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TIME SERIES ANALYSIS OF COMPOSITIONAL DATA

by Teresa Maria Brunsdon

In recent years various methods have been developed for modelling 
multivariate (or vector) time series. However if each vector consists 
of proportions so that elements must sum to unity these methods break 
down. Data with this sum-constraint are termed compositional data. It 
is the aim of this thesis to propose a possible approach to such data.

The method applied is to find a function that will map the sum- 
constrained data onto an unconstrained space, that is to map the 
spherical simplex onto the real plane. Two specific mappings are 
investigated. These turn out to be multivariate generalizations of the 
well known logistic transformation. However, both of these functions 
are asymmetrical. For the first this asymmetry is induced by the choice 
of one of the variables in the vector series, as a reference variable. 
It is shown that the model is invariant under this choice. For the 
second, a specific order to the variables must be imposed. However, 
this is seen to be useful in examining a type of compositional independ
ence known as neutrality.

Methods for using the resulting two models for forecasting are 
discussed. There are two main problems that occur. The first is that 
the moments of the underlying distributions corresponding to these 
models cannot be evaluated algebraically. This means that the minimum 
mean square error forecast cannot be evaluated. The second is that 
these distributions are not necessarily uni-modal, which may make the 
use of the minimum mean square error forecast nonsensical. Various 
solutions are suggested, and these are compared in a short numerical 
study.

The final part of the thesis examines the relationships between the 
components of the proportions. This utilizes time series methods for 
examining Wiener-Granger causality, and combines them with various 
concepts of compositional independence. These latter concepts include 
neutrality as mentioned above, and have been developed to deal with the 
sum-constraint.
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"]n tfie Beginning..."
John 1:1

CHAPTER 1

Introduction

1.0 Introduction

This thesis is concerned with the analysis of "compositional time
series". A compositional time series is a sequence of observations at 
discrete time points; ...-1,0,1,... where each observation consists of a 
vector of proportions. For example consider a repeated survey in which 
at each repetition a categorical variable is recorded, such as in an 
attitudinal survey where a number of people are questioned on their 
attitude to some issue. Their reply might be coded as one of:-

for; indifferent; against; don't know.

For each survey repetition this gives a vector of proportions of the 
respondents preferring different categories. Two specific examples 
where such data arise are public opinion polls on preference for a 
political party and market research questionnaires on preference for 
particular brands.

There are many other examples of such data. The term "composi
tional" comes from the field of geology, in which constituents of the 
soil are examined. When soil samples are taken the amount of each 
constituent (e.g. silt, sand or clay) contained in the sample must 
necessarily be presented as a vector of proportions, i.e. the composi
tion of the sample. Often several such samples are taken along a line 
segment and the resulting data is then a compositional "time" series, 
where "time" is now represented by distance. Another example is 
that of a chemical process in which the amount of each compound is
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measured as the process develops. In a closed system we may obtain a 
compositional time series which represents the chemical process. A 
final example occurs in economics in a study of expenditure and income. 
In a household the expenditure on certain commodities may be examined 
over several time periods. When expenditure on say "food", "housing", 
"clothing", etc. is presented as a proportion of total expenditure we 
have a compositional time series.

The interest of the analyst in such data will vary from applica- 
tion to application. One common requirement is to be able to forecast 
such series. In the example of the repeated survey a forecast using 
past surveys may be incorporated into the estimation of the composition 
from the current survey thus augmenting the accuracy of the estimates. 
Such an application has already been developed for univariate time 
series by Blight and Scott(1973), Scott and Smith!1974), Scott et 
al(1977) and Smith!1978). Forecasting is useful in its own right since 
it helps predict the future of the system.

Other interests refer more to the structure of the compositional 
time series. In a study of expenditure one may wish to see how income 
affects expenditure. If the main wage earner receives a pay rise how 
does expenditure change (if at all)? Or, in the public opinion poll, 
does the proportion who prefer a minor party affect the proportion 
preferring one of the major parties over its main rival?

It is the intention of this thesis to develop models for composi
tional time series and methods to answer some of these questions. This 
involves building on the techniques that are available to handle 
compositional data, together with those for general multivariate time 
series. The literature on the analysis of compositional data is 
summarised in Aitchison(1986) and, h&s to our knowledge been confined 
only to the case of independent observations. Time series analysis is a 
vast subject for which there is a large quMtity of literature which 
reveals several possible approaches. We will restrict ourselves to the 
multivariate ARMA models since they represent a well known and useful 
class of models for our purposes.

We begin in chapter 2 with a brief description of the multivariate 
ARMA model and some of its properties. We also consider the concept of 
dependence between time series, such as Wiener-Granger causality, and 
discuss methods to test for such dependencies.



In chapter 3 we examine the properties of compositional data. Many 
problems are found to occur, especially in understanding the relation
ships between different variables. The main reason behind these 
difficulties lies i;i the "sum-constraint", i.e. the fact that the data 
consists of proportions and hence must sum to one. This makes it 
difficult to examine such well used statistics as the correlation 
coefficient. It is also shown how a multivariate AEIMA model breaks down 
when it is applied directly to a compositional data set. We then 
examine some of the procedures developed to overcome the problems 
encountered in the non-time-series context, and in particular, the 
approach of Aitchison(1982) who defines several types of independence 
between the variables in a composition. His approach is seen to consist 
of transforming the data so as to remove the sum-constraint. It is this 
approach that we shall pursue in later chapters.

In chapter 4 some models for compositional time series are 
presented. They employ the transformation suggested by AitchisonC1982), 
which requires the use of a reference variable. We show that the models 
are invariant to the choice of reference variable, the model being 
affected by a linear transformation of its parameters. A linear 
approximation to the model is examined and shown to be a standard 
multivariate ARMA model. Finally the model is applied to two data sets; 
the GALLUP(c) political opinion poll and the National Opinion Poll 
(NOP).

The transformations used in chapter 4 lead to a particular 
transformed normal class. This so called "logistic normal distribution" 
was first highlighted by Aitchison and Shen(1980). In chapter 5 we 
examine the mean, median and mode of this distribution. It is seen that 
numerical methods must be applied to calculate these parameters and 
consequently an approximation to the mean is derived. Various other 
properties of this distribution are discussed and a number of numerical 
examples are given. The applications of the properties of this 
distribution to the forecasting problem are then discussed.

In chapter 6 the concepts of Wiener-Granger causality discussed 
earlier in chapter 2, and the compositional independence properties of 
Aitchison(1982) are combined to form some new concepts of causality 
and dependendence between compositional time series variables. The 
application of these new types of independence are discussed, and 
various means for testing them are developed. Finally a numerical



example is given, again using the political opinion poll data.
The final chapter summarizes the main ideas and indicates further 

areas of possible development.

1.1 Notational Conventions

To make comprehension easier, certain conventions are adhered to 
wherever possible. No distinction is made between a random variable and 
the values it takes. Vectors and scalars are denoted by small letters 
and matrices by capitals. Hence:-

* is a scalar;

this a vector with i element

is a matrix with (i,j)^^ element a^j(k), equivalently we will

write {a^j} = A;

will denote the mxm diagonal matrix with elements

will denote the mxm matrix of I's; and

e_ will denote the mxl vector of I's,



"for gveryrhlng rBere a reason and a rime for 
every matter under heaven..."

Ecclesiastes 3:1

CHAPTER 2

Multivariate Time Series Models

2.0 Introduction

A comprehensive review of multivariate time series models is 
beyond the scope of this thesis. We restrict ourselves to only the 
results needed in subsequent chapters, and in general present these 
results in as brief a way as possible. A more detailed description may 
be found in for example, Harvey(1981), Fuller!1976) and Hannan!1970).

2.1 The ARMA Model

We begin by defining the models of interest, which are multi
variate generalizations of the univariate models made popular by Box and 
Jenkins!1976). We will denote by {X+} a vector time series of 
stochastic variables for t=..,-l,0,l,...

Definition 2.1
A mxl vector time series {c^} is said to be an m-dimensional 

white-noise process if the are independently and identically 
distributed with mean 0, and non-singular covariance matrix I,

Definition 2.2
A mxl vector time series {v_} is said to be a multivariate

autoregressive moving-average process of dimension m and order (p,q) if 
it may be written:

Yt " ^^Yt_i -pYt-p 01 ^-t-q

where are mxm constant matrices.



$pfO , ,and {c^} is an m-dimensional white-noise process.
We will denote this type of process by ARMA^(P.q) and note that we may 
rewrite it as:

where

0(B) = + 0qBl

(2.1.1)
(2.1.2)

(2.1.3)
and B is the backshift operator:

b'SXj . .

Definition 2.3
An ARMA^(p,0) process is said to be an autoregressive process of 

order p and dimesion m. We will denote this by AR^(p).

Definition 2.4
A moving-average process of dimension m and order g is an

ARMA^(0,q) process. We may write this as MA^(q).

An important property of time series is that of stationarity:-

Definition 2.5
A s tochastic process{Y^} is weakly (or second-order) stationary if

and

i) E[Y^] = M

ii) Cov(Y^Y'^_^)
t-...,—1,0,1

Pi. ; k-..,-1,0,1,
where ]4 and P^ are independent of t.

Lemma 2.6
A necessary and sufficient condition for an ARMAm(p,q) process to

be (weakly) stationary is that the roots of:
|$dz'^)| =0 ,

lie inside the unit circle.
Proof

e.g. Hannan(1970) page 14.

If we have a nonstationary vector process we may transform the 
data. For example, as in the univariate case, we could difference the 
data:-



Withwhere B is the mxm matrix difference operator 
obvious notation we may then proceed to define the ARIMA^(p,d,q) 
process. However differencing has to be applied with great care, if at 
all, especially when handling multivariate time series. This fact has 
been noted by among others Hillmer and Tiao(1979), Tiao and Box(1981) 
and in more detail by LutkepohK1982). Tjdstheim and PaulsenC1982) 
suggest using the concept of, "Almost Non-Stationary" (ANS). Since such 
transformations are available we will without loss of generality assume 
stationarity.

Definition 2.7
If an ARMA^(p,q) process may be written as an infinite auto- 

regressive process it is said to be invertible.

Lemma 2.8
A necessary and sufficient condition for an ABMA^^p,q) process to 

be invertible is that the roots of:
|G(z"^)|=0 ,

lie inside the unit circle.
Proof

e.g. Hannan(1970).

In our definitions we have not included a term to represent the 
mean of the series. There are two ways of incorporating it into the 
model. Consider the series {v^} and let

[t = (2.1.4)

where follows an ARMA^/p,q) process. Then v^ also follows an 
ARMA^^P,q) process, with mean E[v^].
Alternatively we may include the mean in the model

$IB)v^ = ^ + G(B)c^, (2.1.5)

where in general E[v^]f^.
Some packages assume this latter form of model, unless the series was 
first differenced.



Another extension to the ARMA^^p,q) model is the seasonal model. 
These models are required because data often comes in the form of, for 
example, monthly or quarterly figures, A seasonal AR^(p) model, with 
seasonality s and autoregressive component P may be written as

(2.1.6)

where is a polynomial of degree P in

One may expand the left hand side of (2.1.6) into one polynomial in B of 
order sP+p, i.e. as an AR^(sP+p) model, but where some of the resulting 
*' matrices will be zero. Consequently we will without loss of 
generality consider only non-seasonal models.

Before considering the practicalities of the ARMA model we need to 
know the conditions under which the model is identified. Here we are 
addressing identification in the economic sense of parameter redundancy, 
as opposed to the identification stage of fitting an AEMA^^p,q) process, 
which will be discussed in section 2.2 . It has been shown by Hannan 
(1969) that an AEMA^^p,q) process is identified if the following 
conditions hold:- 
Conditions 2.9

-m

ii) The roots of igdz"^)l=0, and |0(z"^)i=O must lie within the 

unit circle, (i.e. the model must be both stationary and 
invertible.)

iii) X(4i -0L)=O if and only if X=0. i.e. the matrix— —p —4 — — — —p —4
full rank.

Box and Jenkins!1976) consider their application of ARMA models as 
consisting of four stages

i) Identification - before estimating any parameters of the
model we must first obtain estimates of the order p,d,q.

ii) Estimation - estimation of the parameters themselves.

iii) Diagnostic Checks - test the goodness of fit for the 
estimated model.



iv) Forecasting - use model to estimate future values.

We now consider each of these stages in turn. For the later models we 
develop we will primarily be interested in i) and iv); much of what we 
require in estimation and diagnostic checking being determined by the 
computer software that we have had access to.

2.2 Identification

The process of identification consists of examining the data and 
comparing their properties to those of ARMA models of various orders. 
This is usually done by considering a variety of summary statistics 
which are estimates of some function of the time series. The simplest 
of these is the autocorrelation funtion.

Definition 2.10
The k^^ process autocovariance function matrix of a time series

{Zt} is

where r(k) =

and Y^- Ely^] ; k-....-1,0,1,.., .

As a function of k the TTk), k=...,-l,0,l,... are known as the auto- 
covariance fun^ion (ACVF).

From this we may define the correlation in two ways:-

Definition 2.11
The k^^ process autocorrelation matrices P(k) and the matrix 

normalized crosscovariance 0(k) are defined by:-

i) P(k) = {p.. (k)}, ij

where p.,(k) = y.,(k)ij iJ
yii(0)y..(0)



ii) ft(k)={u^j(k)},

=r(k)r(0)"^.

As a function of k P(k) and ft(k) are known as the autocorrelation
funtion (ACF) and, the matrix normalized crosscovariance function (MNC)

We note that if we let A = dg(y (0),(0y(0)), then we may—mxm 11 22 mm
express P(k) as :• P(k)=A ^^^r(k)A

In practice P(k) is the most commonly used, since as shown below 
it can be used to identify a MA^(q) process. However ^(k) is employed 
by for example Hosking(1980a) in residual diagnostic checking and by 
Tjdstheim and Paulsen(1982) for identification.

The parameters of an ARMA^(p,q) process are related to the ACVF:-

Lemma 2.12
For a stationary invertible ARMA^(p,q) process.

then

$(B)v^ = 0(B)G^ ,— —t — —t
$(z)r(z)*'(z"^) - 0(z)Z0'(z"^),

where
00

r(z) = z r(i)z-
i=-'»

$(z) and 0(z) are defined by (2.1.2) and (2.1.3), and Z is the error
covariance matrix of

Proof
See e.g. Hosking(1980a)

Corollarv 2.12.1
For an AR^(p) p rocess :■

0
z *\r(j-i) - z' ZT-

j > 0, (Yule-Walker equations) 
j - 0, 
j < 0.

Corollary 2.12.2 (Yule-Walker equations)
For an ARMA^(p,q) process

Z ^tr(j-i) = 0 if j > q.
i^

10



Corollary 2.12.3

For an MA (q) processm

r(j)

q
E e.IGK .1—1-Ji=0
0

iji ^ q, 

111 > q.

The consequences of this lemma and its corollaries are that the ACVF, 
the ACF, and functions of them may be used to identify p and q for a 
stationary time series. In order to do this we first require some 
estimates of r(k), P(k), and 0(k); k=...,-1,0,1,... .

Definition 2.13
The sample autocovariance function matrix C = {c^j(k)} is 

given by:-

1 n

where

C(k) - - y: VU-
t=l

" %t- ^t'

1 n

t=l
and we assume that Y,.....Y . are sampled from a time series. As a-1 ^
function of k, C(k) is the sample autocovariance function.

Definition 2.14
The k^^ process sample autocorrelation matrices Rfk) = {r..(k)} 

of a time series {;t=l,...,n} are:-

r\ (k) =
tf^^ti^t-k.j

n ^ n ^

C, Ak)

y c. (0)c..l0)' 11 11
thAnd k process sample matrix normalized crosscovariance matrices are:-

S(k) = C(k)C(0)"^.

11



Similarly as a function of k, R(k) and S(k} form the sample auto
correlation function and sample matrix normalized cross covariance
function of , -mxm dg(c22(0),...,c^^^0)), then we have

R(k)

We note that for r(k), P(k) and their estimated values that;

and

r'(k)
P'(k)
C/(k)
B/(k)

r(k)
P(k)
C/k)
R(k)

(2.2.1)

It is known that the joint distribution of C(k) is asymptotically normal 
vn.th mean r^k) and variance 0(l/n). (e.g. Hannan(1970),Fuller(1976)).
Similarly R(k) (see Hannan(1970) p229) and S(k) (Tjdstheim and 
Paulsen(1982)) follow asymptotic normal distributions. In particular if 
we consider the autocorrelation function of two white-noise processes 
then for large n the r — (k)'s would have a normal distribution with mean 
0 and variance n"^.

Recall from corollary 2,12.3 for an MA^(q) process that:-

r(j) = q iji > q.

We may examine the C(j) function, and will be able to detect if we have 
a MA (q) process if C(j) is sufficiently "small" for |j| > q. To define 
"small" we would need to know r{j) exactly. Instead we standardize C(j) 
and examine R(k). For univariate processes the procedure is usually 
carried out by plotting r(k). This type of graph is known as the 
correlogram. For multivariate time series we could plot values of 
r^j(k) for i<j=l,,,m against k (k=0.1,... if i^j and k=...,-l,0,l,... 
i^j). This would require a total of m(m+ll/2 plots, which is not too 
bad for m=2 or possibly m-3, however beyond this it is not easy to 
compare m(m+l)/2 such graphs simultaneously. Alternatively Tiao and 
Box(1981) have suggested a schematic way of presenting the auto
correlation function R(k). The elements of R(k) are replaced by a "+" 
if r^.(k) is greater than 2 s.e.'s, a if it is less than 2 s.e.'s, 
and a otherwise.

12



If we have an autoregressive component the Bik) will not quickly
die away. For various orders of p in an AR^(p) process the R(k) are 
known to follow a certain pattern, (for the univariate case see for 
example Box and Jenkins(1976)). The easiest solution would be to look 
for some function which had similar properties for the AR^{p) as does 
the r(k) function for the MA^(q) process. Such a function has been 
found in the partial autocorrelation function.

Definition 2.15
The partial autocorrelation function F(k) for an AR(p) process

IS:-

F(k)
if k = p.

0 k > p,

To formulate how we may actually compute F(k) we turn to the Yule-Walker
equations given in corollary 2.12.1 and 2.12.2. We have:-

r(k+i) [ r(k) r(k-i) ... r(k-p+i) ]
^2

-p
where
and

k > q 
k > 0

for an ARMA^(p,q) process,
for an AR (p.q) process.

Thus we have by stacking p of these equations that:-

' [(k+iy'
r(k+2)

r(k+p)

r(k) r(k-i) 
r(k+i) r(k) .

r(k+p-i)

r(k-p+i)
r(k-p+2)

. r(k)

♦2

L -pj

(2.2.2)

We may obtain estimates of by solving this system of
equations. However we do not know p, so we form this system for 
p = 1,2,... we have

13



r(k+i) - -11

"r(k+i)'
r(k+2)

r(k) r(k-i) 
r(k+i) r(k) ^22

(2.2.3)

etc. for k-q,q+l,.

Then we may estimate —11 —21 “22 —j1 •tpp--"

*ii
X 0 i < p

= 0 i > p ;

and we may write:- F(j) = j = 1,2,....

Then

(2.2.4)

Suppose in particular we let k=q, and write as in Tiao and Box(1981):-

' r(k) r(k-i) . . . . rTk-s+2)' ' r(k-s+i)'
A(s,k) = r(k+i) r(k) . . . . r(k-s+i) , b(s,k) = r(k-s+2)

rTk+s-2) r(k+s-3) . . . r(k) r(k-i)

'(s,k) ^ ' r(k+s-i) rXk+s-2) . . . r(k+i) [ , c/s,k) = ' r(k+i)
r(k+2)

^s-1 * ' ' ^3,S-1 ] ' •

(2 .2.5) r(k+s-i)

Then we may rewrite our system of equations as:- (k=q) 

r(q+l) = r(q)*^^ ,

cX2,q) " A(2,q) bT2,q)
r(q+2) _ S'(2,q) r(q) L ^^2-

c(3,q) ' A(3,q) bT3,q) -2
r(q+3) &'(3,q) r(q) L ^33J

(2.2.6)

etc.

Then using the results of e.g. Morrison(1976 p68), we have that;



F' (r) = <P'_rr

r ^(q)r(q+l) , r = 1

[r(q) - b^(r,q)A ^(r,q)b^r.q)]^^ (2.2.7)

[r%r) - b^(r,q)A ^(r,q)c(r,q)] r > 1

In practice we do not know q, and in fact we calculate F^(r) using q=0. 
Having made this assumption we will be able to identify an AR^(p) 
process. If we have a mixed ABMA_(p,q) process then R(k) and F(k) will 
die away slowly. We must then decide primarily on the basis of the 
pattern of the two functions, or alternatively choose some other 
criteria, which we will discuss below. Before moving on however we need 
to consider how F(r) is estimated in practice. There are several ways 
this could be done, but we present here the approach used by the 
computer package available to us to calculate F(r). We have available 
an early version of the Wisconsin Multiple Time Series Package (WMTS-1), 
which follows the procedure outlined in Tiao and Box(1981).

Consider the transpose of the AR(r) model;

V' = V" + . . . + V' + G'—t —t-1-1 “t-p—r —t (2.2.8)

Suppose that we have a sample V,,...,V then we may stack at least n-p—1 -n
equations:-

-r+l r v-r -1 e' .-r+l
V"-r+2 = -r+l + .-1 . +

v;
-r

^T+2

-n (n-r)xm -n-1 (n-r)xm
v—n-r —n

(2.2.9)

If we let:

L Vr+l'

- [ $1.

,V 1—n J

^T+2'

V' V , -r -r-1

—n-i —n-2 V-n-r

then we may rewrite (2.2.8) as:-
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Y'*' + A ,~r~ —

and we may estimate by ordinary least squares (OLS)

= rY'Yl ^Y'y
— Y' L ~Y—v'-J —r-^y (2.2.10)r L -r—rJ —r^r

Then if we do this for r=l,2,... then we may define £(r) to be the last

mxm matix of =̂ r

As with the ACF we may easily examine the PACF by plotting it 
against its corresponding lag. However the WMTS-1 package also produces 
a schematic version for F(r) in a similar fashion to that described for 
R(k). From standard linear model theory it is possible to calculate the 
standard errors of F(r). If each element is divided by its standard 
error we obtain a standardized form of fXr) (F^(r) say). We may 
represent these by writing a if an element of F^(r) is greater than 
2, or if it is less than -2, or a "if it lies between +2 and -2.

The ACF and PACF offer a means of identifying an MA^(q) or an 
AR^^p) process respectively. But what can we use if we have a mixed 
ARMA^(p,q) process? Tiao and Box(1981) suggest a criterion with the 
following properties;-

= 0 if s > p and k > q
d(s.k)

^ 0 otherwise .

Consider the equations (2.2.2) aud (2.2.5)

Ais,k) bTs,k)

g/(s,k) r(k)
-s-1 c/s.k)

L -SS - r(s+k)
(2.2.11)

If k > q and s=p then T 5 1 are the exact parameters of the Yule--s-1 -ssJ
Walker equations. We define d^ (s.k) to be

d_ (s,k)
A(s,k) c.(s,k) 

g'(s,k) Y^j(s+k)
(2.2.12)

Then if k i q and s > p, because of (2.2.11) the c.(s,k) and y^^(s+k)
are linearly dependent on ATs.k) and g((5.k) and consequently
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(s,k) = 0 if s > p and k ^ q for (2.2.13)

Using (2.2.12) we may define the following

Definition 2.16

Let D(s,k) = {d^j(s,k)} ; s=l,2,... ; k=0,l,... ; where d^j(s,k) 
is given by (2.2.12). Then the series of matrices D(1,0),D(2,0),..., 
DT1.1),D(2,1),... of determinants forms a determinantal criteria for 
identifying ARMA^^p,q) models:-

D(s.k)
0 if s > p and k ) q.

0 otherwise.

A further tool suggested by Tiao and Box(1981) for the 
identification of AR^(p) models takes the form of a likelihood ratio 
test. For an AR^^r) model consider testing the hypothesis HQ:^^ = 0. 
Let SS(r) be the matrix of residual sums of squares and products after 
fitting an AR^^r). Using the notation of (2.2.9) we have:-

SS(0) = 26ZQ (2.2.14)

SS(r) ^ir^l X <{)' 1 r V -—rr—r J ^ 5lr^; X 1 —rr—r ^

where [ rl —2r! Y .for r = 1,2, -r (2.2.15)

The likelihod ratio statistic |SS/r)|
iSS(r-l) may be used to determine the

order p of an AR (p) process. Using the approximation of Bartlett(1938) 
we have that:-

j C C ( v- ) ( 1M(r) = -(N - 1/2 - rm)ln/.ggYir-lh"^ (2.2.16)

is asymptotically % g ' where N = m-r-1.
(m")

Thus we may compute M(r) for r=l,2,...,s (say) and choose a suitable p 
when M(r) is sufficiently small.

Various other statistical tools may be used for identification. 
For example two similar statistics are presented by Tj^stheim and
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PaulsenC1982). Also the inverse autocorrelation function has similar 
properties to the partial autocorrelation function. The fourier 
transform of the autocorrelation function results in a normalized 
cross-spectral matrix. If the inverse of this cross-spectral matrix is 
then formed and then the inverse fourier transform applied, the 
resulting coefficients will have analogous properties to the original 
autocorrelation function, but with the AR and MA operators interchanged 
(see for example PriestleyC1981)). A further identification tool is the 
use of canonical variate analysis as suggested by Akaike(1974) and 
further discussed by Cooper and Wood(1982).

We now move on, and consider next the estimation of the parameter 
values.

2.3 Estimation

Once the order of the ARMA model has been determined we then 
require to estimate the parameter values themselves. Under the 
assumption of normality we may use the method of maximum likelihood, 
however the exact maximum likelihood estimator proves to be computa
tionally expensive, and consequently various approximations have arisen, 
which, under certain conditions, prove to be close to the required 
result.

Two simple, but inefficient, methods of estimation have in fact 
already been mentioned for the AR^(p) process in the previous section.
In the definition of the partial autocovariance function, the parameters 

were estimated by solving the Yule-Walker equations, thus we 
may apply this technique here. We note, since the Yule-Walker equations 
apply for ARMA^(p,q) processes, that using the appropriate 
autocovariance function we may estimate for the mixed model as
well. A similar approach may be used to obtain estimates of 
via the inverse autocorrelation function since Yule-Walker type equa
tions hold in an analogous way to that of the AR^(p) case. A recursive 
procedure for easily solving the Yule-Walker equations has been devel
oped by Whittle(1963). This is the method employed by the SAS package 
to compute the partial autocorrelation function. However these Yule- 
Walker estimates are poor, especially for smaller sample sizes, and also 
if the roots of the characteristic equation - 0 lie close to
the unit circle. Since the inverse autocorrelation function is itself
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based on an estimate of the spectral density function there seems to be 
further room for error which is perhaps the reason this does not seem to 
have been done in practice.

The second type of estimation mentioned in the previous section
was that of the OLS estimator (2.2.10). There is no similar estimator 
for the MA^^q) process, other than fitting a high order AR^^p) process 
and forming estimates of as:-

0(B) -1 (B)

The OLS estimate is more accurate than the Yule-Walker estimate but, it 
is still relatively poor compared to that of the exact likelihood 
estimate. This latter estimate and the conditional likelihood estimate 
are based on the likelihood function of an ARMA^(p,q) process which 
under the assumption of normality is:-

C(4\G,I|V^) ^ I El ^^^^'exp^^ ^^rl ^S(4\0)} ,
(2.3.1)

n
where * = .... ; 0 = and S($,0) = E a^a^

k=l-p-q

The a, may be estimated by:- -k

a , - V + 4>V’ $ V - 0 a 0 a .—p-f 1 ~p+i —l—p —p—1 —1—p —q—p-q+1

V + ,4-n -1-n-l ,+ (}>V — 0 a —...-p-n-p -1-n-l
for k = p+l,...n.

0 a-q-n-q
(2.3.2)

Since the estimates of a^_ _q,...,ap are difficult to compute, an 
approximate likelihood estimate is given by setting these to their 
expected value, nameley zero. This approximation forms the conditional 
likelihood estimate, i.e. the likelihood function conditional on

-1-p-q ... = a^ = 0. This is given by:- —P —
C (^qG.EiV ) K I El ^^^"exp^- ^^rE (*,0E\ , (2.3.3)
c — — - —t — 2 — c — —
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where now S ($,0) = E (2.3.4)

The exact likelihood function may also be computed by various methods 
for example the Box and Jenkins(1976) method in which estimates of 
ai _,...,a_ are obtained by "backforecasting". This method is applied—i —p—q —p
to ARi(p) and MA2(q) processes and is extended to the mixed process 
(ARMA^(p,q)) by Newbold(1974), to the MA^(q) process by 0sborn(1977) and 
to the general ARMA^^p.q) process by Hillmer and Tiao(1979) who show 
that the exact likelihood may be written as:-

(2.3.5)

where C (‘f>,0, EI) is a function of: r - - - “t
i)

ii) y^,

,y^ if q 0,

if q ^ 0.

Having obtained an expression for the likelihood, it is still
necessary to maximize it

:0 :0
This is done iteratively. An initial estimate

of the parameters * ,0 is given and these are used to form an estimate 
ot E, E ,

n
E

t=l-p-q
^t-t (2.3.6)

A non-linear least squares routine such as that of Narquardt(1963) can 
then be employed to find * ,0 which minimize S(^\G0 and hence maximize 
C($,0,Ejy ). From this we may repeat the procedure until we have 
convergence. This is the approach used by the WMTS-i package, which 
employs a modification of the Marquardt algorithm written by 
Meeter(1965).

The complexity of the exact likelihood function makes it computa- 
tionally inefficient. However if the initial guesses are chosen to be 
close to those of the final estimates very few of the complex iterations 
will be required. Thus we can improve the computational efficiency by 
letting the initial guesses be those as estimated by one of the 
approximate estimation procedures mentioned above.

Other methods of estimation are also available, based on the 
frequency domain approach of Whittle(1953). Akaike(1976) applies such 
an approach to fit State Space models, these being the techniques
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employed by SAS.
Finally we note that confidence limits af the estimates are 

readily available and the asymptotic distribution of the estimates have 
been well studied by for example Hannan(1970).

2,4 Diagnostic Checks

Once a model has been fitted, it is necessary to ensure that it is 
fitting the data well. One approach is to examine the residuals; one 
would expect the residuals to behave like a white-noise process, if they 
are in fact estimates of the innovation series powering the process. A 
further way to examine the adequacy of the model is to show that the 
addition of more parameters to the model is superfluous. Thus we may 
approach diagnostic checks applied to the residuals and/or by "over
fitting tests".

The simplest way to examine the residuals is to treat them as a 
new set of data, and apply the identification techniques to them to see 
if they will be adequately represented by a "white-noise model". The 
residuals are readily available to do this, having been already
calculated at the estimation stage. The WMTS-1 package automatically 
performs some useful processing of the estimated innovations. The 
cross-correlations are calculated, and using the indicator symbols
described in section 2.2 we would expect these indicators to consist 
almost entirely of "."s. Thus for a two dimensional series the pattern 
of the autocorrelation function of the residuals may resemble something 
like this:-

lags: 1

The odd "+" or should not worry us, providing they are
infrequent and not conforming to any pattern.

We could also examine the PACF but since it merely reciprocates 
the ACF for a white-noise process, this may not be worthwhile, unless 
there is some indication that we do not have a white-noise process from 
the examination of the ACF.

Overall tests which examine all the residual crosscorrelations 
simultaneously have been developed. The well known portmanteau 
statistic (e.g. Box and Jenkins(1970)) for univariate time series has 
been generalized to multivariate time series by Hosking(1980a,1980b).
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Hosking(1980a) also examines a whole battery of overfitting tests based 
on the lagrange-multiplier test procedure.

One simple overfitting test has in fact already been mentioned in 
2.2, namely the likelihood ratio statistic (2.2.16) which we have 
labelled M(r). We could also apply M(r) to see if additional moving 
average parameters would improve the model. We note that in overfitting 
tests we try adding parameters either to the autoregressive side of the 
model or to the moving-average side, but not simultaneously, because of 
parameter redundacy. (See Box and Jenkins(1970)).

In this context we will use the diagnostic checks available to us 
on our computer software. Namely the ACF of the residual series, and 
where appropriate the likelihood ratio form of the overfitting test.

2.5 Forecasting

The ability to forecast is perhaps one of the most useful 
applications of time series analysis. It is important in business, 
finance, marketing, public administration and many other areas. There 
are many ways to approach the subject of forecasting. In some situa
tions subjective forecasting is the best way to analyse future trends. 
Many managers, for example, need to make important decisions as to how 
to rtm their business based on their "know how" and past experience.
Such intuitive prediction is invaluable, but it can be augmented by 
statistical techniques. Also, in situations where it is extremely 
difficult for anyone to subjectively predict future events, statistical 
techniques provide a necessary objective method of prediction.

Various statistical forecasting methods are available, not all of 
them based on time series analysis. For example in launching a new 
product a sales manager might well conduct a consumer survey to get a 
feel for the market. Time series analysis, however, lends itself very 
well to this area, and a whole battery of time series forecasting 
methods are available, not only the Box-Jenkins method, but many others 
as well; for example the Holt-Winters method. The Box-Jenkins approach 
considered here gives us a means of estimating the distribution of 
future observations conditional on present and past values. Once we 
know this distribution, we may use it to provide both point predictors, 
based on the mean, median or mode; and also interval predictors, usually 

t)^ foi^ of a confidence region for whatever location parameter we
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may have chosen. Point predictors give us a single value which 
estimates the future value of the variable of interest, whilst interval 
predictors indicate the degree of uncertainty attributable to these

single values.
The most common location parameter used in practice is the mean, 

because it has the property of providing the minimum mean square error 
forecast. (MMSE forecast.) In other words if the forecast of at
time t is Z,(I), and the forecast error is given by e^(I) =
then if Z^(I) is chosen such that it minimizes E[e^^(<)^],i=l.... .
then it is the MMSE forecast, which is simply Z^(I)=E[Z^+^|Z^,Z^_2,..],
the mean of the distribution of Z^+^ conditional on Z^,Z^_^.....
Obviously if the distribution is the normal distribution, the mean, 
median and mode would all be identical. However if a transformation is 
applied prior to the analysis, or some other distribution assumed, this 
is no longer the case, and we need to differentiate between the various 
options of location parameters. Before considering these non-gaussian 
possibilities, let us consider the simple case of the stationary, normal 
distributed time series. In particular one that follows an ARMA^^p,q) 

process:-

^!2^t-2- 8 e^ -q—t-q

^T-t-1 ^2^^-2- ; where var(e ) = E,

Consider Z^^^= e^^^^ e + ¥ e ^

At time t, e^,e^ are known, whereas 2^+^' ,e t+I

^^+l^t-l"' ' ' 
(2.5.1)

are unknown but
have mean 0 and variance E, 
conditional on Z^,Z^_^,...

Z^(« - E(Z^,

Thus the distribution of Z^^^ at time t, 
is normal with mean:-

...]

’? e + e —t —£+1—t-1
(2.5.2)

and variance

Var[Z^^^|Z^.Z^_^ Var[e^(X)]

Var[e^^^+

I + T^E^^ + . . .

' ' ' ^^^-1-t+l^

(2.5.2) is often more conveniently expressed as:-



Z^(^) = ^?^t+l-p

(2.5.4)

In practice the parameters are replaced by their estimated values
0,,...,0 ,... ; as computed by the techniques described in-1 -q -1 -p -1
the previous section. We also need estimates of e^,e^_j,....; these may 
also be replaced by the estimates resulting from the previous step of 
our Box-Jenkins method. Alternatively they may be regarded as the one 
step ahead forecast errors, so that if a forecaster is using a model 
which is well tried, for example, over a long time period, in which more 
observations become known but the model is not re-estimated, then
estimates of e^,e t-1 are:

0,±1,2,.., (2.5.5)

Thus as more Z^'s become known, the forecast of may be easily
updated, giving successively more accurate estimates:- Z^{1), Z^^.|(4-l)
—1 + 2 ^ ),•••, j (1) •

The expressions (2.5.2) or (2.5.4) provide us with a point
predictor Z^(f) of Z t+^' The confidence region for Z^+^ may also be
produced using standard multivariate theory. Thus if Var[e^(()] is 
estimated by substituting estimates of into (2.5.3) then,
by the results of e.g. Morrison(1976) a 100(1-%)% confidence region is 
given by:-

—t
(2.5.6)

where E , ., is the estimate of Var[e^(X)] based on (2.5.3),
—t
2 2and ^ is the 100%% point of the x^ distribution.

We note in passing, that the expression (2.5.6) above is not based on 
the F distribution, as is the usual case in the multivariate context, 
where the covariance matrix is the usual estimate of some multivariate 
variable x:-

1 " - - - 1 "S = —r ̂  (x. - x)(x. - x)' .and x = - Z x.- i=l -1 - " 1=1"^

S is known to follow a Wishart distribution, and consequently the
_ 2equivalent expression to (2.5,6) for x results in the Hotelling's T
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distribution, which in turn may be rewritten in terms of F

(2.5.7)

distribution.

n(x - x)S ^(x - k)' ^ 7-.F

where F

(n-m) ot;m,n-m 

is the upper 100oc% point of the Fot;m,n-m ‘‘ ‘ m,n-m
However in this time series context, the variance matrix within the

quadratic expression ( Z , , in (2.5.6)) does not follow the Wishart
~t ^ ^ ^

distribution, but since as shown by, for example, Hannan(1970) Z and Y.

are asymptotically normally distributed with mean Z and Yi(i=l,2..) 
respectively, then (2.5.6) gives us an approximate confidence region in 
this case.

Having developed the above forecasting procedure we now consider 
how these results are affected by a transformation. As mentioned 
previously a time series, {V^} may be transformed to a series {W^} by 
some instantaneous transformation, such as that of Box and Cox(1964), in 
order to have a stationary process {W^}. The ARMA model is then fitted 
to this new process. These transformations also hope to produce a 
gaussian time series so that the methods given above may be applied.
Thus we have that

= f(y^) , t=o,±i,. (2.5.8)

and using the methods described above we may readily form forecasts of
W^(1),W^(2),... . However interest is usually in the

forecasts of Vt+l'Yt+2 . so that what is usually required is an
estimate of E[ | ,V^_j
of (2.5.8) be:-

If we let the inverse transformation

Mr - 1 t=0,±l,... (2.5.9)

Then the forecast of interest is

v^(t] - . .)

- . -i

“ . .1
which, in general g(E[W ,W . .])

(2.5.10)

(2.5.11)

25



This problem may be tackled in many ways, one in particular is to 
consider the resulting distribution of V^, given is normal. This
is perhaps most easily demonstrated by a simple example. Consider the 

well known transformation:-
= In(V^) .-t “t

In general if Y - ln(X) and then X is said to follow the
log-normal distribution with probability density function:-

xp^ —HdlnX - ]j) (InX - • (2.5.12)
m
TTx. |2?Z|
i=l ^

ex

We will denote this by A m being the dimension and, ^ and E the
parameters of the log-normal distribution. It is then easily shown that 

the mean of X is

E(X_) = exp(p^ + ; i=l,...,m. (2.5.13)

and Cov(X.,X.) = {exp(P..) - l}{exp(p + p. + )} ;
1 J 1J J J J

i,j=l,...,m; (2.5.14)

hence Var(X^) = {exp(P^^) - l}{exp(2p^ + d^^)} ; i-l,...,m.

Thus we may now easily form estimates of from those of

Recalling that:-

and = exp(W^) ,

we have V^(()

and Var[V^^^l = {expd

where {

ti til

tii

tij

ti tii

(2.5.15)

(2.5.16)

i-1,...,m.

Finally we note that for this simple example, 100(1-%)% confidence
region for . is simply:-—1+ i

(2.5.17)
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We see, however, that although this provides an interval predictor for
V ,, it is not centred on E[V .]. Thus, from the above example, for a 
—t+i —t+*
general transformation we see that we may form a point predictor of 
providing we know the mean of the resulting "f-normal" distribution.
Also may form an interval predictor analogous to (2.5.17).

Another approach to the forecasting of V after performing a 
transformation is given by Granger and Newbold{1976), who consider an 
expansion of g in terms of hermite polynomials. For a univariate series 

such that

Then we may write

"t ■

CO

I Ol.EAVJi=0 ^ ^ "
(2.5.18)

where, H (x)n exp(x /2) r d 1
dx exp(-x /2)

n!^Z (-l)"^2™m!(n-2m)!}

m=0
(2.5.19)

the Hermite polynomials, (e.g. Hq(x)=1, H^(x)-x, H^(x)-x -1)

%
And & = r(2ml^h^l ^

n ^
-x^/2

1

dx g(V^)dV^ . (2.5.20)

For example E[W ^ |W ,...] is shown by Granger and Newbold to give the 
same results as above for s=log. Such an approach requires that the 
function concerned be easily expanded this way, which means that 
(2.5.20) be easily computed.

Having defined the AKMA^^p,q) model and discussed its properties, 
we next consider the concept of Wiener-Granger causality.

2.6 Independence Between Time Series

In multivaT iate time series, questions often arise in connection 
with the inter-relationships between individual time series. For 
example, in economics knowledge of the influence that one economic 
variable has on another aids us in understanding the underlying economic 
system. This in turn enables the economist to forecast future economic
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trends, and advise government bodies regarding policy. Many other 
examples exist, and various concepts such as causality and feedback are 
of particular interest in the modeling of both engineering and economic 
systems. Exact definitions of these concepts have been given e.g. 
Granger(1969,1982), Geweke(1982b). In particular the definition offered 
by Granger!1969), now commonly known as Wiener-Granger causality, offers 
a good working definition, with practical implications both in testing 
and in interpretation. Although there does seem to be much discussion 
and dispute over these definitions (see for example A. Zellner's comment 
to Geweke(1982a) and also Geweke(1982b).); these disputes are in general 
philosophical and will not be considered here. Wiener-Granger causality 
offers a widely accepted definition of dependence between time series 
and is presented below together with various methods to test and measure 
causality, feedback and independence between time series.

2.6.1 Some Definitions of Causality

We first require some notation. If is a stationary stochastic 
process, then let

represent the set of pcust values

Z^ the set of ar^ present values {Z^_j; j=0,l,2 > * • • ) 5

Z^^pp the set of future, present and past values {Z^_j; j=0,±l,±2,..};

EL(Z/W) be the minimum mean square error predictor of Z^ using the set 
W, with prediction error:-

c^(Z/W) = Z^ - P^(Z/W),

<3^(Z/W) be the variance of c^(Z/W),

and O^p be all the information in the universe accumulated up to time
t-1, and (Q-yi^p be all this information apart from the series Ytp'
We then have :■

Defintion 2.17 (Wiener-Granger)
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a) Causality:
If < d^(X^/(0-Y)^p) then Y is said to cause X.

b) Feedback: Y^^X^
If i) d^(X^/n^ ) < d-(X^/(n-Y)^ )tp/ - ^ ^'tp''

ii) d^(Y^/0^p) < d^(Y^/(n-X)^p), then both ^t^'^t °ccur
tp'

and we say we have feedback between X and Y.

c) Instantaneous Causality: Y^.X^

X and X is instantaneously causing Y

If d^(X^/0^p,Y^pp) < d^(X^/A^p) then Y is instantaneously causing

We note that by symmetry we may also have defined c) by:-

d^lYt/n^p.X^pp) < d^(Y^/0^^),tp'

which consequently is equivalent to the inequality given.
The criteria involved in these definitions is that of predictabil- 

ity. Thus Y^^X^ implies that we are better able to predict X^ given the 
past values of Y^ than if we did not employ Y^'s past values. We note 
that in all the definitions the time series are stationary.
Granger!1969) also makes the following points.

