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TIME SERIES ANALYSIS OF COMPOSITIONAL DATA

by Teresa Mayia Brunsdon

In recent vyears various methods have been developed for modelling
multivariate (or vector) time series. However if each vector consists
of proportions so that elements must sum to unity these methods break
down. Data with this sum—constraint are termed compositional data. It
is the aim of this thesis to propose a possible approach to such data.

The method applied is to find a function that will map the sum-
constrained data onto an unconstrained space, that 1is to map the
spherical simplex onto the real plane. Two specific mappings are
investigated. These turn out to be multivariate generalizations of the
well known logistic transformation. However, both of these functions
are asymmetrical. For the first this asymmetry is induced by the choice
of one of the variables in the vector series, as a reference variable,
It is shown that the model is invariant under this choice, For the
second, a specific order to the variables must be imposed. Howevery,
this is seen to be useful in examining a type of compositional independ-
ence Known as neutrality.

Methods for wusing the resulting two models for forecasting are
discussed. There are two main problems that occur. The first is that
the moments of the underlying distributions corresponding to these
models cannot be evaluated algebraically. This means that the minimum
mean square error forecast cannot be evaluated. The second is that
these distributions are not necessarily uni-modal, which may make the
use of the minimum mean square error forecast nonsensical. Various
solutions are suggested, and these are compared in a short numerical
study.

The final part of the thesis examines the relationships between the
components of the proportions. This utilizes time series methods for
examining Wiener-Granger causality, and combines them with various
concepts of compositional independence. These latter concepts include
neutrality as mentioned above, and have been developed to deal with the
sum—~constraint.
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"In the Begiming...'

John 1:1

CHAPTER 1

Introduction

1.0 Introduction

This thesis is concerned with the analysis of "compositional time
seryies"., A compositional time series is a sequence of observations at
discrete time points; ...-1,0,1,... where each observation consists of a
vector of proportions. For example consider a repeated survey in which
at each repetition a categorical variable is recorded, such as in an
attitudinal survey where a number of people are questioned on their

attitude to some issue. Their reply might be coded as one of:-
for; indifferent; against; don’t know.

For each survey repetition this gives a vector of proportions of the
respondents preferring different categories. Two specific examples
where such data arise are public opinion polls on preference for a
political party and market research questionnaires on preference for
particular brands.

There are many other examples of such data. The term "composi-
tional” comes from the field of geclogy, in which constituents of the
s0il are examined. When soil samples are taken the amount of each
constituent (e.g. silt, sand or clay) contained in the sample must
necessarily be presented as a vector of proportions, i.e. the composi-
tion of the sample. Often several such samples are taken along a line
segment and the resulting data is then a compositional '"time'" series,
where "time' is now represented by distance. Another example is

that of a chemical process in which the amount of each compound is



measured as the process develops. In a closed system we may obtain a
compositional time series which represents the chemical process. A
final example occurs in economics in a study of expenditure and income,
In a household the expenditure on certain commodities may be examined
over several time periods. When expenditure on say "food", "housing",
"clothing', etc. is presented as a proportion of total expenditure we
have a compositional time series.

The interest of the analyst in such data will vary from applica-
tion to application. One common requirement is to be able to forecast
such series. In the example of the repeated survey a forecast using
past surveys may be incorporated into the estimation of the composition
from the current survey thus augmenting the accuracy of the estimates.
Such an application has already been developed for univariate time
series by Blight and Scott(1973), Scott and Smith(1974}, Scott et
al(1977) and Smith(1578). Forecasting is useful in its own right since
it helps predict the future of the system.

Other interests refer more to the structure of the compositional
time series. In a study of expenditure one may wish to see how income
affects expenditure, If the main wage earner receives a pay rise how
does expenditure change (if at all)? Or, in the public opinion poll,
does the proportion who prefer a minor party affect the proportion
preferring one of the major parties over its main rival?

It is the intention of this thesis to develop models for composi-
tional time series and methods to answer some of these questions. This
involves building on the techniques that are available to handle
compositicnal data, together with those for general wultivariate time
series. The literature on the analysis of compositional data is
summarised in Aitchison(1986) and, has to our knowledge been confined
only to the case of independent observations. Time series analysis 1is a
vast subject for which there is a large quastity of literature which
reveals several possible approaches. We will restrict gurselves to the
multivariate ARMA models since they represent a well known and useful
class of models for our purposes.

We begin in chapter 2 with a brief description of the multivariate
ARMA model and some of its properties. We also consider the concept of
dependence between time series, such as Wiener—Granger causality, and

discuss methods to test for such dependencies.



In chapter 3 we examine the properties of compositional data. Many
problems are found to occur., especially in understanding the relation-
ships between different variables. The main reason behind these
difficulties lies i: the "sum-constraint'., i.e. the fact that the data
consists of proportions and hence must sum to one. This makes 1t
difficult to examine such well used statistics as the correlation
coefficient. It 1s also shown how a multivariate ARMA model breaks down
when it is applied directly to a compositional data set. We then
examine some of the procedures developed to overcome the problems
encountered in the non-time-series context, and in particular, the
approach of Aitchison(1982) who defines several types of independence
between the variables in a composition. His approach is seen to consist
of transforming the data so as to remove the sum-constraint, It is this
approach that we shall pursue in later chapters.

In chapter 4 some models for compositional time series are
presented. They employ the transformation suggested by Aitchison(19827},
which requires the use of a reference variable. We show that the models
are invariant to the choice of reference variable, the model being
affected by a linear transformation of its parameters. A linear
approximation to the model is examined and shown to be a standard
multivariate ARMA model. Finally the model is applied to two data sets;
the GALLUP(c) political opinion poll and the National Opinion Poll
(NOP) .

The transformations used in chapter 4 lead to a particular
transformed normal class. This so called "logistic normal distribution”
was first highlighted by Aitchison and Shen{1930). In chapter 5 we
examine the mean, median and mode of this distribution. It is seen that
numerical methods must be applied to calculate these parameters and
consequently an approximation to the mean is deyived. Various other
properties of this distribution are discussed and a number of numerical
examples are given. The applications of the properties of this
distribution to the forecasting problem are then discussed.

In chapter 6 the concepts of Wiener-Granger causality discussed
eariier in chapter 2, and the compositional independence properties of
Altchison(1982) are combined to form some new concepts of causality
and dependendence between compositional time series variables, The
application of these new tvpes of independence are discussed, and

various means for testing them are developed. Finally a numerical



example is given., again using the political opinion poll data.
The final chapter summarizes the main ideas and indicates further

areas of possible development.

1.1 Notational Conventions

To make comprehension easier, certain conventions are adhered to
wherever possible. No distinction is made between a random variable and
the values it takes. Vectors and scalars are denoted by small letters

and matrices by capitals. Hence:-

$ is a scalar:

Ve is a vector with ith element Vigs

Ay is a matrix with (i,j)th element aij(k), equivalently we will

write {aij} = A

dg(gl,...,gm) will denote the mxm diagonal matrix with elements

815 a8y
Uy, will denote the mxm matyix of 1’s; and

e, will denote the mxl vector of 1's.

o



"For everyrhing there (5 a season and a time for
every marter under Heaven. ...’

Ecclesiastes 3:1

CHAPTER 2

Multivariate Time Series Models

2.0 Intrxoduction

A comprehensive review of multivariate time series models is
beyond the scope of this thesis. We restrict ourselves to only the
results needed in subsequent chapters, and in general present these
results in as brief a way as possible. A more detalled description may

be found in for example, Harvey(1981), Fuller(1976) and Hannan(1970).

2.1 The ARMA Model

We begin by defining the models of interest, which are multi-
variate generalizations of the univariate models wmade popular by Box and
Jenkins(1976), We will denote by {gt} a vector time series of

stochastic variables for t=..,-1.,0,1,...

Definition 2.1

A mxl vector time series {gt} is said to be an m-dimensional

white-noise process if the €, are independently and identically

distributed with mean 0, and non-singular covariance matrix £.

Definition 2.2

A mxl vector time series {v,} is said to be a multivariate

autoregressive moving—average process of dimension m and order (p,q) 1if

it may be written:

Ve * 9V T el TOY =g T OyErq toeee. T qut—q ;

®p¥e-p

ey

where 91,...,QP,Q1,...,Q are mxm constant matrices,

q



QP%Q , Qq¥g ,and {g,} is an m-dimensional white-noise process.
We will denote this type of process by ARMAm(p$q) and note that we may

rewrite 1t as:

$(Blv, = 8(Blg, , (2.1.1)

nP
where P(B) = L + @B+ ...+ QPB, (2.1.2)
0(B) = Iy + 918+ ... + OB) (2.1.3)

and B is the backshift operator:

Ky - o
BY, = Xy -

Definition 2.3

An ARMA_(p,0) process is said to be an autoregressive process of
i

order p and dimesion m. We will denote this by ARm(p).

Definition 2.4

A moving-average process of dimension m and order q is an

ARMA (0,q) process. We may write this as MA {(q).
An 1mportant property of time series is that of stationarity:-

Definition 2.5

A stochastic process{zt} is weakly (or second-order) stationaxy if

1) E{Y ] =y
t=...,-1,0,1,...
and i1) Covi(Y Y’ ) =T 5 k=..,-1,0,1,...

where y and [} are independent of t.

Lemma 2.6
A necessary and sufficient condition for an ARMAm(p,q) process to
be (weakly) stationary is that the roots of:
oz =0,
lie inside the unit circle.
Proof

e.g. Hannan(1970) page 14,

If we have a nonstationary vector process we may transform the
data. For example, as in the univariate case, we could ditfference the

data:~

<



W=(L-B) v,
where B is the mxm matrix difference operator :- §S§t=§t_s . With
obviocus notation we may then proceed to define the ARIMAm(p,d,q)
process. However differencing has to be applied with great care, if at
all, especially when handling multivariate time series, This fact has
been noted by among others Hillmer and Tiao(1979), Tiao and Box(1981)
and in more detail by Liutkepohl(1982). Tjéstheim and Paulsen(1982)
suggest using the concept of, "Almost Non-Stationary' (ANS). Since such
transformations are available we will without loss of generality assume

stationarity.

Definition 2.7

If an ARMAm(p,q) process may be written as an infinite auto-

regressive process it is said to be invertible.

Lemna 2.8
A necessary and sufficient condition for an ARMAm(p,q) process to
be invertible is that the roots of:
0z by =0,
lie inside the unit circle.
Proof

e.g. Hannan(15870).

In our definitions we have not included a term to represent the
nean of the series. There are two ways of incorporating it into the

model. Consider the series {v,} and let

Ve = vy -Elv ] : (2.1.4)
where V., follows an ARMAm(p,q) process. Then v, also follows an
ARMA_(p,q) process, with mean E[v.].
Alternatively we may include the mean in the model:-—

P(B)v, =y + O(Blg,, (2.1.5)
where in general E[v,]#u.

Some packages assume this latter form of model, unless the series was

first differenced.



Another extension to the ARMA (p.q) model is the seasonal model.
These models are required because data often comes in the form of, for
example, monthly or quarterly figures., A seasonal ARm(p) model, with

seasonality s and autoregressive component P may be written as

9(5)(85)9(8)‘—{?, = ¢ (2.1.6)

=1

where §7BS) is a polynomial of degree P in BS,

One may expand the left hand side of (2.1.6) into one polynomial in B of
order sP+p, i.e., as an ARm(sP+p) model, but where some of the resulting
Qi matrices will be zero. Consequently we will without loss of
generality consider only non-seasonal models.

Before considering the practicalities of the ARMA model we need to
know the conditions under which the model is identified. Here we are
addressing identification in the economic sense of parameter redundancy,
as opposed to the identification stage of fitting an ARMAm(p,q) process,
which will be discussed in section 2.2 . It has been shown by Hannan
(1969) that an ARMAm(p,q) process is identified if the following
conditions hold:-

Conditions 2.9

i) 8y = 9y = Iy -

ii) The roots of (Q(z"1)1=0, and ;Q(z_1>;=0 must lie within the
unit circle. {i.e. the model must be both stationary and
invertible.)

iii) 3<@p~@q)=g if and only if }=0. 1i.e. the matrix [@pf ] is of

full rank.

0

Box and Jenkins(1976) consider their application of ARMA models as
consisting of four stages:—
i) Identification - before estimating any parameters of the

model we must first obtain estimates of the order p.d.q.
ii) Estimation — estimation of the parameters themselves,

1ii) Diagnostic Checks - test the goodness of fit for the

estimated model.



iv) Forecasting - use model to estimate future values,

We now consider each of these stages in turn. For the later models we
develop we will primarily be interested in i) and iv); much of what we
require in estimation and diagnostic checking being determined by the

computer software that we have had access to.

2.2 Identification

The process of identification consists of examining the data and
comparing their properties to those of ARMA models of various orders.
This is usually done by considering a variety of summary statistics
which are estimates of some function of the time series, The simplest

of these is the autocorrelation funtion.

Definition 2.10

The kth process autocovariance function matrix of a time seyies

1 Y= (K\
{ye} is NG9 {yij’},
( = [ Y’
where I'{k) E[tht_K],
and Y,=v.- n{xt] ;o k=...,-1,0,1,... .

As a function of k the I'(k), k=...,-1,0.1,... are known as the auto-

covariance funcion (ACVF).

From this we mav define the correlation in two ways:-

Definition 2.11

The kD process autocorrelation matrices P(k) and the matrix

normalized crosscovariance (k) are defined bv:-

1) Bl = {py, (0O,

where pij(k) = yij(k)




ii) Q(k)={w, . (K)},
1]

r(xr0) "t

As a function of k P(k) and {(k) are known as the autocorrelation

funtion (ACF) and, the matrix normalized crosscovariance function (MNC).

We note that if we let mem= dg(yll(O)’y22(O)’”"ymm(O))’ then we may

express P(k) as

/ 1/2

p(o=8"1 2T

In practice P(k) is the most commonly used, since as shown below
it can be used to identify a MAm(q) process. However Q(k) is emploved
by for example Hosking{1980a) in residual diagnostic checking and by
Tidstheim and Paulsen(1982) for identification.

The parameters of an ARMAm(p,q) process ave velated to the ACVF:-

Lemma 2.12

For a stationary invertible ARMAm(p,Q) process,

#(B)v, = 9(Ble,

then ®(2)T(2)0 (2~ 1) = e(zyze (271,
[oe} .

where [(z) = I [(i)z",
1=~

®(z) and B(z) are defined by (2.1.2) and (2.1.3), and ¥ is the error

covariance matrix of g,.

Proof

See e.g. Hosking(1980a)

Corollary 2.12.1

For an ARm(p) process :-

. j > 0, (Yule-Walker equations)

0
L ¢ I'(j-1) = ) j =0,
P =
i=0

Corollary 2.12.2 (Yule-Walker equations)

For an ARMAm(p,q) process

p

r ¢ I'tj-i1) =0 1f j > q.
: i =
1=0

10



Corollary 2.12.3

For an MAm(q) process

q

L 6.10; . i1 < 4q,
L(j) = i=0 b M7

0 tit > q.

The consequences of this lemma and its corollaries are that the ACVF,
the ACF, and functions of them may be used to identify p and q for a
stationary time series. In order to do this we first require some

estimates of T(k), P(k), and Q{(k); k=...,-1,0,1,...

Definition 2.13

The kth sample autocovariance function matrix € = {cij(k)} is

given by:-
) n
Clk) == Lyy’ ..
n =1 t=t-k
where Y. = Xt— ;t,
n
. 1
Y == 1 .
t n t=1 t

and we assume that ¥ .Xﬂ . are sampled from a time series. As a

preee
function of k, C(k} is the sample autocovariance function.

Definition 2.14

t . , .
The k h process sample autocorrelation matrices R(k) = {rij(k)}

of a time series {gt;t=l,...,n} are:-

n
L X
tzlytlyt~k‘j
r. (k) = s
1]
no, no, '
(X yo 3Lyl
N p=1 W1 =g Y3
= c. . (k)
1]

-

i c¢..(0)c,.(0)’
il AR
th . . . .
And k process sample matrix normalized crosscovariance matrices are:

(k) = C(k)g(0) ™t



Similarly as a function of k, R{k) and S(k) form the sample auto-

correlation function and sample matrix normalized cross covariance

function of {y}. If D, . = dglc;1(0),....c, (0)), then we have

R(k) = D71/ 2¢(k)p~1/2,

We note that for I['(k), P(k) and their estimated values that:-

T’ (k) = I'(k),

P’ (k) = P(K),

C’(k) = C(k), (2.2.1)
and R’ (k) = R(k).

It 1s known that the joint distribution of Q&k) is asymptotically normal
with mean I'(k) and variance 0(1/n). (e.g. Hannan(1970),Fuller(1976)j.
Similarly R(k} (see Hannan(1970) p229) and S{k) (Tjgstheim and
Paulsen(1982)) follow asymptotic normal distributions. 1In particular if
we consider the autocorrelation function of two white-noise processes
then for large n the rij(k)’s would have a normal distribution with mean
0 and variance n”t.

Recall from corollary 2.12.3 for an MA_(q) process that:-
r'éiy =0 1jt > 4.

We may examine the C(j} function., and will be able to detect if we have
a MAq(q) process if C(j) is sufficiently "small' for |jI > g. To define
"small" we would need to know I'(j) exactly. Instead we standardize C(j)
and examine R(k). For univariate processes the procedure is usually
carried out by plotting r(k). This type of graph is known as the
correlogram. For multivariate time series we could plot values of
rij(k) for i<j=1,,,m against k (k=0.,1,... 1f i=j and k=...,-1,0.,1,...
i=j)., This would vequire a total of m(m+1)/2 plots, which is not too
bad for m=2 or possibly m=3, however beyond this it is not easy to
compare m(m+1)/2 such graphs simultaneously. Alternatively Tiao and
Box(1981) have suggested a schematic way of presenting the auto-
correlation function R(k). The elements of R(k) are replaced by a "+"

(k) is greater than 2 s.e.’s, a "='" if it is less than 2 s.e.’s,

1L ri]

and a "." otherwise.

12



If we have an autoregressive component the R(k) will not quickly
die away. For various orders of p in an ARm(p) process the R(k) are
known to follow a certain pattern. (for the univariate case see for
example Box and Jenkins(1976)). The easiest solution would be to look
for some function which had similar properties for the ARm(p) as does
the I'(k) function for the MA, (q) process. Such a function has been

found in the partial autocorrelation function.

Definition 2.15

The partial autocorrelation function F{k) for an AR (p) process

15:~

0 k> p.

To formulate how we may actually compute F(k) we turn to the Yule-Walker

equations given in corollary 2.12.1 and 2.12.2. We have:-—

L(k+1) = [ D(k) D(k=1) ... Clk—p+1) } [ &7
b5
o’ .
| _p_
where k > g - for an ARMAm(p,q) process,
and k>0 - for an ARm(p,q) process.
Thus we have by stacking p of these equations that:-
T T(k+1)] F (k) D(k-1) ... D(k-p+1)] [ _43{
I'(k+2) T(k+1) T'(k) ..... T(k-p+2) Qé
. B . . . . (2.2.2)
T{k+p) T(k+p-1) voveeo.. T{K) b’
L2 ] L = = 4L —pd .

We may obtain estimates of gl,...,g9 by solving this system of
equations. However we do not know p, so we form this system for

p = 1.,2,... we have:-

13



Ck+1) = DO &,

{E(k+l)} _ { (k) C(k-1) ] { ®5 ]
T(k+2) L T'(k+1) (k) ?52 ] X
etc. for k-q,q+1,... .
Then we may estimate 911’921’?22’931’ v ,Qpp,... . Then :
= 0 i<p
—ii
= 0 1>0p ;
and we may write:- F(i) = :'- = 1.2, .
J3
Suppose in particular we let k=q, and write as in Tiao and
[ (k) Lik-1) . . . . [(k=s+2)
AGS.K) = kel Tk .. Tlkes+1)y| » Bk =
| [(k+s-2) D{k+s-3) . . . ['(k) .
g (s,k) = [ [lk+s~1) T(k+s-2) . . . D{k+1) ] c(s,k) =
251 [ 9sl 952 o e és,s~1 ] ’
(2.2.5)
Then we may rewrite our system of equations as:— (k=q)

[lg+1) = Tla)ey,

c(2,9)| _ {
I'{q+2) ] L
c(3,q)] _
E(q+3)J

et

k4

>

o
j=1

“(2,q)

A(3,q)
g (3,9}

C.

"(21:,2,(1) 1 { _E_I h‘
Llay | | &5,
b(3,q) ( =4 }
Llq) | 93,

(2.2.3)

(2.2.4)

Box(1981):~

[ D(k-s+1)"
{k-s+2)

| D(k-1) |
[ T(k+1)
T(k+2)

.

.

| Dik+s-1) |

(2.2.6)

Then using the results of e.g., Morrison{1976 p68), we have that:-

14




r i oren r=1

[T(a) - b’ (r.q)a” (r.aibir.a)]]’ (2.2.7)

L) - 9’(r?q)§‘1(r,q)g(r,q)] r > 1

In practice we do not know g, and in fact we calculate ¥’ (r) using q=0.
Having made this assumption we will be able to identify an ARm(p)
process. If we have a mixed ARMA, (p,q) process then R(k) and F(k) will
die away slowly. We must then decide primarily on the basis of the
pattern of the two functions, or alternatively choose some other
criteria, which we will discuss below. Before moving on however we need
to consider how F(r) is estimated in practice. There are several ways
this could be done, but we present here the approach used by the
computer package available to us to calculate F(r). We have available
an early version of the Wisconsin Multiple Time Series Package (WMTS-1),

which follows the procedure outlined in Tiao and Box(1981).

Consider the transpose of the ARm(r) model;

Vo=V, 9+, , 2V @+ gl 2.2.8)
Te T Y1 Le-por | &t ( !
Suppose that we have a sample yl,....yn then we may stack at least n-p
equations:-
r / 7 r ’/ 7 i ’ n - ’ 7
v £
=~r+1 e -1 —y+1
V/ V/ V/ E/
—r+ —y+ -2 —Y+
r+2 _ e 2 e . 20 (2.2.9)
-1 . -r .
LM V-1 Vi-r £
L J{n-r)xm t J{n-r)xm L J L i
If we let:~
r 7 ’ r 7
y o= v e e e GV = vV’ Vv’ . . . V!
“r L Sp+1 -n J s gr -r -r-1 -1 s
/- ]
2 L -1’ vt ’?rJ ,
I [F i / 7/ . ;
BT T LB Bt Byl Yot Yoo v 0 Y

then we may rewrite (2.2.8) as:-



— /¢/+A’
y= X2 A

and we may estimate ¢’ by ordinary least squares (OLS),

A/ m ’ —‘l ;o
L [y | Yy (2.2.10)

Then if we do this for r=1,2,... then we may define F(r) to be the last

mxm matix of @ o

As with the ACF we may easily examine the PACF by plotting it
against its corresponding lag. However the WMTS-1 package also produces
a schematic version for F(r) in a similar fashion to that described Ifor
R(k). From standard linear model theory it is possible to calculate the
standard errors of F(r). If each element is divided by its standard
error we obtain a standardized form of F(r) (F5(x) say). We may
represent these by writing a "+'" if an element of F®(r) is greater than
2, or "=" if it is less than -2, or a "." if it lies between +2 and -2.

The ACF and PACF offer a means of identifying an MAm(q) oy an
ARm(p) process respectively. But what can we use if we have a mixed
ARMAm(p,q) process? Tiac and Box(1981) suggest a criterion with the
following properties:—

. =0 ifs>pandk 24
d(s,k)

=  otherwise

Consider the equations (2.2.2) and (2.2.5),

A(s,k)  Db(s,k) Bl cis,k)]
- | (2.2.11)
g'(s,k) I'(k) | ®l Cisrk) |

Walker equations. We define dij(s,k) to be :-

A(s,k)  ¢.(s,k)
J (2.2.12)

7’

g’

{s,k) y..{s+Kk) |
1] i

Then if kK > 4 and s > p, because of (2,2.11) the gjts,k) and yij(s+K)

are linearly dependent on A(s,k) and g3(s.k) and consequently
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dij(s’k) = 0 if s » p and k 2 q for i,j=1,...,m. (2.2.13)

Using (2.2.,12) we may define the following:-

Definition 2.16

Let D(s,k) = {dij(s,k)} ; s=1,2,... 3 k=0,1,... ; where dij(s,k)
is given by (2.2.12). Then the series of matrices D(1,0),D(2,0),...,
D(1,1),D(2,1),... of determinants forms a deteyminantal criteria for

identifvying ARMAm(p,q) models:~

=0 if s > p and kK 2 4.
D(s.k)

# 0 otherwise,

A further tool suggested by Tiao and Box(1981) for the
identification of ARm(p) models takes the form of a likelihood ratio
test. For an AR (r) model consider testing the hypothesis Hy:®, = 0.
Let $S(r) be the matrix of residual sums of squares and products after

fitting an ARm(r). Using the notation of (2.2.9) we have:-

( =y 2.2.14)
SS(0) Y6¥g
- - A/ _ . A/ g}[‘ - // - T A/
58(x) [ L 7 210 ot §rr9r il LT By see T By Oo
where [ X, X v .. X = Y Jfor v =1,2.... (2.2.15)
=1lr. =2r. . Trrd =r
18S(r)

The likelihod ratio statistic may be used to determine the

1SS{r=~1)1
order p of an ARm(p) process. Using the approximation of Bartlett(1538)

we have that:-

m> {2.2.16)

J

(r)i )
M{r) = =(N - 1/2 - rm)ln{ 1SS (r) |

. ) 2
is asymptotically ¥~ , . where N = m-r-1.
(m™)
Thus we may compute M{(r) for r=1,2,...,s (say) and choose a suitable p
when M(r) is sufficiently small,
Various other statistical tools may be used for identification.

7 X , . .
For example two similar ¥~ statistics are presented by Tjgstheim and
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Paulsen(1982). Also the inverse autocorrelation function has similar
properties to the partial autocorrelation function. The fourier
transform of the autocorrelation function results in a normalized
cross—spectral matrix. If the inverse of this cross-spectral matrix is
then formed and then the inverse fourier transform applied, the
resulting coefficients will have analogous properties to the original
autocorrelation function, but with the AR and MA operators interchanged
(see for example Priestley(1981)). A further identification tool is the
use of canonical variate analysis as suggested by Akaike{1974) and
further discussed by Cooper and Wood(1982).

We now move on, and consider next the estimation of the parameter

values.

2.3 Estimation

Once the order of the ARMA model has been determined we then
require to estimate the parameter values themselves., Under the
assumption of normality we may use the method of maximum likelihood,
however the exact maximum likelihood estimator proves to be computa-
tionally expensive, and consequently various approximations have arisen,
which, under certain conditions, prove to be close to the required
result,

Two simple, but inefficient, methods of estimation have in fact
already been mentioned for the ARm(p) process in the previous section.
In the definition of the partial autocovariance function, the parameters
Ql,...,Qp weye estimated by solving the Yule-Walker equations, thus we
may apply this technique here. We note, since the Yule-Walker equations
apply for ARMAm(p,q) processes, that using the appropriate
autocovariance function we may estimate Ql,...,Qp for the mixed model as
well. A similar approach may be used to obtain estimates of Ql,...,Qq
via the inverse autocorrelation function since Yule-Walker type equa-
tions hold in an analogous way to that of the ARm(p) case, A recursive
procedure for easily solving the Yule-Walker equations has been devel-
oped by Whittle(1963). This is the method emploved by the SAS package
to compute the partial autocorrelation function. However these Yule~
Walker estimates are poor, especially for smaller sample sizes, and also
b

if the roots of the characteristic equation |@(z *); = 0 lie close to

the unit circle. Since the inverse autocorrelation function is itself
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based on an estimate of the spectral density function there seems to be
further room for error which is perhaps the reason this does not seem to
have been done in practice.

The second type of estimation mentioned in the previous section
was that of the OLS estimator (2.2.10). There is no similar estimator
for the MAm(q) process, other than fitting a high order ARm(p) process
and forming estimates of Ql,...,Q as:-

9

0(B) = ¢~ (B).

The OLS estimate is more accurate than the Yule-Walker estimate but, 1t
is still relatively poor compared to that of the exact likelihood
estimate. This latter estimate and the conditional likelihood estimate
are based on the likelihood function of an ARMAm(p,q) process which

undex the assumption of normality is:-

1

P ~-{n-p)/2 P DU SRR
£(€.0,21V) « || exp{- ztrl "5(8.8)}
(2.3.1)
~ - n
where ¢ = Ql, N T Ql""’Qq; and S($,0) = ) L a,a; .
k=1-p~q
The a, may be estimated by:-—
ép+1: ypﬂ+ @1~p Teee? szl_ elap" T Qqép—qﬂ
a, " Y, ! Qlyn~1+"'+ sznapn Qlén"l”"’_ Qqén—q ’
for k = p+l,...n. (2.3.2)

Since the estimates of Ay_poqr ey are difficult to compute, an

P
approximate likelihood estimate is given by setting these to their
expected value, namelev zero. This approximation forms the conditional
likelihood estimate. i.e. the likelihood function conditional on

él_p_q = ... = a, =0, This is given by:~-

1

VTN _ - -~
PL i p)/’exp{- Srk 1SC(Q.Q)} R {2.3.3)
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- - no. .
where now SC(Q,Q) =L a.al (2.3.4)

The exact likelihood function mav also be computed by various methods
for example the Box and Jenkins(1976) method in which estimates of
g1“p~q,...,gp are obtained by "backforecasting'. This method is applied
to AR;(p) and MAl(q) processes and is extended to the mixed process
(ARMA, (p,q)) by Newbold(1974), to the MA (q) process by Osborn(1877) and
to the general ARMAm(p,q) process by Hillmer and Tiao(1979) who show

that the exact likelihood may be written as:~

£ (2.0.51V,) « £_(2,0,11V )6 (2,0,LIV) | (2.3.5)
where Qr(é é Xl yt) is a function of:~

1) V...V i g =0,

i1) vV .yn if q = 0.

1,...

Having obtained an expression for the likelihood, it is still
necessary to maximize it., This is done iteratively. An initial estimate
0 20 . . . .
of the parameters $7,0" is given and these are used to form an estimate

of I, 1°.

n .
¥ a.a’ . (2.3.6)
-

A non-linear least squares xoutlne such as that ot %arquarat(lﬂ63) can
then be emploved to find % O which minimize 5¢ @ O) and hence maximize
Q(@,@,§|yt). From this we may repeat the procedure until we have
convergence. This is the approach used by the WMTS—1 package, which
employs a modification of the Marquardt algorithm written by
Meeter(1965).

The complexity of the exact likelihood function makes it computa-
tionally inefficient. However if the initial guesses are chosen to be
close to those of the final estimates very few of the complex iterations
will be required. Thus we can improve the computational efficiency by
letting the initial guesses be those as estimated by one of the
approximate estimation procedures mentioned above.

Other methods of estimation are also available, based on the
frequency domain approach of Whittle{1953). Akaike(1976) applies such

an approach to fit State Space models, these being the techniques
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emploved by SAS.
Finally we note that confidence limits af the estimates are
readily available and the asymptotic distribution of the estimates have

been well studied by for example Hannan(1970).

2.4 Diagnostic Checks

Once a model has been fitted, it 1s necessary to ensure that it is
fitting the data well. One approach is to examine the residuals; one
would expect the residuals to behave like a white-noise process, 1if they
are in fact estimates of the innovation series powering the process., A
further way to examine the adequacy of the model is to show that the
addition of more parameters to the model is superfluous. Thus we may
approach diagnostic checks applied to the residuals and/or by "over-
fitting tests".

The simplest way to examine the residuals is to treat them as a
new set of data, and apply the identification techniques to them to see
if they will be adequately represented by a ''white-noise model”., The
residuals are readily available to do this, having been already
calculated at the estimation stage. The WMTS-1 package automatically
performs some useful processing of the estimated innovations. The
cross—-correlations are calculated, and using the indicator symbols
described in section 2.2 we would expect these indicators to consist
almost entirely of "."s. Thus for a two dimensional series the pattern
of the autocorrelation function of the residuals may resemble something

like this:~

lags: 1 2 3 4 5

The odd "+" oy "-'" should not worry us, providing they are
infrequent and not conforming to any pattern.

We could also examine the PACF but since it merely reciprocates
the ACF for a white-noise process, this may not be worthwhile, unless
there is some indication that we do not have a white-noise process from
the examination of the ACF.

Overall xz tests which examine all the residual crosscorrelations
simultaneously have been developed. The well known portmanteau
statistic (e.g. Box and Jenkins{(1970)) for univariate time series has

been generalized to multivariate time series by Hosking(1980a,1980b).
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Hosking(1980a) also examines a whole battery of overfitting tests based
on the lagrange-multiplier test procedure,

One simple overfitting test has in fact already been mentioned in
2.2, namely the likelihood ratio statistic (2.2.16) which we have
labelled M(r). We could also apply M(r) to see if additional moving
average parameters would improve the model. We note that in overfitting,
tests we try adding parameters either to the autoregressive side of the
model or to the moving-average side, but not simultaneously, because of
parameter redundacy. (See Box and Jenkins(1970)).

In this context we will use the diagnostic checks available to us
on our computer software. Namely the ACF of the residual series, and

where appropriate the likelihood ratio form of the overfitting test.

2.5 Forecasting

The ability to forecast is perhaps one of the most useful
applications of time series analysis. It is important in business,
finance, marketing, public administration and many other areas. There
are many ways to approach the subject of forecasting. In some situa-
tions subjective forecasting is the best way to analyse future trends.
Many managers, for example, need to make important decisions as to how
to run their business based on their "know how" and past experience.
Such intuitive prediction is invaluable, but it can be augmented by
statistical techniques. Also, in situations where it is extremely
difficult for anyone to subjectively predict future events, statistical
techniques provide a necessary objective method of prediction.

Various statistical forecasting methods are available, not all of
them based on time series analysis. For example in launching a new
product a sales manager might well conduct a consumer survey to get a
feel for the market. Time series analysis, however, lends itself very
well to this area, and a whole battery of time series forecasting
methods are available, not only the Box-Jenkins method, but many others
as well; for example the Holt-Winters method. The Box-Jenkins approach
considered here gives us a means of estimating the distribution of
future observations conditional on present and past values. Once we
know this distribution., we may use it to provide both point predictors,
based on the mean, median or mode; and also interval predictors, usually

in the form of a confidence region for whatever location parameter we

(3]
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may have chosen. Point predictors give us a single value which
estimates the future value of the variable of interest, whilst interval
predictors indicate the degree of uncertainty attributable to these
single values.

The most common location parametey used in practice is the mean,
because it has the property of providing the minimum mean square eYyor
forecast. (MMSE forecast.) In other words if the forecast of Z,,, at
time t is Z,(4), and the forecast erxor is given by e, (l) = Zypg~Zye (4D
then if Z, (l) is chosen such that it minimizes E{elt(i) ] i=1,...,m;
then it is the MMSE forecast, which is simply Z, (D)=E{Zy, 122 preeds
the mean of the distribution of Z,., conditional on Zy,Zy_qse-+ -
Obviously if the distribution is the normal distribution, the mean,
median and mode would all be identical. However if a transformation is
applied prior to the analysis, or some other distribution assumed, this
is no longer the case, and we need to differentiate between the various
options of location parameters. Before considering these non-gaussian
possibilities, let us consider the simple case of the stationary, normal

distributed time series. In particular one that follows an ARMAm(P,Q)

process:-—
Z = =9 - ¢ - e .- + + oL .. F .
2y = 827 Bk LRI %8t—q
s + + + . z ' =
e, Xlgt—l £2§t~2 e e e ; where var(gt) L,
Consider 2 = g + ¥ + .. T + + Y > oo .
1der 2., 0% Crig’ 21%0eg-1 Yo et B
{(2.5.1)
A ] & & B J LI B ) <
£ time t, gt’§t~1’ are known, whereas et+1, s t+£ are unknown but

have mean 0 and variance L. Thus the distribution of Zt+£ at time t,

conditional on gt,; is normal with mean:-—

NEEEE
z (&) = BLZ,, 12 Ly qreeeee]
=¥ e + ¥ e Foweva e {2.5.2)

={=t —4+1-t-1

and variance:-

1

vari{Z 12, .2 1,..‘.]

(
T AL varle, (4]

1

varfe o+ Yoo, g7 0 o TEE Criy)

LW I¥ e .. ¥ 0¥ . (2.5.0)

it

(2.5,2) 1is often more conveniently expressed as:i-



2,0 = Qe reer Qe m 92 (S — =@ 2 (1) = 92 —m 92

(2.5.4)

In practlce the parameters are replaced by their estimated values

-~ ~

61""’6 ¢1,...,® T ,... 3 as computed by the techniques described in

~1
the previous section. We also need estimates of e,.,e. ;,....; these may
also be replaced by the estimates resulting from the previous step of
our Box-Jenkins method. Alternatively they may be regarded as the one
step ahead forecast errors, so that if a forecaster is using a model
which is well tried, for example, over a long time period, in which more
observations become known but the model is not re-estimated, then

estimates of e, ,e, y,.. are:-

e, =e (=2 -2 (1 t =0,%1,2,... (2.5.5)

Thus as more Z,’s become known, the forecast of Z,,, may be easily
updated, giving sucessively more accurate estimates:- Z,(4), Z,,;{4-1),
Z‘t"'z(l*z),..";t“}'l‘l(l).

The expressions (2.5.2) or (2.5.4) provide us with a point
predictor Z,(4) of Z,,,. The confidence region for Z.,, may also be
produced using standard multivariate theory. Thus 1if Var{gt(i)] is
estimated by substituting estimates of I,¥;,...,¥, ; into (2.5.3) then,

by the results of e.g. Morrison(1976) a 100(l-«)% confidence region is

given by:-
- 2
. 4 an < )
(Zt(i) Ziig) Z (1)(2 )y -z, s Xe.m , (2.5.6)
where Ze (4 is the estimate of Var[gt(i)] based on (2.5.3),
“t‘

2 . » . . 2 .. . .
and Xg.m 15 the 100waZ% point of the X distribution.
We note in passing, that the expression (2.5.6) above is not based on
the F distribution, as i1s the usual case in the multivariate context,
where the covariance matrix is the usual estimate of some multivariate

variable x:-

=

1

§_=-—1—; P o(x, - X)(x, - %) .and ¥ = &
1 i=1 =" =1 = = oo

S is known to follow a Wishart distribution, and consequently the

equivalent expression to (2.5.6) for X results in the Hotelling’s T2
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distribution, which in turn may be rewritten in texms of F:-

nE - s HE - x)r ¢ bm : (2.5.7)
= == = = {(n-m) ®3m, n-m
where F is the upper 100«% point of the F distribution.
oy m, N-m m, n-m

However in this time series context, the variance matrix within the

gquadratic expression ( Ze in (2.5.6)) does not follow the Wishart

t(l)

distribution, but since as shown by, for example, Hannan(1970) L and Xi

are asymptotically normally distributed with mean I and Xi(i=1,2..)
respectively, then (2.5.6) gives us an approximate confidence region in
this case.

Having developed the above forecasting procedure we now consider
how these results are affected by a transformation. As mentioned
previously a time series, {V,} may be transformed to a series {Wy} by
some instantaneous transformation, such as that of Box and Cox(1964), in
order to have a stationary process {W.}. The ARMA model is then fitted
to this new process. These transformations also hope to produce a
gaussian time series so that the methods given above may be applied.

Thus we have that

We = £(V) t=0,%1,.... H | (2.5.8)
and using the methods described above we may readily form forecasts of
Wesg Wesgseo. as W (1),W . (2),... . However interest is usually in the
forecasts of V,,;,Vii9,... S0 that what is usually required is an

estimate of E{V,, ,IV,,V, 4,...]. If we let the inverse transformation
of (2.5.8) be:~

Ve = a(W,) , t=0,%l,.... (2.5.9)

Then the forecast of interest is

I

v (4) = E[V iV .V .l

—t+d =177
= E[Yt+£|ﬂt’ﬂt—l" ..l
= E[g(Et+£)IHt,Et“I,. ool ) (2.5.10)
which, in geveral = g(E[Wt+£1Wt,Wt_1,. N . (2.5.11)
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This problem may be tackled in many ways, one in particular is to
consider the resulting distribution of yt, given Ht is pnormal. This
is perhaps most easily demonstrated by a simple example. Consider the
well known transformation:-

Et = ln(yt) .
In general if Y = 1n(X) and XNNm(E»E) then X is said to follow the
log-normal distribution with probability density function:~
1

m

WX, !2“21_%
. i =
i=1

exp{ ~(InX - p /I [(InX - w) .  (2.5.12)

We will denote this by Am(g,z), m being the dimension and, u and I the
parameters of the log-normal distribution. It is then easily shown that

the mean of X is

FE(X.) = exp(y. + %6..) ; i=1,...,m. (2.5.13)
i i ii
and Cov(Xi,Xj) = {exp(oij) - 1}{exp(pi + ”j + %(dii + ij)} ;
i,i=1,...,m; (2.5.14)
h L) o= L) - { . ; i=1,...,m.
ence Var(Xl, Lexp(dll) 1}1exp(2ui + 611)} ; i=1, m

Thus we may now easily form estimates of yt+£, from those of Et+£'

Recalling that:-

(Et+£zyt,wt_l,. R Nm(Et(i),zgt(l)) ,
and v, = exp(ﬂt) ,
we have E[yt+£] = yt(g> = exp{wti(i) + 6gii(£)} , (2.5.15)
and Var[yt+£] = {expdtii(i) - 1}{exp(2wti(i)~+ dtii(x)} R
where {ctij(i)} = Zet(i) ; (2.5.16)

i=1,...,m.

Finally we note that for this simple example, < 100(1-o)% confidence

region for yt+ is simply:~-

i

~1 2

(1ny,_,, - gt(;z))'_.z_et“z)<1n_\gt+}z SW D) <X (2.5.17)

+4
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We see, however, that although this provides an interval predictor for

\' it is not centred on E[Zt+ ]. Thus, from the above example, for a

—t+4’ i
general transformation we see that we may form a point predictor of zt+£
providing we know the mean of the resulting "f-normal" distribution.
Also we may form an interwv al predictor analogous to (2.5.17).

Another approach to the forecasting of V after performing a

t+4
transformation is given by Granger and Newbold(1976), who consider an

expansion of g in terms of hermite polynomials. For a univariate series

such that
= g(
Wt g\vt),
[s¢]
Then we may write W o= L o H (V) , (2.5.18)
t . iit
i=0
2 a " 2
where, Hn(x) = exp{x /2) [“E§J exp(-x"/2)
(n/2]
= al T (=D)™2%n (n=2m) 1) LTI (2.5.19)
m=0
I
the Hermite polynomials, (e.g. HO(X)=1, Hl(x)=x, Hz(x)=x“—1).
0
p 2 n
b -1 -x"/2 d -
= (( ] —— 3
And * ((2m) n!) e { x} g(Vt)th . {2.5.20)
| J
=0

For example E{W ] is shown by Granger and Newbold to give the

W,
t+1 't
same results as above for g=log. Such an approach requires that the
function concerned be easily expanded this way, which means that
(2.5.20) be easily computed.

Having defined the ARMAm(p,q) model and discussed its properties,

we next consider the concept of Wiener—-Granger causality.

2.6 Independence Between Time Series

In multivar . iate time series, questions often arise in connection
with the inter-relationships between individual time series., For
example, in economics knowledge of the influence that one economic
variable has on another aids us in understanding the underlying economic

system. This in turn enables the economist to forecast future economic
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trends, and advise government bodies regarding policy. Many other
examples exist, and various concepts such as causality and feedback are
of particular interest in the modeling of both engineering and economic
systems. Exact definitions of these concepts have been given e.g.
Granger(1969,1982), Geweke(1982b). 1In particular the definition offered
by Granger{(1969), now commonly known as Wiener-Granger causality, offers
a good working definition, with practical implications both in testing
and in interpretation. Although there does seem to be much discussion
and dispute over these definitions (see for example A, Zellner’s comment
to Geweke(1982a) and also Geweke(1982b).); these disputes are in general
philosophical and will not he considered here, Wiener-Granger causality
offers a widely accepted definition of dependence between time series
and is presented below together with various methods to test and measure

causality, feedback and independence between time series.

2.6.1 Some Definitions of Causality

We first require some notation. If Zt is a stationary stochastic

process, then let

z represent the set of past values {Zt—j3 i=1,2,...%3

tp
thp the set of past and present values {Zt_j; i=0,1,2,...}3
thpp the set of future, present and past values {Zt-j; i=0,x1,x2,..7};

Pt(Z/W) be the minimum mean square eryor predictor of Zt using the set

W, with prediction error:-

]

e (Z/W) = 2, = PL{Z/W),

62(Z/W) be the variance of e, (Z/W),
and Qtp be all the information in the universe accumulated up to time
t~1, and (Q—Y)tp be all this information apart from the series Ytp'

We then have :-—

Defintion 2.17 {Wiener-Granger)
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a) Causalitv: Ytext
If 62(Xt/Qtp) < 62(Xt/(Q—Y)tp) then Y is said to cause X%.

b) Feedback: Y, oX,
N 2
If 1) 67(X/Qp) < 67 (X /(YD
ii) 62(Yt/Qtp) < 62(Yt/(Q~X)tp), then both Yo%y and X, »Y, occur

y, and

and we say we have feedback between X and Y.

¢) Instantaneous Causality: Y..X,

If Gz(xt/ﬂtp’ytpp) < 62(Xt/Qtp) then Y is instantaneously causing

X and X is instantaneously causing Y.

