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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF MATHEMATICAL STUDIES 

MATHEMATICS 

Doctor of Philosophy 

MAPS AND HYPERMAPS - OPERATIONS AND SYMMETRY 

by Lynne Denise James 

Just as a map on a surface is an imbedding of a topo-
logical realisation of a graph, a hypermap is an 
imbedding of a topological realisation of a hypergraph. 
The algebraic theory of (hyper)maps facilitates both a 
study of the symmetries of (hyperjmaps and a study of 
the possible imbeddings of (hyper)graphs via an asso-
ciated set of permutations. In chapter 1 we set out the 
established algebraic theory of maps on surfaces together 
with an extension to hypermaps and maps of higher dimen-
sion whose topological realisations include all cell 
decompositions of n-manifolds. 

There is a group of six invertible topological opera-
tions on surface maps which includes the well-known 
duality that interchanges vertices and faces. These 
operations arise naturally in the algebraic theory, being 
induced by the outer automorphisms of a certain Coxeter 
group. In chapter 2 we study the analogous groups of 
operations on hypermaps and maps of higher dimension. 

If the symmetry group of a map on a surface contains 
both a rotation centred on a face and a rotation centred 
on a vertex, each cyclically permuting successive incident 
edges, then the map is said to be regular. If, in 
addition, there is a symmetry which acts on an edge by 
interchanging the two incident vertices without inter-
changing the two incident faces then the map is said to 
be reflexible. In chapter 3 we consider a weaker version 
of these symmetry conditions, and in so doing we intro-
duce a class of highly symmetric maps and hypermaps that 
remains invariant under the operations discussed in 
chapter 2. We find that every finitely generated group 
may be regarded as a group of symmetries of some highly 
symmetric hypermap. 

Finally, in chapter U we give an application of the 
algebraic theory to an imbedding problem by classifying 
those imbeddings of complete graphs whose symmetry group 
acts transitively on edges. 
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INTRODUCTION 

Any imbedding of a connected graph in a con-

nected possibly non-orientable surface, with or without 

boundary, decomposing that surface into topological open 

discs, or half discs, can be regarded as a transitive 

permutation representation of a certain Coxeter group. 

The concept of an algebraic theory of maps, that is, 

graph imbeddings of the above type, was presented by 

Tutte [27] who defined an associated set of permutations 

acting on the set of doubly directed edges. Firm found-

ations for this were set down by Bryant and Singerman [$] 

following a full treatment of the orientable case by 

Jones and Singerman [l5]. We can consider hypergraph 

imbeddings in the same way. An algebraic theory of 

orientable hypermaps was first presented by Cori [6]. 

In [28], Vince considers a more general class of hyper-

map, to which he associates a transitive permutation rep-

resentation of a specific Coxeter group. More generally, 

in [24-] Ronan shows that any chamber system over a finite 

set, as defined by Tits [26], can%^' regarded as a cell 

complex. In chapter 1 we set out the established alge-

braic theory of maps on surfaces together with an exten-

sion to hypermaps and maps of higher dimension whose 

topological realisations include all cell decompositions 

of n-manifolds. 

There is a group of six invertible topological 



operations on surface maps, isomorphic to the symmetric 

group on three elements, that was first described by 

Wilson [31] for reflexible maps and later by Lins [l9] 

for all maps. These operations arise naturally in the 

algebraic theory, being induced by the outer automorph-

isms of the above Coxeter group, and were presented as 

such in [16] by Jones and Thornton. In chapter 2 we give 

generators for, and determine the isomorphism class of, 

the groups of outer automorphisms of an infinite family 

of Coxeter groups in order to study the analogous groups 

of operations on maps of higher dimension. This is done 

by viewing each Coxeter group as an amalgamated product, 

in several different ways, and uses induction on the 

dimension, the inductive step being provided by the 

determination of the centraliser of any element of 

finite order. Some light is thrown on the edge twists, 

or barrings, used by Edmonds [lO] in his characterisation 

of graph imbeddings. Hypermaps are similarly treated. 

If the group of symmetries of a map on a sur-

face contains both a rotation centred on a face and a 

rotation centred on a vertex, each cyclically permuting 

successive incident edges, then the map is said to be 

regular. If, in addition, there is a symmetry which acts 

on an edge by interchanging the two incident vertices 

without interchanging the two incident faces then the 

map is said to be reflexible [7]. Every regular map on 

a non-orientable surface is reflexible. Regular maps 

have been extensively studied; on the sphere they are 



the platonic solids. In chapter 3 we consider a weaker 

version of these symmetry conditions, and In so doing we 

Introduce a class of highly symmetric maps and hypermaps 

that remains Invariant under the operations discussed In 

chapter 2. We find that every finitely generated group 

may be regarded as a group of symmetries of some highly 

symmetric hypermap. 

Finally, In chapter 4- we give an application 

of the algebraic theory to an Imbedding problem. In [l] 

Biggs showed that the complete graph on n vertices has 

a regular Imbedding In an orlentable surface without 

boundary If and only If n Is a prime power. The examples 

he gave were Cayley maps based on the additive groups of 

finite fields. The symmetry group of any regular Imbed-

ding acts transitively on both vertices and edges. In 

[2] Biggs showed that any Imbedding of a complete graph. 

In an orlentable surface without boundary, whose symmetry 

group acts transitively on vertices can be described as 

a Cayley map. We classify those Imbeddlngs of complete 

graphs. In a possibly non-orlentable surface without 

boundary, whose symmetry group acts transitively on 

edges. This relies on the classifications of 2-homogen-

eous groups by Ito [l2] , Zassenhaus [32] and Kantor [l7] , 

and Includes those surface maps that attain the upper 

bound on the number of symmetries of an Imbedding of a 

simple graph with n vertices in a surface without bound-

ary. We find that essentially each can be described as 

either a Cayley map based on the additive group of a 



finite field or as the image of such a map under one of 

the operations discussed in chapter 2. 



CHAPTER 1 

Maps and Hypermaps 

l) First we briefly outline the algebraic theory 

of maps developed in [5] and [15]. A map /? is a con-

nected graph Q imbedded (without crossings) in a con-

nected surface S (possibly non-orientable or with bound-

ary) such that each of the faces of n (the connected 

components of J \ ^ ) is homeomorphic to an open disc Lor half disc . 

To each map n we associate a set 0 of blades: whenever 

an edge e meets a vertex v we draw on the surface a 

pair of blades, one on each side of e . We define three 

permutations of Q, as follows: r transposes each such 
2 

pair of blades, r sends each blade to the blade at the 
0 

other end of e and on the same side of e , and r trans-
1 

poses pairs of blades with a vertex and face in common; 

Fig. 1 illustrates the effect of these permutations on a 

blade 3 . We refer to an orbit of Q under the cyclic 

subgroup < r > as a dart of the map. (These definitions. 

3r 

3r r 
0 2 

Figure 1 
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require some slight modifications, allowing r , r , r or 
0 1 2 

r r to have fixed points on 9, , when /7 is on a surface 
0 2 

with boundary or when the underlying graph of PI has free 

edges. Full details may be found in [$].) Clearly these 

permutations satisfy the relations 

r^ = T^ = r^=irr)^=l , 
0 1 2 0 2 

and by the connectedness of f! they generate a transitive 

permutation representation of the group 

r = < r , r , r , 2 _ ^ 2 r- = r" = r" = (rr)^=l"^ 
0 2 

Conversely, given a transitive permutation representation 

of r on a set 9, , we can reconstruct the map PI : we 

define the vertices, edges and faces of PI to be the 

orbits in Q, of the dihedral subgroups /r , r \ , /r , r ̂  
\ 1 2 / \ 0 2 ' 

and <̂ r̂  , r ^ of F , with incidence corresponding to non-

empty intersection of orbits. We observe that a Petrie 

polygon of PI is then an orbit of the subgroup /r r , r") 
^ 0 2 1' 

as illustrated in Fig. 2 , (A more sophisticated approach, 

described in [$] and [l5], is to represent F as the 

3r r r 
0 2 1 

Br r r r 
1 0 2 1 

Figure 2 
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automorphism group of a certain tessellation on a Riemann 

surface, and to take n to be the quotient of this tessel-

lation by a suitable subgroup M of r .) This gives a 

bisection between maps and transitive permutation repre-

sentations of r (or more strictly between isomorphism 

classes in each category). 

Each map n determines a permutation represent-

ation which is isomorphic to the action of r (by right 

multiplication) on the cosets Mg of a subgroup M ̂  F ; 

this subgroup M , the map subgroup associated with /? , 

is the stabiliser in F of an element of 9, , and is 

uniquely determined up to conjugacy. The automorphism 

group of the map can be realised as the action of N/M 

on the cosets of M by left multiplication, where N is 

the normaliser of M in T . A map is both orientable 

+ 
and without boundary if and only if M ̂  T [s] , where Ty is. 

the even subgroup of T , generated by r r and r r , 
0 2 1 2 

which we denote by X and Y respectively, with present-

ation 

= < x , Y | x ^ = i > . 

Two subgroups of determine equivalent maps, ^up to, 

orientation-preserving isomorphism, if and only if they 

are conjugate in r"*" . The orientation-preserving auto-

m orphism group of such a map can be realised as the action 

of N^/M on the cosets of M by left multiplication, where 

is the normaliser of M in F"*" . 

3 -



2) There is an analogously developed algebraic 

theory of hypermaps in, for example, [6], [28] and [30]. 

A hypermap is a map on a surface S with underlying graph 

Q satisfying the conditions: 

(i) Q is trivalent, 

(ii) Q has no looped edges, 

(iii) no vertex of 0 lies on the boundary of S , 

(iv) every free edge of Q meets the boundary of J , 

together with a colouring of the faces by { 0 , 1 , 2 } 

such that every edge is bordered by two different coloured 

faces. Fig. 3 gives an example of a hypermap on a disc. 

Figure 3 

The faces of the map coloured 0 , 1 , 2 are called the 

hypervertices, hyperedges and hyperfaces respectively, 

and we refer to an edge that is bordered by both a hyper-

vertex and a hyperedge as a hyperdart. 

This definition of a topological hypermap 

differs slightly from those of [6], [28] and [30]. Cori 

[6] takes the surface to be orientable and contracts each 

hyperdart to a point; Walsh [30] also takes an orientable 

surface, and considers the dual of the two coloured map 

- k -



formed, by contracting each hyperface to a point; Vince 

[28] allows the surface to be non-orientable and con-

tracts each hypervertex to a point (we refer to this as 

the underlying two-coloured map). Each represents an 

imbedding of a topological realisation of a hypergraph. 

We observe that by expanding vertices and edges we can 

regard any map on a surface as a hypermap. 

To any hypermap we associate a transitive 

permutation representation of the group 

G = /r , r , r I = r^ = r^ = l"> 
^ 0 1 2 0 1 2 ^ 

by colouring each edge of the underlying map with the 

complement of the colours of its incident faces. This 

gives the Schreier coset graph for a subgroup in G , and 

thus a transitive permutation representation of G . In 

this case the permuted set is the set of vertices of the 

underlying map. 

Conversely, given a transitive permutation 

representation of G on a set SI , we can reconstruct a 

hypermap: we take the Schreier coset graph of the stab-

iliser in G of an element in Q , replacing any looped 

F & 6 y f a edge'^%ken'attkch. a disfc, or half disc, coloured c 

r̂ Co each component^;$0rm6d deletion of all edges coloured c . 

Definition 1.1. An algebraic hypermap is a transitive 

permutation representation p of the group 

G - /r , r , r | r^ = r^ = r^ = 1^ 
^ 0 1 2 0 1 2 

- 5 -



on a set . 

Definition 1.2. Two algebraic hypermaps p , p' are 

isomorphic if there exists a bisection (j) : Q' >Q'' and 

a group isomorphism a : Gp—-—>Gp' such that r^pa = r^p' 

for all i e { 0 , 1 , 2 } and the following diagram commutes 

Q X Gp 

9 

Q' X Gp" 

the horizontal arrows representing the group actions. 

We shall identify the permutation r^ with its image 

rĵ p when no confusion is likely, and refer to the ele-

ments of 0 as hyperblades. The stabiliser in G of a 

hyperblade is • ̂ ef^r-ed^to as a hypermap subgroup. 

Many of the results of the algebraic theory of 

maps go over easily to the algebraic theory of hypermaps. 

For example, the automorphism group of a hypermap can be 

realised as the action of N/M on the cosets of M by 

left multiplication, with obvious definitions for N and 

M . 

3) More generally, in [28] Vince defines a 

combinatorial map over a finite set I to be a connected 

graph ^ , regular of degree |I|, whose edges are |l|-col-

oured such that no two incident edges are the same colour, 

and defines an isomorphism of two combinatorial maps to 

be a colour-preserving graph isomorphism. Clearly combin-

- 6 -



atorial maps are equivalent to Schreler coset graphs 

^(W,M) for groups W , generated by Involutions, and 

subgroups M $W . We let N^(M) denote the norraallser in 

W of M . 

Proposition 1.3, [28, 7.5]. If ^ is a combinatorial 

map with Schreler representation , then 

Aut(^) - N^(M)/M . 

Proof; For each u £ N ^ ( M ) the function f ̂ : Mg i 5>Mu~^g 

Induces an automorphism of ^ . Hence there is a homo-

morphism (|) : N^(M) > Aut(^) given by ui > f^ . Since 

ker (f) = M we have only to show that (j) is surjective. 

Let f e Aut(^) and assume that f : Ml > Mu~^ . This 

implies that f : Mgi > Mu ^ g for all g eW . Therefore 

f = f^ . Moreover, u e N^XM) because for all g e M both 

Mu~^g and Mu~^ is the image of M under f^ • 

4-) Finally, motivated by the generalisation of 

topological maps on surfaces to maps of higher dimension, 

we consider a third family of combinatorial maps. 

Suppose that ^ is a cell decomposition of a connected n-

-manifold without boundary. Let A/7 be its barycentrlc 

subdivision, and label each vertex of A/7 with the dim-

ension of the cell that it represents. We define a set 

of permutations on the n-simpllces of A/7 as follows. 

For each l e { 0 , l , 2 , . . , n } each (n-l)- simplex of 

A/7 whose vertices are not labelled by 1 is contained 

in precisely two n-slmplices of A/7 . We define r^ to 

- 7 



be the permutation that transposes each such pair of 

n-simplices. Since the boundary of each n-cell is itself 

a cell decomposition of a connected (n-1)-manifold, and 

each (n-l)-cell is contained in no more than two n-cells, 

there is an inductive proof that if j > i+1 then r^ and 

rj commute. 

