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ABSTRACT

Faculty of Engineering

Electronics and Computer Science 
Master of Philosophy

Software Migration Aids On 
Transputer Arrays

by Andrew James Jackson

University of Southampton

The advent of practical large scale parallel computing has led to a number of ad
vances in thinking and to many new problems. One of the main problems of using 
massively parallel machines is that of unfamiliarity with code distribution for many 
programmers. Ideally a compiler would parallelise the users sequential code without 
any knowledge of special parallel considerations. As no automatically parallelising 
compilers are available yet, much work is underway to provide tools which allow a 
programmer to utilise the new technology with the minimum effort. The work in
cludes language extensions, new languages and communication harnesses/templates 
for certain parallel paradigms. This thesis presents two harnesses written to allow 
'coarse farm' and 'geometric' paradigms to be implemented on transputer arrays. A 
brief study is then given of a selection of languages, harnesses and other tools presently 
available for programming on transputers hosted by IBM Personal Computer systems 
(or compatibles).
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1 Introduction

1.1 Sequential to Parallel Programming

The arrival of affordable massively parallel machines has caused a major rethinking of 
the methods of programming computers.

The traditional Von Neumann computers can only do one operation at a time. To 
program such a machine a list of instructions has to be written so that they may be 
executed by the single processing unit in a stream. This is a very unnatural way of 
thinking. In the real world things do not happen one at a time, everyday life is full of 
parallel occurrences. The first problem for a new parallel programmer is to overcome 
his or her sequential background and think parallel.

Programming a parallel machine forces the programmer to think of a number 
of new problems when coding. The time order in which events occur is no longer 
obvious when a number of processes are active at the same time. It is important to have 
control over your program and this new dimension to programming maybe expressed 
as follows : A parallel program is a set of processes which are potentially active at 
the same time. These processes are a 'work force' and they are usually written in a 
traditional sequential manner with some form of communication system to transfer 
data from process to process. Once a work force of processes has been produced it 
does not amount to a working program. In addition to producing the code to do 
the job there has to be 'management' of the work force to make sure that the job is 
done in a sensible manner with maximum benefit to the end user (usually this means 
maximum speed). A management structure must be created to make sure that no 
single process gets out of step with the others and that the program communicates 
and terminates correctly. The management structure in a parallel program is much 
more complicated than the control structure in a sequential program. Even a simple 
parallel program needs careful consideration. This is the major difference between 
parallel and sequential programming.

1.2 The Transputer and Occam

The transputer is a VLSI chip produced by INMOS of Bristol in the United Kingdom. 
The name comes from the words transistor and computer. A transistor is a device 
which is used in large numbers to construct more complicated electronic systems. The 
transputer is a complete computer on a single silicon chip designed to be the building 
block for larger processing systems, hence the name.

Each transputer has processing power, memory and communications hardware 
on the chip. The diagram (figure 1.1) shows the major components of the T800 trans
puter. There is a 10 MIP, 32 bit integer processor and a 1.5 Mflop, 64 bit floating point 
processor. Communication is provided by four bidirectional INMOS serial links run
ning at 10 or 20 Mbits per second, and there are 4 kilobytes of memory on the chip with



Figure 1.1; The Transputer Chip.

an external memory interface which allows memory up to the 32 bit address limit to be 
attached [1]. The transputer can thus be thought of as a processing element with four 
'hands' which can connect to other transputers. It is obvious then that large networks 
of transputers can be built with many topologies, (figure 1.2)

Each transputer can execute a unique piece of code so a network of transputers 
is a multiple instruction, multiple data (MIMD) machine. There is no shared memory 
between transputers, all data transfer between processors is effected through the links. 
This feature of distributed memory is a great aid to evaluating the action of a system 
as there is no memory contention problem.

The transputer's instruction set is similar in concept to a reduced instruction set,'RISC', 
machine. The sixteen most used instructions are four bits long. Included in the sixteen 
base instructions is a 'prefix' instruction which doubles the size of the instruction to 
eight bits. Two prefixes give a twelve bit instruction and so forth. By using this facility 
the transputer can, potentially, have an infinite instruction set. Operation of the pro
cessor is via a three element evaluation stack rather than the more traditional register 
based operation. This allows for very fast context switching between two processes on 
the same processor [2].

The Occam programming language was inspired by the mathematical model called 
(:^rniTrarru(^ifu^gf;eqpienifk)llPrcx:ess<%;((:S:P) [3]. rtT/zas devishafxed try I^j7v^C)S in con- 
junction with the transputer hardware to allow the programming of massively parallel 
systems. As well as the usual data types and constructs for a sequential programming 
language there are also elegant parallel constructs in the language. Parallel processes 
can be run on the same transputer or on a number of transputers. Communication is
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ii)

Figure 1.2: Transputer Networks.

handled by the channel data type which effects a point to point one way link between 
two processes.

Occam is a very simple language built from three basic operations

• Assignment of a value to a variable

• Output of a value down a channel

• Input of a value from a channel

From these simple operations a fully functional high level language has been 
developed [4]. Program statements are grouped into constructs which define how 
those statements will execute, in sequence (SEQ) or in parallel (PAR). Procedures can 
be built up and used as program statements in a familiar way.

Channels provide synchronised communication. A communication is an output 
on one end of a channel and an input on the other. All channels are one way, and the in
put end is in one process and the output end in another. Whichever end is reached first 
causes that process to wait until the other process has reached the communication on 
that channel as well. The communication will then take place and the processes will go 
their separate MIMD ways. It can be seen that having communications which operate 
in this manner aids greatly when thinking about programming. If you have an output 
without an input (or vica versa) the program will hang at the line where that commu
nication occurs. This is called 'deadlock'. If the communications did not synchronise 
then the process with the failed communication would continue and debugging of 
the system would be more difficult a problem than it is. An excellent monograph on
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deadlock freedom in communicating systems is contained in The Pursuit of Deadlock 
Freedom [5]. A problem with similar symptoms to deadlock is livelock', an infinite 
communications loop with no interaction with the user.

A parallel program is non-deterministic because of its parallel execution nature. 
For example, imagine a shared memory program with two processors. Processor A 
sets variable X to 3 and independently processor B checks the value of X and initiates 
a destruct sequence on the machine if the value is not 3. For months the program 
runs such that A always gets to X before B reads it. All is well until one day B runs 
hot and reaches X first. %lf destruct occurs and as far as the program goes nothing 
has changed. This is a simplistic example. Real shared memory systems have various 
safeguards to prevent this sort of thing but it illustrates that timing issues have to be 
carefully considered and that the same program may produce different results from 
running the same code with the same data.

Because of the problems of nondeterminism, occam confines this type of behavior 
to only one construct (in normal operation) so that it may be easily controlled. This 
alternative (ALT) construct allows a number of inputs to be interrogated. If none are 
ready then the process waits until one of the communications can take place. When 
more than one input is ready at the same time a random choice is made between them. 
Only the use of inputs, not outputs, in this construct is allowed for implementation 
reasons.

So Occam and the transputer, therefore, provides a simple and elegant model for 
parallel systems by virtue of such features as distributed memory, synchronised com
munication and isolation of the nondeterministic nature of parallel systems. The pro
cessor provides speed by operating many of its components (processors, link engines 
et cetera) in parallel, by its RISC like instruction set and fast context switching between 
processes.

1.3 'Alien' Languages

Occam and the transputer were developed together and there is a very close relation
ship between the two. Any other language that runs on a transputer is termed, by 
INMOS, to be 'alien'. Alien languages at present consist of FORTRAN 77, C, PASCAL 
and ADA. Work is underway on others such as PROLOG and MODULA-2, lb use the 
parallel aspects of the transputer these languages have either procedural interfaces or 
language extensions. The company 3L of Edinburgh in Scotland produce a family of 
compilers (C, FORTRAN and PASCAL) with procedural interfaces to communication 
libraries and other transputer features. INMOS have an occam system which allows 
the importing and linking of alien compiled code from the 3L family of compilers with 
Occam code. It is relatively easy using this system to mix the four languages. PARSEC 
of Leiden in Holland produce a C system for the transputer called Par.C. This has 
language extensions instead of the procedural interface. ALSYS of Henley in England 
produce an ADA compiler. ADA is a concurrent language by design.

The work in this thesis was conducted with the INMOS occam toolset D705B and 
the 3L Parallel FORTRAN version 2.0 using the language mixing facilities of the occam 
toolset mentioned above [6, chapter 9].
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1.4 Standard Parallel Paradigms

Parallel programming, like any other subject, is a diverse field. A new and unique 
program could be produced for every problem undertaken. This method of progress is 
wasteful as many ideas from past problems can be reused. Research groups in the field 
have started to develop sets of parallel paradigms because of this. Having achieved a 
set of standard ways of programming a parallel machine problems can be categorised 
according to which paradigm they fit most closely. The list of standard paradigms is 
largely subjective [7].

At the University of Southampton (UK) we have used three broad paradigms. 
These are the farm, geometric and algorithmic paradigm. As these are the paradigms 
I will be referring to in this thesis I will explain them more fully.

The farm paradigm is used when a problem consists of a main loop with many iter
ations of the same piece of code. Ideally the result of each iteration will be independent 
of all the other results. This being the case the body of the loop can be replicated onto 
a number of processors and iterations carried out in parallel. A farmer processor is 
usually employed to package up the initial information needed by a loop iteration and 
send out this 'work packet' to a worker processor. When the worker has calculated the 
result for its packet it sends it back to the farmer. The cycle continues until all the work 
is done. Because of the nature of the transputer hardware if there is more calculation 
than communication in one of these cycles then communications may be hidden and 
high speedups are obtained. This is often the easiest method of making a sequential 
program parallel. Applications which use this paradigm include ray tracing [8] and 
Monte Carlo elementary particle event simulations [9].

The geometric decomposition paradigm is used when solving a problem involv
ing large simulations with local interactions. Mini versions of the program are run on a 
network of processors (usually a grid) each handling a small portion of the simulation. 
Data from the edges of these small areas must be swapped with neighbours to allow 
a full simulation step to be calculated. The more local the interactions are the better 
the result, as a smaller area of neighbour data is then required for edge swapping. 
Provided that the interaction is local, and sensible sized subareas are used, this method 
will deliver good speed up with increasing processors. A control processor may be 
used in a similar way to the farm paradigm to synchronise simulation steps and collect 
data for display et cetera. Greater communication is required in a geometric decompo
sition than a farm and because of this more work is needed when porting a sequential 
code to this paradigm. The speedup is usually not as great as for a farm problem 
solution. The 2DXY [10] simulation of a liquid crystal is an example of an application 
using this paradigm.

If the two paradigms so far explained are not appropriate then an algorithmic 
decomposition specific to the problem is the last resort. This kind of decomposition 
usually takes the form of multiple pipelines. This is the hardest paradigm to port 
sequential code to as each problem is unique in its character. Examples of this type 
of paradigm include a vision system [11] and the Bouncing Balls demonstration [12].

Although the last paradigm is problem specific the first two have attributes which 
will be the same for all problems of their class. All farms will send out work packets, 
all geometric decompositions will edge swap to some degree and so on. There is a case, 
then, for writing a 'harness' for these paradigms to provide the usual facilities needed. 
Some performance penalties may be paid but the average applications programmer
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1.5 Philosophy Behind Migration Aids

In an ideal world compilers would be available to produce parallel executable code 
from standard sequentially written source code. Programs would be written as always, 
with an artificial 'single stream' of instructions with no reference to the underlying ar
chitecture of the hardware. There may be certain conventions used to make it easier for 
the compiler to 'parallelise' the code. This would be a similar situation to the present 
vectorising compilers available for CRAY and other supercomputers. Unfortunately 
parallelising compilers are not at present available.

The other extreme would be for the programmers to have to do everything them
selves. This requires some detailed knowledge of the architecture of the transputer. All 
communications protocols et cetera would have to be set up by the programmer for the 
specific job in hand. This is the situation provided for by Occam, which allows access 
to the low level hardware features required to program parallel processing transputer 
arrays.

What would be ideal is the first scenario: what we have to start from is the second.
In an effort to move towards the ideal situation, much work is underway to pro

duce 'migration aids'. These are systems which allow the applications programmer to 
migrate his or her sequential code to a parallel machine. The first set of aids which be
came available consists of communication harnesses/programming templates for the 
farm and geometric paradigms. General harnesses for any paradigm are the next stage 
leading on to new languages, compilers and operating systems. At present there are 
general harnesses and parallel operating systems available with leading edge research 
into self-parallelising compilers and new languages in progress.

The philosophy behind this work is to progressively lighten the burden on an 
applications programmer, to abstract away from the specific features of the machine 
in use and allow the programmer to think about how to solve the problem rather than 
how to program the machine.

will have much of the parallel programming burden removed by these 'migration aids'.

1.6 Presently Available Migration Aids.

At start of this thesis most of the migration aids that were available were for the farm 
paradigm. Meiko produce a FORTRAN compiler which allows the implementation 
of a farm [13]. The 3L family of compilers all have the Flood Fill Configurer system 
which allows the user to write two processes, a worker and a master, and have them 
automatically configured into a farm to run on any attached processor network [26]. 
FORTNET started life as a farm harness running on a chain of processors produced 
at Daresbury, UK [14]. With the provision of interprocessor communications between 
any two processors on the chain it is proposed as a general harness.

The other main stream of work going on at the start of this thesis was the devel
opment of general communications harnesses. These include ECCL [29] reviewed in 
its finished state later in this work and Tiny [15] from Edinburgh.
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1.7 Plan of This Thesis.
After a general introduction contained in chapter 1 this thesis is organised as shown
below.

Chapter 2: Coarse Farm Harness. A harness is presented, which has been written by 
the author of this thesis, to implement a special case within the farm paradigm. 
The system allows the user to destribute a number of identical whole problems 
on a network of transputers with full transparent access to the single file server 
from all the processors. Full process descriptions, code templates and examples 
of use are given. Two case studies are then undertaken. The first is a ^benchmark' 
to evaluate the functionality and performance of the coarse farm harness. The 
second is a real application from the subject of chemistry.

Chapter 3 : Geometric Harness. A simple harness, again written by the author of this 
thesis, for implementing the geometric paradigm is presented. The harness is 
implemented on a torus of processors. General point to point communications 
are allowed between any two processors in the system and full process descrip
tions, code templates, et cetera are included in the chapter. The two case studies 
on the geometric harness were to evaluate its functionality using a ^benchmark' 
and to implement a typical geometric application, Conway's Game of Life.

Chapter 4 : Review of Other Migration Aids and Languages. In this chapter seven 
systems of various types are looked at. There are three languages, two general 
harnesses, a programming support environment and an operating system. Two 
tests were implemented on each system. The first is an attempt to communicate 
to the screen from a chain of processors in the way the Coarse Farm Harness of 
chapter 2 would allow. Secondly an idealised geometric test is used on a torus of 
processors. This was one of the tests used in chapter 3 on the Geometric Harness. 
A comparision of the systems is made, including the harnesses written by the 
author of this thesis, in terms of performance, facilities provided by the system 
and ease of use.

Chapter 5 : Concluding Remarks. Some final statements on each of the harnesses 
produced are made. Suggestions for the next steps in the development of the 
work are put forward.

The thesis concludes with acknowledgements and appendices containing example
code for all the work undertaken.



2 Coarse Farm Harness

2.1 Adjustments to the Standard Farm Paradigm

The standard farm paradigm is to split up a single problem which has a central loop. 
The code body of the loop is the same for every iteration and only the start parameters 
change. In a parallel processing farm solution this body of the loop is removed and 
replicated onto a number of worker processors. A processor known as the farmer then 
assembles the initial parameters into work packets which are communicated to the 
workers. Results are sent back to the farmer. It helps if the results do not have to be in 
any particular order as then the worker outputs do not have to be sorted. This method 
increases the speed of execution of a single problem and requires some restructuring 
of the code.

For the coarse farm harness we take one step back. Instead of issuing packets for 
iterations from a single problem we issue packets for whole problems. Here the overall 
system which needs to be executed must consist of a large number of identical prob
lems run with slightly different initial parameters. The purpose of this is to generate a 
large number of data sets. Speeding up of the generation of the data sets is achieved by 
the farming of whole problems and also by the fact that they execute independently in 
parallel. It can be seen that although the speed of execution of a single problem does 
not decrease, it is the fact that a number of the problems are run simultaneously that 
increases the throughput.

The coarse farm harness must provide all the services to each problem or job that 
is running. Each job must have access to the file systems, keyboard and screen et cetera. 
An effective and efficient method of managing requests to these shared resources must 
be implemented in the harness. Jobs in the coarse farm harness do not interact with 
each other, in the same way that packets of work in a standard farm do not interact. 
There is no need for results in the coarse farm harness to be sorted as each one is an 
individual job.

The efficiency of the coarse farm harness method has been call naive [7]. The 
efficiency used in this argument is the financial cost to computer performance ratio. It 
is concurred that using a parallel machine in this way is no better than a 'sequential 
machine using similar technology'. I would argue though that the thought behind the 
coarse farm harness is to increase throughput. The fact that the time for the production 
of data sets is greatly reduced can have very large advantages. Also as processors are 
added the speedup can be very good, in line with the usual farm results. Because of 
these good points I would refute the statement that 'this efficiency is illusionary'.

The coarse farm harness requires even fewer changes to an original sequential 
program than a standard farm decomposition. The whole program is put in a loop 
and slightly changed to take into account that a number of jobs maybe accessing some 
shared resources. It will provide efficiency in terms of elapsed time as opposed to cost 
to performance ratio. In a world where time is money I feel that this is a worthwhile

15
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system to produce.

2.2 Perceived User Requirements

The ideal system, as far as the user is concerned, requires no special action by the 
programmer and no integral knowledge of the transputer hardware on which the 
system will run. However as an automatic compiler is not available the user initially 
requires a template of the paradigm. This template must be simply expressed to 
allow the programmer to evaluate whether the facilities being offered by the harness 
are appropriate for his or her application. Harnesses are usually specialised in that 
they operate for one paradigm only. If the application to be implemented does not 
fit the paradigm for a certain harness then that tool should be discarded and a more 
suitable one found. More advanced communication harnesses are available for general 
use with all paradigms but a performance penalty is usually paid for the generality. 
General harnesses are frequently more difficult to write for as there is no set pattern 
for the user's code to fit into.

Once a tool appropriate to the problem has been found the harness should be as 
easy to write for as possible. All the communications should be provided and a clear 
specification of the interface given. An outline of the processes should be given with 
a clear indication of where the user generated processes should go. This gives an idea 
of how the harness works without too many technical details. The programmer will 
usually have to write one or two sequential pieces of code to fit into the harness.

A final template is needed for each piece of code to be written by the user. This 
gives the structure of the code to be inserted into the harness and examples of any 
procedures provided for use by the programmer. Any special techniques required by 
the harness need to be explained and examples shown.

To summarise, in the absence of a compiler or preprocessor to do everything auto
matically, the user needs a clear idea of what paradigm a harness works for and must 
make a decision as to whether it is appropriate for his or her application. After making 
that choice, process information is required to allow the programmer to know some
thing about how the harness works. Finally, a fairly rigid template should be provided 
for any pieces of code to go into the harness and any special features illuminated by 
examples.

The coarse farm harness paradigm is to have a number of independent problems 
executing simultaneously, accessing shared file and i/o facilities producing indepen
dent data sets. The data sets are collected and analysed at a later time. Process infor
mation and code templates appear in the following sections.

2.3 Coarse Farm Harness

2.3.1 Outline of Processes
The coarse farm harness runs on a simple linear chain of processors. The processor 
at the head of the chain contains the master process, the rest have the worker process 
loaded onto them.

After the requirements have been finalised a process strategy has to be settled 
upon. The usual hardware considerations for the transputer are required. These 
include one process for each link-in or link-out engine. This gives maximum overlap
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between communication and calculation. The worker will be handling two broad 
classes of communication, filer requests and replies, and harness commands. For this 
purpose, in the workers, the incoming communications will have to be filtered to take 
out harness commands, job identification numbers for example. As for all transputer 
programs the number of parallel processes on each single processor should be kept to 
a minimum. The above considerations lead to the following process designs.

The master process is called termmux. (figure 2.1)

Figure 2.1: Process Diagram for Master Processor.

The processes fulfil the following purposes.

indemux : The major part of the work is carried out in indemux. Initially, before 
the branching in the main parallel (par) construct, the parent process, termmux, 
handles the first interactions with the user and inputting of the number of jobs. 
The number of jobs is then sent around the system. This allows each worker 
to calculate its initial job. id (job identification number) and thus start work 
straight away, indemux then handles the calculation of new job. ids, after 
the main PAR. It passes them through the channel through to outmux which 
then issues the job.ids to the network, indemux further handles incoming 
communications from the worker processors. The communication protocol is 
the INMOS iserver filer protocol [6] with a few integer tag additions to allow 
routing.
One of these tags is the processor identification number. There is an array of 
channels, from .user, which take filer requests and pass them on to the INMOS 
supplied so.overlapped.multiplexor. The array size is the same as the



18

number of workers and the processor identification number is used to index 
into this array of channels. Termination of the system is again initiated from 
indemux and passes through the channel through. From outmux the termina
tion signal travels around the loop of workers and back to indemux, processes 
terminating as the signal passes. The channel stopper is then output to so that 
the so .overlapped.multiplexor process can terminate. With all the other 
components of the PAR terminated indemux can terminate itself and pass control 
back to the termmux process. Timing of the system is handled by the indemux 
process and the time data is returned to termmux when indemux terminates. 
Termmux then reports the time to the screen and the whole system terminates.

outmux : Outmux is a subordinate process in every way. It takes its control signals 
from indemux passing them on to the loop of workers as necessary. An array of 
server reply channels from so. overlapped.multiplexor provides answers 
to the requests issued via indemux. The index which a reply arrives on is used 
to set the appropriate processor identification tag for routing to the workers.

so . overlapped. mult iplexor : So. overlapped. multiplexor is a routine pro
vided by INMOS for multiplexing a number of processes onto the same file server. 
An array of input channels for the filer requests, from. user, is supplied with a 
similar array for filer replies, to. user. A request passed down from. user [ i ] 
causes the reply to appear on to .user [i]. A signal on channel stopper ter
minates the multiplexor and from. filer, to. filer are the usual channel pair 
for communication with the server program running on the host computer. The 
supplied multiplexor provides a queue for filer requests thus stopping saturation 
of any communication structure attached to it. Another multiplexor is supplied 
with the INMOS D705B which does not have the queueing mechanism. Tests 
with this non-queueing multiplexor have produced results which are the same 
as tests using the queueing multiplexor. (The queueing multiplexor was used 
in the benchmark tests.) This implies that the harness as implemented has a 
communication system which does not saturate.

