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We show how O(gl) divergent quantum corrections to the instanton
effective action may be calculated in Yang-Mills theory. We verify
that these are as required by a renormalisation group analysis of the
semiclassical calculation. This requires a delicate treatment of the
zero modes and of the jacobian corresponding to a change of variables
between these zerc modes and collective coordinates.

We generalise the instanton solution to a superfield solution of N=1
super Yang-Mills theory, and describe a general method of generating
covariant expressions for the discrete zero modes. It is found that
the linearly independent set of zero modes containg 4 more fermionic
modes than were previously expected., These are anomalous supergauge
modes . We show how to parameterize the continuous supergauge zero
modes and the positive f{requency modes,. From this analysis we
construct the full Green functions in the background of a super-
instanton and projection operators onto the corresponding spaces. We
generalise our previcus O(g?) calculation to that of a superinstanton
in super Yang-Mills. This allows a comparison with recent arguments
that all the higher order gquantum correctiongs in such a sgituation
should wvanish identically. We conclude that these arguments are
invalid but investigate the possibility that quantum corrections do
nevertheless vanish to all orders. The subtleties and complications
of the cancellation mechanism make it difficult to imagine that this

could be the case.
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INTRODUCTION,

Instantons, topologically non-trivial solutions of the Euclidean
equations of motion in Non-Abelian Gauge Theories, were discovered in
the mid 1970's [1,2]. Although their significance may not yet be
fully understood, it is clear that they constitute one of the most
important non-perturbative effects in gauge theories, (for reviews of
instanton physics see refs 3 - 5; The instanton itself is described in
chapter 2.1). In this thesis we describe the results of a study of
the generalisation of instantons to superfield solutions of Euclidean
super Yang-Mills ([6]. This we call the superinstanton ([7]. The
primary aim of the research was to calculate higher order quantum
corrections to the superinstanton. With this end in mind we first
attacked the problem of calculating the ultraviolet divergent quantum
corrections to an instanton in Yang-Mills [{8]. In the process of the
calculation (to two loops) we discovered some new effects : we found
that part of the divergent corrections came from new interactions
which arose from a Jacobian (of a change of variables from zero modes
to collective coordinates), and part of the corrections came from
certain non-perturbative 1long distance effects. These divergences
were cancelled by the renormalisation of the coupling constant that
appears as a multiplicative factor in the semiclassical calculation
[2] (see (2.3.2)). Together with the usual purely short distance
divergences (which are cancelled by renormalisation of the instanton
classical action) we had thus checked that the 0(g?) explicit 1np
dependence was as required by the renormalisation group invariance of
the semiclassical result. This work is described in chapter 2. Our
attention then turned to the superinstanton. Before carrying out the
quantum corrections to such an object it is necessary to know the
number and nature of the zero modes. And, for dealing with the
non-zero modes in the semiclassical calculation, the generalisation of
certain tricks {9] are needed. These convert the semiclassical
problem into one of determining the determinant of background
covariant-0J. (See chapter 2.3 and 4.2). Chapter 3 describes the

construction of the superinstanton, its zero modes and non-zero modes



(through these tricks). That chapter starts with a discussion of
Euclidean N=1 supersymmetry and its relevance to instantons. Chapter
4 describes the generalisation of the previous ideas on renor-
malisation around instantons (chapters 2.2 and 2.3) to the Ssuper-
instanton and superfields., This generalisation is not as straightfor-
ward as one might imagine because of the complex non-linearity of
super Yang-Mills and the fact that (unlike the component theory)} even
the ghosts have zerc modes. Nevertheless we describe in detail in
chapter 4 how one can compute to two loops the divergent quantum
corrections to the superinstanton effective action.

We are then in a position (in chapter 5) to draw some conclusions
from our work. In particular we are able to discuss the validity of a
paper published by Novikov et al [10]. In this paper a general
theorem about the wvanishing of certain quantum corrections to
instantons in super Yang-Mills led to a derivation of the p-function
to all orders of perturbation theoxry. We have shown their proof of
the theorem to be invalid [11] and we describe our reasoning in this
chapter. Although the proof is wrong the theorem might still be
correct. We discuss this possibility also in chapter 5. Our research
has shown the theorem to be correct to two loops although we have
unfortunately found no indication that this theorem should hold to all

orders.

The work described in chapter 4 can be found in ref.[12] which also
includes some component field calculations in the Wess Zumino gauge

The problem of including fermions in the quantum corrections to
instantons in a general non-abelian gauge theory was included in

ref.{8] but it is not discussed here,

The beginning of the thesis (chapters 1 and 2.1) is devoted to an
introduction to the relevant background. Much of the thesis relies
heavily on background field and superbackground field methods which is
the subject of chapter 1.
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CHAPTER 1 THE BACKGROUND FIELD METHOD.

The prime concern of this thesis will be the calculation of a quantity
called the background field effective action, when the background
field is set equal to an instanton. This chapter will be devoted to
discussing the backgiound effective action and some tremendous
simplifications in the method of calculation which can be gained by a
judicious choice of gauge - the so-called “background gauge”.

The background field method is important not only for the computation-
al simplifications it allows (which are described at the end of this
section) but also because it appears naturally in the calculation of
quantities other than the background field effective action : for
example the instanton contribution to vacuum-vacuum expectation

values. (See chapters 2 and 3).

We will for the time being concern ourselves only with Yang-Mills. (It

is trivial to include fermions and scalars).

The usual generating functional

S(Af) + At s
. é
Z,13) - |9a e
¢ (1.1.1)
A3 - [dee Al
can be turned into an effective action
Po[&_l - W, 137 -3-& (1.1.2)
where
= SWo
Wo = bn Z, and Q = 3 (1.1.3)

(:[ éi]is the generator of 1 particle irreducible diagrams.
The background field method does not use (1.1.1) but instead expands
the 4-potential F\/f (the full field) in terms of a “background
field” A, and a “quantum field” Qu by

¢

- 1.1.4
f{» = Fy& + Gb* , ( )
integrates over Qu and couples the source to the quantum field:

S(A+a) + 3K
ZA{S] = SSQ € (1.1.5)



The effective action is constructed exactly as in (1.1.2) and (1.1.3)

viz.

mi&1 = w,11] -3.Q

W,q = |l ZA Zi . SWa (1.1.6)
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and the background effective action is found by setting 6 =0 ,
r[al = nle] (1.1.7)

(1.1.7) has a loop expansion which is the sum of 1 particle
irreducible graphs with no external 8 lines, That is they are 1
particle irreducible “vacuum” graphs from which we pull out
interactions with the background field.

It is (1.1.7) which is referred to (when the background field is put
equal to an instanton ) as “the vacuum energy in the presence of an
instanton® {1]; this is by analogy with the usual effective action

(see (1.1.2)) for which
C[ol = gcl“'% x constant (1.1.8)

The constant can be thought of as the vacuum energy density and is
calculated from 1 particle irreducible vacuum graphs.
wWhen calculating (1.1.7) we will always subtract the contribution

(r.1.8).

So far we have not discussed the gauge fixing that must be done in
order to calculate I’ : The gauge invariance of the action S(AHQ)
renders the quadratic action (in Q) non invertable and so we can not

obtain the quantum field propagators.

A gauge transformation on the full field (see (1.1.4)})
5 il e -in . in 3 -5
A > e A, e +t e 9w (1.1.9)
# 6

can be expressed as transformations on the component fields in a

number of ways, of which two important ones are



(1)

A/A_ - e A/A- e
(1.1.10)

: i ifn -1,
Qu = e Q,ﬁe‘n‘* Yo © % ©

The background transforms homogeneously, but the quantum field

undergoes a gauge transformation. It is the quantum field gauge

invariance that makes the quadratic action non invertable.

(2) .
o 5L -1 5 . t 3 éﬂ)L
v €
A - [ A A e + /%/ /u.

(1.1.11)

This transformation is the “background gauge transformation” so called
because the background field undergoes a gauge transformation whereas
the quantum field transforms homogeneously.

If we introduce a background dependent gauge fixing term of the form

SQF z *é% § (9“ /4> d%x
. (1.1.12)
D/‘ = Q/u ~c% A/*

then the quantum gauge invariance (1.1.12) will be broken so that the
quadratic action can now be inverted (to form the propagator), but the
background gauge invariance (1.1.11) is not broken.

Entirely in analogy with the usual method we introduce ghost terms
that evaluate the determinant of the gauge fixing term under a gauge

transformation

Sﬁ‘” ) qux 4>(D/" "E%Qf‘) 9‘"4) (1.1.13)

and we can now proceed to calculate (1.1.7).
But note that since (1.1.12) remains unbroken (and noting that Q
transforming homogeneously implies the same of 8) {(1.1.7) is a gauge

invariant functional of the background field.



Comparing (1.1.1) with (1.1.5) we see that
~-3.A
ZA = Z, € (1.1.14)
Hence »/A = W, - 3A

and differentiating w.r.t. J :

a - Q - 3 (1.1.15)

Performing the Legendre transform on (1.1.14) (see (1.1.6)) and using

(1.1.15) we obtain

MEQl1 - LAY . .
Q:Q+A

(1.1.16)

Hence our gauge invariant effective action (1.1.7) is just the usual
effective action but with Q = A and a peculiar gauge fixing term
(containing A;). The choice of gauge fixing term can be proved not to
affect the calculation of gauge invariant physical quantities (such as
the fg-functicon), and hence we can expect to extract the same physics

from I' as we did from [,

The choice of a gauge invariant ' greatly simplifies the divergent
structure of the theory: this is because, although we could in

principle find unrelated renormalisations

<ao - E??; %}
A - Zg A

The preservation of gauge invariance requires

(1.1.17)

L
- m‘ - 3 -4 A 2 2
Du = %‘* Qe A/~‘° P3N (11
to remain gauge invariant and so
-2
- 1.1.19

Furthermore in standard background field calculations we can ignore
the renormalisation of the quantum field
e
2
@R > Zi Q
(note we will find this is not the case in the calculation of “long

distance” corrections in chapters 2.3 and 4.3)






[ ie]
Z, = ¢

(for a particular value of 1 = - §4: -
@ las=o
and similarly from (1.1.2) and (1.1.3) for Q = 0

Lol
Zo = e

Therefore

Z =
A/Z € (1.1.23)

and so subtraction of the (zero background) wvacuum energy in our
instanton calculations (see comments below (1.1.8)) can be regarded as

normalising the calculation of Zp by the zerc instanton sector.
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1.2 SUPERSPACE AND SUPER YANG-MILLS.

We begin with a discussion of the essential aspects of the superspace
formulation of MN=1 super Yang-Mills before going on to a brief
discussion of the background superfield method in section 1.3, which
will be the language used in chapters 3 and 4. We will not present
here an introduction to supergraph techniques ([3] nor the more
advanced covariant supergraph techniques [4] : they are only used in
the 1loop calculations of 4.3 and the methods themselves are not
central to the argument. Let us start by fixing the notation: Our
notation (with some minor changes made in chapter 3.1 when we change
to euclidean supersymmetry) is that of [5] (see appendix A of that
paper). We deal with an N=1 superspace consisting of x; , 2 Grassmann
left handed spinorial coordinates 69“ and 2 Grassmann right handed

- ®

spinorial coordinates G
{6u, 6% = {6,834 =18a, 8870

The « and & serve to distinguish the fundamental and complex conjugate
representations of the lorentz covering group SL(2,C).

(1.2.1)
Vectors (such as Ay) lie in the (%.,%) representation and can thus be

represented

W

A sé A o* o

(The & is a different index not to be confused with «).

where our conventions are

Cu xse = Cusa = S = (1, )
o, X . 5% s F e (o)
M A .
We introduce Grassmann differentials
R B
(1.2.2)
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B(») = V|
Pa) = = Do V| Pa = - BV
H(x) = -4 p*v| A = -1 BV
Axg () = -4 {Du)ﬁ&jv I
(1.2.20)
Ax () = & D*Du V|
= Lol o,
N4 () = %4 D" BaV|
L & Ta PRy
D(x) = % DD Da V\ = g DD bk
(since D*DB'Dy =D¥*D*D& is an identity).
The bar *~|” indicates that one should set 6 = 6 = 0 in the
resulting superfield.
We can also define chiral superfields ?9(“u655) such that
- (1.2.21
Dog‘P = O )
Since { D& &pt =0 (1.2.22)
and _ .
[ID&_) < ?F.]: o
where + . . - (1.2.23)
p.a ﬁ% = X{}g + e 9'3 9?’
is the chiral x space coordinate.
We can solve (1.2.,21) Pz P(x+,8) (1.2.24)

The component field content can be written down in a similar manner to
(1.2.20) viz.