1) The fact that the criterion used is the variance, implies that 
these definitions might be better named "causality in mean".

2) We will not in fact have the whole universe of information but
rather a subset (say) of "useful" information.

3) In practice any predictors that are used are linear in nature.

Thus using these facts we could for example replace by U^, o (X/W) by 
o^^(X/W); where, o^^(X/W) represents the variance of the linear 
prediction error of X^ given a set W; and replace causality, for 
example, by linear causality in mean with respect to a set U. However 
this leads to rather long-winded definitions, although these are more 
realistic. We will bear in mind what the true definitions should be
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(i.e. the more long-winded ones) but instead use the more general 
definitions. It should be clear in the next section, and in later 
applications exactly what form of causality, feedback etc. we are 
implying. What is important is to understand that in whatever frame- 
work, be it linear or otherwise, for example, implies that within
that framework we are better able to predict if we use information 
about past values of Y^ over and above any other past information, such 
as past X^. Obviously may not in fact consist of "useful" informa- 
tion, but rather known and thought to be useful information. If some 
important variable is unknown, spurious relationships can occur between 
known variables (cf. correlation). Even if however, we only discover a 
spurious relationship which enables us, for example, to better forecast 
some variable then it is still of value. In any case our understanding 
of a system must start somewhere.

In later sections we will also require two further definitions:-

Definition 2.17 continued
d) (Linear) Independence: Jj[

If X does not cause (linearly in mean) Y (with respect to U), Y 
does not cause (linearly in mean) X (with respect to U) and no 
instantaneous (linear) causality (in mean with respect to U) 
exists then Y is said to be (linearly) independent (in mean) of X 
(with respect to U).

c) Complete Dependence: Y^^^X^
If X^4'Y^, and X^.Y^ then Y^ and X^ a^said to be completely
dependent (linearly in mean with respect to U) on one another.

The term "independence" in definition 2.17d) should not be 
confused with the usual stochastic independence. Two variables z^ and 

are independent if their joint distribution is the product of their 
individual marginal distributions. If our two time series X^, Y^ are 
independent in this sense then they are also linearly independent in the 
sense of 2.17d), but the converse is not necessarily true. This is 
analogous to the fact that independent variables have zero correlation 
whilst variables with zero correlation are not in general necessarily 
independent. Thus 2.17d) may be thought of as analogous to X^ and Y^
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being uncorrelated, whilst 2.17a)-c) represent a directional form of 
correlation. This will be illustrated in definition 2.21, which is a
directional squared correlation coefficient for time series.

2.6.2 Tests and Measures for Causality, Feedback and Independence

Having defined various types of causality between two time series 
we need to know how to model and test for them. This has been done 
recently by Geweke(1982a,1984) who systematically brings together and 
builds on earlier work done by, for example, Sims(1972), Granger(1969) 
and Pierce(1979). What follows is a brief description of Geweke's 
results together with a further test proposed by Haugh(1976).

Consider two multivariate processes {X^} and {Y^} of dimension k 
and / respectively. We will assume throughout that tide joint process is 
stationary and invertible (maybe after transformation and differencing.) 
If we wish to predict future values of {X^}, we may employ an appropri
ate time series model. If it is known how {Y^} influences {X^} then 
this may be included in the model. We will consider four possible 
information sets that could be used to predict {X^}:-

1) ^tp
2) ^tp and ^tp
3) ^tp and Ytpp
4) ^tp and ^^fpp

Geweke's(1982a) measures of dependence consist of comparing the
above information sets with each other. Clearly we may symmetrically 
examine four information sets to predict {Y^}, and may also compare
these. We can express l)-4) above in terms of four models for {X^} and
similarly {Y^}. We consider linear models, and collecting them pairwise
for X^ and Y^ we have;

1) (2.6.1)

(2.6.2)

where a^^^, b^^^ are white noise, but may be correlated with each other 
-t -t

at various lags, and:-
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Var(a^^^) = E(X|X ) ; Var(b^^^) = Z(Y|Y ) ;
—t — — —p —t — — —p

and
00

= Z , i=l,2 ;-11

where 4<”, =1^,

2) (B)X^ . " 4"’

44(B)Xj » 44(b)y^ = b4> (2.6.3)

(2) (2)where a , b are white noise that may be correlated with one another -t —t
but only contemporaneously, and where

r(X.YIXp.Y^)^^,
(2.6.4)

CO

and = Z B^ , i=l,2
-ij

(2)but with <t>\ _ = I ;-11,0 -k

r=0

.(2)

ij ,r

*12,0 0 : * (2)
21,0 0 : *(2)

22,0 = I . . (2.6.5)

3) 44(B)X^ .i|4(B)Xt -a^

(B)Xt a 44(B)Y^ -b^

(3)
t

(3) (2.6.6)

where, aj^^and b^^^are uncorrelated white-noise with:
-t —t —------- ----

Var(a^^^) = Z(X|X ,Y )
—t — — —p —pp

( 3)Var(b^ ^) = Z(Y|Y ,X )
—t — — —P eP

(2.6.7)

(3)where *., (B) are as in 2) except that instead of (2.6.5) we have -IJ

$(3) = I : = I
^il,0 -k ' ^^2,0 (2.6.8)
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4)

4t’h " ^22’it b

(4)
-t
(4) (2.6.9)

with Var(a|:''') - E(X1X^ .

var(b<'‘>) - EdlY^.Xjpp) , (2.6.10)

where $!^^(B) 1=1,2 are of the same form as in 2) and 3), but 
—11

r=-w
(2.6.11)

Clearly all the above models may be re-written in matrix form:-

^t 4" 1

/t _ 4-',

with i”’ - t'“' 0,

(2.6.12)

, i=l,2,3,4;

Clearly if
i) X |[ Y, all the models reduce to 1)

ii) X ^ Y only. 3) reduces to 2) with, (B)=^^j^(B);
a^^^ is uncorrelated with b^^^ i.e. r(X.YiX ,Y )=0.
—t —t — — — —p —p —

iii) X ■» Y only, 3) reduces to 2) i.e. r(X,Y|X ,Yp)=0.

iv) X.Y only, 2) reduces to 1) with and b!^^ correlated only at
^ (3) ^

lag 0. 4) reduces to 3), but with <i>. . =0 i^j = l,2;r^0.-ij,r - -

v) X Y then a}^^ and b^^^ are correlated at various lags. Also
-t -t

model 2), 3), the first k equations of model 4), or the last k 
equations of model 4) are all alternative representations of the 
same form.

In the light of these properties Geweke(1982a) defines the following 
measures of causality. (We use a different terminology.)
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Definition 2.18
The measure of linear causality from Y to X is;

Y^X In
Z(X^ )— — —p

Z(X^ ,Y^)— — —p —p

symmetrically
FX-»Y In

|E(Y|Yp)|

iKlIIp.Xp)!

Definition 2.19
The measure of instantaneous causality between X and Y is:-

l:(X|^|.lI(Y|Yx%l
FX.Y In

lI(X,Y|Xp,Y^)|

Definition 2.20
The measure of total linear dependence

X4=)'Y In
lI(X|X^)|.|E(Y|Yp)| 1 

lI(X,Y|Xp,Yp)|

It follows directly from the above definitions that:-

F = F + F + FX^^Y X^Y Y<X X.Y (2.6.13)

Geweke(1982a) also gives the following results:-

X<4>Y In
Z(XiX)

^<^'Sp-hpp>'
= In

|Z(Y|Y_) ---^
S'f^p-Sfpp'

In
ifX^^5p-hpp>'

Y.X = In (2.6.14)
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The motivation behind these measures should be clear from 
properties i)-v). For example, Fy+X log-ratio of the prediction
error matrices of X based on past X, vs. past X and past Y. Thus if Yt^X 
so that the denominator equals the numerator Fy-^X ~ ^' Similarly for

Fy y, if there is no instwtaneous causality, a^
to b^(^^ so that r(X,Y|X_,Yp) = 0 and again the denominator will equal

the numerator so that Fy y = 0.

will be uncorrelated

We note that:
0 < F < 00 .

Pierce(1982) relates Geweke's measures to his measure for time series 
(Pierce(1979)). Tbi5 R^ measure is perhaps easier to interpret since:-

0 < R^ < 1 ,

and it represents the proportion of variance explained by allowing the 
particular dependence under consideration to hold. It may be defined in 
terms of F.

Definition 2.21
R" 1 - e

Thus for example, R^-*Y = 1 "X^Y and represents the proportion of
the prediction error for Y|Y explained by X .--- p —p
Although R^ is perhaps easier to interpret, it does not have an 
equivalent additive property like (2.6.13). It is possible to form a 
third type of measure, which is defined below.

Definition 2.22

To understand the motivation behind W consider the null 
hypothesis that a given measure of dependence is zero, then, when 
estimates of the covariance matrices are made, F is the log-likelihood 
ratio test-statistic, R^ the Lagrange-multiplier test, and W the Wald
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test. A comparison of these three tests is discussed by Geweke et 
al(1983). The comparison is made in terms both of asymptotic theory, 

and by a simulation study.
For our purposes, we will utilize F, since it is well developed in 

this context Geweke(1982a,1984), it has the additive property (2.6.13), 
and the other two measures may be expressed in terms of it.

Having introduced the above measures, we need to know how to 
estimate them. The first step requires that we truncate all the lagged 
polynomial expressions in (2.6.1) through to (2.6.12) at a point p 
(say), so that:-

,(k)' = 0 -ij.r rt > p; k=l,2,3,4; i,j=l,2,

This leaves us with a finite number of parameters to estimate. 
Although p may be chosen in a similar manner to that for identification 
(section 2.2), we are not seeking here to identify an exact order for 
the model, but instead a truncation point for an infinite order model, 
which will finally result in a good estimate of F. Geweke(1982a) states 
that "p should be allowed to increase with sample size" so that 
consistency may be maintained. However the identification techniques of 
section 2.2 should aid us, if only to set a lower limit for p.

Having selected p, the parameters, residuals and hence the 
required variance-covariance matrices may be estimated using least 
squares or other standard techniques such as those in section 2.3. F so 
formed is then the maximum likelihood statistic, which asymptotically 
follows a chi-square distribution under the null hypothesis that the 
dependence relationship does not hold. The degrees of freedom are 
simply equal to the difference in the number of parameters of the two 
models estimated.

"0 = = 0) a
^ik/p)'

"O: XT^Y = 0) a
^^kfp)'

X/Y ^^X.Y = 0) "^X.Y a
^<kX) '

"0 = XjiY (FX4#»Y = 0)
a y2^ik^(:

hypothesis does not hold then F is an estimate

(2.6.15)

causality measure F, and follows a non-central chi-square 
(asymtotically) with the same degrees of freedom, and non-centrality
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parameter F. For example 

nFY^X ^ ^ (kXp,nF^^^) (2.6.16)

Thus confidence intervals may be estimated for the measures, and 
Geweke(1982a) suggests some approximations to the non-central chi-square 
distribution to aid this.

There are several other approaches to testing for independence 
between time series. Some of the more familiar are formulated in the 
frequency domain such as the phase and coherence. However we are 
confined to the time domain. We mention one final method for 
investigating the independence between two univariate series, as 
developed by Haugh(1976).

Definition 2.23
Let {X^} and be two univariate series, and {a^} and {b^} two

series formed by pre-whitening and respectively. Then under
Hg X ^ Y

nl
k=—q

^a,b(k) '^q+l

q
nZ
k=-q '2q+l

where r . (k) is the sample cross-correlation of the estimated white a, b a,
noise series {a } and {b }. (Definition 2.14). We will call S and S 
Haugh's test for independence.

The motivation for the Haugh test comes from the fact that if two 
series are independent then their cross-correlations should be zero. 
However we cannot simply look at the cross-correlations of the raw 
series since the autocorrelation in each series may inflate the values 
of the cross-correlations in a spurious manner. However, it is possible 
to investigate two white-noise series in this way since no auto
correlation exists. Thus by first pre-whitening, the resulting 
cross-correlations become easy to interpret. The resulting S or S 
test-statistics are then simply a sum of these cross-correlations, and 
clearly are very similar to the portmanteau goodness-of-fit statistic.

37



2.7 Summary

In this chapter we have defined the multivariate ARMA^(p,q) model, 
and examined some of its properties. In particular we have examined the 
four stages of the Box-Jenkins approach to fitting such models. Finally 
we have examined the concept of Wiener-Granger causality and presented 
some measures of dependence. In chapter 6 these measures will be 
extended to apply to compositional time series.
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'/hd we know rhor oCC rAing^ work together for good 
ro them rAar Cove God..."

Romans 8:28 (KJV)

CHAPTER 3

Compositional Data

3.0 Introduction

In this chapter we consider the nature of compositional, or 
sum-constrained data. Such data occurs in many situations, and for many 
reasons, as was seen in chapter 1. As with all data, the type of 
analysis carried out depends on the exact context in which it occurs and 
the insight into some area of study that the analyst wishes to gain.
Many of the examples given in chapter 1 have been investigated when the 
compositional data consists of independent stochastic observations. The 
geologist may take independent random soil samples; his interest is 
often that he wants to determine if the presence of one constituent 
influences the presence or absence of another. The public opinion poll 
of political preference may be carried out in each constituency on a 
single occasion, and interest may be in how the preference for one 
political party relates to the preferences for the remaining parties. 
Household expenditure may be studied by taking a sample from the 
population stratified by income size. A comparison of expenditure is 
then made within and between strata.

In this chapter we introduce a mathematical framework in which to 
study compositional data. We then discuss some of the problems in 
detail, and in particular those specific to ARMA models. We will 
briefly discuss some of the approaches formulated to overcome these 
difficulties, and in more detail the approach of AitchisonC1982). It is 
upon this that we shall develop a means of modelling compositional time 
series in subsequent chapters.

39



3.1 A formal description of compositional data

Our notation is similar to that of Aitchison(1982). Let be the
m-diraensional real space, and let P”* be the positive orthant of IR“' i.e

P® = {(wpW2,.. : w e IR™: Wj^ > 0, (i=l,,.. ,m)}. (3.1.1)

Let the positive simplex of IR™ be i.e.

S™ = {(Uj,...,u^): u e !R^; u^ > 0,(i=l,...,m);u^+...+u^ < 1}.(3.1.2)

Definition 3.1
Any vector u e is said to be a composition.

A data set consisting of compositions is said to be compositional data.

Um+1 = ^ - "l Ugj be the "fill-up-value" (FUV). (3.1.3 )
and let = (u.,U2,...,u^+2)' be the vector of the composition
inclusive of (3.1.4)

Definition 3.2
For w e P^"^^ we will define the function T(w) by;

m+1
T(w) = E w. ,- . . 11=1

and the function C(w) by:-

, i=l,2,...,m.

Sometimes a compositional data set is formed from a data set on 
For example if w e P™^^ consists of the number of deaths in one 
particular country over a specified time period broken down by causes of 
death; then the total number of deaths is T(w) and the composition by 
cause of death is C(w). We state this formally.

Definition 3.3
For a composition u € such that there exists w € and where
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u = C(w),

then w is said to form the basis of u.

Many studies may wish to focus on the relative proportions of some 
subset of a composition u. This may easily be done by allowing this 
subset of c components (say) to form a basis for a new composition on
oC-1

Definition 3.4
Let U(j,) be a subset of c elements (c < m) of where U €

Then the composition C(uug\) e ^ is said to be a subcomposition
of u.

Often we may wish to concentrate on broader categories, for 
example in the household expenditure study our categories may be 
"food","heating","clothing”,"holiday","hobbies" etc. We may wish to 
combine these into categories such as "essentials","luxury" etc. Thus 
we have

Definition 3.5
An amalgamation of a composition u e S™ is a composition t e 

k < m; formed by combining some of the components of If we
assume that u is arranged so that the combinations are between neigh
bouring u^'s then an amalgamation ^ e S'® is formed by

t. u . + . . , + u , j 1,..,,k+1,j "y-1 1 "'j

where a^.... ^k+1 integers such that,

0 = a < a^ < . . . < a, < a, , = m+1 01 k k+1

Compositional data can be represented graphically as follows. If 
u € , then the locus of will yield a straight line between the
points (1,0) and (0,1). Thus although u^^^ seems to be 2-dimensional in 

that it consists of u^ and Ug, it is uni-dimensional (hence ), and 
this can be represented graphically thus:-
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Similarly for u € we may plot = {0^02,113} in 2-dimensions
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The coordinate system of the two dimensional ternary diagram is 
obtained from the perpendicular distances from each side with the 
perpendicular of the triangle scaled to be 1.

u = {Uj_ ,U2,U3 }

Finally u e may be represented as points lying in a tetrahedron:

We now move on to consider some of the properties of compositional data.
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3,2 The nature of compositional data

Because of the sum-constraint, data on the simplex have proved
difficult to handle statistically. Problems arise in at least four 
interrelated areas: interpreting correlations, independence of the 
variables, the distribution of these variables, and modelling.

First we consider how the correlations of u give spurious results, 
Let k=l,2,...,n be a compositional data set. Let the sample
covariance and correlation matrices be

C = { c, .} , where 
ij

c.. =7^ (U, u.)(^ . - u.), i,j=l,2...,m+l;
1 K] 1

1 n
i=l,2,...,m+l (3.2.1)

Also let P = {pu.}, where

ij
^ii^jj

i,j=l,2 ,m. (3.2.2)

The inherent linear dependency in u '™^^^is carried over into C and P 

in such a way as to make any interpretation of them difficult. A 
detailed examination is given by Chayes(1960) and is summarized below in 
the form of six lemmas.

Lemma 3.6
m+1
I c , . = 0

i=l

Every row (and hence every column) of the covariance matrix sums to 
zero.

Lemma 3.7

Of the correlations i=l,

m must be negative.

..m+l,j=i+l,...,m+l; at least
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Lemma 3.9
If the standard deviation of one variable is greater than the sum 

of any j of the other standard deviations, at least (j+1) of the 
covariances of that variable must be negative.

Lemma 3.10
ra+1

If c,, ^ E , then one or more of the covariances c^^,
Jj i=l 

i^j
must be positive, while all the covariances c.^, c^^, i,kxj, are all 
negative.

Lemma 3.11
i) For m+1 = 3, any assumed or observed set of variances com- 

pletely fixes all three correlations.
ii) For m+l=4, if any two covariances having a common variable are 

known, the remaining four covariances may be expressed as an additive 
function of these two and the variances. Thus in a four variable closed 
table there will never be more than two potentially independent 
correlations.

The above relationships demonstrate that the correlations of 
compositional data are difficult to interpret. For example the use of 
p = 0 as a criterion for independence is no longer valid. (See later 
for definitions of independence.) Chayes(1960) suggests using p - -1/m, 
however it is clear that even using this as a criterion the data clearly 
cannot follow a normal distribution, and it is still difficult to infer 
independence.

In view of this several authors have tried to find new ways of 
defining independence. Before looking at these in more detail, we first 
examine a brief expansion of Chayes work to cross-correlations between 
two compositional data sets.

Consider x^,(k=l,...,n) such that X{(,^ ^» Let c^y be the
sample cross-covariance matrix with elements:-

x.y.
n
E (X

k=l ki x^)(y^^ - y^), where (3.2.3)
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X . — y X” k:i
1 n

J M ^.=1 KJ

Then we have the following result:-

Lemma 3.12
m-t-1
E fc + ci=l I 0, k=l,...,m+l. (3.2.4)

That is the sum of the k^^ row elements together with the k^^ column 

elements (the element being added in twice) is zero.

Proof
Let X,j. X. . - X. ,

Lj ‘ nj -L i=l,...,m+l; (3.2.5)

Since
m+1 
E X,

i=l ij

m-t-1
E y

i=l ij

m-t-1 
E X. i=l ^

m-t-1
E

i=l
E y. - 1, then

m-t-1
E X.

ij

m-t-1
E Y.

ij
0

i-1 i=l

In particular rewriting (3.2.6) as

j=l,...,n. (3.2.6)

' ^2j "

^ij ^ ^2j ^ '

^ ^m+l,j ° ' (3.2.7)

(3.2.8)

If we multiply (3.2.7) and (3.2.8) together, sum over j and divide by n 
we obtain

m-t-1
E C

i=l "a^i
m-t-1 m-t-1

-t- EEC1=1 j=l ^i^j 
l^j

Similarly we may rewrite (3.2.6) as

"^Ij " ^ ^ ^m+l,j '

^2j ^ m+l,j '

(3.2.9)

(3.2.10)

(3.2.11)

and obtain
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XiVi
m+1 m+1 m+l

+ E EC 
i=2 j=2

(3.2.12)

On subtracting (3.2.12) from (3.2.9) we obtain

m+1
2Cx^Vi i=2 L

+ CX^Yl 0 , (3.2.13)

which generalizes to (3.2.4)

lliis lemma clearly demonstrates that various linear dependencies
exist between the elements of , purely because both x and y_ are 
compositional data. It is not easy to come up with hard and fast rules 
about spurious negative correlations, because now the diagonal elements 
may be negative; whereas previously the diagonal elements represented 
(positive) variances resulting in spurious negative correlations in the 
off-diagonal. If the diagonal element is positive then some of the 
off-diagonal elements must be negative and vice versa. Thus the matrix 
C^y is also difficult to interpret. We could scrutinize this still 
further, but it is sufficient to realize the difficulties in examining 
the covariance and cross-covariance matrices of compositional variables.

The difficulty in interpretation of correlations led to an 
introduction of smme ntnv definitions of independence because 
compositional variables are necessarily linearly dependent on one 
another. We now briefly examine some of the earlier types of 
independence proposed. We will denote independence by the symbol 
The first property was suggested by Mossiman(1962).

Definition 3.13
The random variables u.,...,u^+j ; u € are said to be

independent except for the constraint if 3 a basis w e (u
such that

C(w))

i) w (3.2.14)

ii) u ^ T(w3 (3.2.15)
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The transformation w -* u,T(w) is a 1-1 transformation. If
(3.2.15) holds then no additional information about the vector of 
proportions u is contained within T(w); that is, the transformation 
w u "loses" no information about u. Hence if u is "independent except 
for the constraint", it originates from a basis whose elements were 
themselves independent, and such that T(w) is a function of the basis 
which, is independent of the composition under investigation.

The second concept of independence is that of "neutrality", as 
developed by Connor and Mossimann(196 .). The idea has arisen from an 
often required wish by the analyst to eliminate one proportion, say u^,

from consideration and instead concentrate on m
1-u ' 1-u^' 1-u1 J

i.e. on C(u.^ .u usually because u.is of little or no interest.ra+1 1
If u^ is omitted it is required to know if the remaining composition is
affected, i.e. is u^ "neutral". We have

Definition 3.14

(i) u, is said to be neutral in the vector (upU2, .. .u^,^j) if

"l ^ C(U2,u^,...u^+2) (3.2.16)

(ii) The vector (u^,u^,...Uj) is said to be neutral in the vector 
^(m+1) It

(U|,U2,.*.Uj) ||_ C(Uj_^j,..,u^,^|) (3.2.17)

(iii) If (ii) holds for all j=l....,m then u is said to be
completely neutral.

Note: The ordering in the vector for this definition is vital. If
(Up...Uj^) is completely neutral it does not necessarily follow that
(U2.Uj .u^,... ,Uj^), for example, is completely neutral.

These two types of compositional independence have useful 
interpretations. Consider the geologists soil-sample. If the constitu
ents which make up the sample evolved by a purely random process, i.e. 
if the presence of one constituent does not indicate the presence or
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absence of another, then there exists a basis with independent elements. 
Further we would not expect the properties of the soil to vary according 
to how large a soil sample was taken. Hence we would have independence

except for the constraint.
Neutrality offers a means of examining a subset of variables 

without loss. For example in the political opinion poll, if the minor 
parties are neutral we may examine C(CON,LAB) on their own,because the 
relationship between the two major parties is independent of the others.

These early definitions of compositional independence provide a 
means of solving the sum-constraint problem. However, although useful 
conceptually, it proved difficult to apply these definitions in a 
practical way, since great difficulty was found in forming statistical 
tests for them. This was primarily due to a lack of the useful 
parametric class of distributions on the simplex ^.

As Aitchison(1982) states "Undoubtedly the only familiar class of 
distributions on is the Dirichlet class..." The Dirichlet distribu
tion may be regarded as a multivariate generalization of the beta 
distribution. It imay be found by considering the density of C(w) where 
Wj^ are independent gamma random variables. This fact implies that it 
contains a strong independence structure within it. Mossimann(1962) 
shows that if u is independent except for the constraint then u must 
follow a Dirichlet distribution; the converse is also true. Thus it is 
possible to calculate the correlations of the u's under the assumption 
that they are independent except for the constraint and compare these to 
the sample correlations of a compositional data set under investigation. 
However Mossimann(1962) could not form any appropriate statistical tests 
because no distribution theory was available for such correlations under 
a Dirichlet model. Also, in order to model the u's themselves such tlnat 
tlH^ are not independent except for the constraint an alternative 
distribution must be found. One such distribution which moved towards 
this is the Generalized Dirichlet developed by Connor and Mossimann 
( 1964). They form variables such that :-

i~ i
1 - Z u

j = l 1

1=2. .,m. (3.2.18)
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They show that if the vector (up...U|^) |[ C(U|^^p . .. ) for k=l,...,r
then k=l,...r are mutually independent. Hence if u is completely 
neutral are mutually independent. Assuming that u is
completely neutral, and letting the density function of each of the 
be a univariate beta distribution, the Generalized Dirichlet is formed 
by transforming the product of these beta distributions to a multi
variate distribution in terms of u. This reduces to the Dirichlet 
distribution under certain parametric restrictions. Obviously this 
result indicates that if u follows a Dirichlet it must be neutral.
Connor and Mossimann explain further that u follows a Dirichlet if and 
only if u is completely neutral for any permutation of the u^ys.

Using the Generalized Dirichlet distribution it is again possible 
to estimate the correlations of the compositional data set under the 
hypothesis of complete neutrality. Again even knowing the expected 
values of these correlations we are not helped very much as we do not 
know their distribution. However, both Mossimanri(1962) and Connor and 
Mossimann(196^) employ Fisher's z - transformation as a means of 
inference in some numerical examples; but as Mossimann(1962) himself 
points out "z - values may be given, although more with hope than 
confidence. ’’

Summarizing, we have seen that new forms of independence must be 
used in exploring compositional data. The earlier forms of independence 
need further study, and so the search for definitions of compositional 
independence have continued. Also a more general distribution to employ 
on compositional data is required. The ones which we will be using are 
the result of the work of Aitchison)1981,1982), and are introduced later 
in this chapter.

3.3 Compositional time series

In this section we will demonstrate why the conventional approach 
to time series analysis fails to incorporate the nature of a composi
tional time series.

Definition 3.15
A time series {u^}, t = 0,±1,±2.... such that u^ e is said to

be a compositional time series.
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We first consider the problems arising in trying to use the usual 
multivariate ARMA model for a compositional time series. Consider the 
AR^^^(l) model for a compositional time series with u^ e S'””.

(m+1) . (m+1)
Mt " Mt-l " 4 ’

m+1 m+1 (3.3.1)
where = 1 .

Summing down the columns of (3.3. 1) we have :-

m+1 m+1
E

i=l
^ ^it = 1 ; (3.3.2)

m+1

k=l
^k,t-l*+k 'kt) = 1 , (3.3.3)

m+1
where *+k = -.^,*ik ' k=i,.. ,m+l.

We may generalize (3.3.3) to higher order models, thus for the 
ARMA^^^(p,q) process:-

St'""” ' VtT” ■ -t - 5i£t-l "•••" Vt-q

we obtain

where

m+1
I

k=l

P
I u 

r=l

r.+k

k,t-r^r,+k

m+1 
- E
i=lL ^^ik

+ E e
s-o k,t-s s,+k

, r=l,...p;

1 ,

(3.3.4)

0s,+k
m+1 

- E 
j = l

s=0.

and ^+1

The equations (3.3.3) (3.3.4) serve to demonstrate that there are
many inherent linear restrictions within the model. This may be furthei 
seen by considering individual ARMA2(p,q) models for each variable u^^. 
i=l,....m+l. For example, consider again the AR(1) model, and in
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particular m+1 ARi(l) models for each of the {u^^} series:

- *1^1^t-1‘It = e 11

"2t = e 2t *2"2,t-l

u.m+l,t ^m+l,t ^m+l^m+l,t-l ’

summing each equation gives:- 

m+1
if, [ 'it ♦i-i.t-l (3.3.5)

Clearly this is of identical form to (3.3.3). We could also construct a 
similar expression to (3.3.4) by the same route. In all of the above 
three expressions we see that not only are there linear restrictions on 
the u-'s, but, also on the parameters of the model, and the "random"
components.

A problem with the above approach is that we are either using m+1 
univariate models (as in (3.3.5)) or an (m+l)-dimensional model for data 
that is essentially m-dimensional. As an illustration let us partition
$ in (3.3.1) into

*11
mxm

j ■ -t ^ mxl
_______ ^ J , and = |_ _ ^

-t ^m+l.t

;iving:-

u u e-t -1 i -12 “t-1 —t
= 4-

u u €t, m+1 -21 -22 m+I,t-l L ^

(3.3.6)

^dl-t-1 ^ ^d2^m+l,t-l ^ -t
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-12 1 -

m
+ e.

So that re-parameterizing we have

H * * St-l -t (3.3.7)

where ij
" *ij " *i,m+l ' and ^

u , ^ is then formed as 1m+l,t
m
,Vif
1=1

Hence the (m+l)-dimensional model (3.3.1) may be derived from the 
m-dimensional model in (3.3.7).

However even if we recognise the need to use an appropriate 
dimension for our models the linear approach still poses many problems. 
Firstly we recall that the assumption is usually made that the c~ series 
in (3.3.7), for example, is normally distributed. That it is not may be 
seen by the fact that 1 > u-^ > 0 and consequently, however small the 
variance of the Cj^/s, extreme values must be ruled out in order to keep 
Uj,^ permanently within its correct bounds. (This of course excludes the 
case of var(c^^)=0. ) Because of the difficulty in defining any such 
bounds, it is obvious that the use of such a model in practice may 
produce incorrect results, especially in the case of forecasting. If we 
fit a standard model to m of the variables and use it to forecast into 
the future, what is our guarantee that u^^, e S®? As an illustration 
that this is not the case we turn to the following example :-

Example 3.16
Consider the Gallup Poll data given below; 

t
1 — 15 3..0 3..5 2..0 1.,5 2..5 2,.0 2..5 4,.0 3,.5 2..0 2,,5 2.0 3,.0 2..0 3,.5
16-30 2,.5 3,.5 2..5 2..0 2.,0 2,.0 2..5 2,.0 2.,5 2,.5 2,.0 2.0 2,. 5 2,.5 3,.0
31 -45 2,.0 2..5 1..0 3,.0 1..5 2..0 3.,5 2,.0 0..5 1,.5 2,.0 2.0 1..5 1,.5 3,.0
46—60 3 .0 2,.0 3,.5 1 ,.5 3,. 5 2,.0 3,.5 3,.0 2..5 2,.0 4 .0 5.5 3.,5 2.,5 4,.5
61 -75 4 .5 3 .5 5,.0 4,. 5 4,,5 7,.0 6,.5 5,.0 3,.0 4,.0 5 .0 4.5 6,.5 5,.0 3 .0

76-90 3 .0 2,.0 2..5 1,.5 1,. 5 2..0 2,.5 1 .5 1,.5 1,.5 1 .5 1.5 1..0 1..0 2 .0
91 -105 1 .0 1 .0 1,.0 0 .5 0,.5 1 .5 1,.0 1 .0 0 .5 1 .0 I .0 0.0 1 .0 0 .5 0 .5
106-108 1 .0 0 ,5 0,.0
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This data set is from the GALLUP(C) opinion poll from January 1965 - 
December 1973, but in reverse order. It represents the percentage of 
people surveyed who, when asked which party they would vote for said 
they would not vote for one of the three major parties. This data may 
be considered as u^ € with being the percentage who would vote 
for a major party.

A plot of the correlations (fig 3.18) suggested either an AR(1) 
model or the model

Au^ = p + , with p a constant.

On fitting both models using the ESP package, it was found that the 
second model produced the better fit. The portmanteau statistic, based 
on 12 autocorrelations was 4.0 for this model; which is not significant 
when compared to the distribution. The t-test statistic for the
constant term was significant at the 10% level. It is not clear 
therefore if it should be retained, but for the purposes of example we 
have kept it in. (After applying the difference operator p is usually 
assumed to be zero.)

Using this model the first three forecast are

-0.1858 -0.3715 -0.5573

The forecasts are negative, and consequently do not lie on the simplex.

Whilst some may argue that this example is over-engineered, it 
still demonstrates the problem. Indeed even if another model were 
chosen, such as the AR(1) which does not produce negative forecasts, the 
confidence region around these forecasts still includes values outside 
the simplex.

Another problem lies in the interpretation of the sample auto
correlation function. From definition 2.14 we see that it is derived 
from the autocovariance function, which has strong linear dependencies 
within it. To see this we need only consider lemma 3.12 and put :-

(m+1)
-t I (m+1)

^t-k

from which we obtain
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m+1
= 0 k=0,±l, ; 1=1,...,m+i 

(3.3.8)

If we then hope to use the autocorrelation function for identification 
it is difficult to detect genuine departures from a white-noise process, 
particularly using the off-diagonal elements. Even if we consider 
looking at the autocorrelation function of {u^} rather than we
are looking at exactly the same function, but with the last row and 
column of each of the matrices omitted. Hence interpretation is still 
difficult.

We could go on demonstrating how a linear model is inadequate, and 
there are many obvious examples, such as the sample partial auto
correlation function defined by (2.2.10), which must be based on u^ and 
not otherwise the [Y 'Y ] matrix would be singular and conse-
quently we would be unable to find its inverse. There are also some 
more sophisticated methods which will not be valid. For example Box and 
Tiao(1977) present a canonical covariate analysis of multiple time 
series which would break down in this context, (cf. Aitchison(1983) on 
principal component analysis on the simplex.)

In section 2.6 we discussed independence between time series, and 
in the previous section the problems of defining independence for data 
on the simplex. In the same way that it is necessary to create new 
forms of independence for stochastic data, it is also necessary to 
formulate new types of compositional causality, feedback, dependence 
etc, for compositional time series. The sum-constraint forces an 
automatic dependence between the series, making the definitions in 
section 2.6 difficult to interpret. This final problem will be 
addressed in chapter 6.

3.4 The proposed approach

In the last section we saw how the multivariate ARMA model cannot 
represent a compositional time series. The problem lies with the fact 
that the data lie on the positive simplex rather than the more 
general real space This fact gives us an insight into a possible
solution. The idea is a very simple one, namely to transform our data 
so as to map it onto the real space. What we seek is a function such 
that :-
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The example cited earlier in (3.2.18) is such a transformation. We may 
add to the requirement that the data be transformed onto the real space, 
the further requirement being that it be transformed to follow a 
multivariate normal distribution. This is no new idea to either 
statistics in general or time series analysis, as can be seen by the 
well known paper by Box and Cox(1964).

Because of the simplicity and the availability of this approach, 
it is the one which we will take up here. Several possible transforma
tions are available and many of them are introduced by Aitchison (1982). 
His transformations are familiar to the field of statistics, as they 
are multivariate versions of the logistic transformation. His choice of 
which transformation to use depends mainly on the particular application 
required. Three such transformations are

Definition 3.17: f=am
Let u € and v = a^(u), v e R™, where the function a^ is given

by

a : V, = Inm 1

u. 1
m+1

i=l,...,m;

with inverse : "i
exp(v.)

"i

m
1 + I exp(v.)

j=l ^

1
_

1 + 1 exp(v.)
j = l ^

; i-1,...,m;

; i=m+1,

We will call a^ the additive logistic transformation.

Defintion 3.18: f=mm
Let u € s’® and v - m (u), with v e IR™ then the function m is 

- - m - - m
given by

V . In
u, 1

I u,
j=l ^

; i=l......... ..
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with inverse m
exp(v.)

m 1 1 
n

;i=l,...,m;
1 - exp(Vj)

m
= 1 - I u. ; i=Tn+l.

j=l ^

We will call m the multiplicative logistic transformation.

Definition 3.19: f=hm
Let u e S™ and v = h (u), with v e (R™ then the function h is - - m - - m

given by

V . 1 In
u. 1
1-u, i-1;

In
u. 1

i-1 ' i
1 - Z u. 1 - Z u.

j = l ^

with inverse hm u. =
exp(v^)

i 1 + exp(Vj) ’

i=2,...,m;

i=l;

exp(V.)

i“ 1
1 + I exp(v.)

j = l 1
1 + Z exp(V,) 

j = l J

i=2,...,m; 

;i=m+1.
m

1 + Z exp(v.) 
j=l ^

We will call h the logistic hybrid transformation.

We note that all of the above three transformations have the same 
Jacobian, namely
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D V

D

m+l 
n u.i=l ^

-1

(3.4.1)

From these transformations we can derive other related transformations. 
For example we may replace the exponential function by any one-to-one 
transformation for

pi e pl.

although the one cited above is perhaps the most familiar one. Clearly 
any permutation of the u^'s before transforming represents a further 
simple variation. Aitchison gives two further ways of using the three 
transformations above as building blocks to obtain further transforma
tions. Of these the so called "linear transformation method" is most 
useful in our context. This method involves replacing v_ in any of the 
three definitions above, by Gv^, where G is an mxm non-singular matrix. 
This is perhaps best illustrated by an example.

Example 3.20

G =

Consider the matrix

'l — 1 0 . . 0 0
0 1 -1 . . 0 0
0 0 1 . . 0 0

0 0 0 . . 1 — 1
0 0 0 . . 0 1

then G -1

0 0 
0 0

0
0

. 1 1

. 0 1

Define a new transformation v = Gv = Ga (u)

Then v = Gv v.

So that we have;-

V . 1

V . 1

In

In

u, 1
m+1

u, 1

In
"i-l

m-^ 1

; i=l,...,m-l
i-1

u
V = In — m u

m
m+l

In
u.1

"i+1

i=m.

; i=l,...,m.
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To find the inverse we note that u. = a ^(v.) - a ^(G ^v.); i=l,...,m.
1 m 1 m - 1

u, 1
exp(v,)

m
1 + Eexp(v.)

j = l J

exp
m
1

J=i

m
1 exp

k=l

m

V .
J

r

I u.
j=l

® * 
1 V .

J

i=m+l

i=l,

Of the three transformations mentioned above the one that Aitchison- 
(1982) has found most useful is the additive logistic transformation, 
and it is upon this transformation that Aitchison and Shen(1980) base 
their logistic-normal distribution. If we allow v - N then we
may form a transformed-normal class for u e S”' based on any suitable 

transformation. We now define two such distributions.

Definition 3.21
If u = a^^(v), where v - then u is said to follow the

m(
m .... - m

logistic-normal distribution: L (^,Z). i.e. u - when the
density function of u is given by.

1

2TrE i
m+1 
n u. 

i=l ^

exp< 1 in JL
m+1

- M
E'^lln -M-

m+1

Definition 3.22 
-1

If u = m (v), where v _ N (u,E), then u is said to follow the— m — — m —
multiplicative logistic-normal: i.e. u _ when the
density function of u is given by,

2?E|
m+1

IT u. i=l ^

!xpj-l [m^(u) M] I
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We could go on in a similar manner to define further distributions 
on the simplex, but we shall not be using them. Of the two distribu
tions above, the Lj^(]4,I) is the most developed, and is fully discussed 
by Aitchison and Shen(1980). Aitchison(1982) develops it further and 
discusses how it may be used to test for various types of independence 
defined on the simplex. These distributions do not restrict the data 
since the strong forms of independence implied by the Dirichlet 
assumption are no longer enforced. On the other hand these distribu
tions do not contain these strong independence structures within them.

Not only may the L (^,1) and Z) distributions be used to
investigate independence, but various statistical models may be based on 
them. An example of this is that of a model for measurement error 
developed by Aitchison and Shen(1984). The a^ transformation is 
employed further by Aitchison(1983) and Aitchison(1984) in a new 
approach to principal component analysis for data on the simplex. In the 
following chapter we will introduce a new model for compositional time 
series, and develop its properties further in chapter 5 where we will 
also further discuss the and distributions.

Finally we end this section by noting that a transformation of the 
type given in example 3.20, when used to form an alternative logistic- 
transformation, will still preserve the same logistic-normal distribu- 
tion as that of the underlying transformation. Thus, if v" in example 
3.21 is allowed to follow a normal distribution, then u will still 
follow a logistic-normal distribution. This is easily seen since if v ~ 

then v" ~ N^(Gp,GEG'), and u ~ L^(ii,E). Obviously this is true 
of all non-singular G, and in particular is true of a set of matrices 
which we will denote by Z^k). These are described below as we will f:uM 
them useful in later chapters.

By Z(k) we will mean the mxm matrix with elements.

Zii(k) = 1 i=l,...,m; i#k ;

^ik(k) - i=l,...,m ;

Zij(k) = 0 otherwise. (3.4.2)

61



i.e. Z(k)

It is easily seen that :■

1 0 ... -1 ... 0
0 1 ... -1 ... 0

0 0 ... -1 ... 0

0 0 , , , —1 ... 1

^th
k column,

Z(k)"^ = Z(k). (3.4.3)

If we repeat example 3.20 with Z(k) instead of G and define

= Z(k)v = Z(k)a (u).

then T u.
In

m+1
u.

= -In u‘m+1

In
m+1

; i=k.

; i=l,...,m; i^t;

i.e.
T u

V. = In -- ; i=l,...,m; i^k;

m+1
u. ; i=k.

Thus we see that the effect of Z(k) is to change u. to be the reference
variable in the transformation, as opposed to the FUV u . In other

m+1
words:-

Z(k)a (u) = a (u^),
- m - m -

twhere u is the permutation of u such that u ^and u ^+^are interchanged.
This set of matrices will be useful when we examine invariance 
properties under the choice of reference variable.

3.5 Independence of compositional data

In section 3.2 we examined the problem underlying compositional 
data sets, and in particular the difficulty in understanding independ
ence in such data sets. Two forms of compositional independence 
(definitions 3.13 and 3.14) were given. Although these were useful it
was difficult to produce any statistical tests for them. Allied to this
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was the need for a new class of distributions on the simplex. In 
section 3.4 we introduced some new distributions based on transforma
tions from the S® space to the [R® space. In this section we explore 

some further concepts of independence developed by Aitchison(1982). It 
will be seen that the transformations a_ and ny of section 3.4, together 
with their related distributions (L and , provide an easy means of 
investigating these forms of independence.

Aitchison discusses two types of independence, namely extrinsic 
and intrinsic. Extrinsic analysis examines a composition under the 
assumption that it originated from a basis, and interest lies in the 
relationship of the composition to this basis. Intrinsic analysis 
concentrates on the proportions themselves, without any thought of a 
basis being involved. Neutrality (definition 3.14) is an example of 
intrinsic analysis, which is one of the types of independence considered 
by Aitchison.

The two sorts of extrinsic independence defined by Aitchison 
(1982) are as follows.

Definition 3.23
A basis w e is compositionally invariant (CIB) if.

C(w) ^ T(w9.