The worker process (worker) is illustrated in figure 2.2. The worker process starts 
by getting the initial job identification number from the starting up termmux process 
which it passes to the id. handler processes via its parameter list. After setting up 
the first job. id, a PAR starts all of the processes.

up. incomms : Up. incomms takes in communications and passes any job identifi
cation numbers for the present processor to id. handler, which handles issu
ing of job. ids to the FORTRAN fworker. Any filer communications for the 
processor have their protocol tags stripped off and are passed to the f worker 
process. Any other communications (i.e. not for this processor) are passed to 
up. outcomms which passes them out of the processor.

id. handler : Id. handler takes in job. ids and then puts them out to f worker.
It knows about the condition to terminate fworker (job. id = -1) and shuts 
down after it has shut down the f worker by passing on the signal.

fworker ; Fworker contains the FORTRAN work program. Filer requests are issued 
through from. fworker to the communication system and replies returned via
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Figure 2.2: Process Diagram for Worker Processor.

the to. fworker channel. The finish. out channel has a signal placed on it 
whenever a job is finished.

down. outcomms: Down . outcomms merges finish signals and filer requests from the 
present processor and others then passes them back towards the filer.

up. outcomms & down. incomms ; These processes just pass on messages and fulfil 
the need to have one process per link in/out engine.

2.3.2 Communication Strategy
As the harness was designed to run on a chain of processors the communication strat
egy is very simple. The usual hardware considerations are taken into account by the 
provision of a process per linkin/out leading to the most efficient use of the parallelism 
on the chip itself.

The channels for the main communication path are arranged in a loop through 
the chain of transputers. Apart from a few special circumstances a message does not 
travel completely around the loop. Message sending is organised so that whenever a 
message is sent out it has somewhere to be read. The system, after starting up, fills the 
worker processors with job identification numbers if they are available. It knows how 
many to send as the number of worker processors is configured into the system. When 
working, filer requests move down the loop to the filer and the replies are routed back 
up the loop to the sending processor. There is no possibility of generating spurious filer 
messages. The only other messages being generated at this computing stage are end
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of job messages in the workers. These messages are replied to by indemux with a new 
job. id or a shutdown message to the f worker FORTRAN process and its supporting 
id. handler process. The communication processes are NOT shutdown at this stage. 
When the job. ids have been exhausted all the f worker and id. handler processes 
have also been shutdown. The final stage of communication is to shut down the 
communications loop of processes. This is done by sending a flag right around the 
main channel loop terminating processes as it goes. The master (termmux) process 
can then shutdown and the whole system has cleanly returned control to the host 
computer.

The protocol used in the harness is the INMOS SP filer protocol with three integer 
additions.

processor.id(INT)/message.tag(INT);job.id(INT);
SP.len(INT16);SP.mess(BYTE[512])

These integers hold the processor identification number, a message type tag and 
the job identification number. The message type tags are,

• job.tag

• spmess.tag

• finish.tag

• endwork.tag

• terminate.tag

Job. tag indicates that a new job. id number is contained in the job. id field of 
the message and is sent from indemux to the workers.

Spmess . tag messages travel in both directions on the loop. They are filer requests 
from the workers and the subsequent replies from the filer. These are the only 
messages with have non-empty values in the SP protocol fields of the message.

Finish.tag messages go from the workers to indemux indicating that a job has 
been done and requesting a new job. id. When there are no more jobs to do 
indemux sends out a job. id of -1 to terminate the f worker and id. handler 
processes on a processor which has requested a new job.

Endwork . tag. The last thing the f worker does before it shuts down (id. handler 
has already terminated) is send out an endwork. tag message.

Terminate .tag. Indemux collects endwork . tag messages and when it has re
ceived one for each worker processor in the system it knows that it is safe to send 
a terminate. tag message and thus close down the whole worker network.
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2.3.3 Writing for the Harness
The first thing to establish when attempting to use the harness is if it is appropriate for 
the problem in hand. This being the case writing for the harness is very easy. The code 
must fit into the following template.

PROGRAM CORFARM

C
C
c

c
c
c

c
c
c
c

99999

IMPLICIT

HARNESS DECLARATIONS

INTEGER PROCID 
INTEGER JOBID

USERS DECLARATIONS

CALL GETID(PROCID)
CALL GETID(JOBID)
WHILE (JOBID.NE.-l) 99999

USERS STANDARD FORTRAN, NO KEYBOARD INPUT 
& FILE NAMES MUST BE UNIQUE

ENDJOB()
CALL GETID(JOBID)
CONTINUE 
CALL ENDWORKO
END

The user writes standard FORTRAN in the position shown with some limitations 
as indicated. Porting code into this harness should be simple as the application pro
gram is just put into the loop shown above. This template is provided with the harness 
as well as the library containing the few harness subroutine required. Compilation of 
the system is fully automated using an appropriate make utility.

2.3.4 Functionality and Implementation Limits
The Coarse Farm Harness gives full access to the filer shared by other processors in 
the system. Files and screen output are as they would be if each processor had a filer 
as a single resource. Screen output strings, naturally, appear interleaved as several 
processors output on a single screen. Keyboard input is available but should not be 
used. This is because there is no way of telling where the input is going to.

Consider eight processors requesting a number to be input. Good programming 
practice would be to print a request to the screen. If a number of requests arrive in very 
quick succession you do not know, when you enter the numbers, where your keyboard 
input is going. It may not matter in the case of, for example, seeds for random number 
generator but it usually does matter. For this reason it is suggested that if keyboard
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input is needed the input is put into a file beforehand and then taken in by the program 
using a different unit number for its standard input.

As there is truly only one filer all filenames in a given run of the system must 
be unique. One way of obtaining this goal is to encode the job and/or the processor 
number into the file name. A method of coding the job number into the filename is 
shown in the section on implementing the benchmark tests. (Section 2.4.2)

A limitation given by the host system is the number of files a single program may 
have open at any one time. For MS-EX5S 3.3 (the system used) the limit is twenty files. 
The server uses a number of these for keyboard, screen et cetera leaving the user with 
sixteen. A test on SUN Operating System 3.5 allowed fifty files to be opened from a 
transputer through the server program.

2.4 'Benchmark' Case Study

2.4.1 The Code
It was decided to carry out tests in three areas, screen output, calculation and disk file 
input and output. The tests were carried out by varying the amount of work contained 
in a job and by varying the number of worker processors.

The screen output consisted of a number of FORTRAN print statements of the 
form:

PRINT *, 'Hello, world from processor
* ,PROCID,JOBID

Where PROC ID is the processor identification number picked up from the system and 
JOBID is the job identification number issued by the system. Tests were run with a 
job consisting of a single output, and of a loop of ten outputs. It was expected that 
for screen output, which is contention for a single resource, the time taken for a given 
system to execute would be related to the number of outputs and not to how they were 
split into jobs. There may be decreases in performance due to the system saturating 
the file server with requests.

Tests on the calculation capability of the system were done using the statement:

X = X * Y

The statement was put in a loop with X set to 0.0 and Y set to 1.0. This is where the 
harness is expected to perform well. All the calculations in a job can be overlapped 
with calculations from other jobs.

The disk file input and output tests have a number of stages. The first one of the 
stages is to construct a filename for the job from the job identification number. This 
is a technique which should be used generally when using the harness. Data is then 
loaded into an array of an appropriate size. The file is then opened, the data written 
and the file closed. Now the file is reopened and the data read back into a new array. 
The file is again closed and a check on the data is carried out. The result of this check is 
then reported to the screen. The various calculations should happen in parallel and the 
access to the file handled by the server should follow the same scenario as accessing 
the screen, as it is accessing a shared resource.
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2.4.2 The Implementation
The benchmark was implemented by the code found in appendix A inserted into the 
harness as described before. The various tests were carried out by commenting out 
various parts of the code.

All the code was executed on a TRAM system consisting of six modules on an 
INMOS motherboard. Each module holds a T800 transputer running at seventeen 
megahertz. Memory totals were 2 Mbytes of DRAM, 32 Kbytes of SRAM and four 
kilobytes of the transputers internal memory. The processors were connected together 
in a linear chain with the link speeds set at twenty megabits per second.

2.4.3 The Results
The following tests were coded in FORTRAN and the results are shown here in graph
ical form with an explanation for each graph. Tables of all the data from the results are 
in appendix A.

Screen output tests.

• Test 1. Each job consists of a single output of the hello world string. Batches 
of up to two hundred jobs were run. (Figure 2.3)

• Test 2. Each job consists of ten outputs of the same string used in test 1. 
Batches of up to thirty jobs were run. (Figure 2.4)

Calculation tests. The basic element of this test was the multiplication of two real 
numbers.

• Test 3. Each job was a loop of one hundred thousand iterations. The maxi
mum number of jobs run was one hundred. (Figure 2.5)

• Test 4. One million iterations per job with a maximum number of twenty 
one jobs in the system. (Figure 2.6)

Disk file input/output tests. Each of these tests consists of a number of jobs which 
each output a block of data to a file using a FORTRAN unformatted write state
ment then read the same data back again. The data is then checked and a screen 
write statement giving the result of the test.

• Test 5. One kilobyte blocks with a maximum of fifty jobs in the system.
(Figure 2.7)

• Test 6. Ten kilobyte blocks with a maximum of eleven jobs in the system. 
(Figure 2.8)

• Test 7. One hundred kilobyte blocks with a maximum of eleven jobs in the 
system. (Figure 2.9)

Processor power tests. The first seven tests vary the amount of work in the system. 
Having done this the number of worker processors was varied to see the effect 
of increasing processor power in the system.

• Test 8. Test 1 for screen output with two hundred jobs. (Figure 2.10)
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Number of jobs

Figure 2.3: Benchmark Test 1: Single screen output per job.

Number of jobs

Time/seconds

Figure 2.4: Benchmark Test 2: Ten screen outputs per job.
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0.5 1

Time/seconds

1.5

Figure 2.5: Benchmark Test 3: 100000 floating point multiplies per job.

Number of jobs

Time/seconds

Figure 2.6: Benchmark Test 4: 1000000 floating point multiplies per job.
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Number of jobs

Figure 2.7: Benchmark Test 5: 1 Kbyte of file i/o per job.

Number of jobs

Time/seconds

Figure 2.8: Benchmark Test 6: 10 Kbytes of file i/o per job.



27

Number of jobs

Figure 2.9: Benchmark Test 7: 100 Kbytes of file i/o per job.

Number of processors

Figure 2.10: Varying the Number of Processors: Test 1 with 200 jobs.
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Number of processors

Figure 2.11: Varying the Number of Processors: Test 2 with 20 jobs.

Number of processors

Figure 2.12: Varying the Number of Processors: Test 3 with 100 jobs.
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Test 9. Test 2 for screen output with twenty jobs. (Figure 2.11)
Test 10. Test 3 for calculation with one hundred jobs. (Figure 2.12) 
Test 11. Test 4 for calculation with fifteen jobs. (Figure 2.13)
Test 12. Test 5 for file input/output with fifteen jobs. (Figure 2.14) 
Test 13. Test 6 for file input/output with ten jobs. (Figure 2.15)

2.4.4 The Conclusions
It can be seen from the results of tests 1, 2, 8 and 9 that the system is driving the filer 
as fast as it will go for screen output. From the results of test 1 it can be seen that as 
the number of communications to the screen increases, the time taken for the system to 
execute increases in a very close to linear fashion. Correlating data from test 1 and test 
2, for example the time taken to do two hundred jobs in test 1 and the time for twenty 
jobs in test 2, it is evident that the different loading of work content in a job has no effect 
on the time taken. From tests 8 and 9 it is noted that for increasing processor power 
the speed is constant. The only departure from this constant speed is for a system with 
only one worker. This, I feel, is because with more than one processor the handling of 
job.ids is hidden by overlap but with one worker a small overhead shows up. These 
results are as expected as the screen is a single resource. There is contention between 
the processes for the use of the resource and it is obviously running as fast as it can 
go. It is the total number of messages to the screen which governs the time taken for a 
system to execute, not how the work is split into jobs or the available processor power.

In the tests on calculation (3, 4, 10 and 11) it can be seen that this is where the 
harness provides the recognised farming results. Tests 3 and 4 show, convincingly, that 
all five worker processors operate in parallel. The time for the system to execute jumps 
whenever the number of jobs in the system is a multiple of five. In tests 10 and 11 the 
time for a given system to execute is seen to go down as processing power increases. 
The graphs show execution time decreasing with increasing processing power.

From the results of tests 5,6,7,12 and 13 it is seen that there is some overlap in disk 
file input/output. This is again a shared resource but it seems that the tests do not drive 
this feature of the filer as fast as it will go. With tests 12 and 13, as with the equivalent 
screen output tests, there is an overhead in issuing job.ids with one processor which 
disappears with more than one. Here, however, the time taken for a constant amount 
of work decreases slightly as processor power is increased. This implies that there is 
some extra overlap occurring as the number of processors increases. It can also be 
seen that the efficiency of disk file input/output increases when the amount of data in 
a block is increased.

So the following results have been shown.

• There is no speed up in the area of screen output as there is no overlap in accessing 
this shared resource. (Keyboard input is not allowed)

• For the tests done the usual farming results are obtained for calculation, great 
increases speed can be achieved here as there is total overlap between the pro
cessors.

• There are some gains to be made in disk file input/output. Dealing with the 
largest blocks possible helps here.
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Number of processors

Figure 2.13: Varying the Number of Processors: Test 4 with 15 jobs.

Number of processors

Time/seconds

Figure 2.14: Varying the Number of Processors: Test 5 with 15 jobs.
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Number of processors

Time/seconds

Figure 2.15: Varying the Number of Processors: Test 6 with 10 jobs.
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2.5 Diffusion Limited Aggregation (DLA) Case Study

2.5.1 The Problem
The application chosen to demonstrate the coarse farm harness was Diffusion Limited 
Aggregation (DLA) from the subject of Chemistry. The specific problem from the realm 
of DLA used for the test was as follows.

We have a rectangular lattice of sites with a surface at one side. A particle is 
introduced at a random point a few lattice steps above the surface and random walked 
until it is adjacent to the surface or has escaped the lattice as defined. When the particle 
is adjacent to the surface it is said to have 'stuck'. Another particle is introduced and 
so forth. Particles are said to stick if they are adjacent to the surface or to another stuck 
particle. The stuck particles form a cluster. New particles are introduced to the system 
at random points a few steps above the then present maximum height of the cluster 
above the surface. If a particle escapes the confines of the lattice (ie. walks out of the 
lattice through the opposite side to the surface) it is restarted. The two sides of the 
lattice adjacent to the surface form a cyclic boundary.

It can be seen that introducing more than one particle at a time changes the whole 
character of the problem and that the problem as defined is basically sequential in 
nature. Variations of DLA include having a single occupied site at the centre of the 
lattice (which has no surfaces) or to have multiple particles introduced simultaneously. 
If multiple particles are introduced the problem is very much more complicated as 
there is then the prospect of particles coagulating to form sub-clusters before they 
encounter the main cluster.

The purpose in generating these clusters is to model systems such as soot deposi
tion. Large numbers of clusters are generated and subsequently analysed to calculate 
such things as fractal dimension. The analysis of clusters generated in this way is taken 
up in other works [16] it is the generating of the clusters which is addressed here.

2.5.2 The Code
The DLA code was written in FORTRAN 77, compiled with the 3L parallel FORTRAN 
compiler version 2.0 and inserted into the occam harness using the INMOS D705B 
toolset linker and interface code. Special features of the code are :

• Use of 3L library subroutines to access the transputers clock for timing purposes.

• Use of 3L library subroutines to access integers in a bitwise fashion. The main 
grid was stored as an integer array and accessed in this way to allow as compact 
lattice as possible.

The structure of the code was as follows :

initialise 
setup file
LOOP for the number of particles required

or until the lattice is full 
write to file if the program buffers are full 
LOOP while a particle is not stuck 

random walk the particle
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see if stuck
if it is stuck update the lattice 

and program buffers
END LOOP

END LOOP
write any data in program buffers 
report the programs execution time

A full listing of the program may be found in appendix B.

2.5.3 The Implementation
The DLA code was initially implemented in a single transputer 'standalone' form. This 
code was compiled with the 3L libraries and run to obtain some initial results. The 
standalone program was then adapted and placed in the harness as indicated earlier. 
Full code listing for the adapted program in the harness is in appendix B.

2.5.4 The Results
From the standalone program running on a single T800-17 the results in the table were 
obtained. (Table 2.1)

No. of particles Time
10000
100000

1000000

Imin 39secs 
41mins 51 secs 

1152mins 30secs

Table 2.1; Standalone DLA results.

So a T800-17 takes 19 hours 12 minutes to generate a cluster of one million parti
cles. Moving from this result with naive calculations the estimated time to generate a 
one million particle cluster on faster T800 processors is shown in table 2.2.

Processor Time
T800-20
T800-25
T800-30

16hrs 30mins 
13hrs 5mins 
lOhrs 55mins

Table 2.2: Faster processors on one million particle cluster.

Taking the ten thousand particle problem the following results were obtained 
(Table 2.3 and table 2.4). Each job reports its individual time and the system reports the 
overall time for execution. The hardware used was the same used in the benchmark 
section of this chapter.
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No. of jobs job time(secs) System execution time(secs)
1 160 160
2 131

164 164
3 133

144
150 150

4 132
137
154
186 186

5 132
137
160
161
169 169

6 134
139
144
147
153
122 258

7 133
138
140
163
175
123
154 294

Table 2.3: Coarse Farm Harness DLA. (Continued in table 2.4)

2.5.5 The Conclusions
It can be seen from the results that it pays very well to run multiple jobs on transputers. 
For the case of ten jobs the total time for executing the jobs in sequence is 1403 seconds 
compared to the system execution time of 297 seconds. Using the method made avail
able by the Coarse Farm Harness rapid production of data sets is very achievable.

A 'fast' algorithm in a letter to the Journal of Physics [17] produces a 100000 
particle cluster in 10 CPU minuites on an IBM 3081. From the results in table 2.1 it can 
be seen that with only 4 T800-17 processors the average speed of cluster production 
of the application in the coarse farm harness is matching the IBM 3081 performance. 
Adding any other transputers to the system will out perform the IBM on overall cluster 
production time.
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No. of jobs job time(secs) System execution time(secs)
133
139
140 
154 
159 
124 
148 
157 297
135
137
140
140
159
124
126
145
156 297

10 120
134
140 
146 
151 
125 
165 
145
141 
156 297

Table 2.4: Coarse Farm Harness DLA continued.

2.6 Summary of the Coarse Farm Harness.
A harness has been produced for the coarse farm paradigm. This was an Occam harness 
to go around a piece of FORTRAN applications code. The coarse farm paradigm is 
where a number of whole problems or jobs need to be executed to produce a large 
number of data sets. These data sets are then analysed at a later time. The program 
to produce one data set is replicated over a network of transputers. Each transputer 
must be given access to the file server transparently using the usual input/output 
subroutines. This system was successfully implemented on a chain of transputers 
using INMOS D705B Occam toolset system and 3L parallel FORTRAN version 2.0. 
Extensive 'benchmark' tests were run to evaluate the performance and functionallity 
of the harness. These being successful an application from the field of Chemistry, 
Diffusion Limited Aggregation, was implemented in the coarse farm harness. Rapid 
production of data sets was achieved, the system producing ten data sets in 297 seconds 
compared to the sequencial production time of 1403 seconds.



3 Geometric Harness

3.1 The Geometric Paradigm
The geometric paradigm has also been called domain decomposition which is probably 
a more descriptive name. The problem must consist of a large space over which calcu
lations are being performed. The usual type of problem is some kind of simulation of 
particles or calculation of a field locally at a number of grid points.

To make such a problem parallel we split the area or volume of the calculation 
between the available processors. Each processor may now work on its own subspace 
of the problem using a copy of the program for the whole space with just the size of the 
data changed. To make the overall calculation correct there has to be communication 
at the boundaries of the processors. The interaction used in the simulation will have 
a 'range'. Ideally this range will be as short as possible. Every processor must receive 
data from all of its neighbours for the calculation to be correct. Thus the range of 
the interaction determines the scale of the decomposition. An interaction which has 
infinite range cannot be parallelised in this manner. Nearest neighbour interactions 
are the best case for this paradigm. An illustration of the edge swapping needed to 
give correctness is shown in figure 3.1.

Because of this edge swap, efficiencies gained by the geometric paradigm are not 
as great as for the farm paradigm. This is because processors have to communicate 
locally as well as communicating with a central controlling resource. The central re
source is usually a graphics screen or a storage device such as a disk with its own 
associated processor. This processor usually handles any synchronisation necessary 
to keep the worker processors on the same time step in the calculation. This synchro
nisation can sometimes be achieved by the interprocessor communications locally, but 
in most cases a form of 'loose lock step' is imposed by the central processor.

The system is running a single job so resources such as keyboard and disk are not 
required to be generally accessible to all worker processors, unlike the case with the 
coarse farm harness. It is however useful to obtain error messages from individual 
processors on the screen as they occur.

3.2 Perceived User Requirements
As was stated for the coarse farm harness the first thing the user requires is a clear 
indication of when the harness is an appropriate tool to use. The geometric harness is 
used to give a parallel solution for a simulation over a large data space. Interactions 
between entities in the simulation should be at as close a range as possible (nearest 
neighbour is ideal) as this governs the amount of data to be edge swapped at each 
iteration of the simulation. Range of the interaction also determines whether this 
paradigm is appropriate as explained before.

36
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Figure 3.1: Edge Swap Illustration.

Specification of communications, an outline of processes and the necessary tem
plates for writing for the harness are included in the sections following.

3.3 The Geometric Harness
3.3.1 Outline of Processes
The geometric harness is to run on a torus grid with a control processor in one of the 
loops. The set up of the network is illustrated in figure 3.2.

The usual transputer considerations are taken into account and the master process 
is loaded onto processor C, the worker process onto processors W. Apart from initial 
and final subroutine calls the communications in the harness are in the form of point 
to point message passing between specified processors. All processors have an x,y 
set of co-ordinates. Messages can be routed in via link 0 or link 1 then accepted 
or routed through the processor to be output on link 2 or link 3. This very simple 
routing algorithm allows the minimum number of processes on a processor and very 
fast routing decisions to be taken.

The master process (master) is shown in figure 3.3.
Some initial interaction with the user is undertaken then a PAR statement starts 

the illustrated processes. The processes operate as follows :

min it: This short process sends some initial data values to the FORTRAN and then 
terminates.
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Figure 3.2: Processor Network for Geometric Harness.

fmaster : Contains the user written FORTRAN code for the master processor. After 
gaining the initial data sent by mi nit, via a subroutine call, point to point com
munication can be undertaken with the worker processors using a procedural 
interface. At the end of the users code a subroutine call sends a message to the 
workers instructing them to terminate. A signal is also sent to the mstopper 
process which shuts down all the communications processes. Fmaster itself 
then terminates. Full FORTRAN input and output is available from this process.

mstopper : On receiving a signal from fmaster this process sends termination 
signals to mini and moutS then it terminates itself.

mini : This process takes in communications and routes them either to the channel 
through to mout3 or, if they are for the master processor, into fmaster. Ter
mination is by a signal from mstopper.

moutS : Communications are gathered from mini and fmaster then output to the 
worker network which handles onward routing of the messages. A signal from 
mstopper terminates this process.

