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SUPERINSTANTONS

by Timothy Richard Morris

wa show how O(g2) divergent quantum corrections to the instanton 

effective action may be calculated in Yang-Mills theory. We verify 

that these are as required by a renormalisation group analysis of the 

semiclassical calculation. This requires a delicate treatment of the 

zero modes and of the jacobian corresponding to a change of variables 

between these zero modes and collective coordinates.

We generalise the instanton solution to a superfield solution of N=1 

super Yang-Mills theory, and describe a general method of generating 

covariant eaqfressions for the discrete zero modes. It is found that 

the linearly independent set of zero modes contains 4 more fermionic 

modes than were previously eiqpected. These are anomalous supergauge 

modes. We show how to parameterize the continuous supergauge zero 

modes and the positive frequency modes. Prom this analysis we 

construct the full Green functions in the background of a super­

instanton and projection operators onto the corresponding spaces, we 

generalise our previous 0(g2) calculation to that of a superinstanton 

in super Yang-Milis. This allows a comparison with recent arguments 

that all the higher order quantum corrections in such a situation 

should vanish identically. We conclude that these arguments are 

invalid but investigate the possibility that quantum corrections do 

nevertheless vanish to all orders. Ihe subtleties and complications 

of the cancellation mechanism make it difficult to imagine that this 

could be the case.
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INTRODUCTION.

Instantons, topologically non-trivial solutions of the Euclidean 

equations of motion in Non-Abelian Gauge Theories, were discovered in 

the mid 1970’s [1,2]. Although their significance may not yet be 

fully understood, it is clear that they constitute one of the ntost 

inportant non-perturbative effects in gauge theories, (for reviews of 

instanton physics see refs 3-5; The instanton itself is described in 

chapter 2.1). In this thesis we describe the results of a study of 

the generalisation of instantons to superfield solutions of Euclidean 

super Yang-Mills [6]. This we call the superinstanton [7], The 

primary aim of the research was to calculate higher order quantum 

corrections to the superinstanton. With this end in mind we first 

attacked the problem of calculating the ultraviolet divergent quantum 

corrections to an instanton in Yang-MilIs [8]. In the process of the 

calculation (to two loops) we discovered some new effects : we found 

that part of the divergent corrections came from new interactions 

which arose from a Jacobian (of a change of variables from zero modes 

to collective coordinates), and part of the corrections came from 

certain non-perturbative long distance effects. These divergences 

were cancelled by the renormalisation of the coupling constant that 

appears as a multiplicative factor in the semiclassical calculation 

[2] (see (2.3.2)). Together with the usual purely short distance 

divergences (which are cancelled by renormalisation of the instanton 

classical action) we had thus checked that the 0(g2) explicit Inp. 

dependence was as required by the renormalisation group invariance of 

the semiclassical result. This work is described in chapter 2. Our 

attention then turned to the superinstanton. Before carrying out the 

quantum corrections to such an object it is necessary to know the 

number and nature of the zero modes. And, for dealing with the 

non-zero modes in the semiclassical calculation, the generalisation of 

certain tricks [9] are needed. These convert the semiclassical 

problem into one of determining the determinant of background 

covariant-D. (See chapter 2.3 and 4.2). Chapter 3 describes the 

construction of the superinstanton, its zero modes and non-zero modes 
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(through these tricks). That chapter starts with a discussion of 

Euclidean N=1 supersymmetry and its relevance to instantons. Chapter 

4 describes the generalisation of the previous ideas on renor­

malisation around instantons (chapters 2.2 and 2.3) to the super- 

instanton and superfields. This generalisation is not as straightfor­

ward as one might imagine because of the complex non-linearity of 

super Yang-Mills anti the fact that (unlike the consponent theory) even 

the ghosts have zero modes. Nevertheless we describe in detail in 

chapter 4 how one can compute to two loops the divergent quantum 

corrections to the superinstanton effective action.

We are then in a position (in chapter 5) to draw sonre conclusions 

from our work. In particular we are able to discuss the validity of a 

paper published by Novikov et al [10]. In this paper a general 

theorem about the vanishing of certain quantum corrections to 

instantons in super Yang-Mills led to a derivation of the /3-function 

to all orders of perturbation theory. We have shown their proof of 

the theorem to be invalid [11] and we describe our reasoning in this 

chapter. Although the proof is wrong the theorem might Still be 

correct. We discuss this possibility also in chapter 5. Our research 

has shown the theorem to be correct to two loops although we have 

unfortunately found no indication that this theorem should hold to all 

orders.

The work described in chapter 4 can be found in ref. [12] i^iich also 

includes some component field calculations in the Wess Zumino gauge . 

The problem of including fermions in the quantum corrections to 

instantons in a general non-abelian gauge theory was included in 

ref.[8] but it is not discussed here.

The beginning of the thesis (chapters 1 and 2.1) is devoted to an 

introduction to the relevant background. Much of the thesis relies 

heavily on background field and superbackground field methods tdtich is 

the subject of chapter 1,
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CHAPTER 1 THE BACKGROUND FIELD METHOD.

Itie prime concern of this thesis will be the calculation of a quamtity 

called the background field effective action, when the b&ckground 

field is set equal to an instanton. This chapter will be devoted to 

discussing the background effective action and some tremendous 

sin^lifications in the method of calculation which can be gained by a 

judicious choice of gauge - the so-called "background gauge".

The background field method is inportant not only for the conputation- 

al sinplifications it allows (which are described at the end of this 

section) but also because it appears naturally in the calculation of 

quantities other than the background field effective action : for 

exanple the instanton contribution to vacuum-vacuum e3<pectation 

values. (See chapters 2 and 3).

We will for the time being concern ourselves only with Yang-Mills. (It 

is trivial to include fermions and scalars).

The usual generating functional

can be turned into an effective action 

r.[a] ■ Wels'] - <1.1.2) 

where

Wo " and (Q, ^^ (1.1.3)

P [(^]lg the generator of 1 particle irreducible diagrams.

The background field method does not use (1.1.1) but instead expands 

the 4-potential (the full field) in terms of a "background 

field" A^ and a "quantum field" Q^ by

integrates over Qu and couples the source to the quantum field: 

r S(Aid) + 5'Q

(1.1.5)
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The effective action is constructed exactly as in (1.1.2) and (1.1.3) 

viz.

W, = u Z, Q - WA
S3

and the background effective action is found by setting Q = 0 , 

r [A] = C»f°] (1.1.7)

(1.1.7) has a loop expansion which is the sum of 1 particle 

irreducible graphs with no external Q lines. That is they are 1 

particle irreducible "vacuum" graphs from which we pull out 

interactions with the background field.

It is (1.1.7) which is referred to (when the background field is put 

equal to an instanton ) as "the vacuum energy in the presence of an 

instanton" [1); this is by analogy with the usual effective action 

(see (1.1.2)) for which

^[o^ A IcP^t * constant (1.1.8)

The constant can be thought of as the vacuum energy density and is 

calculated from 1 particle irreducible vacuum graphs.

When calculating (1.1.7) we will always subtract the contribution 

(1.1.8).

So far we have not discussed the gauge fixing that must be done in 

order to calculate r s The gauge invariance of the action S(A+Q) 

renders the quadratic action (in Q) non invertable and so we can not 

obtain the quantum field propagators.

A gauge transformation on the full field (see (1.1.^))

(1.1.9)

can be expressed as transformations on the component fields in a

number of ways, of which two important ones are
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(1.1.10)
— i Si™ 

c

The background transforms homogeneously, but

undergoes a gauge transformation. It is the

the quantum field 

quantum field gauge 

invariance that makes the quadratic action non invertable.

(2)

I - i A
c^ e, (^ 6

(1.1.11)

This transformation is the "background gauge transformation" so called 

because the background field undergoes a gauge transformation Pereas 

the quantum field transforms hoirogeneously.

If we introduce a background dependent gauge fixing term of the form 

(1.1.12)

^4P

then the quantum gauge invariance (1.1.12) will be broken so that the 

quadratic action can now be inverted (to form the propagator), but the 

background gauge invariance (1.1.11) is not broken.

Entirely in analogy with the usual method we introduce ghost terms 

that evaluate the determinant of the gauge fixing term under a gauge 

transformation

and we can now proceed to calculate (1.1.7).

But note that since (1.1.12) remains unbroken (and noting that Q 

transforming homogeneously implies the san® of Q) (1.1.7) is a gauge 

invariant functional of the background field.
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Comparing (1,1.1) with (1.1.5) we see that

^A (1.1.14)

Hence tA = V/^ - 3 A 

and differentiating w.r.t. J :

Performing the Legendre transform on (1.1.14) (see (1.1.6)) and using 

(1.1.15) we obtain

Hence our gauge invariant effective action (1.1.7) is just the usual 

effective action but with Q = A and a peculiar gauge fixing term 

(containing A^). The choice of gauge fixing term can be proved not to 

affect the calculation of gauge invariant physical quantities (such as 

the ^-function), and hence we can eiqpect to extract the same physics 

from r as we did from r^ .

toe choice of a gauge invariant r greatly 8ing)lifies the divergent 

structure of the theory: this is because, although we could in 

principle find unrelated renormalisations

fl -, %: m

toe preservation of gauge invariance requires

Du (1.1.1.) 

to remain gauge invariant and so

Furthermore in standard background field calculations we can ignore 

the renormalisation of the quantum field
Q zi Q

(note we will find this is not the case in the calculation of "long 

distance" corrections in chapters 2.3 and 4.3)
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This is because the quantum field lines only appear inside the graphs 

and the positive powers of 2.^ in the vertices will cancel the ^<^ 

associated with the propagators.

This leaves us with only one sort of counterterm diagram - that from 

renormalising the gauge fixing parameter

(Note that, because the gauge fixing term is not renormalised

Even this can be avoided by working in a general 

gauge ( = 0 ) [2].

(1.1.18) and (1.1.19) imply that the (U.V.) 

background field action must take the form

gauge (or the Landau 

divergences in the

(1.1.20)

since the theory is(since they must be local, gauge invariant and, 

renormalisable, be vertices found in the action).

(1.1.20) implies that the divergences can be found by expanding the 

vacuum diagrams up to quculratic in the background field and using

F^*, a^x = -aL-x A^(2*S^..3,^.)A„ - O(»=)

The /3-function can be straightforwardly extracted from the divergences

In fact since (1.1.20) has the U.V. divergent structure of the 

renormalised quantity has explicit ti dependence

A J / \ Ww5^ (/*T)'' /

where (1.1.22)

3'9"^

Finally note that setting Q = 0 implies by (1.1.6)
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t^[o]

(for a particular value of
<%.: O

and similarly from (1.1.2) and (1.1.3) for Q = 0

%erefore

e

and so subtraction of the (zero background) vacuum 

instanton calculations (see comments below (1.1.8)) can 

normalising the calculation of Z^ by the zero instanton

(1.1.23)

energy in our 

be regarded as 

sector.
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1.2 SUPERSPACE AND SUPER YANG-MILLS.

W6 begin with a discussion of the essential aspects of the superspace 

formulation of N=1 super Yang-Mil Is before going on to a brief 

discussion of the background superfield method in section 1.3, which 

will be the language used in chapters 3 and 4. We will not present 

here an introduction to supergraph techniques [3] nor the more 

advanced covariant supergraph techniques [4] ; they are only used in 

the loop calculations of 4.3 and the methods themselves are not 

central to the argument. Let us start by fixing the notation; Our 

notation (with some minor changes made in chapter 3.1 when we change 

to euclidean supersymmetry) is that of [5] (see appendix A of that 

paper). We deal with an N=1 superspace consisting of x^ , 2 Grassmann 

left handed spinorial coordinates ©"^ and 2 Grassmann right handed 

spinorial coordinates .

The a and a serve to distinguish the fundamental and complex conjugate 

representations of the Lorentz covering group SL(2,C).

(1.2.1)

Vectors (such as A^) lie in the (%,%) representation and can thus be 

represented

(The a is a different index not to be confused with a), 

where our conventions are

We introduce Grassmann differentials

(1.2.2)
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anticommute

We Ccin raise and lower the indices with a matrix proportional to the 2

by 2 alternating symbol (which is invariant under

C SL(2,C) :» detM = 1).

SL(2 ,C) since M

(1.2.3)

(^06 = (9 ^ /S 66 (1.2.4)

In this notation the natural contraction is always from top left to

bottCMn right. We define

^^^ = Go) =

(1.2.5)

(1.2.6)

so that for example

(1.2.7)

An antisymmetric tensor T^a is automatically proportional to Ea^p.

(1.2.8)

The operators ^ L ^oc ^ ^ 2^ ^ ( S^tae ^ are hermitian (by which we

mean, for the first two, that they obey the rules (1.2.1) and

(1.2.7)). (1.2.9)

The supersymmetry algebra vAiich we normalise as

(1.2.10)

has explicit representation

(1.2.11)

covariant derivativesThe with these

generators

They are

with algebra { ^w-j ^<K^ = "^^ 3*t&

(1.2.12)

(1.2.13)

(1.2.14)
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It is useful to distinguish between Kronecker 6's in (1.2.2) and

(1.2.15)

so that identities such as

C. 2f jX. =^ O o<, - - 6(X_
(1.2.16)

follow naturally.

Note the appearance of a factor 2 in the completeness relations for 

the a matrices (above (1.2.2));

so that

(1.2.18)
^»L& = ^ Souk ^^ = S&^

Any superfield can be expcinded as a Taylor series in e and 6 using the 

fact that

so that for example for a real superfield;

^CtO;) gy = Gg; »,% e*

v(Xj6'_,e) = Bc?c) -e'^zj^c^^:*^^ -a'^z^^j^(">*-)

+ i e^ H(>c) tie'' HC^) -*- e'' e^ AAf&Cx-)

- ^^<9* CAoc + ^ ^o(dL z^'^) - e^ ^"^ 6 %^ + 3o(^ ^'*)

+ i6'^&*(r>+^a8) (1.2.19)

The component fields depend only on x and form a supermultiplet. The 

signs and the derivatives appear in (1.2.19) in this way to correspond 

with conventional definitions of the component fields in terms of 

supersymmetric derivatives [6] (a more convenient method of defini­

tion ),
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B()t) = VI

%|^AI -D^v| 2^& * -D^v|

(1.2.20)

Xbl^^c) = .^ B^Ddt v|

D6%) = ^t/^C^1)^v| = ^ D^^D"^ b^v I

(since D"^5^t>^ zb^lZ^D^^ is an identity).

The bar " |" indicates that one should set 6 = 6 = 0 in the 

resulting superfield.

we can also define chiral superfields ^('^j^^) such that 

- _ (1.2.21) 
D& <p * O

Since ^ D& _, 8p^ cO (1.2.22) 

and

where . „ (1.2.23) 

^ (&^ - ^P^ ^^ ^^

is the chiral x space coordinate.

We cam solve (1.2.21) (p = g)(x+^e) (1.2.24)

Ihe component field content can be written down in a similar manner to 

(1.2.20) viz.

If we substitute pc -> >r - ^t 6 6 (1.2.26)
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we go to the chiral representation where

DoL - ^6L Dai^ ^AL+ A*^*^ ^66^ 

we can do the hermitian conjugate manipulations on antichiral fields 

which satisfy 
b& =O <p 5 ^(Xj^j&) (1.2.28) 

%e relevant coordinate is x- , the amtichiral coordinate.

X. «: % - Ace^ (1.2.29) 

and the substitution 

% —) % + ^cO ^ (1.2.30) 

takes us to the antichiral representation

' - . . (1.2.31)

Graissmann integration is defined through the following rules

(1.2.32)

(and the hermitian conjugates for 6 ).

cseneral superfield expressions can then be integrated over the full 

superspace

fd*Z F(z)= FCx^&j^)

5 [j^^ j'^e Ff%j45'.>»^ (1.2.33)

Chiral superfield expressions are only integrated over 6 (since they 

effectively do not depend on 6, see (1.2.27), an integral over 8 would 

cause the expression to vanish by rules (1.2.32)).

i.e. (^(z) such that 1)«K Q " 

has
fc(*'z (f^z) = J^^ (fCXj6^^e) (1.2.34)

Eiqiressions (1.2.32) inply that 
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5
(1.2.35) 

and in integrals such as (1.2.33) and (1.2.34) we may further replace 

the ^^^6 by covariant D^ & (1.2.13) since the differences involve x 

space integrals of total derivatives producing surface terms which can 

be dropped, i.e.

Similar remarks hold for 6 , the antichiral superspace integral 

(analogous to (1.2.33)) sometimes being written

I^‘- <1.2.37,

Note that with these definitions for superintegration the Grassmann 

derivatives (1.2.2) and supersymmetric derivatives (1.2.13) can be 

integrated by parts in the natural manner.

Now let us consider SU(n) super Yang-Mills, This is constructed from

a real superfield V(Wj^e) (see (1.2.19) and (1.2.20)). It is known 

as the prepotential and takes values in the Lie algebra of su(n) 
. The action is ( V = V^T-)

Sv = S + 5
Where g = W^XVy (1.2.39)

and W^ r ( e t)^ 6^^ ) (1.2.39)

Note that since 5^T)&Di5=O (1.2.40)

the field strength W^ satisfies D^ W % o (1.2.41) 

which explains the chiral integral in (1.2.38). 