QG = @
90“56’43 En&(P }

F (%) -4 D@ |

(1.2.25)

#

3§

If we substitute XK > e - 266 (1.2.26)
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we go to the chiral representation where

111

¢C>€J&> (1.2.27)

- = Y] !
De = a“ Do = Op + Al & aoug,
We can do the hermitian conjugate manipulations on antichiral fields

which satisfy

Ba P =0 P = P(x,0,8) (1.2.28)
The relevant coordinate is x. , the antichiral coordinate.

X = x -ROE (1.2.29)
and the substitution

K = x + ALO6 (1.2.30)
takes us to the antichiral representation

?-:— 9’9(%)@)

(1.2.31)

- LAl
DM:B“ 604 "'azx 4'2.(,3“448

Grassmann integration is defined through the following rules

[z 1 = far0 6u =0
(1.2.32)
[ar00® = |
(and the hermitian conjugates for 6 ).
General superfield expressions can then be integrated over the full
superspace
gd’z F(z)

i

Xaw,c dre d*6 F(x,6,6)

st

Xd"’x d4e  F(x,0,8) (1.2.33)

Chiral superfield expressions are only integrated over 6 (since they
effectively do not depend on é, see (1.2.27), an integral over 6 would
cause the expression to vanish by rules (1.2.32)).

ie. G(2) such that Da G =0

has

Xcl"z G(z) = Sd‘*’x d6 G(x,8,6) (1.2.34)

Expressions (1.2.32) imply that
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3

b 2% 0

[0

(1.2.35)
and in integrals such as (1.2.33) and (1.2.34) we may further replace
the %% by covariant p* % (1.2.13) since the differences involve x
space integrals of total derivatives producing surface terms which can

be dropped. i.e.

§d“’x d*¢e : “'i/"_ Sc“fx DX Dy

(1.2.36)
similar remarks hold for & , the antichiral superspace integral
(analogous to (1.2.33)) sometimes being written

6~ - X cx“* Jié
Zz s Ead
X o (1.2.37)

Note that with these definitions for superintegration the Grassmann
derivatives (1.2.2) and supersymmetric derivatives (1.2.13) can be

integrated by parts in the natural manner.

Now let us consider SU(n) super Yang-Mills. This is constructed from
a real superfield V(»»,6,6) (see (1.2.19) and (1.2.20)). It is known
as the prepotential and takes wvalues in the Lie algebra of SU(n)

-
. The action is (vzv T")

S, = S+ 9
e
where S = *o Sd‘*}( d*e W Wy (1.2.38)
1289’
¥ - -V \4
and w': D (e dp¥ed) (1.2.39)
Note that since Dy Dp Ds =0 (1.2.40)
- <
the field strength Wy satisfies DgW =o0 (1.2.41)

which explains the chiral integral in (1.2.38).

This action is invariant under

QY P A Qv YA

e

e > € (1.2.42)
where A is a chiral field: bag N=0

(Hence A is antichiral).












19

- A Qv - -V
‘7&_ = € x €
A D
vo{ - o (1.2.60)
= A A _ -
PV, Vet = RV
Under a supergauge transformation
oy PA erp »iK
A - e v e
(1.2.61)
Note that
=1 A V owsc -V (1.2.62)
\ - e T e
%% \YJ L3 - O
so that from (1.2.56) wh® o e we e (1.2.63)

and so (using the cyclic properties of the trace) the action in
(1.2.38) is independent of the representation. Note that in these
representations the covariant derivatives are not hermitian in the
sense of (1.2.9). In fact Hermitian conjugation maps between the two
representations (e.g.
(\'}”C’o&)‘t = v: ¥

We can however construct a hermitian representation - the wvector
representation. To achieve this we must split the prepotential v into

two new prepotentials w and ®. (w is a general complex superfield).

Qv w o
> = > e (1.2.64)
The covariant derivatives are defined by
-~ 02 ")
VO( = [ S DOL eﬁ
) _ (1.2.65)
- 6‘:‘3 -— N\
Va = e Dy €

They are related to the other representations by a similarity
transformation e.g.
Lontd 3.:7- [T *g;\f:b

vV = e \v4 e (1.2.66)
go that the action (1.2.38) is the same in this representation also

(compare comments about (1.2.62), (1.2.63)).
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Making the splitting (1.2.64) has increased the gauge invariance of
the theory (corresponding to the arbritrariness of definition of w and
w given by (1.2.64)).

The action is invariant under

TN c R édA (1.2.67)

where K is a real superfield WKz K‘T°.
The covariant derivatives (1.2.65) transform homogeneously under

(1.2.67) as

-3 ;K (=3 "K
- e v e (1.2.68)

The covariant derivatives ( (1.2.57), (1.2.60) or (1.2.65)) can be
used to define the component fields of v in a gauge covariant way
(unlike those of (1.2.20)). With these definitions the component
action turns out to be (1.2.45) in any gauge (not just the Wess-Zumino
gauge). These covariant components are given in chapter 3.2 ; They
are highly non-linear redefinitions of the component fields in
(1.2.20).
Note that equation (1.2.41) is true for the chiral representation
(1.2.56)., It can also be written

Vs w? = o (1.2.69)
Since the different representations are connected by similarity
transformations (1.2.69) 1is representation independent. It also
follows directly, in an arbitrary representation, from the definition
of W“ (1.2.56), the covariant derivatives and (1.2.40).

Fields that satisfy (1.2.69) are known as covariantly chiral. i.e.

covariantly chiral ( ; } and covariantly antichiral fields ( }; )
satisfy =

\/of( ; o
and Vu ¥ =0 (1.2.70)
W also satisfies a Bianchi identity (proved from (1.2.56))

(1.2.71)

VW, = V% Wy
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(1.3.2) can be expressed on the component fields in (1.3.1) in a

number of ways, of which tweo important ones are

(1) _
W byt
6% R e? unchanged
v A LA (1.3.3)
e e e e
- e _, w2
TAN = e ° FAN 6%
- (1.3.4)

fae -y
A = e A e®

These gauge fields A, A are background covariantly chiral and
background ceovariantly antichiral fields (see (1.2.64)).
(1) is an expression of the quantum field gauge invariance which must

be broken (compare (1.1.10)).

(2)

W A ) -1 K

e® s> e e e
- K - A/

e® 5 el e €

. < (1.3.5)

v 1 WK 1V -1

e® - e e® e

Here the background field gauges (see (1.2.66)) whereas the quantum
field transforms homogeneously (as required above. Compare this with

(1.1.11)).
By substituting (1.3.1) into (1.2.38) we can rewrite the action as

3

S . to XCJ@,, Lo W,

128
(1.3.6)
¥ . -y - v
Wy = T (e VT )
=3
where \% are covariant derivatives containing only the background

field (i.e. as in (1.2.65)). To quantize the theory we, in close
analogy with chapter 1.1, break the quantum gauge invariance (1.3.3)
but keep the background gauge invariance (1.3.5) which we do by

choosing the gauge
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The fields (Fyy and the potential Ay ) take values in the Lie algebra
of SU(n). Note that a trace over the generators (divided by their
norm) is always to be understood to have been taken in equations

involving integrals (such as (2.1.1)).
Consider first the case of the group SU(2).

If we require finite action then it is clear that the field strength
(Fuv) must tend to zero faster than 1/x2 . This however does not
imply that Ay must decrease faster than 1/x , since Fyy will vanish if

Ay tends to a pauge transformation of zero. i.e.

: +
A > U oo, U (2.1.4)
s >
Ue»00) € SLL(Z) depends only on angles in Euclidean
space.
Hence A, can have tangential components that fall off like 1/x . If

we gauge transform (2.1.4) by S(x) € 5U(2) then
A > i Struaut)s o+ g
Ve M :

é/g cutsH’ «% (uts)

Hence it would appear that if we choose S such that S » U as x +» ®
we would be able to gauge transform away the O(1/x) terms from Ay.
However this argument is only correct if the matrix S(x) does not have
any singularities at any wvalue of x. Otherwise the problem of the
behaviour of Ay(x) is merely transferred from infinity to the position

of the singularity in S(x).
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As a result, the problem of classifying the fields Ay which give
finite action becomes a problem of classifying the homotopy classes of
the gauge transformations U. These transformations are mappings from
the sphere at infinity in Euclidean space (S3) onto the group manifold

which, for SU(2), is also S3
But the homotopy group of these maps is
N3(S3) = 2 (the integers)

Hence each class is labelled by an integer “N* which is known as the
Pontryagin index or winding number.

The index “N* measures the number of times the map U “wraps around”
the group manifold, and 1is negative if the map reverses the
orientation of the space, It can be calculated from the volume

covered by the map measured in units of the volume of the sphere

N= b e (uauh) (ua;uh) (uodwu’)
G 8n
S

3
We can rewrite this equation in terms of Aj on a sphere at x = R (R ~»

®), by using (2.1.4) and then turn it into a manifestly gauge

invariant integral representation

N - %; ng,c 51,,5“, (2.1.5)
3am*

no
where F,y is the dual of Fyu :

o~

F/w = 4 Z/va'i Fos (Eze =1 ) (2.1.6)
Although (2.1.8) is written as an integral over all space it depends
only on the behaviour of A, at the sphere at « because Fyy Fyy can be

rewritten as a teotal derivative.

We can rewrite the action
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(2.1.7)

From this it is clear that fields Ay that have Pontryagin index N > O
and are (locally) a minimum of the action must have
~

Fav = Fuy (2.1.8)
Field strengths satisfying (2.1.8) are known as self dual fields.
Note then, that these solutions are stationary points of the action
under local wvariations, that is to say, solutions of the field
equations

D,Fuy =0

Vol
(2.1.9)
(note that here as elsewhere the action of the covariant derivative is

to taken to be a commutator
D, = D, F
/*F/“’ [/“/‘“’]
In fact it is readily verified that (2.1.8) implies (2.1.9) and hence

we have reduced the search for solutions from a second order

differential equation (2.1.9) to a first order one (2.1.8).

When the Pontryagin index is negative we rewrite (2.1.7) so as to

obtain
~ 2
ls| = -N %j + '/ggcwx (Fuv + v )

which implies that local minima of the action (for N < 0) satisfy

~
Fav = - F
A . (2.1.10)

i.e. are anti-self dual fields.

For the case N=1 the solution (together with a set of variable

parameters) is unique {4] and is the B.P.S.T. instanton.
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As we shall see, the solution in the case N = -1 is very similar; it
is known as an anti-instanton. In fact it is clear already that the
anti-instanton solution is obtained from the instanton solution merely
by applying a parity transformation (e.g. x4 » - x4) : this alters the
sign of 25;006 (an axial tensor) and turns self dual tensors into
anti self dual tensors.

In Euclidean 4-space the group of rotations is locally isomorphic to

SU(2)xSU(2) (its covering group) 1i.e.

SO(4) 2 SU, (2) > SUg () (2.1.11)

(“L” and “R” stand for left handed and right handed and merely serve
to label the different groups). And (the 6 linearly independent)
antisymmetric tensors, which transform under the adjoint of S0O(4),

can be expressed as a sum of self dual and anti self dual tensors :

.

+
= + F
R VR
+ P
o= bt (F, v B
Yt i ( e / (2.1.12)
F-v = ﬁ ( Euv - igv )

The “+” stands for self dual and the “-" for anti self dual.

These tensors ( F'*y, and F-yy) have 3 linearly independent components
and transform as adjoints under SU((2) and SUp(2) respectively. The
maps that interpolate between the tensors and adjoint vectors of the
SU(2) groups are the ‘t Hooft symbols [2].

+ a
T A
F~ o (2.1.13)

MY ’ZA/“’ ?p\

1

A representation of these is given by the following
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lz“jw = 57},, + SQ/,L vy - Ba.) S/ch (2.1.24)
'ia/uy, is the parity converse ( ¢ > =~ 24 ) ;

ol

‘Z/m = Zauy - dau OV + Bav Su e (2.1.15)

( note that gq/w is the alternating symbol in 32 dimensions,

Erzz:’) 3a/u=0 % /40(37:4,»)_

These symbols satisfy certain properties which we list below.

[+

T

¥

’ti i/u)aS 'Zq &3

'7;" == Lo

Jopw Jopr = ok

70‘/*\’ ?o./“l = 3 Sv”)\

70«/“1 l//a vy = 12

7‘“/1})’ Zﬂwfl z S/,vy BN -’S}A) Syy *+ E/uvv'l

z/pﬁ\a' 74\3/0' = SY/,L '?av)\ + 53)’ 7a)\/u + %xx '70\/,01

7&/,“) ?ﬁ/x‘?\ = Sab 2¥x + Sabc '7(: PPN

ga&c ?b/u\’ 7(;7;)\ = S/ﬂf '?ooJ)\ + Sux 7&»*/ - /;)\ 'Zav‘({
- v 70-/}.7\.