The worker process (worker) is shown in figure 3.4.
The illustrated processes are started up straight away on the worker process by a 

PAR construct and have the following functions :

winit: As for the master processor this outputs some initial values to the FORTRAN 
then terminates.
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Figure 3.3: Process Diagram for Master Processor.

winO/winl: Communications only come into the processor via links 0 and 1. These 
processes handle incoming messages. The messages are either sent to winmux if 
destined for this processor or are routed via the through channels to the appro
priate link output process. Termination of these processes is induced by a signal 
from wstopper.

winmux: Messages for this processor are routed here from the win processes. All the 
winmux process has to do is merge the streams and sent the messages on to the 
f worker process. A signal from wstopper causes termination.

f worker : This process contains the users FORTRAN code for the worker proces
sors. Initial data regarding the network size and this processors position in the 
network is obtained from winit. Communications to the master FORTRAN and 
the FORTRAN on the other worker processors is via library subroutines. At the 
end of the code a signal is sent to initiate wstopper after a suitable interaction 
with the master processors FORTRAN.

woutdemux : On receiving a message from the f worker process a routing decision 
is made and the message is output to a suitable link output process. Termination 
is by wstopper signal.

wout2/wout3 : These processes just receive messages from the demultiplexor pro
cess and the through channels which are output onto the links. These actions 
continue until wstopper signals termination.
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Figure 3.4: Process Diagram for Worker Processor.

wstopper : The FORTRAN fworker on receiving a termination signal from the 
master processor sends a signal to wstopper. The wstopper process then sends 
signals down all its channels to the communication processes on the processor 
causing them to terminate. Wstopper then terminates and the worker processor 
has cleanly shut down.

3.3.2 Communication Strategy
The processors for the geometric harness are connected in a toroidal grid. The commu
nications strategy for the system is for messages to travel conceptually 'up and to the 
right' to get to their destination. This is not the shortest route a message need travel 
necessarily but it is flow in one direction only and is thus easy to control. Messages 
move up until they have the correct y co-ordinate for their destination and then right 
to reach their final target. This strategy means that the master processor is handled 
implicitly.

After the system has initialised, point to point communication is allowed between 
any two processors. These communications are asynchronous in nature. At the receiv
ing end no guarantee is given of the order of arrival of messages so some care may be 
needed when writing for the harness.

The messages which travel round the harness have the following protocol:

dx(integer);dy(integer);sx(integer);sy(integer);
tag(integer);

len(integer)::buffer(integer array size 128)
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dx and dy are the destination processor co-ordinates, sx and sy are the co
ordinates of the source processor. Tag may be used by the programmer to mark a 
message. All values of tag may be used except -1. This is reserved for harness shut 
down use. A message of length len integers is contained in the integer array buffer.

The point to point communications are handled by two subroutines :

SUBROUTINE SENDMESS(DX,DY,TAG,LEN,BUFFER)
This subroutine sends a message contained in BUFFER of length LEN integers to 

the processor with the co-ordinates DX and dy. tag has a user specified value. If a 
message other than one of type integer is required then FORTRAN EQUIVALENCE 
statements should be used to load the message up into BUFFER before transmission.

A message is read by :

SUBROUTINE GETMESS(SX,SY,TAG,LEN,BUFFER)
It is a message contained in the integer array BUFFER, of length LEN, with a tag 

value TAG from the processor with co-ordinates SX and SY.
When all the communications have been done and the system is ready to shut 

down a subroutine is called at the end of the users FORTRAN code. On the master pro
cessor subroutine SHUTDOWN is called with the dimensions of the grid as parameters. 
A point to point communication is sent to each worker processor with a tag value of 
-1. This causes the wstopper processes to be activated and the workers to terminate. 
The master processor then shuts down and the whole system returns control to the 
host computer cleanly. On the worker a subroutine call ENDWORK with no parameters 
handle its end of the shut down interaction. An error occurs if ENDWORK does not 
receive a message with the tag value -1 as expected.

3.3.3 Writing for the Geometric Harness
If the harness is deemed appropriate for the job in hand the user must produce two 
pieces of FORTRAN code.

The master code must fit the following template :

c
c
c

c
c
c

c
c
c

PROGRAM FMASTER 

IMPLICIT

HARNESS DECLARATIONS

INTEGER X,Y,XDIM,YXIM 
INTEGER DX,DY,SX,SY,TAG,LEN,BUFFER(128)

USERS DECLARATIONS

CALL INIT(X,Y,XDIM,YDIM)

USERS FORTRAN CODE WITH FULL I/O ACCESS 
MESSAGES SENT AND RECEIVED BY SUBROUTINES
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C SENDMESS AND GETMESS
C

CALL SHUTDOWN(XDIM,YDIM)
C

END
INIT returns the processors X,Y co-ordinates (0,1 in the case of the master) and 

the maximum x and y dimensions of the grid. The second line of integer declarations 
gives all the variables necessary for the message passing subroutines. The master is 
connected to the file server as the root processor in the network and so has full access 
to the file system facilities. SHUTDOWN signals all worker processors to terminate by 
sending out a message with a tag value of -1. This is the only reserved tag value any 
other values may be utilized in normal use of the harness. Between INIT and SHUT
DOWN the point to point subroutines may be used freely to implement communications 
with other processors.

The worker FORTRAN code must fit the following template ;

PROGRAM FWORKER

C
C
c

c
c
c

c
c
c
c
c

IMPLICIT NONE 

HARNESS DECLARATIONS 

INTEGER X^Y,XDIM,YDIM
INTEGER DX,DY,SX,SY,TAG,LEN,BUFFER(128)

USERS DECLARATIONS

CALL INIT(X,Y,XDIM,YDIM)

USERS FORTRAN CODE WITH NO FILE I/O 
MESSAGES SENT AND RECEIVED BY SUBROUTINES 
SENDMESS AND GETMESS

CALL ENDWORKO

END

INIT works in the same way as when it was used in FMASTER. No file access 
is provided for in the harness from the worker processors. The subroutine ENDWORK 
waits to receive a message from the master processor with a tag value of -1 then it 
shuts down the processor.

These templates appear in the examples with the harness and all the compilation 
is fully automated with makefiles.

3.3.4 Functionality and Implementation Limits
As it stands the harness will only run on a grid of the type shown in figure 3.2. The 
master processor must be placed in the loop of the lowest y chain in the position 0,1.
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The grid can have any x and y dimensions and the configuration file is set up so that 
changing two constants followed by a reconfiguration is all that is required to adjust 
grid size. All worker processors have no access to the filer facilities. A basic point to 
point communications facility is provided with a subroutine interface. The message 
passed is a 128 integer array into which the data needing to be transferred should be 
packed and then unpacked at the receiving end. FORTRAN EQUIVALENCE statements 
should be used to send messages whose type is not integer. Zero length messages are 
not allowed, the smallest message that can be sent is one integer (four bytes). The 
harness is not guaranteed to be deadlock free, however if a sensible strategy is used 
(ie. do not send all your messages and then try to receive them) the harness behaves 
well. Full FORTRAN access to the file system is achieved through the master process.

3.4 'Benchmark' Case Study

3.4.1 The Code
The benchmark set up for the geometric harness was more to test functionality than any 
performance points. The transputers were set up in the grid illustrated in figure 3.2.

Firstly three communications tests were run.

• All to one test

• One to all test

• All to all test

All these tests ran correctly so I feel safe in saying that the communications strat
egy of the geometric harness is robust in heavy use.

In the first test all the workers communicate with the master for a number of 
loops. This means that the number of messages in the system is the number of workers 
multiplied by the number of loops.

In the second test the first test is reversed. The master sends messages to the 
workers continuously. Again the number of messages in the system is the number 
of worker processors multiplied by the number of loops.

In the final test a message is transferred from a processor to all of the processors in 
the system, including itself. So for each loop there are the total number of processors 
(including the master) squared messages in the system.

Messages are sent and received with the point to point SENDMESS and GETMESS 
subroutines described earlier.

A final test was used to simulate a working geometric system. In this test an edge 
swap on the workers was undertaken then a work loop of one million floating point 
operations was executed on each worker. At the end of each work loop a signal was 
sent to the master processor. We have the following code structure on the worker 
processors.

init
LOOP for number of loops 

edge swap 
calculation loop
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message to master
END LOOP
message to master 
shutdown

This simulates a real calculation with a geometric problem being solved on the 
workers and data collected every iteration onto the master processor.

The master processor has the following code structure:

init
LOOP for number of loops

collect d^ta for each iteration of workers
END LOOP
collect final message from workers 
shutdown

The success of the tests will show that for heavy communication loads and for a 
typical geometric problem set up the harness operates correctly.

3.4.2 The Implementation
The benchmark was implemented on a grid of processors as illustrated in figure 3.2. 
The transputers used were T800-20 parts each with four megabytes of memory (six 
cyx:k! [)FLAJ\4). Interfa(:e to an IBM I^C: :X:T clone ((3TIJS I'C: CD lAras prrcnrkied an 
interface card which like the transputer cards was produced inhouse at Southampton

The code written for the master and worker processors is contained in appendix C. 
In the same way as the coarse farm harness parts of the code were commented to give 
the correct test. Appendix C also gives a listing of the library GEOFLIB. F77 which 
contains the send and receive subroutines plus the support subroutines called at the 
start and finish of the users FORTRAN code. The FORTRAN code was compiled with 
the 3L parallel FORTRAN compiler version 2.0 and then linked into the Occam harness 
using the D705B linker. The INMOS toolset was then used to configure and run the 
system.

3.4.3 The Results
The results of the functionality tests on the geometric harness are contained in the 
tables which follow:

All to one test with a 128 integer message (Table 3.1).

One to all test with a 128 integer message (Table 3.2).

• All to all test with a 128 integer message (Table 3.3).

The final test results for the geometric calculation simulation are in table 3.4. All 
messages are 128 integers long.
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No. of loops Time/ seconds
1000 229
5000 TT44
10000 22.88

Table 3.1: All to one test.

No. of loops Time/seconds
1000 2.33
5000 1T63
10000 23 27

Table 3.2: One to all test.

3.4.4 The Conclusions
The first three tests (which are wholly communication) give the following conclusions. 
Firstly they work indicating that even though not formally deadlock free the harness 
performs under heavy communications loading. As the number of messages in the 
system grows the time taken grows linearly for all of the communications tests. From 
this we can calculate an average message handling time for each test (Table 3.5).

The message handling time for the all to all test is better than the tests involving a 
single source or sink because there are more processors handling more messages more 
of the time.

The simulated geometric calculation gave a linear increase in time as the number 
of loops is increased. Each loop has nine communications per processor, eight for 
an edge swap and one to the master. The work loop is one million floating point 
operations per loop. Using the average message handling times from above we can 
produce a worst and best estimate of the time taken per million floating point opera
tions (Table 3.6).

A single transputer benchmark with a work loop of one million floating point op
erations was implemented to give a value for comparison with the geometric harness. 
The standalone benchmark was implemented using 3L parallel FORTRAN. The loop 
took 1.8 seconds to execute. From this figure and the values in table 3.6 the expected 
speedup when using the harness can be calculated. The speedup from one to four 
processors is by a factor of approximately 2. This is an efficiency of 50.22%. Thus the

No. of loops Time/seconds
1000 8.64
5000 4338
10000 86.38

Table 3.3: All to all test.
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No. of loops Time/ seconds
10 3fi04
50 180.27
100 36156

Table 3.4: Geometric test simulation test.

Test Time/seconds
all to one 0.57
one to all 0.58
all to all 034

Table 3.5: Average message handling times.

expected efficiency when using the harness is about 50%.

3.5 Conway's Game of Life Case Study
3.5.1 A Description
The game of life is not so much a game as a simulation. The simulation occurs on an 
infinite square grid of sites. Each site in the grid has two states. It is either alive or 
dead. The state of a site in the next step or generation of the simulation is determined 
by the number of alive neighbours in the previous generation. The rules are as follows

• If a site is alive and has less than two live neighbours it is dead in the next 
generation. It has died of loneliness.

• A site with exactly two live neighbours retains its state from the present genera
tion into the next.

• A site with exactly three live neighbours remains alive if it is in the present 
generation and becomes alive if it is dead in the present generation.

• A site with more than three live neighbours dies in the next generation. It has 
died of overcrowding.

Time per Mflop/seconds
best

worst
0396
0.898

Table 3.6: Mflop time estimates.
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So local rules completely define the state of the whole grid at the next generation. 
The interesting property of life is that these local rules govern the evolution of global 
structures. Some life patterns die out, some cycle through growth and decline and 
others grow without limit. The game of life is an example of a systolic array. A systolic 
array is a system where many simultaneous local calculations produce a global co
operation.

The game starts with some occupied sites and it is then allowed to develop. Full 
explanations of the rules and some interesting facets of the game can be found in 
articles by Martin Gardiner [18],[19].

3.5.2 The Code
The code for the game of life was written in FORTRAN 77, compiled with the 3L 
compiler. The only special features of the code are :

• Use of 3L library subroutines to access the transputers clock for timing purposes.

• Use of a 3L library supplied with the examples which gives some basic access to 
the cga graphics facilities on the PC.

Pseudo-code structures for the fmaster and fworker processes are as follows:

FMASTER

initialise
receive data for initial generation 
display initial g^meration 
LOOP for number of generations

receive data for this generation 
display this generation

END LOOP
shutdown

FWORKER

initailise
send initial generation to master
LOOP for number of generations

edge swap to get data needed to update
update to next generation
send this generation to the master

END LOOP
shutdown

The display may be disabled by commenting out the sends and receives before 
the beginning of the loop and at the end of the loop on each processor. If this is done
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the data from the final generation should be sent from the workers after the end of the 
loop. The master should collect the data from the final iteration for display or storage 
in a file.

3.5.3 The Implementation
A game of life was initially written in FORTRAN 77 for a single transputer implemen
tation of the problem. The code was then split into a master and worker processes 
which were placed in the harness. Communications were added to effect the edge 
swaps and collecting of data on the master for display. The code was then run on the 
network used for the benchmark illustrated in figure 3.2. For both the standalone and 
the harness version the following systems were run :

• 200 X 200 sites, periodic boundary conditions, with display to the PC hercules 
graphics card running cga simulation software.

• 200 X 200 sites, periodic boundary conditions, with no display.

• 400 X 400 sites, periodic boundary conditions, with no display.

Comparisons can then be made between the standalone version and the version 
in the harness.

Full code listings for the harness life are contained in appendix D.

3.5.4 The Results
The standalone version of life running on one of the transputers described in the 
benchmark section produced the following results :

• 200 X 200 grid with display (Table 3.7).

• 200 X 200 grid without display (Table 3.8).

• 400 X 400 grid without display (Table 3.9).

No. of loops Time/seconds
10 48A3
25 115.21
50 22656
75 337.77
100 449.03

Table 3.7: Stand Alone Life (200 x 200 grid, with display).

The harness life ran on a two by two grid of processors described in the benchmark 
section. The following results were produced.

• 200 x 200 grid with display (Table 3.10).

• 200 X 200 grid without display (Table 3.11).

• 400 X 400 grid without display (Table 3.12).
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No. of loops Time/seconds
10 11.00
25 26.89
50 5339
75 7939
100 10639

Table 3.8: Stand Alone Life (200 x 200 grid, no display).

No. of loops Time/seconds
10 46.87
25 115.12
50 228.88
75 34263
100 45638

Table 3.9: Stand Alone Life (400 x 400 grid, no display).

3.5,5 The Conclusions
It is noted that for both the standalone and harness versions of life displaying the data 
on the screen at each iteration costs an awful lot of time. We will consider, therefore, 
the results with no display. The time taken in all the tables (3.8,3.9,3.11,3.12) increases 
linearly with the number of iterations of the loop. Comparing values in tables 3.8,3.9 
and 3.11, 3.12 it is seen that a speed up of a factor of 2.0 to 2.2 is achieved. This is in 
line with the benchmark predictions. The efficiency of the system is between 52% and 
54%, again in line with expectations.

3.6 Overview of the Geometric Harness

A harness for the geometric paradigm on a toroidal grid of transputers has been pro
duced. A simple 'one direction of flow' routing algorithm was used to allow point to 
point message passing between any two processors in the system. Full descriptions of 
the processes, code templates and use of the harness have been given. A benchmark

No. of loops Time/seconds
10 4335
25 10L79
50 19933
75 296.86
100 394.41

Table 3.10: Geometric Harness Life (200 x 200 grid, with display).
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No. of loops Time/seconds
10 5.29
25 12.83
50 2537
75 37^2
100 50.46

Table 3.11; Geometric Harness Life (200 x 200 grid, no display).

No. of loops Time/seconds
10 2L14
25 5238
50 10435
75 15532
100 207.42

Table 3.12: Geometric Harness Life (400 x 400 grid, no display).

case study was undertaken to show that the harness has good functionality under dif
ferent communications and calculation conditions. The results from these tests were 
favourable so a typical geometric application was placed into the harness. This was 
Conway's Game of Life, a two dimensional cellular automata system. The application 
was successfully implemented in the harness system and a speedup by a factor of 2 
noted, in line with benchmark predictions.



4 Review of other Migration Aids and 
Languages

4.1 Introduction and Policy

This section will give a brief insight into some of the presently available programming 
products for the transputer. The policy will be to try to implement two tests. The first 
will be communication to a filer from a chain of processors in the manner of the coarse 
farm harness. The second will be a geometric type test consisting of a cycle of edge 
swaps and calculation. The object of these tests will be to see what facilities are given 
to an applications programmer. Ease of use and clear indications of system capabilities 
are the prime points that will be looked for.

4.2 The Test Applications

The tests are indicative of the coarse farm and geometric harnesses described in the 
earlier chapters of this thesis. Screen output from a chain of processors and an idealised 
geometric test will be used. The screen output will consist of the string

"Hello world from processor X"

The output can be put into a loop to give some performance information.
The geometric test will consist of a one million floating point operation work loop 

with an edge swap of one kilobyte of data in the four directions of a grid of processors. 
A screen output may be attempted to give an indication of progress of the work. In 
each case no attempt will be made to write a harness for the test. Coding will be specific 
to the job in hand. In a test like this on a large number of systems it is hard to use all 
of a particular systems specific specialised techniques. Most of the test code can be 
classed as naively written.

4.3 Languages

The languages which will be used in these investigations all fall into slightly different
categories. Occam is a parallel language which was designed with the transputer hard
ware. 3L parallel FORTRAN and Parsec Par.C are standard languages with extended 
features. In the FORTRAN the special features of the transputer are accessed by sub
routines in libraries which are available at runtime. For Par.C the philosophy is to use 
language extensions to access the transputer features. With these three languages all 
the 'types' of language for the transputer are covered, a specialist language, a standard 
language with a procedural interface and a standard language with a language exten
sion interface. All the systems give a good standard single transputer implementation, 
it is when programming multiprocessor systems that the methodology differs.

51
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4.3.1 The Hardware Used in the Language Tests
For all the language tests, to allow some performance comparisons to be made, the 
same hardware was used. The system consisted of an OPUS PC II XT clone with the 
following transputer hardware.

• An inhouse [21] interface card allowing 20MHz link connection to the personal 
computers bus.

• Five inhouse Trice Transputer' cards [22] consisting of a T800-20 with 4 megabytes 
of 6 cycle external memory. All the links were set to run at 20MHz

For the coarse farm communication test the processors were connected in a chain 
from link 2 to link 0. (figure 4.1)

Figure 4.1: Hardware for Coarse Farm Test.

For the geometric test they were connected in a 2 by 2 torus with a control proces
sor inserted in the fashion of the geometric harness, (figure 4.2)

Languages should provide the most flexible but potentially hardest to use route 
for parallel programming on transputers.

4.3.2 The New INMOS occam Toolset (D7205)
The new INMOS Occam toolset implements Occam 2 as described in earlier chapters 
and references. It is a system for building and debugging programs for networks 
of transputers combining high level language features with the ability to access the 
transputer hardware at the lowest level.
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Figure 4.2: Hardware for Geometric Test.

Occam 2 was designed to reflect the architecture of the transputer hardware which 
leads to 'maximum coding efficiency' [23, page 7]. The occam programming model 
consists of parallel processes communicating via synchronised channels. As each pro
cess is independently executable, multiprocessor programming is a simple extension 
of the single processor case. A configuration description is used as an extension to 
Occam 2 to allow distribution of processes over processors.

Occam 2 is deemed reliable because of its base in the mathematical theory of 
Communicating Sequential Processes (CSP). Because of its access to the transputer 
hardware it may be used for real time programming, fault tolerant link communication 
and other low level embedded applications [23, chapter 10].

The toolset consists of a compiler, linker, configurer, 'collector' and a server. The 
collector adds the bootstrap and initial rooting information needed to boot a network 
of transputers. In addition there is a debugger and some specialised tools such as 
an EPROM programmer. All tools can be either run on the host computer or on an 
attached transputer with at least two megabytes of memory. There is a T425 simulator 
which runs on the host computer to allow testing of code when no transputer hard
ware is available. There is no special environment or editor with the system and the 
tools are called from the host computers operating system prompt in the usual way. 
INMOS do, however, provide a folding editor called origami as freeware. This editor 
gives functionality similar to the INMOS Transputer Development System integrated 
environment editor [24].

The system may be run on an IBM PC running DOS, DEC VAX minicomputers 
running the VMS operating system or under the unix operating system on sun mi
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crosystems workstations of the 3 and 4 architectures.
The main difference from previous releases, (the most recent previous release was 

used in chapters 2 and 3), is a new configuration language. Instead of an extended 
Occam 2 variant a new concept is employed. The programmer specifies separately a 
hardware description, a software description and a mapping between the two.

4.3.2.1 The Coarse Farm Test
Occam is very much a do it yourself language. There are no special communication 
structures provided to ease the burden of the applications programmer. Access to 
common resources such as the screen is usually handled by a single processor for each 
resource. Libraries are provided to drive the a single resource from its controlling 
processor, but any other processors needing access to the resource must negotiate with 
the controller. An example of this is the INMOS B007 graphics card [25]. A transputer 
drives this card through a library of procedures, but any attached transputer network 
must communicate with the B007 transputer to gain access. No code is provided for 
the network to access the card so it must be written by the applications programmer. 
Similarly for the screen on the host computer various library processes are available to 
output messages to the screen, but only the first transputer in the network is physically 
connected to the host computer, so only this processor may output to the screen.

For the above reasons when implementing the coarse farm test using the new 
Occam toolset the chain of processors passed the component parts of the message to be 
output (a string and an integer) to the processor at the head of the chain. This processor 
has direct access to the screen and so can output the messages made up of the necessary 
data using the host input/output library routines.

The code was written in two parts. At the head of the chain the processor inputs 
the strings and integers from the rest of the chain processors and outputs the appropri
ate messages. On the rest of the chain the component parts of the message are output. 
Any passing on of the data from processors higher in the chain is also carried out. The 
whole test was configured using the new configuration language which describes the 
hardware, software and a mapping from one to the other. The direction of the links is 
worked out by the configurer by their use in the code.

Although there is no integral environment for the toolset the building of the pro
gram from the three source files (root processor, worker processor and configuration 
sources) can be automated using the provided 'imakef' utility to produce a makefile 
for an appropriate make program. This was done by the author.

The results of the coarse farm test are shown in table 4.1. The number of loops 
refers to how many times each processor outputs the message, so for the test as imple
mented one loop is equivalent to four messages on the screen. Timing of the system 
was achieved by using the access to the systems clocks provided by Occam.