This action is invariant under 

(1.2.42) 

where A is a chiral field: b^ A := O 

(Bence A is antichiral).
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(1.2.42) is the (super) gauge invariance of super Yang-Mills. For

infinitessimalA, A (1.2.42) implies

Sv = - i^ Lv i < A-h a) -r

■ !% ( A - A) "

where Ly = E 'C) ^^ ]

A careful study of (1.2.43) reveals that

cotk (‘i>^Lv) (a-a)V

, (1.2.43)
( A+a)

(^'^/l) (A-A)^..-

(1.2.44)

the fields H. A and B

defined in (1.2.20) (and (1.2.19)) can be gauged away algebraically; 

that is, there is a gauge - the so-called Wess-Zumino gauge in which 

the only non-zero component fields of v are A, X , X and D. In this 

gauge it is feasible to evaluate explicitlythe 6-integration of

(1.2.38); we obtain the component form of super Yang-MilIs theory

Sy = "Lr ^d*^^ C~^ ^"^ + lX C>k ^61 D

(1.2.45)

F^v is the Yang-Mills field strength with A<x^ as 4-potential.

t^«.^ - ^ &«t
(1.2.46)

I^ = ^ - '%/<s ^

The peculiar normalization in the covariant derivative (1.2.46) is due 

to a non stemdard normalization of the (fundamental representation) 

SD(n) generators

tf (T-Tj ) = Sg (1.2.47)

(They are usually defined with a % here).

so that in terms of the standard structure constants ^^■,^, we have

[ "^i-J Tl 1 = ^ '^ J^QK ^K
(1.2.48)

Hence the covariant derivative of (1.2.46) is the usual one when 

e^qDressed in terms of structure constants.

Note that X , X and D are in the adjoint representation with e.g.

(1.2.49) 
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and, as will be true always, expressions containing operators for 

example

^i ^(X, (1.2.50) 

must be interpreted as the appropriate commutator/anticommutator

[Q^i'^.X^l (1.2.51)

D = D^T*" is an "auxiliary" needed to maintain the fermi-bose count of 

the theory when off-shell. (It should not be confused with super- 

symmetric derivatives or the gauge covariant derivative I)

Note that (1.2.45) is only supersymmetric up to a gauge transforma­

tion; but since the gauge symmetry must be broken if we are to 

quantize the theory, the Wess-Zumino gauge action (1.2.45) can not 

preserve supersymntetry at the quantum level.

Manifest supersymmetry is preserved by working on the full action of 

(1.2.38) and choosing a supersymmetric supergauge fixing condition. 

Such a supergauge fixing condition is provided by 

D^V = o
and 5^ V = O (1.2.52)

The first equation in (1.2.52) serves to project out the chiral gauge 

part of V (i.e. A) and the second equation the antichiral gauge part 

of V (i.e. A).

We insert into the path integral

-U fd’z. 0-5-
I = N I 5)(<^j5u) S[d""v- 0^3 S[5'‘v -0-3 ^y e'^*^ (1.2.53)

where a and a are chiral and antichiral fields (since D^v is 

antichiral), N is the normalisation of the 't Hooft gaussian average 

which here can be ignored (but in the next chapter it will be 

important). The gaussian average gives us the gauge fixing term

5<lf = Vcl^z I^V I? V (1.2,54)

The Jacobian J is, as usual, the determinant of the differential of 

the gauge fixing term (1.2,52) under a gauge transformation (1.2.43) 

and is evaluated by a ghost action, consisting in this case of 

anticommuting superfields.
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^3^ " C^'-^') I^v [(c + c) f cofk(& Lv ) ( c-c)]

2 "fcf I cl 2. y C, C + C C 4- LwftiYxcl u)h S i^ A. V

(1.2.55) 

where c and c' are chiral superfields, and c and c' are amtichiral 

superfields.

We can write the superfield strength W ^ in terms of (super )gauge 

covariant supersymmetric derivatives

In (1.2.39) these covariant derivatives are in the covaricuitly chiral 

representation

W 5 W

9^ = o«^
(1.2.57)

They are gauge covariant since under a gauge transformation (1.2.42)

Vk -^ e v^ & (1.2.58)

% -» C 9^ 6 ( = ^^ since D^ A - O ) 

One can also define a spatial supergauge covariant derivative by 

analogy with (1.2.14)

In the Wess-Zumino gauge (see below (1.2.44)) 

utk ( @ * e = o = '^ oc6t

i.e. the Yang-MiIls covariant derivative (1.2.46). 

(1.2.57) is not the only representation; there are two others. 

Firstly we can define a covariantly antichiral representation



Under a supergauge transformation

V' e'^ v” e"'^
(1.2.61)

Note that

f—)A AV f—)C —o%v (1.2.62) 
9 = e 7 e

so that from (1.2.56) W'' = & W 6 (1.2.63) 

and so (using the cyclic properties of the trace) the action in 

(1.2.38) is independent of the representation. Note that in these 

representations the covariant derivatives are not hermitian in the 

sense of (1.2.9). In fact Hermitian conjugation maps between the two 

representations (e.g.

(v‘«)^ = 7: ).
We can however construct a hermitian representation - the vector 

representation. To achieve this we must split the prepotential v into 

two new prepotentials w and w. (w is a general complex superfield).

(1.2.64)

The covariant derivatives are defined by

(1.2.65)

They are related to the other representations by a similarity 

transformation e.g.

SO that the action (1.2.38) is the same in this representation also

(compare comments about (1.2.62), (1.2,63)).
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Making the splitting (1.2.64) has increased the gauge invariance of 

the theory (corresponding to the arbritrariness of definition of w and 

w given by (1.2.64)).

The action is invariant under

Oku) i A A t<3 — i K. 

g^-

where K is a real superfield Ks K'^T'^.

The covariant derivatives (1.2.65) transform homogeneously under 

(1.2.67) as

9 & 9 a (1.2.68)

The covariant derivatives ( (1.2.57), (1.2.60) or (1.2.65)) can be 

used to define the component fields of v in a gauge covariant way 

(unlike those of (1.2.20)). With these definitions the component 

action turns out to be (1.2.45) in any gauge (not just the Wess-Zumino 

gauge). These covariant components are given in chapter 3.2 ; They 

are highly non-linear redefinitions of the component fields in 

(1.2.20).

Note that equation (1.2.41) is true for the chiral representation 

(1.2.56). It can also be written
9& W^ = O (1.2.69)

Since the different representations are connected by similarity 

tramsformations (1.2.69) is representation independent. It also 

follows directly, in an arbitrary representation, from the definition 

of VV^ (1.2.56), the covariant derivatives and (1.2.40).

Fields that satisfy (1.2.69) are known as covariantly chiral, i.e. 

covariantly chiral ( ^ ) and covariantly antichiral fields ( ^ ) 

satisfy - 

and ^At ?^ (1.2.70) 

^64 also satisfies a Bianchi identity (proved from (1.2.56))

(1.2.71)
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with definition V</^ = ^^ C ^ac^ (1.2.72)

Note that with this definition [5] W - _ ^ W**^^^ 

(compare (1.2.1)).

The equations of motion are

7°^ W^ = O (^'^'^^)

Finally note that since we shall be dealing almost exclusively with 

covariantly chiral/antichiral representations ((1.2.57) cind (1.2.60)) 

and covariantly chiral/antichiral fields (1.2.70) we shall henceforth 

use the term chiral/antichiral to mean covariantly chiral/antichiral 

unless otherwise stated.
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1.3 THE BACKGROUND SUPERFIELD METHOD.

The background superfield method is set up in an analogous way to the 

Yang-Mills case described in the first chapter. Con¥>lications arise 

because the highly non-linear nature of the super Yang-MiIls action 

((1.2.38) and (1.2.39)) and the gauge transformation (1.2.42) require 

a non-linear splitting of the full field into background field and 

quantum field.

It is iirportant in the background field method to have the quantum 

field transforming homogeneously under background gauge trans­

formations (for example (1.1.11)) since it is (more or less) an 

essential step in proving the gauge invariance of the background 

action (see comments below (1.1.13)). It is convenient to keep the 

(covaricintly) chiral representation for the quantum field rather than 

the vector representation since, as we have seen (1.2.66), the vector 

representation leads to a further gauge invariance which would have to 

be broken by further gauge fixing terms. It is essential (as it turns 

out [6]) to be in the vector representation for the background fieldif 

we wish to have the background field appearing only in the covaricuit 

derivatives (as we did in chapter 1.1). This final requirement proves 

to be very useful in improving methods of supergraph calculation of 

the background effective action ([4], see also chapter 4).

With the above requirements imposed there is a unique decomposition;

<1.3.1, 

where V^ is the full prepotential, m and u contain only the back­

ground, and V is the quantum field.

The full field gauge invariance (1.2.42) is

<xVr i A' OlVc -1 a'
6 c (1.3.2)

(where we have added the primes on the gauge fields which are ordinary 

chiral/antichiral (1.2.21/28) to distinguish them from covariantly 

chiral/antichiral gauge fields in (1.3.4)).
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(1.3.2) can be ea^iressed on the component fields in (1.3.1) in a 

number of ways, of which two important ones are

(1)

6 unchanged

%y i& -!A (1.3.3)

A = A'
(1.3.4)

A = A'

These gauge fields A, A are background covariantly chiral and

background covariantly antichiral fields (see (1.2.64)).

(1) is an expression of the quantum field gauge invariance which must 

be broken (compare (1.1.10)).

(2)

g*" _) e''^ e'^ g''^'

(1.3.5)

Here the background field gauges (see (1.2.66)) whereas the quantum 

field transforms homogeneously (as required above. Compare this with 

(1.1.11)).

By substituting (1.3.1) into (1.2.38) we can rewrite the action as

(1.3.6)

where 7 are covariant derivatives containing only the background

field (i.e. as in (1.2.65)). To quantize the theory we, in close

analogy with chapter 1.1, break the quantum gauge invariance (1.3.3) 

but keep the background gauge invariance (1.3.5) which we do by 

choosing the gauge
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V^ V = o

9^ V = o (1.3.7)

This is background gauge invariant (from (1.3.5) and (1.2.67)) amd 

projects out the (covariantly) chiral amd antichiral gauge fields 

(1.3.4), (compare (1.2.53)).

The gauge fixing procedure follows in exact analogy with (1.2.53); we 

insert

I = N l$)(a,o.) S[ V"v -oc] ^[7"v -^] ;v c '^)

(1.3.8) 

vAiere a and a are background covariantly chiral/amtichiral fields 

(since v2v is background covariantly antichiral).

The 't Hooft gaussian average gives the background gauge covariant 

fixing term

5 (d^x 9*V 9'v (1.3.9)

The Jacobian J is evaluated by ghost fields

S^ = tr U^z (c'-cO^LvlCC+c) t cA(^Lv) C<^-^)]

= tf C C + C C + UA^arActionS (J(iL v

(1.3.10) 

which is exactly the same form as before (since the gauge transforma­

tion (1.3.3) is the same form as (1.2.42) and (1.2.43)). However in 

this case these ghosts (corresponding to the fields (1.3.4)) are 

background covariantly chiral/cintichiral.

The normalisation factor N is now

r _trSc|8z <x5. 2 -'

N = { \$)(o-j,o-) e ) (1.3.11)

(ignoring factors of (^z^'^ ) for the moment; we will not in chapter 

4) and is not trivial because a cmd a , being background chiral/anti- 

chiral, contain interactions with the background field (see (1.3.4) 

and comments below). We can rewrite (3.3.11) by using anticoromuting 

background chiral/antichiral fields t) » h so
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(1.3.12)

These are a new pair of ghosts that only interact with the background

field (and therefore occur only at one loop). They are known as

Nielsen-Kallosh ghosts.

This completes the gauge fixing procedure. Let us finish this chapter

by stating the form of S (1.3.6) expanded to order v2 ;

V'^WxV +

(where

(1.3.13)

contains only the background field).

s- l2f(^
j^G VJ Vl-g

Note that the quadratic operator is in fact hermitian: using a little

algebra it can be shown that

- - ^ V®"*" v^;<. +^C9^?''4-0'^V')-W''9^ fW'^VK (1.3.14)

= 7''v''7^ -w'^VK -^C^'^W

(where we have included -^ 7*^V\/x in the above, with impunity, 

since

tr a^Z V ( V'^ Wot ) V

means r . _ -, 
tr \ cl^z V [ 7* vJo( _, ^ 3

which is CC j'a^z. J ' V*" (^"^WK^^ v'^ c O ^.

The linear term in (1.3.13) verifies that (1.2.73) is the equations of

motion for super Yang-Mills.
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CHAPTER 2 INSTANTONS.

2.1 EUCLIDEAN FIELD THEORY AND INSTANTONS.

We shall be interested, in this thesis, in a specific solution of the 

Euclidean Yang-Mills equations of motion known as a B.P.S.T. instanton 

[1]. This solution has important physical implications; it is 

related to quantum tunnelling between gauge equivalent (but 

homotopically gauge inequivalent) vacua, and it breaks chirality. 

This led, for example, to a solution of the U(l) problem by generation 

of an effective fermion interaction [2] and to the concept of ©-vacua.

We will not be concerned with these applications however but will 

instead be interested in using the instanton as an example of a 

non-trivial stationary point of the action about which we can expand 

and calculate perturbative quantum corrections.

The Euclidean action for SU(n) Yang-Mills theory is given by 

5 . -^ ^^ (2.1.1)

where - L x,

the metric is = ^^

f^^ is the field strength with

° (2.1.2)

and D^ is the covariant derivative

(2.1.3)
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The fields (F^v ^^^<3 the potential A^^ ) take values in the Lie algebra 

of SU( n). Note that a trace over the generators (divided by their 

norm) is always to be understood to have been taken in equations 

involving integrals (such as (2.1.1)).

Consider first the case of the group SU(2).

If we require finite action then it is clear that the field strength 

(P^i/) must tend to zero faster than l/x2 . This however does not 

inply that A^ must decrease faster than 1/x , since Fp,v will vanish if 

A^ tends to a gauge transformation of zero. i.e.

LI U.A (2.1.4)

L(.L'^-»«6) e SU/%) depends only on angles in Euclidean 

space.

Hence A^ can have tangential components that fall off like 1/x . If 

we gauge transform (2.1.4) byS(»t) e SU(2) then

i t s

Hence it would appear that if we choose S such that S -+ U as x -+ co 

we would be able to gauge transform away the O(l/x) terms from A^. 

However this argument is only correct if the matrix S(x) does not have 

any singularities at any value of x. Otherwise the problem of the 

behaviour of A^(x) is merely transferred from infinity to the position 

of the singularity in S(x).
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As a result, the problem of classifying the fields A^ which give 

finite action becomes a problem of classifying the homotopy classes of 

the gauge transformations U. These transformations are mappings from 

the sphere at infinity in Euclidean space (S3) onto the group manifold 

which, for SU(2), is also 83 .

But the homotopy group of these maps is

03(83) = Z (the integers)

Hence each class is labelled by an integer "N* which is known as the 

Pontryagin index or winding number.

The index "N" measures the number of times the map U "wraps around" 

the group manifold, and is negative if the map reverses the 

orientation of the space. It can be calculated from the volume 

covered by the map measured in units of the volume of the sphere

we can rewrite this equation in terms of A^ on a sphere at x = R (R -» 

00), by using (2.1.4) and then turn it into a manifestly gauge 

invariant integral representation

P\| = . f

where F^y is the dual of P^y :

(2.1.5)

C^I134 )Fuv (2.1.6)

Although (2.1.8) is written as an

only on the behaviour of A^ at the

integral over all space it depends 

sphere at 00 because P^^ F^y can be

rewritten as a total derivative.

we can rewrite the action



30

(2.1.7)

From this it is clear that fields A^ that have Pontryagin index N > 0 

and are (locally) a minimum of the action must have

F^V = ^p (2.1.6)

Field strengths satisfying (2.1.8) are known as self dual fields. 

Note then, that these solutions are stationary points of the action 

under local variations, that is to say, solutions of the field 

equations

(2.1.9)

(note that here as elsewhere the action of the covariant derivative is 

to taken to be a commutator

I), (yv

In fact it is readily verified that (2.1.8) implies (2.1.9) and hence 

we have reduced the search for solutions from a second order 

differential equation (2.1.9) to a first order one (2.1.8).

When the Pontryagin index is negative we rewrite (2.1.7) so as to

obtain

which implies that local minima of the action (for N < 0) satisfy

(2.1.10)

i.e. are anti self dual fields.

For the case N=1 the solution (together with a set of variable 

parameters) is unique [4] and is the B.P.S.T. instanton.
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Aa we shall see, the solution in the case N = 1 is very similar; it

is known as an anti-instanton. In 

anti-instanton solution is obtained 

by applying a parity transformation

fact it is clear already that the 

from the instanton solutibn merely 

(e.g. X4 ^ - X4) : this alters the

sign of (an axial tensor) and turns self dual tensors into

anti self dual tensors.

In Euclidean 4-space the group of rotations is locally isomorphic to 

SU(2)xSU(2) (its covering group) i.e.

SOC^t) X SUlW SU„(2) ,,^ u,
("L" and "R" stand for left handed and right handed and merely serve 

to label the different groups). And (the 6 linearly independent) 

antisymmetric tensors, ^ich transform under the adjoint of S0(4), 

can be expressed as a sum of self dual and anti self dual tensors :

The "+" stands for self dual and the for anti self dual.

Miese tensors ( F^p.w and P'^i,) have 3 linearly independent components 

and transform as adjoints under S0[(2) and SDp(2) respectively. Ihe 

maps that interpolate between the tensors and adjoint vectors of the 

SU(2) groups are the 't Hooft symbols [2].

A representation of these is given by the following
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6, (2.1.14)

is the parity converse >64 ->

(2.1.15)

( note that Sdu^f is the alternating symbol in 3 dimensions

6113, S Alli)

These symbols satisfy certain properties i«Aiich we list below.

V

V X o*

'Z

4-

3

Sv

6&bc yt^*' Y^^^^
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Needless to say these relations can be derived from the antisymmetry 

and self duality of ^"^y «

completeness relations which

the symmetries of the £ symbols and the

follow from the fact that the map is 1-1.