Tops» ’Z‘V" =

7_@1(/:4 ibb’x = 'Zans7\ 7?{;15/& (14.(3)
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Needless to say these relations can be derived from the antisymmetry
and self duality of '2‘*/”, , the symmetries of the £ symbols and the
completeness relations which follow from the fact that the map is 1-1.
&G . . N
(Note that the wvalue of 'ZQ)AV Z e is ofcourse representation

dependent).

The relations for i follow from a parity transformation which simply

changes the sign of all terms proportional to E’;v - 5

In view of the topological 1link between the gauge group SU(2) and
angles in Euclidean space it should come as no surprise to find that
the instanton is constructed through these ‘t Hooft symbols. Writing
- a el
Tur = T T v
(T2 are generators of the gauge group SU(2) )

the instanton solution is

Au = 2 Tuw Xy i

Fuv = -4 1% 2
4 5 e

This is not the most general solution however.

That can be obtained by applying the generators of symmetries of the
theory which are broken by this solution. Note that the S0(4)
rotation group 1is, in a sense, not broken by this solution. Thig is
because the solution does not transform under SUR(2) (see (2.1.13))
and the transformation under SU_ (2) can be compensated for by applying
the inverse transformation in the internal group SU(2). Also special
conformal transformations can be undone by a gauge transformation [5].
This leaves general gauge transformations (Note that A, as written is
in the lLorentz gauge %quA* o ), translations (which move the center
of the instanton x » x - a ) and dilatations (which change the “size”

of the instanton to “p*)
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Therefore a general instanton is given by

L YE S - iS20x) . TS eS|
A = =) € z e 2, e
. € Ap € Rt > (2.1.17)
with
AI = Q/ Q (9("5\-))’)
- o Y (2.1.18)

(>~ ) + Q1

the general Lorentz gauge instanton and Q(x) a general gauge function

(taking values in the Lie algebra of SU{(2)).

So far we have mentioned only the case where the gauge group is SU(2);
What about SU(n) ?
In fact M3(SU(n)) = & also and the instantons corresponding to
the 1lst Pontryagin class are simply those of (2.1.18) embedded in an
SU(2) sub algebra, plus a general gauge transformation (2.1.17) ((x)
in the Lie algebra of SU(n)).

{ There exists a more general statement due to Raoul Bott [6], which
is that N3 = Z for any simple Lie group containing SU(2) as a

subgroup. )

Finally note that (2.1.18) and (2.1.17) imply that the field strength

is

\;W
<
0

- e
Y
8 /A [.()(—“)1 . el ]Z
(2.1.19)

and that the anti-instanton solution is obtained from these solutions

by replacing Zﬁy by Z“V‘
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2.2 ZERO MODES AND COLLECTIVE COORDINATES.

The next two sections will be devoted to a brief description of the
treatment of zero modes and the calculation of quantum corrections in
Yang-Mills (see ref.[1]). They are intended to set the stage for the

more complicated application described in detail in chapters 3 and 4.

In chapter 1 (1.1) we discussed a particular gauge fixing term useful
in evaluating Zp (see (1.1.5) and (1.1.12)). There is an intuitively
attractive idea due to Amati and Rouet {2], in which this gauge fixing
term arises very naturally. The idea is to treat the infinite set of

gauge degrees of freedom as a set of zero modes.

Zero modes are functions Qp for which

O/‘“’Qv =0 (2.2.1)
Where C) » 18 the operator in the action S(A+Q) expanded up to

quadratic terms in @ ; The quadratic part is

oS = Jl'gd‘bc Q/}O/N Qv (2.2.2)
Qur = D'8uv — DD, -aiy Fuy (2.2.3)

Suppose we are dealing with a background field which is a solution of

the equations of motion i.e.
$S
5 Al

= O Sz SCAH)
af-n

It follows that a change to another solution

A > A + &A (2.2.4)
implies
2
§*S .o
snimg aé- A

(suppressing integrals and indices).
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&*S

PSSO

But ggiggg afzA is just the operator  "Ouy” of (2.2.3).
Hence if Q is proportional to 8A , Q is a zero mode.

An example of “BA” is provided by an infinitessimal change of'gauge:

(851 -ib5 . (55 -85
A > 77 Aa, e ‘ R, e
M s I
> Sﬁau‘ = ¢ [ 852, A}‘j + %5 ?&A S5
= L D, 35 (2.2.5)

Since 680 1is arbitrary this leads to an infinite set of zero modes
b4

Qu () = 39(x) = D 5(x-y) (2.2.6)
M Cur e

(There is also a colour index involved here - which we are
suppressing ).

If Qu 1is allowed to take values in the subspace defined by (2.2.6)
(gauge zero mode space) the operator in the quadratic action (2.2.3)
will not be able to be inverted to form the propagator; We will not be
able to do perturbation theory.

We can remedy this problem by noting that the values Qy in (2.2.6)
correspond to changes in the collective coordinates that parameterise
the general gauge solution for A, . Hence if we could constrain Qu
to remain “orthogonal” to the space defined by (2.2.6) and transfer
the integration over this space to an integral over the A, collective
coordinates we would have solved the problem. This we can do by

applying the standard Fadeev-Popov trick and substituting

. P kel
1= | Dee) !3\ E[C%;’Q/“ﬂlgac)(%/“ » Q)

(2.2.7)

into the generating functional (1.1.5).

In this equation “c.c” stands for collective coordinates.
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(%; )Q/u) is Xd‘*" %; Q/*C") =(?u(?,u.)(‘a) (2.2.8)

The §-functions in (2.2.7) constrain this to be zero, i.e. they force
Qu ‘to be orthogonal to {S;(x)g the zerc mode space., From (2.2.8)
we see that this is equivalent to the choice of background gauge

(1.1.12) with ¢ » 0 (Landau gauge). We could have instead taken

8L (3.,Q.) - §(y]

in which case a ’‘t Hooft Gaussian average would lead to the general

background gauge.

The last term in (2.2.7) is the Jacobian of the change of integration
variable from Qu (in zero mode space) to collective coordinates.

This is straightforward to evaluate if we use a system of collective
coordinates such that the differential of Ay with respect to one of

them gives a term proportional to one of the zero modes

QA %‘3 (3) (2.2.9)
O(c-c?)
Writing the matrix in (2.2.7) as
3
272 Q + 9 2QQ
( 5‘5’2:) ? /‘*) (%/u ’ 5@{)) (2.2.10)

we use (2.2.9) directly on the first term ( %2 is a function of A)
and in the second term we note that the full field Af
(Af = A +Q .... see (1.1.4))
does not depend on the background field parameters and hence
2Q - - °A
DCc-<c) d(<c-¢) (2.2.11)
Finally we evaluate the determinant of (2.2.10) by introducing

anticommuting integration variables and using the standard formula
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_ ML b,
DetM = X@(¢,¢) ed) (b (2.2.12)

D$,4) = 7] d; dé;

What we obtain from this process is, needless to say, the background

gauge ghost action (1.1.13).

The procedure we have outlined above generalises in a very natural way
when we apply it to instantons {3]. Differences arise simply because
the operator (2.2.3) has more zero modes than just the gauge modes we
have described.

This larger zero mode space is fixed ocut of the Q integration exactly
as above, Before going on to outline the result let us pause for a

moment to describe the instanton zero modes.

Five of the extra zero modes arise because BSA (of (2.2.4)) can
correspond to changes in the size and position of the instanton
(2.1.18):
Applying the translation operator (contracted with small parameters
sa¥ ) we get
Sii\/u = Sa¥ 9, F\/u_

(2.2.13)

and if we add to this change a particular small gauge transformation

(see (2.2.5%))

¥
SA/J. = %(»Sa AV)

we “covariantize” (2.2.13) to

84#" = 5o~ guy (2.2.14)

Similarly application of the dilatation operator

SA/UL = Se (I* X,;Bv");}u,

can be covariantized to



40

SA - g F 3 (2.2.15)
> i
These are not all the zerc modes however (a point apparently missed in
(2.
Recall that the gauge =zero modes when fixed out of the functional
integral led to the gauge fixing term (1.1.12) so that the operator in
the quadratic action becomes
|
O -2 DD
v 'Y
/" & 7 (2.2.16)
The non-gauge zero modes (2.2.14) and (2.2.15) are still zero modes of
(2.2.16) but a general gauge mode (see (2.2.5))

@R, = D, S (2.2.17)

is of course no longer a zero mode: This was the raison d’étre for
the gauge fixing term.
However a mode such as (2.2.17) will not be gauge fixed (i.e. will

remain a zero mode) if

DL = O (2.2.18)
And there are 4n-S “anomalous” [4] modes i for which

D", = o (2.2.19)
but for which (Q v = D, 2. (2.2.20}

is square integrable (so that these wmodes are included in the

Q-functional measure).

Hence (2.2.20) gives us 4n-5 extra zero modes.

The Qr are not square integrable, nor can we integrate by parts

(without producing surface texrms) [1] and it is for this reason they

were missed in the previous discussion.

They are indirectly connected to the 4n-5 global SU(n) rotations

broken by the instanton (which fact can be seen by going to a normal

gauge

%,;Q/u:o

so that (2.2.19) is replaced by
O Sl = ©

and is satisfied by the aforementioned global rotations).
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In the case of n=2 these modes have the explicit form [4] (for the
special instanton, see above (1.1.17))

O = 'ZK/W 2;¢ T 2y 2o

b+ 2c*

Qo = Fp = Dustu o 7Uve Xy Fou

In the n=2 case these modes can be interpreted as arising from

covariantized SUp(2) transformations (see chapter 3.2).

Finally let us mention that it proves convenient to expand the gauge
modes in a different basis set from (2.2.6), using positive frequency

eigenmodes of DZ

D* £25 = X Sl A >o

A 2 (2.2.21)

-

C%** - Z}L - E}*

(ag in (2.2.6) we are suppressing c¢olour indices which 1label

degenerate modes).
With such a choice the 4n discrete modes (2.2.14), (2.2.15), (2.2.20)

and these continuous modes (2.2.21) wvary Thomogeneously under

background gauge transformations (1.1.11).

The zeroc modes are mutually orthogonal and can be normalised :-

K L kb
(%/‘ )§/u~>$ ® Kb =, -0, G
(2.2.22)
(n, 5,0 = s

(onan,2.) = - (2, Buzl) =0

Now let us return to our discussion about replacing the Q integration

over the zero mode space by an integral over collective coordinates:
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We have seen in this section how we eliminate the zero modes from the
Q integration simultaneously with the usual background gauge fixing by
treating the gauge degrees of freedom as zero modes, and this led to
some new interactions (fig.2.1). It is worthwhile stressing that we
must fix out all zero modes ( continuous gauge and discrete modes)
simultaneously. This is because the discrete zerc modes change under
a gauge transformation and gauge modes change under zero mode shifts
of the discrete collective coordinates. Had we not fixed these two
sets simultaneously we would not have obtained the new interactions in

fig.2.1 and the resulting structure would have been inconsistent.
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2.3 RENORMALISATION AROUND INSTANTONS,

In this section we will consider quantum corrections to the instanton
action which wmake up the effective action described in chapter 1

(equation (L.1.73)).

The lowest order quantum corrections are provided by the semiclassical
approximation. In this approximation we ignore all quantum

interactions so that we are left with the action up to quadratic terms

Sgéqu = SS + 833\« * qu
= .“8%‘- *g"*“"{i%(@w*ré%DﬂQv +¢01(P~’/86€§

( ¢ is explained in (2.2.24))

( The ghost quadratic action i8 as in (1.1.13)).

These last two terms come from the diagonal part of the Jacobian. The
1/g ‘s in the last term arise from the 1l/g ‘s in (2.2.23) (through
the term like the second of (2.2.10) combined with (2.2.11)). They do
not arise in the ghost term ( Qb DP(P )} because we have made a

substitution
¢ =y 9P
@ P

—

o]

The Jacobian of this substitution leads to an infinite power of ( g )
which however is cancelled by the same power from ghosts in the zero
instanton sector (see (1.1.23)). (In section 4.1 we will find that
this is not the case for superfield super Yang-Mills where the ghosts

themselves have zerc modes).

Performing the integration over Q,Q),é and & we obtain
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At this order the multiplicative factor of (1/g%%) in (2.3.2) provides
no implicit p dependence. This u dependence first appears at 0(g<)
and must be cancelled if the vacuum enexrgy in the instanton background
(2.3.2) is to be p independent (as it must be for any physical
quantity). We therefore move on to consider the 0(g2) divergent
corrections (which provide after renormalisation the explicit Inp

dependence ).

