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Doctor of Philosonhy
MAPS AND HYPERMAPS - OPERATIONS AND SYMMETRY

by Lynne Denise James

Just as a map on a surface is an imbedding of a topo-
logical realisation of a graph, a hypermap is an
imbedding of a topological realisation of a hypergraph.
The algebraic theory of (hyper)maps facilitates both a
study of the symmetries of (hyper?maps and a study of
the possible imbeddings of (hyper)graphs via an asso-
ciated set of permutations. In chapter 1 we set out the
established algebraic theory of maps on surfaces together
with an extension to hypermaps and maps of higher dimen-
sion whose topological realisations include all cell
decompositions of n-manifolds. ,

There is a group of six invertible topological opera-
tions on surface maps which includes the well-known
duality that interchanges vertices and faces. These
operations arise naturally in the algebraic theory, being
induced by the outer automorphisms of a certain Coxeter
group. In chapter 2 we study the analogous groups of
operations on hypermaps and maps of higher dimension.

If the symmetry group of a map on a surface contains
both a rotation centred on a face and a rotation centred
on a vertex, each cyclically permuting successive incident
edges, then the map is said to be regular. If, in
addition, there is a symmetry which acts on an edge by
interchanging the two incident vertices without inter-
changing the two incident faces then the map is said to
be reflexible. In chapter 3 we consider a weaker version
of these symmetry conditions, and in so doing we intro-
duce a class of highly symmetric maps and hypermaps that
remains invariant under the operations discussed in
chapter 2. We find that every finitely generated group
may be regarded as a group of symmetries of some highly
symmetric hypermap.

Finally, in chapter 4 we give an application of the
algebraic theory to an imbedding problem by classifying
those imbeddings of complete graphs whose symmetry group
acts transitively on edges.
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INTRODUCTION

Any imbedding of a connected graph in a con-
nected possibly non-orientable surface, with or without
boundary, decomposing that surface into topological open
discs, or half discs, can be regarded as a transitive
permutation representation of a certain Coxeter group.
The concept of an algebraic theory of maps, that is,
graph imbeddings of the above type, was presented by
Tutte [27] who defined an associated set of permutations
acting on the set of doubly directed edges. Firm found-
ations for this were set down by Bryant and Singerman [5]
following a full treatment of the orientable case by
Jones and Singerman [15]. We can consider hypergraph
imbeddings in the same way. An algebraic theory of
orientable hypermaps was first presented by Cori [6].

In [28], Vince considers a more general class of hyper-
map, to which he associates a transitive permutation rep-
resentation of a specific Coxeter group. More generally,
in [24] Ronan shows that any chamber system over a finite
set, as defined by Tits [26], can{"gﬁi regarded as a cell
complex. In chapter 1 we set out the established alge-
braic theory of maps on surfaces together with an exten-
sion to hypermaps and maps of higher dimension whose
topological realisations include all cell decompositions
of n-manifolds.

There is a group of six invertible topological



operations on surface maps, isomorphic to the symmetric
group on three elements, that was first described by
Wilson [31] for reflexible maps and later by Lins [19]
for all maps. These operations arise naturally in the
algebraic theory, being induced by the outer automorph-
isms of the above Coxeter group, and were presented as
such in [16] by Jones and Thornton. In chapter 2 we give
generators for, and determine the isomorphism class of,
the groups of outer automorphisms of an infinite family
of Coxeter groups in order to study the analogous groups
of operations on maps of higher dimension. This is done
by viewing each Coxeter group as an amalgamated product,
in several different ways, and uses induction on the
dimension, the inductive step being provided by the
determination of +the centraliser of any element of
finite order. Some light is thrown on the edge twists,
or barrings, used by Edmonds [10] in his characterisation
of graph imbeddings. }Hypermaps are similarly treated.

If the group of symmetries of a map on a sur-
face contains both a rotation centred on a face and a
rotation centred on a vertex, each cyclically permuting
successive incident edges, then the map is said to be
regular. If, in addition, there 1s a symmetry which acts
on an edge by interchanging the two incident vertices
without interchanging the two incident faces then the
map is said to be reflexible [7]. Every regular map on
a non-orientable surface is reflexible. Regular maps

have been extensively studied; on the sphere they are



the platonic solids. In chapter 3 we consider a weaker
version of these symmetry conditions, and in so doing we
introduce a class of highly symmetric maps and hypermaps
that remains invariant under the operations discussed in
chapter 2. We find that every finitely generated group
may be regarded as a group of symmetries of some highly
symmetric hypermap.

Finally, in chapter 4 we give an application
of the algebraic theory to an imbedding problem. In [1]
Biggs showed that the complete graph on n vertices has
a regular imbedding in an orientable surface without
boundary if and only if n is a prime power. The examples
he gave were Cayley maps based on the additive groups of
finite fields. The symmetry group of any regular imbed-
ding acts transitively on both vertices and edges. In
[2] Biggs showed that any imbedding of a complete graph,
in an orientable surface without boundary, whose symmetry
group acts transitively on vertices can be described as
a Cayley map. We classify those imbeddings of complete
graphs, in a possibly non-orientable surface without
boundary, whose symmetry group acts transitively on
edges. This relies on the classifications of 2-homogen-
eous groups by Ito [12], Zassenhaus [32] and Kantor [17],
and includes those surface maps that attain the upper
bound on the number of symmetries of an imbedding of a
simple graph with n vertices in a surface without bound-
ary. We find that essentially each can be described as

either a Cayley map based on the additive group of a



finite field or as the image of such a map under one of

the operations discussed in chapter 2.






require some slight modifications, allowing r , r , r or
0 1 2

%I} to have fixed points on @, when A is on a surface
with boundary or when the underlying graph of /M has free
edges. Full details may be found in [5].) Clearly these

permutations satisfy the relations

and by the connectedness of M they generate a transitive

permutation representation of the group

F:/ 2 - 2 = 2 - 2 -
<r,r ., [% r’=r (%2) 1>

Conversely, given a transitive permutation representation
of T on a set @, we can reconstruct the map M : we
define the vertices, edges and faces of M to be the
orbits in @ of the dihedral subgroups <ﬁ ,1;> , <% ,1;)
and <% ,1i> of T, with incidence corresponding to non-
empty intersection of orbits. We observe that a Petrie
polygon of M 1is then an orbit of the subgroup <%I;, ﬂ>
as illustrated in Fig. 2 . (A more sophisticated approach,

described in [5] and [15], is to represent I as the







2) There is an analogously developed algebraic
theory of hypermaps in, for example, [6], [28] and [30].
A hypermap is a map on a surface § with underlying graph
g satisfying the conditions:
(1) ¢ 4is trivalent,

(ii) ¢ has no looped edges,

(iii) no vertex of ¢ lies on the boundary of §,

(iv) every free edge of ¢ meets the boundary of §,
together with a colouring of the faces by {0, 1, 2}
such that every edge is bordered by two different coloured

faces. Fig. 3 gives an example of a hypermap on a disc.

Figure 3

The faces of the map coloured 0,1, 2 are called the
hypervertices, hyperedges and hyperfaces respectively,
and we refer to an edge that is bordered by both a hyper-
vertex and a hyperedge as a hyperdart.

This definition of a topological hypermap
differs slightly from.those of [6], [28] and [30]. Cori
[6] takes the surface to be orientable and contracts each
hyperdart to a point; Walsh [30] also takes an orientable

surface, and considers the dual of the two coloured map









atorial maps are equivalent to Schreier coset graphs
g(w,M) for groups W, generated by involutions, and
subgroups MW . We let NW(M) denote the normaliser in
W of M.

Proposition 1.3, [28, 7.5]. If ¢ is a combinatorial

map with Schreier representation ¢(W,M), then

Aut(g) =N () /M

Proof: For each us:Nw(M) the function f : Mgi—> Mu™ g
induces an automorphism of ¢ . Hence there is a homo-
morphism ¢ :NW(M%~—9Aut(Q) given by u——f . Since
ker¢ =M we have only to show that ¢ is surjective.
Let feAut(§) and assume that f :M—> Mu~'. This
implies that f: Mgk——>Mu_1g for all geW. Therefore
f=f, . Moreover, u.er(M) because for all geM both

Mu"'g and Mu~! is the image of M under £, -

4) Finally, motivated by the generalisation of
topological maps on surfaces to maps of higher dimension,
we consider a third family of combinatorial maps.

Suppose that M is a cell decomposition of a connected n-
-panifold without boundary. Let AN be its barycentric
subdivision, and label each vertex of AN with the dim-
ension of the cell that it represents. We define a set
of permutations on the n-simplices of AM as follows.

For each ie¢{0,1,2, ..,n} each (n-1)-simplex of

AM  whose vertices are not labelled by 1 1is contained

in precisely two n-simplices of A/ . We define r. to






I denote the set {0,1,..,n} . For each element

Bef , let AB be an n-simplex. Arbitrarily assign to
each vertex of AB a distinct element of I. Call the
set of elements assigned to a face s of AB the type of
s . Let K be the disjoint union of the set {AB | Be Q} .
In K identify two simplices s <AB and s <€ABR of the
same type J if and only if B and B are in the same
orbit of the subgroup generated by {ri |1ieINJ} . If

v denotes this identification then take AM=K/~. Thus
we have formed the cell complex associated by Ronan [24]
to the partitions of the elements of © into their orbits
under the subgroups <ri> for iel. Intuitively AM can
be thought of as being built from n-simplices, one for
each element of @, such that two n-simplices share a
common codimension 1 face if the corresponding points
are adjacent in the Schreier coset graph associated with
the representation.

We note that |[AM| is not generally a manifold.
For this it would at least be necessary for each orbit
of the subgroup generated by {ri | ieIN{n}} to repre-
sent a map on an (n-1)-sphere. This can soon fail for
n>2 . For representations of manifolds by edge-coloured
graphs see [9] and [20].

The orbits in © of the subgroups (rj | 3 e IN{(i}
are called the i-faces of /M, with incidence corresponding
to non-empty intersection of orbits. Furthermore, as
observed by Vince [28, 4.2], there is a partial order on

these faces defined as follows: let x be an i-face and



y a j-face of /M then x<y if and only if x is inci-

dent with y and 1i<j. We need only show that < is

transitive. Suppose that y<z. It is sufficient to
show that xnz#@. Let g be a finite sequence

(gl, g+ o gm) of elements in {ré | ¢e IN{j}} then g

acts on § in the obvious way and we can choose g to

satisfy the conditions:
(1) xgaz#@,

(ii) of all such sequences g is minimal with respect
to its length m and,

(iii) of all such sequences g is minimal with respect
to the length t of the initial subsequence of ele-
ments in {rg | ¢eI, ¢<j}.