(Note that the value of 

dependent).

is ofcourse representation

The relations for '^ follow from a parity transformation which simply

changes the sign of all terms proportional to V er S

In view of the topological link between the gauge group SU(2) and 

angles in Euclidean spaw:e it should come as no surprise to find that 

the instamton is constructed through these 't Hooft symbols. Writing

(T® are generators of the gauge group SU(2) )

the instanton solution is

"Ulis is not the most general solution however.

That can be obtained by applying the generators of symmetries of the 

theory which are broken by this solution. Note that the S0(4) 

rotation group is, in a sense, not broken by this solution. This is 

because the solution does not transform under SUp(2) (see (2.1.13)) 

and the transformation under SOl(2) can be compensated for by applying 
the inverse transformation in the internal group SU(2). Also special 

conformal transformations can be undone by a gauge transformation [5]. 

This leaves general gauge transformations (Note that A^ as written is 

in the Lorentz gauge ^^= o ), translations (which move the center 

of the instanton x x a ) and dilatations (Which change the "size" 

of the instanton to "p")
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Therefore a general instanton is given by

with

V

(2.1.18)

the general Lorentz gauge instanton and O(x) a general gauge function 

(taking values in the Lie algebra of SU(2)).

So far we have mentioned only the case ^ere the gauge group is SU(2); 

Wiat about SD(n) ?

In fact n3(SD(n)) = Z also and the instantons corresponding to 

the 1st Pontryagin class are simply those of (2.1.18) embedded in an 

S0(2) sub algebra, plus a general gauge transformation (2.1.17) (()(%) 

in the Lie algebra of SU(n)).

( There exists a more general statement due to Raoul Bott [6], which 

is that ng = Z for any simple Lie group containing SU( 2) as a 

subgroup. )

Finally note that (2.1.18) and (2.1.17) imply that the field strength 

is

(2.1.19) 

and that the antiinstanton solution is obtained from these solutions 

by replacing n by 9
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2.2 ZERO MODES AND OOLLECTrVE COORDINATES.

The next two sections will be devoted to a brief description of the 

treatment of zero modes and the calculation of quantum corrections in 

Yang-Mills (see ref.[l]). They are intended to set the stage for the 

more complicated application described in detail in chapters 3 and 4-.

In chapter 1 (1.1) we discussed a particular gauge fixing term useful 

in evaluating ZA (see (1.1.5) and (1.1.12)). There is an intuitively 

attractive idea due to Amati and Rouet [2], in which this gauge fixing 

term arises very naturally. The idea is to treat the infinite set of 

gauge degrees of freedom as a set of zero nKxies.

Zero modes are functions Q^ for which

= O (2.2.1)

Where C^y is the operator in the action S(A+Q) expanded up to 

quadratic terms in Q ; The quadratic part is

6S - (2.2.2)

(2.2.3)

Suf^se we are dealing with a background field which is a solution of 

the equations of motion i.e.

$ e SC A')
SA' mf=A

It follows that a change to another solution

6^ -> A -+ 5 A (2.2.4)

implies

s*s
SAt$«^ a'. A

(suppressing integrals and indices).
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S^^S
But &4tGA^ mftA is just the operator "0^^* of (2.2.3).

Hence if Q is proportional to GA , Q is a zero mode.

An example of *8A* is provided by an infinitessimal change of gauge:

=

e Au. & 8 6^

6 [ Sjl,A^]

(2.2.5)

Since sn is arbitrary this leads to an infinite set of zero modes

r -^) (2.2.6)

(%ere is also a colour index involved here - which we are 

suppressing).

If Q;i is allowed to take values in the subspace defined by (2.2.6) 

(gauge zero mode space) the operator in the quadratic action (2.2.3) 

will not be able to be inverted to form the propagator; We will not be 

able to do perturbation theory.

We can remedy this problem by noting that the values Q^ in (2.2.6) 

correspond to changes in the collective coordinates that parameterise 

the general gauge solution for A^ . Hence if we could constrain Qg 

to remain "orthogonal" to the space defined by (2.2.6) and transfer 

the integration over this space to an integral over the A^ collective 

coordinates we would have solved the problem. This we can do by 

applying the standard Fadeev-Popov trick and substituting

I = $)(=■=) 11 $[(?'^ , Q/.)] 3
^(c c) (2.2.7)

into the generating functional (1.1.5).

In this equation "c.c" stands for collective coordinates.
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J4.^ =(^^)(^1 (2.2.8)

The 8-functions in (2.2.7) constrain this to be zero, i.e. they force 

Qg to be orthogonal to ^^'^(x.)^the zero mode space. From (2.2.8) 

we see that this is equivalent to the choice of background gauge 

(1.1.12) with ( -* 0 (Landau gauge). we could have instead taken

S[ <^^.Q^) - j-(y)]

in which case a 't Hooft Gaussian average would lead to the general

background gauge.

The last term in (2.2.7) is the Jacobian of the change of integration 

variable from Qp. (in zero mode space) to collective coordinates.

This is straightforward to evaluate if we use a system of collective 

coordinates such that the differential of Ap, with respect to one of 

them gives a term proportional to one of the zero modes

^A(^^ /u a"^ (2.2.9)

Writing the matrix in (2.2.7) as

we use (2.2.9) directly on the first term ( ^^ is a function of A) 

and in the second term we note that the full field A^

(Af = A + Q ... see (1.1.4))

does not depend on the background field parameters and hence

»(c.c) S(c.c) (2.2.11)

Finally we evaluate the determinant of (2.2.10) by introducing 

anticommuting integration variables and using the standard formula



39

Defn = \^^(^>4^^ (2.2.12)

g (^^(t>) 5 TJ J(|,j afj

What we obtain from this process is, needless to say, the background 

gauge ghost action (1.1.13).

The procedure we have outlined above generalises in a very natural way 

when we apply it to instantons [3]. Differences arise simply because 

the operator (2.2.3) has imare zero nrodes than just the gauge itKxles we 

have described.

This larger zero mode space is fixed out of the Q integration exactly 

as above. Before going on to outline the result let us pause for a 

moment to describe the instanton zero modes.

Five of the extra zero modes arise because SA (of (2.2.4)) can 

correspond to changes in the size and position of the instanton 

(2.1.18):

Applying the translation operator (contracted with small parameters 

Sat' ) ve get

SA =

/ (2.2.13) 

and if we add to this change a particular small gauge transformation 

(8ee(2.2.5))

& /L,^ = I^ ( - SoL^ A V )

we "covariantize* (2.2.13) to

8/^ = (2.2.14)

Similarly application of the dilatation operator

8A^ = So ( 1+

can be covariantized to
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(2.2.IS)

These are not all the zero inodes however (a point apparently missed in 

[3]).

Recall that the gauge zero modes when fixed out of the functional 

integral led to the gauge fixing term (1.1.12) so that the operator in 

the quadratic action becomes

/ 7 / (2.2.16)

The non-gauge zero modes (2.2.14) auid (2.2.15) are still zero modes of 

(2.2.16) but a general gauge mode (see (2.2.5))

Qv - ^ (2.2.17)

is of course no longer a zero mode: This was the raison d'etre for 

the gauge fixing term.

However a mode such as (2.2.17) will not be gauge fixed (i.e. will 

remain a zero mode) if

D'^JT. := 0 (2.2.18)

And there are 4n-5 "anomalous" [4] modes (Ik for which 

D^_CLK = o (2.2.19)

but for which Q ^ =. t)„ Jl^ (2.2.20) 

is square integrable (so that these modes are included in the 

Q-functional measure).

Hence (2.2.20) gives us 4n-5 extra zero modes.

The Ok are not square integrable, nor can we integrate by parts 

(without producing surface terms) [1] and it is for this reason they 

were missed in the previous discussion.

They are indirectly connected to the 4n-5 global SU(n) rotations 

broken by the instanton (which fact can be seen by going to a normal

gauge
QyU. = O

so that (2.2.19) is replaced by 

a^ JI = o

and is satisfied by the aforementioned global rotations). 
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In the case of n=2 these modes have the eaqplicit form [4] (for the 

special instanton, see above (1.1.17))

K T

D K OC

In the n=2 case these modes can be interpreted as arising from

covariantized 80^(2) transformations (see dhapter 3.2).

Finally let us mention that it proves convenient to expand the gauge 

xoodes in a different basis set from (2.2.6), using positive frequency 

eigenmodes of d2

% > o

(2.2.21)

(as in (2.2.6) we are suppressing colour indices which label 

degenerate modes).

With such a choice the 4n discrete modes (2.2.14), (2.2.15), (2.2.20) 

and these continuous modes (2.2.21) vary homogeneously under 

background gauge transformations (1.1.11).

The zero modes are mutually orthogonal and can be normalised i-

Now let us return to our discussion about replacing the Q integration 

over the zero mode space by an integral over collective coordinates:
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Once again this is achieved by using the Fadeev-Popov trick (2.2.7) 

where now the collective coordinates and 5-functions range over the 

continuous gauge inodes (which are 't Hooft averaged) and the 4n 

discrete modes (which are not). The evaluation of the Jacobian 

follows in a similar manner to before.

In analogy to (2.2.9) we choose a convenient system of collective 

coordinates (a^,bk) such that for small changes

(2.2.23)

The collective coordinates do not contain g's nor do the zero modes 

(otherwise they would appear in the normalisation conditions 

(2.2.22)) but A^ does ( Ap. ~ ^ ; see(2.1.18)), and this explains 

the factor of 1/g in (2.2.23).

(Note that this parameterization of the instanton is not at all the 

one given in (2.1.17) and (2.1.18)).

The Jacobian determinant is evaluated by introducing anticommuting 

integration variables as in (2.2.12), only this time there are also 

4n discrete variables C (and C ) for the 4n discrete modes.

As before the continuous parameter integration variables become the 

ghosts and the Jacobian yields the ghost action. However the 

off-diagonal terms in the Jacobian (in the discrete ^ continuous 

space sector) yield new interactions between the discrete zero mode 

"ghost" J*^ • (2.2.24)
C = Z C- 

c=l
the ghosts <^, ^ and the vector field Qp, . These are illustrated in 

fig.2.1 at the end of this section. (The stub lines represent these 

non-propagating discrete ghosts C , C ).

These extra interactions prove important in providing the correct In^ 

dependence for higher order quantum corrections to the instanton 

vacuum energy as we will see in the next section.
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we have seen in this section how we eliminate the zero modes from the 

Q integration simultaneously with the usual background gauge fixing by 

treating the gauge degrees of freedom as zero modes, and this led to 

some new interactions (fig.2.1). It is worthwhile stressing that we 

must fix out all zero modes (continuous gauge and discrete modes) 

simultaneously. This is because the discrete zero modes change under 

a gauge transformation and gauge modes change under zero mode shifts 

of the discrete collective coordinates. Had we not fixed these two 

sets simultaneously we would not have obtained the new interactions in 

fig.2.1 and the resulting structure would have been inconsistent.
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Z.3 RENORMALISATION AROUND INSTANTONS.

Iti this section ve will consider quanttun corrections to the instanton 

action which make up the effective action described in chapter 1 

(equation (1.1.7)).

The lowest order quantum corrections are provided by the semiclassical 

approximation. In this approximation we ignore all quantum 

interactions so that we are left with the action up to quadratic terms

8S^ = SS SS^u » S^p

( c is explained in (2.2.24))

( The ghost quadratic action is as 

These last two terms come from the 

(2.3.1)

in (1.1.13)).

diagonal part of the Jacobian. The

1/g 's in the last term arise from the 1/g 's in (2.2.23) (through 

the term like the second of (2.2.10) combined with (2.2.11)). They do 

not arise in the ghost term ( (^ D^ (p ) because we have made a 

substitution

The Jacobian of this substitution leads to an infinite power of ( g ) 

which however is cancelled by the same power from ghosts in the zero 

instanton sector (see (1.1.23)). (In section 4.1 we will find that 

this is not the case for superfield super Yang-Mills Where the ghosts 

themselves have zero modes).

Performing the integration over Q,(p,^and c we obtain
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S
—

^22^ /'^ Jgr^fCL^+il^D^)je+(b') e (2.3.2)

The 1/g^" comes from the c ( and c) integration. The determinant of 

the Q quadratic operator is only over the non-zero mode space (due to 

the S-function constraints inserted into the functional integral - see 

previous section).

Note that this expression should be divided by the determinants that 

come from the zero instanton sector (see (1.1.23)).

The integral over collective coordinates is accompanied by powers of 

the regularisation mass so as to make the integral dimensionless (in 

dimensional regularisation this mass is p.). Since the Ci< have (mass) 

dimension 2 (from equation (2.2.22)) and Ap, has dimension 1, 

equation (2.2.23) implies that the bk have dimension -1 and hence a 

power of p.4n is required in this case.

This rule can be justified from dimensional arguments [1] though the 

easiest way to verify it is to use Pauli-Villars regularisation [4]. 

Luckily there are some tricks we can use [5,1] on the constrained 

vector determinant in (2.3.2) which turn it into det~2(D2) so that 

together with the ghost contribution (in (2.3.2)) and the inverse 

contribution from the zero instanton sector we obtain

(2.3.3)

which can be e2q)anded and evaluated perturbatively [1] 

background field methods of (1.1.21)). 

We will not pause to describe these tricks here but will 

(using the

treat their

generalisation in chapters 3.3 and 4.2 in some detail.

The perturbative evaluation of (2.3.3) once renormalised provides 

together with the p. 's in (2.3.2) the correct explicit p. 

dependence required by the renormalisation group ( oc /3o , see 

(1.1.22)) to cancel the implicit p. dependence of the classical 

background action ( - )
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At this order the multiplicative factor of (l/g^n) in (Z.3.2) provides 

no implicit fi dependence. This fi dependence first appears at 0(g2) 

and must be cancelled if the vacuum, energy in the instanton background 

(2.3.2) is to be pi independent (as it must be for any physical 

quantity). we therefore move on to consider the O(g2) divergent 

corrections (v/hich provide after renormalisation the eiqplicit Inpi 

dependence).

The order g2 corrections are illustrated in figures 2.2 and 2.3. Ohose 

of fig.2.2 are "full" 2 loop vacuum diagrams in the instanton 

background field. They are drawn with thick lines to represent the 

fact that the propagators are the inverse of the quadratic operators 

in (2.3.1) whidh contain Ap^ , the background field. The interactions 

also contain A^. We will discuss later how we may evaluate the 

divergences in these diagrams by e^qianding them as perturbative 

interactions with the background field.

The diagram in fig.2.3 is made from the new vertices in the Jacobian 

(fig.2.1 see discussion following (2.2.24)). Power counting shows 

that the divergence of this diagram appeairs when the propagators are 

taken to be zeroth order in the background field hence we may take the 

propagators to be the usual ones (i.e. those in the zero instanton 

sector ).

Now let us consider the background field expansion of fig.2.2. If we 

expand these perturbatively (to 2nd order in the background field) and 

use the methods described in chapter 1 (see (1.1.21)) we obtain the 

"short distance" corrections to the background field action (some 

examples are shown in fig.2.4), in which the divergences arise from 

high momenta in both loops. These corrections are entirely 

insensitive to the particular form of the background field and yield 

the standard divergences of the background field method (1.2.20). 

Once renormalised they provide the O(g^) explicit Inpi dependence (oc /3i 

) required to cancel that of the instanton background action (see 
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equation (1.2.22)). Perturbatively there are no other divergent 

corrections I they all arise from these short distance singularities 

[11.

"There is however a non-perturbative contribution in which only 2 

propagators carry divergent momentum. ihese propagators can be 

eaqpanded perturbatively in the background field* whereas the remaining 

vector propagator must be left in its full non-perturbative form 

(examgples are shown in fig.2.5). Note that the eaqplicit form of this 

propagator is not required (although it has been evaluated [5,6]). The 

divergent loops (such as the thin ones of fig.2.5) sum together to 

produce the divergent quantum (vector) self energy in the presence of 

a background field. As should be expected this self energy is 

proportional to the transverse part of the operator in the quadratic 

action (Op^y , see (2.2.3)). The form of the contribution is entirely 

independent of the particular form of the background field (see 

ctmmients above on short distance corrections) and is fixed by the 

appropriate Slavnov-Taylor identities in the background field [1,7]). 

When traced together with the long distance propagator (as implied in 

fig.2.5) we obtain a term proportional to the trace of the tremsverse 

projection operator (Which is the projection operator onto the 

non-zero modes of Op^u). Subtracting a similar expression from the 

zero instanton sector we obtain a term proportional to minus the 

number of transverse zero modes of O^.^/ , which is -4n. This fact is 

arrived at by comparing the space of zero modes of Opiv (which is the 

complement to the space of non zero modes) in the 1-instanton and 

0-instanton sectors : In the one instanton sector we have a full 

square integrable space of gauge modes and 4n further zero modes (4n-5 

of these being non square integrable gauge modes) and in the zero 

instanton sector we have only the square integrable space of gauge 

modes. The reader will see this argument at work again in chapter 4.3

(or [1]).
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Adding together the divergences from this 'long distance' correction 

and the Jacobian (fig. 2. 3), and renormalising, we obtain the correct 

explicit Infi dependence to cancel the implicit fi dependence of the 

multiplicative factor of l/g^^' in the semiclassical approximation 

(2.3.2).

We have seen in this chapter how the divergent quantum corrections to 

the instanton action arise from 3 distinct sources

1) The short distance singularities (fig.2.4)

2) The long distance singularities (fig.2.S)

3) The Jacobian (fig.2.3)

In chapter 4 we will see these again in much more detail, generalised 

to the case of a superinstanton. This is the subject of the next 

chapter.
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Fig. 2.1

Fig. 2.2
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Fig. 2.3

Fig. 2.5
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CHAPTER 3 SUPERINSTANTONS.