Definition 1. U. An n-dimensional algebraic map is a 

transitive permutation representation p of the group 

n 
= <r , , r 2 _ 

n 1 " =1 , k > j+1) 

on a set . %:.E].emê ts of refe to as n-blades. 

Definition 1.5. Two n-dimensional algebraic maps p , p' 

are isomorphic if there is a bisection <1) : ̂2 > and a 

group isomorphism a : T^p >r^p' such that r\po = r^p' 

for all i E {0, 1, . . , n} and the following diagram 

commutes, 

2̂ X r p 
n 

X r p' 
n 

- > Q. 

the horizontal arrows representing the group actions, 

We shall identify the permutation r^ with its image 

under p when no confusion is likely, and refer to the 

stabiliser in of an element in ^ as a map subgroup. 

To each n-dimensional algebraic map H we ass-

ociate an n-dimensional cell complex A/7 as follows. Let 



I denote the set {0, 1, . . , n} . For each element 

3 £ , let A3 be an n-simplex. Arbitrarily assign to 

each vertex of Ag a distinct element of I . Call the 

set of elements assigned to a face s of A6 the type of 

s . Let K be the disjoint union of the set {Ag | . 

In K identify two simplices s G Ag and s'£ Ag' of the 

same type J if and only if g and g' are in the same 

orbit of the subgroup generated by {r^ | i e l \ j } . If 

denotes this identification then take A/? = K/% . Thus 

we have formed the cell complex associated by Ronan [2^] 

to the partitions of the elements of 0 into their orbits 

under the subgroups <r^) for i e I . Intuitively A/? can 

be thought of as being built from n-simplices, one for 

each element of Q , such that two n-simplices share a 

common codimension 1 face if the corresponding points 

are adjacent in the Schreier coset graph associated with 

the representation. 

We note that | A/̂  | is not generally a manifold. 

For this it would at least be necessary for each orbit 

of the subgroup generated by {r^ | i c I {n}} to repre-

sent a map on an (n-1)-sphere. This can soon fail for 

n > 2 . For representations of manifolds by edge-coloured 

graphs see [9] and [20] . 

The orbits in Q of the subgroups <r̂ . | j E I\{i}) 

are called the i-faces of H , with incidence corresponding 

to non-empty intersection of orbits. Furthermore, as 

observed by Vince [28, 4.2], there is a partial order on 

these faces defined as follows: let x be an i-face and 

- 9 -



y a j-face of /? then x < y if and only if x is inci-

dent with y and i $ j . We need only show that < is 

transitive. Suppose that y < z . It is sufficient to 

show that X n z ̂  0 . Let g be a finite sequence 

(^, . . , g^) of elements in then g 

acts on 0 in the obvious way and we can choose g to 

satisfy the conditions: 

(i) xg n z ̂  0 , 

(ii) of all such sequences g is minimal with respect 

to its length m and, 

(iii) of all such sequences g is minimal with respect 

to the length t of the initial subsequence of ele-

ments in {r^ I £ e l , ^ < j} . 

We must show that m = 0 . Assume that m 0 . If t = 0 

then the first element in g can be removed, contradict-

ing the minimality of m . Similarly, if r^ is the last 

element in g then £ > j . Thus 1 $ t < m and we can con-

tradict the minimality of t by interchanging the posi-

tions of g^ and • 

— 10 — 



CHAPTER 2 

Operations 

l) There is a well-known duality for maps on sur-

faces that interchanges vertices and faces while retaining 

certain important features such as the automorphism group. 

Wilson [31] and Lins [l9j gave topological descriptions 

for other similar invertible operations on surface maps 

which, together with the above duality, generate a group 

isomorphic to S . In [16] Jones and Thornton showed 

how these operations arise naturally in algebraic map 

theory, being induced by the outer automorphism group of 

r . In this chapter we study the analogous groups for 

hypermaps and maps of general dimension. 

of.a connected. 

dual map. Cells 

% b f dimension n-i 

PaChs in / I 

^ | ^ ^ p S e | ^ r a p h dual to A/1 and paths in /I along the gra]^ dual" 

we see that the duality of maps on manifolds corresponds 

of sequences in ( r, r, } that acts by interchanging 
•»' Xhi',' ! •••" 

' and r^.( . This duality preserves the set of 

^ , (r, rj : Ik-JI >1 } . i t also preserves the juxta-

sequences. Thus we have a duality of elements in 

^i6i|3^W&8'i&ves group multiplication. In other words, we have a. group 

;Stut(xa0rphism of , This group automorphism induces the duality 

&{ofJ maps oh manifolds by its action on map subgroups. 

'We define an operation on the topological realisation of 

^i^i-dimensic(nal algebraic maps'to be any transformation induced by the 

l^action.of s^grouj^ automorphism of F, on the map subgroups. This 

def^hitionii^was first made by Jones and Thornton [I6] for maps on 

- :surf%es?^^e define an operation on (topological) hypermaps analogously. 

- 1 1 -
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K Q 



If a map PI has map subgroup M then , the 

image of PI under the operator a eAut(r^) , has map sub-

group . Thus the Inner automorphism group Inn(r^) 

acts trivially on maps, and so we have an induced action 

of the outer automorphism group 

Out(r^) =Aut(r^)/Inn(r^) . 

Similarly the action of Aut(G) induces an action of Out(G). 

We shall therefore determine the outer automorphisms of 

r n - a G . 

We first note the automorphisms 6^ and ct)̂  of 

^n " < r , | = (r^r^) ̂  = 1 , k > j+1 > 

defined by 6 : r. i > r / . \ and (t : r i > r r where $ 
n 1' ^ (n-ij n 2 ^ 02 n 

fixes r. for all i other than i = 2 . If we let H. 
n 

denote the subgroup <(̂8 , (|) )> of Aut(r^) then 

H 
0 

: 1 , 

H 
1 : <8n 1 8n = 1> ~ c , 

2 

H 
2 

= < V ^ 1 Qn == ^n 
= 1> : - s , 

3 

^n = = < V 'l̂n 1 «n = ^n 
= 1 > : n > 2 , 

and H^n Inn(r^) =1 . 

We also note that for each i e { 0, 1,.., n} 

is an amalgamated product P(n,r^) of the subgroups G^(n,r^) 

and G (n*r^) by the subgroup A(n,r^) where if denotes 

{r , . . , r^} then 
0 n 

G (n,r ) = < R \ { r . } | r .̂  = (rj^r^) ̂  = 1 , ^ > k + l> , 
1 1 n 1 J ^ 

- 1 2 -



G (n,r. ) - <R \ { r / .+-,N} | r / = (r. r ^ = 1 , ^ > k+l> , 

A (n,r^) - ^(i±l)^ I r/ = (r^r^)2=l , ^ > k+l> 

n - --(i±l)' ' r. =irkr^, 

I . 
J 

If W is a group generated by a subset of invol-

utions S then the couple (W,S) is called a Coxeter sys-

tem if the following condition is satisfied 

(C) For s, s' in S let m (s, s ) be the order of ss' ; 

let I be the set of couples ( s, s') such that m ( s , s') 

is finite. The generating set S and the relations 

(ss')^(^'^ ^ =1 for (s,s') in I forms a presenta-

tion of the group W . 

It is easy to see, by taking appropriate homomorphisms 

of , that the couple is a Coxeter system. 

We have. 

Theorem 2.1, [4-, IV.1.8]. If (W,S) is a Coxeter system 

then 

(i) For all subsets X of S , the couple (<X>,X) is a 

Coxeter system 

(ii) If is a family of subsets of S then 

- ' 

Finally, we draw attention to the representa-

tion of by a Goxeter graph: 

r r r r 
0 1 2 n 

The nodes are to be interpreted as generating involutions 

for a group whose only other relations come from the com-

mutativity of non-adjacent generators. (Note that we go 

- 13 -



against convention in that we do not interpret the cube 

of a product of adjacent generators as a relation.) Thus, 

for example, the graph below would be interpreted as 

X (or more strictly as being in the same isomorphism 

class). 

0̂ (n + j )'̂  (n+j+1 ) '̂ (n + j+m) 

In the following we use the notation C^(g) and 

Z(W) for the centraliser of g e W and the centre of W 

respectively for any group W . 

Lemma 2.2. There is a bijection between the sets of non-

adjacent elements of and the conjugacy classes of 

elements of finite order in T . 
n 

Proof; Let T be those n c M for which any element of 

finite order in is conjugate to a product of non-

adjacent elements of . Clearly 0 e T and, by the 

torsion theorem for free products [21, IV.1.6], l e T . 

Suppose that k ) 2 and that n e T for all n < k . By the 

torsion theorem for amalgamated products [21, IV.2.7], 

any element of finite order in is conjugate to an 

element of either G (k,r, ) or G (k,r, ). But 
1 K 2 

G.(k,r^) = and G^(k,r^) ^ , and so 
1 

by hypothesis k e T , Suppose that the product of one 

set of non-adjacent elements is conjugate to the product 

of another. Then, by abelianisation, the two sets must 

be equal. • 

- \ l\ -



Proposition 2.3. (r.) = G (n,r.) and if {s s } 
in J 2 J 1 m 

is a set of commuting elements of then 

Proof; Suppose that t e C„ (s ...s ). Let s = s ...s and 
1 n 1 m 1 ra 

let i e { l , . . , m } . Then s e G (n,s.)\A(n,s.). Let 
2 1 1 

t = t̂  . . . t^ be in the reduced form of P(n,s^) and suppose 

that k ^ 2 . If t , ti E G (n,s.) then s^^eG (n,s.)\A(n,s.) 
1 ^ 2 1 2 1 1 

and t^s e A (n, s^ ) . Whence r, G^(n,s^)\ A(n,s^) 

and so by the normal form theorem for amalgamated products 

[21, IV.2.6] trusts ^ 1 . Thus t ̂  C^__(s . . .s^) . If n 

either t or t, are in G (n,s.) then we find a similar 
1 K; 1 1 

contradiction. Whence k ^ l . Suppose that t c G (n,s^)\ 

A(n,s^) then again by the normal form theorem t ^sts^l 

and so tj^C„ (s...s ) . Whence t e G (n, s. ) and 
Tn m 2 1 

Op (s...s ) 5 1 1G (n,s.) . If we put m = l and s = r. 
In 1 M i=i 2 1 1 J 

then we have C„ (r.)^G (n,r.) and thus Op (r.) =G (n,r.) 
i n J 2 J i n J 2 J 

The following proposition can be seen as a corollary to 

theorem 2.1, but we include a direct proof. 

Proposition 2.4. If {s s^} is a set of commuting 
Til 

elements of R then C (s.) ^ {5 s })> where 
1 n n 1 in 

V^{s,.., s^} is the subset of elements of that com-

mute with every member of { s^, . . , s^} 

Proof; Let t e | ) (s.) and assume that t / 1 . Let 
i =1 ^ 

t = t ...t, be a reduced decomposition of t with respect 
1 k 

to . Let r ^ E { S y . . , s^} and suppose that t^ ^(i+l) 

for some j : 1 ̂  j < k . Then t c C p (r^) = G^(n,r^)EG^(n,r^^^) 

- 15 -



Let j (l) < j (2) < . . . j (p) be those j for which t^ . 

Let "o (q)+l)• •-^(j (q+l)-l) 

for all q : 0 < q < p , and let "t(j(p)+l)'"'tk * 

t = Uor(i+2) ^p where e G ̂ (n, r^^^ ) for all q : 

0 ̂  q ̂  p . Suppose that u^eA(n,r^_l_j^) for some q : 0 < q < p . 

Then = r ( i + l ) U q r ( i + l ) = " q "hich contradicts 

the minimality of k . Thus u^ e G ̂  (n, ) \ A (n, r̂ _j_̂  ) 

for all q : 0 < q < p . Let |w| denote the length of w 

in P(n,r%^^). If p ) 2 then 

^o^(i+l)^i ^(p-l)^(i+l)^p ' ̂  2p-l ^ 3 

But teG(n,r^^^) and so 111 $ 1 . Whence p = 1 and 

-1 _ , - 1 , - 1 
U(j~^tu^~ = 1 • But Uq" tuJ EG^(n,r%^^) and 

e G^ (n, \ A(n, r^^^ ) so lug'^u^"'r^^^^ | $ 1 {n,r. J \ R{n,T. ) so |u~^-^"~' 
2 

which contradicts the normal form theorem for amalgamated 

products. Thus there is no j such that t. 
J 

Similarly there is no j such that t. =r. . Whence 
J 1 

tj E V^{ s 1, . . . , s^} for all j : 1 $ j $ k . • 

From propositions 2.3 and 2.4- we have 

Lemma 2.5. The centraliser in of a product of a set 

of commuting elements of is presented by the Goxeter 

graph for less those nodes adjacent to some element 

of that set. • 

Corollary 2.6. Z(r^)=l for all n > 0 . 
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Proof: If g e Z ( r ) then n 

g e C „ ( r r r . . . ) n C „ ( r r r . . . ) 
n 0 2 4 

= < r , r , r , 
0 2 4 

n 13 5 

> n < r 
1 "a' "s' 

.> 

1 , by abelianisation. 

For g e let y(g) be the set of those conjugacy classes O 

of elements of order two in T such that ZCp (h) =C , 

for all h e C , and g e (_J (h) . By lemma 2.2 | y (g) | 

is finite, 
heC 'n 

Proposition 2.7. If g e f and a e A u t ( r ) then 

Iy(g)I = Iw(g^)I . 

n n • 

Proof; C E y(g) < > C'^ e y(g^) . 

Proposition 2. 8. |y(r^) | = [{ry e : j i {2, (n-2), (i±l)}} ( 

for all r. e R . 
1 n 

Proof; By lemmas 2, 2 and 2.5 {r ̂  e R^ : j i [2, (n-2)}} 

represents the conjugacy classes C of elements of order 

two such that ZC (h) - C for all h e C . Suppose that 
i n 2 

r. is adjacent to r. . By abelianisation r. ^ (r. ) , 
J " 1 " 1 -

and so the conjugacy class of rj does not belong to 

y(r^) . Conversely, if rj is not adjacent to r^ and 

j i {2, (n-2)} then its conjugacy class does belong to 

y(r^) . • 

Corollary 2.9. If |y(r^)| = |y(r^)| then 

i e {0, 1, 3, (n-3), (n-l), n} . • 

- 17 -



Lemma 2.10. If a e Aut ( r ) then there exists ct c <( F , H \ 
^ 1 \ n n/ 

such that r i = r 
n n 

Proof; If n = 2 then let W = {r , r , r r } else let 
n 0 2 0 2 

{ r ^ e I j ̂  {2, (n-2)}} . By lemmas 2. 2 and 2.5 

represents the conjugacy classes C of involutions 

that satisfy ZC (h) =20^ (r^) for all h e C . Thus 
in ^ n ^ 

^n ^ ^ ̂ n some g e . If n = 2 then we are done, so 

we assume that n ^ 2 . By proposition 2. 7 I y (r^) | = | u | 

and so by corollary 2.9 r^® = r. for some i in 
6 

{0,1, 3, (n-3), (n-1), n} . Thus E {r/ g\, r, ^ ^ r } 
n {n-3) In-l;' n 

for some 6 e { 0, 1} . 