We must show that m=0., Assume that m#0. If t=0

then the first element in g can be removed, contradict-

ing the minimality of m. Similarly, if T, is the last
element in g then ¢>j. Thus 1 <t<m and we can con-
tradict the minimality of t by interchanging the posi-

tions of gt and B(4+1) *

- 10 -









it

Gz(n,ri) <Rn\ {r(iil)} I r.2 =

3 (rkré)2=l, ¢ >k+1”
<Rn\ {ri, r(

2 _
A (n’ri) (rkré) =1, ¢>k+1Y .

2 _
111)} | Ty 7

If W is a group generated by a subset of invol-
utions S then the couple (W,S) is called a Coxeter sys-
tem if the following condition is satisfied
(C) For s, s in S let m(s,s”) be the order of ss ;
let I be the set of couples (s,s”) such that m(s,s”)
is finite. The generating set S and the relations
(sz)m(s,s'):zl for (s,s”) in I forms a presenta-
tion.of the group W.

It is easy to see, by taking appropriate homomorphisms

of T, that the couple (Pn,Rn) is a Coxeter system.

We have.

Theorem 2.1, [4, IV.1.8]. If (W,S) is a Coxeter system

then
(i) For all subsets X of S, the couple (KX>,X) is a

Coxeter system

(i1) If <Xa)ueA

<My = x> -

is a family of subsets of S then

aeh
Finally, we draw attention to the representa-

tion of Fn by a Coxeter graph:

The nodes are to be interpreted as generating involutions
for a group whose only other relations come from the com-

mutativity of non-adjacent generators. (Note that we go

- 13 -



against convention in that we do not interpret the cube
of a product of adjacent generators as a relation.) Thus,
for example, the graph below would be interpreted as

Fn)cfm (or more strictly as being in the same isomorphism

class).
- - S — - o -— e e eea
% rl T'n r(n+j)r(n+j+l) r(n+j+m)

In the following we use the notation Cw(g) and
Z(W) for the centraliser of geW and the centre of W

respectively for any group W.

Lemma 2.2. There is a bijection between the sets of non-
adjacent elements of Rn, and the conjugacy classes of

elements of finite order in Fn'

Proof: Let T be those neN for which any element of
finite order in Pn is conjugate to a product of non-
adjacent elements of R . Clearly 0eT and, by the
torsion theorem for free products [21, IV.1.6], 1leT.
Suppose that k22 and that neT for all n<k. By the
torsion theorem for amalgamated products [21, IV.2.7],
any element of finite order in ﬁ{ is conjugate to an
element of either Gl(k,rk) or Gz(k,rk). But
Gl(k’rk)::r(k-l) and Gz(k,rk) :F(k-2) x <r}> , and so
by hypothesis keT. Suppose that the product of one
set of non-adjacent elements is conjugate to the product
of another. Then, by abelianisation, the two sets must

be equal. =

- 14 -



Proposition 2. 3. CF (r.) =G (n,r.) and if {s,.., s_}
n J 2 J 1 m

is a set of commuting elements of R then

Cp, (5,003 )cﬂc (s,)

I1n(sl...sm). Let 8=8...8) and

let ie{l,.., m} . Then sst(n,si)\A(n,si) . Let

Proof: Suppose that teC

t=t1...tk be in the reduced form of P(n,si) and suppose
that k»2. If t,t.eG (n,s.) then s*eG (n,s.)NA(n,s.)
1 L 2 1 2 1 1
and t,s eA(n,si) . Whence t(k_l)tkseGl(n,si)\A(n,si)
and so by the normal form theorem for amalgamated products
[21, 1V.2.6] t7'sts#1. Thus t£C; (s...s ) . If
either tl or tk are in Gl(n,si) then we find a similar
contradiction. Whence k<1 . Suppose that tEGl(n,si)\
A(n,si) then again by the normal form theorem t T lsts £1

and so t#C_ (s...s_) . Whence teG (n,s.) and
1 m 2 1

I'n m
C = =
CI‘n(Sl"'Sm) c iol(}z(n,si) . If we put m=1 and 5, =71y
then we have C. (r.)<G (n,r.) and thus C, (r.) =G (n,r.)m
I'n "3 2 J Ipn™ "3 2 J

The following proposition can be seen as a corollary to

theorem 2.1, but we include a direct proof.

Proposition 2.4. If {s,.., s } is a set of commuting
il
elements of R_ then C <V {s yeos S }> where
n =1 Fn m
Vn{s y ooy sm} is the subset of elements of Rn that com-
1

mute with every member of {Sl,.., sm}

Proof: Let te mC Si) and assume that t#1. Let
1=1 'n

t=t...t, be a reduced decomposition of t with respect

k
1
to R . Let ris:{sl,..,sm} and suppose that tj:r(i+1)

.. . _ c
for some j:1gj<k. Then teCTn(ri) Gz(n,ri)_Gl(n,ri+l).

- 15 -



Let j(1)<j(2)<...j(p) be those j for which tj=ri+l.

Let u0=t1...t(j(l)_l)

for all q:0<qg<p, and let up=t(

s let uq:t(J(q)+l)...t(J(q+l)_l)

j(p)+l)...tk . So

t = UoT (347 )=+« Yy where Uy EGl(n,ri+l) for all gq:

0<q<p . Suppose that uqu(n,ri+l) for some q:0<q<p.
T t. . = . . = i i

hen J(q)uth(q+l) r(1+l)uqr(1+l) uq which contradicts

the minimality of k. Thus uq ale(n,ri+l)\A(n,ri+l)
for all q:0<g<p. Let |w| denote the length of w

in P(n,ri+l). If p>2 then
]uor(i+1)u1..,..u(p_l)r(i+l)up|>,2p-l >3
But taGl(n,ri+l) and so |t| 1. Whence p=1 and

-1

- -1 -1
U, ltul r(i+1)=l . But u, tu, sGl(n,ri+1) and

-1, =3
ri+1an(n,ri+l)\A(n,ri+l) so |u, tu, r(i+1)|3l

which contradicts the normal form theorem for amalgamated
products. Thus there is no j such that tj =Tiiq e
Similarly there is no j such that b, =T q - Whence

J
tjsVn{sl,...,sm} for all j:1<j<k. =
From propositions 2.3 and 2.4 we have

Lemma 2.5. The centraliser in Fn of a product of a set
of commuting elements of Rn is presented by the Coxeter
graph for Fn less those nodes adjacent to some element

of that set. =

Corollary 2.6. Z(Fn) =1 for all n>0.

- 16 -









Proposition 2.11. Aut( =<T , H>

Proof: Let « eAut(Pl) . By lemma 2.10 there exists

a;e <T , B> such that r*®*1=r . By the torsion theorenm
1 1 1 1

for free products there exists gel such that r 1€ ig
1

. Qo . g Qo
in {ro, rl} . If r"7i1®=r then r*%1ap = %%, , Whence

0 1 0 1 1

ro '\:r1 » which can be contradicted by abelianisation.
-1

Thus rooml = rog and so there exists me Z. such that roaal
is r _conjugated by (rr) Furthermore there exists
§e{0,1} and ke Z such that r(oau ) =T (rr)k.

Thus r ={r (rr) }(w1=r {(rr )% (r )" r} . By parity
0 1 01 1 10 0 01 1
§=1, and so k(2m-1) =1 . Thus |2m-1|=1 and me {0, 1}.

m
Whence oo, T =1 and we are done. =
1

Proposition 2.12. For any two groups G and H,

if peAut(GxH) and HP° =H then pTrGEAut(G) where m,

is the natural epimorphism Mo ¢ GxH—>G .

om o pm om
Proof: G- (GxH) C=(axH) C=a Cxpg G-g G
o
Suppose that for some ge.G we have ¢ G=l . Then gpeH

-1
and so gz—:Hp =H., Whence g=1. =

Theorem 2.13. Aut(Fn) is a split extension of Inn(Pq)

1

by H_ , and thus Out(Fn) =H_ .

Proof: We will show by induction on n that Aut(l"n) is
generated by Inn(Fn) and Hn . This is clear for the case
n=0 . We saw the case n=1 1in proposition 2.11, and
the case n =2 was proved by Jones and Thornton [16].

We now assume that n >2 and that Aut(l“m) = <I‘m, Hm> for

- 19 -



all m<n.

Let « EAut(Fn) . By lemma 2.10 there exists
a, € T, H > such that rnoml =r . Thus oaa, restricts
Fn(rn)
is me <rn> , where m=(n-2) . So by proposition 2.12

to an automorphism of Cp (r ). By lemma 2.5 C
n

ocoalﬂsAut(Fm) , where 7 is the natural epimorphism

T35 me (rn>—> Fm . Thus by inductive hypothesis there

) aa. _ _ hg
exists heHm and g el“m such that ryolErst for
some z. € <rn> , 0<ig<m . We note that
-/
Hm N em> <emd?m>
_ 2 -1
= {1, Gm}{l, (emd)m)’ (emfbm) ’ (emem) }

{l’ em}{ly em(bm, lldeDm, @mwm} y Where lbm = d)m .

Thus there exists B, vy, § € {0, 1} such that h is

GBIJJYCD 6 . We note that ¢ is the restriction of ¢
m ‘m ‘m m n

B .Y
to T . Thus if a, = g_ltb 5 then r.2%1% =1 lm ,  por
m n i i i

i:0<ig<m, and raalaZ:rn. Now if i ¢ {2, m, (n-1), n}
s Ny
Om Um- -
then IZCFn(ri)I $ 'ZCFn(ri rn_)] Whence z., =1 for
all i¢{2,m} . If RB=1 then 00,0, P T > T But

]ZCFn(rO)! $ IZCFn(rm)I and so B=0. Thus we have

r, for i:0<i<(n-3) and 1i£{2, (n-4)}

Tz for n=5 and n> 6

—>
—

2 2 2

w‘(
T — rmy for n=6
2 2 2
I’m —> 1",mZm

o

m 6
L A for n#
T 3 T
n n

which covers all cases except 1= (n-1).

- 20 -



For n>/ we have |ZC

r (5l g le0, (grl.

Thus z,=1 for n=5 and n>6.