We note that by symmetry we may also have defined ¢} by:-

2 2
62 (Y /0y Xepp) < 07 (Yo /p)

tpp
which consequently is equivalent to the inequality given,

The criteria involved in these definitions is that of predictabil-
ity. Thus Yt%Xt implies that we are better able to predict Xt given the
past values of Yt than if we did not employ Yt’s past values. We note
that in all the definitions the time series are stationary.

Grangexr(1969) also makes the following points.

1) The fact that the criterion used is the variance, implies that

these definitions might be better named "causality in mean’.

2) We will not in fact have the whole universe of information Qt but

rather a subset U, {say) of "useful” information.
3) In practice any predictors that are used are linear in nature.

Thus using these facts we could for example replace Qt by Uy, 62(X/W) by
6+2(X/W); where, 6+2(X/W) represents the variance of the lipear
prediction error of Xt given a set W; and replace causality, for
example, by linear causality in mean with respect to a set U. However
this leads to rather long-winded definitions, although these are more

realistic. We will bear in mind what the true definitions should be



(i.e. the more long-winded ones) but instead use the more general
definitions. It should be clear in the next section, and in later
applications exactly what form of causality, feedback etc. we are
implying. What is important is to understand that in whatever frame-
work, be it linear or otherwise, Yt»Xt for example, implies that within
that framework we are better able to predict X, if we use information
about past values of Yt over and above any other past information, such
as past X,. Obviously Ut may not in fact consist of "useful" informa-

tion, but rather known and thought to be useful information. If some

important variable is unknown, spurious relationships can occur between
known variables (cf. correlation). Even if however, we only discover a
spurious relationship which enables us, for example, to better forecast
some variable then it is still of value. In any case our understanding

of a system must stayt somewhere.

In later sections we will also require two further definitions:-

Definition 2.17 continued

d) (Linear) Independence: Y, || X

If X does not cause (linearly in mean) Y (with respect to U}, ¥
does not cause (linearly in mean) X (with respect to U) and no
instantaneous (linear) causality (in mean with respect to U)
exists then Y is said to be (linearly) independent (in mean) of X

{(with respect to U).

c) Complete Dependence: Y, &X,

If Xt»Yt, Yt%Xt, and Xt‘Yt then Yt and Xt ar said to be completely

dependent (linearly in mean with respect to U) on one another.

The term "independence' in definition 2.17d) should not be
confused with the usual stochastic independence. Two variables zy and
z) are independent if their joint distribution is the product of their
individual marginal distributions. If our two time series X, Y, are
independent in this sense then they are also linearly independent in the
sense of 2.17d), but the converse is not necessarily true. This is
analogous to the fact that independent variables have zero correlation
whilst variables with zero correlation are not in general necessarily

independent. Thus 2.17d) may be thought of as analogous to Xt and Y,
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being uncorrelated, whilst 2.17a)-c) represent a directional form of
correlation. This will be illustrated in definition 2.21, which is a

directional squared correlation coefficient for time series.

2.6.2 Tests and Measures for Causality, Feedback and Independence

Having defined various types of causality between two time series
we need to know how to model and test for them. This has been done
recently by Geweke(1982a,1984) who systematically brings together and
builds on earlier work done by, for example, Sims(1972), Granger(1969)
and Pierce(1979). What follows is a brief description of Geweke’s
results together with a further test proposed by Haugh(1976).

Consider two multivariate processes {X.} and {¥.} of dimension k
and £ respectively. We will assume throughout that the joint process is
stationary and invertible {(maybe after transformation and differencing.)
If we wish to predict future values of {gt}, we may employ an appropri-
ate time series model. If it is known how {Y,} influences {X;} then
this may be included in the model. We will consider four possible

information sets that could be used to predict {gt}:~

1) ti

2) ti and Ytp
3) ti and Ytpp
&) ti and thpp

Geweke’s(1982a) measures of dependence consist of comparing the
above information sets with each other. Clearly we may symmetrically
examine four information sets to predict {Xt}, and may also compare
these, We can express 1)—-4) above in terms of four models for {§t} and
similarly {¥,}. We consider linear models, and collecting them pairwise

for X; and ¥, we have:-

(1) (1)
a

1) 911 (B)gt =2, s (2.6.1)
(1), )
S5 (BL =D, (2.6.2)
(1) (1) . ) )
where ét s gt are white noise, but may be correlated with each other

at various lags, and:-

31



()

Var(gt y = LX1X ) 3 Var(b ) = Z(ngp) ;

and o'y = 1ol Bl im0
=ii s B
j=0

(1) _ 1 9.:i.n. r=k when i=]

where 25,5 T Lo o TLBIT0 oy hen 12
2) (2)(B)X + (2)(B)Y = ﬁz) , l
(2.6.3)

(2)(B)X + (2)(B)Y - ~éZ) X

where géz), Qé2) are white noise that may be correlated with one another

but only contemporaneously, and where

(2)7 (2)7

Var(a , ) o= L(X,Yi

b 2o L) (ke 4) x (k+4)
) ( z(élgp’zp)kxk Z(z’lfép’zp)kxt
- (2.6.4)
Lg(g,zi_n_xp,zp)m BEIX LY,
®
and Q;g)(B) ) Q§?)rBr . i=1,2
i g 135
(2)  _ . (2) ) 2y _ (2)
but with @11 0= lk ; Q12 0~ 0 ; 921’0 0 ; 922 0 Il (2.6.5)
3) o PV pyx oy, -2l
(2.6.6)
(3)(B)X N (3)(B)Y ”023) ’
(3) (3) . . .
where, a, and Et are uncorrelated white-noise with:-
var(a®)) = Lxix Y )
=t = ="%p"pp
(3) (2.6.7)
Var(b ") = Yy X ),
== Tp’Tpp
where Qéi)(B) are as in 2) except that instead of (2.6.5) we have
(3) (3)
= 3 = 2
20 "4 By L (2.6.8)
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(4) (4), _ (&) \
4 AN P T N
. , (2.6.9)
(4) (4)y, _ ,(4)
TR TR SV N J
with vara'®y = pxix Lr. ) )
=t =S %pi=fpp
(&) > (2.6.10)
Var(b = L(Y1Y X, ,
ar(_t ) m(*l_p —tpp) J
where Q;i)(B) i=1,2 are of the same form as in 2) and 3}, but
0]
o) =1 o' T imj=1,2 (2.6.11)
—ij r:_w—lj,r

Clearly all the above models may be re-written in matrix form:-

o' Py oy || x alt }
=11 12 o R - »
(i) 5 = | ) (2.6.12)
e, (B &07(B) || X, b, J
- J » 1=1,2,3,4;
A 1y _ ., (1) _
with @12 = 921 = 0.
Clearly if
i) X || Y, all the models reduce to 1)

\ -
ii) X = Y only, 3) reduces to 2) with, 9(2)(B}=Q; @;?'(B)=§§i)(8);

(2) (2) 12
a, is uncorrelated with b i.e, (X, YiX ,Y )}=0.
a LN 22112, 1070
iii) X e Y only, 3) reduces to 2) i.e. g(g,gizp,zp)=g.
: N (1) (1)
iv)  X.Y only, 2} reduces to 1) with a and b correlated only at

(3)

lag 0. 4) reduces to 3), but with éij . =0 izj=1,2;r=0.

k4

v) X & Y then gél) and gil)

model 2), 3), the first k equations of model 4), or the last k

are correlated at various lags. Also

equations of model 4) are all alternative representations of the

same form.

In the light of these properties Geweke(1982a) defines the following

measures of causality. (We use a different terminology.)
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Definition 2.18

The measure of linear causality from Y to X is:-—

(0 ZIX )
FY*X = In E ¥
PL(X1X .Y )
L P ’
symmetrically [ ZOY )
FX%Y = In _
- ‘-p —-p ’

Definition 2.19

The measure of instantaneous causality between X and Y is:-

IE(XIX I E(YIY 1)
F = 1n .
XX (L YIK LY )
='=="=p’=p

Definition 2.20

The measure of total linear dependence

TECIX ) BNy )1 )
F = 1n| —— P I |
X&Y |

J

PE(X, X WY )
- T T TP TP
It follows directly from the above definitions that:-

Fresy = Fxoy © Fyox © Fxoy (2.6.13)

Geweke(1982a) also gives the following results:-

f IE(XIX ) ) [ IZ(Y 1Y ) ;
Feesy = In P = 1n| P ,
PL(XiX Y. )i PEOYIY WX )
e T 1 M R 232
[ LX LY )
F - 1n =p’=pp
X»Y ’
P21 LY. )
L “p’~fpp |
: RS 1) 40 SN I,
Fog = In L2 . (2.6.14)
PIOIY WX, )
.= =TpSfppt
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The motivation behind these measures should be clear from
properties i)~v). For example, FY*X is the log-ratio of the prediction
error matrices of X based on past X, vs. past X and past Y. Thus if Y#X
so that the denominator equals the numerator FY%X = 0, Similarly for
Fy v» if there is no instugtaneous causality, gt(Q) will be uncorrelated
to Qt(Z) so that £(§,1|§p,gp) = 0 and again the denominator will equal
the numerator so that Fy ¢ = 0.

We note that:-

0 <F <o,

Pierce{1982) relates Geweke’s measures to his R2 measure for time series

(Pierce(1979)). This R? measure is perhaps easier to interpret since:-—
0 < R2 <1,

and it vepresents the proportion of variance explained by allowing the

particular dependence under consideration to hold. It may be defined in

terms of F.

Definition 2.21

2
Thus for example, R;eY =1 -e X% , and represents the proportion of

the prediction error for X|§p explained by gp.

Although R2 is perhaps easier to interpret, it does not have an
equivalent additive property like (2,.6.13). It is possible to form a

third type of measure, which is defined below,.

Definition 2.22

To understand the motivation behind W consider the null
hypothesis that a given measure of dependence is zerxo, then, when
estimates of the covariance matrices are made, F is the log~likelihood

ratio test-statistic, R2 the Lagrange-multiplier test, and W the Wald
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test. A comparison of these three tests is discussed by Geweke et
al(1983). The comparison is made in terms both of asymptotic theory,
and by a simulation study.

For our purposes, we will utilize F, since it is well developed in
this context Geweke(1982a,1984), it has the additive property (2.6.13),
and the other two measures may be expressed in terms of it.

Having introduced the above measures, we need to know how to
estimate them. The first step requires that we truncate all the lagged
polynomial expressions in (2.6.1) through to (2.6.12) at a point p

(say), so that:-

gi?fr =0 iri > p; k=1,2,3,4; 1,j=1,2.

This leaves us with a finite number of parameters to estimate.
Although p may be chosen in a similar manner to that for identification
(section 2.2), we are not seeking here to identify an exact order for
the model, but instead a truncation point for an infinite order model,
which will finally result in a good estimate of F. Geweke{1982a) states
that "p should be allowed to increase with sample size'" so that
consistency may be maintained. However the identification techniques of
section 2.2 should aid us, if only to set a lower limit for p.

Having selected p, the parameters, residuals and hence the
required variance-covariance matrices may be estimated using least
squares or other standard techniques such as those in section 2.3. F so
formed is then the maximum likelihood statistic, which asymptotically
follows a chi-square distribution under the null hypothesis that the
dependence relationship does not hold. The degrees of freedom are
simply equal to the difference in the number of parameters of the two

models estimated.

. - = a 2
Hyt ¥AX (Fy . = 0) Fye S Xiitp)®

. - - a 2
Hot XAY  (Fy o = 0) Fyly S Xikap)®

3 . (2.6.15)

Hyt 40 (Fy o = 0) 2 Xk

. R " a 2
Ho: XY (Fy y= 0) nFyesy ~ X(ke(2p+4)) °

If the null hypothesis does not hold then F is an estimate of the

causality measure F, and follows a non—-central chi-sgquare

(asymtotically) with the same degrees of freedom, and non-centrality
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parameter F. For example:-

nf a X,Z(

yaX ) (2.6.16)

klp,nFyﬁX

Thus confidence intervals may be estimated for the measures, and
Geweke(1982a) suggests some approximations to the non-central chi-square
distribution to aid this.

There are several other approaches to testing for independence
between time series. Some of the more familiar are formulated in the
frequency domain such as the phase and coherence. However we are
confined to the time domain. We mention one final method for
investigating the independence between two univariate series, as

developed by Haugh(1976).

Definition 2.23

Let {Xt} and {Yt} be two univariate series, and {at} and {bt} two
series formed by pre-whitening Xt and Yy respectively. Then under

Hy X I Y

q -
2 2
S=nl r (k) ~ X
Kk=—q a,b 2q+1
~9 ‘
SL= n;;: ra,b(k; \(2
k=—q n - (kj g+l

-~

where X b(k) is the sample cross-correlation of the estimated white
b

noise series {at} and {bt}. {Definition 2.14). We will call S and Sg

Haugh’s test for independence.

The motivation for the Haugh test comes from the fact that if two
series are independent then their cross—correlations should be zero.
However we cannot simply look at the cross—correlations of the raw
series since the autocorrelation in each series may inflate the values
of the cross-correlations in a spurious manner., However, it 1is possible
to investigate two white-noise series in this way since no auto-
correlation exists. Thus by first pre-whitening, the resulting
cross—correlations become easy to interpret, The resulting S or S*
test-statistics are then simply a sum of these cross-correlatioms, and

clearly are very similar to the portmanteau goodness-of-fit statistic.
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2.7 Summary

In this chaptexr we have defined the multivariate ARMAm(p,q) model,
and examined some of its properties. In particular we have examined the
four stages of the Box-Jenkins approach to fitting such models. Finally
we have examined the concept of Wiener-Granger causality and presented
some measures of dependence. In chapter 6 these measures will be

extended to apply to compositional time series.
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"And we know that all things work together for good
to them that Love God...~
Romans 8:28 (KJV)

CHAPTER 3

Compositional Data

3.0 Introduction

In this chapter we consider the nature of compositional, orx
sum~constrained data. Such data occurs in many situvations, and for many
reasons, as was seen in chapter 1. As with all data, the type of
analysis carried out depends on the exact context in which it occurs and
the insight into some area of study that the analyst wishes to gain.
Many of the examples given in chapter 1 have been investigated when the
compositional data consists of independent stochastic observations. The
geologist may take independent random soil samples; his interest is
often that he wants to deteymine if the presence of one constituent
influences the presence or absence of another, The public opinion poll
of political preference may be carried out in each constituency on a
single occasion, and interest may be in how the preference for one
political party relates to the preferences for the remaining parties.
Household expenditure may be studied by taking a sample from the
population stratified by income size. A comparison of expenditure is
then made within and between strata.

In this chapter we introduce a mathematical framework in which to
study compositional data. We then discuss some of the problems in
detail, and in particular those specific to ARMA models. We will
briefly discuss some of the approaches formulated to overcome these
difficulties, and in more detail the approach of Aitchison(1982). It is
upon this that we shall develop a means of modelling compositional time

series in subsegquent chapters.
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3.1 A formal description of compositional data

Our notation is similar to that of Aitchison(1982). Let R™ be the

m-dimensional real space, and let P™ be the positive orthant of RT i.e.

P™ = {(w),Wg,...w )t w e R™ wy >0, (i=1,...,m)}. (3.1.1)

1

Let the positive simplex of R™ be §™ i.e.

§" = {(ug,.eeouy): uw € RY uy > 0,(3=1, ... ,m)suy+. . kuy < 17.(3.1.2)

Definition 3.1

Any vector u € §* is said to be a composition.

A data set consisting of compositions is said to be compositional data.

Let u ,; = L ~up - 00 -y be the "fill-up-value" (FUV).(3.1.3)
and let g(m+1) = (UI’UQ”“*um+1)/ be the vector of the composition
inclusive of UL (3.1.4)

Defindition 3.2

For w € P™1 e will define the function T(w) by:=~

m+1
T(w) = ¥ w. ,
- . i
i=1

and the function C{w) by:-

W,
. i ,
{b(y)}i = Ty i=1,2,...,m.

Sometimes a compositional data set is formed from a data set on Pm+1.
For example if w € prt 1 consists of the numbexr of deaths in one
particular country over a specified time period broken down by causes of
death; then the total number of deaths is T(w) and the composition by

cause of death is C(w). We state this formally.

Definition 3.3

For a composition u € §" such that there exists w & P™1 and where
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then v is said to form the basis of u.

Many studies may wish to focus on the relative proportions of some
subset of a composition u. This may easily be done by allowing this
subset of c¢ components (say) to form a basis for a new composition on
gC"l s

Definition 3.4

{m+1)

Let u .y be a subset of ¢ elements (¢ < m) of u , where u €

§™, Then the composition C(g(c)) € Sc*l is said to be a subcomposition

of u.

Often we may wish to concentrate on broader categories, for
example in the household expenditure study our categories may be :—
"food","heating',"clothing',"holiday","hobbies" etc. We may wish to
combine these into categories such as "essentials™,”luxury" etc. Thus

we have :-—

Definition 3.5

An amalgamation of a composition u € §" is a composition t e @k,

k € m; formed by combining some of the components of g(m+1). If we
assume that u is arranged so that the combinations are between neigh-

bouring u;’s then an amalgamation t € 8" is formed by

where ao,...,a are integers such that,

k+1

0=a <a, <. . .c< ak < ak+1 = mt+l,

Compositional data can be represented graphically as follows. If
u € Sl, then the locus of g(z) will vield a straight line between the
points (1,0) and (0,1). Thus although 3(2) seems to be 2-dimensional in
that it consists of uy and Uy, it 1s uni-dimensional (hence SI). and

this can be represented graphically thus:-
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— — —— oy

(3)

Similarly for u € §2 we may plot u = {ul,ug,u3} in 2-dimensions:-

e
— —
—
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The coordinate system of the two dimensional ternary diagram is
obtained from the perpendicular distances from each side with the

perpendicular of the triangle scaled to be 1.

u = {ul,uz,u3}

Finally u € 8" may be represented as points lying in a tetrahedron:-

We now move on to consider some of the properties of compositional data.
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3.2 The nature of compositional data

Because of the sum-constraint, data on the simplex have proved
difficult to handle statistically. Problems arise in at least four
interrelated areas: interpreting correlations, independence of the
variables, the distribution of these variables, and modelling.

First we consider how the correlations of u give spurious results.
Let gk(m+1) k=1,2,...,n be a compositional data set. Let the sample

covariance and correlation matrices be

C=1{c.,.} , where

n
i hee - s
=7 - had = 0-;,+.
S n§ (uki ui)(ukj uj), i,j=1,2 m+1;
k=1
;B
ﬁi == I w s i=1,2,...,m+1. (3.2.1)
k=1
Also let P = {pij}, where
5
o.. = — 4 4=1,2.....n. (3.2.2)

. ) . (m+1). . ,
The inherent linear dependency in u n 1)15 carried over inte C and P
in such a wayv as to make any interpretation of them difficult., A
detailed examination is given by Chaves{(1960) and is summarized below in

the form of six lemmas.

Lemma 3.6
m+1
r Ci' =0 .
i=1 *J
Every row (and hence every column) of the covariance matrix sums to

Zexyo.

Lemma 3.7

+1)

. m . . .
0f the [ 9 J correlations pij’ i=1,...m+1,j=i+1,....m+1; at least
m must be negative.
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Lemma 3.9
1f the standard deviation of one variable is greater than the sum
of any j of the other standard deviations, at least (j+1) of the

covariances of that variable must be negative.

Lemma 3.10
m+1 ,
1f c.. 2z L c.. , then one or more of the covariances ¢, ,, k=j,i=k
jj i=1 ii k4
1]

must be positive, while all the covariances Cji’ ij’ £.k=j, are all

negative.

Lemma 3,11

i) For m+l1 = 3, any assumed or observed set of variances com-
pletely fixes all three correlations.

ii) For m+1=4, if any two covariances having a common variable are
known, the remaining four covariances may be expressed as an additive
function of these two and the variances. Thus in a four variable closed
table there will never be more than two potentially independent

correlations.

The above relationships demonstrate that the correlations of
compositional data are difficult to interpret. For example the use of
p =0 as a criterion for independence is no longer valid. (See later
for definitions of independence.) Chayes(1960) suggests using p = -1/m,
however it is clear that even using this as a criterion the data clearly
cannot follow a normal distribution, and it is still difficult to infer
independence.

In view of this several authors have tried to find new ways of
defining independence. Before looking at these in more detail, we first
examine a brief expansion of Chaves work to cross—correlations between
two compositional data sets.

Consider xy,y, (k=1,...,n) such that %,y € §". Let Cxy be the

sample cross-covariance matyix with elements:-

n
- - v (3.9
E (x 5 xi)(ykj yj), where (3.2.3)
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1 B p
X, = = Ix .y ;"— == L vy . 1,3=1,....m+1.
i n k=1 ki ] no kj
Then we have the following result:-
Lemma 3,12
m+1
) =0, k=1,...,m+1. (3.2.4)

[c te, J
i=1 L%Y4 ¥k

That is the sum of the kth row elements together with the kth column

elements (the kth,kth element being added in twice) is zerxro.

Proof

Let X, .= x,. - x. ,
i} 1] i

A i=1,..., 5 j=1,...,n. 3.2.5
YlJ y1J Yy i=1, m+1; j=1 n ( )

m+1 m
Since L Xi'
i=1 i

1, then

It
o~ F
N
]
o~ 4
v
It
T 14
<
i

n+1 m+1

IX, . DY, =0 j=1,...,n. (3.2.6)
i=1 i=p

il
1t

In particular rewriting (3.2.6) as :-

s > . o . * = . (. - . )
le + KZJ + + Xm+1,3 o . 3.2.7

= \
Ylj + Y2j .. . F Ym+1,j 0 . (3.2.8)

If we multiply (3.2.7) and (3.2.8) together, sum over j and divide by n

we obtain :-—
m+1 m+l m+l
) CX + L E CX =0 . (3.2.9)
i=1 %4%4 i=1 =1 *i%j
1]

Similarly we may rewrite (3.2.6) as :-

- = )
le X2j .. . Xm+1,j , {3.2.10)

—Ylj = Y2j LN 4 s (3.2.11)

and obtain :-



m+} m+l m+l
CX = L Cx + z ) CX . (3.2.12)
171 i=2 *3Y3 i=2  j=2 %i7;
i=]j
On subtracting (3.2.12) from (3.2.9) we obtain :-
m+1
20, 0+ I [Cx + C, J =0, (3.2.13)
171 i=2 L *1Y4 71

which generalizes to (3.2.4).

This lemma clearly demonstrates that various linear dependencies

exist between the elements of purely because both X and y are

Cyy-
compositional data. It is not easy to come up with hard and fast rules
about spurious negative correlations, because now the diagonal elements
may be negative; whereas previously the diagonal elements represented
(positive) variances resulting in spurious negative correlations 1in the
off~diagonal. If the diagonal element is positive then some of the
off-diagonal elements must be negative and vice versa. Thus the matrix
Qxy is also difficult to interpret. We could scrutinize this still
further, but it is sufficient to realize the difficulties in examining
the covariance and cross—covariance matrices of compositional variables.
The difficulty in interpretation of correlations led to an
introduction of some new definitions of independence because
compositional variables are necessarily linearly dependent on one
another. We now briefly examine some of the earlier tyvpes of
independence proposed. We will denote independence by the symbol "}|".

The first property was suggested by Mossiman(1962).

Definition 3.13

The random variables Upsenns ;U € S™ are said to be

Y+l
independent except for the constraint if 3 a basis w € Pl (u = Clw))

such that
i) | w (3.2.14)
ii) u j} T(w) (3.2.15)



The transformation w » u,T(w) is a I-l transformation. If
{3.2.15) holds then no additional information about the vector of
proportions u is contained within T(w); that is, the transformation
w » u "loses" no information about u. Hence if u is "independent except
for the constraint'", it originates from a basis whose elements were
themselves independent, and such that T(w) is a function of the basis
which, is independent of the composition under investigation.

The second concept of independence is that of "neutrality", as
developed by Connor and Mossimann(196 .). The idea has arisen from an

often required wish by the analyst to eliminate one proportion, say uy,

u u i N

2 3 m |
1-u,” 1-u,” ° ° ° 1-u J
1 1 i

i.e. on C(um,...um+1); usually because ulis of little or no interest.
If u1 is omitted it is required to know if the remaining composition 1S

affected, i.e, is u] "neutral’”. We have :~

from consideration and instead concentrate on [

Definition 3.14

(i) uy 153 said to be neutral in the vector (ul,uz,...um+1) if
up ]I Clug,ug, ey ). (3.2.16)

(i1) The vector (ul,ug,...uj) is said to be neutral in the vector

y oL
l_J(m+1, if

(UI,UZ-)t»-uJ‘) “‘ C(Uj+j’ ...U"Tl""l)

(iii) If (11i) holds for all j=l....,m then u is said to be

completely neutral.

Note: The ordering in the vector for this definition is vital. If
(ul,...um) is completely neutral it does not necessarily follow that

(UO’U1»U3’~'-»Um)~ for example, is completely neutral.

These two types of compositional independence have useful
interpretations. Consider the geologists soil-sample. If the constitu-~
ents which make up the sample evolved by a purely random process, i.e.

if the presence of one constituent does not indicate the presence or



absence of another, then there exists a basis with independent elements.
Further we would not expect the properties of the soil to vary according
to how large a soil sample was taken. Hence we would have independence
except for the constraint.

Neutrality offers a means of examining a subset of variables
without loss. For example in the political opinion poll, if the minor
parties are neutral we may examine C(CON,LAB) on their own,because the
relationship between the two major parties is independent of the others.

These early definitions of compositional independence provide a
means of solving the sum-constraint problem. However, although useful
conceptually, it proved difficult to apply these definitions in a
practical way, since great difficulty was found in forming statistical
tests for them, This was primarily due to a lack of the useful
parametric class of distributions on the simplex Sm.

As Aitchison(1982) states "Undoubtedly the only familiar class of
distributions on §" is the Dirichlet class..." The Dirichlet distribu-
tion may be regarded as a multivariate generalization of the beta
distribution. It may be found by considering the density of C(w) where
wy are independent gamma random variables. This fact implies that it
contains a strong independence structure within it. Mossimann(1962)
shows that if u is independent except for the constraint then u must
follow a Dirichlet distribution; the converse is also true. Thus it is
possible to calculate the correlations of the u’s under the assumption
that they are independent except for the constraint and compare these to
the sample correlations of a compositional data set undeyr investigation.
However Mossimann{(1962) could not form any appropriate statistical tests
because no distribution theory was available for such correlations under
a Dirichlet model. Also. in order to model the u’s themselves such that
they are not independent except for the constraint an alternative
distyibution must be found. One such distribution which moved towards
this is the Generalized Dirichlet developed by Connor and Mossimann

{1964)., They form variables Tis8oseenslns such that :-

- 3
8Ty i
u, ‘ »
% I (3.2.18)
T, T , 1=2,...,m. (
1 - Z u,
j=1 7 J

49



They show that if the vector (uj,...up) [[ Clup,q,..esup ) for k=l,...,r
then TS k=1,...r are mutually independent. Hence if u is completely
neutral CI*""Cm are mutually independent. Assuming that u is
completely neutral, and letting the density function of each of the T ’s
be a univariate beta distribution, the Generalized Dirichlet is formed
by transforming the product of these beta distributions to a multi-
variate distribution in teyms of u. This reduces to the Dirichlet
distribution under certain parametric restrictions. Obviously this
result indicates that if u follows a Dirichlet it must be neutral.
Conmoyr and Mossimann explain further that u follows a Dirichlet if and
only if u is completely neutral for any permutation of the ui’s.

Using the Generalized Dirichlet distribution it is again peossible
to estimate the correlations of the compositional data set under the
hypothesis of complete neutrality. Again even knowing the expected
values of these correlations we are not helped very much as we do not
know their distribution. However, both Mossimann{(1962) and Connor and
Mossimann(1969) employ Fisher’s z — transformation as a means of
inference in some numerical examples: but as Mossimann(1962) himself
points out "z - values may be given, although more with hope than
confidence.”

Summarizing, we have seen that new forms of independence must be
used in exploring compositional data. The earlier forms of independence
need further study, and so the search for definitions of compositional
independence have continued. Also a more general distribution to employ
on compositional data 1s required. The ones which we will be using are
the result of the work of Aitchison(1981,1982), and are introduced later

in this chapter.

3.3 Compositional time series

In this section we will demonstrate why the conventional approach
to time series analysis fails to incorporate the nature of a composi-

tional time series.

Definition 3.15

A time series {u.}, t = 0,xl,#2,... such that u, € §" is said to

be a compositional time series.
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We first consider the problems arising in trying to use the usual

multivariate ARMA model for a compositional time series. Consider the

AR_,;(1) model for a compositional time series gt(m+1), with u, € g1,
u(m+1) - —b u(m+l) . e
~t = =t-1 =t
el ] (3.3.1)
where Iu, = I u, = 1.
, it . i,t-1
1=1 i=1
Summing down the columns of (3.3.1) we have :-
m+1 ( m+1
VZ 'E -¢ijuj,t~l tes, = 13 (3.3.2)
i=1 J"l J
m+1
> z ( u ) + e ) =1, (3.3.3)
e K, t=1%+k kt |
m+1
where ¢+k = —izl¢ik . k=1,...,m+1.

We may generalize (3.3.3) to higher order models, thus for the

ARMA (p,q) process:-

m+ 1
{(m+1) {ra+1) (m+1) _ - N
Yy Teuy e 2u o e Qe teeer BEl s
we obtain :-
m+1 ( P q 1
L ¥ 2 uk,t~r r,+k i E “k,t-s s,+k =1,
k=1 L r=1 =
(3.3.4)
m+1 N
where ¢r.+k = —,Z ,Qr}. , r=l....p;
i=1+ ik
m+1,
: = - Q } » S_Os°"sQ;
s,+k lei s 5k
and 9 = L,

The equations (3.3.3) and (3.3.4) serve to demonstrate that there are
many inherent linear restrictions within the model. This may be further
seen by considering individual ARMAlﬁp,q} models for each variable Uy,
i=l,...,mtl. For example, consider again the AR(1) model, and in
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particular m+l ARl(l) models for each of the {Uit} series:—

Upe = ey LS LS | )
Yot T Bag = PoUy g ’
Upel,t = Cmel,t ~ PmelUmel,t-l

summing each equation gives:-

m+1

51 (s = %% e ] = b (3.3.5)

N
Clearly this is of identical form to (3.3.3). We could also construct a
similar expression to (3.3.4) by the same route. In all of the above
three expressions we see that not only are there linear restrictions on
the ui’s, but, alsoc on the parameters of the model, and the "random’
components.

A problem with the above approach is that we are either using m+1
univariate models (as in (3.3.5)) or an {m+l)~dimensional model for data

that is essentially m—-dimensional. As an illustration let us partition

$ in (3.3.1) into :-

_ - - - -
.Qll ! 912 -1
mxm | mx1 mx1
¢ = e S , and g = P - = ,
P | P t £
=9 o
“llxm | ”21x1 m+l.t
giving:—
r ] 7 [ e
=t | 2 2 [{ St-1 | e
- | e ? (3.3.6)
! i
t,m+1 j. L =21 9322 jt um+l,t~-l j E 8m+1.t |
N Yo = 2u $1o%a1,e-1 T &
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LRI glz[ b
1

I =]
ot
| S
+
I

uo o= o 2w, roE (3.3.7)
where ¢ ij = ¢ij - ¢i,m+1 s i,j=1,...,m; and y = leg
m
um+1,t is then formed as 1 -~ izluit.

Hence the (m+1)-dimensional model (3.3.1) may be derived from the
m—~dimensional model in (3.3.7).

However even if we recognise the need to use an appropriate
dimension for our models the linear approach still poses many problems.
Firstly we recall that the assumption is usually made that the g; series
in (3.3.7), for example, is normally distributed. That it is not may be
seen by the fact that 1 > Usp 0 and consequently, however small the
variance of the eit’s, extreme values must be ruled out in order to keep
U permanently within its correct bounds. (This of course excludes the
case of var(eit)=0. ) BRecause of the difficulty in defining any such
bounds, it is obvious that the use of such a model in practice may
produce incorrect results, especially in the case of forecasting. If we
fit a standard model to m of the variables and use it to forecast into

(i

the future, what is our guarantee that Upip € &7 As an illustration

that this is not the case we turn to the following example :-

Example 3.16

Consider the Gallup Poll data given below;

t

1-15 3.0 3.5 2.0 1.5 2.5 2.0 2.5 4.0 3.5 2.0 2.5 2.0 3.0 2.0 3.5
16-30 2.5 3.5 2.52.,02,02.02.52.02,52,52.0202.52.53.0
3145 2.0 2.5 1.0 3.0 1.5 2.0 3.5 2.0 0.51.52.0 2.0 1.5 1.5 3.0
46~60 3.0 2.0 3.5 1.5 3.5 2.0 3.5 3.0 2.5 2.0 4.0 5.5 3.5 2.5 4.5
61-75 4.5 3.5 5.0 4.5 4.5 7.0 6.5 5.0 3.0 4.0 5.0 4.5 6.5 5.0 3.0
76-30 3.0 2.0 2.5 1.5 1.5 2.0 2.5 1.5 1.5 1.5 1.5 1.5 1.0 1.0 2.0
91-105 1.0 1.0 1.0 0.5 0.5 1.5 1.0 1.0 0,5 1.0 1.0 0.0 1.0 0.5 0.5
106-108 1.0 0.5 0.0
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This data set is from the GALLUP(C) opinion poll from January 1965 -
December 1973, but in reverse order. It represents the percentage of
people surveyed who, when asked which party they would vote for said
they would not vote for one of the three major parties. This data may
be considered as u, € SI with Uy being the percentage who would vote
for a major party.

A plot of the correlations (fig 3.18) suggested either an AR(1)
model or the model:-

Aut =H e, with y a constant.

On fitting both models using the ESP package, it was found that the
second model produced the better fit. The portmanteau statistic, based
on 12 autocorrelations was 4.0 for this model; which is not significant
when compared to the X2(11> distribution. The t-test statistic for the
constant term was significant at the 107% level, It is not clear
therefore if it should be retained, but for the purposes of example we
have kept it in. (After applying the difference operator p is usually
assumed to be zero.)

Using this model the first three forecast are :-
-0.1858 -0.3715 -0.5573
The forecasts are negative. and consequently do not lie on the simplex.

Whilst some may argue that this example 1is over-engineered, it
still demonstrates the problem. Indeed even if another model were
chosen, such as the AR(1l) which does not produce negative forecasts, the
confidence region around these forecasts still includes values outside
the simplex.

Another problem lies in the interpretation of the sample auto-
correlation function. From definition 2.14 we see that it is derived
from the autocovariance functien, which has strong linear dependencies

within it. To see this we need only consider lemma 3.12 and put :-

_ D) LDy
=T % SR & ok

from which we obtain :-



-1.6 -J.3 -0.6 -9.4 -0.2 Q.0 0.2 0.4 0.6 0.3 1.0

-

R A e e R T eI e T R 3
nN.723 XXALLXXLXAXXXXXLXXX
N.643 AAXXA XA XXX XAXALAL
3.617 XL A AXXXAXXLKLX
3.635 XALLZXXYXXLX XXX X
0.3%45 XYXLY XX XX ALRLAXY
J.542 XAYLAXX XA LXARXX .
3.535% XXXLAAXK ALY XK
J.477 XAXAXAXXXXXXX
9.4173 XXXALX XXX XL
0.382 XAXAXAX ALK XX
1.236 ALXAXKXX
2.1953 XXXXXK
J.1630 XLYXX
1.135% L4 %

2.111 XXX
J.102 XX XX
-3.015% X
~3.0779 X L%
~-J.087 LXK
-1.109 XXX

ACF of GALLUP(C) Series

1.1 =3.3 =C.6 =24 =002 3.2 5.2 CL.a 0.5 2.3 1.

~ . ~ o W

O e R A it i I e R
N.725 AXXXX L AKX IXLXX XS LR
1.261 XA RLAK
J.194 FRYXRK
7.15¢4 XX LKX
7.95%9 z%
0,127 LXaX
2.02°2 X X

-0.063 X XY

-3.105 XX XX

-3.027? Y X

~2.162 AXXXXKA

-0.191 XXX XX

-3.07% XY X

~-3.027 : X X
2.0413 A&
J.131 YX XX

-3.172 XXX XY
~-2.05%2 X
2,073 X £X
0.03s X

PACF of GALLUP(C) Series

Figure 3.18
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I L cli(k) + cil(k) ) =0 i k=0,x1,...3 1=1,...,m+1.
(3.3.8)

If we then hope to use the autocorrelation function for identification
it is difficult to detect genuine departures from a white~noise process,
particularly using the off-diagonal elements. Even if we consider
looking at the autocorrelation function of {u,} rather than {gt(m+1)} we
are looking at exactly the same function, but with the last row and
column of each of the matrices omitted. Hence interpretation is still
difficult.

We could go on demonstrating how a linear model 1s inadequate, and
there are many obvious examples, such as the sample partial auto-
correlation function defined by (2.2.10), which must be based on u, and

{m+1)
not u,

otherwise the [Y “Y, ] matrix would be singular and conse-
quently we would be unable to find its inverse. There are also some
more sophisticated methods which will not be valid. For example Box and
Tiao(1977) present a canonical covariate analysis of multiple time
series which would break down in this context, (cf. Aitchison{1983) on
principal component analysis on the simplex.)

In section 2.6 we discussed independence between time series, and
in the previous section the problems of defining independence for data
on the simplex. 1In the same way that it is necessary to create new
forms of independence for stochastic data, it is also necessary to
formulate new types of compositional causality, feedback., dependence
etc, for compositional time series. The sum-constraint forces an
automatic dependence between the series, making the definitions in

section 2.6 difficult to interpret. This final problem will be

addressed in chapter 6.

3.4 The proposed approach

In the last section we saw how the multivariate ARMA model cannot
represent a compositional time series. The problem lies with the fact
that the data lie on the positive simplex 8% rather than the more
general real space ®™. This fact gives us an insight into a possible
solution. The idea is a very simple one, namely to transform our data
80 as to map it onto the real space. What we seek is a function such

that :-

O
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£:8" » RU,

The example cited earlier in (3.2.18) is such a transformation, We may
add to the requirement that the data be transformed onto the real space,
the further requirement being that it be transformed to follow a
multivariate normal distribution. This is no new idea to either
statistics in general or time series analysis, as can be seen by the
well known paper by Box and Cox(1964),

Because of the simplicity and the availability of this approach,
it is the one which we will take up here, Several possible transforma-
tions are available and many of them are introduced by Aitchison (1982).
His transformations are familiar to the field of statistics, as they
are multivariate versions of the logistic transformation. His choice of
which transformation to use depends mainly on the particular application

required. Three such transformations are :—

Definition 3.17: f=a

m
Let u € §" and v = a,(u), v e R™, where the function a, is given

by
Yy
a : v, = In|-———— s i=1,...,m;
m i u
m+1J
exp(v,)
. . -1 i .
with inverse a u, = s i=1,...,m;
m i m
1 + I exp(v,)
=1
1
u, = 3 d=m+1.
i m
1 + I exp(v,)
i=1 ]

We will call am the additive logistic transformation.

Defintion 3.18: f=mm
Let u € gm and v = mm(g), with v € R™ then the function m is

given by
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exp(vi)
with inverse m U, = - yi=1l,...,m;

i
n { 1 - exp(vA)}

m
= 1 - I u. s i=m+l.

We will call mm the multiplicative logistic transformation.

Definition 3.19: f=hm

Let u € S" and v o= hm(g), with v € R™ then the function h is

given by
=1
h : v = In i=1;
m i 1-u
i
Yy
= 1n 3
i-1 i
1 - Y u, 1 - L u,
j=1 J j=1 7
i=2,...,m;
-1 exp(vi)
with inverse hm : u, = T_I—EEETGIT H i=1;
) exp(vi) .
s
i-1 i
1+ Y expv, )il + I exp(v,)
j=1 J j=1 J
i=2,...,m;
1
= ;i=m+1.
m
1+ ¥ exp(v.)
j=1 ]

We will call hm the logistic hybrid transformation.

We note that all of the above three transformations have the same

Jacobian, namely :-
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Dwv m+1
= Mmu (3.4.1)
Du i=l

From these transformations we can derive other related transformations.
For example we may replace the exponential function by any one-~to-one
transformation for

Pl o gL,
although the one cited above is perhaps the most familiar one. Clearly
any permutation of the u,’s before transforming represents a further
simple variation. Aitchison gives two further ways of using the three
transformations above as building blocks to obtain further transforma-
tions. Of these the so called "linear transformation method"” is most

useful in our context. This method involves replacing v, in any of the

t
three definitions above, by Gv,, where G is an mxm non-singular matrix.

This i1s perhaps best illustrated by an example.

Example 3.20

Consider the matrix

6 = [t -1 0..0 0] ,themg = {1 1 1..1 1
0 1 -1. .0 0 0 1 1. .1 1
0 0 1. .0 0 0 0 1. .1 1
0 0 0. .1-1 0 0 6. .1 1
0 0 0..0 1] 0 0 0. .0 1]
Define a new transformation v o= Gv = gam(g).
ES B3 Ui Ui-l
Then v = Gv v. = ln ~ 1in
~ = i u
m+1 m+1
Yy
= 1In ;o i=1,...,m=1.
i,
i-1
) u
* m
v = v = 1n 5 1=m,
i m
m+1
So that we have:-
£ ui
v = In y 1i=1,...,m.
i U,
i+l



To find the inverse we note that u. = awl(v.) = a—I(Ghlvf); i=1,...,m.
i m i m i

exp(vi)

i m

1+ T exp(vj)

m
= 1 = Lu, , di=m+l,

0f the three transformations mentioned above the one that Aitchison-
(1982) has found most useful is the additive logistic transformation,
and it is upon this transformation that Aitchison and Shen(1980) base
their logistic-normal distribution. If we allow v ~ N (u,I), then we
may form a transformed-normal class for u € Sm based on any suitable

transformation. We now define two such distributions.

Definition 3.21

If u = a%l(y), where v ~ N (y,L), then u is said to follow the

logistic-noymal distribution: L (p,L). i.e. u ~ L, (n,L) when the
density function of u is given by,
! 1 u " -1 u
PL(Q/H,E) = ) exXps 5 in T "M L ln e }
Y m+1 m+1
[2wL| T u, J
= . i
1=1

Definition 3.22

If u = m%l(y), wheye v . Nm(g,§), then u is said to follow the

multiplicative logistic-normal: Mm(g,g). i.e. u . Mm(g,z) when the

density function of u is given by,

1

1 o "1
Pylu/p.n) = =1 expi—f [mm(g) -y L [mm(g) - LQ}

12ﬂ2fa mu. '
= , i
i=1

60



We could go on in a similar manner to define further distributions
on the simplex, but we shall not be using them. Of the two distribu-
tions above, the Lm(g,z) is the most developed, and is fully discussed
by Aitchison and Shen(1980). Aitchison{(1982) develops it further and
discusses how it may be used to test for various types of independence
defined on the simplex. These distributions do not restrict the data
since the strong forms of independence implied by the Dirichlet
assumption are no longer enforced. On the other hand these distribu-~
tions do not contain these strong independence structures within them.

Not only may the L (y,%) and M (y,X) distributions be used to
investigate independence, but various statistical models may be based on
them. An example of this is that of a model for measurement error
developed by Aitchison and Shen{(1984). The a, transformation is
employed further by Aitchison{1983) and Aitchison(1984) in a new
approach to principal component analysis for data on the simplex. In the
following chapter we will introduce a new model for compositional time
sevies, and develop its properties further in chapter 5 where we will
also further discuss the L, {(y,2) and M_(y,X) distributions.

Finally we end this section by noting that a transformation of the
type given in example 3.20, when used to f¢rm an alternative logistic-
transformation, will still preserve the same logistic-normal distribu~
tion as that of the underlying transformation. Thus, if y* in example
3.21 is allowed to follow a normal distribution, then u will still
follow a logistic-normal distribution. This is easily seen since if v -
N,(u,Z), then g* ~ N (Gu,GIG"), and u ~ L, (p,X). Obvicusly this is true
of all non-singular G, and in particular is true of a set of matrices

which we will denote by Z(k). These are described below as we will find

them useful in later chapters.

By Z(k} we will mean the mxm matrix with elements,

zii(k) = ] i=1,...,m; i=k 3
Zlk_(k) = -] ’i=1....,m 5
zij(k) = 0 otherwise, (3.4.2)
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i.e. Z{k) = 1T 0. ..-1...0
g t...-1...0
o 0...~-1...80
o 0. . .-1... |
T
kt column.
It is easily seen that :-
207t =z, (3.4.3)

If we repeat example 3,20 with Z{k) instead of G and define :~-

y_T = Z(k)v = g(k)am(p_),
u. u
then VT = In a 1 - 1In 3 K 3 1=1,...,m; i=k;
1 m+1 m+1
u
= -In —5  i-k.
u
m+1
T vy
i.e. v, = 1In —  i=1,...,m; i=k;
i u
k
u
= L ik,
k

Thus we see that the effect of Z(k) is to change u, to be the reference

variable in the transformation, as opposed to the FUV um+1. In other
words: -
1
Z(k)a (u) =a (u),
m m
T . . .
where u 1is the permutation of u such that u . and u are interchanged.

k m+1
This set of matrices will be useful when we examine invariance

properties under the choice of reference variable.

3.5 Independence of compositional data

In section 3.2 we examined the problem underlying compositional
data sets, and in particular the difficulty in understanding independ-
ence in such data sets. Two forms of compositional independence
(definitions 3.13 and 3.14) were given. Although these were useful it

was difficult to produce any statistical tests for them. Allied to this
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was the need for a new class of distributions on the simplex. In
section 3.4 we introduced some new distributions based on transforma-
tions from the §® space to the R™ space. In this section we explore
some further concepts of independence developed by Aitchison(1982). It
will be seen that the transformations an and m, of section 3.4, together
with their related distributions (Lm and Mm), provide an easy means of
investigating these forms of independence.