Let denote the set of sets of commuting elements of 

and, for g E F^ , let U(g) be the group Cp (g) modulo 

ZCn (g) . 

Suppose that . Then ) . 

If n = 1 then " = r and we are done. 

If n = 3 then F^ - 1 , which is false. 

If n > 3 then , thus |P („.2) I = IP („.3) I . 

which is false. 

Suppose that r ^ ^ " "^(n-3) ' Then U(r^) - U ( r ^ ^ _ ^ p . 

If n = 3 then and we are done. 

If n E {4, 5} then r(n_2) " ' thus |P(n_2) ' |P^| , 

which is false. 

If n > 5 then r(n_2) ' ^ ( n - S ) * ^ ! ' thus |P(n_2)l equals 

' that is, 3|P(n_5)l - But if S E P ( n _ 5 ) 

then S, Sv{r(n_2)}, cP(n-2) ' 

Whence |P^^ ^ ̂  | > 3 |P ^ ̂  | and so again a contradiction. • 

- 1 8 -



Proposition 2.11. Aut(r ) = /r , H 
1 1 

Proof: Let a e Aut(r^) . By lemma 2.10 there exists 

O'1 E such that r̂ "̂  i = r̂  . By the torsion theorem 

for free products there exists g e T such that is 
1 0 

in {r , r } . If r^°'iS=r then r™™ i % r = r*̂ ^ i , whence 
0 1 0 1 o i l 

» which can be contradicted by abelianisation. 

Thus r^^i = r® and so there exists m c iZi such that r^^i 
0 0 0 

is r̂  .conjugated by (r^r^)^ . Furthermore there exists 

6 e {0, 1} and k e such that = r^(r r . 
0 1 0 1 

Thus r={r'^(rr)^}"°'^=r'^{(rr)™r(rr)"'r}^. By parity 
0 1 0 1 1 1 0 0 0 1 1 ^ •' 

6 = 1 , and so k(2m-l) = 1 . Thus |2m-l | = 1 and m e {0, 1} . 

Whence aa,r^ = 1 and we are done. • 
1 1 

Proposition 2.12. For any two groups G and H , 

if p e A u t ( G x H ) and = H then pWgEAut(G) where tTq 

is the natural epimorphism : G x H- > G . 

TTp PTTp pTTp pTTp pWp 
Proof; G = ( G x H ) ^ = (G x H) ^ = G ^ x H ^ = G ^ . 

PfTp 
Suppose that for some g E .G we have g = 1 . Then g e H 

-1 
and so g E = H . Whence g = 1 . • 

Theorem 2.13. Aut(T ) is a split extension of Inn(r. ) 

by H , and thus Out(r ) - H . 
'' n n n 

Proof: We will show by induction on n that Aut(r^) is 

generated by Inn(r^) and . This is clear for the case 

n = 0 . We saw the case n = l in proposition 2.11, and 

the case n = 2 was proved by Jones and Thornton [l6]. 

We now assume that n > 2 and that Aut ( r ) = <'P , H "> for 
m m m 

- 19 -



all m < n . 

Let a £Aut(r^) . By lemma 2.10 there exists 

a 1 E such that . Thus aa ̂  restricts 

to an automorphism of Cp (r ) . By lemma 2.5 C„ (r ) 
i n i n ^ 

is X ^r^^ , where m = (n-2) .- So by proposition 2.12 

aa TT e Aut ( ) , where it is the natural epimorphism 

n' ; r ^ x . Thus by inductive hypothesis there 

exists h E and g E such that r/^^i = rJ^^ for 

some e , 0 $ i ̂  m . We note that 

= V ' l ' ( V m ' ' -

= (1- V m > . 

Thus there exists g, y, 6 E {0, 1} such that h is 

8 ̂  ^ . We note that tf) is the restriction of (J) 
m m m m ^ n 

to r . Thus if a, = g ^ then ^ _ for m 2 o n 1 1 1 

i : 0 ̂  i ̂  m , and = r ^ . Now if i ^ { 2 , m, (n-l), n} 
A y 

then |ZC„ (r.)|<|ZCp (r.'"^'"r)| ., Whence z. = 1 for 
i n 1 7= 1 1 n 1 

all i i [2, m} . If 3 = 1 then aa.a, : r ;—> r . But 
1 0 m 

|ZC„ (r ) I < |ZC„ (r ) | and so 6 = 0. Thus we have 
1 n 0 ^ ^ n ™ 

1 2 

r for n = 5 and n > 6 

•• ^i t—> ^i 

r 
2 

V 
r •" z 
2 

r 
2 

V 
r •" z 
2 

n̂, 1—» 

n-4 

r 
n 1—> ^n 

for n / 6 

which covers all cases except i = (n-l) . 

- 2 0 -



For n > 4- we have |ZC (r)| < |ZC (r r ) | . 

n 2 1 2 n 

Thus Zg =1 for n = 5 and n > 6 . 

Y 
A1 so I ZC (r̂  ) I ̂  I ZC p ( r g) I . Thus z ̂  = 1 for n = 6 . 

Furthermore I ) I ^ IZC^ ^ ̂  (n-4,) ^ ̂  without 

loss of generality y = 0 . Thus If we put z = r ̂  and 
^ ran 

let p = then p fixes r^ for all i^(n-l) ., and 

so restricts to an automorphism of C„ (r/ _\r/ r\r/ 
in (n-y) [n-/j 

If we let' G be the subgroup <( r^, r^^ ^ ̂  ̂  and 

H the subgroup < (^-3) • (n-5) • ̂ (n-7) • ' ''> then 

(^(n-3)r(n-5)r(n--7)'-') H" = H . So by prop-
? . PTfn 

osition 2.12 ptt̂  e Aut(G) . Now r^ = r so we can deduce 
PTTp 

from the proof of proposition 2.11 that r / x is 
(. n -1; 

^(n-l) conjugated by r ^ for some 6e {0, 1} . 

6 6 
Whence ( ̂  (^-i) ̂  ^ ^ ̂  (n-1) ̂  ̂  ^ ^ ̂  (n-1) ^ for some h e H . 

Thus pr^ multiplies r^^ ^^ by h and fixes all other r^ . 

If n = 3 then h = rĵ  for some n E {0, 1} and so pr̂ *̂  = 1 , 

Whence a e / T , H \ . 
N n n 

If n > 3 then (r(^_^,h) .ZC,. . C 
2 

Thus h = 1 and pr"̂  = 1 . Whence again a e <fr , H ^ . 
n ° ^ n n 

It follows that Aut(r ) = <(r , H y for all n . • 

We now consider the group 

G = < r , | ^ ̂  = r ̂  = r ̂  = 1 ) . 

Theorem 2.14-. If S ̂  is the group of automorphisms of G 

induced by the permutations of {r^, r^, r^} and $ is the 

automorphism that conjugates r̂  by r̂  then Aut(G) is 

generated by S ̂  and tj) , and Out(G) -PGL(2,2.) . 

- 2 1 -



Proof: If a eAut(G) then, by the torsion theorem for 

free products, for all i c {0, 1, 2} there exists j such 

that • Thus a restricts to an automorphism of 

^ ' If X - r̂ r̂  and y = r̂  then {x, y} is a free basis 

-h + 
for G , whence G is a free group of rank 2 F 

Consider the natural composite map 

e : Aut (G)-* Aut (G^) = Aut (F^ ) Aut (F^/F^ ) = GL(2,Z) -» PGL(2,Z), 

where F^ denotes the commutator subgroup of F 

We analogise the proof of lemma [21, 1,4.. 5] which states 

that the kernel of the natural map from Aut(F ) onto 

GL(2,%) is InnfF,) . 

For {i, j, k} = {0, 1, 2} let be the auto-

morphism that transposes r^ and r^ , and let 4)̂ ^ be the 

automorphism that conjugates r. by r. . If R is the 

matrix 

-1 0 
0 1 

0 1 
1 0 

-1 0 

1 1 and Rg the matrix , R^ the matrix 

then R^, R^, R^ - generate PGL(2,Z) with defining 

relations 

_ 2 _ 2 _ 2 3. 2 

=R^ = (R^R^) . (R^R,) = 1 , 

where R^ denotes the image of R^ in PGL(2,Z) [7, 7.2]. 

We have 

v % 
X = r r 1 > r r , > r r , > r r = y 

0 1 1 0 1 2 1 2 

y = r r , » r r , > r r , > r r = x 
1 2 1 2 1 0 0 1 

^2 - 1 0̂1 _ 1 
X = r r , > r r = x x = r r , > r r = x 

O l i o 0 1 1 0 

y = r r , > r r = x y y = r r , » r r = y 
1 2 0 2 1 2 1 2 
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Whence if a_ = & 0 4) , a = a and a = $ ̂  then R. =a. 0 
1 01 1 01 2 2 3 01 1 1 

for all i E {1, 2, 3) , and so 6 Is onto. 

We have a? = cj)? . = 1 , whence = a^ = a^ = 1 . 
1 ^ J 1 2 3 

Furthermore (a a )^ = ((J) o $ o)^ = (j) a a ) ^ = ( r a a ) ^ 
1 2 01 1 01 2 01 21 1 2 1 1 2 ' 

2 
= r q a r a a r o a = r r ( a a ) r o a 

1 1 2 1 1 2 1 1 2 1 2 1 2 1 1 2 

= r^r r (o^oj ̂  = r r r E Inn(G) 

and (a^a j:: = ^ Inn(G) . 

Let /? be the set of defining relations for PGL(2,Z) and 

F^ the free group with basis {x^, x^, x ̂ } and homomorphisras 

TT, p defined by it : x^ > a a n d p : x^ ,—» . We have 

Ker( e ) S (Ker (p) )7T = /? (x ̂ , x ̂  , x 3) tt ^ ^(a ̂ , a ̂  , a ̂ ^ Inn (G) , 

where / i denotes the normal closure of / i . Moreover, 

r 
0 - 1 

X = r r , >. r r = x 
01 10 

— 1 — 1 
Y = r r I > r r r r = xv x 

12 0 1 2 0 

r r 
1 —1 2 — 1 — 1 

X = r r , > r r = x x = r r , > r r r r = y x y 
01 10 01 2 0 1 2 

— 1 — 1 
y = r r , > r r = y y = r r ^ r r = y 

12 21 12 21 

Whence Ker(8) =Inn(G) , and so Out(G) -PGL(2,Z) . Moreover, 

Aut(G) = P G L ( 2 , Z ) e " ^ = < , R^, R^) 8"^ = <.a^, a^, a^"} Inn(G) 

and so Aut(G) is generated by S and ct . • 
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3) We now consider the topological interpretation 

of some of these outer automorphisms. Clearly 8 cor-

responds to the well-known duality for surface maps, 

interchanging vertices and faces. Furthermore, the auto-

morphism (|) , which Interchanges vertices and Petrie 

polygons, corresponds to Wilsons opposite operator [3l] 

which is described as follows: make a directed cut along 

each edge and then rejoin corresponding sides in opposing 

directions. We illustrate this in Fig. 4- • 

(i) 

(ill ) (iV ) 

Figure 4 

Clearly S acts on hypermaps by permuting the 

hypervertices, edges and faces. We now verify that (}> is 

the result of applying to the underlying two-coloured 

- 24-



map. 

To any hyperblade 3 of a given hypermap we 

associate a blade 3' of the underlying two-coloured map 

drawn on the incident edge coloured 0 at the incident 

(contracted) face coloured 0 and on the same side as the 

incident face coloured 2 (see Fig. 5 ) . 

(gr.)' 

N / (6r„rr„) 

(Br. )' 

Figure 5 
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Then under 4) we have 
2 

(3r )' = 3'r 

(Br)' 3'r 

(gr )' = 3'r r r 
2 2 1 2 

^ 6'r = 

3'r̂  = (3r )' 

3'r r r r r = ( 3 r r r ) ' 
0 2 1 0 2 0 2 0 

thus the action of $^ is equivalent to that of cj) . 

It may be of interest to note that the automor-

phism = (J)®̂  , which interchanges faces and Petrie poly-

gons, leaving the underlying graph unchanged, may be 

topologically described, for a map with neither free edges 

nor boundary, as follows: remove a disc from each face 

of the map, then make a directed cut across each edge, 

rejoin in opposing directions and finally attach a disc 

to each boundary component. In Fig. 6(i)-6(iv) we show 

each stage of this operation on the usual imbedding of 

the complete graph on four vertices on a sphere, Fig. 6(iv) 

represents a cube which is to be antipodally identified. 

(i) (ii ) 

(iii ) (i V ) 

Figure 6 
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This o p e r a t i o n e s t r i c l o c a l l y to the single edge twists 

used by Edmonds [lO] in his characterisation of graph 

imbeddings. Every imbedding of a graph without free edges 

in a surface without boundary may be described in the 

following way: for each vertex of the graph give a cyclic 

ordering to the incidences of edges, thus orientably 

imbedding the graph [s], and then to each edge assign the 

value 1 or 0 according to whether or not it is to be 

twisted. 

Analogously we consider the operation induced 

by the automorphism of- G \1j = 4)® where 0 transposes 

the symbols r̂  and r̂  . Thus $ conjugates r̂  by r̂  . 

Topologically, for a hypermap without boundary, ip has 

the following description: remove each hyperface of the 

hypermap, then make a directed cut along each hyperdart, 

rejoin in opposing directions and finally attach a disc 

to each boundary component. In Fig. 7 we show each stage 

of this operation on a simple example. 

(i) ( 1 1 ) (111 ) 

Figure 7 
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a hyperdart twist corresponds to an edge twist of 

the underlying bipartite map considered by Walsh [30]. 

It is readily verified that every imbedding of a hyper-

graph in a surface without boundary may be described as 

follows: for each edge of the hypergraph give a cyclic 

ordering to the incidences of vertices and for each vertex 

give a cyclic ordering to the incidences of edges, thus 

orientably imbedding the hypergraph, finally to each 

vertex-edge incidence assign the value 1 or 0 according 

to whether or not it is to be twisted. (in essence we 

have defined the orbits of < r^, r̂  ̂  and <( r^, r̂ ") in the 

Schreier coset graph, and then specified how they are to 

be identified.) 

