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SUMIVIARY 

The propagation of sound in a duct can be actively controlled by 

introducing a secondary source driven to cancel the original sound 

wave produced by a primary source. 

In this study we compare for the first time in the same conditions three 

adaptive time domain algorithms currently used for the active control of 

noise in ducts : the LMS (Least Mean Square) algorithm, the LMS 

algorithm with feedback cancellation and the infinite impulse response 

LMS algorithm. 

Firstly we establish the theoretical basis necessary to calculate the 

optimal single channel controller. Secondly we study each algorithm 

through a practical realisation and through computer simulation using 

an appropriate electro-acoustic model of the real experiment. The 

infinite impulse response algorithm is found to be the most efficient one. 

Moreover we demonstrated that the imperfect frequency response of the 

transducers (microphone and loudspeakers) is responsible for most of 

the limitation of the active noise control system. 
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CHAPTER I 

INTRODUCTION 

The Active Control of Sound is a direct consequence of the interference principle in 

a linear medium given by Huygens [1] in 1690 and demonstrated by Young [2] in 

optics at the beginning of the nineteenth century : an antiphased noise is 

superposed on an unwanted one. As a result, a zone of quiet can be obtained under 

certain conditions. In rooms, the general problem is of great complexity ; the 

system has an important number of degrees of freedom in the spatial dimension 

which imply that significant attenuation is generally feasible only using multiple 

sources [17]. In ducts, below the cut-off frequency, the geometry of the problem is 

one-dimensional. Therefore, the attenuation of a broadband signal is possible 

using only a single source. 

The relative simplicity of the physics in ducts explains the early attempts made to 

achieve active noise control in this domain. In 1934, P. Lueg [3] lodged a patent 

describing a "process of silencing sound oscillations" which already contains 

most of the features developed in modern systems : the oncoming sound, detected 

by a microphone is processed through a "controller" which drives a loudspeaker 

with a signal out of phase with the primary one. P. Lueg was conscious of the 

crucial point which is that the speed of sound is much slower than the speed with 

which electrical signals can propagate. Provided that the distance between the 

detection microphone and the secondary source is large enough, the system 

therefore has some time to predict the genuine secondary signal from collected 

information. In 1934, the state of the art of electronics was not advanced enough to 

enable Lueg's system to be a breakthrough in noise control. 

The next significant step was not before the mid-1960's, induced by advances in 

technology and control theory. Jessel in 1968 [4] understood that the main utility of 

active noise control systems in ducts is to reduce low frequency noise. This point is 

of great interest since passive hardware is generally inefficient or bulky at low-

frequencies and produces back pressure by obstructing the duct. Jessel and his 

successors [5] tried to compensate the limited capabilities of their analog controller 
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by using complex arrays of microphones and loudspeakers. The idea was to build 
directional sensors and actuators in order to minimize the coupling between the 

detection microphone and the secondary source. The optimal location for multiple 

sensors and actuators was established in an extensive theoretical study by 

Swinbanks [6] in 1973. Attenuation obtained with these multipole systems was 

excellent with pure tones but limited with broadband noise. 

In the beginning of the 1980's, it was possible to implement the controller as a 

digital filter. Ross [7][8] described the physical system as a superposition of electric 

transfer functions, calculated the optimal transfer function of the controller and 

implemented it as a digital filter. Roure [9] introduced an acoustic model of the 

duct and the electroacoustic system and extended Ross's theoretical results to a 

formula which shows that the controller is independent of the reflection conditions 

at both ends. These frequency-domain methods [10] gave excellent results but 

suffered from a lack of flexibility : the controller was build into a fixed 

configuration which is a inconvenient in a fluctuating environment. At the same 

time several people were looking at the idea of an adaptive controller updated 

directly from the time domain signals [11] and in 1980 Chaplin made a successful 

system to cancel exhaust noise based upon a trial and error method [12]. Given the 

increasing power of digital signal processors and the results from adaptive filters 

theory developed by Widrow et al. [13] time domain methods became more and 

more popular and finally became more popular than frequency-domain methods. 

Nowadays, one of the most successful algorithms for updating the controller is the 

"Least Mean Square" algorithm or LMS algorithm. The fact that even some people 

once devoted to frequency domain methods such as Roure in the LMA, Marseille, 

have turned to the LMS algorithm [14] signifies that it has started to become a kind 

of standard in active control. Both its simplicity and robustness make it so popular. 

The LMS algorithm however has led to a large number of variations in the 

implementation of the controller; the controller can be an FIR [13] or an IIR filter 

[15], an echo canceller can be introduced to solve the problem of the feedback loop 

between the detection microphone and the secondary source [16]. All these 

structures have been tested independently but they have never been compared in 

the same experimental conditions. This point is going to be one of the major goals 

of this study. It is the first time that the three methods given above are 

implemented in the same experiment. In this way their performance will be 

judged more objectively. 

Moreover, most of the previous studies have used simplistic models in computer 

simulations or theoretical calculations. In this report, we will try to analyse very 
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carefully the limiting factors in a single channel noise control system such as the 

length of the digital filters, the imperfection of the transducers, through intensive 

and realistic computer simulation. 

The structure of the thesis is as follow : 

Chapter II contains a theoretical analysis in the frequency domain. Following the 

work of Ross and Roure we deduce the optimal controller from a deterministic 

point of view. 

Chapter III is an experimental validation of Roure's acoustic model developed in 

chapter II. 

Chapter IV determines the optimal least squares controller under certain 

constraints : causality, imperfect secondary source, finite length and structure of 

the controller. 

Chapter V is a description of the three LMS-like algorithms. 

Chapter VI, which presents the major contribution of the thesis, contains the 

experimental and simulation results which enable us to compare the algorithms 

detained in chapter V. 

Chapter VII draws the general conclusions of this report and gives suggestion for 

further work. 
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CHAPTER II 

THEORY 

IIJ Description of a single channel system 

The active noise control system described in this report and built at the signal 
processing and control group is depicted on figure 2.1. On a piece of pipe are 
mounted two loudspeakers and two microphones. The left hand speaker is 
supposed to represent the disturbing source (usually a pump or a fan in full scale 
realizations). In our case this primary source is fed with a white noise to simulate 
the most unpredictable signal. The controller W is connected to the detection 
microphone on the left and to the secondary loudspeaker on the right. This system 
works in a way similar to Lueg's (see introduction). The main difference is the 
addition of a microphone at the right hand or "downstream" end. This microphone 
collects the residual signal which can be used to update the controller as we shall 
see later. 

Although the coupling between the secondary actuator and the detection sensor 
can be significantly reduced by using arrays of microphones and loudspeakers, we 
decided to build and study a single channel system for various reasons: 

-We wanted to test the performance of the LMS algorithm in the most 
critical condition, i.e. with a high level of feedback corrupting the reference 
signal. 

-The use of multiple microphone sensors and multipole actuators is a 
delicate problem. It requires perfectly matched microphones and good 
quality loudspeakers. Our choice was to demonstrate the feasibility of active 
noise control with cheap, relatively low-quality transducers. 

The controller is aimed to minimize the signal at the error sensor. Several 
approaches have been proposed using different assumptions about the acoustics 
and the signal. We are going to follow Ross's approach who derives the frequency 
response of the controller. 
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11.2 Superposition principie 

Ross' method reHes upon the principle of superposition. All the electrical signal 

Ve, Vs, Vp, Vd (figure 2.1) are supposed to be linearly related. As a consequence 

the global system is characterized by a set of electrical transfer functions defined 

as follow : 

A a c o ) = [ ^ ] . , , „ B a « ) = * ] v s = o 
TpOm) 

c a ® ) = [ ^ ] . p = o F a a » = r - a ^ ] 

(2.1) 

lvp=0 (2-2) 

This formulation enable us to represent the system as a block-diagram (figure 2.2) 

which shows clearly a feedback loop F between the controller output and its input. 

The description above is extremely general since there is no need to think of any 

transducer. The system is seen from its inputs and outputs only. However, to apply 

the principle of superposition we have to assume that all components in the system 

(acoustic, electrical and elect roacous tic) are linear. This is true provided that the 

transducers are used in a suitable dynamic range. Provided that the frequency of 

the signals is below the cut-off frequency of the duct, the waves remain plane, so, 

driving the single error signal to zero will suppress the downstream propagating 

acoustic wave. 

In this case we can write 

Ve(im) = A(jm).Vp(jco) + C(jm).Vs(jco) (2.3) 

and 

Vs(j(0) = W(i0)).( B(ja)).Vp(j0)) 4- F(j(o).Vs(jo))) (2.4) 

with W(j(o) the non time varying controller transfer function. 

And we deduce 

Vs(f) = W(j(o).B(jo)).Vp(jo)) 
1 - W(jco).F(ja)) 
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(2.3) and (2.5) lead to 

V,Qm) = - AO«).W(im).FQm) + C(jc»).W(jm).BQm) 
1 - W(jco).F(jo)) 

(provided that 1 - W(s).F(s) has no roots in the right hand s plane) 
The cancellation downstream is perfect if VeQrn) = 0 for all co 

which, according to (2.6) is equivalent to 

AQm) - A(jo)).Wideal(j(o).F(jo)) + C(j(o).W(jm).B(jm) = 0 for aU co 

assuming that 

1 - WideaI(jO)).F(j(o) 0 

leads to the following result 

WidaUQaQ . B(jm).CCo)) 

The ideal controller transfer function can be derived from the individual transfer 

function A, B, C, F. Practically A, B, C, F can be estimated by random or swept 

sine excitation. Therefore it is possible to calculate an estimate of the ideal 

frequency response of the controller. If we want to implement the controller as a 

digital filter we can inverse Fourier transform this estimate to obtain a time 

domain impulse response. This is roughly the method employed by Ross and 

Roure to build their controller. It happens to work quite well but it is subject to 

some limitation: 
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-Since the condition to determine the controller is the perfect cancellation of 

the residual error, both signal and transfer function are supposed to be 

known with an infinite degree of accuracy. No uncorrelated measurement 

noise is assumed to be present in the microphone signals. 

-The controller transfer function is supposed to be invertible by Fourier 

transform. In practice this may be not true and even if a stable inverse 

exists it may be non-causal. The impulse response has therefore to be 

truncated in order to be implemented as a digital filter. 

-The transfer functions have to be measured prior to cancellation which 

prevents the system reacting to any fluctuation. 

In order to limit these inconvenience an adaptive and recursive procedure was 

suggested to modify the controller transfer function [8] [9] [18] . The frequency 

response of the controller is derived from the previous estimate and a measure of 

the residual sound spectrum. The new filter at the next step is then 

TAfi-Hl(jO))== UO(D)Wfi(ja)) (2.8) 

where U(jco) is some function of the residual field and Wi(jco) is the transfer 

function of the actual controller. Even if this method improves the performance of 

the system it still requires an inverse Fourier transform and a time windowing at 

each step. The effect of these transformations are extremely difficult to formalize 

and therefore the convergence properties of this algorithm are not well understood. 

In the case where the calculated controller W(jco) is not identical to the ideal one, 

because of measurement error for instance, the error signal is not driven to zero. 

The reduction can be expressed as in [35] 

A(jm) = en-of «") 
^ ' error( system off) 

/t(jo))== (2.9) 
A(ja))Vp(jm) 



from (2.6) 

= A(jm) - W(jm).(A(j(o) F(ja)) - C(jm).B(jm)) ^ lo) 
/l(jCO) (1-Tp/(jO)).F(j(D)) 

and from (2.7) 

WQm) 

AQm) = WidcalOm) 
AOto) (I-W(jco).Faco)) 

so that 

W(jm) 
1 -

/\(j(0) = ^idealOo)) ,̂2 
1- W(jO)).F(jm) 

If W(jm) = WidealCjco) we find as expected that the cancellation is perfect. 

11.3 Calculation of the individual transfer functions via an Electro-
acoustic model 

11.3.1. Notation 

In order to extend Ross' results, Roure has described the individual transfer 

functions defined above in terms of the physical features of the duct and its 

transducers. Such a model has two qualities: 

It leads to a remarkably simple expression of the ideal controller frequency 

response. 

It is realistic enough to give a good basis for a computer simulation of great 

utility. 

In Roure's paper both loudspeakers and microphones are defined by their 

electrical transfer functions and directivities. Since we have decided to study the 
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most simple case (monopole loudspeakers and simple omni-directional sensors) 
all directivities will be equal to unity and therefore invisible in the calculation. The 

convention will be as follow: 

Hp(jco) = Primary source transfer function = pressure in anechoic duct per 

unit input voltage 

Hs(jco) = Secondary source transfer function, defined by analogy with Hp(jQ)) 

Md(j(o) = Detection microphone transfer function = output voltage per unit 

pressure in the duct. 
MeQco) = Error microphone transfer function, defined by analogy with Md(jco) 

The second assumption of the model is that sound waves travel without dispersion 

and attenuation along the duct. If the waves are plane, i.e. if the frequency is below 

the cut-off frequency, this is a reasonable assumption. As a consequence, given 

any point in the duct whose coordonate is x the sound pressure has the following 

general expression : 

p(x,0)) = P+(m)e-j(kx-(»0+P.(m)e-j(k(+(o0 (2.13) 

P+(co) is the amplitude of the wave travelling to the right and P_(m) is the amplitude 

of the wave travelling to the left. Since the waves are non-dispersive k and co are 

related to by 

k = co/c 

Where c is the frequency independent wave speed assumed in this case to equal 340 

ms "1. 

Finally, the sound waves are supposed to be reflected and attenuated by a complex 

frequency dependent reflection coefficients RiCjro) on the left and RgCjm) on the 

right hand of the duct. 

Once we have defined the electroacoustic-model we can calculate the different 

individual transfer functions. There are several different ways of calculating these 

expressions. The usual one is to do it in the frequency domain using the standard 

steady waves travelling theory (for a detailed description see ref [18], appendix I). 

Although these methods lead surely to the solution, we prefer to use its dual 

counterpart, a time domain calculation. Such a method gives a better 

understanding of the phenomena occurring in the duct. 
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.3.2. Time Domain Expression 

In this paragraph lower case letters will denote the impulse responses 

corresponding to transfer functions denoted by capital letters. Let us calculate 

a(t), the impulse response between the primary source and the error microphone. 

Experimentally it could be obtained by applying an impulse in Vp and by measuring 

the corresponding signal Ve(t)=a(t). 

We are going to proceed the same way in our calculation. 

Imagine we apply an impulse in vp : 

T p̂(t)= ŷo.8(t) (2.1'*) 

where vo is a constant and equal to 1 volt. 

Since the loudspeaker is a monopole source its output hp(t) splits into two impulses 
travelling upstream and downstream (figure 2.3) h+p(t) and h"p(t) 

Consider the h+p(t) impulse with reference to the lengths and reflection coefficients 

defined in f igure 2.1. It first reaches the error microphone by travelling the 

distance l^+lg+lg and a second time after being reflected back by the end R2 

(distance I1+I2+I3+2I4 ) Similarly the impulse h"p(t) is first reflected by R%, reaches 

the microphone after the distance 2I0+I1+I2+I3 is reflected by R2 and finally arrives 

at the microphone after 2I0+I1+I2+I3+2I4. 

The f igure 2.4 shows these four different types of reflection which lead us to the 

following first order expression for a(t) assuming that the absorption due to the 

walls of the duct is negligible. ( [*] is the convolution operator) 

a'(t) = hp(t -

I I 

+R2(t).hp(t - + Ri(t).R2(t).hp(t 2'o+ll+l2+l3+2]^ j 

III 11/ 

(2.15) 

Where me(t) is the impulse response of the error microphone. 