In this chapter we construct the superfield version of the instanton 

and investigate the zero modes and the non-zero modes using the 

background superfield method. It is important in determining the 

classical contribution of the instanton to the functional integral 

that one knows the number and nature of the zero modes (see chapters 

2.2 and 2.3). We therefore devote section 3.3 to a detailed 

discussion of these modes for the case where the gauge group is SU(2). 

A general method of deducing new discrete zero modes from ones already 

found is described . They are automatically generated in covariant 

form (compare (2.2.14) and discussion surrounding it). Many zero 

modes are generated by this method (one for each generator of the 

superconformal group) but orthogonality to the background gauge fixing 

term and a linear relation on the superinstanton show that the 

linearly independent set consists of 6 bosonic-parameter modes (which 

correspond to the translation, dilatation and SU(2) degrees of freedom 

in the instanton that we discussed in chapter 2.2) and 8 

fermionic-parameter zero modes. 4 of the fermionic modes were 

expected: they correspond to supersymmetry (Q(%) and superconformal (S' 

) degrees of freedom [10,14]. The remaining 4 are supergauge modes 

which, nevertheless, are not projected out by the gauge fixing 

condition. In this respect they are analogous to the 3 SU(2) bosonic 

gauge modes discovered by 't Hooft [2] (see below (2.2.19)).

The set of 8 fermionic and 8 bosonic zero modes have a natural 

orthonormality structure which displays another property of the 4 new 

zero modes - they serve to project out the supersymmetry and 

superconformal modes.

Attention is turned in chapter 3.4 to the continuous (i.e. these modes 

are labelled by a continuous parameter) supergauge zero modes. These 

modes are fixed by the background gauge fixing condition. In the case 

of an instanton background field the natural Laplace-type differential 

operator on (covariantly) anti-chiral fields is (background) O(= 9^V^ 

where V^ is the spatial covariant derivative defined in (1.2.59) or 

(1.2.65) and contains only the background field). This allows both 
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the chiral and anti-chiral zero modes to be related to linear 

combinations of eigenstates of O. The vector superfield positive 

frequency modes are also related to the anti-chiral eigenstates of O 

and this leads to the conclusion that chiral, anti-chiral and vector 

quantum fluctuations have the same spectrum of non-zero eigenvalues 

for the fields in the same representation of the gauge-group. This 

situation is analogous to the component case [3] where the same was 

proved for gluon, fermions and scalars. As in [3] we can use these 

eaqpansions to construct projection operators and Greens functions.

Ohe stage is then set to consider the non-perturbative quantum 

corrections to the instanton arising from the instanton measure, the 

Jacobian (of the change of variables between zero mode parameters and 

collective coordinates), and the functional integral over +ve 

frequency modes [9]. This will be discussed in chapter 4.

We start this chapter with a discussion of euclidean supersymmetry and 

the relevance of Osterwalder-Schrader (OS) conjugation [12,13] - a 

delicate matter since an instanton is not OS self conjugate.
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3.1 EUCLIDEAN N=1 SUPERSYMMETRY AND INSTANTONS.

The BPST instanton [1] (see chapter 2.1) is a real solution of the 

euclidean space Yang Mills equations of motion. The construction of a 

supersymmetric version of this instanton must, therefore, involve the 

use of euclidean supersymmetry.

In Minkowski space, we have L.H. (left handed) and R.H. (right handed) 

superspace coordinates 8^, 8°^ which transform in the fundamental 

and coi:$)lex conjugate representations of the Lorentz covering group 

SL(2,C). They are therefore connected by complex conjugation -

(8°1* = e"

(see (1.2.1)).

On continuation to euclidean space the covering group changes to

SUL(2) X SUR(2) [ a; SO(4) ]

and the L and R superspace coordinates in the fundamental 

representations of the 2 (distinct) SU(2) groups: 8 , 8 are no 

longer connected by complex conjugation (hence the reason for dropping 

the bar on 8^)

In fact, con$)lex conjugation produces coordinates transforming in the 

contragredient representations of the SU(2) groups:

(e")* = 8 (3.1.1)

a *
(8) = 8. 

a

"Miis implies that the minimal hermitian euclidean superspace would be

S = (X, e°\ 6 , 8™, 8.) (3.1.2) 
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and corresponds to N=2 supersymmetry on continuation back to Minkowski 

space (as was first shown by Zumino [13]).

To obtain the same multiplet structure in euclidean space as N=:l 

supersymmetry we abandon the requirement of hermiticity and replace it 

with liermiticity" under the unitary involution operator of 

Osterwalder and Schrader [12, 13]. This operation is Hermitian 

conjugation followed by time (x^) reversal and is known as OS 

conjugation. Objects that are invariant under this operation are 

OS-self conjugate (or OS-real) and this concept replaces the concept 

of ordinary con()lex conjugation.

In particular, OS conjugation provides a map between SUL(2) and SUp(2) 

groups.

(-A general S0(4) generator M^y is expanded in terms of SUL(2) and 

SUp(2) generatoirs by

M^U = n*^u TL* + n*^p TR» (3.1.3)

where q'^p^i/ and n^g^ are the self dual and anti-self dual 't Hooft 

symbols (see below (2.1.12)). Time reversal reverses the orientation 

of the euclidean axes and turns n^^^, into n^^i/ ( and vice versa)). 

So under OS conjugation

we now restrict our superspace and component field multiplet structure 

to N=1 by using OS self conjugacy. From (3.1.4) we find that we need 

only consider the ''Grassmann-analytic''[13] superspace.

s+ = (K, e", 8.) (3.1.5)

in «diich the LH and RH Grassmann coordinates appear but not their 

complex conjugate partners. 
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Bosonic fields that are OS self conjugate become real on continuation 

to Minkowski space and, (2 conyponent) fermionic fields and their 

OS-conjugates, become Weyl spinors and their complex conjugates on 

continuation to Minkowski space [12,13].

The close analogy between this 05 conjugate superspace and Minkowski 

N=1 superspace leads to an exact correspondence with Minkowski 

Superspace notation [6], if the following notational changes are made

We call the fundamental representation of 5ap(2) 6. where a is a

subscript -

Then s+ appears as

s+ = (X, e**, e'*) (2.6)

In addition, if we choose our euclidean cr matrices as

CTp. = ( 2, i )

then each of these is OS self conjugate and the supersymmetry algebra 

takes the same form as Minkowski space [6] (see (1.2.10)).

Finally, to preserve the relation (see (1.2.18))

2 6^ 
a

6.
(X

on continuation to euclidean space, we define our space coordinate

X = X o 
(xa Al AKX(X

(3.1.7)

This definition of (T matrices differs from the usual definition in

euclidean space. But the fact that the c matrices are OS self 

conjugate guarantees that real Minkowski vector fields (A^) are OS 

self-conjugate if the formulae are interpreted as in euclidean space.
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Changes of sign from the Minkowski formula occur on moving between 

vector notation and two-comgponent notation as a result of (c^f. 

(1.2.17))

Tr{Opdy) = -2 6g^ (3.1.8)

e.g:

a**" a . = -2 O (3.1.9)

but this turns out to be required for consistency in euclidean space 

(see Section 3.2 and Section 3.4 for example, where O having only 

negative eigenvalues is consistent with other results only if this 

sign change occurs.)

Apart from this change there is an exact correspondence with Minkowski 

formulae.

Ihere is a problem with this formalism however since an instanton is 

not OS self conjugate.

Indeed, if the explicit formula (see equations above (2.1.17))

2 n^ X
A^ = - 

g 1 + x2

is used and OS conjugation performed

A^ —(A^(x,'X ), -A(x,-x ))

(3.1.10)

(3.1.11)

it is readily seen that the new field corresponds to an anti 

instanton (see comments below (2.1.14) and (2.1.19)).

2

g 1 + x2

Recall that the concept of OS-conjugation was introduced to cut down 

the superspace and consequently the field multiplet frcxn N=2 to that 

of N=1 supersymmetry, and that this implied that the superspace was 

Grassmann-analytic (see ref [13] and comments surrounding (3.1.5)). Let 

us generalise the concept to OS-analyticity: superfields that are real 



58

in Minkowski space (e.g. the prepotential v) are, in euclidean space, 

allowed to be OS-complex but Grassmann-analytic functions (of the 

superspace (3.1.6)). Our Lagrangians will no longer be OS-real but 

must nevertheless be OS-analytic functions of the superfields (e.g. 

must not contain the OS-conjugate v). This guarantees the N=1 

supermultiplet structure but also allows us to study instantons.

Gaussian integration (and functional integration) are treated in the 

usual spirit of analytic continuation:

Por example such formulae as

' r 8 -1D, J " « T a V , g^^^i^

(up to numerical constants)

are taken to be true in general even when v is allowed to be 

OS-congplex.

Note that, although the quantum field (v) will not be required to be 

OS-real, these considerations imply that further restrictions on the 

quantum field are unnecessary.

A 'bar' on fields (e.g. W.) and the word 'conjugation' will always

refer to OS-conjugation. But for an instanton this will only be in a 

formal sense. This is because we wish to avoid introducing the OS 

conjugate prepotential (ve)* which would destroy the N=1 multiplet 

structure (see previous comments). It will only correspond to 

OS-conjugation in the case of an OS-conjugate background field.

(Por example, W. will only be the OS-conjugate ((W^) ) of when 

the background field satisfies vg" = vg, A^B* = A^B.) This means 

that, in the case of an instanton, the "conjugate" field needs further 

definition; however, we find that when we need to be precise about a 

certain "conjugate" field then further relations already exist 

determining the "conjugate" field unambiguously. (See, for example, 

the construction of W and W. X (W ) in Section 3.2, and the paramet- 
y y y 

erisation of chiral and anti-chiral (A ;^ (A) ) zero m^odes in section 
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3.4) . The fact that these further relations do exist supports the 

view that these problems do not indicate a fundamental inconsistency 

in the formulation of instantons with explicit N=1 supersymmetry.

Thus a suitable relaxation of the concept of OS-conjugacy allows us to 

consider instemtons within a euclidean N=1 supermultiplet. We do not 

believe the above problems to be fundamental; the consistency of the 

resulting structure will become clearer on reading the irest of the 

thesis.
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3.2 THE SUPERINSTANTON, TRANSLATION AND GAOGE MODES.

The super Yang-Mills action (1.2.38) is Sv=:S+S, (here S is the

OS-conjugate to S) and can be expressed as

S = f dAxdZe W^W 
128gZ J y

(3.2.1)

(3.2.2)
W^ = [V^ ,(V^ .V^ }]

where, unless otherwise stated, we will use the vector representation

for the covariant derivatives (1.2.66)

9 = e'»" D e:"
(X a

9 e«" 6 g-e^

we can project out the component fields in Wy, in covariant form, by 

using the covariant derivatives [15,16]:

Define

W^l = 4g X'/2 (3.2.3a)

v'^ w I = 8g D ^2 (3.2.3b)

’(-"fl)' = "=

(we use the notation T^^^ = T^ + T^ and T^^^ = T^ - T^ ) 

and similarly for the conjugates W., A. e.t.c.

The "I" means take 8 = 8 = 0. (These definitions agree with those of 

(1.2.20) (up to numerical factors) only when the gauge group is 

Abelian, otherwise these represent highly non-linear redefinitions of 

the component fields).

As in (2.1.2) and (2.1.12) F is the Yang Mills field strength, and 

p+ the self dual part.

We can also find the vector potential A . = a . A from 
aa #<xa ^
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The factors of '^Z in the equations (3.2.3) appear through a non­

standard normalisation of the 50(n) generators (see discussion below 

(1.2.46)).

Now (see [6])-

trjd4xd26 f = -1/4 trjd4x v2f | (3.2.4)

(which follows from (1.2.36) and expressing \^ in terms of a 

connection HL by

part of P^( see (2.1.12)).

so that

for any superfield G* since ^r [f%(f] vanishes). 

Using (3.2.3) and (3.2.4) on (3.2.1) we obtain

S = tr jd4x (1/4 P+^ + i/2 X^' 0^°^ X^ + 1/4 02 ) (3.2.5)

S = tr j^d4x (-1/4 F-^^ + i/2 x'* o/ X^ + 1/4 02 ) (3.2.6)

p- where F" is the anti-selfdual

(3.2.7)

Hence with definitions (3.2.3) we obtain the expected action Sy but 

note that these expressions are true in a general supergauge (and not 

just in the wess-Zumino gauge as was the case with the previous 

definitions - see discussion above (1.2.45)) . Expressions (3.2.3) 

exhaust the covariant content of the theory (i.e. give all the fields 

that transform homogeneously under a supergauge transformation): 

Further applications of covariant derivatives to the superfield 

expressions yield only zero or D. ''^ acting on one of the conponent 

fields already written down [15,16].
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Now Consider the case where the vector potential A^ is the BPST 

instanton (see chapter 2.1) and all other component fields are zero. 

This is the Ixasonic instanton*' and the only non zero component is f^. 

; f.. = 0 since the instanton is self dual (see (3.2.7) and chapter 

2.1).

Hence W.a (3.2.8)0

But this is a superfield equation and hence it must hold for the 

general instanton (which is the supersymmetric generalisation of the 

bosonic instanton).

The general instanton can be written down in component form by 

considering transformations of the superconformal group. (We will be 

considering only the SU(2) gauge theory. Por sa(n), n>2, the 

fermionic instanton contains more parameters than the ones gained by 

this method. See chapter 4.1)

Since the superinstanton must satisfy its equations of motion 

(1.2.73): 

v'^ W = 0 (3.2.9)

it follows immediately from (3.2.3b) that D = 0 (3.2.10) 

is always the case.

Por a general covariant superfield the supersymmetry transformations 

are given by

6* = (Ga^Q^ + 4)

and taking 8=6=0 components this is equivalent to 

6*1 = (Ga^D. + Ga^D ) * |

(see definitions (1.2.11) and (1.2.13)).

Covariantization by following this change with a supergauge 

transformation gives

6*1 = (6a^7. + 60^9 ) * | (3.2.11)

similarly a change under a special superconformal transformation

6* = (Gj3^S. + 6/3^8 ) *
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combined with a supergauge transformation leads to

84)1 = -i (8/3^x^^V^ + SP^x^^V^) 4> I (3.2,12)

Applying (3.2,11) and (3,2,12) to the superfield expressions in 

(3,2.3) allows us to calculate the so-called Wess-Zumino

superconformal algebra on the component fields;

Supersymmetry;

8X = i/2 
a

6a^

(3.2.13)

6A . = -2 
aa

6a. 
a

X
a

Superconformal;

6X = 1/2 
a

Bj3
(3.2.14)

8A .
(xa

2i X . 
ya

The changes on

(3.2.8) iitply that

^0/3 

they

are not considered

are always zero.

here since (3.2.10) and

However (3.2.11) and

(3,2.12) can be used to check this.

Remembering that Q Q, S and S generate the full superconformal

Sg
a

D X

algebra, equations (3.2.13) and (3.2.14) allow us to write down the 

components of the general superinstanton;-

L g + (x-a)2 J g

(as in (2.1.17) and (2.1.18)),

X = i/2 a^ f + 1/2 g^ x.^ f 
y"' y y" (3.2.16) 

X. = D = 0 
a

vAiere n = n8(x)TB is a general gauge transformation.

The expression in brackets in (3.2.15) is the general Lorentz gauge 

bosonic BPST instanton with size "p" and position "a^,".

f „ is calculated from Am .
cu3

Equations (3,2,16) can be shown to be the most general solutions for 

the instanton directly from the fact that the conponents must satisfy 

their equations of motion, (These can be derived from (3,2,5),(3,2,6) 

or from (3,2,9) and (3,2.3)).
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These are

D = 0 (a)

D ” X. = 0 (b)
a a

D.“ X = 0 (c)
a a

(b) implies D D X. = 0 (using D® . D.^ = -ig/2 f.- = 0) 
H- p. a (a j3)a (%j3

and the only square integrable solution to this equation is[2]

X. = 0 
a

(c) is known to have 4. solutions [2,10] and it is easily checked that 

the 4 given in (3.2.16) satisfy (c).

By temporarily going to the covariantly chiral representation (see 

(1.2.56)), expanding Wy in terms of a power series in 6 and functions 

of x+ (the chiral coozxiinate (1.2.23)), and using definitions (3.2.3) 

we can solve for Wy in terms of (3.2.15) and (3.2.16). After some 

algebra we obtain -

W^ = e®“((l - L^a~ + 02/4 L~ - 02/4 Lpx Lp ) W^} e"®“ (3.2.17a) 

where "w" (and "w") are the prepotentials occuring in the vector 

representation of the covariant derivatives (1.2.64). L is the 

commutator;

Lv X = {V,X]

r^ and y are functions of x+ constructed as follows; 

r^(x) = e-«^ a^Ce:"") |

Xx) = a"(e"*^ V^'"")^ ' 

and

W^(x+,e) = 2^ (2g X^(x+) t ig 6^ f^(x*>) (3.2.17b)

But using (3,2,16) we obtain

W = 2-^ ig (8^ + Cl^ - i^ X^A^)

Now since f^tp is a symmetric tensor, and the quantity in brackets 

above is an anticommuting Grassmann variable we have
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( e^ (K^ - i ^ ^ XL* ^^
) Wp = o

Hence, using the linearity of the relation between W^^ and Wo£ in

(3.2.17a), we find

(0°^ + a^" - i^^ x^^') W^ = O (3.2,18)

This is a linear relation on Wy that holds for a superinstanton with 

fermionic "centre" at (a,/3).

It is derived again in section 3,3 in a way that does not require the 

explicit solution (3.2.17).