Definition 3.24
A composition u g S® is said to have basis independence (BI) if

there exists a basis w e P,m+l such that

i) w
( ii) u = C(w) ).

Clearly CIB is identical to (3.2.15) in definition 3.13, and is 
referred to as Lukac's condition by Mossimann(1962). Mossimann also 
considered BI under the name "partial independence except for the 
constraint". BI n CIB is equivalent to the concept of independence 
except for the constraint given by definition 3.13. Under this, as 
previously mentioned, the u's must follow a Dirichlet distribution; so 
that if we wish to simultaneously model BI and CIB we should not appeal 
to the logistic-normal class.
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Aitchison(1982) describes how to test for GIB and BI. Firstly for 
GIB, let T = T(w), then using the transformed logistic-normal distribu
tion we may model the u's as follows :-

or M - + gln(t),ZJ

(3.5.1)

(3.5.2)

Hence if v = a_(u), then— In — ^

(3.5.3)

or V ~ N^^(& + gln(t), E). (3.5.4)

The test for compositional invariance of a basis is then simply a 
test of the form g = 0, for which we can appeal to the usual methods of 
multivariate analysis. (See for example Morrison!1976) chapter 5).

The presence of basis independence is indicated by u ~ L^^g,E), 
where E has the following structure :-

ds(w^,...,w^) +

^m+1 "m+1.........^m+1

m+1

m+1

"m+1

m+1

, wm+1

w + w .m m+1 (3.5.5)

w > 0 ; i=l,...,m+l

It is worth considering how (3.5.5) arises. The result was originally
derived by AitchisonC1981b).

For w e , and u = C(w) e let
V = a (u), and x = ln(w).— m — — —

!ix-

0 = Var(x) (m+i)x(m+l) ’
E = Var(v)mxm
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Consider the matrix Y , ,. I-Tn -e —m

that

and E = YAY'

, then it is easily seen

(3.5.7)

(3.5.8)

Equations (3.5.7) and (3.5.8) represent a mapping of the mean and 
variance for x onto those for v. Now

11 w 11 Inw (=x),

• ■ 11 ^ 4-7' J1 X,

And consequently if we have basis independence, J1 w, then 0 (the 
covariance matrix of x) will be diagonal. Applying (3.5.8) to a 
diagonal matrix = dg(wi,...,u ^.), and because w- represents the 
variance of i=l,...,m+l; cn > 0, gives the required result (3.5.5)

Although Iq is necessary for BI, it is not sufficient. For a 
given and I, there is a class of and A from which they may be 
derived. From (3.5.7) and (3.5.8) it is clear that these are

u + oce ^v -m (3.5.9)

I + e b' + Be ^ + yU B + ye — —m —m —m | —m
+

m + ye^
(3.5.10)

where ot.y,§ =(pL,...p )' are constants.
Hence substituting ^ into (3.5.10) we see that may have originated 
from any 0 of the form

1 ^2 m+1

"m+l" Y Pi" P2" "^+1" Y ' . . + Pm" "^m+l
^.+ l" Y "2" ^P2" ^^+1" Y . . P2+ Pm" '^m+l

^2+ Y yP2+ Y Pm" Y

(3.5.11)
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Setting p^= p2= %+l yields ^. We note that (3.5,11) is not
the pattern presented by AitchisonC198ib), which is incorrect.

Aitchison(1981b) tests for BI by testing that E = Zg, but as we 
have seen this is strictly a test that ^ = 0, for any values of g and y. 
However, without knowledge of the basis, this is the best we can do.

Having derived ^, it is now possible to test for basis independ
ence by testing that E = Eg. That is

Hq: E lo vs. H.: E unrestricted.

It is possible to estimate ^ using Newton-Raphson iterative methods 
(see appendix of Aitchison(1981b)). The unrestricted E is estimated by

the usual E = - E (v. - g)'(v. - g). The familiar procedure is to form"i=l ^ ^
the likelihood ratio test-statistic Aq(D) (say), where D represents a 
given data set D = {Vi,...,v }. The likelihood ratio test-statistic is 
then usually compared to a x > with degrees of freedom equal to the 
number of restrictions. However because of the inequalities present in 
^ the standard results for the distribution do not apply. However Hq 
is embedded between two other hypothesis.

^ ^ dg(w^,...,w^^ + w^^^ unrestricted; (3.5.12)

Hq: ^ = Iq = dg(wi,...,w^). (3.5.13)

Let A|(D) and A^(D) be the likelihood ratio test-statistics
corresponding to and Hg respectively, then

(3.5.14)

(3.5.15)

and A^(D) $ AQ(D) ^ A_(D) (3.5.16)

Consequently a simple and "safe" approach is to compare A.(D) to a
2 ^

X distribution. In summary we reject the null hypothesis that a
composition possesses basis independence at a significance level of at
most ot, when
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(3.5.17)

Having explored extrinsic analysis, we next consider intrinsic 
analysis. The first type of intrinsic compositional independence is the 
intrinsic counterpart to the extrinsic concept of basis independence, 
and is given below.

Definition 3.25
Let u (m+1) ^ ^me s'" be partitioned {u^ ,... ,u''‘^''}. If forXk)

every such partition the subcompositions are independent i.e. if

C(u(^)) ^ C(u(^)) ^ i C(u(^)), (3.5.18)

for any u/^^,...,u^^^ such that

V u^^^ = ,and u^^^n 0 ;i,j=l,..,k;i^j; (3,5.19)
i=l

k— 1,2,.,., m+1

then u is said to have complete subcompositional independence; (CSI).

To understand CSI and its relationship to BI we may derive a
parametric hypothesis for its occurrence. If u e possesses CSI, then 
it follows that

i„Ja ji i„ "it
u . J u,

Cov
"i "k 

In — , In —
"j

= 0, ixjxk^X,

Cov
u. u.

= Cov
"i "iIn -z + In -2 In -A

^k

u
In u.
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= Cov
, ixjxk^lxn;

(say), since it is independent of i,j,f and n.

If we similarly let

then

u.
X, , = Var In —IJ u ,L JJ

u.
X. , = Var In — +IJ L

= X 4- X "2X,ik jk k

2X. = X + \ - X. .k Ik jk iJ

;

In
\
u. 
J

Symmetrically it also follows that

ixjxk=l,...,m+l.

Adding these last two equations yields

^ik - ^i X, , so we have shown that if u has CSI thenk -

Var In
u. 1 X^ + X^^

Cov
u. u.

In , In
u. u.

Cov
u. u,

k’ ^ (3.5.20)

0 for V i/j/k^/=l,....m;

and for some constants X. i=l,...,m+l.

Consequently for v = a (u), where u has CSI, E = Var(v) has the form

where E^ dg(X^,...,X^^ + (3.5.21)

and the X. (i=l,...,m+l) have the interpretation given by equations
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(3.5.20). There are no restrictions on the X.'s except that they ensure
the non-negative definiteness of I .—a

The similarity between given by (3.5.21) and (3.5.5) is most 
striking. In fact they would be identical except for the fact that the 

in need not be strictly positive. This fact allows us to
utilize the previous discussion on BI, and comparing (3.5.21) with
(3.5.12) we may test the hypothesis of CSI by forming the test-statistic 
A^(D) and comparing it with values from a X^igji(m-1)-l distribution. We 

must also assume that v follows the Normal distribution in order for the 
covariance relationships to imply independence. This in turn results in 
u following the L (^:,Z) distribution, as in BI.

Before considering other forms of compositional independence we 
note that for u e and u e complete subcompositional invariance 
automatically holds.

The next group of definitions take their motivation from the 
common need to examine only a few components of the composition. One 
such concept resulting from such problems was introduced in section 3.2, 
and that was the concept of neutrality (Definition 3.15). Here it is 
redefined in a slightly modified form, together with some related 
concepts.

For the remainder of this section we will consider the partition:-

^(m+1) g gm^

where u/^^ = (U2,U2,...,Ug)

and !Xc) - ^"c+1( ^r'4- 1 .... ? ^m+1 ^ *

Definition 3.26
A subcomposition C(u/^^) has subcompositional invariance if

C(u.(^)) ^ T(u(^)) (SI^)

similarly C(U(g\) may also be subcompositionally invariant

C(U(^)) ^ T(U(^)) (SI^)
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Definition 3.27
A subcomposition C(u^^^) possesses conditional subcompositional 

invariance if
C(u/^)) ^ C(U(g))|T(u(^^) - (CoSI)

Definition 3.28
Left neutrality occurs if

C(u'=>) 11 M(c) (N^)

Right neutrality occurs if

(c) (Nj)

Definition 3.29
A composition has partition Independence if

: C(u^^)),C(U(^)),T(U(^)) - (P).

We note from comparing definitions 3.26 through to 3.29 that

i) CoSI n SI 1
^2 = CoSI n SI2 (3.5.22)

ii)

n SI2 = No n SI, (3.5.23)

It should be apparent that SI is a subcompositional counterpart of CIB 
(definition 3.23), since u^^^ is acting as a basis for C(u/^^) e . 
Since T(u/^^) + T(uvg)) = 1, SI implies that not only is the subcompo
sition independent of T(u/^^), but also of T(u^g\). Thus if C(u/^^) is 

in any way dependent on u^^\ it must be a relationship via the propor
tional breakdown of u^g\ (i.e. C(u^g\)), and not through the share of 
the original composition attributed to u^^^ (i.e. T(u/^^)). The concept 

of CoSI on the other hand, suggests the opposite, namely that if u^g\ is 
not independent of U/g\, then it is only through its share of u.
T(u (c) ) When C(u/^^) is completely independent of U/^\ then both of

the above situations hold, and we have neutrality. This yields

70



(3.5.22). Neutrality as defined here is identical to the earlier 
definition 3.14 except that now we allow it from both ends of the 
ordered vector u. This allows us to relate it easily to partition 

independence.
The above forms of independence may be tested as suggested by 

Aitchison(1982), by modelling the data so as to mimic the independence 
property as an easily testable parametric restriction. In this instance 
let

and

v„ = a 
—2 m-c (3.5.24)

Next consider

A
N (m-1)

" :i^3 

" ^2^3

-11 ^i2

-21

(3.5.25)

for which the independence concepts are equivalent to various parametric 
hypotheses as follows

sii gq =

SI.

CoSI

4=>

g2 -

-12

El = g, ii2

g2 = g, ii2

0;

g;

6l - g« §2 " ^i2 " - (3.5.26)
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We may then appeal to the usual multivariate techniques, as for example 
in Morrison(1976).

For all the forms of independence 3.26 through to 3.29 we may be 
interested in considering different values of c; working through the 
vector u for some specific order of the variables. For example, 
consider again the opinion poll data with variables

"CON", "LAB", "LIB", "OTHER", "DONT KNOW".

First, we may wish to see if the four variables may be considered 
together, without the DONT KNOWS, because really we are interested in 
political parties, and the votes they are likely to gain. We might then 
wish to drop OTHER, since it may be thought that such candidates are not 
likely to be elected. Continuing our "speculative licence" we may 
finally wish to drop LIB, since our interest is finally concerned with 
the two major parties, and which one might form the next government.

To this end we have the following further definition

Definition 3.30
For some specific ordered u 6 §^, u has independence property

the stated independence properl 
m, then u is said to have complete

(SI^, SI2, CoSI, etc.) of order k if the stated independence property
holds for c=l,...,k. Further if k 
independence of the form stated.

For example, SI, of order k implies that

C(u^^)) ^ T(u(^)) , for c=l.... k;

and complete right neutrality is equivalent to complete neutrality as 
defined by iii) of definition 3.14.

Slj up to order k is conjectured by Aitchison(1982) to be equivalent 
to neutrality up to order k within the framework of transformed normal 
modelling. The distinction between CoSI of order k with that of 
neutrality does, however, seem to exist, but the concept CoSI of order k 
does not appear to have any useful applications. Consequently the only 
independence property examined in this context is neutrality. This does 
have a more readily defined application, as for example in the opinion 
poll data cited above.
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To test for independence up to some order k becomes cumbersome if 
we use the method above via the equations (3.5.24) and (3.5.25). It 
would be necessary to compute v^ V2 and Vg for each of c=l,...,k; and 
test for independence at each stage. This is not only laborious, but 
also leads to a multi-stage test, with the usual problems of defining 
the critical region. However Aitchison(1981a) shows that right 
neutrality is equivalent to the independence of the components

u 1 um
1-u,% l-Ui-u^' . ...

(cf. (3.2.18)) Taking logs yields the m^j transformation. This leads to 
the result that if we let u ~ M^(jj, Z), then neutrality for a partition 
with c=k, neutrality up to order k, and complete neutrality, are 
equivalent to the following parametric forms of 1 respectively

1-u,

' ^dl ^

0 0
- ^^2 - ^^2

^^(^11.... ^mm)

Where ^ is kxk and is (m-k)x(m-k). Left neutrality may be 
similarly examined by reversing the order of u.

We now consider one final form of independence.

Definition 3.31

(c)

and

M(c))
) if

i) C(u^^)) ^ C

ii) C(M(c)) Sr-'
independence.

.(c)

!dc)

has complete subcompositional

It is again possible to form a parametric equivalent to PSI 
within the transformed normal-class. If we form v. and V2 as in 
(3.5.24) PSI^^^ is equivalent to :-

(c)
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1^2 = 0* and Z^2 = (3.5.27)

in equation (3.5.25).

We have described a powerful set of compositional independence 
concepts, together with a means of expressing them parametrically via 
the L^(^^E) and Z) distributions. However the logistic-normal
class of distributions is unable to model some of the stronger independ
ence properties, such as complete neutrality of all possible permuta
tions. As mentioned in section 3.4, this latter concept requires the 
Dirichlet class. A solution to this problem has been suggested by 
Aitchison(1985) via a more general distribution for data on the 
simplex, which contains within it both the Z) and the Dirichlet
distributions. The resulting distribution has only one additional 
parameter over and above that of the L(ji,^) distribution, and certain 
parametric hypotheses reduce it to the above two distributions. This 
allows for inference to be made to distinguish between them. It should 
be noted, however, that this hybrid distribution is not algebraically 
exact, and numerical techniques are necessary to evaluate it. It is not 
intended to develop the applications of this additional distribution 
into the area of time series at this stage, although it does suggest a 
possible area for further work.

3,6 Summary

In this chapter we have discussed the nature of compositional 
data, and various problems encountered when trying to analyse it. These 
problems include: understanding independence, a need for a suitable 
distribution, and further problems related to compositional time series. 
We have discussed some possible solutions following the approach of 
Aitchison(1982), These transformations and concepts of independence 
will be extended to time series in subsequent chapters.
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I Corinthians 15:52

we wlCC 6g chonged,"

CHAPTER 4

Transformed Multivariate Time Series Models

4.0 Introduction

In the previous chapter we introduced compositional time series 
and discussed some of their properties. We have seen the need to define 
some new types of models which will handle these time series. In this 
chapter we present some possible models that will overcome the difficul- 
ties discussed in chapter 3. These new models employ the transforma
tions of section 3.4 which map the m-dimensional simplex onto the real 
space. Having defined these models we will investigate some of their 
properties and illustrate their use by means of an example.

4.1 Compositional Time Series Models

We first consider the additive logistic transformation. Let 
be a compositional time series i.e.

u^ e SP, t=0,±l,...
and then let t=0,±l,.. (4.1.1)
where a^ is given by definition 3.17. We consider applying conventional 
time series modelling techniques to the {v^} series which takes values
in R™.

Definition 4.1
A compositional time series {u^}, u^ G g" (t=0,±l,...) is said to 

3. multivariate additive logistic autoregressive moving-average 
process of order p,q and dimension m: ln+ARMA^(p,q), if {v^} given by
(4.1.1) is ARMA^^p,q).



We employ the transformation because it has been well developed 
by Aitchison(1982,1983,1984,1985,1986) and by Aitchison and Shen- 
(1980,1984). Many of its useful properties and expedience in testing 
for various types of independence were discussed in chapter 3. The other 
transformation which was found to be useful in chapter 3 was the m^ 
transformation (definition 3.18). We examined how it proved to be 
useful when testing for neutrality, and consequently we will introduce a 
model based on this transformation, but we will not discuss its 
properties in as much detail.

Let m^^u^), t=0,±l, (4.1.2)

Definition 4.2
A compositional time series {u^}, u^ e S™ (t=0,±l,...) is a 

multivariate multiplicative logistic autoregressive moving-average
process of order p,q and dimension m: ln^ARMA^(p,q), if v^ given by 
(4.1.2) is ARMA^(p,q).

We will similarly define In+AR^^p), ln+MA^(q), In^AR^(p), and 
In^MA(q) to be ln+ARMA^(p,0), ln^AEMA^(o,q), ln^ARMA^(p,0), and
In^ARMA^^O.q) respectively.

We note from the above definitions that if {y^} follows an 
ARMA^(p,q) process then the input series is also ra-dimensional. Hence 
{u^} will have an m-dimensional input series as we require.

It will be useful to obtain an expression for uu in terms of its 
own past values under the various models.
Let ,tp ,0Q,0q be the parameters of the ARMA^(p,q) process for
y^ given by (4.1.1), where gg = I^;

a^ = exp(c^),

Ely^] = u,

(4.1.3)

(4.1.4)

so that Yt ~ -t ~ (4.1.5)

and hence +...+
(4.1.6)
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Also let p m (j).' “Tij/ik \i (4.1.7)

and
.<k) ? .(k) ,
♦i.ml ■ - 1/iJ ’

J = 1
.,m; k-l (4.1.8)

Where ; k=i.

Then we have

Lemma 4.3
If 6 s'^ follows an In^ARMA (p,q) process then :

"it

p m+1
n nu. ^

j=i k=i

q m
j!o j

1 +
m
I

r=l

p m+1
IT n tt 

j=l k:=l t,t-j
q m 0
n Ha

j=0 k=l

(j)
rk

k,t-j

i-1,...,m; t=0,±l, (4.1.9)

Proof
Recall from defintion 3.17 and (4.1.1) that

\ ■ \ ‘!=t> ■

and
exp(v^^)

it m
1 + Z exp(v ) r-l "

Now from (4.1.6)

exp(v.^)

, i=l, — .m; t=0,±l..... (4.1.10)

exp-ju * E,* + ijCYt,!- k) *p<Vp-

where denotes the i^^ element of the vector for i=l,...,m.
J i

Hence
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exp(v

r P m
exp< - I Z V.

^ j=i k=l k,t-j
»‘J'}.exp{ q m

Z Z ^ ^ j=0 k=l ^
P m , _

^ ^ j!i j

(j)P m
j:.-k.w^ik'' ,<j)q m 

j=o
"i

from equation(4,1.7). (4.1.11)

Putting a. , = exp(c, _,) , and recalling from definition 3.17K,l’~J K,Lj

that

exp(v^^)

V.k,t-j In k,t-j
u , we obtain
m+l,t-j

k,t-jp m
n n

j=l k=l 1 "m+l,t-j

4:'
q m 
n n a 

j=0 k=l k,t-j

(i)p m+l
j:: k-V^.-3 ^ ^ t i ' 1=1,...,mj=0 k=l J ^ t=0,±l,... ;

(4.1.12)
where _i,m+l is given by (4.1.8).

Substituting (4.1.12) into (4.1.10) gives the required result. O

Co T ollary 4.4
If u^ e S™ follows an In^AR (p) process then, using the same

notation.

^it

( i)p m+l

m
1 + Z

r=l

P m+l
^rt^r

= 1
m ■
Z u 

j = l jt

, 1=1,...,m

> t=0,±l.

,i=m+1
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Coirollary 4.5
If ui € follows an In MA (q) process then, -t + m

q m 
TI IT a

j=0 k=l
it

m
1 + I 

r-1

m
A"'

q m
n n a

j=0 k=l

0 (j)rk 
k,t-j > t=0,+l.

,i=m+l

where the notation is as in lemma 4.3, except that - exp(ti^)

Co-irollary 4.6
If u. e 8^ follows an In ARMA (p,q) process, then 

-t - X m

"it

s—1

A:'

q
n

m
n a

j=0 k=l k,t-j

1 + P
n

m
n

j=l k=l

uk,t-j
m+1 

T. u 
r-k+1 r,t-j

A'
q m 6 (j)sk

j

i=l,...,m ; t=o,±1,...

where p. is as before, but noting that u is now the mean of the vk
series given by (4.1.2).

Proof
This follows the exact form of the proof for the lemma, except 

that after equation (4.1.11) we substitute.

k,t-j in t-j

1 - Z u
r-1 r,t-j

m+1 
Z u 

r=k+l r,t-j
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m+1
since E u. ^ . = 11-1 "-'-J

and then the expression for exp(v.) is

exp(v ) P m
n n

j = l k:=l

uk,t-j
m+1 
I u 

r=k+l r,t-j

q m 
n Ha 

j=0 k=l

(j) 
ik

k,t-j
. (4.1.13)

From definition 3.18 u.^ is then given by

exp(v.^)It
it

n {1 + exp(v. )} j = l ^

, t-0,±1, (4.1.14)

Substituting (4.1.13) into (4.1.14) then gives the required result.
□

We may obtain similar expressions for the In^AR^(p) and In^MA^(q) 
processes. However for the remainder of this chapter we will concen
trate on the ln^ARMA^(p,q) model. Many of the results for the 
ln+ARMA^(p,q) model will have similar and obvious counter-parts for the 
ln^ARMA^(p,q) model, whilst other results may have less obvious or 
possibly no counter-part. Where possible we will try to indicate which 
is the case. What follows in the rest of this section can be easily 
formulated for the ln^ARMA^^p,q) model.

We now proceed with some further definitions.

Definition 4.7
An In^ARMA^^p.q) process u^ is MA-invertible if it can be 

expressed as an ln+MA.(^d process.

Clearly if a process u^ is MA-invertible then the process v^ 
formed by taking the a^ transformation is stationary, and hence a 
necessary and sufficient condition for u^ to be MA-invertible is given 
by lemma 2.6.
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Definition 4.8
An ln_^ARMA^(p,q) process is AR-invertible if it can be 

expressed as an In^AR(m) process.

In a similar way the above definition is equivalent to the model 
for the {v^} series being invertible, and hence the required conditions 
for this are given by lemma 2.7. We note that we could easily have 
interchanged the names in the above definitions, so that they refer to 
the polynomial equation of the parent ARMA model that is invertible; 
instead of which we have chosen to define the names so that they refer 
to the resulting form of the infinite polynomial. Also, we have not 
used the terms stationary and invertible as it is the {v^} series and 
not the {u^} series to which these terms refer.

Clearly if a process is MA-invertible we may express it as

"it

00 m
n n a

j=0 k=l

(j)i
ik

k,t-j

m+1
1 + E ^

r=l

00 m
n n a

j=0 k=l

1
rk

k,t-j

t=0,±l,..

i=l,...m

(4.1.15)

where = exp(u ) .

Similarly an AR-invertible process may be expressed as

"it

00 m+1
IT Hu 

j=l k=l

4^'

k,t-j

m+1 00 la+l
+ E < n a n

r-l 1- j=i k-i . rt r

t-0,+!,... 

i=l,...,m

(4.1.16)

where
i,m+l i-1

and exp^ ij. + 
L ^



In (4.1.15) and (4.1.16) the ip's and n's refer to the infinite polyno
mial parameters for {v.} expressed as an MA^(oo) and AR^(co) process 
respectively.

One class of models we have not considered are those based on the 
ARIMA^(p,d,q) process. This is partly due to our comments in chapter 2 
regarding such models, and also because the ARIMA^(p,d,q) may be thought 
of as a non-stationary ARMA^(p+d,q) process, for which the above models 
will suffice.

4.2 A Linear Approximation to the Model

So far we have suggested an approach to modelling a {u^} series, 
where u^ e S™, via a transformed model such as the ln^ARMA^(p,q). 

However, in the survey context e.g. Scott et al (1977), such series have 
been analyzed by using the traditional linear ARMA(p,q) model, although 
in general this has been restricted to univariate models. One may then 
wish to ask if, and under what conditions, such a model is appropriate.

To compare the two approaches consider the a, transformation of 
u € to V €

V In 1-u

This function is plotted in figure 4.9,

82



When u is "close" to some point u (say), then In ^j— is1-u
approximately linear. By "close" we mean that a < u $ b, where 
a < p < b, and where the choice of a and b depends on the degree of 
approximation required and the value of p. The closer p is to 0.5 the 
wider the range [a,b] can be because the function is more "flat" around 
this point. Clearly we may extend such an approach to higher dimen
sions .

It is usual to examine a linear approximation about the point 
J4 - E[u]. We now form an approximation to the multiplicative 
ln^ARMA^(p,q) model using a Taylor series expansion. It is hoped that 
this will provide a useful means of understanding the properties of the 
ln^AEMA^(p,q) system. Consider (4.1.9) and let

i) E[u^

E[a^

(m+1) (m+1) (4.2.1)

(4.2.2)

ii) Xk (4.2.3)

p m+1 ;
n n p. 

j=l i=l ^ j=0 i=i ^
5 k—i ,m. (4.2.4)

T = 1
m
I /

i=l '
(4.2.5)

A .... ^m^'

iii) p (s)
\ r .(s)

'kr ■♦kr *

(s) (s) (s)
'kr = Pkr - ^k,m+

H-s

j=i :

k,r=l,...,m ; s=l, ,P'

(4.2.6)

(4.2.7)

iv) g (s)
kr j=i

; k,r=l,...,m ; s=0. ,q.

(4.2.8)
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Theorem 4.10
If e S follows a ln^ARMA^(p,q) process then a linear 

approximation to the model (4.1.9) is

Mt - ^ ^4 +..+ + GQ(a^- &) +..+ Gq(a^_g- a) ^ L-P -t-p -q --t-q

where L. represents the second order and higher order terms of the 
Taylor expansion.

Proof
Let -t t-p'-t' -t-q (4.2.9)

Fi(J^)
p m+1 -<j)
n n u

j = 1 k=1

(j)
ik

k,t-j

(j).q m 0,^
n n a

j=0 k=l k,t-j q. , i—1,,..,m^ t=0,±l,...

m
1 + Z F^(J^) 

r=l

; k=l,...,m ; t=0,±l,..

(4.2.10)

(4.2.11)

Then from equation (4.1.9), the function f (J^) is the right-hand side 
of the model formula. Hence we may rewrite (4.1.9) as

u. = f.(J^) ; i=l....,m ; t=0,±l. (4.2.12)

From (4.2.1), (4.2.2) and (4.2.9) we note that

E[J^] = = N' (say) (4.2.13)

The Taylor series expansion of f.(J^) about N is given by

fi(J^) fi(J^)
P m+1 ^ af.(j^)

+ Z I 1 -t
BuJ.=N k=l r=l-t - L r,t-k

("r,t-k- ^r)

q
z

m
I

k-0 r=l

afi(j^)
aar,t-k J^=N-t -

(^r,t-k- ^ ^2ti

(4.2.14)

where R are the second and higher order terms. We may rewrite 
this in vector form as
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I(J,)
p

+ I
' af(j^)

J^=N i=l-t -
^ (m+l) M)

qz
i=0

'

9a[ -t-i

(4.2.15)

where = (f

and :^t = ("^tl '^2t2''

and terms of the form
"^ixr

are the rxs"^Ixs

and 'ij =
^^i
9x

i=l,...,r ;
j=l,...,s.

ij

(4.2.16)

We will take each term of (4.2.14) in turn. First we note that

—t —
= as in (4.2.4); k=l,...,m. (4.2.17)

and hence from (4.2.11)

J^=N—t —
m

1 + Ii=l ^

X from (4.2.3)-(4.2.5)

(4.2.18)
Secondly differentiating with respect to u we find from (4.2.10)

9ur,t-s
and thus.

5ur, t-s

From (4.2.11)
J^=N—t —

■4r’vi-s
r^l,...,m+l

---- X, from (4.2.13) and (4.2.17)k

(4.2.19)

(4.2.20)
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9ur, t-s aur, t-s

m
1 + Z F (J ) 

C=1 ^

m 3f,(4)l
3ur,t-s

m
1 + Z F (J.) 

C=1 ^
(4.2.21)

Hence from (4.2.20) and (4.2.21) we obtain

Bur, t-s

-*kr^^k

J^=N-t —
m

1 + Z
i=l

'.j,

m ^2
1 + z r

i=l

X,

P

r
(s)
kr

from (4.2.3)-(4.2.6) ,

; k=l,...,m ; r=l,...,m+l ; s=l,...p.

Similarly, since

(4.2.22)

whence

Ba J^=N-t -r,t-s

We have that

& kr
; k,r=l,...,m ; s=0,...,q ; t=0,±l,...

(4.2.23)

Bar,t-s
kr k

oc _ I 1 + Z f .
i=l ^

™ (s)

m ^2 
1 + Z /

i=l '

Ocr

,(s)
'kr

r ^(5)
kr z

j=i ^

; k,r=l,...,m ; s=0,...,q ,from (4.2.8)
(4.2.24)

Substituting (4.2.18), (4.2.22) and (4.2.24) into our expression for the
Taylor series expansion (4.2.14) gives
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Finally we note that the summation in the second term of the above 
expression is over m+1 linearly dependent terms. We may re-parameterize 
this to be the sum of m linear independent terms thus

m+1 ..

(4.2.25)

m 1^ ^ t-i ^ ^ ^i t-ii
L j=l J' j=l

m
^ " ^k,m+1^^"r,t-i ^r^

r-1

m
"r' (4.2.26)

Substituting (4.2.26) into (4.2.25) gives the required result, where

(4.2.27)-t -2t
□

Corollary 4.11

E$.F ; i=l,,..p ;
EQhA ^ ; j=0,...,q ;

(4.2.28)

(4.2.29)

where H. (i=l,...,p) and G. (j=0,...,q) are the parameters of the model 

in equation (4.1.9) and and 8 are the parameters of the
ln^ARMA^(p,q).

And

F = M +

(4.2.30)

^ u 
v^l (4.2.31)

(4.2.32)

(4.2.33)

.... X ) (4.2.34)m
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Proof

From (4.2.6) and (4.2.7)
(s) (s)

^kr ^k,m+l

^m+l

= X,
^m+1

m
I X. 

j = l '
jr

)Jm+1 s=l,...p.

(4.2.35)
h — (i) — 4 h — (ii) — H F — (iii) — 4 h — (iv) — 4 

We may rewrite this in matrix form (term by term)

H * M 
—s-

-1 1

m+1
$ U + U L —s-m —m—

$ M ^ + —^ $ U
)V+1

h — (i) — -j j- — (ii) — -j H — (iii) — 4 H (iv) — 4

^ ; s-1.... P;
m+1

(4.2.36)

-E$ F as required.

Similarly since 

X
g_(s)kr &r

z e4^^x.
j=i ^

L(e - U L8 )A ---s —s - (4.2.37)

L(I - U L)0 A— -m —m— —s— E6 A as required, s=0,. ,q.
o

Clearly the linear approximation given in the above theorem is in the
form of an ARMA (p.q) model. However we note that G. ^ I as in the m ^ -m
usual specification, and we have additional terms L and A.—t —

We may investigate conditions under which ~ 0. Recall that the

innovation series for {v^} is where Var[E^) = Z. inMni following
the approach of Bickel and Doksum(1981) we would expect % 0 when ^Z^
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~ 0, where ||Ij| is some norm of the covariance matrix, such as the 
determinant. This, for example might yield the criterion for a linear 
approximation as

L. % 0 , (4.2.38)

when Zl < k.

The choice of k will depend on how accurate we wish the linear approxi
mation to be. Exact details may be obtained by examining higher order 
terms of the Taylor series expansion of the ln+ARMAg^(p,q) process. We 
leave this for further study, since we wish to develop the ln^ARMA_(p,q) 
as such, and not to concentrate on its linear approximation. In general 
when k is small the values of the compositional time series will not 
vary that much. i.e. the values will not fluctuate from one extreme 
value to another.

The additional constant term A may also be sensibly dealt with.
For the ARMA^(p,q) model in theorem 4.10 to be of standard form, we 
require that.

A H i.e. Mi ; ,m.

This may be seen in context if we note that is simply the value of
fi(J^) (equations (4.2.13) and (4.2.18)) evaluated at the mean, and
since from (4.2.12),

U_: f^(J^) ; i=l,...,m ; t=0,±l,it i'-t

then = Hy is equivalent to,

P-i = f-j (N) ; i=l, ,.. ,m

I.e. E[u^^] = f^(E[J^]) (4.2.39)

Since (4.1.9) has been approximated by an ARMA^(p,q) process, then
(4.2.39) is equivalent to that approximation applied to the expected 
values, i.e. when L* % 0 (4.2.39) may be obtained by taking expecta
tions of the ARMA model
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(Mt- M) = M) M) + ^ '

(4.2.40)

where - (^ - A) ,

- oc—t -t -
(4.2.41)

Hence (4.2.39) holds when the linear approximation is good.
The ARMA model (4.2.40) is a re-parameterized form of that given 

in theorem 4.10. Clearly if (4.2.38) and consequently also (4.2.39) 
hold, then % 0. If % 0 for whatever reason, then we have an 
ARMA^(p,q) process in its standard form. Alternatively if we could 
assume that is an independent white-noise process then we also have
an ARMA^(p,q) process, since the sum of two independent moving-average 
proceses MA^^q^) + MA^^q2) say, is itself MA^^q^), where q^=max(q2,q2). 
(See for example Box and Jenkins(1976)).

From (4.1.3) we note that

kt exp{E.^} ; k=l,...,m ; t=0,±l,... ;

where Ct ^ N^(0,I)

Hence a_ follows a multivariate log-normal distribution with mean “t

k=l,...,m ;
t=0,±1,.. .

, . ^ (A)and variance Z, : 6. .-A 1]
r (5.. 1
e 1

<5 . ,)
e I ; i,j=l,...,m.

(4.2.42)

If ~ 0 we have some interesting results as follows.

Lemma 4.12
The determinantal equations for the moving-average components of
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i) The parent ARMA (p,q) model for v = a (u ), u e s"'.
TTl v TTl X- X2

and ii) the linear approximation of the resulting In ARMA (p,q) model... + m
for u , namely equation (4.2.40), with L = 0

both have the same roots, and hence both models are inver&ble or 
otherwise,
Proof

The determinantal equation for the MA component of (4.2,40), L = 0
IS,

^ -1 & (4.2.43)

We have from (4.2.41) that G. — G.G_ -1 -1^ i=0,...,q ;

E0.A"^(EI A , from (4.2.37),
—1— —m—

and since G_ = I —0 —m
EG E"^ ; i=0,...,q. (4.2.44)

E exists since from (4.2.30) L = dg(l/X,,...,l/\ ) , 
— — 1 m

m
and 11 - U LI = 1 - IX. x 0 (in general)

i=l ^

Substituting (4.2.44) into (4.2.43) gives.

El|G.z^ +
- + Gi llE—q —

-1 0 (4.2.45)

for which the roots are those of the determinantal equation for the
parent ARMA^(p,q) model.

A consequence of this lemma is that if {u^}, u^ e S™ follows a 

ln_^ARMA^(p,q) model and is AR-invertible (definition 4.8), then the 
linear approximation (4.2.40) with L^" - 0 will be invertible. A 
similar relationship may be found regarding the stationarity of its 
linear approximation. This is easily seen by noting that.

H(B) (4.2.46)
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and hence if exists (i.e. if it converges) so does so
that (4.2.40) may be written as an infinite moving-average. However in 
this case the roots of the determinantal equations are not so easily 
found to be the same. We have

+ ... + = 0 (4.2.47)

and ^ + ... + H^l = 0 (4.2.48)

(4.2.48) may be written as

lEiiET^F-^zP + *,zP-^ + ... + (4.2.49)

This equation is not the same as that of (4.2.47) (cf. (4.2,45)), unless 
of course E =£“^, which is not necessarily the case. However consider
p-1 .

'^1^2

-^l^m

-^2^1

-^2^m

^m^2 (4.2.50)

= M(I -U M) — —m —m— (4.2.51)

-1Consequently F - E if and only if L = M ,see (4.2.30). i.e. if and
only if (from (4.2.33) and (4,2.34)). We recall that this is
equivalent to (4.2.39). Hence we must assume that L = 0 , as in 
lemma 4.12. We have shown

Lemma 4.13

i) If the parent ARMA^(p,q) model for v^ = a^(u^) ; € S"' is

stationary then so is the linear approximation (4.2.40) of 
the resulting ln^ARMA^^p,q) model.

ii) If (4.2.39) holds, the determinantal equations for both AR
components are the same.
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In summary, in this section we have established a linear approxi
mation for the multiplicative model. We have not considered higher 
order terms in order to avoid additional complications. These would 
demonstrate the conditions under which the linear approximation is a 
good one. We may crudely determine this via the choice of a "flat" 
region about E[u^] as in the choice of a and b in Fig. 4.9, or k in 
(4.2.38).

We have also shown some interesting relationships at the linear 
approximation to the ln+ARMA^(p,q) model and its parent ARMA^(p,q). In 
particular we note that the stationarity and invertibility of the two 
ARMA models are equivalent.

4.3 Invariance Properties

In our definition of the ln_^ARMA^(p,q) model we allowed the 
fill-up-value (FUV) u^^^ ^ to be the reference variable in the transfor
mation of {u^} to {v^}. However we could have selected any one of the 
remaining m u^^'s to be the reference variable. The resulting model 
would still be an ln^ARMA^(p,q) model, but what is its relationship to 
the original model? Will it make any difference to our analysis if we 
chose a different u^^? What we must discover is whether the model is 
invariant to such a permutation of the u^^'s. In this section we aim to 
investigate these questions.

We begin by recalling the results at the end of section 3.4, and 
in particular the definition of the Z(k) matrix (3.4.2), which trans
forms v^ thus :-

Vt = Z/k)v^,

where y^ and y^ are the logistic transformations of u^ e §™, based on 
the reference variables and u^ respectively (k=l,...,m). We
demonstrated in chapter 3 that under the usual multivariate theory if 
u ~ L (y,Z), then u^ (with obvious notation) ~ L(ZTk)y, Z(k)EZ(k)').
Aitchison(1982) further studied the invariance properties of the a. 
transformation in the context of compositional independence.

Our first invariance property for time series is given below.

m
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Theorem 4.14 
Let = Z(k)y^ ; t=0,±l,... ; k=l.... m.

Z(k)(v^ - u) =
(4.3.1)

If {y^} follows an ARMA^(p,q) process, then is also ARMA^(p,q).
Further the roots of the determinantal equations of both the AR and the 
MA components from the two models are identical so that the stationarity 
and invertibility conditions remain consistent.

Proof
)ince {y^} follows an ARMA^(p,q) we may write

A ” *•••" Vt-q ■ Vt-1 4pA-p I (4.3.2)

where E[E^] = 0 , and Var[E ] = I.

If we multiply by Z(k) the L.H.S. will be Also, since
— I r l<r ^Z (k) = Z(k) it follows that V = Z(k)V/ , whence

y(k, ^ ^(k) ^ z(k)GL2(k)c!^? +
-t -t-1

zdk)4^z(k)y[^)

+ Z(k)G Z(k)E!^^ -
- -q- —t-q

. - Z(k)* Z(k)V^^^ ,
— —p— —t-p (4.3.3)

where

If we then put

(k)

e'«
-1

ZXk)E ; k=l,...,m.

ZXk)6 Zdk) ; i=0. ,q ;

(4.3.4)

(4.3.5)

and #.-J
(k) k=l,...,m;

Z/k)$ Z(k) ; j=l.... p ; (4.3.6)

we obtain

(4.3.7)

From (4.3.5) and (4.3.6) , and since iZ(k)i f 0 ,
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0 4^— “1

*.-j
0 4=^ 4> (k)

0 ; i=0,

0 ; j=l,

,q ;

,p.

> k=l,...,m; (4.3.8)

Hence (4.3.3) is not only an ARMA model but it contains the same number 
of parameters as the original ARMA model (4.3.2), and in particular 
remains ARMA (p,q), with white-noise process

where E[c

m
(k) = 0 ,

and (k)Var[E^ = Z^k)rz/(k).
(4.3.9)

Consider now the roots of :■

I . . ... = 0—m -1 -P 1

Z/k) I + $ z^ ^ + + $ Z(k)—m —1 -P

I zP + 4, zP-^ + ... + 0 = 0—m -1 -P

(4.3.10)

(4.3.11)

which is the characteristic equation for the original AR component, and 
hence the roots are identical. The MA component follows in a similar 
manner. O

Corollary 4.15

Let = {* , .} r,s=l,..,m; (note slight change in notation)J J » \ i 5 /

and

.(k)
j,(r,s) ^j,(r,s) 'j,(k,s)

, where

; s=l,...,m; s^k^

*j,(r,m+l) *j,(k,m+l) ' ^ ^

*j,(r,k) - *j,(k,k) ;

*j,(k,s)

^y,(k,m+l)

'j,(k,k)

; s=l,,..,m ; s^k

; s=k

; s=m+l

r=l,
r?=k

r=k

,m

k=l,...,m

(4.3.12)
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m
(We recall that ’’

1—1

Similarly if we define 9
m

and
4j,,.tir -j,4x1.1) ; >'='

j=0,...,q

(4.3.13)

J,(r,s) ®J,(r,s) - ®J,(k,s) '

®j.(r,m+l) '^j,{k.ra+l)

^^,(r,k) ^J,(k,k)

^j,(k,s) ; s=l,.

~ —0j,(k,m+l) ; s=k

= —A j,(k,k) ; s=m+i

s=k

s=m+l

r=l,.
r?^k

,m

> r=k

j=0,...,q 

k=i,...,m 

(4.3.14)

Proof
a) Via the ARMA^(p,q) model. From (4.3.5) and (4.3.6) we have

0:-1
(k) Z/k)6 Z^k) and

= Z(k)$.Z(k)-J - -J-

where Z(k) 1 0 
0 1

0 0

0 0

-1 0
-1 0

'-1 1

-1 0

0
0

0

1

multiplying out these matrix expressions gives the required result, 

b) Via the In^ARMA (p,q) model (we give a sketch only).

Let F
p m+1
n n u

j=l S=1
j,(r,s)

s,t-j n n a j=0 s=l ^ n ; r=l,...,m.

(4.3.15)
; r=TB+1.
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Then the In ARMA (p,q) model may be expressed as + m

rt m+1 , r=1,...,m+1 ; (4.3.16)

(cf. (4.2.11) and (4.2.12))

m+1 
I F,

,(k)

m+1 
E F

i=l ^ i=l ^
(k)

(say) r=l,...,m+l. (4.3.17)

where F = q A ; r=l,...,m ; 

; r=k 

; r=m+1.

If we consider each term of we obtain,

Xk)

n u *j,(k,s)

j=l s=l s,t-j
q m
n n a

j=0 s=l
j,(r,s) j,(k,s)

's.t-j

r=l,...,m; r^k.

(k)Clearly the coefficients of the u's correspond to 6. ,^j,(r,s)

(4.3.18) 

of (4.3.12)
for r-l,...,m ; rxk, but with s=k, and s-m+1 interchanged. Since the
whole point of the above theorem is to interchange the u, and u(k) kt m+l,t
values so that *, , . refers to the coefficient of u , ^ . (and viceJ,ir,k) m+1,t-]
versa) the expressions are as required. Similarly examining the result 
for r=m+l above, gives the result for r=k in (4.3.12). (Again k and m+1
interchanged.)