Each of the four terms I II III IV correspond to each of the four reflections 

previously discussed. This is the main pattern. However the impulses do not stop 
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Figure 2.3 An impulse generated at Hp splits into hp+(t) and hp'(t) 
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Figure 2.4 The four differents paths be tween Hp a n d Me 
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afber one or two reflections. They continue to travel in the duct with the following 
characteristic : they pass the microphone periodically every 21/c second (where 
l=lo+li+l2+l3+l4 ) attenuated each time by the factor R^Rg (two reflections). The 

effect of such reflected contributions can be mathematically expressed by the 

convolution of the term a'(t) by 

^(Rl(t)»R2(t))'°'8(t -
n=0 

Where denotes the n-th convolution power, 

hence we obtain 

a(t) h+̂ 2+̂ 3, _ 21o+l̂ +l2+l3̂  _ , , ^ 11+12+13+214̂  
hp(t - g )+Ri(t)*hp(t - - •)+R2(t)*lip(t - - ) 

21n+li +ln+lo+2I^ \ (n) 2nl 

+Rl(t)*R2(t).hp(t - V i z ; 2 (̂Ri(t)*R2(t))̂  5̂(t - ^ (2.16) 
n=0 

with * as the convolution operator 

Similarly we can obtain the time domain expression for b(t), c(t), f(t) as follows : 

, , , / li ll+21n li+2I2+2I3+2I4 
b(t) =(̂ hp(t .^)+Ri(t)*hp(t. —g-4+R2(t)*hp(t - ^ 

1+1 A+lo+10+14 \ ^ (n) 2nl 
+Rl(t)*R2(t)*hp(t - ) l*ma(t)* / ,(Ri (t)*R9(t)) 5(t - — ) ( 2 . 1 7 ) 

n=0 

/ \ Z' I3 21n+21i+2I2+I3 I3+2I4 
C(t) )+R2(t)*hg(t- )+R2(t)*hg(t -—-— 

•) 

l+ln+li +I9+I4 \ ^ (n) 2nl 
+Rl(t)*R2(t)*h,(t. " j*me(t)*2^(Ri(t)*R2(t))'̂  (2.18) 

n=0 

f(.) '1(0*115(1- g )+R2(t)*hg(t - - ) 

+R](t)*R2(t)*hg(t - -^^*md(t)»^(R](t)*R2(t))^ (2.19) 
n=0 

14. 



(2.17), (2.18), (2.19) share of course the same features with (2.16) that is a main 

pattern of four reflections repeated every 21/c second. 

11.3.3. Frequency Domain Expression 

These time domain expressions (2.16), (2.17), (2.18), (2.19), are useful to describe 

the wave displacement in the duct. However we need also the frequency domain 

expressions to deduce the ideal controller. These are easily obtained from the time 

domain formulas. We will illustrate this with a(t). 

A(jm), the Fourier transform of a(t), is the product of two terms. 

The first one, Fourier transform of a'(t) is equal to 

+Ri(j(a)e-ji'̂ (21o+'i+l2'̂ 2y+R (̂j(jt))R20'w)e-jl̂ (21^ (2.20) 

where k = iTcf/c is the wave number 

oo 

The second term is the Fourier transform of (Ri(t)*R2(0)̂ "^6(t-̂ ^ which 
n=0 

gives 

%(RlOw)R2(jw))V2jnkl (2.21) 
n=0 

Since RiCjco) and R2(jo)) are <1 (the terminations are assumed linear and 

passive) (2.21) can be considered as the expansion of a geometric 

progression, and factorized into i_R^(j(o)R2(jm)e-2jkl 

Hence from (2.20) and (2.21) and omitting the jco dependence to simplify the 

expressions we deduce 

-15-



Hp.Me.e-jk(li+l2+y(1 +R2.e-2jkl^)(i +R e-2jkl \ 

^ 1-R..R2 e-2.1c. 

The same process apphed to b(t), c(t), fit) gives us 

Hp.Md.e-jkli(l+R2.e-2jk(l2+l3+y)(l+Ri.e-2jklo) 

Hg.Me.e-jklg(1+R ( i +Ri .e-^jkOg+l 
CO<0) = ^ ^ l - R . . R ^ % 

H;.Md.R,.R2.e-jkl/1 + i.e-Zjkao+V) f l + ^.e'^jkO^+Y 

(2.25) 

^ . . R . . e - ; : ^ ^ " 

11.4 Ideal controller derivation 

At this stage we can substitute (2.22), (2.23), (2.24), (2.25) into (2.5). A good deal of 

simplification then occurs leading to an expression for the ideal controller in 

terms of the acoustic variables : 

_g-jkl 

Hs(jo))Md(jm)(l - e-^Jky 

Dividing numerator and denominator by e'J^^g 

WiCico) = (2.27) 
2j.Hs(j0))Md(j0)).sin(kl2) 

This remarkably simple result also developed in [26], requires several remarks. 
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11.4.1. Duct independence 

The expression of the controller is only dependent on the properties of the system 

between the detection sensor and secondary source. It is completely independent, 

for instance, of the reflection coefficients and the nature of the primary source. An 

intuitive demonstration of this striking property will be given in a few moments. 

11.4.2. Loudspeaker inversion 

The expression (2.26) contains the inverse of the loudspeaker Hg and of the 

detection microphone Mj. So far we have implicitly assumed the existence of such 

an inverse. However this may not exist in practice. Effectively, if the loudspeaker 

possesses a zero on the imaginary axis (which is very likely since Hs(0) = 0 for 

almost any loudspeaker) the inverse therefore possesses a pole situated on the 

imaginary axis (1/Hp(0) > ). Thus, a true inverse of the loudspeaker can very 

well have no meaning at all. 

However we shall see in practice that a perfect inverse is not necessary to achieve 

some cancellation but we must not underestimate this problem ; in several cases it 

is responsible for a serious instability. 

11.4.3 Stabiiily of the controiier 

Even if the stability of the loudspeaker inverse is taken for granted, the other term 

in (2.27) is sure to lead to an unstable impulse response (at least in the usual sense 

that is bounded input -> bounded output) 

The term sin(kl2 )in the denominator of equ. (2.27) is equal at several frequencies. 

Let us take an example. If I2 = 1.224m (the experimental value), since k = 27cf/c 

and c = 340m/s the sine becomes zero for each frequency multiple of 139 Hz. If we 
assume that the frequency range of interest is from say 0 to 1000 Hz, Wj(f) becomes 

infinite about 8 times. Figure 2.5 shows the transfer function of the controller for a 
feedback path length I2 = 1.224m, assuming that the transducers are perfect. 

Because this transfer function contains some infinite values we cannot use the 

Fourier transform to obtain the time domain expression of the controller. The z 

transform however enable us to overcome these difficulties and leads to a time 

domain formulation for (see Appendix B.l). 
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This expression is 

oo 

WidealCO =(hs(-l)(0*me(-l)(t))* ̂ 8 ( t - (2.28) 
n=0 

This impulse response can be generated by the following combination of filters (see 
figure 2.6 ). The first delay corresponds to the direct path while the recursive filter 
acts like a feedback canceller. The first samples of the ideal controller impulse 
response are also given figure 2.7. Since this impulse response is of infinite energy 
the instability of the ideal controller appears more obvious. At least it is consistent 
with the conclusions derived from the frequency domain. 

However, even if the ideal controller is unstable, this does not imply than the 
overall response of the system constituted of the direct path, the feedback path and 
the controller is of infinite energy. Some pole-zero cancellations are likely to take 
place. A demonstration of this fact is given further. 
Moreover, in practice the walls of the duct are not perfectly rigid, and some 
dissipation also occurs due to viscous and thermal effects at the duct wall, 
introducing a loss factor in the formula (2.28) thus becoming 

WidealW = (hs(-l)(t)*me(-l)(t))*y^;i"6(t - (2.29) 
n=0 

with |X< 1. This impulse response decays exponentially with p.. 

11.4.4. About the infinite resonances of the controller 

We have seen with (2.26) than the spectrum of the ideal controller is made of a set 

of unbounded peaks regularly spaced and we can therefore predict that only a 

controller able to reproduce such peaks will achieve a good cancellation at all the 

frequencies. But where do these peaks come from ? In fact they are linked to the 

monopole nature of the secondary source. The pressure field generated by a 

monopole source is spatially symmetric. If the system works perfectly, the 

secondary source forces a "pressure release" (zero pressure) in front of it which 

causes perfect reflection. 
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Figure 2.6 Time-domain structure of the ideal controller 
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Figure 2.7 Impulse response of the ideoicontroller: first samples 
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Then the secondary source acts effectively as a sound reflector which means that 

the pressure field upstream is made up of two waves travelling in opposite 

direction. 

Suppose the unwanted noise is 

Pl(t) = Po.cos(-kx+a)t) 

the secondary source is at x=0. 

Consequently the reflected pressure is 

P2(t) = -Po.cos(kx+cot) 

P(0 = Pi(t) + P2(t) = -2.Po.sin(kx).sin((i)t) (2.30) 

the pressure Held upstream is a standing wave whose node of vibration are every 

X/2 i.e. every c/2f. 

From (2.30) we find a node at x=0 and for to = 0 whatever x. Moreover we have a 

node of vibration at the detection microphone for all frequencies multiple of f = 

C/2I2. 80 at all these G-equencies the detection microphone is unable to detect any 

signal. In order to drive the secondary loudspeaker the controller has therefore to 

multiply such a signal by an infinite gain. The infinite gain of the ideal controller 

is a direct consequence of the monopole structure of the secondary source and the 

fact that the detection microphone is omni-directional. With two detection 

microphones we would not have this inconvenience. It is always possible to 

position the two microphones in a way such that they are never located 

simultaneously at a node of pressure (for a limited bandwith). However a system 

with two detection microphones is more complicated: it requires a controller for 

each detector and so doubles the complexity of the active noise control system. 

11.4.5. Pictorial interpretation of the expression for the ideal controller 

We are going to follow the history of an impulse generated upstream by a primary 

source and processed through a controller whose structure is shown in figxire 2.6. 

The f igure 2.8.a shows the impulse coming from the left and represented by a 

small triangle : the delta symbol in the filter blocks mean a pure delay of I2/C. The 

impulse is first detected by the detection microphone and after a change of sign 

(the circled line on the figure), is delayed into the first filter (the direct one) (figure 
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2.8.b). When the original impulse reaches the loudspeaker it produces an impulse 

out of phase which cancels downstream. However, the loudspeaker is a monopole 

source, and creates therefore a residual impulse on the left, (figure 2.8.c) During 

this period the impulse through the controller is travelling in the recursive part of 

the filter. The next step is the detection of the residual impulse by the microphone 

which leads to an internal cancellation between the recursive and the non-

recursive filter (figure 2.8.f). Eventually the residual impulse is reflected back and 

then attenuated which leaves us back at step 1 (figure 2.8.g). This cycle goes on and 

on until the residual impulse vanishes after many reflections (depending on the 

reflection coefEcient value). 

This little demonstration shows that even with a controller which is unstable the 

impulse of the system to the sequence of impulses generated in the duct can be of 
finite energy. 
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Figure 2.8 Operat ion of the ideal controller 
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Chapter 

Application of theory to the experimental duct 

This chapter is an experimental validation of the model described in chapter II. 

Such a validation is necessary because we intend to make intensive use of a 

computer simulation in order to study the LMS algorithm. Firstly we will describe 

the experimental equipment and secondly we will see how to estimate the missing 

parameters of the model. Finally we will compare the impulse responses and 

transfer functions obtained experimentally and calculated using the formulas 

(2.16) to (2.19). 

111.1. Physical description of the A.N.C equipment 

The experiment is described in figure 3.1. The PC computer acts as a host 
computer for a LOUGHBOROUGH DSP TMS320 card and a 12 bits analogue-to-

digital converter (LOUGHBOUROUGH Sound Image cards PC825 and PC4i2o). 

The microphones and louspeakers and their amplifiers are linked to a connector 

box linked itself to the D/A-A/D converter. The low-pass filters act as anti-aliasing 

and reconstructing filters. The PC is only used to display useful data on the screen. 

Consequently the TMS processor performs all the important tasks such as active 

noise cancellation and various transfer function identification. 

Following the notational convention of Figure (2.1) we have for the experimental 

duct : 

10 = 0.816m 

11 = 0.272m 
Ig = 1.224m 

13 = 0.816m 

14 = 0.272m 

1 = 3.400m 

The diameter of the pipe is 11.5cm 

The primary loudspeaker is a REALISTIC 4" WOOFER 

The secondary loudspeaker is a R8 6.5" BASS LOUDSPEAKER 
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Figure 3.1 Active Noise Control System : Hardware Description. 
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Both microphones are cheap omnidirectional electret microphones (WM-063) 
Anti-aliasing filters are KEMO VBF 23 filters. 

III.2. Computer simulation modei 

In order to simulate the real world constituted by the duct and its associated 

transducers, a simplified version of Roure's acoustical model has been 

implemented numerically on a PC computer. We have programmed various black 

boxes, corresponding to the different electrical transfer functions. Each black box 

has an unique input and output. When a sampled value is presented at the input 

another a resulting sampled value is produced at the output. Figure 3.2 shows the 

structure of one of theses black boxes which is directly derived from equation (2.16), 

(2.17), (2.18), or (2.19). The box denoted by Hp correspond to the combination of a 

loudspeaker, a microphone and two low-pass filters. In the numerical model Hp 

is an FIR filter. Delay 1 to Delay4 represent the four different paths that a wave can 

take to go from a given loudspeaker to a given microphone. Ri and Rg are the 

reflection coefficients. Though the delays can be determined by measuring the 

length of the pipe elements, we have to use more sophisticated methods to estimate 

Hp and the reflection coefficients. We will consider these techniques below. 

iii.3. Measurements of the transducer transfer functions 

The transducers are an important part of the ANC system. They are responsible 

for a lot of imperfections and limitations in the performance. 

In order to make the numerical model as close as possible to the real experiment 

we have to be particularly careful in modelling it. In fact what we need to measure 

is more than just both loudspeaker transfer functions. It has to include the 

microphones, the anti-aliasing filter and the converters as well. From now, when 

we speak of a "transducer" it will mean an hypothetical electrical transfer 

function defined as follows : the transfer function of a system constituted from a 

low-pass filter connected to a loudspeaker mounted on the middle of an infinite 

duct; a microphone is situated very close to the loudspeaker membrane in such a 

way that there is no delay between them; finally the microphone is connected to a 

low-pass filter. 

Figure 3.3 describes the experiment employed to estimate such a transfer function. 
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Figure 3.3 Measurement of the loudspeaker impulse response ; principle 

27 



Two long pieces of pipe (6 m each) are placed on each side of the loudspeaker. A 
microphone is situated at 27.2 cm from the loudspeaker. At this distance the sound 

waves generated by the loudspeaker are plane. The extra delay corresponding to 

27.6 cm is exactly two sample periods if the sampling frequency is 2500Hz. It will 

be eliminated by the suppression of the first two samples from the measured 

impulse response. The impulse response between the input x and the output y is 

identified using an adaptive Least Mean Square algorithm implemented on the 

TMS320. (See Chapter V to find more details about this algorithm). Even if the pipe 

is very long the measured impulse response contains some artefact due to the first 

echos. After elimination of these echos by a time domain windowing, we obtain the 

measured impulse response of the transducer path. 

Since the microphones are identical there are only two different transducer paths. 

One contains the primary speaker the other one contains the secondary speaker. 

Figure 3.4 gives the two diSerent impulse response obtained experimentally. We 

can see on Figure 3.5 a plot of the corresponding transfer functions. We recognize 

the resonance characteristic of a loudspeaker and at high frequencies, the effect of 

anti-aliasing and reconstructing filters responsible for an important attenuation 

and phase shift. 