Aitchison discusses two types of independence, namely extrinsic
and intrinsic, Extrinsic analysis examines a composition under the
assumption that it originated from a basis, and interest lies in the
relationship of the composition to this basis., Intrinsic analysis
concentrates on the proportions themselves, without any thought of a
basis being involved. Neutrality (definition 3.14) is an example of
intrinsic analysis, which is one of the types of independénce considered
by Aitchison.

The two sorts of extrinsic independence defined by Aitchison

(1982) are as follows.

Definition 3.23

ipmw“l

A basis w € is compositionally invariant (CIB) if,

Clw) || T(w).

Definition 3.24

A composition u € 8™ is said to have basis independence (BI) if
lpm+ 1

there exists a basis w € such that :-

)

( 1ii) u = C(w) ).

i€

Clearly CIB is identical to (3.2.15) in definition 3.13, and is
referred to as Lukac’s condition by Mossimann(1962)., Mossimann also
considered BI under the name "'partial independence except for the
constraint”. BI n CIB is equivalent to the concept of independence
except for the constraint given by definition 3.13. Under this, as
previously mentioned, the u’s must follow a Dirichlet distribution; so
that if we wish to simultaneously model BI and CIB we should not appeal

to the logistic-normal class.
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Aitchison(1982) describes how to test for CIB and BI.

Firstly for

CIB, let 1 = T(w), then using the transformed logistic-normal distribu-

tion we may model the u’s as follows :-

or

Hence if v

oxr

u -~ LoCe + pt,2),

u ~ L(a + pgln(1),1).
= am(g), then

v ~ No(a + pr, 1),

v ~ N(a + gin(1),L).

(3.5.1)

(3.5.2)

(3.5.3)

(3.5.4)

The test for compositional invariance of a basis is then simply a

test of the form p = 0, for which we can appeal to the usual methods of

multivariate analysis. (See for example Morrison{1976) chapter 5).

The presence of basis independence is indicated by u ~ L, (y,1),

where I has the following structure :-

;:

it

EO dg(wl,...,um) + © U

It 1s worth considering how (3.5.5) arises.

derived by Aitchison(1981b).

Also

For w € Pm+1, and u = C{w) € §", let

v o= am(g), and x = 1n(w).
Be= E[z](m+1)X1’

EVM E[V]mxl’

8= Var(®) 1y xeme1)”

¥ = Var(v) .
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4, (3.5.5)

y i=1,...,m+1.

The result was originally

> (3.5.6)




Consider the matrix Y = [1 7 -e ], then it is easily seen
“mx{(m+]) m ;. m

that Hoo= Y, (3.5.7)

and I =YY, (3.5.8)

Equations (3.5.7) and (3.5.8) represent a mapping of the mean and

variance for x onto those for v. Now
fw & | 1Inw (=x),
lw & [ x.

And consequently if we have basis independence, || w, then Q (the
covariance matrix of x) will be diagonal. Applying (3.5.8) to a
diagonal matrix QO = dg(wl,...,wm+1), and because w; represents the
variance of Xy i=1,...,m+1; wy > 0, gives the required result (3.5.5).
Although EO is necessary for BI, it is not sufficient. For a
given y, and X, there is a class of Hy and Q from which they may be

derived., From (3.5.7) and (3.5.8) it is clear that these are :-

By = [u, vooe
v T (3.5.9)
L [¢:2
Q = Z + gmgl + Egm/ + yU | B+ ygm i
o e e e —— -4 (3.5.10)
BY * ve ’ by
L m €1

where «.y,B =(B1,...Bm)' are constants.

Hence substituting 20 into (3.5.10) we see that 20 may have originated

from any Q of the form :-

D= JogP 2By ot Y BT Byt @ T Y e e e By BT 0t Y BT Y
Byt Bot wpgt Y gt 2Byt o gty e e Byt Bt @ gt Y Byt Y
ﬁ1+ Bm+ um-+1+ Y B2+ Bm+ um+1+ v " 25m+ um+1+ Y Bm+ ¥

Bl+ Y 52+ Y . ¢ ® ﬁm+ Y Y
(3.5.11)



Setting py= Bo=... B,=-Y= —w . vields (5. We note that (3.5.11) is not
the pattern presented by Aitchison(1981b), which is incorrect,
Aitchison(1981b) tests for BI by testing that I = L;, but as we
have seen this is strictly a test that @ = Q; for any values of p and y.
However, without knowledge of the basis, this is the best we can do.
Having derived 20, it i1s now possible to test for basis independ-

ence by testing that I = I;. That is :-

Hy: L = L5 vs. Hy: L unrestricted.

It is possible to estimate EO using Newton-Raphson iterative methods

(see appendix of Aitchison{(1981b)). The unrestricted I is estimated by
n - “
% L (yi - H)’(yi - y). The familiar procedure is to form
i=1
the likelihood ratioc test-statistic AO(D) (say), where D represents a

the usual I =

given data set D = {v;,...,v,}. The likelihood ratio test-statistic is
then usually compared to a X2, with degrees of freedom equal to the
number of restrictions. However because of the inequalities present in
;0 the standard results for the distribution do not apply. However Hy

is embedded between two other hypothesis,

Hy: L= ;l = dg(ul,...,wm) * wpr1Yns el unrestricted; (3.5.,12)

o
i

Hz: 22 = dg(ul,...,wm). (3.5.13)

Let Al(D) and AQ(D) be the likelihood ratio test-statistics

corresponding to H1 and H2 respectively, then

i

a F
A e (3.5.14)
AD) 2P (3.5.15)
2 ~ X (m-1) ’ e
and ) AI(D) < AO(D) < A2(D) (3.5.16)

Consequently a simple and '"safe'" approach is to compare AO(D) to a
2 . ) ) . .

X o (m=1) distyribution., In summary we reject the null hypothesis that a

composition possesses basis independence at a significance level of at

most o, when
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2
A (D) > (3.5.17)
O( ) X%m(m~l);a
Having explored extrinsic analysis, we next consider intrinsic
analysis. The first type of intrinsic compositional independence is the
intrinsic counterpart to the extrinsic concept of basis independence,

and is given below.

Definition 3.25

(m*1) ¢ g pe partitioned :- {g(l),g(z),...,u(k)}. If for

Let u

every such partition the subcompositions are independent i.e. if
cwMy ey .. ™y, (3.5.18)

for any g(l),...,g(k) such that

u(l) = g(m+1) ,and g(l)n u(J)= 0 :i,j=1,..,k;i=j; (3.5.19)

1

e =

k= 1,2,...,{m+1}
1 R

then u is said to have complete subcompositional independence; (CSI).

To understand CSI and its relationship to BI we may derive a
parametric hypothesis for its occurrence. If u & Sm possesses (€SI, then

it follows that :-

i k
= L 5
Uj u,
u.
> in —— I 1n *EE ;s imjmk=i,
u, u
i 1
uy u,
Coviln — , In — =0, 1z=jzk={,
u, u
3 4
u, u, | ( uy u, u u
Cov{ln = in Gi ! = Cov{ln -~ + 1n T In =3 + In ™
k k | L K n K
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= Coviln T In —
k k

, izj=k=l#n;

= )k {say), since it is independent of 1i,j,4 and n.

If we similarly let

u11
Y., = Var|ln —=| , i=j;
ij u,
i)
u.
then ki. = Var|ln * + In ;E ,  dmi=k;
] Uk i
= Mkt M P
> 2)k = kik+ kjk“ kij'

Symmetrically it alsoc follows that

- — Y 5= {2l +1.
2Xi kik+ kij kjk’ izj=k=1,...,m+1

Adding these last two equations yields

A., = X. + X, so we have shown that if u has CSI then
ik i K =
B 3
Yy
Var|ln —= = A, ¥ A,
u i k
L k
el ui UJ ~N
Cov|1n = 1o T Moo (3.5.20)
. k k Py
uy u, )
Coviin — , 1In 3 = (0 for V izj=k=i=1,...,m;
u u
k 4
. A
and for some constants ki i=1,;..,m+1. 4

Consequently for v = am(g), where u has CSI, ¥ = Var(v) has the form Ea’

where Ea = dg(kl,...,)m) {3.5.21)

by U,
m+1-m

and the )i (i=1,...,m*+*1) have the interpretation given by equations
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(3.5.20). There are no restrictions on the )i’s except that they ensure
the non-negative definiteness of Ea‘

The similarity between Za given by (3.5.21) and ;1 (3.5.5) is most
striking. In fact they would be identical except for the fact that the
)i’s in ga need not be strictly positive., This fact allows us to
utilize the previous discussion on BI, and comparing (3,5.21) with
(3.5.12) we may test the hypothesis of (€SI by forming the test-statistic
Al(D) and comparing it with values from a X2%m(m~1)~1 distribution. We
must also assume that v follows the Normal distribution in order for the
covariance relationships to imply independence., This in turn results in
u following the L, (yu,I) distribution, as in BI.

Before considering otheyxy forms of compositional independence we
note that for u € Sl and u € 82, complete subcompositional invariance
automatically holds.

The next group of definitions take their motivation from the
common need to examine only a few components of the composition. One
such concept resulting from such problems was introduced in section 3.2,
and that was the concept of neutrality {(Definition 3.15). Here it is
redefined in a slightly modified form, together with some related
concepts.

For the remainder of this section we will consider the partition:-

(c)

(u ’E(c)) = 11_(m+1) c §°,
where u(c) = (uy,u u.)

= 1 Dreeestnls
and E(C) = (UC‘*'l".”um‘*’l)'

Definition 3.26

A subcomposition C(g(c)) has subcompositional invariance if

{c) (e
C{u*~") }| T(u**") - (8Iy)
similarly C(g(c)) may also be subcompositionally invariant :-

C(H(C)) it T(g(c)) - (312).
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Definition 3.27

A subcomposition C(Q(C)) possesses conditional subcompositional

invariance if
cu'®) | clugy it - (CoSI)

Defipition 3,28

Left neutrality occurs if

c'®)y I uce, - (Np).

Right neutrality occurs if

C(E(C)) HE(C) - (Nz).

Definition 3.29

A composition has partition independence if

It et cluey) Ty - (P).

We note from comparing definitions 3.26 through to 3.29 that

i) N, = CoSI n SII,
N2 = CosI n 512. (3.5.22)
= N1 N SIQ = Nz N SIlo (3.5-23)

It should be apparent that SI is a subcompositional counterpart of CIB

(c) (C)) €§C~1.

(definition 3.23), since u is acting as a basis for C(u

Since T(g(C)) + T(g(c)) = 1, SI implies that not only is the subcompo-

(C)), but also of T(u .y). Thus if C(H(C)) is

sition independent of T(uy
in any way dependent on YUeay it must be a relationship via the propor-
tional breakdown of u, .y (i.e. C(u .y)), and not through the share of
the original composition attributed to g(c) (i.e. T(E(C))). The concept
of CoSI on the other hand, suggests the opposite, namely that if Uie) is
not independent of U(.y» then it is only through its share of u,
T(u¢.y). When C(g(C)) is completely independent of u .y then both of

the above situations hold, and we have neutrality. This yields
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(3.5.22). Neutrality as defined here is identical to the earlier
definition 3.14 except that now we allow it from both ends of the
ordered vector u. This allows us to relate it easily to partition
independence.

The above forms of independence may be tested as suggested by
Aitchison(1982), by modelling the data so as to mimic the independence
property as an easily testable parametric restyriction. In this instance

let

S ac-l{C[H(C)]}’

<
]

=2 am-c{c(-‘l(c))}’ > (3.5.24)

’

and vy al{(T(E(C)]*T E(c)ﬂ }

i

.

Next consider

je1

1 (3.5.25)

k3

(-‘11 N %7 5’-1"31
(m-1)
22 % BV | I Iy

for which the independence concepts are equivalent to various parametric

hypotheses as follows :-

SI4 < By = 03

51, = By = 03

CoSI Iy, = 0;

Ny = By =0, Ly = 0

Ny & By = 0. Ly = 0;

P & By =0, By = 0, I, = 0. (3.5.26)
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We may then appeal to the usual multivariate techniques, as for example
in Morrison{1976).

For all the forms of independence 3.26 through to 3.29 we may be
interested in considering different values of c; working through the

vector u for some specific order of the variables. For example,

consider again the opinion poll data with variables :-

"CON", "LAB", "LIB", T'"OTHER", "DONT KNOW".

First, we may wish to see if the four variables may be considered
together, without the DONT KNOWs, because really we are interested in
political parties, and the votes they are likely to gain. We might then
wish to drop OTHER, since it may bhe thought that such candidates are not
likely to be elected. Continuing our "speculative licence'" we may
finally wish to drop LIB, since our interest is finally concerned with
the two major parties, and which one might form the next government.

To this end we have the following further definition :-

Definition 3.30

For some specific ordered u € Sm, u has independence property
(SIl, SIQ, CoSI, etc.) of order k if the stated independence property
holds for c¢=1,..,,k. Further if k = m, then u is said to have complete

independence of the form stated.

For example, SI1 of order k implies that
C(g(c)) i T(E(C)) , for e=1,...,k;

and complete right neutrality is equivalent to complete neutrality as
defined by 1ii) of definition 3.14,

SI{ up to order k is conjectured by Aitchison(1982) to be equivalent
to neutrality up to order k within the framework of transformed normal
modelling. The distinction between €0SI of order k with that of
neutrality does, however, seem to exist, but the concept CoSI of order k
does not appear to have any useful applications. Consequently the only
independence property examined in this context is neutrality. This does
have a more readily defined application, as for example in the opinion

poll data cited above,
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To test for independence up to some order k becomes cumbersome if
we use the method above via the equations (3.5.24) and (3.5.25)., It
would be necessary to compute Vi» Yo and vy for each of c¢=1,...,k; and
test for independence at each stage. This is not only laborious, but
also leads to a multi-stage test, with the usual problems of defining
the critical region. However Aitchison(198la) shows that right
neutrality is equivalent to the independence of the components :-

ul u2 um

1—u1 l—ul—u2 1-~u1~—...—um

(cf. (3.2.18)) Taking logs yields the m, transfoxrmation. This leads to

the result that if we let u ~ M, (y,I), then neutrality for a partition
with c¢=k, neutrality up to order k, and complete neutrality, are

equivalent to the following parametric forms of I respectively :-—

O

) 0 (dg(o“,...,ckk)

and dg(dll,...,émm) .

0 Lyg 9 L,

Where gll is kxk and 222 is {(m-k)x(m-k). Left neutrality may be

similarly examined by reversing the order of u.

We now consider one final form of independence.

Definition 3.31

{c)

u = (g(c>, g(c)) € 8™ has partial independence restricted by u

(ps1(¢)) if :-
i) c(ulc)) 1 Clu,.y)
= —{c}’>

and ii) C(g(c)) e §"€ has complete subcompositional

independence.
It is again possible to form a parametric equivalent to PSI(C)

within the transformed normal-class. If we form v; and v, as in

(3.5.24) PSI(C) is equivalent to :-
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_)_:_12 = _Q, and 222 = dg()«c+1,...,>\m) + km_'_lgm_c, (3.5.27)

in equation (3.5.25).

We have described a powerful set of compositional independence
concepts, together with a means of expressing them parametrically via
the L (u,I) and M (y,2) distributions. However the logistic-normal
class of distributions is unable to model some of the stronger independ-
ence properties, such as complete neutrality of all possible permuta-
tions. As mentioned in section 3.4, this latter concept requires the
DPirichlet class. A solution to this problem has been suggested by
Aitchison(1985) via a more general distribution for data on the
simplex, which contains within it both the L _(y,I) and the Dirichlet
distributions. The resulting distribution has only one additional
parameter over and above that of the L (y,I) distribution, and certain
parametric hypotheses reduce it to the above two distributions. This
allows for inference to be made to distinguish between them. It should
be noted, however, that this hybrid distribution is not algebraically
exact, and numerical techniques are necessary to evaluate it. It is not
intended to develop the applications of this additional distribution
into the area of time series at this stage, although it does suggest a

possible area for further work.

3.6 Summary

In this chapter we have discussed the nature of compositional
data, and various problems encountered when trying to analyse it. These
problems include: understanding independence, a need for a suitable
distribution, and further problems related to compositional time series.
We have discussed some possible solutions following the approach of
Aitchison(1982). These transformations and concepts of independence

will be extended to time series in subsequent chapters.
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cvv in a flash, (n the twinkling of an eye ... we will Be chonged. ”

I Corinthians 15:52

CHAPTER 4

Transformed Multivariate Time Series Models

4,0 Introduction

In the previous chapter we introduced compositional time series
and discussed some of their properties. We have seen the need to define
some new types of models which will handle these time series. In this
chapter we present some possible models that will overcome the difficul-
ties discussed in chapter 3. These new models employ the transforma—
tions of section 3.4 which map the m~dimensional simplex onto the real
space. Having defined these models we will investigate some of their

properties and illustrate their use by means of an example.

4.1 Compositional Time Series Models

We first consider the additive logistic transformation. Let {gt}

be a compositional time series i.e.

u, € §", t=0,+1,...
and then let Ve = aglug), t=0,x1,... (4.1.1)
where a_ 1s given by definition 3.17. We consider applying conventional

m
time series modelling techniques to the {v,} series which takes values

in R™,

Definition 4.1

A compositional time series {gt}, u, € §% (t=0,+1,...) is said to

be a multivariate additive logistic autoregressive moving-average

process of order p,q and dimension m: ln+ARMAm(p,q), if {yt} given by

(4.1.1) is ARMA_(p,q).

~l
($4)



We employ the a_ transformation because it has been well developed

m
by Aitchison(1982,1983,1984,1985,1986) and by Aitchison and Shen-
{(1980,1984), Many of its useful properties and expedience 1in testing
for variocus types of independence were discussed in chapter 3. The other
transformation which was found to be useful in chapter 3 was the m.
transformation {(definition 3.18). We examined how it proved to be
useful when testing for neutrality, and conséquently we will introduce a
model based on this transformation, but we will not discuss its
properties in as much detail.

Let Ve = mp(uy), t=0,£1,... (4.1.2)

Definition 4,2

A compositional time series {gt}, u, € §* (t=0,%1,...) is a

multivariate multiplicative logistic autoregressive moving-average

process of order p,q and dimension m: 1nxARMAm(p,q), if Ve given by

(4.1.2) is ARMA_(p,q).

We will similarly define 1n,AR_(p), In,MA_(q), In AR (p), and
In MA(q) to be ln+ARMAm(p,O), 1n+ARMAm(o,q), 1nxARMAm(p,O), and
In ARMA (0,q) respectively.

We note from the above definitions that if {v .} follows an
ARMAm(p.q) process then the input series 1is also m-dimensional. Hence
{gt} will have an m-dimensional input series as we require.

It will be useful to obtain an expression for u, in terms of its

t
own past values under the various models.

Let Ql,...,QP,QO,...,@q be the parameters of the ARMA (p,q) process for

Ve given by (4.1.1), where 9 = L.

a, = exp(e.), (4,1.3)

E{v,] = u, (4.1.4)

so that Ve = Ve =V, (4.1.5)
and hence V. = 8pey + Ogep g +euet Quep g = Ve g e BV, .

(4.1.6)



Also let p
. exp{u‘ by 3 o0, L (4.1.7)

"] o=
1 j=1 k=1 ik k
L
m
and ¢€k) = - I ¢{K) 5 i=1l,...,m; k=1,...,p. (4.1.8)
i,m+1 , ij
j=1
_ (k) _
Where Qk = {¢ij Yoo k=1l,...,p.

Then we have :-

Lemma 4.3

If u e Sm follows an 1n+ARMAm(p,q) process then :-

t
(1) (J)
p m+l - q m
{ T mu | K }[ T Ta 13 }”1

j=1 k=1 K-t j=0 k=1 < t7J

Uit
no e w1 U @ on el ]
rk rk ]
1+ I | T W W oy m 0 3 Jnr
r=1 |l j=1 k=1 ©%7J j=0 k=1 ©t7I
i=1,...,m; t=0,%1 (4.1.9)

Proof

exp(vit)
and u, = , i=1l,....m; t=0,%1,... . (4.1.10)
1+ I exp(v

r=1

l’t)
Now from (4.1.6)

exp(vit) =

exp{g e Q1§t~1+"'+ qut—q @1(yt 1~ Y) ~...- §p(yt_p~ 3)}

.t - .
where ( — 1 denctes the i h element of the vector for i=1,....m.
Ji

Hence

77



H

exp(v, )

it
p m ) g m , P m .
(3) (3) (i)
exp{~ ¥ I v b }.exp{ )3 L e .9, LexXp<u. + L L u ¢,
j=1 k=1 k,t-j ik j=0 k=1 k,t-j ik i j=1 k=1 k7ik )
P m . q m .
= (i) (j)
T T exp(-v, _ .¢. )}[ n T expfe L8N,
{ j=1 k=1 k,t-j ik j=0 k=1 k,t-j ik 1’
from equation(4.1.7). (4.1.11)
. _ . it 17
Putting ak,t*j exP(ﬂk,t—j) , and recalling from definition 3.1
u .
that v ., = 1In -J§LE:1~, we obtain :-
k,t—] u .
m+l,t~j
(i AN
P m L ¢ik ( qg m eii'
exp(v, ) = T { E——L—ai—} U N L
i=1 k=1 & "mel,t-j | j0 k=1 St
b mel ol3) ¢ m et
ik ik
= n I uk . I ak t— ql , i=l,...,m
Uj=1 k=1 =) j=0 k=1 73 t=0,+1,... ;
(4,1.12)
where ¢(k) is given by (4.1.8)
i,m+1 Tt
Substituting (4.1.12) into (4.1.10) gives the required result,. a
Coryollary 4.4
If Et € Sm follows an ln+ARm(p) process then, using the same
notation,
p m+l —¢€J)}
ik
LI W Rt
_ j=1 k=1 77 »
u. = , 1i=1,...,m
it (i)
m p mtl ~¢ri)
1+ n n Wl a .n, t=0,+1,...
r=1 j=1 k=1 7]
J
m .
=1 - I Uy, , =m+ 1
=17 g




Corollary 4.5

If u, € Sm follows an ln+MAm(q) process then,
f g m e(j)
ik
{ T T ey N
j=0 k=1 '3 _
u, = , 1=1,...,m
1t .
(3
m q m erk
1+ I n n LN t=0,*1,...
r=1 j=0 k=1 7]
m
=1 - z U.t 7i=m+1
j:l J </ .

where the notation is as in lemma 4.3, except that ni = exp(ui).

Covollary 4.6

If Ht € Sm follows an 1nxARMAm(p,q) process, then :-

(i)

~¢.
u . ik .
P w~§l£:i—- q m e?l)
m+1 ik
n i L u 1 m 2k t-j 3
| j=1 k=1 r=k+1 r,t JJ =0 k=1
Yie T e
i [ [ oy ] sK (i) 1
p m | e q m ¢]
1+ m+1 sk
n n 5 u I 1 a, 3 nS
s=} L j=1 k=1 r=k+1 Y,t—JJ L j=0 k=1

i=l,...,m ; t=o0,xl,...

where i is as before, but noting that v, 1is now the mean of the v

k t

series given by (4.1.2).

Proof
» This follows the exact form of the proof for the lemma, except

that after equation (4.1.11) we substitute,

Yk, t-j _ "k, t-j

Yo
I

b e
ot
[t}
o

r5t‘j

r=1



+
since L u. o= 1,

and then the expression for exp(vit) is

(1

-9

u ik .

k,t-j (i)

exp{v. ) = p m m+1 : q m eii

it i I ) u nn n ay - 5
j=1 k=1 =kt 1 r,t-j j=0 k=1
L . (4.1.13)
From definition 3.18 uit is then given by :-
exp(v. )
u,. = — 1t . t=0,%1,... (4.1.14)
it 1
J_31{1 * exp(vjt)}

Substituting (4.1.13) dinto (4.1.14) then gives the required result.

We may obtain similar expressions for the lnxARm(p) and lanAm(q)
processes. However for the remainder of this chapter we will concen-
trate on the 1n+ARMAm(p,q) model. Many of the results for the
In, ARMA (p,q) model will have similar and obvious counter-parts for the
1nXARMAm(p,q) model, whilst other results may have less cobvious or
possibly no counter-part. Where possible we will try to indicate which
is the case. What follows in the rest of this section can be easily
formulated for the In ARMA (p,q) model.

We now proceed with some further definitions,

Definition 4.7

An 1n+ARMAm(p,q) process u, 1s MA-invertible if it can be

expressed as an 1n+MAm<m) process.

Clearly if a process Uy is MA-invertible then the process Ve
formed by taking the an transformation is stationary, and hence a
necessary and sufficient condition for u, to be MA-invertible is given

by lemma 2.6,
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Definition 4.8

An In, ARMA (p,q) process u, is AR-invertible if it can be

expressed as an ln+ARm(m) process.

In a similar way the above definition is equivalent to the model
for the {yt} series being invertible, and hence the required conditions
for this are given by lemma 2.7. We note that we could easily have
interchanged the names in the above definitions, so that they refer to
the polynomial equation of the parent ARMA model that is invertible;
instead of which we have chosen to define the names so that they refer
to the resulting form of the infinite polynomial. Alsc, we have not
used the terms stationary and invertible as it is the {yt} series and
not the {gt} series to which these terms refer.

Clearly if a process is MA-invertible we may express it as :-

©® m w€j)7
I Ha 1k }q
-] } == -+
) j=0 k=1 K,t~] i t=0,x1,...
Yie T
ot © $(J) ) i=1,...m
rk |
1+ X n 1 a o My
r=1 j=0 k=1 7
s {(4.1.15)
where ny = exp(wi) .

Similarly an AR-invertible process may be expressed as :—

{ © m+l Tk }
it MTu . 1
- . +
. i=1 k=1 k,t—]j it 'l t=0,%1,...
u, =
it (j) i=1 n
m+1 j{ o m+l ~ﬂri’) 1 vt
1+ I | T Tu S la_n
r=1 ‘L j=1 k=1 K,t-] J rt rf
L J, (4.1.16)
m
( -
where wik) = - w(g)
i,mt+] . 11
i=1
p © M )
‘ (i
and 1. = expl{u, + ) I w.7 v
i L1 j=1 k=1 ik kf
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In (4.1.15) and (4.1.16) the y’s and 7’s refer to the infinite polyno-
mial parameters for {yt} expressed as an MAm(m) and ARm(m) process
respectively.

One class of models we have not considered are those based on the
ARIMAm(p,d,q) process. This is partly due to our comments in chapter 2
regarding such models, and also because the ARIMAm(p,d,q) may be thought
of as a non-stationary ARMAm(p+d,q) process, for which the above models

will suffice.

4.2 A Linear Approximation to the Model

So far we have suggested an approach to modelling a {gt} seyies,
where u, € 8T, via a transformed model such as the 1n+ARMAm(p,q).
However, in the survey context e.g. Scott et al (1977), such series have
been analyzed by using the traditional linear ARMA(p,q) model, although
in general this has been restricted to univariate models. One may then
wish to ask if, and under what conditions, such a model is appropriate.

To compare the two approaches consider the ay transformation of

ueg1 1:oveﬁe1 s

This function is plotted in figure 4.9.

v =1nu = al(u)
4 l-u b

w
il
<
—

Figure 4.9
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When u is ''close” to some point u (say}), then In Tgﬁ is
approximately linear. By "close" we mean that a < u € b, where
a <y < b, and where the choice of a and b depends on the degree of
approximation required and the value of u. The closer ¥ is to 0.5 the
wider the range [a,b] can be because the function is more "flat' around
this point. Clearly we may extend such an approach to higher dimen-~
sions.

It is usual to examine a linear approximation about the point
¥ = Efu]l. We now form an approximation to the multiplicative
ln+ARMAm(p,q) model using a Taylor series expansion. It is hoped that
this will provide a useful means of understanding the properties of the

In ARMA, (p,q) system. Consider (4.1.9) and let

(m+1)

i) Elu, ] o= (4.2.1)
E[gt] = o, (4.2.2)
b4
. % )
ii) >\k = ;i,‘“—- . (4.2.3)
T
L = | 0 H0 yu T 7« n ; k=1,...,m. (4.2.4)
Kk i . . i k
j=1 i=1 i=0 i=1
m
T =1 + L4, R (4.2.5)
. i
i=1
A= (kl" ’km) .
ii1) plS) = bt (o8 5 ¢(é)x } (4.2.6)
Kr Hr { ky j=1 ir 3]
(s)y _ {s) (s)
hkr = By, Kol (4.2.7)
(s) . -
H = {hkr } H K,r=1,....m ;3 s=l,...,p.
(s) _ k[ (s) mo(s) )
iv) 8, = &%( 9kr - Y e." ., , (4.2.8)
ul A
(s) . o . _
G, = {°kr i 3 k,r=1,...,m ; s=0,....9.
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Theorem 4.10
If u

¢ € §™ follows a ln+ARMAm(p,q) process then a linear

approximation to the model (4.1.9) is

I~

¢ T AT He - Fer H T

(Weop= W)+ Golap~ @) +..+ Golap 4= @) + L

where L, represents the second order and highexr order texrms of the

Taylor expansion.

Proof
’ an s 7/ .'I /'../ 4.2.
Let RS- LR IR R (4.2.9)
R TR
Fi(it) = n n U g n n A i My o i=},...,m
j=1 k=1 73 j=0 k=1 > 7J t=0,£1,... ;
(4.2.10)
Fk(it)
£ (J ) = s k=1,...,m 3 t=0,%1,... (4.2,11)
k' —t m
1+ L F (J)
r -t
r=1

Then from equation (4.1.,9), the function fk(gt) is the right-hand side

of the model formula. Hence we may rewrite (4.1.9) as

u, = fi(gt) s i=1,...,m ;3 t=0,%1,... (4.2.12)

From (4.2.1), (4.2.2) and (4.2.9) we note that

E[gé] = (LR, e 0w .., ”) = N7 (say) (4,2.13)

The Taylor series expansion of fi(gt) about N 1s given by

| p m+l [ Jf (L)

£.(1.) = £.(J) + r | (u -u) +
i -t i—t 3 =N k=1 r=] L aur’t_k I =N r,t=k Y

t —t =

qg mnm afi(gt>

L X e (a - a ) + R
k=0 r=1 aar,t—k £t=ﬁ r,t—-k 2ti
(4,2,14)

where gt are the second and higher order terms. We may rewrite

this in vector form as
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P Af(J )
£3) = £(I) N N W™Dy
==t ==t _ i=1 au(m+1) I =N —t-1i
=t = ~t-i t =
q ( 3E(J) )
(a - o) + R ,
_ Ja, . el Tt=1 - =2t
i=0 t-1 gt—gj
(4.2.15)
where g(gt) = (fl(it),...,fm(it)) ,
and Boe = RoppBopgree iRy
ai1xr
and terms of the form 5% are the rxs matrix with elements zij
=1lxs
Ay, . .
and 2. = et =1 (4.2.16)
ij X, ,
| i=1,...,8.

We will take each texm of (4.2.14) in turn. First we note that

){ = £ as in (4.2.4); k=1,...,m. (4,2.17)

F, (J
k=t B k
13, =N
and hence from (4.2.11)
lk ik
f.(J.) = = = A from (4,2.3)-(4.2.5).
k=t ij =N m T k
ey = 1 + I 4
i=1 (4.2.18)
Secondly differentiating with respect to u, we find from (4.2.10)
3F. (J. )
k-t (s) ~1 - .
s " "t Ui F (40, k=l g O (4.2.19)
r,t-s r=1,...,m+1 ;
and thus,
O (I “¢éi)
el = 1 from (4.2.13) and (4.2.17).
8ur t—-si{J =N pr k
[t (4.2.20)

From (4.2.11)
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OF, (1)

1 aur,t—s T

o~ s

F ()
kw
oy

Hence from (4.2.20) and (4.2.21) we obtain

T (s
(s) L .54
8, (J,) ] 0y A ) kpoy 00T
3u _ m m 2
ryt-sld =N " { 1+ 14 } " { 1+ I 4 }
Y . 1 r . 1
i=1 i=1

= e 2.3)~-(4.2. ,
s ¢kr 21¢Jr j} from (4.2.3)-(4.2.6)
- (S) . — - = b -
= Bkr ; k=l,....,m 3 r=1,...,m+1 ;3 s=1,...p.
(4.2.22)
Similarly, since
aFk(Jt) _ () -1 F ()
da kr r,t-s "k ~t ’
r,t—-s
whence
BF, (J,) e;i)
e = — 4 ; k,r=l,...,m 3 s=0,...,9 ; t=0,%1,...
da t-siJ, =N ur K
- 2T (4.2.23)
We have that
m
(s)
(s) £ X 8:""4¢
9f, (J) _ Sr i _ ko trT
da m m 2
- = b .
rt-sid =N ar( Loe Ty [ 11 zl}
t i=1 * i=1
X m
- R By
r j=1 1% J
¢<S) s kyr=1l,...,m 3 s=0,...,q9 ,from (4.2.8).
Dkr b2 3 9 . * s b LA h *

(4.2.24)
Substituting (4.2.18), (4.2.22) and (4.2.24) into our expression for the
Taylor series expansion (4.2.14) gives
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(i) a =0
£, = N+ I Ip(u —u) o+ I T

(i)
. "~ Aa - )+ R,
kr r,t-1i i=0 r=1 r 2

kr r,t-1 tk

(4.2.25)

Finally we note that the summation in the second term of the above
expression is over m+1 linearly dependent terms. We may re-parameterize

this to be the sum of m linear independent terms thus :-

s 510 ) SLRRT. Lo g !

£ u _aT R B e u R Ly e

=1 kr r.t-1 k,m+1{ =1 j.t=-1 =1 j.t-1]
m

_ (1) (i)

B El(pkr Bk,m+1)(ur,t-1~ “r)
(4

=3 — ( 3
rzlhkr (ur,t—i ur) . (4.2.26)

Substituting (4.2.26) into (4.2.25) gives the required result, where

= ')
L, = Ry, - (4.2.27)
o
Corecllary 4.11
H, = - E®.F ; i=l,...p i {(4.2.28)
H, E¢.F
G, = ggjé“l : §=0,....q 3 (4.2.29)

where Ei (i=1,...,p) and Qj {(j=0,...,d) are the parameters of the model
in equation (4.1.9) and Qi and Qj are the parameters of the
In ARMA (p,q).

And E=L(I -UL), (4.2.30)
E=1L UL

F=yte l U, (4.2.31)
”m+1

- ({ VAN

A= dglag, 0 ) (4.2.32)

M = dg(ul,...um) , (4,2.33)

L=dgOp,eesd ) (4.2.34)
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Proof

From (4.2.6) and (4.2.7)

p{s). S(s) (s)
kr  Prr 7 Piom+1

)y m A m
B ﬁE [“¢éi) . ¢§i)ij B ﬁE (‘¢;S;+1+ : ¢§S;+1 xj}
r j=1 m+l ’ j=1 7’
? ¢(s) ( ? ¢(s)
¢ .. ki m $. R B skor=1,...m;
_ kr i=1 ir 1i=1
= kk - + + L X, + s=1
Hp Mo+l j=1 1 My M+ 1 SRR
(4.2.35)
Fo— (1) = 4F ~ (1) — 4 F = {(diid) ~—~Ad4F ~ (iv) — 4
We may rewrite this in matrix form (texrm by term) :~
s
=L -eMT - Loy + u L(@ Ml L sy }
-g = =g= H =$=m = | =8~ M ~5-Mm
mt+1 m+1
F— (1) =4 F = (d1) =4 F ~ (di1) — 4+ = (iv) -4
= LI —U L= )M v U ;i s=l,....p 3 (4.2.36)
="=m m=" -5’ - M
m+1
= —EQSE as required.
Similarly since
)y m
8> EE{ oS - 1 e(i)x.1 :
r j=1 J 1)
5 G = LO -uLo At , (4.2.37)
=5 ='=g s =
= L(I -~UL)® éul = EO A“1 as required, s=0,...,q.
“m  Tm s =tg=

Clearly the linear approximation given in the above theorem is in the
form of an ARMAm(p,q) model. However we note that QO = lm as in the
usual specification, and we have additional terms Et and A.

We may investigate conditions under which gt * 0. Recall that the

innovation series for {v,} is {g}, where Varlg,] = E. Then following

the approach of Bickel and Doksum(1981) we would expect L, = O when ||LJ|
L M £
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% 0, where ||I|l is some noxrm of the covariance matrix, such as the
determinant. This, for example might yield the criterion for a linear

approximation as :-
L, =0 , (4.2.38)
when 121 < K.

The choice of k will depend on how accurate we wish the linear approxi-
mation to be. Exact details may be obtained by examining higher order
terms of the Taylor series expansion of the ln+ARMAm(p,q) process. We
leave this for further study, since we wish to develop the ln+ARMAm(p,q)
as such, and not to concentrate on its linear approximation. In general
when k is small the values of the compositional time series will not
vary that much. i.e. the values will not fluctuate from one extreme
value to another.

The additional constant term A may also be sensibly dealt with.
For the ARMAm(p,q) model in theorem 4.10 to be of standard form, we

require that,

This may be seen in context if we note that ki is simply the value of
£;(J¢) (equations (4.2.13) and (4.2.18)) evaluated at the mean, and

since from (4.2,12),
ujp = £33 i=l,...m o t=0,41, ...

then ki = y. is equivalent to,

i
My o= £ 5 i=1,...,m
i.e. Elug ) = £5(E[I, D) . (4.2.39)

Since (4.1.9) has been approximated by an ARMAm(p,q) process, then
{(4.2.39) is equivalent to that approximation applied to the expected
values. 1i.e. when gt = 0 (4.2.39) may be obtained by taking expecta-

tions of the ARMA model:—
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ot oo

- b e
= woOw ~

(=) = By y= ) +eeos HoGu =) + 8 % GiA g +e.ot Goay v by
(4.2.40)
* _ = _ A
where Lt = &t (g - N
Bg T & T2
i > (4.2.41)
B = Gphy
G =G.6.5 : i=0
<t _1 b4 ‘)"'9q .

Hence (4.2.39) holds when the linear approximation is good.

The ARMA model (4.2.40) is a re-parameterized form of that given
in theorem 4.10. Clearly if (4.2.38) and consequently also (4.2,39)
hold, then L, * 0. If L, = 0 for whatever reason, then we have an
ARMAm(p,q) process in its standard form. Alternatively if we could
assume that gt* is an independent white-noise process then we also have
an ARMAm(p,q) process, since the sum of two independent moving-average
proceses MAm(ql) + MAm(qQ) say, is itself MAm(q3), where q3=max(q1,q2).
{See for example Box and Jenkins(1976)).

From (4.1.3) we note that

a = expi{e, 3 k=1l,...,m 3 t=0,x1,... 3

kt kt

where e~ N (0,D).

Hence a, follows a multivariate log-normal distribution with mean

@t = E[akt} = exp(%Gkk) . k=1,...,m ; )
t=0,%1,...
(¢ (s, .+ 6..)
and variance I, : 6?5) L 1) le 1L ] yoi,i=1,...,m.
—A 1]

(4.2.42)
If L; = 0 we have some interesting results as follows.

Lemma 4.12

The determinantal equations for the moving-average components of

30
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i) The parent ARMAm(p,q) model for v, = am(gt), u, € Sm.

t
and ii) the linear approximation of the resulting In ARMAm(p,Q) model

+
for U, namely equation (4.2.40), with L; =0

both have the same roots, and hence both models are inverfible or

otherwise.
Proof
The determinantal equation for the MA component of (4.2.40), L; =0
is,
xg;zq + szq"h ce + Q;I =0 . (4.2.43)
S -1 ‘
We have from (4.2.41) that gi = gigo ;3 i=0,...,9 ;
-1 ~1.-1
= EQ.A "(EI A ) , from (4.2.37),
29,4 (R A
. -1 .
= = M = ').
and since QO lm g@ig s 1=0,...,q. (4.2.44)
-1 -1

E ° exists since from (4.2.30) L "= dg(l/kl,...,l/km) s

m
and 1 - Li =1~ ¥ X, #0 (in general).
_m T -

Substituting (4.2.44) into (4.,2.43) gives,

gr1o.z2% « L.+ 0 B =0
E 9,11E

=0 » (4.2.45)

for which the roots are those of the determinantal equation for the

parent ARMAm(p,Q) model. i

A consequence of this lemma is that if {u.}, u, € S™ follows a

In, ARMA (p,q) model and is AR-invertible (definition 4.8), then the
linear approximation (4.2.40) with &t* = 0 will be invertible. A
similay relationship may be found regarding the stationarity of its

linear approximation. This is easily seen by noting that,

ael = (T-E(DR+ 40 e F) (4.2.46)
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and hence if Q"l(B) exists (i.e. if it converges) so does E"I(B), S0
that (4.2.40) may be written as an infinite moving-average. However in
this case the roots of the determinantal eqwtions are not sc easily

found to be the same. We have

L2P + @227l v v e =0 (4.2.47)
and 1I,2P + Hy2P™ e LovH =0 (4.2.48)
{(4.2.48) may be written as

EVETIETIZP ¢ 927l + Ll v @ 1 1F) = 0. (4.2.49)

P

This equation is not the same as that of (4.2.47) (cf. (4.2.45)), unless

of course E =E~1, which is not necessarily the case. However consider

-1 ~ -
F = U= gy R .
MMy My (l=mpd e =iy (4.2.50)
i R ™ THo My ‘ “m(lnpm) |
= M(IL -UM) . (4.2.51)
=m T

Consequently Eal = E 1f and only if L = M ,see (4,2.30). i.e. if and
only if My = ki (from (4.2.33) and (4.2.34)). We recall that this is
equivalent to (4.2.39). Hence we must assume that gt =0, as in

lemma 4,12, We have shown :-

Lemma 4.13

i) If the parent ARMAm(p,Q) model for Ve = am(gt) ; U € s is

stationary then so is the linear approximation (4.2.40) of

the resulting 1n, ARMA (p,q) model.

ii) If (4.2,39) holds, the determinantal equations for both AR

components are the same.
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In summary, in this section we have established a linear approxi-
mation for the multiplicative model. We have not considered higher
order terms in order to avoid additional complications. These would
demonstrate the conditions under which the linear approximation is a
good one. We may crudely determine this via the choice of a "flat"
region about E[u,] as in the choice of a and b in Fig. 4.9, or k in
(4.2.38).

We have also shown some interesting relationships at the linear
approximation to the 1n,ARMA (p,q) model and its parent ARMAm(p,q). In
particular we note that the stationarity and invertibility of the two

ARMA models are equivalent.

4,3 Invariance Properties

In our definition of the ln+ARMAm(p,q) model we allowed the
fill-up-value (FUV) U], t to be the reference variable in the transfor-
mation of {u,} to {v,}. However we could have selected any omne of the
remaining m Uy, 'S to be the reference variable. The resulting model
would still be an ln+ARMAm(p,q) model, but what is its relationship to
the original model? Will it make any difference to our analysis if we
chose a different u,,7 What we must discover is whether the model is

it

invariant to such a permutation of the u.

lt’s. In this section we aim to

investigate these questions.
We begin by recalling the results at the end of section 3.4, and
in particular the definition of the Z(k) matrix (3.4.2), which trans-—

T -
forms v, = v,  thus :

where v, and ytT are the logistic transformations of uy, € §™, based on
the reference variables u,, ; and u, respectively (k=1,...,m). We
demonstrated in chapter 3 that under the usual multivariate theory if
u ~ L. (u,X), then gT (with obvious notation) ~ L (Z(k)u, Z(k)IZ(k)’).
Aitchison(1982) further studied the invariance properties of the ag
transformation in the context of compositional independence.

Our first invariance property for time series is given below.

93



Theorem 4.14

v, (0

i

Let AS NS s e=0,%x1,... ;5 k=1,...,m.

(4.3.1)

v) = Yt(k)" Y

(k)

It

2K (vy -

If {Yt} follows an ARMA_ (p,q) process, then {zt(k)} is also ARMAm(p,q).
Further the roots of the determinantal equations of both the AR and the
MA components from the two models are identical so that the stationarity

and invertibility conditions remain consistent.

Proof

Since {v,} follows an ARMA (p,q) we may write :-

Ve = & T Qe e Qe g TRV g e Y (4.3.2)
where E[gt] =0 , and Var{gt] = 1.
If we multiply by Z(k) the L.H.S. will be yik). Also, since
Zml(k) = Z{(k) it follows that V. = g(k)yik) , whence
(k) _ (k) (k) (k)
Vo= g0t g(k)ng(k)gt_l ool * Z(k)@q;(k)gt_q -
Lo (KD {k)
2(K)$,2000V, °) DAL NAL NN (4.3.3)
(k) _ _
where g = g(k)gt ;o k=1,...,m. (4.3.4)
If we then put Qik) = ;(k)@ig(k) ;0 1i=0,...,9 ; (4.3.5)
(k) k=1,...,m;
and Qj = g(k)ng(k) 3 J=l,....p (4.3.6)
we obtain
(k) _ k), (k) (k) (k) (k) (k) (k) (k) (k)
Ve Ep 9 e et Qq £t—q LIRS MRS gzp Yt——p ’
(4.3.7)

From (4.3.5) and (4.3.6)

, and since (Z(k)1 # 0 ,
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olk)

k=1,...,m;

(k)

9, = 0 < 8 =0 3 1=0,...,9 ;
9. =0 & o8 -0  j=1,....p.
23 v 25 v
Hence (4.3.3) is not
of parameters as the
remains ARMAm(p,q), with white-noise process ¢
where E[gék)] = 0 ,
(k) _ 3 p
and Var(gt I = Z(K)EZ7 (k).