Consider now, quantum fluctuations (v) around the instanton background 

field (w and ui); The full field "vf" is expressed in terms of the 

quantum and background fields by (1.3.1)-

ggVf ^ ^gw ^gv ^gw (3.2.19)

In the usual background-vector quantum-chiral representation the 

action is (1.3.6) ^diich can be written as-

S . - ^ [dSz e-S" 7= e^' 72( e"®'' , .:', 
azgZ J a 

(d^z = d^xd2ed2e = d^xd^G as in (1.2.33), and the conjugate of (3,2.4) 

has been used).

Tnis can be eiqianded to 2nd order in the quantum field to give 

(compare (1.3.13))

S. = -8n2/g2 + ss, (3.2.20)

SS. = ~ IdSz v{7''72? - w''? )v

where we have inserted the instanton solution into (3.2.5) and used 

the fact that 55 = GS. The inverse propagator (the operator in the 

quadratic action) can be re-written in two other useful forms

1/8 (v“v2v - w“v ) (3.2.21a)

=1/8 v“v2v^ (3.2.21b)

= O + 1/16 [V2v2 + V2v2] - 1/8 w“v
a

(3.2.21c)
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(where we have used the equations of motion and W = 0 ; compare

(1.3.14))

□ = V V = -1/2 
A^ AL aa

is the background-Laplacian.

We gauge fix by adding the usual background gauge fixing term (1.3.9)

SgF =
tr 
32£

d^z v(v2v2 + 92v2)v (3.2.22)

Now suppose the quantum fluctuation v, in (3.2.19), corresponds to a 

shift in the pareimeters in the instanton, say v = (. Then this shift 

can be re-written as changes in co and u;

@8" @8" @8(72

ggw ggC/Z ^gw

If ( is infinitessimal then v = C is a zero mode (i.e. (3.2.21) on V

yields zero)

Por 4 infinitessimal the above yields the following changes in the

covariant derivatives;

69^ = g/2 9^ (

59. = - g/2 9. (

(3.2.23)

Using these on (3.2.3) we can derive the following changes in the

component fields

5A . 
aa

(3.2.24a)

(3.2.24b)

(3.2.24c)

(3.2.24d)

Unlike Wy in (3,2.3), these definitions do not exhaust the 

(background) covariant content of C. This is because thezre are gauge 

fields appearing in v that do not appear in the action (3.2.5). We 

covariantize the usual definitions (1.2.20)
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6B =(|

6H = -1/2 92 { I

SB = -1/2 92 ( I

64f = - 9 Cl 
(X a

6^. = - 9. C I 
01 a

Equations (3.2.24) can be used to

(3.2.24e)

(3.2.24f)

(3.2.24g)

(3.2.24h)

(3.2.241)

find the changes in the components

of the instanton field brought about by a zero mode "C". 

(Note that comparison of (3.2.21a) and (3.2.24d) implies SD = 0 

automatically - consistent with the general instanton (3.2.16)).

Gauge zero modes are described slightly differently. They arise from 

gauge transformations on the background field (*K* gauge 

transformations (1.2.66) are not considered here since they do not 

yield zero modes: the quantum field transforms homogeneously when 

K-gauging, see (1.3.5)).

ggw ^i/\B ggw

ggw ^gw g-iAg

where Ag and Ag are chiral and antichiral gauge transformations.

They can be re-eiqiressed as a change in the quantum field (frcxn 

(3.2.19))

(3.2.25)

vAiere A = e^^ Ag e ^^ and A = e ^^ Ag e^'^ (as in (1.3.4)) 

are covariantly chiral and covariantly antichiral gauge 

transformations. So if v = C corresponds to a small gauge 

transformation, (3.2.25) implies

C = i/g (A-A) (3.2.26)

The component content of A is exhausted by the following definitions 

(compare (1.2.25)) 

'/g n = A I

$ = 9 A I 
a a

(3.2.27a) 

(3.2.27b)

P = 1/4 92 A I (3.2.27c)
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and similarly for A.

This leads to the expected changes in the instanton field (using 

(3.2.24))

GA . = - 1/g D . (n + O) 
aa oa

8x = -i/2 [n t n, x^]

6X. = 6D ~ 0
^^ (3.2.28)

6B = i/g (n - O) ^

6H = 2i/g P 6H = 2i/g F

64/ = -i/g * 6^ = i/g *

we now determine the superfield form of the translation zero mode. The 

change in the background field due to a shift of the instanton centre 

a^i -* a^ - Ga^ is

Ge:" g^oa g ^gw

w'" = 6a” a . e8“ 
aa

(up to irrelevant numerical factors, c<xipare (2.2.13))

which can be expressed as a zero mode (using (3.2.19)) by

)

. ( . 1/6 6a” (e8“ a . . ^^ - e'^" a .

aa aa

Since this is true for a general perturbation 6a^ we have four 

linearly independent zero modes: 

c . = Vg (e'" 8 . e':" - e':" 8 . e*") (3.2.29) 
aa aa aa

We now gauge covariantize the eiqpression by adding a gauge zero mode 

of the form (3.2.26).

A . 
aa

e^" pc . e':" + 1/4 8. W 
aa a a

A . 
aa

e":" rA . e:" 
aa

vAiere vA.c , = a . 
aa aa

ipA.C . and "C and "A" refer to covariantly 
aa

chiral (1.2.56) and antichiral (1.2.59) representations respectively.
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Then (3.2.29) reads 

( . = i/g e. W (3.Z.30) 
aa a a 

(dropping an irrelevant numerical constant; Note that in general we 

obtain i/g(8. W + 8 W.) ) 
a a a ot

Using (3.2.24) we find the component transformations expected - 

= % %

(or in 4-component notation: 6A = -2 F^^ Ga*^ as in (2.2.14))

8X. = 8D = 0 
a

but also one non-zero supergauge

8,p. = -4'^2 ie-, X

However ( . is orthogonal to the 
aa

i.e.
(yZv^ + vZyZ) ^ . = o 

(xa

This imolies that the zero mode

transformation -

gauge fixing term (3.2.22),

(3.2.31)

is orthogonal to all gauge zero modes

(see section 3.4), and that it remains a zero mode after gauge fixing. 

(%e fact that it is a zero mode can be checked straightforwardly by 

using (3.2.21b)).

In the next section we will determine covariant forms for the other 

zero modes directly from (3.2.30).
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3.3 THE FULL SET OP DISCRETE ZERO MODES.

We start this section by describing a method for generating zero

modes:

We can move to a new instanton solution by

(1) Changing the instanton parameters (e.g. a^ a^ - Sa^^ )

(2) Using the corresponding element of the underlying group (in this 

case P^ ) and shifting the arguments of the instanton 

(here x^ x^ + Ga^).

"Aiese two methods are equivalent for the instanton (i.e. they produce 

the same shifted instanton solution). But they differ when acting on 

the space of ze):o modes. The full shifted space obtained by each 

method must of course be the same but whereas the zero modes transform 

covariantly (i.e. into themselves) by method (1) (e.g. Dilatation 

mode (2.2.15) 8A^=P^y(a)xy Pp^^a-6a)xy ), they transform into each 

other by method (2) (P^v(&)Xi/ "* P^^y(a-Ga)xv + F^y(a-5a)Ga,/ ). Linear 

combinations of other zero modes appear; In this example it is the 

translation zero mode Pgy (2.2.14). The fact that the translation zero 

mode is obtained from the dilatation zero nxxle by performing a 

translation is of course no accident: It follows from the Lie algebra 

of the group

[P^,6] = -iP;i

These remarks hold for all the zero modes and all the generators of 

the underlying group. In this way one can generate new zero modes and 

identify their purpose from the corresponding Lie algebra relation. It 

is clear that starting from explicit expressions for one or more zero 

modes this method can be used to generate an invariant subspace of the 

space of zero modes and often to generate the full space.

Gauge zero modes are also generated by this technique; In particular 

if the commutator of some generator with the generator corresponding 

to the zero mode vanishes, it does not necessarily follow that no new 

zero modes are generated - gauge zero modes (with no obvious 

connection to the underlying group) are often generated, ihese gauge 
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modes must be checked individually to see if they are fixed by the 

gauge fixing term (i.e. [V2v2 + v2v2]^ * o). The fact that the gauge 

modes may be gauge fixed is a consequence of the fact that the gauge 

fixing term breaks superconformal invariance. If they are gauge fixed 

then they are just exan^les from the uncountably infinite set of gauge 

zero modes (see section 3.4) and of no interest to us here. If they 

are not gauge fixed by the (background) gauge fixing term then they 

are zero mode degrees of freedom for the instanton - even after gauge 

fixing. Therefore they must be treated separately (from those of 

section 3.4) - we call these modes super-gauge anomalous zero modes. 

From the structure of the superconformal algebra [15] it can be shown 

that starting with the instanton zero mode (3.2.30) and superspace ex­

pressions for the changes under the generators of the superconformal 

algebra (Q,Q,S,S) that the full space of zero modes (apart from 

anomalous gauge modes) will be generated. These changes are 

( X = ^ x+ + ^ X- ; x± = X ± 2i©9 are the chiral/antichiral

coordinates)

Ba^Q : 68 = Sa

6x- = -4iSa 6

Sx+ = 86 = O

(3.3.1a)

s&y 66 = 1

Sx-t- —

5x- =

Sa

-4-i.6cx ©

Ge = 0

(3.3.1b)

63^
s.
y

- 66 = 
a

68. = 
a

-28^. 62 
a

Sx' .
QKX

= -48g^ X 8. 
a

(3.3.1c)

6x+ = 0

Sj3^ s 
y

• 86 = 
a

-26P 62 
a

68. = 
a

ix-.“ 8/3 
a a

(3.3.Id)
6x+ . 

aa
= -46/3^ x+

ya
6 
a

For Q. Q and S , Wy changes to w y the superinstanton field with
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appropriate changes in its parameters (use (3.2.13), (3.2.14) on 

(3.2.15), (3.2.16)). However under Sy the instanton Wy field, changes 

non-trivially

W W - 6S^ (8 8 W - 48 W ) 
a a ' y a ay 

(where Wy is constructed from appropriate (Ganges in the instanton 
parameters). So that "Sy* transformations must be accompanied by a 
compensating change on the Wy field;

8W = 8(3^ (8 6 W - 48 W ) 
(X \ y (X ay 

(3.3.le)

Using (3.3.1) on the translation zero mode (3.2.30) and recursively

(on the new modes generated) we find all the zero modes and identify

their nature from the Lie algebra of the group. They are

18. W translation zero mode (P .) (3.3.2a)
y y yy

18. W x+^ dilatation zero mode (6) (3.3.2b)

182 Wy supersymmetry zero mode (Qy) (3.3.2c)

82 *^'^ W superconformal zero mode (S^) (3.3.2d)

18, . x+. . ^ W SU_( 2 ) zero mode (J. . ) ( 3.3.2e )
(a y) y ay'

8. 8^ W supersymmetry zero mode (Q^) (3.3.3a)

6^ X. 6 W_ superconformal zero mode (S ) (3.3.3b)
yy y

gZ 8^ Wy chiral (axial) charge zero mode (A) (3.3.3c)

18^ X., W.. SU, (2) zero mode (J _) (3.3.3d)
y(a /3) OP

18^ X. W^ x^ . special conformal zero mode (K .) (3.3.3e)
aa yy ay

One can check, using (3.2.24), that the superinstanton component 

changes are as expected from these zero modes. In addition, by the 

same methods, we find the following supergauge anomalous modes -

i/g W^ (3.3.4a)

i/g w" x+ . (3.3.<b)
aa

l/ge^'w^ (3.3.S)
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They are supergauge because they are chiral.

(3.3.4a) and (3.3.4b) are associated with new fermionic paurameters 

which parameterize the superinstantons discrete supergauge degrees of 

freedom.

e.g, in the expansion of the quantum field in terms of zero modes

V = 6a^ i/g W^ + 60^ i/g W^ ^*p3 "*" .....  

and (3.3.5) is associated with a bosonic parameter, say 6p.. The 

conponents of the instanton change as in (3.2.28) with

n = 4g goT X , *g[ = 2^2 ig f^ 8a , all other fields 

vanishing ( for (3.3.4a)) and,

n = 4g 8/ X^ Xg^ , *^ = 2^2 ig f/ x^^ 8/ (3.3.6) 

all other fields vanishing

(for (3.3.4b)). In (3.3.5),

64/ = -4'^2 X 6fi (* = -4^2 ig X 6pi) (3.3.7) 
a a a a 

is the only non-vanishing change in the instanton field.

Many other supergauge modes are generated than just (3.3.4) and 

(3.3.5)? They are always chiral. Indeed, since transformations 

(3.3.1) preserve chirality, the effect of the transformations on these 

inodes is often to produce further chiral supergauge modes but never a 

non-gauge zero mode. The supergauge zero modes (apart from (3.3.4) 

and (3.3.5)) are all gauge fixed and will not be considered further.

(3.3.2e) deserves further explanation. These are 3 bosonic zero modes 

carrying 3 real parameters, say ©^ ( g/^ = ©^a^^^ ). At the component 

level and in vector notation

6A = X ri^
V uX Xfi

(where we have used a = -^^ ri^ )

and this can be bitten as a gauge transformation

6A = D *(a)

*(a) = ? n\^ n\^ x*" X^ (i+x2)
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So these are the same as the 3 anomalous gauge zero modes discovered

by 't Hooft [2].

Since (3.3,7) is the only non-zero component of (3.3.5) and this 

vanishes for a bosonic instanton (Xy=O) it must be that, for a bosonic 

instanton, (3.3.5) vanishes identically

i .e. ey Wy = 0.

If we perform an a transformation ((3.3.la),(3.2.13)) followed by 

a S transformation ((3.3.1c),(3.2.14)) we obtain the general instanton 

(as in (3.2.16)) and the above equation becomes

(e^ + o/^ - 10^ %:+^^ )W^ = 0

which is the linear relation (3.2.18).

(3.2.18) i«()lies that only two of the three supergauge anomalous modes 

(3.3.4a),(3.3.4b),(3.3.5) are linearly independent. To obtain the 

linearly independent set which will parameterize the instanton in a 

non-singular fashion (at Xy=O) we must drop (3.3.5) and retain 

(3.3.4a) and (3.3.4b). (In fact, of course, we are allowed certain 

restricted linear combinations of the five modes (3.3.4) and (3.3.5), 

but note that it can be shown that such a combination must be 

fermionic (by considering the e)q)anslon of v in terms of these modes, 

at Xy = 0) and in any case we will see that the fermionic modes 

(3.3.4) are chosen automatically as the basis set when we go on to 

consider orthogonality to the supersymmetry and superconformal modes). 

Similar arguments hold for the a supersymmetry mode (3.3.3a) and the 

chiral charge mode (3.3.3c): By (3.2.18) they are not linearly 

independent of zero modes (3.3.2), and they vanish in the bosonic 

instanton case -so we drop them.

In order for the various quantities we will be considering to be well 

defined it is necessary to impose the restriction of square integra­

bility on the components of the superfield. Ihis excludes some of the 

modes in (3.3.3), which do not satisfy this requirement:

The B superconformal mode (3.3.3b) contains a component that is not 

square integrable:
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It cam be made square integrable by adding a linear combination of the 

special conformal modes (3.3.3e), namely

"the mode vanishes in the bosonic case and, using (3.2.18), it can be 

written as a linear combination of dilatation and SUL(2) zero modes. 

So we drop it.

The special conformal zero mode (3.3.3e) is not square integrable 

so this one is dropped.

And finally the SOL(2) zero mode (3.3.3d) can be re-expressed as a 

gauge zero mode (of form (3.2.28)) at the component level:

0(a)

where 0(a) = J

and so, by using the definitions (3.2.27) and expanding A and A in 

terms of 6 and 8 we could construct explicit expressions for A and A. 

It follows that (3.3.3d) is a gauge mode at the superfield level (i.e. 

of form (3.2.26)) - but it is gauge fixed so we need not consider it 

further.

Note that the special conformal mode (3.3.3e), which we dropped 

because it is not square integrable, is also a gauge mode at the 

component level (see above (2.1.17)) and hence by the above argument a 

gauge mode at the superfield level. However it too is gauge fixed and 

this provides us with another reason for not considering it further.

"Riis leaves us with the linearly independent set of zero modes (3.3.2) 

and (3.3.4). (Their linear independence is best seen by inspection at 

the component level). ihey are all orthogonal to the gauge fixing 



76

term.

%e bosonic modes are the 4 translation, 1 dilatation, and 3 SUp(2) 

(or 't Hooft anomalous) zero modes ; they lead to changes in the 

instanton parameters a^, p, e*.

The fermionic modes are the 2 supersymmetry, 2 superconformal and 4 

supergauge anomalous modes which aire associated with changes in the 

instanton parameters a , p^, a , g. (see comments following

(3.3.4)).

Hence there are a total of 8 bosonic and 8 fermionic zero modes.

In order to calculate with the superinstanton background field we will 

need a method of projecting out the coefficients multiplying the zero 

modes in the expansion of a general quantum field "v" (see discussion 

of general method in chapter 2.3). Obis is most conveniently done by 

defining an inner product on the superfields. The natural definition 

is

(U,V) = trfd^z a V (3.3.8)

and this works for the bosonic modes e.g.

4 . = ii. W the translation zero mode 
aa a a

(Caa i "y 

or in 4-component notation (using (3.1.8)) 

((^ '(y ) = 512if2 8^^ (3.3.9)

But in the case of the fermionic modes, the a and B modes both have 

zero norm (4,4) = 0 since 8* appears in the integrand of (3.3.8). 

And the a and B modes have zero norm since the integrand is chiral and 
fd^e = 0 . However the norm between a and a ,and, p and p zero modes

is easily seen to be proportional to a non vanishing integral 

(gZtrfd^x F^^ and g^trj^d^x F^^ x^ respectively).

