine and Perlman (ref 36) assumed
such a field dependency to account for the crossover effect.
However, as the value of the electric f1§1d increases this
linear dependency must break down at some point. The
Schottky effect (field enhanced therm4l detrapping, see ref
41) might be an appropriate mechanism to account for the
detrapping of carriers from the surface states into the bulk
states but this cannot be confirmed because not enough data

exists for such an analysis.

The charge mobility values for PE appear not to fall into
an obvious pattern 1in the range studied. However, the
electric field dependency of «carrier mobilities have been
reported by von Berlepsch (ref 24) and Mizutani and Ieda (ref

49). The magnitudes of mobilities derived here are 1in the
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range reported by these and other authors (see for example
ref 9 and ref 25 and ref 36). Different methods of
production, morphology, additives, humidity, etc..., affect

the charge mobility in PE.

As indicated in Table 2 Tt and Tf show strong field
dependency. Fig. 3.25 and 3.26 suggest Jlinear dependencies
between the logarithm of the electric field and the

logarithms of T_ and Tt . Similar linear dependencies for T

and Tt has a]sofbeen reported by von Berlepsch (ref 25) ang
for other types of polymers by von Seggern (ref 7) and
Chudleigh (ref 2). The values of Tf are 1in very good
agreement with the values reported by von Berlepsch, but the
values of Tt derived here are significantly smaller than the

corresponding values reported by von Berlepsch.

The average trap concentration of (2.87“-:1.79)><1023 nra is
in good agreement with the value of about 4v1omarﬂa reported

by von Berlepsch (ref 25).

Assuming the validity of the band scheme for PE, then it
is interesting to see that the trap energy value of 1.136 eV
at field 16.4 MV/m is in good agreement with the peak trap
energy of about 1.5 eV reported by Ieda(see Fig.1.2), and is
in the range reported by Toomer and Lewis (ref 9) and von

Berlepsch (ref 25).

The effect of band lowering mechanisms (i.e.Poole-Frenkel
effect) in high electric fields on trap energy has been
indicated in Table 2. The amount of band lowering due to

this effect is (ref 41):
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Fig. 3. 25 : Ln-Ln plot of Tt versus initial electric field.

The line is least square best fit.
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Fig. 3.26 : Ln-Ln plot of Tf versus initial electric field.

The line is least square best fit.
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need improvement to account for high field behaviour. For
example a better mechanism for surface charge injection may
be time dependent charge injection and not the
“instantaneous” model. Also it may be important to incliude a
field dependent mobility rather than the field independent
parameter as considered here. Another fruitful approach may
be to consider multiple energy levels of the traps instead
of a single energy model. The resulting transport equations
may appear difficult to solve and finite difference methods
may not be an appropriate approximation technique, but other
numerical methods (e.g. finite elements methods) have proved

to be very useful in solving complicated systems of partial

differential equations.
Experimentally there 1is a clear need for studying

decay-charge profiles on other polymer materials to explore

the area of applicability of the foregoing models.
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