IIW. Measurement of the reflection coefficients 

In equations (2.22) to (2.25) the reflection coefficients are assumed to be frequency 

dependent. It is well known that in practice the modulus of the reflection 

coefficients decays with the frequency. However, in order to avoid too much a 

complexity in the numerical model, we have decided to consider the reflection 

coefficients as scalar quantities (frequency independent). The validity of this 

assumption will be proved a posteriori by comparison between simulated and 

measured transfer functions. 

A way to determine these reflection coefficients is to measure RiCjco) and R2(j(o), the 

frequency response of both ends. Then mean square values can be obtained by 

integration. The experimental setup to measure the frequency response is 

illustrated in figure 3.6. 

A loudspeaker is located at one end of a long pipe (6 m). The reflection coefficient 

of the other end is the one we want to determine. A microphone is situated at the 

middle of the pipe. This location has been chosen in order to maximize the delay 

between two consecutive echos detected by the microphone. Using a least mean 

square identification algorithm implemented in the TMS microprocessor we have 

- 2 8 



Amplitude (V) 
0., 

Amplitude (V) 

20 30 40 50 

25 samples = 10 ms 

hp(t) 

Figure 3.4 Impulse response of the transducer pa th 

20 30 40 50 
25 samples = 10 ms 

hs(t) 

IVIodulus (dB) Phase ) Modulus (dB) Phase (° ) 

0 %K) 400 600 800 ] 000 IMO ZX) *00 600 KO 1000 1200 

Frequency (Hz) 

Hp(jm) 

Frequency (Hz) 

400 600 aoo 1000 IZW O ZX) 400 600 BOO 1000 IMO 

Frequency (Hz) Frequency (Hz) 

HsCjco) 

Figure 3.5 Modulus a n d phase of the transducer pa th transfer funct ion 

-29-



Absorbing 
Material Low-pass 

F i l ter 

Noise LMS/MODEL 

Figure 3.6 IVIeasurement of the reflection coefficients: principle 

modulus (linear scale) modulus (linear scole) 

0.41-

100 200 300 400 500 600 700 600 900 1000 

Frequency (Hz) 

100 200 300 400 500 600 700 800 900 1000 

Frequency (Hz) 

Figure 3.7 Reflection coefficients R1 and R2 : frequency response. 
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determined the impulse response between the loudspeaker and the microphone. 

As expected this impulse response was made of several bursts, and the first two , 

due to the direct path and first reflection were correctly separated. They have been 

isolated using appropriate windowing and Fourier transformed. The transfer 

function of the end was therefore easy to calculate by dividing the reflection 

Fourier transform by the direct path Fourier transform. Figure 3.7 shows the 

moduli of these transfer functions. The curve on the left represents the left end. 

This end is closed with a 40 cm long piece of foam. Above 300 Hz the reflection 

coefficient does not vary too much. Below this frequency this is not true. The 

coefficient falls quickly from 0.83 to 0.35. The resulting mean square value is 0.39. 

On the right we have a plot of the right end transfer function. This end is open and 

therefore not absorbant. This is confirmed on the diagram. The coefficient decays 

steadily from nearly 1.0 to 0.7. The mean square value is 0.83. The study of free end 

in a pipe [19] shows that the reflected wave is out of phase with the incoming one. 

In the computer model this is taken into account by giving to Rg a negative value. 

To summarize, the values we will use in our computer model by now are : 

R l = 0.39 

Rg = - 0.83 

III.5. Comparison between the model and the experiment 

The experimentally measured responses of the transducers and reflectors were 

used in the computation of the model previously described in equ. (2.16) to (2.19) to 

give the overall duct impulse responses used in the computer simulation, a(t), b (t), 

c (t), f (t). On the other hand a direct measurement on the duct produces a(t), b(t), 

c(t), f(t). These impulse responses have been experimentally identified with an 
LMS technique. The experimental setup was similar to the transducer 
identification. Comparison between a(t) and a(t), b(t) and b (t), c(t) and c (t), f(t) and 

f (t), show some strong similarities (see figure 3.8). 

In particular, the decay rate is almost identical for both calculated and measured 

impulse responses. This proves the approximation of the reflection coefficients to 

be a sensible one. The similarity observed in the time domain occurs equally in the 

frequency domain (see figure 3.9). The various resonances are nearly the same 

and the damping seems to be correctly estimated. 
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III.6. Conclusion 

In chapter II we have developed a theoretical expression for the ideal controller. 

These theoretical results have been extended by the introduction of electroacoustic 

models of the individual responses in the duct. In chapter III a simplified version 

of these models has been described. Then, the impulse and frequency response of 

the model has been computed and compared to experimental results. The good 

match between experimental results and simulated ones leads to several 

remarks : 

-the assumptions of linearity and non dispersivity are proven a posteriori 

since they are verified by the experiment 

-the assumption of frequency independent reflection is not too strong. The 

time domain results show a realistic decay and the frequency domain 

plots show a acceptable modulus coincidence. 

-consequently such a model will be a reliable tool to study the behavior of 

different controller structures in various conditions. 
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CHAPTER IV 

The optimal least square controller 

In chapter II the expression for the ideal controller was derived, using a purely 

deterministic calculation. Since this expression was been derived from the 

condition e(t) = 0, the attenuation is supposed to be perfect. In practice the noise 

reduction is limited for several reasons ; 

1) the physical realisation may use a finite impulse response controller. 

2) the filters must be causal. 

3) measurement noise is present on signals from both detection and error 

microphones. 

The final limitation has been dicussed by Roure [9] but will not be addressed here, 

we concentrate on the limitation imposed by using a causal finite length filter. 

In the formula 

term II is causal but has an infinite impulse response and is therefore related to 

the condition 1) whereas term I is more likely to be non-causal and related to 

condition 2). Since theses terms are independent we can study their influence 

separately. 
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IV. 1 Least mean square inverse of the response of the transducer 

IV. 1.1 Condition of stability 

If we assume that input and output signals are sampled, the detection 
microphone (Md) and the secondary loudspeaker (Hg) can be considered to be 
coupled together to form a single system whose z-transform is 

Trans(z) = Md(z).Hs(z) 

We want to find a filter whose z-transform is the inverse of the z-transform 
Trans(z). 
Assuming that n is large enough, it is always possible to approximate Trans(z) by 
a rational polynomial of z. 

This expression can be factorized into a set of first order polynomials 

The first idea to find an inverse to such a transfer function would be to say that the 

required filter is simply defined by 

The poles become zeros and vice-versa. However we know from digital linear 

systems theory that a causal filter is stable only if all the poles of its transfer 

function lie inside the unit circle of the z-plane (see [20] for more details). If some 

poles do not lie within the unit circle it is still possible to relate a stable filter to the 

transfer function. Unfortunately such a filter will not be causal. 

We now consider the response of a practical transducer (that is mainly of a 

loudspeaker). We know that it is a causal and stable system. Its poles are 
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consequently inside the unit circle. But we know nothing about its zeros. Some of 

them may well be outside the unit circle which would imply poles outside for the 

inverse. Figure 4.1 shows the impulse response obtained by inverse Fourier 

transforming the inverse of the frequency response of the secondary transducer, 

whose measurement was discussed in §111.3, taken over 2048 points. The 

important non causal part suggests that the inverse of such a transducer is very 

likely to have poles outside the unit circle. In fact, since a loudspeaker can 

generate no pressure in an anechoic duct at a frequency of 0 Hz, we know already 

that a zero is located on z=l, that is exactly on the unit circle. Moreover, Trans(z) is 

not only the transfer function of the loudspeaker but takes into account the 

detection microphone, the sampling system, the anti-aliasing and reconstructing 

filters, generally, both filters of a very high order with consequently many poles 

and zeros 

IV. 1.2 Yule-Walker equations 

Fortunately, there is a distance between the detection microphone and the 
secondary source. The problem we have to deal with is thus somewhat easier than 
just calculating a causal inverse of the transducer. This correspond to taking the 
term -e ' j^2 (which correspond to a pure delay if no loss is present in the duct) from 

numerator of term II in equation (4.0) to term I. The delay allows us to have access 
to some of the non-causal part of the inverse. The situation is described on f igure 
4.2. The signal x(n) is delayed by p samples before being compared to the signal 
y(n). In practice the W filter is situated on the left of hs but since they are linear 
filters, we can commute them for convenience of calculation. From now the 
notation will be as follow : 

scalars are denoted by plain letters : x 

vectors are denoted by bold letters : x 

matrices are denoted by bold bracketed capital letters ; [M] 

vectors elements and matrices elements are written xi and [M]ij. 

Moreover if x(n) is a sampled signal we define a regressing vector of order N : 

x(n) = [x(n), x(n-l), x(n-2), , x(n-N-l)]T 

Now, suppose that W is an FIR filter described by the tap delay vector 

W = [wo, WI, W2, WN.l]T 
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We want to determine w in such a way that the expectation of the square of the 

error vector is minimum. 

The error at time n is 

e(n) = d(n)-y(n) =d(n)-i-wTr(n) (4.4) 

We want to minimize the expectation of the square of the error that is 

E {e2(n)} = E {(d(n) + wTr(n))2} (4.5) 

E{e^(n)} = E{d^(n)) + 2E(d(n)rT(n)}w + wTt(r(n)rT(n)}w (4.6) 

E{e^(n)}= E{d^(n))+ 2Crd^w+wT[An.]w (4.7) 

where is the cross-correlation vector between the desired response and the 

output signal and [A^ ] is the autocorrelation matrix of the signal r(n) 

Equation (4.7) describes the error function E[e^(n)] as a quadratic function of the 

coefficients of the filter W. Such a function has a unique minimum given by the 

condition : 

E[e^(n)] = 0 for 0 ^ i ^ N-1 
9wi 

which can also be written as 

E[2.e(n).—e(n)] = 0 for 0 < i < N-1 

3wi 

which from (4.7) gives 

[An l̂w = -Crd (4.8) 

This system known as the Wiener-Hopf, Yule-Walker or Normal equations [21], can be 

solved to give the optimal FIR filter of given length in the mean-square sense : 

wopt = -[AJ-lCrd (4.9) 
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Figure 4.1 Inverse of the secondary transducer obtained by Inverse Fourier 

transforrming the measured l/(Hs.lVld) taken over 2048 points. The 

non-causal component demonstrates that (Hs.lVId) is non-minimal phase. 
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Figure 4.2 Least square Identification of the Inverse of the louspeaker: principle 
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IV. 1.3 Optimal inverse for different length of the direct path 

Consider two sampled signals x(n) and y(n) whose z transforms are X(z) and Y(z). 

The expressions of power spectral and cross-spectral density are : 

Sxx(z) = E{X(l/z).X(z)} 

Sxy(z) = E{X(l/z).Y(z)) 

Where E{} means expectation or average over ensemble. 

Taking the inverse-z-transform of both members leads us to the autocorrelation 
and intercorrelation functions axx(ii) and axy(n). Using the properties of the z 

transform : 

Z-\X(z).Y(z)) = Z-^(X(z)) * Z-\Y(z)) 

Z-\X(l/z)) = x(-n) 

we have : 

ax;̂ (n) = E{x(-n)*x(n)} 
axy(n) = E{x(-n)*y(n)} 

Imagine now that the input signal x(n) depicted on figure 4.2 is a white noise with 

unity variance, the autocorrelation function of r(n) is given by 

%(n) = E{r(n)*r(-n)} (4.10) 

moreover 

r(n) = x(n)*trans(n) (4.11) 

with trans(n) as the transducer impulse response. 

So, the autocorrelation function can be written as : 

an-(n) =E(x(-n)*trans(-n)*x(n)*trans(n)} =E{trans(-n)*traiis(n)*x(-n)*x(n)} (4.13) 
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x(n) is a white noise, it implies 

E{x(-n)*x(n)} = 8(n) 

and therefore, since trans(n) is a deterministic signal, 

%(n) = trans(n)*trans(-n)*6(n) = trans(n)*trans(-n) (4.14) 

Then, the autocorrelation matrix [AJ^r in (4.9) has elements which can be 

calculated from the transducer impulse response. 

Similarly, since in this case the desired signal is the delayed reference d(n) = 

x(n-p), then 

CrdW = E {x(-n)*trans(-n)*x(n-p)} (4.15) 

Crd(n) = E{trans(-n-p)*x(-n)*x(n)} = trans(-n-p)*8(n) (4.16) 

ĉ (i(n) = trans(-n-p) (4.17) 

This last relation is most interesting. The cross-correlation function is simply the 

impulse response of the loudspeaker reversed in time and shifted by p samples to 

the right. Now let us come back to the Yule -Walker equations. The autocorrelation 

matrix contains information about the transducer power spectral density , but no 

information about its phase. The cross-correlation vector on the other hand 

contains information about the system phase. How much information does it 

contain? Since trans(n) is causal it means that trans(-n) = 0 for n>p where p is 

modelling delay in figure 4.2. Then, using (4.17), we deduce that C].j(n) = 0 for n>p. 

Moreover since W is also causal the samples Crd(ii) for n < 0 will not be considered. 

This implies that the cross correlation vector contains information about the first p 

samples of the impulse response of the loudspeaker. If p = 0 for instance there is 

no information in the cross -correlation vector and therefore it is impossible to 

predict the genuine output if x(n) is white and the system is non-minimum phase. 

If p>m, length of the transducer impulse response, the cross correlation vector 

contains all the information about the transducer and the attenuation should be 

significant. A rule of thumb should be to ensure that p > m. It is of course possible 

that in doing this we largely over estimate the minimum value of p particularly if 
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the loudspeaker is mainly an autoregressive system. To determine the genuine 

value for p one can imagine shortening the transducer impulse response by 

compensating the pole of the system using an AR estimation. Once compensated, 

the impulse response of the modified transducer would only consist of its non-

minimal phase components. However this complicates substantially the active 

noise control system. 
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Figure 4.3 Limitation in the a t tenuat ion due t o the loudspeacker for diverse 

length of the direct path. 
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Figure 4.3 shows the predicted attenuation i.e. the spectrum of the minimum 

possible error sequence in figure 4.2, for different values of the delay parameter p. 

The loudspeaker is the one used in our experiment (impulse response given on 

figure 3.4) and the number of coefficients of the W filter is 250. The results agree 

well with the conclusions drawn above. There is nearly no attenuation for p=0 and 

when p = m (m = 25 is the length of the significant part of hs(n) in figure 3.4) the 

performance levels off 

Moreover we can see that the potential attenuation of the active control system is 

severely limited at low frequencies from 200 Hz and below because of the non-

minimal phase properties of the loudspeaker. The singularity at high frequencies 

can be explained by considering the responses of the anti-aliasing and 

reconstructing filters, whose slopes are too steep to be inverted. This high 

frequency behaviour, however, does not matter too much ; the active control system 

is not designed to operate at such frequencies. 

In the experiment the distance between the detection microphone and the 

secondary source is 1.224m and corresponds to a delay of 9 samples at the sample 

rate of 2500 samples per second. From f igure 4.3 we can predict that the 

attenuation for the real system will not be better than 20dB with non deterministic 

signals. Consequently the loudspeaker is very likely to be the limiting factor in our 

experiment. Of course it is still possible to increase the delay between the detector 

and the actuator, a delay of 21 samples giving nearly 30bB in the middle of the 

frequency band. To obtain such a large delay, however, the section of duct between 

the detection sensor and the secondary source need to be 3m long, which is not 

always possible in a practical system. 

IV.2 Least square controller If Transom) = 1 

In this section we study three alternative structure for the controller. We assume 

for now that the responses of the two transducer are perfectly uniform. For each 

controller structure we will determine the optimal controller in the least mean 

square sense and hence predict its optimal performance for various filter lengths. 
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IV.2.1 Feedback cancellation structure 

The feedback cancellation structure is shown in Figure 4.4 . The controller is 

made of two components : a feedforward filter, W and a feedback one, F'. The 

interest of such a structure is easy to understand. If the feedback canceller is 

exactly opposite to the feedback path, the coupling between the secondary source 

and the detection microphone is removed. The system input signal is not corrupted 

and the controller acts as a purely feedforward one. This structure has been used 

in telephone networks and is called an echo canceller [22]. More details about this 

realisation will be given in the next chapters. 