We note that if we fix a vertex of an priented 

surface map with neither free edges nor boundary and twist 

each incident edge then we reverse the cyclic ordering of 

incident edges at that vertex whilst preserving the orient-

ability of the map (see Fig. 8 ). It follows that if Q is 

a graph without free edges whose vertices are at most tri-

valent then any two imbeddings of Q in a surface without 

boundary are equivalent under a sequence of edge twists. 

4.) We now consider an algebraic description of an 

edge twist, omitting some detail for simplicity of pres-

entation. For this purpose we make the following defin-

itions . 

Let 6 be the natural homomorphism from the 

free group F generated by {r^, » which we denote 
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Figure 8 

(i) 

\ 2 / 

V % y V y V 

(il) 

\ / 

/ \ 

\ / 

V v ' N 

(iii ) 

•v 7* 
\ / 

/ 
> \ > . \ / ^ 

/ \ 
4- ^ 

(i V ) 

by R , onto F and let Q be any finite graph without 

free edges, with spanning tree T , imbedded as a map H 

in a surface without boundary. Let M denote the stabil-

iser in r of a blade g of and let ^(M) denote the 

Schreier coset graph for M in T with respect to R . 

We denote edge sets and vertex sets by the letters E and 

V respectively. 
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For V E (M) let e(v) denote the supporting 

edge of the associated blade in H , and let T(M) be the 

subgraph of ^(M) with identical vertex set such that if 

v^, V are i-adjacent in ^'(M) then they are i-adjacent 

in T(M) unless one of the following holds: 

(i) i = 2 and e(v^) =e(v^) eT 

(ii) i = 0 and e(v^) = e(v^) ^ T 

(iii ) i = 1 and M e {v^, } 

Clearly T(M) is a spanning tree for . Infact every 

vertex apart from M and Mr^ has valency 2 in T(M) , 

We let U(M) be the Schreier transversal for the pre-

image of M in F ̂  determined by T(M) and let X(M) 

denote the generating set for M determined in the usual 

way by U(M) , as presented in [21, E. 4.l] for example. 

If w E Fg then w has a unique reduced decomposition w 

with respect to . Let w be the corresponding seq-

uence in R (produced by changing negative powers to 

positive powers). We note that if u E U(M) then u - u 

and r^ is never adjacent to r^ in u . 

Given e E we will define functions f from 

U(M) onto U(M ) and g^ from X(M) onto X(Mg) such 

that f fixes the identity element, M is the stabiliser 
e ® 

in r of a blade g in the imbedding of Q obtained 

from by twisting e and the following diagram commutes, 

where darts (^) is the set of directed edges of Q ; 

d a r t s i s the set of orbits of < r^> in V^(M) ; 

OCM.g) and are induced by the natural 
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darts(^) 

darts(^(M)) 

id. 
->• darts (^) 

-> darts (^ ( ) ) 

Identifications of blades in and /? with V^'(M) and 

V^(M^) respectively; and, for u c U(M) , sends the 

dart Mue<r^> of ^•(M) to the dart M^uf^6<r> of . 

Thus we assume that in specifying an edge of Q we 

specify an orbit of r^, r^^ in V^(M) . 

For e E EP we define a function f^ from U(M) 

into F ̂  as follows. For u e U ( M ) let S (u) denote the 

set of initial sequences u^ of u such that u^r^ is 

also an initial sequence of u and Mu^6 e e . Thus S^(u) 

has at most two elements and e e T if and only if S (u) 

is non-empty for some u eU(M) . There are three cases 

to consider. 

(i) If S (u) is empty then define uf to be u 

(ii) If S (u) consists of a single element u^ then 

there is a unique element u^ e U(M) such that 

Mu 0r r = Mu^ 0 
1 0 2 2 

Define uf to be (u r.u ^u) . 
e 1 0 2 

(iii) If S (u) has two elements then let u^ be the 

shorter and u^ the longer. Define uf^ to be 

/ — 1 — 1 \ * 
(u r u u r u uj . 

1 0 2 1 0 2 

Fig. 9 gives an example of the latter two cases. 
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Figure 9 

Mu ̂  6 

Mu 6 

For e E we define a function from X(M) 

into r as follows. First note that any reduced decom-

position of w in r with respect to R is largely deter-

mined by the normal form of w in F considered as a 

free product of the groups 

/ r I r^ = 1 ^ and \ r , N 1 ' 1 / ^ 0 
= r ̂  = (r ) 2 = 1 )> , 

and recall that if u e U(M) then r cannot be adjacent 

to r in u . If x E X(M) then there exists u , u eU(M) 0 — 1 2 

and r. E R such that (u r. u~^) is a reduced decompos-
1 — 1 1 — 2 

ition of X with respect to R and u ̂  has maximal length. 

It follows from the above remarks that u ̂ , u^ and r^ 

are unique. Fig. 10 gives an example. If i = 0 and 

Mu^e E e then define xg^ to be (u ̂  f ̂  ) r (uf ̂  ^ 0 where 

u is the unique element in U(M) such that Mu^Br^r is 

Mu6 , otherwise define xg^ to be ^ ^ ^ ^ i 2 ^ e ^ ^ ' 

Finally, let M denote the subgroup generated 
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Figure 1 0 

Mu ̂  0 

by X(M)g . Then is the stabiliser in T of a blade 

g in the imbedding of Q obtained from /? by twist-

ing e , fg is a function from U(M) onto U(M^) and g^ 

is a function from X(M) onto X(M^) such that f^ fixes 

the identity element, is well-defined and the above 

diagram commutes. 

acts',:J^p./is not hard to see now that M is a 

free group of rank |E^| + 1 . An intuitive proof of this 

is as follows. Since has neither boundary nor free 

edges M is torsion free by the torsion theorem for free 

products and so M is a free group by the Kurosh subgroup 

theorem for free products [21, 111.3.6]. Suppose that a 

subset S of X(M) is a free basis for M such that 

S A { X , x~^} is empty for some x e X ( M ) . Consider the 

reduced decomposition (u^r^u"^) for x with respect 

to R with u^, u^ E U(M) , r^ e R and u^ maximal. Let 

w be any element of < S "> and let w be any reduced 

decomposition of w with respect to R . By considering 

we see that there is no initial sequence w^r^ of 
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w such that Mw, = Mu 6 and so u r. cannot be an initial 
— 1 1 —1 1 

sequence of w , whence x i . Thus if x E X(M) then 

Sn{x,x~^} is non-empty, in which case clearly S is of 

order | | + 1 . 

Little and Ringeisen [iS] have shown some 

interest in the use of topological edge twists to prove 

the double cover conjecture for bridgeless graphs, that 

is, that in every bridgeless graph one can find a family 

C of cycles such that each edge appears in exactly two 

cycles of C . Clearly this is equivalent to imbedding 

the graph in a surface without boundary such that each 

edge borders precisely two faces. 

If e E then e is a bridge of Q if and only 

if e is in every spanning tree T of ^ . The two ways 

in which an edge may be monofacial are illustrated in 

Fig. 11 . 

Figure 11 
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clear that in the first case there is an edge twist 

that strictly decreases the number of monofacial edges 

without changing their type. For Pt orientable Little 

and Ringeisen showed that in the second case there is a 

sequence of edge twists that strictly decreases the number 

of monofacial edges of an imbedding of a bridgeless graph. 

Algebraically, H has m monofacial edges of 

the second type where m is one quarter of the number of 

cosets of M containing (r^r)^rr^ for some n e N . 

Infact it is sufficient to prove the double cover conjec-

ture for cubic graphs Q and, as we have seen, any two 

imbeddings (without boundary) of Q in this case are 

equivalent under a sequence of edge twists. 

5) In [29] Vince defines an operator on combin-

atorial maps called the 6-dual. Let W be a group gener-

ated by involutions r̂  , r^, . . . , r^ and let Q be the 

Schreier coset graph for some subgroup of W . Call a 

word w in W an involution if every path of type w^ is 

closed. Let 3 = {w^ | i e {0, 1, . . , n}} be an indexed set 

of involutions. Define a new {0, 1,.., n} - labelled graph 

as follows. The point set of is that of Q , and 

two points are i-adjacent in if and only if they are 

connected by a path of type w^ in Q . If is connec-

ted then it is a combinatorial map which is called the 

3-dual of It is clear that the operations induced by 

the outer automorphisms of and G are equivalent to 

B-duals. 
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In [31] Wilson constructed an operator H^ . 

If j is relatively prime to the valency of each vertex 

of a surface map then H^ fixes the underlying graph and 

redefines the faces to be j th order holes, that is, 

cyclic sequences of edges, each two consecutive ones 

sharing a vertex, so that at each vertex the adjacent 

edges subtend j faces on one side, either the right or 

the left but consistently throughout. These operations 

were interpreted algebraically in [16] as being induced 

by the outer automorphisms of the group 

r[2,m,°°] = < . r , r , r | r^ = r^ = r^ = (r r )* = (r r = l/» 
0 1 2 0 1 2 02 12 

/ • 1 ^ 

that fix r̂  and r̂  and send r̂  to (r^r^)^ r̂  , where 

j is relatively prime to m . 

The set of reflexible surface maps and hyper-

maps, that is, those that are in some sense most symmetric, 

is closed under the operations induced by the outer auto-

morphisms of r and G . In the next chapter we consider 

the symmetry of surface maps and hypermaps and introduce 

a class of highly symmetric surface maps and hypermaps, 

containing the reflexible ones, that is also closed under 

all such operations. 
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CHAPTER 3 

Symmetry 

1) In this chapter we restrict our attention to 

surface maps and. hypermaps of high symmetry. We start 

with some definitions. 

A map /? is reflexible [?] , [l6] if Aut(/V) 

acts on the set of blades. If H is orient-

able and without boundary and the subgroup of orientation-

preserving automorphisms Aut^(/7) acts transitively on 

the set of darts then H is regular [?], [l$]. A map PI 

is all -symmetric if Aut(/7) acts transitively on the 

vertices, edges and faces. If /? is either reflexible 

or regular then is all-symmetric for every operation 

a (induced by an automorphism of F ). We define such a 

map to be highly-symmetric (which we abbreviate to H.S.). 

If H is a subgroup of F then /? is H-symmetric if 

Autin) acts transitively on H-orbits of blades under the 

action of F as a permutation group. 

Reflexible, regular, all-symmetric, highly-

symmetric and H-symmetric hypermaps are defined similarly. 

Proposition 3.1. A map is H-symmetric if and only if 

NH = F where N is the normaliser in F of the map subgroup. 

Proof: If /V is a map with map subgroup M then Aut(/7) 

acts transitively on H-orbits if and only if for any g e F 

there exists u e N p ( M ) such that Mu~^H = MgH, that is, geNH 
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The analogous proposition for hyperraaps, replacing T by 

G , is similarly proved. 

It follows that a map or hypermap is reflexible 

if and only if the (hyper)map subgroup is a normal sub-

group of r or G respectively, and a map or hypermap is 

regular if and only if the (hyper)map subgroup is a 

normal subgroup of or G^ respectively. 

We call the Schreier coset graph (with respect 

to {r^, r^, r̂  } ) of any subgroup of T a T-graph . If H 

is a subgroup of T then an H-symmetric T-normaliser is 

any subgroup N such that NH = T , and an H-symmetric F-

graph is the Schreier coset graph of an H-symmetric V -

normaliser. So a map is H-symmetric if and only if its 

map subgroup is normalised by an H-symmetric T-normaliser, 

that is, by a node stabiliser of an H-symmetric T-graph. 

If d is the r-graph of a subgroup N of F 

and a e A u t ( r ) then we denote the F-graph of N®' by 5°' 

and identify the nodes of D with those of in the 

obvious way. 

We make analogous definitions for hypermaps, 

replacing F by G . 

now .look atH-symmetric F-graphs and G-graphs for 

We/note .that an edge of a map is an orbit of 

(. the Cdihedral ̂ subgroup f H = I r. = T., = (r.Tll = 1 > 

^t J^ad "edge-syramettic" 

for " H-symmetric " . Thus a map Pi is edge-symmetric by definition 

T'if and only if Aut( ) acts transitively on*e<jges. By the remarks 
. -.,rf ^ 

;of the above section, a map is edge-symmetric if and only if its map 

subgroup is^normalised by a node stabiliser of an edge-symmetric F-graph. 

By definition, an edge-symmetric F -graph is the Schreier coset graph 
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;:;«r,,,:. :,;;3*;B(\.,..',,;,. fr« to choose tfe A , choose the , 
••̂,0 ••• 

possible edge"r 

12' 

.A % -•<V.'. 

( 1 ) 

(ii) 

1 

(iii ) (i V ) (V ) 

(vi ) (vi i ) 

(viii ) 

0 

(xi ) (xii ) (xlii ) (xi V ) 
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We immediately observe the following. 

Theorem 3.2.[i3llf fl is an edge-symmetric map on a surface 

and A u t { n ) acts transitively on at least one of the set 

{vertices, faces, Petrie polygons} then Aut(^0 acts 

transitively on at least two of that set. • 

We also observe that the only all-symmetric T-graphs are 

graphs (i), (ii), (iii), (iv), (v), (ix), and (x) and that 

the only highly-symmetric T-graphs are graphs (i), (ii), 

(iii) and (iv) of Fig. 12 . 

Theorem 3.3. There exists an all-symmetric G-graph 

on any number of nodes. 

Proof; For any natural number n one of the following is 

an all-symmetric G-graph on n nodes. • 

n = 1 

n = 2 

n odd > 2 

2 0 2 

0 2 0 

0 2 0 

2 0 2 

2 0 2 0 2 0 

n even > 3 
2 0 2 0 2 
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We now consider the existence of highly-

symmetric G-graphs. 

For {i, j, k} = {0, 1, 2} if x and y are nodes 

of a G-graph that are connected by an {i, j}-path, that 

is, a path whose edges are coloured either i or j , then 

let dj^(x,y) denote the length of a shortest {i, j}-path 

from X to y . 

Proposition 3.4-« If Z) is an H.S. G-graph on n > 2 nodes 

and k e {0, 1, 2} then d^(x,xr^) is even for all nodes x . 

Proof: If not then there exists an integer p such that 

xr^ = x(r^rj)Pr^(rjr%)P where {i, j, k} = {0, 1, 2} . 

If y=x(r^rj)P then y (r^ r^ )Prj^ (r^r^. = yr^ . 