. Thus z_=1 for n=6.

2

y
Also |zcre(r2)| s lzc, (r2w+r6)

6

Furthermore IZCFn(r(n-A))l $ lZCFn(r(n-A)rm)' , so without

loss of generality y=0. Thus if we put =z =r. % and

m n
let p:aalazwne then p fixes r; for all i# (n-1)., and

so restricts to an automorphism of CFn(r(n-B)r(n-5)r(n-7)")

If we 1et’ G be the subgroup T r(n_1>> and

H the subgroup < T(n-3) T then

1'1‘5)’ I'(n_,7), ...>

- o _
CFn(r(n-B)r(n-5)r(n—7)"')_GXH and H” =H. So by prop-

om
osition 2.12 pTrGeAut(G) . Now r, G =r, so we can deduce
o
from the proof of proposition 2.11 that r(n-l) G is

. J
T(p-1) conjugated by r

for some &8¢ {0, 1}
§
o _ r _ r
Whence (r(n_l)) = (r(n-l)) h = (r(n-l) h) for some heH.
, § .o .
Thus pr, multiplies T(n-1) by h and fixes all other r. .
If n=3 then h=r0n for some ne {0, 1} and so prn(S d>nn=l .
Whence aeT , Hn>.
If n > 3 then ZCI’n(r(n-l)h) ZZCFn(r(n—l)) ~C, .
_ s _ .
Thus h=1 and prn =1 . Whence again ac¢ <Fn,Hn>.
It follows that Aut(r ) =¢T ,H > for all n. =

We now consider the group

G = (r’o,r'l,r2 l r =r12=r22:l>

Theorem 2.14. If S, is the group of automorphisms of G

induced by the permutations of {ro, T, rz} and ¢ is the
automorphism that conjugates r, by r then Aut(G) is

generated by S, and ¢, and Out(G) = PGL(2,Z) .

- 21 -



Proof: If aeAut(G) then, by the torsion theorem for
free products, for all i€ {0, 1, 2} there exists j such
that r{xﬂzrj . Thus o restricts to an automorphism of
ct.oIf x =rr and y=rr then {x,y} is a free basis

for G+ » wWhence ol is a free group of rank 2 F .

Consider the natural composite map
0 :Aut(G)—aAut(G+):=Aut(F2)—»Aut(F2/F;)2 GL(2,Z2)=>PGL(2,Z),

where Pg denotes the commutator subgroup of F2 .
We analogise the proof of lemma [21, 1.4.5] which states
that the kernel of the natural map from Aut(Fz) onto
GL(2,Z) is Inn(Fz).

For {i, j, k} ={0,1, 2} 1let N be the auto-
morphism that transposes rj and T and let ¢ij be the

automorphism that conjugates r. by r.. If Rl is the

)
01 10

matrix [1‘0 ] ’ R2 the matrix {?l 1 and 1%3 the matrix
[—% (1)] then R, R, R, generate PGL(2,Z) with defining

relations

-2 _2 _2 — — 3 - — )2
Rl-—RZ-—Ra-(RlRZ) —(RIR3 =1 ,

where ﬁi denotes the image of R, in PGL(2,Z) (7, 7.2].

We have
0 o 0
01 1 01 _
X=I‘I’p-—-—-—>I'I‘,__.__>I’1"t—-———)I'I'-—y
01 10 12 1 2
YyY=rrr —s» I'l’ b0—ma3 'l p—n I’ =X
12 12 10 01
o, -1 o1 -1
X=7T7T p—> TYr =X X=T? ——» T =X
01 10 01 10
=SI'T —» I'T =X ST s ' =y .
Y 12 0 2 Y Y 12 12

- 22 -



Whence 1if a, =d>0101d>01 , a2=02 and a, =d>0l then Ri:aie

for all ie{l, 2, 3}, and so 6 is onto.

2 _ o2 _
aj =aj 1.

We have 02 =62, =1 , whence a?
i ij 1

I
1l

(¢,06,0)%="(¢ ¢ 00)?=(ro0)?

Furthermore (a a )3
1l 2 01.1°01 2 01 21 1 2

H

r,0,0,1,0,0,T, 0,0, —rlr(oo)roo

3 _
rlrzro(cloz) =7TT,T e Inn(G)

and (alaa)2 = (<b0101)2 =& 99,0, = d)ol<b21012 =1 € Inn(G) .

Let R be the set of defining relations for PGL(2,Z) and
F3 the free group with basis {Xl, X, xs} and homomorphisms

my, 0 defined by 7 : X3 —> a. and p : Xy —> ﬁi . We have
Ker(e) € (Ker(p))m = ﬁ(xl,xz,xa)ﬂ gﬁ(al,az,aa)glnn(t}) ,

where R denotes the normal closure of R. Moreover,

r

0 -1
X=PT 3 I'T =X
01 10
Y=PT > I'TTTr =Xy X
12 0717270
r
rl -1 2 -1 =1
X=TT —s LT =X X=Tr.——» TTTT =y X y
01 270712
-1
=TT > T = =rr,.—»rr =
YT 21 YL 21 v

Whence Ker(6) =Inn(G), and so Out(G) =PGL{(2,Z) . Moreover,
aut(c) =PcL(2,2)8"' = <% ,R ,Ry067'=<a,a,,a>Inn(c)

1 2 3

and so Aut(G) is generated by S, and ¢ . =
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3) We now consider the topological interpretation
of some of these outer automorphisms. Clearly 62 cor-
responds to the well-known duality for surface maps,
interchanging vertices and faces. Furthermore, the auto-
morphism ¢2 , which interchanges vertices and Petrie
polygons, corresponds to Wilsons opposite operator [31]
which is described as follows: make a directed cut along
each edge and then rejoin corresponding sides in opposing

directions. We illustrate this in Fig. 4.

a b
a b
| A —
T
V
L—
c d
\\\\ //// c d
(1) (ii)
b a
/l
el |
L—
= c d
c d
(iii) (iv)

Figure &

Clearly S, acts on hypermaps by permuting the
hypervertices, edges and faces. We now verify that ¢ 1is

the result of applying ¢, to the underlying two-coloured
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map.

To any hyperblade B of a given hypermap we
associate a blade R of the underlying two-coloured map
drawn on the incident edge coloured 0 at the incident
(contracted) face coloured O and on the same side as the

incident face coloured 2 (see Fig. 5)

(Br.r.r )’

0720

Figure 5
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Then under ¢2 we have

h

(Br,)
(Br)’
(Bz, )’

B'r, — B'r = (Br)’

H

B'r — B = (Br)

11

, ’ ,
rrr — rrrrr = rrr
B212 B02102 (8020)

thus the action of ¢2 is equivalent to that of ¢.

It may be of interest to note that the automor-
phism w2:=¢22 , which interchanges faces and Petrie poly-
gons, leaving the underlying graph unchanged, may be
topologically described, for a map with neither free edges
nor boundary, as follows: remove a disc from each face
of the map, then make a directed cut across each edge,
rejoin in opposing directions and finally attach a disc
to each boundary component. In Fig. 6(i)-6(iv) we show
each stage of this operation on the usual imbedding of

the complete graph on four vertices on a sphere, Fig. 6(iv)

represents a cube which is to be antipodally identified.

(i) (ii)

(iii) (iv)

Figure 6
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Figure 8

(i)k ~— \‘i;/ (ii)

\N 7/
€ Y
0 1 o /\el
/A
0 2
1 1 0 e
2 2 -~ 4 7 ~ e
e, e >< >«
2 v ~ VAN CIN
1 1 2
0 2 0
o o 0 \\ /
e
3 37
/ \
/"\ / /—\ \
LN LS
el el

\
/o~

(iii) P Y (iv)

by R, onto I and let ¢ be any finite graph without
free edges, with spanning tree T, imbedded as a map M
in a surface without boundary. Let M denote the stabil-
iser in I of a blade B of /M and let ¢(M) denote the
Schreier coset graph for M in T with respect to R.

We denote edge sets and vertex sets by the letters E and

V respectively.
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For veVg(M) let e(v) denote the supporting
edge of the associated blade in M, and let T(M) be the
subgraph of ¢(M) with identical vertex set such that if

v,» v, are i-adjacent in g(M) then they are i-adjacent

l’

in T(M) unless one of the following holds:

(i) 1

(ii) 1 =0 and e(vl)

1]
N

and e(vl) e(vz) eT

e(vz)éT

(iii) i =1 and Me{vl,vz}

Clearly T(M) is a spanning tree for §G(M). Infact every
vertex apart from M and er'l has valency 2 in T(M) .
We let U(M) be the Schreier transversal for the pre-
image of M in F_ determined by T(M) and let X(M)
denote the generating set for M determined in the usual
way by U(M), as presented in [21, II.4.1] for example.
If welF, then w has a unique reduced decomposition w
with respect to Ril . Let & be the corresponding seq-
uence in R (produced by changing negative powers to
positive powers). We note that if ueU(M) then G=u
and r, 6 1is never adjacent to r in u.

Given e eE¢ we will define functions fe from
U(M) onto U(Me) and g, from X(M) onto X(Me) such
that fe fixes the identity element, Me is the stabiliser
in T of a blade Be in the imbedding /’?e of ¢ obtained
from M by twisting e and the following diagram commutes,
where darts(¢) is the set of directed edges of ¢ ;
darts(g(M)) 1is the set of orbits of <r2> in VG(M) ;

o(mM,B) and d)(/’?e,Be) are induced by the natural
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id.
darts(¢) e———> darts(§)

5(11,8) o (1, 8,)

darts(g(M)) =—mm > darts(Q(Me))
Y

e

identifications of blades in M and Ne with Vg¢(M) and
VQ(Me) respectively; and, for ueU(M), Uy sends the
dart Mu@(g) of ¢(M) to the dart Meufee<%? of Q(Me).
Thus we assume that in specifying an edge of §¢ we
specify an orbit of <1%,1;> in VG(M) .

For eeE§ we define a function fe from U(M)
into F, as follows. For ueU(M) let Se(u) denote the
set of initial sequences u of u such that ur, is
also an initial sequence of u and Mule ee. Thus Se(u)
has at most two elements and eeT if and only if Se(u)
is non-empty for some ueU(M). There are three cases

to consider.