Consider now the roots of

I 2P+ é(k)zp*l . ¢(k)' = 0
-m -1 -p
= z(0) |1 2" + 02" e s o ||zt
= 1 2P+ 0 21 e l = 0,
“m 1 ~p

t

k4

(4.3.8)

only an ARMA model but it contains the same number

original ARMA model (4.3.2), and in particular

(4.3.9)

(4.3.10)

(4.3.11)

which is the characteristic equation for the original AR component, and

hence the roots are identical. The MA component follows in a similar

manney.

Corollary 4.15

Let Qj = {¢j,(r,s)} r,s=1,..,m;
(k) _ (k)
and Qj {¢j,(r,s)} , where

(k) _ Lo .

5.(r.s) = ¢j,(r,s) - ¢j,(k,s) y s=1,...,m; s=K
T ey T %y, (k,me1) 7 STK
S T %k b STl
= —¢j,(k,s) y 5=1,.,.,m ; s=k
o _q)j’(k,mi-l) M S=k
= ‘4)3,(1(’}_{) ; s=m+]
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=1,...,m
r#k

\

0

{note slight change in notation)

j=1,...,p
k=1,...,m

(4.3.12)



m
=~ L ¢,

(We recall that ¢j,(£,m+1) L4 i) .
i=1
m 2
Similarly if we define 8, = ~ 7 8, e
3wy ) () i=0,....q
m
(k) _ (k) e
and SRR VTS IR NP R ED
(k) 5 N
= 8, - 8, ;o s=1,...,m ; s=k
i, (r,s) i(e,s) T %5, k,s) ¢ ST mss
_ r=i,...,m
B ej,(r,m+1) - ej,(k,m+1) o s=k [Tk
= - 8, 5 =m+} .
® e T % kK s y §=0,...,q
S
= nej,(k,s) ;3 8=1,...,m ; s=K N k=1,...,m
=0, (x.me1y 5 5K - (4.3.14)
"0 6 ST J )
Proof
a) Via the ARMAm(p,Q) model. From (4.3.5) and (4.3.6) we have
(
0% - 200 2(k)  and
i =i=
o' = 7000 2
25 k8.2
where 2y =1 o0 ... -1 O .. 0]
0 1 e o . -1 0 . . 0
0 e e . - 1 e e e 0
0 0 ... -1 0 AN

multiplying out these matrix expressions gives

b)

Let

Via the 1n+ARMAm(p.q) model {(we give a sketch only).

5

)

-9, qg m
tit(r’S) T T
v j=0 s=
r=m+1,
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Then the 1n+ARMAm(p,q) model may be expressed as

F
= T = X : (4.3.16)
urt e , r=1,...,m+t1 ;
‘zl ¥ (cf. (4.2.11) and (4.2.12))
1_—:
Fr /Fk F(k)
= * - ___ T (say) r=1,...,m+1. (4.3.17)
m+1 m+1 (k)
LoFy L Fy
i=1 k i=1

where F(k) = Fr //F

i
-
N
3

K ; r=m+l.

(k)

If we consider each texrm of Fr we obtain,

Pl o Fy SR =

p m+tl -9, + ¢, {9 m R -8,
T ou tff(r’s> i, (k,8) [ T s élgr,s) i, (k,s) nﬁ//“k
j=1 g=1 S-t7J JLj:O s=1 » 7 .
=1,....m; r=k. (4.3.18)
(k)

Clearly the coefficients of the u’s correspond to ¢ of {(4.3.12)

j.(r,s)
for r=1,...,m ; r=k, but with s=k, and s=m+1 interchanged. Since the

whole point of the above theorem is to interchange the u and u

(1) kt m+l,t
values so that ¢, refers to the coefficient of u . (and vice
j.(r,k) m+l,t—j

versa) the expressions are as required. Similarly examining the result
for r=m+1 above, gives the result for r=k in (4.3.12). (Again k and m+1

interchanged.)

Consider now the coefficients of the as t*jls -
m 0. 0.
Tom o s Tiaes |
j=0 s=1 S°t7J
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- 8, - 8,
L CY 8 e s ][ %5 e O tk,s)]
I n s,t-] ak - n n ak -]
j=0 s=1 »+ i=0 s=1 °*
m m
~-L 6, + L 9, }
- ,(Kk,s
Cm gy %e” YLk || 8 [ N R N e I
1 1 as t-] I am+1 -] B
j:O S::l ’ J jzo >
s#=K
q m 0. - 9,
o1 aéki_‘J’(r’S) 3, (k,s) (4.3.19)
j=0 g=1 °°*7J
s=k (from (4.3.13)) .
) (k) _ _ (k)
Since g, = ;(k)gt, and a, = expe, , 2, corresponds to
gék) = expgék) s t=0,%1,... 5 k=1l,...,m 3 (4.3.20)
with agﬁi t corresponding to the kth position of the vector gig).

S . st ...
Thus once again interchanging the kth and m+1 indices between the O

and Q(k) parameters the power of a(k) . in Fik) is e(k) ) given by

s,t~] i, (r,
(4.3.13), for r=1,...,m 3 r=k : j=0,...,q9 : k=1,...,m : t=0,%1,,.. : and
s=1,...,m+*1 ; s=k. Again we may repeat for F(k) = // ; r=m+l to give
r Fk

the remaining results.
R}

Theorem 4.14 demonstrates that the basic structural form of the
In,ARMA (p,q) model and its parent ARMA (p,q) model is invariant to the
choice of reference variable. Whatever ARMAm(p,q) model (e.g. (4.3.2)

or (4.3.3)) is selected to represent the u, series, it is of the same

t
order and has the same stationarity and invertibility properties. We may

take this one step further.

Theorem 4.16

The 1n+ARMAm(p,q) model for a series u, € S® is totally invariant
to the choice of reference variable. That is, any of the ARMAm(P,Q)
models (4.3.2) and (4.3.7) represent the same model for u, on the

{(m+1),
t

simplex, except that the u s have been permuted.
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Proof
From (4.3.16) and (4.3.17) we have that

F(k)
= Y .= . .
rt — o s or=1,...,m+*1 ; ke (1,...,m+1) 3 (4.3.21)
h) Fi
i=1
(n+1) _ .
where we set Fr = Fr as in (4.3.16). From (4.3.18), (4.3.12) and

(4.3.13) we have that,

b mel _¢(k) 4 oK)
Fik) = | MM ou tif(r’S) m n a;kz—'J’(r’S) ﬂik) sr=1,...,m+1
j=1 s=1 =7 i=0 s=1 -7 =k
= 1 r=Kj;
(4.3.22)
ﬂ =
where n(k) . L r=1,...,m
Y n ek
k=1,...,m ;
= .1__ r=K ;
M J
= nr r=1,...,m 3 k=m+1.

Comparing (4.3.21) and (4.3.22) with (4.1.9) and the proof of lemma 4.3,
we see that (4,3.21) is just the ln+ARMAm(p,q) process in terms of U,

corresponding to the ARMAm(p,q) model for yt(k), ke {1,...,m*1} given

by (4.3.7). (Again we let yt(m+1) =y Qi<m+l)

il
Q-(m+1) = Qj » J=0,...,4.) Hence for these ARMA_ (p,q) models to be

= Qi , i=1,...,p ;

equivalent forms of the same In,ARMA {(p.q) model we require that the
models represented by (4.3.21) be equivalent. But we have from (4.3.21)

that for any constant C,

(k)
Fr //C
u = e et sttt

rt m+l ;
 piR
. i C
i=1

r=1,...,m+1 ; ke (1,...,m+1) . (4.3.23)

H

We may choose C to be Fs(k), for which we obtain (4.3.21) for k=s, as
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can be seen by (4.3.16)-(4.3.18). Hence all the models are equivalent,

except for a permutation of the u’s.

From (4.3.23) we see that (4.3.21) must have a constraint on the

elements to give a unique representation. This constraint is that

Fk(k) = 1, and is equivalent to choosing Uy, as the reference variable.

{c.f. the marginal constraints of a log-linear model for a contingency
table e.g. Bishop et al (1975).)

Aitchison and Shen(1980) demonstrated that L. (yu,L) and L (Z{K)y,
Z(k)ZZ7(k)) vrepresent the same distribution, but with a permutation of
the elements in Sm. Our result is the analogue of this for the

In, ARM! (P,CI) model. We may investigate the Valldlty of the theorem
+

~

above from many directions. For example, in (4.3.7) we may let £y

Nm(Q,Z(k)) , 80 that the innovation series e, = am—l(gt(k)) is

Lm(g,;(k)) Thus from Aitchison and Shen’s (1980) result g, (1 ,E (2),.~

t
(m+1) s 5
cesEg all represent the same innovation series on i.e. ey,

under a particular permutation. This is true for yt(l),..., (m+) also,

Hence all the ARMA, (p,q) models given by

but

since they all represent Uy .

(4.3.7) represent gt(k) (and consequently gt) as a function of its own
past and the past and present of gt(k) (and therefore gt). i.e. all are
expressions for u, in terms of its own past and the jnnovation series

LI

Another example occurs when we consider forecasts. Clearly if
Alk) . (k) ~{K) AlK)

Ve, 1s a forecast for Virg » then Vieg = Z(k)vt+£ as can be seen by

applying Z(k) to (2.5.2) or by noting that ¢ is obtained from (4.3.7)

(k)

by recursively computing Veii

i=1,...,4 with ¢

(4.3.6) we note that in (2.5.1) fik} Z(0¥,

Alk)
—tt+4
(k) _ .
€irg= 0. As din (4.3.5) and
Moy 5 i=1,2,... .

Then from (2.5.3)

(1) AK) (k) _ 0, G0 )y, (0 0 (0, ()
L = var(@. ) /v = g w0y DR AR A
t+4
- za0z ™ Vg0 - 20 ™ Vzaozaor ™z oz (k)?’(m+1) 27(k) +...
+ z00¥," T 2002002 V2 a0z U A AT
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§<k>[§(m+l) gl gl el w(m*l>z‘m+1)T’(m+1)}§’(k>

it

-1 - -1 U ~£~1 = ~4~1

p
;(k)tVar(ﬁiTIl)/ yim+1),...]}§’(k)

I

o™z (4.3.24)

t+4

Hence the forecast for u E{gt+£/gt,g ], where

tef g-1"°""

u ~ I [v(m+l)’2(m+1)] , Or equivalently L {v
—t+4 m|—t m|—

(k) 2(k) 1
-y t ’
t+4

L, J from
t+4

(4.3.24), which is the same distribution except that the gt’s have been
permuted.

In summary we have shown that whatever model we use on the RT
space to express the ln+ARMAm(p,q) model; we achieve the same result on
"returning” to the §" space. Consequently any results such as forecasts
obtained from the model will be identical. We may map from one model to
another using (4.3.1),(4.3.4)-(4.3.6) and (4.3.9). Maximum likelihood

estimates of the parameters also remain consistent. We obtain :-

2% = 2002 Pz ) (4.3.25)
o' = 208 ™ Pz ) (4.3.26)
é(k) = é<k>§(m+l)§ (X) (4.3.27)
2 L o p(mD) (4.3.28)
gik) = §<k>§£m+l) (4.3.29)

{See for example Mood et al (1974) p. 284.)

Because of (4.3.29) the diagnostic checks should be invariant, and
because the models are of identical orders (i.e. because of (4.3.26) and
(4.2.27)) the same model should be identified. It will be useful to
examine briefly how to map some of the identification statistics between

different models on Rm . We establish relationships between population
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parameters and also between their estimates.

Lemma 4.17

Let v, = am(gt) ;. € S and yék) = 2(k)v, . Then
i) ™) = z00r(s)z (o)
i) ¢Me) = zacs)z (0
111) 2™y = zt00ts)z7 (k)
iv) s (s) = 20)s(s)27 (k)
v sy = v (10

(k)

vi) R'U(s) = THOR(SIT (K) 3 $=0,%1,... ; k=1,...,m ;

(k)(s),...,g(k)(s), are the various cross-

i

where I'(s),...,R(s),T
, ) . . K
covariance functions and cross-—correlations functions of Y. and gi )

respectively. (Definitions 2.10,2.11,2.13 and 2.14.)

—i4
Finally  y(o = '™ zaoa® | (4.3.30)
where o = dg(yll(O),...,ymm(m)) ) (4.3.31)
(k) _ (k) (k)

and Il = dg(y11 (O),...,ymm (m)) . (4.3.32)
5 A(R)“lﬁ N

And Y(k) = 4 Z()A° (4.3.33)

with A = dglc,, (0),...,c__(m)) , (4,3.34)
- 11 mm

and 2% = age ™0y, ..M ). (4.3.35)
= 11 mm

Proof

Since yék) = ;(k)yt st=0,%1,... ; k=1,,..,m. all the results

follow from standard multivariate theory e.g.

. (k) _ (K, (k)| _ , p - ; ,
i) ' (s) E[yt i } E{;(k)gtyt_sg(k)} ;(k){ﬁytyt_sg (k)}
= Z(k)I'(s)Z27 (k) , as required. (s=0,xl,... ; k=1,....m.
(k) ST -1
ii)y S {(s) = C 77 {(s)C {0y = Z(KIC(s)Z" (KI{Z(K)C(0)Z2"(k)}
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1

= Z(kK)C(s)C(0) "Z2’/(k) = Z(k)S(s)Z(k) as required.
-l ~l ~15 ~is
o ) = 2™ 1™ - 2" zaors)z s
(0" o ks —s 1 (k) 7*
= A Z()A D TSI B2 (KA = Y(K)P(s)Y' (k) ,

as required. (s=0,%1,... ; k=1,...,m.)

In theory examination of the cross-correlation functions at the
identification stage should yield the same model. If yt(k)

ke (1l,...,m*1) is MA (q) then g(s)(k) =0, |s| > q., Now from the
lemma it follows that g(k)(s) = 0 if and only if P(s) = 0. However in
practice the elements of the sample cross-correlation matrices are
examined to see if they are "small" in some sense., Could it be possible
that the transformation of e.g. g(s)+§(k)(s) distorts the elements so
that in one the elements are "small', whilst in another they are
"large"? This would result in different order models being selected,
depending on which variable was used as the reference variable. 1t does
seem unlikely that such a fluke would occur in practice, especially
since all the sample estimates are asymptotically normal with mean equal
to the corresponding population parameter. {(See e.g. Hannan(1970).) We
might try and look at individual elements of g(k)(s) in terms of R(s),
but when tried we found this added little to the picture. However, as
we shall see, and by theorem 4.16 identification statistics, such as
the likelihood ratio statistic M({4) (2,2.16) are invariant. By
examining these and also possibly computing g(k)(s) for k=1,...,mt1 we
may easily circumvent this. However, bearing in mind the theoretical
results it does seem to be an unlikely event in any case. To illustrate

this point we will consider a simple example.

Example 4.18

We will use the data set relating to the GALLUP(c) poll on
political preference. The data runs from January 1965 to Decembexr 1973
and gives the results of a monthly poll for allegiance to the following

political parties :-
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Conseyvative, Labour, Liberal, and Other.

(CON,) (LAB,)  (LIBy) (OTH,)

The data set lies on the §3 simplex. First we transform the data via
the a_ function so that it lies on the R™ space. We may choose any of
the four variables to be the reference variable., With obvious notation

we will form the series,

(CON) (LAB) (LIB) (OTH)

Yy Y » Y and v, :
. e | coN, y LIB, N OTH,
‘B Yy aB_ | [aB,_ |’ LAB,

J

The sample autocovariance function €(j) and the sample autocorrelation
function R(j) j=0,...,30 ; were computed for each of the yt(w)'s series,
("*~" & CON,LAB,LIB,0TH). In order to check the computation the C(j) and
R(j) were also transformed via the Z(k) matrix (k=1,...,3). This

demonstrated that the computation was correct. Below are the results in

symbolic form (see chapter 2) for the first 5 lags.

Reference

Variable Lag - 0 1 2 3 4 5

4
+ - + ., - + ., - + ., - + , - + o, -

CON . oF ot A .t N . T .o
e e -+ - + -, + -t -,
+ + + + + + + + 4+ + 4+ o+ + 4+ + + + +

LAB + o+ + + + + + + + + + o+ + o+ 4+ + o+
+ o+ o+ + 4+ o+ + o+ o+ + + + + + + + +
+ + + 4+, + o+, + + ., + 4+, + + .,

LIB + o+, + o+, + o+, + o+, + o+, + o+,
+ + . + . s T+ » + e T . = *
+ o+ o+ + o+ + + + o+ + + + + + + + o+

OTH + o+ + + + + o+ + + o+t + + + +
+ + + + + + 4+ o+ + + + + 4+ + 4+ 4+

For all four series, the pattern of "+" and "-" does not disappear with

higher order lags. All contain off-diagonal elements that are signifi-
cantly different from zero. Hence the patterns presented by the R(j)
all indicate a similar type of model, namely an AR3(p) or ARMA3(p,q)
{p=0) model.
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We will need to examine the partial autocorrelation function in
order to determine the exact model. Below we will therefore examine its
properties, and it will be seen that it behaves in a similar way. Before
doing so we express the elements of E(k)(s) in teyms of the elements of
I'(s) as these expressions will later prove useful. (Note that since i
and ii in lemma 4.17 are identical mappings, analogous expressions hold
for C(s). Also if we compare iii and iv with (4.3.5) and (4.3.6) we may
obtain the corresponding expressions for Q(s) and S(s) based on (4.3.12)
or {4.3.14).)

We may easily compute the individual element mappings by consider-—

ing the elements of Z(k)['(s)Z’(k), or if we recall that,

=v, -V s oi=l,...,m 3 diwk 3
(%) it kt
v,
it
= - vkt ; i=k.
(k) _ (k) (k) _
whence vy, (s) Cov[vit , Vj,t—s} [( it th)’(vj,t—s Vk,t—s)}

I

y - - { s 1= .
le(S) Ylk(k) ykJ(S) + ykk\S) 5 iaJ l,:..,m 3

Repeating for i=k, j=k; i=k, j=k; and i=j=k gives for s=0,zl,... and

ke {1,...,m},

i

s) = y. (k) ~y_.( i, i= m)
y..{8) ylkxk) ykj‘S) + ykk(b) s 1.3=k (i,3=1,...,m)

1]
‘ = ykk(S) - ykj(S) 3 di=k, j=k (j=1,...,m)
;‘;)m
= ykk(S) - yik(s) ¢ 1=k, j=k (i=l,....,m)
= ykk(S) ; i=j=k . (4.3.36)

We now examine the partial autocorrelation function.

Theorem 4.19

The partial autocorrelation function E(k)

autocorrelation function E(k)

(k)
t

(s}, and sample partial
{s) (Definition 2.15 and (2.2.10)) for the

. k - -
series yé >, where v = ;(k)yt, and F{s) and F{s) are the partial and

sampled partial autocorrelation functions of Et respectively; are,
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(k)

Z(KF(s)Z(k)

Z(K)F(s)Z(K) .

(4.3.37)

(4.3.38)

The result may be seen immediately from the fact that

¥ (s) =
i(k)(S) -
Proof
2" -

F(s) are simply estimates of Qlunder the assumption that f{=p.

we may also
and (2.2.9)

£l =

, (k)

i

(1)

[

F(k)

(1)

2‘1(0)2(1) , and

-1

r'® orth

and (2.2.10) respectively.

§(R)Qi§(k) i=1,...,p; and from the understanding that F{(s) and

demonstrate the theorem by examination of (2.2.5)-(2.2.7)

Firstly from (2.2.7)

(ZU0T0)z7 0 HzZOT(DHZ7 ()} = 27 0F (127 (k).

Z(K)F(1)Z(K) .

For higher order teyms, again from (2.2.7) we have

(4.3.39)

However

F/(4) = {T(0) - b’ (£,0087 (£,0)b(£,00} 7 HI(4) - b’ (£,00A71(£,0)e(£,00} ;

£ > 1

Dropping the second term of the bracketed terms for simplicity, and

writing

Freo

and similarly

£ 00 gy o e gy = () (R
a0 —
ahere 8%y = [r) () Pk
8 () p(k)
Lz(k>(ﬂ_2) p ()

-1 920,

b(4,0) = b{4) etc. gives,

(k)

)b

, (k)

(-1)

(0)

(1“3)-
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(0

(DA

1
b9

(k) (

(e

.

.t -

.0

Ky

{ro) - g'(z)é’l(z>g(z)}‘l{g(£) - g'(z)é'1(1)g(z)} i (4.3.40)

(4.3.41)

- guké(z)é,u

(4.3.42)

(4.3.43)

-

K
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i.e. an (4-1)m x (£-1)m matrix with Z{(k) in the diagonal.

Similarly it may easily be seen from (2.2.5) that,

by = 2z, (4.3.44)
£ >1
o = ez . (4.3.45)
ak_l ok
Noting that Z = 77 , we may substitute (4.3.42) through to

(4.3.45) into (4.3.41) to give,

~1
g0 - {;(k)ﬂ(o)g’(k) - ;(k)g'<z)g'“k(g“ké(x);'“kj'lg“kg<z>g'<k>}
X
[g(k)g(z)g'(k> - g(k)g'(z);'“k[g“ké<z);'“k)'lg“kg(z)g'(k)}
- {2(0(T0) - b (A HbNZ ()} x
(2O (DL = b/ (DA Oz (k)
= 2/ (OF (D27 (0.
Hence F NV (4) = ZUOF(DZ(K) , 4=1,2,... (4.3.46)

(4.3.39) and (4.3.46) are (4.3.37).

To prove (4.3.38) we recall that F(s) is defined to be the last

mxm matrix of ¢/ where from (2.2.10),

g
A/ - ’ -1 [}
21 = (Xlii) Xizz , (4.3.47)
(k) _ [, (k) , (k)] (k) _ [ (k) "
where Xl = vy SRR 41 , and Yo T Y (4.3.49)
, (k) V,(k) V,(k)
— A+1 -~ ~4+2
(k) (k) (k)
;*n*l ani ] | Xn |
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Putting ;Bk: Ll ® Z(k), this time an mixm4 block diagonal matrix, gives

(k) _ , Bk (k) _ .
Xi =Y,2 , and Y, ¥,z (k) . (4.3.50)

Substituting into (4.3.48) gives,

~

o= PRy 2 Py 200 = 2P e a0 L s

Thus the last mxm matrix of @2 , 1l.e. f(k)(l) is given by
Oy S 2 OF (02 ), 451,200 5 K=1,...im
which gives (4.3.38). 0
Corollary 4.20
,E(k)(s){ - j£<s>| , and {g (s)! = [g<s){ ,os=1,2,..
k=1,...,Mm.

From the results of the above theorem we may construct an element
by element description of ¥ "( )(s) in terms of the elements of F(s).
This will be analogous to (4.3.12) and (4.3.14). (c.f. (4.3.37) and
(4.3.38) with (4.3.5) and (4.3.6).) At the end of this chapter we
present an example which incorporates F(s) and § A(k) s}. We next

consider the determinantal criteria given by definition 2.16.

Theorem 4,21

If D(s,4) is the Box-Tiao determinantal criterion for {yt}
(definition 2. 16} then the corresponding determinantal criterion

k)(s 1) for {v }, where gik) = ;(k)yt , is

0¥ (s, 1) = z(k)D(s, 27 (k).

Proof
We recall from definition 2.16 that D(s,£) consists of elements
that are determinants of a matrix of the autoccovariance function, with

some of the rows and columns deleted. That is, from (2.2.12)

D(s,4) = {d; (5,0}
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where d..(s,£) = |A(s,¥) c.(s,4)
1] - J
gi(s,l) yij(s+£)
= §..(s,1) (say) . (4.3.52)
83

From (4.3.42) and (4.3.43) we have that,

2% (s, 0

i}

2%%acs, 2% . (4.3.53)

(k)

Now cj (k)

(s,4) is the jth row of ¢ {s,4) ; thus from (4.3.45)

It

cgk)<s,z) {g“kg<s,£)g’(k>}j

I

g“k{g(s,x)g'(k)}j : j,k=1,...,m
; 8,4=0,1,2,...
(4.3.54)

Similarly from the definition of g(s,£), equation (2.2.5) we have,

g s, 1) = 2%e(s, 0027 (k)

(k) ok

whence gi (s,4) = {g(k)g’(s,i)}ig’ s i,k=1,...,m

; 5532071?2)"'

(4.3.55)
Thus, substituting (4.3.53) through to (4.3.55) into S;§)(s,£) we have,
Sii)(s,t) = | 2%a(s, 2% g“k{g<s,x)g'<k>}j
. , ok (k)
{Z(r)g (s,z)}i; Yij (s+1)
A(s, 1) {c(s, )27 (k) },
_ ,olk ] 4 1k
= (k) ~ (4.3.56)
{Z(K)g (s,l)}i Yy {s+1)
where  z¥ - [;“k 0 (4.3.57)
or
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We note that \;mlkl = 1 , so that
d s = | s5 (s, ) |- A(s. 2) {els, )27 ()},
1] 1] J
, (k)
{Z(k)g (s,x)}i Yy (s+4)
(4.3.58)
Now 2Z(K)g'(s,&) =[1 0 . . .-l ... 0] ”g_i(s,z)‘
9 1‘ ..o~ ... 0 52(5,1)
0 0 .. -1 . 0
‘gm(s,i)_
0 0 C-1 1)
Hence gi(k)(s,i) = (g(k)g’(s.l)}i
= gi(s,l) - gé(s,l) , i=1,...,m ; 1i=k ;
= —gi(s,l) , i=k, (4.3.59)
Similarly
c(k)(s,i) = ¢ (s, 4) - c {s,4) , j=l,...,m 3 j=k ;
=] =3 S
= (s.4) . j=k. (4.3.60)
O
y‘g)(s,ﬁ) is given by (4.3,36), substituting (4.3.36), (4.3.59) and

ij
and (4.3.60) into (4.3.58) gives,

d. ) (s,48) =

(k)
ij )

A(s, 1) c.(s,4) - ¢ (8,4}

’ - o { g+ — o - I+ (s+ ';
gi(s.l) g/ (s,4) vy4is £) yik(b+£) ykj(s,ﬂ) Yk ! )

|

k

= | A(s,4) _c_j(s,/i) Als, 1) gj(s,fl)

(st+i)

51\5,1? yij(s+i) g (s,4) Y3
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A(s, 1) e (s, 4) A(s, 4) g (5.8

’ { ’ N
gi(s,i) yik‘S+£) gk(s,i} ykk(s+£)

= - ( - i,i=1,...,m ;
dij(s,l) dkj\s,i) dik(s,z) + dkk(s,i) s 1,7 1, m

d(g)(s,z) _ | Als, ) gj(s,x) - gk(s,l)
kj
~§k(s,i) ykk(s+£) ~ ykj(s+£)
_ A(s, 1) gj(s,l) A(s, ) —gk(s,t)
—5k(s,£) -ykj(s+l) -gk(s,z) ykk(s+£)
= —dkj(S,i) + dkk(s,l) , J=l,...,m 3 j=k .
Similarly,
e 1) = d (s.4) = d. (s ) , i=1,....m ; ik ;
ik ’ kk 77 ik 7" ’ rreremoe ’
and also
(k) _ 1 Als, 1) -c, {5,4) _ ,
dkk (s,4) = K dkk\s,i)

! —gﬁ(s,i} ykk(s+£)

Summayizing, we have shown that,

(k) _ _ - . ity
dij (s,4) dij(s,i) dik(s,l) dkj(s,l) ; dkk(b,l) s 1, 3=k
= dkk(s,l) - dik(s,l) s i=k, j=k )
i=1, ,m
= dkk(s,i) - dkj(s,l) s i=k, j=k j=1,...,m
= dkk(s,l) ;3 i=j=k )
(4.3.61)

111




Comparing (4.3.61) to (4.3.36), we see that the mapping of D(s,f) to
Q(k)(s,l) is identical to that of I'(r) to E(k)(r) , 8iven by (i) of

lemma 4.17, which is the required result.
0

Finally we examine the likelihood ratio statistic M(4) as given by

equation (2.2.16).

Lemma 4.22

k)

With obvious notation, M( (4) = M(4) , 4=0,1,... k=1,...,m.

Proof

From (2.2.15) we have,

§§(k)(l) _
~,
(k) _ (k)ﬁ,( ) (k) , (k) (k)_ (k) (R (k)A,(k)
[ Yy L3 . ¢ 2 }[Xz 11 Y T gy 8 J
(4.3.62)
But from (4.3.50) we have that,
(k) y
LV P £=0,1,...
(4.3.63)
< oy 2t ; i=1,...,4 K=1,...,m.
=i =14
Substituting into (4.3.63) gives,
k) X p =
() = z0ass(Hz7 ) k=l,.eoom 5 420, 1,000 5 (4.3.64)
5 i sk (z)| ’ss(z)} K=l,....m ; 4=0,1,... ; (4.3.65)

and substituting this into (2.2.16) gives the required result.

O

We summarize the relationships established in this section for
the parameters of the model and various identification statistics as
follows. (We follow the same notation as above.)

(k) (k) (k)

i) vl =2y, gl =2ke Y = Z(kJu , (t=0,%1,...)
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i) 1 = zaozzrao . (s 0 = 2G0OD(s, D27 (k) , (s,4=0,1,..).
¢Mey = zaocsizrao ., ' (s) = zaaT(s)Z (), (s=0,%1,..),
ss™ (1) = za0ss(Hz () L (4=0,1,...) .

i) e s) = vaorey o , R (s) = YUORGSIY (K) , (50,%1,...) .
ivy o) = zmasizao L, s s) = 20s(s)2(K) , (520,%1,..),
F ey = zaoFsrza0 , Fs) = 200F(s)Z(K) , (s=0,1,...),
oM - za0e z0) L G=1,...p), Q§k) = 2(000.2(0) , (J=0,...0) ,
o v =M, =001,... .

Where k=1,...,m.

In summary, we have seen that the In ARMA (p,q) model is invariant
to choice of reference variable. We have considered the mapping of
various parameters from one model to another. Further the various

identification criteria are invariant, for example
D(s,4) =0 < D (s, 4) =0, s> p, and 4 > q .

However the transformation of the sample autocorrelation and partial
autocorrelation functions, may result in slight variations of interpre-
tation since the criteria for elements being zero is that they are
"small'., Usually "small" refers to being less that 2 standard devia-
tions in modulus. 1In general, identification of an ARMA_(p,q) model is
a subjective process, and since the exact identification criteria are

invariant we would expect little or no variation in the choice of model.

4.4 An Example of Analvsis on Two Compositional Time Series

Let us take two data sets and apply the four stages of Box-Jenkins
modelling. The two data sets are both political opinion polls, one the
GALLUP(c) series already described in example 4.18, the second is a

similar one run by the National Opinion Poll (NOP). This consists of
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monthly survey results between September 1961 and Auvgust 1970 inclusive,

and is again on voting intentions with four possible options :-

Conservative, Labour, Liberal, Other,

CON LaB LIB OTH .

In both data sets we have CON, + LAB, + LIB, + OTH, = 100 (%) ,
t=1,...,108. The variable OTHt often took the value zero, consequently
sending the corresponding value of vy to +0, This "zero value problem"
was encountered by Aitchison(1982) and is a possible area for further
research. Aitchison suggests setting zeros to an extremely low value,
which may be determined by the number of decimal places to which the
data is recorded. For example if the data is accurate to one decimal
place any data less that 0.05 would have been rounded down to 0.00. In
this case we might veset 0.0 to, for example 0.025, which lies halfway
between the possible range of values for data recorded as zero. In
example 4.18 the zeros were reset to 0.005., This method will be
reasonable provided there are not too many zeros., For our data sets
this was not the case. At this stage we wish to consider reasonable
data, so that we examine instead the subcomposition with the variable
OTH, omitted. (We do examine the full data set in chapter 6.)

The variables we use are now CONt, LABt and LIBt, where now,
CON, + LAB, + LIB, = 100. Using both data sets in this §% space we

compare three possible approaches to modelling them.
i) As three separate univariate time series ARMAl(p,q),
1. CONt 2. LABt 3. LIBt .
ii) As an ARMAQ(p,q) process by omitting one variable,

4, [(CON . .
Lt} 5 CONt} h LAB,
|
LABtJ LIBtJ LIB,

.

iii) As an 1n+ARMA {p,q) process, i.e. as the following ARMA2(9,Q)

2
processes,

114



Figure 4.23 Plot of ACF and PACF for GALLUP(C) Series.
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For n=108 (the number of observations in the series),

+ denotes a value greater than 2/Jm,
—~ denotes a value less than 2/Jn, and

. denotes a non-significant value based on the

-, + -, + -, + -, + -, +-
- - e -t - -+ . -
. -+ L -+ L, o=+ , -+ . -+ . -
Lag 1 2 3 4 5 6
+ - - + - - Fom - o - + - +
-+, -+, -+, -+ 4+ -+ -+
t+ - + + - - + - . - +o-
Lag 9 10 11 12 13 14
+Q.— 00—— i._- 00_ b+* l+
-, + -, + o + -, + R —
+-" +>’C. +'0 +.0 ¢ & @ L
Lag 17 18 19 20 21 22
O S, FE - - o
. - + , - + ., = + . o=+
Lag 25 26 27 28

above
. +
+ +
- +
+ -
- +
+ -

criterion.
- At - -
+ -+,
- + -+
7 8
- +c—
+ S
- 4+ -,
15 16
+ .t
- . -+
23 24

Figure 4,24 : Summary of Cross—correlations for the GALLUP(c) Poll Data

for the Variables CON, LAB and LIB.
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Key:~

+ denotes a value greater than 2 standard errors,
~ denotes a value less than 2 standard errors, and

. denotes a non-significant value base on the above criterion.

Series
4

(CON,LAB}” + o, + . .. .. . . . .- . .. .o
. * o e B o e e P + . . .

(CON,LIB)/ + . + ., e o . e LI LI Y .t » & e LIS
. . Tt ¢ e s . s s+ - e . I

(LAB,LIB)" + o + . . . . e .o .. . = . . - . s
. * . T . * . I . . . o . +

Lag 1 2 3 4 5 6 7 8 9 10

Figure 4.25 : Schematic Representation of the Partial Autocorrelation

Function for Series 4, 5, and 6 of the GALLUP{(c) Poll Data.
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For key to the meaning of +,- and . see Figure 4,24.

a) Cross—correlations for series 7: (ln(CON/LIB)t, ln(LAB/LIB)t)’.

13 14 15 16 17 18 19 20 21 22 23 24

+ + + + + + + + + + + o+ + . + o, + ., + o, +

+ o+ + + + + o+ + o+ + o+ + + + + + + + + + + + .
Lag 1 2 3 4 5 ) 7 8 9 10 11 12

+ * + . + * + - - - - L] - - - ® - - - . - - el

+ . + ., + ., . . . + . +o- . - . - . = . -

+ + o, + ., + + ., + + + + + o+ + o+ + + + + + +
.+ .+ .+ .+ .+ .+ + . + .+ - - . -

Lag 1 2 3 4 5 6 7 8 9 10 11 12
+ + + + + o+ + 4+ + + + + + + + -t

Figure 4.26 : Summary of the Autocorrelation Function for Series 7, 8,

and 9 of the GALLUP(c) Poll Data.
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For key to the meanings of +,~ and . see Figure 4.25, and for details of

series see Figure 4,26,

Series

1

7)

+ ., + o, . . . . [N . . . . + - . » . - . . . .
+ . e . . . + . + - . . + - -

+ + . . e . . (SN .t . e . [SEN . . .
. t -+ '+ PO . » - e . e e o - +

+ . + . . . . e . .. . - . . - . . . .

.+t . * .t [N . . s + . e + [

M(4)

224,89 17.87 7.19 2.95 1.84 4.42 7.82 6.63 4.35 5.59 3.79 2.20

Lag 1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.27 : Schematic representation of the Partial Autocorrelation

Function, and values of the M(£) statistic {(Equation (2.2.16)), for

Series 7, 8, and 9 of the GALLUP(c) Poll Data.
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7. ln(CON/LIB)t\ 8. ln(CON/LAB)t 9, ln(LAB/CON)t

ln(LAB/LIB)t ln(LIB/LAB)t 1n(LIB/CON)t
L J .

We would expect models 4.5, and 6 to produce similar results because of

the sum~constraint. For example model 5 could be rewritten as,

CONt

100-—C0Nt-—LABt
that is as a linear transform of 4.

From the previous section we expect models 7-9 to give identical
results.

The nine models enable us to compare the 1n+ARMAm(p,q) approach to
that of a linear approach which ignores the linear constraint on the
variables. It also serves to numerically enhance the theory of the
previous section.

The models above were fitted using two statistical packages, the
Economic and Statistical Package (ESP) for the univariate analysis, and
the Wisconsin Multiple Time Series package (WMTS—1) for the multivariate
analysis. Since the data represent the same phenomenon, we present only
the results for the GALLUP poll at the identification stage, since the
analogous results for the NOP data were virtually identical. Figures
4,23 through to 4.27 give the ACF and PACF for all nine series, the
univariate series are presented in graphical form, whilst the multi-
variate series are in symbolic form using the "+, "= " ' notation
described in chapter 2. Figure 4.23 contains all the univariate
results, Figure 4.24 is a summary of the cross—-correlation matrices for

the series (CON,LAB,LIB)” from which we can obtain the appropriate

£
cross-correlations of our series in (ii) above by taking the required
subset of these matrices. The diagonal elements correspond to the ACF
of the univariate series given in Figure 4.23. It is necessary to
compute the PACFs for the series in (ii) separately. This is for two
reasons. Firstly it is not possible to compute the PACF for the tri-
variate series because the sum—constraint will cause the Y;Y, matrix of
equation (2.2.10) to be singular. Consequently it can not be inverted.
Secondly the PACF is by definition a parameter estimate undexr the
assumption that the data follow an AR model. Extra variables alter the

parameters, so that the sub-matrices would not correspond to the PACFs
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we require in any case, Note that consequently the diagonal elements of
these PACFs given in Figure 4.25 do not correspond to the PACFs of
Figure 4.23. Finally Figures 4.26 and 4.27 show the ACFs and PACFs for
the three 1n+ARMAm(p,q) models. The row labelled M({) in Figure 4.27
refers to all three series, since as in lemma 4.22 this was the same
across all three series 7-9.

Together with the PACF, WMTS-1 examines the residuals after
fitting the AR(s) (s=0,1,...) model, (for which F(s) is the last
parametey matrix.) The schematic version of the PACF of the residuals
is produced. If these are indicative of a white-noise process (i.e.
consisting almost entirely of '"."s) then the AR(s) model to which they
correspond is of sufficient order to represent the data. This was a
further tool available at the identifications stage, although for
brevity we do not include details here. However by way of illustration

for the 4P series (CON,LAB)’t ,

»

- - r " . - I3
F(1) (standardized) 9,37 -0.83] , which symbolically is [+ ;} .
0.37 10.74

for which the pattern of the ACF for the residual series is,

Lag:~ 1 2 3 4

o]
o
~
[0e]
W

This is not the required pattern for a white-noise process, but rather a
MAQ(I). Note this does not necessarily imply that we should fit an
ARMAz(l,l) model, rather that we need a higher order model than that of
an AR,(1).

For all the nine series 1-9, the identification statistics give a
similar picture. This is consolidatory to our theory, especially for
the series 7-9, since it illustrates the invariance of the In,ARMA, (p,q)
model. It would appear that we should try fitting an ARi(Q) or an
ARMA; (1,1) model, although we also tried an AR; (1) and IMA;(1,1), where
i=1 for series 1-3, and i=2 for series 4-9. Tables 4.,28-4.29 give a
brief outline of a selection of the results.Figure 4.30 gives a summary
of the residual cross-correlations for variocus models fitted to series 4
and 7.
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Table

4,28 :

Parameter Estimates for the Univariate Models.

t-test for Portmanteau
Data Var Model Parameter Parameter Ests. Test
Set : Estimates Value dof. Value dof.
(| con (1 ¢ = 0.8529 16.67 | 106 |] 22.5 | 10
G 1 Const.= 6.4912 2.82 | 106 || 34.8 " | 22
A
L J| LaB 6 = 0.8709 18.40° | 106 17.3° 10
L 2 Const. = 5.7220 | 2.69 | 106 || 26.2 22
u ~ s r
LIB o = 0.8149 13.76 106 41 411 10
P 3 wxx| 106
. Const, = 2.,1300 3.05 13.1 22
AR(1)
| con ¢ = 0.9147 24,17 1 106 || 19.6 | 10
1 Const. = 3.7517 2.23 | 106 27.0 22
J| LaB ¢ = 0.8940 21.3 | 106 f 26.8 | 10
o 2 Comst. = 4.6799 | 2.49° | 106 || 36.3° | 22
LIB 6 = 0.9182 23.54 1 106 || 26.5 | 10
o3 | const. = 0.9720 | 1.85 106 || 28.1 22
CON ~ s 12.0 11
. X 6 = 0.4351 4.99 106 { 26 2
A
L LAB - % 13.2 11
RS B 6 = 0.3519 3.88 106 { e =
U
p LIB ~ e 3.9 11
s 6 = 0.5016 5.93 106 { - 2
IMA(L, 1)
| con - Adedk ) 11. 11
X 6 = 0.3127 3.40 106 { 63 2
N LAB ~ e 14.4 11
g ) 6 = 0.309 3.36 106 { o1t 2
LIB - e 14.1 11
| | 6 = 0.3344 3.69 106 { 6o 2

122




Table 4,28

...continued.

t~test for Portmanteau
Data Var Mode 1 Parameteyx Parameter Ests. Test
Set - Estimates Value dof. Value dof.
C?N ? = (0.9500 31.63*** 105 11.5 g
6 = (0.3792 3.81 105
G Const = 2.1671 1.58 105 | L 24.8 21
A
L L?B ? = 0.9470 30.53*** 105 12.8 g
L 6 = 0.3160 3.14 105
u Const = 2.3500 1.64 105 |L 24-4 21
P
LiB ? = 00,9739 42.66*** 105 j Al 3
6 = 0.4661 4,99 165
L Const = 0.3395 1.56 105 L 62 21
ARMA(1,1)<
' ~ o r
C?N ? = 00,9594 45.94*** 105 11.9 3
0 = 00,2826 2.93 105
Const = 1.7944 1.87 105 |L 160 21
N N Skt B
LAB ¢ = 0.9489 34.02 105 |, .. . i
o . ? - " 15.3 9
9 = 0.2754 2.77 105 %
9
P Const = 2.3365 1.85 105 | L 22-4 21
LiB ? = 0.,9780 44.94*** 105 14’7“ 9
6 = 0.3208 33.14 105
- Const = 0.2582 0.77 105 16.7 21
Key:~ - 10%
* - 5% Siginificance Level.
EE e 1%
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Table

4.29

Parameter Estimates for the Multivariate Models.

Data|Variables in |Model Parameter Estimates
Set |the model i er mstimate
rlo ’ a r - o~ S , p Lok
. 4. (CON const = [1-71 )] § - (0% 000 o056 0.18
LAB =648 0.12 1.03 0.21 0.50
A
L SN ) R E o sEE \
e [eo const = [1-76, ) § - [0-96  0.00 g _f0.38 0.17
LIB A 1.88 ~0.05  1.03 ~0.08 0.69
U R
PN M . % R Hk% N 2k
Po|| 6. [Las s |lconst = [F15 ) & [o01  -0a12 g [0.30 0.22
LIB| 2 ~2.79 0.05  1.08 0.08  0.77
(
1 Xk ~ %
(1 4. (CON) , -0.12) % 0.98 0.03 ) 2 _ (0.23 -0.09
1 | |Const ® = wnn| 87 s
LAB ) 3.45 -0.01  0.94 0.14 0.37
N
P R ) sk . . ) Lodk
0 5. [CON const = [2:56] g - [0-95  -0.03 g _ [0.32 7 0.09
P LIB) 0.31 0.00  0.96 -0.09  0.28
e N s A~ r *** Y o~ g Bk —
| 6. [Lan const = [2:05] g = [0-55 001 )5 [0.23 0.14
LIB) 0.41 -0.00  0.96 | 0.09  0.37
(| 4. [coN) ( 5. [0.57 7 0.17 )
6 LA T 0,03 0327
A
Lol s eon S (0.a0”T ~0.17 )
L LI : T 0,06 0.497
v % .
P 6. (LAB) A 5 - f0.36 0.03
) LIB f -~ 0.04  0.537 )
a
~ g N v ~ - = - 9
4. (coN X g - [0-237 -0z
LaB] ) 0.16  0.41
5. (CON) 5. [0.3577 0.12
LIB) T -0.09 0.2977
6. [LAB) S~ (0.267 -0.15
- ~ 9 - : ) e el
(L1IB) [0.09 0.39 }

124




Table

4.29 .

..continued.