However, there exists a£Aut(G) sending ( r^ r^ )^rj^ ( r^r^. 

to r, and fixing both r. and r. . 
k ^ 1 J 

Whence in we have yr^ = yr^ , and so is not all-

symmetric, which contradicts the choice of z) . • 

Proposition 3.5. If D is an H.S. G-graph on n > 2 nodes 

and i e {0, 1, 2} then r^ has no fixed points in D . 

Proof; Suppose that there exists i e {0, 1, 2} such that 

xr̂ ^ = X for some node x . If { i , j , k } = { 0 , l , 2 } then 

xr^ ̂  X else D is not all-symmetric. By proposition 3.4-

there exists an integer p : 0 < 2p ^ (n-l) such that 

xr, =x(r.r.)P and so xr.r.r. =x(r,.r. )Pr. . We now choose 
iC J ]_ I K l j l l 

a EAut(G) sending r%r^r^ to r^ and fixing both r^ and 

r. . Then in Z)" we have xr. =x and xr, = x (r. r. )Pr , 
J 1 K ,] 1 1 

and so d^(x,xr^) = (2p-l) . Whence cannot be highly-
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symmetric, which contradicts the choice of D . m 

Corollary 3.6. If {i, j, k} = {0, 1, 2} then there is a 

spanning {i, j}-cycle in every H.S. G-graph on n > 2 

nodes, thus n is even. • 

For {i, j , k} = {0, 1, 2} if x, y and z are nodes of an 

H.S. G-graph on n > 2 nodes then let d^(x,y) denote a 

directed distance from x to y along the {i, j}-cycle . 

Clearly d*(x,y) +d^(y,z) Ed^(x,z) (mod n) and d*(x,xr ) 

is even. 

Proposition 3.7. If D is an H.S. G-graph on n > 2 nodes 

and k £ {0, 1, 2} then d^(x,xrj^) = 2 (mod 4-) for all nodes 

Proof; Let {i, j, k} = {0, 1, 2} . Then d^(x,xr^) is even 

and so there exists an integer p such that xr̂ ^ = x (r^r^. )P. 

Furthermore dt(x,xr^rj) is odd and so we have 

d.(x,x(r.r.)) + d. (x(r.r.),x(r.r.)^) + 
1 J- J J J 

. . +dt(x(r^rj)(P"^),x(r^rj)P) E dt(x,xrj^) 

modulo n . Now the left hand side is the sum of p odd 

terms but dt(x,xr^) is odd and n is even. Thus the 

left hand side must be odd. Whence p is odd. • 

Corollary 3.8. If D is an H.S. G-graph on n > 2 nodes 

then n = 0 (mod U) . 

Proof: n = d^(x,xr^)+d^(xr^,xr^) . • 
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We need some more definitions. An alternating m-gon is 

a cycle on m nodes {1, 2,..., m} whose edges connect 

vertices of different parity. Let t^ be the permutation 

( 1 2. . . m ) and for {x, y } G { l , 2, ..., m} let {x, be 

be the pair {xt^, yt^} . A good alternating m-gon is one 

whose edges can be coloured alternately red and blue such 

that the union of the blue edges with the images of the 

red edges under t^ is again an alternating m-gon. An 

example of a good alternating hexagon is given in Fig. 13 

Figure 13 

^3 ^ 6 f 

Proposition 3.9. If there exists an H.S. G-graph D on 

n > 2 nodes then there exists a good alternating &n-gon . 

Proof; Let {i, j , k} = {0, 1, 2} and let x be a distingu-

ished node of D . Colour a k-edge with vertex y blue 

if d^(x,y) is even, else colour it red. If we contract 

each i-edge {x(rj^r^)P,x(r^r^)Pr^} for p c f l , 2,..., gn} 

to a point v^ , with index to be read modulo gn. , then 

{V , V , . . . , vi } , together with the k-edges, forms a 
1 2 gn 

gn-gon with edges coloured alternately blue and red. 

Similarly, if we contract each j-edge {x ( r^r )^r , x(r^r^)P} 
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for p e {1, 2,..., sn} to a point , with index to be 

read modulo in, then {w , w ,..,wi } , together with 
1 2 g H 

the k-edges, forms a gn-gon with edges coloured alter-

nately blue and red. Furthermore, for p e {1, 2 in} 

there exists q =q(p) and r = r(p) where both q and r 

are odd such that x (r^r^ )Prj^ = x ( r^r^. ) ^ and 

X (r^r^ )Pr^r^ = X ( r^r^. ) r^ . Correspondingly, 

{Vp, "^(p+q)^ and {w^, are coloured blue whilst 

^(p+r)' '"(p+D- "(p+r+1)' are coloured red. 

Whence by identifying v with w^ it is clear that 

{v^, v^, , together with the k-edges, forms a 

good alternating gn-gon. • 

Proposition 3.10. There are no good alternating m-gons 

such that m = 0 (mod 4-) . 

Proof; Suppose that we have a good alternating m-gon 

such that m = 0 (mod U) . Let r be the permutation of 

nodes that transposes the vertices of red edges and b 

that which transposes the vertices of blue edges. Then 

we may write r = ( a^) ( ) ^^(m-l)^m^ 

b = ( a ^ a ^ )( a^a ) ( a^ a^ ) . Let s be the permuta-

tion ( a a a^ ) and t the permutation ( 1 2 . . . . m ) . 

For all X e {1, 2 m} there exists an integer p such 

that a t = a (rb)Pr since all three of t, r and b change 
X X 

parity of node. But r and b change parity of index, and 

so t changes parity of index. Furthermore, the images 

of the red edges under t^ are clearly the orbits of r^ . 
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Thus t is an m-cycle that changes parity of indices and 

is such that b is the product of two Am-cycles , 

fixing parity of indices. We note that b = r^ and that 

a r = a s ^ for x even, otherwise a r = a s . 
X X X X 

Whence for x even we have 

s t — 1 , — 1 I — 1 , — 1 — 1 , , — 1 — 1 , 
a r r = a s rst rt = a s sst s t = a st s t 
X X X X 

Thus st-'s-'t Indices " 5m-cycle . 

But this is the product of st, t ^, s ^ and st , 

each of which fixes parity of index. 

Whence st~^s~H I . .. e Ai , the alternating 
'even indices gm ° 

group permuting symbols, and so gm must be odd, 

which contradicts the choice of m . • 

Corollary 3.11. If D is an H.S. G-graph on n > 2 nodes 

then n s 4. (mod 8) . • 

For n = 0 (mod 4.) consider a set of n points 

labelled a^, b^, c^, d^ where r ranges from 1 to in , 

with indices to be read modulo in . For integers p and 

q we define a G-graph D on n nodes by 
n,p,q 

Br r. = by = °(r+p) 

Cr?. ''r ""2 = {r+q) 

Clearly the nodes of D are covered by a {0, l}-path. 
n» p » Q, 

The set of nodes of the longest {0, 2}-path through a^ is 

(*(r+u(p-q))' ^(r+u(p-q))' ^(r+q+u(p-q))' °(r+q+u(p-q)) 

r 

u e Z } 
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Whence the nodes of D are covered by a {0, 2}-path 
n»P »1 

if (in,(p-q)) = 1 . 

The set of nodes of the longest {1, 2}-path through a^ is 

^^(r+u(p+q+1))' ^(r-1+u(p+q+1))' ^(r-1-q+u(p+q+1))' 

^(r-l-q + u(p+q+l) ) ' " ̂  ' 

Whence the nodes of d are covered by a {1, 2}-path 
n f p» q 

if (in, (p+q+1)) = 1 . 

Proposition 3.12. If {i, j , k} = {0, 1, 2} then 5 is 
n,p,q 

invariant under the automorphism 

Proof: Consider the relabelling 

^ / " ° ( l - r ) ' V = ' ^ ( - r ) ' 

We have 

a ; ( r r r ) = c ^ . ^ , ( r r r ) = b ; 

b / r = d(_r)r =a(l_r) 

d(r-l)'^ =C(i_r) = a / 

' C(i_r)r =a(l_r_p) ==(r+p)' 

b / r ='J(-r)'', =f(-r-q) ='^(r+q)' 

Whence D is invariant under $ 
n, p , q 01 

Consider the relabelling 

^r "^(q-p-r) ' ^r ~^(-r) ' ^r ~^(-r) ' "̂ r ~^(q-p-r) 

We have 
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S ' f ' - a = ^ ( q - p - r ) < ' ; \ ' ; > ==(-r) =''r' 

= ' N - r ) '«{q-p-r) ='^r' 

V ' - . ='=(-r)'-i = N - r ) = = r 

^(r-1) ^(q-p-r+l)^i ~'^{q-p-r) ~^r 

2̂ ~ (q-p-r)^2 ~ ̂ ( -p-r) ~ ̂ ( r+p) 

Whence d is Invariant under (& 
n, p, q 02 

Consider the relabelling 

*r =d(_r) , b ; = e ( _ ^ ) , =%(_,.) . ' 

We have 

-v)\ = °(-r) = V 

Cr'r. = 
-r) ̂ 0 = *(-r) 

b ; r =C( 
-r)^i = ̂ - r ) = °r' 

d(r-l)'r. = *(1 -r)^i = 

='^(r+p)' 

='=(-r)('-o'-z^o^ ' ^ - r - q ) = ^ r + q ) ' ' 

Whence d is invariant under cf 
• n, p, q 20 

To complete the proof we note that = r^ and that 

every G-graph is invariant under Inn(G) . • 

Corollary 3.13. If (4n,(p-q)) = (in,(p+q+l))=l then 

^n p q highly-symmetric. 

Proof: By theorem 2.14- the automorphisms 4) ̂  generate a 

normal subgroup of Aut(G) with complement S , thus 

^,Aut(G)gg 3 , Furthermore, since d is all-sym-
n,p,q n,p,q n,p,q 
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g 
metric, each of D ^ is all-symmetric. 

n,p,q ^ 

Theorem 3.14. There an H.S. G-graph on n nodes 

if and only if n e {1, 2} or n = /i (mod 8) . 

Proof; By corollary 3.11 we need only show existence. 

The coset graphs of G and G^ in G give H.S, G-graphs 

on 1 and 2 nodes, and, by corollary 3.13, Z) is 
; 1 ; 0 

highly-symmetric for n = 4- (mod 8) . • 

Theorem 3.15. The number of equivalence classes of H.S. 

G-normalisers of index n = 4- (mod 8) under Aut(G) tends 

to infinity with n . 

Proof: We note that d and d , , , denote the same 
ri»P»q n » P » q 

labelled graph if and only if n = n' and (p-p') = (q-q') = 0 

modulo in . Whence we reduce the suffices p, q modulo 

in . If Z) and d , , , denote the same unlabelled 
n,p,q n ,p ,q 

graph then there is a symmetry p of the {0, 1}-cycle 

such that has the same labelling as d , , , 
n, p, q ° n , p , q 

If p is a rotational symmetry then has the same 
^ * P # 9. 

labelling as d . Whence the unlabelled graph denoted 
n, p, q 

bv Z) has at most U notations. Furthermore, 
K'P'S S 

we have that ^lAutlGjg^ 3 ^ and so each unlabelled 
ii»P»Q. ii»P»1 

graph lies in an orbit of size at most 6 . Whence there 

are at least | T^ | / 24 equivalence classes under Aut(G) 

of H.S. G-graphs on n = 4, (mod 8) nodes where T^ is 

the set of ordered pairs (p,q) such that 1 <p,q < in and 

(in,(p-q)) = (in,(p+q+1)) =1 . Thus it only remains to 

show that 1T^ I tends to infinity with n . 
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For any real number x let [x] denote the 

greatest integer less than or equal to x . 

Let l i n ) = [log^Cin)] and let Q be the set of pairs 

{2®, (in -2^)} where m is any integer between 1 and ^(n) 

Then | | - i { n ) . Furthermore, if {p, q} E Q then 

1 4 p,q < in and (in, (p-q)) = (in, (p+q+l) ) =1 . Whence 

|T^| >2|Q^| = 2^(n) >2(log2(in) - 1) , and so | | tends 

to infinity with n as required. • 

Proposition 3.16. Every H.S. G-normaliser N of index 

n > 2 is a free group of rank (gn + 1) . 

Proof; /I ,\ 
Let U = {1, r , r r (r r ) ̂  ~ ^r } 

0 0 1 0 1 0 

and B = {ur^ur^ ^ | u e U} u { (r^r^) 

where, for g e G , g is the unique element of U satisfy-

ing Ng = Ng . Then B clearly generates N (see for 

example [21, II.4-.1]) • Moreover, by considering the 

coset graph of N in G and applying the normal form 

theorem for free products [21, IV.1.2], it is clear that 

B' is a free basis for N of size (in + 1) where B' is 

any subset of B satisfying |{b, b ^} fi B' | = 1 for all 

b E B . • 

Corollary 3.17. Every finitely generated group can be 

regarded as a group of automorphisms of some highly-

symmetric hypermap. • 
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We finish by giving one more property of an 

H.S. G-graph. We call an alternating m-gon very good 

if its edges can be coloured alternately red and blue 

such that the union of the blue edges with the images of 

the red edges under t^ is again an alternating m-gon for 

all natural numbers I . The example given in Fig. 13 is 

very good, whilst Fig. 14- shows a good alternating 

hexagon that is not very good. 

Figure 14 

By the method of proof of proposition 3.10 it can be 

shown that very good alternating m-gons correspond to 

cyclic permutations t of {a^,..., a^} of length m that 

change parity of index and are such that the restriction 

of st~^s^~^^ t^ to symbols of even index is a Am-cycle 

for all natural numbers I , where s is the permutation 

( ) ' 

If D is an H.S. G-graph on n > 2 nodes then 

let C be the alternating gn-gon obtained by contracting 

the i-edges as described in the proof of proposition 3.9. 
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Proposition 3.18. C Is very good. 

Proof: If X Is the distinguished node used to construct 

C then 

0,(1).. 

{v , V } Is a blue edge of C ^ ̂  

{x(rj^rj )^, x(r^rj)^} Is a k-edge of d ^ 

{x (r^r^. )^, x(r^rj)^} Is a k-edge of D 

•^=^{Vp, v^} Is a blue edge of C , and 

,Ok*ji 

Oi 

{V , V } is a red edge of C k 
p q 

a red edge of 

<=> {x(r . r . )Pr. , 
X J ± 

x(r^r^ )%r%} is a k-edge of 

{x(r^.r^)Pr^, x(r .r. jS-r.} 
J X ± 

is a k-edge of 

{xfr^Tj )^r^ , x(r\rj } is a k-edge of 

<=> Is a red edge of C . 