(i) If Se(u) is empty then define uf . to be u.
(ii) If Se(u) consists of a single element u ~ then
there is a unique element u, e U(M) such that
Mu 6rr =Mu,6 . Define uf_ = to be (ulrbuglu)A.
(iii) If Se(u) has two elements then let wu, be the
shorter and u, the longer. Define ufe to be

A

)t

(uruluru
1 0 2 1 0 2

Fig. 9 gives an example of the latter two cases.
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Figure 9

Mu ©

&-

For ecE§ we define a function g  from X (M)
into T as follows. First note that any reduced decom-
position of w in [ with respect to R is largely deter-
mined by the normal form of w in T considered as a

free product of the groups
- < 2 _ .2 _ -
{r, | r12—1> and {r, T, | =T —(r0r2)2—1> ’

and recall that if ueU(M) then r, cannot be adjacent

to r in u. If x € X(M) then there exists ul,uzeU(M)

"

and r, eR such that (u,ry _1_1_;1) is a reduced decompos-
ition of x with respect to R and u, has maximal length.
It follows from the above remarks that U,y U, and r,
are unique. Fig. 10 gives an example. If i=0 and
. -1

Mu,6ee then define xg_  to be (ulfe)ro(ufe) ® where
u is the unique element in U(M) such that Mu 6rr is

. . -1
Mué , otherwise define xg_, to be (ulfe)ri(uzfe) 0.

Finally, let Me denote the subgroup generated
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w such that Mw, =Mu 6 and so u,r, cannot be an initial
sequence of w, whence x £<S8>. Thus if x e X(M) then
Sn{x,x '} is non-empty, in which case clearly S is of
order |EG| +1.

Little and Ringeisen [18] have shown some
interest in the use of topological edge twists to prove
the double cover conjecture for bridgeless graphs, that
is, that in every bridgeless graph one can find a family
C of cycles such that each edge appears in exactly two
cycles of C. Clearly this is equivalent to imbedding
the graph in a surface without boundary such that each
edge borders precisely twb faces.

If ec€E§ then e 1is a bridge of ¢ if and only
if e is in every spanning tree T of ¢ . The two ways
in which an edge may be monofacial are illustrated in

Fig. 11 .

Figure 11
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We now consider the existence of highly-
symmetric G-graphs.

For {i, j, k} ={0, 1,2} if x and y are nodes
of a G-graph that are connected by an {i, j}-path, that
is, a path whose edges are coloured either 1 or j, then
let dk(x,y) denote the length of a shortest {i, j}-path

from x to y.

Proposition 3.4. If D 1is an H.S. G-graph on n >2 nodes

and ke {0, 1, 2} then dk(x,xrk) is even for all nodes x.

Proof: If not then there exists an integer p such that

_ |Y p s s _
xrk—x(rirj) ri(rjri) where {i, j, k} ={0, 1, 2} .

_ P p | S
If y X(I’iI‘j) then y(rjri) rk(rirj) yry -

However, there exists a e Aut(G) sending (rjri)prk(rirj)p

to Ty and fixing both r. and r, .
1 J
Whence in D% we have yIy = YTy and so D%is not all-

symmetric, which contradicts the choice of 1. m

Proposition 3.5. If D is an H.S. G-graph on n >2 nodes

and ie{0,1, 2} then r. has no fixed points in 2.

Proof: Suppose that there exists 1ie{0,1, 2} such that
xr, =x for some node x. If {i, j, k} ={0, 1, 2} then
xrk;éx else P is not all-symmetric. By proposition 3.4
there exists an integer p : 0<2p ¢ (n-1) such that

r.)pr. . We now choose

_ p =
er—x(r.ri) and so Xr;T T, x(rj i i

J
o € Aut(G) sending T TLTs to T, and fixing both r, and

r. . Then in 2% we have Xr; = X and xrk=x(r.ri)pr

] i’

and so dk(x,xrk) = (2p-1) . Whence p* cannot be highly-
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symmetric, which contradicts the choice of 0. =

Corollary 3.6. If {i, j, k} ={0,1, 2} then there is a

spanning {i, j}-cycle in every H.S. G-graph on n >2

nodes, thus n 1is even. =

For {i, j, k} ={0, 1,2} if x,y and z are nodes of an

H.S. G-graph on n >2 nodes then let d;(x,y) denote a

directed distance from x to y along the {i, j}-cycle .

+

Clearly dk

(x,v) +d;;(y.z) Ed;(x,z) (mod n) and d;;(x,xrk)

is even.

Proposition 3.7. If D 1is an H.S. G-graph on n >2 nodes

and ke {0, 1, 2} then d;;(x,xrk) =2 (mod 4) for all nodes

X .

Proof: Let {i, j, k} ={0,1, 2} . Then dk(x,xrk) is even
and so there exists an integer p such that xr =x(r.r.)p.

Furthermore d;(x,xrirj) is odd and so we have

di(x,x(rirj)) + d;(x(rirj),x(rirj)z) S

.. + d;(x(rirj)(p_l),x(rirj)p) = d;(x,xrk)

modulo n. Now the left hand side is the sum of p odd
terms but d;(x,xrk) is odd and n is even. Thus the

left hand side must be odd. Whence p 1is odd. =

Corollary 3.8. If D is an H.S. G-graph on n >2 nodes

then n=0 (mod 4)

+
Proof: n:d;(x,xrk)+dk(xrk,xrﬁ) . »
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We need some more definitions. An alternating m-gon is

a cycle on m nodes {1, 2,..., m} whose edges connect
vertices of different parity. Let -Hn be the permutation
(12...m) and for {x,y}={1,2, ..., m} let {X,y}tm be
be the pair {xt_, yt } . A good alternating m-gon is one
whose edges can be coloured alternately red and blue such
that the union of the blue edges with the images of the
red edges under tm is again an alternating m-gon. An

example of a good alternating hexagon is given in Fig. 13 .

Figure 13

Proposition 3.9. If there exists an H.S. G-graph 0 on

n>2 nodes then there exists a good alternating #n-gon.

Proof: Let {i, j, k} ={0, 1, 2} and let x be a distingu-
ished node of 0D . Colour a k-edge with vertex y blue
if dk(x,y) is even, else colour it red. If we contract
each i-edge {x(rirj)p, x(rirj)pri} for pef{l, 2,..., 8n}
to a point vp , with index to be read modulo #n. , then
{vl, Vs oees V%n} , together with the k-edges, forms a

tn-gon with edges coloured alternately blue and red.

Similarly, if we contract each j-edge {x(rirj)prj, x(rirj)p}
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for pe{l, 2,..., 3n} to a point L with index to be
read modulo 3n, then {wl,'wz,..,w%n} , together with
the k-edges, forms a sn-gon with edges coloured alter-
nately blue and red. Furthermore, for pe {1, 2,..., #n}

there exists q =q(p) and r=r(p) where both g and r

are odd such that X(r.r.)prk==x(r.r.)(p+q)

it itj
x(rirj)prirk=:X(rirj)(p+r)ri . Correspondingly,

and

{vp, V(p+q)} and {wp, W(p+q

{vp, V(p+r)} and {w(p+l)’ W(p+r+l)} are coloured red.

Whence by identifying \&) with wp it is clear that

)} are coloured blue whilst

{vl, Vs ees V } , together with the k-edges, forms a

1
zn

good alternating #n-gon. =

Proposition 3.10. There are no good alternating m-gons

such that m=0 (mod 4) .

Proof: Suppose that we have a good alternating m-gon
such that m=0 (mod 4) . Let r be the permutation of
nodes that transposes the vertices of red edges and b
that which transposes the vertices of blue edges. Then
we may write 1 = ( alaz)( a,a, )""'(a(m-l) am) and

b = (<512a,3,)(auas).....(amal ). Let s be the permuta-

tion (a.1 8 aeees am) and t the permutation (12....m).
For all xe{1, 2,..., m} there exists an integer p such

that axt =aX(rb)pr since all three of t, r and b change
parity of node. But r and b change parity of index, and

so t changes parity of index. Furthermore, the images

of the red edges under .Hn are clearly the orbits of rt.
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Thus t is an m-cycle that changes parity of indices and
is such that brt is the product of two sm-cycles,
fixing parity of indices. We note that b =r° and that
axr=axs_1 for x even, otherwise ar=as.

Whence for x even we have

-1 -1

1 - -1
ar'r =as rst rt=a.s "sst s "t=a st s "t .
X X X X

-1 =1 1
Thus st s . . 1s a sm-cycle .
Ieven indices 2 yeLe

2 -2

But this is the product of st, t °, s and st,

each of which fixes parity of index.

-1 =1

Whence st s 't | e Ay, the alternating

even indices
group permuting 2m symbols, and so 2m must be odd,

which contradicts the choice of m. ®

Corollary 3.11. If D is an H.S. G-graph on n >2 nodes

then n=/4 (mod 8) . =

For n=0 (mod 4) consider a set of n points

labelled a_, b, c_,d where r ranges from 1 to in ,
r’ “r* r’ r

with indices to be read modulo in . For integers p and

q we define a G-graph Dn,p,q on n nodes by

arrozbr brrl=cr arrzzc(r+p)

cr T =4y d(r-l)rlzar brrzzd(r+q)
Clearly the nodes of Dn,p,q are covered by a {0, 1}-path.

The set of nodes of the longest {0, 2}-path through a_ is

{a(I'Jru(P-q))’ b(r+u(p-q))’ d(r+q+u(p-q))’ C(T+q+u(p-q)) | ue Z1.
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Whence the nodes of D are covered by a {0, 2}-path

»P>»Qd
if (4n,(p-q)) =1.

The set of nodes of the longest {1, 2}-path through a. is

{a(r+u(p+q+l) )’ d(r-1+u(p+q+1) )’ b(r-l-q+u(p+q+l))’

©(p-1-q+ulptqi1)) | ueZ}

Whence the nodes of Dn b.q are covered by a {1, 2}-path

’ 4

if (in,(ptq+l)) =1.

Proposition 3.12. If {i, j, k} ={0, 1, 2} then 2 is
n,p,q

invariant under the automorphism ¢ij .

Proof: Consider the relabelling

Cg(lﬁﬂ)‘aﬂ—)<ﬂ%ﬂ)=bbr):d£
br’I‘ Zd(_r)l"l =a(1_r) = Cr,
1) =P T Cr) TPy

bf];::d<-r)% :b(-T‘Q> - (r+q)
Whence D is invariant under ¢ .
n,p,q 01

Consider the relabelling
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Q“p'r)(r2r0r2> - c(—r) = br’
cr'(rzrorz) = b(_r)(rzrorz) =2 (q-p-1) =d_

aI’ ( 2ror2) - d(

’

4

br rl = c(_r)rl :b(-r) :cr

Apo1) T, " &(g-p-r+1)h) :d(q-p-r) T ar

gr T, = (qop-r)5 T P(ep-r) T %(rtp)

brrzzc(-r)rz:a(—p-r)zd(r+q) .