4.3.2.2 The Geometric Test.
Any communications structure required by the applications programmer in the Occam 
toolset must be written by the applications programmer. Thus for the geometric test 
explicit handling of the message routing through the master processor (see figure 4.2) 
must be implemented. As the number of workers is only four connected in a two 
by two torus there is no special routing needed on the main worker network. Again 
in Occam, although many facilities are available in the rich language, the applications
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No. of loops Time/seconds
1 0T5

10 1.61
50 8.46
100 17d6

Table 4.1: Coarse Farm Test for the New Occam Toolkit.

programmer has little or no help in his or her task of implementing a problem solution. 
All communications have to be explicitly handled by code written by the programmer.

The geometric test implementation code consists of a one kilobyte edge swap 
along the four links for the worker processor followed by a loop of one million floating 
point adds simulating work on each worker processor. The occam construct PAR was 
used to elegantly implement the edge swap. The configuration level consists of the 
three levels described before. A makefile was produced and used. The results are in 
table 4.2.

No. of loops Time/seconds
10 13T^

100 143.69

Table 4.2: Geometric Test for the New Occam Toolkit.

The number of loops refers to the number of iterations of the whole system through 
the edge swap, work loop cycle on each worker.

4.3.2.3 Impressions of the New INMOS Toolset
The main change between the new toolset and the previous versions is the configura
tion level. This new configuration level, I feel, is more complicated and verbose than 
necessary. There is no way to define the direction of the link connections as there was 
in previous releases. This may not seem a problem, but during the development of 
the hello test the following problem was encountered : The processors were linked 
in a chain, a loop of channels was declared at the configuration level and passed to 
the individual processor code. It is the policy of the author to test code piecemeal. 
With this in mind an integer value was set up to pass along the channels 'down' the 
loop from the last worker to the root processor. The root processor then would write 
a message to the screen indicating success. Note the channels going 'up' the loop 
were not used in this initial test. All proceeded well with the building of the code 
until the system was configured. The configurer warned that it could not work out a 
direction for the unused channels then it hung up. Inspection of the information from 
the compiler confirmed that the product release was in use. The INMOS Business 
Centre was contacted about the problem.

The new occam toolset provides a powerful and elegant method of programming 
transputers. All the tools are called from the host computers operating system prompt 
like any other unbundled toolset. An automatic makefile generator is included in the
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system which greatly aids coding if a make utility is available. The configurer auto
matically determines the placement of channels onto links, but no override is provided 
so that channels which are unused (for example in the initial hello test development) 
cause problems as described. Occam provides some of the most efficient code run
ning on transputers but the general programming community have been reluctant to 
learn this new language. They prefer languages they are familiar with such as C and 
FORTRAN. Attempts to provide familiar language interfaces to transputers, and so 
aid code migration, are described in the next two sections.

4.3L21 TThie 31. (vlZ.O)
The philosophy of 3L in Edinburgh has been to produce a family of compilers which ac
cess the parallel features of the transputer using a procedural interface. The FORTRAN 
system contains a very strict FORTRAN 77 compiler with associated linker, configurer 
and server. There is no special editor environment with the system which runs on an 
IBM PC under DOS. The server 3L supply is 'afserver' which is a customised version 
of an old INMOS server. INMOS have ported the 3L family of compilers to run with 
their new server 'iserver'. With this port it is possible to mix 3L compiled code with 
Occam from the old INMOS toolset (D705B). This was the method used in previous 
chapters.

There are two concepts put forward by 3L in their software model [26]. The first is 
the concept of tasks, which is similar to occams process model. Each task has its own 
area of memory for code and data plus vectors. The vectors contain input ports and 
output ports. There is no sharing of memory between tasks and the ports are connected 
together to form channels as with occam. Tasks are connected together using a configu
ration language. The configuration language is not an extension of the language being 
used, but is the same for all compilers in the family allowing code from the compilers 
to be mixed. More than one task may be placed on one processor. Any number of 
connections may be made between tasks on the same processor but the usual four 
links must be taken into account when connecting tasks on different processors. This 
is basically the same as occam. The major omissions in the configuration language are 
replicators and ways of easily passing parameters to tasks at this level.

Access to channel communications is by library subroutines. Libraries are also 
provided to implement the ALT construct, provide access to the transputers timer and 
other low level aspects [26, chapter 17].

In addition to tasks the programmer may use threads within a task. Each thread 
has its own stack but can share code and data with other threads in the same task. This 
is like a mini shared memory system. Semaphores are used to manage the sharing of 
memory space.

3L also provide with the system a harness for farm type applications called the 
'flood fill configurer'. For this harness the programmer must produce a master task 
and a worker task. These tasks are then linked into the harness. At load time the 
transputers network attached to the host computer is analysed or 'wormed' and the 
master task plus routing code is loaded onto the first available processor. The rest of the 
processors are loaded with the worker task along with the relevant routing code. The 
system should then run as a farm. It can be seen that no action is needed if processors 
are added or removed from the system as the worm will notice and do the loading 
appropriately. If only one processor is available then a copy of the worker task is
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loaded along with the master task onto it.
The author has used the flood fill configurer in past work and found it not to 

be very flexible. Problems were encountered when sending large initial data packets 
out to the workers. Processors were 'frozen out' by the routing software and only a 
fraction of the available processors returned results. It is not intended to use the flood 
fill configurer in this work.

4.3.3.1 The Coarse Farm Test
As with Occam in the previous section 3L parallel FORTRAN provides no general 
access to the file server from all the processors in a network. Only one processor has 
access to the filer. Code for the system is written for each processor and compiled then 
configured for the network to be used. The implementation method used with the 
parallel FORTRAN is the same as Occam (communicating sequential processes). The 
component parts of the message to be output were passed down the chain using the 
communications subroutines provided with the system. The processor at the head of 
the chain then outputs the messages to the screen using a FORTRAN PRINT statement.

There is no replicator and no way to pass parameters into a task called at the 
configuration level. This lead to a separate code being produced for each processor 
in the network. The configuration language is made cumbersome by these omissions 
and coding more difficult.

The old INMOS server 'afserver' (modified by 3L) is also very much slower than 
the 'iserver' used in the occam toolset (table 4.1). This is seen in the results below. 
(Table 4.3) Timing was by accessing the transputer timers via the 3L subroutine library.

No. of loops Time/seconds
1 0.67

10 6.66
50 3332
100 66.63

Table 4.3: Coarse Farm Test for the 3L FORTRAN.

4.3.3.2 The Geometric Test.
The method of parallelism used by the author for the geometric test was that of tasks 
rather than threads. For this reason the messages in the test were organised to execute 
in a set order, differing between processors. The lack of configuration level parameters 
for the tasks lead to individual code for each processor. Like occam there are no 
communications structures provided by the system which would be appropriate for 
this test. (A farm harness is provided with the system - The Flood Fill Configurer.) The 
results of the one kilobyte &lge swap and one million floating point operation work 
loops are shown in table 4.4. The number of loops refers to whole system iterations.

4.3.3.3 Impressions of 3L Parallel FORTRAN
Parallel FORTRAN provides almost all of the features of occam through subroutines 
in libraries. It provides heavy weight, task based, parallelism and lightweight, thread
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No. of loops Time/ seconds
10 42.88

100 471.68

Table 4.4: Geometric Test for the 3L FORTRAN.

based, parallelism. The author does not like the subroutine interface as much as the 
concept of language extensions (see Par.C next). This is because much of the elegance 
of a pure parallel language (one designed for the purpose) is lost when using this 
method of accessing the parallel features of the hardware.

The configuration language is common for all 3L languages providing the ability 
to mix FORTRAN, C and Pascal. There are two major omissions in the configuration 
language which make it cumbersome. There is no way to replicate a statement in the 
configuration file and no way to pass parameters into the FORTRAN tasks. These 
omissions really cause great inconvenience.

Parallel Fortran does provide a communications harness for the farm paradigm - 
the Flood Fill Configurer. Libraries and templates for the code needing to be written by 
the applications programmer are fully covered in the documentation [26]. An example 
of the implementation of the drawing of the Mandelbrot set is also given in the manual. 
The author has had cause to investigate the use of the Flood Fill Configurer during 
the coarse of an industrial project while employed at Transputer Technology Solutions 
(see appendix F). Large initial data packets were needed for the application being used 
and the harness provided performed badly, 'freezing out' processors. Contact with 3L 
yielded the sources of the harness routing system for modification and the promise of 
a fix in the next release.

The 3L parallel FORTRAN package provides a familiar language to most program
mers with the functionality of Occam added by library subroutines. A farm harness is 
provided with the system. The configuration language is not very flexible and there is 
no provision of a makefile generator to aid code production.

4.3.4 The Par.C Language (vl.31)

The Par.C language from Parsec Developments, Leiden, Netherlands is a standard C 
system with language extensions rather than the procedural interface favoured by 3L. 
The system recognises the Kernighan and Richie C standard with some extensions de
fined by Harbison and Steele. Most of the draft ANSI C standard is also implemented 
and any exceptions are listed in the manual [27, section 3-3]. The choice of language 
extensions, as opposed to the inclusion of parallel programming facilities in special 
runtime libraries, has been made for reasons of clarity of concepts and parallel C source 
code, and also to provide the maximum of flexibility in the use of the parallel facilities.'

The language extensions consist of a channel data type and two types of statement 
[27, section 1-2]. The par statement has an optional replicator and then one or more 
program statements to be executed in parallel. This is exactly the same as Occam. The 
select statement has a number of alt statements contained in it. Each alt has a 
condition and/or an input from a channel guard. This select function implements 
the Occam ALT construct.
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The system consists of a compiler, an assembler (for GUY), a linker, a loader/server 
and a runtime system. Transparent access is given to files and the standard input/output 
from all processors in a network. Very thorough explanations of the extensions and 
examples are given in the manual text.

The Par.C bootsystem dynamically loads code by first worming the transputer 
network to find out what is there. The code loaded onto each transputer is a full 
copy of the code written. Execution on individual processors is influenced at runtime. 
In this way Par.C acts a bit like a cross between a single instruction multiple data 
(SIMD) machine and a transputer network programmed in occam (MIMDX It is a 
single program multiple data system. After the boot system worms the network it sets 
up a a system structure on each processor. This structure contains information such 
as the processor identification number and its boot link et cetera. This information 
concerning network layout can be accessed and acted upon at runtime leading to a 
true multiprocessor multiple data program [27, section 5-9].

As the program loads and starts up it goes through the following stages:

1. Boot the root transputer and investigate the available network.

2. Load the program to all processors.

3. Execute the C startup code

4. Execute the main C program

The fact that all the code is loaded to all the processors and then manipulated at 
runtime means that there is no configuration level as there is with Occam and parallel 
FORTRAN. The price paid is higher memory usage and loading of code onto a proces
sor which will not necessarily use it.

Compiler directives are used to generate code for different types of transputer. By 
default the compiler will produce code for a network consisting of a mix of T4 and 
T8 transputers. Specifying by directive that T8s only will be used greatly improves 
performance. The usual 'tricks' can be used to improve code performance [20].

No special programming support environment is supplied with Par.C. Standard 
editors are used to input source code then the tools are called from the operating system 
prompt as with most compilers.

The Par.C system may be installed on IBM PCs, sun microsystems workstations 
from the SUNS and SUN4 ranges and also under the Helios operating systems for 
tranpsuters.

4.3.4.1 The Coarse Farm Test.
The Par.C system initialises a system structure on each processor after worming the 
network. Transparent access is provided by the system to the file server from all pro
cessors. By consulting the system structure and directly calling the C print f function 
the coarse farm test is implemented. Timing of the system was by the provided runtime 
loader option to time the execution time of the system. The results of the test are shown 
in table 4.5.
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No. of loops Time/ seconds
1 200

10 3.00
50 1000
100 1700

Table 4.5: Coarse Farm Test for the Par.C Language.

4.3.4.2 The Geometric Test.
Direct link access is given by the Par.C system via function calls. The par function
language extension gives an elegant method of implementing the edge swap. No 
configuration is necessary as the worm and system structure cover this concept. The 
results for this test are in table 4.6.

No. of loops Time/seconds
10 58.00

100 562.00

Table 4.6: Geometric Test for the Par.C Language.

4.3.4.3 Impressions of Par.C
Par.C is easy to program in and is supported by excellent comprehensive documen
tation. It provides a familiar language for applications programmers with language 
extensions to cover the channel data type and the PAR and ALT constructs from Occam. 
Library functions are provided to directly access the links and most low level trans
puter features. There is no configuration level. At boot time the network is wormed 
and all the code is loaded to all the processors. A structure is setup at load time with 
system information in it (processor identification number, bootlink et cetera) which can 
be accessed at runtime to influence the running of the code on the processors. This is 
a single program, multiple data system (SPMD).

4.4 General Harnesses

There will be two general harnesses investigated in this chapter. Both were developed 
at the University of Southampton (UK) and they provide communication structures for 
Occam programs with some facilities for embedding code written in other languages. 
The Euler Cycle Configuration Language (ECCL) is a preprocessor for the Transputer 
Development System (TDS) from INMOS. It allows arbitrary interconnection between 
processes with no regard for the transputer hardware. Multiplexing of messages down 
the four serial links per transputer is handled automatically. The Virtual Channel 
Router (VCR) provides a similar system, where process interconnections are arbitrary 
for the new Occam toolset from INMOS. It is built into the compiler for the toolset
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and allows the simulation of code written for the newly announced T9000 family of 
transputers [28].

The hardware used for these tests is the same as for the language tests, shown in 
figure 4.2. As arbitrary channel connections are allowed in both systems there is no 
need to connect a chain of processors for the coarse farm test. The hardware set up for 
the geometric test allows more links to be available for the routing system provided 
by the harnesses. ECCL can be considered a research prototype where as VCR is a 
'product' of an Esprit project P2701 PUMA.

4.4.1 Euler Cycle Configuration Language (vl.08)
ECCL is a harness configuration tool which runs under the INMOS Transputer Devel
opment System TDS (D700D product). It provides through routing for an arbitrary 
network of Occam processes and was conceived to relieve the burden of consideration 
of the hardware restrictions when using transputers with the communicating processes 
style of program development.

Processes communicate through logical channels. This system was designed as 
a first step towards higher level programming languages [29] and provides synchro
nised Occam style communications. The most important feature is the decoupling of 
the physical processor network description from the programmers process network 
description. (The new Occam toolset now does a similar thing but ECCL pre-dates it.)

There is one constraint on the target hardware network and that is that it must 
be a graph on which an euler cycle can be constructed. An euler cycle traverses a 
graph completely such that each edge of the graph is traveled along exactly once. 
There are well know formal methods for constructing these cycles [30]. This theory of 
euler cycles was used at Southampton during the ESPRIT 1 project PI085 'supernode' 
to design switching strategies which are implemented in hardware in the supernode 
machines [31]. For practical purposes the ECCL will be able to construct an euler cycle 
provided there is an even number of connections in the transputer network. The host 
processor (and root transputer if desired) forms a spur off the main cycle. On the main 
euler cycle part of the network, with all transputer links connected, it can be seen that 
the cycle passes through each processor twice. Communications move round the cycle. 
This is a relatively simple loop of communications processes which can be proved to 
be deadlock free if eager readership is adhered to. When the network is heavily loaded 
communications occur only by traveling round the main euler cycle. If there is some 
spare capacity in the communications network it is possible to 'short cut' on a processor 
from its first cycle position to its second cycle position if this move is favorable. This 
is local to a processor and can be checked locally so as not to produce deadlock in 
the system. This short cutting greatly increases the communications efficiency of the 
harness.

When the ECCL configurer is run it builds in the routing necessary for the harness 
automatically. Communications are synchronised, as with occam, and because of this 
a large number of buffers and large routing tables are not needed. ECCLs memory 
usage per processor does not grow with network size.

The tool consists of a TDS executable (EXE) which takes an ECCL fold (TDS is a 
system based on a folding editor) and produces a TDS EXE and associated PROGRAM 
to implement the desired system (for explainations of PROGRAM and EXE see [24]). 
These foldsets are then compiled and configured in the usual TDS way. The users pro
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cesses (SCs) have the same restrictions as the usual TDS configuration level processes 
[24]. Interface procedures are provided to give access to the communication system 
(which must not be accessed directly) and to implement the ALT construct.

The ECCL runs under the TDS product. TDS may be installed on IBM PCs, VAX 
computers, SUN workstations, apollo workstations et cetera.

4.4.1.1 The Coarse Farm Test
Code for the processors in ECCL is written in Occam. The main difference between 
'real' Occam and writing for ECCL is that the channel access when using ECCL is by 
procedure call as opposed to direct access. Templates are provided for any code to be 
written to go in the harness via examples in the clear documentation from the author
of ECCL [29].

The major change to TDS is that the code for the whole system is written in one 
place. Traditional TDS coding involves writing an EXE to run on the root processor 
(which is also running TDS) and a PROGRAM to run on the rest of the network. ECCL 
automatically generates these two parts from a single source.

ECCL does not provide general file server access from all the processors in the 
system. For this reason code similar to that written for the new occam toolset was 
produced. The components of the message to be output were sent to the root processor 
which used the input/output libraries to perform the write to the screen. Messages in 
ECCL are all byte arrays so loading and unloading of other types of data is left to the 
user.

At the configuration level there are three parts. The NETWORK section describes 
the hardware connections (figure 4.2). The harness section describes the intercon
nections between the processes. This can bear no relation to the hardware set up. The 
process connections for the coarse farm test are shown in figure 4.3. The final PLACED 
PAR section places the processes onto the processors. Timing of the system was by 
using the occam access to the transputers timers. The results are in table 4.7.

No. of loops Time/seconds
1 OTO

10 1.21
50 7T1
100 14.47

Table 4.7: Coarse Farm Test for ECCL.

4.4.1.2 The Geometric Test
The code for this test was written in two parts. The root processor times the system 
and receives signals from the workers to achieve this. The workers do the edge swap 
and work loop. Communications in ECCL are occam like (that is synchronous) and so 
some attention to the order of message communications must be taken.

The NETWORK section for the test is unchanged from the coarse farm test. The 
processes were configured as shown in figure 4.4.
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Figure 4.3; Process Connections for the ECCL Coarse Farm Test.

Results from this test are in table 4.8. Performance is close to that of the new Occam 
toolset geometric test.

No. of loops Time/seconds
10 1529

100 16430

Table 4.8: Geometric Test for ECCL.

4.4.1.3 Impressions of ECCL
For the price of moving to a procedural communications interface total freedom of 
process connections with no regard for the hardware is gained. Performance for the 
tests is on a par with pure (new toolset) occam. Although an experimental system for 
researching whether such a system is desirable and practical ECCL provides a level of 
freedom when programming in Occam on multiple transputers under TDS which has 
only been equalled with the development of VCR, the next system investigated in this 
review.
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Figure 4.4: Process Connections for the ECCL Geometric Test.

4.4.2 Virtual Channel Router (v2.0)
In a full Occam implementation arbitrary process interconnection is implied. This 
is implemented by the INMOS standard occam compiler for a single transputer, but 
for multi-transputer systems the hardware restriction of only four links per processor 
comes into force. The Virtual Channel Router (VCR) system is the first step to im
plementing full Occam for multi-transputer systems. It does this by providing virtual 
channels and processors. It implements arbitrary message routing on a network of 
present day 32 bit transputers. The system is built into the new occam toolset which 
retains its facilities to integrate C from the INMOS compiler. An INMOS FORTRAN 
compiler will be available in the future. Installations are available for the IBM PC 
family and for SUN workstations [32].

The inspiration behind VCR is similar to ECCL. It is to facilitate movement of code 
between one hardware set up and another. It also provides a programming system for 
present day transputers which will be valid for the next generation of transputers. It 
provides in software a system which will be available in hardware when the T9000 
and its associated through routing link chip, the Cl04, become available in 1992. The 
system provides arbitrary process communication and removes the burden of writing 
the routing software from the applications programmer.

The user of the system writes standard occam processes referencing some adjusted 
libraries. These processes are then placed on virtual processors connected by virtual 
channels. Using the INMOS checker software and a router generation tool a hardware 
description is separately constructed. The resolving of the users process network 
onto the hardware processor network occurs at load time when both files are given
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as parameters. This means that VCR binaries are executable on any VCR installation 
provided a locally correct hardware description file is available.

The main components of the system are a compiler, a loader and some source 
generation tools. The main feature of VCR, as with ECCL, is the decoupling of the 
software process information from the hardware processor information.

4.4.2.1 The Coarse Farm Test
VCR provides a procedure called hosthook [32] which handles a connection between 
the host file server and an arbitrary process in the system. Any number of hosthook 
procedures may be called so any number of processes may have direct access to the 
server. VCR like ECCL allows totally arbitrary interconnections between processes 
with no regard for the hardware. Standard occam is written with the channels directly 
accessed , and this is the case with VCR as the system is built into replacement tools 
for the new occam toolset.

With direct access to the filer each worker calls the host input/output library pro
cedures (VCR supplies a replacement for this hostio library) to write the message to 
the screen. Each worker then signals to a master process which is handling the timing 
of the system. The hardware aspect of the system is handled by the routegen utility. 
Mapping of the virtual processors onto the physical processors occurs automatically 
at load time. This leaves just the process description to be written by the applications 
programmer as a VCR configuration file. The test was configured as shown in fig
ure 4.5.A 'vmakeP utility is supplied with the system to create makefiles and allow the 
automation of program building. The results of the test are shown in table 4.9.

No. of loops Time/seconds
1 0T9

10 1.53
50 7.49
100 14.93

Table 4.9: Coarse Farm Test for VCR.

4.4.2.2 The Geometric Test
The geometric test was implemented in occam and had hardware independent process 
interconnections. (Figure 4.6) The results of the geometric test for VCR are shown in 
table 4.10.

No. of loops Time/seconds
10 45T2

100 45L17

Table 4.10: Geometric Test for VCR.
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Figure 4.5: Process Connections for the VCR Coarse Farm Test.

4.4.2.3 Impressions of VCR
VCR gives the applications programmer full freedom of process interconnection with 
no change to the way he or she programs in Occam. Certain tools and libraries in the 
new Occam toolset are replaced with VCR equivalents and that is all there is to it. Any 
compiled VCR code will run on any VCR installation provided a suitable hardware 
description file is available. True portability is available through VCR. Language mix
ing is is also available (C and occam now with FORTRAN to come) to provide a truly 
flexible comprehensive system. From the general work of ECCL, VCR, aimed at the 
next generation T9000 transputers, is the way forward in transputer programming.

4.5 Programming Support Environments
These are systems which fall between the two classifications of general harness and 
operating system. A programming support environment usually does not provide an 
enclosed system like a true operating system does. It is a comprehensive set of tools 
and libraries to allow a particular progamming task to be undertaken with much of the 
burden of low level considerations removed from the applications programmer. The 
express system will be looked at in this review.

4.5.1 Express (v3.0)
The express system provides a large variety of tools and facilities packaged with three 
different compilers. The 3L C and FORTRAN systems are available plus the Logical



67

Figure 4.6: Process Connections for the VCR Geometric Test.

Systems C system. The system will run on any network of transputers, using one of 
two models. The 'cubix' model runs a server on the host computer and a transputer 
program on the transputers. This model is a single program, multiple data system 
like the Par.C system. Alternatively a specialised host program can be written for the 
transputer network to communicate with.