Consider now the coefficients of the a .'ss,t-j

q m
n n a

j=0 s=l

0j,(r,s) j,(k,s)
s,t-j
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q m
n IT

j=0 s=l
s,t-j/kk,t-j

ej,(k,5) q
n

m
IT a

j=0 s=l

^j,(r,s) ^j,(k,s)
k,t-j

n n ^j,(r,s) ^j,(k,s)

j=0 s-1 
s#k

s,t-j n a
j=0

m m

m+1,t-j

n n a/^^ ^j,(r,s) ^j,(k,s)

j=0 s=l
S5*k

s,t-j
(f rom (4.3.13))

(4.3.19)

Since = Z(k)c., and a^ = expc^ , a^^^ corresponds to
—t — “t —t —t —t

= expe^^^ ; t=0,±l,... ; k=l,...,m (4.3.20)

with a^^j ^ corresponding to the position of the vector a^^^.

Thus once again interchanging the k^^ and m+1^^ indices between the 0 
and 0^^^ parameters the power of . in is . given by

S,t.J T
(4.3.13), for r=l,...,m ; rxk : j=0,...,q : k=l,...,m : t=0,±l,... : and

(k)s=l,...,m+l ; s^k. Again we may repeat for F 
the remaining results.

^ ; r=m+l to give

□

Theorem 4.14 demonstrates that the basic structural form of the 
ln+ARMA^(p,q) model and its parent ARMA^(p,q) model is invariant to the 
choice of reference variable. Whatever ARMA_(p,q) model (e.g. (4.3.2) 
or (4.3.3)) is selected to represent the u. series, it is of the same 
order and has the same stationarity and invertibility properties. We may 
take this one step further.

Theorem 4.16
The ln^ARMA^(p,q) model for a series u^ e S“‘ is totally invariant 

to the choice of reference variable. That is, any of the ARMA^(p,q) 
models (4.3.2) and (4.3.7) represent the same model for u^ on the
simplex, except that the u. (m+1)/ s have been permuted.
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Proof
From (4.3.16) and (4.3.17) we have that

,(k)

rt

i=l ^

; r=1,...,m+1 ; k e (1,...,m+1) (4.3.21)

where we set = F as in (4.3.16). From (4.3.18), (4.3.12) andr r
(4.3.13) we have that.

,(k)
. .(k)

j = l S=1 ^

q m
n n a

j=0 s=l

glk)
(k) j,(r,s)
's.t-j n ;r=l,...,m+l 

r^k :

r=k;
(4.3.22)

where q (k) r r=l,. 
hk ;

r=k

,m

k=l,...,m ;

q r=l,...,m ; k=m+l.

Comparing (4.3.21) and (4.3.22) with (4.1.9) and the proof of lemma 4.3,
we see that (4.3.21) is just the ln+ARMA_(p,q) process in terms of u^, 
corresponding to the ARMA^(p,q) model for k e {l,...,m+l} given

gc , i=l,...,pby (4.3.7). (Again we let = v^,
0j(mTl) ^ 0 , j=0,...,q.) Hence for these AKMA,^(p,q) models to be

equivalent forms of the same ln_^ABMA^(p.q) model we require that the 
models represented by (4.3.21) be equivalent. But we have from (4.3.21)
that for any constant C,

Xk)
r" /c

; r=l,.,.,m+l ; k e (l,...,m+l) . (4.3.23)

We may choose C to be Fg^^^, for which we obtain (4.3.21) for k=s, as
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can be seen by (4.3.16)-(4.3.18). Hence all the models are equivalent, 
except for a permutation of the u's.

O

From (4.3.23) we see that (4.3.21) must have a constraint on the 
elements to give a unique representation. This constraint is that

= 1, and is equivalent to choosing Uj^^ as the reference variable, 
(c.f. the marginal constraints of a log-linear model for a contingency 
table e.g. Bishop et al (1975).)

Aitchison and Shen(1980) demonstrated that and L^^Z(k)^,
Zdk)ZZ/(k)) represent the same distribution, but with a permutation of 
the elements in S”'. Our result is the analogue of this for the 
ln_^ARMA_(p,q) model. We may investigate the validity of the theorem
above from many directions. For example, in (4.3.7) we may let c.
N^(g^E(k))

(k)
so that the innovation series e^ = a^ ^(c^^^^) is

Thus fnnn Aitchison and Shen^s (1980) result
>£• (m+1) all represent the same innovation series on S® i.e. e_, but

under a particular permutation. This is true for v. (1)
t ^(m+0 also,

since they all represent u^
(4.3.7) represent v. (k)

Hence all the AEMA^^p,q) models given by
(and consequently u_) as a function of its own

past and the past and present of c (k) (and therefore e^). i.e. all are
expressions for u^ in terms of its own past and the innovation series

Another example occurs when we consider forecasts. Clearly if
(k)^(k) ^ ^ _ (k) . ^Xk)IS a forecast for v^^^ , then v^^^ Z/k)v 

\(k)
t+/ as can be seen by

applying Z(k) to (2.5.2) or by noting that v_"' is obtained from (4.3.7)
— —t+i

by recursively computing i=l,...,/ with 0^ As in (4.3.5) and
(4.3.6) we note that in (2.5.1) Z(k)T!™^^^Z(k) ; i=l,2,

-1 — -1 -

Then from (2.5.3)

.(k) var,v<^' / ^(k)^ y(k)^(k)^,(k)
- -1 - -1

(k)_(k) ,(k) 
^^-1- ^^-1

Z(k)Z^^^^^Z'(k) + Z^k)^^^^^^Z/k)Z/k)Z^^^^^Z/(k)Z/(k)^^^™^^^ Z/(k) +.

+ ZXk)^^^^^^Z(k)Z(k)Z^™^^^Z'(k)Z/(k)]^^^^^^ Z/(k)
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= Z(k) j-(m+l) ^ ^(m+1) ^{m+l) , (m+1)
- -1 — -1 -^-1 - -<-l Z'(k)

Z(k) -t+<
..]lz/(k)

Z/k)E^™^^^Z/(k) (4.3.24)

Hence the forecast for ou , = E[u^ ./uL.u^ ,-t+I -t+X —t -t-1 , where

—1+1
(m+1) y(m+l)' , or equivalently Lm

' (k) .Xk) ^ from

(4.3.24), which is the same distribution except that the u^"s have been 
permuted.

In summary we have shown that whatever model we use on the !R® 
space to express the ln_^ARMA^(p,q) model; we achieve the same result on
"returning" to the space. Consequently any results such as forecasts 
obtained from the model will be identical. We may map from one model to 
another using (4.3.1),(4.3.4)-(4.3.6) and (4.3.9). Maximum likelihood 
estimates of the parameters also remain consistent. We obtain

^(k) = ZXk)Z^^^^^Z'(k) (4.3.25)

^^k) - ZXk)G/^^^\zXk) (4.3.26)

3(k) = Z(k)^^™^^\z (k) (4.3.27)

^(k) = ZXk);(^+^) (4.3.28)

- Z(k);(^^^)
- -t (4.3.29)

(See for example Mood et al (1974) p. 284.)
Because of (4.3.29) the diagnostic checks should be invariant, and 

because the models are of identical orders (i.e. because of (4.3,26) and 
(4.2.27)) the same model should be identified. It will be useful to
examine briefly how to map some of the identification statistics between

-,mdifferent models on R We establish relationships between population
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parameters and also between their estimates.

Lemma 4.17
™ and = Z(k)v . ThenLet ; St e S

i) r^^^(s) = z/k)r(s)z/(k)

ii) C^^^(s) = Z/k)C(s)Z'(k)

iii) = Z^k)n(s)Z/(k)

iv) S^^^(s) = Z/k)S(s)Z/(k)

V) P^^^(s) = Y(k)P(s)Y'(k)

Vi) R/^^(s) = Y(k)R(s)Y^(k) ; s=0,±l,— ; k=l, — ,m ;

where r(s),...,R(s),r(^^(s),.. .,R^^^(s), are the various cross

covariance functions and cross-correlations functions of and v.-t —t
respectively. (Definitions 2.10,2.11,2.13 and 2-14.)

(k)

Finally Y(k) = Z^k)A^ , (4.3.30)

where A = dg(Y^^(0),...,Y ^^m)) (4.3.31)

and ,^k) = dg(y|^^(0),...,Y^^^(m)) . (4.3.32)

And Y(k) (4.3.33)

with A = dg(c^^(0),...,c^(m)) , (4.3.34)

and = dg(cj^^(0),...,c^^^(m)).
11 mm (4.3.35)

Proof
Since y(k)

-t = Z(k)V ;t=0,±l,... ; k=l,...,m. all the results
follow from standard multivariate theory e.g.

i) r^^^(s) = E y(k)y,(k)l = E Z(k)V^V' Ztk) = Z/k) EV^v; Z'(k)_-t -t-s j - -t-t-s- —t—t-s-

= Z(k)r(s)Z'(k) , as required. (s=0,±l,... ; k=l,...,m.)

ii) S^^^(s) = C^^^(s)C^^^(0) = Z(k)C(s)Z'(k){Z(k)C(0)Z'(k)} ^
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Z(k)C(s)C(0) ^Z'(k) = Z(k)S(s)Z(k) as required.

V) P^^^(s) = r(s)A(k) ^ ^^k) z(k)r(s)Z'(k)A^^^

A^^^ Z(k)A^^ ^r(s)Ar^A^Z'(k)A^^^ = Y(k)P(s)Y'(k) ,

as required. (s=0,±l,.,, ; k=l,...,m.)
O

In theory examination of the cross-correlation functions at the 
identification stage should yield the same model. If 
k € is MA^^q) then P(s)^^^ = 0 , |s| > q. Now from the
lemma it follows that P^^^(s) = 0 if and only if P(s) = 0. However in 

practice the elements of the sample cross-correlation matrices are 
examined to see if they are "small" in some sense. Could it be possible 
that the transformation of e.g. R(s)-»R^^^(s) distorts the elements so 

that in one the elements are "small", whilst in another they are 
"large"? This would result in different order models being selected, 
depending on which variable was used as the reference variable. It does 
seem unlikely that such a fluke would occur in practice, especially 
since all the sample estimates are asymptotically normal with mean equal 
to the corresponding population parameter. (See e.g. Hannan(1970).) We 
might try and look at individual elements of in terms of Rds),
but when tried we found this added little to the picture. However, as 
we shall see, and by theorem 4.16 identification statistics, such as 
the likelihood ratio statistic M(/) (2.2.16) are invariant. By 
examining these and also possibly computing R^'^^Cs) for k=l,,..,m+l we 

may easily circumvent this. However, bearing in mind the theoretical 
results it does seem to be an unlikely event in any case. To illustrate 
this point we will consider a simple example.

Examp1e 4.18
We will use the data set relating to the GALLUP(c) poll on 

political preference. The data runs from January 1965 to December 1973 
and gives the results of a monthly poll for allegiance to the following 
political parties :-
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Conservative, Labour, Liberal, and Other
(CON^) (LAB^) (OTH^)

The data set lies on the Sr simplex. First we transform the data via 
the a function so that it lies on the space. We may choose any of 
the four variables to be the reference variable. With obvious notation 
we will form the series.

^ (CON) ^ (LAB) ^ (LIB) and V. (OIH)

e.g. (LAB)
-t

rcoN 1 rLiB_i rOTH_l
In t , In t , In t

LAB LAB^ LAB^t 1 t
J

The sample autocovariance function C(j) and the sample autocorrelation 
function R(j) j=0,...,30 ; were computed for each of the v^^^^'s series, 

("~" € CON,LAB,LIB,OTH). In order to check the computation the C(j) and 
Rij) were also transformed via the Z(k) matrix (k=l,...,3). This 
demonstrated that the computation was correct. Below are the results in 
symbolic form (see chapter 2) for the first 5 lags.

Reference
Variable Lag ^ 0 1 2 3 4 5

i

4- 4 4 4 4

CON 4* 4* • 4 • 4 4 • - . 4 *

— 4- 4- 4 4 " • — • 4 — 4 4 — • 4

4- 4- 4- 4* 4 4 4 4 4 4 4 4 4 4 4 4 4

LAB 4“ 4- 4- 4* 4 4 4 4 4 4 4 4 + 4 4 4 4 4
4- 4- 4- 4- 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4- + 4- 4 4 4 4 -t- 4 4 -4- . 4 4 .

LIB 4- 4- * 4 4 * 4 4 4 4 * 4 4 • 4 4 «
4- • 4- • + • • 4 • • + • • -t • — -h

4- 4_ 4- 4 4 4 4 4 4 4 4 4 4 4 4 4 4

OTH 4- 4- 4- -k 4 4 4 4 4 4 4 4 4 + 4 4 4 +

4- 4- 4- 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

For all four series the pattern of and does not disappear with
higher order lags. All contain off-diagonal elements that are signifi- 
cantly different from zero. Hence the patterns presented by the R(j) 
all indicate a similar type of model, namely an AR^(p) or ARMA^(p,q) 
(p^O) model.
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We will need to examine the partial autocorrelation function in 
order to determine the exact model. Below we will therefore examine its 
properties, and it will be seen that it behaves in a similar way. Before 
doing so we express the elements of r*'^^(s) in terms of the elements of 
r(s) as these expressions will later prove useful. (Note that since i 
and ii in lemma 4.17 are identical mappings, analogous expressions hold 
for C(s). Also if we compare iii and iv with (4,3.5) and (4.3.6) we may 
obtain the corresponding expressions for ft(s) and S(s) based on (4.3.12) 
or (4.3.14),)

We may easily compute the individual element mappings by consider
ing the elements of Zik)rXs)Z'(k), or if we recall that.

4:'
Vft - ; i=l,...,m ; i^k

Vkt ; i=k.

whence y!^^(s) = Cov
ij

4:'. ‘At-

y^.(s) - Y^^(k) - Y^i(s) + Y^^(s) ; i,j-l,...,m ;
IJ 'kj kk' i.j^t ;

Repeating for i=k, j^k; i^k, j=k; and i=j=k gives for s=0,±l,... and 
k G {l,...,m}.

y^.(s) - Y^^(k) - Y^i(s) + ; i,j^^ (i,j=l,...,m)
ij 'kj kk

Vkk‘=> - ’kj'=*

''kk'®' - 'ik'®'

'kk'®'

; i=k, (j=l,...,m) 

; i^t. j=k (i=l,...,m) 

; i=j=k . (4.3.36)

We now examine the partial autocorrelation function.

Theorem 4.19
(k)The partial autocorrelation function F (s), and sample partial 

autocorrelation function F^^^(s) (Definition 2.15 and (2.2.10)) for the
series v^^^, where v^^^ = Z(k)v^, and F(s) and F(s) are the partial and 

sampled partial autocorrelation functions of v^ respectively; are,
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= Zik)F(s)Z(k) ;

= Z(k)F(s)Z(k) .

Proof

s=0,±l,...; k=l,...,m ;

(4.3.37)

(4.3.38)

li(k)
The result may be seen immediately from the fact that 

■ Z/k)*.Z(k) i=l,,..,p; and from the understanding that F(s) and 
F(s) are simply estimates of under the assumption that i=p. However 
we may also demonstrate the theorem by examination of (2.2.5)-(2.2.7) 
and (2.2.9) and (2.2.10) respectively. Firstly from (2.2.7)

['(1) = r ^(O)r(l) , and

r'^^^(i) = (O)rYi)

-1

.(k)

{Z(k)r(0)Z/(k)} "{Z(k)r(l)Z'(k)} = Z/(k)F'(l)Z/(k).

A F'"'(l) = Z(k)F(l)Z(k). (4.3.39)

For higher order terms, again from (2.2.7) we have

F'(f) = {r(0) - b/(X,0)Ar^(^,0)bd(,0)}"^{r(/) - b/(f,0)A"^(X,0)c(/,0)}
/ > 1

Dropping the second term of the bracketed terms for simplicity, and
writing b(i,0) = b(i) etc. gives,

F'(^) = {r(0) - b'(^)A"^(X)b(()}"^{r(^) - b'(%)Ar^(X)c(^)} ; (4.3.40)

and similarly

F'^^^(/) = {[^^^(0) - b/^^^(X)A/^^(^)b(^^(^)}"^x

{r^^^(X) - b'^^^(^)A/^^(X)c^^^(^)} (4.3.41)

where A/^^(/)

Z^^ = ^ » Z(k) ,

r^^^(-i) . . . r^^^(2-<)

(k)(^) r^^^(O) . . . r^^^(i-<)

r^^^((-3). . . r^^^(O) (4.3.42)

(4.3.43)
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i.e. an (4-l)m x (X-l)m matrix with Z(k) in the diagonal. 

Similarly it may easily be seen from (2.2.5) that,

= Z^^b(^)Z'(k) , (4.3.44)
j( > 1

<■'>(/) = Z^^c(<)Z'(k) . (4.3.45)

-1
Noting that Z°^ - , we may substitute (4.3.42) through to

(4.3.45) into (4.3.41) to give.

Z/k)r(0)Z/(k) - Z/k)b/(<)Z/^^[Z^^AXX)Z/"^] 'z"^h(()Z/(k),otks -l„otk.

ZXk)r(f)Z'(k) - Z(k)b/(^)Z/^^rz^^AXZ)Z'^^l'\z^^c(/)Z'(k)

{Z(k)(r(0) - b'(/)A ^(/)b(^))Z'(k)}

{Z(k)(r^/) - b/(<)A ^{i)cX^))Z/(k))} 

Z/(k)F'(f)Z'(^).

Hence = Z(k)F(X)Z/k) , /=1,2,... (4.3.46)

(4.3.39) and (4.3.46) are (4.3.37).

To prove (4.3.38) we recall that F(s) is defined to be the last
mxm matrix of , where from (2.2.10),

whence ;/(k) = ^^^(k)^(k)^ -1 ,(k) (k)

where ^(k) ^ . (k), and

Y':: • • •

• • •
•,(k)
-n

(4.3.47)

(4.3.48)

(4.3.49)
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Putting Z = I. 0 Z(k), this time an mjCxmi block diagonal matrix, gives — —% —
^(k) ^ ^(k) (4.3.50)

Substituting into (4.3.48) gives.

.Pk:= (Z^ ^ Y;y,Z/(k) = 1,2/(k) (4.3.51)

^ ^(k)Thus the last mxm matrix of , i.e, F (Z) is given by

(k)̂ (^) = Z/(k)F'(/)Z'(k) , /=1,2,... ; k=l,...,m 

which gives (4.3.38). O

Corollary 4.20
iF^^^(s) F(s) , and F^^^(s) F(s) , s=l,2,.. 

k=l,...,m.

From the results of the above theorem we may construct an element 
by element description of F^^^(s) in terms of the elements of F(s).

This will be analogous to (4.3.12) and (4.3.14). (c.f. (4.3.37) and 
(4.3.38) with (4.3.5) and (4.3.6).) At the end of this chapter we 
present an example which incorporates F(s) and F^^^(s). We next 

consider the determinantal criteria given by definition 2.16.

Theorem 4.21
If D(s,^) is the Box-Tiao determinantal criterion for {v^}

— —t

(definition 2.16), then the corresponding determinantal criterion
D/^^(5,<) for {v\^^}, where v^^^ = Z(k)v , is
— —t —t — —t

,(k) (s,^) = Z(k)D(s,^)Z'(k).

Proof
We recall from definition 2.16 that D(s,i) consists of elements 

that are determinants of a matrix of the autocovariance function, with
some of the rows and columns deleted. That is, from (2.2.12)

D(s,X) = {d^^(s,X)}
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where d, .(s,()ij
Ais,X) c.(s,<)-J

g((s,f) y. .(s+()-1 ij

8. .is,i) (say) .-11 (4.3.52)

From (4.3.42) and (4.3.43) we have that.

(4.3.53)

Now Cj^^(s,i) is the row of c/^^(s,/) ; thus from (4.3.45)

Cj^^(s,i) = {Z^^c^s,^)Z'(k)}j

= Z^^Xc(s,/)Z'(k)}. ; j,k=l,...ym
- - - 3

; s,l-O,1,2,...
(4.3.54)

Similarly from the definition of g(s,i), equation (2.2.5) we have,

g^^^(s,/) = Z^^g(s,Z)Z'(k) ,

whence g(^^^(s,/) = {Z(k)g'(s,X)}^Z'^^ ; i,k=l,...,m

; s,;=0,l,2,...
(4.3.55)

Thus, substituting (4.3.53) through to (4.3.55) into 8^^^(s,i) we have,

Z^^A(s,^)Z'^^

{Z(k)^'(s,^)} Z

Z^^{c(s,^)Z/(k)}j

,&k (k)Yij (s+/)

,otlk
Ads,X) {c(s,^)Z/(k)}

(k){Zik)§/(s,X)}^ (s+X)
Z' (xlk

(4.3.56)

where ,oclk Z°^ 0

0'

(4.3.57)
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We note that ,otik 1 , so that

djj^(s,^) 8!^^(s.()
ij

A(s./) {c(s,/)Z'(k)}.- - J

(k){ZXk)g'(s,/)}^ y^j (s+X)

(4.3.58)

Now Z(k)g'(s,/) 10 ... —1 ... 0 'g^(s,^)

0 1 ... —1 ... 0 62(8,^)

00 ... “1 ... 0
. . g/(s,^)I —m
0 0 ... —1 ... 1

Hence —1 {Z(k)g'(s.X)},— — 1

g((s,^) - g/(s.X) , ; i^k ;—1 —k

i=k. (4.3.59)

Similarly
c^^^(s,X)
-J

c,(s,j^ - c,(s,Z) , j=l,...,m ; j^k ;
—j —k

-c^(s.^) j=k. (4.3.60)

yj^^(s,/) is given by (4.3.36), substituting (4.3.36), (4.3.59) and 

and (4.3.60) into (4.3.58) gives.

d!^^(s,()
ij

A(s,^) c.(s,/) - c,(s,X)_J —K

g/(s.^) - g^(s,^)

AXs,^) c,(s,/)
-J

AiS,/) c.(s,i)
-J

g^(s,^) y..(s+^)
1]

g^(s,^)
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AXs,^) c^(s,/) A( s , .£) c^(s,()

gX(s,<) Vi^<s+<) g^Xs,^) 'kk'=*''

d..(s,^) - d. (s,i) - d. (s,f) + d (s,X)ij kj ik kk

d^^^(s,^) =
kj

A(s,f) c (s,/) - c,(s,/) -j -k

AXs,X) c.(s,X)-j
4-

AXs,/) -c^Xs,X)

-g^Xs,^) -g^(s,/)

-d^^(s,<) + d^^Xs,^) , j=l,...,m ; j^k

Similarly,

dj^^(s,/) = d^^Xs./) - d^^Xs./) , i=l,...,m ; i^k ;

and also

4“(s,i) AXs,/) -c^(s,/)

-g^Xs,^)

d^^^Xs,^)

Summarizing we have shown that.

dj^^(s,X) = d_j(s,^) - d..Xs,^) - “kj'^ + d^^Xs,/) ; i.j^^k

= dkj^Cs.i) - d.^Xs,<) ; j=k
i=l,...,m

— \k' = -'> - d , (s, i) K] ; i=k. j^k j=l,...,m

= “kk*®-'’ ; i=j=k

(4.3.61)
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Comparing (4.3.61) to (4.3.36), we see that the mapping of D(s,i) to 
D^^^(s,/) is identical to that of r(r) to r^^^(r) , given by (i) of 

lemma 4.17, which is the required result.
O

Finally we examine the likelihood ratio statistic M(<) as given by 
equation (2.2.16).

Lemma 4.22
.(k)With obvious notation, M (<) =M(f) , (=0,1,... k=l,...,m.

Proof
From (2.2.15) we have,

(k)_ ^(k);,(k) ,Xk);,(k)i

But from (4,3.50) we have that,

- yjZ(k) ;

i-1

(—0,1,. .

k=l,...,m.

(4.3.62)

(4.3.63)

Substituting into (4.3.63) gives.

Xk)SS" '(() = Z(k)SS(()Z'(k) , k=l,...,m ; (=0,1,

SS^^^(() SS(() k=l,...,m ; (=0,1.

and substituting this into (2.2.16) gives the required result.

(4.3.64)

(4.3.65)

□

We summarize the relationships established in this section for 
the parameters of the model and various identification statistics as 
follows. (We follow the same notation as above.)

i) = Z(k)v , = Z(k)G , = Z(k)u , (t=0,±l,...) —t — —t —t — —t — — —
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ii) Z/k)ZZ'(k) , (s.4) = Zdk)D(s,4)Z'(k) , (s,4=0,l,..).

c/^^(s) = Z(k)C(s)Z'(k) , r^^^(s) = Z(k)r(s)Z/(k) , (s=0,±l,..),

= Z(k)SS(/)Z'(k) , (4=0,1,...) .

iii) P^^^(s) = Y(k)P(s)Y'(k) , B/^^(s) = Y(k)R(s)Y'(k) , (s=0,±l,...) .

iv) = Zik)^ds)Z(k) , s/^^(s) = Z(k)SXs)ZXk) , (s=0,±l,..),

= ZTk)F(s)Z(k) , F^^^(s) = Z(k)F(s)ZXk) , (s=0,l,...),

Z(k)*.Z(k) , (i=l,. .,p), = Z(k)0,Z/k) , (j=0,..,q) ,-1 - -1-

V) = M(^) , 4=0,1,...

Where k=l,...,m.

In summary, we have seen that the ln^ARMA^(p,q) model is invariant 
to choice of reference variable. We have considered the mapping of 
various parameters from one model to another. Further the various 
identification criteria are invariant, for example

D(s,X) = 0 4^ = 0 , s > p, and ^ ^ q .

However the transformation of the sample autocorrelation and partial
autocorrelation functions, may result in slight variations of interpre
tation since the criteria for elements being zero is that they are 
"small". Usually "small" refers to being less that 2 standard devia- 
tions in modulus. In general, identification of an ARMA^(p,q) model is 
a subjective process, and since the exact identification criteria are 
invariant we would expect little or no variation in the choice of model.

4.4 An Example of Analysis on Two Compositional Time Series

Let us take two data sets and apply the four stages of Box-Jenkins 
modelling. The two data sets are both political opinion polls, one the 
GALLUP(c) series already described in example 4.18, the second is a 
similar one run by the National Opinion Poll (NOP). This consists of
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monthly survey results between September 1961 and August 1970 inclusive, 
and is again on voting intentions with four possible options

Conservative, Labour, Liberal, Other,
CON LAB LIB OTH

In both data sets we have CON^ + LAB^ + LIB^ OTH^ = 100 (%)
t=l,...,108. The variable OTH^ often took the value zero, consequently 
sending the corresponding value of v^ to ±co. This "zero value problem" 
was encountered by Aitchison(1982) and is a possible area for further 
research. Aitchison suggests setting zeros to an extremely low value, 
which may be determined by the number of decimal places to which the 
data is recorded. For example if the data is accurate to one decimal 
place any data less that 0.05 would have been rounded down to 0.00. In 
this case we might reset 0.0 to, for example 0.025, which lies halfway 
between the possible range of values for data recorded as zero. In 
example 4.18 the zeros were reset to 0.005. This method will be 
reasonable provided there are not too many zeros. For our data sets 
this was not the case. At this stage we wish to consider reasonable 
data, so that we examine instead the subcomposition with the variable 
OTH^ omitted. (We do examine the full data set in chapter 6.)

The variables we use are now CON^, LAB^ and LIB^, where now.
CONL LAB. LIB. 100,.j- • - iuu. Using both data sets in this S space we
compare three possible approaches to modelling them.

i) As three separate univariate time series ARMA,(p,q)

1. CON^ 2. LAB^ 3. LIB^ .

ii) As an ARMA.,(p,q) process by omitting one variable.

4. rcoN^it 5. 'CONt' 6 * rLAB^lt
LAB^ LIB LIB

iii) As an In ARMA„(p,q) process, i.e. as the following ARMA„(p,q) + z l
processes,
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Figure 4.23 Plot of ACF and PACF for GALLUP(C) Series,

ACFs
4

a) Conservative

PACFs

J j 1_

I I

b) Labour

c) Liberal 
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For n=i08 (the number of observations in the series),

+ denotes a value greater than 2//n, 

denotes a value less than 2/in, and 

. denotes a non-significant value based on the above criterion.

+ — * 4- — * 4- — « 4- — • 4- — • 4- — . 4- — • 4- — —
— 4- — 4* — — 4- — — 4" — — 4- — 4- “ 4- • _ 4- •

— 4- • — 4- , — 4- • — 4- . - 4- . “ 4- 4- — 4- 4* " 4-
Lag 1 2 3 4 5 6 7 8

+ + — _ 4- “ 4- — 4- — + . + . 4-
— 4- — + — 4* * — 4- + — 4~ 4- — 4* 4- 4" 4- — * 4-
+ — 4- + — 4" — * 4- — 4- — 4- — * 4- — * —

Lag 9 10 11 12 13 14 15 16

4- — . + . + . + __ 4- —
— 4- 4- — . 4- 4- • « 4- , — 4- . — 4- “ 4“
4- — + '. + . , + . « • * * • — * .

Lag 17 18 19 20 21 22 23 24

4- . + . + . +
• 4- 4- 4- 4-

Lcig 25 26 27 28

Figure 4.24 : Summary of Gross-correlations for the GALLUP(c) Poll Data

for the Variables CON, LAB and LIB.
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Key: -

+ denotes a value greater than 2 standard errors,

- denotes a value less than 2 standard errors, and 

. denotes a non-significant value base on the above criterion,

Series
1

(CON,LAB)' + . +
. +

(CON,LIB)' + . + .
. + . +

(LA^sLIB)' + . + . . .
. + . + . +

Lag 123456789 10

Figure 4.25 : Schematic Representation of the Partial Autocorrelation

Function for Series 4, 5, and 6 of the GALLUP(c) Poll Data.
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For key to the meaning of +,- and . see Figure 4.24.

a) Cross-correlations for series 7: (ln(CON/LIB)^, ln(LAB/LIB)^)'.

4- + 4 4 4 4 + + + + + + + + + + + + + + . + . +
+ + 4 4 4 4 + + + + . + . + . + . + . + . +

Lag 1 2 3 4 5 6 7 8 9 10 11 12

, +

13 14 15 16 17 18 19 20 21 22 23 24

b) Cross-correlations for series 8: (ln(CON/LAB)^, ln(LIB/LAB) t>'-

+ 4- 4 4 4 4 4 4 + + + + + + + . + . + . + . + .
4 4 4 4 4 4 4 4 + + + + + + + + + + + + + + + .

Lag 1 2 3 4 5 6 7 8 9 10 11 12

+ . 4 , + , 4 —

+ . + . + . + . + . + . 4 —

13 14 15 16 17 18 19 20 21 22 23 24

c) Cross -correlations for series 9: (ln(LAB/CON)^, ln(LIB/C0N)t^'

+ . + . + . + . + . + + + + + + + + 4 4 + + + +

. + . + . + , + . + . + . + . + . + — 4 — , — .
Lag 1 2 3 4 5 6 7 8 9 10 11 12

4 4 + + + + 4 4 . + . + . + , + . + . + • + — 4

— . - . — . — . — . — . . . * , , *

13 14 15 16 17 18 19 20 21 22 23 24

Figure 4.26 : Summary of the Autocorrelation Function for Series 7, 8,

and 9 of the GALLUP(c) Poll Data.
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For key to the meanings of +,- and . see Figure 4.25, and for details of 

series see Figure 4.26,

Series
1

7)

8)

9)

+ . 
. +

+ ,
. +

+ .

+ .
. +

. +

. +

+

M(^)

224.89 17.87 7.19 2.95 1.84 4.42 7.82 6.63 4.95 5.59 3.79 2.20

Lag 1 4 / 10 11 12

Figure 4.27 : Schematic representation of the Partial Autocorrelation

Function, and values of the M(X) statistic (Equation (2.2.16)), for

Series 7, 8, and 9 of the GALLUP(c) Poll Data.
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7. "inlCON/LIB)^^ 8. 'ln(CON/LAB) ' 9. "inlLAB/CON) '

ln(LAB/LIB) ln(LIB/LAB)^ ln(LIB/CON)^

We would expect models 4,5, and 6 to produce similar results because of 
the sum-constraint. For example model 5 could be rewritten as,

CON

lOO-CON -LAB
, that is as a linear transform of 4. 

From the previous section we expect models 7-9 to give identical 
results.

The nine models enable us to compare the ln^ARMA^(p,q) approach to 
that of a linear approach which ignores the linear constraint on the 
variables. It also serves to numerically enhance the theory of the 

previous section.
The models above were fitted using two statistical packages, the 

Economic and Statistical Package (ESP) for the univariate analysis, and 
the Wisconsin Multiple Time Series package (WMTS-1) for the multivariate 
analysis. Since the data represent the same phenomenon, we present only 
the results for the GALLUP poll at the identification stage, since the 
analogous results for the NOP data were virtually identical. Figures 
4.23 through to 4.27 give the ACF and PACF for all nine series, the 
univariate series are presented in graphical form, whilst the multi
variate series are in symbolic form using the M_Ltl I' " notation
described in chapter 2. Figure 4.23 contains all the univariate 
results. Figure 4.24 is a summary of the cross-correlation matrices for 
the series (CON,LAB,LIB)from which we can obtain the appropriate 
cross-correlations of our series in (ii) above by taking the required 
subset of these matrices. The diagonal elements correspond to the ACF 
of the univariate series given in Figure 4.23. It is necessary to 
compute the PACFs for the series in (ii) separately. This is for two 
reasons. Firstly it is not possible to compute the PACF for the tri
variate series because the sum-constraint will cause the matrix of
equation (2.2.10) to be singular. Consequently it can not be inverted. 
Secondly the PACF is by definition a parameter estimate under the 
assumption that the data follow an AR model. Extra variables alter the 
parameters, so that the sub-matrices would not correspond to the PACFs
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we require in any case. Note that consequently the diagonal elements of 
these PACFs given in Figure 4,25 do not correspond to the PACFs of 
Figure 4.23. Finally Figures 4.26 and 4.27 show the ACFs and PACFs for 
the three ln_^ARMA^(p,q) models. The row labelled M(X) in Figure 4.27 
refers to all three series, since as in lemma 4.22 this was the same 
across all three series 7-9.

Together with the PACF, WMTS-1 examines the residuals after 
fitting the AR(s) (s=0,l,,,.) model, (for which F(s) is the last 
parameter matrix.) The schematic version of the PACF of the residuals 
is produced. If these are indicative of a white-noise process (i.e. 
consisting almost entirely of "."s) then the AR(s) model to which they 
correspond is of sufficient order to represent the data. This was a 
further tool available at the identifications stage, although for 
brevity we do not include details here. However by way of illustration 
for the 4^^ series (CON,LAB),

F(l) (standardized) ^U37 -^.8^ , which symbolically is
0.37 10.74 . +

for which the pattern of the ACF for the residual series is.

Lag:- 1 2 3 4 5 6 7 8 9

This is not the required pattern for a white-noise process, but rather a 
MA2(1). Note this does not necessarily imply that we should fit an
ARMA2(1,1) model, rather that we need a higher order model than that of 
an AB^(l).

For all the nine series 1-9, the identification statistics give a 
similar picture. This is consolidatory to our theory, especially for 
the series 7-9, since it illustrates the invariance of the ln^ARMA^(p,q) 
model. It would appear that we should try fitting an AR^(2) or an 
ARMAj_(l,l) model, although we also tried an ARj^(l) and IMA^(1,1), where 
i=l for series 1-3, and i=2 for series 4-9. Tables 4.28-4.29 give a 
brief outline of a selection of the results.Figure 4.30 gives a summary 
of the residual cross-correlations for various models fitted to series 4 
and 7.
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Table 4.28 : Parameter Estimates for the Univariate Models.
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Table 4.28 ...continued.

t-test for Portmanteau
Data Var. Model Parameter Parameter Ests. Test
Set Estimates Value dot. Value dot.

r
CON

1
r * = 0.9500 31.63 105 r 11.5 9

8 = 0.3792 3.81 105
G Const = 2.1671 1.58 105

[ 24.8 21

A
L LAB ij) = 0.9470 30.53^"" 105 r 12.8 9
L ' 8 = 0.3160 3.14 105

[ 24.4U Const - 2.3500 1.64 105 21

P
LIB

1
* = 0.9739 42.66 105 r 4.1 9
8 = 0.4661 4.99 105

ARMA(1,1)<
Const = 0.3395 1.56 105

[ 6.2 21

CON
1

^ - 0.9594 45.94"^" 105 r 11.2 9
8 = 0.2826 2.93 105

[ 16.0 21Const = 1.7944 1.87 105

N
0 <

LAB
1

* = 0.9489 34.02"^" 105 r 15.3^ 9
8 = 0.2754 2.77 105

P Const - 2.3365 1.85 105 [ 22.4 21

LIB
1

* = 0.9780 44.94""" 105 r 14.7" 9
8 = 0.3208 33.14 105 [ 16.7 21Const = 0.2582 0.77 105

Key: 10%
5%
1%

Siginificance Level.
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Table 4.29 : Parameter Estimates for the Multivariate Models.

Data
Set

Variables in 
the model

Model 
i Parameter Estimates

5.

6.

4.

5.

6.

CON
LAB

CON'
LIB

LAB'
LIB

C^N'
LAB

CONl
LIB

LAB'
LIB

I

4. rcONl 
LAB

CON
LIB

LAB'
LIB

CON'
LAB

CON'
LIB

LAB'
LIB

4.

Const

Const

Const -

Const -

Const

Const

1.71 
-6.48

0.96
0.12

0.00
1.03'

^_76 ' (j) = 0.96""" 0.00
1.88"" -0.05 1.03

5.15
-2.79'

-0.12

3.45

0.91
0.05'

-0.12
1.08

ro.56
[o.21

0.38"'

-0.08

0.30
0.08

0.98
-0.01

0.03
0.94'

e = 0.23
0.14

0.18
0.50

-0.17
0.69"'

-0.22
A:

0.77

-0.09
0.37

'2.56' $ =
'0.95""" -0.03 " e =

^ 0.32"" 0.09
0.31 0.00 0.96"**^ ^0.09 0.28

'2.05" = 0.95""" 0.01 i= '0.23 ^X14
A

0.41 -0.00 0.96 0.09 0.37

1 
M 
A
2
( ^
1

1
)

0.57""" 0.17
-0.03 0.32

e =
, AAA
0.40 -0.17
-0.04 0.49

0 = "0.36""" 0.03
0.04 0.53

e = ^L23" -0.12
0.16 0.41

0 = 0.35""" 0,12
**

-0.09 0.29

e = '0.26"" -0.15
0.09 0.39
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Table 4.29 ...continued.

Data
Set

Variables in 
the model

Model 
i Parameter Estimates

rin(LAB/CON)l
ln(LIB/CON)

8
ln(CON/LAB)l
ln(LIB/LAB)

9
ln(CON/LIB)l
ln(LAB/LIB)

7
jn(LAB/CON)l
ln(LIB/CON)

8
rin(CON/LAB)'
ln(LIB/LAB)

9

Const

Const

Const

Const

Const

-0.04
0.05

0.04'
0.08

-0.041
-o.osj

' O.Oll 
-0.06]

-0.01

-0.07

0.95 -0.03
0.06 1.02"'

0.92
-0.16'

0.03
1.05'

1.08""" -0.06'
0.16 0.89

0.33
0.06

0.34
-0.4l'

0.75
0.41

***0.95 0.01

(j) =

0.00

0.95"'
-0.01

0.96

-0.01

0.96'

0.28
0.10

0.26
-0.20

0.02
0.70'

-0.02
0.68'

-0.05
0.27'

-0.02
0.35'

0.02
0.37'

'ln(CON/LIB)' Const = OLO^ - 0.00 " e = 0L45"" -0.10'
ln(LAB/LIB) 0.07^ (CLOI 0.94"""^ 0.20 0.20

7
ln(LAB/C0N)'|
ln(LIB/C0N)

8
ln(C0N/LAB)
ln(LIB/LAB)

9
ln(C0N/LIB)
ln(LAB/LIB)

7
ln(LAB/C0N)l
ln(LIB/C0N)

8
jn(CON/LAB)l
ln(LIB/LAB)

9
jn(C0N/LIB)l
ln(LAB/LIB)

1 
M 
A
2
( <
1

1
)

0.34
0.05

0.41
-0.20

b.6l"'
0.20

0.07
0.56"'

-0.07
0.49"'

-0.05 ^ 
0.29

0.31 -0.02
0.11 0.37

0.29 0.03
-0.20 0.39**'

0.47
0.19

-0.11

0.20"'
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1. Residuals from AR.(2) fitted to a) series 4.(CON LAB)' and b) series
9. (ln(C0N/LIB) ln(LAB/LIB))'.

a) _»* •• •• •• •* •• • • * # * **
1 2 3 4 5 6 7 8 9 10 11 12

• • •* •• *• •* •• •• •* •• •• ••
• • # * «« •• •• # » * * •• •• • * 
13 14 15 16 17 18 19 20 21 22 23 24

Figure 4,30 : Summary of Cross-correlation Matrices for Residual Series.

b) ' '
12 3 4 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

1. Residuals of ARMA^(1,1) a) series 4, b) series 9.

a)
1 2 3 4 5 6 7 8 9 10 11 12

• • •• •• •« •• «* •• •• «• •«
• • •• •• •• •• •• •• •• 
13 14 15 16 17 18 19 20 21 22 23 24

b)
1 2 3 4 5 6 7 8 9 10 11 12

• • * » * * * * •• •• * * * * •• •• •«
• « • * •• •• * * * * •• «« •• * * * *
13 14 15 16 17 18 19 20 21 22 23 24

1.Residuals of IMA^d,!) a) series 4. b) series 9.

a;
1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24
a ^ ^ AA m ^ AA ^ • # * * *b) • * •• * * •• *♦ •• 

1 2 3 4 5 6 7 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24
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As expected the AR^(l) (1=1,2) models were insufficient to 
describe the data. For example, in table 4.28, the portmanteau 
statistic was often significant, although for the LIB series of the 
GALLUP(c) poll, the fit seems reasonably good. For the IMA(1,1) and 
ARMA(1,1) models the portmanteau statistic is vastly reduced across all 
the series including the afore mentioned LIB series. This is so even 
accounting for degrees of freedom, as can be seen by the reduced number 
of significant results. For these univariate series and for the 
bivariate series there seems to be little difference between the 
IMA^(1,1) and the ARMA^(1,1) models, all the estimates of $ in the 
ARMAj^d,!) are close to (i=l,2). The AR^(2) process was also found 
to give similarly good results. Of all these three models, the 
ARMA(1,1) model seems to do the best, although its improvement over the 
other two models is often minimal. For example for series 4 in figure 
4.30, the AR2(2) and IMA^ll.l) model have respectively 10 and 5 
significant residual cross-correlations, whilst the ARMA2(1,1) model has 
only 3.

Our data sets have also been examined by Scott et al (1977), who 
based on the structure of the survey from which the data comes, in 
particular the overlapping nature of the samples, produce a strong 
intuitive argument for using the mixed ARMA(1,1) model. Consequently we 
select this model.

Table 4.31 gives the forecasts one to twenty steps ahead by each 
method. The univariate forecasts have been normalized so that their sum 
is 100. The forecast of the omitted variable in series 4. to 6. is 
obtained as the difference from 100 of the two included variables. 
Finally for the transformed series, we have taken the inverse (i.e.

of the forecasts, however as described in section 2.5 this will 
not necessarily give us the minimum mean square error forecast. This 
problem is addressed in chapter 5. We note also that we could have 
normalized the univariate forecasts at each step, and used the normal
ized forecasts to produce the next-step ahead forecast. However ESP or 
indeed any similar computer package does not easily facilitate this, and 
although a program in e.g. FORTRAN would easily accomplish this, it is 
evident in our current example that this would add very little to the 
results.