In this paragraph we consider the echo canceller to be perfect. The system, 

represented on Figure 4.5 , is now simplified : the feedback path has disappeared 

and the linearity and time invariance has enabled us to swap the error path and 

the controller. 

The problem of finding the FIR filter W which minimizes the mean square of the 

error can be treated in the same manner as previously since the error surface is 

obviously quadratic. Given the convention of figure 4.5 and according to the theory 

presented in the previous section, the optimal filter W is the solution of the Yule-

Walker equations 

[AJwopt = -Cj-d (4.18) 

where [A]j.j. is the autocorrelation matrix of r(n) which is now the reference signal 

x(n) filtered by the responses corresponding to B and C ; is the cross-correlation 

vector between r(n) and d(n) where d(n) is x(n) filtered by A. 

Assuming that x is again white noise and proceeding similarly to (4.11) we have. 

%(n) = E{b(-n)*c(-n)*x(-n)*b(n)*c(n)*x(n)} = abi)(n)*acc(n) (4.20) 

and 

c^(n) = E(b(-n)*c(-n)*x(-n)*a(n)*x(n)) = b(-n)*c(-n)*a(n) (4.21) 
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Figure 4.4 Feedback cancellation structure 
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Figure 4.5 Least square identification assuming the echo canceller Is perfect 
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Figure 4.6 Attenuation predicted In the purely feedforward case. R 1=0.38 
R2= -0.83. The secondary source is assumed to have a perfectly flat response 

48-



Using the models described in chapter II for a(n), b(n), c(n) it is therefore possible 

to calculate the autocorrelation vector and to solve for the controller response 

numerically. We have chosen for the reflection coefficients the approximate values 

they have in the real experiment. Figure 4.6 shows the attenuation predicted for 

various numbers of coefficients. When the controller has less than 75 coefficients 

the attenuation is very poor. Above 150 coefficients it can be more than 20dB for 

some frequencies. 250 coefficients lead to satisfactory results (this number is 

currently used in the real experiment). However we notice the presence of peaks in 

the spectrum. Such peaks limit the global attenuation to 20dB for the feedback 

cancellation system with 250 coefficients. 

COtOMO&NCEiniNCTDDN 

Now consider again (4.18) and suppose that W is a non causal FIR filter of 

unconstrained length. In practice the number of coefficients of W must be much 

larger than the number of coefficients of the autocorrelation and crosscorrelation 

functions, supposed to be of finite duration. Under these conditions it is easy to 

show that (4.18) is equivalent to 

Wopt (n)*Crr(n) = -Crd(n) for -oo < n < oo (4.22) 

taking the Fourier transform of both sides of this equation, we have 

Wopt (j®)-Srr(jco) = -SrdCjw) (4.23) 

andso 

Wopt am) = - 7 ^ (4.24) 
SrrOco) 

Where Srr is the power spectral density function of r(n) and Srd is the cross-

spectral density function of r(n) and d(n). 

The result expressed in (4.24) is known as the Wiener filter [23] and gives the 

optimal unconstrained controller. It is satisfactory to note that we have obtained 

this result from the time domain Yule-Walker equations extended to the 

unconstrained case. 
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Moreover, as previously, we can deSne the frequency domain error function as 

S e e W = E{E(jo))*E(jco)} 

i.e. 

SeeCjw) = E { [D(jm) + W(jo)).R(jo))]* [D(jo)) + W(jo)).R(jm)]) (4.25) 

so that 

Se;e(jv/) == S(id + Wf*.Sid + TV. Srd* + TATW* Zirr (4.2()) 

When the controller is off, the error power spectral density is 

See (off) = Sd(j 

When the optimal filter is used, the spectral density of the error is given by 

substituting (4.24) into (4.26) which gives : 

See{on) = S d d - ^ 4 ^ 
orr 

Therfore the best attenuation we can achieve with an unconstrained filter is 

The function is called the coherence function and is available on most spectrum 

analyzers. The result (4.27) is a classical one in optimal control (see [23]). It shows 

that the best possible reduction using a unconstrained feedforward control system 

is limited in a simple way by the coherence between the measurable signals from 

the detection and error sensors. In the simulations considered here, however, no 

measurement noise is assumed and so the coherence between r(n) and d(n) is 

perfect ( y^rd = 1) and the residual error for a completely unconstrained filter is 

thus zero, as expected. 
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IV.2.2 Simple FIR structure 

Suppose now that we remove the echo canceller. The controller then consists only 

of a simple transversal filter W. 

Finding the optimal finite length controller is not so easy in this case. The 

feedback introduces several problems ; the first one is that the error surface is no 

longer a quadratic function of the controller coefficients. We can prove this fact by 

working from the frequency domain analysis. 

In chapter II we have established the following formula 

\re(j(D) = VPQO)) (4.28) 

After expansion of the denominator into 1+WF+(WF)2+(WF)3+...(assuming 

IWF I <1 for all o, which is generally the case with practical realisations), we have 

Ve(j(0) = (A - AWF + CWB).(1+WF+(WF)2+(WF)3+ )Vp(jm) (4.29) 

an inverse Fourier transform leads to : 

Ve(n) =(a(n) - w(n)*(a(n)*f(n)-b(n)*c(n)) * (6(n)+w(n)*f(n)+(w(n)*f(n))(2)+ )*vp(n) (4.30) 

As ve(n) is an infinite order polynomial of the transversal filter coefficients, the 

square of the error, (ve(n))2 , is also an infinite polonomial of the coefficients w(i) 

and so the error surface cannot be quadratic. Such a non quadratic error surface 

can have several minimum values. Therefore the condition that the gradient of 

the expectation of the error equal to zero is not necessarily a sufficient one to find 

the optimal solution. However, given the complexity of the problem,we will 

investigate the consequences of fulfilling this condition. 

The following lines describe a suboptimal algorithm, derived from the Yule-

Walker equation, which converges to a minimum value of the error surface when 

the controller is a simple FIR filter. 
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First of all, we know G-om expression (2.26) that the ideal controller is independent 

of the error path and from the reflection coefficients. To simplify the calculation we 

will thus suppose that C(jco) = 1, B(jco) = 1 and Ri = R2 = 0, so that F(jco) is a 

pure delay. 

Given these approximations the system can be represented as in f igure 4.7 

x(n) 

DELAY of p samples 
d(n) = x(n-p) 

F F 

\ u(n) 
W W 

H H r(n) 

Figure 4.7 Least square identification (with a simplified error path) in presence of 

the feedback path. 
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TEKE DOMAIN OPTIMIZATION 

As previously we want to find the transversal filter W such as 

--^^-E(e2(n)} ==() Gor 0 <: 
9wi 

We can start firom 

E{e2(n)}= E{d2(n))+ 2cudTw+wT[A^Jw 

and differentiate it. However this leads to some tedious calculation since -^^rfAuu] 

can only be expressed in a recursive manner. 

Fortunately, there is also another method using the instantaneous gradient. In 

(appendix B.2) is derived the expression of the gradient of the instantaneous error. 

) = e(n).(h(n)*u(n-i)) 

where h(n) is the filter whose z transform is 

- 1 _ I3(z).Wf(z) 

where F(z) represents thefeedba^k path.In this case we assume F(z) = z"P.(feedback 

path delay equal to primary path delay) 

Since 

:-^--Ii(e;2(n)) =13 { (4.:31) 

we have 

-^E{e2(n)} = E{e(n).(h(n)*u(n-i))) = E{[d(n)+w(n)*u(n)].[h(n)*u(n-i)]} 
9wi 

(4.32) 

Let the signal u(n) filtered by H be r(n), 
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a N 
-—E{e^(n)} = E{d(n).r(n-i)} +E{ 2}(wj.u(n-j).r(n-i))} (4.33) 
dwi j=0 

. N 
-—E{e^n)} = Cnl(i)+ 2(wj.E{u(n-j).r(n-i)}) (4.34) 

j=0 

a N 
-—E{e2(n)) = Cnl(i)+ %(wj.Cru(i-j)) = 0 for all i (4.35) 

j==0 

Where Cj.(i(n) is the cross-correlation function between d(n) and r(n) and is 

the cross-correlation function between u(n) and r(n). 

(4.35) can now be expressed in a matrix terms: 

[Aru]w = -Cfd (4.36) 

[Aj^l is a (Ntimes N) non symmetric matrix defined as follows : 

(Vlru] y = CTu(i-j) (4.3-7) 

is the cross-correlation vector between r(n) and d(n). 

(4.36) is a relation similar to the Yule-Walker equation but this time the sytem is a 
non linear one since because of the feedback path, both [A^^] and Cj.jj depend on w 

in a non linear way. 

Suppose however, that we give to the controller some value wq . We can calculate 

[Aq rul and Cq rd > crosscorrelation matrix and cross correlation vector related to 

wq. Using (4.36) we can deduce Wi which should be closer to the optimal controller 

than the initial guess. 

Wi= [AorJ-^Cord (4.38) 
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We can then calculate the new crosscorelation matrix and vector and iterate (4.38) 

until the controller converges to the "optimal" solution. 

n+1 "[^n ru3 rd (4.39) W 

The figure 4.8 shows the attenuation obtained by iterating (4.39) for various 

controller lengths and starting with wq = 0. Typically, 10 iterations are required for 

convergence. The excitation x(n) is white and the number of tap delays varies from 

64 to 210 . The attenuation increases with the number of coefficients but is limited 

at some regularly spaced frequencies. We know that these frequencies correspond 

to those for which a node of pressure is present at the detection sensor. Because of 

its FIR structure, the controller is not able to supply the infinite gain required at 

these frequencies,. 

IMMGCaUICriCTr IDCDAdLAJOSr CtPTIIW[IZ l̂TIC)N 

Assuming as in IV.2.1 that the controller impulse response is not constrained to 

be causal and of larger duration than the crosscorrelation function, we can deduce 

from (4.36) an expression similar to (4.22). 

Wopt (ii)*Cru(n) = -Crd(n) (4.40) 

Fourier transforming both terms leads to 

Wopt (jO)).Sru(jCO) = -Srd(j®) (4.41) 

moreover 

c -auu .. 
(1 - Wopt .F)* (4.4:%) 

c 
t"! = (1 - F) (4 "IS) 
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and 

Srd = (1 - Wopt . F ) % - Wopt F) ^^44) 

substituing (4.42), (4.43), (4.44) into (4.41) we obtain, after eliminations at both 

sides. 

TR/cypt Q(D) = 1 - TV()pt 0(0) i: 0(D) ) Cl/lS) 
SxxOo^ 

hence 

WoptQra) = - „ — — (4.46) 

Sxx a ® ) ( 1 - .Faco) J"* ) 
Sxx (JO)) 

Suppose that x(n) is white and there is no measurement noise in the system, 
since the reflexion coefficients are supposed equal to zero, both direct path and 
feedback path transfer functions are equal to 

Then 

Sxd Qm) (4.47) 
Sxx aw) 

Substituting (4.47) into (4.46) and replacing F (jco) by e"iŶ 2 gives 

WoptOra) = - — ( 4 . 4 8 ) 
1 - .e-2jyl2 

This result is not surprising : it has already been found in chapter II (equation 

2.26) using a deterministic calculation. It proves the consistency of the two 

approaches : the deterministic one and the stochastic one. 

Proceeding as in the previous chapter we can define a frequency domain error 

function : 
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See(i(o) = E{E(jco)*E(jco) } 

See(jw) = E { [D(j(0) + W(j(o).U(jm)]*. [D(j(0) + W(jo)).U(jco)]) (4.49) 

See(jw) = Sdd + W*.Sud + W. Sud* + WW*. Suu (4.50) 

hence 

See(jw) = Sdd + ^ p)* Sxd + (i _ w.F)' 

WW* 
'*'(1 - W.F)(1 - W.F)* 

from (4.45) we deduce 

Wopt. = ^ ^ P ^ ^^^2) 
Sxx (jm) 

Substituting (4.52) into (4.51) gives 

See (on) = Sdd 

and 

See (ofi) = Sdd 

then 

See (on) Sxd-Sxd _ . ^ 
S e e ( o f f ) - ^ ' SxxSdd (4.53) 

The optimal attenuation depends again on the coherence between the excitation 

signal and the reference signal. It is satisfying to notice that the theoretical 

optimum does not depend on the controller structure. 
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Figure 4.8 Maximum attenuation predicted in presence of the feedback path 

for different FIR controller lengths. 
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IV.2.3 IIR structure 

This structure is shown in figure 4.9 with error path (C) reordered, for clarity. The 

controller comprises a two part filter (W, V) :W identifies the zeros whereas V 

identifies the poles of the ideal controller 

The transfer function of such a controller is 

T(jco) 
W(jo)) 

1 - V(jm) 
(4.54) 

The main interest of this filter combination lies on the similarity of structure 

between the IIR controller and the optimal deterministic controller described in 

chapter II. 

d(n) 

x(n) 

9(n) 

e(n) 

Figure 4.9 Structure of an IIR controller 
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Assuming that the excitation signal and the reference signal are perfectly 

correlated we can deduce immediatly from (2.26) and (4.54) the optimal transfer 

functions of V and W. 

W(jco) -e-jkl^ 

1 - V(jO)) " 1 -

gives 

V/opt(Ko)= - (4.55) 

T/cqpt C(0) = e-Zjld, (4.516) 

If excitation and reference signal are not correlated, the search for the optimal 

recursive controller leads to extremely tedious calculation. The case will not be 
A T T A m i H c i i n r * A "wrA GVIQII A v f a n a i f T i n . o f - i n -fKck 

controller implementation. 

IV.2.4 Summary 

The first part of this chapter shows that the problem of inverting the response of 

the electroacoustical transducers and anti-aliasing filters limits the attenuation to 

about 20dB. In the second part we find that 20dB is also the best attenuation that a 

FIR controller of 250 coefficients can achieve with a perfect transducer. Whereas it 

is still possible to improve the second problem by increasing the number of 

transversal tap delays or by using a recursive controller, the first problem might be 

difficult to solve. Effectively as we have noticed, the response of the transducers 

and filters is non minimal phase and cannot be inverted perfectly by a causally 

constrained controller. Therefore, significant improvement in active noise control 

realisation will require improvement in transducer technology. 
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CHAPTER V 

Adaptive time domain algorithms 

Now that we have developed the basic theory for the ideal optimal controller, we wil 

consider different realisations of adaptive active noise control methods. Adaptive 

methods are often to be prefered in practice to exact least squares methods (i.e. 

direct solution of the Yule-Walker Equations) because of the smaller 

computational burden and the capacity for adaptive methods to track variations in 

signal statistics. All the methods described below are strongly linked to the well 

known LMS algorithm. We will thus first describe the main features of this 

algorithm. 

V.I. The LMS algorithm 

V.1.1. The use of the LMS algorithm for system identification 

The LMS algorithm was been developed in the 1960's and the 1970's by Widrow 

and others in order to design robust and easy to compute adaptive filters. An very 

complete description of this algorithm and its properties is given in reference [24]. 

In this paragraph we will review the basic features of the LMS algorithm. 