The order g¢ corrections are illustrated in figures 2.2 and 2.3. Those
of fig.2.2 are “full” 2 loop wvacuum diagrams in the instanton
background field. fThey are drawn with thick lines to represent the
fact that the propagators are the inverse of the quadratic operators
in (2.3.1) which contain Ay , the background field. The interactions
also contain Ay. We will discuss later how we may evaluate the
divergences in these diagrams by expanding them as perturbative
interactions with the background field.

The diagram in fig.2.3 is made from the new vertices in the Jacobian
(fig.2.1 see discugsion following (2.2.24))., Power counting shows
that the divergence of this diagram appears when the propagators are
taken to be zeroth arder in the background field hence we may take the
propagators to be the usual ones (i.e. those in the zero instanton
sector ).

Now let us consider the background field expansion of fig.2.2. If we
expand these perturbatively (to 2nd order in the background field) and
use the methods described in chapter 1 (see (1.1.21)}) we obtain the
“short distance” corrections to the background field action (some
examples are shown in fig.2.4), in which the divergences arise from
high wmomenta in both loops. These corrections are entirely
insensitive toc the particular form of the background field and yield
the standard divergences of the background field method (1.2.20).
once renormalised they provide the O(g?) explicit lnpg dependence (&« 34

)} required to cancel that of the instanton background action (see
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equation (1.2.22)). Perturbatively there are no other divergent
corrections: they all arise from these short distance singularities
{13.

There is however a non-perturbative contribution in which only 2
propagators carry divergent momentum, These propagators can be
expanded perturbatively in the background field, whereas the remaining
vector propagator must be left in its full non-perturbative form
(examples are shown in fig.2.5). Note that the explicit form of this
propagator is not required (although it has been evaluated [5,6]). The
divergent loops (such as the thin ones of fig.2.5) sum together to
produce the divergent quantum (vector) self energy in the presence of
a background field. As should be expected this self energy is
proportional to the transverse part of the operator in the quadratic
action (Oyy , see (2.2.3)). The form of the contribution is entirely
independent of the particular form of the background field (see
comments above on short distance corrections) and is fixed by the
appropriate Slavnov-Taylor identities in the background field [1,7]3}.
When traced together with the long distance propagator (as implied in
fig.2.5) we obtain a term proportional to the trace of the transverse
projection operator (which is the projection operator onto the
non-zero modes of Oyy). Subtracting a similar expression from the
zexro instanton sector we obtain a term proportional to minus the
number of trangverse zero modes of Oy , which is -4n. This fact is
arrived at by cowparing the space of zero modes of Oyy (which is the
complement to the space of non-zero modes) in the 1l-instanton and
O-instanton sectors : In the one instanton sector we have a full
square integrable space of gauge modes and 4n further zero modes (4n-5
of these being non square integrable gauge modes) and in the zero
instanton sector we have only the square integrable space of gauge

modes. The reader will see this argument at work again in chapter 4.3

(or [1]).
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Adding together the divergences from this “long distance” correction
and the Jaccbian (fig.2.3), and renormalising, we obtain the correct
explicit 1nu dependence to cancel the implicit p dependence of the
multiplicative factor of 1/g4" in the semiclassical approximation

(2.3.2).

We have seen in this chapter how the divergent quantum corrections to

the instanton action arise from 3 distinct sources

1) The short distance singularities (fig.2.4)

2) The long distance singularities (fig.2.%)

3) The Jaccbian (fig.2.3)

In chapter 4 we will see these again in much more detail, generalised

to the case of a superinstanton. This is the subject of the next

chapter.
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Fig. 2.1

Fig, 2.2
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CHAPTER 3 SUPERINSTANTONS .

In this chapter we construct the superfield version of the instanton
and investigate the zero modes and the non-zero modes using the
background superfield method. It ig important in determining the
classical contribution of the instanton tc the functional integral
that one knows the number and nature of the zero modes (see chapters
2.2 and 2.3). We therefore devote section 3.3 to a detailed
discussion of these modes for the case where the gauge group is SU(2).
A general method of deducing new discrete zero modes from ones already
found is described . They are automatically generated in covariant
form (compare (2.2.14) and discussion surrounding it). Many zero
modes are generated by this method (one for each generator of the
superconformal group) but orthogonality to the background gauge fixing
term and a linear relation on the superinstanton show that the
linearly independent set consists of 8 bosonic-parameter modes (which
correspond to the translation, dilatation and SU(2) degrees of freedom
in the instanton that we discussed in chapter 2.2) and 8
fermionic-parameter zero modes. 4 of the fermionic modes were
expected: they correspond to supersymmetry (Qq) and superconformal (§é
) degrees of freedom [10,14]. The remaining 4 are supergauge modes
which, nevertheless, are not projected out by the gauge fixing
condition. In this respect they are analogous to the 3 SU(2) bosonic
gauge modes discovered by ‘t Hooft [2] (see below (2.2.19)).

The set of 8 fermionic and 8 bosonic zeroc modes have a natural
ofthonormality structure which displays another property of the 4 new
zero modes - they serve to project out the supersymmetry and
superconformal modes.

Attention is turned in chapter 3.4 to the continucus (i.e. these modes
are labelled by a continuoug parameter) supergauge zerc modes. These
modes are fixed by the background gauge fixing condition. In the case
of an instanton background field the natural Laplace-type differential
operator on (covariantly} anti-chiral fields is (background) G(= Y,V,
where Y, is the spatial covariant derivative defined in (1.2.59) or

(1.2.65) and contains only the background field}. This allows both
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the chiral and anti-chiral zerc modes to be related to 1linear
combinations of eigenstates of (. The wvector superfield positive
frequency modes are alsc related to the anti-chiral eigenstates of O
and this leads to the conclusion that chiral, anti-chiral and vector
gquantum fluctuations have the same spectrum of non-zero eigenvalues
for the fields in the same representation of the gauge-group. This
situation is analogous to the component case [3] where the same was
proved for gluon, fermions and scalars. As in [3] we can use these
expansions to construct projection operators and Greens functions.

The stage is then set to consider the non-perturbative quantum
corrections to the instanton arising from the instanton measure, the
Jacobian (of the change of variables between zero mode parameters and
collective coordinates), and the functional integral over +ve
frequency modes {9]. This will be discussed in chapter 4.

We start this chapter with a discussion of euclidean supersymmetry and
the relevance of Osterwalder-Schrader (0S) conjugation [12,13] - a

delicate matter since an instanton is not 0S self conjugate.
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3.1  EUCLIDEAN N=1 SUPERSYMMETRY AND INSTANTONS.

The BPST instanton [1] (see chapter 2.1} is a real soclution of the
euclidean space Yang Mills equations of motion. The construction of a
supersymmetric version of this instanton must, therefore, involve the

use of euclidean supersymmetry.

In Minkowski space, we have L.H. (left handed) and R.H. (right handed)

superspace coordinates eq, 8 which transform in the fundamental
and complex conjugate representations of the Lorentz covering group
SL(2,C). They are therefore connected by complex conjugation -
* e
(6% = 8%
(see (1.2.1}).

On continuation to euclidean space the covering group changes to
SUL(2)Y x SUR(2) [ = 80(4) ]

and the L and R superspace coordinates in the fundamental

»

representations of the 2 (distinct) SU(2) groups: eq, 6% are no
longer connected by complex conjugation (hence the reason for dropping

the bar on ea)
. *
0% # (6%

In fact, complex conjugation produces coordinates transforming in the

contragredient representations of the SU(2) groups:
(67) = ea (3.1.1)
= @,
(e7) &

This implies that the minimal hermitian euclidean superspace would be

s = (x, 8%, 6, &%, 6.) (3.1.2)
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and corresponds to N=2 supersymmetry on continuation back to Minkowski

space (as was first shown by Zumino {13]).

To obtain the same multiplet structure in euclidean space as N=1
supersymmetry we abandon the requirement of hermiticity and replace it
with “hemmiticity” wunder the wunitary involution operator of
Osterwalder and Schrader ({12, 13]. This operation 1is Hermitian
conjugation followed by time (x4) reversal and 1is known as OS
conjugation. Objects that are invariant under this operation are
0s-self conjugate (or 0S-real) and this concept replaces the concept

of ordinary complex conjugation.

In particular, 0S conjugation provides a map between SUL(2) and SUp(2)
groups.
(-A general SO(4) generator My, is expanded in terms of SUi(2) and

SUp(2) generators by

Myy = nipuy TL® + Rl Tr® (3.1.3)

where n®,, and R8,, are the self dual and anti-self dual ‘t Hooft
symbols (see below (2.1.12})). Time reversal reverses the orientation
of the euclidean axes and turng ndy, into T8yy ( and vice versa)).

So undexr 0S conjugation

& 95, é& (3.1.4)
éa os QEX

We now restrict our superspace and component field multiplet structure
to N=1 by using 08 self conjugacy. From (3.1.4) we find that we need
only consider the “Grassmann-analytic”{13] superspace.
a -
5t = (x, &, 9&) (3.1.5)
in which the ILH and RH Grassmann coordinates appear but not their

complex conjugate partners.
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Bosonic fields that are 0S self conjugate become real on continuation
to Minkowski space and, (2 component) fermionic fields and their
OS-conjugates, become Weyl spinors and their complex conjugates on

continuation to Minkowski space [12,13].

The close analogy between this 05 conjugate superspace and Minkowski
N=1 superspace leads to an exact correspondence with Minkowski

Superspace notation [6], if the following notational changes are made

We call the fundamental representation of SUR(2) e& where & is a

subscript

Then St appears as

st = (x, 6%, &%) (2.6)

In addition, if we cheoose our euclidean ¢ matrices as
G[J, = ( g, i )
a:y, = ( ~g, i )

then each of these is 05 self conjugate and the supersymmetry algebra
takes the same form as Minkowski space [6] (see (1.2.10)).

{Qas Q&} = "Ziaa&

Finally, to preserve the relation (see (1.2.18})

on continuation to euclidean space, we define our space coordinate

(3.1.7)

s

S I~ S

[+ 764 [T T ot
This definition of ¢ matrices differs from the usual definition in
euclidean space. But the fact that the o matrices are 0S8 self
conjugate guarantees that real Minkowski vector fields (A;) are OS

self-conjugate if the formulae are interpreted as in euclidean space.
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Changes of sign from the Minkowski formula occur on moving between

vector notation and two-component notation as a result of (c.f.

(1.2.17))

Tr{o'u_av} = -2 S}LV (3.1.8)

%% a .= -20 (3.1.9)
[e (o4

but this turns out to be required for consistency in euclidean space
(see Section 3.2 and Section 3.4 for example, where O having only
negative eigenvalues is consistent with other results only if this
sign change occurs. )

Apart from this change there is an exact correspondence with Minkowski

formulae.

There is a problem with this formalism however since an instanton is
not 08 self conjugate.

Indeed, if the explicit formula (see equations above (2.1.17))

a
a 2 nV v
AY = . BV (3.1.10)
Foog 14 x2

is used and 0S conjugation performed
a .
A“ — (A (X, -x ), -A(X,-x )) (3.1.11)

it is readily seen that the new field corresponds to an anti-

instanton (see comments below (2.1.14) and (2.1.19)).

Recall that the concept of OS5-conjugation was introduced to cut down
the superspace and consequently the field multiplet from N=2 to that
of N=1 supersymmetry, and that this implied that the superspace was
Grassmann-analytic (see ref {13] and comments surrounding (3.1.5)). Let

us generalise the concept to 0S-analyticity: superfields that are real
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in Minkowski space (e.g. the prepotential v) are, in euclidean space,
allowed to be O0S-complex but Grassmann-analytic functions (of the
superspace (3.1.6)). Our Lagrangians will no longer be OS-real but
must nevertheless be OS-analytic functions of the superfields (e.g.
must not contain the O0S-conjugate 7). This guarantees the N=1

supermultiplet structure but alsc allows us to study instantons.

Gaussian integration (and functional integration) are treated in the
usual spirit of analytic continuation:

For example such formulae as

8 -1
Jme[szA V . sdetia

(up to numerical constants)

are taken to be true in general even when v is allowed to be
O0S-complex.

Note that, although the gquantum field (v) will not be required to be
0S-real, these considerationg imply that further restrictions on the

quantum field are unnecessary.

A ‘bar’ on fields (e.g. ﬁ&) and the word ‘conjugation’ will always

refer to OS-conjugation. But for an instanton this will only be in a
formal sense. Thig is because we wish to avoid introducing the 05
conjugate prepotential {vg)" which would destroy the N=1 multiplet
structure (see previous comments). It will only correspond to
0S-conjugation in the case of an 08-conjugate background field.