If we examine the forecasts themselves we see that the one-step 
ahead forecasts via each method are very similar, but the similarity
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Table 4.31 (a) : GALLUP(c) Forecasts

Lag
1

10

12

13

1 4

15

16

17

19

Reference Variable of Omitted Variable of Combined Actual
In ARMAgd.l) ARMA (1,1) Univariate (where

Forecast known)
Variable

Con Lab. Lib. Con. Lab. Lib.
CON 36.1 41 36.198 36.211 36.225 36.226 2&.116 36.932

LAO 40 .0 43 40.119 40.167 39.827 39.784 39,985 4 2 ,3 6 8

LIB 23.816 23;.683 234621 23.949 23 ,991) 23'.f99 2 fj, o 71 U

CON 36.268 36.348 36 .366 36.546 36:549 36.401 37.155

LAD 38.838 30.944 39.015 38.599 38.543 38-, a 06 4 2'.3 7 4

LIO 24.894 24.708 244618 244854 24.909 24,79 20.471

CON 36.364 36.470 36.494 36.857 36 .861 36,674 37 .378
LAB 37.664 37L803 374898 37.372 37^:99 37.626 ■ 42(,582

LIB 25.972 25.727 25.608 25.771 25.841 25,700 2 0.240

CON 36 .431 36'.565 36.595 37.157 37:162 36.936 37,591

LAB 36.521 36.696 364815 36.142 36.052 36•445 42.391
LIB 27.048 26.739 26.589 26.701 26.787 26.619 2 0.01b

CON 36.471 36.635 366673 37.447 371.453 371'. 186 37t795
LAB 35.410 35'.625 35.768 34.908 34:800 35.261 4 2‘.401
LIB 28.119 27.741 27.559 27.645 2 7-7 48 27.553 1 9.804

CON 36.485 36.602 364728 37.726 374734 37.426 37:99(1
LAB 34 .332 34.588 34.757 33.670 33.541 34.072 42.413

LIB 29.183 28.731 284515 28.604 28.725 28,502 19:596

CON 36.474 364707 36.763 37.997 38.006 37-656 38.176

LAB 33.287 33.586 33.780 32.426 32:275 32.878 4 24 2 5

LIB 30.239 29.706 294457 29.578 29.719 2 9 ■, 4 6 7 19.399

CON 36 .4 41 36.713 36.779 38.258 38.269 37.876 38.354
LA H 32 .2 75 32..620 324839 31.174 314001 31.676 42—459

LIB 31 .284 3C.667 3U.383 30.569 30.731 30,448 19.207

CON 36.388 36.701 36.777 38.511 38.524 38.C86 38:524
LAP 31:296 31L688 314932 294913 29.715 30i4 66 42.454
LIH 32.316 31.610 31.291 31.577 314761 31.448 19.022

CON 36.315 36.673 56.760 38.755 38.770 38,288 38-688
LAB 30.3 50 304791 314060 28.642 28.419 29.246 4 2 -4 6 9
LIB 33 .33 5 32.536 32.180 32.603 32:811 32 o466 13.845

CON 36.224 364630 36.729 38.992 39,009 33.481 38-844 36.5
LAB 29.437 29.929 30.221 27.360 27.109 28,015 42 .485 38.5
LIB 34.339 33:. 441 334050 33.649 53.883 33,. 5U4 10,671 15.0
CON 36.1 1 8 364574 36.685 39.221 39.240 38.665 38.994 34.0
LAB 28.556 29.099 29.415 26.064 25.784 26,772 42,.502 39.0
LIP 35.325 34.327 331.900 34.714 3 41.9 75 34.563 18.504 17.0
CON 35.998 3 O', 5 07 56 .630 39:444 39:465 38.842 39.138 35.5
LAO 27.708 28.303 28.642 24.755 , 24.444 25.515 42-519 51.0
Lin 36.2 95 3 5?. 191 344728 35 .801 36.091 35.644 18.343 13.5
CON 35 .864 36.429 36.566 39.659 39:683 39.C11 39 .275 46.5
LAB 26 .891 27.539 274900 23.431 23.087 ' 24.242 42.538 42.0
LIB 37.245 36.032 35.534 36.910 37.231 36.747 18.187 11.5
CON 35.720 364342 36.493 39.868 39.895 39.172 39-408 43.0
LAD 26.104 2648U6 274190 22.089 21.711 22-'.954 42-556 45.5
Lie 33.176 36.851 36.318 38.043 38.395 37,874 18.036 11.5
CON 35.565 36.243 364412 40.071 40.100 39-; 3 26 39-^34 44.0
LAB 25.348 26.105 261.509 20.730 20.315 21 .648 42:575 46.0
LIB 39.087 37.647 37.079 39.199 39.585 39^026 17-891 10.0
CON 35.401 364148 364326 40.268 40.3UO 39^474 39:656 47.5
LAP 24^622 25.433 254857 19.352 18.898 20.322 42.594 41.0
LIB 39.9 77 38.420 37h817 40.380 40.302 40.204 17-750 11.5
CON 35,.23 1 3 6,. 042 364235 40.460 40:495 39'«615 39.773
LAO 23.924 24.789 25.233 17.953 17.456 18.977 42-614
LIB 40,.845 394168 384532 41.588 42.048 41.408 17.613

CON 35.054 354933 36.139 40.646 40.684 39-750 39.885
LAP 23 .2 55 24.175 24.637 16.532 15.994 17.610 42 .634
LIB 41.692 39.893 394224 42.822 4 3 .3 22 42.641 17.481

CON 34.871 35.820 36.041 40.827 40.869 39.378 39.993
LAB 22u613 234587 244067 15.088 14.504 16-.219 42-654
LIP 42.516 40.593 39.892 44.085 44.627 43 - 903 17:353
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Table 4.31 (b) : NOP Forecasts
Reference Varalble of 
in ARMA (1,1)

Omitted Variable of Combined
Univariate
Forecast

(where
known)

Lag
1

10

Con.
CON 48.639 
lab 44.362
LI 8 6.998

CON 48.607
LAB 44 .3 24 Lie 7.069

CON 434574
lab 44 .2 88 
LIB 7.138

CON 48,539
LAP 44.256
LIB 7.205

CON 48.5 03
lab 44 .228
LIB 7.269

CON 48.467Lab 44 .202 
LIB 7.3 31

CON 48.430
LAB 44.179
LIS 7.392

CON 48.392
LAB 44..158
LIB 7.450

CON 4843 54 
LAB 44.140
LIB 7.506

CON 48.316
LAH 44.124
LIB 74561

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

CONLAB
LIB
CON
LAB
Lie
CON
LAB
LIB
CON
LAS
LIB
CON
LAB
LIB
CON
LAB
LIB
CON
LAB
LIB
CON
LAB
LIB
COM
LAB
LIB
CON
LAB
LIB

48.277
44.109

7.613

48.739 
44.097 

7.664

48 .200 
44.087 
7.713

48.162
44.077
7.761

48.124
44.070
7.8C7

484085 
44.064 
7,851

48.048
44.059 

7,.893

48.010
44,055
7.935

47 .9 73
44.052
7.975

47.937
44.050
8.013

Lab.
48.642
44.359

6,999

48'.612
44^318

7.070

487580
44.281

7 2139

487548
44.247

77205

48.514
44.217

7.27U

48.479447189
77332

48.443
447165

7.392

48.406
44,143

7.451

48.370
44.123
7.507

48.33244UW
7V562

48r.295
44.091

77614-

43.257
44.078

7.665

48.219
44 o 066 
7.714

48.182
441.057
7.762

487144
44.049

71.807

487107
44.042

77852

481,069 
4 41.036 

7., 894

48.032
447032

7.936

47.996
447029
7,975

4 71.960
44.027
8.014

Lib.
487646
447363

6.991

487618
447325

7.057

487588
44.290

77122

. 487557
44.25977184
48.524 
447231 

77245

48.491
447205

7,304

48.458
447182
7.360

48742344^161
7.415

48.38844/^3
77468

487353
44.127

77520

48.317
44.113

77570

48.282
447100
7.618

48.246
44.090
7.665

4Sii210
447080
7.710

487174
44.072

77753

487-139
44,066

77795

48.103
44.060

71.836

48.068
447056

7,876

487033
44^053

7.914

477999
44.051

77951

48.626 48 .675 48.633 47:383
44.337 44.339 44.332 45,408
7.037 7.036 7.035 7,209

48.571 48.570 484583 46.469 46.2
44.297 44.299 (4.286 46.102 47.0
7.133 7.131 7,-; 131 774 2 9 6.8

48.516 437515 487533 457564
44.259 44.263 44.245 46.787

7,225 7,222 77223 7',6 5 0

48.462 48.460 (8.482 44.667
44.224 44.230 44.206 477464

7.314 7.310 7,312 7.869

48.408 48.406 48.432 43.781 46,8441.192 447199 44.. 171 484131 44.8
7.400 7.395 7.397 8.088 8. 4

48.354 48.352 48.382 42.905
44.163 44,1 71 44,138 487789

7.483 7.477 7.480 8.306

48.301
44.137

7.562

48.249
44.112
7.639

48.299
44,1 46

7.555

48.247
44.122

77631

43.333
44.109
7.559

48.283
44.081
77635

427041
49.43 7 
8.522

417188 
50.075 

8773 7

40.2 
50. 8 
9.0

42.8
49.8 
7.4

48.198 48.195 48.235 4f),.3 4 7
44.090 44.1 01 44.057 50.702

7.712 7.704 7.7 09 81.9 5 0

48.147 46.144 48.186 39,519 39.0
44.070 44,082 44.034 51,319 53.0
7.783 7,774 7,780 9,162 8.0

48.097 48.094 48.138 38:705 38.3
44.052 44,064 44.014 51,923 54.0
7.852 70842 7.848 9.372 7.7

48.047 48:045 48.091 37.904
44.035 44.048 43.995 52.517
7.918 7.907 7.914 9.580

47.999 47:996 48,044 37:116 41.8
44.020 44.034 43.979 53.098 50.2

7.981 7.970 7.977 9.785 8- 0
47,951 47,948 47.998 36:34344.007 44.021 431.964 53.668
8.042 8.030 8,038 (U989

47.904 4 7,9 01 47.953 35:585 39.2
43.995 44.010 43 .951 54.225 52.3
8.101 8.089 8.096 10:190 8.5

47.858 47.855 47.908 34 .842
43.985 44.000 43,,939 54.770
8.158 8.145 8.153 10 .388

47.813 47.810 47.065 34.113 43.2
437975 43.991 43,928 55:303 49.9

8.212 8/^9 8.207 10.584 6.9
47.768 47.766 47.821 33 .400
43.967 43.983 43,919 55:823

8.265 8.251 8.260 10,777

47,725 47.723 47.779 32.702 42.4
43.960 43.9 77 43.911 56.331 49.5

8.315 8:301 8.310 10.967 8. 1

47.682 47.680 47.737 32,019 45.2
43.954 43.971 43.904 56.826 47.2

8.364 8^^9 8,3 59 11,155 7.6
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decreases the further ahead we predict. The forecasts obtained from 
series 4. to 6. are alike, as are those for the series 7. to 9., 
although this is more so for the former series than the latter. The 
difference within each type of the multivariate methods is due to 
rounding errors in the estimation, forecasting etc. of the models. Some 
of the extraneous difference between the series based on the 
ln^ARMA^(p,q) model, is due to the additional rounding error in the a^ 
transformation and its inverse.

Where known the actual values have been written in. Comparing 
these to the forecasts it seems that especially for the GALLUP(c) series 
the univariate forecasts do the best. For the NOP data the multivariate 
methods give the better results at lag 5 and at lag 20. At lag 20 the 
univariate forecast preserves the correct status within the data (i.e. 
LAB > CON > LIB), but the multivariate forecasts are numerically closer. 
The fact that the univariate method does so well should not disappoint 
us too much as it has often been found that multivariate ARMA models 
perform badly. Further the WMTS-1 package is an early prototype of a 
multiple time series package which proved to have many bugs. The 
multivariate estimates themselves have an almost diagonal structure to 
them indicating that the univariate model may be more appropriate to 
these data. In order to come to a real understanding of the above 
techniques many more data sets need to be similarly analyzed. It may be 
possible to improve on the ln_^ARMA^(p,q) forecasts by developing a less 
crude way of taking the inverse of the v^ series.

The two multivariate methods give similar results. This is 
indicative of the fact that the logistic transformation is nearly linear 
for the range of values taken by our data sets. This fact has kept the
linear forecasts within the correct range (c.f. example 3.16). It would
perhaps be useful to work with some series that have greater variation, 
and/or have values closer to 0.0 or 1.0.

Although the linear methods used here do not produce forecasts 
outside the range they may still give a confidence interval that does 
fall outside. A meaningful confidence interval for the forecasts may be
easily developed within the ln_^ARMA^(p,q) class of model. This is also
developed in the next chapter.

What this section has perhaps confirmed is that the ln+ARMA^(p,q) 
is invariant to the choice of reference variable, apart from rounding 
error. It also serves to point out the need of the discussion in the

130



next chapter, and provides an example of the possible use of an 
ln^ARMA^(p,q) process.

To see the invariance property exhibited on the parameters as well 
as the forecasts, consider the ARMA2(l,i) model fitted to series 7. for 
the GALLUP(c) data. If we consider Z(2) i.e.

2(2) 1 -1

0 -1

and use this to map the estimates for model 7. to those using LIB as 
the reference variable, i.e. we map,

jn(LAB/CON)

ln(LIB/CON)
to

in(LAB/LIB)

ln(CON/LIB)

then we have series 9. but with the first and second variable 
interchanged. Thus for example.

Z(2)XC0NST '1 -r ' -0.040 ' ' -0.085 '
o —i 0.045 -0.045 and rewriting this as

-0.045
-0.085 so that the variables are as in series 9. we have a

second estimate of CONST for series 9. We may compare this to the 
estimates in table 4.29 and note that they are reasonably close. 
Similarly,

Z(2)e/^°^^Z(2) ^ Q(LIB)

1.083 -0.059
0.163 0.887

0.761 -0.058
0.424 0.269

Z(1)C0NST(CON) ^ CONST(LIB) 0.040
0.085

Z(i)$(^^^)z(l) ^ * (CON) 0.946 -0.027
0.058 1.022

131



Again the estimates of CONST^^^^^ and compare

favourably to the estimates in table 4.29. These represent only a 
subsection of the possible Z(k) transformations that we could perform on 
the estimates. However they are more than sufficient to demonstrate the 
theory. We will briefly examine these results at the end of chapter 5, 
when we have examined the forecasting problem.

4.5 Summary

In this chapter we have introduced two new classes of model, the 
ln^ARMA_(p,q) and the ln^ARMA^{p,q) model and have indicated how similar 
models might be developed. We have investigated the properties of these 
models. A Taylor series expansion of the ln^ARMA^(p,q) model has been 
developed, and this may be easily repeated for the ln^ARMA^(p,q) model. 
An investigation of the ln^ARMA^(p,q) with regard to the choice of 
reference variable suggests that the basic structure of the model is 
invariant to this choice. It also appears that the identification 
statistics are robust, as illustrated by the example of the last 
section. Section 4.4 also gives evidence that estimation and diagnostic 
checks are invariant, which confirms the theory outlined in this 
chapter. What remains is a more detailed look at the forecasting 
problem, and this will be the subject of the next chapter.

Finally we note that when using the ln^ARMA_(p,q) model, it is not 
so straight forward to examine what happens under a permutation of the 
u^^'s. No equivalent of the Z{k) matrix exists. This model in fact 
requires not only the choice of reference variable, but of the exact 
order of all the variables. However the main purpose of the 
ln^ARMA^(p,q) model will be seen later in chapter 6, and it is to 
investigate concepts such as neutrality (definition 3.28) for which the 
ordering of the u^^'s is vital in any case.
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"Who roCd of from Beginning 50 rfor we couCd know, or
Beforehand so that we couCd say, 'He was right ? "

Isaiah 41:26

CHAPTER 5

Distributional Properties of Logistic Time Series Models
in Relation to Forecasting

5.Q Introduction

In chapter 2 and section 2.5 the ARMA^^p,q) model was discussed with
special reference to forecasting. We recall in particular that the MMSE 
forecast is the mean of Z-t+i (say) conditional on Z^,Z^_p... . When it 
is not {Z^} itself that follows an ARMA process, but rather a function
of it, = f(Z^) (say), then the MMSE forecast is.

Z^(/) = E[f (5.0.1)

with variance Var[Z^(^)] = Var[f (5.0.2)

These expressions may be difficult to compute for non-linear functions 
even if the ARMA process for y is known. An example was given in 2.5 
where f was the log function. There we wished to produce forecasts of a
series for which InX^. It was shown that the MMSE forecast of

. is then the mean of the log-normal distribution A (W^(^),E ,,.)-t+^ m -t -e (^)
as in (2.5.15) and (2.5.16).

In chapter 4 we introduced a model based on the function. For 
u^ € S™ and = a^(u^) we have that.

(5.0.3)

and recalling from definition 3.21 we have.

(5.0.4)

133



now the innovation series of {v }. Thus the MMSE forecast of is 
given by the mean of the logistic-normal distribution with parameters 
v^(l) and I , ... Similarly if we had modeled utvia the In ARMA (p,q)

the MMSE forecast of u_ would be the mean of the multiplicative-t
logistic-normal (definiton 3.22) M (v (i),E .In both cases it ism -t -e (f)
clear that we have a problem. Aitchison and Shen(1980) note that
although the moments of the L (u,E) distribution do exist, they cannotm ^ —
be readily evaluated. Although no such reference exists for the M 
distribution, at least not to our knowledge, a similar result about its 
moments is expected. (Recall that for m=l both distributions are the 
same in any case.) Thus we see that we require a detailed investigation 
of the logistic-normal distributions to investigate the estimation of 
means and variances. We may also consider other location parameters 
such as the mode, or in the univariate case the median. Finally we need 
to examine how to use interval predictors.

i.e. a logistic-normal with parameters v^(f) and ^where {e^} is

5.1 Some Basic Properties of the Logistic-Normal Distributions

Although the logistic-normal does appear in earlier literature,
Aitchison and Shen(1980) seem to h<^^ made the first concentrated 
effort to give it a clear identity. Aitchison(1982) also discusses
further properties, the first of these is related to the idea of
a marginal distribution for the L (u,I) distribution.m

5.5.1 "Marginal" Distribution Property

In the discussion following definitions 3.21 and 3.22 we showed

that if u G & , V = a (u), v - N (u,Z) and v = Gv , where G is cxm so
that V ~ N (Gu^GEG'), then u is L (u,I) and u = a ^(v ) ~ L (Gp,GEG") 

— m ---- — m'^— — m — m —^ ---
Expanding v = Gv we have.

m
E

j = l
'ij^j ; i=l,...,c ; (5.1.1)

and from definition 3.17,

134



exp V.

1 + X exp V
j = l

exp
m

1 + Xexp 
k=l

tn

exp
m u, 1 ™ r "i 1
X g.. In J IT —^

Lj=i u , m+P j = l ^ m+y

"ij

c m r T cm <
+ X exp

k=l ^ m+ V
1 + X n

k=l j=l

r U ,

m+1

'kj

i=i,...,c. (5.1.2)

In particular let

11 1 1

^A,c+i =

ij

so that G = 1 0 
0 1

0 1

i> i=l, . . . ,c ,

otherwise,

. — 1 0

. -1 0

1 -1 0

c <m, (5.1.3)

(5.1.4)

Substituting these values of G into (5.1.2) we obtain,

UL = C(U^,...U^^^) .

Thus we have the following lemma.

(5.1.5)

Lemma 5.I
If u ^ L (u.X) then C(u,.... u ,i) ^ L_(Gu^GXG') where G is given— m 1 c+1 c —^ --- —

by (5.1.3).

We note that this lemma enables us to find the distribution of a 
subcomposition of u, but not a subset of u. Thus it is not strictly 
speaking a marginal distribution. In order to find such a marginal 
distribution we need to integrate out some of the u's. This produces 
untractable expressions and so we have not developed it here.
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Clearly we may permute the rows of G to form a subcomposition with 
any combination of the u's. This also follows from the fact that the 
distribution is invariant to a permutation of the u's. The structure of 
the ML distribution, however, depends on the order of the u's. Its 
equivalent to lemma 5.1 is now given below.

Lemma 5.2
If u € is such that u ~ M (jj,!), then

and

(5.1.6)

(5.1.7)

where , 1^9 come from the partition of and Z:

^mxl - ^1
cxl ^

Z-mxm [hi T
cxc

^d2 .
cx(m-c)

^2
(m-c)xl

T̂^1, , 1 
(m-c)xc^ (m-c)x(m-c)

for c=l....,m-l (5.1.8)

Proof
Let V = m (u) so that v ~ N (u.Z) (definition 3.22).m - — m ^ —

Then Gv = v ^ N (Gu.GlG') as in the L case, where G is dxm— — m --- m “■

m
and v! = Zg.,v. , i=l,.

^ j=l ^
,d. (5.1.9)

Now T
^i m ^(v^) 

m —

u.
Texp V

tn (1 + exp V ) 
k=l

i=l,...,d

m
n exp g..V 

j=l ^ ^

i r m
IT

k=l
1 + n exp g^.v 

j=l ^

, from (5.1.9) ;
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m
n

j=i

u . J

1 -

^ij

1
n

k=l
1 +

m
n

j=i 1 -
j
l u

^kj
(5.1.10)

Now consider G — [ I 10 ] ,— —c^cx^

i.e. e.. = 1 i=l,—,c ;
(5.1.11)

"ij otherwise, i=l,...,c ; j=l.... m.

Substituting (5.1.11) into (5.1,10) we have.

T u. 1
1
n

k=l

u. 1

1 - Z u
^=1

1 - Z u

u. 1

1 - Z u
;(=! i

1
n

k=l

k-1
1 - Z u

^=1 ^
k
Z u

/=! i

u.1 (1—u.) (1-u^-u^) . . « (1-u^-

1"' 1 (l-u.) (l-u^-u^) , (1—u,— ... —u. ,) 1 1— 1

u, ; i=l,...,c ; (5.1.12)

137



and = 1 I J 
j=i ^ 1 - Eu.

j = l '

Also ^ = u, and GEG' = E,, from which we obtain (5.1.6).—c -^1 --- —11

For (5.1.7) we repeat the procedure, but now put G = [0|I ] . ,

... "m+1^ '

that is
"ij

i=l,...,c ; j=i+c ;

0 otherwise, i=l,...,c ; j=l,...,m.

Again substituting into (5.1.10) gives.

(5.1.13)

u.

1 + C
1 - E u

<=1 '

f=l

C+l
C + 1

1 - E u

"-“r '"c.i’

1 (1-u, -"c'

. (1-u,

(1-u,

-U . )c+l

c+i-1

i+c
1-u — ... — u 1 c

(after cancelling)

^+c
"c+1^ "c+2^

m-c
1 - E u i=l ^

u , i=l,...,c
m+1

m+1
"c+1^ "c+2^ ^ "m+1

> (5.1.14)

i= m+l-c

Ti.e. u = C(u^_^^ , . .. ,u^^, ) and G^ = Mo 5 GEG' = from which wec+l'"' 'm+1
may derive (5.1.7). □
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It is upon the above result that Aitchison(1981a) basgs his test 
of neutrality, although it is not specifically expressed in the form of 
lemma 5.2. It can be seen that whilst (5,1.7) is an identical expres
sion to that for the L distribution, (5.1.6) offers us an alternative 
form of a marginal distribution. Here we have in fact extracted 
u,,...,Ug as is required of a marginal distribution, but we have also 
included a fill-up-value which is the sum of the remaining u's: u^^^ +

+ um+1 Clearly if we limit the marginal distribution to be one
which describes data on the simplex, then any form of subset of the u's 
must be formed in such a way as to result in a composition. Hence we 
must obtain the distribution of either a subcomposition as in lemma 5.1 
and equation (5.1.7), or as in (5.1.6).

5.1.2 "Conditional" Distribution Property
We first quote the result of Aitchison and Shen(1980) :-

Lemma 5.3
If u ~ L (u,E) then,— m ^ —

C(u^,...,u^^^)|C(u^^^....

— 1 ,^ ' ^^il ' ^i2-22-21^J

Where, as before, Z^., I22'^i2 from (5.1.8) the c,m-c

partition of u and E (but for the L distribution), and wherem

c+i , i=l,,..,m-c.
‘m+1

Proof
The result follows from Aitchison and Shen(1980) and from standard 

multivariate-normal theory. ^

Lemma 5.4
If u ^ M (u,E)— m — ' c-t f

her;

(u,,...u ,u ,)1 c c+1 ^^"c+l'"c+2.... ^m+1^

"c^^i ^ -12^^2^-2 ' ^^il" ^i2-22^^1^ ^ (5.1.15)

139



....

^ ^ -22 -21^^1^^2^ (5.1.16)

where -1 " '

^2 ' Vc<a2> = Vc<‘='%>> •

and (u^ I u )' is the c, m-c partition of u; with jj and Z parti

tioned as in (5.1.8).

Proof
Again this result follows directly from standard multivariate 

normal distribution theory and lemma 5.2.

Some of these distributional properties will prove useful in 
chapter 6, where various parameter restrictions on the above distribu
tions may be related to differing forms of independence. The results of 
section 5.1.1 and 5.1.2 also serve to demonstrate how we may simply 
understand the logistic-normal distribution in terms of lower dimen
sions. This may prove useful in the next section, when some of the 
results we require are easily formulated for the univariate case.

5.2 Location Parameteirs

There appears to be little or no work on the location parameters
of the and distributions, mainly because of the intractability of 
the results. However the univariate distribution is relatively well 
investigated, probably due to its early use and its relative simplicity. 
For example JohnsonC1949) discusses its properties, where in his case, 
it is called the Sg distribution. (See also Johnson and Kotz(1970) vol. 
2). We note that the density function L^Cp^cs^) is given by:-

P^(u|p,d^) = --- L

2ir<3‘

exp^--- (5.2.1)
u(l-u) [ 2a

0 < u < 1 .

Also V = ~ N(p,d^) , (5.2.2)

140



^ z = ^ N(0,1) (5.2.3)

Now Johnson's S distribution (standing for "bounded system") is written

as y + Sin u
1-u where z ^ N(0,1). (5.2.4)

Comparing this to (5.2.3) it is simply the L^(-y/8 , 1/S ) distribution. 
We note that the L distribution is equivalent to the distribution, 
so that the study of the univariate (M^) provides a stepping stone to 
both multivariate distributions. We shall now proceed with a study of 
the location parameters, and begin with the median.

5.2.1 The Median
For the univariate distribution (5.2.1) the median is

(5.2.5)
1 + e

The concept of a median is, however, difficult to extend to multivariate 
distributions. For example, Haldane(1948) describes two possible 
definitions which he terms the arithmetic median and the geometric 
median. An idea of ordering multivariate data is discussed by Barnett- 
(1976) and further definitions of a multivariate median are based on 
this. (See also Green and Silverman!1979), Scleult et al's (1976) 
discussion of Barnett's (1976) paper and Sibson (1984)). Some of the 
definitions above give different results under rotation and/or change of 
scale, whilst others refer more readily to multivariate samples. Thus 
we avoid the median, since it has such an ambiguous generalization to 
the multivariate case.

However, we note that (5.2.5) is simply the inverse of the 
logistic transformation. Thus it does perhaps serve to justify the 
possible use of the inverse transformation and as point
predictors even in the multivariate case. We hope to compare these with
the mode and mean.

5.2.2 The Mode
Again we will start with the univariate distribution; taking logs 

and differentiating (5.2.1) with respect to u gives us.

du L
2
u 1-u In u

1-u
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so that the modal value must satisfy

2 22<5 U - <5 + P In u
1—u (5.2.6)

Johnson!1949) then considers (using our notation) the equations,

(5.2.7)2 22a u - <} + p

and In1 —u (5.2.8)

A plot of the line (5.2.7) and the curve (5.2.8) is given in figure 5.5,
The intersecion between the curve and the line represent solutions to 
(5.2.6). It is easily seen that there are some positions of the line 
for which there are 3 solutions, these represent two modal values and 
one minimum.

Figure 5.5 Plot of y 
2of a and q.

In-T— and of y 1-u
9 92a“u - a“+ q for various values
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Consider the tangents to the curve which are parallel to the line. The
2

gradient of the line is simply 2<J and the gradient of the tangent is 
given by.

d
du In 1 —u

1
u{1-u)

Thus the tangent is parallel to the line when,

2 12d u(1-u) (5.2.9)

16 ± % 1 - 2/d

2 2There are then three possible cases d < 2, d

(5.2.10)

2, and d^ > 2. For

a real solution to (5.2.9) d ) 2, and for three distinct solutions (i.e 
2two modes) d >2. The other requirement for three intersection.;, is that 

the line must be "close" to the u-axis. Johnson(1949) demonstrated that 
is bi-modal when

> 2 (5.2.11)

and < d 1-2/d' 2 tanh 1-2/d 2' (5.2.12)

The equation (5.2.12) represents an exact definition of how close the
line must be.

2
If d >2 we may compute the limiting value of p for various 

2choices of d . Johnson)1949) does this in terms of his parameters. For 
our parameters we have the following table.

max 1p1 0.00 0.16 0.42 0.73 1.07 1.43 1.81 2.M 2.61 3.02 3.44
d' 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

Table 5.6 : Limiting values for which L^(M^) will be bi-modal.

We also note that if p = 0 L is symmetrical otherwise it is skewed.
To find the actual values we must solve (5.2.6) numerically. 

However from the above we may determine whether the distribuion is 
uni-modal. It would be useful to obtain a similar result for our 
multivariate distributions. For the L (^,Z) distribution we need to 
maximize,
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m+1 -1
f(u) = 12^14 ^ n u. exp<

j=i ^ j
In-

m+1
- M

u
In----  -um+1

-M> , U € ^

(5.2.13)

Taking logs and differentiating w.r.t. u we have:

9u ln(f(u)) 1 1
"l' "2 um

+ e
m+1

DZ
u

In----  - Mum+1

= 0 U G —m (5.2.14)

where D = dg 1_ 
l’ "2

1 I . U 1
u I -mu, ml m+1

Let 1 1 1
um+1 "m+1

L 1 1
u . um+1 m

then we need

to find the solution of.

f _ DZ'^Iln-:^ 
-m — I u M

m+1
= 0 (5.2.15)

We recall from chapter 4 and corollary 4.11 that the matrix F was 
defined to be (equation (4.2.31)),

F = dg
m

—:— u
^m+l

-I
For which F is given by (4.2.50). Thus noting that D is of the same 
form we have.

u (1-u ) 
""l"2

-"l"m

"2"l
u^(l-u^)

-"2"m

-"m"l

u (1-u )m m

(5.2.16)
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1
and = m+1

n u.
i=i ^

(5.2.17)

Thus we may rewrite (5.2.15) as ,

In
u—m
m+1

From (5.2.16),

ID f + u . — —m (5.2.18)

u. r m
D— —m

1
u ,1 m+1

1 - I u.
L j=i

— 1 - mu i 1, *. . . m ,

(5.2.19)
. th= (m+Du^ - 1 , where [—] denotes the i row. 

Thus substituting into (5.2.18) gives.

In
u-nm
m+1

I{(m+l)u - e } + u- - —m (5.2.19)

which for m=l gives exactly (5.2.6) as before. We may then examine,

(5.2.20)y = (m+l)Iu - le + u , _ — —in ^
and

In
u-m
m+1

(5.2.21)

to see under what circumstances the multivariate distribution is 
uni-modal. It is much more complicated than in the univariate case. 
The equivalent concept to the tangent of the curve being parallel to 
the line in figure 5.5 is now that.

au In
%

m+1 Su (m+1 )^ - le - ]j (5.2.22)

where when x is nxl, Y=f(x) is nxl, and by ^[f(x)] we mean the nxn 
matrix of partial derivatives.

Evaluating (5.2.22) yields,
D = (m+1)I ,

where D is given by (5.2.14). i.e.
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de
m m+1

U-m (m+l)I (5.2.23)

m
This represents m-equations in m unknowns. (u^,=l- Eu. ). Itm+1 1
is easier to solve if we take the inverse of both sides to give,

-1 _D ' E-'
(m+i) (5.2.24)

Let {E , then from (5.2.16) we have that,

1 ii.u.(l - u.) = —r- <5 , i=l,...,m1 1 m+1 (5.2.25)

Solving for gives.

1 ± 11
m+1 , i=l. , Tn«

If we compare this with (5,2.10) it is identical when m=l. 
are three possibilities.

(5.2.26)

Again there

_ii m+1

11 m+1
~tr '

,ii . m+1<3 < —7--

The third of these corresponds to the earlier requirement that cT > 2, 
and yields two solutions to (5.2.26). Hence when.

^ m+1(5 < -;- (5.2.27)

we may conclude that the plane (5.2.20) may intersect the curve (5.2.21) 
in three places in the u direction. The number of modes will therefore 
be dependent on how many times the equation (5.2.27) holds; and on the 
"closeness" of the line to the curve.

Consider the limiting case, i.e. when.

11 m+1 , i=l,...,m. (5.2.28)
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are identical. For L (u^Z) to bem
i.e. when the diagonal elements of I ^

~ iu
symmetrical in all elements u , i=l,...,m+l , we require that n = 0
and I = dg{0, ...,d) + U 6 , as can be seen if we note that — —m
^^k) " ^ -(k) = Z^klZZ' (k) = £. For the symmetrical
case we therefore have that,

'2d <5 d’

£ = d 2d • * , d (5.2.29)

d d 2d ,

m/d -1/d . . -I/d'
-1/d m/ d . . — 1/d (5.2.30)

-1/d —1/d . . • m/d

In this instance the limiting case is.

ra m+1 (5.2.31)(m+l)d 4

i.e. that a 4m (5.2.32)
(m+1)'

Consequently if <3 > 4m/(m+l) the L (^,E) distribution with E given bym 2
(5.2.29) may be multi-modal, depending on ]4. When <3 < 4m/(m+l) it will
be uni-modal. Once we get away from the non-symmetrical case it becomes

ution will be multi-modal. Clearl> 
may be of differing magnitudes for

difficult to assess when the distribution will be multi-modal. Clearly
•1the elements of I,, , and hence I,, ,-(k) -(k)

k € (1 .,m+l). We may however investigate the conditions,

8m
2 '(m+1)

m+1

(k) ^ 4m
ij (m+1)^ ' ii

ij(k)^ -(m+1) .ii(k), b4m 4

(5.2.33)

(5.2.34)

k e (1,...,m+l) ,

as a possible "rule-of-thumb" criteria for uni-modality. This will be 
investigated in section 5.2.4 where we will illustrate a few L. and L. 
distributions. The actual values of the mode(s) must be evaluated 
numerically.
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5.2.3 The Mean
The mean of the univariate distributions has been shown by 

Johnson(1949) to be.

2\j 2%' n=l
e " ^ ^^cosh^(c(^+ 2p)sech^^

n=l cT

2 2 2 3-2n ir /<5 2n%plcos— (5.2.35)

This expression is somewhat complicated and again must be computed 
numerically. Johnson also gives various recurrence relationships, and 
other expressions relating to higher order moments in terms of the 
partial differential of p with respect to p. Thus it seems that exact 
relationships such as (5.2.35) are more complicated to evaluate than is 
a numerical integration, and consequently there is little point in 
trying to extend (5.2.35) to higher dimensions.

There is, however, a more useful result that may be extended to 
higher order distributions. It consists of an approximation which was 
developed by Aitchison and Begg(1976). They consider the integral.

V

1 + e 
—00

-p (V) dv
1 + e

E[u] (5.2.36)

In our case p(v) is the density function of a normal N(p,d ) distribu-
2.tion since for (or M^) we assume v M(p,q ). Aitchison and Begg 

instead evaluate (5.2.36) for p(v) equal to the density function of the 
student distribution. However in the course of approximating (5.2.36) 
p(v) is taken to be nearly normal in any case. Thus in this instance we 
actually slightly improve on Aitchison and Begg's result.

Consider the function.

1 + e^

This has the range of values (0,1) and can be viewed as a distribution 
function corresponding to a density function,
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(1 *
since

1 + e (1 +
-<»

dt (5.2.37)

(For example see Johnson and Kotz(1970).)
This distribution, known as the logistic distribution may be

approximated by a normal distribution with mean zero and an appropriate 
2variance . (c.f. the student t distribution.) Making this substitu

tion into (5.2.36) we have.

.CO

—00

2 21 -t /2d^
---  e \dt

^2Td^
—CO

1

> ------  g-(v-p)/2d ^ (5.2.38)
^2,0^

If we then substitute k=t-v and V=v we obtain after some manipulation, 

.0
1

u j2T(d?+ d^)
exp{-(k+p)^/2(d^+ d^)}dk

-CD

= <|)

Jd^+ d^
(5.2.39)

where <f> is the cumulative density function of the standard normal.
Aitchison and Begg also suggest another approximation obtained by

V
taking a Taylor series expansion of —---- about p. Since this latter

1 + e
approximation was then shown to give worse results we do not consider it.

2Table 5.7 below gives the values of and d^ as calculated by
~ 2Johnson via expression (5.2.35) and also p with d = 2.942. This

value, suggested by Aitchison and Begg is chosen so as to make the 90%
2quantiles of the logistic and the N(0,d^) distribution agree. We note 

that the values of p^ are close to the corresponding values of p^.
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<5 M <5U (5 M ^u <5u
0.00 0.500 0.500 0.314 1.50 0.221 0.225 0.155
1.00 0.352 0.352 0.296 1.0 2.00 0.155 0.159 0.125

2.0 2.00 0.225 0.224. 0.249 2.50 0.105 0.104 0.095
3.00 0.130 0.127 0.187 0.00 0.500 0.500 0.118
4.00 0.068 0.044 0.126 0.25 0.441 0.444 0.117
5.00 0.032 0.029 0.077 0.5 0.50 0.384 0.390 0.112
0.00 0.500 0.500 0.208 0.75 0.330 0.337 0.100

1.0 0.50 0.398 0.401 0.201 1.00 0.279 0.288 0.097
1.00 0.303 0.308 0.182 1.25 0.234 0.242 0.087

Table 5.7 : moments of ) distribution

Let us now consider how we may extend the above result to 
multivariate distributions. Aitchison and Begg(1976) indicate that this
may be done easily, but do not develop the result. We need to evaluate 
the integral I, where.

-CO -CO

V,

'm" V. dv^,dVg.... dv^
1 + I: e 

i=l (5.2.40)

= E[ULj , k=l,...,m .

Where *(v/^,Z) is the normal density function with mean and variance 
I

*(v/^^Z:) = —^^ expT-^(v-^)'E . (5.2.41)

Now we may re-write,

V,

m V.1 + Z e ^
i=l

m -w.1 + Z e ^
(5.2.42)

i=l

-v^+ v^ i=l,...,m ; i#k
where w.1

V, i=k.
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That is w = -V (k) -Z(k)v ,

Substituting this into (5.2.40) and noting that the Jacobian equals 
unity we obtain,

CO CO
1

m -w. *(w;-Z(k)^,Z(k)Ez/(k))dw .
1 + E e 

i=l (5.2.43)

Now m -w.
1 + Z e ^

i=l

is the cumulative distribution function of the multi

variate logistic distribution, (not to be confused with the
Logistic-normal distribution L (u,E) ) see, for example, Johnson andm
Kotz(1972), and may be approximated by a multivariate normal density 
function,

wm
(5.2.44)

1

m -w.1 + Z e ^ 
i=l

w.
' 1 ' 2

♦ • •
L L

—00 -CO

*(L;0^Z^) dL .

As in the univariate case we may substitute (5.2.44) into (5.2.43) and 
obtain the integral of two normal densities, one over the complete 
range. Thus after a suitable transformation we would hope to eliminate 
many of the terms and reduce (5.2.44) substituted into (5.2,43) to a 
single cumulative normal density function as in (5.2.39). Hence 
substituting (5.2.44) into (5.2.43) gives.

.00 00
" w' 1 ' 2 ■“ m

< • • • 4'(L;0,Z^) dL
L c 1—CO —CO -OD

-00 -00

Let ij(k) = Z(k)iJi, and Z(k) = Z/k)ZZ'(k) .then
m .w, r 2' 1

I • * • • * •
V 1 1

-CO -CO -CO

^^ exp{-kL/"^Z^ L}dL x
2TZ 1 (5.2.45)

1

2%Z(k)
exp{-^(w+^(k))'Z ^(k)(w+]j(k))dw
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We now perform the transformation,
S=L“W w = T

T = w L = S + T

The Jacobian is again unity, substituting into (5.2.45) gives : 

jx> jx _0 .0

I =

(5.2.46)

1

-00 —00 —00 —<X)

( I I I 2irZ(k) i )

exp-lj(S+T)'E^^(S+T) + (T+M(k))'I ^(k)(T+M(k))jdSdT

Completing the square in the exponential term, and reversing the order 
of integration gives

fP ,P

I =

—<» -00 —CO —CO

(|2%Z^||2vE(k)|)
exp-^^(S+^(k))'(%^+E(k)) ^(S+^(k)) +

I + ^(k)) ^(Z^^S+Z ^(k)M(k))l(E^^+Z ^(k)) x

I + ^(k))"^(I^^S+E ^(k)M(k)) dTdS

.0 0

—00 —00
( i2Tr(E^ + I(k)) i )

j^exp —j i ^S+j4(k)) ^ (+ I(k)) ^(S+^dk))^ x

_(0 00
(|2T(Z,+Z(k))|)—1 —

(|2TE^||2TZXk)|)
—00 ' -00

IS
T + ^(k)) ^(k)M(k))

(Z,(Z,+E<k)) ^Z(k)) ^
—1 —1 — —

T + (Z.^+1 ^(k)) ^S+Z'^(k)M(k)) dTdS

We note that (I^^+E ^(k)) = (E^(E^+E(k)) ^l(k)) ^ which has been 

substituted into the second exponent. The integration over T is that of
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a normal density function over its entire range and is therefore equal 
to unity. Hence,

^ .0

—CO —CO

(|2T(Z +E^k))i)
.exp -i ^(S+^ik))'(Z,+Z(k)) ^(S+M(k))^ dS

-M(k),[E^+E(k)]} . (5.2.47)

The result is summarized in the following lemma.

Lemma 5.8
If u ~ then we may approximate E(u.) by the value of the

m-dimensional normal cumulative density function with mean -Z(k)^ and 
variance Z. + Z/k)ZZ'(k) evaluated at zero, i.e.

where

and

E(Uk) ^ I(k) + ....

M(k) = ,

Z... = Z(k)ZZ'(k) -(kj - —

Tables exist for computing bi-variate and tri-variate normal
densities e.g. Owen(1956) and Steck(1958). However in order to use the
lemma we require a suitable choice of the matrix Z, which we recall must-I
be chosen so as to facilitate a good approximation of the logistic 
distribution by a N^(0,Z^) density function. A sensible initial choice 
is to take % to be the value of the covariance function for the 
logistic distribution.

For a logistic random variable L Johson and Kotz(1972) give the
following results.