Whence D is invariant under ¢ .
n,p,q 0

Consider the relabelling

’ _ ’ ’ 7 _
gp =d(_p) > Pp = C(py Cp TP(p) dp =a(_p) -
We have
arro=d(_r)ro=c(_r)—br

Cr I'O =b(—I')ro =8.(

by T = el TP(Lp) = Oy
depo1yT, =8 T = d(1op) = 8y

ar'(rorzro) = d(—r) (rorzro) = b(

I'd

-r-p) ~ %(rip )’

rd

b, (rorzro) B c<_r)(r0r2r0) "8 (-r-q) =d(r‘rq) ’
Whence D is invariant under d>20

n,p,q
To complete the proof we note that (bijcbkj =rj and that

every G-graph is invariant under Inn(G) . =m

Corollary 3.13. If (in, (p-q)) = (in,(p*tq+l)) =1 then

D is highly-symmetric.
n,p,q gniy-sy

Proof: By theorem 2.14 the automorphisms cbi]. zsenerate a
normal subgroup of Aut(G) with complement S, thus

S
DAUt(G)E D3 . Furthermore, since 0 is all-sym-
n,p,q n,p,q n,p,q
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For any real number x let [x] denote the
greatest integer less than or equal to x.
Let ¢(n) = [log,(in)] and let Q, be the set of pairs
(2™ (3n -2™)} where m is any integer between 1 and £(n).
Then IQn|==Z(n). Furthermore, if {p, q} €Q,  then
l1<p,qg<zn and (in,(p-q)) = (4n, (p+q+l)) =1 . Whence
T [ >21Q, ] =2¢(n) >2(1og,(4n) -1) , and so IT | tends

to infinity with n as required. =

Proposition 3.16. Every H.S. G-normaliser N of index

n>2 1is a free group of rank (4n+1).

Proof:

_ (3n - 1)
Let U ={1, r, %I},...,(Ib%) %}

i

and B={ur2'f1?2—l | ueU}u{(ror'l) ny

where, for geG, g is the unique element of U satisfy-
ing Ng=Ng. Then B clearly generates N (see for
example [21, I.4.1]) . Moreover, by considering the
coset graph of N in G and applying the normal form
theorem for free products [21, IV.1.2], it is clear that
B° is a free basis for N of size (#n+1) where B 1is
any subset of B satisfying |{b, b '}N B |=1 for all

beB . =

Corollary 3.17. Every finitely generated group can be

regarded as a group of automorphisms of some highly-

symmetric hypermap. ®
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We finish by giving one more property of an
H.S. G-graph. We call an alternating m-gon very good
if its edges can be coloured alternately red and blue
such that the union of the blue edges with the images of
the red edges under ﬁi is again an alternating m-gon for
all natural numbers ¢ . The example given in Fig. 13 1is
very good, whilst Fig. 14 shows a good alternating

hexagon that is not very good.

Figure 14

By the method of proof of proposition 3.10 it can be
shown that very good alternating m-gons correspond to
cyclic permutations t of {al,...,am} of length m that
change parity of index and are such that the restriction
of st_zs('l)ztZ to symbols of even index is a #m-cycle

for all natural numbers £, where s 1s the permutation

(a

1....am)

If D is an H.S. G-graph on n >2 nodes then
let C be the alternating sn-gon obtained by contracting

the i-edges as described in the proof of proposition 3.9.



Proposition 3.18. (€ 1s very good.

Proof: If x 1is the distinguished node used to construct

C then

o]

..
{vp, vq} is a blue edge of C k733
c, 0¢..

¢=>{x(rirj)p, x(rirj)q} is a k-edge of D k*ji

¢ﬁ>{x(rirj)p,x(rirj)q} is a k-edge of D

<> {vp, Vq} is a blue edge of C, and
0% %51

{vp,vq} is a red edge of C

0, 0.
<> (x(r.r.)Pr., x(r.7.)%r.} is a k-edge of D k731
i7j i itj i o
) q . _ k
¢#’{X(rjri) ri,x(rjri) ri} is a k-edge of D
¢#—{x(rirj)prj,x(rirj)qrj} is a k-edge of D
{V(p—l)’ V(q_l)} is a red edge of C
Z
(0 0.5)
Whence C J is the union of the blue edges of C
with the images of the red edges of C under té.
Furthermore, since the image of 2 under (Ok¢ji)e is

highly-symmetric, the image of C under (Ok®ji)€ is an

alternating sn-gon. ®

The final chapter demonstrates the possibility
of classifying imbeddings with prescribed symmetry. We
shall classify the edge-symmetric imbeddings of complete

graphs in surfaces without boundary.
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CHAPTER 4

Complete Maps

1) If M is an imbedding of a simple graph with n
vertices in a possibly non-orientable surface, without
boundary, then its automorphism group acts semi-regularly
on the set of blades, so has order at most four times the
number of edges, being at most 2n(n-1) . This bound is
attained if and only if M 1is a reflexible imbedding of

a complete graph, thus we can regard such imbeddings as
the most symmetric surface maps. Similarly, the regular
imbeddings of complete graphs can be regarded as the most
symmetric orientable surface maps.

In [1] Biggs showed that the complete graph on
n vertices Kn has a regular imbedding if and only if
n 1is a prime power. The examples he gave were Cayley
maps based on the additive groups of finite fields,
using the multiplicative action of a primitive element
to generate the rotation.

Any reflexible or regular imbedding is also
both vertex- and edge-symmetric. 1In [2] Biggs showed
that any orientable vertex-symmetric imbedding of a2 com-
plete graph in a surface without boundary can be described
as a Cayley map. The aim of this chapter is to classify
the edge-symmetric imbeddings of complete graphs in sur-

faces without boundary.






Figure 16







Thus the graph of N is either (ii) or (iv) of Fig. 12 . 1In
which case A, is abelian and can be identified with F* , that is,

F\{0} , and hence F 1is a field GF(n) where n is a prime power

e
Y .

1f [T :N) = 4 then 4 is a sharply 2-homogeneous
group. By a classification of Kantor [17) we can identify the action
of any such group with the transitive action of a subgroup of index 2
in AGL(1,F) on a near field F where |F} = lvi = n = pe = 3
modulo &4 . This is done in such a way that if G denotes the group
AGL(1,F) then A, 1is centralised by a element of G\ A, . Since
A acts transitively on vertices we have ' = N, , Y and
so the graph of N is none of (viii), (xiii), (xiv) of Fig. 12 .

Furthermore, /%o has odd order and so cannot be dihedral. Whence, since

A >~ M{<rn,myaNY /M

the graph of N is neither (ix) mnor (xi) of Fig. 12 . Thus the
graph of N is either (x) or (xii) of Fig. 12 . In which case /%;
is abelian and can be identified with a subgroup of index 2 in F¥ .
Moreover, /40 is centralised by an element of G, \/A, . By identifying
Geo with F* we see that I?* is abelian. Hence F 1is a field
GF(n).
Thus we have shown that the coset graph of N in I is omne

of (i), (ii), (iv), (x) and (xii) of Fig. 12 . In cases (ii) and

(iv) A is isomorphic to the group AGL(1,F) where F = GF(n)
and n = p° . Incases (x) and (xii) /4 is isomorphic to the
unique subgroup of index 2 in AGL(1,F) where F = GF(n) and
n = p® = 3 (mod 4).

We recall the graph-preserving operation Y that is induced
by the automorphism of T that multiplies 14 by r, . This
preserves the subgroup {ry s r,> , whose orbits are edges, and so 4’_
preserves edge-symmetry. if M is an edge-symmetric imbedding of kn
with map subgroup M normalised in I’ by N where N has coset graph
(iv) then M is an edge-symmetric imbedding of K, with map sub-

0

group Vﬂy normalised in T by Nq) where N has coset graph (ii) ,
and vice versa. Similarly, if N has coset graph (x) then th has

coset graph (xii) , and vice versa.
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Theorem 4.l. Reflexible imbeddings of Kn in surfaces

without boundary exist only for n=1, 2, 3, 4 and 6 , and
they are: the usual imbeddings in a sphere for n=1, 2, 3
and 4 ; the spherical imbedding of the graph with six
2-valent vertices, the cube and the icosahedron, with
antipodal points identified in each case to give imbeddings
in the projective plane for n=3, 4 and 6 respectively;
finally, the orientable imbedding of the l-skeleton of

the icosahedron formed by applying Wilson's operation H2
to the icosahedron is antipodally identified to give a
reflexible imbedding of K, in a non-orientable surface

of genus 5.

Proof: It's easy to check that the above maps are reflex-
ible imbeddings of complete graphs. We now verify that
these are the only reflexible imbeddings of complete graphs
in surfaces without boundary.

We have already seen that the theorem is true
for n<3. For n>3 suppose that M is a reflexible

imbedding of Kn' We make use of Ito's methods, the basic

ideg being to count the number of involutions in A . Let
v and w be vertices, let H=4 and K =4 . Then

v (V,W)
H :D(n-l) , generated by reflections r and t , and

K=C, , generated by t, with actions illustrated in

Fig. 17 . Furthermore, there exists a reflection £

that transposes v and w, and commutes with t. By its
double transitivity we may decompose A into the disjoint

union A =H + H¢H . If h, eH then



Figure 17

HZhl =Hl{&=>lh (e H@Zhlé(v) = v@hl(w) =wé>h € K

So the number of residue classes of the form Héh1 is

|H|/|K| = (n-1) . Suppose that h2 geH . Then

-1
(h,¢h,)? =1==>h22h1h2£h1(v) = V(:)hlhthl(v) = ¢h, (v) <=

1

B - -1
hlhz(w) =w&>h h, e KS>h, e{hl » hy t} .

Thus the double coset H{¢H is itself a disjoint union of
(n-1) right cosets of the form H¢h , where h eH, each
containing just two involutions. Thus there are 2(n-1)
involutions in HZH .