The system is started up in the following way:

• A configuration tool is run which worms the network to produce a hardware 
description file for the attached transputers.

• The system is then initialised. This involves booting a kernel process onto each 
processor.

When the system is set up programs may be loaded onto the processors. The 3L 
systems compile on the root transputer, and as the documentation states, are patholog
ical towards express. That is they reset the transputer network. Thus when using the 
3L systems the initialisation stage must be gone through whenever an express program 
needs to be run. The Logical Systems C compiles on the host computer, and this was 
the system used in the tests in this section.

Express is not guaranteed to be deadlock free on all networks. The documentation 
[33] claims that for loops, grids and hypercubes the system is deadlock free. An 
illustration in the manual indicates that a torus with a processor inserted into one 
of the loops (like figure 4.2) should be acceptable. The figure 4.2 hardware set up 
was, therefore, settled upon to be used for both tests, as it provides the maximum link
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connections. On trying to initialise the system, however, although the worm operated 
correctly, the loading of the kernel processes failed as the system was unable to resolve 
the multiple link connections between processors. Removing two connections allowed 
express to initialise correctly. This gave the hardware set up shown in figure 4.7.

Figure 4.7: Hardware for the Express System.

Express provides both asynchronous and 'loosely' synchronous communications. 
Multihosting large transputer networks from a local area network is possible for the 
express system and there is an extensive set of performance monitoring tools provided 
with the package.

Express can be run on any array of transputers hosted by one or more of the 
following systems:

• VMS operating system.

• Unix operating system.

• MS-DOS operating system.

4.5.1.1 The Coarse Farm Test
As with Par.C a single program, multiple data methodology is used with the express 
cubix model. The test was programmed in the loosely synchronous communications 
model. This means that message read and write orders must be paid attention to and 
that if output to the screen occurs then the message must be exactly the same from 
all processors. (Only one message will appear on the screen.) For multiple indepen
dent output to the screen a function call with the stream as a parameter allows every
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processor to write unique messages to the screen. Processor identification numbers 
and other information is available via a function call to interrogate a system structure 
on each processor. The coarse farm test is thus easily implemented. Timings of the 
system were taken on each individual processor. The longest time is shown in the 
results assuming that the four processors used in the test overlap by one hundred per 
cent when running. Full results are shown in table 4.11.

No. of loops Time/ seconds
1 0T4

10 1.26
50 6.80
100 13.86

Table 4.11: Coarse Farm Test for the Express System.

4.5.1.2 The Geometric Test
This test was implemented on four processors with individual timings as in the pre
vious section. The loosely synchronous message passing model was used. In express 
messages are passed to the processor identification number of the destination, all rout
ing is handled by the express kernel. The usual format of iterations of a loop containing 
a one kilobyte edge swap then a loop of one million floating point adds was used on 
the workers. The results of the test are shown in table 4.12.

No. of loops Time/seconds
10 55.89

100 52T24

Table 4.12: Geometric Test for the Express System.

4.5.1.3 Impressions of Express
Express provides a flexible powerful and very comprehensive toolkit for programming 
parallel systems. It is reasonable easy to write for and use. The documentation is 
extensive but slightly verbose and unclear in places. The Logical Systems C based 
package is very slow compiling even the simplest program. The author was using a 
PC XT clone but a colleague evaluating express on a system hosted by a 386 PC [34] 
has also noted the slowness of the system. Extensive performance analysis tools are 
available but these are not investigated in this thesis [34].

The debugger with the system was needed while developing the code for the tests. 
In the PC hosted version it provides its own windowing system with the familiar break 
points and single stepping features of most modern debuggers.
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4.6 Operating Systems

There are two main distributed operating systems for transputers. Both are based on 
Unix and conform to the posix standard for parallel implementations of unix. IDRIS 
provides a system which allows the programmer to work with 'raw' processors using 
INMOS and 3L development tools or by multiple C programs communicating via 
streams. Helios allows this too but has a high level parallel programming facility 
provided by the Component Distribution Language (CDL). This allows programs to be 
written in C and communication is achieved via streams or low level message passing. 
Thus you may have a number of processes on the same or different transputers running 
in parallel to produce a single result. This is termed a 'task force'. The usual unix pipe 
and a few constructs from CSP [3] are used to connect processes. It is Helios and CDL 
which will be investigated in this section.

4.6.1 Helios (vl.la)
Helios is an operating system based on unix (with posix conformity) with a high level 
parallel programming facility called CDL.

The CDL has four parallel constructs ;
• AIB provides a uni-directional pipeline.

• AoB provides a bi-directional pipeline.

• A^B runs A and B in parallel with no connections between the two defined at 
this level.

• A M IB is a farm with master process A and worker process B.

Each component of a CDL line statement runs on a separate processor, if available. 
More general component descriptions may be written in a CDL file which is then com
piled to give the desired system. The full version of CDL amounts to a configuration 
language [35].

In Helios message passing is achieved at various levels of abstraction [37]. The 
components of a CDL task force are connected together by streams. These may be 
input from or output to as either standard C streams, POSIX streams or by using the 
Helios low level message passing routines. The low level routines are the most difficult 
to use but give the least message latency [36]. The method of communication used in 
the geometric test was that of POSIX streams.

Each processors stderr stream is connected to the screen allowing diagnostic 
and other output from all the processors.

As Helios is supposed to provide a high level programming system full use of 
CDL was not made (that is there was no configuration level), but only the four one line 
parallel constructs above were considered.

4.6.1.1 The Coarse Farm Test
As direct access to the screen is available from all processors via the stderr stream 
this test was easily implemented using the C function fprintf. Timing occurred on 
individual processors as with express and each processor output its time after the test 
had finished. The CDL general parallel construct was used to define the task force. 

The results from the test are contained in table 4.13.
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No. of loops Time/ seconds
1 0T6

10 1.75
50 8.95
100 17.95

Table 4.13: Coarse Farm Test for Helios.

4.6.1.2 The Geometric Test
The geometric test task force was described using the subordinate (<>) CDL construct. 
This lead to the following stream connections between the task force member. (Fig
ure 4.8)

Figure 4.8: Stream Connections for the Helios Geometric Test.

As the CDL basic constructs do not allow connections between workers all the 
communications had to pass through the master processor. The familiar scenario of 
one kilobyte edge swaps and one million floating point adds was used.

The results are in table 4.14.

4.6.1.3 Impressions of Helios
Helios provides a completely enclosed unix like environment. Many tools may be 
run on raw processors from this environment. CDL is supplied as a high level file or
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No. of loops Time/seconds
10

100
329d5

3289.85

Table 4.14: Geometric Test for Helios.

command line based configuration language. It allows a number of C programs to be 
put together in a task force to implement a parallel solution to a problem. The editor 
supplied with the system is microemacs.

Helios message passing at the POSIX level has been proved to be very slow. This 
is the price paid for simple one line CDL commands to configure a parallel system. 
Also Helios support processes and the kernel are running on the transputer network. 
Helios is a full operating system of which only a small number of features were tested 
in this thesis.

4.7 Conclusions of the Review

A comparison of the results for the coarse farm test with one hundred loops is shown 
in table 4.15. The coarse farm harness result is extrapolated from the values in chapter 
3. The chapter 3 results were obtained from T800-17 transputers.

System Time/seconds
Coarse Farm (extrapolation) 11.24

Express 13^^
ECCL 14.47
VCR 14.93
Par.C 17.00

New Occam Toolkit 17T6
Helios 17.95

3I.I'aralldl^:MRnRv\hJ 66.63

Table 4.15: System Comparison for Coarse Farm Test with 100 loops.

All the systems perform reasonably well for screen output (no greater than eigh
teen seconds) except the 3L parallel FORTRAN. That system obviously suffers from 
the slowness of the old afserver used by 3L. Note how much faster the coarse farm 
harness is using similar compiled 3L FORTRAN code in an occam harness. The coarse 
farm harness comes out as the best because it is communicating directly to the server 
from all its processors using the server protocol.

For the geometric test there is a set of results which vary much more than the 
output test. The comparison for the geometric test with one hundred loops is shown 
in table 4.16.

As expected the occam toolset performs best. This is because occam has the closest 
relationship with the hardware. Message passing and calculation are very efficient 
when coded in occam.
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System Time/seconds
New Occam Toolkit 143.73

ECCL 16A50
Geometric Harness 36L08

VCR 45L12
3L Parallel FORTRAN 47L68

Express 52189
Par.C 562.00
Helios 3289.85

Table 4.16: System Comparison for Geometric Test with 100 loops.

The ECCL performs at a level close to that of pure occam. ECCL is very good at 
nearest neighbor communications as the processors are on a loop. The output from 
the ECCL configurer is an Occam program but it has routing and service processes 
built in. The price paid in performance here is well worth the flexibility and ease of 
programming gain^.

The geometric harness (chapter 3) had the same edge swap and calculation test 
run on it to allow comparison with the rest of the systems investigated. This is a 
3L FORTRAN based system in an occam harness and performs well showing that 
harnesses for specific paradigms are well worth producing. The routing strategy for 
the geometric harness is not ideal but the occam routing code outperforms the pure 3L 
system by a significant margin.

VCR provides a very convenient and usable system but a price is paid for this. The 
system is not optimised for nearest neighbor communication. This goes some way to 
explaining its dissappointing showing.

Both Par.C and 3L parallel FORTRAN require hand written communications code 
and deliver a disappointing performance.

Express allows random routing between processors and for this convenience the 
price is a performance one.

Helios pays a terrible price for all its simple CDL configuration and easy to use 
POSIX streams for interprocessor communications. The basic CDL construct inves
tigated mean that messages need to be routed through the master processor but the 
large execution time cannot be fully accounted for by this. Helios message passing at 
the POSIX level must be exceptionally slow.



5 Concluding Remarks

5.1 Further Work on the Coarse Farm Harness

The coarse farm harness has been very successful both in test and on a real application 
(DLA). The next step to take with the code is to implement properly an interface 
to 3L parallel pascal and parallel C. Initial work in this direction has encountered 
some problems with the way these systems communicate with the screen. Screen 
communication is achieved on a byte by byte basis. Thus a method of buffering a 
message string at source is needed to stop message garbling and subsequent deadlock.

The diffusion limited aggregation application has proved very worthwhile. Cal
culations on the results obtained indicate that a run on a large number of processors 
each with a large memory would yield data sets at a rate comparable or surpassing 
present production technologies.

5.2 Further Work on the Geometric Harness

The geometric harness has shown good functionality and has behaved as predicted 
for the implementation of a test geometric application, Conway's Game of Life. The 
functionality of the harness in its present state is basic point to point asynchronous 
message passing. This could be improved to provide higher level communications 
subroutines. These could include message passing subroutines to pass different types 
of data relieving the applications programmer of the task of packing and unpacking 
data. Subroutines should also be provided to implement the edge swap. The message 
passing strategy, although adequate for smaller networks, may suffer from problems 
of non-optima 1 routing on large networks. An implementation with a better (shortest 
route for example) routing strategy should be produced. The ability to get file access 
from the worker processors is a desirable feature which could be investigated. Con
way's Game of Life is a typical geometric application and other applications should be 
placed in the harness for evaluation.

5.3 The Need for Migration Aids

If applications programmers are to use the presently available parallel hardware they 
have to be provided with the software tools to do the job. The easier the tools are to 
use the faster the migration of code to the new technology. Parallel machines must 
be shown to be as easy, if not easier to use, as a sequential machine. With the limits 
of sequential technology being reached the only way to gain significant performance 
improvements is to use parallel hardware. Migration aids provide the first steps to 
moving to the new hardware. It should not be difficult to program a parallel machine, 
just slightly different.
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A Coarse Farm Harness Test Code and Data 
Tables

This appendix contains the coarse farm harness benchmark code and tables of all the 
results from the bench tests. The first seven tests vary the amount of work in the system 
with a constant number of processors. The last six tests keep the amount of work 
constant and vary the number of processors.

C USER FORTRAN STARTS
OK=.TRUE.

C SETUP FILE NAME
TEMP=JOBID
DFN(1) = 'D'
DFN(8)=CHAR(MOD(TEMP,10)+48)
TEMP=TEMP/10
DFN(7)=CHAR(MOD(TEMP,10)+4 8)
TEMP=TEMP/10
DFN(6)=CHAR(MOD(TEMP,10)+48)
TEMP=TEMP/10
DFN(5)=CHAR(MOD(TEMP,10)+48)
TEMP=TEMP/10
DFN(4)=CHAR(MOD(TEMP,10)+48)
TEMP=TEMP/10
DFN(3)=CHAR(MOD(TEMP,10)+48)
TEMP=TEMP/10
DFN(2)=CHAR(MOD(TEMP,10)+48)
FUN=JOBID+10

C LOAD DATA FOR TEST FILE
DO 100 C=1,MAXINDEX 

DATAl(C)=JOBID 
100 CONTINUE
C WRITE DATA FOR FILE TEST

OPEN(UNIT=FUN,FILE=DUFN,FORM='UNFORMATTED')
WRITE(FUN) DATAl 
CLOSE(FUN)

C READ DATA FOR FILE TEST
OPEN(UNIT=FUN,FILE=DUFN,FORM='UNFORMATTED')
READ(FUN) DATA2 
CLOSE(FUN)

C COMPARE DATAl AND DATA2 FOR FILE TEST
DO 200 C=1,MAXINDEX

IF (DATA1(C).NE.DATA2(C)) OK=.FALSE.
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200 CONTINUE
C REPORT RESULT OF FILE TEST

IF (OK) THEN
PRINT 'FILE I/O OK %PROCID,JOBID 
ELSE
PRINT 'FILE I/O NOT OK %PROCID,JOBID 
END IF

C LOOP FOR CALCULATION AND SCREEN OUTPUT
X=0.0 
Y=1.0
DO 10 C=l,NOLOOPS 

X=X*Y
PRINT 'HellOf world from processor %PROCID^JOBID 

10 CONTINUE
C USER FORTRAN FINISH

No. of jobs Time/seconds No. of jobs Time/seconds
0 0.02 110 3.10
10 0.30 120 3.38
20 0.58 130 3.66
30 0.86 140 3.94
40 1.14 150 4.22
50 1.42 160 4.50
60 1.70 170 4.78
70 1.98 180 5.06
80 2.26 190 5.34
90 2.54 200 5.62
100 2.82

Table A.l: Coarse Farm Benchmark Test 1.
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No. of jobs Time/seconds
0 ao2
1 031
2 0.58
3 036
4 1.14
5 T42
10 232
15 4.22
20 532
25 7.01
30 8A1

Table A.2: Coarse Farm Benchmark Test 2.

No. of jobs Time/seconds No. of jobs Time/ seconds
0 0.02 11 092
1 031 12 032
2 032 13 0.92
3 032 14 032
4 0.32 15 0.93
5 0.32 16 1.22
6 032
7 032 50 335
8 032 100 637
9 032
10 032

Table A.3: Coarse Farm Benchmark Test 3.

No. of jobs lime/seconds No. of jobs Time/seconds
0 0.02 11 9.08
1 333 12 9.08
2 334 13 9.08
3 3.04 14 9.08
4 334 15 9.09
5 3.04 16 1210
6 636 17 12.10
7 6.06 18 12.11
8 636 19 1211
9 636 20 12.11
10 6.06 21 15d3

Table A.4: Coarse Farm Benchmark Test 4.
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No. of jobs Time/ seconds
0 ao3
1 0^4
2 1.03
3 1.44
4 1.86
5 210
6 2.77
7 343
8 3.51
9 3.97
10 4.29
15 6.65
20 9.51
30 14.55
40 1926
50 2433

Table A.5: Coarse Farm Benchmark Test 5.

No. of jobs Time/seconds
0 033
1 T46
2 219
3 327
4 420
5 537
6 638
7 739
8 824
9 938
10 1044
11 1T48

Table A.6: Coarse Farm Benchmark Test 6.
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No. of jobs Time/seconds
0 ao3
1 9d9
2 1A24
3 22.07
4 30.62
5 38.96
6 47.39
7 53.61
8 5930
9 69.92
10 7708
11 92.00

Table A.7: Coarse Farm Benchmark Test 7.

No. of worker processors Time/seconds
1 588
2 582
3 5.61
4 5.61
5 582

Table A.8: Coarse Farm Benchmark Test 8.

No. of worker processors Time/seconds
1 585
2 5.61
3 5.61
4 582
5 582

Table A.9: Coarse Farm Benchmark Test 9.

No. of worker processors Time/seconds
1 30.25
2 15.14
3 1080
4 758
5 607

Table A.IO: Coarse Farm Benchmark Test 10.
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No. of worker processors Time/seconds
1 45.35
2 24d9
3 15d3
4 12T1
5 9.09

Table A.ll: Coarse Farm Benchmark Test 11.

No. of worker processors Time/seconds
1 9.59
2 7.70
3 7.23
4 6.75
5 6.65

Table A.12: Coarse Farm Benchmark Test 12.

No. of worker processors Time/seconds
1 14.31
2 10.99
3 10.92
4 10.39
5 10.14

Table A.13: Coarse Farm Benchmark Test 13.



B DLA Code for Coarse Farm Harness

The following code was run with great success in the Coarse Farm Harness. It is writ
ten for the 3L Parallel Fortran 2.0 compiler. The only non-standard (non FORTRAN??) 
features used were the bitwise addressing of data and accessing the transputers timer. 
Bitwise addressing allowed the lattice to be compacted so that each bit in the main data 
structure represents a site.

PROGRAM DLA

IMPLICIT Nome

INCLUDE 'TIMER.INC'
INTEGER JOBID,PROCID
C
C CONSTANTS
C
INTEGER XDIM,YDIM,MAXX,MAXY,DIM 
INTEGER MAXNPARTS,BLOCKSIZE,SECONDS,MINS 
PARAMETER (XDIM=7)
C 2 7 27 100 
PARAMETER (YDIM=247)
C 71 247 951 3520 
PARAMETER (MAXX=XDIM*32)
PARAMETER (MAXY=YDIM)
PARAMETER (DIM=2)
PARAMETER (MAXNPARTS=10000)
C 1000 10000 100000 1000000 
PARAMETER (BLOCKSIZE=500)
PARAMETER (SECONDS=15625)
PARAMETER (MINS=60)
C
C ALL CHANGES TO CONSTANTS MUST BE COPIED TO 
C SETBIT AND BITISSET
C
C VARIABLES
C
INTEGER F77_TIME_NOW 
C 3L LIBRARY FUNCTION 
INTEGER SPACE(XDIM.YDIM)
INTEGER XCOORD(BLOCKSIZE),YCOORD(BLOCKSIZE) 
INTEGER I,J
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INTEGER TEMP,FUN,TIME1,TIME2 
CHARACTER DFN(8)
CHARACTER*8 DUFN
EQUIVALENCE (DUFN,DFN)
LOGICAL ABOVETOP
INTEGER NPARTS,TOP,CPARTS,SENDPART 
LOGICAL STUCK,SET0,SET1,SET2,SETS 
INTEGER DTOTOP,DIREC,DELTA 
INTEGER X,Y
C
CALL GETID(PROCID)
CALL GETID(JOBID)
DO 99999 WHILE(JOBID.NE.-l)
C
C USER FORTRAN STARTS
C
C INITIALISE
C
C INIT SPACE
C
DO 100 I = 1,XDIM 

DO 200 J = 1,YDIM 
SPACE(I,J) = 0 

200 CONTINUE 
100 CONTINUE 
C
C INIT XCOORD,YCOORD 
C BUFFERS TO SEND COORDS TO FILE
C
DO 300 I = l,BLOCKSIZE 

XCOORD(I) = 0 
YCOORD(I) = 0 

300 CONTINUE
C
C SET UP FILE
C FILE IS UNFORMATTED SEQUENTIAL
C
TEMP = JOBID 
DFN(l) = 'D'
DFN(8) = CHAR(MOD(TEMP,10)448)
TEMP = TEMP / 10
DFN(7) = CHAR(MOD(TEMP,10)448)
TEMP = TEMP / 10
DFN(6) = CHAR(MOD(TEMP,10)448)
TEMP = TEMP / 10
DFN(5) = CHAR(MOD(TEMP,10)448)
TEMP = TEMP / 10
DFN(4) = CHAR(MOD(TEMP,10)448)
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TEMP = TEMP / 10
DFN(3) = CHAR(MOD(TEMP,10)+48)
TEMP = TEMP / 10
DFN(2) = CHAR(MOD(TEMP,10)+48)
FUN = JOBID +10
OPEN(UNIT=FUN,FILE=DUFN,FORM='UNFORMATTED')
C
C INIT VARIABLES 
C
C NUMBER OF PARTICLES TO PUT DOWN 
C
NPARTS = MAXNPARTS
C
C BOOLEAN ABOVE TOP OF CLUSTER
C
ABOVETOP = .TRUE.
C
C TOP OF CLUSTER
C
TOP = 0
C
C NUMBER OF PARTICLES LAYED DOWN
C
CPARTS = 0
C
C NUMBER OF PARTICLES IN SEND BUFFERS
C
SENDPART = 0
C
C START CLOCK
C
TIMEl = F77_TIME_NOW
C
C MAIN LOOP
C
DO WHILE ((CPARTS.LT.NPARTS).AND.(TOP.LT.(YDIM-4)))
C
C PRINT MESSAGE EVERY 10000 PARTICLES
C

IF (MOD(CPARTS,10000).EQ.O.AND.CPARTS.NE.O)
* WRITE (*,150) PROCID,JOBID,CPARTS 

150 FORMAT ('Processor ',12,' job ',14,
* ' put down ',18,' particles.')

C
C UPDATE COUNTS
C

CPARTS = CPARTS + 1 
SENDPART = SENDPART + 1
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C WRITE TO FILE IF BUFFERS FULL
C

IF (SENDPART.EQ.BLOCKSIZE +1) THEN 
WRITE (FUN) XCOORD,YCOORD 
SENDPART = 1

END IF 
C
C INIT PARTICLE
C

STUCK = .FALSE.
CALL RAN(X,MAXX)
X = X + 1 
Y = TOP +2

C
C WALK PARTICLE
C

DO WHILE (.NOT.STUCK)
C
C GET DIRECTION AND HOW HIGH
C

CALL RAN(DIREC,4)
DTOTOP = Y - TOP

C
IF (DTOTOP.GT.2) THEN

C
C LONG MOVES
C
C DO MOVE
C

DELTA = MOD(DTOTOP,10) + 1 
IF (DIREC.EQ.O) THEN

Y = Y + DELTA
IF (DIREC.EQ.l) THEN

Y = Y - DELTA
IF (DIREC.E0.2) THEN 

X = X + DELTA 
X = MOD(X,MAXX)

IF (DIREC.E0.4) THEN 
X = X - DELTA 
X = MOD((X+MAXX),MAXX)
IF (X.EQ.O) X = MAXX 

END IF 
C
C RESET IF TOO HIGH
C

IF (Y.GT.(TOP+100)) THEN
Y = TOP + 2
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CALL RAN(X,MAXX)
X = X + 1

END IF 
C

ELSE
C
C SHORT MOVES 
C
C DO MOVE
C

DELTA = 1
IF (DIREC.EQ.O) THEN

Y = Y + DELTA
IF (DIREC.EQ.l) THEN

Y = Y - DELTA
IF (DIREC.E0.2) THEN 

X = X + DELTA 
X = MOD(X,MAXX)

IF (DIREC.EQ.4) THEN 
X = X - DELTA 
X = MOD((X+MAXX),MAXX)
IF (X.EQ.O) X = MAXX 

END IF
0
C STUCK ??
c

IF (Y.EO.O) THEN 
STUCK = .TRUE.