. A |
Data|{Variables in |Model .
Set |the model L Parametey Estimates
7 wte St S B oot
rlr 3 4 ¢ ~ [akale ~ ==
. In(LAB/CON) Const = [0-04] § - [0-95 ~0.03 ) 5. [0.33 0.02***
| In(LIB/CON) ] _ 0.05 0.06 1.02 0.06 0.70
A
L 8 Tk T
r B I's ~ N o~
. 1n(CON/LAB) Const = [0-04] § - [0-92 s 0.03*** 5 = [0-34 s —o.ozk*k
(In(LIB/LAB)] A 0.08 -0.16  1.05 | -0.41 0.68
U R
J M hde x Lk
P \ In(CON/LIBY) |\ ooy = [0-04) § - 1.08*** »0.021* 6 - 0.75*** -0.05*
(1n(LAB/LIB) |2 |~0.08] 0.16  0.89 0.41 0.27
(
7 1 - s
cir A s N~ =~ N -~ s 9
In(LAB/CON) | |const 0.0 & _ (0.95 0.00 g5 _ [0.28 0.0-***
| 1n(LIB/CON) ] || |~0.06 0.00  0.96 0.10 0.35
8 Lo J. S, it
; B . N o~ A ~ ag 2
In(CON/LAB) Const 0.01] 5 _ [0.95 0.01 1 g . [0.2 0.02
[ 1n(LIB/LAB) | ~0.07| -0.01  0.96 -0.20  0.37
9 .}:;‘;J_ o
s N ‘ ~ = - ~w
\ 1n(CON/LIB) | const 0.06) 3 _ [0.97 - 0.02** 6 - [0.45 0.10
[ 1n(LAB/LIB)| 0.07 0.01 0.94 10.20 0.20
/ Hk%
(| (in(LAB/CON)) | | 5 - [0.34 0.07
& |l|ncLin/com | T lo.05 0.56
A
L 8 el
{{[1n(CON/LAB)) 5 = [0.41 -0.07
Yo lincsrean) )| T |-0.20  0.497
v ki M fkk
P (1n(CON/LIB)) (A o - [0.61 -0.05
"/ [1n(LAB/LIB) | % ~ |o.20 0.29
7 ! .
"] [1n(LAB/CONYY | 6 = [0.31 -0.02 )
[ 1n(LIB/CON) | |) -~ o111 0.37 )
8 &%
0 <|(1n(CON/LAB)) 5 - [0-29 0.03 )
|1n(LIB/LAB) T -0.20 0.39 |
9
(1n(CON/LIB)) ~ 047 11
‘| (In(LaB/LIBY )| . [0 15 o 20***]




Figure 4.30 : Summary of Cross—correlation Matrices for Residual Series.

1. Residuals from AR2(2) fitted to a) series 4,(CON LAB)’ and b) series
9. (In({CON/LIB) 1In(LAB/LIB))’.

- L3 > - L L) * ° - - ° - + - . - . + L] L) L)
a)
> » - - - - * - L L] * . L3 + had - > - - - - - +
1 2 3 4 5 6 7 8 9 10 11 12
» L] - * L2 L] » - - - L e * - - - Ll + L] L) -
- L] - - * » » + - L] - - * - L] * - - . »

1. Residuals of ARMAQ(I,I) a) series 4, Db) series 9.

1.Residuals of IMA2(1,1) a) series 4. b) series 9.



As expected the ARi(l) (i=1,2) models were insufficient to
describe the data. For example, in table 4,28, the portmanteau
statistic was often significant, although for the LIB series of the
GALLUP(c¢) poll, the fit seems reasonably good. For the IMA(1,1) and
ARMA(1,1) models the portmanteau statistic is vastly reduced across all
the series including the afore mentioned LIB series. This is so even
accounting for degrees of freedom, as can be seen by the reduced number
of significant results. For these univariate series and for the
bivariate series there seems to be little difference between the
IMAi(l,l) and the ARMAi(l,l) models, all the estimates of ¢ in the
ARMAi(l,l) are close to 1 {i=1,2). The ARi(Z) process was also found
to give similarly good results. Of all these three models, the
ARMAi(l,I) model seems to do the best, although its improvement over the
other two models is often minimal. For example for series 4 in figure
4,30, the AR2(2) and IMAQ(I,I) model have respectively 10 and 5
significant residual cross—-correlations, whilst the ARMAZ(l,l) model has
only 3.

Our data sets have also been examined by Scott et al (1977), who
based on the structure of the survey from which the data comes, in
particular the overlapping nature of the samples, produce a strong
intuitive argument for using the mixed ARMA(1l,1) model. Consequently we
select this model.

Table 4.31 gives the forecasts one to twenty steps ahead by each
method. The univariate forecasts have been normalized so that their sum
is 100. The forecast of the omitted variable in series 4., to 6. is
obtained as the difference from 100 of the two included variables.
Finally for the transformed series, we have taken the inverse (i.e.
am'l) of the forecasts, however as described in section 2.5 this will
not necessarily give us the minimum mean square error forecast. This
problem is addressed in chapter 5. We note also that we could have
normalized the univariate forecasts at each step, and used the normal-
ized forecasts to produce the next-step ahead forecast. However ESP or
indeed any similar computer package does not easily facilitate this, and
although a program in e.g. FORTRAN would easily accomplish this, it 1is
evident in our current example that this would add very little to the
results,

If we examine the forecasts themselves we see that the one-step

ahead forecasts via each method are very similar, but the similarity
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Table 4.31 (a) : GALLUP(c¢) Forecasts

11

15

AN

Reference Variable of Omitted Variable of Combined Actual

ln*ARMAZ(I,l) ARMAz(l,l) Univariate {where
Variable Forecast known)

Con, Lab. Lib. Con. Lab. Lib,

CON 36,141 36,198 36211 16,225 364226 26,116 360922
LAB 40,043 40.119 40,167 39.827 39.784 39.985 42.368
Lis  .23.816 23i.683 23621 23.949 23,990 23899 205710
con 36268 364348 36,366 36.546 163,549 36-"01 37.155
LAB 38.8318 38.944 39.015 38.599 38.543 18,806 421374
Lin 24,894 24708 245,618 244,854 24,909 24,793 20.471
CON 16.364 36470 36.494 36.857 36.861 36.674 37,378
LAB 37.664 37:,803 374898 37,372 374299 37.626 . 42,382
L1ig 25,972 25.727 25.608 25.771 25.841 £5.700 20.240
CON 36,431 360565 36.595 37.157 378162 36,936 37591
LAB 36.521 36696 365815 364142 36,152 36,445 42,591
LiB 27.048 26.739 26.589 26.7M 26.787 26.619 20.01b
coN 36,471 367,635 360673 37abh? 37%453 37186 375795
LAB 35,410 354,625 35,768 34.908 34500 35.261 42°.401
Lis 28.119 27.741 27.559 27.645 27w748 27..553 194804
CON 36485 364682 36,728 37,726 375734 274426 37,990
LAg 34,332 34.588 34,757 33.670 33.541 34.072 42.413
Lis 29,183 284731 285515 28,604 28.725 284502 194,598
CON 36.474 360,707 364,763 37.997 38,006 37.656 38.176
LAB 33.287 33.586 33,780 32,426 125275 12,878 421425
Lig 30.239 29706 29,457 29.578 29.719 29,467 19.399
CoN 36,641 36.713 36,779 38.258 18,269 37.876 38.354
LAg 32,275 324,620 3126839 31,174 31, 00 312676 4212439
Llg 31,284 30667 3{b.383 30.569 30,731 30.448 19.207
con 36.388 36.701 36,777 38,511 38.524 38.086 2185524
LAB 315296 315,688 31932 294913 29715 305466 42,454
Lis 32,316 31,610 31,291 31.577 31,761 31.448 19,022
CON 364315 36,673 365760 384755 38,770 28,288 384686
LAB 3,350 30a791 31060 28.642 254419 29..246 42,469
LB 33,335 32.536 32,180 32.603 325811 J2s466 180843
coN 364,224 364630 36.729 38.992 39 41419 38,481 18:i844 36.5
LAR 29,437 29.929 30,221 27.360 27.109 28.015 42,485 38.5
Lis 34,339 33441 33,050 330649 33,883 33.5U4 18.671 15.0
CoN 36,118 36%574 36,685 39,221 394240 38,665 38,994 34.0
LAH 28.556 29.099 29.415 26.064 25.7%4 26,772 42,502 39.0
LB 35,325 34,327 33,900 34,714 3410975 34,563 18,504 17.0
CoN 35.998 384507 36°.630 390444 39,465 38.842 39,1%8 35,5
LAY 27.708 28.303 28.642 24755 24 .bkh 25515 421,519 51.0
Lig 360295 356191 34,728 35,801 36,091 35,644 18,343 13.5
coN 35.864 36429 36,566 39.659 19683 39.0%1 39,275 46.5
LAR 26891 27539 271,900 23 4431 23.U87 26,242 424538 42,0
LiB 37245 364032 35.534 36.910 37.231 36,747 18,187 11.5
CoN 35,720 36'.342 36,493 39,868 39.8%5 39,172 39408 43.0
LAD 26.104 26i.8U6 27190 22089 21,711 225954 424556 45.5
Lig 38.176 36.851 36,318 38,043 35,395 37.874 18.036 11.5
CON 35.565 36,248 36l412 40,071 40,100 394326 395534 44,0
LAB 25,348 26,105 261509 20,730 20.315 21.648 425575 46,0
L1g 39,087 37.647 37.079 39.199 394585 394026 17,891 10.0
CoN 354401 36,148 364326 60,268 43,300 395474 394456 47.5
LAR 24,622 25.433 25,857 19,352 18.398 20.322 42,594 41.0
L1B 319.977 38,420 37817 40.380 40,302 40.204 171754 11.5
CON 35231 361,042 364235 ALY 415495 19615 39.773
LAB 23.924 24,739 254233 17.953 17.458 18.977 420614
LiB 40845 39,168 385532 41.588 42,048 41.4U8 17,613
CON 35,054 355,933 36,139 40.646 40.684 39.750 39,885
LA 23,255 24,175 24,637 16,532 154994 17,610 424,634
LB 41,692 39,893 394224 424822 43.322 42,641 17,481
COR 34,871 35.820 36.041 40,827 40,869 39.878 39.993
LAB 221,613 231,587 24,067 15,088 T4a51jb 164,219 421,654
LiB 42,516 400,593 39.892 44,085 64,627 43.903 17,353
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i1

13

16

28

Table 4.31 (b)

: NOP Forecasts

Variable

CON
LAB
Lis

CON
LAR
LI8

CON
LAR
Lis

CoN
Lag
LIg

CON
LAB
Lie

con
LAB
Lig

CON
Lag
Lis

CoN
LAB
Lis

con
LAB
Lis

CON
LAR
LI#

CON
LAB
Lig

CON
LAR
Lis

CON
LAR
LIB

CoN
LAB
Lin

CON
LAB
Lis

CON
LAB
LiB

CON
LAaB
LiB

CON
LAB
LIB

oM
LAB
Lig

CON
LAB
LIiB

Reference

an ARMA,(1,1)

Con.

48.639
44,362
6.998

48.607
44,324
7.069

48,574
44.288
7.138

4584539
44,256
7,208

48,503
44,228
7,269

48,467
440202
72331

48.430
64,179
7.392

48.392
44158
7.450

48,354
b4, 140
7.506

48.316
44.124
7561

484277
44,109
74613

48,2339
44,097
7664

48.200
44187
T.713

48.162
44, 77
7.761

486124
44,070
7.8C7

4831185
L4, 0164
74851

48,1148
44°,059
72893

48.010
44,055
7.935

47,973
bhol152
7.975

47,937
44,050
8.013

Lab,

48,642
44,359
6,999

48.612
44,318
7.070

48%580
44,2381
72139

485548
L8247
7205

484514
64,217
7270

48,479
445189
7.332

48,443
4413165
7.392

48,406
44,143
74451

484370
44,123
7.507

48,332
44,106
7562

48:,295
44,091
7614

48,257
447,078
7.665

S 43,219
b4 0066
7.714

48.182
441,057
7762

484,144
44,049
71807

48%107
44,042
7852

483169
444,036
7894

48.032
445032
7.936

47.996
441029
7.975

47,960
L4027
B.lT4

Varaible of

Lib.

48,646
441,363
6.991

48h618
44.325
7,057

48588
44:,290
w122

4BL557
h4,259
7184

48 .524
44,231
7245

484491
4hip205
7.304

48.458
441,182
74360

486423
bu161
72415

4845388
44,143
75468

481353
44,127
78520

48.317
44,113
7570

148.282

A4, 100
7,618

48 246
44,090
7,665

481210
445080
7.710

48174
44.072
76753

481139
44,066
7795
48,103
44,060
71,836

48..068

4455056

7L,876

484033
44,053
74914

47145999
44,051
75951
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Omitted Variable of

ARMA, (1,1)

Con.

h8.626
443337
7.037

484571
44,297
72133

482516
44.259
7.225

48,462
b4 224
7.314

48,408
445192
7,490

48.354
446163
7.483

48.301
64137
7.562

484249
44 .112
7.639

48,198
44.090
7712

484147
44,070
74783

48.097
444052
72852

48,047
44,035
7.918

47.999
4b o120
7u981

47,951
b4 007
8.062

47,9U4
43,995
§.101

47,858
43.985
8,158

47.813
634975
8,212

47.768
43,967
8.265

47,725
43,960
8.315

47,682
43.954
84304

Lab.

48 .625
44,339
7.036

48,570
44,299
74131

48%515
4ha263
7w222

482460
44,230
7.310

48,406
444,199
7.395

48.352
442171
T.477

48,299
445146
7.555

48,247
64,122
7%631

48,195
b4 .101
7704

482144
44,082
7?74

48,094
441,064
7,842

48% 045
L4148
7.9C7

475996
44,1134
7.970

475948
44,021
8.030

4759 M
44,010
8.0189

47 .855
44,000
8,145

47.810
436991
8,199

L7.766
634983
8.251

67,723
43.977
8,301

47,680
43.971
8:349

Lib.

48,633
4b:w332
7.035

485583
{4,286
72131

485533
44,245
70223

48,482
44,206
7312

18.432
44,171
7.397

i8.382
bhse 138
7.480

434333
445,109
7.559

48.283
44 .081
745635

48 4235
44.057
7,709

48 .186
46,034
74780

48,138
44,014
7.848

48.091
43995
7.914

481 044
43,979
7.977

47,998
13,964
8,038

475953
43,951
8096

47.908
43,3939
84153

47.865
43,928
8.207

47,821
43,919
8.260

L7779
3.9
§.310

47,737
43.904
81,359

Combined
Univariate
Forecast

475383
455448
7209

4615469
46,102
7429

454564
46.787
7651

44,667
471,464
7,869

43.781
48,131
8.088

42 .905
485789
8.306

424041
49.437
8.522

41,188
50.075
8737

347
50,702
81,950

39,519
51319
9162

38.705
514,923
9.372

37.904
52.517
9.580

3?Th116
53.098
9.785

3613343
53,668
94989

358,585
54,225
105190

34.842
544770
10,388

34,113
552303
10.584

35,400
55%823
10,777

32.702
56.337
104967

32019
56.826
11,155

Actual
(where
known)

41.8
50,2
8.0



decreases the further ahead we predict. The forecasts obtained from
series 4, to 6. are alike, as are those for the series 7. to 9.,
although this is more so for the former series than the latter. The
difference within each type of the multivariate methods is due to
rounding errors in the estimation, forecasting etc. of the models. Some
of the extraneous difference between the series based on the
1n+ARMAm(p,q) model, is due to the additional rounding error in the ay
transformation and its inverse.

Where known the actual values have been wyitten in. Comparing
these to the forecasts it seems that especially for the GALLUP(c) series
the univariate forecasts do the best. For the NOP data the multivariate
methods give the better results at lag 5 and at lag 20. At lag 20 the
univariate forecast preserves the correct status within the data (i.e,
LAB > CON > LIB), but the multivariate forecasts are numerically closer,
The fact that the univariate method does so well should not disappoint
us too much as it has often been found that multivariate ARMA models
perform badly. Further the WMTS-1 package is an early prototype of a
multiple time series package which proved to have many bugs. The
multivariate estimates themselves have an almost diagonal structure to
them indicating that the univariate model may be more appropriate to
these data. In order to come to a real understanding of the above
techniques many more data sets need to be similarly analyzed. It may be
possible to improve on the 1n+ARMAm(p,q) forecasts by developing a less
crude way of taking the inverse of the Ve series.

The two multivariate methods give similar results. This is
indicative of the fact that the logistic transformation is nearly linear
for the range of values taken by our data sets. This fact has kept the
linear forecasts within the correct range (c.f., example 3.16). It would
perhaps be useful to work with some series that have greater variation,
and/or have values closer to 0.0 or 1.0,

Although the linear methods used here do not produce forecasts
outside the range they may still give a confidence interval that does
fall outside. A meaningful confidence interval for the forecasts may be
easily developed within the 1n+ARMAm(p,q) class of model. This is also
developed in the next chapter.

What this section has perhaps confirmed is that the 1n+ARMAm(p,q)
is invariant to the choice of reference variable, apart from rounding

error. It also serves to point out the need of the discussion in the
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next chapter, and provides an example of the possible use of an
In ARMA (p,q) process.

To see the invariance property exhibited on the parameters as well
as the forecasts, consider the ARMA2(1,1) model fitted to series 7. for
the GALLUP(c) data. If we consider Z(2) i.e.

2(2) = 1 -1
0 -1

and use this to map the estimates for model 7. to those using LIB as

the reference variable. i.e. we map,

1n(LAB/CON) In(LAB/LIB)
to >
In(LIB/CON) 1In(CON/LIB)

then we have series 9. but with the first and second variable

interchanged. Thus for example,

Z(2)XCONST = {1 ~1} { -0.040 ] _ { -0.085 }
o -l 0.045 | ~0.045 , and rewriting this as
-0.045 ]
~0.085 J so that the variables are as in series 9, we have a

second estimate of CONST for series 9. We may compare this to the

estimates in table 4.29 and note that they are reasonably close.

Similarly,
206500 5 LI Lo gg3  _g.059]
10.163 0.887]
g(Q)QECON)§(2) » é(LIB) = [0.761 -0.058]
10.424 0.269]
;(I)CONST(CON) s const*B) = 10,040
0.085]
g(l)?(LIB)g(l) N 9aCON) - T

0.946 —0.027}

|
[0.058 1.022]

kd
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Again the estimates of Q(LIB), Q(LIB), CONST(LAB) and Q(CON) compare

favourably to the estimates in table 4.29. These represent only a
subsection of the possible Z(k) transformations that we could perform on
the estimates. However they are more than sufficient to demonstrate the
theory. We will briefly examine these results at the end of chapter 5,

when we have examined the forecasting problem.

4.5 Summary

In this chapter we have introduced two new classes of model, the
In,ARMA (p,q) and the 1n ARMA (p,q) model and have indicated how similar
models might be developed. We have investigated the properties of these
models. A Taylor series expansion of the 1n+ARMAm(p,q) model has been
developed, and this may be easily repeated for the 1ln ARMA (p,q) model.
An investigation of the ln+ARMAm(p,q) with regard to the choice of
reference variable suggests that the basic structure of the model is
invariant to this choice. It also appears that the identification
statistics are robust, as illustrated by the example of the last
section. Section 4.4 also gives evidence that estimation and diagnostic
checks are invariant, which confirms the theory outlined in this
chapter. What remains is a more detailed look at the forecasting
problem, and this will be the subject of the next chapter.

Finally we note that when using the lnXARMAm(p,q) model, it is not
50 straight forward to examine what happens under a permutation of the
Uj;’s. No equivalent of the Z(k) matrix exists. This model in fact
requires not only the choice of reference variable, but of the exact

order of all the variables. However the main purpose of the

In ARMA_(p,q) model will be seen later in chapter 6, and it is to
investigate concepts such as neutrality (definition 3.28) for which the

ordering of the uit’s is vital in any case,
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"Who told of this from the Beginming so thar we could know, or
Beforehand so rhar we could say, 'He was right 7"

Isaiah 41:26

CHAPTER 5

Distributional Properties of Logistic Time Series Models

in Relation to Forecasting

5.0 Introduction

In chapter 2 and section 2.5 the ARMAm(p,q) model was discussed with
special reference to forecasting. We recall in particular that the MMSE
forecast is the mean of Z,,, (say) conditional on Z;,Z;_ j,«-. - When it
is not {gt} itself that follows an ARMA process, but rather a function

of it, y, = f(;t) {say), then the MMSE forecast 1is,
- -1
_Z_t(l) - E[f (Xt+£)/;t’—z—t-l""' ], (5-0.1)
with variance Var[Z,(4)] = Var[f“l(zt+£)/gt,gt_l,.... . (5.0.2)

These expressions may be difficult to compute for non-linear functions
even if the ARMA process for y is known. An example was given in 2.5
where f was the log function. There we wished to produce forecasts of a
series {X,} for which W, = InX,. It was shown that the MMSE forecast of

X is then the mean of the log-normal distribution Am(ﬁt(i),Ee )

“t+4

t(l)
as in (2.5.15) and (2.5.16).

In chapter 4 we introduced a model based on the a. function. For

X = g { b2
u, € § and v, a,(u,) we have that,

(v. /v

ot D~ N (v (), ) (5.0.3)

(£

, vV FOFON
t’ = t-1 ' ,

and recalling from definition 3.21 we have,

(u, ,/u

4., )~ L (v (0,2 ) (5.0.4)

JUL e z
£’ =t-1 et(i) R
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i.e. a logistic-normal with parameters yt(l) and L where {gt} is

e (4)°
t( )
now the innovation series of {yt}. Thus the MMSE forecast of u, is
given by the mean of the logistic-normal distribution with parameters

gt(i) and ;e Similarly if we had modeled u via the lnxARMAm(p,q)

(4"
t
the MMSE forecast of U, would be the mean of the multiplicative

logistic-normal (definiton 3.22) Mm(yt(l),g In both cases it is

et(l))
clear that we have a problem. Aitchison and Shen(1980) note that
although the moments of the Lm(g,g) distyibution do exist, they cannot
be readily evaluated. Although no such reference exists for the Mm(g,ﬁ)
distribution, at least not to our knowledge, a similar result about 1its
moments 1s expected. (Recall that for m=1 both distributions are the
same in any case.) Thus we see that we require a detailed investigation
of the logistic-normal distyributions to investigate the estimation of
means and variances. We may also consider other location parameters
such as the mode, or in the univariate case the median. Finally we need

to examine how to use interval predictors.

5.1 Some Basic Properties of the Logistic-Normal Distributions

Although the logistic-normal does appear in earlier literature,
Aitchison and Shen(1980) seem to have made .the first concentrated
effort to give it a clear identity. Aitchison{(13982) also discusses
further properties, the first of these is related to the idea of

a marginal distribution for the Lm(g,g) distribution.

5.5.1 "Marginal' Distribution Property

In the discussion following definitions 3.21 and 3.22 we showed

. m = .
that if v € §, a_(u), v~ Nm(g.i) and v = Gv , where G is cxm so
3

m

<
i

J.

that yﬂ ~ Vm(QE,GZG’), then u is Lm(g,Z) and g& = a;l(yx) ~ Lm(gg,GZG’).

Expanding v = Gv we have,

I

i=l,...,Cc (5.1.1)

<
)

[ =1
Q
<

S .
1 3]

and from definition 3.17,
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. exp v, i=1 3]
u‘ = =
+ ¢ = c m
L .EIQXP Yy 1+ ¥ exp! L gk,
J k=1 j=1 3 J
m u m u ngj
exp| L gl.{ln J J I (u ] J
j=1 J m+1 =1 m+1
c m u ¢ m u ng
1 + I exp ng,lnul} 1 + X n (J}
k=1 j=1 U Ypey k=1 j=1 n+1
i=1,...,C. {5.1.2)
In particular let
g . = 1
t L i=l,...,c,
85 e = 7l J c < m, (5.1.3)
e, . = 0 otherwise,
1]
so that G = [1 O -1 0 .. .. 0]
0 1 . .= 0 ... .0
. . . (5.1.4)
0 1 1-1 0 ... . 0
Substituting these values of G into (5.1.2) we obtain,
u, = L(ul,...uc+1) . (5.1.5)

Thus we have the following lemma.

Lemma 5.1
If u ~ Lm(H~§) then C(ul,...‘uc+1) ~ LC(QE,GXG’) where G is given
by (5.1.3).

We note that this lemma enables us to find the distribution of a
subcomposition of u, but not a subset of u. Thus it is not strictly
speaking a marginal distribution. In order to find such a marginal
distribution we need to integrate out some of the u’s. This produces

untractable expressions and so we have not developed it here.
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Clearly we may pexrmute the rows of G to form a subcomposition with
any combination of the u’s. This also follows from the fact that the L
distribution is invariant to a permutation of the u’s. The structure of
the Mm distribution, however, depends on the order of the u’s., Its

equivalent to lemma 5.1 is now given below.

Lemma 5.2

if u € §" is such that u~ M. (y,1), then

(ul,u2,...uC,T(uC+1,...,um+1;) ~ Mm\gl,zll) (5.1.6)
and C(uc+1,uc+2,...,um+1) ~ Mm—c(HZ’ZQQ) , (5.1.7)
where Hyo ;11, Moo ;22 come from the partition of y and 1:
- - ha
Hox1 ¥y 5P L
cxl cxC cx{m-c)
Pt - T ,
i 2 L
2(m»c)xl : 2 (m»c)xci 22(m-c)x(m~c)v
for c=1.,...,m-1 (5.1.8)
Proof
Let v = mm(g) S0 that v ~ Nm(g.z) {(definition 3.22).
Then Gv = yT ~ Nm(QH.GZQ’) as in the L case, where G is dxm
. m
and v, = I g..v., , i=1,...,d. (5.1.9)
i S B A
j=1
Now uT = mﬁl(vT) .
4y m L
exp v.
5 ou o= - 1 L isli..d s
i i +
N (1 + exp vk)
k=1
m
T ex LV
X P8y,
= , from (5.1.9) 3
i ( m }
ni1 + Mexpg, .V.
|
k=1  j=1 K1

136



u, 1
m ]
i J
j=1 1 - ¥ u
i=1 £
= . (5.1.10)
N
[ u,
1 i m J
T 1 + n ]
k=1 j=1 1 - T u,
=1
Now consider G = 1[I 10} s
- —C Tl Xs
i.e. gii = 1] i=1,...,¢c
(5,1.11)
gij = 0 otherwise, i=l,...,c ; j=1,...,m.
Substituting (5.1.11) into (5.1,10) we have,
u. 1
i
i
1 - fu
T =1
uy =
i (1 _ Ui 1
b | k E
k=1 L 1 - I u
=1 b
¢ u. 3
i
1
1 - Xu
- L i=1 * /
[ k-1 )
N 1 - Zui
i=1
I
k=1 £
L 1 - I u,
i=1 /
i uy (l-ul) (1~u1—u2) . e . (1~u1— v ~ui)
_ i
1 - I u, 1 (1~u1) (1—u1~u2) . e s (l—ul— e *Ui—l)
=1
=4, 3 i=l,...,cC H (5.1.12)
i
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Also Gu = By and GIG’ = ;11 from which we obtain (5.1.6).

For (5.1.7) we repeat the procedure, but now put G = [Q;lm—c]un—dyfv’
that is =1 1=l,...,c ; j=itc ;

813 (5.1.13)
0 otherwise, i=1,...,c 3 j=1,...,m.

I

Again substituting into (5.1.10) gives,

s u. ~
i+e
itc
1 - X u
T . =1t )
uy =
1 k-1 )
c+i -1 “z
=1
i
k
k=c+1
1 - I u,
. ﬂ:l J
_ L (1-ul— RN —uc+1) . e . (l—ul— N —uc+i)
c+i
- (1 — ) - - -
1 § u, 1 (1 U= eee TUd e (1 Uy ees Tu )
=1
ui+c
= (after cancelling) ,
l=u,- ... - u
1 c
|
it+e
= 5 i - , 1=1l,...,C ;
c+1 c+2 m+1
(5.1.14)
m=-c u
=1 - I u; = 3 — m+i e i= m+l-c
i=1 c+1 c+2 7 m+1 ]
. T , .
i.e. u = C(uc+1....,um+1) and Gy = By o3 G = ;22 from which we
may derive (5.1.7). 0
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It is upon the above result that Aitchison(198la) base¢s his test
of neutrality, although it is not specifically expressed in the form of
lemma 5.2. It can be seen that whilst (5.1.7) is an identical expres-
sion to that for the L, distribution, (5.1.6) offers us an alternative
form of a marginal distribution. Here we have in fact extracted

Uy,...,U, as is required of a marginal distribution, but we have also

c
included a fill-up-value which is the sum of the remaining u’s: oy *

ea. t U Clearly if we limit the marginal distribution to be one

mtl°
which describes data on the simplex, then any form of subset of the u’s
must be formed in such a way as to result in a composition. Hence we

must obtain the distribution of either a subcomposition as in lemma 5.1

and equation (5.1.7), or as in (5.1.6).

5.1.2 "Conditional' Distribution Property

We first quote the result of Aitchison and Shen(1980) :-

Lemma 5.3

If u ~ Lm(H»E) then,

C(ul""’uc+1)l

soeesll )y o~

C(uC el

+1

(1I'l£ - Ez) » (_le - _z. 2

-1
ke [’51 fecdnry v Ly,

Where, as before, His Hoo 211, 222,212 follow from (5.1.8) the c,m-c

partition of y and Y (but for the Lm distribution), and where

u_ .
c+1 .
r = (rl,...,rm C)’ and r. = 3 , i=l,...,m-cC.
m+1

Proof
The result follows from Aitchison and Shen(1980) and from standard

multivariate-normal theory.

a
Lemma 5.4 . é}
. o wz‘f/{; 1257
If a -~ Mm(ﬁvz) aﬂﬂf %Cf, = | ¢y /
(u uul le )~
1°°° " ¢ Terl 7 c+1 Ber2 Uy
Mo, + LSt w) , (B~ LoToiE ) ) (5.1.15)
¢ -1 =12-22 -2 27 7 =11 =12722-21 ’ T
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;
»ee U0 LU
(ul, R )

and C(uc+1,...,um+11 o+l ~
M G+ I XNt - w) . (L= o TTNX ) ), (5.1.16)
m—c B2 T Z21E110Ep TOHp) 0 b 907 EgpEygEgg) o
where ty = mc(gl) s
EZ - mm~c(g2) B mm_C(C\g2)) ’
and (gl ! gz)’ is the ¢, m=-c partition of uj with y and I parti-

tioned as in (5.1.8).

Proof

Again this result follows directly from standard multivariate

normal distribution theory and lemma 5.2.

Some of these distributional properties will prove useful in
chapter 6, where various parameter restrictions on the above distribu-
tions may be related to differing forms of independence, The results of
section 5.1.1 and 5.1.2 also serve to demonstrate how we may simply
understand the logistic-normal distribution in teyrms of lower dimen-
sions. This may prove useful in the next section, when some of the

results we require are easily formulated for the univariate case.

5.2 Location Parameters

There appears to be little or no work on the location parameters
of the Lm and Mm distributions, mainly because of the intractability of

the results, However the univariate distribution is relatively well

investigated, probably due to its early
For example Johnson{1949) discusses its
it is called the Sp distribution. (See
2). We note that the density function

1 1 {
exp< -
2 u{l-u) L

2, _
PL(ulu,o y =

2706

1{1___1'3_..

Also v o=
1-u

~ N(p,dz) .
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use and its relative simplicity.
properties, where in his case,
also Johnson and Kotz(1970) vol.

Ll(uﬁdz) is given by:-

L

2

(lnTgG - “)2
20

(5.2.1)

O <u<il.



> z=z%B~N(O,1). (5.2.3)

Now Johnson’s SB distribution (standing for "bounded system') is written

as z = y + 8lnTgG where 2z ~ N(O,1). (5.2.4)

"
Comparing this to (5.2.3) it is simply the Ll(—y/S , 1/87) distribution.

We note that the L., distribution is equivalent to the M, distribution,

1 1
so that the study of the univariate L1 (Ml) provides a stepping stone to
both multivariate distributions. We shall now proceed with a study of

the location parameters, and begin with the median.

5.2.1 The Median

For the univariate distribution (5.2.1) the median is :-
. (5.2.5)

The concept of a median is, however, difficult to extend to multivariate
distributions. For example, Haldane(1948) describes two possible
definitions which he terms the arithmetic median and the geometric
median. An idea of ordering multivariate data is discussed by Barnett-
(1976) and further definitions of a multivariate median are based on
this. (See also Green and Silverman(1979), Scheult et al’s (1976)
discussion of Barnett’s (1976) paper and Sibson (1984))., Some of the
definitions above give different results under rotation and/or change of
scale, whilst others refer more readily to multivariate samples. Thus
we avoid the median, since it has such an ambiguous generalization to
the multivariate case.

However, we note that (5.2.5) is simply the inverse of the
logistic transformation. Thus it does perhaps serve to justify the
possible use of the inverse transformation am*1 and mm*] as point
predictors even in the multivariate case, We hope to compare these with

the mode and mean.

5.2.2 The Mode

Again we will start with the univariate distribution; taking logs

and differentiating (5.2.1) with respect to u gives us,

1
+
1-u

e

d _ u 1
e In PL(u) {lnl_u - “}u(lwu) N
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s0 that the modal value must satisfy :-—

262u - 62 + oy = In— . (5.2.6)
1-u

Johnson(1949) then considers (using our notation) the equations,

y = 262u - 62 +u, (5.2.7)

Ine— . (5.2.8)
1-u

I

and y

A plot of the line (5.2.7) and the curve (5.2.8) is given in figure 5.5.
The intersecion between the curve and the line represent solutions to
(5.2.6)., It is easily seen that there are some positions of the line
for which there are 3 solutions, these represent two modal values and

one minimum.

. . u 3 2 2 .
Figure 5.5 Plot of y = lnT:G and of y = 26"u - ¢°+ u for various values

of 62 and u.
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Consider the tangents to the curve which are parallel to the line. The
gradient of the line is simply 262 and the gradient of the tangent is

given by,

(_i__ 1nu - _._}..____
du T-u u(l-u) ’

Thus the tangent is parallel to the line when,

2 1
26 = m)— > (5.2.9)
, 2
> u = kK t+tkl-2/¢ . (5.2.10)
, 2 2 2
There are then three possible cases :— ¢~ < 2, ¢ = 2, and ¢~ > 2. For
2

a real solution to (5.2.9) ¢~ 2 2, and for three distinct solutions (i.e
two modes) 62 > 2. The other requirement for three intersectiors is that
the line must be "close" to the u-axis. Johnson(1949) demonstrated that

L1 is bi-modal when :-

¢ > 2, (5.2.11)

and w < 62\1~2/62 -2 tanh‘1}1-2/o2 i (5.2.12)

The equation (5.2.12) represents an exact definition of how close the
line must be.

If 62 > 2 we may compute the limiting value of y for various
choices of 62. Johnson(1949) does this in terms of his parameters. For

our parameters we have the following table.

max|u}{0.00 0.16 0.42 0.73 1.07 1.43 1.81 2.20 2.61 3.02 3.44

] 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

Table 5.6 : Limiting values for which LlLﬁl) will be bi-modal.

We also note that if p = 0 L is symmetrical otherwise it is skewed.
To find the actual values we must solve (5.2.6) numerically.
However from the above we may determine whether the distribuion is
uni-modal., It would be useful to obtain a similar result for our
multivariate distributions. For the L_(y,I) distribution we need to

maximize,
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-} 4
AL J ( S ~1f,  Yn l
flu) = j2nLy T u, exXps—=ilin -~y I lin - u , U € Sm
u “m
i=1 L m+1 m+1 J
(5.2.13)
Taking logs and differentiating w.r.t. u we have:—
u
g~ In(f(u)) = - l—, l~, . ,l~ + e 1 - Di_l In—2 - u
u u.’u u =1 = u
1 2 m m+1 m+1
=0 u e§"
(5.2.14)
where D = dsg éw, %—, vee ,%— + U L
1 2 m U1
Let f = L - l~, ! - in, e, ! - 1& then we need
“m u u,’ u u u u
m+1 1 "m+l 2 m+1 m

to find the solution of,

-y =0 . {5.2.15)
We recall from chapter 4 and corollary 4.11 that the matrix F was
defined to be (equation (4.2.31)),

1
F = dg L cee E—J v 2

h M o

For which E-l is given by (4.2.50). Thus noting that D is of the same

form we have,

“1 ul(l—ul) -u u1 . . =u u1
b = —u U, uz(l—ug) L
. . . . (5.2.16)
] “ugu —u,u . . um(l—um)‘




and iDI = m+] . (5.2.17)

Thus we may rewrite (5.2.15) as ,

u
In—— = ol o+ (5.2.18)
u -
m+1
From (5.2.16),
-1 u m
[D f } = 1 - ¥ u, - 1 - mu, , 1=1,...,m ;
= =m]. u ) i i
i m+1 j=1
(5.2.19)

i

(m+1)u. - 1 , where [5]A denotes the ith row.
i i

Thus substituting into (5.2.18) gives,

gm
in

= L{(m+l)u - et H. (5.2.19)
m+1

which for m=1 gives exactly (5.2.6) as before. We may then examine,

- - 9
y = (m+l)Iu ng +ou, (5.2.20)
and
a
y = lp—0t | (5.2.21)
- u
mt1

to see under what circumstances the multivariate distribution is
uni-modal. It is much more complicated than in the univariate case.
The equivalent concept to the tangent of the curve being parallel to

the line in figure 5.5 is now that,

1

it
QJI @
et

(m+1)Zu - Ze -y (5.2.22)
-

.

where when x is nx1, y=f(x) is nx1l, and by %§[§(§)] we mean the nxn
matrix of partial derivatives,
Evaluating (5.2.22) yields,
D = (m+t1)L ,

where D is given by (5.2.14). i.e. :-
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dgl—, +e. , L L U = (m+1)1L . {(5.2.23)
u u ~m =
1 m m+1
m
This represents m—equations in m unknowns. ¢ um+1 =1 - I ui ). It
i=1

is easier to solve if we take the inverse of both sides to give,

-] 1 -1
= . 5.2.24
D {(m+1) z ( )
-1 i
Let {I }ij = g , then from (5.2.16) we have that,
(1l -u) = —2 ¢ d=iom (5.2.25)
1 i m+1
Solving for ui gives,
S - PR T
i m+1 , i=1,....m. (5.2.26)
2

If we compare this with (5.2.10) it is identical when m=1. Again there

are three possibilities,

6ii S m+1
4 3

ii m+1
g =

ii | m+l

g <

2
The third of these corresponds to the earlier requirement that ¢~ > 2,
and vields two solutions to (5.2.26). Hence when,

s mlo (5.2.27)

4
we may conclude that the plane (5.2.20) may intersect the curve (5.2.21)
in three places in the ui direction. The numbexr of modes will therefore
be dependent on how many times the equation (5.2.27) holds; and on the
“"closeness" of the line to the curve.
Consider the limiting case, i.e. when,
1l m+

o™t = T~ i=l,....m. (5.2.28)
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. . Y | ) .

i.e. when the diagonal elements of L =~ are identical. For Lm(g,g) to be
symmetrical in all elements ui , i=1,...,m+l , we require that y =0
and ¥ = dg(g6, ...,0) + gmo , as can be seen if we note that

=2(k)y =y, and 1L = Z(k)XZ’(k) = L. For the symmetrical

Bik) £(k)
case we therefore have that,

20 [+ « o e g

L= ¢ 20 .. 0 (5.2.29)
| ¢ ] 26
[ w/e ~1/6 . . . =-l/¢

e tHe me ... Sl (5.2.30)
b“l/d -1/ . . . m/¢

In this instance the limiting case is,

m _ m+l
i~ % s (5.2.31)
. 4m
i.e. that 6 F  — . (5,2.32)
2
(m+1)

Consequently if ¢ > 4m/(m+1)2 the Lm(E»E) distribution with ¥ given by
(5.2.29) may be multi-modal, depending on u. When ¢ < 4m/(m+1)2 it will
be uni-modal. Once we get away from the non-symmetrical case it becomes

difficult to assess when the distribution will be multi-modal. Clearly

the elements of ;(k) and hence zzi) may be of differing magnitudes for
ke (l,...,m+*1). We may however investigate the conditions,
dig) < ~mﬁ§w§ , oii) < ~—§E-§ , (5.2.33)
. {(m+1) {(m+1)
61](R)< ~{(m+1) ’ Gll(K)< m+1 : (5.2.34)
4m 4

ke (l,...,m*1) ,

as a possible "rule-of-thumb" criteria for uni-modality. This will be
investigated in section 5.2.4 where we will illustrate a few L2 and L3
distributions. The actual values of the mode(s) must be evaluated

numerically.
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5.2.3 The Mean

The mean of the univariate distributions has been shown by

Johnson(1949) to be,

2, 2 o 22
o= —— e M2 s ag g ™02

U oo n=1

cosh%(62+ Zu)sechﬂg— +

2

cosech(2n~1)z§

xS

—s(2n-1) 242 /6> (2n=1)mp
*6—-' e S A N

1 62 1]

8

® —2n2w2/62 2nw )
1+21Le cos “} . (5.2.35)

This expression is somewhat complicated and again must be computed
numerically. Johnson also gives various recurrence relationships, and
other expressions relating to higher order moments in terms of the
partial differential of My with respect to p. Thus it seems that exact
relationships such as (5.2.35) are more complicated to evaluvate than is
a numerical integration, and consequently there is little point in
trying to extend (5.2.35) to higher dimensions.

There is, however, a more useful result that may be extended to
higher order distributions. It consists of an approximation which was

developed by Aitchison and Begg(1976). They consider the integral,
-———vp(v)dv = E{—cei = E[ul] = wu_ . (5.2.36)

In our case p(v) is the density function of a normal N(u,dz) distribu-
tion since for L1 {or Ml) we assume v ~ N(p,dz). Aitchison and Begg
instead evaluate (5.2.36) for p{(v) equal to the density function of the
student distribution. However in the course of approximating (5.2.36)
p(v) 1s taken to be nearly normal in any case. Thus in this instance we
actually slightly improve on Aitchison and Begg’s result,

Consider the function,

This has the range of values (0,1) and can be viewed as a distribution
function corresponding to a density function,
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e’ e’ et
, since —Y0 = —_— dt (5.2.37)

(1 + ev)2 1 +e (1 + et)2

—(n
{For example see Johnson and Kotz(1970).)

This distribution, known as the logistic distribution may be
approximated by a normal distribution with mean zero and an appropriate
. 2 . . ) . ) .
variance ¢.. f{(c.f. the student t distribution.) Making this substitu-

1
tion into (5.2.36) we have,

2 2
1 —t%/26 1 2
Lol o~ v=w/267, 0 (5 5 38)

=
4
=
it
o
o
=

If we then substitute k=t-v and V=v we obtain after some manipulation,

0
~ 1 2. 2 2
My = exp{-(k+yu) /2(61+ 67) rdk
Lom(o2e 6%
J 1
~0
)
]
S I (5.2.39)
6+62
N9y

where ¢ is the cumulative density function of the standard normal.

Aitchison and Begg also suggest another approximation cbtained by
v
. . . e . .
taking a Taylor series expansion of ———— about j. Since this latter
1 + e
approximation was then shown to give worse results we do not consider it.

Table 5.7 below gives the values of Hy and ¢ as calculated by

~

Johnson via expression (5.2.35) and also M, with ¢ = 2,942, This

R N

value, suggested by Aitchison and Begg is chosen so as to make the 90%
quantiles of the logistic and the N(O,d?) distribution agree. We note

that the values of M, are close to the corresponding values of My
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¢ H Ry My 6u 6 1 H My My u
0.00({0.500 0.500 0.314 1.50]0.221 0.225 0.155
1.0010.352 0.352 0.296{1.0]2,00{0.155 0.159 0.125

2.0 2.00{0.225 0.224. 0.249 2.504{0.105 0.104 0.095
3.0070.130 0.127 0.187 0.00(0.500 0.500 0,118
4.0010.068 0.044 0.126 0.25(0.441 0.444 0.117
5.00;0.032 0.029 0.077 0.5 0.5010.384 0.390 0.112
0.00(0.500 0.500 0.208 0.7510.330 0.337 0.100

1.010.5010.398 06.401 0.201 1.0010.279 0.288 0.097
1.00{0.303 0.308 0.182 1.25(0.234 0.242 0,087

Table 5.7 : moments of Ll(p,62) distribution

Let us now consider how we may extend the above result to

multivariate distributions.

may be done easily, but do not develop the result.

the integral I, wheyxe,

E[uk} ,

k=1,..

I I

é(v/yu, L) dvl,dvz,....dv

Aitchison and Begg(1976) indicate that this

We need to evaluate

m

(5.2.40)

Where ¢(v/u,L) is the normal density function with mean y and variance

L=

$(v/u, L)

1 1 o=l
— exp{—i(y~g) L (v g)} )

12951

Now we may re-write,

(5.2.41)

(5.2.42)



That is w = = ~-Z(K)v .

(k)
Substituting this into (5.2.40) and noting that the jacobian equals

unity we obtain,

o (6s]
f 1
I = cseoas e ¢(E;‘Z(k)ﬂ,;(k)§£l(k))dy .
i
I+ Le (5.2.43)
i=1
-0 -0
1
Now —i is the cumulative distyibution function of the multi-
1+ Te
i=1

variate logistic distribution, (not to be confused with the
Logistic-normal distribution Lm(g,g) } see, for example, Johnson and

Kotz(1972), and may be approximated by a multivariate normal density

function,
1 1% Y
B x> J J ..‘f $(L3;0,X. ) dL . (5.2.44)
m W, 1
1+ L e 1 e —0
i=1

As in the univariate case we may substitute (5.2.44) into (5.2.43) and
obtain the integral of two noxrmal densities, one over the complete
range. Thus after a suitable transformation we would hope to eliminate
many of the terms and reduce (5.2.44) substituted into (5.2.43) to a
single cumulative normal density function as in (5.2.39). Hence

substituting (5.2.44) into (5.2.43) gives,

O (¢9)
S DO 1% M
I ~1= ...f ¢(Q;Q,§1) dL» ¢(w;-Z(k)p,Z2(k)xz’(k))dw ,

-0 =~ -0 J

-0 -~

Let w(k) = Z(k)yu, and L(k) = 2(k)IZ’(k) ,then

Y] S0 W W

~ 1 2
- 1 -1
I = el - leee] = exp{-KL-’ L}dL x
% = &y 2ok
127L, |
() 0 (0 =D (5.2.45)
exp{-W(wru(k)) LT (k) (wrp(k))dw
12mE{k)|
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We now perform the transformation,
S=L-w w=T
&> (5.2.46)
T=w L=5+T
The jacobian is again unity, substituting into (5.2.45) gives :-

0 0
1

I = ceue vees i
(|2ﬂglll2n§(k)!)
.—(n

- =00 =0

exp—%{(§+z}’§;l(§+l) + (1+H(k))';“1(k)(1+g(k))}d§d1
Completing the square in the exponential term, and reversing the order

of integration gives :-

0 o @

t= ... ... 1 2 expmgd (5+u(k)) (L +1(K) T (Sou(k))  +
(l2v§1ll2ﬂ§(k)!)
~0

-0  —® —~®

s

1(§Il§+§-l(k)g(k))J(;;1+§—1(k)) .

