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Preface

The studiles reported in this thesis arose out of
specific research requirements of the Defence Medical
Services. There has been increasing interest in
providing protection to persons exposed to the risk of
organophosphate toxicity by pretreatment with the
carbamate pyridostigmine. Although this drug has been
in clinical use for many years as a treatment for
mnyasthenia gravis its actions in low doseage on normal
subjects were relatively unknown. The drug has also
been used in clinical anaesthesia to reverse the
actions of non - depolarizing relaxants. The possible
effects of its action in this mode if given before the
relaxant were equally obscure. Experiments are
therefore reported which investigate some of the
neurophysiological actions in man of the
organophosphate sarin and their modification by
pyridostigmine. In addition the consequences of
pyridostigmine pretreatment for muscle relaxation in
anaesthesia are examined. Because the topic is by
nature multidisciplinary, I have tried to review
developments in anticholinesterase chemistry together
with some of the theory and monitoring of
neuromuscular transmission. In addition, the
technique of single fibre electromyography, which may
be unfamiliar, is described in some detalill.

I would like to acknowledge the many people who have
provided help and advice for this project. 1In
particular I thank Dr. E.M. Sedgwick for introducing
an anaesthetist to clinical neurophysiology and for
giving more help and encouragement than could
reasonably be expected of a clinical supervisor over
three years. I would also like to acknowledge the
help provided by many members of the staff of the
Chemical Defence Establishment at Porton Down. Among
these Mr. R. White and Dr. R.I. Gleadle of the

Clinical Studies Unit deserve special mention for
organizing volunteers and analytical facilities.



The statistical analyses were performed by Mr. N.
Cross who gave helpful advice about experimental
design. All the conventional and single fibre
electromyography recordings reported in this study
were made by the author. I am grateful to my
anaesthetic colleague Dr. G. Turner for invaluable
assistance during the isolated forearm experiments.
Finally, I would like to thank the Medical Director
General, Royal Navy for allowing me to pursue the
studies and the Institute of Naval Medicine for
supplying much of the specialized equipment used.

The varied scientific and clinical backgrounds of
those acknowledged indicates the scope of the studies
reported which do not fit neatly into any one
particular discipline. I hope the work will prove of
interest to an equally wide range of readers and
promote further co - operation between those involved
in the basic and clinical sciences.



To my wife and colleague
Dr. Marian Barry
in appreciation of her patience and encouragement
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THE CLINICAL NEUROPHYSIOLOGY OF
ORGANOPHOSPHATE POISONING

by
David James Baker

Clinical neurophysiological studies are presented of
the effects of oral pyridostigmine bromide on normal
neuromuscular transmission. This érug has recently
been identified as providing an effective prophylaxis
against accidental exposure to organophosphate
anticholinesterases. In addition, it has also found
use in clinical anaesthesia to reverse the effects of
non - depolarizing muscle relaxants.

Experiments are reported which investigate the
action of pyridostigmine and low doses of the
organophosphate sarin on single fibre electromyography
(SFEMG) in man. Further studies examine the actions
of pretreatment with pyridostigmine on muscle
relaxation produced by the non - depolarizing relaxant
alcuronium in the isolated human forearm.

Pyridostigmine produces little change in SFEMG but
jitter increases were detected after sarin exposure.
In the isolated forearm pyridostigmine pretreatment
did not affect degree of relaxation produced by
alcuronium. The degree of fade produced on repetitive
stimulation differed between onset and recovery of
relaxation. This relationship may be affected by
pyridostigmine. The results are discussed in
relation to recent knowledge of the
electrophysiological and structural actions of
anticholinesterases at the skeletal neuromuscular
junction and to hypotheses of the mechanism of
neuromuscular fade.