ELSE
CALL BITISSET(SPACE,X,Y+1,SET0)
CALL BITISSET(SPACE,X,Y-1,SET1)
IF (MOD(X+1,MAXX).EO.O) THEN
CALL BITISSET(SPACE,MAXX,Y,SET2)

ELSE
CALL BITISSET(SPACE,(MOD(X+1,MAXX)),Y,SET2)

END IF
IF (MOD(X-1+MAXX,MAXX).EO.O) THEN 
CALL BITISSET(SPACE,MAXX,Y,SETS)

ELSE
CALL BITISSET(SPACE,(MOD((X-l+MAXX),MAXX),Y,SETS) 

END IF
STUCK = SET0.OR.SET1.OR.SET2.OR.SETS 

END IF
C
C SET BIT IF STUCK AND PUT COORDS IN BUFFERS
C

IF (STUCK) THEN 
CALL SETBIT(SPACE,X,Y)
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XCOORD(SENDPART) = X 
YCOORD(SENDPART) = Y
IF (Y.GT.TOP) TOP = Y 

END IF 
C

END IF
C

END DO
C
END DO
C
C END OF MAIN LOOP
0
C SEND ANY PARTICLES LEFT AND FINISH MESSAGE
0
IF (SENDPART.GT.O) THEN 
WRITE (FUN) XCOORD,YCOORD 

END IF
C
TIME 2 = F77_TIME__NOW
TIME2 = ABS(TIME2 - TIMEl) /SECONDS
TIMEl = TIME2 / MINS
TIME2 = TIME2 - TIMEl * MINS
WRITE (*^250) PROCID^JOBID^CPARTS
250 FORMAT ('Processor ',12,' job ',13,

* ' put down ',18,' particles total.')
WRITE (*,350) JOBID,TIMEl,TIME2
350 FORMAT ('Job ',13,15,' minutes ',13,' seconds.')
C
C USER FORTRAN FINISH
C
CALL ENDJOBO 
CALL GETID(JOBID)
99999 CONTINUE 
CALL ENDWORKO 
END



90

SUBROUTINE SETBIT(SPACE,X,Y]

IMPLICIT NONE 
C
C CONSTANTS
C
INTEGER XDIM,YDIM,MAXX,MAXY,DIM 
INTEGER MAXNPARTS,BLOCKSIZE,SECONDS,MINS 
PARAMETER (XDIM=7)
C 2 7 27 100 
PARAMETER (YDIM=247)
C 71 247 951 3520 
PARAMETER (MAXX=XDIM*32)
PARAMETER (MAXY=YDIM)
PARAMETER (DIM=2)
PARAMETER (MAXNPARTS=10000)
C 1000 10000 100000 1000000 
PARAMETER (BLOCKSIZE=500)
PARAMETER (SECONDS=15625)
PARAMETER (MINS=60)
C
C VARIABLES
C
INTEGER X,Y,MAJX,BIT 
INTEGER SPACE(XDIM,YDIM)
C
C BODY
C
BIT = MOD(X-l,32)
MAJX = ((X-l)/32) + 1
SPACE(MAJX,Y) = IBSET(SPACE(MAJX,Y),BIT)
RETURN
END
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SUBROUTINE BITISSET(SPACE,X,Y,BSET)

IMPLICIT NONE 
C
C CONSTANTS
C
INTEGER XDIM,YDIM,MAXX,MAXY,DIM
INTEGER MAXNPARTS,BLOCKSIZE,SECONDS,MINS 
PARAMETER (XDIM=7)
C 2 7 27 100 
PARAMETER (YDIM=247)
C 71 247 951 3520 
PARAMETER (MAXX=XDIM*32)
PARAMETER (MAXY=YDIM)
PARAMETER (DIM=2)
PARAMETER (MAXNPARTS=10000)
C 1000 10000 100000 1000000 
PARAMETER (BLOCKSIZE=500)
PARAMETER (SECONDS=15625)
PARAMETER (MINS=60)
C
C VARIABLES
C
INTEGER X,Y,MAJX,BIT 
INTEGER SPACE(XDIM,YDIM)
LOGICAL BSET
C
C BODY
C
BIT = MOD(X-l,32)
MAJX = ((X-l)/32) + 1
BSET = BTEST(SPACE(MAJX,Y),BIT)
RETURN
END
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SUBROUTINE RAN(NUM,NUMRAN)
C
C Hack of ran2 from Numerical Recipes,
C W.H.Press et al pl97 Cambridge Uni. Press.
C
IMPLICIT NONE 
C
C VARIABLES
C
INTEGER RAND,NUMRAN
INTEGER M,lA,IC,IFF,IR(97),J,lY,IDUM 
REAL RM,RRAND
PARAMETER (M=714025,IA=1366,IC=150889,RM=1./M) 
SAVE IDUM 
DATA IFF /O/
C
C INITIALISE
C
IF (IFF.EO.O) THEN 

IFF = 1
C PRINT *,'Enter random number seed.'

READ *,IDUM
IDUM = MOD(IC-IDUM,M)
DO 11 J = 1,97

IDUM = MOD(IA*IDUM+IC,M)
IR(J) = IDUM 

11 CONTINUE
IDUM = MOD(IA*IDUM+IC,M) 
lY = IDUM 

END IF 
C
C GENERATE
C
J = 1 + ( 97*IY) /M
IF (J.GT.97.0R.J.LT.1) J=MOD(J,97) + 1 
lY = IR(J)
RRAND = lY * RM
RAND = MOD(IMT(REAL(NUMRAN)*RRAND),NUMRAN)
IDUM = MOD(IA*IDUM+IC,M)
IR(J) = IDUM
C
RETURN
END



C Geometric Harness Benchmark Code.

This appendix contains code listings of the master, worker and library FORTRAN 
used to test the functionallity of the geometric harness. Non-standard FORTRAN was 
used to access the transputers timer in the master code. Both pieces of code fit their 
respective templates shown in section 3.3.3.

The FMASTER code, full i/o is available from this processor.

PROGRAM FMASTER

IMPLICIT NONE 
INCLUDE 'TIMER.INC^

C
INTEGER TICKS 
PARAMETER (TICKS = 15625)
INTEGER X,Y,XDIM,YDIM
INTEGER SX,SY,DX,DY,TAG,LEN,BUFFER(128)
INTEGER I,J,T1,T2 
REAL RTIME

C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

T1 = F77_TIMER_N0W()
CALL INIT(X,Y,XDIM,YDIM)

*** ALL TO ONE TEST 
DO 999 J=l,10000

DO 99 I =1,(XDIM*YDIM)
CALL GETMESS(SX,SY,TAG,LEN,BUFFER) 

99 CONTINUE 
999 CONTINUE

*** ONE TO ALL TEST 
DO 999 J=l,1000

CALL SENDMESS(1,1,5,128,BUFFER) 
CALL SENDMESS(1,2,5,128,BUFFER) 
CALL SENDMESS(2,1,5,128,BUFFER) 
CALL SENDMESS(2,2,5,128,BUFFER)

999 CONTINUE

*** ALL TO ALL TEST 
99 1=1,1000

CALL SENDMESS(0,1,5,128,BUFFER) 
CALL GETMESS(SX,SY,TAG,LEN,BUFFER)
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C CALL SENDMESS(1,1,5,128,BUFFER)
C CALL GETMESS(SX,SY,TAG,LEN,BUFFER)
C CALL SENDMESS(2,1,5,128,BUFFER)
C CALL GETMESS(SX,SY,TAG,LEN,BUFFER)
C CALL SENDMESS(1,2,5,128,BUFFER)
C CALL GETMESS(SX,SY,TAG,LEN,BUFFER)
C CALL SENDMESS(2,2,5,128,BUFFER)
C CALL GETMESS(SX,SY,TAG,LEN,BUFFER)
C 99 CONTINUE
C CALL GETMESS(SX,SY,TAG,LEN,BUFFER)
C CALL GETMESS(SX,SY,TAG,LEN,BUFFER)
C CALL GETMESS(SX,SY,TAG,LEN,BUFFER)
C CALL GETMESS(SX,SY,TAG,LEN,BUFFER)
C
C *** EDGE SWAP AND CALC TEST

DO 99 1=1,100
CALL GETMESS(SX,SY,TAG,LEN,BUFFER) 
CALL GETMESS(SX,SY,TAG,LEN,BUFFER) 
CALL GETMESS(SX,SY,TAG,LEN,BUFFER) 
CALL GETMESS(SX,SY,TAG,LEN,BUFFER) 

99 CONTINUE
CALL GETMESS(SX,SY,TAG,LEN,BUFFER) 
CALL GETMESS(SX,SY,TAG,LEN,BUFFER) 
CALL GETMESS(SX,SY,TAG,LEN,BUFFER) 
CALL GETMESS(SX,SY,TAG,LEN,BUFFER)

C
CALL SHUTDOWN(XDIM,YDIM) 
T2=F77_TIMER_NOW()
T1=T2-T1
RTIME = REAL(Tl)/REAL(TICKS)
PRINT *,RTIME

END
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The FWORKER code, this has no i/o.

PROGRAM FWORKER 

IMPLICIT NOm:

INTEGER X,Y,XDIM,YDIM
INTEGER SX,SY,DX,DY,TAG,LEN,BUFFER(128) 
INTEGER I,J
INTEGER B1(128),B2(128),B3(128),B4(128) 
INTEGER B5(128),B6(128),B7(128),B8(128) 
REAL RNUM

C
C
c
c
c
c
c
c
c
c
c
c
c
0
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

CALL INIT(X,Y,XDIM,YDIM)

*** ALL TO ONE TEST 
DO 99 1=1,10000

CALL SENDMESS(0,1,5,128,BUFFER)
99 CONTINUE

*** ONE TO ALL TEST 
DO 99 1=1,1000

CALL GETMESS(SX,SY,TAG,LEN,BUFFER) 
99 CONTINUE

*** ALL TO ALL TEST 
DO 99 1=1,1000

CALL SENDMESS(0,1,5,128,BUFFER) 
CALL GETMESS(SX,SY,TAG,LEN,BUFFER) 
CALL SENDMESS(1,1,5,128,BUFFER) 
CALL GETMESS(SX,SY,TAG,LEN,BUFFER) 
CALL SENDMESS(2,1,5,128,BUFFER) 
CALL GETMESS(SX,SY,TAG,LEN,BUFFER) 
CALL SENDMESS(1,2,5,128,BUFFER) 
CALL GETMESS(SX,SY,TAG,LEN,BUFFER) 
CALL SENDMESS(2,2,5,128,BUFFER) 
CALL GETMESS(SX,SY,TAG,LEN,BUFFER) 

99 CONTINUE
CALL SENDMESS(0,1,5,128,BUFFER)

*** EDGE SWAP AND CALC TEST

RNUM =0.0 
DO 99 I = 1,100 
DX = X-1
IF (DX.EQ.O) DX=XDIM
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9

99

CALL SENDMESS(DX,Y,1,128,B1) 
CALL GETMESS(SX,SY;TAG,LEN,B5)
DY = Y+1
IF (DY.GT.YDIM) DY=1
CALL SENDMESS(X^DY,2,128,B2)
CALL GETMESS(SX^SY,TAG,LEN,B6)
DX = X+1
IF (DX.GT.XDIM) DX=1
CALL SENDMESS(DX,Y,3,128,B3) 
CALL GETMESS(SX,SY,TAG,LEN,B7) 
DY = Y-1
IF (DY.EQ.O) DY=YDIM
CALL SENDMESS(X,DY,4,128,B4) 
CALL GETMESS(SX,SY,TAG,LEN,B4) 
DO 9 J=l,1000000 

RNUM = RNUM + 1.0 
CONTINUE
CALL SENDMESS(0,1,5^128,BUFFER) 

CONTINUE
CALL SENDMESS(0,1,5,128,BUFFER)

CALL ENDWORKO

END
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The GEOFLIB code. This code library contains the support subroutines for the 
geometric harness.

SUBROUTINE INIT (X,Y,XDIM,YDIM)

INTEGER X,Y,XDIM,YDIM

CALL CHANINMESSAGE (3,X,4)
CALL CHANINMESSAGE (3,Y,4)
CALL CHANINMESSAGE (3,XDIM,4) 
CALL CHANINMESSAGE (3,YDIM,4)

END

SUBROUTINE SENDMESS (DX,DY,TAG,LEN,BUFFER)

INTEGER DX,DY,TAG,LEN,BUFFER!*)

CALL CHANOUTMESSAGE (2,DX,4)
CALL CHANOUTMESSAGE (2,DY,4)
CALL CHANOUTMESSAGE (2,TAG,4)
CALL CHANOUTMESSAGE (2,LEN,4)
CALL CHANOUTMESSAGE (2,BUFFER,LEN*4)

END

SUBROUTINE GETMESS (SX,SY,TAG,LEN,BUFFER)

INTEGER SX,SY,TAG,LEN,BUFFER!*)

CALL CHANINMESSAGE !2,SX,4)
CALL CHANINMESSAGE !2,SY,4)
CALL CHANINMESSAGE !2,TAG,4)
CALL CHANINMESSAGE 
CALL CHANINMESSAGE

END

!2,LEN,4)
!2,BUFFER,LEN*4)
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SUBROUTINE ENDWORK ()

INTEGER SX,SY,TAG,LEN,BUFFER

CALL GETMESS(SX,SY,TAG,LEN,BUFFER) 
IF (TAG.NE.-l) TAG=TAG/0 
CALL CHANOUTMESSAGE (3,TAG,4)

END

SUBROUTINE SHUTDOWN (XDIM,YDIM) 

INTEGER XDIM,YDIM,BUFFER,I,J

10
100

DO 100 J=YDIM,1,-1 
DO 10 I=XDIM,1,-1

CALL SENDMESS(I,J,-1,1,BUFFER) 
CONTINUE 

CONTINUE
CALL CHANOUTMESSAGE (3,-1,4)

END



D Geometric Harness Life Code.

The code contained here is the FORTRAN 77 source for the FMASTER and FWORKER 
user processes for the game of life implemented in the geometric harness described in 
chapter 3.

c
c
c

c
c
c

PROGRAM FMASTER

IMPLICIT NOm:
INCLUDE "TIMER.INC'
INCLUDE "CGA.INC"

INTEGER TICKS 
PARAMETER (TICKS = 15625)
INTEGER X, Y,XDIM,YDIM
INTEGER SX,SY,DX,DY,TAG,LEN,BUFFER(128) 
INTEGER LIFE(202,202)
INTEGER I,J,K,Tl,T2,STARTX,STARTY,LOOP
REAL RTIME

T1 = F77_TIMER_N0W()
CALL INIT(X,Y,XDIM,YDIM)

*** LIFE MASTER

CALL VIDEO_MODE{MONO_80COL_TEXT_MODE)
PRINT "Geometric Harness Life"
PRINT "Version 1.0"
PRINT *,"22/8/91"
DO 100 1=1,202 

DO 10 J=l,202 
LIFE(I,J)=0 

10 CONTINUE 
100 CONTINUE

PLOT FIRST

DO 501 1=1,400
CALL GETMESS(SX,SY,TAG,LEN,BUFFER) 
STARTY= ((SY-1)*100)+1 
K=1
DO 51 J = STARTY,STARTY+100

99
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LIFE(TAG,J)=BUFFER(K)
K=K+1

51 CONTINUE
501 CONTINUE

CALL VIDEO_MODE(CGA_LORES_GRAPHICS_MODE)
DO 500 I = 2,201

DO 50 J = 2,201
CALL CGA_LORES_PLOT (1+90,J,LIFE(I,J)) 

50 CONTINUE
500 CONTINUE

CALL CGA UPDATE

C
C
C

61
601

60
600

DO 9999 LOOP=1,100 

PLOT REST 

DO 601 1=1,400
CALL GETMESS(SX,SY,TAG,LEN,BUFFER)
STARTY = ((SY-1)*100)+1
K=1
DO 61 J = STARTY,STARTY+100 

LIFE(TAG,J)=BUFFER(K)
K=K+1

CONTINUE
CONTINUE
CALL VIDEO_MODE(CGA_LORES_GRAPHICS_MODE)
DO 600 I = 2,201 
DO 60 J = 2,201

CALL CGA_LORES_PLOT (I+90,J,LIFE(I,J)) 
CONTINUE 

CONTINUE 
CALL CGA UPDATE

9999 CONTINUE
C
c
c

c
c
c
c
c
c
c
c

END OF WORK SYNCHRONIZE 

DO 999 1=1,4
CALL GETMESS(SX,SY,TAG,LEN,BUFFER) 

999 CONTINUE

RECEIVE FOR NO OUTPUT 80

DO 801 1=1,400
CALL GETMESS(SX,SY,TAG,LEN,BUFFER) 
STARTY = ((SY-1)*100)+1 
K=1
DO 81 J = STARTY,STARTY+100
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c
c
c
c
c

c
c
c

LIFE(TAG,J)=BUFFER(K)
K=K+1

81 CONTINUE 
801 CONTINUE

CALL SHUTDOWN(XDIM,YDIM)

FINISH UP

T2=F77_TIMER_NOW()
T1=T2-T1
RTIME = REAL (Tl)/REAL(TICKS)
PRINT RTIME 
PRINT a digit'
READ *,K
CALL VIDEO__MODE (MONO_80COL_TEXT_MODE)
PRINT *,'Thankyou and goodnight'

END



102

PROGRAM FWORKER

IMPLICIT NONE

INTEGER X^Y,XDIM,YDIM
INTEGER SX,SY,DX^DY,TAG,LEN,BUFFER(128)
INTEGER I,J,LOOP,COUNT
INTEGER OLD(102,102),NEW(102,102)
REAL RNUM

C
C
c
c
c

10
100

20
200

21
201

c
c
c

50

500
c

c
c
c

CALL INIT(X,Y,XDIM,YDIM)

*** LIFE WORKER 

INIT

DO 100 1=1,102 
DO 10 J=l,102 

OLD(I, J)=0 
NEW(I, J)=0 

CONTINUE 
CONTINUE
DO 200 1=2,101,10 

DO 20 J=2,101,1 
OLD(I,J)=3 

CONTINUE 
CONTINUE 
DO 201 1=2,101,1 
DO 21 J=2,101,10 

OLD (I, J)=3 
CONTINUE 

CONTINUE

PLOT FIRST

DO 500 I = 2,101 
DO 50 J = 2,101
BUFFER(J-1)=OLD(I,J)

CONTINUE
TAG=(I+((X-1)*100))
LEN=100
CALL SENDMESS(0,1,TAG,LEN,BUFFER) 

CONTINUE

DO 99 LOOP = 1,100 

EDGE SWAP
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c
c
c

DX = X-1
IF (DX.EQ.O) DX=XDIM
DO 71 I =1,100

BUFFER(I)=OLD{2, I + l)
71 CONTINUE

CALL SENDMESS(DX,Y,1,100,BUFFER)
CALL GETMESS(SX,SY,TAG,LEN,BUFFER)
DO 72 I =1,100

OLD(102,I+1)=BUFFER(I)
72 CONTINUE 

DX = X+1
IF (DX.GT.XDIM) DX=1 
DO 73 I =1,100
BUFFER(I)=OLD(101,I+l)

73 CONTINUE
CALL SENDMESS(DX,Y,1,100,BUFFER)
CALL GETMESS(SX,SY,TAG,LEN,BUFFER)
DO 74 I =1,100
OLD(1,1+1)=BUFFER(I)

74 CONTINUE 
DY = Y+1
IF (DY.GT.YDIM) DY=1 
DO 75 I =1,101
BUFFER(I)=OLD(1,101)

75 CONTINUE
CALL SENDMESS(DX,Y,1,101,BUFFER)
CALL GETMESS(SX,SY,TAG,LEN,BUFFER)
DO 76 I =1,102

OLD (I,1)=BUFFER(I)
76 CONTINUE 

DY = Y-1
IF (DY.EQ.O) DY=YDIM 
DO 77 I =1,102

BUFFER(I)=OLD(I,2)
77 CONTINUE

CALL SENDMESS(DX,Y,1,102,BUFFER)
CALL GETMESS(SX,SY,TAG,LEN,BUFFER)
DO 78 I =1,102

OLD(I,102)=BUFFER(I)
78 CONTINUE

UPDATE

300 1=2,101 
DO 30 J=2,10l 

COUNT = 0
IF (OLD(I-l,J-l).EQ.3) COUNT = COUNT +1 
IF (OLD(I-1,J).E0.3) COUNT = COUNT +1
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C
c
c

c
<

c
c
c
c
c
c
c
c
c
c
c
c
c
c

IF (OLD(I-l,J+l).EQ.3) COUNT = COUNT +1
IF (OLD(I,J-l).EQ.3) COUNT - COUNT +1
IF (OLD(I,J+l).EQ.3) COUNT =
IF (OLD(I+l^J-l).EQ.3) COUNT

(0LD(I + 1,J).E0.3) COUNT = 
(OLD(I+l,J+l).EQ.3) COUNT 
((COUNT.LT.2).OR.(COUNT.GT.3)) NEW(I,J)=0 
(COUNT.EQ.3) NEW(I,J)=3 
(COUNT.EQ.2) NEW(I,J)=OLD(I,J)

IF 
IF 
IF 
IF 
IF

30 CONTINUE
300 CONTINUE

DO 400 1=2,101 
DO 40 J=2,101

OLD(I, J)=NEW(I, J) 
40 CONTINUE
400 CONTINUE

PLOT

COUNT +1 
= COUNT +1 
COUNT +1 
= COUNT +1

DO 600 I = 2,101 
DO 60 J = 2,101
BUFFER(J-1)=NEW(I,J)

60 CONTINUE
TAG=(I+((X-l)*100))
LEN=100
CALL SENDMESS(0,1,TAG,LEN,BUFFER) 

600 CONTINUE

99 CONTINUE

SEND FOR NO OUTPUT

DO 800 I = 2,101 
DO 80 J = 2,101
BUFFER(J-1)=NEW(I,J)

80 CONTINUE
TAG=(I+((X-1)*100))
LEN=100
CALL SENDMESS(0,1,TAG,LEN,BUFFER)

800 CONTINUE

SEND A SIGNAL TO MASTER TO INDICATE END OF WORK 

CALL SENDMESS(0,1,5,1,BUFFER)

CALL ENDWORKC 
END



E Migration Aids Review Code.

A complete set of the source codes used in chapter 4 is contained here. It was thought 
that it would be useful to provide working code examples for each of the systems used 
in the review.

E.l The New Occam Toolkit.

E.l.l The Coarse Farm Test.
The coarse farm test was implemented by passing the byte array forming the message 
and the processor identification number down the chain of processors as there is no 
direct screen access from each transputer in the new occam toolset system.

The configuration file.