In fact it is straightforward to show that apart from this difference 

the 16 modes form an orthogonal set:
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Let - (le^w^, i -

where for convenience the zero modes are multiplied by powers of p so 

that the dimension [(x] = +1- "K* runs from 1 to 16 and is spinorial 

or bispinorial as appropriate.

And let C'K te as above except that the 3rd and 4th entries are 

swopped round and the same with the Sth and 6th. Then

where the numerical constants have been ignored and " 6K " is 

interpreted appropriately.

If we set

b"^ = (6a^^ ,6p ,p^ 80^ ,p^ 6a^ ,p^ 6a^ ,p^^^ 6^ ,p^ 8^ )

then [bK] = -1

and a general quantum field "v" can be expressed as

V = 2 b"^ ( + v+

b"^ = (V ,('^ )

where v+ contains no zero modes.

It does however contain +ve frequency modes and continuous gauge zero 

modes (which bectxne +ve frequency modes once the gauge fixing term is 

added) .These are the subject of section 3.4.
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3.4 GAUGE ZERO MODES, GREENS FUNCTKXfS AND PROJECTION OPERATORS.

We start this section by considering the continuous parameter gauge 

modes, they are of the form (3.2.26)

v=i( A - A ) (3.4.1)

Although they are zero modes they are gauge fixed by the term (3.2.22) 

Sgp = - ^ j d^z v(V^ V^+ /)v

so we parameterize these modes by considering eigenmodes of

(92v2+9292)v^^ = 16X2 vxK X real and >0 (3.4.2)

(The factor of 16 is just for convenience. The positivity of the 

eigenvalue (16x2) is required so that Sgp is negative definite as is 

the original action Sy). X and a further discrete parameter K (which 

can be spinorial) serve to label the eigenmodes.

Using (3.4.1) this is

A, = 16X A, (3.4.3)
XK XK

9 9
99 A, = 16X A^

XK XK

or

°* \k = -^' \k

( note that A. amd A, will be fermionic eigenstates when K is 
XK XK 

spinorial). we have used {9^,[9^,92])=-i6a+ and similarly for O-

where 0+ = O - 1/8 W^ 9 (3.4.5) 

similarly O- = O + 1/8 W^" 9.

= O for a superinstanton (3.4.6)

(3.4.4) would be sufficient for the definition of an orthonormal set 

of

gauge zero modes A,A if the background field was self conjugate since 

then A=(A)". This is not the case here and it is then not clear how 
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to associate the A^ with A, , 
AK AK' 

restrictive definition

A, = 4X A. 
AK XK

2
^ \K = ^" \K

(3.4.4) follows from (3.4.7).

In a superinstanton background (see (3.4.4) and (3.4.6))

O A, = -X A^ (3.4.8)
XK XK

(3.4.8) and (3.4.7a) now serve to define the modes A^K ^nd AxK i" 

terms of antichiral eigenstates of D .

Defining the chiral and antichiral norm by

( , )^ = tr r d^xdZg

( , )^ = tr j^ d^xd^e

(3.4.8) allows us to show

So by orthogonalising the degenerate (K) modes we can normalise such 

that

(A^^ ,A^/ - 6(X - Xn 8/ (3.4.9)

(The minus sign is included here since it can be shown, by for example 

using the component field definitions (3.2.27), that the (anti)chiral 

norm is negative definite in Euclidean space).

By using (3.4.7),(3.2.4) and super-integration by parts this implies

(A ,A,^' ) = X 6(X - X') 8^^' (3.4.10) 

and

(A^^ ,A^,^' )^ = - 8(X - X') (3.4.11) 

"Olis allows us to show that these modes are orthogonal to the discrete 

modes since (using (3.4.7))
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and v2v2 ( = v2v2 ( = 0 for all discrete zero modes. TAiese 

chiral and antichiral modes satisfy a completeness relation

r 16X A^^(z) A^ (z') = V^ 9'^( 6^(z -z')} (3.4.12)
J A AK 
X

(which can be checked using (3.4.10) and (3.4.7)).

The projection operator on chiral states is

P (z,z') = f A^(z) A(z') 
U J A A AK

X
-2 .1 2 (3'^-13)

» P = -1/16 9 O 9

(using (3.4.12) and (3.4.8)) 

and similarly, the projector on antichiral states is

X
2 _1 .2 (3'^-14)

» P = -1/16 9 O 9

The properties of these projectors can be checked by using the 

identities

[ 9., Of ] = 0

[ 9y, O ] = 0

(3.4.15)
Of 92 = o 92

92 0+ = 92 O

which are true for also for any power of O (O+).

If we consider a wess-Zumino action for some (background) chiral and 

antichiral fields ^ and $ (for example the ghost Lagrangian in SYM) 

then the propagator <*(z)$(z')> can be defined through
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Of <$(z)*(z')> = - P^(z,z') 

which in^lies

X

(using (3.4.4) and (3.4.13))

= 1/16 ( V^ O V )^, (3.4.16)

(using (3.4.8) and (3.4.13))

and similarly <$(z)*(z')> satisfies

O <i(z)$(z')> = - P^(z,z')

<*(z)*(z')> = I -g A^ (Z) A^^(Z')

X

= 1/16 ( 9^ O )g^, (3.4.17)

(Infact (3.4.16) and (3.4.17) follow easily by inspection of Pc &rid PA 

, and (3.4.15)).

we turn our attention to the

be eigen modes of (3.2.21).

1 —

since (using (3.2.21b))

+ve frequency nongauge modes. They must 

They turn out to be

(3.4.18)

= - X2 V . (3.4.19)
XKO

(using (3.4.3))

The "a" is an extra label and this means there are twice as many 

nongauge vector modes as there are antichiral modes of O — for eadh 

value of X. Note that v. . is fermionic when A^ is bosonic and vice 
XKa XK 

versa.
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Equations (3.4,4), (3.4.2) and (3.4.19) show that the vector, chiral 

and antichiral fields have the same spectrum of non zero eigenvalues 

(apart from the multiplicative factor of "l/f that appears for the 

vector gauge modes When not in the Feynman gauge).

Although these equations were formulated for the adjoint representa­

tion it is clear that the construction arguments hold for v, 

A, A in any representation of the gauge group.

"The +ve frequency non-gauge modes are orthonormal

) = 8(\ - A') (3.4.20) 
AK<a a K 

(follows from integration by parts and (3.4.7a), (3.4.10))

They are orthogonal to the gauge modes and the discrete zero modes 

because if ( is one of these modes

■''ak6 ) = - 5X2- ^6 \Ka >

— 0

(C is a zero mode of (3.2.21)).

We can construct the projection operator onto the +ve frequency non 

gauge modes

P(z,z') = f v^°tz) v.(z')

which in()lies

P = 1/8 ^ V^ O'^ V^ (3.4.21) 

(which can be derived from (3.4.18), (3.4.7b), (3.4.16) or (3.4.17) 

and properties (3.4.15)).

The term in the quadratic action (3.2.21) satisfies

(1/8 v" V2 9^) p = 1/8 V^'vZ 9^ (3.4.22) 

which shows that (3.4.18) is the complete set of +ve frequency modes 

for (3.2.21).
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We can define a Greens function in the space of these +ve frequency 

non-gauge modes by

1/8 V^ 92 9. G(z,z') = - P(z,s')

(3.4.23)

and obtain G(z,z') = 1/8 (9°V2 0-2 9^),

And finally we can consider the propagator <v(z)v(z')> over +ve 

frequency modes. It satisfies

(1/89^929.- -^T[9292+9292])<v(z)v(z')> = {P(z,z')+PA(z,z')tPc(z,2')} 
^^^ (3.4.24)

(The term on the left is the gauge fixed quadratic action, and on the 

right is the projector onto +ve frequency modes).

Hence from (3.4.16), (3.4.17), and (3.4.23)

<V(Z)V(Z')> = (l/SP^'pZo-Zy. - (/16 [920-292 + v2o-2v2])^^^ (3.4.25)

These results for the propagators and projectors agree with the 

relevant conclusions of [17].
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CHAPTER 4 RENORMALISATION AROUND SUPERINSTANTONS.

Ih this chapter we consider super Yang-Mills theory in its superfield 

form and evaluate (to two loops) the divergent quantum corrections to 

the classical action of the superinstanton. In competent field 

theories [l,2](see sections2.2 and 2.3) the first step is to factor 

out the zero modes from the measure in the generating functional. 

This is achieved by inserting 6-functions which constrain the quantum 

field to lie in the space of non zero modes, replacing the integral 

over zero modes by an integral over collective coordinates [3]. When 

these 6-functions deal with gauge zero modes they generate the 

background gauge fixing term [1,4]. The Jacobian (of the change of 

variables from zero modes to collective coordinates ) generates the 

ghost action together with new interactions involving the vector 

field, ghosts, and the discrete zero modes [1,2]. In superfield super 

Yang-Mills the scenario is the same as the above except that there is 

an additional complication: the ghost fields themselves have zero 

modes. To take care of these modes it is easiest to consider the 

above for a (general) background field for which the ghost measure 

includes the whole of (square integrable) function space, we can then 

factor out the ghost zero modes that occur when the background field 

is set equal to an instanton.

We divide this chapter into three sections. The first section is 

concerned with factoring out the zero modes (by replacing them with 

collective coordinates) and calculating the associated Jacobian. This 

is the analogue of section 2.2. The second section discusses the 

semiclassical approximation. The final section considers higher order 

quantum corrections. These last two sections are the appropriate 

generalisation the methods discussed in section 2.3. As in that 

section we investigate in particular the two loop contributions, 

splitting them into short and long distance parts, we check that the 

divergences are indeed those requixred to renormalise the semiclassical 

result.
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Dnlike the corresponding case in section 2.3 we find that there are no 

divergent corrections from the new interactions in the Jacobian (to 

any order) and that, once renormalization has taken place, the 

explicit In^i dependence of the full two loop graphs vanishes. Later 

(in chapter 5) we discuss some conclusions that can be drawn from 

this calculation, and in particular their relevance to gaining some 

understanding of a remarkable paper by Novikov et al [5]. (See also 

the Introduction).
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4.1 COLLECTIVE COORDINATES AND THE JACOBIAN.

In this section we wish to perform the analogous steps to those 

described in section 2.2. However, as mentioned in the introduction 

to this chapter, we have to deal with a further problem in this 

superfield treatment: that of ghost zero modes. This is best dealt 

with if we begin the evaluation of the Jacobian by considering a 

general background field for which the ghost measure includes the 

whole of square integrable function space. We will see later that 

this is equivalent to the assumption that all square integrable gauge 

modes (and therefore all square integrable gauge transformations) are 

fixed by the background gauge fixing term. In chapter 3 a study was 

performed of the zero modes and the gauge modes for a superinstanton 

background field. we begin by generalizing the results of that 

chapter to the case of this background field. We work in Euclidean 

space and terms such as "real" and "conjugate" will refer to 

Osterwalder-Schrader conjugation [12] as explained in section 3.1.

We consider super Yang-Mills in the presence of a background field. 

(See section 1.2 and 1.3). The full prepotential Vf is expressed in 

terms of the quantum prepotential v and the background field (w and w) 

by (1.3.1)

^gn ^gw ^gv ^gw (4.1)

The action is written in the quantum chiral background vector 

representation (see (1.3.6))

Sv =:S+S

S = ^2^^? jd4xd28 V2(e'g^ 9^ e^^) 92( e'^^ 9^ e^^) (4.2) 

where the covariant derivatives, which are in the vector 

representation (see (1.2.65)), contain only the background field (w 

and w).

9 = e':" D e«" 
a a

9. = e*" D. e'«" 

(4.3)
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The background field strengths are defined by (compare (1.2.56)) 

W^ = [9^ ,{9^ ,9^ }] (4.4^

and the conjugate relation for W.

through antichiral eigenstates of ( 

3.4)

O- = O + 1/8 w" 9.

by

-16 9 V A, = O- A, = -X2 
XK XK

The corresponding chiral eigenstates

The quadratic action is (compare (3.2.20), note that (4.5) follows 

from (1.3.13) and comments below it)

6Sv = Id^z vOv

A « (4.5)
O = 1/8 (992? - WW ) 

a (X

When the background field satisfies its equations of motion O will 

have a number (m) of discrete zero modes

O (1 = O

which can be normalized:

((j^ ,{^^) = trj d4x d4e (j^ = S^^' (4.6)

and chosen so that they transform homogeneously under background gauge 

transformations . (The index i runs over the m discrete modes and may 

be spinorial or bispinorial as appropriate). Specific examples of 

these modes were seen in sections 3.2 and 3.3. In addition there is a 

continuous parameter set of gauge zero modes which may be labelled 

as described in [10] and section 

(4.7)

A^K being given by

9 A, = 4X A^ (4.8a)
iK XK

which implies
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(K is a discrete (spinorial or bi-spinorial) label i*diich serves to 

distinguish the degenerate eigenmodes ). We assume that the 

background field is such that the Axk and Axk form a complete set of 

states that span the spaces of square integrable chiral and antichiral 

fields.

The modes in (4,8) are orthogonal to the discrete modes (see section 

3.4 (or [10]) for the reasoning)

(ii5 ^Xk) = (^^» ^Xk) = O 

and can be chosen so that 
K C

(\K '\' ) = - ^C' - "') \

- K K
(\K '\' ) = X B(X - X') G^ (4.9)

( , )^ = tr j^ d^xd^e = tr J dGz

( , )^ = tr r d^xd^e

In addition they satisfy a coir^leteness relation

16X A^ (z) A (z' ) = 7 V'^( B^(z -z')} (4.10)

X

(The integral over X is written formally here to emphctsize the fact 

that it may be interpreted, here and elsewhere, as a discrete sum vAien 

appropriate for parts of the positive eigenvalue spectrum [3,16]).

Note that the above equations follow straightforwardly in the same way 

as they did for instanton case in section 3.4 (equations (3.4.9) to 

(3.4.12)),

The background field solution contains parameters which may be put in 

one-one correspondence with these zero modes (call these 

parameters bj , axK$ Sxk) if '=^6 choose them such that for small 

changes (see formulae below (3,2,22) and above (3.2,25))

^gm ^iSA' ^go) ^^84

(4.11)
56“ e^GC ^gw ^-iBA'

where
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SA' = J saxK a'xk

BA' = j BaxK A'xk (^.12)

X

G( = E BbK (K

The prime on A' and A' indicate that these are standard chiral 

and antichiral fields; they are related to the covariantly chiral and 

covariantly antichiral fields in the obvious manner (using the 

definitions (1.2.65), (1.2.70) and (1.2.21))

A' = e-»" A e»"

(6.13)

A' = e«" A e-B"

In calculating the Jacobicin it is necessary to evaluate the change in 

the quantum field with respect to a change in the background field 

parcuneters. This is found [2] by noting that the full field (4.1) is 

independent of the background-quantum splitting (see the discussion 

above (2.2,11) in section 2.2) and hence the change in the quctntum 

field is such as to absorb the changes (4.11) i.e.

which in^lies (to first order in the background field parameters, 

compare (1.2.43) from which this equation can be derived)

Sv = %iLv((SA + SA) -1- coth(g/2 Lv)(6A - SA)) - ^Ly coth(g/2 Ly )5^ 

where LyX = [v,X] . (4.15)

We insert into the generating functional 

Z = J D(v) e^'' (4.16)

a factor

= N'^1 D(a,a) D(K,K) d"b exp( -l/( j X Kx^ KxK )

X n 6[(Axk,v) - Kxk] S[(Axk,v) - Kxk] H 5[(v,^j)] Sdet(J) 
j (4.17)
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W6 now explain the various terms in (4.17) (which is the analogue of 

(2.2.7) plus the appropriate 't Hooft gaussian average, see also [2] 

and(1.3.8)).

N is the normalisation factor for the Gaussian average

N = IXK.K) exp{ -Vf r X Kx"* KxK )

X

= ^n ( t/x )^'<

= Sdet ( O.^ / ( )

(4.18)

where i^ = +1 if AxK is a bosonic mode and iK = -1 if Axx is a

fermionic mode. (This depends on the index K if K is spinorial then

AxK will be fermionic).

Por any covariantly chiral field A ;

IXA) exp{ dGg ^ AZ } = 1 (4.19)

(see equation (6.5.41) of [13]. (4.19) can be treated as a definition. 

It may be justified by defining IXA) as the integral over its 

(xxnponent fields, or by an integral over the associated standard 

chiral field and its component fields [13].)

By eapressing A in terms of the eigenmodes (4.8)

A = r a^K AxK 

X

we can use (4.9) and (4.19) to make the identification

r DA = J ^^ daxK (inAiich we will sometimes write as j^ D(a) ). 

(4.20)

Hence for anticommuting covariantly chiral and antichiral fields, n 

and n, we obtain (by expanding in terms of AxK &"d AxK said using 

(4.9))

D(n«n) sxp( -f^d^z TM } = Sdet^ (O-) (4 21)

(in agreemient with other methods [13]).

Hence the factor N''^ in (4.17) can be written
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n"^ = n (i/£) D(n.n) exp{ Jd®z iTn } (4.22)

These are the usual Nielsen-Kallosh ghosts.

Integration over Kxk ^it^d ^xk in (4.17) gives (using (4.10)) the usual 

background gauge fixing term (as in (1.3.9))

exp Sgf = e2<p( - fd^z v(v2v2 + v2v2 )v } (4.23)

The matrix J in (4.17) is the following :-

j[p].[q]

^&XK

SaxK 

^bj

daxK daxK

9axK 3axK

abj abj j

(4.24)

where [p] ([q]) ]:^n over X K and j (and primed indices) as

appropriate. Its super-determinant is evaluated by using opposite 

statistic (to {axK. axK. bj} and { Axk, Axk# ij 1 as appropriate ) 

integration variables and using

Sdet(J) = J D(c',c) e2q)( c'[q] j[p].[q] c[p] } . (4.25) 

(This is the equivalent of (2.2.12) for the superdeterminant).