We now take the cases n odd and n even
separately. For n odd there are n involutions in H
and so n+2{(n-1) involutions in A . ZEach stabiliser
contains 3(n+l) involutions with exactly one fixed point,
that is, that lie in no other stabiliser. Thus we have
at least %n(n+l) involutions, and so n+2(n-1) 2 #n(n+l),
giving n<4, and thus a contradiction. For n even

(n-

there are 1) involutions in H, so 3(n-1) involutions
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in A .' The number of involutions with exactly two fixed
points equals the number of edges, that is, 3n(n-1), so
3(n-1) 2 3n(n-1) , giving n=4 or 6. We now examine
these possibilities.

Let there be f faces, each an m-gon. For n =4
the Euler characteristic of the underlying surface is
b-6+f and so fg4. We see that A<S, and that r T,
acts as a rotation of edges around a face. Thus r,r, has
order m 1n S4 and so mg< 4. But fm 1is just twice the
number of edges, that is, 12, and so f23. If f=/
then (11%)3, (ﬂIB)SE M and we are looking for M such

that

" r(z,3,3]

2 .2_ .2_ 2 _ 3 _ 3 _
r,r,T, f%—wa—%—(%%) —(%%) (ﬂ%) 1>

/N

1l

~ S
4

But |I/M| =2n(n-1) =24 =[S, | and so M=1. If f=3

then we are looking for M such that

Y riz,3,4]

n

H

<r,7T,T, | r =r?=T (2%) (Hg) (rr) 1>

R

S“)ch

But |T'/M| =24 and so |M| =2. Therefore M=2(r[2,3,4])
and so in either case M, and thus M, is uniquely
determined. Whence there are at most two reflexible
imbeddings of K .

If n=6 then A cannot have a regular normal

subgroup since n is not a prime power [3, 1.7.6]. We
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now show that A must be simple. Suppose that L is a
proper normal subgroup of A. Clearly L is transitive
and thus LV is a normal subgroup of AV =D, of order
either 2 or 5. If ILVI =2 then LVsZ(Ds) against
z(D,) =1 . 1If lLvl =5 then L is sharply 2-transitive
and n would have to be a prime power by Zassenhaus'
classification. Thus A is simple of order 60, and so
M is the kernel of an epimorphism from T to As.

We need only look for images of T, T T, in As
that form a generating set T of A_ up to automorphism
of As . Hence we treat conjugation by S  as an equival -
ence. We see that T contains two commuting involutions
and we can assume that these are (12)(34) and (13)(24) .
The third element must move 5, and we can assume that it
fixes 4 (else conjugate by (14)(23), (24)(13) or (34)(12))
so it is one of (12)(35), (13)(25) or (15)(23)
Conjugation by (23) identifies the first two choices, so
there are only two possibilities for T, namely
{(12)(34), (13)(24), (12)(35)} and
{(12)(34), (13)(24), (15)(23)} . In the first case
commutativity and orders of elements imply that:
ro—> (12)(35) 5 1> (13)(24) 5 71 > (12) (34) .
In the second case commutativity implies that
r,— (15)(23) , and then conjugation by (23) fixes
(15)(23) while transposing the other two, so either
choice of images for T, and r  will give the same
kernel . Thus there are at most two reflexible imbeddings

of K6 . B
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5) From now on we let G denote the group AGL(1,F)
where F =GF(n) and n=p®. Thus G is generated by the

functions 8, ¢ fe—p»paf, t,. :f+—>rf+b such that a, beF

b
with a non-zero. We let P be the set of primitive
elements of F and let €@ =F\{0}. Then P2?2={a?|acP}
and @2 ={b2 | bel} . Finally, let H denote the unique
subgroup of G of index 2 for n=3 (mod 4) consisting
of the functions fe—» b2f +tc for belQ, cebF.

The following classification and description
of the regular imbeddings of Kn for n>3 was first given
in [14] . We use the same methods to classify and des-
cribe the type 3 imbeddings of Kn for n>3.

If M.‘?.NJr =F+ then M is the kernel of an epimor-

phism from rt to a, sending (X,Y) to (x,y) where
o(x) =2 and o(y) =(n-1) . Moreover, we now show that
such kernels must give rise to imbeddings of Kn.' Since
G acts transitively on vertices, the number of vertices
is [G :GV] =[G:<y>] =n, and the number of edges is
just half the order of G . So we need only check that
these maps have neither loops nor multiple edges, If
loops exist then all edges are loops, against the con-
nectedness of the graph. If there is a multiple edge
then all edges are multiple and so for some 1, j 20

modulo (n-1) we have xy xy® fixing a dart, and hence

b s s
it is the identity in G . Hence y(l 3) =X ly lxyl lies

in the commutator subgroup, and thus the translation
subgroup T, of G and therefore has order dividing

|T| =n . However, y has order (n-1) so y(l+J) =1.
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Thus yi commutes with x and so lies in the centre of G ;
this is the trivial subgroup (since n>2), so i=0
modulo (n-l1l) , against our hypothesis.

If Iﬂgrf_=F++ then M is the kernel of an epimor-
phism from rtt to © , sending (Z2,P) to (z,p) where
o{p) =3(n-1) . Moreover, we now show that such kernels
must give rise to imbeddings of Kn . Since H acts trans-
itively on vertices the number of vertices is
[H: HV] =[H:<p>] =n, and the number of edges is exactly
the order of H. So we need only check that these maps
have neither loops nor multiple edges. As in the regular
case, there can be no loops. If there is a multiple edge
then all edges are multiple and so XYiXYj €M€F++ for
some i, j#0 (mod (n-1)) since the valency of the vertices

must be (n-1), there being #n(n-1) edges and n vertices.

1l . 1l s
. . . N N . -1 _ 51 ) .
If i is even then so is j, in which case z p° zp2d is

1

s 1. 1.
the identity in H. Hence p2(1+J) =, 1,78, Bl

o) Z0 lies in

" the commutator subgroup, and thus in the translation sub-

group T, of H and therefore has order dividing |T| =n.
1 (s 4=
However, o has order dividing (n-1) and so 02(1+J) =1.
L .
Thus 021 commutes with 2z and so lies in the centre of H ;

this is the trivial subgroup, so 4i =0 (mod 3(n-1)),

against our hypothesis. If 1 is odd then so is j, in

1(3.7) -y (3.
which case z"lpg(l 1), 102(3 1) 5g the identity in H.

Now o(p) =3(n-1) and so p#£T. Thus p has a fixed point
and so, by conjugation, we can assume that p fixes O.
-1 )

Then p==s; and z = sbtC for some a,b,ce, and so

(2 Lz
z-lpz(l-l)z—lpe(,]-l) = 52t

u where u is a non-zero mult-
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iple of a't l)p 241

, against -1 £Q?.

Two regular maps are + isomorphic, that is,
there is an orientation-preserving isomorphism between
them, if and only if they have the same map subgroup.

If M is the kernel of an epimorphism from F+ to G,
sending (X,Y) to (x,y) where o(x) =2 and o(y) =(n-1)
and M is a second such kernel, then M=M if and only
if [x,y] = [¥,y"] , where square brackets denote the
equivalence class under group automorphisms., It follows
that the equivalence classes under orientation-preserving
isomorphisms of regular imbeddings of Kn. are in one-to-

one correspondence with the equivalence classes under

automorphisms of G of
T o= {(x,y) eGxG | G=<Kx,y>, o(x) =2 and o(y) = (n-1)

Two type 3 imbeddings with associated map sub-

groups M and M are + isomorphic if and only if M is

-1
1 -15-1

one of {M, M'} . We note that 2z¥ =%xY"'=2"'P"! and

-1
that PY =P, If M is the kernel of an epimorphism

from 1T to H , sending (Z,P) to (z,p) where of(p) is
4(n-1) , and M is a second such kernel, then M =M if

Y

and only if [z’, o’] = [z,0], and M =M~ if and only if

[z", 0] :[z_lp_l,p] . Furthermore, the normaliser of M
in TV is strictly larger than T'' if and only if M =M .
For (z, o), (2", 0°) e HxH we define [z, 0], [2°, 0] to be
Y-paired if and only if [2z", 0"] = (27", p]. It is =acy

to see that this is a well-defined symmetric relation.

We define a Y-pairing to be proper if it does not self-
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pair an equivalence class. It follows that the equival-
ence classes under orientation-preserving isomorphisms
of type 3 imbeddings of I%l are in one-to-one correspon-
dence with the proper Y-pairs of equivalence classes

under automorphisms of H of
Y = {(z,0)eHxH | H=<z, p> and o(p) =3(n-1) } .

We now classify the equivalence classes under
automorphisms of G of 2 for n>1. If yeG has order
(n-1)>1 then y#T and so has a fixed point, and so is
conjugate by an element of T to an element of G_ . Thus
if (x,y) e then [x, y]-= [s .ty s,] for some a,b,cel.
Now 'bb is conjugate by an element of G0 to t, . Thus
[x, v] :[sctl,saj . Moreover, o(x) =2 and o(y) = (n-1)
if and only if c¢c=-1 and aeP . Let X, =s_1t1 , let
ace” and let m=0 or 2(n-1) as n is eveﬁ or odd, so

that a™=-1. Then (:xo,sa> contains all non-trivial

translations

thus it contains T and Go which together generate G ,
so (x,y)eZ if and only if [x, y] = [x,, Sa] for some
aegpP .

Let Gal(F) denote the Galois group of F over
its prime field F_ =GF(p); then each 06 ¢eGal(F) induces

an automorphism 6 of G, sending each element satb to

saetb8 . Clearly ® fixes x,=s_.t .
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Lemma 4.2. Let a, a e€P . Then [xo, sa] = [xo, Sa':[ if

and only if a and a’ are conjugate under Gal(F) .

Proof: If a =a’ for some 0eGal(F) then 6 sends
(xo,sa) to (Xo,Sa,)

Conversely, suppose that o e Aut(G) fixes X,

. i
and sends Sa to 8, - Since a, 8 ¢” we have a’ =a

for some i coprime to (n-1) . The function 6 :F — T,
fv—»fi , restricts to an automorphism of the multiplic-
ative group P , taking a to a"; we shall show that 6
is also an automorphism of the additive group of F, and

hence an element of Gal(F) , as required.

)6 S/

We must show that (£, +f£ )% =g +f2 for all

f,,f,eF. Since 06=O, we can assume that fl,fZ#O .

1’
_ 0 _
If £, +f,=0 then (f1+f2) =0 and

A i i i_ L iy _
+f2—fl+f2—f1+(-f1) -f1(1+(-1) ) =0

(since if i is even then so is n ); hence we can assume
that £, +f £0.