VAL K IS 1024 
VAL M IS K*K

NODE rootp,workerl,worker2fworkers,worker4
ARC hostlink :
NETWORK simple.network

DO
SET rootp (type, memsize :=
SET workerl (type, memsize 
SET workers (type, memsize 
SET workers (type, memsize 
SET worker4 (type, memsize 
CONNECT rootp[link][0] (HS tK)ST WITH hostlink 
CONNECT rootp[link] [3] TO workerl[link] [0] 
CONNECT workerl[link][2] TO worker2[link][0] 
CONNECT worker2[link][3] TO worker3[link][l] 
CONNECT worker3[link][2] TO worker4[link][0]

"T800", 4*M)
:= "T800", 4*M) 
:= "T800", 4*M) 

"T800", 4*M) 
:= "T800", 4*M)

NODE root,worker.1,worker.2,worker.3,worker.4 
MAPPING 

DO
MAP root ONTO rootp 
MAP worker.1 ONTO workerl 
MAP worker.2 ONTO workers 
MAP worker.3 ONTO workers 
MAP worker.4 ONTO worker4
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#INCLUDE "hostio.inc"
#USE "root.cSh"
#USE "worker.c8h"
CONFIG

CHAN OF SP fs,ts :
PLACE fs,ts ON hostlink :
[4]CHAN OF ANY downchain :
PLACED PAR
PROCESSOR root

root.proc{fs,ts,downchain[0], 0, 4)
PROCESSOR worker.1
worker.proc(downchain[0],downchain[1],1,4) 

PROCESSOR worker.2
worker.proc(downchain[1],downchain[2],2,4) 

PROCESSOR worker.3
worker.proc(downchain[2],downchain[3],3,4) 

CHAN OF ANY dummy :
PROCESSOR worker.4
worker.proc(downchain[3],dummy,4,4)
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The root Occam code for the coarse farm test with the new occam toolkit.

^INCLUDE "hostio.inc"
PROC root.proc (CHAN OF SP fs,ts,CHAN OF ANY downchain,

VAL INT id,wnum)
#USE "hostio.lib"

VAL REAL32 ticks IS 15625.0(REAL32) : 
TIMER clock :
INT X :
INT tl,t2 :
REAL32 rtime :
[271BYTE buffer :
SEO

clock ? tl
SEQ i=0 FOR 100

SEQ i=0 FOR wnum
SEO

downchain ? buffer 
downchain ? x
so.write.string(fs,ts,buffer) 
so.write.int(fs,ts, x, 0) 
so.write.string(fs,ts, "*c*n") 

clock ? t2
tl := t2-tl
rtime := (REAL32 ROUND(tl))/ticks 
so.write.real32(fs,ts,rtime,0,0)
so.exit(fs,ts,sps.success)
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The worker code for the coarse farm test with the new Occam toolkit.

fINCLUDE "hostio.inc"
PROC worker.proc (CHAN OF ANY outdownchain,indownchain,

VAL INT id,wnum)

VAL message IS "Hello world from processor " :
[27]BYTE buffer :
INT X :
SEQ j=0 FOR 100

SEQ
outdownchain ! message 
outdownchain ! id 
SEQ i=0 FOR (wnum-id)

SEQ
indownchain ? buffer 
indownchain ? x 
outdownchain ! buffer 
outdownchain ! x



E.1.2 The Geometric Test.
The geometric test configuration file.

VAL K IS 1024 
VAL M IS K*K
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NODE rootp,workerl,worker2,workers, worker4 
ARC hostlink :
NETWORK simple.network

DO
SET rootp (type, memsize :
SET workerl (type, memsize 
SET workers (type, memsize 
SET workers (type, memsize 
SET worker4 (type, memsize 
CONNECT rootp[link][0]
CONNECT rootp[link][3]

"T800", 4*M)
= "T800", 4*M)
= "T800", 4*M)
= "T800", 4*M)
= "T800", 4*M)

TO HOST WITH hostlink 
TO workerl[link][0]

CONNECT 
CONNECT workerl[link][1] 
CONNECT workerl[link][2] 
CONNECT workerl[link][3] 
CONNECT workers[link][1] 
CONNECT workers[link][3] 
CONNECT worker3[link][0] 
CONNECT worker3[link][2]

rootp[link][l] TO workers[link][2]
TO worker3[link][3] 
TO workers[link][0] 
TO workers[link][1] 
TO worker4[link][3] 
TO worker![link][1] 
TO worker![link][S] 
TO worker![link][0]

NODE root,worker.1,worker.2,worker.3,worker.4 
MAPPING 

DO
MAP root ONTO rootp
MAP worker.1 ONTO workerl 
MAP worker.2 ONTO workers 
MAP worker.3 ONTO workers 
MAP worker.4 ONTO worker!

#INCLUDE "hostio.inc"
#USE "groot.cSh"
#USE "gworker.c8h"
CONFIG

CHAN OF SP fs,ts :
CHAN OF ANY cc310,cl0c3,cll33,c3311 
CHAN OF ANY Cl220,c2012,cl331,c3113 
CHAN OF ANY c2143,c4321,c2Scl,cclS2 
CHAN OF ANY C2341,c4123,c3042,c4230 
CHAN OF ANY c3240,c4032 :
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PLACE fs,ts ON hostlink :
PLACED PAR
PROCESSOR root

root.proc(fs,ts,c22cl,ccl22,cl0c3,cc310,0,4)
PROCESSOR worker.1

worker.proc(cc310,cl0c3,c33ll,cll33,
C2012,01220,03113,01331,1,4)

PROCESSOR worker.2
worker.proo(ol220,o20l2,o4321,c2143,

00122,o22cl,04123,o2341,2,4)
PROCESSOR worker.3

worker.proo(o4230,o3042,ol331,o3113,
o4032,o3240,01133,03311,3,4)

PROCESSOR worker.4
worker.proo(o3240,o4032,o2341,c4123,

O3042,o4230,c2143,o4321,4,4)
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The root processor Occam for the new occam toolset geometric test. 

#INCLUDE "hostio.inc"
PROC root.proc (CHAN OF SP fs,ts,CHAN OF ANY llin,llout,

13in^l3out;VAL INT id,wnum)
#USE "hostio.lib"

VAL REAL32 ticks IS 15625.0 (REAIj32) :
TIMER clock :
[128]INT xl,x3 :
INT tl,t2 :
REAL32 rtime :
[27]BYTE buffer :
SEQ

clock ? tl
SEO i=0 FOR 10 
PAR 

SEQ
llin ? xl 
13out ! xl

SEQ
13in ? x3 
llout ! x3
so.write.string.nl(fs, ts,

"Hello world from processor")
clock ? t2 
tl := t2-tl
rtime := (REAL32 ROUND(tl))/ticks 
so.write.real32(fs,ts^rtime,0,0) 
so.exit (fs,ts,sps.success)
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The worker processor occam for the new occam toolset geometric test.

#INCLUDE "hostio.inc"
PROC worker.proc (CHAN OF ANY lOin,lOout,llin,llout,

12in,12out;13in,13out, 
VAL INT id,wnum)

VAL message IS "Hello world from processor " :
[27]BYTE buffer :
[128]INT xO,xl,x2,x3,x4,x5,x6, x7 :
REAL32 rnum :
SEQ 1=0 FOR 10 

SEQ 
PAR

10in ? x4 
llin ? x5 
12in ? x6 
13in ? x7 
lOout ! xO 
llout ! xl 
12out ! x2 
13out ! x3 

rnum := 0.0(REAL32)
SEQ i=0 FOR 1000000

rnum := rnum + 1.0(REAL32)
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lEJZ 3LF'arallel]F()Fm{/Lrq.
E.2.1 The Coarse Farm Test.
The 3L configuration level allows not passing of parameters thus a piece of code was 
written for each processor in the system. Like the new occam toolkit 3L parallel fortran 
does not give access to the screen to all processors so the componant parts of the 
message to be output were passed in the system.

The configration level for the 3L parallel fortran coarse farm test.

processor host 
processor zero 
processor one 
processor two 
processor three 
processor four

wire jumper host[0] zero[0] 
wire ? zero[3] one[0] 
wire ? one[2] two[0] 
wire ? two[l] three[3] 
wire ? three[2] four[0]

task afserver ins=l outs=l
task filter ins=2 outs=2 data=10k
task pO ins=3 outs=3
task pi ins=3 outs=3
task p2 ins=3 outs=3
task p3 ins=3 outs=3
task p4 ins=2 outs=2

place afserver host 
place filter ze:ro 
place pO zero 
place pi one 
place p2 two 
place p3 three 
place p4 four

connect
connect
connect
connect
connect
connect
connect
connect
connect

filter[0] afserver[O;
afserver[0] filter[0] 
p0[l] filter[1] 
filter[1] p0[l]
p0[2]
pill] 
pi [2] 
p2[l] 
p2[2]

pl[l] 
P0[2] 
p2[l] 
pi [2]
p3[l]
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connect ? p3[l] p2[2] 
connect ? p3[2] p4[l] 
connect ? p4[l] p3[2]
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The FORTRAN 77 code for the chain of processors 0..4 is shown below.

PROGRAM ZERO

IMPLICIT NOm:

INCLUDE 'TIMER.INC'

INTEGER PROCID,TICKS 
PARAMETER (PROCID = 0)
PARAMETER (TICKS = 15625) 
CHARACTER MESS(27)
INTEGER PID,I,T1/T2 
REAL RTIME

99

Tl=F77_TIMER_NOW()
99 1=1,100

CALL CHANINMESSAGE(2,MESS,27) 
CALL CHANINMESSAGE(2,PID,4) 
PRINT *,MESS,PID 
CALL CHANINMESSAGE(2,MESS,27) 
CALL CHANINMESSAGE(2,PID,4) 
PRINT *,MESS,PID 
CALL CHANINMESSAGE(2,MESS,27) 
CALL CHANINMESSAGE(2,PID,4) 
PRINT *,MESS,PID 
CALL CHANINMESSAGE(2,MESS,27) 
CALL CHANINMESSAGE(2,PID,4) 
PRINT *,MESS,PID 

CONTINUE
T2=F77_TIMER_NOW()
T1=T2-T1
RTIME = REAL(Tl)/REAL(TICKS) 
PRINT RTIME

END
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IMPLICIT NONE

INTEGER PROCID
PARAMETER (PROCID = 1) 
CHARACTER MESS(27)
INTEGER PID,I

PROGRAM ONE

99

DO 99 1=1,100
CALL CHANOUTMESSAGEd,

* 'HELLO WORLD PROCESSOR ',27)
CALL CHANOUTMESSAGE(1,PROCID,4)
CALL CHANINMESSAGE(2,MESS,27)
CALL CHANINMESSAGE(2,PID,4)
CALL CHANOUTMESSAGEd, MESS, 27)
CALL CHANOUTMESSAGE(1,PID,4)
CALL CHANINMESSAGE(2,MESS,27)
CALL CHANINMESSAGE(2,PID,4)
CALL CHANOUTMESSAGEd, MESS, 27)
CALL CHANOUTMESSAGE(1,PID,4)
CALL CHANINMESSAGE(2,MESS,27)
CALL CHANINMESSAGE(2,PID,4)
CALL CHANOUTMESSAGEd,MESS, 27)
CALL CHANOUTMESSAGE(1,PID,4)

CONTINUE

END
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PROGRAM TWO

IMPLICIT NONE

INTEGER PROCID 
PARAMETER (PROCID = 2)
CHARACTER MESS(27) 
INTEGER PID^I

99

DO 99 1=1,100
CALL CHANOUTMESSAGE(l,

* 'HELLO WORLD FROM PROCESSOR %27)
CALL CHANOUTMESSAGEd,PROCID, 4)
CALL CHANINMESSAGE(2,MESS,27)
CALL CHANINMESSAGE(2,PID,4)
CALL CHANOUTMESSAGE(l,MESS,27)
CALL CHANOUTMESSAGE(l,PID,4)
CALL CHANINMESSAGE(2,MESS,27)
CALL CHANINMESSAGE(2,PID,4)
CALL CHANOUTMESSAGE(l,MESS,27)
CALL CHANOUTMESSAGE(l,PID,4)
CONTINUE

END



118

PROGRAM THREE

IMPLICIT NOME

INTEGER PROCID 
PARAMETER (PROCID ^ 
CHARACTER MESS(27) 
INTEGER PID,I

3)

DO 99 1=1,100
CALL CHANOUTMESSAGE(1,

* 'HELLO WORLD FROM PROCESSOR ',27)
CALL CHANOUTMESSAGE(1,PROCID,4)
CALL CHANINMESSAGE(2,MESS,27)
CALL CHANINMESSAGE(2,PID,4)
CALL CHANOUTMESSAGE(1,MESS,27)
CALL CHANOUTMESSAGE(1,PID,4)

99 CONTINUE

END
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PROGRAM FOUR

IMPLICIT NONE

INTEGER PROCID
PARAMETER (PROCID = 4)
INTEGER I

DO 99 1=1,100
CALL CHANOUTMESSAGE(1,

* 'HELLO WORLD FROM PROCESSOR ',27)
CALL CHANOUTMESSAGE(1,PROCID,4)

99 CONTINUE

END
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E.2.2 The Geometric Test.
The configuration file for the geometric test. Note how the lack of replicators and the 
inablity to pass parameters causes inelegance.

processor host 
processor zero 
processor one 
processor two 
processor three 
processor four

wire
wire
wire
wire
wire
wire
wire
wire
wire
wire

jumper host[0] zero[0]
zero[11 two[2] 
zero[3] one[0] 
one[l] three[3] 
one[2] two[01
one[31 three[11 
two[11 four[31 
two[31 four[11 
three[01 four[21 
three[21 four[0]

task afserver ins=l outs=l
task filter ins=2 outs=2 c^±a=10k
task gO ins=4 outs=4
task gl ins=5 outs=5
task g2 ins=5 outs=5
task g3 ins=5 outs=5
task g4 ins=5 outs=5

place afserver host 
place filter zero 
place gO zero
place gl one
place g2 two
place g3 three
place g4 four

connect
connect
connect
connect
connect
connect
connect
connect
connect

? filter[0] afserver[O; 
? afserver[01 filter[0] 
? g0[ll filter[11 
? filter[11 g0[ll 
? go[2] gl[l] 

gl[l] g0[21 
go [31 g2[31 
g2[3] go[3] 
gT[21 g3[4]



121

connect ■p g3[4] gi[2]
connect p gi[3] g2[i]
connect p g2[i] gi[3]
connect p gl[4] g3[2]
connect p g3[2] gl[4]
connect p g2[2] g4[4]
connect p g4[4] g2[2]
connect p g2[4] g4[2]
connect p g4[2] g2[4]
connect p g3[i] g4[3]
connect p g4[3] g3[i]
connect p g3[3] g4[i]
connect p g4[i] g3[3]
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The following code is the programs for the geometric test with 3L parallel FOR-
TRAN.

PROGRAM ZERO

IMPLICIT Nome

INCLUDE 'TIMER.INC'

INTEGER PROCID,TICKS 
PARAMETER (PROCID = 0)
PARAMETER (TICKS = 15625) 
CHARACTER MESS(1024) 
INTEGER I,T1,T2 
REAL RTLME

C
99

Tl=F77_TIMER_NOW()
DO 99 1=1,10

CALL CHANINMESSAGE(2,MESS,1024) 
CALL CHANOUTMESSAGE(3,MESS,1024) 
PRINT 'HELLO 3'

CALL CHANINMESSAGE(3,MESS,1024) 
CALL CHANOUTMESSAGE(2,MESS,1024) 
PRINT 'HELLO 1'

CONTINUE
T2=F77_TIMER_NOW()
T1=T2-T1
RTIME = REAL(Tl)/REAL(TICKS)
PRINT RTIME

END
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IMPLICIT

INTEGER PROCID 
PARAMETER {PROCID = 1) 
CHARACTER MESS1(1024) 
CHARACTER MESS2(1024) 
CHARACTER MESS3(1024) 
CHARACTER MESS4(1024) 
CHARACTER MESS5(1024) 
CHARACTER MESS6(1024) 
CHARACTER MESS?(1024) 
CHARACTER MESS8(1024) 
INTEGER I,J,T1,T2 
REAL R1

PROGRAM ONE

999
99

DO 99 1=1,10
CALL CHANOUTMESSAGE(1,MESS1,1024) 
CALL CHANINMESSAGE(1,MESS5,1024) 
CALL CHANOUTMESSAGE(3,MESS3,1024) 
CALL CHANINMESSAGE(3,MESS7,1024) 
CALL CHANOUTMESSAGE(2,MESS2,1024) 
CALL CHANINMESSAGE(2,MESS6,1024) 
CALL CHANOUTMESSAGE(4,MESS4,1024) 
CALL CHANINMESSAGE(4,MESS8,1024) 
DO 999 J=l,1000000 

R1 = R1 + 1.0 
CONTINUE 

CONTINUE

END
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IMPLICIT NONE

INTEGER PROCID 
PARAMETER (PROCID = 2) 
CHARACTER MESS1(1024) 
CHARACTER MESS2(1024) 
CHARACTER MESS3(1024) 
CHARACTER MESS4{1024) 
CHARACTER MESS5(1024) 
CHARACTER MESS6(1024) 
CHARACTER MESS?(1024) 
CHARACTER MESS8(1024) 
INTEGER I,J:T1,T2 
REAL R1

PROGRAM TWO

999
99

DO 99 1=1,10
CALL CHANINMESSAGE(3,MESS7,1024) 
CALL CHANOUTMESSAGE(3,MESS3,1024) 
CALL CHANINMESSAGE(1,MESS5,1024) 
CALL CHANOUTMESSAGE(1,MESS1,1024) 
CALL CHANOUTMESSAGE(2,MESS2,1024) 
CALL CHANINMESSAGE(2,MESS6,1024) 
CALL CHANOUTMESSAGE(4,MESS4,1024) 
CALL CHANINMESSAGE(4,MESS8,1024) 
DO 999 J=l,1000000 

R1 = R1 + 1.0 
CONTINUE 

CONTINUE

END
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IMPLICIT NONE

INTEGER PROCID 
PARAMETER (PROCID = 3] 
CHARACTER MESS1(1024) 
CHARACTER MESS2(1024) 
CHARACTER MESS3(1024) 
CHARACTER MESS4(1024) 
CHARACTER MESS5(1024) 
CHARACTER MESS6(1024) 
CHARACTER MESS7(1024) 
CHARACTER MESS8(1024) 
INTEGER I,J,T1/T2 
REAL R1

PROGRAM THREE

999
99

DO 99 1=1,10
CALL CHANOUTMESSAGE(1,MESS1,1024) 
CALL CHANINMESSAGE(1,MESS5,1024) 
CALL CHANOUTMESSAGE(3,MESS3,1024) 
CALL CHANINMESSAGE(3,MESS7,1024) 
CALL CHANINMESSAGE(4,MESS8,1024) 
CALL CHANOUTMESSAGE(4,MESS4,1024) 
CALL CHANINMESSAGE(2,MESS6,1024) 
CALL CHANOUTMESSAGE(2,MESS2,1024) 
DO 999 J=l,1000000 

R1 = R1 + 1.0 
CONTINUE 

CONTINUE

END
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IMPLICIT NONE

INTEGER PROCID 
PARAMETER (PROCID = 4]
CHARACTER MESS1(1024) 
CHARACTER MESS2(1024) 
CHARACTER MESS3(1024) 
CHARACTER MESS4(1024) 
CHARACTER MESS5(1024) 
CHARACTER MESS6(1024) 
CHARACTER MESS?(1024) 
CHARACTER MESS8(1024) 
INTEGER I,J,T1,T2 
REAL R1

PROGRAM FOUR

999
99

DO 99 1=1,10
CALL CHANINMESSAGE(3,MESS7,1024) 
CALL CHANOUTMESSAGE(3,MESS3,1024) 
CALL CHANINMESSAGE(1,MESS5,1024) 
CALL CHANOUTMESSAGE(1,MESS1,1024) 
CALL CHANINMESSAGE(4,MESS8,1024) 
CALL CHANOUTMESSAGE(4,MESS4,1024) 
CALL CHANINMESSAGE(2,MESS6,1024) 
CALL CHANOUTMESSAGE(2,MESS2,1024) 
DO 999 J=l,1000000 

R1 = R1 + 1.0 
CONTINUE 

CONTINUE

END
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E.3 PaT.C.

E.3.1 The Coarse Farm Test.
The Par.C language allows transparent access to the screen. Note how much more 
elegent and simple the code for the coarse farm test is compared to the two previous 
examples in this appendix

linclude <stdio.h> 
tinclude <system.h>
SYSTEM sys;

int main()
{
int i;
GetSysInfo( &sys ); 
if (sys.Tn!=l){
for(i=l;i<=50;++i)
printf("Hello world from transputer %d\n",(sys.Tn-1))
}

}
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E.3.2 The Geometric Test.
The inclusion of language extansions and the single program multiple data model of 
Par.C produces compact and readable code. The geometric test code is shown below.

tinclude <stdio.h> 
#include <system.h> 
#pragma fpu
SYSTEM sys;

int main()
{
int i,j,count; 
float rnum; 
char messageO[1024] 
char messagel[1024] 
char message2[1024] 
char messages[1024] ; 
char message4[1024]; 
char messages[1024 
char messages[1024; 
char message?[1024];
GetSysInfo( &sys ); 
if (sys.Tn!=l){
for(i=l;i<=10;++i){ 

par{
SendLink(0,SmessageO,1024); 
RecvLink(0,&message4,1024); 
SendLink(1,Smessagel,1024); 
RecvLink(1,SmessageS,1024); 
SendLink(2,&message2,1024); 
RecvLink(2,SmessageS,1024); 
SendLink(3,SmessageS,1024); 
RecvLink(3,&message7,1024);
}

rnum == 0.0;
for(count=l;count<=1000000;count++) 
rnum=rnum + 1.0;

}
}

else {
for(i=l;i<=10;++i)

par{
{
/*printf{"hello l\n");*/ 
RecvLink(1,SmessageO,1024); 
SendLink(3,SmessageO,1024);
}
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{

RecvLink(3,Smessagel,1024); 
SendLink(1,Smessagel,1024); 
}

}

printf("hello\n"l
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E.4 ECCL

E.4.1 The Coarse Farm Test
The ECCL configuration for the coarse farm test.