- *
(For example, Wé will only be the O0S-conjugate ((Wﬂ) ) of Wa when

the background field satisfies vg™ = vg, A&uB" = AyB.) This means
that, in the case of an instanton, the “conjugate” field needs further
definition; however, we find that when we need to be precise about a
certain “conjugate” field then further relations already exist
determining the “conjugate” field unambiguously. (See, for example,

- k4
the construction of Wy and W? # (Wy) in Section 3.2, and the paramet-

- *x
erisation of chiral and anti-chiral (A # (A) ) zerc modes in Section
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3.4). The fact that these further relations do exist supports the
view that these problems do not indicate a fundamental inconsistency

in the formulation of instantons with explicit N=1 supersymmetry.

Thus a suitable relaxation of the concept of OS-conjugacy allows us to
consider instantons within a euclidean N=1 supermultiplet. We deo not
believe the above problems to be fundamental; the consistency of the
resulting structure will become clearer on reading the rest of the

thesis.
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3.2 THE SUPERINSTANTON, TRANSLATION AND GAUGE MODES.

The super Yang-Mills action (1.2.38} is Svms+§, (here S is the

OS-conjugate to S) and can be expressed ag

tx Y,
= XK 4532
158g dxdewwy (3.2.1)
w o= [V ,({7? v 1] (3.2.2)

where, unless otherwise stated, we will use the vector representation

for the covariant derivatives (1.2.64)

¥y = e*gw D egw

We can project out the component fields in Wy, in covariant form, by

uging the covariant derivatives {15,16]:

Define
- v
w_l bg V2 {3.2.3a)
(o4
g w.l = 8g D vz (3.2.3b)
v W = 4ig £ ~7 3.2.3¢
(a B)i g fon ( )
(We use the notation T T + T and T = T S )

(aB) ~ Tap | pa [ap] = “oB B

and similarly for the conjugates ﬁ&g A, e.t.c.

The “{” means take & = 6 = O, (These definitions agree with those of
{(1.2.20) (up to numerical factors) only when the pgauge group 1is
Abelian, otherwise these represent highly non-linear redefinitions of
the component fields),

£p Fa"‘gﬁ& = -2i (&% % Yo B = i(o® ga)aﬁ naw L
As in (2.1.2) and (2.1.12) FMV is the Yang Mills field strength, and

F+pv the self dual part.

We can also find the vector potential A . = o . A from
fo.0e 2 (o ST

=9 . - i . = . .2.3d
V! = % 1/ﬁ‘gAm Du % s (3.2.3d)
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The factors of “2 in the equations (3.2.3) appear through a non-
standard normalisation of the SU(n) generators (see discussion below
(1.2.46)).

Now (see [6])-

tridixd2e f = -1/4 tr|déx v2f | (3.2.4)

{which follows from (1.2.36) and expressing V. in terms of a

connection r& by

§C< = Do - r;

e
1
o

so that

»trgw,@ (buG] = 4 |d%< [%,G]

for any superfield G, since ﬁ»f[;)(%] vanishes).
Using (3.2.3) and (3.2.4) on (3.2.1) we obtain

S = tr fd4x (-1/4 F+Mi + is2 A% qu ié + 1/4 D2 Yy (3.2.5)

2 ~& &
= b (- - T4 . + 2 2.
S tx jd ®x (~1/4 F v i/2 A DQ ha 1/4 DYy (3.2.6)
& PR -a o - . .
£F.: = F& c2 = o o ).4 2! v F v where F v is the anti-selfdual
part of Fuv< see (2.1.12)). (3.2.7)

Hence with definitions (3.2.3) we obtain the expected action Sy but
note that these expressions are true in a general supergauge (and not
just in the Wess-Zumino gauge as was the case with the previous
definitions - see discussion above (1.2.48)) . Expressions (3.2.3)
exhaust the covariant content of the theory (i.e. give all the fields
that transform homogeneously under a supergauge transformation):
Further applications of covariant derivatives to the superfield
expressions yield only zerc or D&a acting on one of the component

fields already written down {15,16].
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Now consider the case where the vector potential Ay is the BPST
instanton (see chapter 2.1} and all other component fields are zero.

This is the “bosonic instanton” and the only non zero component is f,,,.Eg

: f&k = 0 since the instanton is self dual (see (3.2.7) and chapter
2.1).
Hence ﬁ& = 0 (3.2.8)

But this is a superfield equation and hence it must hold for the
general instanton (which is the supersymmetric generalisation of the
bosonic instanton).
The general instanton can be written down in component form by
considering transformations of the superconformal group. (We will be
considering only the SU(2) gauge theory. For SU{(n), n>2, the
fermionic instanton contains more parameters than the ones gained by
this method. See chapter 4.1}
Since the superinstanton must satisfy its eqguations of motion
(1.2.73):

vYw =0 (3.2.9)

&

it follows immediately from (3.2.3b) that D = 0 (3.2.10)

is always the case,

For a general covariant supexfield the supersymmetry transformations
are given by
¥ Y,
8§ = (8’ Q. + Sax o]
( Qy Qy)
and taking & = =0 components this is equivalent to

-y Y,
8¢} = (8a’D., + 5x'D
b (8 3 x y) b |

{see definitions (1.2.11) and (1.2.13)).
Covariantization by following this change with a supergauge

transformation gives
8b] = (8°V, + 6°Y ) & | (3.2.11)
¥ Y
similarly a change under a special superconformal transformation

“Ya v4
¢ = (8878, + 8p’s
¢ (84 5 B y) ¢















&7

B = ¢| (3.2.24e)
§H = -1/2 v2 ¢ | (3.2.24F)
8H = -1/2 V2 ¢ | (3.2.248)
8y, = -9 ¢ | (3.2.24h)
8, = - V. & | (3.2.241)

Equations (3.2.24) can be used to find the changes in the components
of the instanton field brought about by a zero mode “{”.

(Note that comparison of (3.2.21a) and (3.2.24d) implies 6D = O
automatically - consistent with the general instanton (3.2.16)).
Gauge zero modes are described slightly differently. They arise from
gauge transformations on the background field ("K” gauge
trangformations (1.2.66) are not considered here since they do not
vield zero modes: the quantum field transforms homogeneously when

K-gauging, see (1.3.5)).
egw - elAB egw

gw , BW e“iAB

where Ag and Kg are chiral and antichiral gauge transformations.

They can be re-expressed as a change in the guantum field (from

(3.2.19))
egv elA egv e*lA

Y

(3.2.25)

where A=eP Ag e 8 and A= e BY Ag B (as in (1.3.4))
are covariantly chiral and covariantly antichiral gauge
transformations. So if v = ({ corresponds to a small gauge

transformation, (3.2.25) implies

¢ = i/g (A-A) (3.2.26)

The component content of A is exhausted by the following definitions

(compare (1.2.25))

v2 Q=A | (3.2.27a)

o =Y A (3.2.27b)

F = -1/4 V2 A | (3.2.27¢)
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and similarly for A.
This leads to the expected changes in the instanton field (using
(3.2.24)) ’

. = » +'
5A_. /e D_, (7 + )

A, = -i/2 [0+ 0, A]

sié = 8D = 0
. (3.2.28)
6B = i/g (O - Q) v2
8H = 2i/g F 8H = -2i/g F
Y = -i/g ¢ 8y = i/g &

We now determine the superfield form of the translation zero mode. The
change in the background field due to a shift of the instanton centre
a“_ 4 au - Sau is

w 1
5e8% = 52" 5 . oBY

Begw = Ba a . egm

{(up to irrelevent numerical factors, compare (2.2.13))

which can be expressed as a zero mode (using (3.2.19)) by

Qw 2w

(Fe]
R e + e Omac €

- . Qe
ey0€%5 P Pl (e )

_ ok |, gw -gw o _mBw g
> ¢ = 1/g Ba (e aa& e e aa& e” )

Since this is true for a general perturbation 6a, we have four

linearly independent zero modes:

g& —g& - g gw
., = . - . 3.,2.2%9
an /g (e aaa e e aqa e” ) ( )

We now gauge covariantize the expression by adding a gauge zero mode

of the form (3.2.26).

AL,= eBrC e 8 406, w
foLed KX X o4
A.= e B a8
[0 {e ¢ [ {01
where VA.C | =g ., ~ irh.€ ., and “C” and “A” refer to covariantly
[¢ {0 4 [e {04 [e {0 ¢

chiral (1.2.56) and antichiral (1.2.59) representations respectively.
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Then (3.2.29) reads

¢ .= 1i/g @

. 3.2.30
& ( 3

. W

x a

{dropping an irrelevent numerical constant; Note that in general we
i i/g(8. + W.

obtain 1/g(ea wa aa u) 3

Using (3.2.24) we find the component transformations expected -

A« = g, £
BB Ba pa
(or in 4-component notation: SAM = -2 an Sav as in (2.2.14))

o
>
li
o
o
i
O

but also one non-zero supergauge transformation -

BY: = -4¥2 ie.. A
Vi s Mo

However ca& is orthogonal to the gauge fixing term (3.2.22),
i.e. ; }

(V2v2 4 v2v2) Cos = O (3.2.31)
This implies that the zeroc mode is orthogonal to all gauge zerc modes
(see section 3.4), and that it remains a zero mode after gauge fixing.
(The fact that it is a zeroc mode can be checked straightforwardly by
using (3.2.21b)).

In the next section we will determine covariant forms for the other

zerce modes directly from (3.2.30).
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3.3 THE, FULL SET OF DISCRETE ZERO MODES.

We start this section by describing a method for generating zero
modes ;

We can move to a new instanton solution by
(1) Changing the instanton parameters (e.g. ay - ay - 8ay )
(2) Using the corresponding element of the underlying group (in this
case Py ) and shifting the arguments of the instanton
(here x; ~ xu + Bay).
These two methods are equivalent for the instanton (i.e. they produce
the same shifted instanton solution). But they differ when acting on
the space of zero modes., The full shifted space obtained by each
method must of course be the same but whereas the zero modes transform
covariantly (i.e. into themselves) by wmethod (1} (e.g. Dilatation
mode (2.2.15) 8Ap=Fyu(a)xy = Fyv(a-sa)xy, ), they trangform into each
other by method (2) (Fpu(a)xy -+ Fyy(a-8a)x, + Fyy(a-8a)éa, ). Linear
combinations of other zerc modes appear; In this example it is the
translation zero mode Fyy (2.2.14). The fact that the translation zero
mode 1is obtained from the dilatation zerc mode by performing a
translation is of course no accident: It follows from the Lie algebra
of the group

[Pu,0] = -iPy
These remarks hold for all the zerc modes and all the generators of
the underlying group. In this way one can generate new zero modes and
identify their purpose from the corresponding Lie algebra relation. It
is clear that starting from explicit expressions for one or more zexro
modes this method can be used to generate an invariant subspace of the

space of zero wmodes and often to generate the full space.

Gauge zero modes are also generated by this technique; In particular
if the commutator of some generator with the generator corresponding
to the zerc mode vanishes, it does not necessarily follow that no new
zerc modes are generated - gauge zero modes (with no obvious

connection to the underlying group) are often generated. These gauge
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appropriate changes in its parameters (use (3.2.13), (3.2.14) on
(3.2.15), (3.2.16)). However under Sy the instanton W, field changes

non-trivially

W s W -8B (886 W _ - 46 W )
ot o Yy o« « ¥

{where W'y is constructed from appropriate changes in the instanton
parameters). So that “S,” transformations must be accompanied by a
compensating change on the W, field:

- y ’ - '
BWA 8p° (8 ey W « 49q W V) (3.3.1e)

Using (3.3.1) on the translation zeroc mode (3.2.30) and recursively
(on the new modes generated) we find all the zero modes and identify

their nature from the Lie algebra of the group. They are

ie., W translation zerc mode (P .) (3.3.2a)
Y v Yy
iéy W, il dilatation zero mode (A) (3.3.2b)
i62 Wy supersymmetry zero mode (Qy) (3.3.2¢)
82 x*?y Wy superconformal zero mode (é?) (3.3.24)
i6 . x*. Y W  SU_(2) zero mode (J.. 3,3.2e
& 5y W r(2) ( ay) ( )
é? o7 W supersymmetry zero mode (6&) (3.3.3a)
4 B
8" x, o W superconformal zero mode (S 3.3.3b
Sy 8 pe ( y) ( )
82 o7 W chiral (axial) charge zero mode (A) (3.3.3c)
Y
ie’ x. W 80,(2) zero mode (J 3.3.3d
S Vg u(2) ( aﬁ) ( )
6% x. w oxt . special conformal zexrc mode (K L) (3.3.3e)
Ga '24 ay

One can check, using (3.2.24), that the superinstanton component
changes are as expected from these zerc modes. In addition, by the
same methods, we find the following supergauge anomalous modes -
i/g W (3.3.4a)
i/g WO x* (3.3.4b)
ax

1/g o” Wa (3.3.5)
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so these are the same as the 3 anomalous gauge zerc modes discovered

by ‘t Hooft [2].