Since the LMS algorithm is widely used in system identification, we will 

concentrate on this application. Figure 5.1 shows the principle of any identification 

process. Both the input and output of a plant (A) are known. A filter W is used to 

calculate a prediction of the plant output. At each sample, the W filter is updated 

according to some criterion applied on the prediction error e. In the case of the 

LMS algorithm the criterion is to minimize the Least Mean Square error, hence 

the name. 
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y 

G> 

Update 

Figure 5.1 System identification using an adoptive filter 

Figure 5.2 Scliematic description of the LMS algorithm : The product of the input 

vector X by the error is used to update the filter W. 
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If W is an FIR filter, we have seen in chapter TV that the expectation of the square 

of the error is a quadratic function of the W coefficients. The LMS algorithm uses 

an iterative procedure based on an approximate steepest decent method to seek the 

error surface bottom. The principle is as follows : 

The vector coefficient of the filter W at instant n is denoted 

w(n) = (wo(n), wi(n), W2q(n))T 

the instantaneous error gradient vector at instant n is then 

0(n) = % ( . ) . •.(»), ......N(n))^ = ( ^ , 1 ^ . 

dWQ(n) dwi(n) ow^n) 

Similarly, the input vector at instant n is defined as 

x(n) = (x(n), x(n-l), x(n-2),...,x(n-N)) 

The update equation for the filter at the step n+1 is defined to be 

w(n+l) = w(n)-p..0(n) (5.1) 

and |iis a constant that regulates the speed and stability of adaption. 

Fom the figure 5.1, we have 

e(n) = d(n) + w(n)T'x(n) (5.2) 

and since 

2 . e ( „ ) . ^ (5.3) 

Then equations (5.1) (5.2) and (5.3) can be combined together to show that each 

element of O can be expressed as : 
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9w(n)"^ 
(t)k(n) = 2.e(n).—Y-x(n) 

owk(n) 

or (|)k(n) = 2.e(n).[o, , 0, ...o]Tx(n) 
8wk(n) 

therefore 

(|)]̂ (n) = 2.e(n).x(n-k) (5.4) 

So, in vector notation, the LMS algorithm can be expressed as 

w(n+l) = w(n) - 2|i.e(n).x(n) (5.5) 

This formula can be represented graphically (see figure 5.2) 

We can see in (5.1) that the change of the filter coefficient vector w is proportional to 

the opposite of the instantaneous gradient. Since # (n ) is only an approximate 

estimate of the local gradient of the error surface (the variation of the mean square 

error with the filter coefficients), the LMS algorithm, strictly speaking, does not 

follow exactly the steepest descent line of the error surface. Without averaging, the 

gradient component contains a large amount of noise (it is sometimes called the 

stochastic gradient), but the noise is attenuated with time by the adaptive process, 

wich acts as a low pass-pass filter. 

The main advantage of the LMS algorithm is that it can be implemented in a 

practical system without squaring, averaging, or differentiation and is elegant in 

its simplicity and efficiency. 

V. 1.2 Use of L /̂IS algorithm in active control. 

We have so far examined the simplest case of identification, i.e. when the error is 

obtained directly by the addition of the plant output and the filter output. This block 

diagram does not directly apply to the active control problem for two main 

reasons : 

1- There is an additional transfer function between the filter output and the 

summing junction. This transfer function, C(s), is referred to as the error path. 

2- The existence of a feedback path F(s) from filter output to filter input which 

modifies the expression of the gradient. 
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The block diagram of a typical active control system with these two transfer 

functions included is illustrated in figure 5.3. 

(1) InOuenoe of the error path (feedbadc path assumed zero) 

The use of a theorem of linear filtering allows us to solve the problem introduced by 

the error path. Assuming that W is fixed i.e. not adapting (which is a reasonable 

approximation if the the filter coefficients are changing slowly compared to delays 

in C(s)) we can commute C and W. The case is now exactly similar to V. 1.1 and we 

can therefore apply the same theory. 

If we define x(n) filtered by C to be r(n), the filtered reference signal, i.e. 

r(n)= 2 Cj.x(n-j) (5.6) 
j=0 

Where cj are the coefficients of the impulse reponse of C, the update equation 

corresponding to the LMS algorithm for the filter coefficients in figure 5.4 becomes 

w(n+l) = w(n) - 2 p..e(n).r(n) (5.7) 

This algorithm is sometimes called the filtered-x LMS (see f igure 5.4) and is 

described in [24] as well as in [11]. 

(2) Tnfuenoe of the feedback 

We have seen in chapter IV that the presence of a feedback loop between the 

secondary transducer and the detection sensor makes the error surface non 

quadratic. Studying an IIR adaptive filtering algorithm in a similar case Flockton 

has shown in [25] that the expression of the instantaneous gradient has to be 

modified in order to take the feedback into account. The details of such a 

calculation will not be given here (see Appendix B.2 for more details), but we shall 

use the results of such an analysis. We will assume that althougth the error 

surface is non-quadratic it is at least unimodal so that a gradient descent method 

converges to a unique minimum. 
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From (B.2.14) the modified instantaneous gradient is : 

( ) = (|)i(n) = e(n).h(n)*u(n-i) (5.8) 
3wi 

where h(n) is now the filter whose z transform is 

H(z) = C(z) 1 _ F(z).W(z) 

which includes the effects of both error and feedback paths. u(n) is the signal 

which is fed to the filter W (figure 5.3), so that 

= 1 - F(z).W(z) 

Finally if we define the modified filtered input signal as 

r(n) == lij.u(ii-j) 
j=0 

The updating formula is identical to (5.7), 

w(n+l) = w(n) - 2 |i.e(n).r(n) (5.10) 

but note that the definition of the filtered reference signal has been generalised. 

(3) on line identification of H(z) 

The algorithm described in (5.10) is different from the filtered-x LMS in the fact 

that the input signal has to be prefiltered by a modified error path filter 

H(z) = C(z) ^ 
1 - F(z).W(z) 

The recursive component of H(z) comes from a modification given to the 

instantaneous gradient in order to take the feedback path into account. For this 

reason we propose to call this algorithm (originally put forward in [25]) the 

modified-gradient filtered-x LMS algorithm. 
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Figure 5.3 Error path and Feedback path 

r e 

Figure 5.4 Filtered-x LIVIS The product of the filtered-x vector and the error 

updates fhe filter W. 
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An interesting feature of the modified-gradient LMS is that the modified error path 

H can be identified simultaneously with noise control. If we look carefully at (5.9) 

we find that H is the transfer function experienced by a signal (xi) injected at the 

output of the control filter to the error sensor (see figure 5.5). Figure 5.6 describes 

the principle of such an on-line identification. Using as an input signal such as 

white noise, introduced at and the noise pressure detected at the error 

microphone as an error signal , a classical LMS algorithmcan be used to identify 

the modified error path. The error microphone will detect the sum of two signals : 

the response of the modified error path to the additional white noise excitation on 

one hand, the residual error signal of the control system on the other hand. Since 

the additive white noise and the residual error signal are uncorrelated, the latter 

signal can be considered as measurement noise for the error path identification 

system. We know from reference [24] that the LMS algorithm is not biased by 

measurement noise at output. Then the error path identification system will 

converge to the least square estimate of H(z). 

V. 1.3. Required filter length 

We know from discussion of II.4 that the ideal controller a very long impulse 

response. If there is no dissipation in the duct then the controller has undamped 

poles and never decays. However there is always some kind of dissipation in a 

practical duct. If we make the reasonable assumption that duct dissipation causes 

1% loss, 80 |i = VO.99 in equ. (2.29). Then we can calculate the number of coefiicients 

necessary to contain 99 percent of the ideal controller energy. (20 dB of 

attenuation). 

If there is 1% loss over I2 meter of pipe ( Ig = 1.224m) the ideal controller impulse 

response energy decays of 1% every 0.0036s. Therefore the time necessary to decay 

of 99 percent is : 

to = 0.0036N 

with 

(0.99)^=0.01 
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Figure 5.5 l\/1odified-graclient filtered-x LMS. The product of the error by the 

vector U filtered by the modified error path H updates the filter W. H is the 

transfer function between xl and e. 

White Noise 

Figure 5.6 On-line identification of the modified error path 
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then 

N = e | 5 ^ = 4 5 8 

and 

to = 2.75s 

with a sampling frequency of 2500 Hz the required number of coefficient will be 

6873. In practice the number of coefficient is less than 250. Then the performances 

of such an active control system will be severely limited by practical requirements. 

V.2. The LI\1S algorithm with feedback cancellation 

In order to avoid some of the problems inherent with using the LMS algorithm 

with a single FIR filter in the controller, a modified version is now presented . A 

filter F' such as F' ~ - F is now implemented in parallel with F. The object is to 

cancel the feedback at the error microphone. The signal u(n) is therefore very close 

to the primary noise x(n) if F' is a close match to -F. The ANC system then 

becomes purely feedforward. Such a structure (already described in chapter IV) 

has been succesfully implemented to perform noise cancellation by Poole et al. 

[16]. 

V.2.1. Gradient expression 

If we consider the feedback to be perfectly cancelled we do not have to consider it in 

the calculation of the gradient. Consequently the system is equivalent to the simple 

structure described by the formula (3.8). The formula for the gradient is then : 

0(n) = 2.e(n).r(n-k) (5.11) 

with r(n) equal to u(n) filtered by the filter C 

OO 
r(n)= cj.u(n-j) 

j=0 

and therefore, the updating equation is 

w(n+l) = w(n) — 2|i.e(n).r(n—k) (5.12) 
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Figure 5.7 gives a graphic representation of (5.12) 

Without feedback the error is directly proportional to the input and so the error 

surface is quadratic. This is one of the main advantages of the feedback 

cancellation structure ; the convergence of the algorithm is guaranteed provided 

the convergence coefficient is reasonably small, and a good model of the feedback 

path is maintained. 

Figure 5.7 LMS algorithm with feedback cancellation. The product of the vector 

R and the error e updates the filter W. F' Is on estimate of -F, feedback path 

between the secondary source and the detection sensor. 
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V.2.2. Theoretical form of the feedback cancellation controller 

With the introduction of F', the controller (a parallel combination of F' and W) is 

now recursive. We could expect the W filter to require a smaller number of 

coefficients than the single transversal filter used in the simple LMS algorithm. 

This is not true, however (as pointed out in [18]), the number of coefficients 

required turns out to be infinite, as we will now demonstrate. 

From (2.7) and since F(jm) = 0 (perfect feedback cancellation) 

Wopt (jm) -

if we replace A(ja)), B(jo)), C(jo)) by their theoretical expressions (2.16), (2.17), (2.18), 

we have : 

g-kl J? R-e-k(l+l ) 
Wopt (j(0) = -

We can easily develop this formula and take an inverse Fourier transform leading 

to the required impulse response for the w filter in this case. 

Wopt(t) = 

n=0 n=0 

(5.14) 

The structure of Wop̂  (t) appears complicated at first sight but turns out to be quite 

simple. 

hi(t) = hĝ '̂ (̂t - ̂ -RiR2hg^"^\t - gives two impulses (figure 5.8.a). 
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The terms 

n=0 

and = 
n=0 

are two Dirac sequences attenuated by R2 and factors respectively, and so the 

convolution of these two terms gives a pseudo-periodic sequence of Diracs with a decay 

rate equal to the slowest decay of the two terms Rj tc / (2 ( l2+l3+l4)) tc/(2(lo+li+l2)) 

(see figure 5.8.b). 

Finally WQp̂ (t) is a pseudo-periodic repetition of two impulses and its amplitude 
decreases in proportion to th maximum o f {R%^/(^02+l3+l4)) ^ j^^tc/(2(10+ll+l2))|^ 

V.2.3. Number of coefficients for W 

Since .̂̂ 0̂/(2(12+13+14)) zero for any finite t, w^(t) should have an infinite 

number of coefficients to contain all the information about the controller. It is 

interesting to determine a practical value for the number of coefficients. A sensible 

criterion is to consider the w(t) impulse response containing 99 percent of the 

energy. (20dB of attenuation) 
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1 2 / C 

Figure 5.8.a 

h , 0 ) 

A" 

( l + l 2 ) / C 

hoO) 

and 

( l 2 + l 3 + ] 4 ) / c 

Figure 5.8.b 
( 1 0 + 1 1 + I 2 ) / C 

Figure 5.8.C 

Figure 5.8 Sliope of the controiier W derived from tiie feedback conceiiation 

structure 
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In the case considered here we have c = 840m/s ; R2 = -0.83 ; = 0.39 ; I0+I1+I2 ~ 

I2+I3+I4 ~ 2m 

Since have only to consider the left hand term. 

The time tg ,corresponding to when this term has decayed by the criterion above is 

given by the solution to : 

00 

I e-'5 83'dl 
tn 

=0.01 (5.15) 
0 0 ^ ^ 

J e-'5«3'd, 
0 

which implies 

g-15.83to ^ 

so that 

With a sampling frequency of 2500 Hz the number of coefficients required is 

n = 0.29 X 2500 = 725. In practice, for computational reasons the number of 

coefficients cannot be more than 250. This demonstrates that the performances of 

such an active noise control system will be limited by the length of the W filters 

which can be implemented in practice. 

V.2.4. Number of coefficients for F 

The same calculation can be performed on F'. Since F' will be an FIR filter 

supposed to model F as well as possible, we have to determine the number of 

coefficients necessary to contain 99 percent of the energy. From (2.19) we deduce 

that f(t) decreases as which gives : 
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The requirement on this filter is not so stringent as that on W. With a sampling 

frequency of 2500Hz the number of coefficients required is 200. In practice we use 

250 coefficients. Consequently the feedback cancellation should remove most of the 

effects of the feedback provided the system is not changing. 

V.2.5. Adaptiviiy 

It is very important for an Active Noise Control system to track the nonstationary 

behaviour of the duct. Any temperature and humidity changes may induce 

dramatic variations in a(t), b(t), c(t). The system should be able to follow such a 

change since the W filter is constantly updated. However there is a part in the 

controller in the system previously reported which is never updated : the F' filter. 

The feedback canceller is supposed to be determined before the adaptation and is 

kept in this configuration. Suppose the physical feedback path F changes when the 

system is running, the F' filter is therefore no longer a good estimate of -F ; this 

introduces number of drawbacks : bad feedback cancellation, non quadaraticity of 

the error surface and potential instability. There is no simple way to identify F' 

when the system is on line. In effect the transfer function between the loudspeaker 

and the detection microphone is not just F but a parallel filter including F', F, W. 

The influence of an F' misadjustment will thus be an important feature in the 

expehmental study. 

V.3. The recursive LMS algorithm 

In the active control of sound in ducts, both simple LMS and feedback cancellation 

LMS algorithms requires very long filter lengths. Moreover the latter algorithm is 

not even fully adaptive if the changes in the feedback and error path are not 

tracked. We now describe a structure which is fully adaptive and requires only 

short filters : the recursive LMS. 
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V.3.1, Description of the structure 

The idea of using a recursive controller with a transfer function similar to (2.26) 

is not new [26] but the difficulty of building such a filter with analog equipment 

and the lack of an efficient algorithm to update IIR filters delayed the first 

succesful application of this approach until 1987 [27]. 

The structure of an IIR control system is illustrated on f igure 5.9. The controller 

comprises a two part filter (W, V). The filter W models the direct path (mainly a 

delay) and the recursive filter V cancels the effects of the direct feedback. An 

alternative interpretation of the action of the filter is that W identifies the zeros 

whereas V identifies the poles of the required controller. Both W and V are 

simultaneously updated and this is the principal change from the feedback 

cancellation structure. In practical realisations both W and V are implemented as 

separate FIR filters. If N is the number of W coefficients and M is the number of V 

coefficients we have : 

y(n)= ^ wi.u(n-i) + % vi.y(n-i) (5.16) 
i = 0 i = 0 

The problem of continously updating an IIR filter is extensively described in [28] by 

Shynk as well as in [29] by Widrow. In the next paragraph we describe an 

algorithm based on the calculation of the instantaneous error gradient as 

originally derived by Flockton [25] [36] . It is the equivalent of the LMS algorithm 

for an IIR filter, and so from now it will be designed as IIR LMS algorithm. 