VAL network.size IS 5
VAL host.id IS 0 :

SC host goes here 
SC worker goes here

PROGRAM
NETWORK SIZE 

PAR
network.size

CONNECT PROCESSOR 0 LINK 3 TO PROCESSOR 1 LINK 0
CONNECT PROCESSOR 0 LINK 1 TO PROCESSOR 2 LINK 2
CONNECT PROCESSOR 1 LINK 1 TO PROCESSOR 3 LINK 3
CONNECT PROCESSOR 1 LINK 2 TO PROCESSOR 2 LINK 0
CONNECT PROCESSOR 1 LINK 3 TO PROCESSOR 3 LINK 1
CONNECT PROCESSOR 2 LINK 1 TO PROCESSOR 4 LINK 3
CONNECT PROCESSOR 2 LINK 3 TO PROCESSOR 4 LINK 1
CONNECT PROCESSOR 3 LINK 0 TO PROCESSOR 4 LINK 2
CONNECT PROCESSOR 3 LINK 2 TO PROCESSOR 4 LINK 0

HARNESS
PAR i - 0 FOR network.size -1

PAR
CONNECT PROCESSOR (i+1) OUTPUT 0 TO 

PROCESSOR 0 INPUT i 
CONNECT PROCESSOR 0 OUTPUT i TO 

PROCESSOR (i+I) INPUT 0
PLACED PAR
PROCESSOR 0 T8

PREDEF CHAN OF INT keyboard :
PREDEF CHAN OF ANY screen : 
host (keyboard, screen)

PLACED PAR i = 0 FOR network.size - 1 
PROCESSOR i + 1 T8 
worker (i+1)
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PROC host ([4]CHAN OF ANY OUTPUT, [4]CHAN OF ANY INPUT, 
VAL INT PROC.ID, VAL []INT FLAG,
CHAN OF INT keyboard, CHAN OF ANY screen)

#USE euser 
#USE userio
VAL REAL32 ticks IS 15625.0(REAL32) :
TIMER clock :
INT pid,error,bytes.unsent,bytes.got,tl, t2 :
[27]BYTE mess :
REAL32 rtime :
SEQ

clock ? tl
SEO i=0 FOR 100 

SEQ i=0 FOR 4 
SEQ

input.message(i,error,bytes.unsent,
bytes.got,mess,FLAG)

[4]BYTE pnum RETYPES pid :
SEQ
input.message(i,error, bytes.unsent,

bytes.got,pnum,FLAG) 
write.full.string (screen, mess ) 
write.int (screen,pid,0) 
newline (screen) 

clock ? t2 
tl := t2 -tl
rtime := (REAL32 ROUND(tl)) / ticks
write.real32 (screen,rtime,0,0) 
newline (screen)
SEQ

newline (screen)
write.full.string (screen, "Terminate harness...") 
newline (screen)
terminate.harness (0, error, FLAG)

INT any :
SEQ

newline (screen) 
newline (screen) 
write.full.string (screen,

"Press <any> to return to TDS")
keyboard ? any
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The worker code for the coarse farm test with ECCL.

PROC worker ([1]CHAN OF ANY OUTPUT, [1]CHAN OF ANY INPUT, 
VAL INT PROC.ID, VAL []INT FLAG,
VAL INT pid)

#USE euser
INT error,bytes.unsent,pn :
VAL message IS "Hello world from processor " :
SEQ
pn pid
SEO i=0 FOR 100 

SEQ
output.message (0,error,bytes.unsent,message,FLAG) 
[4]BYTE pnum RETYPES pn :
output.message (0,error,bytes.unsent,pnum,FLAG)
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The configuration level for the geometric test with ECCL.
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VAL network.size IS 5 :
VAL host.id IS 0 :

SC host goes here 
SC worker goes here 

PROGRAM
NETWORK SIZE = network.size 

PAR
CONNECT PROCESSOR 0 LINK 3 TO PROCESSOR 1 LINK 0
CONNECT PROCESSOR 0 LINK 1 TO PROCESSOR 2 LINK 2
CONNECT PROCESSOR 1 LINK 1 TO PROCESSOR 3 LINK 3
CONNECT PROCESSOR 1 LINK 2 TO PROCESSOR 2 LINK 0
CONNECT PROCESSOR 1 LINK 3 TO PROCESSOR 3 LINK 1
CONNECT PROCESSOR 2 LINK 1 TO PROCESSOR 4 LINK 3
CONNECT PROCESSOR 2 LINK 3 TO PROCESSOR 4 LINK 1
CONNECT PROCESSOR 3 LINK 0 TO PROCESSOR 4 LINK 2
CONNECT PROCESSOR 3 LINK 2 TO PROCESSOR 4 LINK 0

HARNESS
PAR i - 0 FOR network.size -1

PAR
CONNECT PROCESSOR (i+1) OUTPUT 0 TO 

PROCESSOR 0 INPUT i 
CONNECT PROCESSOR 0 OUTPUT i TO 

PROCESSOR (i+1) INPUT 0
PAR

CONNECT PROCESSOR 1 OUTPUT 1 TO PROCESSOR 2 INPUT 1
CONNECT PROCESSOR 2 OUTPUT 1 TO PROCESSOR 1 INPUT 1
CONNECT PROCESSOR 3 OUTPUT 1 TO PROCESSOR 4 INPUT 1
CONNECT PROCESSOR 4 OUTPUT 1 TO PROCESSOR 3 INPUT 1
CONNECT PROCESSOR 1 OUTPUT 2 TO PROCESSOR 3 INPUT 2
CONNECT PROCESSOR 3 OUTPUT 2 TO PROCESSOR 1 INPUT 2
CONNECT PROCESSOR 2 OUTPUT 2 TO PROCESSOR 4 INPUT 2
CONNECT PROCESSOR 4 OUTPUT 2 TO PROCESSOR 2 INPUT 2

PLACED PAR
PROCESSOR 0 T8

PREDEF CHAN OF INT keyboard : 
PREDEF CHAN OF ANY screen : 
host (keyboard, screen)

PLACED PAR i = 0 FOR network.size 
PROCESSOR i + 1 T8 

worker (i+1)
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PROC host ([4]CHAN OF ANY OUTPUT, [4]CHAN OF ANY INPUT, 
VAL INT PROC.ID, VAT []INT FLAG,
CHAN OF INT keyboard, CHAN OF ANY screen) 

#USE euser 
#USE userio
VAL REAL32 ticks IS 15625.0(REAL32) :
TIMER clock :
INT pid,error,bytes.unsent,bytes.got, tl, t2 :
[27]BYTE mess :
REAL32 rtime :
SEO

clock ? tl
SEQ i=0 FOR 10 

SEQ i=0 FOR 4 
SEQ

input.message(i,error,bytes.unsent,
bytes.got,mess,FLAG)

[4]BYTE pnum RETYPES pid :
SEQ
input.message(i,error,bytes.unsent,

bytes.got,pnum,FLAG) 
write.full.string (screen, mess ) 
write.int (screen,pid,0) 
newline (screen)

SEQ i=0 FOR 4 
SEQ
input.message(i,error,bytes.unsent,

bytes.got,mess,FLAG)
[4]BYTE pnum RETYPES pid :
SEQ
input.message(i,error,bytes.unsent,

bytes.got,pnum,FLAG) 
write.full.string (screen, mess ) 
write.int (screen,pid,0) 
newline (screen) 

clock ? t2 
tl := t2 -tl
rtime := (REAL32 ROUND(tl)) / ticks 
write.real32 (screen,rtime,0,0) 
newline (screen)
SEQ

newline (screen)
write.full.string (screen, "Terminate harness...")
newline (screen)
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terminate.harness (0, error, FLAG)
INT any :
SEQ

newline (screen) 
newline (screen) 
write.full.string (screen,

"Press <any> to return to TDS")
keyboard ? any
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The worker code for the ECCL geometric test.

PROC worker ([3]CHAN OF ANY OUTPUT, [3]CHAN OF ANY INPUT,
VAL INT PROC.ID, VAL []INT FLAG,
VAL INT pid)

#USE euser
INT error,bytes.got,bytes.unsent,pn :
VAL message IS "Hello world from processor " :
[1024]BYTE mess0,messl,mess2,mess3,mess4,mess5,mess6,mess7 : 
REAL32 rnum :
SEO
pn := pid
SEQ i = 0 FOR 10 

SEQ 
IF

((pid = 1) OR (pid = 3) )
SEO
output.message (1,error,bytes.unsent,messO,FLAG) 
output.message (1,error,bytes.unsent,messl,FLAG) 
input.message (1,error,bytes.unsent,

bytes.got,mess4,FLAG) 
input.message (1,error,bytes.unsent,

bytes.got,mess5,FLAG)
TRUE

SEQ
input.message (1,error,bytes.unsent,

bytes.got,mess4,FLAG) 
input.message (1,error,bytes.unsent,

bytes.got,mess5,FLAG)
output.message (1,error,bytes.unsent,messO,FLAG) 
output.message (1,error,bytes.unsent,messl,FLAG) 

IF
(pid < 3)
SEQ
output.message (2,error,bytes.unsent,mess2,FLAG) 
output.message (2,error,bytes.unsent,mess3,FLAG) 
input.message (2,error,bytes.unsent,

bytes.got,mess6,FLAG) 
input.message (2,error,bytes.unsent,

bytes.got,mess7,FLAG)
TRUE

SEQ
input.message (2,error,bytes.unsent,

bytes.got,mess6,FLAG)
input.message (2,error,bytes.unsent,

bytes.got,mess7,FLAG)
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output.message (2,error,bytes.unsent,mess2,FLAG) 
output.message (2,error,bytes.unsent,mess3,FLAG)

rnum := 0.0(REAIj32)
SEQ i = 0 FOR 1000000

rnum := rnum + 1.0(REAL32) 
output.message (0,error,bytes.unsent,message,FLAG)
[4]BYTE pnum RETYPES pn :
output.message (0,error,bytes.unsent,pnum,FLAG) 

output.message (0,error,bytes.unsent,message,FLAG)
[4]BYTE pnum RETYPES pn :
output.message (0,error,bytes.unsent,pnum,FLAG)
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E.5 VCR.

E.5.1 The Coarse Farm Test
The VCR configuration for the coarse farm test.

#INCLUDE "hostio.inc"
VAL wnum IS 4 :
[wnum]CHAN OF ANY to.root :
[wnum+l]CHAN OF SP fs,ts :
[wnum+l]CHAN OF BOOL stopper :
PLACED PAR
PROCESSOR 0 T8

#USE "hosthook.cSx"
"root.cGh"

PAR
root.proc (fs[0]yts[0],to.root[0]^to.root[1]^ 

to.root[2]f to.root[3],0,wnum) 
[]CHAN OF SP fs IS fs :
[]CHAN OF SP ts IS ts :
[]CHAN OF BOOL stopper IS stopper :
PAR i = 0 FOR (wnum+1)

hosthook (fs[i],ts[i],stopper[i])
PLACED PAR i=l FOR wnum 

PROCESSOR i T8
#USE "worker.cah"
worker.proc (fs[i],ts[i],to.root[i-1],i,wnum)
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The root process for the VCR coarse farm test.

eiNCLUDE "hostio.inc"
PROC root.proc (CHAN OF SP fs,ts,

CHAN OF ANY fromO,froml,from2,from3, 
VAL INT id,wnum)

#USE "vhostio.lib"

VAL REAL32 ticks IS 15625.0(REALSZ) 
TIMER clock :
INT x0,xl,x2,x3 :
INT tl^t2 :
REAL32 rtime :
SEO

clock ? tl
PAR

fromO ? xO
froml ? xl 
from2 ? x2 
from! ? x3 

clock ? t2 
tl := t2-tl
rtime := (REAL32 ROUND(tl))/ticks
so.write.real32(fs,ts,rtime,0,0)
so.exit(fs,ts,sps.success)
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The worker code for the coarse farm test with VCR.

^INCLUDE "hostio.inc"
PROC worker.proc (CHAN OF SP fs,ts,CHAN OF ANY to.root,

VAL INT id,wnum)

#USE "vhostio.lib"
SEQ

SEQ i=0 FOR 100 
IF

id=l
so.write.string.nl (fs,ts,

"Hello world from processor 1")
id=2
so.write.string.nl (fs,ts,

"Hello world from processor 2")
id-3
so.write.string.nl {fs,ts,

"Hello world from processor 3")
id=4
so.write.string.nl (fs,ts,

"Hello world from processor 4")
to.root ! id
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E.5.2 The Geometric Test
The VCR configuration for the geometric test.

eiNCLUDE "hostio.inc"
VAL wnum IS 4 :
VAL index IS [[0,3],[1,0],[2,1],[3,2]] :
[wnum]CHAN OF ANY to.root :
[wnum]CHAN OF ANY loop.up :
[wnum]CHAN OF ANY loop.down :
[wnum+l]CHAN OF SP fs,ts :
[wnum+l]CHAN OF BOOL stopper :
PLACED PAR
PROCESSOR 0 T8

#USE "hosthook.c8x"
#USE "groot.cSh"
PAR

root.proc (fs[0],ts[0],to.root[0],to.root[1], 
to . root [2], to. root [3], 0, wnum)

[]CHAN OF SP fs IS fs :
[]CHAN OF SP ts IS ts :
[]CHAN OF BOOL stopper IS stopper :
PAR i = 0 FOR (wnum+1)
hosthook (fs[i],ts[i],stopper[i])

PLACED PAR i=l FOR wnum 
PROCESSOR i T8

#USE "gworker.c8h"
VAL xi IS index[i-l][0] :
VAL yi IS index[i-l][l] :
worker.proc (fs[i],ts[i],loop.up[xi],loop.down[xi], 

loop.down[yi],loop.up[yi], 
to.root[i-1],i,wnum)
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The root Occam for the VCR geometric test.

^INCLUDE "hostio.inc"
PROC root.proc (CHAN OF SP fs,ts,

CHAN OF ANY fromO,froml,from2,fromS, 
VAL INT id,wnum)

#USE "vhostio.lib"

VAE REAL32 ticks IS 15625.0 (REAIj32) 
TIMER clock :
[256]INT x0,xl,x2,x3 :
INT tl,t2 :
REAL32 rtime :
SEQ

clock ? tl 
PAR

fromO ? xO 
froml ? xl 
from2 ? x2 
from3 ? x3

clock ? t2
tl := t2-tl
rtime := (REAL32 ROUND(tl))/ticks
so.write.real32(fs,ts,rtime,0,0) 
so.exit(fs,ts,sps.success)
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The worker code for the geometric test with VCR.

iINCLUDE "hostio.inc"
PROC worker.proc (CHAN OF SP fs,ts,

CHAN OF ANY xout,xin,yout,yin,to.root, 
VAL INT id,wnum)

#USE "vhostio.lib"
[256]INT b0,bl,b2,b3,b4,b5,b6,b7,b8
REAL32 rnum :
SEQ

SEO i=0 FOR 100 
SEO 
PAR 

SEQ
xout ! bO 
xout ! bl

SEO
yout ! b2
yout ! b3

SEQ
xin ? b4 
xin ? b5

SEQ
yin ? b6
yin ? b7

rnum := 0.0(REAL32)
SEQ i=0 FOR 1000000

rnum := rnum + 1.0(REAL32)
to.root ! b8
so.write.string.nl (fs,ts,"Done")
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E.6 Express.

E.6.1 The Coarse Farm Test
The coarse farm C for the Express system.

#include "express.h" 
#include <stdio.h>

struct nodenv env;

main()
{
long tl,t2; 
int i;
tl=extime(); 
exparam(&env); 
fmulti(stdout); 
for(i=l;i<=l;++i)
printf("Hello world from processor 
fflush(stdout); 
t2=extime(); 
tl=t2-t1;
printf("%d %d\n",env.procnum,tl);
exit(O);

}

^d\n",env.procnum)
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E.6.2 The Geometric Test.
The geometric test code for the Express system.

#include "express.h" 
tinclude <stdio.h>

main()
{

struct nodenv env; 
long tl,t2; 
int i,j,count,loop; 
float mum;
int length,psrc,ptype; 
int dest,type; 
char messageO[1024] ; 
char messagel[1024] ; 
char message2[1024] ; 
char messages[1024] ; 
char message4[1024]; 
char messages[1024]; 
char messages[1024]; 
char message?[1024]; 
type = 5; 
ptype = 5; 
tl=extime(); 
exparam(&env) ; 
fmulti(stdout) ; 
for(loop=l;loop<=100;++loop){ 
if (env.procnum==0){ 

psrc = DONTCARE ; 
dest = 1;
exwrite(messageO,1024,&dest,&type); 
exread(message4,1024,&psrc,&ptype); 
exwrite(messagel,1024,&dest,&type); 
exread(messages,1024,Spsrc,Sptype); 
dest = 2 ; 
psrc = DONTCARE ;
exwrite(message2,1024,&dest,&type); 
exread(messages,1024,&psrc,&ptype);
exwrite(messages,1024,&dest,Stype); 
exread(message?,1024,&psrc,&ptype);

}
else if (env.procnum==l){ 

dest = 0;
psrc = DONTCARE ;
exwrite(messageO,1024,&dest,&type); 
exread(message4,1024,Spsrc,sptype);
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exwrite(messagel,1024,&dest,stype)
exread(message5,1024,&psrc,&ptype)
dest = 3;
psrc = DONTCARE ;
exwrite{message2,1024,Sdest,Stype) 
exread(message6,1024,&psrc,&ptype) 
exwrite(messages,1024,&dest,Stype) 
exread(message?,1024,Spsrc,&ptype)

}

else if (env.procnum==2){ 
dest = 3;
psrc = DONTCARE ;
exwrite(messageO,1024,sdest,stype) 
exread(message4,1024,&psrc,&ptype) 
exwrite(messagel,1024,&dest,&type) 
exread(messages, 1024,Spsrc, sptype) 
dest = 0; 
psrc = DONTCARE ;
exwrite(messages,1024,Sdest,&type) 
exread(messages,1024,Spsrc,Sptype) 
exwrite(messages, 1024,&dest, &type) 
exread(message?,1024,Spsrc,Sptype)

}

else if (env.procnum—3) { 
dest = 2;
psrc = DONTCARE ;
exwrite(messageO,1024,Sdest,stype) 
exread(message4,1024,&psrc,Sptype) 
exwrite(messagel,1024,&dest,stype) 
exread(messages,1024,&psrc,Sptype) 
dest = 1; 
psrc = DONTCARE ;
exwrite(messages,1024,&dest,&type) 
exread(messages,1024,&psrc,&ptype) 
exwrite(messages,1024,&dest,Stype) 
exread(message?,1024,Spsrc,sptype)

}

rnum = 0.0;
for(count=1;count<=1000000;++count)

rnum rnum + 1.0;
}

fflush(stdout); 
t2=extime();
tl=t2-tl;
printf("finished %d 
exit (0);

%d\n",env.procnum,tl)
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E.7 Helios.

E.7.1 The Coarse Farm Test.
The following single line configures the processors for the coarse farm test in helios 
using the CDL.

hello [3] hello

The code run under helios for the hello test follows :

#include <stdio.h> 
linclude <nonansi.h>

int mainO 
{
int i,tl,t2; 
tl=_cputime(); 
for(i=l;i<=100;++i)
fprintf(stderr,"Hello world from processor %d\n"fO)
t2=_cputime(); 
tl=t2-tl;
fprintf(stderr,"%d\n",tl);
}
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E.7.2 The Geometric Test.
The geometric test was configured with the following CDL 

master ( , [4] <> worker)

The code was split into two parts. The master code :

tinclude <stdio.h> 
^include <syslib.h> 
#include <helios.h> 
finclude <nonansi.h>
iinclude <POSIX.h>

int main ()
{

int tl,t2,n,result;
char buffi[1024],buff2[1024],buffs
char buff5[1024],buff6[1024],buff?
tl=_cputime(); 
for(n=l;n<=10;++n){ 
result 
result 
result 
result 
result 
result 
result 
result 
result 
result 
result 
result 
result 
result 
result 
result 
result 
result 
result 
result 
result 
result 
result 
result 
result

1024],buff4[1024] 
1024],buffo[1024]

read(4,buff1,1024); 
read(4,buff2,1024); 
read(6,buff3,1024); 
read(6,buff4,1024); 
read(8,buffs,1024); 
read(8,buffs,1024); 
read(10,buff7,1024); 
read(10,buffs,1024); 
write(5,buff3,1024); 
write(5,buff4,1024); 
write(7,buffi,1024); 
write(7,buff2,1024); 
write(9,buff?,1024); 
write(9,buffo,1024); 
write(11,buffs,1024); 
write(11,buff6,1024); 
read(4,buffi,1024); 
read(4,buff2,1024); 
read(6,buff3,1024); 
read(6,buff4,1024); 
read(8,buffs,1024); 
read(8,buff6,1024); 
read(10,buff7,1024); 
read(10,buff8,1024); 
write(S,buffs,1024);
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result = 
result = 
result = 
result = 
result = 
result = 
result = 
printf(" 
}
result = 
result = 
result = 
result = 
t2=_cput 
tl=t2-tl 
printf ( 
}

write(5,buff6,1024); 
write(7,buff?,1024); 
write(7,buffs, 1024) ; 
write(9,buffi,1024); 
write(9,buff2,1024); 
write (11,buff3, 1024); 
write(11,buff4,1024);

Hello %d\n",n);

read(4,buff1,1); 
read(6,buff1,1); 
read(8,buff1,1); 
read(10,buff1,1); 
ime();

"Hello from master %d\n",tl)
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The worker code:

tinclude <stdio.h> 
#include <syslib.h> 
#include <helios.h>
*include <POSIX.h>

int main ()
{
int i,n,result;
char messl[1024],mess2[1024],mess3[1024],mess4[1024]
char mess5[1024],mess6[1024],mess7[1024],mess8[1024]
float mum;
for(n=l;n<=10;++n){
result = write(l,messl,1024);
result = write(l,mess2,1024);
result = read(0,mess5,1024);
result = read(0,mess6,1024);
result = write(l,mess3,1024);
result = write{l,mess4,1024);
result = read(0,mess7,1024);
result = read(0,mess8,1024);
rnum - 0.0;
for(i=l;i<=1000000;++i)
rnum - rnum + 1.0;
}
result = write(If mess1,1);
}



F List of Company Addresses.

The company addresses here are the sources for all the software used or mentioned in 
this thesis and the various employers of the author during the work.

The software was from:

(Hardware, Occam toolsets)

INMDS Limited
1000 Aztec West
Almondsbury
Bristol
BS12 4S0 
UK.

Tel. 0454 616616

(Transputer Ada)

Alsys Limited 
Partridge House 
Newtown Road 
Henley-on-Thames
RG9 lEN 
UK.

Tel. 0491 579090

(Transputer FORTRAN, C and Pascal compilers)

3L Limited 
Peel House
Ladywell 
Livingston 
EH54 6AG 
UK.

Tel. 0506 415959

151



152

(Transputer C compiler)

Parsec Developments
PO Box 782 
2300 AT
Leiden
The Netherlands

Tel. +3171 142142

(Transputer Express system, C and FORTRAN compilers)

ParaSoft Corporation
2500, E.Foothill Blvd.
Pasadena 
CA 91107 
USA

(Helios transputer operating system and C compiler)

Distributed Software Limited
OR
Perihelion Software Limited
24 Brewmaster Buildings
Charlton Trading Estate
Shepton Mallet
Somerset
BA4 5QE
UK

Tel. 0749 4203



153

The author was employed by the following organisations during this work.

PARSYS Limited
Boundary House 
Boston Manor 
London
W7 20E 
UK.

Tel. 081 579 8683

based at
University of Southampton
Highfield
Southampton

S09 5NH
UK.

Tel. 0703 590000

then at what is now
The Parallel Applications Centre
Unit 2
Chilworth Research Centre
Chilworth
Hampshire
SOI 7NP 
UK

T^U_ 0703 760834 
Tel. 0703 760835

Southampton Novel Architecture Research Centre
Department of Electronics and Computer Science
University of Southampton
Highfield
Southampton
S09 5NH
UK.

Tel. 0703 592069