Whence C ^ Is the union of the blue edges of C 

I 
with the Images of the red edges of C under t^ . 

Furthermore, since the Image of D under is 

/ \ ^ 

highly-symmetric, the image of C under is an 

alternating gn-gon. • 

The final chapter demonstrates the possibility 

of classifying imbeddings with prescribed symmetry. We 

shall classify the edge-symmetric Imbeddings of complete 

graphs in surfaces without boundary. 
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CHAPTER U 

Complete Maps 

l) If n is an imbedding of a simple graph with n 

vertices in a possibly non-orientable surface, without 

boundary, then its automorphism group acts semi-regularly 

on the set of blades, so has order at most four times the 

number of edges, being at most 2n(n-l) . This bound is 

attained if and only if ^ is a reflexible imbedding of 

a complete graph, thus we can regard such imbeddings as 

the most symmetric surface maps. Similarly, the regular 

imbeddings of complete graphs can be regarded as the most 

symmetric orientable surface maps. 

In [l] Biggs showed that the complete graph on 

n vertices has a regular imbedding if and only if 

n is a prime power. The examples he gave were Cayley 

maps based on the additive groups of finite fields, 

using the multiplicative action of a primitive element 

to generate the rotation. 

Any reflexible or regular imbedding is also 

both vertex- and edge-symmetric. In [2] Biggs showed 

that any orientable vertex-symmetric imbedding of a com-

plete graph in a surface without boundary can be described 

as a Cayley map. The aim of this chapter is to classify 

the edge-symmetric imbeddings of complete graphs in sur-

faces without boundary. 
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2) For motivation we start with an example of an 

orientable edge-symmetric non-regular imbedding of . 

we shall see later that this is unique. Consider 

the imbedding given in Fig. 16 of K^ in an orientable 

surface of genus 3 . There are three heptagonal faces, 

labedded 1, 2 and 3 , and seven triangular faces. We 

have a rotation of order seven about the centre of a hept-

agonal face that cyclically permutes the vertices, and 

the stabiliser of each vertex is generated by a rotation 

of order 3 . The imbedding is clearly edge-symmetric 

since the automorphism group is transitive on the edges 

incident with the centrally depicted vertex. fact- , if 

we regard the triangular faces as hyperedges and the hept-

agonal faces as hyperfaces then we have one of the two 

regular imbeddings of the Fano plane (see Fig. 15) regarded 

as a hypergraph [25]. The other is similarly related to 

the unique regular imbedding of K^ on a torus [30]. 

Figure 15 
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Figure 16 
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3) By considering the possible Euler character-

istics of the underlying surfaces it is easy to see that 

the only imbeddings of for n < 3 in surfaces without 

boundary are the usual imbeddings in a sphere and the 

imbedding of in a projective plane obtained by anti-

podally identifying a spherical imbedding of a graph with 

six 2-valent vertices. Furthermore, each of these are 

reflexible imbeddings. We thus assume that n > 3 . 

map 

may faithfully repres6nt^thg^map automorphism group /t as ^ 

/-homogeneous permutation group of order 

[N ; M] = [ r : Ml / Ir : n] = 2n(n-l) /[r : N] 

, 

the vertex set V . We note that if 4 has even ordWr then 

." it; t r ans i t i V e 1 y. 

[r : N] = 1 then N has graph (i) of Fig. 12 i 

t ahd-t./t a 2-transitive group of degree n and order 2n(n-l) . . i 

& 18 ̂  '{ 12]'%to shows that such a group either has a regular normal- j 

|,J1ubgroup, or n is 6 and the group is isomorphic to Aj or n is 28 

C and ..the group is isomorphic to a split extension of SL(2,8) by C_ . 

|'fWe'\jiil make use of Ito s methods later. 

f r r : N] = 2 then 4 is a sharply 2-transitive 

Egroupv By Zassenhaus's Theorem [32] (see also [ll, 20.7.1] ) 
-̂ v -

"we^catl identify the action of any such group with that of AGL(1,F) on 

liC's^e near'^field F , with | F | = | V | = n . I n particular /t is 

^ Ftohenius'and so a vertex stabiliser cannot be dihedral [23, 18.l] 

;r:V. . isithe vertex of the blade stabilised by M then 

= - M ' t <r, . r . ) A N V / M 
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Thus the graph of N is either (ii) or (iv) of Fig. 12 . In 

which case is abelian and can be identified with F , that is, 

F \ { 0 ) , and hence F is a field GF(n) where n is a prime power 

P® 

If [r 5 n ] = 4 then /t is a sharply 2-homogeneous 

group. By a classification of Kantor [l7] we can identify the action 

of any such group with the transitive action of a subgroup of index 2 

in AGL(1,F) on a near field F where |F| = | v | = n = p^ = 3 

modulo 4 . This is done in such a way that if G denotes the group 

AGL(1,F) then is centralised by a element of Gc,\ • Since 

/t acts transitively on vertices we have F = N < r, , rj^> and 

so the graph of N is none of (viii), (xiii), (xiv) of Fig. 12 

Furthermore, has odd order and so cannot be dihedral. Whence, since 

M { iTi) n N ) / M 

the graph of N is neither (ix) nor (xi) of Fig. 12 . Thus the 

graph of N is either (x) or (xii) of Fig. 12 . In which case 

is abelian and can be identified with a subgroup of index 2 in F . 

Moreover, /lo is centralised by an element of Go ̂ /to • identifying 

with f"* we see that F * is abelian. Hence F is a field 

GF(n). 

Thus we have shown that the coset graph of N in F is one 

of (i), (ii), (iv), (x) and (xii) of Fig. 12 . In cases , (ii) and 

(iv) /t is isomorphic to the group AGL(1,F) where F = GF(n) 

and n = p®- . In cases (x) and (xii) is isomorphic to the 

unique subgroup of index 2 in AGL(1,F) where F = GF(n) and 

n = p^ — 3 (mod 4). 

We recall the graph-preserving operation 4̂  that is induced 

by the automorphism of F that multiplies r^ by . This 

preserves the subgroup < r„ , r^> , whose orbits are edges, and so t 

preserves edge-symmetry. If is an edge-symmetric imbedding of 

with map subgroup M normalised in T by N where N has coset graph 

(iv) then is an edge-symmetric imbedding of with map sub-

^ normalised in F by where has coset graph (ii) , group M 

and vice versa. Similarly, if N has coset graph (x) then has 

coset graph (xii) , and vice versa. 
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It follows that either PI or has map sub-

group normaliser with coset graph (i), (ii) or (xii) of 

Fig. 12 where is the graph-preserving operation induced 

by the outer automorphism of T that multiplies r̂  by r̂  . 

If N has graph (i) then N = T and H is 

reflexible. If N has graph (ii) then N = r"*" which is 

presented by < X, Y | = 1 > where X = r̂ r̂  and Y = r̂ r̂  

thus is regular . If N has graph (xii) then 

N = r"̂ "̂  = < P, Z I - > where P = Y^ and Z =Y"*X , and so H 

is orientable. We shall call any orientable imbedding 

such that a type 3 imbedding. 

The following classification of the reflexible 

imbeddings of K_ in surfaces without boundary was first 

given in [l3]. 

n 
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Theorem 4-.1. Reflexible imbeddings of in surfaces 

without boundary exist only for n =1, 2, 3, 4- and 6 , and 

they are: the usual imbeddings in a sphere for n =1, 2, 3 

and 4- ; the spherical imbedding of the graph with six 

2-valent vertices, the cube and the icosahedron, with 

antipodal points identified in each case to give imbeddings 

in the projective plane for n - 3, i and 6 respectively; 

finally, the orientable imbedding of the 1-skeleton of 

the icosahedron formed by applying Wilson's operation 

to the icosahedron is antipodally identified to give a 

reflexible imbedding of K in a non-orientable surface 

of genus 5 . 

Proof: It's easy to check that the above maps are reflex-

ible imbeddings of complete graphs. We now verify that 

these are the only reflexible imbeddings of complete graphs 

in surfaces without boundary. 

We have already seen that the theorem is true 

for n 4 3 . For n > 3 suppose that ^ is a reflexible 

imbedding of . We make use of Ito's methods, the basic 

ides being to count the number of involutions in A . Let 

V and w be vertices, let E = A and K = /J / \ . Then 
I V, w; V 

H - D ^ ^ ^ j , generated by reflections r and t , and 

K = Cg , generated by t , with actions illustrated in 

Fig. 17 . Furthermore, there exists a reflection i 

that transposes v and w , and commutes with t . By its 

double transitivity we may decompose A into the disjoint 

union A = E + EtE . If h^ c H then 
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F i g u r e 17 

H^h ̂  4=^ ^ ̂  e H 4=» ^ ̂  (v) = v-<i=̂ h ̂  (w) = w4=^ h^ e K . 

So the number of residue classes of the form H^h^ is 

|H|/|K| = (n-l) . Suppose that h^ EH . Then 

(hg^hi)* = 1=̂ => h^^h^h^^h^ (v) = V'4=>h^h^^h^ (v) = t\î  (v) 

h ̂  h ̂  (w) - w 4=^ h^h^ E K 4 ^ h^efh^^, h^^t} . 

Thus the double coset H^H is itself a disjoint union of 

(n-l) right cosets of the form H^h^ , where h^ c H , each 

containing just two involutions. Thus there are 2(n-l) 

involutions in H^H . 

We now take the cases n odd and n even 

separately. For n odd there are n involutions in H 

and so n + 2(n-l) involutions in A . Each stabiliser 

contains g(n+l) involutions with exactly one fixed point, 

that is, that lie in no other stabiliser. Thus we have 

at least gn(n+l) involutions, and so n+2(n-l) >^n(n+l) , 

giving n ̂  4 , and thus a contradiction. For n even 

there are (n-l) involutions in H , so 3(n-l) involutions 

58 



in A . The number of involutions with exactly two fixed 

points equals the number of edges, that is, 5n(n-l) , so 

3(n-l) > 5n(n-l) , giving n = ̂  or 6 . We now examine 

these possibilities. 

Let there be f faces, each an m-gon. For n = 4-

the Euler characteristic of the underlying surface is 

4- - 6 + f and so f ̂  4- • We see that < 8^ and that r̂  

acts as a rotation of edges around a face. Thus r̂ r̂  has 

order m in and so m ̂  4- • But fm is just twice the 

number of edges, that is, 12 , and so f ̂  3 . If f = 4-

then (r^r^)^, (r^r^)^ e M and we are looking for M such 

that 

M ^ r [ 2 , 3 , 3 ] 

= < r , r , r I r/= r ̂  = r ̂  = ( r r j ̂  = ( r ) 3 = ( 3 ^ ̂  ^ 

S 
4 

But |r/M| =2n(n-l) = 24- = |S^| and so M = l . If f = 3 

then we are looking for M such that 

M ^ r[2,3,4] 

- X r , r , r I r ^ = r / = r ^ = ( r r ) ^ = ( r r ) ^ = (rr)'* = l > 
0 1 2 ' 0 1 2 2 0 1 2 1 0 

But |r/M| = 24- and so | M | = 2 . Therefore M = Z(r[2,3,4-]) 

and so in either case M , and thus M , is uniquely 

determined. Whence there are at most two reflexible 

imbeddings of K^ . 

If n = 6 then A cannot have a regular normal 

subgroup since n is not a prime power [3, 1.7.6]. We 
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now show that A must be simple. Suppose that L is a 

proper normal subgroup of A . Clearly L is transitive 

and thus is a normal subgroup of A_̂  - D ̂  of order 

either 2 or 5 . If |L | = 2 then L $Z(D ) against 
V V b 

Z(Ds) = 1 . If iL^I = 5 then L is sharply 2-transitive 

and n would have to be a prime power by Zassenhaus' 

classification. Thus A is simple of order 60 , and so 

M is the kernel of an epimorphism from T to A ̂  . 

We need only look for images of r , r^, r̂  in A ̂  

that form a generating set T of A^ up to automorphism 

of A ̂  . Hence we treat conjugation by 8 ̂  as an equival-

ence. We see that T contains two commuting involutions 

and we can assume that these are (12) (34) and (13) (24-) . 

The third element must move 5 , and we can assume that it 

fixes 4- (else conjugate by (14) (23), (24) (13) or (34) (12)) 

so it is one of (12) (35), (13) (2$) or (15) (23) . 

Conjugation by (23) identifies the first two choices, so 

there are only two possibilities for T , namely 

{(12)(34), (13)(24), (12)(35)} and 

{(12)(34), (13)(24), (15)(23)} . In the first case 

commutativity and orders of elements imply that: 

r ^ » — ( 1 2 ) (35) ; (13) (24) ; (12)(34) • 

In the second case commutativity implies that 

K — ( 1 5 ) (23) , and then conjugation by (23) fixes 

(15) (23) while transposing the other two, so either 

choice of images for r^ and r^ will give the same 

kernel . Thus there are at most two reflexible imbeddings 

of K, . • 
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5) From now on we let G denote the group AGL(1,F) 

where F = GF(n) and n = p® . Thus G is generated by the 

functions s : f •—• af , t, : f i—• f + b such that a, b e F 

with a non-zero. We let P be the set of primitive 

elements of F and let 0 = F \ {0} . Then P^ = {a^ \ & z P ] 

and 0^ = {b^ | b e (2} . Finally, let H denote the unique 

subgroup of G of index 2 for n = 3 (mod 4-) consisting 

of the functions f «—> b^f + c for b e (2 , c £ F . 

The following classification and description 

of the regular imbeddings of for n > 3 was first given 

in [l4-I . We use the same methods to classify and des-

cribe the type 3 imbeddings of for n > 3 . 

If M S = r"*" then M is the kernel of an epimor-

phism from to G , sending (X,Y) to (x,y) where 

o(x) = 2 and o(y) = (n-l) . Moreover, we now show that 

such kernels must give rise to imbeddings of . Since 

G acts transitively on vertices, the number of vertices 

is [G : G^] = [ G : < y > J = n , and the number of edges is 

just half the order of G . So we need only check that 

these maps have neither loops nor multiple edges. If 

loops exist then all edges are loops, against the con-

nectedness of the graph. If there is a multiple edge 

then all edges are multiple and so for some i, j ̂  0 

modulo (n-l) we have xy^xy^ fixing a dart, and hence 

it is the identity in G . Hence =x *y"^xy^ lies 

in the commutator subgroup, and thus the translation 

subgroup T , of G and therefore has order dividing 

|T| = n . However, y has order (n-l) so =1 . 
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Thus commutes with x and so lies in the centre of G ; 

this is the trivial subgroup (since n > 2 ), so i e 0 

modulo (n-l) , against our hypothesis. 