[1 e a7 o)

1

1(2;1§+§_1(k)g(k))Jf dTds

[z e a7 ao”

0 0
) 1 1 -1 ]
= |... LEXP —3 (§+g(k))'(§1+§(k)) (S+u(k)) s x
(12H(§1+Z(k))|)
—0  —
(¢4] (0]

Gam(z sz n® U ‘
“en 5 eXp—3 [I + (;1 +L T (k)) (;1 S+L (k)g(k))} X
(l2w§1112ﬂ§(k)5)

- -0
(§1<§1+g<k>>“1;<k>)“l[z N (;Il+§_1(k))—1(2;1§+§~1(k)g(k))J} dTds

We note that (§;1+§—1(k)) = (21(§1+§(k))*1§(k))“1 which has been

substituted into the second exponent. The integration over T is that of
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a normal density function over its entire range and is therefore equal

to unity. Hence,

0 0
- 1 1 , -1
I = ces LEXP 5 (S+u(k)) (§1+§(k)) (S+pf(k))» dS
(szn(§1+§(k))l)
)
= @{0; —H(k),[§1+§(k)]} . (5.2,47)

The result is summarized in the following lemma.

Lemma 5.8

If u~ Lm(E’Z) then we may approximate E(uk) by the value of the
m—-dimensional normal cumulative density function with mean -Z(k)yu and
variance §1 + Z(k)EZ’(k) evaluated at zero, i.e.

E{u ) = ®m(9/~g(k), E(k) + 21) ; k=1,...,m+1

#

where Z{kyu ,

Rg)

It

and ¥

_(k) .Z_(k),z_z_/(k) 5 ( = I_m).

Z(n+1)
Tables exist for computing bi-variate and tri-variate normal
densities e.g. Owen(1956) and Steck(1958). However in order to use the
lemma we require a suitable choice of the matrix §1 which we recall must

be chosen so as to facilitate a good approximation of the logistic
distribution by a Nm<g.§1) density function. A sensible initial choice
15 to take ;1 to be the value of the covariance function for the
logistic distribution.

For a logistic random variable L Johson and Kotz(1972) give the

following results,

Var(Li) = v2/3, i=l,...,m ;
2 (5.2.48)
Cov(Li,Lj) = 1°/6 i,i=1,...,m , i=j .,
Hence 21 must at least be of the form,
¢ 6/2 . . . /2 2 | O |
o2 ¢ ... 62 = oenl2 ] (5.2.49)
6/2 6/2 . . . d/2 1 1 ... 2J

Two obvious possibilities for the choice of ¢ are then,
153



ﬂ2/3 = 3.290 since it is the value for the true distribution,

I

i) o
ii) 6 = 2,942 as in the univariate case.
Having noted these two possibilities another is,

iii) ¢ = 3 since it lies between i) and ii) and for simplicity.

We may easily compare these possiblities in a numerical study. A small
study of this kind is presented in the next section, and it will be
seen that all three values give reasonable results.

To obtain a similar result to lemma 5.8 for the Mm(g,g) distribu-
tion is not so straight forward. As mentioned earlier there is no
equivalent matrix to the Z(k) matrix, partly because the variables v in
the Mm distribution by their very nature depend on the ordering of the
u’s. In fact we would have to make a separate distributional approxima-

tion for each ui in turn, i.e.

v '\f2 V3

e e e
H » ... €LC,

1+ evl (1 + evlJ[l + eV2J (1 + evlJ(l + evzj{l + evaj

Although it seems likely that these may represent functions that can be

approximated by a normal density function we do not pursue this here.

5.2.4 A Numerical Study of the L,(u.X) distribution

Various analytical methods for evaluating the mean, and the mode
of the Lm(g,z) distribution have been explored in 5.2.1-5.2.3. We have
concluded that the only way to evaluate these and other such values e.g.
the variance, is numerically. However we have derived an approximation
to the mean (5.2.47) and indicated that the distribution is not
necessarily uni-modal. The purpose of this numerical study is to
compare the approximation (5.2.47) to the true mean, and to gain a
better "feel" for the L_(u,L) distribution. In particular we hope to
understand when the distribution is multi-modal and compare various
location parameters such as am'l(g), the mode and the mean. A greater
insight into this distribution will enable us to tackle the forecasting
problem.

A selection of L,(y,L) and Ly(y,L) distributions were studied.
They were chosen so as to encompass several properties; some are

symmetrical, some are multi-modal, some have u=0, whilst some have u=0;

154
























and so on. Initially only the L2 distribution was studied and contour
plots and 3~d plots such as those in figures 5.9-5.15 were produced. The
first distribution considered was that based on the standard normal
distribution, i.e. L,(0,I,) as in figure 5.9. Some others were chosen

to be symmetrical in all variables. For the L,(yu,I) distribution to be

symmetrical we require that,

=0 and I = {Qa a] , for some constant a.
a 22 (5.2.50)

Figure 5.10 represents the case when a = 8/9, which from (5.2.32) is the
limiting case. Figures 5.11-5.14 are a selection of tri-modal,
bi-modal, uni-modal, skew and symmetrical distributions. Figure 5.15 is
the L, (u,%) distribution where y is the one-step-ahead prediction of Ve
for the GALLUP poll series studied in section 4.4 and I is the corre-
sponding covariance matrix.

In addition to the distributions plotted a few other L2 distribu-
tions were studied, together with a few L3 distributions. These were
chosen to be either slight variations of the symmetrical situation (e.g.
by varying By so that pi¢0), or in the L; case the symmetrical distribu-
tion itself. Only uni-modal L3 distributions were studied since it is
difficult to locate the modes without the aid of a graphical representa~
tion, and consequently difficult to evaluate these modes numerically.

The contour plots of the LQ(E~§) distribution were produced by the
GINO package, The computer algorithm in fact produces a plot of the

form,

which is then ''skewed" and scaled to give :-—
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The final diagonal has been drawn in. It should be noted that as a
result of this together with rounding errors, and interpolation between
points etc, the plot near the diagonal is slightly distorted. However
this distortion is not so great as to lose the basic shape of the
distribution displayed.

In addition to the graphical plots various parameters were

computed for each L (yu,f) distribution. These were,
i) Mean E{ui} .
ii) Second moment E[ui].
iii) Variance v[ui]

~

iv) Estimated mean E[ui} using ¢ 2,942

]
D

v) Estimated mean E[ui] using ¢ = 3,000 using lemma 5.8.
vi) Estimated mean E[ui] using ¢ = 3.290
vii) Inverse of u (i say),
eHk
1k = "Ry ,  k=1,...,m;
1+ Ted
j=1
1
= ,  k=m+1.
m W,
1+ Lel
j=1

viii) Mode or modes @K (say), where x = 1,...,K ; and K = number of

modes.

. . . . - . K .
ix) Maximum value of the Lm(g,g) density function, max 1i.e. value at

the mode(s) listed in (viii).
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Table 5.16 : Parameter Values for Some L (y,%) Distribuitions

Models Considered are :-

8/3 4/3 0.8 0.4
) Ly(0.1y) b) Lz{g Ik 8/3} ) L 2{9 * 0.4 0.8
1.0 0.8 0.4 473 =273
4 LQ[*I.O * 0.4 O.8J e) Lzﬁg * =2/3 éﬂi
oL {0.42720 0.04130 0.03510J éggi“zzzirzgzigogore* o L [ 1.0 )
’ “1.00 L
200.53090 * 0.03510 0.04520) a5t SASLITONELS 2|-1 )
Mode(s) Estimated Mean Variance
Model am"1 (With ¢ =) 5
(Height at Mode}) Mean E[ui ] 1
(2.94 3.00 3.29)
a) | 3333 | 3333 3446 3444 3437 | 3454 | 1626 | 0433
3333 | 3333 (4.2972) | 3446 3444 3437 | 3454 | 1626 | 0433
3333 | 3333 3109 3112 3126 | 3092 | 1169 | 0213

b) 3333 0230 0230 9539 3324 3324 3325 3333 1481 0369
3333 0230 9539 0230 3324 3324 3325 3333 1481 0369
3333 9539 0230 0230 3333 3333 3333 3333 1481 0369
(A1l 4.,2526)

c) 3333 3333 3339 3339 3339 3333 1357 | 0246
3333 3333 (6.2050) 3339 3339 3339 3333 1357 | 0246
3333 3333 3333 3333 3333 3333 1357 | 0246
d) 6652 8241 6402 6382 6652 6311 4260 | 0277
0900 | 0437 (24.9993) 0919 0931 0500 1044 | 0166 | 0057
2447 1322 2685 2694 2447 2645 0918 | 0219
e) 3333 0031 9559 3608 3604 3588 3614 1953 | 0647
3333 3559 0031 3608 3604 3588 3614 1953 | 0647
3333 0409 0409 2801 2808 2839 2772 1 0934 | 0166
(Both 16,5708)
) 3621 3628 3658 3655 3643 3614 1314 | 0008
4017 4031 (184.1880) 4066 4061 4028 4009 1618 | 0010
2362 2341 2316 2325 2366 2377 | 0578 | 0013
g) 3672 6925 3728 3725 3709 3726 1840 | 0452
3006 | 0942 (4.9486) 3169 3169 3170 3188 1427 | 0411
3322 2133 3103 3106 3106 3086 1165 | 0213

x10™4 (except Height at Mode).

Table is continued on the next page.
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Table 5.16 ...continued
Models are :-
(0.0 1k . 0.1 1 -k ,
¢ L. (0,1
W bylo0.1 0w 1) 1) Lz{-o " 1} 1 kg0 1y)
(0.1 1 kb & 0.1 1 bk
k) L3 -0.1 La 1) L3 0, k1k m) L3 -0,1 , 81k
0.1 b1 0.1 ok 1
Mode(s) Estimated Mean Vaxriance
Model| a =} (With & =) )
(Height at Mode) Mean E[ui ] i
(2.94 3.00 3.29)
h) 3443 3541 3433 3432 3429 3428 1478 0302
3115 2918 (4,9937) 3135 3136 3143 3143 1269 0281
3443 3541 3433 3432 3429 3428 1478 0302
i) 3672 8925 3818 3814 3793 3825 2021 0558
3006 0140 (10.8856) 3290 3289 3282 3315 1617 0518
3322 0935 2891 2897 2925 2860 0948 0130
i) 2500 2500 2612 2611 2604 2610 1023 0342
2500 2500 (16.2544) 2612 2611 2604 2610 1023 0342.
2500 2500 2612 2611 2604 2610 1023 0342
2500 2500 2163 2168 2189 2171 0576 0342
k) 2756 8896 2844 2341 2827 2824 1166 0368
2256 0227 (33.2623) 2388 2388 2388 2402 0892 0315
2494 0254 2608 2607 2600 2606 1021 0342
2494 0623 2159 2164 2186 2168 0574 0105
1) 2500 2500 2500 2500 2500 2500 0828 0203
2500 2500 (22.9872) 2476 2477 2477 2500 0828 0203
2500 2500 2525 2524 2523 2500 0828 0203
2500 2500 2500 2500 2500 2500 0828 0203
m) 2756 3057 2749 2747 2738 2727 0967 0224
2256 2044 (23.4546) 2239 2241 2250 2282 0704 0183
2494 2450 2519 2519 2518 2495 0826 0203
2494 2450 2495 2495 2496 2495 0826 0203

xlO*A {(except Height at Mode).
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The results are presented in table 5.16.
In the calculation of the mean and variance Gauss-Hermite

quadrature was used. This type of quadrature is used to approximate an
integral of the form ff(x) dx and is known to give exact solutions if

the function is of the form,

2 2n-1
[{x) = eﬁb(x_a) r cix1 , b >0,

i=0
For the multiple integrals the quadrature formula is applied to each
dimension in turn., We employed a NAG library routine to do this.

. , m . .
In our case we need to find the integral over R of the function

v, mo v,
a%l(vi) = i/}{/+ I e (i=1,...,m) multiplied by the density function
j=1

of a N (E,Z) distribution. Thus if we regard the normal density

. . . ~b{x~ ,
Tunction as resembling e ( a) , then in very loose terms a good

approximation will be given when,

-1 2n K
a. (vi) x 3 .V 5 i=1,...,m+1 ;(vm+1 = 1).
k=0
2
Or in the case of evaluating Elu 1] when,
; \ 2n k
La (v )J I c s i=l,...,m (v . = 1),
k=0 m+ ]

The NAG procedure in fact is iterative and increases n at each step
through the following values: 4, 5, 6, §, 10, 12, 14, 16, 20, 24, 32,
48, 64 . It was found that at most six iterations (n=12) were required
to obtain an accuracy of order 10—6. Var[ui] was computed from E[ui]
and E[ui]. We note that we could have easily computed Cov[uiuj] i=j in
a similar manner although we have chosen not to do so.

When it came to evaluating the estimated mean ,(iv-vi) above, it
was found that tables were unnecessarily complicated and that it was
less laborious to evaluate the cumulative normal density numerically.
This required the use of a NAG routine to evaluate the integral over the

negative orthant of R" of the N + Zl) function, for which

n 0 Ex)
we require the use of Gauss-Laguerre quadrature., This latter quadrature
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a
t]

is used to estimate integrals of the form, j f(x} dx , and is known to
=0

be exact if f{(x) is of the form :
f(x) = e~bx 2; i.x .

i=0 *
We note that in this type of quadrature the exponent no longer has a
quadratic form which may be related to the noxrmal density function.
This implies that we would expect less accuracy from the numerical
algorithm in the estimation of iv)-vi) compared to i)-iii). Although a
more detailed scrutiny could enable us to see just how close our
functions are to those preferred for the quadrature procedure, the hint
given by the exponent term perhaps explains why more iterations were
required to evaluate the estimated means. In fact up to 12 iterations
(n=48) were required of the Gauss-Laguerre quadrature to compute iv}-vi)
compared to the previous 6. (This is to the same accuracy of 10*6).

The computation of the estimated mean values was further length-
ened by the need to evaluate Mgy and g(k) and the determinan# and
inverse for each variable. (In the evaluation of the exact mean and
variance, y and I remain fixed for each variable.) Thus the approxima-
tion to the mean required more computation than that for the exact
value. This was reflected by the length of the respective SUBROUTINE
codes developed to evaluate them.

This lengthy computation of the approximate mean value is due,
however, to the particular algorithm used to evaluate the cumulative
density of the multivariate normal. It may be that alternatives are
available. 1Indeed if a user has access only to a statistical package
which evaluates this cumulative density, but not to a general numerical
analysis package, then the approximate mean will still prove useful.
Otherwise Efui] is only of academic interest, since the exact value is
more easily computerized, and more accurate. The only exception to this
is perhaps the univariate case.

If we examine the results themselves, the problem in computing the
estimated mean values is again highlighted. For example, in the second
and third models the approximation to the mean should have given us the
same answer as the exact mean, but the numerical algorithm has failed to
converge to the known approximate value. The value of the exact means
are, however, correct. (See also the 12H model), However, the results

appear to be accurate to at least two decimal places and still provide
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us with a rough yard stick for comparison.

Throughout it is clear that the approximation to the mean is
reasonably good. 1t is difficult to determine which value of ¢ should
be used to estimate it. This is partly due to the limited accuracy
described above, but also because there are occasions when each of the
choices of ¢ gives a better result. A more extensive and accurate study
may aid the choice of ¢, but meanwhile it would seem sensible to let ¢ =
3.0 for simplicity.

In many of the examples in table 5,16 there is a marked difference
between the various location parameters especially when the distribution
is not uni-modal and/or when it is skewed. Although this is perhaps
obvious is is none the less a reminder that care needs to be exercised
in the choice of which location parameters to use as point-predictors.
It should be noted, however, that in the forecasting context the
occurrence of a multi-modal distribution is likely to be rare. For this
to occur we would require the uit’s to be close to the extreme values
(i.e. U, 1, Uy ® 0. J=1,...,m+*1 , j=i), and for them to "jump"
from one extreme to another (i.e. if when t=] i=il, then at time t=2
i=12 (say}). This will be further examined in section 5.5.

As an example of "well behaved data" consider figure 5.17, which
is a plot of the opinion poll data analysed in section 4.4. The points
are all mid-way between Conservative and Labour and only have small
values for Liberal. This data is relatively tightly packed, and no
points are close to the apexes of the triangle. It is therefore
expected that the varying point predictors for this data will give
similar results. This is readily seen to be the case since the 6th Lm
distribution of table 5.16 which corresponds to figure 5.15 is the
distribution of the one-step-ahead forecast of the GALLUP(c) series,

If we examine the plots we see several interesting points. The
L,(0,I,) distribution in Figure 5.9 is symmetrical about the line uy=uy.
Figures 5.10-5.12 are all symmetrical since u=0 and the covariance
matrix is of the form (5.2.50), Figure 5.10 is (from (5.2.33) and

(5.2.34)) the limiting case between uni-modalality and multi-modality,

8/3 4/3 ]

o 8/3JJ in Figure 5.11 is

and consequently is very flat. L2 g, [

tri-modal. Comparing this with our "rule-of-thumb" neither (5.2.33) nor
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0.5
-0.25

~0.25

( 8/3
0.5

-1
4737
(5.2.34) hold, { 3 {

8/3] = ] and since y = 0 this 1is

what we would expect. Figure 5.12 is uni-modal, and its symmetrical

structure gives the characteristic bell shape. The distribution in
Figure 5.13 has the value of I as does that in figure 5.12, but now
H » 0 resulting in the mass of the density functions being shifted to

density function.

one apex. Figure 5.14 is an example of a bi-modal L2

We note that for this density function,

L= [4/3 -2/3} ) = [4/3 2 ) =[ 4 2 }
= =(1) =(2)
_—2/3 4/3 | 2 4 ’ i 2 443 . and
77l = 1.0 0.5 o= 73 -1.s oo o
= =(1) =(2)
0.5 1.0 -1.5 1 -1.5 1
Comparing these with (5.2.33) and (5.2.34) we note that,
(1) _ 16 (2) _ 16 _ (1)_ (2)_ 8 . 12 _ _
622 = 4 > 5 - 611 > g= 3 9y, = 612 2 > 5 3 and ¢ 0.5 > -0.375.

Hence under both "rules-—of-thumb" there is some evidence for a multi-
modal distribution. However the evidence is not conclusive, and
illustrates the difficulty in finding a rule for multivariate distribu-
tions.

One might hope to get some idea of the conditions for which these
L2 distributions are not uni-modal by considering their conditional
distributions. For example, in figure 5.11la is a line is marked which
represents C(uz,u3)/u1=0.5. At this point the conditional distribution
is uni-modal, however for a value of uy close to 1.0 the marginal
distribution is bi-modal. If this examination were repeated for
C(ul,uz)/u3 and C(ul,u3)/02 we would be able to deduce an over all
tri-modal distribution. However, from section 5.1.2 the only condi-
tional distribution that is tractable and results in an Ly distribution
is of the form C(uz,u3)/C(u1,u2). For this conditional distribution,
however, the locus of the line passes through the apex of the triangle

at 1_13.
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Consequently it does not ever seem to become bi-modal. It may be
possible to determine something about the multi-modal distribution by
examining the location of the mode as the conditional distribution is
allowed to vary across k. This approach does seem rather unsystematic
and so we do not pursue it here.

In conclusion we see that three possible location parameters are
available which may be used as point predictors: the mean, the mode and
the inverse of the logistic transformation. The choice of which one to
use will depend on other factors such as whether the distribution is
uni-modal, and the variances of the prediction errors for Ve- In the
situation when the distribution is multi-modal, it may be more sensible
to use the modes. This problem will be further addressed in section 5.5.
When the distribution is uni-modal, the mean is the point predictor best
suited to most purposes since it provides the MMSE forecast. However
when the distribution of the prediction is tightly packed, as in the
one-step-ahead forecast for the GALLUP poll series (figure 5.15) it is
possible to use the inverse of the a, transformation as an approximation
to the mean. Table 5.16 gives an indication of when the inverse is
close to the mean. In the fully symmetrical case it equals the mean.

It does well when the I parameter is of the form (5.2.29), and less well
otherwise. This can be seen by comparing the L2 and L3 distributions
labelled d, h and m with those labelled e.g. i and m. The first group
have I of the form (5.2.29) whilst the second do not. All have non-zero

2. The mean of the first group is more closely approximated by am"1 in
the first group than in the second.
In general it is suggested that the rule-of-thumb described

earlier by equations (5.2.33) and (5.2.34) be applied to indicate uni-
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modality. If more than one mode is present , which predictor to use
will be a subjective matter, depending on the application. In the
uni-modal case the mean may be easily calculated numerically, or
approximated using ¢=3, If it is clear that the prediction distribution
is dense around one area then am"1 may be used., This will be the case
when the elements of I are small, where I is the prediction error
covariance matrix for the appropriate forecast Vi The decision to use
am—l will depend both on the size of these elements (e.g. in figure 5.15

these are of order 10“2), and on the accuracy of the forecast required.

5.3 Some Examples of the Mm(p,i) Distribution

It is possible to carry out a similar investigation to that of the
previous section for the M,(3,L) distribution. However, as we require
limited use of this distribution, for brevity we do not do so here.
Never the less we produce a few plots of the M (p,L) class. Three
examples of the M (y,X) distribution are represented in figures
5.18-5.20. These should help to illustrate a few of the properties of
the multiplicative logistic density function.

The first figure illustrates the M5(0,1I,) distribution. As with
the LQ(Q,EQ) distribution it is symmetrical between only two variables,
but whereas before the symmetry was between uy and Uy, it 1s now between
Uy and uy. To examine this recall that for u € §, u ~ M (y,2), then

v = m (u), where v ~ N (y,Z). 1In this instance (m=2), v = my(u), i.e.

_ 1
Vi © lnl -~ u ’
1
u u u
V2 = 1n~i——:‘{i‘2———::l—-— = 1nh~2~ = "].I'lﬁ'2 »
1 2 3 2

Hence Vo may be thought of as the log-ratio of u, with uy. If there is
no correlation with vy, and with zero y the distribution will be
symmetrical in U, and ujy. This illustrates that despite the difficulty
in permuting the elements of u when comparing Mm distributions on the

same data set, it is none the less possible to interchange the mth

and
n+1th element., - For the L, distribution we recall that vy = 1n(u1/u3)
and vy = In(uy/uy), so that both u; and u, are referenced by uy. Hence
if vy and vV, have identical means and variances, Uy and u, will be

symmetrical in the resulting Lm distribution.
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Figure 5.19 illustrates the M distribution for p=0. As in figure
5.13 most of the mass is close to u; = 1, but in this case it is more
pronounced. The final figure, figure 5.20 illustrates a bi-modal
density function. This example has one mode higher than the other. It
illustrates that care must again be exercised in choosing an appropriate
point predictor, should the lnXARMAm(p,q) model be used for forecasting.

A final characteristic of the M distribution is that it is not
easy to construct a parameterization that will produce a fully symmetric
distribution. This is indicative of the order-dependence of the M (u)

transfomation.

5.4 Confidence Region Based on the Logistic-Normal Distrbution

Often a time series analyst is not only interested in producing a
single valued forecast, but in obtaining a region in which the future
value lies. This region defines an interval predictor. Aitchison and
Shen(1984) point out that a confidence region is easily obtained for a
sample of u’s € §" using standard multivariate normal distribution
theory. Consider n independent estimates of a composition u; uj,
i=1,...,n. A 100(1-«)% confidence region for u, where u,~ Lo(u,2) is :-

a5 - 8 |57l - 1] ¢ lalmg (5.4.1)
- u v |- u n~m oym, n—m

m+1 m+l)
- 1 0 1 B - -~

where v = a (u), v==1Lv,, § =" Y (v, —vi{v-v)', and F

- m — - n. .—1’ -v n—-1. -1 - = - oym, n-m
i=1 i=
is the 100a upper percentage point of the F distribution.

>

This is akin to the fact that a 100(l-w)% confidence region for u=E(v),

wam(g,E) is,

(n=-1)m

) (5.4.2)
n-m o3, n—-m

- -1 -
n(v - E)gv (v — y) <

as in Morrison(1976).
In section 2.5 we discussed forecasting a vector time series. For

a time series gt we may estimate the £-step ahead forecast of Z by

t+4
gt(x) and its variance by Var[gt(l)}, resulting in a confidence region
for §t+£ given hy (2.5.6). Using the same notation as in (2.5.6), but
instead, considering the series 7. 2 100(1-«)% confidence region for
Veig ~ ARMAm(p,q) is:-
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,e—1
(v, () = v, )L

t+4 oym

Comparing (5.4.3) with (5.4.2), and in a similar manner to (5.4.1) we

thus obtain a 100(1l-a}% confidence region for U~ ln+ARMAm(p,q) as -

u u
v (1) - ln—k ;;1(“ v () - ln—SE )« Xi'm :
’ t+4,m+1] =t t+4,m+1 ’
{(5.4.4)

Four examples of a 95% confidence region for u are given in figure

5.21.

t+i

5.5 A Simulated Example

In section 5.2 various location parameters of the L, (y,2)
distribution function were considered. All of these could be used as
point predictors for forecasting time series u, € Sm. When applied to
our GALLUP poll data these variocus predictors were almost
indistinguishable (see table 5.16f), since all of the data points for
the series were well grouped away from the extremities possible. (Figure
5.15)., In this instance we would have little concern about which point
predictor to use. Also the resulting distribution is uni-modal.
Consequently series similar in nature will also be easily handled. But
what of other series? In particular compositional time series that
originate from bi~ or tri- modal white-noise series. What do such
series look like? How do their forecasts perform? It is these questions
that this example is designed to address by producing a simulated
example with the properties required,

The first step was to simulate a white-noise series from a N {(u,L)
distribution, where y and I are chosen so as to make the daughter
L,(y,Z) distribution tri- or bi- modal. This may be readily done using
the NAG-library.

4 2

5 4} were generated. If these points are

500 points from a Nzﬁg,{
L

e e . . . . . L
Voo where Y. is-white-~noise then the resulting gi series is formed by
. ) . N . e -1 e
taking the inverse of the logistic transformation. Thus u =a, (yt) .
1
For the series of 500 points described above the resulting white-noise
e

2 . . . . .
N e 8" series was computed and a plot of this is given in figure 5.22.

u
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As expected the points are well scattered over all the range of
possible values (i.e. over all the triangle), but are more dense towards
the extremities. That is, nearer the coordinates (1,0,0),(0,1,0) and
(0,0,1) which correspond to apexes of the triangular axes. This
corresponds to the underlying tri-modal distribution. (c.f. section
5.2},

Using the yi series plus a further 100 points, 500 points from an

AR2(1) process were generated by:-

v = 0.8 0.3 v . ve
-t -0.4 -0,5]-t-1 ~t *

The first 100 points of the now augmented yi series were used to ''start
up" the AR2(1) process, Finally the resulting U, series was formed as

_ -1 . .
u, o= a (gt). Thus u,  is an 1n+ARQ(1) model with parameters,

_[o.8 0.3 _ 4 2]
2= [-0.4 ~o.5} , and L = {2 4]

This series is plotted in figure 5.23. What is apparent from figure
5,23 is that many values occur at or near (1,0,0) and (0,1,0) and very
few centrally., Thus the autoregressive components have exaggerated the
tendency for the series to take values close to the extremities.

In order to see what sort of forecasts would be produced, we
analyzed this data using WMTS—1. The pattern of the cross-correlation

matrices for {gt} were:-

T + - + - + o, + o, + + . . o
+ - . . . e e e . . IR . - L > .

lag 1 2 3 4 5 ) 7 8 9 10
- + — - —

A graph of the autocorrelation function for vlt and v2t , and the cross-

correlation function are given in figure 5.24.

A schematic representation of the PACF is,

lag 1 2 3 4 5 6 7 8 5 10 11 12
These both suggest an AR2(1) model, as we would expect

Finally the parameters of an AR,(1) model were estimated. The
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constant term was found to be nearly zero (as in fact it is), and the
model was re-estimated assuming no constant term. The estimates

produced were,

e

© _[0.787 0.361 4T - [3-896 1.917
-0.416 -0.448| 2 1.917 4.215

these correspond reasonably well to the true model,.
Using this model, starting from the 500th observation ,various

forecasts were produced, together with their corresponding variances:-—

v (1) = |0-69 _ [3.90 1.92
~t 0.15] * Fe () 1.92 4.21
v (1) = | 0-60 _ [7.97 -1.03
~t -0.36] 7 Fe (4)  |-1.03 6.48

From the forecasts yt(t) we may then compute various forecasts

gt(l)‘ Figure 5.25 shows a plot of the Lz(yt(l), ;p (1)) distyibution.
-t

Most of the mass is around (1,0,0) with a ridge along u3=0 and u2=0.
There are three modal values near (1,0,0), (0,1,0) and (0,0,1). The
largest is clearly the one near (1,0,0). Evaluating these modes

numerically gives,

Max = 66,5909 at (0.9974, 0.0011, 0.0140),
Max = 7.7140 at (0.0065, 0.0027, 0.9908), and
Max = 20.9875 at (0.0025, 0.9961, 0.0013).

Thus a sensible choice of predictor may be to say u, (1) will be close to
(1,0,0) with a high probability, close to (0,1,0) with less probability,
and close to (0,0,1) with a small probability. If one were to use the
mean then numerically this is at,

Mean = (0.4261, 0.3058, 0.2681).

whereas the inverse is at,

a, (v, (1)) = (0.4805, 0.2797, 0.2398).
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Both these latter predictors of u,,.; are fairly close to the central
point (1/3,1/3,1/3). Also they show a higher value for u; and the
lowest for ujy, reflecting the heights of the modes. What is clear, is
that the use of the mean or inverse gives a very different picture of
the value of gt(l), compared to that given by the modal values. It
seems that these two alternatives are equal and opposite. The best
choice of predictor will be that which meets the need of the analyst.
For example, if Uy, Uy, uy are the proportion of sales made by a car
manufacturer, and it is required to know how many of each model to
produce for next month, the mean should minimize costs for any mistakes
in the forecast and the actual values (all other things being equal).
If instead the manufacturer wanted to know which car would be the most
popular, the modes may be used since it demonstrates that this is uy
more clearly than does the mean. Or in a car show room, where only one
of the three models may be selected for display, the modes might again
prove useful.

A further forecast is illustrated in figure 5.26 which is the 95%
confidence interval for u

=t+1°
and virtually covers the whole domain of the 82 space. Its large size

The confidence region is extremely large

reflects the large value of I and the tri-modal nature of the underlying
L, distribution featured in figure 5.25. It is slightly shifted towards
the (1,0,0) coordinate, as one might expect. Because of the high mass
along the u3=0 and u2=0 axis, a small region around these axes will
account for the 5% of the density outside the 95% confidence band. The
centre of the region 1is at am_l(yt(l)), and consequently these high mass
ridges are partially excluded from the confidence region. An alterna-
tive interval predictor which would incorporate the high density areas
can be obtained by taking the contour of the Lm distribution, inside
which the mass is representative of the proportien of the density
required to obtain a given size confidence region. The exact nature of
this would require further study, but might result in something similar
to figure 5,27, Figure 5.27 is the contour lying approximately between
those labelled "1" and "2" in figure 5.25. 1t should be noted that this
contour should be regarded as being closer to the u3=0 and u2=0 axis and
to the apexes than the contour in figure 5.26. Once again it covers a
large region as one would expect in view of the density of the Lm

distribution (c.f. figure 5.15),
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In summary this example sheds light on the difficulty of forecast-
ing compositional data sets, when the underlying distribution is
multi-modal. It will depend on the context as to which forecast the
analyst should give. Further this example illustrates the fact that if
a distribution is multi-modal, then its modes are all close to the
extremities. Two points may be drawn from this. Firstly for such data
an alternative model may be formulated and prove preferable, if as it
seems, the data may be approximated by a discrete state series. (e.g.
transition probabilities could then be computed). Secondly it is hard
to envisage such difficult data occurring in practice., We would not
really expect the pattern of car sales in our example above to look
anything like the simulated series. The opinion poll data certainly did
not resemble such a pattern. It is hard to imagine that the preference
for the Conservative party (say) was 99%, but that in the next month
it was now the Labour party that had a preference of 997%. Similarly in
the geological context, so0il structure will change slowly along a
spatial direction, or over time. Thus the need to model compositional
time series with the properties described above seems to be rare almost

non-existant.

5.6 Summary
In this chapter we have investigated the properties of the Lm(g,g)

distribution and to a lesser extent the M (j,X) distribution. Various
examples of these distributions have been examined. It has been shown
that the mean and the mode must be estimated numerically, although an
approximation to the mean is easily produced. The distributions are not
uni-modal for some values of y and X.

The results have been related to the In ARMA (p,q) and
lnXARMAm(p,q) models, especially in the context of forecasting. For the
opinion poll data it was shown that the various point predictors were
virtually identical. It seems that for the majority of data sets this
will be the case. However, should this not be the case, a simulated
example illustrating the more obscure types of data and the possible pit
falls, has been examined.

It seems that forecasting in this context must be done with great
care, and the choice of which predictor to use will thus depend on the

nature of the data in question, and the reason for forecasting.
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"Do you know the Caws of the heavens?
Can you set up their dominion over the earth?”

Job 38:33

CHAPTER 6

Dependence and Independence in Compecsitional Time Series

6.0 Introduction

In section 2.6 we discussed various concepts of
causality, feedback etc. between multivariate time series.
As discussed in chapter 3 the sum-constraint on compositional
data induces an automatic dependence. If we wish to understand
the interrelationships between compositional time series it is
therefore necessary to develop new forms of dependence. This
is the aim of this chapter. The resulting types of dependence
and independence have various applications which will be
discussed as each new concept is introduced and developed.
A1l of these new concepts arise by integrating the results
of seection 3.5 with those of 2.6. 1In section 3.5 we discussed
two types of compositional dependence:- extrinsic and
intrinsic. These two types are developed below in section

6.1 and 6.2 respectively.

6.1 Extrinsic Analvsis

We recall from section 3.5 that extrinsic analysis
of compositional data is concerned with investigating
the relaticnship cf a composition to the basis from which
the composition is conceived to have originated. Similar
questions to those of section 3.5 arise in this time series
context. For example, consider the household expenditure
survey; the relationship between income and the proportional

breakdown of expenditure on various commodities may be
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examined via tle concept of compositional invariance (definition
3.23). If the data consist of a time series, such as would
occur 1f we were to examine a repeated survey on household
expenditure we may examine more detailed questions. Here
income is Ty for a given month (say), and assuming all

income is spent on n commodities with respective expenditures
Wops woee W, in month t we have that 1, = T(Et), and that

t
the proportional breakdown of expenditure is C(Et) = Ht' We
may then investigate the relationship between Ty and Ht'

For example how does a pay rise alter spending? Is there

a time delay before spending habits are altered to keep in
line with others in the same income bracket? In other words
does past income 'cause' spending habits. Using the
definitions of Wiener-Granger causality (definition 2.17)

we may examine if Ty Qt‘ If one or more of the categories
on spending consists of investment in a monetary scheme

that will later produce a change in income then clearly the
past pattern of expendikure will cause income i.e. Ht Ty
(definition 2.17). Finally the relationship between
expenditure and income may be instantaneous which would
occur if Ty - Et' Hence using definition 2.17 we now

consider a time series counterpart to compositional

invariance (definition 3.23).

Definition 6.1 : (Wiener-Granger) Dependence of a basis.

Let U, € 8" be a compositional time series such that

50
H, € P™1 ic the basis of U, i.e. U, = 0(i,) and also let

t
Ty, = T
Therusing the notation of definition 2.17 (Wiener-
Granger causality) if:-

1) Uy Il 7, then W, is compositionally invariant (cll B)

ii) U, » 7, the basis has compositional dependence (C + B)

iii) T, * U, the basis has compcsitional causality (B » C)
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iv) U, & T, the basis has compositional feedback (B> 0C)

t

v) U,. T, the basis has instantaneous compositional

t t
dependence (C.B)

vi) thﬁwt the basis has complete compositional dependence
(C & B)

The above definitions have all been included for
completeness, and some may prove to have more obvious
applications. These definitions could be more vigeyrously
named along the lines of section 2.6 i.e. dependence,
causality, feedback are linear in mean with respect to the
basis/composition. To include this would produce rather
lengthy names. A further reason is that if we were to
develop the concepts of causality in for example a non-linear
context, then the analogous derived time series definiticns
may easily be imported into definiticn 6.1. More importantly,
the linear relationship will be via Yy o= am(gt> and not
Et as will be seen below. Thus, definiticn 6.1 should perhaps
be in terms of Xt's relationship to Ty- However since there
‘ and Et

to roughly the same thing; and in keeping to the form above

1s a one to one correspondence between v this amounts

we remaln more in line with the concept we are trying to
achieve. In other words, we want to investigate the

relationship between the compcsition (i.e. U and T v

t> -t

’
being a useful intermediate aid to us. ’
Of the definitions it can been seen that CJJ_B and
C& B are at opposite ends of the scale; the first implies
that we lose no information about the compositional time
series in ignoring the basis from which it came, unless
we have an additional interest in Ty- The second implies
just the opposite, and depending con the particular inter-
pretation required means we may do better to analyse W

t
instead of Qt and Ty

The next step is to devise a means of testing the

T

various types of compositional depsadence. The U, 's may

t
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be readily modelled by a &n ARMA (p,q) process, and
inference can then be made using the F-measure of section

2.6. The procedure is as follows: first form v, from
Et i.e.

¥y = oag (Et) , and also let

Ty T T (Et)

Then as in definitions 2.18 through to 2.20 we have:-

Definition 6.2 : measures of time series dependence on

a basis.

i) The measure of compositional dependence is

x ‘ E(x/zb>¥ )
™ | 2(w/

v
P b

iii) The measure of instantaneous composgitional dependence is

| 2(w/v s Tt 2T, v )

F§T=Qn( PP ;
= 5 (v, T , T
| 2 (v /zp pf

)

iv) The measure of total linear dependence

Z(T/Tp)|

.

| E(x/xp)

ger |2 (v, T/xp, Tp)]

As befcre
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M A A KA
0y

. vt E (6.1.1)

FQ;¢¢T Uy-»=x T U .t

These definitions are related to the time series measures

thus: -

FQ(;)T:F_’_\_I_Q—““-)T’ %

% )

R P 3(612)
* )

Fi - U - Froay » 888 Fy 0 =7, 0

Clearly if Vi is univariate we could also use Haugh's test
to investigate compositional invariance. As before under

the hypothesis of no dependence.

nF Xz(r) , where r is the number of parameters no

longer needed if the hypothesis is true.

When some form of dependence does exist between the
basis and composition it may be only through a subset
of the compositicn., In the context of a usual set of
multivariate time series we can easily examine the subset
independently. However Dbecause of the transformation of
Qt to Vi it may prove difficult +to disentangle exactly
which subset of the U,'s is involved. However many of
the partition independence properties will assist us.
These were introduced in section 3.5, and are extended to
the time seriles context in the next section. The basic
idea is to form two subcompositions, allowing only one
to interrelate with the Ty series whilst these are still
themsleves modelled jcintly. This may be done by invoking
conditional F measures (Geweke (1984)). 1In fact any number
of possibilities can result from this approach, but
since these are simple extensions we do not develop them
here. They do require a knowledge of which subset to

scrutinise. However, with a little common sense there are
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some cases where we may disentangle v

to Tt.

Consider W € P°, and assume that B > C exists but
only through the first element.

log W
log W

log W

1
2

3

My
Ho

H3

We have chosen to use log

W

t

Suppose further that

and its relationship

(6.1.3)

so as easily to map this onto

suggests

-1 S°
g
-1
-1

!

-(111)

are indicative of
the

Vis but we note that Tiq = Wl,t-l + WZ,t~l Wy
that we do not strictly have a linear model in W
If we pre-multiply (6.1.3) by [-1 1 O s 1
-1 01 0
and |1 0 -1 we obtain respectively:-
o 1 -1
{vl,l} ) {“2““1 LM el o, %2
Vi,2] & |[M37H1 -A ®37%1
V2,1 [“1‘“2 [‘A} Tt-1 17
v = U= + +
2,2 + 3 2] 0 83—62‘t
V3,1 = (M1l o+ T Teo1 o4 8178
Vi,2] v [MaTM3) 0 €375 ¢
where v.. = a_(U,) with U, . being the reference variable
i =1, 2, 3. The coefficients of Ty 1
the orginal model. 1In (ii) and (iii) (X,0)
relationship Ti_q Ult’ and (=X, =A)" in (i) implies:-
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] . o .
Te1 ~ Jlt (since Ul is the reference variable) or

Tiop Uy, and UBt’ or both T, ; + W. By examining
varicus permutaticns of the An ARMA (p,q) model it is
therefore possible to gain some insight into the model.
This may be easily done via the g(k) matrix used in

chapter 3, (3.4.2).

The above example illustrates how inspection of the
parameters may aid us in understanding the nature of the
causal relationships in our data. There remains a cautionary
note, however, which stems from a result that is similar
in nature to that of section (3.5). Recall the structure
of gv, the covariance matrix for v that originated from
U's basis, W consisting cf independent components i.e.
¥, The I given by (3.5.5) not only could be derived
from gw being diagonal but from any matrix of the form
(3.5.10). Similarly recall (3.5.9). As in (3.5.9) the
models given by (6.1.4) may also be derived from any model
such as (6.1.3) but where the coefficient of T, _; is now:-
(A + a,a,a). Thus although models such as (6.1.4) are
necessary for (6.1.3) they are not sufficient. This is

likely to carry over when examining subcompositions and

their relationship to 1, and as before we may have to make

t
do with necessity.
Despite its flaws, compositional dependence of a basis
provides a useful tool for many statisticians. It may also
prove to be useful to economists where the coefficient of

log T (rather that 1) is related to income elasticity.

Another question an investigator may have about the

composition and its basis concerns the interrelationships

147 wm+l,t‘ If
th - W2t then what will be the relationship between Ult

between the individual components W

and U,,? If ¥, is known then it is not necessary to
exanine Et’ however if ﬂ+ is not kxnown then what would be
useful would be to be able to make inference about Et

based on Et' The loss of information in having only Et
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means that it will not always be possible to understand
what went on in the basis. If we fit an &n ARMA, (p,q)
model to Et

variable, and then inspect the values of the resulting

with various different choices of reference

parameter estimates, it may be possible to gain some

insight into the relationships within Ht‘ That 1s, we may

apply intuition and common sense in a similar way to (6.1.3)
and (6.1.4) above. Some forms of dependece have easier

- A 1 1 1
g = (Mg i)
and we suspect that Hlt > EZt then we may test our
hypothesis using subcompositional dependence etc. as will be

solutions than others. For example if W

discussed in section 6.2, and which is a fairly straight

forward procedure. It is not possible to examine all the
possible relationships on Et’
extremely complicated, or give intractable results. So

especially those that are

what we have chosen to do is to examine an important

special case. In particular we will examine the case

where the basis consists of m+ 1 independent series.

This gives rise to the time series equivalent of basis
independence (definition 3.24). It is virtually identical
except that by ']|' we mean that the individual auto-correlated
wit series are independent of one another, whereas in
definition 3.2/ meant independence in the statistical

senge of Wij being independent observations (i.e. not

auto~correlated observations) of independent random variables.

Definition 6.3

Qte,sm%t =0, ¥1, ...) is said to have basis
independence if there exists a basis E% e P ror Qt such
that Wiy (i=1, ..., m+l) are independent. That is

SINA

11) U, = o(4,)

We will describe this by || B.

In section 3.5 it was shown that a composition possessing

basis independence led to a particular structure of I the
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covariance matrix of v, = am(Qt). The structure for I
given by (3.5.5) may be apolied to time series. However,
it is now necessary to extend this result to the auto-
covariance function, since the data are now autocorrelated.
As might be expected the pattern represented by (3.5.5)

becomes the pattern for each cross-covariance matrix (k).

Lemma 6.4

If Et € 1§ " £ =0, tk, ... has basis independence
the autocovariance function I'(k) (definition 2.10) of
v = a (U.) has the same pattern as (3.5.5), that is:-

D00 = ag(y, ™, 0, L,y )y )y (6.1.5)

m 'm+l —m
O s e, s a1, L, me
1
Proof
Let:- W, be the basis of Ht
(k) = a.c.f. of x, k=0,%T1, ... ,
T =1, -],
= N
Lt & (it> ’
and I{k) = a.c.f. of v,

Then from the definition || W

& .U.?Et
= Q(k) is diagonal k = 0, * 1,
Also we have that, v_ = X
+
= Ik =wkY ; k=0,-1,....
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For I'(o) elements are var(zt) so that Yi<
m + 1.