V.3.2. Gradient expression 

This time we have to determine two gradient vectors : 

the gradient vector of the transversal component of the controller 

<D(n) = ((t)o(n), (t)i(n) 
OWQ a W j c/W]s^ 

and the gradient vector of the recursive component of the controller 

T(n) = (V„(n). v,(„) VM(n)F = 
dVQ dvi dVM 
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The calculation of these instantaneous gradient vectors is complicated because of 

the feedback path and the recursive nature of the controller. These calculations 

are fully fully discussed in Appendix B.2 

Given the previous conventions and according to Appendix B.2 .11 & B.2 .12 

(t)i(n)=e(n).h(n)*u(n-i) (5.17) 

yj(n) = e(n).h(n)*y(n-j) (5.18) 

with h(n) is now the impulse response of the filter whose Z-transform is 

H(z) = 1 _ F(z).W(z).v(z) ^^19) 

If we define the filtered input r%,(n) and the filtered output ry(n) as 

i\v(n) = l i i ju( i i - i ) (5.]tO) 
j=0 

rv(n)= Z hi.y(n-i) (5.21) 
j = 0 

and update the direct and recursive filter coefficients by an amount proportional to 

the negative of the gradients defined by equations (5.21) and (5.22), we obtain : 

w(n+ l ) = w(n) - 2 p,.e(n).rw(n) (5.22) 

v (n+ l ) = v(n) - 2 |i.e(n).rv(n) (5.23) 

Where rw(n) and rv(n) are vectors of N and M past values of rw(n) and rv(n). 

We see from (5.22) and (5.23) that the IIR LMS algorithm can be considered as two 

LMS algorithms applied simultaneously to W and V. Hence , the computational 

burden associated with implementing this algorithm is of the same order. In this 

case however, both u(t) and y(t) must be prefiltered by H(z) to generate rw(n) and 

rw(n). Fortunately, in this case, H can now be estimated on line, since as in § 

V.1.3, H(z) is the transfer function between the controller output and e and a 

simultaneous identification process can be performed at the same time as 
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implementing active control, (see figure 5.10). Then, the IIR LM8 algorithm will be 

able to be fully adaptive. Interestingly , by making V = 0 in (5.17), (5.18), (5.19), 

(5.20), (5.21) we obtain the formulae (5.9) and (5.10). It proves that the IIR LMS is 

an extension of the LMS algorithm. 

V.3.3. V and W for the ideal controller 

The recursive controller (W, V) has a frequency response given by 

We know from (2.26) that .-kl, 
TidealCjco) e'"-2 

Hs(j(o)(l - e-Zkl^) 

The similarity of structure between the two expressions is striking and explains 

and justifies fully the use of the IIR LMS algorithm. During the identification 

process W(jm) could efficiently converge to -e"^2 x (poles of Hs) and 1-

¥(]©) converges to (1 - e"^^^) x (zeros of Hs). If the inverse of the loudspeaker is 

nearly an impulse, w(t) mainly consists of an Ig/c delay and v(t) consists of an delay 

twice as long. In practice Ig is about lm-1.50m. The delay is then 1.5/340= 4.4ms. 

The corresponding number of coefficients with a 2500Hz sampling frequency is 11 

for w(t) and 22 for v(t). This is considerably smaller than the number of coefficients 

required for the algorithms discussed above (=1000). Since we need about a factor of 

30 fewer coefficients the computational power necessary to perform the same task 

is reduced dramatically. However there are several drawbacks to this approach. 

The first one is the non quadraticity of the error surface both due to the presence of 

the feedback and to the recursive structure of the controller. The second one is that 

while a FIR filter alone is always stable ( feedback is not taken into account), an 

IIR may not be. As soon as the poles are outside the unit circle the filter diverges. 

When the IIR filter converges its frequency response gets closer to the ideal 

controller described in (2.26). Unfortunatly this controller is potentially unstable 

since in theory all its poles are on the unit circle (i.e it has infinite resonances, see 
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section 11.4). An IIR filter will thus have a propensity to become unstable, and 

therefore a way to stabilise the controller will have to be considered when 

implemented in practice. 

X1 

Figure 5.9 The IIR LMS algorithm with on-line identification of the error path 

The product of the error by the Input vector U fiitered by the modified error 

path H updates the filter W 

The product of the error by the output vector Y filtered by the modified error 

path H updates the filter V. H is the transfer function between xl and e. 
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CHAPTER VI 

Practical results (simulations and experiments) 

In this chapter, the last one, we will study throught experiments and computer 

simulations, the three algorithms described in chapter V. As far as the 

experiment is concerned the various LMS algorithms were implemented on a 

TMS320C25 microprocessor with a sampling frequency of 2.5 kHz (the 

experimental setup has been described in chapter III). On the other hand, the 

software for the computer simulation (i.e the electro-acoustic model of chapter II 

and the three LMS algorithms) was programmed in the language C on a PC 

computer equiped with a 80386 microprocessor. 

There is nothing better than the real experiment to juge the performance of an 

active control system. However, the importance of the computer simulation is not 

to be neglected. Its advantage is that physical features can be introduced one at a 

time to see the effects on the algorithm. 

VI. 1. Implementation of the LMSAIgorlttim 

In order to simplify the language, each reference to the LMS algorithm in this 

section must be understood as modified-gradient filtered-x LMS. 

This study of the LMS algorithm will be divided in three steps. 

(1) anechoic duct with perfect transducers (simulated) 

(2) influence of duct reverberation (simulated) 

(3) experimental results and simulation of the experimental conditions 
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VI. 1.1. Anechoic duct with perfect transducer 

The first simulation has the following conditions : 

-perfect loudspeakers (i.e. impulse responses = 6(t)) 

-R]̂ =R2=0. 

-W has 250 coefficients. 

The f igure 6.1 represents the impulse responses of the adaptive filter after 2 

minutes of real time convergence (i.e. 120x2500 = 300 000 samples). We can notice a 

succession of peaks : the first one is delayed by 9 samples ans the next ones are 

delayed by 18 samples that is respectively by I2/C and by 2I2/C seconds. 

In order to compare with the result of the generalized Yule-walker equations of 

chapter IV, we plot in Sgure 6.2 the corresponding impulse response obtained by 

iterating equation (4.39). It is satisfying to notice that Ggure 6.1 and Sgure 6.2 are 

almost identical ; the modiEed-gradient LM8 converges to the optimal least square 

solution. Interestingly, these impulse responses are not just truncated versions of 

(2.28). 

The attenuation at the error sensor resulting from the controller reponse adapted 

using the LM8 algorithm is given f igure 6.3. 

Amplitude (V) 

- 0 . 2 

•0,4 

-0.6 

.̂8 

50 100 150 200 

25 samples = 10 ms 

Figure 6.1 Modified-gradient LMS,Simulation ; 250 coeffs ; R1=R2=0 ; perfect 

loudspeakers : Impulse reponse of the adaptive filter 
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Amplitude (V) 
0.2; 

4).4 

416 

50 100 150 

25 samples = 10 ms 

Figure 6.2 Impulse response of the opt imal least square FIR control ler ; 250 

coeffs. 

Attenuation (dB) 

600 1000 1 2 0 0 1400 

Frequency (Hz) 

Figure 6.3 IVtodlfied-gradient LMS,Simulation ; 250 coef fs ; R1=R2=0 ; per fec t 

loudspeakers: at tenuat ion at the error sensor 
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VI. 1.2. Influence of the transducer. 

Setting the reflection coefficients to zero again we now introduce a more realistic 

model for the transducers. The identification of the 50 coefficients FIR filter 

transducer model has been described in chapter III, this was used in the 

simulation of the adaption algorithm. Then, the LMS algorithm has been allowed 

to run for 2 minutes of real time. The right hand plot of f i g u r e 6.4 is the error 

signal spectrum when the system is on and off The attenuation is limited to 20 dB. 

Given the 9 sample delay between the detection microphone and the secondary 

loudspeaker, this is perfectly consistent with the conclusions of § 1.3 in chapter 

IV. 

VI. 1.3. Experimental results and simulation of the experimental conditions 

The LMS algorithm has been used to control the sound In the experimental duct. 

The number of coefficients for the adaptive filter was 200. After various trials, the 

best value for the unnormalised updating coefficient was found to be 0.02. We have 

Implemented two versions of this algorithm : 

an unmodified error path prefllter (flltered-x LMS) 

a continuously on-line identified error path (modifled-gradient 

Sltered-x LMS) 

Flockton has shown in [25] that the first algorithm leads to a biased solution in 

presence of a feedback path whereas the second algorithm converges to the correct 

adaptive filter. Consistent with these conclusions, we have found the second 

algorithm to work better and we from now we will consider the latter only. 

With the modifled-gradient flltered-x LMS algorithm the overall reduction 

obtained at the error sensor was 10 dB. It took 2 or 3 minutes for the control 

algorithm to converge whereas the identification algorithm was much quicker (a 

few seconds to converge). However, the control algorithm was subject to divergence 

after few minutes of control. A better stability was obtained by decreasing the 

updating coefflcent at the expense of a slower convergence rate (more than 10 

minutes to converge satisfactorily) or by introducing a leak in the updating process 

(see VI.2.3 for more details). However all these remedies cannot compensate the 

main problem with the converged system : the number of coefficents is limited to 

200 which is insufficient to achieve a good control. 

F igure 6.5 shows both experimental and simulated impulse responses of the 

adaptive controller obtained after 10 minutes of real time control. They look very 

similar. 
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Amplitude (V) PSD (dB) 

system off 
. system operating 

/ i n r y . 

'o lUQ MO 400 700 #00 MO lUKI 

25 somples = 10 ms Frequency (Hz) 

Figure 6.4 Simple LIVIS, Simulation with realistic loudspeakers; 250 coeffs; R1=R2=0 : 

(left) W Impulse response, (right) Power Spectral Density at the error 

microphone. 

Amplitude (V) 
0.25 

exper iment 
simulation 

0 20 40 60 80 100 120 140 160 180 200 

25 samples = 10 ms 

Figure 6.5 LMS algorithm. Controller Impulse response after lOmin of 

convergence. 200 coefficients, convergence coefficient = 0.02. 
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More interesting are the moduli of the corresponding frequency responses plotted 
on figure 6.6. We notice a periodic repetition of peaks every 140Hz which has 
already predicted by the study of the ideal controller (see figure 2.5). The fact that 
these peaks are not very sharp is a consequence of the FIR nature of the controller. 
Finally, f igure 6.7 is a display of the error signal spectrum when the system is 
operating (upper curve) and when off (lower curve). Again, simulated and 
experimental spectra are similar. On both residual error spectra there are peaks 
regularly spaced at frequencies Fi = 148 Hz, Fg = 222 Hz, Fg = 296 Hz, F4 = 370 Hz 
etc. These peaks cannot be related to interference at the detection of the 
downstream sound wave with the reflected one since the frequencies are not 
multiple of c/(2.l2)=139 Hz and some time was spent tracking down where they 
came from. Figure 6.8 and figure 6.9 help answer this question. Figure 6.8 is a plot 
of the (measured and simulated) frequency responses between the detection 
microphone and the primary source with no active control as denoted B(jco) in 
f igure 2.2. We distinctly notice anti resonances at 74Hz, 148Hz, 222Hz, 296Hz, 
370Hz. These antiresonances indicate a bad coupling of the primary source with 
the detection microphone. This correspond to zeroes of B(jQ)) in equ (2.23). When the 
primary source generates a sound in the duct at these frequencies, the detection 
microphone cannot detect it perfectly. Therefore, because of measurement noise, 
the coherence of the two signal is not perfect and the attenuation at these 
frequencies is reduced (see figure 6.6). Figure 6.9 confirms this assumption. It 
represents the power spectral density at the detection microphone when the active 
noise control system is operating. We can see again that there is little signal at 
frequencies Fl , F3, F4, F5 corresponding perfectly to the anti-resonances 
mentionned above. From these results we can predict that the performance of such 
an active noise control system will be related to the quality of the coupling between 
the primary source and the detection microphone. It is advisable to determine the 
distance between these two transducers in such a way that the frequency response 
B(j(o) is as uniform as possible. 

VI.2. Implementation of the feedback cancellation algorithm 

We have seen in chapter V.2 that the error path prefilter transfer function must be 

equal to C(z) and that the echo canceller transfer function has to be equal to -F(z). 

Several attemps were made to utilise a training signal on a off-line basis to 

determine the desired coefficients of the compensating filter F'(z) [16]. The 

principle was to utilise an LMS algorithm on an off-line basis with a training 

signal to determine the proper weights to cancel the acoustic feedback. However, 

Eriksson in his Ph. D thesis [31], pp. 36-42, has shown throught various computer 
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Figure 6.6 LIVIS algorithm. Frequency response of the controller after lOmln of 
convergence. 200 coeff icients, convergence coef f ic ient = 0.02, 

(top) simulation, (bottom) experiment 
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Figure 6.7 LMS algorithm. DSP at the error sensor after lOmn of convergence. 

200 coefficients, convergence coefficient = 0.02. 

(up) simulation, (bottom) experiment 
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Figure 6.8 transfer func t ion b e t w e e n t i ie primary source a n d t l ie de tec t ion 

microphone. The anti-resonances FL F2, F3, F4 ... correspond to peaks Fl. F2, F3, 

F4... in figure 6.7 
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Figure 6.9 Experimental Power Spectral Density a t the d e t e c t i o n mic rophone 

when the ANC system (LMS algorithm) Is operating. 



simulations that this approach is only restricted to broadband primary input noise. 
It does not appear to be usable for sinusoidal input signals on an adaptive basis. 
Therefore, in order to use this approach on any kind of input signals, it will be 
necessary to initialy train the system with random noise and then not allow the 
feedback canceller to change. This is a important limitation since the feedback 
path continuously varies with time, then, it becomes very important to know how 
such a fix algorithm will behave to physical perturbations in the duct. This is 
considered in the following paragraph. 

V.2.1. Influence of a perturbation in the feedback path (simulation) 

In order to study the influence of a mismatch between the echo canceller and the 

feedback path we have considered two kinds of perturbation. The first one is to 

corrupt the filter F' by adding to each of its coefficients, a random value. The 

misadjustment is then uniformely distributed over the whole filter response 

We have run the algorithm and plotted the residual error for several levels of the 

perturbation in F' (figure 6.10). The mean square value of the perturbation (p) 

varies from 0 to 0.05 the latter corresponding to a root mean square amplitude 

equal to 0.25 time the highest coefficient of P' .The performances obviously 

decrease when the level of the perturbation increases but the simulation shows 

that the perturbation does not greatly affect the stability of the system. 

The second kind of perturbation which was introduced into F' is a phase shift. By 

adding a filter we modified the echo canceller phase by the a fraction of a sample 

(figure 6.11). The genuine filter has been obtained by inverse Fourier transforming 

the following Z-tranform : 

P(z) = (z)(^") (6.4) 

Where i<n 

Such a variation in phase is likely to occur when a change of the temperature 

modifies the sound speed or even the reponse of the louspeaker. The residual error 

has been plotted for several values of delay up to one sample, ( f igure 6.12). It 

appears that the algorithm is very sensitive to this factor. When the echo canceller 

is out of phase by one sample no attenuation is achieved and the convergence 

coefficient has to be substantially reduced to preserve stability. All these results 

are consistent with the conclusion derived in similar studies [37] [38], which are 

that the attenuation is much more sensitive to variation of the loop delay than to 

variation of the loop gain. 
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Figure 6.12 Feedback cancellation LI\/1S (Simulation). 250 coeffs. Influence of a 
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Vl.2.2. Experimental results and simulation of the experimental conditions 

In the experiment the number of coefficients used in the controller, the echo 

canceller and the error path filter was each 200. The convergence coefficient for the 

identification of F' and H was 0.1 which led to very quick convergence (1 second for 

a residual error of 2%). The value practically used for the convergence coefficient 

in the controller update is 0.02. This leads to steady and relatively quick 

convergence. Once converged this active noise control structure remains stable for 

a long time, we have to conclude that the mismatch between real feedback path 

and echo canceller was small. 