CHAPTER 1: Organophosphate Compounds;
Pharmacology and Clinical Effects

1.1 Discovery and development

Few classes of organic compound have received
such extensive study as the organophosphates. The
systematic study was begun by Schrader in 1935 and in
subsequent years over 60,000 organophosphates have
been synthesized and investigated (Holmstedt, 1963).
The first recorded synthesis of an organophosphate was
by de Clermont in 1861. The compound was tetra ethyl
pyrophosphate (TEPP), and its discoverer was fortunate
to survive to the age of ninety, since one test in his
lnvestigations was to taste the substance. TEPP, like
all organophosphates was later shown to be extremely
toxic. The interest shown in organophosphates eighty
years later was initially because of the realisation
of possibility of insecticidal properties, and
subsequently because of their development as chemical
weapons. Tabun (GA) and sarin (GB) were synthesized
by Schrader at IG Farben in Germany shortly before the
Second World War, and were then subjected to such a
secret development and production programme that the
Allies had no clue of the existence of the so - called
nerve gases even at the end of the war. A factory in
Upper Silesia which had produced several thousand tons
of GA was captured intact by the Red Army and
transported back to the USSR. At the same time both
the United States and Great Britain commenced
intensive research programmes in organophosphates.

The escalation in development of nerve gases and _



research into protection against their effects has
continued to the present day (Harris and Paxman,

1984) .

Apart from the interest in organophosphates as
military weapons, the past thirty years have seen an
unprecedented growth in their use as insecticides,
stimulating the production of certain compounds such
as malathion which are degraded by higher organisms
while remaining toxic to,arthropods. Currently many
hundreds of thousands of tons of organophosphates are
used in this way throughout the world.

The chemistry and pharmacology of the organophosphate
compounds has been reviewed extensively, notably by
Holmstedt (1959) who has produced a systematic
classification (1963) and by Koelle (1963).

In the remainder of this chapter, an outline is given
of the chemistry and pharmacology of the
organophosphates, with particular emphasis on GB, the
agent used in the studies which are reported in this
thesis. The clinical signs and symptoms of
organophosphate poisoning are then considered,

together with the pathophysiology and current
treatment practice.

1.2 The structure and chemistry of the
organophosphates

The general formula of the organophosphates
is:

Rl\ﬁ¢¢p
R//‘\\X

Rl and R2 are organic groups which are capable of
almost infinite variation. They may for example be

alkyl or aryl groups, alcohols, phenols, mercaptans or
amides. The enormous number of each of these



individual subgroups which exist gives an idea of the
scope for producing many thousands of
organophosphates. X may be fluorine, as in the case
of GB, paranitrophenol, phosphates, cyanide or
lsocyanate, enol, carboxyate, or any phenoxy or
thiophenoxy group.

The formula of GB (Isopropyl methyl
phosphonofluoridate) which was used in experiments
reported later in this study is:

Sarin (GB) iC

35 0
\ P/
cu3/ N F

The other widely studied nerve agents are tabun

(GA) and soman (GD). Di - isopropyl fluorophosphate
(DFP) and paraoxon are organophosphates which have
been used extensively in laboratory studies. The
formulae of these compounds are as follows:

(CH.).N. O
CINS o
CH,0” “CN 373 \P/O
CHY \F
GA
GD
iC.H.0 0 C.H.O O
317
\P/ 27> \P/

DF'P Paraoxon

All these compounds are not in fact gases as their

popular name suggests, but liquids with high wvapour
pressure. They vary in volatility over a range
similar to that between petrol and heavy lubricating
01l as the size of the Rl and R2 groups increases.

None freeze until -40 deg C. They are all pale yellow



or colourless in appearance and are essentially
odourless. All the nerve agents are soluble in water,
being broken down slowly by hydrolysis. In the body
the hydrolysis is rapid and is catalysed by the
phosphorylphosphatase group of enzymes.
Organophosphates are rapidly broken down by strong
alkalis and by oxidation. Their destruction by bleach
(sodium hypochlorite) is the basis of military
decontamination procedures.