Although (6.1.5) is necessary for ||B,

o) > 0

, 1 =1, ..,

it is not sufficient.

This is not only because of normality assumptions, but as

in section 3.5 any Q(k) of the form,

é )+28(k)+v<+% B( ), <k>+”(f% ty _..Bék)+8; )+”(k%+a Bék)+
s{¥)sgli)y i)y v§¥ 2l ey (K)pg gl g i)y (), g ),
S e
()1 (¥4, (K)o .
(6.1.6)
will yield I'(k) = Y Q(k) Y' of the same structure as (6.1.5).

Having seen what the structure of I'(k) will be under

11,

When

we need to examine next a means of testing for B.

Aitchison (1981) introduced basis independence he

suggested testing for a covariance matrix of the required

structure as discussed in section 3.5 (equation

However, here we have nod just ore matrix Z,

such matrices. This is not the only diffi
covariance function is not easy to interpr

by Haugh (1976), who in searching for a te

but

culty.

et as
st of

(3.5.17)).

a series of
The auto-

may be seen

independence

between ordinary time series suggests the S statistic given

by definition 2.23. As we saw there,

to test for diagonal I(k), (i.e.

normality) without first pre-whitening each series.
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examine ||B in compositional time series we seek an
equivalent way to pre-whiten our series. An alternative

is to develop Bartlett's (1946) result for the expected
value of the sampled autocovariance function. This latter
approach has so far been avoided because the expressions
lead to intractable algebra. We therefore follow the

first approach. For this we seek an ARMA process with ACF
given by (6.1.5) and then consider pre-whitening the

series using this particular model. We begin by examining
what the ARMA process would be for Vi if Et are independent
series such that each Xip = log wit (i =1, ..., m+ 1)
follow independent ARMAl(p,q) processes. For U, = C(Et),

= ¥
X lOg AT! assume

Xip M ARMAl (pi, q.) i=1, ..., m+ 1

v 1

(6.1.7)

where the eit are independent white-noise series, with

variance GE.

Since the e., are independent the X,y are necessarily

[ U

independent.
Consider the series Xep = Xpiqp T Vig 10® 1, ..., m,

hence v, = a (Qt), then using the result of e.g. Box and

t m
Jenkins (1976)

vii v ARMA (Pi, Qi), where

P, < py TP (6.1.8)
9 ¢ max(pitag,y, Pragtey) (6.1.9)
The resulting ARMA models take the form:-
05 (BIoy 1 (Blvyy = -0, (B)8, 0 (Ble b w40 ,1(B)8,(Bley
6§m+l>(B)ait (say) i=1, ..., m.(6.1.10)
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Equality of (6.1.8) and (6.1.9) holds if there are no
identical roots in the AR and MA components of (6.1.10).
We will not cancel out any common factors at this stage,
so that we may easily compare the m equations represented
by (6.1.10).

If we were to use (6.1.10) to pre-whiten our series
we first need to know how the ait series were related
to one another, since unlike the mt+l et series they are

not independent. From (6.1.10) we have

(m+1) ~
f1 (Bl agy = 8,0 (B0 (Bley g ¥y, (B8 (B) ey
(6.1.11)

Assuming the L.H.S. is invertible let
[ (m+1) T-1

ai(B) = -ei (B). 9m+1(B> ®i(B) (6.1.12)
[ (mt1) 1-1

Bi(B) = ‘Gi (B)_ ¢m+l(B) ei(B) and hence we

may rewrite (6.1.11) as:-
ai,t::ai(B) b, + Bi(B) o5 g (6.1.13)

Since the e t's are independent we have
b

2 _
COV(ai,t’ aj,t) =02, yio 0 e aj,k i, ] 1, «.., m
i 4 (6.1.14)
— 2 2 2 2 = T
var(a.,t) o2, 4 kio of + ol kzo Bl,k i 1, , T

Consequently, after pre-whitening each of the Viy
series we do not have an obvious structure to look for
amongst the resulting residuals. 1In particular the ait’s
are no longer mutually independent. However consider the

following situation:-
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and o2 ¥ R? =X, , i=1, ..., m+ 1 (6.1.15)

then (6.1.14) yields:-

COV(ai,t’ aj,t> = xm+l i, 3 =1, «oom
i
(6.1.16)
NN -
var(ai,t) AN \m+l i 1, ... m

Equation (6.1.16) représents the now familiar structure
of a covariance matrix for am(g) when U processes basis
independence. Thus if we were to pre-whiten using ldentical
ARMA processes for the v, we could then examine the cross-
variance matrix of the residuals to see i1f it 1s of the
form given by (6.1.16). We may test this via the likelihood
ratio statistic (3.5.17), if (6.1.16) does hold then we
would have basis independence. However at first sight
there seems no reason to suppose we should have identical
ARMAl(p,q) processes for each of the Viy series. However,
further evidence exists for identical structures. The
following results that indicate this are somewhat complex.
We develop them in stages. Intermediate results and proofs
can be found in Appendix A. The first result describes
how the individual elements of the autocovariance function
are related across lags for an ARMAm(l,q), where the auto-
covariance is that given by (6.1.5). It will be geen that
the generation of the individual series, (ygr), y§r+l),...)
r 3 g, are identical for all 1 = 1, ..., m + 1 except for
one wvalue of 1, k (say). This indicates an identical

AR component for the v series, apart from an additional

t
term responsible for the generation of the k series

Cfir), y£r+l?, cee )
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TLemma 6.5

Consider an ARMAm(l,q) process with autocovariance

function
I(s) = dg{vls), Y;S>, e V;S)} ¥ v;fi U,
= Als) + ?éf{ u, (say) (6.1.17)

Then for any r 3 g and s > 0 the ratio

Y(s+r>

x§s’r> :;T?T“ is constant with respect to i; (6.1.18)
'3

i=1, ..., mt 1 except for one value of i, k (say) i.e.

Aés’r> N T 1, vee, m + 1
i+ k,

where k€ {1,2, ..., mt+l}

Proof

See Appendix 4.

Continuing on from this lemma we now find the exact
solution for the AR parameter o, It will be shown to be
the sum of two matrices. One represents the identical
relation for the m terms that are equivalently generated,
whilst the other deals with the X2 tapm,which we will
refer to as the rogue parameter. The first matrix is the
identity matrix multiplied by a scalar. The second is
either a gzero matrix except for row k, ke (1, ..., m)
which apart from a constant (l/v(r> Yir) in notation
below) is the kPR roy of L(r)_l. For k = m + 1 it is the
product of the inverse of the diagonal component of I[(r)
(i.e. A(r)) multiplied by U . The effect of these choices
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for the second matrix is to "knock-out" the product of
it with T(r)'s w§r> terms except for i = k, leaving
only yér affected. The result is given in Theorem 6.6.

Theorem 6.6

For an ARMAm(l,q) process with autoregressive
parameter & and autocovariance function as in (6.1.17),

i.e.
r) = L (r)
L(L> - AKT> + ’m+l Em
the only solution of ¢ possible is:-

2= 0 L+ 8 Agy (6.1.18)

for some constants ¢ and B, where

ke {1,2, ..., mt+l},

and
dg%% i=3 =%k i, j = 1, ., M
(a0 ={- = 5=k 3 k=1, ..., m
(k). . L (q) ’ >
ij ls
0 otherwise (6.1.19)
A = ag)tu k= m o+ 1
=(m+1) =3 - - ’
m+1
d§§=2 —— . s =0,1, ...,
i:l Vs
itk Ot

Also for this solution the I(r+s) matrices may be generated
from I'(r) thus:-

[(r+s) = ¢°T(r) + & B(k) T

623

1 il
o Q
.,
. 0
o+
R
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where

_dDI"‘S ; g (bs"‘i Bld (q)l'l<1+ (r) d(r>)
s.r,k 2 6) () Yix) 4x))
and
1 i=j=%k , k=1, ..., m;
{B(k)}ij ={1 k=m+ 21 ;4i, j =1, ..., m ; (6.1.20)
0 otherwise , j =1, ..., m.
Proof

See Appendix A.

We now consider how this relates to basis independence.

Corollary 6.7

1 U, € & ™, follows an ARMA_(1,q) process with
autoregressive parameter 9, and Et possesses basis
independence as given in definition 6.3, then ¢ is of the

form given in theorem 6.6.

Proof
Follows directly from lemma 6.4 and Theorem 6.6.

The coefficient matrix ¢ generates I'(k), k > g from
I'(q) by multiplication. It multiplies each yi(Q> by the same
constant, but over and above this, just one of the yi’s
is cenerated separately in a non-uniform way. Consequently
apart from the rogue series, each y, = am(gt) series that
follows this model under basis independence follows the
same auto-regressive process. Comparing this with our
earlier comments on pre-whitening, we again see sone
evidence for fitting the same ARMA process. However we
still have to consider higher-order ARMA models, and the

6., ..., 6 pvarameters of the moving-average component.
__l __.q iy D

The generalization to higher-order processes 1is

not that straight forward. We have a much larger matrix
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to invert when p>1 Since the Yule-Walker equations are

now a system of p matrix equations in p unknown matrices.
It has not proved possible to derive exact results for
higher-order models. However generaligzations of theorem
6.6 for the ARMA(2,q) and ARMA(p,q) models are given in
Appendix A. (Lemma A.2 - Corollary A.6). These generaliz-
ations provide possible solutions for ¢

1, e »
basis independence. The solutions have not been shown

.,® under
-P

to be unique. The solutions given are none the less
compatible with theorem 6.6. The resulting structure
of each of the gi's i=1, ..., pis as in (6.1.18)

¢i Lm + Bi Ai i=1, ..., p.
The second matrix (apart from the constant) is responsible
for the generation of the rogue series, and can be seen
to have the same pattern as in (6.1.18) except that the
elements are now functions of m§q), Y§q+l)’ “e Y§q+p—l)
and not just ygq). It may be easily shown that 4.
i=1, ..., p all generate the same rogue series. (i.e.

él cannot generate a different rogue series from 4, ete).

This generalization to higher order models does,
however, provide a sufficient structure of the $ parameters
for [(k) = dgly(k), ... v (k)) + v_ ., (k) U (k=0, #1, ...).
For the ARMAm(l,q) process this structure is both necessary
and sufficient. Therefore one might use this structure
to test for basis independence. It would be necessary
to pre-whiten each series using an ARm(p) process of
sufficient order so as to ignore the MAm(q) component
and then examine the resulting residual series. There
are several problems with this. Firstly, which series
should be the rogue series? Secondly, what will be the
structure of the resulting residual series? And finally
the structure of the I'(k)'s is necessary for Basis
Independence but by (6.1.6) it is not sufficient. The

first problem may be overcome by using an identical AR_(p)

204



process, i.e. assuming that there i1s no rogue series.

The second problem would then need to be investigated

under the assumption of identical ARm(p) processes.

This would still leave us with the third problem, which
implies that the structure for the ®'s is neither necessary
nor sufficient for basis independence. This can be seen

diagramatically:-

basis independence 11 L

A N

necessary

F(k) = dg(yl(k> [ Ym(k)) + Ym+l Em

A AN i
i |
sufficient : +<necessary if>+ :
i = :
! P 1 1
! !
i
., = a, I_+ A i =1
~i idn T8 Ay (u) ’ » P

Further algebraic manipulation indicated that the cross-
correlation matrix of the residual series may be of the
same structure as I'(k), and also that the §'s could be

of the same form as the &'s. However with no conecrete
solution to any of these parameters further investigations

have been omitted.

The question remains as to why there should be an
identical structure to all the Vs series apart from one.
One may presume that the identical structure may occur

)= /7).
However this does not explain the rogue series unless of

because of the normalizing process i.e. Uy = C(uW

course it is a mathematical truth which is not a statistical
reality. Perhaps the next step might be to carry out an
extensive simulation study whereby independent wit series
were generated, Ht gserieg then formed and an 2n+ARMA (p,q)

model fitted.

M
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We now note one final property of basis independence.

In section 3.5 for m = 1 or m = 2 the series must
necessarily possess basis independence. 1In time series
this is also necessarily true for m = 1, but not m = 2.
Although T(0) must be as in (6.1.5) for m = 2, I(r), r+0

is not necessarily of the same structure, unless

I(r) = ﬁ(r> ; r=0, *1, ...; i.e. we require that
Yig) = Yéi). A similar restriction holds on the parameters.

For example,

0, o d. 0
If & = LR L al, + 1 U (from theorem
bye O - 0 4 m
21 %22 2 6.28)
a 0 d d
) . 1 91
0 a d, d,|
So that
¢ll = dl + a
01 7 d9® a = 0gq - 0y,
_ 2 b= = Oya=0
. a, 117 %102 227 %
- _ (6.1.21)
don 2t dy 2= by, - by,

The equation (6.1.21) represents a linear restriction on

tle parameters within 9.

The difference between basis independence and time
series basis lies in the fact that for the former we

require:- {(using the same notation as before)

1w i.e. W, 11 wj vid$gj=1, ..., mtl
(6.1.22)

whereas for the latter we require:-
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: . .o .
1w, ioe. W, 11 th o= 0, 1, ..
v i#3j =121, ..., mtl
i k = +
and W, 11 Nj’t+k k=0 1
(6.1.23)

Consequently the independence in time series is a lagged
independence as well as a contemporaneous- one. When
N (2 =1, ..., n)
| £ . . . . h
then W, 1l Mooy fo7 all i, j and k if this holds for

k = 0 since each of the EQ are independent of one another.

a sample of size n (say) of W is taken W

For a time series, however, W, (t =1, ..., n) the
observations are autocorrelated which leads to the

necessity of the further indevendence condition.in (6.1.23).

6.2 Intrinsic Analvsis

Intrinsic analysis is concerned with examination of
the internal relationships within a compositional data
set. Such an analysis is carried out either because no
basis exists (conceptually perhaps), or because interest
lies within the composition itself. In a public opinion
poll of political preference we may be concerned with the
rela

elationships between, for example, the two major parties.

4

Little interest as far as the purpose of the survey is

L

it

concerned lies in the basis. This basis is a function

of the sample size obtained by the survey investigator.
The way that this achieved sample size varies across time
e.g. due to non-response may be of interest to the designer
of the survey (e.g. to improve the design) but at the

end of the day the results are collected so as to be
representative of the total population. Consequently

the analysis required is intrinsic, but extrinsic analysis
might be used to check the validity of the results (e.g.
U, 11 T, is required (definition 6.1)). 1In other
situations intrinsic analysis is the only option, as

with the geologist collecting soil or rock samples.
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By its nature intrinsic analysis is concerned with
the relationships between different elements, or subsets
of elements. That is, with non-overlapping subcompositions
and amalgamations (definition 3.4 and 3.5). Does, for
example, past preference for one of the minor parties
influence the 'swing' to one of the major parties. These
sorts of questions are examined using the partition
independence properties in section 6.2.2. We first,
however, consider the intrinsic counter-part to basis

independence given by definition 6.3.

6.2.1 Complete Subcompositional Independence

The property that we wish to examine here is
whether the components of the composition are all
independent of each other, that is no dependence exists
between any possible non-overlapping subcompositions.
This is the time series version of definition 3.25,
the difference being that the independence is rsguired

derx
at all lags (c.f. (3.5.18) with (6.2.2 ) below).

Definition 6.8

o . . m
A compositional time series U,e $7; ¢t = 0, =1,
U
... 1s said to possess complete subcompositional independence
<::>Et if for every vartition of Qt:—

U, = (U (.. gt(k>} k¢ m+ 1, such that
k
= (1) -
U = U ’
i=1 ° ot
(6.2.1)

- (1) - (3
g,mm'o I, =0

i, =1, ..., k

I

1T ]
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the subcompositional time series are independent i.e.

el 1oy o cwlEh (6.2.2)
1 2 k
¥ tl’ .y tk , ti = 0, 1,
If U,, then v, = a_ (U,) will have a structure to its
-t -1 m =t

autocovariance function as can be seen in the following

lemma.

Lemma 6.9

1r U, e 8%t

1, ...,

m > 2, has complete

subcompositional independence then the autocovariance

function of vy o=

r(s) =

Proof
If Et
U, .
log ﬁﬁi
ti
Cov | log

Consider first

diag (yé

J

1

Ut+s,k

U,) is

i,

Ut+s,£

U
0g Ut+s,k
t+s,2

for i ¥ j % k

209

s
0,

T

has complete subcompositional independence then

¥, 2 all different

1

Cov

Cov

(6.2.4)
U, 7, .- U .
Lag LBk +log tz, log*t‘%s’J
t2 Utk Ut+s,k
U,
Loy —& 1 Ut+s,i _(s)
J—J‘_TT 3 OU ‘_12-1{_
t% tt+s,k J=
1,...,m (6.2.5)



Similarly

(S) — y(S) . - L1 I
Y'ijk =T ik i+¥j+x+e=1, ..., m
so that yiji is independent of i or j so that

U, . U .
Cov | log ﬁﬁi , log ﬁiié#l = «{és) (6.2.6)
T t+s,k
Finally consider
U, . [ .
Cov log;Jlii , log trs,3i
ti t+s, ]
U, . U, U, .. U
= Cov |log ﬁiﬁ + log Utk , log Ut’Sl + log Ut+s,2
iz T t+s, % tt+s,]
U U ] v, U
- Ll trsd{ . tk t+s,2
= Cov | log T log T '+ Cov |log T , log ﬁﬁ:’T—
i sl t] t+s]
since the other terms egual zero
from (6.2.4)
A v (s)
- ,’§S> + 1(.5/ (6.2.7)

The result follows directly from (6.2.6) and (6.2.7) since

U .
Uy t¥s,] (s) .
IT(s) = Co h%ﬁ , 1%T~——————~ =Y ael i j=1, ..., n
ij tym+l  Uts,ntl
ij
(s) (s) - s o=
= Yi - Ym+l L= J - 1-, 3 m
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The difference between I'(s) in lemma 6.4 and its
equivalent form in lemma 6.9 lies firstly in the fact
that in the former 7§Q> > ? éé.l.S), whereas no
restrictions hold on the .
that they must obviously ensure positive definiteness
of T(0) (for which Ygo) > 0 med not necessarily hold
(e.g. mel = 0). In lemma 6.4, the 7§O> represent

variances and so they must be positive values. This is

's in lemma 6.9 except

the identical difference between the two structures

of Z in the static formulation of these concepts of
independence (section 3.5). The second distinction
occurs when m = 2. At the end of section 6.1 we saw

that basis independence was no longer automatic when
considering time series. However as in 3.5 for intrinsic
analysis complete subcompositional independence trivially
holds in the time series context. This may be seen from

the definition since what we require is:-

. ;
i.e. log ﬁti 1]l 1 which always holds. (6.
tJ

If we compare this to section 3.5, this trivial result
was also apparent because all 2 x 2 covariance matrices

can necessarily be expressed in the required form:-

Ay O [AB XB

I~
1
.

On crossing to time series it is now the ACF that must

have this structure, so that under basis independence of



a time series

which reduces to I(s) = ['(s).

In the intrinsic case however whilst complete sub-
compositional independence holds automatically as
described above, the structure of I'(s) need not necessarily
be as in (6.2.9). That is the form of I in the static
version is wholly consistent with the definition of
complete subcompositional independence at m = 2 so that
both T and the definition lead to the same conclusion.

In the time series version this is no longer the case.
Part of the problem can be seen by examining the proof
of lemma 6.9, (6.2.5) depends on the indices 1, j, k
and 2 all being different but that cannot hold when

they may each be one of 1, 2 or 3. The fact that the
proof relies on m > 2 can be seen also by noting (6.2.4);
again this requires L indices, without which we are

reduced to the trivial equation (6.2.8).

Although this is something of an anomaly, we will
copy section 3.5 and for compositicnal time seriles on J*?
assume that complete compositicnal independence holds
trivially.

Corollary 6.10

the I'(s) given by (6.2.3) is a sufficient condition

if QtE,Snlfollows a L (u, L(0)) distribution,

for complete subcompositional independence.
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Proof

-
. t ]
Consider cov | logl=*, log

I
O
O
<
=
O

o
H

i
—
o

[i1e}

F

Recall from (6.2.6) cov |log

which under normality

= log _ti 11 1og brs,K - C(U,

3 complete subcompositional inde

U,
wtsk

Ut+s,2

U U
log _trs,k [ log

t+s,m+1 U

tts,mtl

pendence.

From lemma 6.9, a test for(::)gt is a test of (6.2.3).

Hence we may use the results deri
are based on a similar premise.

for I'(k) (6.2.3) is noW both nece
Consequently the structure sugges
lemma A.2 - theorem A.5 for gi is
... p and all p. Despite this we
seems an intractables problem. Ho

6.8 suggests a further approach.
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ved in section 6.1 that

In fact the structure
ssary and sufficient.

ted by theorem 6.6 and
now sufficient for i =1,
are again left with what
wever, the definition

We require that for each

t+s,8



possible partition the resulting subcompositions

c(u,') 1 =1, ..., k are independent. Let

t

c(y, ‘Y eIt

1, ..., k¥ , then this 1s equivalent to

in am‘{C(Ut(i>)} i=1, ..., k for all partitions k.
1

It should be noted that this reduces to

c(u (i>>} i=1, ;..,lk for all partitions

such that m, € {0,1}

If we form each of these partitions, complete sub-
compositional independence may be tested by requiring

independence in each partition.

For example consider Qt65£53 then let

(13) _ Sl
Vt = log T

ct
~
(@)
[

complete subcompositional independence <&

Vglz) N
t Ll

Independence between the resulting series may be
easily checked using any method in section 2.6 (e.g.
the S test). This may be easily extended to higher

dimensions, but we must form m(m+l)/2 (= % i) v, series
i=1 ©
comparisons. This is not onl

iy

and make 3 x (

(]

A

m+l>
computationally inefficient but also reguires th

T o care

o

must be taken to ensure the correct critical region

is obtained as is necessary with multiple comparisons.
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In the absence of any concrete method this may perhaps
be a useful approach.

Despite the difficulties it is perhaps worth noting
that this form of independence is probably the least
useful of the intrinsic concepts. The partition
independence properties have very ready applications
and these are discussed below. If the analyst wishes
to study only a subset of his series he may use these
methods to discover the implications of discarding some
series. Complete subcompositions independence implies
that he may quite happily study any subset of the data
without undue loss. More usually such a subset is
pre-chosen on the basis of interest for which partition
independence properties will suffice. In this regard
complete subcomposition independence may be seen as a
generalization of some of the concepts described below.
It also offers something in the way of an explanation
of the data. TFor example if it holds for the public
opinion poll data it would give us insight into the way
public opinions arise. In a poll on voting intentions
in a four party system it would imply that a swing to
say the first party away from the second was not related
to the swing between the third and fourth parties, nor
the swing between the first and third to that of the
second and fourth etec. It is difficult to envisage to
what extent such knowledge of a compositional time series

would be useful.

6.2.2 Partition Independence Properties

The concept discussed in the previous section refers

Hty

to every possible partition of the compositional time
series gte,g”V Now instead we consider the independence
‘properties of a particular partition or set of partitions.
To start consider the partition:-
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(C) _ (1 C
Uy (Uyys ween Uy €8
t = 0, t1,
e m-C+1
Uocoy = W gerr o2 Ug,med) €$
(6.2.10)
Qt(m+l) _ {Qt(c)’ Et(p\} , (6.2.11)

To(g) © T(Ut(ﬂ)> (6.2.12)

L . . .o (C)
and similarly the FUV for Et{C) is Ty

Téc) = T(gt(c>) =1 - T, (6.2.13)

Whence (Qt(c), Tt(c>)forms a compositional time series

by amalgamating the last m-C components of the gt series.

To(g) mey be regarded a? ?he share of Et accounted for
. c) . . o

by Uyra)- Similarly (7;7/, gt(c)) is a compositional

time series. We have a one to one mapping from the

original series to these two newly formed ones:~-
U, e (D o0, oty ey

/ i
V) _b'\C) ’ T =t

t(c)? T

(6.2.14)

Having formed this particular partition, various hypotheses

about the independence of its components may be considered.

o

The first of these is time series subcompositional dependence.

Definition 6.11 : Time series subcompositional dependence

€S™ and the partition given by (6.2.10)
(6.2.13) and using the notation of definition

2.17 (Wiener-Granger causality)
(l‘
i) If G(E(u>> il (%) tnen Eéc> is subcompositionally
invariant. (s 11 T,
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ii) If C(Q(C)) - T(C>;then Qéc) has subcompositional
causality. (s - T)l
iii) If T<C> > C(Q(C>)}Qéc) has subcompositional
dependence. (T ~ S),
iv) If C(Q(C>)ear<c% Qéc) has subcompositional
feedback. US&%T)l
v) If C(Q(C)) . T(C);Qéc> has instantaneous
subcompositional dependence. (s . T)l
vi) If C(Q(C))ééf(c);géc> has complete subcompositional
dependence. (S&= )l

If we compare definition 6.11 with
it is easily seen that subcompositional
the exact intrinsic counterpart of time
of a basis. Et’ £
T(Téc>) i.e. Qt(c) is used as a basis,

composition is replaced by subcompositi

T, are replaced by

much that was said previously is valid

testing and modelling is as before, but

is different.

It also

is
relations

hips on

the two will prove useful below; althou
reordering they amount to the same thin

ete.

The interpretation of the above su
]

concept varies at least notionally from

parent. Here we are studying the relat

a subset of the wvariables and their

composition. As an illustration consid

f~3

example of a household expenditure surv
are interested in studying the proporti

spent on
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definition 6.1
dependence 1is
series dependence
'g_J(BC), C(I{ém),and
and the term

on. Consequently
here, so that

interpretation

these

between
fact with

(s 11 ™),

gh in

g as

bcompositional
its extrinsic
ionship between
the full
er again the

ey.
onal breakdown

of

Suppose we

tpdivudal types of food given the proportion



of income spent on food. Does someone who spends 50%

of their income on food buy a different basket full of
goods than someone who spends say 10%? In the extrinsic
case we were considering the amount spent on food £500
or £100 say, whereas now it is the proportion of income
that is under investigation. In this example one would
prefer the extrinsic analysis where possible. However
if the basis were not known, intrinsic analysis may
still give useful results. If we assume that those on

a high income spend proportionally less on food although
their total expenditure is higher so that they buy more
luxury foods (e.g. expensive cuts of meat vs. bread).

Then a higher value of U,, for luxury foods will be

1

related to a higher income in the extrinsic case, but a
lower proportion in the intrinsic. Thus if data is

lost the intrinsic approach may still offer an extrinsic

interpretation.
A purely intrinsic example may be found by considering
the opinion poll. Does the swing to one of the major

parties vary according to how much of the vote the

remaining parties take, and to how many people don't vote.

[}

If there is no diff nce then S . If the parties

o=

R

are evenly matched e.g. Qt(CON) 2 Jt(;d3>’ voters in

the next few elections may be motivated to vote for one
of the major parties. This would result in a higher turn
out at the polls and a smaller vote for the remaining
parties. 1If instead there is a strong seat the opposite
may occur. In such 2 case we clearly have S + T.

o i o

Similarly if in fact a high vote for the major parties

favours one party we have S . T, and so on.

We now consider the next form of partition independence

Definition 6.12 : Time series conditional subcompositional
dependence.
For the partition given by (6.2.10) - (6.2.13) and
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definition 2. 17

i)

ii)

iii)

iv)

If C(U i* c( ) /r( ) then the partition is

said to have conaltlonal subcompositional independence.

¢ 1l sy/7)

If C(U(C)) - (U )/T (c) the subcomposition
=t +(C

C(gt(C)) is said to conditionally cause C(Qt(c)

(% » 8,/7)

A\
If C(Qéc)) . C(Et(ﬂ§/réc’ the partition has conditional

instantaneous dependence. (SC.SC/T)

If C(Qt<c>)+—aC(Q+(p))/Téc)the vartition has conditional
y -

feedback. (S é—éSC/T)

If C(Qt(c>)é:$C(§t(ﬁ>)/Téc))the partition has complete

conditional dependence. (SC¢=>SG/T)

Where A ~ B/a implies that in definition 2.17

Q = {A,B,OL} for “"JIE{_LI_’ Ty ey ) }‘

Definition 6.13 : (left and right) neutrality of time series

have

Lo ~ - -+ m
For the partition (6.2.10) - (6.2.13) of U, € ST e

Left neutrality if c(géc>) JENR A (r, 11)

- Tiin) we have left non-neutral causation
L

(¥, +)

{
but if C(U%C>) # Uy, we similarily have left

neutral non-causalitv. (Nl #)

£ it( > C(Qgc)) we say we have left non-neutral

dependence (N, )

and Et/c\ # C(Qéc)) is left neutral non-devendence
v/
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iv)

vi)

vii)

If C(Uéc))€~*gt(n) the partition is said to have left
non-neutral feedﬁack (N,¢2)
E‘G(Qic)) - Uy o) Phe partition is said o have left
instantaneous nén—neutralitv (Nl )

If c(géc>)¢:jgt(ﬂ) the partition is said to have

complete left non-neutrality (Nf?i)

)

Interchanging géc with U, in i) - vi) above gives

(c)
the corresponding definitions of right neutrality
(N

2 )

where Vv € {_LL, *, 7" 5 7L’ s ’ .}

Definition 6.14 : Partition independent time series

i)

ii)

iii)

For the above partition (6.2.10)-(6.2.13) the time
series Qt € §" is said to have partition independence
if

T b4 T b <4
li.@<£éc)> C(Ly oy T°(C» (p 1D
Similarly the partition has full feedback if
“(C> : ~ 3
C(U<C>)§-«+TA
-t o
C(gt<g>)+ﬁ T, (Pe)

The partition has full instantaneous dependence if

6(i®) 0(Uy (ny)
C(Qéc)) T,
C(U P .)

\—'t<c>> ' Tt (

The partition has complete dependence if both ii)

and 1iii) above hold. (Pr&)
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From the above set of definitions it is clear that

there is a difference between the static forms of independence

and those considered here. In the static case two gquantities

are either independent or not independent. Here, although
the two extremes, independence or full dependence also

exist, between them lie other forms of independence/

dependence. Schematically we have:-

/117

1]

¥+Y 0 ¥>X0X.¥ =

XAY 0 Y#4X 0N XY

R
e
e
e

Thinking of e.g. X||Y as a subset of X#Y a2llows us in turn
to thirk of X#Y as a form of independence. This gives rise
to the wording of the definitions 6.11-6.14. For example
in definition 6.13 the forms of dependence are described
as non-neutral, and the forms of independence as neutral
but with e.g. non-causality. Similarly in definition

6.12 it is necessary throughout to be reminded of the

conditioning. If SC # SG/T we have a form of conditional

o

e,

x|y

. . C o ce s
independence, but if SC + 37/t we have a form of conditional

dependence.

A1l of the partition independence properties above
have useful applications depending upon . the context
of the compositional data set under investigation. The
use of subcompositional dependence has already been

discussed. In order to understand some of the other

properties consider again the example of a political opinion
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poll. In particular let us assume the following variables.

% preference for i) Conservatives (CON)
ii) Labour (LAB)

iii) Libveral (LIB)

iv) Don't know (DK)

v) Other (0TH)

If interest 1s in the relationship between the two major
parties the inclusion of the other variables may prove
superfluous. Thus we need to check to see if this is
the case. If variables iii) - v) in no way influence

i) and ii) i.e. if they are 'neutral' we may analyze

CON and LAB on their own, via C(CON,LAB). In the static

case we required
C(CON,LAB) || LIB,DX,O0TH i.e. N

However, here we are primarily concerned that LIB, DX,
OTH # C(CON,LAB) and possibly LIB, DK, OTH / C(CON,LAB),
i.e. Ny# and Ny / If we have N, », Shen omittin

g iii)
4
9]

- v) from our analysis does not*lose any information
about i) and ii) except that we cannot compare the
influence of CON on the variables iii) - v) with that

of LAB. 1If we wish to predict the future value of C(CON,
LAB) e.g. to see who would win the next general election,
then even supposing we had Nl ., as well as Nl+, we may
still only seek to analygze C(CON,LAB) and ignore LIB, DX

and OTH. Thus Nl/ is only necessary when for example we

’_A

know the wvalues of LIB, DK and OTH in advance of CON and

I
he major neutrality concept in this

ot

LAB. Consequently
instance might be Nl #. If it was the case that Nl+
occured we may still reduce the need to include variables
ii) - v) as explanatory variables in the analysis of i)
and ii). It may be that the effect of variables iii) -

v) is only due to the fact that the preference is not for
one of the major pariies, and not specifically due to
which alternative to the major parties is chosen i.e.

o
we have T(LIB, DK, OTH) - C(CON,LAB) but
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c(LIB, DK, OTH) # C(CON, LAB)/T(LIB, DK, OTH). This
would allow the anaylst to reduce their data set to

i) CON
ii) LAB
iii) NMP = T(LIB, DK, OTH) (Not Major Party)

If interest lies in the smaller parties we would need
to investigate N2 properties. Partition independence

would then be an amalgamation of the Nl and N2 concepts.

In order to test for the various types of independence
we may again utilize the methods outlined in section 2.6.
and Geweke (1982, 1984); Also we may define measures
of dependence in a similar manner to definition 6.2.
Since such measures are a generalization of definitions
such as 6.2 we now give only a brief summary of possible
measures. As already mentioned subcompositional
dependence is the direct analogue of time series dependence
of a basis and so its measures may be defined in terms of
definition 6.2.

Definition 6.15 : Measures of time series subcompositional

dependence.
These measures b<S+T)l’ (T+S>l, F(S.T)l and ﬂ<s¢$T)
are defined as in definition 6.2. but with the word

compositional replaced by subcompositional,gjﬁjgfi Yoy

l_Lj

(C) . ) N .
C(U6 ) and T, by Tt(c) with T in the r.h.s. replaced by
l(T¢<p>> Similarly F(S4T)2 is defined symmetrically
in terms of g+(p).

For example the measure of instantaneous subcompositional
dependence on Et(“) is

L)/ L(0),0r (0,00 12(6)/ T (0) 0 L0} 0

2 20y 6y Liay 00 T(0),p!



where V .oy = am_c+l(6(g<c>)) , T?C> = al(T(C))'

Definitionédlb : Measures of time series conditional

subconpositional dependence.

N

For the partition given by (6.2.10)-(6.2.13), with

- _ (C) _ (c) _ :
o= ag () s B = e L)) s Tyg)Ten a1 (o))
and as in section 2.6
Z_ th est lues {2, . ; 3 =1, 2, ...}
0 e pest va - ; j

i) The measufe>of conditional subcompositional causality
C .
o T o
from C(L_t ) to (Et(C)) is

F oA = 4n
§vs8 /7
. U

ii) The measure of conditional instantaneous dependence is

] NI 1207 (W) A M B LIS Ve T W
b c = in . ! - 2
S SG/T |z <y-<c), M(C)/M(C),p’ :\[;C>’ Tp”

P -3 | Z<V(C>/M(c>,n,T:)“'E(E(C)/V(C>’Tp |
Cw o - n
R 2006y 1015y 53 1,5
) F-:(-C . N F-x-
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Definition 6.17 : Measures of time series neutrality.

With the same notation as above.

F- . l;_(l/_(C):T /E(C)’D,TDH
ER " . (0)
!é_(l(c)’ T /M<C);D’Tp’_’p !
% 12v(®)u0y)
e T )
" c) ;. (C
1 , .
ELTI T ) ]
. * . (C) (¢) (C)
1 7
F:-X- - on [ﬁ(.\i(C)’T /V(C>’ ’TD’[ ! ,Z(\/ /:\['<C),D’TD"\Z'D )’
Pl = 4n
H1 .l ¢ L (C) )y (C)
2yt 7 gy, o T Ly
F. . F. +F. +T.
e Y. M. TH
F. o, Fy , P , Fp  are as in i)-iv) with ¥
Noo? Mol TN T Tl (c)

and E(C) interchanged.

Definition 6.18 : Measures of partition independence

ii)

iii)

Let A = {E(C),p’ Iéc>, T;} then
R s v S IR e A I M EC/N]
p. o (c) 3
s ey 12 a6 )
Poy  H

2y 11, m))
F. =F - F
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As before tests of the hypothesis F = 0 are obtained by
comparing nF with the chi-square distribution with the

appropriate degrees of freedom.

A1l the definitions in this section have referred

to the basic partition:-

(C)

This partition may be mapped onto the real plane via the
& transformation in such a way as to retain the properties

of the partition i.e.

The various covariance matrices required in definitions
6.15 through to 6.18 are then the covariance matrices of

appropriate multivariate AR(p) models. Consider for example

2,,(B) 29,(B) 2,5(3) Eéc) géc) (6.2.14a)
957(B) 255(B) 2,5(B) 0 1Wyioyl = |&(g)s| (6.2.14D)
851(B) 85,(B) 045(3)) |7y a; (6.2.14c)
where: -
a, = (a<c>', a , a )' is a white noise process with
24 24 24(c)” %t
Var(ay) = 2= 127 I Ijg
L1 Lxp I23 (6.2.144)
231 23z P33

Then the measure in Definition 6.17 for example is defined

in terms of quantities such as

pviClny - (6.2.15)

z
=11
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2
7

and I (Yoo, T/4) = Iy Ipg

_ (6.2.16)
I3p Isg
Assuming also that
87, (3) yic) = ééc)+ where var(gt(c)+) =z;, (6.2.17)
and
+ T +
2 (B) 2,5(3)) |V (g a(c)t
22
+ + % = | + ,
235(B) 935(B)) |7y *t
where var|a = —Z+ Z+
2(o)y| 7 B2z 23 (6.2.18)
+ % . 5.
a -t—32 33
Then
wr(C) ;o (C)y L o7
(Vv /yp ) = I (6.2.19)
% + +
and Z(V(C), T /V(C>p’ T,) = ;22 _2_4'23
‘ st gt | =L (6.2.20)
| =32 33
Comparing (6.2.15) - (4.2.20)with definition 6.17 it

follows that

% N M N
FN1+ =an(lz7 /12 1), By L o=

Thus these measures involve the comparison of (6.2.14),
which jointly models yt(c> and (¥, g)s Ty)s With thet

U

of (6.2.17) and (6.2.18), which represent independent

. (C 1 k1d . _
models for ¥.~' and <lt(C)’ Tt). Clearly if glz(B) = 0,
QTB(B) = 0, then (6.2.14a) is identical to (6.2.17) witl
911(8) = 2{1<B>; L4 = £, so that Fglf = 0. Hence we
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Conditional

subcompogitional

dependence

Meutrality

Partition

may regard le as a parametric hypothesis about model
(6.2.14). Similarily N

and 931(3) = 0, Ny, to Z,, 13

A full list of the parametric hypothesis using (6.2.14)
is given in table 6.19 .

1

+ is equivalent to ¢,,(B) = 0
= 0 and X = 0.

Table 6.19 : Summary of partition independence properties

Independencs
Property Parametric hypothesis ‘
6. . (B ‘ ‘o5 (1
215(B) 257(8) 2,5(8) 251(B) 2,5(8) 03,(B) L35 L4
~
sV 1l sg/r =0 =0 =0
s > 5./t #0
sC S/t #0
o 2
(’!
s/t A0 A #0
Ny 1l =0 =0 =0 =0 =0 =0
N, o> £0 #0
N, + #0 #0
v, 40 #0
Nléﬁ #0 #0 #0 #0
R A A0 A0 A0 #0 40
? 1l =0 =0 =0 =0 =0 =0 =0 =0
® e {0 A0 A0 A0 A0 4

L]
e
{e]
e
=}

5%}
“the
o
St
o
St
[t
“the
o
S
o
e
fo
“He
o
“tie
1o

|
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Other hypotheses may be extracted from the table,
N, is the symmetric version of N; with ng(B), 931<B)
and 213 replaced by 923(B>’932 ™)and EZB.Also the opposite

hypothesis is obtained by replacing " = 0" by "#0" and

vice-versa, e.g.
Ny, #:9,,(B) =0, 8,,(B) = 0.

For subcompositional dependence we need to consider
the following models.

5y ot (m)] [u(®) (c)

g -~ K =

_..31<B> (DBB(B) Lt bt ’ <6

Whel“e Var b C)_ Z‘)(‘ Z_;(.
=t 211 213

ol 5 6.
o Ly I33 (
and - ‘

P2t®) 2250001 (o) 54(0) (5.

[ T * %
\

where Var Et(C) Zon Ins /
o] ) Z% gt (6.
b, I35 T3

The subcompositional dependence properties may now be
defined in terms of these models. The off-diagonal
elements in the 9 and I matrices are responsible for the

(C) tna 7, in (6.2.21)

various relationships between v,

and (6.2.22).

o+
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48]

.21a)

.21b)

.21¢)



Table 6.20 : Summary of subcompositional dependence

properties.

Independence Properts: Parametric hypothesis
y

815(8) (255(8)), 25,(B) (23,(8)), L5 (Zp3)

SLLT]_(S.U.TQ) =0 =0 =0
s+ T, (8+ T, 4 g
T 8, (8> 5,) # 0
ST, (S = T,) ) )

m L
S'Tl (S.Lz) # 0
se 1, (8 e T,) £ 0 # 0 # 0

We note t%a% model (6.2.21) is equivalent to (6.2.14)

G * _ . _
for the U.”' and 71, series if ®12(B) 0, géz(B) = 0,
iee. W, #, in which case ng(B) ;13(8), gBl(B) = 231(B>
and I,5 = Ij3 Similarly the equations (6.2.22) are
equivalent to (6.2.1.4b) and (6.2.1kc) if 927(B> = 0,

931(3) = 0 i.e. if Wy 4. Now recall that

I, 11 c:N2 o <N, #

Hence under all these neutrality types (6.2.14a) and
(6.2.14c) remain identical to (6.2.21a) and (6.2.22b).
In going from N, # to W, we required 2, (3)

and ®23( B) = 0, and in going on to N, o2y, =05 Iy = Q,
which affect (6.2.14b) and (6.2.14d) only. The only off-
diagonal ¢'s in (6.2.1ka) and (6.2.1Lc) or now equivalently

(6.2.21) are ¢ and @

;lB(B) and from table 6.10 we
see that

8,,(8),
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P oo

3t

Nﬁf* n (s~~/’->T)l , similarly

tH

Neh 0 (SepT), (6.2.23)

i

Neh 0Ny e

Also we have,

p 1l

[
1o
=
N
o]
—
W
3
S~

=u, 1L o0 (s 1L 7T, (6.2.24)

i

=
=

=

We may compare (4.2.23) and (6.2.24) with the equivalent
result of Aitchison (1982) that of (3.5.23). A similar

result to (2.5.22) is obtained if we note that

S # 8%/ tmw, 4, (6.2.252)
end S, # 8C/ce n, 4 (6.2.250)
C 1
(6.2.25a) refers to the fact above that N, # makes (6.2.14)
% C
for 1£G> and 7. equivalent to (6.2.21). If only S~ = SC/T
occurs i.e. 2.,(B) = 0, then only (6.2.142) is equivalent
to (6.2.21a). Again comparing with table 6.19 we have
that
Mo =5, 4890 0 (T 48) similarly (6.2.262)
8
N = aV n I
N, # =87 # 8./t (T # 8), (6.2.26b)

(6.2.26a) also gives rise to (6.2.25D).

However we can go no further e.g. it i1s not the case

that

oo

1t
n
S
€3]
~
._]
-
3
+
n
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Although 8579 SG/T reduces (6.2.14a) to (6.2.21a) it does
not reduce (6.2.1kc) to (6.2.21b). Thus the requirement
of Nlﬁ%’thatvg3l(8) = 0 cannot be met via (T&#8), since
in general 9;1(8) # 231(B>. Thus we must conclude that

whilst (3.5.22) states that

i 1Lz s, LLs%/en(rlle),

in the time series context this is not true.

It should be noted that (6.2.26) may be derived using
the result of Geweke (1984), that for three series Xt’ Xt

and zt’ with obvious notation that

Fyov/z T Fazer T Ty B

(6.2.27)
Fygar T Fysysg ¥ Fyuyo
whence
Fsc,r+sC = FSC+SC/T ToFL.g0

These are the measures relating to (6.2.26a).

The main reason #r being intsrested in expressions
such as (6.2.23), (6.2.24) and (6.2.26) is that it enables
us to produce a "lattice" of hypotheses similar to that
produced by Aitchison (1982). This allows us to use the

o

simpler types of mdependence as building blocks for higher
forms of independence, and in the other direction when

a stronger form of ndependence does not hold we may find

a weaker one that does. Thus, for example the NMP (Not
Major Party) variable above would be a way of reducing

the opinion poll data if neutrality did not hold but

the weaker conditional non-causality did. In the light

of this it is.a pity that (3.5.22) does not hold in the

o
vime series context. However again referring back to the
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opinion poll, the need to reduce the data set in many
contexts required only Nl £ or N2 £ so that (6.2.26)

perhaps offers the most useful combination of hypotheses.

The difference between Aitchison's (1982) results
and those considered here primarily lies in the auto-

correlated nature of the data and the added difficulty

in testing for independence of such series. If we compare
(3.5.25) with (6.2.14), (6.2.21) or (6.2.22) and (3.5.26)

with table 6.19 or 6.20 an insight into this is gained.

We may postulate that 3, and 8, in (3.5.25) are equivalent

to 2;5(B) and 8,4(8) in (6.2.14) or 915(B) and 2,4(B)
in (6.2.21) and (6.2.22) respectively. Similarily the
212’3 in the models may be thought to correspond. In
(3.5.25) these parameters perfectly explain all the
required relationships, the B's the subcompositional
independence properties, and 212 the conditional

subcompositional independence property. However, now,

in addition to the analogue of the B's the &,.'s and QZB’S

we also have 231> 213, 932 and 223.