Var(L ) = IT /3, 
Cov(L^,Lj) = T^/6 ,

Hence Z must at least be of the form.

i=l,..,,m ; 

i,j=l,...,m , ixj
(5.2.48)

0 d/2 . . . d/2' ^ 1 . . . 1"
d/2 d . . . p/2 = <5/2 1 2 ... 1

d/2 d/2 . . . p/2 1 1 ... 2

(5.2.49)

Two obvious possibilities for the choice of a are then,
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i) <5 = u /3 = 3.290 since it is the value for the true distribution, 
ii) <s = 2,942 as in the univariate case.

Having noted these two possibilities another is,
iii) 0=3 since it lies between i) and ii) and for simplicity.

We may easily compare these possiblities in a numerical study. A small 
study of this kind is presented in the next section, and it will be 
seen that all three values give reasonable results.

To obtain a similar result to lemma 5.8 for the M (u,E) distribu- 
tion is not so straight forward. As mentioned earlier there is no 
equivalent matrix to the Z(k) matrix, partly because the variables v in 
the M distribution by their very nature depend on the ordering of the 
u's. In fact we would have to make a separate distributional approxima
tion for each u. in turn, i.e.

V, V.

1 + e [l + e ^][l + e [l + e ^j[l + e ^][l + e
etc.

Although it seems likely that these may represent functions that can be 
approximated by a normal density function we do not pursue this here.

5.2.4 A Numerical Study of the L^(p,I) distribution

Various analytical methods for evaluating the mean, and the mode
of the distribution have been explored in 5.2.1-5.2.3. We have
concluded that the only way to evaluate these and other such values e.g. 
the variance, is numerically. However we have derived an approximation 
to the mean (5,2.47) and indicated that the distribution is not 
necessarily uni-modal. The purpose of this numerical study is to 
compare the approximation (5.2.47) to the true mean, and to gain a 
better "feel" for the distribution. In particular we hope to
understand when the distribution is multi-modal and compare various 
location parameters such as the mode and the mean. A greater
insight into this distribution will enable us to tackle the forecasting 
problem.

A selection of L2(jj^1) and L^(^,^) distributions were studied.
They were chosen so as to encompass several properties; some are 
symmetrical, some are multi-modal, some have jJt==0, whilst some have
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Figure 5.9 Plot of the (jO, Ig)
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Figure 5.10 Plot of L_. 0,
16/9 8/9
8/9 16/9
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a) 3-d Plot.

Figure 5.12 Plot of r 0.80.41iL-’ 0.4 o.sj distribution.
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Figure 5.13 Plot of 1.0 0.8 0.4
-1.0 ' 0.4 0.8
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X 10

a) 3-d Plot.

LAB

Figure 5.15 Plot of L, 4272 0.0413 0.0351
5309 ’ 0.0351 0.0452 , i.e. the one-step

ahead forecast distribution of the GALLUP(C) Series.
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and so on. Initially only the L2 distribution was studied and contour 
plots and 3-d plots such as those in figures 5.9-5.15 were produced. The 
first distribution considered was that based on the standard normal 
distribution, i.e. 1^(0,!^) as in figure 5.9. Some others were chosen 
to be symmetrical in all variables. For the distribution to be
symmetrical we require that.

M = 0 and 2a a 
a 2a

for some constant a.
(5.2.50)

Figure 5.10 represents the case when a = 8/9, which from (5.2.32) is the 

limiting case. Figures 5.11-5.14 are a selection of tri-modal, 
bi-modal, uni-modal, skew and symmetrical distributions. Figure 5.15 is 
the Ljjj(j4,I) distribution where is the one-step-ahead prediction of v^ 
for the GALLUP poll series studied in section 4.4 and I is the corre
sponding covariance matrix.

In addition to the distributions plotted a few other L2 distribu
tions were studied, together with a few Lg distributions. These were 
chosen to be either slight variations of the symmetrical situation (e.g.
by varying so that p^xO), or in the L^ case the symmetrical distribu-

"3tion itself. Only uni-modal Lg distributions were studied since it is 
difficult to locate the modes without the aid of a graphical representa
tion, and consequently difficult to evaluate these modes numerically.

The contour plots of the L^(p,E) distribution were produced by the 
GINO package. The computer algorithm in fact produces a plot of the 
form.

which is then "skewed" and scaled to give
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The final diagonal has been drawn in. It should be noted that as a 
result of this together with rounding errors, and interpolation between 
points etc, the plot near the diagonal is slightly distorted. However 
this distortion is not so great as to lose the basic shape of the 
distribution displayed.

In addition to the graphical plots various parameters were
computed for each distribution. These were.

i) Mean E[u ] .
ii) 2

Second moment E[u ].
iii) Variance v[u ]
iv) Estimated mean E[u.] using (j - 2.942

v) Estimated mean E[u ] using <j = 3.000

Vi) Estimated mean E[u.] using <3 = 3.290
vii) Inverse of (i say) ,

using lemma 5.8.

m p 1 + E e ^
j = l 

1

m M
1 + Z e J

j = l

k=l,...,m;

k=m+l

viii) Mode or modes (say), where K = 1,...,K ; and K = number of 
modes.

ix) Maximum value of the L^^^,Z) density function, max'*" i.e. value at 
the mode(s) listed in (viii).
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Table 5.16 : Parameter Values for Some Distribuitions

Models Considered are

a)

d) L,

b) L. n 8/3 4/3 
- ' 4/3 8/3

1.0 0.8 0.4
-1.0 ' 0.4 0.8 e) L, 0 ,

c) L

4/3 -2/3l 
-2/3 4/3

0.8 0.4 
0.4 0.8

f) Lv 0.42720 0.04130 0.035101
0.53090 ' 0.03510 0.04520

(one-step ahead fore
cast distribution
for GALLUP(c) )

g) L. 1.0 ]
-1.0’ -2J

Model
Mode(s)
(Height at Mode)

Estimated Mean 
(With d =)

Mean

V

EtUjh

T------
ariance

i
(2.94 3.00 3.29)

a) 3333 3333 3446 3444 3437 3454 1626 0433
3333 3333 (4.2972) 3446 3444 3437 3454 1626 0433
3333 3333 3109 3112 3126 3092 1169 0213

b) 3333 0230 0230 9539 3324 3324 3325 3333 1481 0369
3333 0230 9539 0230 3324 3324 3325 3333 1481 0369
3333 9539 0230 0230 3333 3333 3333 3333 1481 0369

(All 4.2526)
c) 3333 3333 3339 3339 3339 3333 1357 0246

3333 3333 (6.2050) 3339 3339 3339 3333 1357 0246
3333 3333 3333 3333 3333 3333 1357 0246

d) 6652 8241 6402 6382 6652 6311 4260 0277
0900 0437 (24.9993) 0919 0931 0900 1044 0166 00572447 1322 2685 2694 2447 2645 0918 0219

e) 3333 0031 9559 3608 3604 3588 3614 1953 0647
3333 9559 0031 3608 3604 3588 3614 1953 0647
3333 0409 0409 2801 2808 2839 2772 0934 0166

(Both 16.5708)
f) 3621 3628 3658 3655 3643 3614 1314 00084017 4031 (184.1880) 4066 4061 4028 4009 1618 0010

2362 2341 2316 2325 2366 2377 0578 0013
g) 3672 6925 3728 3725 3709 3726 1840 04523006 0942 (4.9486) 3169 3169 3170 3188 1427 0411

3322 2133 3103 3106 3106 3086 1165 0213

xlO (except Height at Mode) 
Table is continued on the next page.
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Table 5.16 ...continued
Models are :•

h) ro.o
0.1

1
1 i) L,. 0.1

-0.1
1 ~ht

-16 1 j)

k)
0.1 1 ^ 0.1 1

-0.1 . I 1) 0 , i6 1 m) -0.1 , ^ 1 ^
0.1 16 % 1 0.1 ^ ^ 1

Model
Mode(s)

(Height at Mode)
Estimated Mean 
(With <5 =)

Mean

Vc
1-------
iriance

1
(2.94 3.00 3.29)

h) 3443 3541 3433 3432 3429 3428 1478 0302
3115 2918 (4.9937) 3135 3136 3143 3143 1269 0281
3443 3541 3433 3432 3429 3428 1478 0302

i) 3672 8925 3818 3814 3793 3825 2021 0558
3006 0140 (10.8856) 3290 3289 3282 3315 1617 0518
3322 0935 2891 2897 2925 2860 0948 0130

j) 2500 2500 2612 2611 2604 2610 1023 0342
2500 2500 (16.2544) 2612 2611 2604 2610 1023 0342.
2500 2500 2612 2611 2604 2610 1023 0342
2500 2500 2163 2168 2189 2171 0576 0342

k) 2756 8896 2844 2841 2827 2824 1166 0368
2256 0227 (33.2623) 2388 2388 2388 2402 0892 0315
2494 0254 2608 2607 2600 2606 1021 0342
2494 0623 2159 2164 2186 2168 0574 0105

1) 2500 2500 2500 2500 2500 2500 0828 0203
2500 2500 (22.9872) 2476 2477 2477 2500 0828 0203
2500 2500 2525 2524 2523 2500 0828 0203
2500 2500 2500 2500 2500 2500 0828 0203

m) 2756 3057 2749 2747 2738 2727 0967 0224
2256 2044 (23.4546) 2239 2241 2250 2282 0704 0183
2494 2450 2519 2519 2518 2495 0826 0203
2494 2450 2495 2495 2496 2495 0826 0203

xlO' (except Height at Mode)
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The results are presented in table 5.16.
In the calculation of the mean and variance Gauss-Hermite 

quadrature was used. This type of quadrature is used to approximate an
00

integral of the form f(x) dx and is known to give exact solutions if

the function is of the form.

f(x) = -b(x-a)' 2n-l
I c,i=0 ^ b > 0,

For the multiple integrals the quadrature formula is applied to each 
dimension in turn. We employed a NAG library routine to do this.

In our case we need to find the integral over of the function
m V.-1
I e (i=l,...,m) multiplied by the density function

of a N^(j4,I) distribution. Thus if we regard the normal density

function as resembling e , then in very loose terms a good
approximation will be given when,

2n
,r».l = I)

Or in the case of evaluating E[uT) when.

‘A*
Jn 
Z c V k=0 ^

k i=l. ,m m+1 1)

The NAG procedure in fact is iterative and increases n at each step
through the following values: 4, 5, 6, 8, 10, 12, 14, 16. 20, 24. 32,
48, 64 . It was found that at most six iterations (n=12) were required
to obtain an accuracy of order 10 ^. Var[u.] was computed from E[u.]

2 1 1 
and E[u^]. We note that we could have easily computed Cov[u^u.] ixj in
a similar manner although we have chosen not to do so.

When it came to evaluating the estimated mean ,(iv-vi) above, it
was found that tables were unnecessarily complicated and that it was
less laborious to evaluate the cumulative normal density numerically.
This required the use of a NAG routine to evaluate the integral over the

.mnegative orthant of R of the N f-u,,,, I., ,m -(k) ) function, for which
we require the use of Gauss-Laguerre quadrature. This latter quadrature
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is used to estimate integrals of the form, J f(x) dx , and is known to
—CO

be exact if f(x) is of the form ;

f(x) = e Z c.x^ .
i=0 ^

We note that in this type of quadrature the exponent no longer has a 
quadratic form which may be related to the normal density function.
This implies that we would expect less accuracy from the numerical
algorithm in the estimation of iv)-vi) compared to i)-iii). Although a 
more detailed scrutiny could enable us to see just how close our 
functions are to those preferred for the quadrature procedure, the hint 
given by the exponent term perhaps explains why more iterations were 
required to evaluate the estimated means. In fact up to 12 iterations 
(n-48) were required of the Gauss-Laguerre quadrature to compute iv)-vi) 
compared to the previous 6. (This is to the same accuracy of 10~^).

The computation of the estimated mean values was further length- 
ened by the need to evaluate M(k) -(k) determina^A and
inverse for each variable. (In the evaluation of the exact mean and 
variance, and E remain fixed for each variable.) Thus the approxima- 
tion to the mean required more computation than that for the exact 
value. This was reflected by the length of the respective SUBROUTINE 
codes developed to evaluate them.

This lengthy computation of the approximate mean value is due, 
however, to the particular algorithm used to evaluate the cumulative 
density of the multivariate normal. It may be that alternatives are 
available. Indeed if a user has access only to a statistical package 
which evaluates this cumulative density, but not to a general numerical 
analysis package, then the approximate mean will still prove useful. 
Otherwise E[u.] is only of academic interest, since the exact value is 
more easily computerized, and more accurate. The only exception to this 
is perhaps the univariate case.

If we examine the results themselves, the problem in computing the 
estimated mean values is again highlighted. For example, in the second 
and third models the approximation to the mean should have given us the 
same answer as the exact mean, but the numerical algorithm has failed to 
converge to the known approximate value. The value of the exact means 
are, however, correct. (See also the 12^^ model). However, the results 

appear to be accurate to at least two decimal places and still provide
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US with a rough yard stick for comparison.
Throughout it is clear that the approximation to the mean is 

reasonably good. It is difficult to determine which value of 6 should 
be used to estimate it. This is partly due to the limited accuracy 
described above, but also because there are occasions when each of the 
choices of <5 gives a better result. A more extensive and accurate study 

may aid the choice of <j, but meanwhile it would seem sensible to let <5 - 
3.0 for simplicity.

In many of the examples in table 5.16 there is a marked difference 
between the various location parameters especially when the distribution
is not uni-modal and/or when it is skewed. Although this is perhaps 
obvious is is none the less a reminder that care needs to be exercised 
in the choice of which location parameters to use as point-predictors.
It should be noted, however, that in the forecasting context the 
occurrence of a multi-modal distribution is likely to be rare. For this 
to occur we would require the u^^'s to be close to the extreme values 
(i.e. Uj^^ ~ 1 , Uj^ ~ 0 , j = l,.,.,m+l , j^i), and for them to "jump" 
from one extreme to another (i.e. if when t=l i=i., then at time t=2 
i=i2 (say)). This will be further examined in section 5.5.

As an example of "well behaved data" consider figure 5.17, which 
is a plot of the opinion poll data analysed in section 4.4. The points 
are all raid-way between Conservative and Labour and only have small 
values for Liberal. This data is relatively tightly packed, and no 
points are close to the apexes of the triangle. It is therefore 
expected that the varying point predictors for this data will give 
similar results. This is readily seen to be the case since the 6^^ L^ 
distribution of table 5.16 which corresponds to figure 5.15 is the 
distribution of the one-step-ahead forecast of the GALLUP(c) series.

If we examine the plots we see several interesting points. The 
distribution in Figure 5.9 is symmetrical about the line u^^Ug. 

Figures 5.10-5.12 are all symmetrical since ^=0 and the covariance 
matrix is of the fonn (5.2.50). Figure 5.10 is (from (5.2.33) and 
(5.2.34)) the limiting case between uni-modalality and multi-modality,

and consequently is very flat. 0 8/3 4/3
4/3 8/3 in Figure 5.11 is

tri-modal. Comparing this with our "rule-of-thumb" neither (5.2.33) nor
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LIB CON

GALLUP POLL DATA

Figure 5.17 Plot of Opinion Poll Data.
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(5.2.34) hold. '8/3 4/31-1 ' 0.5 -0.251
4/3 a/3j -{L25 O.5J and since )! = 0 this is

what we would expect. Figure 5.12 is uni-modal, and its symmetrical 
structure gives the characteristic bell shape. The distribution in 
Figure 5.13 has the value of I as does that in figure 5.12, but now 

5^ 0 resulting in the mass of the density functions being shifted to 
one apex
We note that for this density function.

Figure 5.14 is an example of a bi-modal L. density function.

4/3 -2/3
-2/3 4/3 -(1)

4/3
2 '(2) 4

2
2

4/3 , and

"1.0 0.5' ' 3 -1.5' 1 -1.5'
0.5 1.0 -(1) -1.5 1 -(2) -1.5 1

Comparing these with (5.2.33) and (5.2.34) we note that.

4^ 4 > 16 ^X2) ^ 16 
^^1 9-

XI) _(2)
12 12 2 > and 6 12 0.5 > -0.375.

Hence under both "rules-of-thumb" there is some evidence for a multi
modal distribution. However the evidence is not conclusive, and 
illustrates the difficulty in finding a rule for multivariate distribu
tions ,

One might hope to get some idea of the conditions for which these 
^2 distributions are not uni-modal by considering their conditional
distributions. For example, in figure 5.11a is a line is marked which 
represents C(u2)/u^^O.5. At this point the conditional distribution 
is uni-modal, however for a value of u^ close to 1.0 the marginal 
distribution is bi-modal. If this examination were repeated for 

C(ui,u2)/u3 and Clu^,0^1/02 we would be able to deduce an over all 
tri-modal distribution. However, from section 5.1.2 the only condi- 
tional distribution that is tractable and results in an L. distribution 
is of the form C(U2,U3)/C(U|,02). For this conditional distribution, 
however, the locus of the line passes through the apex of the triangle 
at Ut .
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0.0

Consequently it does not ever seem to become bi-modal. It may be 
possible to determine something about the multi-modal distribution by 
examining the location of the mode as the conditional distribution is 
allowed to vary across k. This approach does seem rather unsystematic 
and so we do not pursue it here.

In conclusion we see that three possible location parameters are 
available which may be used as point predictors: the mean, the mode and 
the inverse of the logistic transformation. The choice of which one to 
use will depend on other factors such as whether the distribution is 
uni-modal, and the variances of the prediction errors for v^. In the 
situation when the distribution is multi-modal, it may be more sensible 
to use the modes. This problem will be further addressed in section 5.5. 
When the distribution is uni-modal, the mean is the point predictor best 
suited to most purposes since it provides the MMSE forecast. However 
when the distribution of the prediction is tightly packed, as in the 
one-step-ahead forecast for the GALLUP poll series (figure 5.15) it is 
possible to use the inverse of the a^ transformation as an approximation 
to the mean. Table 5.16 gives an indication of when the inverse is 
close to the mean. In the fully symmetrical case it equals the mean.
It does well when the Z parameter is of the form (5.2,29), and less well 
otherwise. This can be seen by comparing the and Lg distributions 
labelled d, h and m with those labelled e.g. i and m. The first group 
have Z of the form (5.2.29) whilst the second do not. All have non-zero 
jj. The mean of the first group is more closely approximated by am in
the first group than in the second.

In general it is suggested that the rule-of-thumb described 
earlier by equations (5,2.33) and (5.2.34) be applied to indicate uni
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modality. If more than one mode is present , which predictor to use 
will be a subjective matter, depending on the application. In the 
uni-modal case the mean may be easily calculated numerically, or
approximated using d=3. If it Is clear that Uie prediction distribution
is dense around one area then a. -1

m may be used. This will be the case
when the elements of I are small, where I is the prediction error
3va)
-1

covariance matrix for the appropriate forecast v^. The decision to use
" will depend both on the size of these elements (e.g. in figure 5.15 

these are of order lO"^), and on the accuracy of the forecast required.

5.3 Some Examples of the Z) Distribution

It is possible to carry out a similar investigation to that of the 
previous section for the E) distribution. However, as we require
limited use of this distribution, for brevity we do not do so here.
Never the less we produce a few plots of the E) class. Three
examples of the ,E) distribution are represented in figures 
5.18-5.20. These should help to illustrate a few of the properties of 
the multiplicative logistic density function.

The first figure illustrates the distribution. As with
the 02(0,12) distribution it is symmetrical between only two variables, 
but whereas before the symmetry was between u, and u^, it is now between 
U2 and Ug. To examine this recall that for u € u ^ then
Y “ m^(u), where v ~ N^^^,E). In this instance (m=2), v = m^CuO, i.e.

V, InT

In-r
"1 -"2

In- -In-

Hence V2 may be thought of as the log-ratio of U2 with u^. If there is 
no correlation with v^, and with zero jj the distribution will be 
symmetrical in Ug and Ug. This illustrates that despite the difficulty 
in permuting the elements of u when comparing bL distributions on the 
same data set, it is none the less possible to interchange the m^^ and
m+1 th element. For the L2 distribution we recall that v^ = InCu^/u^)
and V2 - ln(u2/u^), so that both Uj and u^ are referenced by Ug. Hence
if Vj and v^ have identical means and variances, u, and Ug will be'1
symmetrical in the resulting distribution.
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a) 3-d Plot.

Figure 5.18 Plot of the ^2^—’1-2^ Distribution.
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a) 3-d Plot.

Figure 5.19 Plot of 0.5
-0.5 ’-2 Distrbution.
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Figure 5.19 illustrates the M_ distribution for . As in figure 
5.13 most of the mass is close to u^ = 1. but in this case it is more 
pronounced. The final figure, figure 5.20 illustrates a bi-modal 
density function. This example has one mode higher than the other. It 
illustrates that care must again be exercised in choosing an appropriate 
point predictor, should the ln^ARMA^(p,q) model be used for forecasting.

A final characteristic of the distribution is that it is not 
easy to construct a parameterization that will produce a fully symmetric 
distribution. This is indicative of the order-dependence of the M^(u) 
transformation.

5.4 Confidence Region Based on the Logistic-Normal Distrbution

Often a time series analyst is not only interested in producing a 
single valued forecast, but in obtaining a region in which the future 
value lies. This region defines an interval predictor. Aitchison and 
Shen(1984) point out that a confidence region is easily obtained for a 
sample of u"s e S™ using standard multivariate normal distribution 

theory. Consider n independent estimates of a composition u; u^, 
i==l,...,n. A 100(1-%)% confidence region for u, where u.~ L is

V - In- u
L m+1

4 V In—^ 
"m+1

(n-l)m
n-m oc; m, n-m (5.4.1)

1 n
a (u), V = - E V., Sm - - n. ~i -V1=1

1where v

is the 100% upper percentage point of the F

, Z (v, - v)(v - v)', and Fn-l._ —1 — — - %;m,n-m1” i
distribution.m, m-n

This is akin to the fact that a 100(1-%)% confidence region for ]j=E(v) 
v~N^(iJi,I) is.

n(v - }i)S ^(V - jj) < —.. F
— —V — ^ n-m %;m,n-m (5.4.2)

as in Morrison(1976).
In section 2.5 we discussed forecasting a vector time series. For

a time series Z we may estimate the f-step ahead forecast of Z ^ by
Z^(^) and its variance by Var[e (^)], resulting in a confidence region
for Z given by (2.5.6). Using the same notation as in (2.5.6), but
instead, considering the series y, , a 100(1-%)% confidence region for

i
v^^^ - ARMA^(p,q) is:-
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(yt(« - ,
-t

(5.4.3)

Comparing (5.4,3) with (5.4.2), and in a similar manner to (5.4.1) we 
thus obtain a 100(1-%)% confidence region for u. ~ ln^ARMA^(p,q) as

vXX) - In- -t+X
ut+4,m+l :e^(f)

u
V id) - In— — w u

t+i
t+i,m+l «;m

(5.4.4)

Four examples of a 95% confidence region for u^^^ are given in figure

5.21.

5.5 A Simulated Example

In section 5.2 various location parameters of the L^^^,E) 
distribution function were considered. All of these could be used as 
point predictors for forecasting time series u^ € When applied to
our GALLUP poll data these various predictors were almost 
indistinguishable (see table 5.16f), since all of the data points for 
the series were well grouped away from the extremities possible. (Figure 
5.15). In this instance we would have little concern about which point 
predictor to use. Also the resulting distribution is uni-modal. 
Consequently series similar in nature will also be easily handled. But 
what of other series? In particular compositional time series that 
originate from bi- or tri- modal white-noise series. What do such 
series look like? How do their forecasts perform? It is these questions 
that this example is designed to address by producing a simulated 
example with the properties required.

The first step was to simulate a white-noise series from a 
distribution, where and I are chosen so as to make the daughter 
Ljjj(ii,^) distribution tri- or bi- modal. This may be readily done using 
the NAG-library.

500 points from a N. 0, 4 2l
2 4 were generated. If these points are

vf, where v® is-white-noise then the resulting u® series is formed by
e -1 etaking the inverse of the logistic transformation. Thus u^ = a^ (v^) . 

For the series of 500 points described above the resulting white-noise 
u® e series was computed and a plot of this is given in figure 5.22.
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As expected the points are well scattered over all the range of 
possible values (i.e. over all the triangle), but are more dense towards 
the extremities. That is, nearer the coordinates (1,0,0),(0,1,0) and 
(0,0,1) which correspond to apexes of the triangular axes. This 
corresponds to the underlying tri-modal distribution. (c.f. section 
5.2).

Using the v® series plus a further 100 points, 500 points from an 

AR_(1) process were generated by:-

V, 0.8
-0.4

0.3
-0.5

The first 100 points of the now augmented v series were used to "start
up" the AR_(1) process. Finally the resulting u series was formed as

~1 ^ ^ 
uu = a (v^). Thus is an Ini AR.(l) model with parameters,-t m -t -t +2

$ = ' 0.8 0.3" , and E = 4 2'
-0.4 -0.5 2 4

This series is plotted in figure 5.23. What is apparent from figure
5.23 is that many values occur at or near (1,0,0) and (0,1,0) and very
few centrally. Thus the autoregressive components have exaggerated the
tendency for the series to take values close to the extremities.

In order to see what sort of forecasts would be produced, we
analyzed this data using WMTS-1. The pattern of the cross-correlation
matrices for (v- } were:- t

+ - 
lag 1 10

11 12 13 14 15 16 17 18 19 20
A graph of the autocorrelation function for v. and v^^ 
correlation function are given in figure 5.24.

A schematic representation of the PACF is,

, and the cross

lag 1 2 4 7 10 11 12

These both suggest an AR_(1) model, as we would expect
Finally the parameters of an AR^(l) model were estimated.
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Figure 5.23 Simulated ln/ARg(l).series using white-noise series

in figure 5.22 above; where $ = 0.8 0.3
-0.4 -0.5
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Figure 5.24a) ACFs of Series.
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Figure 5.24b) Cross-correlation function of Series.
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constant term was found to be nearly zero (as in fact it is), and the 
model was re-estimated assuming no constant term. The estimates 
produced were.

$ ' 0.787 0.361' , and E —-0.416 -0.448
3.896
1.917

1.917
4.215

these correspond reasonably well to the true model.
Using this model, starting from the 500^^ observation .various 

forecasts were produced, together with their corresponding variances;

Y^(l) 0.69
0.15

3.90
1.92

1.92
4.21

v^(l) 0.60
-0.36

7.97
-1.03

-1.03
6.48

From the forecasts v (f) we may then compute various forecasts
u^(X). Figure 5.25 shows a plot of the L^Cv^d), ^ ) distribution,

—t
Most of the mass is around (1,0,0) with a ridge along u^^O and u^^O. 
There are three modal values near (1,0,0), (0,1,0) and (0,0,1). The 
largest is clearly the one near (1,0,0). Evaluating these modes 
numerically gives.

Max = 66.5909 at (0.9974, 0.0011, 0.0140),
Max = 7.7140 at (0.0065, 0.0027, 0.9908), and
Max = 20.9875 at (0.0025, 0.9961, 0.0013).

Thus a sensible choice of predictor may be to say u^(l) will be close to 
(1,0,0) with a high probability, close to (0,1,0) with less probability, 
and close to (0,0,1) with a small probability. If one were to use the 
mean then numerically this is at.

Mean = (0.4261, 0.3058, 0.2681).

whereas the inverse is at,

a^"^(v^(l)) = (0.4805, 0.2797, 0.2398).
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X 10

Figure 5.25 Plot of L„(v,(l), Z Distribution for simulated series.2 —t —e^(l)—t
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Both these latter predictors of are fairly close to the central
point (1/3,1/3,1/3). Also they show a higher value for Uj and the 
lowest for Uj, reflecting the heights of the modes. What is clear, is 
that the use of the mean or inverse gives a very different picture of 
the value of u^(l), compared to that given by the modal values. It 
seems that these two alternatives are equal and opposite. The best 
choice of predictor will be that which meets the need of the analyst.

For example, if u^, U2, u^ are the proportion of sales made by a car 
manufacturer, and it is required to know how many of each model to 
produce for next month, the mean should minimize costs for any mistakes 
in the forecast and the actual values (all other things being equal).
If instead the manufacturer wanted to know which car would be the most 
popular, the modes may be used since it demonstrates that this is u^ 
more clearly than does the mean. Or in a car show room, where only one 
of the three models may be selected for display, the modes might again 
prove useful.

A further forecast is illustrated in figure 5.26 which is the 95% 
confidence interval for u^^^. The confidence region is extremely large 
and virtually covers the whole domain of the space. Its large size 
reflects the large value of E and the tri-modal nature of the underlying 

distribution featured in figure 5.25. It is slightly shifted towards 
the (1,0,0) coordinate, as one might expect. Because of the high mass 
along the Uj=0 and u^=0 axis, a small region around these axes will 
account for the 5% of the density outside the 95% confidence band. The 
centre of the region is at a^"^(v^(l)), and consequently these high mass 

ridges are partially excluded from the confidence region. An alterna
tive interval predictor which would incorporate the high density areas 
can be obtained by taking the contour of the distribution, inside 
which the mass is representative of the proportion of the density 
required to obtain a given size confidence region. The exact nature of 
this would require further study, but might result in something similar 
to figure 5.27. Figure 5.27 is the contour lying approximately between 
those labelled "1" and "2" in figure 5.25. It should be noted that this 
contour should be regarded as being closer to the u^-0 and u^^O axis and 
to the apexes than the contour in figure 5.26. Once again it covers a 
large region as one would expect in view of the density of the L 
distribution (c.f. figure 5.15).
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In summary this example sheds light on the difficulty of forecast
ing compositional data sets, when the underlying distribution is 
multi-modal. It will depend on the context as to which forecast the 
analyst should give. Further this example illustrates the fact that if 
a distribution is multi-modal, then its modes are all close to the 
extremities. Two points may be drawn from this. Firstly for such data 
an alternative model may be formulated and prove preferable, if as it 
seems, the data may be approximated by a discrete state series, (e.g. 
transition probabilities could then be computed). Secondly it is hard 
to envisage such difficult data occurring in practice. We would not 
really expect the pattern of car sales in our example above to look 
anything like the simulated series. The opinion poll data certainly did 
not resemble such a pattern. It is hard to imagine that the preference 
for the Conservative party (say) was 99%, but that in the next month 
it was now the Labour party that had a preference of 99%. Similarly in 
the geological context, soil structure will change slowly along a 
spatial direction, or over time. Thus the need to model compositional 
time series with the properties described above seems to be rare almost 
non-existant.

5.6 Summary
In this chapter we have investigated the properties of the L^^^^%) 

distribution and to a lesser extent the M_(ii,^) distribution. Various 
examples of these distributions have been examined. It has been shown 
that the mean and the mode must be estimated numerically, although an 
approximation to the mean is easily produced. The distributions are not 
uni-modal for some values of and Z.

The results have been related to the ln^ARMA^(p,q) and 
ln^ARMA^(p,q) models, especially in the context of forecasting. For the 
opinion poll data it was shown that the various point predictors were 
virtually identical. It seems that for the majority of data sets this 
will be the case. However, should this not be the case, a simulated 
example illustrating the more obscure types of data and the possible pit 
falls, has been examined.

It seems that forecasting in this context must be done with great 
care, and the choice of which predictor to use will thus depend on the 
nature of the data in question, and the reason for forecasting.
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"Do you Rnoui rfie Cauus of rfie heovens/
Can you set up tfietr dominion over r6e earrfi?”

Job 38:33

CHAPTER 6

Dependence and Independence in Compositional Time Series

6.0 Introduction

In section 2.6 we discussed various concepts of 
causality, feedback etc. between multivariate time series.
As discussed in chapter 3 the sum-constraint on compositional 
data induces an automatic dependence. If we wish to understand 
the interrelationships between compositional time series it is 
therefore necessary to develop new forms of dependence. This 
is the aim of this chapter. The resulting types of dependence 
and independence have various applications which will be 
discussed as each new concept is introduced and developed.
All of these new concepts arise by integrating the results 
of section 3.$ with those of 2.6. In section 3.5 we discussed 
two types of compositional dependence:- extrinsic and 
intrinsic. These two types are developed below in section
6.1 and 6.2 respectively.

6.1 Extrinsic Analysis

We recall from section 3.5 that extrinsic analysis 
of compositional data is concerned with investigating 
the relationship of a composition to the basis from which 
the composition is conceived to have originated. Similar 
questions to those of section 3.5 arise in this time series 
context. For example, consider the household expenditure 
survey; the relationship between income and the proportional 
breakdown of expenditure on various commodities may be
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examined via tk concept of compositional invariance (definition 
3.23). If the data consist of a time series, such as would 
occur if we were to examine a repeated survey on household 
expenditure we may examine more detailed questions. Here 
income is T, for a given month (say), and assuming all 
income is spent on a commodities with respective expenditures
¥It' in month t we have that T, T ¥t- and that

Wethe proportional breakdown of expenditure is C(W^J 
may then investigate the relationship between r, and U^.
For example how does a pay rise alter spending? Is there 
a time delay before spending habits are altered to keep in 
line with others in the same income bracket? In other words 
does past income 'cause' spending habits. Using the 
definitions of Wiener-Granger causality (definition 2.17) 
we may examine if + U,. If one or more of the categories 
on spending consists of investment in a monetary scheme 
that will later produce a change in income then clearly the 
past pattern of expendi&^ne will cause income i.e, 
(definition 2.17). Finally the relationship between 
expenditure and income may be instantaneous which would 
occur if . U^. Hence using definition 2.17 we now 
consider a time series counterpart to compositional 
invariance (definition 3.23).

Definition 6.1 : (Wiener-Granger) Dependence of a basis.

be a compositional time series such thatLet U^€
W^ € is the basis of U^; i.e. U^ = C(W.) and also let

Tt = T(W^)
Thenusing the notation of definition 2.17 (Wiener- 

Granger causality) if:-
i) then W, is compositionally invariant (C J1 B)

ii) ^ T, the basis has compositional dependence (C ^ B) 

ill) U, the basis has compositional causality (B C)
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iv) U,4^ T, the basis has compositional feedback—t- U ----
v) U,. the basis has instantaneous compositional

dependence (C.B)

(C 4^ B)
vi) U the basis has complete compositional dependence

The above definitions have all been included for 
completeness, and some may prove to have more obvious 
applications. These definitions could be more vig^^ously 
named along the lines of section 2,6 i.e. dependence, 
causality, feedback are linear in mean with respect to the 
basis/composition. To include this would produce rather 
lengthy names. A further reason is that if we were to 
develop the concepts of causality in for example a non-linear 
context, then the analogous derived time series definitions 
may easily be imported into definition 6.1. More importantly, 
the linear relationship will be via v. a^(U^) and not
U, as will be seen below. Thus, definition 6.1 should perhaps
be in terms of v,'s relationship to T,.—t '■ t However since there 
is a one to one correspondence between v, and U, this amounts 
to roughly the same thing; and in keeping to the form above 
we remain more in line with the concept we are trying to 
achieve. In other words, we want to investigate the 
relationship between the composition (i.e. U^) and T^, v, 
being a useful intermediate aid to us.

Of the definition s it can been seen that GilB and
C<=>B ar e at opposite ends of the scale; the first implie
that we lose no information about the COmpositional time
series in ignoring the basis from which it ca me, unless
we have an additional interest in he se cond implies
just the opposite. and depending on the parti cular inter-
pretation required means we may do better to analys e W,—t
instead of n, and Tt'

The next step is to devise a means of te sting the
various types of c ompositional depsnden ce. The U, —t 's may
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be readily modelled by a ^n.ARMA^ (p,q) process, and 
inference can then be made using the F-measure of section 
2.6. The procedure is as follows: first form v, from

i.e.
V, = also let

Tt = T (W^) .

Then as in definitions 2.18 through to 2.20 we have:-

Definition 6.2 : measures of time series dependence on 
a basis.

i) The measure of compositional dependence is

U+T ^n (-
I(T/Tp, 2^1

ii) The measure of compositional causality is

F
I )|In - ^

iii) The measure of instantaneous compositional dependence is

I(z/Z_, T_)|.| Z(T/T_, v_)|
®'n.T = (- E p —p

I (z, T/Vp, Tp)|
■)

iv) The measure of total linear dependence

Z(z/Zp)l'l Z(T/T^)| 

IKZ, T/Vp, T^)|

As before
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(6.1.1)

These definitions are related to the time series measures 
thus:-

F = F

^ T " ^ T ' )(6.1.2)

^ U = .V ' = F^^^,

Clearly if v, is univariate we could also use Haugh's test
to investigate compositional invariance. As before under 
the hypothesis of no dependence.

nF X ^r) * where r is the number of parameters no 
longer needed if the hypothesis is true.

When some form of dependence does exist between the 
basis and composition it may be only through a subset 
of the composition. In the context of a usual set of 
multivariate time series we can easily examine the subset 
independently. However because of the transformation of 

to V, it may prove difficult to disentangle exactly 
which subset of the U+'s is involved. However many of 
the partition independence properties will assist us.
These were introduced in section 3.5, and are extended to 
the time series context in the next section. The basic 
idea is to form two subcompositions, allowing only one 
to interrelate with the T, series whilst these are still 
themsleves modelled jointly. This may be done by invoking 
conditional F measures (Geweke (198^))- In fact any number 
of possibilities can result from this approach, but 
since these are simple extensions we do not develop them 
here. They do require a knowledge of which subset to 
scrutinise. However, with a little common sense there are
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some cases where we may disentangle v, and its relationship 
to T^.

Consider W,€ and assume that B + C exists but
only through the first element. Suppose further that

"log "1' ^1' ‘x' T
t-1 ®1

log "'2 ^2 + 0 + ®2
log W3 t U3 0 63

(6.1.3)

We have chosen to use log W so as easily to map this onto
V,, but we note that . = W,—t t-1 J
that we do not strictly have a linear model in W,,

If we pre-multiply (6.1.3) by

”2,t-1" "3,t-1

'-1 1 o' f '1 -1 o'
.-1 0 1_ _0 -1 1_

and 1 0 
0 1

-1
-1

we obtain respectively:

V
V
1,1
1,2

^2"^1
b3-Pl

t-1 ^2"^1
^3"®1

^2,1 “ X ^t-1 ®1 ®2
_^2,2 t

P3-W2^ f o_ +
/3"®2_

^3,1 '^1-^3' 4- ■-x‘ ^t-1 + ®1"®2
_^3,2_ t _^2"^3_ 0 03-0^^

(ii) (6.1.1)

(ill)

where v.^ = a (U<) with U. , being the reference variable-it m—t i,t
i = 1, 2, 3. The coefficients of Tt-1 are indicative of
the orginal model. In (ii) and (iii) (X,0) suggests the 
relationship implies:-
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T, 1 ^ W,, (since U. is the reference variable) ort-1 It 1 —
^t-l * "zt °3t' or both T, 2 examining
various permutations of the &n^ARMA^ (p,q) model it is 
therefore possible to gain some insight into the model. 
This may be easily done via the matrix used in
chapter 3, (3.^^2).

The above example illustrates how inspection of the 
parameters may aid us in understanding the nature of the 
causal relationships in our data. There remains a cautionary 
note, however, which stems from a result that is similar 
in nature to that of section (3.3). Recall the structure
of Z-v the covariance matrix for v that originated from
U/s basis, W consisting of independent components i.e.

The given by (3.3.5) not only could be derived 
from being diagonal but from any matrix of the form 
(3.3.10). Similarly recall (3.3.9). As in (3.3.9) the 
models given by (6.1.^J may also be derived from any model 
such as (6.1.3) but where the coefficient of T, ^ now:- 
(X + a,a,a). Thus although models such as (6.1.A) are 
necessary for (6.1.3) they are not sufficient. This is 
likely to carry over when examining subcompositions and 
their relationship to r, and as before we may have to make 
do with necessity.

Despite its flaws, compositional dependence of a basis 
provides a useful tool for many statisticians. It may also 
prove to be useful to economists where the coefficient of 
log T (rather that r) is related to income elasticity.

Another question an investigator may have about the 
composition and its basis concerns the interrelationships
between the individual components W. W If'It' .....m+l,t'
W^t ^ ^2t what will be the relationship between
and n_,?2t
examine U,, however if W, is not known then what would be —t —t
useful would be to be able to make inference about W,

If is known then it is not necessary to

based on U,, The loss of information in having only D,
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means that it will not always be possible to understand
what went on in the basis. If we fit an &n^ARMAg (p,q)
model to U, with various different choices of reference —t
variable, and then inspect the values of the resulting 
parameter estimates, it may be possible to gain some 
insight into the relationships within W,. That is, we may 
apply intuition and common sense in a similar way to (6.1.3) 
and (6.1.above. Some forms of dependece have easier 
solutions than others. For example if W. = (W^^, 
and we suspect that ^ then we may test our
hypothesis using subcompositional dependence etc. as will be 
discussed in section 6.2, and which is a fairly straight 
forward procedure. It is not possible to examine all the 
possible relationships on W,, especially those that are 
extremely complicated, or give intractable results. So 
what we have chosen to do is to examine an important 
special case. In particular we will examine the case 
where the basis consists of m+1 independent series.
This gives rise to the time series equivalent of basis 
independence (definition 3.2A). It is virtually identical 
except that by mean that the individual auto-correlated
W.^ series are independent of one another, whereas in 
definition 3.2i meant independence in the statistical
sense of W.. being independent observations (i.e. not

^ J
auto-correlated observations) of indenendent random variables.

Definition 6.3

2t^ m,(t = 0, ±1, ...) is said to have basis
if t

that (i=l...... m+1) are independent. That is
independence if there exists a basis for n, sucht

-it
i) ii wt

ii; = G(W,)-t f
We will describe this by 21 B.

In section 3.5 it was shown that a composition possessing 
basis independence led to a particular structure of Z the
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covariance matrix of vt The structure for Z
given by (3.5.5) may be apolied to time series. However, 
it is now necessary to extend this result to the auto
covariance function, since the data are now autocorrelated. 
As might be expected the pattern represented by (3.5.5) 
becomes the pattern for each cross-covariance matrix F(k).

Lemma 6.^

If t = 0, ± k, ... has basis independence
the autocovariance function r(k) (definition 2.10) of
V, = a-t m —t(U^) has the same pattern as (3.5.5), that is:

r(k) = dg(.Tl (k) _ (k)

(0) > 0, i = 1, ..., m + 1

Proof

Let:- W, be the basis of H, —t —t

log (W^),

g(k) = a.c.f. of x^ k = 0, f 1........

Y [l : - e 
m . —m-

V , % -

and r(k) = a.c.f. of

Then from the definition 21

11 X ,

^^k) is diagonal k = 0, ± 1,

Also we have that, v = Yx^ ,

r(k) = Yn(k)Y' ; k = 0,-1,
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For r(o) elements are var(x,) so that~ —t ' 1
m + 1.

(0) > 0, i = 1, .
□

n(k)

Although (6.1.5) is necessary for ||B, it is not sufficient. 
This is not only because of normality assumptions, but as 
in section 3.5 any g(k) of the form,

g(k)^g(k),Jk),^ .g(k)^g(k),.,(k),„ g(k)+^

e(k)Yg(k)^.^(k)^^
m ffl+1 2

.(k),,g(k)+^,(k),^ Xk),,

(6.1.6)

will yield f/k) - Y ^/k) Y' of the same structure as (6.1.5).

Having seen what the structure of f/k) will be under
we need to examine next a means of testing for ||B.