However we have noticed that after several hours the controller slowly increases 

its gain at very low frequencies (0-20Hz). The controller appears to attempt to 

equalize the low frequency loudspeaker response which is very poor at these 

frequencies. This build up is very slow because of the absence of very low frequency 
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components of the sound pressure in the duct so the adaptive filter does not repond 

quickly at these frequencies. This phenomenon is damaging in the long run, the 

controller impulse response becomes distorted and the displacement of the 

secondary loudspeaker is too large to stay linear. Two solutions have been 

succesfully tested. The first one is to add an uncorrelated low-frequency noise to 

the input of the detection microphone. The effect is to decrease the coherence of the 

detection microphone signal and the error microphone signal. The system 

therefore reduces its gain at these frequencies in order not to amplify the 

uncorrelated noise. The attenuation remains the same for frequencies above 30Hz. 

This remedy is interesting in that it enables us to specifically modify the action of 

the algorithm in a particular frequency domain by introducing filtered noise into 

the detection sensor In a practical system in a duct with flow such low frequency 

measurement noise at the detection microphone would naturally be present due to 

turbulences. The other solution is to introduce a leak p in the formula (5.12) 

according to: 

w(n+l) = pw(n) + |i^.u(n-i).e(n) (6.1) 

Where p is required to be of the order of I-IO'®-

When the added noise from the first method is white, Widrow and Stearns show 

[27] that the two methods are identical. In practice, since it is impossible to 
compute p sufficiently close enough to 1.0 with the fixed point 16 bits precision of 

the TMS320C25 processor to implement the leak every sample as suggested in (6.1), 

we multiply the filter coefficients by 0.99 every p samples where p is generally 

equal to 10000. Such an operation is not perfectly linear but it does not seem to 

significantly modify the properties of the control system : the he amplification in 

low frequencies no longer occurs and the algorithm remains stable. 

F igure 6.13 shows the impulse response of the W filter after 10 minutes of 

convergence, obtained by experiment and the simulation. Again the simulation is 

very close to the experiment. The measured and simulated transfer function 
W(z) 

1 _ W(z) F'(z) plotted in f igure 6.14. Notice that, compared to the simple LMS 

algorithm spectrum, the peaks are much sharper and much closer to those of the 

ideal controller. Consequently is the attenution better as we can see on the f igure 

6.15 . The peak at 296Hz is still present but has been reduced by 5 dB. Almost 

everywhere else the level of noise has been reduced. Moreover there is again a 

noticeable similarity between the measured graphs and the simulated graphs. 

93 



Amplitude (V) 
0.2 

0.15 

exper iment 
simulation 

0.05 

-0.05 

-0.1 
0 20 40 60 80 100 120 140 160 180 200 

25 somples = 10 ms 
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response after lOmin of convergence. 200 coefficients, convergence 
coefficient = 0.02. 
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VI.3. Implementation of the recursive LMS algorithm 

We have seen in V.3.2 that this structure can be fully adaptive. The on-line 

identification of the error is identical to the one described, in V.1.2. The only 

difference is that instead of using the prefilter H for the error path once, we now 

also need to use it twice, once to prefilter the input signal to update the FIR part of 

the controller and once to prefilter the output signal to update the recursive part. 

Vl.3.1. Which expression for the gradient? 

There has been a kind of polemic over the correct expression to use for the 

instantaneous gradient for the IIR LMS algorithm. In 1976 Feintuch suggested 

[32] using a recursive LMS algorithm to perform system identification or active 

noise control. His derivation to obtain the updating equation is as follow : 

the recursive filter is specified by 

y(n) = wTx(n) + vTy(n) (6.2) 

the error is the difference between the desired response d(n) and the actual 

response y(n) 

e(n) = d(n) - w^x(n) + vTy(n) (6.3) 

He then take the expected value to obtain the mean square error 

E{e2(n)} = wT[Axx] w + vT[Ayy] v - 2wT[Adx] - 2vT[Ady] 

+ 2wT[Axy] V (6.4) 

where [Axy] is the correlation matrix between x(n) and y(n). 

Then, differentiating (6.4) Feintuch argues that the correlation terms [Axy] , [A^y] 

and [Axy] are constant when differentiated with respect to the feedforward and the 

feedback weights w and v. Given this assumption he obtains two updating 

equations which do not require prefiltering of, x(n) and y(n) by ^ _ w(z) V(z) 

In [33] and [34], Jonhson and Larimore on one hand and Widrow and Mc Cool on 

the other hand reply that Feintuch calculation is incorrect since the mentionned 
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correlation terms are obviously non constant when differentiated. Therefore the 
1 

correct algorithm should prefilter x(n) and y(n) by i _ W(z) V(z) ' 

However, Widrow admits that Feintuch's algorithm even if it does not perfectly 

converge to the least square solution " has the extraordinary property of remaining 

stable even though noise in the feedback weight may occasionnally push the pole 

outside the unit circle. The feedback of the adaptive process interacts favorably 

with the feedback of the filter itself to produce a 'superstability' that will pull the 

poles back in beyond the brisk of instability". This point is further aknowledged by 

Flockton [25] and Shink [28]. 

In our case this fact is important. If the correct gradient IIR LMS algorithm is 

potentially unstable, it may be worthwhile to implement the more robust Feintuch 

algorithm instead. Then we have decided to study both of them through computer 

simulation. First, we have tried the two structures assuming the following 

conditions! perfect loudspeakers and Ivl=0.30, Iv2= -0.83. is a plot of the 

square of the residual error during the converging process. As expected the 

algorithm with the true gradient estimate is better in term of convergence rate. 

However, after 260 seconds the error levels off and the algorithm finally diverges 

whereas the other structure continues to converge steadily. This is consistent with 

the conclusion of Widrow et. al. However, the previous conditions were perhaps too 

ideal. We have repeated the simulation with a practical loudspeaker model (figure 

6.17). This time both algorithms remained stable during convergence. The 

practical loudspeaker by decreasing the optimal attenuation appears to prevent the 

IIR controller to become unstable. Therefore, it will be possible to use the modified 

gradient algorithm (see discussion in V.3.2). 

Vl.3.2. Experimental results and simulation of the experimental conditions 

In the experiment we tried both Feintuch and correct-gradient IIRLMS. Both of 

them became unstable after about a quarter of a hour of convergence. This was 

surprising for the Feintuch algorithm given the conclusions of §VI.3.1. However, 

we think that the secondary source non-linearity at high input level combined 

with the fixed-point arithmetic may be responsible of such an unstability. 

Considering that the Feintuch algorithm was less efficient that the correct-

gradient algorithm and did not allow to identify the error path on line, it was 

rapidly abandonned. From now we will only describe the modified-gradient 

IIRIjAIE). 
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The number of coefficients for the forward adaptive filter the feedback adaptive 

filter and the error path filter were respectively 20, 40 and 200. |iy was equal to 

0.003 whereas was equal to 0.005. These are empirical values which, as we 

think, depend strongly of the experimental hardware. The system has been 

launch without prior indentification, all the adaptive filters had coefficients 

initially zero. In order to have a quick convergence of the overall system, it was 

experimentally found that the error path filter must be the fastest filter to be 

identified. Consequently the coefficient has to be large (0.4 is a practical value). 

The process of convergence is as follow : the error path filter is very quickly 

identified (1 or 2 seconds), then the feedforward filter starts to build itself and 

finally so does the feedback filter. The feedback filter is identified last because, at 

the begining, the update is proportional to the feedforward filter output and this 

one is necessarily very small. During the convergence of W and V the error path 

prefilter is slightly modified by the presence of the controller. Moreover, to ensure a 

good performance, the power of the uncorrelated noise added at the secondary 

source output is proportional to the power of the residual error (10 dB below is a 

reasonable value). As a consequence the convergence speed of identification will be 

dependant of the error but we do not think this is an inconvenient because the error 

path filter converges very quickly when the error is still important. As we stated 

above, the experimental trials have proved that the IIRLMS algorithm is rather 

difficult to handle properly. Its propensity to become unstable is as strong as the 

simple LMS controller. It was clear than a stabilisation had to be found. Again we 

have chosen to introduce a small leak in the update of the recursive controller (a 

stabililisation of the error path LMS does not seem to be necessary). Once 

introduced, such a leak gives good results. The system can admit reasonable 

perturbation without diverging. It is therefore possible to increase the convergence 

coefficients fiy if we want to improve the tracking properties. However a 

compromise has to be found between the correct value for the leak and the 

updating coefficients: a large leak leads to a lower attenuation and a large 

convergence coefficient makes the system less damped. As far as the number of 

coefficient is concerned we found that it is detrimental to use more filter 

coefficients than are necessary to implement the ideal controller. For example, we 

found that 20 and 40 coefficients for W and V leads to a better performance than 

say, 40 and 80. This is somehow surprising, since it is generally aknowleged 

(Widrow and Stearns in ref [29], as well as Shink in [28) that the more poles and 

zeroes we use to identify the controller the more unimodal is the error surface. 

However, it is possible that in this case, the error surface is unimodal and well 

behaved even with a minimal set of coefficients. This important problem should 

- 1 0 0 



requires further investigation. An interesting start in this direction has been made 

by Flockton in ref [39]. 

Figure 6.18 shows the feedforward filters and feedback filter impulse responses 

derived from experiment and simulation after 10 minutes of real time 

convergence. Both filters are very close to simple delays but nethertheless they 

include the inverse of the secondary transducer. The small number of coefficients 

required to achieve a proper attenuation confirms that the IIR structure is the 

most suitable for this kind of active noise control. The experimental and simulated 

frequency response of the controller is plotted in f igu re 6.19. The extreme 

sharpness of the peaks at low frequencies as well as at high frequencies allows us 

to predict fairly good attenuation. Indeed when we look at f igure 6.20 the results 

are very good. The big peak at 148 Hz has decreased by more than 10 dB and the 

improvement over the feedback cancellation system is around 10 dB at high 

frequencies. Moreover it is interesting to notice that the simulated results match 

very well the experimental ones. 
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Figure 6.18 IIR LIVIS. Controller filter coefficients after lOmin of convergence. 

20 coefs for feedforv/ard coefficients W, 40 coefs for recursive coefficients V, 

convergence coefficient = 0.003 and 0.005 for W and V. 
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Figure 6.19 IIR LMS, Frequency response of the controller after lOmn of 
convergence. 20 coefs for W, 40 coefs for V, convergence coefficient = 0.003 
and 0.005 for W and V. 
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VI.4 Overall comparisons 

A c o m p a r i s o n of the performance of the three different structures are s h o w n in 

figtire 6.21 & 6.22 . Figure 6.21 s h o w s the square of the residual error as a function 

of time during the convergence process. T h e convergence coefficients w e r e those 

given previously in this chapter in the descriptions of the experiments. T h e 

hierarchy is as follow : the I I R L M S algorithm achieves the best attenuation then 

the L M S with feedback cancellation a n d last the simple L M S algorithm. T h e rates 

of convergence are h o w e v e r similar for the three structures (20 seconds). F igure 

5 . 2 2 s h o w s the c o m p a r e d residual error spectral densities after c o m p l e t e 

convergence. A s w e h a v e seen previously the m a i n difference b e t w e e n the IIR 

algorithm and two other ones is that i t eliminates the 140 Hz peak and improves 

significantly the attenuation at high frequencies. 

Attenuation (dB) 

LMS 
feedback cancellation LMS 

IIR LMS 

180 

Time (s) 

Figure 6.21 Comparison of the convergence for all three algorithms. 

(Experiment) 

Simple LIVIS algorithm: W=200 coeffs. Feedback cancellation Algorithm : W=200 

coeffs, IIR LMS algorithm : W=20coeffs: V=40 coeffs. 
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Figure 6.22 Comparison of the attenuation for all three algorithms (Experiment) 

Simple LIVIS algorithm : W=200 coeffs. Feedback cancellation Algorithm : W=200 

coeffs, IIR LMS algorithm : W=20coeffs; V=40 coeffs. 
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VI.5 Active noise control system using a piezo-electrlc transducer 

W e s a w in IV. 1.3 a n d in various simulations of the present chapter that the quality 

of the transducers has a large influence o n the active noise control performance. A 

particularly crucial point, not studied in this thesis, is that usually, the detection of 

the sound signal in ducts is done in the presence of air flow, producing turbulence 

at the microphones. This turbulence generates noise w h i c h is incoherent with the 

original sound w a v e a n d then, according to equation (4.27), the attenuation is often 

limited for this reason. Several m e t h o d s are used to solve this problem. T h e one 

generally used in practical realisations is to encapsulate the microphone in a 

long tube, the tube having the effect of averaging the pressure field around the 

microphone position which eliminates s o m e of the turbulent signal. However, this 

does not give complete satisfaction. 

T h e solution w e propose to examinate here is inspired from a m e t h o d developed at 

the I S V R [40], to m e a s u r e p o w e r flow in a pipe by using a piezo-electric wire coiled 

u p around the pipe. T h e piezo-electric wire can be considered as a transducer 

which converts non-turbulent sound w a v e s into electric signals. T h e n it can be 

used as a sensor in a n active noise control system. H o w e v e r , this paragraph will 

not be a n extensive study on this subject, w e will only demonstrate briefly that 

active noise control is feasible with such a sensor, leaving the door open to further 

investigations. 

Vl.5.1 Principle of the sensor 

T h e piezoelectric wire is m a d e of P V D F , a material w h i c h h a s the property of 

beeing electrically polarized w h e n stretched. T h e stretching converts a neutral 

cristal form into a highly polar cristal form of the material. A s a result, a voltage, 

proportional to the applied stress, appears between the t w o e n d of the wire. F i g u r e 

6.23 explains h o w a sound w a v e in the duct can be detected w h e n the wire is coiled 

u p around the pipe. Because the sound w a v e are plane (a m a j o r assumption of this 

thesis) they are invariant b y rotation around the pipe axis. Therefore they tend to 

excite preferentially the first cylindrical m o d e of the pipe (the m o d e which 

modifies only the diameter of the pipe). W h e n a positive s o u n d pressure c o m e s into 

the area delimited by the wire the duct diameter slightly increases creating a 

stretching of the wire which produces a voltage change b e t w e e n the t w o ends of 

the wire. O f course, a negative s o u n d pressure generates a voltage change of 

opposite sign. T h e interest of this system is that, if the wire is w r a p p e d around 
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m a n y times, it completely integrates the small pressure fluctuation in the duct 

over a section. Therefore the turbulences h a v e little influence on the 

m e a s u r e m e n t . Moreover, since the flexural m o d e s do not c h a n g e the diameter of 

the duct to a first approximation they are not detected. 

Wire 

Stretching 

Rni inH 

Pipe (section) 

Voltage 

FIGURE 6.23 Principle of the piezo-electric wire. The sound pressure modifies 

locally the diameter of the duct causing a stretching of the wire. The stretching 

finally produces a voltage proportlonnal to sound pressure. 

F i g u r e 6.24 s h o w s h o w four turns of the wire w a s coiled u p around the P V C duct 

used in the experiments above. 
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FIGURE 6.24 Description of the piezo-electric sensor 

Vl.5.2 Experimental results. 