1.3 The anticholinesterase effects of
organophosphates

Organophosphates bind strongly and largely
irreversibly to both acetyl cholinesterase (AChE) 1in
cholinergic synapses and to butaryl cholinesterase
(BuChE) which is found in plasma and in the central
nervous system. AChE, which is considered further in
section 3.4 1is essential to the function of all
cholinergic synapses whether skeletal or autonomic.
The reaction with the enzyme is the key to the
considerable number of pharmacological actions
possessed by organophosphates, although other
biochemical properties of these compounds have
recently been recognised as important (Marquis, 1985).
The anticholinesterase pharmacology of
organophosphates has been reviewed by Hobbiger (1975).
The clinical expressions of this widespread

modification of cholinergic function are discussed 1in
section 1.5.

1.3.1 The combination of organophosphates with AChE

The interaction between acetyl choline (ACh)
the normal substrate of AChE, and the enzyme was

investigated thirty years ago. The reaction mechanism
shown in figure 1.1 has been proposed (Goodman
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Stages in the hydrolysis of acetyl choline
by acetylcholinesterase (from Goodman and
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Binding of ACh to AChE. The covalent binding
at the esteratic site is between carboxyl
carbon and the basic group on the enzyme (G).
Binding at the anionic site takes place

by electrostatic forces.

(from Goodman and Gillman, 1980)



and Gillman, 1980). The ACh molecule is thought to be
bound to the enzyme at two sites shown in figqure 1.2.
These are (1) an anionic site, which is probably a
dissociated carboxyl group where electrostatic binding
occurs with the cationic N+ atom of the choline moiety
and (2) an esteratic site consisting of a basic group

and a protonated acidic group which forms a covalent
linkage with the electrophilic group of the ester.

Further strengthening of the link between ACh and the
enzyme is achieved by Van der Waals forces. The next
stage in the reaction splits off the alcoholic
portion, choline, leaving an acetylated esteratic
site. This reacts very rapidly with water, producing
acetic acid and regenerating the original enzyme. The
whole reaction sequence, although theoretically
reversible, is driven by its dissociation constants to
the right. Thus the action of ACh at the
postjunctional receptor sites of the neuromuscular
junction is terminated within a few hundred usec. 1In
addition to combining with its normal substate AChE
reacts with anticholinesterase compounds, of which
organophosphates are one class. The carbamate
anticholinesterases which form a reversible link with
AChE are discussed in chapter 2. They differ
essentially in their combination with AChE in that the
carbamylated enzyme (fig 1.3) reacts with water at

less than a millionth of the rate of the enzyme - ACh
complex.

The reaction of organophosphate compounds with AChE
takes place at the esteratic site. Figure 1.4 shows
DFPundergoing such a reaction. The phosphorylated
enzyme so formed 1s extremely stable. Any subsequent
hydrolysis that does occur depends on whether the

attached alkyl groups are methyl or ethyl. Following
combination with GB, significant regeneration of the
enzyme will take place over several hours. If the
attached R groups are bigger, as in the case of GD, no
significant spontaneous hydrolysis will occur. The
degree of hydrolysis depends, for all
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site. Little spontaneous regeneration

of diisopropylphosphoryl AChE takes place.(3).

With OP compounds having bigger R groups
regeneration is absent.

(from Goodman and Gillman, 1980)



organophosphates, on the nature of R1 and R2. Thus
two compounds with different X but the same Rl and R2
groups in their structures will regenerate enzyme at
much the same rate (Aldridge et al, 1953). It has
been shown that the rate of alkaline hydrolysis of
organophosphate compounds, mentioned above is related
to their effectiveness as inhibitors (Andrews et al,
1952) .

l.3.2 Reactivation of the phosphorylated enzyme.