When Aitchison (1981) introduced basis independence he 
suggested testing for a covariance matrix of the required 
structure as discussed in section 3.5 (equation (3-5.17)). 
However, here we have not just om matrix but a series of 
such matrices. This is not the only difficulty. The auto
covariance function is not easy to interpret as may be seen 
by Haugh (1976), who in searching for a test of independence 
between ordinary time series suggests the S statistic given 
by definition 2.23. As we saw there, it was not possible 
to test for diagonal 2(k), (i.e. independence assuming 
normality) without first pre-whitening each series. To
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examine ||B in compositbnai time series we seek an 
equivalent way to pre-whiten our series. An alternative 
is to develop Bartlett's (19A6) result for the expected 
value of the sampled autocovariance function. This latter 
approach has so far been avoided because the expressions 
lead to intractable algebra. We therefore follow the 
first approach. For this we seek an ARMA process with ACF 
given by (6.1.5) and then consider pre-whitening the 
series using this particular model. We begin by examining 
what the ARMA process would be for v, if W^ are independent 
series such that each x^^ = log W.^ (i = 1, ..., m + l) 
follow independent ARMA^(p,q) processes. For = C(W,J, 
x^ = log W, assume

X., ^ ARMA. (p., q.) i = 1, ..., m + 1

i.e, *it = nt (6.1.7)

where the e.^ are independent white-noise series, with
variance of.1

Since the e^^ are independent the x.^ are necessarily 
indeoendent.

Consider the series xit Xm+16 ^it ^ 1, ..., rn,
hence vt (U,), then using the result of e.g. Box and'm —t
Jenkins (1976)

^it ^ Q^), where

W J Pi * Pni + l (6.1.8)

;6.i.9)

The resulting ARMA models take the form:

“ (say) i-l, m.(6.1.10)
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Equality of (6.1.8) and (6.1.9) holds if there are no 
identical roots in the AR and MA components of (6.1.10).
We will not cancel out any common factors at this stage, 
so that we may easily compare the m equations represented 
by (6.1.10).

If we were to use (6.1.10) to pre-whiten our series
we first need to know how the a., series were relatedit
to one another, since unlike the m+1 e.^ series they are 
not independent. From (6.1.10) we have

(m+l)

(6.1.11)

Assuming the L.H.8. is invertible let

a_(B) ,(mtl) (B) t+fs) 6.(B) (6.1.12)

B,(B) (m+l) (B) -1 ) ,n(B) 8.(B) and hence we m+l 1

may rewrite (6.1.11) as:

a^,t a^(B) + 8^(B) e^^^ (6.1.13)

Since the e. ,'s are independent we have1 , Ti

Cov(ai,t, °m^l ^i,k' ^j,k ^ ^.......^

i + j (6.1.11)

var(a. ,) = oi,t' ^ Z a? , t o? Z gf 
k=0 ^ k=0m+l "i,k ' ^i ^i,k ^

Consequently, after pre-whitening each of the vit
series we do not have an obvious structure to look for 
amongst the resulting residuals. In particular the a-^'s 
are no longer mutually independent. However consider the 
following situation:-
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Let a\(B) = (say),

and o? Z g? ^ = X. 
^ k=0

then (6.1.1^) yields:-

1, . . . , m + 1 (6.1.1$)

var(a. ,)1 , U

m+1

^ ^m+1

i, j — 1, ... in
i + j

i— 1, ... m

(6.1.16)

Equation (6.1.16) represents the now familiar structure 
of a covariance matrix for a (Ul when U processes basis 
independence. Thus if we were to pre-whiten using identical 
ARMA processes for the v, we could then examine the cross
variance matrix of the residuals to see if it is of the 
form given by (6.1.16). We may test this via the likelihood 
ratio statistic (3.$.17^ if (6.1.16) does hold then we 
would have basis independence. However at first sight 
there seems no reason to suppose we should have identical 
ARMA.(p,q) processes for each of the v^^ series. However, 
further evidence exists for identical structures. The 
following results that indicate this are somewhat complex.
We develop them in stages. Intermediate results and proofs 
can be found in Appendix A. The first result describes 
how the individual elements of the autocovariance function 
are related across lags for an ARMA (l,q), where the auto
covariance is that given by (6.1.$). It will be seen that

/ (l*) (t’’!'!) \the generation of the individual series, (^^ , ,...)
r ^ q, are identical for all i = 1, ..., m + 1 except for
one value of i, k (say). This indicates an identical
AR component for the v.^ series, apart from an additional
term responsible for the generation of the k series 
A_(r) .^(r+1)

k k
).
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Lemma 6.5

Consider an ARMA (l,q) process with antocovariance
function

r(8) = dg{Yj^), + y(s) y

'm 'm+1 —m

+ '4+1 2m (6.1.17)

Then for any r ^ q and s > 0 the ratio

^^s,r)
i

_Xs+r)
'i — is constant with respect to i; (6.1.18)

i = 1; , m+ 1 except for one value of i, k (say) i.e,

^^s,r) _ ^^s,r) ^ m + 1

i ^ k,
where k€{l,2, ...» mtl}

Proof

See Appendix A.

Continuing on from this lemma we now find the exact 
solution for the AR parameter 0. It will be shown to be 
the sum of two matrices. One represents the identical 
relation for the m terms that are equivalently generated, 
whilst the other deals with the k term,which we will 
refer to as the rogue parameter. The first matrix is the 
identity matrix multiplied by a scalar. The second is 
either a zero matrix except for row k, kE (l, ..., m) 
which apart from a constant (l/u^^^ 7k^^ notation 
below) is the k^^ row of £(r) ^. For k = m + 1 it is the 
product of the inverse of the diagonal component of £(r) 
(i.e. A(r)) multiplied by U . The effect of these choices
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for the second matrix is to "knock-out" the product of 
it with r(r)'s terms except for i = k, leaving
only affected. The result is given in Theorem 6.6,

Theorem 6.6

For an ARMA (l,q) process with autoregressive 
parameter $ and autocovariance function as in (6.1.17),
i.e.

r(r) = A(r) +

the only solution of ^ possible is

(6.1.18)

for some constant; $ and g, where

and
k € {1,2, ..., m+1},

ij

4^)
1

JTqT
i
0

i=j=k i, j=l, ...,m 

j=k ;k=l, ...,m;

otherwise (6.1.19)

A (m+l)
A(q)'^ U , k = m + 1.

(k)
m+l
Z

1=1
i+k

0,1,

Also for this solution the 2(^^s) matrices may be generated 
from r(r) thus:-

r(r+8) = b^r(r) + B(k) r = q, q + 1,
Oylj J
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where

8,r,k
r-s s

Z
i = l

and

{B^k)}..
1 i“j“k f k~lj**»ynij
1 k=ni + l;i, j=l, ..., m ; (6.1.20)
0 otherwise , j = 1, m.

Proof
See Appendix A.
We now consider how this relates to basis independence.

Corollary 6.7

If follows an ARMA^(l,q) process with
autoregressive parameter 0^ and U, possesses basis 
independence as given in definition 6.3, then ^ is of the 
form given in theorem 6.6.

Proof
Follows directly from lemma 6.{ and Theorem 6.6.

The coefficient matrix $ generates r(k), k > q from 
r/q) by multiplication. It multiplies each y. ^ by the same 
constant, but over and above this, just one of the y.'s 
is generated separately in a non-uniform way. Consequently 
apart from the rogue series, each v. = a^^U^) series that 
follows this model under basis independence follows the 
same auto-regressive process. Comparing this with our 
earlier comments on pre-whitening, we again see some 
evidence for fitting the same ARMA process. However we 
still have to consider higher-order ARMA models, and the 

..., ^ parameters of the moving-average component.

The generalization to higher-order processes is 
not that straight forward. We have a much larger matrix
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to invert when p>l since the Ynle-Walker equations are 
now a system of p matrix equations in p unknown matrices.
It has not proved possible to derive exact results for 
higher-order models. However generalizations of theorem 
6.6 for the ARMA(2,q) and ARMA(p,q) models are given in 
Appendix A. (Lemma A.2 - Corollary A.6). These generaliz
ations provide possible solutions for ...,0^ under
basis independence. The solutions have not been shown 
to be unique. The solutions given are none the less 
compatible with theorem 6.6. The resulting structure 
of each of the $-'8 i = 1, ...» p is as in (6.1.18)

'i 1, P'

The second matrix (apart from the constant) is responsible
for the generation of the rogue series, and can be seen
to have the same pattern as in (6.1.18) except that the
elements are now functions of ...

(a) ^ ^and not just . It may be easily shown that A.
i = 1, ..., p all generate the same rogue series. (i.e.
A^ cannot generate a different rogue series from A^ etc).

This generalization to higher order models does, 
however, provide a sufficient structure of the ^ parameters
for r(k) dg(y2(k) ■y(k)) + (k=o, ±1,
For the ARMA^^l,q) process this structure is both necessary 
and sufficient. Therefore one might use this structure 
to test for basis independence. It would be necessary 
to pre-whiten each series using an AR (p) process of 
sufficient order so as to ignore the MA (q) component 
and then examine the resulting residual series. There 
are several problems with this. Firstly, which series 
should be the rogue series? Secondly, what will be the 
structure of the resulting residual series? And finally 
the structure of the r(k)'s is necessary for Basis 
Independence but by (6.1.6) it is not sufficient. The 
first problem may be overcome by using an identical AR (p)
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process, i.e. assuming that there is no rogue series.
The second problem would then need to be investigated 
under the assumption of identical AR (p) processes.
This would still leave us with the third problem, which 
implies that the structure for the 0/s is neither necessary 
nor sufficient for basis independence. This can be seen 
diagramatically:-

basis independence 11 w,-

necessary

sufficient

it

r(k) = dg(Y2(k) ... + y XT Um+1 —m

-i ^i -m ^ ^i ^^(k)

^vnecessary
p = 1 /

i = 1, ..., p

Further algebraic manipulation indicated that the cross
correlation matrix of the residual series may be of the 
same structure as f/k), and also that the G/s could be 
of the same form as the 0/s. However with no concrete 
solution to any of these parameters further investigations 
have been omitted.

The question remains as to why there should be an 
identical structure to all the v,. series apart from one. 
One may presume that the identical structure may occur 
because of the normalizing process i.e. = 0(W,) = W^/T(W^! 
However this does not explain the rogue series unless of 
course it is a mathematical truth which is not a statistical 
reality. Perhaps the next step might be to carry out an 
extensive simulation study whereby independent W\, series 
were generated, series then formed and an &n^ARMA^ (p,q) 
model fitted.
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We now note one final property of basis independence.

In section 3-5 for m = 1 or m = 2 the series must 
necessarily possess basis independence. In time series 
this is also necessarily true for m = 1, but not m = 2. 
Although r_(0) must be as in (6.1.5) for m = 2, 2(r), r^O 
is not necessarily of the same structure, unless 
2(r) = ^/r) ; r=0, ±1, ...; i.e. we require that

^ similar restriction holds on the parameters
For example,

If $$ =
^21 $22

= al_ +
■dl 0 ■

^21 ^^2_ —2 0 d2_
n (from theorem —m

6.28)

a O'
+

’dl h'

0 a .d2 h.

So that

'll

^12

^21

^22

d^ + a

a

^2 

a + d2

'll

a =

12

22 21'

'11"^12 22"^21
(6.1.21)

The equation (6.1.21) represents a linear restriction on 
tk parameters within

The difference between basis independence and time 
series basis lies in the fact that for the former we 
require:- (using the same notation as before)

11 W i.e. W. 11 W. V i 4 j = 1:

whereas for the latter we require:

, m+1 
(6.1.22)
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11 M, 1. It W t =
V i

0, ±1, . . .
T j = -

it -LI k = 0^ + 1 . *

(6.1.23)

Consequently the independence in time series is a lagged 
independence as well as a contemporaneous- one. When 
a sample of size n (say) of W is taken W. (& = 1, ..., n)
then ^ ^ holds for
k = 0 since each of the W. are independent of one another. 
For a time series, however, W, ( t = 1, ..., n) the 
observations are autocorrelated which leads to the
necessity of the further independence condition..in (6.1.23)

6.2 Intrinsic Analysis

Intrinsic analysis is concerned with examination of
the internal relationships within a compositional data 
set. Such an analysis is carried out either because no 
basis exists (conceptually perhaps), or because interest 
lies within the composition itself. In a public opinion 
poll of political preference we may be concerned with the 
relationships between, for example, the two major parties. 
Little interest as far as the purpose of the survey is 
concerned lies in the basis. This basis is a function 
of the sample size obtained by the survey investigator.
The way that this achieved sample size varies across time 
e.g. due to non-response may be of interest to the designer 
of the survey (e.g. to improve the design) but at the 
end of the day the results are collected so as to be 
representative of the total population. Consequently 
the analysis required is intrinsic, but extrinsic analysis 
might be used to check the validity of the results (e.g. 
n, _[_[ T, is required (definition 6.1)). In other 
situations intrinsic analysis is the only option, as 
with the geologist collecting soil or rock samples.
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By its nature intrinsic analysis is concerned with 
the relationships between different elements, or subsets 
of elements. That is, with non-overlapping subcompositions 
and amalgamations (definition 3.^ and 3.5). Does, for 
example, past preference for one of the minor parties 
influence the 'swing' to one of the major parties. These 
sorts of questions are examined using the partition 
independence properties in section 6.2.2. We first, 
however, consider the intrinsic counter-part to basis 
independence given by definition 6.3.

6.2.1 Complete Subcomoositional Independence

The property that we wish to examine here is 
whether the components of the composition are all 
independent of each other, that is no dependence exists 
between any possible non-overlapping subcompositions.
This is the time series version of definition 3.25, 
the difference being that the independence is required 
at all lags (c.f. (3.5.18) with (6.2.2 ) below).

Definition 6.8

A compositional time series t = 0, ±1,— L.
... is said to possess complete subcompositional independence

D, if for every partition of U^:-

II, {U. (1)
k ^ m + 1, such thai

iC
U IJ (i

t

—t —t

(6.2.1)

i, j = 1, ..., k
-i 1 1
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the subcompositional time series are independent i.e.

c(4^h 11 c(n'2)) 11 .... li c(uf'">) (6.2.2)

V , t. = 0, ±1, ...

then Vi = (U^) will have a structure to its
autocovariance function as can be seen in the following 
lemma.

Lemma 6.9

If U
subcompositional independence then the autocovarianc

If € -S"™; t = 0, ±1, m > 2, has complete

function of v, = a (n,) is—t m —t

r(s) = diag (s) ,(s)
m (6.2.3)

0, ±1, ...

Proo:

If n, has complete subcompositional independence then

'U
log

hi:
l0{ tts,k

Ut+s,2
i, j, k, ^ all different 

s = 0, ±1 ...

Cov -og
U t i log

^tts,k
(6.2.A)

Consider first

log
U,ti
^tk log t+s, j

t+s,k
= Cov tiLeg--- tlog

U t&

Cov
U,

'V, lo +

u tk U

U“t ■ “-et
' i i j :|: k 2 = l,...,m
209
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Xs)
^2jk

(6.2.5)



Similarly

(s)
ijk i&k

=y^!/ i + j + k + ^ = 1......m

so thaty.^j^ is independent of i or j so that

Cov log -og
Utts, .1
Ut+s,k

(s)
k (6.2.6)

Finally consider

Cov l0«7
ki u

. log t + s,i
U t+8,j

= Cov log
ki

+ log
kk

, log
^t+sA

n u U, ,tlr UTS,^

U
+ log t + 8,2

u t+s,j

Cov log U , log :+ Cov ‘•■'k log
U,

't+S;j

since the other terms equal zero 
from (6.2.1)

Y(s) ^ y(s)
1 J

The result follows directly from (6.2.6) and (6.2.7) sine;

(6.2.7)

r(s)( =C(^ u
u,

, In- + s,j
^^^m+1 ^\+s,m+l - 0/ m+1 i- + j = 1

(s) ^ ^Xs)
'm+1 1 = 1 1 J # » * ; m I

□
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The difference between r_(s) in lemma 6.4 and its
equivalent form in lemma 6.9 lies firstly in the fact
that in the former > 0 (6.1.$), whereas no

^ frestrictions hold on the y) ^'s in lemma 6.9 except 
that they must obviously ensure positive definiteness

(0) > 0 reed not necessarily hold
,,(o)0). In lemma 6.4, the represent

of 2(0) (for which y)
(e.g.
variances and so they must be positive values. This is 
the identical difference between the two structures 
of Z in the static formulation of these concepts of 
independence (section 3.$). The second distinction 
occurs when m = 2. At the end of section 6.1 we saw 
that basis independence was no longer automatic when 
considering time series. However as in $.$ for intrinsic 
analysis complete subcompositional independence trivially 
holds in the time series context. This may be seen from 
the definition since what we require is:-

C(ll tid ^ti II "(^tts,k)

i.e. log "ti which alwavs holds, (6.2.8)

i_t j t k = 1, 2, 3

If we compare this to section 3.5, this trivial result 
was also apparent because all 2 x 2 covariance matrices 
can necessarily be expressed in the required form:-

0 ^3 ^3

s = X

_0
/3 b.

On crossing to time series it is now the ACF that must 
have this structure, so that under basis independence of
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a time series

0' 1
,(s) (s)lY3 '3

r(s) = 0
.

+ y(s)
-3

y(s)
3 J

±1,

(6.2.9)

which reduces to ^(s) " r/(s).
In the intrinsic case however whilst complete sub- 
compositional independence holds automatically as 
described above, the structure of 2(s) need not necessarily 
be as in (6.2.9). That is the form of Z in the static 
version is wholly consistent with the definition of 
complete subcompositional independence at m = 2 so that 
both Z and the definition lead to the same conclusion.
In the time series version this is no longer the case.
Part of the problem can be seen by examining the proof 
of lemma 6.9, (6.2.5) depends on the indices i, j, k 
and ^ all being different but that cannot hold when 
they may each be one of 1, 2 or 3. The fact that the 
proof relies on m > 2 can be seen also by noting (6.2.^J; 
again this requires A indices, without which we are 
reduced to the trivial equation (6.2.8).

Although this is something of an anomaly, we will 
copy section 3.5 and for compositional time series on,3^ 
assume that complete compositional independence holds 
trivially.

Corollary 6.10
If U,€ follows a L (u, r(o^ distribution, 

the r/s) given by (6.2.3) is a sufficient condition 
for complete subcompositional independence.
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Proof

Consider cov lO! log
tj

^t+a^
^t + s,i

cov log
"ti
Ut, m+l

log ^t,m+l log
U t + s,k
U t+s,m+l

log
Ut + s,&
U t+s,m+l

0 .

Recall from (6.2.6) cov log U,t, n+1
log

which under normality

U,u

Ut, n+1

i + j 4 m + 1

^ log ti
u, jl log
ti

U
u : C(n,., n^.) 11 c(u
t+s,^ t.] t+8,k' t+s,2

i:|:j :}:ktjl=l, ..., m +

^ 8 = 0, ±1,

^complete subcomoositional indenendenc;

From lemma 6.9, a test for(||)U^ is a test of (6.2.3)
□

Hence we may use the results derived in section 6.1 that
are based on a similar premise. In fact the structure
for r/k) (6.2.3) is now both necessary and sufficient.
Consequently the structure suggested by theorem 6.6 and
lemma A.2 - theorem A.5 for is now sufficient for i = 1“1
... p and all p. Despite this we are again left with what 
seems an intractable problem. However, the definition 
6.8 suggests a further anproach. We require that for each
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possible partition the respiting subcompositions
i = 1, k are independent. Let

^ i = 1, k , then this is equivalent to

11 am.1 <
C(U. (i) i = 1, k^ for all partitions k.

It should be noted that this reduces to

11 a
“i

i = 1, k for all partitions

such that m.€ {0,1}

If we form each of these partitions, complete sub- 
compositional independence may be tested by requiring 
independence in each partition.

For example consider U, then let

V (ij) - log
li
ti,, ^ j ^ 1, 2, 3, ^

then comnlete subcomoositional indeoendence

V (12) I, y(l 3)
t + 8

,12 3) 
t + s

t, s = 0, ±1,...

Independence between the resulting series may be
easily checked using any method in section 2.6 (e.g.
the S test). This may be easily extended to higher
dimensions, but we must form m(m+l)/2 (= ^ i) v^ series

m+1 ^
and make 3 x ( , ) comparisons. This is not only
computationally inefficient but also requires that care
must be taken to ensure the correct critical region
is obtained as is necessary with multiple comparisons.
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In the absence of any concrete method this may perhaps 
be a useful approach.

Despite the difficulties it is perhaps worth noting 
that this form of independence is probably the least 
useful of the intrinsic concepts. The partition 
independence properties have very ready applications 
and these are discussed below. If the analyst wishes 
to study only a subset of his series he may use these 
methods to discover the implications of discarding some 
series. Complete subcompositions independence implies 
that he may quite happily study any subset of the data 
without undue loss. More usually such a subset is 
pre-chosen on the basis of interest for which partition 
independence properties will suffice. In this regard 
complete subcomposition independence may be seen as a 
generalization of some of the concepts described below.
It also offers something in the way of an explanation 
of the data. For example if it holds for the public 
opinion poll data it would give us insight into the way 
public opinions arise. In a poll on voting intentions 
in a four party system it would imply that a swing to 
say the first party away from the second was not related 
to the swing between the third and fourth parties, nor 
the swing between the first and third to that of the 
second and fourth etc. It is difficult to envisage to 
what extent such knowledge of a compositional time series 
would be useful.

6.2.2 Partition Independence Properties

The concept discussed in the previous section refers 
to every possible partition of the compositional time 
series Now instead we consider the independence
properties of a particular partition or set of partitions, 
To start consider the partition:-
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2t"’ = <®ti- ®tc’ G

(-m-G + 1
t = 0, ±1,

(6.2.10)

u (m+1) (6.2.11)

(C)Let the fill-up-value for the series be where

(C) T(nt(c) (6.2.12)

(G)and similarly the FUV for

' 1 - U(c)

Whence ^ compositional time series
by amalgamating the last m-C components of the U, series. 
T^/Q\ may be regarded as the share of accounted for 
by Similarly ^ compositional
time series. We have a one to one mapping from the 
original series to these two newly formed ones:-

(6.2.13)

U, h(c)'
.(

u ^d^C)

(6.2.11)

Having formed this particular partition, various hypotheses 
about the independence of its components may be considered. 
The first of these is time series subcomoositional dependenc;

Definition 6.11 : Time series subcompositional dependence

For n, and the partition given by (6.2.10)
through to (6.2.13) and using the notation of definition 
2.17 (Wiener-Granger causality)

i) If C(U^^^)

invarian'
then is subcompositionallv—r -------------- -

(S T)
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ii) If C(n^^^) T^^^;then has subcompositional
causality. (S ^ T)

iii) If has subcompositional
dependence. (T -> S)

iv) If has subcompositional
feedback. (S<H>T)

v) If C(U^^^) . has instantaneous
subcompositional dependence. (S . T)

1

vi) If C(U^^^)4=^t^^^^ has complete subcompositional 
dependence. (S4=^T)

1

1

1

If we compare definition 6.11 with definition 6.1 
it is easily seen that subcompositional dependence is
the exact intrinsic counterpart of time series dependence
of a basis. W., U^, are replaced by C(U^^^%and
T(t (C) t

i.e, U^(^) is used as a basis, and the term' t — L,
composition is replaced by subcomposition. Consequently 
much that was said previously is valid here, so that 
testing and modelling is as before, but interpretation 
is different.

It is also possible to define a symmetric set of
relationships on U

(S + T)^, ...., (8<
O’
:bT)

; will denote these by (S 
as the distinction between

2’

2) " » \ ^ / 2' 
the two will prove useful below; although in fact with 
reordering they amount to the same thing as (S 
etc.

The interpretation of the above subcompositional 
concept varies at least notionally from its extrinsic 
parent. Here we are studying the relationship between 
a subset of the variables and their "share" of the full 
composition. As an illustration consider again the 
example of a household expenditure survey. Suppose we 
are interested in studying the proportional breakdown 
spent on i^divudal types of food given the proportion
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of income spent on food. Does someone who spends $0% 
of their income on food buy a different basket full of 
goods than someone who spends say 10^? In the extrinsic 
case we were considering the amount spent on food 2500 

or 2100 say, whereas now it is the proportion of income 
that is under investigation. In this example one would 
prefer the extrinsic analysis where possible. However 
if the basis were not known, intrinsic analysis may 
still give useful results. If we assume that those on 
a high income spend proportionally less on food although 
their total expenditure is higher so that they buy more 
luxury foods (e.g. expensive cuts of meat vs. bread).
Then a higher value of for luxury foods will be
related to a higher income in the extrinsic case, but a 
lower proportion in the intrinsic. Thus if data is 
lost the intrinsic approach may still offer an extrinsic 
interpretation.

A purely intrinsic example may be found by considering 
the opinion poll. Does the swing to one of the major 
parties vary according to how much of the vote the 
remaining parties take, and to how many people don'p vote.
If there is no difference then S T. If the parties
are evenly matched e.g. Ut(coN) " ^\(LAB)' voters in 
the next few elections may be motivated to vote for one 
of the major parties. This would result in a higher turn 
out at the polls and a smaller vote for the remaining 
parties. If instead there is a strong seat the opposite 
may occur. In such a case we clearly have S + T.
Similarly if in fact a high vote for the major parties 
favours one party we have S . T, and so on.

We now consider the next form of partition independence

Definition 6.12 : Time series conditional subcompositional
dependence.
For the partition given by (6.2.10) - (6.2.i3) and
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definition 2.17
i) If then the partition is

said to have conditional subcomoositional independence.
(S° 11 Sc/t)

(c)Tl ' the subcompositionii) If c(nj^)) +

is said to conditionally cause C(U^,_,).
(S^ + Sg/T)

iii) If C(ni^^) . G(U, the partition has conditional
t t(Q) t

instantaneous dependence. (S .S^/x)

-t
feedback.

iv) If —)C(U,, . )/x)^^the partition has conditional.(C)
^C) t

Sg/x)

v) If C (Uj. ^ ^ ^ ) 4=^C (Uj. . )/x(^^)the partition has complete
u 0 (Q j t ^

conditional dependence. (5 ^^SU/x)

Where A ^ B/a implies that in definition 2.17 
0 = {A,B,a} for , }.

Definition 6.13 : (left and right) neutrality of time series
mFor the partition (6.2.10) - (6.2.15) of we-t

hav(
i) Left neutrality if C(U^^^) || (h ii’

(c)ii) If C(U^ ) ^ 2t(^) have left non-neutral causation

but if C(lji’) / we similarily have left
neutral non-causality.

(C)iii) If ^ C(U^^^) we say we have left non-neutral—t ( Q.) —t ---------------------
dependence (N ^!

f C ) %and . / C(X ) is left neutral non-dependence-t(c)
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iv) If =

non-neutral feedback

jhe partition is said to have left

v) IfC(u(^)) U,, , the partition is said to have left-t(c) ----
instantaneous non-neutrality (N

VI,

via.

If the partition is said to have
1

-t(C)
complete left non-neutralit

(C)
(M]^)

Interchanging with . in i) - vi) above gives'U
the corresponding definitions of right neutrality

where 'u 6 {JJ_, , /,
(Ng

Definition 6.1i : Partition independent time series
i) For the above partition (6.2.10)-(6.2.13) the time 

se
if
series said to have partition independence

li(c(4‘^b ’ "'-t(C)' ' ‘t(G)j

ii) Similarly the partition has full feedback if

(P 11)

C(U (C)^.
t =(2t(c)>

“'-t(c)’^ '"t (Pi-

iii) The partition has full instantaneous dependence if

c(nh’ c(u k(G)

v) The partition has complete dependence if both ii) 
and iii) above hold. (P^*)
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From the above set of definitions it is clear that 
there is a difference between the static forms of independence 
and those considered here. In the static case two quantities 
are either independent or not independent. Here* although 
the two extremes, independence or full dependence also 
exist, between them lie other forms of independence/ 
dependence. Schematically we have:-

//// = n Y+xnx.Y = X^Y. 

:::: = x/Yn Y/x " x/Y = xllY

Thinking of e.g. Xt|Y as a subset of X/Y allows us in turn 
to think of X/Y as a form of independence. This gives rise 
to the wording of the definitions 6.11-6.11. For example 
in definition 6.13 the forms of dependence are described 
as non-neutral, and the forms of independence as neutral 
but with e.g. non-causality. Similarly in definition 
6.12 it is necessary throughout to be reminded of the 
conditioning. If S / S /t we have a form of conditional^ C Q
independence, but if 3^ ^ S /r we have a form of conditional 
dependence.

All of the partition independence properties above 
have useful applications depending upon . the context 
of the compositbnal data set under investigation. The 
use of subcompositional dependence has already been 
discussed. In order to' understand some of the other 
properties consider again the example of a political opinion
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poll. In particular let us assume the following variables,

% preference for i) Conservatives (CON)
ii) Labour (LAB)

iii) Liberal (LIB)
iv) Don't know (DK)
v) Other (OTH)

If interest is in the relationship between the two major 
parties the inclusion of the other variables may prove 
superfluous. Thus we need to check to see if this is 
the case. If variables iii) - ^ in no way influence 
i) and ii) i.e. if they are 'neutral' we may analyze 
CON and LAB on their own, via C(C0N,LAB). In the static 
case we reouired

C(C0N,LAB) II LIB,DK,OTH i.e. N 1

However, here we are primarily concerned that LIB, DK, 
OTH / C(C0N,LAB) and possibly LIB, DK, OTH / C(C0N,LAB),

/ If we have N. then omitting iii)i.e. N^/ and N.
- v) from our analysis does not lose any information 
about i) and ii) except that we cannot compare the 
influence of CON on the variables iii) - v) with that 
of LAB. If we wish to predict the future value of C(C0N, 
LAB) e.g. to see who would win the next general election, 
then even supposing we had N^ ., as well as ^2^' 
still only seek to analyze C(^0N,LAB) and ignore LIB, DK 
and OTH. Thus N^/ is only necessary when for example we 
know the values of LIB, DK and OTH in advance of CON and 
LAB. Consequently the major neutrality concept in this 
instance might be N^ /. If it was the case that 
occured we may still reduce the need to include variables 
ii) - V) as explanatory variables in the analysis of i) 
and ii). It may be that the effect of variables iii) - 
v) is only due to the fact that the preference is not for 
one of the major parties, and not specifically due to 
which alternative to the major parties is chosen i.e. 
we have T(LIB, DK, OTH) ^ C(C0N,LAB) but
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C(LIB, DK, OTH) / C(CON, LAB)/T(LIB, DK, OTH). This
would allow the anaylst to reduce their data set to

i) CON 
ii) LAB

iii) NMP = T(LIB, DK, OTE) (Not Major Party)

If interest lies in the smaller parties we would need 
to investigate Ng properties. Partition independence
would then be an amalgamation of the N^ and N^ concepts.

In order to test for the various types of independence 
we may again utilize the methods outlined in section 2.6. 
and Geweke (1982, 1981). Also we may define measures 
of dependence in a similar manner to definition 6.2.
Since such measures are a generalization of definitions 
such as 6.2 we now give only a brief summary of possible 
measures. As already mentioned subcompositional 
dependence is the direct analogue of time series dependence 
of a basis and so its measures may be defined in terms of 
definition'6.2.

Definition 6.15 : Measures of time series subcompositional 
dependence.
These measures P (S+T)^' ^^T+S)^' ^\s.T)^ ^(84^^)

are defined as in definition 6.2. but with the word 
compositional replaced by subcompositional,Y^^y 
C(n^^^) and by with T in the r.h.s. replaced by
^l^^t(C)^' Similarly is defined symmetrically
in terms of U t(C)

For example the measure of instantaneous subcompositional 
dependence on ^8

^(S.T) jin
ll(l(C)/l(C),^' ^(C),p)/l^^^(C)/^(C),p'^<C),p^l

lid,̂<C)' ^(C)/^<C),p' ^(C),p
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where V,̂ C) -

Definition6>l6 : Measures of time series conditional
subcompositional dependence.
For the partition given by (6.2.10)-(6.2.13)> with

-t "(T-t t(C)

and as in section 2.6

Z the past values {Z^ . ; j = 1, 2, ....}p - - u-J

i) The measure of conditional subcompositional causality 
from C(U^^^^)to 0(0^^^^) is

F p = &n
£ (I(C)/V(c),p^-y4C))j

ii) The measure of conditional instantaneous dependence is

S^\S^/T
= jin

£ (V(c)/I(c)..'4°Fd

£ (V(C). Ip''-

iii) The measure of complete conditional dependence is

F ^ = 2n
|£(V(p), v<^Vv • T*

(C),p' -p ' p

F. +F . +F.S^.S^/r
V U V
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Definition 6.17 : Measures of time series neutrality. 

With the same notation as above.

i) F. jin
(C)

ii) ^ = &n
:(v(°>/v<°b[

ill) F» = 2n"'l-

I(I(C),T"/V

.T ,/ = ))!
(C),p' p'-p

v) F_ , F^ , F» , F^ are as in i)-iv) with V/^\ 
^2+ ^2^ ^2. ^244

and V (C) interchanged,

Definition 6.18 : Measures of partition independence
Let A = V<C), xj) then

i) F jin
(V(C)/ A)|.ll(V^^^/A)|.|ji(I

(C) T^/A)t 

(C) ,,,(C)
ii) Rj jin

u(i(oyi(ciJM^ vvyoi.iux /T^i

!l(I(0)’ I'G), x’

iii) F" = F" - F" 
P<=> JS'
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As before tests of the hypothesis F = 0 are obtained by
orcomparing nF with the chi-square distribution with the 

appropriate degrees of freedom.
All the definitions in this section have referred 

to the basic partition:-

U t - (C(u[=>), T^)

This partition may be mapped onto the real plane via the 
a transformation in such a way as to retain the properties 
of the partition i.e.

(C)

(C)' ) t = 0, ±1,

The various covariance matrices required in definitions 
6.15 through to 6.18 are then the covariance matrices of 
appropriate multivariate AR(p) models. Consider for example

ill(B) £13(3)
£23(3)

i3l(B) i32(B) 233(3)

■ VO 1

—t —t
V(C) ^<c)t
4 <

(6.2.1Aa)
(6.2.11b)
(6.2.11c)

where 

-t
(40

^t(C)' is a whi

Var(a^)— U = S = Ill I12 I13

I21 I22 I23

.-31 ^32 Z33

(6.2.lid)

Then the measure in Definition 6.17 for example is defined 
in terms of quantities such as

Z(v(^)/A) = Z. (6.2.15)
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and Z (V/Q^, t /A) -22 -23
^32 Z33

= Z (6.2.16)

Assuming also that

$^.(B) , where var(a,^^^^)
—11 —t —t —t -11 (6.2.17)

and
12,(3) 

22 ^
1+2(3) 1+3(8)

-
h(C) ^<c)t

+
"t 0

where var <C)t
+

1

T T^^2 -23
z'^ Z^
^32 ^33

(6.2.18)

Then
^y(C)yy(C)) ^ g

1 1 (6.2.19)

and l(V^g^, T /I(c)p; T^) -22 y-23
y +

-32 33
= Z (6.2.20)

Comparing (6.2.15) - ( 6 . .2.20 ) wi Lh definition 6.17 it
follows that

= !,n([3+i/!i*|) , = indS+^l/ll^^D- =ln ( 1 £,, | ■ 11 Vl S I )
'1

Thus these measures involve the comparison of (6.2.1A),(r)
which jointly models and (V^/Q\, T^), with that
of (6.2.17) and (6.2.18), which represent independent 
models for and (V^/^^, T^). Clearly if £^2^®^ ~ —’
$,_(B) = 0, then (6.2.1Aa) is identical to (6.2.17) with3 I _L ■>(-
£ll(B) = ±21^11 ^ ^^1 Hence we
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(H oj C O 
•H 

fH -P 
ct5 ‘H 0) C m O
o o c•H pH 0)
-p e 'TJ •HOC O 0C ^
O c (1)
O CQ nc

-p
•H
I—i 
CDP
-P

cO
•H

C
Ph

may regard as a parametric hypothesis about model
Similarily is equivalent to $ni(B) = O'

and N^. to ^ = 0 and 1-,^ = 0.
' 1^ -- —21

A full list of the parametric hypothesis using (6.2.14)
is given in table 6.19 .

Table 6.19 : Summary of partition independence properties,

Parametric hypothesis
Independence
Property

il2(B) i2l(B) 413(3) i^l(B) 123(B) '433(3) -12 -13 -23
s" 11 Sg/T = 0 =_0 = 0

^ Sg/r ^0
. Sg/r 

S^4^Sg/T ^0
7^0

S^*#Sg/T ^0 ^0

Np 11 = 0 =0 = 0 = 0 = 0 =0
:i " ^0
M, rO rO

N, .
& /O rO

N,# rO ^0 ^0 rO ^0 fo

P 11 = 0 = 0 = 0 = 0 = 0 = 0 =0 =0 =0
^0 /O dO ^0 rO

P . ^;o ^2 ^0

^0 ^0 rO dO rO ^0 lo
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other hypotheses may be extracted from the table,
Ng is the symmetric version of with
and replaced by 0^^(B),$^2^)and ^^^.Also the opposite
hypothesis is obtained by replacing " = 0" by "^0" and
vice-versa, e.g.

Ni / : = 0 , 0^^(B) = 0,

For subcompositional dependence we need to consider 
the following models.

0^^(B) $^^(B)
—t

iS”'

't'

(6.2.21a)

(6.2.21b)

where Var ,(C)-
-11 -13

bt 4i (6.2.21c)

and
IjPB) £23(B)
i^pB) $33(B)

^t(c) ^t(c)
- JL

bl
U

(6.2.22a;

(6.2.22b;

where Var ^^(C) ^^2 -22

Z" ZA^2 ^33
(6.2.22c)

The subcompositional dependence properties may now be 
defined in terms of these models. The off-diagonal 
elements in the o and Z matrices are responsible for the 
various relationships between ^ad T, (6.2.21)
and (6.2.22).
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Table 6.20 : Summary of subcompositional dependence
properties.

Independence Property Parametric hypothesis

= 08 11 T^ (S 11 T^)

S + (S ^ Tg)

T ^ S^ (S ^ Sg)

S T\ (S T^)

= 0

0

+ 0

0

G

i 0

S.T^ (S.Tg)

S (S Tg) i 0 i 0

^ 0

We note that model (6.2.21) is equivalent to (6.2.14)
for the and T+ series if lq2^^v " —'
i.e,

-j- i J. W. L _|_

/, in which case " i^q^B)2and Similarly the equations (6.2.22) are
equivalent to (6.2.14b) and (6.2.14c) if
&^n(B) = 0 i.e. if N. /. Now recall that— jl — 1

Ng 11 /

Hence under all these neutrality types (6.2.14a) and 
(6.2.1.4c) remain identical to (6.2.21a) and (6.2.22b).
In going from f to we required ^
and l23(^) ^ going on to N^ 11 = 0, = 0,
which affect (6.2.14b) and (6.2.14d) only. The only off- 
diagonal 6's in (6.2.14a) and (6.2.±4c) or now equivalently 
(6.2.21) are ±qo(B) and table 6.10 we
see that
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2 n (S-Y^T)^ , similarly

n (se/yr) (6.2.23)

Also we have.

P 11 = P, 11 n (S U T)

N, 11 n (S 11 T) (6.2.2A)

11 *' 9

We may compare (6.2.23) and (6.2.24) with the equivalent 
result of Aitchison (1982) that of (3.5.23). A similar 
result to (3.5.22) is obtained if we note that

/ S^/T= / (6.2.25a)

and / 6.2.25b)

(6.2.25a) refers to the fact above that / makes (6.2.^4. 
for and equivalent to (6.2.21). If only + S^/r
occurs i.e. 0^p(B) = 0^ then only (6.2.14a) is equivalent 
to (6.2.21a). Again comparing with table 6.19 we have 
that

IN. e-

'2 +

Q / S^/T ^ (T / S)^ similarly

/ Sg/T n (T / s)^

(6.2.26a)

(6.2.26b)

(6.2.26a) also gives rise to (6.2.25b).
However we can go no further e.g. it is not the case

that

E S^/T n (T Y^s)^
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Although S^/T reduces (6.2.1.A&) to (6.2.21a) it does
not reduce (6.2.1^^) to (6.2.21b). Thus the requirement
of N,^^that (B) = 0 cannot be met via (Tt/»S), since 

1 J1
in general ^ Thus we must conclude that
whilst (3.5.22) states that

N 1 JI = S„ 11 sTt 0 (T 11 S)j_

in the time series context this is not true.
It should be noted that (6.2.26) may be derived using 

the result of Geweke (198^J, that for three series
and Z,, with obvious notation that —c

X+Y/Z ^XZ^^ " ^Z^^

XZ^Y

i.e,

^X+Y/Z ^ ^Z^Y'
(6.2.27)

whence
FS^,T^sC

These are the measures relating to (6.2.26a).
The main reason fur being interested in expressions 

such as (6.2.23), (6.2.2X) and (6.2.26) is that it enables 
us to produce a "lattice" of hypotheses similar to that 
produced by Aitchison (1982). This allows us to use the 
simpler types ofVhdependence as building blocks for higher 
forms of independence, and in the other direction when 
a stronger form of ^dependence does not hold we may find 
a weaker one that does. Thus, for example the NMP (Not 
Major Party) variable above would be a way of reducing 
the opinion poll data if neutrality did not hold but 
the weaker conditional non-causality did. In the light 
of this it is a pity that (3-5.22) does not hold In the 
time series context. However again referring back to the
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opinion poll, the need to reduce the data set in many 
contexts required only N, / or / so that (6.2.26) 
perhaps offers the most useful combination of hypotheses.

The difference between Aitchison's (1982) results 
and those considered here primarily lies in the auto- 
correlated nature of the data and the added difficulty 
in testing for independence of such series. If we compare 
(3.5.25) with (6.2.1^J, (6.2.21) or (6.2.22) and (3.5.26) 
with table 6.19 or 6.20 an insight into this is gained.
We may postulate that g. and 8^ in (3.5.25) are equivalent 
to $^c(B) and (6.2.1A) or 0^^(B) and $^^(B)
in (6.2.21) and (6.2.22) respectively. Similarily the
Z 12 in the models may be thought to correspond. In
(3.5.25) these parameters perfectly explain all the 
required relationships, the _B' s the subcompositional 
independence properties, and conditional
subcompositional independence property. However, now, 
in addition to the analogue of the ^'s the and
we also have 0^^, 0^^ and Each one representing
a different direction of the subcompositional independence

ana mproperty. Similarily in addition tcrZ^^ we have 0^^ 
representing the conditional subcompositional property. 
Thus in Aitchison's model one property is modelled via 
the mean and the other by the covariance matrix. In the 
time series case both forms of independence are modelled 
by both types of parameters. One may try to form an 
alternative model where this is not the case, but this 
would become unnecessarily complicated in time series 
modelling terms.

To illustrate this point we may combine (6.2.21a) 
and (6.2.22a) to give us

21

-1 1 (3) + ,(B) ,(C)
—t (6.2.29a)

-22
v(C)
—t, ±2,(3) ^±(0) (6.2.29b)
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In such a model we would require both and
to be a lagged polynomial in positive and zero lags as 
well as negative lags i.e.