Since (3.3.7) is the only non-zero component of (3.3.5) and this
vanishes for a bosonic instanton (Ay=0) it must be that, for a bosonic
instanton, (3.3.5) vanishes identically

i.e.  8Y Wy =0,
If we perform an « transformation ((3.3.1a),(3.2.13)) followed by
a  transformation ((3.3.1c),(3.2.14)) we obtain the general instanton

(as in (3.2.16)) and the above equation becomes

(eB +of - ifP x+éﬁ Wy =0

which is the linear relation (3.2.18).

(3.2.18) implies that only two of the three supergauge anomalous modes
(3.3.4a),(3.3.4b),(3.3.5) are linearly independent. To obtain the
linearly independent set which will parameterize the instanton in a
non-singular fashion (at Ay=0) we must drop (3.3.5) and retain
(3.3.4a) and (3.3.4b). (In fact, of course, we are allowed certain
restricted linear combinations of the five modes (3.3.4) and (3.3.5),
but note that it can be shown that such a combination must be
fermionic (by considering the expansion of v in terms of these modes,
at Ay = 0) and in any case we will see that the fermionic modes
(3.3.4) are chosen automatically as the basis set when we go on to
consider orthogonality to the supersymmetry and superconformal modes).
Similar arguments hold for the « supersymmetry mode (3.3.3a) and the
chiral charge mode (3.3.3¢c): By (3.2.18} they are not linearly
independent of zerc modes (3.3.2), and they wanish in the bosonic
instanton case -so we drop them.

In order for the various quantities we will be congsidering to be well
defined it is necegsary to impose the restriction of square integra-
bility on the components of the superfield. This excludes some of the
modes in (3.3.3), which do not satisfy this requirement:

The B superconformal mode (3.3.3b) contains a component that is not

square integrable:
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BA . = -4g X, A
xy o

il

x.B £ B SN

-28 X.
& Toy Jo%s

H

0(1/%x2) as x » w

It can be made square integrable by adding a linear combination of the
special conformal modes (3.3.3e), namely

a7 (18P Xin W x* o)
The mode vanishes in the bosonic case and, using (3.2.18), it can be
written as a linear combination of dilatation and 8U (2) zero modes.
S0 we drop it.
The special conformal zero mode (3.3.3e) is not square integrable
so this one is dropped.
And finally the SU (2) zeroc mode (3.3.3d) can be re-expressed as a

gauge zero mode (of form (3.2.28)) at the component level:

= a -
SA“ =Ex N, FAM = D“ aad

1
where {a) = 5 [5&7}

and so, by using the definitions (3.2.27) and expanding A and A in
terms of © and & we could construct explicit expressions for A and A.
It follows that (3.3.3d} is a gauge mode at the superfield level (i.e.
of form (3.2.26)) - but it is gauge fixed so we need not consider it
further.

Note that the special conformal mode (3.3.3e), which we dropped
because it is not square integrable, is also a gauge mode at the
component level (sgsee above (2.1.17)) and hence by the above argument a
gauge mode at the superfield level. However it too is gauge fixed and

this provides us with another reason for not considering it further.

This 1éaves us with the linearly independent set of zero modes (3.3.2)
and (3.3.4). {(Their linear independence is best seen by inspection at

the component level}. They are all orthogonal to the gauge fixing
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term.

The bosonic modes are the 4 translation, 1 dilatation, and 3 SUg(2}
(or ‘t Hooft anomalous) zero modes ; they lead to changes ié the
instanton parameters ay, p, ©3.

The fermionic modeg are the 2 supersymmetry, 2 superconformal and 4
supergauge anomalous modes which are associated with changes in the

instanton parameters ay, éy, &y, E& (see comments following

(3.3.4)).

Hence there are a total of 8 bosonic and ¢ fermionic zero modes.

In order to calculate with the superinstanton background field we will
need a method of projecting out the coefficients multiplying the zero
modes in the expansion of a general guantum field “v” (see discussion
of general method in chapter 2.3). This is most conveniently done by
defining an inner product on the superfields. The natural definition
is

(U,v) = trfdﬁz U v (3.3.8)

and this works for the bosonic modes e.g.

. = 18, W the translation zerc mode
[e e d [o SR @ ¢
1 Y
. = e . 4 2
(Ca& ’Cﬁg } 7 S&B sqﬁ tr] dix d<e W wy
= - 25672 €.: €
a3 ap

or in 4-component notation (using (3.1.8))

(¢, »¢, ) =s1212 5 (3.3.9)

But in the case of the fermionic medes, the « and § modes both have
Zerc norm (£,2) = 0 since 6% appears in the integrand of (3.3.8).
And the & and 8 modes have zero norm since the integrand is chiral and

j&2§ = 0 ., However the norm between « and & ,and, § and 8 zero modes
is easily seen to be proportional to a non wvanishing integral
(g2tr|dix Fiv and gltr{dfix Fiv %2 respectively).

In fact it is straightforward to show that apart from this difference

the 16 modes form an orthogonal set:



77

- i - 8B i - fe! - -% %
Let = (16-W ; —~ ©.W 3 - xt, : 2 ; ;
(K (1 g 5 %5 Bx; 5 e(Bx ) W i0 W[3 0 1wﬂ fol
52x+ . P 3/2, WP ok
e<x p wﬁ o) s W ox 85 p )

where for convenience the zero modes are multiplied by powers of p so
that the dimension [{x] = +1. "x* runs from 1 to 16 and is spinorial

or bispinorial as appropriate.

And let (’x be as above except that the 3rd and 4th entries are
swopped round and the same with the 5th and 6th. Then

IKI _ K’
(CK 9( ) - SK

£
where the numerical constants have been ignored and ~ SKK “ is
interpreted appropriately.

If we set
B¥ = (827P 5p 0% 5677 p% 5o o % 5d® oY% 5if Lof 57 )

then (bX] = -1

and a general guantum field “v” can be expressed as

v=rb gz 4 vt
K 34

b = (v ¢ )
where vt containg no zero modes.
It does however contain +ve frequency modes and continuous gauge zZeroc
modes (which become +ve frequency modes once the gauge fixing term is

added) .These are the subject of section 3.4,
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3.4 GAUGE ZERC MODES, GREENS FUNCTIONS AND PROJECTION OPERATORS.

We start this section by considering the continuous parameter gauge
modes, they are of the form (3.2.26)

v=i{ A - A ) (3.4.1)
Although they are zero modes they are gauge fixed by the term (3.2.22)

tr

S = - = j a®z w(v? 9%+ 92

2
GF 32¢ Vv

s0 we parameterize these modes by considering eigenmodes of

(V29249292)up,e = 16A2 vk A real and >0 (3.4.2)

{(The factor of 16 is just for convenience. The positivity of the
eigenvalue (16A2) is required so that Sgr is negative definite as is
the original action Sy). A and a further discrete parameter x (which
can be spinorial) serve to label the eigenmodes.

Using (3.4.1) this is

2-2 = 2 -
- e
VA= 16AT AL (3.4.3)

-2.2 2
vV A, =
v A 16Ah ,,'\?\K

or

B
!
d

i

2 A 3.4.4)
AZA, ( )

0

4

>
It}

Y
A AAK

( note that A and AAK will be fermionic eigenstates when k is

spinorial). We have used {éy,[éygv2]}=—1eu+ and similarly for O.

where s

i

a- 1/8 W v (3.4.5)

H

similarly 0. =04 1/8 W 6&

= 3 for a superinstanton (3.4.6)
(3.4.4) would be'sufficient for the definition of an orthonormal set
of
gauge zero modes A,R if the background field was self conjugate since

then A=(A)*. This is not the case here and it is then not clear how
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to associate the /\)\K with KAK Fortunately we can give a more

¢

restrictive definition

_2 -
VEALE AN A (3.4.7a)

2 -
vV A 4h A b
Ak A Ak (32.4.7b)

1§

(3.4.4) follows from (3.4.7).

In a superinstanton background (see (3.4.4) and (3.4.6))

- 2 -
QA=A A (3.4.8)

(3.4.8) and (3.4.7a) now serve to define the modes A)x and KAK in

terms of antichiral eigenstates of O .

Defining the chiral and antichiral norm by

~

-

e’
i

tr f d4xd2e

~~

o

oo
i

= tr I a%xd26

(3.4.8) allows us to show

NI Y 20  for a ® A’

S0 by orthogonalising the degenerate (x) modes we can normalise such

that

- - x5 A [ od
(Akw ’AA’ Y o= - 8(A - A SK (3.4.9)

{(The minus sign is included here since it can be shown, by for example
using the component field definitions (3.2.27), that the (anti)chiral

norm is negative definite in Euclidean space).

By using (3.4.7),(3.2.4) and super-integration by parts this implies

- s rs
oy = A s(h - A% BKK (3.4.10)

and
x? C . K’
- . - 3.4.11
QN N ) 5(A - A) 8 ( )
This allows us to show that these modes are ofthogonal to the discrete

modes since (using (3.4.7))
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1 -
25 e 292
(€ oA ) = T552(V292 ¢ A )

and (£ A ) = 52p(9292 £ AL )

Ar 16

and V2v2 ¢ =92v2 ¢ =0 for all discrete zeroc modes. These

chiral and antichiral modes satisfy a completeness relation

f 16 AAK(z) RAK(z’) = 52 V’z{ sa(z -z Y} (3.4.12)
A
(which can be checked using (3.4.10) and (3.4.7)).

The projection operator on chiral states is

P(z,2') = f % AAK(z) A (27)

A
(3.4.13)
2 PC = -1/16 vz 0 . v2
(using (3.4.12) and (3.4.8))
and similarly, the projector on antichiral states is
Y e 2‘_ n K I
PA(z,z ) = j X AA (z} AAK(Z }
A
. L (3.4.14)
» P = -1/16 72 0 1 V2

A
The properties of these projectors c¢an be checked by using the

identities

(3.4.15)
Oy V2 = O 92

]

<
)
]

92 O

vhich are true for also for any power of OO ([:).

If we congider a Wess-Zumino action for some (background) chiral and
antichiral fields ¢ and $ { for example the ghost Lagrangian in SYM)
then the propagator <¢(z)$(z’)> can be defined through
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Or <&(2)d(2/)> = - P (2,2')

which implies

<ot2)bz > = [ 35 4,52 A (2

A
(using (3.4.4) and (3.4.13))
-2 -2 _2
=1/16 ( V- O ° ¥ )zz, (3.4.16)
{using (3.4.8) and (3.4.13))
and similarly <$(z)¢(z’)> satisfies
O <d(z)(2°)> = - PA(z,z')
SO } 1 - K
<P(z)P(z’ > = I 33 M (z) AAK(Z')
A
=116 (v 0?9y, (3.4.17)

(Infact (3.4.16) and (3.4.17) follow easily by inspection of Pg and Py
, and (3.4.15)).

We turn our attention to the +ve frequency non-gauge modes. They must

be eigen modes of (3.2.21). They turn out to be

V& AAK (3.4.18)

i
g

Y 2 A

since (using (3.2.21b}))

9. v p—
v ARG~ 16vZ A

i

1 -y - - -
= g 92 7.,9292
8 x AAK

e - A2 . b,
Aoy (3.4.19)

(using (3.4.3))
The “&” is an extra label and this means there are twice as many
non-gauge vector modes as there are antichiral modes of 0 ~ for each

value of A, Note that vAK& is fermionic when AAK is bosonic and vice

versa.
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Equations (3.4.4), (3.4.2) and (3.4.19) show that the vector, chiral
and antichiral fields have the same spectrum of non zerc eigenvalues
(apart from the multiplicative factor of “1/¢" that appears fér the
vector gauge modes when not in the Feynman gauge).

Although these equations were formulated for the adjoint representa-
tion it is clear that the construction arguments hold for v,

A, A in any representation of the gauge group.

The +ve frequency non-gauge modes are orthonormal

Iy ’ ;
S By = s(n - A% 5 " 5&6 (3.4.20)

( follows from integration by parts and (3.4.7a), (3.4.10))

They are orthogonal to the gauge modes and the discrete zero modes

because if ¢ is one of these modes

!

1 N -
(C2v, s )= 577 (€, 920, v )

0
0
ij“
L
<
<
™y
&
-

= 0O
(¢ is a zero mode of (3.2.21)).