The degree of hydrolysis of the phosphorylated
AChE was stated above to be negligible when the Rl and
R2 groups were bigger than ethyl. However, Wilson
(1951) noted that hydroxylamine (NH20H) reactivated
organophosphoryl AChE more rapidly than watexr. This
observation was extended by several workers to
discover that substituted hydroxamic acids (RCONHOH)
were more effective at reactivation. Later, the
synthesis of the oximes, of which pralidoxime
(pyridine - 2 aldoxime methiodide, P2S) is the major
example, provided an effective means of reversing the
OP - AChE complex. P2S became a major drug used in
the treatment of nerve agent poisoning. It is only
effective if used a short time after exposure to an
organophosphate. This is because the phosphorylated
enzyme complex undergoes an 'ageing' process which 1s
probably due to the splitting off of one alkyl or
alkoxy group, leaving a more stable monoalkyl or
monoalkoxy - phosphoryl AChE (Berends et al, 1959).
The regeneration process of the complexed AChE by
oximes proceeds according to the reaction scheme shown
in figure 1.5. It may be seen that reaction takes
place directly with the alkylphosphorylated enzyme to
free the active unit. In the case of quaternary
ammonium reactivators such as pralidoxime, the rate of
combination 1is greatly enhanced by electrostatic
forces between the quaternary nitrogen atom and the
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Fig. 1.5 Reactivation of phosphorylated AChE by
pralidoxime. The reaction only takes
place if the phsophorylation is recent
(see text) (from Goodman and Gillman, 1980)



anionic site. The velocity of reactivation of
phosphorylated AChE by a given oxime or hydroxamic
acid follows the same sequence as the order for
spontaneous hydrolytic reactivation. Thus the
reactivation of dimethylphosphoryl AChE >
diethylphosphoryl AChE > diisopropyl AChE.

1.4 The apﬁlied pharmacology of organophosphates

1.4.1 Muscarinic and nicotinic effects

The classical action of
organophosphates, "in common with other
anticholinesterases, is to inhibit the breakdown of
acetyl choline (ACh) at cholinergic synapses. These
are distributed both in the peripheral and central
nervous systems and are grouped into muscarinic and
nicotinic sites. The central nervous system contains
a further subgrouping of M2 muscarinic sites. This
fundamental view of cholinergic transmission, proposed
by Langley (1905) is reviewed by Goodman and Gillman
(1980) . The effect of build up of ACh at the
muscarinic sites centrally is to cause activation of
the many cholinergic pathways leading to convulsions
and the depression of the respiratory centres in the
medulla and midbrain. Peripherally, the excited
muscarinic synapses cause the release of salivary
secretions, bronchoconstriction, contraction of smooth
muscle in the bladder and bowel, and bradycardia. In
addition there is loss of accomodation and miosis due
to effects on muscarinic receptors in the ciliary
muscle and sphincter pupillae. Muscarinic actions of
ACh are seen only in the parasympathetic nervous
system and are characteristically antagonised by
atropine. At nicotinic sites there is activation of
presympathetic ganglia leading to increased vascular
tone and peripheral weakness from the action at the



skeletal neuromuscular junction (SKNMJ).
The clinical consequences of the muscarinic and
nicotinic pharmacological action of

anticholinesterases are considered in a later section.

l.4.2 Actions of organophosphates at the
neuromuscular junction

Since the early observation (Lovatt - Evans,

1951) that organophosphates caused potentiation of the
single stimulated twitch in a nerve - muscle

preparation, the effects of organophosphates at the
neuromuscular junction have been studied in

considerable detail (for reviews see Karczmar, 1967
and Hobbiger, 1976). The effects at this site were
recognised to be a nicotinic cholinergic effect. 1In
common with other anticholinesterases,
organophosphates were shown to be causing a
prolongation of both the miniature end plate potential
(MEPP) and the end plate potential (EPP) at the post
junctional membrane (Eccles et al, 1942).

The investigations into the actions of
organophosphates at neuromuscular junction have
attempted to explain the following phenomena

(1) potentiation of the single twitch
(2) faciculations

(3) fade of the muscle response to tetanic stimuli,
-leading to total block

1.4.2.1 Twitch potentiation and fasciculation

Potentiation of the single twitch response
and fasciculation have received careful study and the
present position of understanding has been summarized
by Hobbiger (1976). Twitch potentiation and



fasciculation both appear to be the consequence of
changes occuring in the nerve terminal and the first
node of Ranvier. Following the arrival of an
orthodromic impulse these sites initiate repetitive
EPP 1n individual motor units by an axon reflex. This
can only be the consequence of a presynaptic action of