1:3(2) E 4>., -BJ instead of the previous (6.2.30)

1:3(3)
CO
z $ for i 1, 2,

This is necessary in order to incorporate V + r and v.T 
as well as T + v. The conditional subcompositional property 
would have to be modelled via b) ^ and and their
cross-correlation. Again, to allow for the varying 
directions, both series will be auto-correlated making 
it necessary to examine a further model of the form

t(C)

131(3) li,(B)' \ (O'
—t

'4“3'

T^i(3) 1^2(5) -t(c) ^^(C)

where now fe(0 ■ is

white noise with variance-covarianc; ^^11 -el2
Z Z 
e21 e22

(6.2 31)

Clearly (6.2.29) through to (6.2.31) are much more complicated 
to estimate. It is possible to explore such a model further 
and relate it back to our earlier models. To a certain 
extent Geweke (198^J does this when he forms a measure
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of F decomposed by frequency. Thus the feasibility of 
(6.2.29) - (6.2.31) can be explored further. For the 
time being we prefer to stick to the simpler models as 
it seems unlikely that we will gain much by not doing so,
The above model does serve as a useful comparison,
however to (3.5.25).

Our final form of partition independence is the 
natural extension of definition 3.31.

Definition 6.21 :

a) has partial subcompositional-t (C)

independence restricted by if

1) c(d[c)) II C(n^(^,)

ii) If C(E^^Q\) € ^ has complete subcompositional

independence.S C (S (C)

b) D, 6 has partial subcompositional independence

with causalitv to i----------------- -----  —"C

1) C(IJ< = )) /

ii) If C(U\ (C
<m-C ,has complete subcompositional

n
independence.

Equation a) is identical to definition 3.31 except that 
we have t = 0, ±1, ... here. The second form of 
independence;.b) is one in which C(U^/g\) is allowed 
to stand on its own as consisting of a subcomposition with
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completed subcompositional independence. However, it
is allowed to cause be instantaneously related
to but C(n^^^)is not allowed to cause it
(i.e. On; might define further form

( C )partial independence in which G(U^ ^
of

) - G(2t(0}).

conceptually this seems to make little sense. The
basic idea behind making ^ive complete
subcompositional independence is to try to capture the
non-compositional idea that the elements of E/c)
all indemendent of one another. To make these elements

(G)dependent on the remaining subcomposition whilst
this is so seems to detract from the basic idea.

The corresponding parametric hypothesis follows as 
before. For the model

lll(B) $no(3)

121(B) l,n(B)
-12

-92

I'G) 1—t .1 '

■■ dt(C) ^t(G)

[dll ^
T y ^^1 -22

We require under 8^ 11 that 1^2(^^ " 1'
$2i(B) = 0, Z,^ = 0 and l^o(B), ^-12

'(C)

-22 -22

and under 8 / (S
0^2(8), Z^gE X.

that 121(B) = 1 and

Where X is the parametric set required for complete 
subcompositional independence.

e.g. Z^^ ' , . Um+l —md-Lag ( d-, , . . . . , j

However, we again have the difficulty of testing for
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complete subcomposit^onal independence, so that boths^^/s
will prove difficult to detect in

practice.

6.2.3 Progressing Partitions

In the previous section we examined various 
partition indepedence properties. Often we may wish to 
examine several partitions of U,, and in particular 
"progress" through the composition. For example consider 
our opinion poll data again and order it thus

"Don't know", "Other", "Lib", "Lab", "Con"

Suppose we are interested only in examining the relationship 
between the two major parties, but wish to be as comprehensive 
in our approach as possible so that all variables are 
examined. If, however, the additional variables are 
superfluous to the Lab, Con relationship we may omit them 
from our analysis. We might believe that the variable 
most likely not to be superfluous is the next major party, 
after that 'other' parties.and finally the "Don't know" 
variable to play little part in determining the Lab Con 
conflict.. If this were so we may progressively work through 
the composition to see which variables are not needed. We 
would examine the following partitions
a) ̂"Don't know"
b) ^(Don't know. Other)
c) fc(Don't know. Other, Lib)

C(0ther, Lib, Lab, Con)^
T(Don't know. Other) | C(Lib,Lab,Con 
T(Don't know. Other, Lib)|
C(Lab, Con^

If for a), b) and c) we have Ng / then we need only examine 
C(Lab, Con). However we might find, for example that 
only held for a) and b) so that examination of C(Lib, Lab, 
Con) was necessary; and so on.

What would therefore be useful is a way of describing
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this progression through partitions. This comes via the 
idea of order given below.

Definition 6.22
For some specific ordered 2+^ ' (^2* ^2' ^^i+l^'t'

U has independence property of order k if the stated 
independence property, as given by definitions 6,11-6.14
holds for C = 1, ..., k in the partition (U (C) ut(C)' ^t(G)

If k = m then is said to have complete independence 
of the form stated.

As in section 3.5 it is rather cumbersome to try to 
test for an independence property of order k using the 
methods above. The solution previously was to employ 
the m transformation rather than a^. We therefore consider 
the &n ARMA^^P,q) model.

Let X,-L

^ (B) X,

and

ill's)
kxk

(m-k)xk

-^^kx(m-k)

21^^^.\ . — (m-k)x(m-k)

*1 "^(k)
-^kxl
X
"t(k)

. . (m-k)xl_

(k)

(k)

(6.2.31)

where Vai Aqi I22

^^1 -22

Various forms of independence are represented in 
table 6.23. The equivalent for left neutrality is 
obtained by reversing the order of U, before taking
the m transformations.m
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We recall the previous discussion in section 3-5
n

regarding the properties S ^ T and S ^ order
k, and the fact that they seem to be either confounded 
with neutrality or have no practical application. 
Consequently we concentrate only on the concept of 
neutrality.

Table 6.23 : Various forms of right neutrality and
their parametric hypothesis under model 
(6.2.31)

Independence Property
^2 ^
Ng of order k

N. JJ_ complete
Ng / at k
Np / of order k

Parametric Hypothesis

/ complete 
Np / at k

/ of order k

Ng / complete 
Ng / at k 
Ng / of order k 

/ complete

llhB) = 0.121(B) 0,Ii2 . 0
It 11 It j

and both diagonal matrices
$/B) and % both diagonal 
121(B) = 0

" and lower triangle of
In.(B) zero
lower triangle of 1(B) equal to zero 

and upper triangle of
112(B) = 0

9.n(B) zero-11
upper triangle of 1(B) equal to zero
-12 0
^12 " 1 —11 matrix
Z diagonal matrix

In our opinion poll example, if / of order 1 
occurred we may drop out "Don't know", if / of order 
2 we may drop both "Don't know" and "Other" and if 
Ng / of order 3 occurred we may drop the first three 
variables.

The ^n AR models enable us to tell at a glance 
how far we may go in dropping the variables. Although
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no a priori knowledge of C is required, it does
require knowledge of the most likely variables that
can be dropped so as to order U,.

6.2.A. : Some numerical examples of partition independence
In example A.18 and section A*4 we analyzed two data 

sets of political opinion polls. The GALLUP(G) poll
and the N.O.P. We recall that both data sets consisted 
of 108 observations on A variables:-

1. CON
2. LABt
3. LIB^ 

A. OTH,

Because of the frequency of zeros occurring in the A 
series OTH, we choose to model

:h

C(C0N, LAB, LIB)
The accuracy of such an approach rests on the neutrality 
of OTH, to CON^, LABh and LIB^. What we have is theU u U U
partition

(C)LAB, LIB OTHj U t k(c)

from which we may form:-
C(C0N LAB LIB) = C(uj^^) =

" ^t(C) ^t(C)^

Since the seconisubcomposition consists of only one 
variable and hence the two concepts
(S ^ Tl, and N^ ~ merge into one. Further since 
C(OTH) = 1, Sp 21 is trivially satisfied.
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Thus we wish to investigate the relationshio between
U, and T t(C) The first stage is to map our two series
onto the real space via the a transformation. Let^ m

4 = "2(:t: 2n(C0N^/LIB^)
say

As mentioned in section 4-4> one way to avoid zero
values of OTH, is to reset it to a small position 
value. This we have done, replacing 0.0 by 0.05.
With the data thus transformed the following AR models 
were fitted:-

AR^(2) to the series V,
(i —t

and
AR^(2) to the series T,

AR^(2) to the series (V^ , T^)

We will let the error covariance matrices for 
these models be defined as

^1(2x2) ^l(lxl) ^^x3 respectivelv,

Using these we may construct the various estimates of 
measures of neutrality.

V#T = iog(|T^|.|z^|/|r|)

A A A

V+T = log(|T^|/|T2l)

T4-V
= log(|ij/|E2l)
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FV.T
= FN 1.

iog(|z_|.|T_|/|r|)

Also

e xio

a ^4

nFNi- a x;

nj,
'1.

a- X 2

under the hypothesis F^ - = 0 forN }
1

The AR(2) model was chosen since the various F measures 
have been developed on the assumption of autoregressive 
models. Thus although the ARMA(l,l) model was used 
previously in section 4.4. here we use the AR(2) since 
it produces a reasonable fit and it provides a good 
approximation to the ARMA(1,1) model.

The models were fitted using the WMTS-1 package 
and MINITA3 for the multivariate and univariate models 
respectively. The results for the two data sets are 
given in table 6.24.
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Table 6.24 : Estimates of T-, Z,, T and the F measures ---------- 1 —1 —
for the GALLUP(C) series and N.O.P. series,

GAT,Lnp(C) Series N.O.P. Ser;_es
T^(|T^|) 0.6735 0.4319

^1 '0.0451 0.0396' ^.0391 0.0342'
^.0396 0.0499 _0.0342 0.0407_
6.86939 X 10"^ 4.20541 X 10"^

r '0.0448 0.0391 -0.0108' 0.0360 0.0317 -0.0293'
0.0391 0.0491 -0.0181 0.0317 0.0382 -0.0334

^L0108 -0.0181 0.4756^ _-0.0293 -0.0334 0.3815.

III 3.11550 X 10"^ 1.29206 X 10"^

1^2 1 6.65904 X 10"^ 3.66963 X 10"^

IT^I 0.47555 0.381549

n 108 108

42.70""^ 36.78"""

37.58""^ 13.38..
'U 4

a,

3.36 14.72

nF^1.
~ X/

1.76 8.68

243



Looking at the results we see that the GALLnp(C) poll 
has only whilst the fT.O.P. series has —>. Thus
our models in 1.1 are adequate for the GALLUP(C) series, 
whilst the N.O.P. series might well be predicted more 
accurately if OTH^ were included.

The difference between the two series may occur
for a variety of reasons. Firstly, it may be due to 
the large number of zeros present in the OTH, series.
When OTH^ ^ 0 the values in the GALLUP(G) series tended 
to be somewhat smaller than in the N.O.P. data. This 
makes OTH^ very "flat" in the first case, causing it to 
add little to the remaining variables. The fact that 

^^ often zero distorts the true situation in any 
case. Secondly, the WMTS-1 package proved to be highlv 
unreliable making its results very suspect. Finally, 
there mny be differences in the two surveys, e.g. wording 
of uhe questions asked, sampling design etc. If the 
results here are accurate then an investigation into 
these latter possibilities may shed light on why the 
difference is occurring.

For our second example we use GALLUP(A) series.
This series is based on a slightly different set of 
questions than the (C) series, which allows for the 
response "Don'u know". It t]^:s contains the five 
variables:-

i) - (iv) as before
v) Don't know DTK,

In ■
:he

:his series OTH^ again had to be doctored to remove 
zeros. The DTH^ variable remained non-zero throughout

Using uhis series we are able to distinguish between S ^ 
and N % and examine 8^ ^ on the same partition as
above, but with an extra variable in the U^/m\
Whence we have:-

set.

CON LAB OTH DTK = U!(C) u, (c)
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from which we may form

C(C0N LAB LIB) = c(nj^))

C(0TH DTK) = G(:t(C)

T(C0N LAB LIB) _ _(C) _” ^t "

U *(C)

u t(c)

1-T t(C) '

Transforming thesefromthoxS^ space to the^^ space gives

= log(CON,/LltL) 
log(LAB^/LIB^) 

OTE,

= log

To compute the various F measures we fitted AR(2) models 
to the following combinations of variables, with covarianc; 
matrices Z

Z = A 'M -12 -13
A A '
-12 ^13

-21 -23 —21 AC
_-31 -32 AF A31

B =

B21

Z = C =

%2

BF

CE C
G-21

12
CF

; AB
AD

A. Z = D

5. Y, Z

6. Z
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The measures computed were then

nFnl' X+Z = 108 X log (|F|/|BF|) = 15.163"""

1
= 108 X log (|C^/|BC^) = 12.037" ~

nF,XIZ " ^^(T.S) = ^ (|BlH.|BF|/|B^) = 9.(20"" ^ Xg

nFY+Z nl (S+T), 108 X log (|F|/|CF|) = 17.4(2""" X2

Z+Y

Y.Z

X^Y/Z

nF

nF

nF

^^Y+X/Z

^^X.Y/Z

^ (|E|/|CE|) = -4.5(4 5 0.000 ^ X2

^^(T.S) = ^ (|CF|.|CE|/|C|) = 0.009 ~ xf

= nF" . = 108 X log(|CE|/|AE|) = -8.263 EO.OOO(S°-,Sj,/t)
X 4

nF . = 108 X log(|BD|/|AD|) = -12.20(50.000
^4

AD A.nn (S^.S^/r) 108 X log( I AD I. !AEI/ ^12 )= 1.0937

"^YZ+X = nF,,

^^X^YZ ' "Xi

^^X.YZ = nF;

^^xz.^ = nf;

n "p" Y^XZ = nF;

nFY.XZ

108xlog(|D|/|AD|) = -0.166 5 0.000

= 108xlog(|C|/|ACj) = -3.590 E 0.000

1
108xlog(lAD|.[ACi/iA|) = 6.331

nF,, ^ = 108xlog( I Et / jAEi ) = -12.806 E 0.000
' 2

108xlog(|AB|.|AE|/|A|) = 1.0937

~ X 

%

'\j

108xlog(|B|/|AB|) = -1.156 = 0.000 X6

~ X
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nF« ^ m = nFL. = 108xlog(|AD|.|AE|.|AF|/|Aj) 6.A38
A . 1 • ^ 1

^ 108xlog(|D|.|E|.tF|/tAL) = 22.666
A , 1 , Zj 1

As required nF;^^= + nF^^

and nF S^*- - “‘(T*S)2 ' ‘“(s=.s,/t)

Unlike our previous examples we did not use WMTS-l to 
estimate the multivariate models. The program failed 
with this data set and so we used the SAS package instead.
The PROG STATEPACE Statement allows the user to fit 
statespace models. Multivariate ARMA models may be expressed 
as statespace models ana then fluted within uhis irameworx. 
For some of our estimates F was negative, which in theory 
should not occur. This appears to be due to rounding error, 
and assuming F - 0.00 would indicate less accuracy in 
fitting the higher parametric models. Geweke (1982) suggesus 
using OLS or even the Yule-Walker estimates on the grounds 
that both are eouivalsnt to the M.L. estimates. Tne Yule- 
Walker estimates certainly would produce positive F's 
despite being otherwise less accurate. Again some of this 
inconsistency may be aus to the occurrence of zero's in 
the OTHj. series:- The measures relating to only and
Z, remained positive (as can be seen above). Yj. is the
—t ^only variable likely to beihfluenced substantially by
the zero's in the OTEL series. This may of course be only
coincidence.

'esults we see that we have neutrality 
from both the right and left, that is:-

Sxamining me

11 and 11

However we also have since nF^^^ = 36.620, the
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sum of the three required components above. This is Xg* 
and highly significant. Also its components are all
significant, the least one being (T+S^, which is a component
of We further have that (S+T), Both (S#T)^ and
(S+T)^ seem to contradict JJ_ aid JJ_. As already 
mentioned if our intention is to be free to predict 
either of the subcompositions by omitting some of the 
variables then does not infringe on this. Neither
do (S+T). or (S.T)^ so that the only contraction occurs 
with the presence of (T-^S)^, but as already mentioned 
this is only just significant. Thus we conclude that 
both = ^ON LAB LIB)and 1^(0) " modelled
independently of each other without undue loss of
iniormation,
form

If we wish to investigate a series of the

i) One of three major parties (TMP) 
ii) Not one of three major parties (NMP) 

i.e. i) = T(C0N LAB LIB) ii) = T(0TH DTK)

.(C) and to
for one

we would do better to include both n_— U
improve accuracy. This means that the 
of the major political parties over the other is not 
influenced by the choice between minor parties or 
undecided voters. A similar converse property holds.
The proportion preferring a main line party over 
another party or those undecided i.e. TMP vs NMP does 
seem to be influenced by which parties are involved.

Finally we note that we also have P 21 which suggests 
that all three components^do not influence each other. 
Again this is contradictory, in the fact that both (S«=^T)- 
and P 11 hold. This may in part be due to the strange 
negative values of some of the F's. Thus these are 
subtracting from the signficiant parts of Fp^ reducing 
it so uhat is is no longer significant. Bence we must 
assume that with other estimation procedures better
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results will occur. The final interpretation depends
on the nature of the analysis required.

6.5 : Summary and Conclusi on

In this chapter we have examined independence in 
the time series context and in the compositional context.
In bridging the two, various useful time series compositional 
independence properties have been developed. However,
throughout it is clear that many additional problems occur 
in moving from the independence properties of Aitchison 
(1982) to those of this chapter. M^iy of these problems 
occur because of the directional nature of the relationships 
that exist between time series. These lagged dependencies 
make it difficult to express parametrically basis 
independence and complete subcompositional independence.

Various initial attempts to do so have been made here 
but clearly further work is needed. Also the partition 
independence properties do not fit together so neatly as 
they do in the stationary case. This too needs further 
development.

Perhap s the most
exa mples. The se give
in a clear way . They
are likely to be more
to be re-defin ed *

The next st ep is
of independ enc e throu.

useful and which may possibly need

would, for example, aid us in understanding the parametric 
form of a series which has basis independence.
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'] give you [gaming so do nor forsake my reaching."
Proverbs 4:2

CHAPTER 7

Conclusion

7.0 Conclusion

This thesis has sought to develop methods for the analysis of 
compositional time series. The approach has been to combine the 
existing theory of time series analysis with that of compositional data 
analysis. The resulting models have been scrutinized as to their 
properties and applicability. Although only two models have been 
considered in detail, the ln^ARMA^(p,q) and the ln^ARMA^(p,q), the 
approach to handling compositional time series is quite general. Thus 
for v^ - ARMA^(p,q); v^ = f(u^) € we may form other f-ARMA^(p,q) 
models. Consequently we have developed not just a specific method, but 
steps towards an even broader approach. Clearly this is an area for 
further research.

The two models we have examined provide a practical and straight 
forward representation of compositional time series. The ln^ARMA^(p,q) 
model utilizes an already popular transformation, and as was seen in 
theorem 4.16 gives rise to a symmetrical model on the simplex. This 
invariance property makes it appealing for many applications. On the 
other hand the ln^ARMA^(p,q) model supplies us with both an alternative 
to the ln^ARMA^(p,q) model, and with an "ordered" description of the 
possible structure of u^. Both models may be used for forecasting, and 
each has particular applications with regards to understanding the 
interrelationships of the components of u^ and the sum of its basis 
(where this exists).

There are still many problems to be overcome. For example, 
although we examined the forecasting problem in some depth, we still 
have not come up with a hard and fast rule of which point predictor to
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use. The approximation to the mean, although interesting, does not seem 
to provide an easy solution. Its main application might be for 
approximating the mean of the univariate model. Clearly the whole 
problem of forecasting compositional time series is not as neat as it is 
in other areas of time series analysis.

The results of chapter 6 provide an interesting framework in which 
to understand the relationships between the constituents of the 
composition. These proved to be more complicated than their a contem
poraneous counter parts, as can be seen by the discussion of basis 
independence, complete subcompositional invariance and the directional 
nature of the other forms of independence. Of these, those given by 
definitions 6.1 and 6.11-6.14 are probably the most useful, and 
fortunately are the most straight forward to investigate. However, even 
these contained contradictions in e.g. the inability to derive a lattice 
of hypotheses for the partition independence properties.

A further result of this study of compositional time series is to 
highlight areas of interest in both of the separate areas of time series 
analysis and analysis of compositional data. In the time series 
context, is it the case, as possibly suggested by the example in section 
4.4, that the univariate model will produce better forecasts? Similarly 
we can discern a need for further tests to see if several time series 
are independent. In compositional data analysis can we find an exact 
rule to determine the number of modes of the L distribution? How
do other distributions on the simplex behave? Is there a way out of the 
zero value problem? Clearly there is a need for further work in these 
areas and in the combined area of compositional time series.

In summary we see that we have so far investigated two specific 
models for compositional time series, pointed the way to a much broader 
approach, considered some areas of application, and gained an insight 
into the separate areas of time series analysis and the analysis of 
compositional data. There are still some loopholes to be filled, but as 
the old proverb states,"to walk a thousand miles one must take the first 
step".
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7■1 Further Work

We have already seen in the preceding chapters and in the last 
section some possible areas for further work. We summarize some of the 
main possibilities below.

1. Any statistical method is best tried, and further developed by 
application to real data. This is perhaps the greatest need of our work 
so far.

2. The models may be similarly tested via simulated data. For 
example, a Monte Carlo study to determine the small sample properties 
etc. of the tests of independence.

3. Other transformations which map S® onto IR™, and hence other 
f-ARMA^(p,q) models.

4. Can the forecasting problem be further developed? For example, by 
using the Taylor series expansion method to approximate the mean. (See 
Aitchison and Begg(1976)).

5. The application of the models to repeated surveys.

6. Spectral analysis of compositional time series.

7. Comparison with other statistical models, e.g. the invariance 
property of the ln^ARMA^(p,q) model seems to have a connection with the 
models used for contingency tables. The choice of reference variable is 
similar to the choice of which margin to constrain.

3. Applications in other areas, e.g. income elasticity.

9. The zero value problem.

10. The contradictions in the formulation of the various independence 
properties.
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11. An exact rule for the uni-modality of the and M Z)
distributions.

12. A further model that incorporates both the stronger forms of
compositional independence, as represented by the Dirichlet distribu
tion, and the weaker forms as represented by the Z) or M (j{,Z).
This might be along the lines of the A(^,Z) distribution of Aitchison- 
(1985).

13. The development of other forms of multivariate analysis of 
compositional time series data, e.g by combining the time series results 
of Brillinger(1981) with the compositional results of Aitchison(1983) 
for principal component analysis.

14. A development of alternative approaches to compositional time 
series, e.g. fitting a model with linear restrictions to the raw data. 
This is in fact what was done in section 4.4 when the series were 
modelled by omitting one variable.
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APPENDIX A

Lemma A.l

Let a, , ... b be n + 1 constants such that

a(b^+bj) b.b. = c i t j = 1, ..., n

where c is also a constant, then at least n of the n t 1
constants {a, b., b } must be equal,

Proof

We are given

a(b.+b.) - b.b. = c (a)
1 J 1 J

a(bi+bj^) - b.bj^ = c (b)

a(b^+b.j^) - b^b^ = c (c)
(a) - (b) (a-b^)(b -b^] 1 = 0 (d)
(a) - (c) (a-b.)(b.-bi]

J IK 1 =: Q (e)

(d)^> a-b^ = 0 (f)

and/or
b.-bk = 0 ’ (g)

(e):^ ^
and/or

(h)

b.-bk = ® (i) 7

i,j,k = 1, 

i + j + k

There are four possibilities: 

(f) and (h) a = b_ s = 1,

or
(f) and (i) a = b

s f k

8 + j

, n

, n
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or
(g) and (h) . a = s = 1, n

s ± 1
or
(g) and (i) = b^, r, s = 1, n

thus each possibility has all constants equal bar one.

Proof of Lemma 6.5

□

From corollary 2.12.2, the Yule-Walker equations for 
an ARMA (l,q) process are

r_(r)£' = r(r+l) r > q (A.l)

where £ is the matrix of coefficients for the model, i.e.:

Zt + ilt+i =

(A.l) r(r) i'® = r(r+s)
r(r+2s) = r(r) i'®

= r(r)[r(r) ~_r(r+s)] [r_(r') ^ r_(r+s)]

= r(s + r) r(r') ^ r(s + r) (A.2)

s > q r > 0

Substituting (6.1.17) into (A.2) gives
r(r+2s) = (A(s + r) + Eg) P (r) "^ (_A ( sta) + Eg)

= A(s + r) r(r)"^A(s + r) + T ^!q^ ^ (Egl( ^) ' A ^ ^ i A ^ ^ ( r) “Eg)

II A- V- -III
yi s + r)'

---- IV ----- - (A. 3)
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Now

r(r) ■1 1
Tr) Y1 Y'l

- 1
(r) Cr)

Y1 Y2

where v (r) _

1
(r) (r) \ ir,Y2 Tl Vz

-1

(v (r) __1

m+l
Z

i=l
1
"TF

■1
ir; ^r\

Yl Ym

1
Y(r)y(ri
'2 m

&(Yr) 1

' m Y
F)

m

(A. A)

Substituting (A.i) into (A.3) gives
^(8,r)2

(I),. TT
r; _(r) 1) i = j

i, j = 1, . . . , m

^(s,r) ^^8,r)
i j i t j

(and where is given by {6.1.18) i = 1, , m

(iDi.

(Ill)
_ )(s,r) ^(8,r)■ Y+i i, j = 1, IE

and

(IV)i. "ITT 'F3^ (v'^) ITT' i' j = 1
m+l

, HI

,(s+r)
'm+l (say).
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Combining the four parte of (A.3) together gives

Y(r+28)
' m+1 ij

i + j

1
is)

(s,r) ) - X (s,r)i j

Since L.H.S. is independent of i and j ;

U,r)(,U,r) , ,U,r)) _ ,(s,r) ,(s,r) . ^U.D

where is a constant independent of i and j- Tn+l

Comnaring (A.$) with Lemma A.l implies

^(s,r)^i
(s,r) j = 1, m+1

except for i, j f k say

Finally we must show that k is the same for every s > 0^ r ^ q

Let
Ml.
' • 1

,q)

i 4 k, (say)

(A. 6)

_^!b+a.) 

‘ 1

(b,q) (A. 7)

for V integer a > b > 0

Dividing (A.6) by (A.7) gives
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1 _ ^-(a,b,q)

' i
and 1

i f kg
^,((a-b) + (b+q))

_ ;(^-b , b+q)

i T k.

3_
y(b+q)
i 3

since a > b

By lemma A.1 there must be only one value of i for 
which the above ratio may vary and hence

k. kg = kj

That is k is the same for any values of a, b in
(a-b, b+q) ^ ^ ^ ^X 8 > 0, r > q

□
Proof of Theorem 6.6

From lemma 6.4 there are two cases to consider,
either the rogue parameter corresponds to the reference 
variable (k = m+l) or to one of the other m variables 
(k € (1, m)). We have that (e.g. from (A.l))

(6 ' r( (s + r)

= r(r)-^ (A(s+r) + U^)

Substituting for r_(r) ^ from (A. 4) we obtain:

(A. 8)

5 ' H + G

H r/r) ^ A/r+s)

E so that
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{H}

1
7^ Y

.y(s+r)
(v (r) 1

1
,(s+r)

TrT zfrTZTrT

1

rj

i y j ~ ly -.•yin

i T j

(0),J
^Xs+r)
^m+1 1__

TTFT
1

i,j = 1, .

(A.9)

Case 1 k = m+1

By lemma 6.1 we may substitute

y(8 + r)

TFT
(s,r) k = 1, ...,m into (A.9)

’ - ' J 1,

X i j

i.e. H = X m , (r) ° ~TT)
( 8,r) ^ , / 1 ) F_

Y rj -m
1

similarly

G
V

(s + r
"rl ' (r)

'^m+1

^m+T de (■

''1
W' TT7) •) u

V m
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So that from (A. 9) and noting that dg(-
we obtain X

= A“hr),
^ m

(8,r) Im + “ ( s , r.) . -1A-^(r) n m

where a s,r, 1
TFT

(s+r!
m+1

^ m+1
(s,r)

Thus for s = 1 and r = a

i' = * + 6 2.

where X ^ and (A.10)

For k = m+1 this is as required by the theorem in (6.1.18) 
and (6.1.19).

Next we need to demonstrate (6.1.20) for k = m+1.
we nave

(6 I

s
2 (?) d

i=0
(A.11)

Now (A(q)"' n) (A(q)"^ A(q)"^ . AXq)"^ n.
-m —

since | U L UI. . (•-m - V 11

(A(q)-" lU"-" »{q)-" dh)

i = 1, 2, ... (A.12)

i, j=l, ..., m (A.13)

di?l (A(a)-l ai'-l

m
2

u,v=l U, V

m
and 2 

u, v=l
,, mA(q) I = Z 

u, V i=l y.
1
TqT d (q)

m+1 (A.11)
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So from (A.12) we have

(A(q)-l tyi = A(q)-1 D, (A.15)

and substituting this into (A.11), and recalling that:-

r(q+8) = r(q) 1'

r(q+8) = ^^r(q) + (_Z^(!) 6^ d^;^ )r(q)A(q)-^
(q)i-l

1=1
(A.16)

Mow r(q) A(q)-^ = (A(q) + 2j, A(q)"- U,„

= IJ A'i?! aJl’ 2„ by (A.13) and (A.14)

/. (A.l6) becomes

r(q+8) = $^r(q) t ( Z (!)4^"^^^d^^)^-^)(ltY^^)d^^)) U
1=1 m

(A.17)

which is (6.1.20) for r = q, clearly since the diagonal
A(q) is only modified by the first term of (A.17)

A(r) = A(q) r = q,

so that we may write AXq)"^ = A^^) (A.18)

substituting (A.18) into (A.l6) and recalling that 
2(r+s) = r/r) 0/^ (e-g. from (A.8)) we obtain (6.1.20) 
for all r = q, q+1, ...

Case 2 k T mt'l

Without loss of generality let k = 1.
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Then
Y-
(s+r)

TFT , mil,

Let X (5,r]1

^U.r)

"7^
'1

/__1_ ,(s,r)^^(r)
V ,r) 4

1 = (v(^>
,lrj

(H)„ =

''

(s.r)
1 "1
TFT

1 XTFT -
(s.r)

__1
Y (r)
'1

FTF
i

) i = j = 1

i = j + 1

j = 1
i = 2,

j = 2,
i = 1, 
i $ i

. , m 

. , m

and

1 X (s,r) i, j — 1, 2, ..., m.

Hence = H + G

(s,r)^^(r)

(s.r)

Yi ir
.(s.r)

Y1

Y'

.(s,r)
TFT + —TFT

,(s,r)
---  + —TFT

Y Y2

/s,r)jTr^ 0...0

0...0

0...0
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-m

r) 1
Y(r)
1

1
y-

(rl

y m

0 . . . 0

0 ... 0

0 . . . 0

(A.19)

Putting ^ = X , 6
^^s,r) _ ^(s,r)

, and noting that

,(r) 1
TFT1

m+l
Z

i = l Yi r) - -17
m+l

i = l
i4l

TF) '
(r)

and for r = q ; s = 1 we have

ql + 6 A/^\ as in (6.1.18)—Hi —\ X ;

Finally we need to show that (6.1.20) is correct, 
Clearly we have that

= 6^1 t Z (8) 6^"^ 6^
i=l 1

,(q) 0

where r^^^ = (dj^^, - ,
y 2 y

s=q, q+l
m (A.20)

N ow .(q) = d
(q)i-l f_(q)
1 (A,

Substituting this into (A.20) and then into (A.8), for r=q
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we have

r (s+q) = r(q) (?) L(q)ojl
I. + ^ " V

(A.22)

Now £(q) qq) 0
Y (q)
n+1

Y (q) ^Xq)+y(q) y(q)^m+lm+1

Y

^2

(q) y(q) ^,y(q)+y(q)
m+l ^m+1 ■ * 'm 'm+1

(q)

YTq)

Ym

. 0

. 0

0 . . . 0

-
1m

i=2

aY’(££)-i-q?.’ “
m+1 .i=2 Y,

1

0 .... 0

m
Z

i=2 Yh y. IT 0 ... 0

m
z

i=2 Yi " i=2 Yi
1
Tq 1 0 ... 0

1 + -4"-’ a'l’ 0

0

0 (A.23)
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substituting into (A.22) 

r(s+q) b^r(q) + ( Z (^) (l+y(^)d^)

(A.24)

as in (6.1.20) for r = q.

(ni+1 ^
Finally since ^ Z

(i=2 Y1
W "" " TTq)

Ym

i.e. r consists of terms in

,(r)
Y.
7^ , i=2, ..., m+1,

However all r ^ q are generated by only the first term

in (A.24) so that i = 2,

Hence in general

' = Kr)

, m+1,

r(r)lr(^) 0

r(r)

^Xq) 0x

r(r) 0

'i+yA4''’ 0 .... 0

0 « • • • 0 .... 0

0 • ' • * 0 .... 0

(A.24) genera]-izes to
for all r = q, q+1, --

Alternative proof k i m+1
The second case may also be dervied by using the ^ 

matrix. For example if k = m+1, then

i' = + 6 A (q)"^ n

□
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and z (1) -1
-1

0
1

-1 0

Permuting the system so that variable 1 is now the
reference variable gives

$ = Z' VI 1
'(1)

1
i = l (q)

1
(q)

1
Ym

which has re-ordered the ^ € S ^ vector on which this 
theory is based to u u.), thus is the

formof 0/ when the first variable in the vector corresponds
to the rogue parameter.

□
Lemma A.2

For an ARMA^^2,q) process, such that the a.c.f. 
r(r) is of the form:-

r/r) = dg{Y(^^, Y2^^,

- A(r) + as In (6.1.5),

the r(r) matrices for r - q+2, q+3, . may be recursively
generated from r(q), r(q+l), 0^ and if and 0^ are 
of the form:-
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ii

i2

*1 I. ' % 2,

>2 2m * 22 Hn,
(A.25)

and D. and EL are the solutions of —1 —

[EL' ■
-1
:2

^(q+1) ^(q) 

gq+2) A(q+D

-1 r
(A.26)

, for some constants

so that and are diagonal dg ...» d^^^) i-1, 2 (say)

^ (i) =1,2, then the r(r) matrices areLet 5. = E d 1 j=l ^

generated through the following equations:

AXr+2) = A^r+l) + ^2 A(^)
r ^ q

i.e. + ^2 Y^^^ i=l , m

and mT_L
^ + °2) ^i+i ^ «r-q+l

with r ^ q t 2 generated

(A.27)

A(r+1) EL + A(r) D2 ^r-q+1 —m (A.28)

and q.' are as chosen in (A.26)
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Proof

Let 0' = I + A,
1 1 —m —1

$ ! = b/Y I + A^
“2 2 -m -2

(A.29)

where A, and A_ are chosen so that they have no effect 
(r) .i=l, m r > q + 1 in the recursive generation

of r(r), but only influence the r = qt2, q+3, ...

on

series. If A^ and are like this, then (A.27) auto-
matically follows for i ^ m+1.

From the Yule-Walker equations (corrollary 2.12.2) 

r(r+2) = r(r+l) + r(r) r = q, q+1, ...

+ A(r+l)AT+A(r)A,+Yht^'2Ai+Yh, ITA,_2 ^^l''m+l (A.30)

We require that the last four terms of (A.30) be of the
form 0 where c is a constant

If we let A. = D. W—1 —1 — rn

^2 " ^0 2^ obtain one such solution

The last four terms become

(A(r+l)D,+A(r)D2)£__^Y (Y^;Jlh*+Y'^^6*) £_

where 6 s = A s = 1,2

(A.31)
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The second term is now of the required form, we require 
that

(A(r+1) EL +A(r)EL) H = c^ U
— —_L —2 —(Ti — rn

so that A^r+l) + A^r) = a2 'r-q+1 —mIm ^ = a, q+1,

which is (A.28)

To solve for we need at least the first two
equations i.e. for r = q and r = q+1

A(qtl) A(q) 

A(q+2) A(q+1)

1 fo,' CL I-1 ' 1 —m
Do - I-2 '2 —mJ - -

which gives (A.26)

Hence 6^ of (A.31) is the same as 5 of (A.27) s = 1,2

Substituting for A^ and A^ into (A.29) gives (A.25) and 
finally substituting for A^y A^ and (A.28) and (A.31) into 
(A.30) we obtain the recursive equation for r = q+2, ..
in (A.27). ^ ^

Corrollarv A.3

The exact solution of and is as follows

dj(2) _ 1/ .. .Xq+2) ^ ^ ^Xq+1)

((a2-ai*i)y^«+^) - , 1=1, .

i T k

where Dw = dg(d^^^, ... d.^^^) j = 1,:

(m+1)
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and n. = 1 ' 1

Proof

From (A.26) A(q-H) _A(q)

4, - A(qt2) A/q+1)

1 "1 “l-m

which since A/r) r = 0, ± 1, ... is diagonal yields

'4' (A/q+l)^ _ AXq)AXq+l))-^ A(q+1) -A(q)
4, -A(q+2) A(q+1) .°'2-m_

examining this term by term gives the required results, 
in terms of yj^), and Recalling that

^ " ^l^i^ ^ ^2^^^^ gives the result in terms

of y and y(^+^)
□

Corollary A.4

i:'or k T m+1, that is if we generate r_(r) r > q + 1, 
such bhat another variable is the rogue variable,’ then

and are given by:-

ii = *11, + a(;^)

= *24 *
or k€{l, ..., m} (A.32)
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where

A (2) ) 
-(k)

i = k j 4 kj

i - j = k /i, j = 1, •••> ni; £ = 1,2 

otherwise / (A.33)

and d^^^ is given by corollary (A.3) and Z
^ i=l

j4k

For these parameters the 2(r) matrices are now generated
through:-

,(r+2)

Y^^+1) + (*2+«2: ^ (r)
k r=q, q+1,... 

i = 1, .•., m+1 

i 4 k (A.31)

Proof
For k 4 m+1 0/ = 0f' Z^^^ i = 1,2 ano

is ^ as given in Lemma (A. 2), (A.25) .

These give the result directly, as can be seen by noting
that £' in theorem 6.6 for k = m+1 was also of the same 
form. Thus we may apply the alternative proof k 4 ni+1 
given above, and by similar argument obtain (A.31). |—j

Theorem A.5
For an ARMA (p,q) process, such thatm

r(r) = Air) t r = 0, ±1.....
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the £(r) matrices for r = q+p+1, q+p+2, ... may be recursively 
generated from r_(q), £(q + l), ..., £(q + p) and , ...,
0 if 0. (i=l, ..., p) are of the form—p —1 ^

*i=(i).I +D.U i = l, ...,p —1 1—m —1 —

where $. (i=l,...,p) are constants, and £^ (i=l, ..,p) 
are solutions of

_A(q + p-l) £(q+p-2) ... £(q) -1 ’“l+m'

:2 A(qtp) £(q+p-l) ... £(q+l)

DL-p. £(q+2p-2) A(q+2p-3) .. £(q+p-l)

(A.35)

after which a.^ , r :> q + p is generated by

A(r+p-l) D-, + A(r+p-2) D„ + ... 4- A(r) D = a , ^ I— “1 — * —2 — —p ^-qTl—m
(A.36)

The matrices D. will be shown to be diagonal.—1 ^ jet

£h = dg(dj^^, d(^^, d(^), d^^' i=l, ..., p,

/i)
'm+1

.1=1 ^
1, , P

For this solution to the autoregressive parameters the
r(r) will be generated via

_Xr+p)
'i ^i^i p ' 1 (A.37)

Ym+1 ^ ^-q+1

r = q, q+1, ...
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80 that the rogue variable for this solution is simply 
the m+1^^ i.e. k = m+l.

Proof

The result follows from the direct extension of Lemma A.2

Corollary A.6
For k ^

are given by:
For k 4 m+l the narameter values for 0., $' —± —p

♦1 = + 4k) i = 1, ..., p

k € {1, m}

wher;
44

where
m+l
L
4:

(i)

-I" kj = k & f 

j = & = k

otherwise

, and d{^^, d^^^
J -L /d

j, 2 = 1, m;
i=l, ..., p

’ m+l

1 = 1; p may be found by solving

(q+p-l) (q+p-2) y(q) -1
a-.

4" =
^(a+p) (q+p-l) y(q+l)

Ci,o

4'\ (q+2p-2) (q+2p-3)tt y(q+p-i)
“p

&=1,
/ J.L

.., m+l. 

(A.38)

and the y's are generated by

m+i
1 f X
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Y D k k 1- ar-q+1 

(A.39)

q,q+l,

a^, ..., a are constants and for r > q + P)^^_q+% 
generated by:-

are

A^(r+p-l) T t ... + A^(r) ^ = a

,(8)
-k =''i

k -k,p r-q+1 —m

dg(y.(s); i=l, ..., m+1 i ^ k) s = 0, ±1, .

-k,5 " dg(d^^^; i = 1, ..., mil i ^ k)

(A.40)

Proof

The result follows exactly before by use of matrix,
e. g. k = 1

■(1)
- ± -i
0 1

5 0

We have that r*(^)-dg(y{^^, 

Let r*(r) = r(r) Z^^^

' ^1^') + '^1+1 2m " ' 0, ±r

(A.41)

= 4g(Y(^>, Y^^'......+ yYY^ r = 0, ±1;

If the rogue k is 1, then it corresponds to the term multiplying 
Ike matrix. This implies that the parameters i = 1, p
of the corresponding ARMA (p,q) are identical to that given 
in theorem A. 5, but with the indicies on the r_'s and 
derived parameter interchanged between m+1 and 1. Thus 
we replace AXr) in (A.35) by A^ (r):-
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A^r) = dg(y2^^'

Ag(r) = dg(Y(j|, .. :r)

or re-ordering A^(r) = dg(yg 

Hence (A.35) becomes

(1) " -4:1)

A^(q+p-l) ... Ai(q) -1 “l+m

•
•

%,p _A(q + 2p-2) ... A^(q+p-l) “pin.

(A.A2)

which yields (A.38) for 1=2, ..., m+1 because the D 
and _A's (and in fact ^ ) matrices are diagonal, (We 
note that (A.35) similarly yields (A.38) for 1=1, ..., m 
so that it holds for all 1 = ,1, m+1.) We may also
use A^ (r) in (A.^^) providing we also re-order the 
Eh . to , 1

O' = dg(d (i
, 1

(i) .(i)
J- y

D^^i dg(d^^^, d^ , )

But whichever form of (A.{2) we use we wi^ still obtain
(A.38). Similarly (A,40) will now hold since it corresponds 
to (A.36) with 1^^ + m+1^^ indicies interchanged. From 

the theorem the parameters will be

—1 + D* . U 1—m r , 1 —m 1 = 1, D

^i^m + ‘iil
(i)

.^(i)
m

U
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Thus to transform to the parameters corresponding to 
the ARMA model with a.c.f. £(r), and not £(r)* we again 
take the transformation. ¥e recall from chapter 4 
that if

Mr), refers to a_ (iim ^t2 ^tm' ^tl'

then £(r), £. will correspond to a (uj. , u+ ^,
1 HI It ) 1. b y

where,
■ t.m+1'

£(r) = £*(r) the inverse of (A. 41)

ii = ^(1) ii ^(i)

so that tD»II)Z!.—1 —(Ij 1—m —1,1 —m —(i

).I t 
1—m ■1 -1

0 1

0 0

Xi)
^m+l

(i)

d (i) 1 . . . 1

• 1 — 1 . « - X

0 1.. 0

0 0 " 1

6.1 +
■ 1—m

-d (i)
m+1

^(i)

-d (i)
m

d i)
m

■1 0

■1 0

-1 0

. 0

. 0

+
r m+1 /
+ z d:
j=2 :

i)

-d (i)

-d;(i)m

. 0

. 0

. 0
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“A + i = 1, . . . , p

as required. □
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