If MSn"*" = then M is the kernel of an epiraor-

phism from r"'""'" to H , sending (Z,P) to (z,p) where 

o(p) = 5(n-l) . Moreover, we now show that such kernels 

must give rise to imbeddings of . Since H acts trans-

itively on vertices the number of vertices is 

[H : = [H : < p > ] = n , and the number of edges is exactly 

the order of H . So we need only check that these maps 

have neither loops nor multiple edges. As in the regular 

case, there can be no loops. If there is a multiple edge 

then all edges are multiple and so XY^XY^ E M c r^^ for 

some i, j ̂  0 (mod (n-l)) since the valency of the vertices 

must be (n-l) , there being 5n(n-l) edges and n vertices. 

X ' X ' 

If i is even then so is j , in which case z is 

the identity in H . Hence p® - z ^p ®^zp^^ lies in 

the commutator subgroup, and thus in the translation sub-

group T , of H and therefore has order dividing |T| =n . 

However, p has order dividing (n-l) and so psfi+j) = % , 
JL • 

Thus p^^ commutes with z and so lies in the centre of H ; 

this is the trivial subgroup, so ^i = 0 (mod i(n-l)), 

against our hypothesis. If 1 is odd then so is j , in 

which case z ~ ̂p ̂  ̂ ^ ^ z~ ̂ p ® ̂ ^ is the Identity in H . 

Now o(p) = g(n-l) and so p ̂  T . Thus p has a fixed point 

and so, by conjugation, we can assume that p fixes 0 . 
Then p = 5* and = sft for some a,h,ceQ, and so 

a D C 

2 - a ( i - 1 ) 2~^p2(j-1) _ where u is a non-zero mult-
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iple of a ^ ̂ b ^ +1 , against - 1 ^ 0 ^ . 

Two regular maps are + isomorphic, that is, 

there is an orientation-preserving isomorphism between 

them, if and only if they have the same map subgroup. 

If M is the kernel of an epimorphism from to G , 

sending (X,Y) to (x,y) where o(x) =2 and o(y) = (n-l) 

and M' is a second such kernel, then M = M' if and only 

if [x, y] = [x'.y'] , where square brackets denote the 

equivalence class under group automorphisms. It follows 

that the equivalence classes under orientation-preserving 

isomorphisms of regular imbeddings of are in one-to-

one correspondence with the equivalence classes under 

automorphisms of G of 

E = { (x, y) E G X G I G = < x , y > , o ( x ) = 2 and o (y) = (n-l) } 

Two type 3 imbeddings with associated map sub-

groups M and M' are + isomorphic if and only if M' is 

one of {M, M^} . We note that =XY ^ and 

Y ~ ̂  

that P =P . If M is the kernel of an epimorphism 

from to H , sending (Z,P) to (z,p) where o(p) is 

s(n-l) , and M' is a second such kernel, then M' = M if 

and only if [z', p'] = [z,p], and M' = if and only if 

[z', p'] = p] . Furthermore, the normaliser of M 

in is strictly larger than if and only if M = . 

For (z, p), (z', p') e H x H we define [Z, p] , [z', p'] to be 

Y-paired if and only if [z', p'] = [z ~ ̂  p ~ \ p] . It is eany 

to see that this is a well-defined symmetric relation. 

We define a Y-pairing to be proper if it does not self-
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pair an equivalence class. It follows that the equival-

ence classes under orientation-preserving isomorphisms 

of type 3 imbeddings of are in one-to-one correspon-

dence with the proper Y-pairs of equivalence classes 

under automorphisms of H of 

Z' = { ( z , p ) e H x H I H = < z , p> and o ( p ) = M n - l ) } . 

We now classify the equivalence classes under 

automorphisms of G of E for n > 1 . If y E G has order 

(n-l) > 1 then y ̂  T and so has a fixed point, and so is 

conjugate by an element of T to an element of G^ . Thus 

if (x,y) E E then [x, y] = [s^t^, s^] for some a,b,c eQ . 

Now t^ is conjugate by an element of G ̂  to t ̂  . Thus 

[x, y] = [s^t^, s^] . Moreover, o(x) = 2 and o(y) = (n-l) 

if and only if c = -1 and a eP . Let x^ = s ^t^ , let 

a eP and let m = 0 or H n - l ) as n is even or odd, so 

that a^ = -1 . Then < x ̂ , s > contains all non-trivial 

translations 

t . = • 

a 

thus it contains T and G which together generate G , 

so (x,y) eZ if and only if [x, y] = [x^, s^J for some 

a e P . 

Let Gal(F) denote the Galois group of F over 

its prime field F^=GF(p); then each eeGal(F) induces 

an automorphism "0 of G , sending each element s^t^ to 

s gt Q . Clearly 6 fixes x^ = s_^t^ . 
a b 

- 64. -



0 

Lemma 4.2. Let a, Sl z P . Then [x ̂, s^] = s^,] if 

and only if a and a' are conjugate under Gal(F) . 

Proof; If a' = a® for some 9 e Gal (F) then 6 sends 

(X,,8a) to . 

Conversely, suppose that a eAut(G) fixes x 

and sends s to s , . Since a, a' e P we have a' = a^ 
a a 

for some i coprime to (n-l) . The function 9 ; F — • F , 

f I — f ^ , restricts to an automorphism of the multiplic-

ative group F , taking a to a' ; we shall show that 6 

is also an automorphism of the additive group of F , and 

hence an element of Gal(F) , as required. 

We must show that ( f ^ + f ^ ) ® = f ® + f® for all 

f ̂ , f ̂  e F . Since 0® = 0 , we can assume that f ̂ , f^ ^ 0 . 

If f^ + f^ = 0 then (f^ + f^)^ = 0 and 

f 0 + f 9 = + (_f = fi(l + (-l)i) = 0 
1 2 1 2 1 1 1 

(since if i is even then so is n ); hence we can assume 

that f ̂  + f 2 ̂ 0 . 

For any integers j, k, i consider the word 

W(g,h) . 

We see that WXXg.s ) is a composite translation 

where b = a^ + a^ - a^ . Since 8 , = , if we replace h 

by h^ and use the fact that im = m (mod (n-l)) , then we 

see that W^x^.s^/) = t^' where b' = â *̂ ' + a^^ - . 

Since f^, f^, f^+fg /^O, we have f^ , 

f2 = a^ and f^+f^ =a/ for suitable integers j,k and I ; 
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in the above notation this gives b = 0, so that 

is the identity in G and hence (applying a ) we have 

W(xQ,8g,) =1 . Thus b' = 0 , so â -̂  + a^^ = a^^ , that is. 

f 

Let ]_! be the homomorphism from G to F send-

ing s^t^ to a ( a e F , b e F ) , t h en 

Corollary 4-.3. Two pairs (x,y), (x',y') e E are equivalent 

under Aut(G) if and only if y(y) and y(y') are conju-

gate under Gal(F) . • 

Remark. fact;Ui^se show that every auto-

morphism of G is the composition of an inner automor-

phism and a "field automorphism" 9 ; in other words, 

Aut(G) can be identified with the group ArL(l,F) of 

transformations f i—> a f ® + b ( a e F ^ b e F , 0£ Gal (F) ) 

acting by conjugation on its normal subgroup G . 

If n = p® (p prime) then Gal(F) is cyclic of 

order e , being generated by the Frobenius automorphism 

ft—y fP ; thus Gal(F) has (J)(n-l)/e orbits of size e on 

P , and so 

Theorem 4-• 4.fi 4 l F o r each prime power n =p® there are 

0(n-l)/e orientation-preserving isomorphism classes of 

regular imbeddings of . • 

We now classify the equivalence classes under 

automorphisms of H of E' for n > 3 . If p e H has 

order 5(n-l) then p g! T and so has a fixed point, so is 
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conjugate by an element of T to an element of H ̂  . Thus 

if ( z , p ) E Z' then [z, p] = [s s^] for some a,b,ce(2. 

Now G normalises H and t^ is conjugate by an element 

of G g to t ̂  . Thus [z,p] = [sHj.s^] . Moreover, p has 

order s(n-l) if and only if a^ e . Furthermore, if 

a^ E then < s| _> contains t ̂  and so, since with-

out loss of generality a e P , contains all non-trivial 

translations 

a 

thus it contains T and H^ which together generate H , 

so (z,p) e E' if and only if [z,p] = [s2t^,s2] for some 

a. c P, CEO . 

As in the regular case, each 6 eGal(F) induces 

an automorphism 6 of H . Clearly 6 fixes t ̂  . 

Lemma /+. 5. Let a, a' e P and c, c e Q . Then 

[Sgt^, s|] = [Sg't^, s|'J if and only if (c*, a^) and 

((c')2, (a')^) are conjugate under Gal(F) . 

Proof: If (a') 2 = (a^)® and (c')^ = (c^)® for some 8 in 

Gal(F) , then 6 sends ( s H ,s^) to (s^yt ,s^/) . 
C 1 9. C I S , 

Conversely, suppose that aeAut(H) sends 

(s^t,, 8 ̂ ) to (s^vt , s^,) . Then a fixes both H and 
c 1 a c i a 0 

T (since T is characteristic in H ), and so a fixes 

t^ . Since a, a' e P we have a' = a^ for some i coprime 

to (n-l) . The function 6 : F — * F , f •—> f^ restricts 
% 

to an automorphism of the multiplicative group F , 

taking (c*, a^) to ((c')^, (a')*) ; we shall show that 
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6 is also an automorphism of the additive group of F , 

and hence an element of Gal(F) , as required. 

We must show that (f ̂  + f ̂  ^ = f ̂  + f 2 for all 

f ̂ , f2 £F , As in the regular case, we can assume that 

f ̂ , f2, f ̂  + f2 are all non-zero. 

For any integers j, k, i consider the word 

. . . ^2 ^3 ^5 "̂ 6 ^7 
W^(g,h)=h g h g h g h , 

where = - jj (n+l) ; = (-1)^ ; A^ = H j -k) (n+1) ; 

A^ = (-1)^ ; Ag = i(k-£)(n+l) ; A^ = (-1)^ ; A^ = i^(n+l) . 

We see that W'(t^, s^) is a composite translation t^ 

where b = a ^ ' + a ^ - a ^ . Since (Sg,)^^ , if we replace 

h by h^ and use the fact that i is odd then we see 

that W (13̂ , s^/) = t^^ where b' = â -̂ ' + a^^ - a^^ . 

Since f ̂ , f ̂  , f + f^ 7̂  0 we have f ̂  = a*̂  , 

k t 
f2 = a , fj + f^ = a for suitable integers j, k and t ; 

in the above notation this gives b = 0 so that W'(t ,s^) 
^ a 

is the identity in H , and hence (applying a ) we have 

..... „ - „ 
f° + f° = (f 1 + fj)" 

W' (t s^/) = 1 . Thus b' = 0 so a ^ + a ~ a , that is, 

Corollary 4-. 6. Two pairs (z,p), (z',p') e Z' are equivalent 

under Aut(H) if and only if (ij(z),y(p)) and (u ( z'), y (p') ) 

are conjugate under Gal(F) . • 

Remark. These arguments in fact show that for n > 3 

Aut(H) can also be identified with the group ArL(l,F) . 

If (z,p) e t then [z',p'] = [z"*p"^,p] , where 
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(z',p') e z' , if and only if (y (z'), y (p') ) and 

(y(z)~(p)~^,U(p)) are conjugate under Gal(F) . Thus 

[z,p] is self Y-paired if and only if y(z)^=y(p)~^, 

which has precisely one solution for y(z) z Q.^ , and so: 

Theorem 4-• 7• For each prime power n = p® = 3 (mod 4-) 

greater than 3 there are i(n-3)$(n-l)/e orientation-

preserving isomorphism classes of type 3 imbeddings of 

^n • • 

By identifying with G we have the coset 

graphs of M in corresponding to the regular imbeddings 

of with vertices, edges and faces corresponding to 

orbits of <Y> , <X> and < Z > respectively, and incidence 

given by non-empty intersection. This gives an orientable 

map, which we shall denote by /^(x,y) , and we have 

'^(x,y) =*^(x',y') , that is, there is an orientation-

preserving isomorphism between them, if and only if y(y) 

and y(y') are conjugate under Gal(F) . Each "^isomorph-

ism class contains a map /^(x,y) with x = x ̂  and y = 8 

for some a E P ; if we denote this map by /7(a) then we 

have: 

Theorem 4.8. The regular imbeddings of K ( n > 1 ) are 

+ . 
isomorphic to the maps /V(a) where a is a primitive 

element of GF(n) . We have /V(a) -^ /?(a') if and only if 

a and a' are conjugate under Gal(F) . • 

By identifying with H and by using the 

automorphism of induced by conjugation by X , we can 
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construct the coset graphs of M in F corresponding to 

the type 3 imbeddings of , as illustrated below, with 

vertices, edges and faces corresponding to orbits of 

<C XZ , < X > and < Z > respectively, and incidence 

given by non-empty intersection. 

W(P,Z) 

XW(P,Z)X 

M¥ (P,Z ) 

X 

MW(P,Z)X 

This gives an orientable map, which we shall denote by 

/7(p,z) , and we have ^(p,z) -^/7(p',z') if and only if 

(u(p'), )j(z') ) is conjugate under Gal(F) to either 

(u(p)>y(z)) or (u(p),y(z~^p M ) . Each ^isomorphism 

class contains a map ^(p, z) with p = and z = for 

some a. z P , ceQ ; if we denote this map by /7(a,c) then 

we have: 

Theorem 4-. 9. The type 3 imbeddings of K are "^isomorphic 

to the maps /?(a,c) where a is a primitive element of 

GF(n) and c e G F ( n ) \ { 0 } such that 
- 2 

We have 

/7(a,g) - /7(a',c') if and only if ((a') ̂  , ( c') ̂  ) is conjugate 

under Gal(F) to either (a^,c^) or (a*,a c ) . • 

We can give an alternative description of /7(a) 

as one of the Cayley maps introduced by Biggs [2] (see 

also [3]). Let g e G be given by 
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g = : f I—> bf + c 

where b, c e F and b ̂  0 . Then the coset g <y> , consist-

ing of the elements 

gy^ : f ^ (bf + c) , 

contains a unique translation t^y^ (with a^ = b~ ) , so 

we label the vertex corresponding to g <y> , via the 

identification of G with T^/M , with the element 

V = c/b E F ; this gives a bisection between V and F . 