We now evaluate the various terms in (4.24).

using = 0

^axK ^axK

(which follows from the fact that A^,^, is defined through the

covariant derivatives V and V. which are invariant under the A' and

A' transformations of equation (4.11) applied to (4.3), see also

equation (1.2.68))

we obtain

daxK SaxK

S^Xk SaxK

(4.26)
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(Here, for simplicities Scike, we just consider the case where the zero 

mode and the parameter differential are bosonic; the other cases 

follow straightforwardly).

Since the discrete zero modes (^j) tremsform homogeneously under 

background gauge transformations they are constructed from the 

covariant derivatives (Vy and Vy , see for example those in sections 

3.2, 3.3 and (2.2.14), (2.2.15)). The same considerations then apply;

Also

^>‘j- - <‘j- • g> (4.2,)

since the term (^(., ,v) is linear in the quantum fields and 
dbj^

therefore will not contribute. (In the background field method linear 

terms are dropped, see section 1.1). (4.26) to (4.28) are then 

completely evaluated by

dv = i/2 Ly { Axk ■*■ coth( g/2 Ly ) Axk 1 
5axK

av = i/2 Ly { Axk - coth(g/2 Ly) Axk 1 (4.29)

5axK

av = -1/2 Ly coth(g/2 Ly ) ^j 
dbj

which follow readily from (4.12) and (4.15).

This leaves

9 (A 
abj

X'K = (gx-K- ■''i <\,K- • g>
dbj dbj

(4.30)

since other terms in (4.24) not yet considered are OS-conjugates of

(4.26) to (4,28),

To evaluate dAxx we use (4,8) ; 
dbj

dAxK = _^ dV2 Axk t ^2 ^xk 
dbj 4A '- dbj dbj (4.31)

But using (4.11) we obtain
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5V. = -^ V. 6^ 
oc

so that 9 V. = -^ V. 
dbj“ “

Using this equation in (4.31) we obtain, after some manipulation,

3;!^Xk = ^[^j « Axk3 1 ^2{3Axk ' ^[Cj • ^Xk]} /^ 32)
abj 4X dbj . '

(Note that in the 1st term of this equation we have again used (4.8)). 

The last term in (4.32) can be ignored since it yields a bilinear 

interaction proportional to V^v, v^ich by the Slavnov-Taylor 

identities [14] in the background field gauge, cannot contribute to 

physical quantities.

If we let c[P] = (icx*^, -icx*^, ci) 

c'Cq] = (ic'^,*^ , -ic'^,*^ , c'j )

and

c = J cx^ Axk 

X
, P . _ (^-33)
C = J cx^ Axk 

X

c = E ci

and similarly for the primed fields, then c, c cuid c are fermionic 

superfields, (c and c are conjugate pairs and c is real). Using 

(4.26) to (4.32), we can express Sdet(J) as

Sdet(J) = J D( cx*<, SxK, c'xK, S'xK) jU^ (dcj dc'j) e^^'^® ^9^)

(4.34)

where Sgh is the properly normalized ghost action with 

extra interactions (conpare equation (1.3.10));

5gh = J^®^^ "(^ + c' + c') g/2 Lv(c - c + coth(g/2 Lv)(c + c +c))

+ (C - C' ) g/2 Lv C }

= - d9z{ c'c + c'c + c'c + interactions with v }

(4.35)
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We may use (4.20) to rewrite the integral over modes in (4.34) as the 

functional integral

J D(c, c, c', c') d«c d«c' . (4.36)

We now consider the case where the background field is equal to a 

superinstanton and the gauge group is SU(n). In this case the number 

of vector field zero modes m=8n. These are 4n bosonic modes, 2n 

fermionic modes (of which 4 correspond to broken supersymmetry and 

superconformal symmetry) and 2n further fermionic modes that are 

anomalous supergauge modes, (The case n=2 is considered in [10]). 

These latter 2n modes are chiral square integrable modes, but they do 

not belong to the set (4.8) since

V2 Ci = o (4.37)

(This zero mode counting follows from the components of the vector 

field: it is straightforward to establish that the vector quantum 

field component (Qg) has 4n zero modes - These are responsible for the 

4n bosonic zero modes for v. Similarly L.H. fermions (X) have 2n zero 

modes leading to 2n fermionic zero modes for v. But the fermion zero 

mode equation is a component of (4.37) also (Ci chiral). Therefore 

there are 2n fermionic supergauge anomalous modes.)

The fact that the modes in (4.37) are square integrable means that 

they must be integrated over in the chiral ghost integration in 

(4.36). The fact that they do not belong to the set of modes in (4.8) 

but instead satisfy (4.37) iirplies that the kinetic part of the action 

(4.35) vanishes when the chiral ghosts are equal to these modes, i.e. 

these modes are 2n zero modes for each chiral ghost.

This last statement is justified from the following:-

When the background field is set equal to an instanton W^ vanishes 

[9,10] (see (3.2.8)) so that □- (4.7) becomes background □ (see 

(3.4.6)). The latter has no zero modes, and is invertible in the 

space of square integrable functions [3] (and see (4.45)). 

Consequently the A modes of (4.8) form a complete set for the space of 

square integrable antichiral fields. But for any one of these modes 

(4.8) we have (using the vector norm of (4.6) and (3.3.8))
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= 0 by (4.37).

Hence when the chiral ghosts (c, c', or n) =ire equal to these modes 

the kinetic action (of (4.35)) vanishes and so these modes are 2n zero 

modes for each chiral ghost.

Unlike the vector case (as in section 3.3), these modes when 

considered as belonging to the chiral field, must be normalized using 

the chiral norm of (4.8). i.e. they satisfy

(Aj , Ak )C = - Sj^

Tor n=2 these are, up to numerical factors,'

Aj = (iW^ ; W^ x+^ p'^)

(see the corresponding vector modes in (3.3.4) and below (3.3.9))

E]q)anding the ghost fields as

c = E e^ Aj + continuous parameter modes (those of (4.33)) 

c' = E e'j Aj + continuous parameter modes (4.38) 

n = E f^ Aj + continuous parameter modes

we insert into (4.34) the factor

1 = [d^^e d2"e' d^^f n 5[(c,Aj)C] 6[(c',Aj)C] S[(n,Aj)C] (4.39)

(The Jacobian is readily seen to be "1" )

Finally it is convenient to substitute

c -> c ^g , c' -> C'Vg , c -» c -/g

(and similarly for barred fields) so as to cancel the factor of 1/g in 

(4.34). The Jacobian for this substitution leads to a continuous 

infinity of factors of v'g in the functional integration of (4.36) 

which cancel those from the zero instanton sector, together with 4n 

inverse powers of '^g which appear via the c and c' 5-function 

constraints of (4.38). No powers of '/g accompany the c and c' 

integrals in (4.36) because the 4n bose modes lead to a factor of 

(Vg)4n whereas the 4n fermi modes give ('^g)~*^ .
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Piecing together (4. 16), (4. 17), (4. 22), (4. 23), (4. 34), (4. 36), (4. 39) and 

this substitution we obtain

Z = jD^(v,c,c,c',c^,n«n) d^"b d^"c d^"c' d^% d^"e^ d^^f

g-2n (n VO e (^'' "^ ^GF + Sgh + SNK )

( SWK = - fd^Z nn ) (4.40)

Mie prime on D indicates that integration is carried out only over the 

non-zero mode spaces.

This is the final result for the generating functional.
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4.2 THE SEMICLASSICAL APPROXIMATION.

The semlclassical result is obtained by considering interactions up to 

quadratic in the action contained in (4.40) (see (2.3.1) and ccmmients 

above this equation). This leads to the evaluation of the 

determinants of the appropriate Laplace-like operators (restricted to 

their non-zero mode spaces, see (2.3.2) and comments below it).

The action up to quadratic terms is (from (4.5), (4.23) and (4.35))

S = - 5ZS + trfd8z{ v(^9%2v. . -^vZyZ + 9^v2))v - c'c - c'c

- e'e - TTH } (4.41)

The integration over c (and c') trivially gives 1. The integration 

over each pair of ghosts (c, c', n and their conjugates) gives a 

factor of (see equation(4.21))

Sdet\a)

(O- = O for a superinstanton, since W. = 0 see (4.7) and (3.2.8)).

The expansion of *v* in terms of nonzero eigen modes is

1 . _ (4.42) 

where u\K , ux*^ and u^™ are arbitrary coefficients. %e terms 

containing A and A are the gauge modes that are gauge fixed in (4.41) 

and are hence non-zero modes of the gauge fixed action (which is the 

relevant action for the semiclassical calculation ([2] and (2.3.2)), 

see (4.23) and the discussion above). The last term contains the +ve 

frequency transverse modes. In Chapter 3.4 we showed that these 

positive frequency modes span the full space of non-zero eigen modes 

of (4.7) (see also [10]).
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The factor of l/'^x in eiqpression (4.42) means that (see norm in (4.9)) 

the coefficients are normalized so that[13]

iXv) exp( J(%8z v2 } = 1

in«)lies (^^) - l^"XK, "AK, u^^^.) . (^-43)

Putting (4.42) into (4.41) yields

88v = j -X2 ^K^

Performing the integration in (4.43) we obtain

Sdet O Sdet (^ O)

- n. ( (4.44)

(note that the u^^ have opposite statistics to A^K &od that there 

twice as many for each eigenvalue x).

These factors of ( are cancelled, as eiqiected, by those in (4.4o) 

idiich arose from the normalisation (4.18) of the Gaussian average.

Hence the total positive frequency mode contribution comes just from 

the ghosts and is equal to

Sdet3/2(a) .

However Sdet(a) =1 . This was shown to be true by heat kernel methods 

[9]. We can verify this a number of ways :-

For example

Sdet(q/ao) = exp{trjd8z ln(q/Oo)zz)

Oo = 8^3^

(where we have included the zero instanton sector contribution) leads 

to a sum of diagrams as in fig.4.1 when expanded in powers of the 

background field. But since no D^^'s and D^'s appear inside the loops 

the rules of supergraphs [11] imply that these all vanish identically. 

However this argument is perturbative. The most convincing 

verification which is non-perturbative is by resorting to components: 

If we let
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w = w = e^e^A . 
'/Z CKX

where A , is 
aa

the Instanton background field, we find, after some

calculation that

oA = - X^A

is equivalent to the three equations

02 6 = -X2 0

02 $. = -X2 $.
(X

02 p = -X2 p

(4.45)

so that Sdet O — det 02 det'2(D2) det 02 = 1

A similar analysis, though somewhat more complicated, can be carried 

out for a general superinstanton in the wess Zumino K-gauge (i.e. the 

gauge in which w and w are equal and are taken to be half the 

background prepotential (vg) in the Wess Zumino gauge)

w = w o'^e^^A . - 82g°\ } (4.46) 
acK (X

The conclusion is the same.

Through the zero modes we obtain powers of ^ such as to cancel the 

dimensions of the integral over collective coordinates. (This rule 

can be justified on dimensional grounds or by regulating with 

(background) Pauli-Villars [3,Z], see discussion above (2.3.3)).

The dimension of each bj is -1 which follows from (4.11), (4.1Z) and 

the fact that (j is normalized. It follows that the measure d8"b is 

dimensionless (Since there are an equal number of fermionic and 

bosonic bj ). The dimension of e, e' and f is -1/2 and is given by 

(4.38) and the fact that the Aj are normalized by the chiral norm. 

Hence (note that e,e' and f are bosonic collective coordinates) we 

obtain

Z = r d8nb d2ne d2ne'd2nf p3n/g2n g-8n^/g2 (4.47)

as the final result from the semiclassical calculation. 
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Note that K^n is exactly the right power to cancel(to order gO) the 

implicit ^ dependence of the classical action ( % = 3n for S0(n)).

In the next chapter we will consider the divergent higher order 

corrections to this semiclassical result. These divergences are found 

to be cancelled, as eaqiected, by renormalisation of (4.47).
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4.3 HIOBER ORDER CORRECTIONS.

We consider here the corrections of order g2 to the semiclassical 

action (4.47). They are illustrated in figures 4.2 and 4.3. The 

graphs in fig.4.2 are "vacuum" graphs in which the propagators are the 

full propagators in the background field. They are the analogues of 

figures 2.2 and 2.3 at the end of chapter 2. The graphs in fig.4.3 

are graphs formed from the new interactions in the Jacobian. The 

stub-lines represent interactions containing c, c'. Power counting 

shows that the U.V. divergence from these graphs (which must be local) 

yields a contribution to the effective action

-Yp cc' d^z = -Y (C cJc'j) 

where Y is a coefficient containing the divergences .

Integration over the cJ modes yields a multiplicative correction 

factor to the semiclassical result (4.47) (see (4.41) and (4.40)).

(1+Y)4n / (1+Y)4n = 1

Thus, because there are equal numbers of fermionic and bosonic 

collective coordinates (in the vector sector), there are no divergent 

corrections from the discrete part of the Jacobian. We note here that 

this conclusion holds true to all orders in the number of loops (since 

the divergences will always be of the above form).

we now consider the graphs of fig.4.2 in detail. As has previously 

been shown ([2] and see section 2.3) the divergences from these 

graphs can be split into "short distance" divergences in which momenta 

are large in both loops, (this can be calculated by a perturbative 

expansion in the background field) and "long distance" divergences in 

which one of the propagators is the full long distance propagator 

carrying no divergent momentum (the other propagators carry divergent 

momenta and can be expanded perturbatively).

Ihe divergences in the short distance calculation are insensitive to 

the particular form of the background field and can be calculated by 

standard background field methods. Ihe 2 loop calculation has been 

performed by Abbott et al [6] and has been further refined [7,8]. We 
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briefly review the methods developed in [7,8] and their application to 

this calculation. The essence of these developments is in the use 

of covariant-D algebra to generate terms that include Wy «w^ and ^yy 

but nothing else [7]. consequently the form of the divergences is 

highly restricted [8]: They must be local, form a background gauge 

invariant functional, be able to be written as an integral over the 

full superspace (d^z), and contain the background field only as Wy ,^ 

or the connection fy^

( V . = 8 . - ir . ) 
da dd aa

The mass dimension of Wy ,i^ is too high to be included and so auiy

terms generated by the covariant-D algebra which contain these field

strengths can be dropped. In fact, using dimensional reduction, the 

only divergent term that can appear, satisfying all the above 

requirements, is [8]

trfd^x d4e r"^' r . (8 .^
J yy Cd

(4.48)

where

is the Kronecker 6 in the 4-2e dimensional subspace. This term is 

background gauge invariant because the differential of the gauge field 

occuring in the gauge transformation of the connection

"«6

( X in the 4-2E dimensional subspace) satisfies

(6 .^ - 6 .^) 8 . K(x) = 0 
dd dd yy

(4.48) can be written as

- % trffd^xd^e W^W + fd^xdZe W^. ] 
2 y y J y 

(4.49)

(we use the notation of "superspace" [13] and not sections 1.2 and 1.3 

([11]) here so as to make straightforward contact with [6,7,8]). 
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(4.49) differs from the corresponding equation in [8] only for 

instcuiton-like fields with non-vanishing boundary terms, however 

reality of (4.49) guarantees it to be of this form even in the latter 

case. (We have also checked that (4.49) is equal to (4.48) for the 

W.Z. K-gauge superinstanton (4.46)).

In the Feynman gauge the graphs c and d in fig.4.2 trivially vanish 

because there are insufficient V's and V's . Graph b vanishes by 

cancellation of the two ghost contributions. (There all possible 

couplings between the ghosts and they all have the same sign; however 

the two propagators have opposite signs). We are left with graph "a" 

which after some straightforward V-algebra reduces to a diagram 

equivalent to that of a scalar (<$>3) graph with covariant O propagators 

[8] (see fig.4.4),

Pulling out only terms of the form

r=^ . 6 .^ 
yy aa

we obtain just the tadpole diagram of fig.4.5 which is

- I e2 Rijdezcr’^. )„ JS^ <4.50)

(where we have subtracted the U.V. subdivergence and taken care to 

separate out the I.R. divergence by e.g. first performing the q 

integration and then letting p2 -$- p2 + x2 (x2 a small I.R. regulator 

mass) or by dimensional regularisation I.R. subtraction techniques 

[17,8]). Other terms in the background field expansion will 

covariantize this to the form (4.48) and hence we obtain (converting 

from the trace over adjoint representation generators in (4.51) to 

normalized generators)

3 g2 n2
2(4if)2e

(4.52)

(we have used W. = 0 for an instanton. The term in brackets is 
a
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125? 11=-= "= in the notation of chapter 1 and is equal to -
eif^ 

g^'

Note that ki = 2n for SU( n) (see (1.2.48) amd comments above). 

Although the short distance calculation was performed in the Feynman 

gauge the answer, which depends only on the j3-function (see section

1.1), is gauge parameter independent. This fact allows us to perform 

the long distance calculation in a different, in fact general, gauge 

which we will do for reasons explained below (see discussion below 

equation (4.53)).

The divergence in (4.52) is cancelled by the counterterm (oc /3i = 6n2) 

coming from renormalising the classical action.

Inserting the factors of n^ (from go = gM^ to lowest order) (4.52) 

plus the counterterm leaves behind an explicit ;z dependence equal to

(note that the counterterm contains a p.~2e coming from the go 's in 

the classical action).