Each one representing

a different direction of the subcompositional independence

property. Similarily in addition to 1., we have 24, and 2,4

representing the conditional subcompositional property.
Thus in Aitchison's model one property is modelled via
th
by both types of parameters. One may try to form an

alternative model where this 1s not the case, but this
would become unnecessarily complicated in time series

modelling terms.

To illustrate this point we may combine (6.2.21a)
and (6.2.222) to give us

oy () L g * _ .. (C)
3,203 1,70+ &,5(8) tp = by
%y o(0) o
2 (BN Zy77 + 255(8) 7y = by

233

mean and the other by the covariance matrix. In the

e
time series case both forms of independence are modelled



In such a model we would require both 213(8) and 223(8)
to be a lagged polynomial in positive and zero lags as

well as negative lags i.e.

3

w .
g;3<B) = I o, B9 instead of the previous (6.2.30)

This is necessary in order to incorporate V - T and v.T

as well as t +~ v. The conditicnal subcompositional property
(¢C
L.
U
cross-correlation. Again, to allow for the varying

would have to be modelled via b ) and Et(C) and their

directions, both series will be auto-correlated making

it necessary to examine a further model of the form

W 7 U] (c) (¢)
Eigl(3> ll1—22(5)! 2oy |=s(o)|

where now |e, is

white nolse with variance-covariance

—~
o
N
Do
.
WS
et

Clearly (6.2.29) through to (6.2.31) are much more complicated
to estimate. It is possible to explore such a model further

nd relate it back to our earlisr models. To a certain

m

extent Geweke (198L) does this when he forms a measure
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of F decomposed by frequency. Thus the feasibility of
(6.2.29) - (6.2.31) can be explored further. For the
time being we prefer to stick to the simpler models as

it seems unlikely that we will gain much by not doing so.
The above model does serve as a useful comparison,
however to (3.5.25).

Our final form of partition independence is the

natural extension of definition 3.31.

Definition 6.21

a) gt = (Héc), Qt(C)) € S;m has partial subcompositional

independence restricted by Qéc) if

£ 0@ 11 ey gy

Ca

ii) If (U ) € = pas complete subcompositional
=t(C)

independence.sc 11 <S(C)<::>'

. m . _ T ;
b) U, € S has vartial subcompositional indevendence

with causality bo géc> if

1) c@?) # 0@, gy

ii) If C(Et(cp € 70 nas complete subcompositional

independence. s“%(s(ﬂ><1;).

Equation a) is identical to definition 3.31 except that
we have U, t = 0, £1, ... here. The second form of
independence; b) is one in which C(Qt(c>) is allowed

to stand on its own as consisting of a subcomposition with

235



completed subcompositional independence. However, it
is allowed to cause C(Qic)), be instantaneously related
to C(U(c)), but G(U(C)>is not allowed to cause it

=1

(i.e.‘C(§+(c>)). One might define further forms of

(C)

partial independence in which C(U;7") ~ G(Et(G))’ Ut
conceptually this seems to make little sense. The
basic idea behind making C(Et(c)) have complete
subcompositional independence is to try to capture the
non-compositional idea that the elements of E(C) are
all independent of one another. To make these elements
dependent on the remaining subcomposition Eéc> whilst

this is so seems to detract from the basic idea.

The corresponding parametric hypothesis follows as

before. For the model

- . : (c) (c)
3,,(B) 255(2)) 0y 24
. - : = = §_
2,1(B) 255020 |Li(q) 24(0) E
EERESE 512]
Lo 522J
We require under &% 1| (5.6y(LD) that 2,,(3) = 0,
921(3) =0, Z;, = 0 end gQZ(B), I,, € X
and under SC # (S<p) ‘!’)chat @21(3) = 0 and

Where X is the parametric set required for complete

subcompositional independence.

o) + < U

e.g. = di C e -
= =22 ; L ! m m+1 m

ficulty of testing for
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o
complete subcompositional independence, so that bOtklsius(cﬂ:>
and 8% o @) will prove difficult to detect in

practice.

6.2.3 Progressing Partitions

In the previous section we examined various
partition indepedence vroperties. Often we may wish to
examine several partitions of gt, and in particular
"progress" through the composgition. For example consider

our opinion poll data again and order it thus
"Don't know", "Other", "Lib", "Lab", "Con"

Suppose we are interested only in examining the relationship
between the two major parties, but wish to be as comprehensive
in our approach as possible so that all variables are
examined. If, however, the additional variables are
superfluous to the Lab, Con relationship we may omit them

from our analysis. We might believe that the varilable

nost likely not to be superfluous is the next major party,
after that 'other' parties, and finally the "Don't know"
variable to play little part in determining the Lab Con
conflict.. If this were so we may progressively work through
the composition to see which wvariables are not needed. We

would examine the following partitions

a)(”Don’t know" | ¢f
b) @(Don't know, Other) | T(Don't know, Other) | C(Lib,Lab,Cor
c)(c(Don't know, Other, Lib) | T(Don't know, Other, Lib)]

C{Lab, Con»

Other, Lib, Lab, Con)>

If for a), b) and c¢) we have N2 # then we need only examine
C(Lab, Con). However we might find, for example that N2
only held for a) and b) so that examination of C(Lib, Lab,

Con) was necessary; and so on.

What would therefore be useful is a way of describing
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this progression through partitions. This comes via the

idea of order given below.

Definition 6.22

s m o, .
For some specific ordered Etez,g p (U, Uyy v Um+1>'t’

Et has independence property of order k if the stated

independence property, as given by definiti?n§ 6.11-6.14
_ . - C
holds for C = 1, ..., k in the partition (Qt , Et(C)’ Tt(c>).

If k = m then U, is said to have complete independence

+
of the form stated. ’
As in section 3.5 it is rather cumbersome to try to

test for an independence property of order k using the
methods above. The solution previously was to employ

the m transformation rather than a- We therefore consider
the QnXARMAm(P,q) model.

Let x, = n_(U,), and
-4 m —0<
- <
8 (8) x, = |2,,(8)  8,,(8) x{F)
N “Tkxk ““rx(n-k) kxl
.. (B) o) X
2*(m-k)xk nzz(m—k>x(m-") t (k)
L (m-k)x1
e (6.2.31)
U o .
St (%)

where Var[é{]= L1 Z3o

21 Zoo

o1

Various forms of independence are represented in
table 6.23. The eguivalent for left neutrality is
obtained by reversing the order of U

£
%)

he m transformations.

‘ before taking
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We recall the previous discussion in section 3.5
regarding the properties S & T and S° ~ SC/T of order
k, and the fact that they seem to be either confounded
with neutrality or have no practical application.
Consequently we concentrate only on the concept of
neutrality.

Table 6.23 : Various forms of right neutrality and

thelr parametric hypothesis under model

(6.2.21)
Independence Property Parametric Hypothesis
N, 1l at $,,(B) = 0,8,,(8) = 0,2,, =0
N, 1] of order k " " " ,
211(3) and le both diagonal matrices
N, 1] complete $(B) and I both diagonal
N, £ at k $,7(B) =0
N, # of order k { L and lower triangle of
ll(B) zero
N, # complete lower triangle of @(B) equal to zero
N, # a2t k 2,,(8) =0
N, # of order k { " and upper triangle of
311(5) zero
N, # complete upper triangle of 3(B) equal to zero
N2 / at k 'Z"l?_ = _Q_
N, / of order k L, =0 and I,; diagonal matrix
N, { complete L diagonal matrix

In our opinion poll example, if N, £ of order 1
occurred we may drop out "Don't know", if U # of order
2 we may drop both "Don't know" and "Other" and if

4

N2 # of order 3 occurred we may drop the first three
variables.

The anﬂu models enable us to tell at a glance

how far we may go in dropping the variables. Although

>
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no a priori knowledge of C is required, it does
require knowledge of the most likely variables that
can be dropped so as to order Qt.

6.2.4. : Some numerical examples of partition independence

In example 4.18 and section 4.4 we analyzed two data
sets of political opinion polls. The GALLUP(C) poll
and the N.0.P. We recall that both data sets consisted

of 108 observations on 4 varlilables:~

CON

1. con,

2 A

2. LAB,

3. LIB,
19

L. OTH

L
. . th
Because of the frequency of zeros occurring in the 4

series OTHt we choose to model
c(co¥, LAB, LIB)

The accuracy of such an approach rests on the neutrality

s o
C

of OTH, to CON,, LAB, and LIB,. What we have is the
X v} 9]
i

cox, za2, 113 | oTH) - <géc> | E+(c)>

from which we may form:-
c(cov 1B 118) = o(u'C)) = 1,
OTH = 1, (q) (= 9+(c)>

Since the secord subcomposition consists of only one

variable and hence 7T

= U, th wo concepts
sey T Lyg)yr the T cer
(S~ TE} and N, ~ merge into one. TFurther since
T - N P - . « - - - -
c(oTH) = 1, S, |l s7/1 is trivially satisfied.
o
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Thus we wish to investigate the relationship between

gt and TL(o)” The first stage is to map our two series
onto the real space via the &, transformation. Let
= = TTR
v, a2<gt) Rn(CONt/LIJt) vay
4n(LAB,/LIB,)

= = /1 -

o = 2Ty ey) T o)/ T Te o))

As mentioned in section 4.4, one way to avoid zero
values of OTHt is to reset it to a small position
value. This we have done, replacing 0.0 by 0.05.

With the data thus transformed the following AR models

were fitted:-

AR,(2) to the series v,

ARI(Z) to the series T,

1 ! .

ARB(Q) to the series (V. , 7,)

We will let the error covariance matrices for

these models be defined as

-

- . "T’ N - r R
L1(2x2) T1(1x1) 23R4 LBXB 22 C | respectively.
!

.g. 22

-

-ty

Using these we may construct the various estimates o

measures of neutrality.

FV+T = Fﬁ? = lOg(!le/!TQI)
“: - = 1:-- e = ] ‘: [‘/'A‘
L “ Log(lﬁﬂ/];2!>



Py =y = leg(IZ,l.1T,1/1LD)

Also

3
rxj
et
3
g
>
}_.J
(]

=
rrj
=
[
>
~

=2

+
I
>

I~

a

under the hypothesis Nl¢, F§l~ = 0 for V€& » <« L.},
The AR(2) model was chosen since the various F measures

have been developed on the assumption of autoregressive

models. Thus although the ARMA(1,1) model was used

previously in section 4.4. here we use the AR(2) since

it produces a reasonable fit and it provides a good

approximation to the ARMA(1,1) model.

The models were fitted using the WMTS-1 package

-

1e
and MINITAB for the multivariate and univariate models

TA
respectively. he results for the two data sets are

oy 3

N

given in table AR

-
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T gl, I and the F measures

Estimates of 1
for the GALLUP(C) series and N.O.P.

series.
GALLUP(C) Series N¥.0.P. Series
0.6735 0.4319
(0.0451 0.03961 0.0391 0.0342
0.0396 0.0499] 0.0342 0.0407
6.86939 x 1074 L.20541 x 107%
0.0448 0.0391 -0.0108 0.0360 0.0317 -0.0293
0.0391 0.0491 -0.0181 0.0317 0.0382 -0.0334
0.0108 -0.0181  0..756 ~0.0293 -0.0334 0.3815
3.11550 x 1074 1.20206 x 1074
6.65904 x 1074 3.66963 x 1074
0.47555 0.381549
108 108
42.70 36.78"
37,58 " 13.38
3.36 14,72
1.76 8.68



Looking at the results we see that the GALLUP(C) poll

has only N.+, whilst the N.0.P. series has Nf‘*' Th

jwd

s
1

our models in 4.4 are adequate for the GALLUP(C) series,
whilst the N.0.P. series might well be predicted more

accurately if OTHt were included.

The difference between the two series may occur
for a variety of reasons. Firstly, it may be due to
the large number of geros nresent in the OTHt series.
When OTH, 7 0 the values in the GALLUP(C) series tended
to be somewhat smaller than in the N.0.P. data. This
makes OTHt very "flat" in the first case, causing it to
add little to the remaining variables. The fact that
OTHJD is often gzero distorts the true situation in any
case. Secondly, the WMTS-1 package proved to be highly
unreliable making its results very suspect. Finally,
there may be differences in the two surveys, e.g. wording
of the gquestions asked, sampling design etc. If +he
results here are accurate then an investigation into
these latter possibilities may shed light on why the
difference is occurring.

For our second example we use GALLUP(A) series.
This series is based on =z slightly different set of
questions than the (C) series, which allows for the
response "Don't know". It thus conitains the five

variables: -~
i) - (iv) as before

v) Don't know DTKt

—f

n this series OTH, again had to be doctored to remove
L 22

o

the zeros. The DTH, variable remained non-zero throughout.
U

Using this series we are able to distinguish between S ~ T
- . «C . C

and N v and examine $§° ~ SC/T on the same partition as

above, but with an exira variable in +the E+(C) set.

Whence we have:-

—1
b
s3]
@
-3
)
J
3
>t

it
o

N

CON LAB U, ’-%(c)
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from which we may form

C(CON LAB LIB) = C(Eéc)> = Ei<c)
C(OTH DTK) = C<Ht(c)) = o)
T(CON LAB LIB) = Tﬁc) = 1-Ty0)

Transforming these fromthe §" space to the R T space gives

_ *(C)y L emw /T
X, =ay (U, ") = Zlog(CoN_/LIB,)
log(LAB, /LIB,)
P OTE,
Iy = e Tygy) = log(DTKt)
- . (c) _ (c)
Zy = a(ty”) = log ty 7 /T g

To compute the various F measures we fitted AR(2) models
to the following combinations of variables, with covariance

matrices I

b y o= = ! i Mam
TofZ\ D AcAD App hyg [AD hyp Ay AD
. AR =
I, A AT A _ A - -
T =21 = =231 = 21 AC 3
by _é‘*Bl ABQ AF _5\1_31
2 L\ £ =B8B= 130 By,
z, By, ZF
3 L,y L=0= 0B Gy
Ly Sp1 EF

B~
><¢

Jtm
it

o

=4
5. I, = E ,
6. 'z, I = F
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measures

[

computed

were th

108 x

108

106

108

108

108 x

i

108xlog(|§f/lééf)

108x1og(|AD]. [4C]/]

108xlog(|E|/|AE])

108xlog(|B|/|aB])

en

log

log

log

1o

o

[
O
o0q

log

108 x log(|CE

= 108xlog(|C|/AC])

108xlog(|AB]. |2%]/[4]) = 1.0937
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(IEI/12E]) = 151637~ 2
(IDI/13D]) = 12.037° & x2
(12D].122]/1Bl) = 9.420" " ~ y2
(IR1/[CRl) = 17.442° "~ X3
(IEI/ICEl) = -4.544 = 0.000 ~ y2
<|9£1-19ﬁ1/|§l> = 0.009 v yZ
/IAE]) = -8.263 =0.000
f\) Xi
= 108 x log(|BD[/|AD]) = -12.204= 0.000
Y XZ
108 x log(|4D]. |2E]/|22 2120y = 1.0937
-‘.gl;ﬂ'j\.
v, Xg
= -0.166 = 0.000 v X3
= -3.590 = 0.000 T
2
Al) = 6.331 VES
4
= -12.806 = 0.000 voxg
= -1.156 = 0.000 R
AV X%



RF g " af. - 108x10g(|AD]. |AE]. [AF|/]A]) = 6.438 v
%X,Y,z . ‘"'““D@=‘ clog (D] 1B IFI/181) = 22.666 vy
As reguired n§g1+= n%§1+8)1 + n%ESC+SC/T)
and n%§2+ = n%*T+S)2 + n%?SC+SC/T)‘

Unlike our previous examples we did not use WMTS-1 to
estimate the multivariate models. The program failed
with this deta set and so we used the SAS package instead.
The PROC STATHEPACE Statement allows the user to it

statespace models. Multivariate ARMA models may be expressed

¥

as statespace models and then fitted within this framework.
For some of our estimates ¥ was negative, which in theory
should not oczur. This appears to be due to rounding error,
and assuming ¥ = 0.00 would indicate less accuracy in

fitting the higher parzmetric models. Gewelke (1982) suggests
using OLS or even the Yule-Walker estimates on the grounds

that both ars equivalent to the M.L. estimates. The Yule-

Walker estimates certeinly would produce positive F's
espite being otherwise less accurate. Again some of this

inconsistency may be due to the occurence of zero's in

the O’I‘E‘IJD series:- The nmeasures relating to only gt and

Zt remained positive (as can be seen above). Zt is the

only variable likely to beinfluenced substantially by

the zero's in the OTH. series. This may of course be only
o

coincidenc
Examining the results we see that we have neutrality
from both the right and left, that ig:-
¥, 1l ana W, 11
A
However we also havse (S@ii‘)1 since nFXé = 36.620, the
— pa &)
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sum of the three required components above. This 1is Xé’

and highly significant. Also i1ts components are all
significant, the least one being (T+S), which is a component
of N,&>. We further have that (S»T),. Both (8&T), and
(S+T), seem to contradict i 1] =a N, 1l. As already
mentioned if our intention is to be free to predict

either of the subcompositions by omitting some of the
variables then (S+T)2 does not infringe on this. Neither

do (S—*T)]j or (S.T)1 so that the only contraction occurs

with the presence of (T+3)
this

17 but as already mentioned

is only just significant. Thus we conclude that
(©) _'lcox 1A I _ : 7
both Et = @ON LAB LIB)and Et(C) = @TH DT@ may be modelled

independently of each other without undue loss of
information. If we wish to investigate a series of the

form

i) One of three major parties (TMP)
ii) Not one of three major parties (NMP)
i.e. i) = T(CON LAB LIB) ii) = T(OTH DTK)

we would do better to include both Qéc> u,
improve accuracy. This means that the &
of the major political parties over the other is not
influenced by the choice between minor parties or
undecided voters. A similar converse property holds.
The proportion preferring a main line party over
another party or those undecided i.e. TMP vs NMP does

seem to be influenced by which parties are involved.

Finally we note that we also have P || which suggests
that all three componentsrido not influence each other.
Again this is contradictory, in the fact that both (S<==>T)7
and P || hold. This may in part be due to the strange
negative values of some of the F's. Thus these are

subtracting from the signficiant parts of F reducing

P&
it so that is'is no longer significant. Hence we must

assume that with other estimation procedures better
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results will occur. The final interpretation depends

on the nature of the analysis required.

6.5 : Summary and Conclusion

In this chapter we have examined independence in
the time series context and in the compositional context.
In bridging the two, various useful time series compositional
independence properties have been developed. However,
throughout it is clear that many additional problems occur
in moving from the independence properties of Aitchison
(1982) to those of this chapter. Many of these problems
occur because of the directional nature of the relationships
that exist Dbetween time series. These lagged depehdencies
make it difficult to express parametrically basis

independence and complete subcompositional independence.

Various initial attempts to do so have been made here
but clearly further work is needed. Also the partition
independence properties do not fit together so neatly as
they do in the stationary case. This too needs further

development.

Perhaps the most useful exercise is the numerical
examples. These give us an insight into the problens
in a clear way. They serve to demonstrate which concepts
are likely to be more useful and which may possibly need
to be re-defined.

The next step is to investigate some of these forms
of independence through some simulation runs. This
would, for example, aid us in understanding the parametric

form of a series which has basis independence.
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"3 give you Leaming 50 do nor forsake my reaching.”

Proveybs 4:2

CHAPTER 7

Conclusion

7.0 Conclusion

This thesis has sought to develop methods for the analysis of
compositional time series. The approach has been to combine the
existing theory of time series analysis with that of compositional data
analysis. The resulting models have been scrutinized as to their
properties and applicability. Although only two models have been
considered in detail, the ln+ARMAm(p,q) and the lnxARMAm(p,q), the
approach to handling compositional time series is quite general. Thus
for Ve ~ ARMAm(p,q); Ve = f(gt) e §" we may form other f—ARMAm(p,q)
models. Consequently we have developed not just a specific method. but
steps towards an even broader approach. Clearly this is an area for
further research.

The two models we have examined provide a practical and straight
forward representation of compositional time series. The ln+ARMAm(p,q)
model utilizes an already popular transformation, and as was seen in
theorem 4.16 gives rise to a symmetrical model on the simplex. This
invariance property makes it appealing for many applications. On the
other hand the In ARMA (p,q) model supplies us with both an alternative
to the ln+ARMAm(p,q) model, and with an "ordered" description of the
possible structure of U,. Both models may be used for forecasting, and
each has particular applications with regards to understanding the
interrelationships of the components of u, and the sum of its basis Ty
{where this exists).

There are still many problems to be overcome. For example,

although we examined the forecasting problem in some depth, we still

have not come up with a hard and fast rule of which point predictor to



use. The approximation to the mean, although interesting, does not seem
to provide an easy solution. Its main application might be for
approximating the mean of the univariate model. Clearly the whole
problem 6f forecasting compositional time series is not as neat as it is
in other areas of time series analysis.

The results of chapter 6 provide an interesting framework in which
to understand the relationships between the constituents of the
composition. These proved to be more complicated than their a contem~
poraneous countery parts, as can be seen by the discussion of basis
independence, complete subcompositional invariance and the directional
nature of the other forms of independence. Of these, those given by
definitions 6.1 and 6.11-6.14 are probably the most useful, and
fortunately are the most straight forward to investigate. However, even
these contained contradictions in e.g. the inability to derive a lattice
of hypotheses for the partition independence properties.

A further result of this study of compositional time series is to
highlight areas of interest in both of the separate areas of time series
analysis and analysis of compositional data. In the time series
context, is it the case, as possibly suggested by the example in section
4,4, that the univariate model will produce better forecasts? Similarly
we can discern a need for further tests to see if several time series
are independent. In compositional data analysis can we find an exact
rule to determine the number of modes of the L_{(u.X) distribution? How
do other distributions on the simplex behave? Is there a way out of the
zexo value problem? Clearly there is a need for further work in these
areas and in the combined area of compositional time series.

In summary we see that we have so far investigated two specific
models for compositional time series, pointed/the way to a much broader
approach, considered some areas of application., and gained an insight
into the separate areas of time series analysis and the analysis of
compositional data. There are still some loopholes to be filled, but as

the old proverb states,'to walk a thousand miles one must take the first

step".



7.1 Further Work

We have already seen in the preceding chapters and in the last
section some possible areas for further work. We summarize some of the

main possibilities below.

1. Any statistical method is best tried, and further developed by
application to real data. This is perhaps the greatest need of our work

so far.

2. The models may be similarly tested via simulated data. For
example, a Monte Carlo study to determine the small sample properties

etc. of the tests of independence.

3. Other transformations which map §™ onto R™, and hence other

f—ARMAm(p,q) models.

4, Can the forecasting problem be further developed? For example, by
using the Taylor series expansion method to approximate the mean. (See

Aitchison and Begg(1976)).

5. The application of the models to repeated surveys.
6. Spectral analysis of compositional time series.
7. Comparison with other statistical models. e.g. the invariance

property of the 1n+ARMAm(p,q) model seems to have a connection with the
models used for contingency tables. The choice of reference variable is
similar to the choice of which margin to constrain.

3. Applications in other areas, e.g. income elasticity.

9. The zero value problem.

10. The contradictions in the formulation of the various independence

properties.



11.  An exact rule for the uni-modality of the L (u.I) and M_(p,I)

distributions.

12. A further model that incorporates both the stronger forms of
compositional independence, as represented by the Dirichlet distribu-
tion, and the weaker forms as represented by the L (p,%Z) or M _(n,I).
This might be along the lines of the A(yu,I) distribution of Aitchison-
(1985).

13. The development of other forms of multivariate analysis of
compositional time series data, e.g by combining the time series results
of Brillinger(1981) with the compositional results of Aitchison(1983)

for principal component analysis,

14. A development of alternative approaches to compositional time
series. e.g. fitting a model with linear restrictions to the raw data.
This is in fact what was done in section 4.4 when the series were

modelled by omitting one variable,
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APPENDIX A

Lemma A.1

Let a, b

T - b.bh. = B
a(oi+bj) bibj c 1= ] 1,

10 e bn be n + 1 constants such that

where ¢ is also a constant, then at least n of then + 1

constants {a, b., ... b } wmust be ecual.
1 n 4

Proof

We are given

a(bi+bj) - bibj = ¢ (a)

a(bi+bk) - bibk = ¢ (b)

a(b,+o,) - biby = ¢ (c)

(a) - (b) (a—bl)(bj—bk) = 0 (d)

(a) - (c) (a-b )b -0, ) =0 (e)

(d)= a-b., = 0 (£)
and/or

bd—bk =0 (g)

(e) = a-b = 0 (h)
and/or

b.-b, = 0 (i)

There are four possibilities:-

(£) and (n) a=b s =1, , n
s %k
or
(£) and (i) a=b_ s=1, ..., n
s

l, by I

-






1 (\)(I‘)_ 1 ) ~1
F(r)‘l _ 1 ( (r) Zr5> (r) (7)°
NE3 Y1 Y1 Y1 Y2
- 1 (v r) 1
(r) (r) U (r) /5r5>”
Y2 Y1 2 T2
-1 -1
(r) _{r) (r) (r)
(w11 m 12
m+1
where v(r> = _§ *%;7
l—l Vs
N
Substituting (A.4) into (A.3) gives
2 e
- 1 Y.I‘ T - s 2
Wy s Uiy - D e
j—y J = ly s
-y lser)  (s,r) $ L

- 5 (s,7) AJ(s,r)

m+1l 1,

V(sa—r)z

im+1 1
Tt T W

v Yo+l

c(ffﬂ

m+ L

\)(r> (say).
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Combining the four parts of (A.3) together gives
,(r+2s)
‘m+l

= {T(r+2s)}

;o it
I (s+r) (s,0,(s,7) (s,r)
Since L.H.S. is independent of i and j ,
(S,I‘)
Am+l

v

lser) o leerdy L lsir) gy
L

(s,r) _ _(s,r)
i j = Pyt (4.5)
(s,r) | : . .
where p_.q is a constant independent of i and j
Comparing (4.5) with Lemma A.l implies
Wssr) o) oy e sy L, i
L J
except for i, j ¥ k say
Finally we nust show that k is the same for every s > 0, r 3> q
A2tq)
Let —— = y(asa) (4.6)
W,
Pl
i %k, (say)
.,jb’rq) ( )
Lot (4.7)
,k‘i)
i % k,
for ¥ integer a > b 3 O
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é+ = Vilasb,q)
ARPTQ
i
and T t !
i % k2
. _d - )(a—b , btq) since a > b
b+ b
oo itk
b3

By lemma A.1 there must be only one value of i for

which the above ratio may vary and hence

= = 1
kl k2 53

That 1s k¥ is the same for any values of a, b in

»)\(a“b: b+Q) (rls> s > O, T >, q.

O

a >b>0 i.e. in any A

Proof of Theorem 6.6

From lemma 6.4 there are two cases to consider,
either the rogue parameter corresponds to the reference
variable (k = m+l) or to one of the other m variables
(k € (1, ..., m)). We have that (e.g. from (A.1))

s -1
2'" = TI(r) 7 I (str)
= D)7 (alstr) + L8700 g (8.8)
- - o+l el
Substituting for L(r)nl from (A.L) we obtain:-
2t = H o+ g
iz = E(r)-l Alr+s) ,
-1 .

¢ = I(r)™- yéﬁis> U so that
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1 i (r) 1
(r) (s) (v T
AV Yl vi
L(str)
{E}ijz N
NEIRMEIMED
i
Astr)
{G} = (m+l 1
o v ’Ymil Yir

Case 1 k = mtl

By lemma 6.4 we may substitute

LR
~iT~7— = 5T k=1, ...,m
’\/i r
. 1
x(s,r)(J. - :(r)v r))
(m,, -
\(s,r) N -1
/ L)
(s,r)
i.e. H = Z{oser) o
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into (A.

O
A

.,

(4.9)

.,m



So that from (A.9) and noting that da(~T~ O]

we obtain o

's _ ,(s,r) (s,=),-1
.(.I.). - A —l:-m * & -A- (r) =N
Y(s+r)
where a(s,r) = %r) ?:% - X(S r)
v Tm+l
Thus for s = 1 and r = g
' = 6 I+ 8 Ag) T U
= =m b q s 4
where k<l’q> = ¢ and a(l’q) = 3 . (A.10)

For k = m+l this is as required by the theorem in (6.1.18)
and (6.1.19).

Next we need to demonstrate (6.1.20) for k = m+l.
From (A.10) we have

515 = (61T + 8 Aq) t WS

. —m — )
s 5 _ P
= T (%) s (8 Alq) ~ O)" (4.11)
i=0 -

Yow (M(q)™F M = ((q)7 0)7F AL T Ae)7? U,

= () )i )t el o

= dfﬂ(}% (/\((j_)_l _()ﬂi"l i=1, 2, ... (A.12)

m _—
since {U L i ij u,izl {E}u,v » 1, j=1, , m (A.13)
m - m
and I Ag) ™" = 3 »Tl« - 4l A.14)
1, v=l {- i }u,v i=1 a) ntl (
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So from (A.12) we have
(A(q)"l ggi = (d;§%>i"l A(q)'l U, (A.15)

and substituting this into (A.1l1l), and recalling that:-

I(qts) = I(g) 2'°
s - (q)i-1
S S~ * -1
I(qts) = ¢°L(q) + (iil(i) e D S C DY C i
(A.16)
. -1 _ (q) -1
Now (q) ala) = U = (Ala) +v_,; 7" U} Ala) ~ U,
-u+ 4 ) g (@) g ny (4.13) ana (4.14)
S5 Yn#1 Cpel y AL o
(A.16) Dbecomes
s
_ .S sy s-i,i.(a)i-1y,.,, (q):(q)
T(g+s) = ¢°I(q) + (iil(im Brd 1y ") (1v Fd i) g
(A.17)
which is (6.1.20) for r = g, clearly since the diagonal
A(g) is only modified by the first term of (4.17)
i(r) = o7 % Ala)  r =g,
that 1 : -1 _ ,4r-q -1
so that we may write A(q) = & Alr) (A.18)

substituting (A.18) into (A.lé) and recalling that
I'(r+s) = I'(r) 915 (e.g. from (A.8)) we obtain (6.1.20)

for all r = g, gt+1,

Case 2 k % m+l

Without loss of generality let k = 1.
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Y4 _ (s,r) B )
Then -—m = = 2 . k=2,3, o4l
i
Y(s+r)
Let Kés,r) - 1 .
Yf )
1, (s,7), (r) __1 U
£ ! v Y r)) J
v 1
1 (S,I‘> (I’) l _ .
=7 A (v - ;T;j) =3 %1
\) ‘b
i
(s,r)
2 Ay ..
\)(I‘) Yl =2, , m
{E}ljz ( )
(s,r
) (3-:') : = 2, , m
= 1]
v Yi - :, o
T
and
(s,r)
_ 1 AN ; i
Gy ==t T b iDL .
i
Hence '° = H + G
= X(S,I‘)I + 1 <\<S,:")(\)(r 1 ) s ;_‘(‘Ssr
L v(r) 1 Yl(r) Yl(;)
Kés’r) NETEY
i = T T
T
Y2 . T2
_ }\]('S’r) )\(S;T>
xér) Y, r)
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)\(S’r)_A(S,I'> V - 0 0
NP y(r)
=nm (s) 1
v
S 0 O
T2
- :
- (I‘) O - O
T
1 (&.19)
(s.r )\:(Ls,r) _ 5 (s,r)
Putting ¢ = A>T/ , g = ) , end noting that
v
N IR S S | S BN €
- =7 - - = —5T < 4 ,
Y r i=1 y.(r) Y () i=1 . o -
1 i 1 i
i+l
and for r = q ; s = 1 we have
= { / i 1
0! oI, * 8 Ay as in (6.1.18)
Finally we need to show that (6.1.20) is correct.
Clearly we have that
s
915 = 051 + I (3) o°TT gt {z(q) 9]1
oog=1 i ’
(s) (a) 1 1!
where r = (4.7, - , - ) s=q, g+l
1 YZZS} szsj
(1.20)
Now (@) ot = déq”“l HQ) 0 (4.21)

Substituting this
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S . .
z (8) o5 1g? gla)i-1
i=1
_ [ (@), () _(q) (q)
91‘ Y1 T Ypi1 Ypel ¢ Yml
(q) (a), (a) _(a)
Yo+l ip) +Ym+l"{m+l
(q) (q) (), (q)
7/ q_ q £ q
Yot1 Yo+l Yoo TYps1
(g),.(a) (q) T 1
1 Ypi1) - Ypit EoeT O
i=2 Yi
(q) q) I 1
) -1 -y 7% z
m+1l m+1 i=p Yifqi
o+l m -
q)+«(~)< - 1 1 )
Y/ +" - Z ~ O
R Y ygqj i=2 YS%’
m+1 1 m 1
h = -z - )~ 1 9
i=2 y;(qj i=2 yiij ;
a) .(a) a
al 0 0
0 0
0 0 |
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r(q>gn o
(A.22)
(q)
dlq 0 0
1
“;TcDO 0
2
1
';TET 0 0
m
o‘
.0 -
0
(A.23)




substituting into (4.22)

' S
I(s*q) = ¢°L(q) + ( z

. . . 1 .
i.e. r consists of terms in O i=2, ..., mtl.

A} a4
However all ygr) r 3 g are generated by only the first term
in (A.24) so that y§r> = ¢774 yiq> i= 2, ..., mtl.
Hence in general
r-q
F(r)[r<q) OJ = I'(r) d [r<q) O]
— Py — — (br_q —— ey
= I(r) ¢* ¢ [£<r> QI
N7
= o774 l¢y§r>dir) 0 0
0 0 0
0 0 0]

So that (4.23) and hence (A.24) generalizes to (6.1 .20)
for all r = ¢, g+,

Alternative proof k % m+l

The second case may also be dervied by using the Z

matrix. For example if k = m+l, then

o1 = oI 4+ B8 A (q)‘17

265



= |-1 o ... O
and Z(1)
-1 1 ... 0

10 L

Perruting the system so that variable 1 is now the

reference variable gives

g-xl____zy _(2! Z—él)

(1)

-1

oL, + 8214y Alg

71
m - g =(

1)

-~

m
oLyt 8|3
l_

H

1
1 y.tq:
i
1
—_‘GT O e O
YZ.
— l -
(q)
Ym

. . ul . .
which has re-ordered the u € § vector on which this

t1 rv 1 ba + U u - @7‘-! s the
theory is based to (um+l, Ly U u,), thus ¢ ' is th

formof &' when the first variable in the vector corresponds
to the rogue parameter.

O

Lemma A.2

For an ARMAm(2,q) process, such that the a.c.f.
is of the fornm:-

|
TN
s
p

Llz) - dg{yér)' Yér>’ EEE Y;r)} + Yér% U

+1 =n
= A7) + yéf? U as in (6.1.5),

the I'(r) matrices for r = g+2, q+3, ... may be recursively
(

generated from I(q), I[(q+l), o-

and @ if . and o. a
2 d 25 2, d &, are

of the form:-
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LS4
H

oy I, 72 Oy

-1
(A.25)
. -
92 d)2 im ¥ 22 p-m
and 21 and Qz are the solutions of
D Ala+l) At w2
1 R 17 (4.26)
D A(g+2) A(q+D) oL
2 2 mJ , for some constants
cy and ¢
. (1) (1)y :_
so that El and 22 are diagonal dg (al s e dm ) i=1, 2 (say).
(1)
Let di = £ 4. i=1,2, then the I'(r) matrices are

J

1

generated through the following equations:-

Ar+2) = o, Alr+1) + o, Alr)
{ S
r+2 +1
i.e. yi ) - 65 y;r ) + ®2 Ygr) i=1, , m
(r+2) _ . (r+1) . r
and 'Ym+l = ((bl + 01_) {m+l + (@2 + 02> Ym+l Cér_q.{..l
(4.27)
with a?_q+7 r > aq * 2 generated Lqi'
A(r+l) 21 + Alr) 22 = Cpog+l Lm (A.28)

and ¢qs @, are as chosen in (4.26).
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o1 =
IS R !
(4.29)
o' = 6, I+ A
5 2 —m 2
where Al and A2 are chosen so that they have no effect on
ygr) i=l, ..., m r > g + 1 in the recursive generation

(r)

i1’ TS gt+2, a+3, ...
series. If A, and A, are like this, then (A.27) auto-
matically follows for i + m+l.

of T(r), but only influence the v

From the Yule-Walker equations (corrollary 2.12.2)

I(r+2) = L(r+1) 2! + I(r) 8! r=gq, q+tl, ...

We require that the last four terms of {(1.30) be of the

form ¢ Em’ where ¢ is a constant

If we let 31

1
jo

Ay

i
Joo

> U _we obtain one such solution.

The last four terms become

#* *
(A(r+1)D;+A(r)D,)T + Wéﬁl 67+Y§1f%62) u (4.31)
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The second term is now of the required form, we require
that

(A(r+1) D, + A(7)D

1 D) T, Zm

so that A(r+l) D, + A(r) D, = ¢

1

which is (4.28)

To solve for Ql, D, we need at least the first two

'
equations i.e. for r = g and r = g+l

=2 2 fn| which gives (4.26)
Hence 6; of (A.31) is the same as GS of (A.27) s = 1,2

Substituting for Al and 52 into (A4.29) gives (A.25) and
finally substituting for A, A, and (A4.28) and (A.31) into
(A.30) we obtain the recursive equation for v

r)
mi1 T F q+2,

in (4.27). ]

Corrollarvy A.3

The exact solution of 21 and D, is as follows

(1) _ _1 (q+1) (q)
;7" = n; (oyvp* - o734

2 1 ]
d§ - ﬁ§<'“1Y§Q+2) * “2Y§Q+i)>

- OL1¢2Y§C1>) ’ izl, - 0w m’<m+l>
L
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and n.

Proof

From (4.26) [D A(g+l)

-1
1 A (a) 0L

|=>

D,| ~ |A(q+2) A(g+1) a I

which since A(r) r = 0,

i+
~4
-

is diagonal yields.

D (A(g+1)? Loaar) -aa) ] @ I

D, -Mar2)  Ma+l)| a1,

examining this term by term gives the required results,

(a), y{at1) (%2) | Recalling that

in terms of vy.3*/,
i i

and vy

Y§q+2) = ¢lng+l) + ®2y§q) gives the result in terms

(g+1)

i ’ _ ]

of qu) and vy

Corollary A.L

For k * m+l, that is if we generate [(r) r > q+l,
such that another variable is the rogue variable, then

%, and 22 are given by:-

©
i
©
}..J
[
+
=
TN TN
+ -
S

for ke {1, ..., m} (A.32)
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A %) - gl =k § otk
(%) §. . y
. (%) .. _ ;

Sq i=3j=k i,i=1, , m; 2=1,2

0 otherwise (4.33)
o+l .

and dgﬁ) is given by corollary (A.3) and 6££)= ) d§l>

i=1
jrk

For these parameters the L(r) matrices are now generated

through: -
+2 +1
+2 + .
ér ) - (67%67) Yir L)y (0,%65) Y§r> r=q, q+l,
i=1, , mt+l
14k (4.34)
Proof
For k % ntl g; = Zly) 2F Ly 1T 1,2 and

8¥'is 8 as given in Lemma (4.2), (A.25).

These give the result directly, as can be seen by noting
that &' in theorem 6.6 for k = m+l was also of the same
form. Thus we may apply the alternative proof k 7 mtl

given above, and by similar argument obtain (A.34). O

Theorem A.5

For an ARMAm<p,q) process, such that

(r)

nt+l =m e

I(r) = Ar) + v
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the ['(r) matrices for r gqtpt+l, qtpt2, may be recu

generated from I(q), I'(q+l), ., I'(q+p) and y5 aees
gp if ¢, (i=1, ..., p) are of the form
T P
gi ®ilm + gi g 1 17 H p

where N (i=1,...,p) are constants, and Qi (i=1, ..,p)

are solutions of

- - ~-1 -
21 A(gq+p-1) A(g+p-2) A(q) allm
2, Alg+p) A(g+p-1) A(g+1) a, L
__Qp‘ _A(q+2p-2) A(g+2p-3) A_(q+p*l)_ %pdn)
after which a 41 T 3q tpis generated by
_/l(r-%p-l) 21+A(T+p~2) 22 + + _{\_(1") _D.p = O‘r_q.;.ll
The matrices D, will be shown to be diagonal. Let
- (1)  4(1) (1) (1)y .
Qi - dg<dl b Qz ? d2 ’ » dm > l"ly . y p’
m .
s = 1oalY i=1, ..., p
m+1 521
For this solution tc the autoregressive parameters the
I(r) will be generated via
(r+p) _ (r+p-1) (r)
Yi - ¢iYi + . + ¢pYi
(r+p) . (1) _(r+p-1) {P) ., (r)
Yper o T (0978 0 vy Foeee F (0 R8N Y
r =g, qgtl, .
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so that the rogue variable for this solution is simply
the m+lth i.e. k = mtl.

Proof

The result follows from the direct extension of Lemma A.Z2.

Corollary A.6

For k¥ # m+l the parameter values for B e gp
are given by:-
(1) .
! = -
gi Cbi;"m + _A_(k> 1 l, e aay p
k€ {1, ..., m}
where (
5 .
{A_(kg}2=—d£l)3=k vtk
J .
55{1)3=z=k i,00 =1, ..., m;
i=l, ..., D
0 otherwise
. n+l . . . .
where 65” = z a‘t) ) ana alB)) g0 d(i,)
k =1 j 1 2 atl
i
i=1, ..., p may be found by solving
[(07] [ (a*p-1) (g+p-2) (@) 7]-2 [ 1
) Ty Yy Ty !
(2)0 _ 1 (a+p) (q+p-1) (q+1) .
dz = (2 Yg Yg Qo Q—L; , mtl.
. /{//“
. (A.38)
(p) (q+2p-2) _(g+2p-3)++ _(g+p-1)
{d A Yy, 2 %
and the v's are generated by
Lo, Loy T
YE**P) = ¢i7§r‘p Do @py§r> i=1, ..., mtl
) itk
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Yir+p) = (¢1+6(p)>Y£r+p-l) + ... 7 (¢p+6£p>)y(r) +

k

Cys wvesy ap are constants and for r > g + p’ar~q+l are

generated by:-

A§S> = dg(y,(s); i=1, ..., m+l 14 k) s =0, 21, ...;
D = dg(d(s)' i = s, mEl if k)

=k, s i’ oty

Proof

The result follows exactly before by use of §<k> natrix,

e.g. k =1
z! = [-1 -1 -1]
(1) 0o 1 . 0
0 0 1
We have that L*(r)==dg(y£r>, ey yér)) + Y;f% g, r =0, 1,
Let ['*(r) = §(~) I(r) 5&1) (A.41)
= dg(yéi%, Yér)’ ...}y;r>) + y§r>gm r =0, 1, ...

If the rogue k is 1, then it corresponds to the term multiplyin

the Em matrix. This implies that the parameters ¥ 1=1, ..
of the corresponding ARMAm(p,q) are identical to that given
in theorem A.5, but with the indicies on the I''s and

derived parameter interchanged between m+l and 1. Thus

we replace A(r) in (A4.35) by A% (r):-
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- (r)
A(I‘) = dg(Yl s Ym )
« - (r)  (r) L)
A () = dgly i1 Yo  's ooy
: - (1) (r)
or re-ordering Al(r) = dg(y2 , s Yoe1)
Hence (A.35) becomes
D, .1 [A (g¥p-1) p(a) 17t fesIl]
=1,1 AL 1=
Dy,2 T :
Ql,p Alg+2p-2) ... Al(q+p—l) ap;m

which yields (4.38) for 2 = 2, ...
and A's (and in fact ;m) matrices are diagonal.
note that (A.35) similarly yields (A.38) for &
=
use A% (r) in (A.42) providing we also re-order the

so that it holds for all &

D. to D¥ |, :-
L, —L, L
_ (i) (i
Ql,l - dg(d2 ? ’ dm-{-l
v o (i) (i)
D¥,s = dgld y1s d577,

.o, mtl.)

, mtl because the D

(A.42)

., m

We may also

But whicherer form of (A.42) we use we will still obtain

(A.38).
to (A.36) with 1% + pe18%

the theorem the parameters will be

¢%" = ¢.I + D3

m Ly

S
L 1 I
- T (1)
= 0L, 7 {dm+;
0

I

!

4,

m
4
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indicies interchanged.

Similarly (A.40) will now hold since it corresponds

From



Thus to transform gg to the parameters corresponding to
the ARMA model with a.c.f. I'(r), and not [(r)* we again

take the g(l) transformation. We recall from chapter 4

that if
Ir), &% refers to a_ (ut,m+l’ Upo +oe Uyp, yq)
then I'(r), ®; will correspond to a_ <ut,l’ N
where,
= 3 1 ; 3
T(r) 2y L (r) Z{1) the inverse of (A.41)
&; T Z(1) 2% Z(y)
T | S 1 - * 1
so that 27 = Z(q) (¢1£m + D3, Em) Z(1)
= o.T 4 |-1 - 1] laqld) RE 11f-1 -
®i;m + 1 1 1 dm+l 1 ...1 1 -1
(1) . .
0 i . 0 d2 : ? L
0 0 1 a1 1|0 o
L L LU 4l
- [_q(1) (1) (77, '
= 6,1+ |- -t -l 0 Lo
0 dél) ce. 0 -10 0
0 0 SACRN | P R R
b m (=Y -
r o+l .
=61+ +z att) g 0]
i=m je2
(1) 0 ... O
“d3 : ,
(1) :
_—dm 0 .. 0




as required.
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