We can construct the projection operator onto the +ve frequency non

gauge modes
I — K(X £
BP(z,2°) = f VA (z) vAK&(z 3
A
which implies
p=1i/e ¥ wr ot (3.4.21)

B

(which can be derived from (3.4.18), (3.4.7b), (3.4.16) or {(3.4.17)
and properties (3.4.18)).

The term in the guadratic action (3.2.21) satisfies

(178 9% v2 6&) P = 1/8 Vw2 6& (3.4.22)

which shows that (3.4.18) is the complete set of +ve frequency modes
for (3.2.21).
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We can define a Greens function in the space of these +4ve frequency

non-gauge modes by

1/8 v vz 6& G(z,z2’) = -~ P(z,2°)
(3.4.23)

and obtain G(z,2z°) = 1/8 (9°v2 O-2 V),

And finally we can considexr the propagator <v(z)v(z’)> over +ve

frequency modes. It satisfies

(178929, - 1%2[v262+62v2])<v(z)v(z')> = -(P(z,2’ Y4Pp(Z,2’ M4Pc(Z,27 )}
(3.4.24)

{The term on the left is the gauge fixed gquadratic action, and on the
right is the projector onto +ve frequency modes).
Hence from (3.4.16), (3.4.17), and (3.4.23)

<v(z)W(z’)> = (1/86“v2a~26& - £/16 [V20°292 + v20~262])zz! (3.4.25)

These results for the propagators and projectors agree with the

relevant conclusions of [17].
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CHAPTER 4 RENORMALISATION AROUND SUPERINSTANTONS.

In this chapter we consider super Yang-Mills theory in its superfield
form and evaluate (to two loops) the divergent quantum corrections to
the classical action of the superinstanton. In component field
theories {1,2](see sectiong2.2 and 2.3} the first step is to factor
out the zero modes from the measure in the genexrating functional.
This 1s achieved by inserting 8&-functions which constrain the quantum
field to lie in the space of non-zerc modes, replacing the integral
over zero modes by an integral over collective coordinates [3]. When
these 6-functions deal with gauge zero modes they generate the
background gauge fixing term [1,4]. The Jacobian (of the change of
variables from zero modes to collective coordinates ) generates the
ghost action together with new interactions involving the vector
field, ghosts, and the discrete zexro modes [1,2]. In superfield super
Yang-Mills the scenario is the same as the above except that there is
an additional complication: the ghost fields themselves have zero
modes . To take care of these modes it 1is easiest to consider the
above for a (general) background field for which the ghost measure
includes the whole of (square integrable) function space. We can then
factor out the ghost zero modes that occur when the background field

is set equal to an instanton.

We divide this chapter into three sections. The first section is
concerned with factoring out the zero modes (by replacing them with
collective coordinates) and calculating the associated Jacobian. This
is the analogue of section 2.2. The second section discusses the
semiclasgical approximation. 7The final section considers higher order
guantum corrections. These last two sections are the appropriate
generaligsation the methods discussed in section 2.3. As in that
section we investigate in particular the two loop contributions,
splitting them into short and long distance parts. We check that the
divergences are indeed those reguired to renormalise the semiclassical

result.
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Unlike the corresponding case in section 2.3 we find that there are no
divergent corrections from the new interactions in the Jacobiafn (to
any order) and that, once renormalization has taken place, the
explicit 1np dependence of the full two loop graphs vanishes. Later
(in chapter 5) we discuss some conclusions that can be drawn from
this calculation, and in particular their relevance tc gaining some
understanding of a remarkable paper by Novikov et al [5]. (See also
the Introduction}).



g8

4.1 COLLECTIVE COORDINATES AND THE JACOBIAN.

In this section we wish to perform the analogous steps to those
described in section 2.2. However, as mentioned in the introduction
to this chapter, we have to deal with a further problem in this
superfield treatment: that of ghost zero modes. This is best dealt
with if we begin the evaluation of the Jacobian by considering a
general background field for which the ghost measure includes the
whole of square integrable function space. We will see later that
this is equivalent to the assumption that all sguare integrable gauge
modes (and therefore all square integrable gauge transformations) are
fixed by the background gauge fixing term. In chapter 3 a study was
performed of the zero modes and the gauge modes for a superinstanton
background field. We begin by generalizing the results of that
chapter to the case of this background field. We work in Euclidean
space and terms such as “real” and “conjugate” will refer to

Osterwalder-Schrader conjugation [12] as explained in section 3.1.

We consider super Yang-Mills in the presence of a background field.
(See section 1.2 and 1.3). The full prepotential v; is expressed in
terms of the gquantum prepotential v and the background field (w and )

by (1.3.1)

eBVE = oBY oBY BV (4.1)

The action is written in the quantum chiral background vector

representation (see (1.3.6))

tr - ~gY G BV, = -gv gv
X f%12 2 2
mjdm 6 4(e Vo oe” ) V¢ e Vq@ Yy (4.2)

where the covariant derivatives, which are in the vector
representation (see (1.2.65)), contain only the background field (w

and &),

<
i
[0
o
]

(4.3)
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The background field strengths are defined by (compare (1.2.56))
w o= (9 ,{6& 97 1] (4.4)

and the conjugate relation for ﬁ?

The quadratic action is (compare (3.2.20), note that (4.5) follows
from (1.3.13) and comments below it)
8Sy = »%5 Jéaz vOv

(4.5)
A - q-z _
0 = 1/8 (V 92V w“va)

When the background field satisfies its equations of motion 0 will

have a number (m) of discrete zero modes “{i”,
~A
0¢; =0

which can be normalized:

ii s il il
food 4 4 = »
(ci 27 ) tr] d%x d%e ci 'Y Si (4.6}

and chosen so that they transform homogeneously under background gauge
transformations . (The index i rung over the m discrete modes and may
be spinorial or bispinorial as appropriate). Specific examples of
these modes were seen in sectiong 3.2 and 3.3. In addition there is a
continuous parameter set of gauge zerc modes which may be labelled
through antichiral eigenstates of ( as described in [10] and section

3.4)

0. =0+ 1/8 W 6é (4.7)

by

- . A a2 A
AAK t AAK A AAK

The corresponding chiral eigenstates Ajpx being given by

-2«

v AAK = LA AAK (4.8a)
which implies

v2 A = 4A A (4.8b)

AK Ak
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We now explain the various terms in (4.17) (which is the analogue of
{2.2.7) plus the appropriate ‘t Hooft gaussian average, see~also 2]
and (1.3.8)).

N is the normalisation factor for the Gaussian average

N=Jnm£>emcdmjhxwim}
A
= ( e/n ) (4.18)
AK
= sdet ™ ¢ n_)é‘/ £ )
where ix =41 if Axx 1is a bosonic mode and ik = -1 if Ak is 2

fermionic mode. (This depends on the index k : if x is spinorial then
Ape Will be fermionic).

For any covariantly chiral field A :
J D(A) exp{ |dfz % A2 } =1 ' (4.19)

{see equation (6.5.41) of [13]. (4.19) can be treated as a definition.
It may be justified by defining D(AY as the integral over its
component fields, or by an integral over the associated standard
chiral field and its component fields [13].)

By expressing A in terms of the eigenmodes (4.8)

A = j ar Axk
A
we can use (4.9) and (4.19) to make the identification

j DA = I QK daje (which we will sometimes write as j D(a) ).
(4.20)

Hence for anticommuting covariantly chiral and antichiral fields, n
and 7, we obtain (by expanding in terms of Axx and Axc and using
(4.9))

J D(n,n) exp( ~fd8z m ) = sdet® (o) (4.21)

(in agreement with other methods {13]).
Hence the factor N-1 in (4.17) can be written
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Piecing together (4.16),(4.17),(4.22),(4.23),(4.34),(4.36),(4.39) and
this substitution we obtain

A 8ria 2

Z = Jb'(v,c,é,cf,é',n,ﬁ) a®M a®M¢ 4% @%Me a%Per a®Ms

+ + +

¢ Snk = - fdﬂz m ) (4.40)

The prime on D indicates that integration is carried out only over the

non-zero mode spaces.

This is the final result for the generating functional.
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4.2 THE SEMICLASSICAL APPROXIMATION.

The semiclassical result is obtained by considering interactions up to
guadratic in the action contained in (4.40) (see (2.3.1) and comments
above this equation). This leads to the evaluation of the
determinants of the appropriate Laplace-like operators (restricted to

their non-zero mode spaces, see (2.3.2) and comments below it}).

The action up to quadratic terms is (from (4.5), (4.23) and (4.35))

82 1 =& - 1 - - - -
= - 8 — 2y, - 292 4+ vy - c’c - ¢’
S —?+trdz{ V(lsvvvcx -'3"2-2(VV Veve ) v c’c c’c

- 8¢ - 1} (4.41)

The integration over ¢ (and &‘) trivially gives 1. The integration
over each pair of ghosts (¢, ¢’, n and their conjugates) gives a

factor of (see equation(4.21))
Sdet%(D)
(0. = O for a superinstanton, since ﬁé =0 see (4.7) and (3.2.8)).

The expansion of “v” in terms of non-zerc eigen modes is

-

v = j{ (&AK AAK + WK Apn i/ A+ uAKq v
A

.}

ARG

(4.42)

T - -
Vaka B A Vg M

where GAK , unk and uAKG are arbitrary coefficients. The terms
containing A and A are the gauge modes that are gauge fixed in (4.41)
and are hence non-zero modes of the gauge fized action (which is the
relevant action for the semiclassical calculation ([{2] and (2.3.2)),
see (4.23) and the discussion above), The last term contains the +ve
frequency transverse modes. In chapter 3.4 we showed that these
positive frequency modes span the full space of non-zero eigen modes

of (4.7) (see also [101).
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The factor of 1/YA in expression (4.42) means that (see norm in (4.9))

the coefficients are normalized so that{13]

Ji(v) exp( fﬁﬁz vZ } = 1

implies Jb(v) = Jb(ﬁAK, Ui s uAK&) . (4£.43)
Putting (4.42) into (4.41) yields
1 K& 1 _ K -
= = -N2 =
8Sy 5 J A (uA uAK& + : ah aAK)
A

Performing the integration in (4.43) we obtain

-3 }:

Sdet O sdet (3 O)
=n, ¢ (4.4t
(note that the uAKq have opposite statistics to Ayx and that there

twice as many for each eigenvalue A).

These factors of £ are cancelled, as expected, by those in (4.40)

which arose from the normalisation (4.18) of the Gaussian average.

Hence the total positive frequency mode contribution comes just from
the ghosts and is egual to.

sdet3/2¢0)y
However Sdet(0l) =1 . This was shown to be true by heat kernel methods
{9]. We can verify this a number of ways ;-

For example

Sdet(0/tg) = exp(tr[dfz In(/tp)zz)

DQ = au_au
{where we have included the zero instanton sector contribution) leads
to a sum of diagrams as in fig.4.1 when expanded in powers of the
background field. But since no D,’s and 6&’3 appear ingide the loops
the rules of supergraphs [11] imply that these all vanish identically.
However +this argument is perturbative. The most convincing

verification which is non-perturbative is by resorting to components:

If we let



101

Ww=w=>686A.,
where Ad& is the instanton background field, we find, after soma
calculation, that

OA = - A2A

is equivalent to the three equations

D2 o= -A2Q

D2 &, = -A2 &

. (4.45)
[o:4 24

so that Sdet [ = det D?2 det~4(DZ) det DZ = 1

A similar analysis, though somewhat more complicated, can be carried
out for a general superinstanton in the Wess Zumino K-gauge (i.e. the
gauge in which w and © are equal and are taken to be half the

background prepotential (vg) in the Wess Zumino gauge)
- 1 s ¢ S &
= e . = 2 .
w (3] V2{ e e Aaa 8<6 Aa) {(4.46)

The conclusion is the same.

Through the zero modes we obtain powers of p such as to cancel the
dimensions of the integral over collective coordinates. {(This rule
can be justified on dimensional grounds or by regulating with
(background) Pauli-villars {3,2], see discussion above (2.3.3)).

The dimension of each bj is -1 which follows from (4.11), (4.12) and
the fact that {j is noxmalized. It follows that the measure d8ny is
dimensionless (since there are an equal number of fermionic and
bosonic by ). The dimension of e, e’ and £ is -1/2 and is given by
(4.38) and the fact that the A; are normalized by the chiral norm.
Hence (note that e,e’ and f are bosonic collective coordinates) we

obtain
"8"2/82
7 = j d8nb d2ne d2ne’d2nf u3nsg2n e (4.47)

as the final result from the semiclassical calculation.
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Note that u3n is exactly the right power to cancel(to orxrder g0) the
implicit pu dependence of the classical action ( Bg = 3n for SU(n)).