ACh (as a result of AChE inhibition) of
organophosphate compounds and Hobbiger considers that

all the experimental evidence is consistent with the
same explanation for carbamates. However, both these
anticholinesterases are known to have marked
electrophysiological efects which may be important at
frequencies of stimulation other than those used for
single twitch studies. The repetitive firing
phenomenon is one example of an organophosphate action

which may not be related to its ability to inhibit
AChE.

l.4.2.2 Neuromuscular block

The failure of neuromuscular transmission
associated with toxic doses of organophosphate may be
compared with the neuromuscular block produced by
depolarizing muscle relaxants such as succinyl choline
(Zaimis, 1975). At the post junctional site, the
accumulation of ACh was originally thought to cause a
persistent depolarization allowing no
further generation of a muscle action potential.
However, Thesleff (1959) showed that this was not the
case. The post junctional membrane depolarization
returns to normal very quickly, but the block persists
in the surrounding muscle membrane. This means that
the local potential change produced by a large dose of
ACh gradually declines, even though the ACh
concentration in the vicinity of the end plate is
high. 1In other words, the receptors appear to become
refractory to the actions of ACh (Zaimis, 1975).

In reviewing the known actions of organophosphates in
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1959, Holmstedt (Holmstedt, 1959) questioned whether
the agents complied exactly with the above sequence in
causing neuromuscular block, or whether they might
have effects other than those related to inhibition of
AChE (section 1.3.3). The whole question of whether
organophosphates cause neuromuscular block entirely by
AChE inhibition has again been challenged recently by
Albuquerque (1983) who questioned whether there is
enough releasable ACh in the nerve terminal to cause a
sustained depolarization block.

l.4.2.3 Neuromuscular effects of organophosphates
in relation to degree of AChE inhibition

Experiments conducted by Berry and Lovatt
Evans (1951) and Burgen and Hobbiger (1951) studied
the nature of neuromuscular block produced by several
anticholinesterase compounds in the isolated rat
hemidiaphragm preparation.
It was clear that the block was reversible with
carbamates and less so with certain organophosphates
(e.g. TEPP). With other agents, such as the the
organophosphate DFP, no washing - related recovery
was possible if exposure to the agent was prolonged.
A puzzling feature of this work was the fact that
following carbamate exposure and washing there was
recovery of the AChE level to correspond to the
recovery of function, whereas in some cases with DFP
recovery was sufficient to pass an 80 stimulus tetanus
with no apparent recovery:- of the enzyme. It should be
stated that the methods for determining the tissue
levels of AChE were less sophisticated at that time
than at present. Thus difficulties in analysis of
enzyme levels may provide answers to apparently
anomalous results. Inaccuracy in enzyme determination
may also provide some explanation for the findings of
Barnes and Duff (1953) who examined twitch changes in
the isolated rat hemidiaphragm at different levels of
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AChE. Using TEPP, DFP and paraoxon these authors
showed that the response to indirect stimulation went
through a whole series of changes as the AChE was

progressively inhibited. It was found impossible to
block the response to single stimuli even at high
degrees of inhibition but that response to a tetanic
stimulus failed. Calculations showed that
fasciculation and enhanced response to single stimuli
took place while the AChE level was reduced from 50%
to 10% of normal. At 10% of normal these responses
disappeared, together with the power to sustain a
tetanic stimulation of 50Hz for 5 seconds. However,
during recovery of the muscle preparation, after
removal of the inhibitor, calculations suggested that
muscle power returned when only 5% of the BuChE and no
AChE was present. It should be emphasized that
predicted levels of enzyme were used based on AChE
kinetic data from homogenised preparations.

Van der Meer and Meter (1958) studied the effects of
DFP on the rat phrenic nerve - diaphragm preparation.
At 0.5 Hz contractions were enhanced by the addition
of DFP. This occurred at muscle AChE levels which
were 20% of normal. When contraction had returned to
normal practically complete inhibition of the AChE was
noted. In unstimulated preparations, spontaneous
contractions were seen during the periods in which
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