For any integers j, k, £ consider the word

W(g,n) = n(Bd)gp(tm=k) g (k=2 oy (24m)

We see that W(xo,sa) is a composite translation ty

where b=a'j +ak -aé . Since S, =s; y if we replace h

by nl and use the fact that im=m (mod (n-1)) , then we
ik _ i¢

_ R |
see that W(xo,sa,) = t,; where P =a"+ta

, = ad
Since f,, f , £f.+f, #0, we have £ o=a’,

f =a* and £+ fzzaZ for suitable integers j, k and ¢
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conjugate by an element of T to an element of H . Thus
if (z,p) e then [z,0] = [sétb,s;] for some a,b,cel.
Now G normalises H and tb is conjugate by an element
of G, to t, . Thus [z,0] =[sét1,s;] . Moreover, p has
order 3(n-1) if and only if a? eP? . Furthermore, if
a?eP? then < sétl, sé) contains t  and so, since with-

out loss of generality ae?”, contains all non-trivial

translations

L. i
£ . = (sz)-4l(n+1)t( 1) (Sz)4l(l’l+1)
i a 1 a
a

thus it contains T and H, which together generate H,
so (z,p) e if and only if [z,p] = [sétl,s;] for some
aelP, cel.

As in the regular case, each 6 € Gal(F) induces

an automorphism & of H. Clearly 6§ fixes t, .

Lemma 4.5. Let a,a e€”P and c¢,c Q@ . Then
[sétl, s;] = [sé,tl, s;,] if and only if (c?, a?) and

((c’)?, (a")?) are conjugate under Gal(F) .

Proof: If (a')2=(az)e and (c')2=(c2)e for some 6 in

A 2 2 2 2
Gal(F) , then 6 sends (sctl,sa) to (sc,tl,s,).

)

Conversely, suppose that o e Aut(H) sends
2 2 2 2 .
(sctl, Sa) to (Sc’t1’ Sa') . Then o fixes both H_  and
T (since T is characteristic in H ), and so a fixes

. i . .
t Since a, a €P we have a’ =a for some i coprime

1 .

to (n-1). The function 6:F — F, f+> f' restricts

v
¥*

to an automorphism of the multiplicative group F ,

taking (c?, a?) to ((c")?, (2")%) ; we shall show that
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8 1is also an automorphism of the additive group of F,

and hence an element of Gal(F), as required.
5]

We must show that (£ +£,)%=¢%+ ¢S

for all

£ f_eF. As in the regular case, we can assume that

1’ ~ 2

£f.,f

10 £o flJrf2 are all non-zero.

For any integers j, k, £ consider the word

Ay A, AL A AL AL A
1 2 3 5 6 7
W(g,h)=h g h g 'h g h ,

where A =-j(n+l); A, =(-1)3 5 A =3(j-k)(n+1) ;

3 Ag=1(k-2)(ntl) 5 A =(-1

We see that W’(tl, s;) is a composite translation t

where b=a3+ak—aé. Since (Sa')2:

b

S2l if we replace

a H
h by h™ and use the fact that i is odd then we see
nat W(t;,s2) =t,, where v o=ald g ik o g1l

Since f , f , f1+f2;40 we have f, =ad,

f2=ak, flJrfzzaZ for suitable integers j, k and ¢ ;

in the above nctation this gives b =0 so that W’(tl,s;)

is the identity in H, and hence (applying o ) we have
W’(tl,sg») =1 . Thus b =0 so a'J +aik:alZ

6, o6 _ 6
flHf,=(f +£,)7 . =

, that is,

Corollary 4.6. Two pairs (z,p), (z°,0") € I’ are equivalent

under Aut(H) if and only if (u(z),u(p)) and (u(z"),u(p’))

are conjugate under Gal(F) . =

Remark. These arguments in fact show that for n >3

Aut(H) can also be identified with the group ATL(1,F) .
If (z,p) e then [27,0] =[z2""0 ", 0], where
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(z,0") e, if and only if (u(z"),u(p”)) and
(u(z)_lu(p)_l,u(p)) are conjugate under Gal(F) . Thus
[z,p] is self Y-paired if and only if u(z)2=u(p) %,

which has precisely one solution for u(z) €22, and so:

Theorem 4.7. For each prime power n=p-z 3 (mod 4)

greater than 3 there are 1(n-3)¢(n-1)/e orientation-
preserving isomorphism classes of type 3 imbeddings of

K . =
n

By identifying r*/M with G we have the coset
graphs of M in 1"+ corresponding to the regular imbeddings
of Kn with vertices, edges and faces corresponding to
orbits of <Y> , <X> and <Z? respectively, and incidence
given by non-empty intersection. This gives an orientable
map, which we shall denote by A(x,y), and we have
Mn(x,y) z+/’?(x',y') , that is, there is an orientation-
preserving isomorphism between them, if and only if u(y)
and u(y’) are conjugate under Gal(F) . Each +:'Lsomor'ph—
ism class contains a map /M(x,y) with x =x, and y =8,

for some aelP ; if we denote this map by /(a) then we

have:

Theorem 4.8. The regular imbeddings of Kn (n>1) are

+isomorphic to the maps /(a) where a is a primitive

+

element of GF(n). We have /l(a) = M(a”) if and only if

a and a’ are conjugate under Gal(F) . =

By identifying T''/M with H and by using the

automorphism of I“++ induced by conjugation by X, we can
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construct the coset graphs of M in F+ corresponding to
the type 3 imbeddings of Kn’ as illustrated below, with
vertices, edges and faces corresponding to orbits of

< X27'>, <X> and <Z)> respectively, and incidence

given by non-empty intersection.

W(P,Z)
M > MW (P, 2)
X X
MX > MW (P, Z)X
XW(P,Z)X

This gives an orientable map, which we shall denote by
M(p,z) , and we have M(p,z) :+M(p',%) if and only if
(u(p”),u(z”)) is conjugate under Gal(F) to either
(u(p),u(z)) or (u(p),u(z"'e"")). Each 'isomorphism
class contains a map M(p,z) with p =s; and z =sét1 for
some aeP, ceQ ; if we denote this map by /(a,c) then

we have:

Theorem 4.9. The type 3 imbeddings of Kn are +isomorphic
to the maps /(a,c) where a is a primitive element of
GF(n) and c eGF(n)\ {0} such that c* #a”? . We have
Ma,c) ¥+M(a'ﬂf) if and only if ((a”)?,(c")?) is conjugate

under Gal(F) to either (a2,c¢?) or (a2,a ¢ ?). =

We can give an alternative description of /(a)
as one of the Cayley maps introduced by 3iggs [2] (see

also [3]). Let geG be given by
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g=sbtc:fr—»bf+c

where b,ceF and b#0. Then the coset g ¢y> , consist-

ing of the elements

-

gyt t e at(bf+ec) ,

contains a unique translation tc/ (with a® =b"%) , SO

b
we label the vertex corresponding to g<y> , via the
identification of G with I''/M, with the element

v=c/beF ; this gives a bijection between V and F.

Now

gx : £ > -bf + (1-c)

and gyx ¢ £ > -abf + (1-ac)

are associated with vertices labelled (1-c)/(-b)=v-Db~ !

and (l-ac)/(-ab) =v-a~'b~! respectively; thus if we
put a”' =u then the vertices adjacent to v are labelled

*
with the elements of F\N{v}l =v+F in the cyclic order

v+1l, v+u, v+u?, . .« ¢« v <, V+u(n'2)

corresponding to the orientation around v . We therefore

have:

Theorem 4.10. The regular imbeddings of Kn (n>1) are

Jrisomorphic to the Cayley maps A(F,F ,r) where F =GF(n)
as an additive group, the generating set for F is

F*:F\ {0} , and r is the cyclic permutation

s ¢ fe—uf
u



*
of F for some primitive element u of F ; two such maps

are +isomorphic if and only if the corresponding primitive

elements are conjugate under Gal(F). ®»

We can also give an alternative description of

M(a,c) as a Cayley map. Let heH be given by

h=:s%td: f+—> b2f +d

where b,d eF and b#0. Then the coset h<pd> consist-

ing of the elements

hot : fe—s a°t (b2f +d)

21 _ -2 ) so

contains a unique translation td/bz (with a
we label the <(Y)-orbit of the coset MU’€F++/M correspond -
ing to h with the element v=4/b?eF. This gives a

bijection between V and F. Now

MUX{ Y > MUXY <Y) =MUZ"'(¥>

and MUY2X<Y > = MUY2XY {Y) =MUY2Zz"'<vy)> .

1

Furthermore, the cosets MUZ™', MUYX, MUY2Z7™ ! correspond

to the elements

hz~ i £ —> ¢ 2b%f + c”2(d-1)
hoz ¢ £ —>» c?a?b2f + (c%a2d +1)

hoz ™' i £ —> ¢ 2a?b2f + ¢ (a?d -1)

and so have vertices labelled (d-1)/b2=v-b 2%,

2 =2. =2

(c?a?d+1)/c?a?b?2=v+c “a b and (a2d -1)/a2%b? =

-2, =2 1

v-a b respectively. Thus if we let u=a = and let
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j be such that
-a c :uj (-)(-)
then since

ct=a"? = ul =-c2=_(/a"2%n 02)=a"t=y

=>c*=(-a"%ud)2=a" "2 =572

we have that ud ranges over all odd powers of u except
u itself as c¢? takes all values in Q2 except that
value for which c*=a”? and the vertices adjacent to v

*
are labelled with the elements of F\N{v}=v+F in the

cyclic order

SadtR) e v-uldtd)

_y(itn-3)

v

.-..-..,V

Furthermore, if ((a')ze, (c')ze) = (a?, a_zc_z) where

a,2” eP and c,c’eQ for some 6 ¢eGal(F) and both

-2 =2

—a"2¢ =47 (1)

and —(a) ()72 = (a)7E (2)

then a = (a”)® , and thus (applying 6 to (2) ) we have
e 2 =a¥ and so j+tk=z2 (mod (n-1)) by (1). We

therefore have:

Theorem 4.11l. The type 3 imbeddings of Kn are +isomorphic

¥*
to the Cayley maps /{(F,F ,r) where F=CGF(n) as an additive
group, the generating set for F is F =F\ {0}, and r

is the permutation of F defined by
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(2-3)
u

rf02=s : f—y u(2-j)f

r,cz\a’l:s% Py uwdf

for some primitive element u of F and odd integer
j:1<j<(n-1) . Furthermore, if we denote such a map
by A(u,j) then M(u,k) :+/’7(u,j) if and only if u” and
u are conjugate under Gal(F), and either k=j or

k=(2-j) {(mod (n-1)). =

The various regular imbeddings M =/1(a) and

m=mMn(a") of K, are related as follows by Wilson's opera-

.