In the next chapter we will consider the divergent higher order
corrections to this semiclassical result. These divergences are found

to be cancelled, as expected, by renormalisation of (4.47).
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4.3 HIGHER ORDER CORRECTIONS.

We consider here the corrections of order g? to the semiclassical
action (4.47). They are illustrated in figures 4.2 and 4.3. The
graphs in fig.4.2 are “vacuum” graphs in which the propagators are the
full propagators in the background field. They are the analogues of
figures 2.2 and 2.3 at the end of chapter 2. The graphs in fig.4.3
are graphs formed from the new interactions in the Jacobian. The
stub-lines represent interactions containing ¢, &‘. Power counting
shows that the U.V. divergence from these graphs (which must be local)
yields a contribution to the effective action

¥[ e a8z = v (3 &38y)
J

where ¥ is a coefficient containing the divergences .

Integration over the &l modes yields a multiplicative correction
factor to the semiclassical result (4.47) (see (4.41) and (4.40)).

(14740 /7 (147)4n = 1

Thus, because there are equal numbers of fermionic and bosonic
collective coordinates (in the vector sector), there are no divergent
corrections from the discrete part of the Jacobian., We note here that
this conclusion holds true to all orders in the number of loops (since

the divergences will always be of the above form).

We now consider the graphs of fig.4.2 in detail. As has previously
been shown ([2] and see section 2.3) the divergences from these
graphs can be split into “short distance” divergences in which momenta
are large in both loops, (this can be calculated by a perturbative
expansion in the background field) and “long distance” divergences in
which one of the propagators is the full long distance propagator
carrying no divergent momentum {the other propagators carry divergent
momenta and can be expanded perturbatively).

The divergences in the short distance calculation are insensitive to
the particular form of the background field and can be calculated by
standard background field methods. The 2 loop calculation has been
performed by Abbott et al [6] and has been further refined [7,8]. We
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briefly review the methods developed in [{7,8] and their application to
this calculation. The essence of these developments is in ghe use
of covariant-D algebra to generate terms that include Wy ,Wy and Vyy
but nothing else [7]. Consequently the form of the divergences is
highly restricted {8]: They must be local, form a background gauge
invariant functional, be able to be written as an integral over the
full superspace (d8z), and contain the background field only as Wy ,Wy
or the connection Iy

( V..=208_. - il . )

The mass dimension of W, ,Wy is too high to be included and so any
terms generated by the covariant-D algebra which contain these field
strengths can be dropped. In fact, using dimensional reduction, the
only divergent term that can appear, satisfying all the above
requirements, is [8]

trlatx ate r™ . (s .77 - 5 .77, (4.48)
Yy oGk ok

A A
where 8 . = 8 g .0
fode

is the Kronecker 8 in the 4-2¢ dimensional subspace. This term is
background gauge invariant because the differential of the gauge field
occuring in the gauge transformation of the connection

aqé K(x)

( x in the 4-2e dimensional subspace) satisfies
(6 .77 - 8.7y a . x(x)=o0 .
fs o face YV
(4.48) can be written as
- % tr(fd4xﬂ29 wyw&+ j&4xdzé ﬁyﬁ?) (4.49)

{we use the notation of “superspace” {13] and not sections 1.2 and 1.3

({11]) here so as to make straightforward contact with {6,7,8]).
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CHAPTER 5 CONCLUSIONS .

We begin this final chapter with a summary and discussion of the
research presented in the previous chapters. We then go on to compare
our work with that of Novikov et al [1]. The derivation of the super
Yang-Mills all orders pB-function given in that paper relied on a
theorem stating that all positive frequency contributions to the
instanton action vanish. We show here why the proof presented in ref.
{1] is invalid [2] and discuss the possibility that although the proof
is invalid the theorem might still be shown to hold [2,3]. In the
light of the subtleties discovered from our explicit calculations we

argue that it is hard to see why this should be the case.

Chapter 2 outlined the effects that must be taken into account when
calculating divergent quantum corrections to the instanton action in
Yang-Mills [4]. A careful treatment of the zerc modes was required,
transferring the integration over zero mode space to an integration
over instanton collective coordinates. Included in this treatment
were the infinite set of gauge =zero modes. it was important for
consistency to include the gauge modes in this way since it led not
only to generation of the (background) gauge fixing term and the ghost
lagrangian but also to some extra interactions between the ghosts,
the vector field and the discrete zero modes.

These latter interactions were one source of ultra violet divergences
in the higher order quantum corrections. There were two others: the
standard perturbative short distance corrections which were removed by
renormalising the classical instanton action, and some non-
perturbative U.V. divergences proportional to the number of transverse
(non-gauge) zero modes. These latter “long distance” corrections
together with those arising from the new ghost-vector interactions
were cancelled by renormalising the factors of 1/g appearing in the
semiclassical (1 loop) calculation.

Although chapter 2 dealt specifically with instanton background fields
the analysis was in fact quite general and applied to any solution of

the equations of motion which breaks certain symmetries of the action.
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The 1 1loop calculation however had to be treated differently. We
verified that the p dependence came from two sSources:

(1) FProm the zeroc modes wvia powers of pu such as to cancel the
dimension of the instanton measure.

(2) Prom the determinants of the inverse propagators, with the gluon
determinant restricted to the non-zero mode space. This latter
determinant could be calculated if certain tricks were used to turn it
into the determinant of an invertable operator (DyDy in fact). This
method holds not just for the B.P.S.T. instanton but for any self dual
field. (Note that any such field is automatically a solution of the

equations of motion).

In chapters 3 and 4 we extended these ideas to super Yang-Mills in
superfield form. The first step towards this generalisation was to
find the generalisation of the instanton in super Yang-Mills i.e. a
superfield solution to the euclidean super Yang-Mills equations of
motion which contained the ordinary instanton but which had the
possibility of non-vanishing values for the other component fields in
the multiplet. We showed that the superinstanton was effectively
described (up to a general supergauge transformation) by an ordinary
bosonic instanton solution for the Yang-Mills field and a non-zero
L.H. fermionic component A (& ,B) depending linearly on 4 fermionic
parameters 043 and ]%5; which correspond to chiral supersymmetry and
antichiral superconformal transformations of the original bosonic
instanton. The next step was tc find all the zero modes which we did
by using the superconformal algebra te generate covariant expressions
for the zero modes. Anomalous supergauge modes were alsc generated.
The methods used in that chapter (chapter 3) are applicable to any
solution of the equations of motion of a theory. For a single
superinstanton we found that the linearly independent set of zero
modes that gave a non-singular parameterisation of the superinstanton
contained 8 bosonic modes and 8 fermionic modes. (There were 4 more
fermionic modes than had been expected from component analyses; these
were supergauge anomalous modes). Discussed also in that chapter were
the generalisation of the 1 loop tricks used in the Yang-Mills case,

to the case of self dual superfields and quantum prepotential (v)
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- I
transformation on the bosonic instanton 60’“66“ (where A; is the
BPST instanton [6], see chapter 2) leads to a change in the superfield

proportional to
- T

&' M x Bw (5.3)
This is is zero since E;i is self dual and é%;, ig anti self

dual. The next step in the argument is to note that the result of
calculating higher order graphs such as those in Fig. 5.1, in which
the propagators are those of the quantum superfield in the instanton

background field, is of the form

gcm fo £E § (x:0,8)
(5.4)

Supersymmetry invariance implies that any translation in & (6 » 6 +
E) can be compensated by a shift in the corresponding collective
coordinates. The absence of the collective coordinates &, leads the
authors of ref. [1] to conclude that the integrand in eq.(5.4) must be
independent of 6 and hence that the integral is zero. They thus
conclude that all higher order diagrams vanish. This, together with
the result of ref. {7] that the contribution of positive modes at the
semiclassical level is zero, gives us eq. (5.1).

We do not accept this argument. Indeed if it were correct the

classical instanton action would also have to be zero for this is

(5.5)
which can be written in the form
— -ty ¥ \% - -V v
’}x Scf‘*’x dre 4*6 (e R p* ) BT (63 Du e’ )
oL
3 (5.6)

(we are using the notation of ref.[81}).

Applying the argument outlined above would lead to zero for eq. (5.6)
also, whereas we know that the classical action for the instanton is
8“5%9 (we have checked that the surface terms ignored in from (5.5)
to (5.6) do indeed vanish). So how do we compensate for a transla-
tion in © by a shift in one of the collective coordinates, given that
there is no & collective coordinate? Recall that in addition to the

collective coordinates corresponding to the discrete zero modes there
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.,g M* vt 4Bz

in the action yields (c.f. (5.1))

M"b""#
which is also unity. Our powers of g and M come purely from the ghost
sector: there are 2n ghost zZero modes for each chiral ghost. There
are 3 chiral ghosts (c, ¢/, and 11 - see (4.35) and (4.21)) and each
yields a factor of M}’: (see discussion below (4.46)) so that we

recover the factor of
n N, - ¢/
M - - &4n -2 ﬂ;"‘nb
In addition the c-ghosts yield a factor of (g ) = 9 =9

from the &-function constraints which factor out the ghost zero modes
(see below (4.39)). In this way we recover the factors of M and g as

in (5.1).

The zexro mode counting given in ref.[1l] is the one appropriate for the
Wess-Zumino gauge {3] and it would appear from ref.[1] that this is
the gauge they were considering. This gauge however is not super-
symmetric and the results of graphical calculations can not in general

be cast in the form (5.4).

We have reached the conclusion that the argument given in ref.[1] for
the vanishing of all higher order corrections to equation (5.1) is
invalid. Does there exist some other proof that an all orders
cancellation exists in some standard normalisation scheme? To try to
gain some clue as to the answer to this question we turn to our

calculation of section 4.3.

First note that the sum of the Inu dependent contributions at two
loops ((4.53) and (4.62)) does indeed vanish. At two loop order this
is however to be expected from the known p-function (as is readily
verified by differentiating expression (4.47) by 1lny and using B4 =
2nBg ). At higher loop order the value of the explicit Inu dependent
terms involves the third and higher order g-function coefficients.
Therefore the vanishing or otherwise of these terms will depend on the

renormalisation scheme. Ref.{1] however, requires that these higher
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order terms do indeed vanish. In our case (since the contributions
from the discrete sector of the Jaccobian vanish to all orders, see
beginning of section 4.3) +this implies that the short distance and
long distance (explicitly)} 1Inpg dependent terms must cancel to all
orders of perturbation theory, but we have gained no insight in the
process of this calculation which would lead us to conclude that this
holds true. In fact the theorem of ref.[l] implies that the full
graphs (such as those in fig.5.1 and fig.4.2) must vanish identically
- even before renoxrmalisation; We see from equations (4.52) and
(4.61) that this is not true for dimensional reduction even at two
loops, (a fact which is readily verified by solving the p-function for
the coupling constant renormalisation Zg and applying this to the
semiclassical result (4.40)). Thus not only is the proof in ref.[1]
incorrect but it is impossible to construct a proof which will hold

for graphs in dimensional reduction.

HBowevey the wvanishing of the full graphs before renormalisation
clearly depends on how one regulates: Note that, for example, in a
gauge invariant higher derivative regularisation [9] we !iil find a
vanishing 2 loop contribution (because the divergence is tied to the u
dependence through In{A/n) ). This latter regularisation is more
appropriate because it preserves identities relating to instantons
(which only exist in 4 dimensions). Unfortunately it is not clear how
one should use the background superfield methed in this case (or for
any other regularisation scheme that stays in 4 dimensions [10]) since
the form of the divergence allowed by the present method (see equation

(4£.48)) is very specific to dimensional reduction.

If it were true that the full graphs in the background of an instanton
vanished, to all orders, identically (using an appropriate regular-
isation scheme) then one might expect that such a cancellation could
be deduced in a straightforward manner by formal manipulation on the
full graphs using covariant V-algebra, instanton identities (such as
ﬁy = 0 and the equations of motion) and the full propagators of

section 3.4. One can readily convince oneself however that such a
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program merely generates the scalar graph (of fig.4.4) plus terms
containing one or more field strengths (Wy), and consequently any

cancellation between these terms is far from evident.

The higher order 1lnu dependent corrections (from three loop order
upwards) are renormalisation scheme dependent and therefore can only
cancel in some particular renormalisation scheme. Presumably we wish
to preserve the gauge and supersymmetry Ward identities and instanton
symmetries (such as self duality) but we do not expect this to be
sufficient to determine the scheme, or equivalently the g-function,
uniquely. Thus any general proof for the cancellation must depend on
this particular renormalisation scheme; From our work we have no clues

as to what this scheme might be.

In summary, despite the fact that we understand how to do higher order
calculations in an instanton background field, we have been unable to
construct a proof that an all orders cancellation of quantum

corrections exists.
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