We now turn to the calculation of the long distance part of the graphs 

in fig.4.2 . We start by considering those diagrams containing a long 

distance ghost propagator. The divergent subdiagrams yield the ghost 

1 loop self energy. This can be calculated by ignoring the background 

field and then covariantizing the final result. (This is because the 

divergent coefficient is proportional to the wavefunction renormal­

isation constant which is independent of the background field).The 

relevcuit diagrams are shown in fig.4.6. In the Feynman gauge both 

these diagrams vanish so it is useful (to provide a check on the ghost 

zero mode arguments in section 4.1) to work in a general gauge for 

which the vector propagator is

<w> = l/p2 { 1 + (€-l)no 1

no = (D2d2 -5- d2d2)/ 16p2

(using Euclidean space conventions [10]).
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In this case the 1st diagram of fig.4.6 still veinishes (by 

Ccincellation of the two ghost contributions) but the tadpole diagram 

gives a term proportional to

^^ ^J(27r)n p4

tdiich does contribute (providing we are careful to separate out the 

I.R. divergence , see coirattents below (4.51)). 

so that we obtain

(It is convenient to consider the graphs in fig.4.6 sandwiched 

between c' and c, and, c' and c as in an effective action[ll]).

As explained above (4.54) forms the 1 loop subdivergence of the full 

graphs in fig.4.2 vAien one of the ghost propagators is long distance. 

In order to obtain the final 2 loop result we must replace the ghost 

terms in (4.54) by the appropriate long distance propagators (together 

with the usual factors of v2 and v2 on the outgoing chiral and 

antichiral legs).

Using the explicit form of the non-perturbative propagators <c'c> and 

<c'’c> (see [10,9] and (3.4.16), (3.4.17)) we find that the term in 

curly brackets in (4.54) becomes

- Str( Pa + Pc) (4.55) 

where Pa and Pc are the chiral and antichiral projectors of (3.4.13) 

and (3.4,14). (Note that (4.56) is quite general and simply arises 

because the propagators are minus the inverse of the Laplace-like term 

generated by the quadratic action on the appropriate (chiral or 

antichiral) spaces ).

2 -1 -2
P. = -1/16 9 a V 
A

-2 -1 2 
and P^ = -1/16 9 □ 9

So equation (4.37) implies that the combination (Pa + P^) has 2n fermi 
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zero modes (vdien acting on the left or the right). Therefore

Str(PA + Pc) - Str(PAO + Pc®) = +2n

where Pa® and Pc® are the corresponding projectors in the zero 

instanton sector (they do not have discrete zero modes ) and this 

second term arises from subtracting the zero instcinton contribution 

[2].

Hence the long distance contribution from the ghosts is (using (4.54) 

and (4,55))

Now consider the diagrams containing a long distance vector 

propagator. The divergent subdiagrams yield the vector 1 loop self 

energy. Once again this may be calculated by ignoring the background 

field and covariantizing the final result, (Note that this time we 

need to use the appropriate background covariant Ward identity to fix 

the form of the covariantized result [2]), The relevant diagrams are 

those of fig,4,7, Note that the tadpole graph contributes outside the 

Feynman gauge (see comments above equation (4,54)), 

We obtain (including the effective action combinatoric factor of ^)

in agreement with previous results [15],

Converting the v's in (4,58) into a long distance propagator the term 

in curly brackets gives

- ^ Str P

vAiere P is the transverse positive mode projection operator which is 

for an instanton ( see equation (3,4,21))

P = I v”p2 Q-l 7^ (4,59)

If we subtract the corresponding term in the zero instanton sector 

(4.59) will give half the number of bosonic transverse zero modes 

minus half the number of transverse fermionic modes. This is ^(4n-2n) 

= n . Note that the supergauge anomalous modes of (4.37) do not count 

because they are square integrable longitudinal (gauge) modes. 
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Alternatively note that the gauge fixed action has

Str(P + Pa + Pc) = -4n +4n = 0

(once the zero instanton sector term is subtracted)

so Str P = - Str(PA t Pc) - ~2n

(see (4.56))

substituting (4.59) in (4.58) we obtain

(7+25)g2n2
3(4Tf)2 e

(4.60)

as the long distcince contribution from the vector field. Adding the

contribution from the ghosts (4.57) we

contribution

3g2n2 
(47r)2e

obtain the total long distance

(4.61)

This divergence is cancelled by the counterterm ( oc -n/3o ; /Sq = 3n) 

coming from renormalizing the g“2n term in the semiclassical result 

of (4.47). Once this counterterm is added to (4.61) we are left with 

an ejqjlicitly p. dependent term

This completes the calculation of the 0(g2) divergent (and explicitly 

In/i dependent) terms. In the next and final chapter we will be 

considering some conclusions that can be drawn from this calculation.
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Fig. 4.1
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(a) (b)

Fig. 4.2

Fig. 4.3
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Fig. 4.4

Fig. 4.5
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Fig. 4.6

Fig. 4.7
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CHAPTER 5 CONCLUSIONS. 

we begin this final chapter with a summary and discussion of the 

research presented in the previous chapters. We then go on to compare 

our work with that of Novikov et al [1]. The derivation of the super 

Yang-Mills all orders ^-function given in that paper relied on a 

theorem stating that all positive frequency contributions to the 

instanton action vanish. We show here why the proof presented in ref. 

[1] is invalid [2] and discuss the possibility that although the proof 

is invalid the theorem might still be shown to hold [2,3], In the 

light of the subtleties discovered from our e^qslicit calculations we 

argue that it is hard to see why this should be the case.

Chapter 2 outlined the effects that must be taken into account when 

calculating divergent quantum corrections to the instanton action in 

Yang-Mills [4]. A careful treatment of the zero modes was required, 

transferring the integration over zero mode space to an integration 

over instanton collective coordinates. Included in this treatment 

were the infinite set of gauge zero modes. It was important for 

consistency to include the gauge modes in this way since it led not 

only to generation of the (background) gauge fixing term and the ghost 

lagrangian but also to some extra interactions between the ghosts, 

the vector field and the discrete zero modes.

These latter interactions were one source of ultra violet divergences 

in the higher order quantum corrections. There were two others: the 

standard perturbative short distance corrections which were removed by 

renormalising the classical instanton action, and some non- 

perturbative U.V. divergences proportional to the number of transverse 

(non-gauge) zero modes. These latter "long distance" corrections 

together with those arising frcmt the new ghost-vector interactions 

were cancelled by renormalising the factors of 1/g appearing in the 

semiclassical (1 loop) calculation.

Although chapter 2 dealt specifically with instanton background fields 

the analysis was in fact quite general and applied to any solution of 

the equations of motion which brezAs certain symmetries of the action. 
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The 1 loop calculation however had to be treated differently. We 

verified that the A dependence came from two sources;

(1) From the zero modes via powers of fi such as to cancel the 

dimension of the instanton measure.

(2) Prom the determinants of the inverse propagators, with the gluon 

determinant restricted to the non—zero mode space. This latter 

determinant could be calculated if certain tricks were used to turn it 

into the determinant of an invertable operator (Dp^D^ in fact). This 

method holds not just for the B.P.S.T. instanton but for any self dual 

field. (Note that any such field is automatically a solution of the 

equations of motion).

In chapters 3 and 4 we extended these ideas to super Yemg-Mills in 

superfield form. The first step towards this generalisation was to 

find the generalisation of the instanton in super Yang-Mills i.e. a 

superfield solution to the euclidean super Yang-Mills equations of 

motion which contained the ordinary instanton but which had the 

possibility of non-vanishing values for the other component fields in 

the multiplet. we showed that the superinstanton was effectively 

described (up to a general supergauge transformation) by an ordinary 

bosonic instanton solution for the Yang-Mills field and a nonzero 

L.H. fermionic component A(<x,^) depending linearly on 4 fermionic 

parameters ()^y and {3,^ which correspond to chiral supersymmetry and 

antichiral superconformal transformations of the original bosonic 

instanton. The next step was to find all the zero modes which we did 

by using the superconformal algebra to generate covariant eaqpressions 

for the zero modes. Anomalous supergauge mxxles were also generated. 

The methods used in that chapter (Chapter 3) are applicable to any 

solution of the equations of motion of a theory. For a single 

superinstanton we found that the linearly independent set of zero 

mxxles that gave a non-singular parameterisation of the superinstanton 

contained 8 bosonic nxxles and 8 fermionic miodes. (There were 4 niore 

fermionic mKxles than had been expected from component analyses; these 

were supergauge anomalous modes). Discussed also in that chapter were 

the generalisation of the 1 loop tricks used in the Yang-Mills case, 

to the case of self dual superfields and quantum prepotential (v) 
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fluctuations. Now let us pause to discuss the work of Novikov et al 

[1] already referred to at the beginning of this chapter, before going 

on to discuss and compare this with the work of chapter 5.

It has been argued by Novikov, Shifman, Vainshtein, eind Zakharov [1], 

that in super Yang-MilIs theories by using instanton calculus one can 

determine the /3-function to all orders in perturbation theory. In 

particular they find that the vacuum energy in the presence of an 

instanton background field in super Yang-Mills theories is propor­

tional to

(5.1) 

where xq and p are the collective coordinates corresponding to the 

breaking of translational and scale invariance cind a and g are 

grassmannian collective coordinates corresponding to the breaking of 

supersymmetry and superconformal invariance. M is the ultraviolet 

cutoff and nb and nf are the number of vector (Qp.) and fermion (X)

zero modes respectively. The remarkable feature of eq. (5.1) is that 

there are no higher order corrections to the semiclassical result.

Using the results that for an SU( 

supersymmetry, nb=4n and nf=2Nn, 

inplies

) gauge theory with N= 1,2, or 4 

the M independence of eq.(5.1)

M* I -(2-N)lA(^/ftW(5.2)

Equation (5.2) agrees with results obtained from perturbation theory 

up to two loops. However for N=1 supersymmetry at the three loop 

level the result, which is renormalisation scheme dependent, differs 

from that obtained using the dimensional reduction scheme [5].

The argument of Novikov et al. [1] is based on the observation that 

i*^ereas there is a pair of collective coordinates (X^^ corresponding to 

chiral supersymmetry treuisformations, there are no corresponding 

antichiral collective coordinates ^^ • Indeed the antichiral
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transformation on the bosonic instanton g cr^<9 ^2 (where /%2 ^^ the 

BPST instanton [6], see chapter 2) leads to a change in the superfield 

proportional to
^ (5.3)

This is is zero since (^ is self dual and c^», is anti self 

dual. The next step in the argument is to note that the result of 

calculating higher order graphs such as those in Pig. 5.1, in which 

the propagators are those of the quantum superfield in the instanton 

background field, is of the form

(5.4)

Supersynmetry invariance implies that any translation in 6 (8 -* 8 + 

() can be compensated by a shift in the corresponding collective 

coordinates. The absence of the collective coordinates & leads the 

authors of ref. [1] to conclude that the integrand in eq.(5.4) must be 

independent of 8 and hence that the integral is zero. %ey thus 

conclude that all higher order diagrams vanish. Ihis, together with 

the result of ref. [7] that the contribution of positive modes at the 

semiclassical level is zero, gives us eq. (5.1).

We do not accept this argument. Indeed if it were correct the 

classical instanton action would also have to be zero for this is

(5.5) 

which can be written in the form

(5.6)

(we are using the notation of ref.[8]).

Applying the argument outlined above would lead to zero for eq. (5.6) 

also, whereas we know that the classical action for the instanton is 
^^^^^ (we have checked that the surface terms ignored in from (5.5) 

to (5.6) do indeed vanish). So how do we compensate for a trans la - 

tion in 8 by a shift in one of the collective coordinates, given that 

there is no & collective coordinate? Recall that in addition to the 

collective coordinates corresponding to the discrete zero modes there 
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is also an infinite number of collective coordinates corresponding to 

supergauge transformations. Indeed (5.3) is the change in the 

superinstanton after performing an antichiral supersymmetry transfor­

mation (see equation (3.3.1b))

Q -* © , e e * E x^ -JU ^^ (5.7) 

followed by a supergauge transformation selected so as to camcel the 

change in all the auxiliary fields. Since the combined supersymmetry- 

plus supergauge transformation gives zero at X=0 (note that (3.3.3a) 

vanishes from (3.2.18) with a=^0) it follows that the supersymmetry 

transformation (5.7) is equivalent to a supergauge transformation. The 

"missing* collective coordinate is that corresponding to this 

supergauge transformation. The argument of ref. [1] would only be 

valid if the function f of eq.(5.4) were supergauge invariant, which 

is not the case here: the integrand in eq.(5.6) is not supergauge 

invariant. (Note that the integrand in eq. (5.5) (after tedding the 

trace) is supergauge invariant and here their argument works; the 

integrand effectively does not depend on 9).

In spite of the failure of this argument for the vanishing of the 

higher order corrections to eq,(5.1), the j3-function given in eq.(5.2) 

is correct for all the renormalisation scheme independent coeffi­

cients. This means that, at least up to two loop level the higher 

order corrections must indeed cancel.

Substituting nt = ^n and nf = 2n for the case we considered (N=l 

supersymmetry) we see that our semiclassical result (4.47) agrees with 

(5.1) (disregarding irrelevant supergauge and superghost integrals 

and factors of p). However our zero mode counting was different ; The 

2n fermionic supergauge anomalous modes (see (4.37) and below) meant 

that the quantum prepotential had equal numbers of fermionic and 

bosonic modes so that the preexponential factor of (5.1)

v%)

is equal to unity. The Pauli-Villars regulator which is introduced as 

a term
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in the action yields (c.f. (5.1)) 

which is also unity. Our powers of g and M come purely from the ghost 

sector: there are 2n ghost zero modes for each chiral ghost. There 

are 3 chiral ghosts (c, c', and r; - see (4.35) and (4.21)) and each 

yields a factor of M^ (see discussion below (4.46)) so that we

recover the factor of

In addition the c-ghosts yield a factor of (^ T^ ^ = 
-In.

a = 8
from the 6-function constraints which factor out the ghost zero modes 

(see below (4.39)). In this way we recover the factors of M and g as 

in (5.1).

Ihe zero mode counting given in ref.[l] is the one appropriate for the 

Wess-Zumino gauge [3] auid it would appear from ref.[l] that this is 

the gauge they were considering. Ibis gauge however is not super- 

symmetric and the results of graphical calculations can not in general 

be cast in the form (5.4).

we have reached the conclusion that the argument given in ref.[l] for 

the vanishing of all higher order corrections to equation (5.1) is 

invalid. Does there exist some other proof that an all orders 

cancellation exists in some standard normalisation scheme? To try to 

gain some clue as to the answer to this question we turn to our 

calculation of section 4.3.

First note that the sum of the In^ dependent contributions at two 

loops ((4.53) and (4.62)) does indeed vanish. At two loop order this 

is however to be expected from the known D-function (as is readily 

verified by differentiating expression (4.47) by In# and using g^ = 

2n/3o )' At higher loop order the value of the explicit In# dependent 

terms involves the third and higher order g-function coefficients. 

Iberefore the vanishing or otherwise of these terms will depend on the 

renormalisation scheme. Ref.[l] however, requires that these higher 
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order terms do indeed vanish. In our case (since the contributions 

from the discrete sector of the Jacobian vanish to all orders, see 

beginning of section 4.3) this implies that the short distance and 

long distance (explicitly) In^ dependent terms must cancel to all 

orders of perturbation theory, but we have gained no insight in the 

process of this calculation which would lead us to conclude that this 

holds true. In fact the theorem of ref.[l] implies that the full 

graphs (such as those in fig.5.1 and fig.4.2) must vanish identically 

- even before renormalisation; We see from equations (4.52) and 

(4.61) that this is not true for dimensional reduction even at two 

loops, (a fact which is readily verified by solving the ^-function for 

the coupling constant renormalisation Zg and applying this to the 

semiclassical result (4.40)). Thus not only is the proof in ref.[l] 

incorrect but it is impossible to construct a proof which will hold 

for graphs in dimensional reduction.

However the vanishing of the full graphs before renormalisation 

clearly depends on how one regulates: Note that, for example, in a 

gauge invariant higher derivative regularisation [9] we will find a 

vanishing 2 loop contribution (because the divergence is tied to the A^ 

dependence through ln(A/Ai) ). This latter regularisation is nwre 

appropriate because it preserves identities relating to instantons 

(Which only exist in 4 dimensions), unfortunately it is not clear how 

one should use the background superfield method in this case (or for 

any other regularisation scheme that stays in 4 dimensions [10]) since 

the form of the divergence allowed by the present method (see equation 

(4.48)) is very specific to dimensional reduction.

If it were true that the full graphs in the background of an instanton 

vanished, to all orders, identically (using an appropriate regular­

isation schemie) then one might expect that such a cancellation could 

be deduced in a straightforward manner by formal manipulation on the 

full graphs using covariant V-algebra, instanton identities (such as 

W^ = 0 and the equations of motion) amd the full propagators of 

section 3.4. One can readily convince oneself however that such a 
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program merely generates the scalar graph (of fig.4.4) plus terms 

containing one or more field strengths (Wy), and consequently any 

cancellation between these terms is far from evident.

The higher order In# dependent corrections (from three loop order 

upwards) are renormalisation scheme dependent and therefore can only 

cancel in some particular renormalisation scheme. Presumably we wish 

to preserve the gauge and supersymmetry Ward identities and instanton 

syimnetries (such as self duality) but we do not e)q)ect this to be 

sufficient to determine the scheme, or equivalently the 0-function, 

uniquely. Thus any general proof for the cancellation must depend on 

this particular renormalisation scheme; Prom our work we have no clues 

as to what this scheme might be.

In summary, despite the fact that we understand how to do higher order 

calculations in an instanton background field, we have been unable to 

construct a proof that an all orders cancellation of quantum 

corrections exists.
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