W e modified the experimental setup described in section III.l by replacing the 

error m i c r o p h o n e b y the piezoelectric wire. T h e three adaptive algorithms 

described above w e r e then used to achieve active noise control. In order to m a k e 

the comparison possible with the previous structures, w e u s e d the s a m e n u m b e r 

of coefficients as used previously. P o w e r spectral densities of the residual error for 

each algorithm before a n d after convergence are plotted o n f igures 6.25, 6.26, and 

6 . 2 7 . A t first sight w e can say that the performance in each case is generally 

worse than that obtained with a n error microphone in sections VI. 1, VI.2 a n d VI.3 

(fig 6.7 to 6.15). H o w e v e r , a noticeable reduction is achieved. W e again see a bad 

attenuation at 1 4 8 H z a n d 2 9 6 H z , frequencies corresponding to antiresonances in 

the duct at the detection sensor. Surprisingly, the IIR L M S is not performing very 

well in the middle of the spectrum (around l O O H z a n d 2 5 0 H z ) c o m p a r e d to the L M S 

algorithm a n d the feedback L M S algorithm. In practice the IIR L M S cycled all the 

time between a n efficient state of noise control a n d a poor one. It is thought that 

w h e n the algorithm h a d converged s o m e vibration generated b y the secondary 

source w a s propagating along the duct wall to the piezo-electric wire thus causing 

a cycle of instability. A structural coupling of the actuator with the sensors does 

probably exist a n d m a y have a destabalising effect in this system. E v e n so, given 

the limited a m o u n t of time available to realise this experiment these results are 

encouraging. T h e y encourage a m o r e carefull study of the properties of this 

approach in presence of air flow, a n experiment w e did not h a v e the proper 

equipement to realise. 
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Figure 6.27 IIR LIVIS. The error sensor is a plezo-electric wire. W=20 coeffs. V=40 

coeffs. Convergence coefficients are 0.003 and 0.005 for W and V. PSD at the 

error sensor before convergence and after 10 mn of convergence. 
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VII CONCLUSION 

T h e purpose of this study w a s to compare three adaptative time d o m a i n algorithms 

currently used in the active control of sound in ducts : the L M S algorithm, the L M S 

algorithm with feedback cancellation a n d the Infinite I m p u l s e Response L M S 

algoritm. H e r e are the conclusions of our tests : 

The LMS algorithm is mainly interesting because of its simplicity. It can reduce 

the b r o a d b a n d noise in the duct b y u p to 10 d B u n d e r the usual conditions 

investigated here. Its m a i n limitation is that it requires a very large n u m b e r of 

coefficients in the presence of a feedback path a n d also can be difficult to stabalise 

under certain conditions. 

The LMS algorithm with feedback cancellation is a reliable structure as long as the 

duct parameters r e m a i n s stationary (this unfortunately is a very restrictive 

condition in practical applications). T h e convergence is generally steady a n d stable 

a n d global attenuation of broadband noise in the duct of u p to 15 d B w a s achieved 

under the conditions investigated here. 

The IIR LMS algorithm is the m o r e powerful structure. Attenuation of broadband 

noise in the duct w a s u p to 2 0 d B for the practical realisation investigated here. T h e 

algorithm can w o r k in a fluctuating environment with a tracking time of about 2 0 

seconds. Because this algorithm is potentially unstable, h o w e v e r , s o m e leak m u s t 

be introduced to prevent the poles from going out the unit circle. 

Another interesting point of this thesis is the use of a realistic computer m o d e l of 

the complete active noise control system w h i c h w a s u s e d to test the different 

algorithms. This approach enabled us to reinforce a n d to understand better the 

experimental results. In particular, w e h a v e d e m o n s t r a t e d the imperfect 

frequency response of the transducers w a s responsible for m o s t of the limitation of 

the system. 

W e have been concerned in this thesis with only s o m e of the aspects of a single 

channel active noise control system in ducts. A n u m b e r of other aspects r e m a i n 
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open even in this restricted field of active control. Particularly worthy of further 

study is the nature of the error surface of a n IIR controller in presence of a 

feedback path, following Flockton's approach [39]. T h e point is of importance since 

the convergence properties of L M S type algorithms depend o n the unimodality a n d 

the quadraticity of the error surface. O n e could also develop a m o r e robust IIR 

controller. Lattice filters, for instance, have straightforward stability monitoring 

features a n d could be used either on-line to i m p l e m e n t the controller or in parallel 

to check the stability. Besides the G r a y a n d M a r k e l algorithm which converts a n 

IIR filter into a lattice one [42], various adaptive IIR lattice filter algorithm are 

available [43] [44]. W e tested one of t h e m [43] through simulation without great 

success but w e still consider this approach as promising. 

Finally, given the early results obtained with a n piezo-electric transducer w e 

r e c o m m e n d continued research in this direction in order to design a active noise 

control system less sensitive to air flow turbulence. 
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A.1 Simple IMS : Updating Equations 

(see figure A.I) 

Nw 
y(n) = y Wi(n).u(n-i) (A. 1.1) 

i=0 

N h 

r(n)= ^ hi(n).u(n-i) (A. 1.2) 
i=0 

Nh 
YlW = 2 hi(n).Xi(n-i) (A. 1.3) 

i=0 

ei(n) = e(n) - yi(n) (A. 1.4) 

Wi(n+1) = Wi(n) - |j^.r(n-i).e(n) (A. 1.5) 

hi(n+l) = hj(n) + |i}j.Xi(n-i).ei(n) (A. 1.6) 

115-



Duct Hs D — I 

e(n) 
y(n) u(n) 

Noise 

r(n) 

Figure A.T Simple LfvIS algorithm : Updating equations 
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A.2 Feedback Cancellation LMS : Updating Equations 

(see figure A.2. (top)) 

SYSTEM CANCELLING 

N w 

y(n)= ^ Wi(n).u(n-i) (A.2.1) 
i=0 

u(n)=x(n)-fi(n-l) (A.2.2) 

N h 

r(n) = ^ hi(n).u(n-i) (A.2.3) 
i=0 

N h 

f l(n) = y f i(n).y(n-i) (A.2.4) 
i=0 

Wi(n+1) = Wi(n) - |J^.r(n-i).e(n) (A.2.5) 
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H IDENTIFICATION (see figure A.2. (bottom)) 

xi(n) = b(n) (noise) (A.2.6) 

Nh 
yi(n) = y h^(n).xi(n-i) (A.2.7) 

i=0 

ei(n) = d(n)-yi(n) (A.2.8) 

hj(n+l) = hi(n) + |ih.y(n-i).G(n) (A.2.9) 

F' I D E N T I F I C A T I O N (same principle as witti H) 

xi(n) = b(n) (noise) (A.2.10) 

N h 

y2(n) = ^ f \ (n).xi(n- i) (A.2.11) 

i=0 

62(11) =d(n)-y2(n) (A.2.12) 

r^(n+l) = f \ (n) 4- |j,^.y(n-i).e(n) (A.2.13) 
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Duct 

x(n) 

y(n) u(n) 

r(n) 

Figure A.2 Feedback cancellat ion LMS algorithm : System Cancell ing 

D - Duct Hs D -

d(n) 

x.(n) 

Noise 

y,(n) 
0 

e,(n) 

Figure A.2 Feedback cancellation LIV1S algorithm : Identif ication of H 
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A.3 IIR LIMS : Updating Equations 

( s e e f i g u r e A . 3 ) 

Nw Nv 
y ( n ) = y W i ( n ) . u ( n - i ) V i ( n ) . y ( n - i ) + x i ( n ) ( A . 3 . 1 ) 

i = 0 i = l 

N h 

r u ( n ) = ^ h i ( n ) . u ( n - i ) ( A . 3 . 2 ) 

i=0 

N h 

r y ( n ) = ^ h i ( n ) . y ( n - i ) ( A . 3 . 3 ) 

i=0 

xi(n) is identification noise 

N h 

y i ( n ) = ^ h | ( n ) . x i ( n - i ) ( A . 3 . 4 ) 

i = 0 

e i ( n ) = e ( n ) - y i ( n ) ( A . 3 . 5 ) 

W i ( n + 1 ) = Wi (n ) - | i y y . r ^ ( n - i ) . e ( n ) ( A . 3 . 6 ) 

V i ( n + 1 ) = Vi (n) - | i v . r y ( n - i ) . e ( n ) ( A . 3 . 7 ) 

hi(n+l) = hi(n) + |ih.xi(n-i).ei(n) (A.3.8) 
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x1(n) 

Noise 

r ^ n ) e(n) 

D -

y(n) y(n) y1(n^ 

e1(n) 

Figure A.3 IIR Lh/IS algorithm : Updating equations 
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A.4 Technical characteristics 

LOUDSPEAKERS 

Primary : 80,4" WOOFER. CAT No. 40-1022A. 55Hz-5kHz 

Secondary : AS 80,6 1/2" BASS LOUDSPEAKER 0 16.2cm 

MICROPHONES 

Detection a n d Error : WM-063 omninidirectional electret microphone. 

ANTI-ALIASING FILTERS 

gEMO - cutofTfi^quency : lOOOHz 

RECONSTRUCTING FILTERS 

KEMO VBF 23 - cutoff frequency : l O O O H z (primary source) 

800Hz(8econdary source) 

PIEZO-ELECTRIC WIRE 

RAYCHEM (connected to charge amplifier B & K 2 6 3 5 ) 

DIGITAL SIGNAL PROCESSOR 

TMS320C25 Texas Instrument microprocessor 

DIGITAL-ANALOG CARD 

12 bits Sow/zd Z/Ttqge PC82J a W f c a r d s 
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B. 1 Calculation of the Inverse of the ideal controller 

T h e objective of this section is to calculate the impulse response corresponding to 

the following frequency response : 

WiOm) = (B.l. l) 
Hs(jO))Md(jO))(l - e-2j1lVc) 

A s s u m i n g that HgCjco) a n d M d C j © ) are inversible, t h e impulse response 

-e ' j^Vc . 
corresponding to is 

s(t) = hg(-i)(t)*me(-^)(0) * 6 (t- jr) (B.1.2) 

It is m o r e difficult to calculate the impulse response corresponding to : 

Il(j0))== (IS. 1.3) 

1 -

This frequency response is periodic a n d can be rewritten as : 

ItCi0))== ! (B.i 1̂) 

1 - e J(D/(Do 

with (Bo = c/212 

R{jco) can be seen to be as the s a m e as the frequency response of a signal sampled at 

the angular frequency (Oq a n d w h o s e z transform is : 

fl(z) =: fbrlzl:> 1 (Il.l.fi) 

Therefore, our problem is to find r(n), the inverse z transform of R(z) . 

W e k n o w from the literature [41] that the inverse z-transform can be calculated as 

follows : 
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r ( n ) = - ^ fR(z).zii-i d z (B.1.6) 

w h e r e (F) signifies that w e m u s t integrate anti-clockwise o n a closed contour in the 

complex plane around the origin. U s i n g the C a u c h y T h e o r e m w e can evaluate 

(B.1.6) by the residues method. 

r(n) = fR(z).zn-i dz = Z (residues of R(z).z"-^) in (T) (B.1.7) 

W e r e m e m b e r that the residue at a pole z = a of order q of the function R(z).z""l is 

given b y : 

1 

For a pole of order 1 this expression can be simplified into : 

ReSai = limg^g [R(z).zk-^(z-a)] (B.1.9) 

W e can n o w calculate the inverse of R(z). Substituing (B.1.5) into (B.1.6) w e obtain: 

1 C 1 C 7^ 
r(n) = - j — r d z = — r d z (B.l.lO) 

:2n:j J l-z-i 27[j J =-1 

( n (T) 
w h e r e (F) can b e a circle around the unit circle. 

For n > 0 (F) contains only a pole of order 1 at z = l . U s i n g (B.1.9) w e obtain the 

residue for this pole. 

Resii = lim^^^ [^(z-1)] = 1 (B.1.11) 

Then, for all n > 0 r(n) = 1 

W h e n n < 0 the function has t w o poles : a pole of order n at z = 0 a n d a pole of 

order 1 at z = 1. T h e calculation of the residue for the pole of order 1 is identical to 

(B.1.8): 
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Resii = lim 2.>i [ ^ ( z - 1 ) ] = 1 (B.1.12) 

T h e calculation of the residue for the pole of order n is less obvious. 

Reso» = lim^,^(, (B.1.14) 

I 

since I z I « 1 w e can expand ^ i n t o a Taylor series 

ResQii = lim ^n-i + z + +...+ +)] (B.1.15) 

T h e n differentiating the series n-1 times 

Res(p=liin^_^ (nA)! [ - ( " ' l ) - - (n)(n-l)(n-2)(...)(2).z - ...] = -1 (B.1.16) 

Finally for all n < 0 

r(n) = Resii + Reso" = 0 (B.1.17) 

a n d to s u m m a r i s e : 

r(n) = 1 for all n ^ 0 

r(n) = 0 for all n < 0 

T h e n converting the sequence r(n) into the equivalent continouous waveform, w e 

have : 

OO 

i(t) . ^ 5 ( t _ (B.1.18) 

n=0 
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a n d since 

Wideal(t) =r(t)*s(t) 

(B.1.18) a n d (B.1.2) imply that 

(B.1.19) 
n=0 
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B.2 Instantaneous gradient of the recursive controller In presence of 
a feedback path. 

W e seek to establish the expression of the gradient of the instantaneous squared 

error with respect to the recursive controller weight coefficients. A n important 

assumption to obtain this result is that the controller does not change with time. 

S u c h a n hypothesis is necessary if w e w a n t that the z-transforms to maintain 

their validity. In practice this assuption is counter to the fact that the controller is 

adaptive. H o w e v e r w e can very often consider that the adaptive process so slow 

(quasi-static) that the gradient calculation is not affected too m u c h by the dynamics 

of the adaptive process. 

Since the controller has two components w e will have two gradients : 

(|)i(n) = 2 . e ( n ) ^ (B.2.1) 
C/Wj O W j 

^j(n) = ^ = 2 . e ( „ ) ^ (B.2.2) 
dvj dvj 

Instead of differentiating the instantaneous error w e differentiate the z-transform 

of the error a n d then take the inverse z-transform of the result. Because of the 

linearity of both z-transform and differentiation this is equivalent. 

F r o m the block diagram in figure B.2.1 w e can write the z transform of the error 

as : 

E(z) = 1 - FW.'V^Z)-V(Z) X W + D(z) (B.2-3) 

SO that 

a n d since the input to the controller U(z) is related to the reference signal X(z) by ; 
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U(z) - 1 _ F(z).W(z)-V(z)'^(^) (B.2.5) 

(B.2.4) and (B.2.5) lead to 

= 1 • F ( z W z ) - V ( z ) U(z) (B.2.6) 

similarly for the gradient with respect to the recursive coefficients w e have 

= 1 • F ( z ) % ) - V ( z ) Y(z) (B.2.7) 

T h e n if w e call H the filter w h o s e z-transform is : 

H(z) - 1 _ F(z).W(z)-V(z) (B.2.8) 

(B.2.6) a n d (B.2.7) can be rewritten as 

a 

9wi 

Dvj 

(E(z) )=H(z) .z- iU(z) (B.2.9) 

(E(z)) = H(z). z-j Y(z) (B.2.10) 

by taking the inverse z transform of the expressions a n d using B.2.1 a n d B.2.2 w e 

have: 

(tii(n) = 2.e(n).h(n)*u(n-i) (B.2.11) 

Yj(n) = 2.e(n) h(n)*y(n-j) (B.2.12) 

If there is n o feedback filter v(n) the gradient is only 
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, y X 3e(n)2 ,9e(ii) 
(|)i(n) = — = 2.e(n)-—— 

dwi 3wi 

a n d m a k i n g V(z) = 0 in (B.2.8) w e have 

Hfz) -
- 1 - F(z).W(z) 

(B.2.13) 

W e can then calculate the instantaneous gradient for the transversal controller 

only ; 

(|)i(n) = 2.e(n).h(n)*u(n-i) (B.2.14) 

X(n) 

B C W B C W 

Figure B.2 Notation for the calculation of the instantaneous gradient 
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