i .
for some 1

tions. Since a,a’eP , we have a’ =a
coprime to (n-1), so M is obtained from /M by using
y :s; instead of y = Sy to describe the rotation of
edges around each vertex; in other words, M is the map

Hi(/’?) . Similarly, if M(a,c) is a type 3 imbedding of

Kn then Hi induces the representation

Pr—> Pi —> oi = sii
1(7 s 17 s i
R T B L e L
. i _3(1-1) :
corresponding to the map /(a™,a c) ; in other words,

H, (M(u, §)) =m(ul, (5-1)/1+1) , by (x), giving the new

rotation

(i-j+1)f

(1+J 'l)f

r']QZ : f—3u
r |O \ g2 fr—>u
We now consider which of the regular and type 3

imbeddings of Kn have map subgroup normalisers not

contained in 1“Jr . In the regular case such imbeddings
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would be reflexible, and so, as we have seen, this happens
if and only if* n< 4. Furthermore, since the only node
stabilisers of graphs (i), (ii), or (xii) of Fig. 12 or
their images under ¥ to contain r** are those of (i),
(ii) and (xii) it follows that every map subgroup norm-
aliser of a type 3 imbedding of Krl is contained in F+ .
Thus for n >4 no regular or type 3 imbedding of Kn is
isomorphic to its own mirror image.

We now examine some of the topological features
of these imbeddings for n>4. If M is a regular imbed-
ding of Kn then each face has the same number of sides,
namely the order of y 'x in G ; this number is (n-1)
unless n=3 (mod 4) , in which case it is %(n-1), so
the number of faces of M is n or 2n, from which it
follows that /M has genus i$(n-1)(n-4) or %(n?-7n+14)
respectively (as in [3]). Since none of x, y, xy are in
the commutator subgroup of G it follows that the length
of each Petrie path in M is twice the order of the com-
mutator x_ly_lxy in G, that is, 2p, whence ¥ nas
Euler characteristic n - 3n(n-1) + #n(n-1)/p. For n odd
this is odd and so ¥ is non-orientable. We note that
rr. acts as a rotation of edges around a face and so

170
)(n"l) £ Mlb

)(n-l) eM. and

v

for n even (rlro Then (I‘lr‘or2

S0 Mw;éf-l- , whence N is non-orientable. So /’Yw is non-
orientable of genus 2 -n+ sn(n-1)(p-1)/p.

If M=m(u,j) is a type 3 imbedding of Kn
then there are two orbits of faces, of sizes F,6 and 7

1 2

say, containing M<Z> , of valency o say, and MIKZ> ,
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of valency B say, respectively. Thus the two faces
incident with any of the 3n(n-1) edges are in different

orbits, and we have F o=F B=3n(n-1) . Now a is the

2

order of z in H, and B is the least positive integer
such that MXZP =MX, that is, such that MXZSX = M .

Equivalently, M(PZ) ® =M, whence B is the order of oz

in H. By (*) we have /’?(u,j):+/’7(a,c) where a =u '

-2 -2 2:_a(j-2)

and -a ‘¢ ?=a"J, that is, ¢ . Whence

) Thus if 2-j =23(n-1) (mod (n-1))

z =s(2:t1 = séj_2+%(n-l))t
then a=p else a=%(n-1)/(n-1,2-j) . Furthermore,
pz=sa(Lj+%(n_l))t1 and so if j =4(n-1) (mod (n-1)) then
B=p else B=3(n-1)/(n-1,3j) . From which it follows
that M has F faces where if either j = 3(n-1) or
2-3=23(n-1) (mod (n-1)) then F=n+3n(n-1)/p else
F=n{(n-1,j) + (n-1,2-j)} . Thus M has genus g where if

o

either j = 3(n-1) or 2-j=4(n-1) (mod (n-1)) then

g=1(n-1){n(p-1) - 4p}/p else

g =in{(n-3) -2(n-1,j) -2(n-1,2-5)} +1

There is just one orbit of Petrie paths in M. Suppose
that M(X“'Y"'x¥)Yx"'v"'=M for some integer v . Then
Pz € <zpz > whence =z e <zpz>, and so H&E Lzpz> , against
H being non abelian. Whence the length of each Petrie
path is 2y where y is the order of zpz in H, giving
sn(n-1)/y Petrie paths in all. Now u(zpz) =c“a? =a2(j-l)
and so u(zpz) #1 . Whence v=(n-1)/(n-1,2(j-1)). It
follows that Y has Buler characteristic yx where
x=n-2n(n-1) + $n(n-1,2(j-1)), which is odd. Thus " isc

non-orientable of genus 3n{(n-3) - (n-1,2(j-1)} +2.
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It is to be noted that these more obvious
topological features do not therefore determine the
isomorphism class of the imbedding. We have, however,

proved the following:

Theorem 4.12. The orientable non-regular edge-symmetric

imbeddings of Kn in surfaces without boundary are

precisely the type 3 imbeddings. =

6) We now give a simple algorithm to determine
whether two given edge-symmetric imbeddings of Kn
(drawn on polygons in Ff with sides identified, for
instance) are isomorphic.

We have seen that an edge-symmetric imbedding
of Kn is reflexible if and only if n=1, 2, 3, 4 or 6 .
Furthermore, the isomorphism class of any reflexible
imbedding of Kn is determined by its Euler characteristic.
If we do not have a reflexible imbedding then we may use
standard techniques to determine the orientability of
the surface (see for example [22] in the case of a poly-
gonal representation), and so, by applying the topolog-
ical operation Y if necessary, we need only determine
whether two orientable non-reflexible edge-symmetric
imbeddings of Igl are isomorphic. We may easily deter-
mine which such imbeddings are regular (by considering
the symmetries induced by X and Y, for instance), and
so, since the mirror image of a given orientable imbedding
is readily obtainable, we need only give algorithms to

determine whether two imbeddings of Kn that are either
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both regular or both of type 3 are +isomorphic. We now
do this.

Given any dart (vy,v,) of a regular imbedding
of Kn the orientation of the map gives a cyclic ordering
(v0 Vi eeon V(n-Z)) to the vertices adjacent to v, and
there is a unique map automorphism Xv* v, sending
(vy ,vo) to (vo,v*) which 1s a half rotation of the map
about the centre of the edge {v, »v,} and which induces
a permutation x of the index set {%, 0,1,...(n-2)}.

Vg sV,

By definition x v G (¥ ,0) > (0,%) and its action on
* Yy

{1,...,(n-2)} is illustrated by Fig. 18, where X, 4
* Vg

has been abbreviated to x.
Figure 18

Vx (i)

Conversely, X, . completely determines the map, for
¥ * V9

if y is the permutation y=(01.... (n-2))"" ‘then

X,y and y generate the map automorphism group A and
*? 0

. +
the kernel of the epimorphism 6 :I — A, X+—>x

ViV,

Y—>y is & map subgroup.

If ¢ is a map Jrisomorphism between two regular
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imbeddings / and A" with distinguished darts (v, ,v )
and (v} ,v,) then for some map +automorphism @ we have
¢poa: (vy,v )—>s(vy,v,) . Thus a necessary and suffic-
ient condition for two regular imbeddings M and A’ with
distinguished darts (vg,v ) and (v} ,v]) to be *isomor-
phic is that x_. ;=X .
ViV, Vg,
If 1 is the permutation of {1,..., (n-2)} that

sends i to (n-1-i) then we can clearly replace the role

of x 1in the above condition by m=71ex. Furthermore,

by definition . (% ,0) —>(0,%) and by Fig. 19 ,
¥V
where T v has been abbreviated to w, the action of
% 2 Vyg
ul on {l,..., (n-2)} can easily be read off by
Vi sV,

inspection of any map.

Figure 19

Given any dart (vy,v,) of a type 3 imbedding
of Kn the orientation of the map gives a cyclic ordering

(vo'vl..... V(n-2)) to the vertices adjacent to v, , and

. . . -1
there 1s a unique map automorphism Z that sends
* ? Vo

(vy ,Vo) to (V(n-Z)'V*) which rotates the map about the

centre of the face (....v vy V(n-2)""') and which

induces a permutation 77" of the index set
¥ 2V
{%, 0,1, «ve.. , {n-2)} . By definition le v sends
* 2 Vo
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(#,0) to ((n-2),%) and its effect on {1, «..., (n-2)}

1

is illustrated by Fig. 20 , where z; y 1s abbreviated
¥ 2V
to z7" .
Figure 20
v_-1,, \%
z7 (i) e (n-2)
i 7-1
Vi, vV,
i
v,
i
Conversely, z;_l . completely determines the map, for
* Vg
if p is the permutation y? then =z . and p generate
¥* 270

the map automorphism group A and the kernel of the epi-
+4+

morphism 0 : 7T —>;4,Zr—-—>zV%’VO,Pv—>p is a map
subgroup.

If ¢ 1is a map Jrisomorphism between two type 3
imbeddings M and M’ with distinguished darts (v, ,v,)
and (vy ,v,) then for some map tautomorphism o we have
that ¢ o aq : (Vd(%)’VG(O))'_)(V’*"V'O) where § 1is some
permutation of {%*,0} . Thus a necessary and sufficient

condition for two type 3 imbeddings M and /M7 with

’ Id +-
distinguished darts (v, ,v ) and (vy,Vv ) to be "isomor-






maps about v, sending {v, w} to the first edge met in
a positive direction. Furthermore, there is a subset T
of rf of order n such that the vertex set of ¢ 1is the
image set of v under the action of T as a set of sym-
metries of M. If the same cannot be said of T applied
as a set of symmetries of M’ then the two imbeddings are
non-isomorphic, else we label both copies of the vertex
set by T in the obvious way. Then /7 and M’ are iso-
morphic if and only if the vertex permutations induced
by X and Y as symmetries of /1 are the same as those
induced by X and Y as symmetries of M°. 0Of course,
in the special case when ¢ 1is a complete graph, taking
T={1,%, XY, +vovn., X¥P"2)Y poans that the permutation
induced by Y 1s independent of the imbedding, and thus

the algorithm simplifies considerably.
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