Now 

gx : f «—> -bf + (l-c) 

and gyx : f » -abf + (l-ac) 

are associated with vertices labelled (l-c)/(-b) = v - b ~ ^ 

and (l-ac)/(-ab) = v - a ~ ^ b ~ ^ respectively; thus if we 

put a ^ = u then the vertices adjacent to v are labelled 

with the elements of F \ { v } =v + F in the cyclic order 

v + 1, V + u, v + u^, V 

corresponding to the orientation around v . We therefore 

have: 

Theorem 4.10. The regular imbeddings of ( n > 1 ) are 

"'"isomorphic to the Cayley maps /V(F,F ,r) where F = G F ( n ) 

as an additive group, the generating set for F is 

F = F \ {0} , and r is the cyclic permutation 

s : f t—> uf 
u 
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of F for some primitive element u of F ; two such maps 

are ^isomorphic if and only if the corresponding primitive 

elements are conjugate under Gal(F) . • 

We can also give an alternative description of 

/7(a,c) as a Cayley map. Let h e H be given by 

h = : f I—> b^f + d 

where b, d e F and b ̂  0 . Then the coset h < p > consist-

ing of the elements 

hp^ : ft—> a^^(b*f + d) 

contains a unique translation t^y^2 (with a^^ = b ^ ) so 

+ + 

we label the <Y)-orbit of the coset MU e T /M correspond-

ing to h with the element v = d/b^ e F . This gives a 

bisection between V and F . Now 

MUX<Y> = MUXY <Y> - M U Z " ^ < Y > 

and MUY*X<Y> = MUY:XY<Y> =MUY2Z"^< Y> . 

Furthermore, the cosets MUZ ^, MUYX, MUY^Z ^ correspond 

to the elements 

hz~^ : f I—> c~^b^f + c~^(d-l) 

hpz : f I—> c^a^b^f + (c^a^d + l) 

hpz ~ ̂  : f I—> c~^a^b^f + c~^(a^d - l) 

and so have vertices labelled (d-l)/b^ = v - b ^ , 

(c^a^d + l)/c^a^b^ = v+ c~^a~^b~^ and (a^d -l)/a^b^ = 

v-a~^b~^ respectively. Thus if we let u = a ^ and let 
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j be such that 

-a (*) 

then since 

c'* = a~^ =>• u'^"=-c^ = -(/a~^n(2^)=a~^=u 

c'*=(-a ^u'')^ = a '*u~^=a~^ 

we have that ranges over all odd powers of u except 

u itself as c^ takes all values in except that 

value for which c'̂  = a ^ and the vertices adjacent to v 

are labelled with the elements of F \ { v } = v + F* in the 

cyclic order 

v - 1 , V - u^ , v - u ^ , V V - u'*, V 

V -u(j+n-3) ^ 

Furthermore, If ( ( a ' , ( c ' ) = (a S a ' ^ ' ^ ) where 

Si,a.'zP and c,ccQ for some 9 e G a l ( F ) and both 

-a ^c~^ = a~'J (l) 

and = (2) 

then a = (a')® , and thus (applying 6 to (2) ) we have 

-c~^ = a^ and so j + k 5 2 (mod (n-l)) by (l). We 

therefore have: 

Theorem 4-.11. The type 3 imbeddings of are ^isomorphic 

to the Cayley maps Pl(F,F\r) where F = GF(n) as an additive 

group, the generating set for F is F = F \ {0} , and r 

is the permutation of F defined by 
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rigz = : f <-+ 

r l o \ 0 2 = s i : f . — ( - u ^ f 

for some primitive element u of F and odd integer 

j : 1 < j < (n-l) . Furthermore, if we denote such a map 

by /7(u,j) then /V(u',k) /?(u, j ) if and only if u' and 

u are conjugate under Gal(F) , and either k E j or 

k = (2-j ) (mod (n-l)). • 

The various regular imbeddings /? =/7(a) and 

/Y = /?(&') of K are related as follows by Wilson's opera-

tions. Since a,a' e P , we have a' = a^ for some i 

coprime to (n-l) , so Pf is obtained from H by using 

v' = s^ instead of v = s to describe the rotation of 
' ' a a 

edges around each vertex; in other words, ff is the map 

. Similarly, if /?(a,c) is a type 3 imbedding of 

K then induces the representation 

P pi = s^^ 

Z = Y-'x ^ 

X ( 1 • \ 

corresponding to the map /7(a^,a^^ c) ; in other words, 

Hj_(/^(u, j )) =/7(u^, (j-l)/i + 1) , by (*) , giving the new 

rotation 

r ' l „ , „2 : f r - » u ' " 'J " ' f 
(i+j-1) 

'0\ 0' 

We now consider which of the regular and type 3 

imbeddings of have map subgroup normalisers not 

contained in . In the regular case such imbeddings 
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would be reflexlble, and so, as we have seen, this happens 

if and only if- n 4 A . Furthermore, since the only node 

stabilisers of graphs (i), (ii), or (xii) of Fig. 12 or 

their images under iIj to contain are those of (i), 

(ii) and (xii) it follows that every map subgroup norm-

aliser of a type 3 imbedding of K is contained in . 

Thus for n > 4- no regular or type 3 imbedding of K is 

isomorphic to its own mirror image. 

We now examine some of the topological features 

of these imbeddings for n ^ 4- . If is a regular imbed-

ding of then each face has the same number of sides, 

namely the order of y in G ; this number is (n-l) 

unless n 5 3 (mod 4-) , in which case it is H n - l ) , so 

the number of faces of /V is n or 2n , from which it 

follows that n has genus z(n-l)(n-4) or i(n^ - 7n + 4-) 

respectively (as in [3]). Since none of x, y, xy are in 

the commutator subgroup of G it follows that the length 

of each Petrie path in PI is twice the order of the com-

mutator x ^y ^xy in G , that is, 2p , whence has 

Euler characteristic n - 5n(n-l) + 2n(n-l)/p . For n odd 

this is odd and so is non-orientable. We note that 

r r acts as a rotation of edges around a face and so 10 ° 

for n even (r̂ r̂  ) ̂ ^ ^ ̂  e M . Then ( ^ 2 ^ ̂ ^ ^ ̂  e and 

so fi r"*" , whence is non-orientable. So is non-

orientable of genus 2 - n + &n(n-l)(p-l)/p. 

If /7 = /7(u,j) is a type 3 imbedding of K 

then there are two orbits of faces, of sizes F ̂  and F ̂  

say, containing M < Z > , of valency a say, and MX<Z> , 
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of valency g say, respectively. Thus the two faces 

Incident with any of the 5n(n-l) edges are in different 

orbits, and we have F ̂ a = F^6 = tn (n-1) . Now a is the 

order of z in H , and 3 is the least positive integer 

such that MXZ^ = MX , that is, such that = M . 

Equivalently, M(PZ) ^ = M , whence 3 is the order of pz 

in H , By (^) we have ^^u,j) - H {a., c) where a = u ^ 

and -a'^c"2=a-j , that is, c* ^ Whence 

z = 8 = = 8^j-2 + 2(n-l))t^ , if 2-j Ea(n-l) (n-l)) 

then a = p else a = i (n-l) / (n-l, 2 - j ) . Furthermore, 

p2 = s^j+2(n-l))^^ and so if j E&(n-l) (mod (n-l)) then 

3 = P else 3 = g(n-l)/(n-l,j) . From which it follows 

that n has F faces where if either j 5 ̂ (n-l) or 

2-j = 5(n-l) (mod (n-l)) then F = n + gn (n-l)/p else 

F = n{(n-l,j) + (n-l,2-j)} . Thus /? has genus g where if 

either j = g(n-l) or 2-j = s(n-l) (mod (n-l)) then 

g = i(n-l){n(p-l) - 4.p}/p else 

g = in{(n-3) -2(n-l,j) - 2 (n-l,2-j)} + 1 . 

There is just one orbit of Petrie paths in PI . Suppose 

that M(X XY)^ X ^Y = M for some integer y . Then 

p z £ < z p z > whence z e < z p z > , and so H £ < z p z > , against 

H being non abelian. Whence the length of each Petrie 

path is 2y where y is the order of zpz in H , giving 

gn(n-l ) / y Petrie paths in all. Now w ( z p z ) =0^3/ 

and so u(zpz) ^ 1 . Whence y = (n-l) / (n-l, 2 (j -1)) . It 

follows that has Euler characteristic % where 

X n - gn (n-l) + in (n-l, 2 (j-1) ), which is odd. Thus 

non-orientable of genus gn{(n-3) - (n-l,2(j-l)} + 2 . 
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It is to be noted that these more obvious 

topological features do not therefore determine the 

isomorphism class of the imbedding. We have, however, 

proved the following: 

Theorem A.12. The orientable non-regular edge-symmetric 

imbeddings of in surfaces without boundary are 

precisely the type 3 imbeddings. • 

6) We now give a simple algorithm to determine 

whether two given edge-symmetric imbeddings of 

(drawn on polygons in R with sides identified, for 

instance) are isomorphic. 

We have seen that an edge-symmetric imbedding 

of is reflexible if and only if n =1, 2, 3, 4- or 6 . 

Furthermore, the isomorphism class of any reflexible 

imbedding of K is determined by its Euler characteristic. 

If we do not have a reflexible imbedding then we may use 

standard techniques to determine the orientability of 

the surface (see for example [22] in the case of a poly-

gonal representation), and so, by applying the topolog-

ical operation $ if necessary, we need only determine 

whether two orientable non-reflexible edge-symmetric 

imbeddings of K are isomorphic. We may easily deter-

mine which such imbeddings are regular (by considering 

the symmetries induced by X and Y , for instance), and 

so, since the mirror image of a given orientable imbedding 

is readily obtainable, we need only give algorithms to 

determine whether two imbeddings of K that are either 
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both regular or both of type 3 are "'"isomorphic. We now 

do this. 

Given any dart (v*. .Vg) of a regular imbedding 

of the orientation of the map gives a cyclic ordering 

(Vg v^ .... to the vertices adjacent to v^ and 

there is a unique map automorphism ^ sending 

(v̂ f , Vg) to (vg.v* ) which is a half rotation of the map 

about the centre of the edge {v^ ,v^} and which induces 

a permutation x of the index set {#, 0,l,...(n-2)}. 
v* ,v 

0 

By definition x : (* ,0)l—> (0,*) and its action on 
' ̂ 0 

{1,..., (n-2)} is illustrated by Fig. 18 , where x 

has been abbreviated to x . 

Figure 18 

V*'Vo 

% 

Conversely, x^ ^ completely determines the map, for 

if y is the permutation y = ( 0 1 . . . . (n-2))~^ then 

X and y generate the map automorphism group A and 

the kernel of the epimorphism 9 : F — > A , X ,—> x , 
^ 0 

Y I—>• y is a map subgroup. 

If (J) is a map "'"isomorphism between two regular 

- 78 -



Imbeddings H and /?' with distinguished darts 

and ( » v'Q ) then for some map ^automorphism a we have 

(t) o a : (v^,Vjj)i >>(v'^,v'^) . Thus a necessary and suffic-

ient condition for two regular imbeddings H and /7' with 

distinguished darts , v^) and (v% , v' ) to be "'"isomor-

phic is that X , , = X 
V* ,V, V* ,Vo 

If t is the permutation of (n-2)} that 

sends i to (n-l-i) then we can clearly replace the role 

of x in the above condition by tt = t o x . Furthermore, 

by definition tt : (* ,0) *—»(0,*) and by Fig. 19 , 

where tt has been abbreviated to tt , the action of 
V*,Vo 

TT on {1,..., (n-2)} can easily be read off by 
V*'Vo 

inspection of any map. 

Figure 19 

Vo 

Given any dart (v^ , v^) of a type 3 imbedding 

of the orientation of the map gives a cyclic ordering 

(v^ V ̂  V 2)) to the vertices adjacent to v̂ ^ , and 

there is a unique map automorphism ^ that sends 
0 

(Vĵ  , Vg) to (v^^ 2)'V*) which rotates the map about the 

centre of the face ( v^ v% ^ ) and which 

-1 
induces a permutation z of the index set 

0 

{* , 0,1, (n-2)} . By definition z ^ sends 
' ̂ 0 
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(* ,0) to ((n-2),*) and its effect on {1, (n-2)} 

is illustrated by Fig. 20 , where z is abbreviated 
V*,Vo 

to z 

Figure 2 0 

(n-2) 

Vl 

Conversely, z~^ completely determines the map, for 
' ̂ 0 

if p is the permutation y^ then z and p generate 

the map automorphism group A and the kernel of the epi-

morphism 6 : — > A , Z i—> z , P «—> p is a map 
' V 0 

subgroup. 

If cj) is a map ^isomorphism between two type 3 

imbeddings H and H' with distinguished darts (v% ,v^) 

and (vC ,v^) then for some map ^automorphism a we have 

that & oa : (vg(*),Vg(Q))'—^ (v * , ) where 6 is some 

permutation of {* ,0} . Thus a necessary and sufficient 

condition for two type 3 imbeddings H and PI' with 

distinguished darts (v^ , v ) and (v1̂  , v'' ) to be """isomor-
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_ 1 . _ 1 
phic is that 2 , ^ e iz 

V*'Vo 
z:' } . 

V * , v v^.v* 

We can clearly replace the role of z in the 

above condition by TT = T o y o z . Furthermore, by def-

inition TT : (#,0)1—>• (0,*) and by Fig. 21 , where 
V**Vo 

— 1 — 1 
z and TT have been abbreviated to z and tt , 
V*,Vo V*,Vo 

the action of TT on {1, (n-2)} for any dis-
v * ; V o 

tinguished dart (v^,v^) can easily be read off by ins-

pection of any map. 

Figure 21 

Vz-'(l) (n-2) 

not hard to see that this sort of algorithm 

has more general applications. For example, suppose that 

and ' are regular imbeddings of any simple graph ^ 

with n vertices. Then for any distinguished directed 

edge of Q , from vertex w to vertex v say, acts as 

a group of symmetries of and d' : X rotates the maps 

about the centre of the edge {v, w} and Y rotates the 
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maps about v , sending {v, w} to the first edge met i n 

a positive direction. Furthermore, there is a subset T 

of of order n such that the vertex set of Q is the 

image set of v under the action of T as a set of sym-

metries of /7 . If the same cannot be said of T applied 

as a set of symmetries of " then the two imbeddings are 

non-isomorphic, else we label both copies of the vertex 

set by T in the obvious way. Then n and /7' are iso-

morphic if and only if the vertex permutations induced 

by X and Y as symmetries of are the same as those 

induced by X and Y as symmetries of /V' . Of course, 

in the special case when ^ is a complete graph, taking 

T = {1, X, XY means that the permutation 

induced by Y is independent of the imbedding, and thus 

the algorithm simplifies considerably. 
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