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In recent years various methods have been developed for modelling 
multivariate (or vector) time series. However if each vector consists 
of proportions so that elements must sum to unity these methods break 
down. Data with this sum-constraint are termed compositional data. It 
is the aim of this thesis to propose a possible approach to such data.

The method applied is to find a function that will map the sum- 
constrained data onto an unconstrained space, that is to map the 
spherical simplex onto the real plane. Two specific mappings are 
investigated. These turn out to be multivariate generalizations of the 
well known logistic transformation. However, both of these functions 
are asymmetrical. For the first this asymmetry is induced by the choice 
of one of the variables in the vector series, as a reference variable. 
It is shown that the model is invariant under this choice. For the 
second, a specific order to the variables must be imposed. However, 
this is seen to be useful in examining a type of compositional independ­
ence known as neutrality.

Methods for using the resulting two models for forecasting are 
discussed. There are two main problems that occur. The first is that 
the moments of the underlying distributions corresponding to these 
models cannot be evaluated algebraically. This means that the minimum 
mean square error forecast cannot be evaluated. The second is that 
these distributions are not necessarily uni-modal, which may make the 
use of the minimum mean square error forecast nonsensical. Various 
solutions are suggested, and these are compared in a short numerical 
study.

The final part of the thesis examines the relationships between the 
components of the proportions. This utilizes time series methods for 
examining Wiener-Granger causality, and combines them with various 
concepts of compositional independence. These latter concepts include 
neutrality as mentioned above, and have been developed to deal with the 
sum-constraint.
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"]n tfie Beginning..."
John 1:1

CHAPTER 1

Introduction

1.0 Introduction

This thesis is concerned with the analysis of "compositional time
series". A compositional time series is a sequence of observations at 
discrete time points; ...-1,0,1,... where each observation consists of a 
vector of proportions. For example consider a repeated survey in which 
at each repetition a categorical variable is recorded, such as in an 
attitudinal survey where a number of people are questioned on their 
attitude to some issue. Their reply might be coded as one of:-

for; indifferent; against; don't know.

For each survey repetition this gives a vector of proportions of the 
respondents preferring different categories. Two specific examples 
where such data arise are public opinion polls on preference for a 
political party and market research questionnaires on preference for 
particular brands.

There are many other examples of such data. The term "composi­
tional" comes from the field of geology, in which constituents of the 
soil are examined. When soil samples are taken the amount of each 
constituent (e.g. silt, sand or clay) contained in the sample must 
necessarily be presented as a vector of proportions, i.e. the composi­
tion of the sample. Often several such samples are taken along a line 
segment and the resulting data is then a compositional "time" series, 
where "time" is now represented by distance. Another example is 
that of a chemical process in which the amount of each compound is
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measured as the process develops. In a closed system we may obtain a 
compositional time series which represents the chemical process. A 
final example occurs in economics in a study of expenditure and income. 
In a household the expenditure on certain commodities may be examined 
over several time periods. When expenditure on say "food", "housing", 
"clothing", etc. is presented as a proportion of total expenditure we 
have a compositional time series.

The interest of the analyst in such data will vary from applica- 
tion to application. One common requirement is to be able to forecast 
such series. In the example of the repeated survey a forecast using 
past surveys may be incorporated into the estimation of the composition 
from the current survey thus augmenting the accuracy of the estimates. 
Such an application has already been developed for univariate time 
series by Blight and Scott(1973), Scott and Smith!1974), Scott et 
al(1977) and Smith!1978). Forecasting is useful in its own right since 
it helps predict the future of the system.

Other interests refer more to the structure of the compositional 
time series. In a study of expenditure one may wish to see how income 
affects expenditure. If the main wage earner receives a pay rise how 
does expenditure change (if at all)? Or, in the public opinion poll, 
does the proportion who prefer a minor party affect the proportion 
preferring one of the major parties over its main rival?

It is the intention of this thesis to develop models for composi­
tional time series and methods to answer some of these questions. This 
involves building on the techniques that are available to handle 
compositional data, together with those for general multivariate time 
series. The literature on the analysis of compositional data is 
summarised in Aitchison(1986) and, h&s to our knowledge been confined 
only to the case of independent observations. Time series analysis is a 
vast subject for which there is a large quMtity of literature which 
reveals several possible approaches. We will restrict ourselves to the 
multivariate ARMA models since they represent a well known and useful 
class of models for our purposes.

We begin in chapter 2 with a brief description of the multivariate 
ARMA model and some of its properties. We also consider the concept of 
dependence between time series, such as Wiener-Granger causality, and 
discuss methods to test for such dependencies.



In chapter 3 we examine the properties of compositional data. Many 
problems are found to occur, especially in understanding the relation­
ships between different variables. The main reason behind these 
difficulties lies i;i the "sum-constraint", i.e. the fact that the data 
consists of proportions and hence must sum to one. This makes it 
difficult to examine such well used statistics as the correlation 
coefficient. It is also shown how a multivariate AEIMA model breaks down 
when it is applied directly to a compositional data set. We then 
examine some of the procedures developed to overcome the problems 
encountered in the non-time-series context, and in particular, the 
approach of Aitchison(1982) who defines several types of independence 
between the variables in a composition. His approach is seen to consist 
of transforming the data so as to remove the sum-constraint. It is this 
approach that we shall pursue in later chapters.

In chapter 4 some models for compositional time series are 
presented. They employ the transformation suggested by AitchisonC1982), 
which requires the use of a reference variable. We show that the models 
are invariant to the choice of reference variable, the model being 
affected by a linear transformation of its parameters. A linear 
approximation to the model is examined and shown to be a standard 
multivariate ARMA model. Finally the model is applied to two data sets; 
the GALLUP(c) political opinion poll and the National Opinion Poll 
(NOP).

The transformations used in chapter 4 lead to a particular 
transformed normal class. This so called "logistic normal distribution" 
was first highlighted by Aitchison and Shen(1980). In chapter 5 we 
examine the mean, median and mode of this distribution. It is seen that 
numerical methods must be applied to calculate these parameters and 
consequently an approximation to the mean is derived. Various other 
properties of this distribution are discussed and a number of numerical 
examples are given. The applications of the properties of this 
distribution to the forecasting problem are then discussed.

In chapter 6 the concepts of Wiener-Granger causality discussed 
earlier in chapter 2, and the compositional independence properties of 
Aitchison(1982) are combined to form some new concepts of causality 
and dependendence between compositional time series variables. The 
application of these new types of independence are discussed, and 
various means for testing them are developed. Finally a numerical



example is given, again using the political opinion poll data.
The final chapter summarizes the main ideas and indicates further 

areas of possible development.

1.1 Notational Conventions

To make comprehension easier, certain conventions are adhered to 
wherever possible. No distinction is made between a random variable and 
the values it takes. Vectors and scalars are denoted by small letters 
and matrices by capitals. Hence:-

* is a scalar;

this a vector with i element

is a matrix with (i,j)^^ element a^j(k), equivalently we will

write {a^j} = A;

will denote the mxm diagonal matrix with elements

will denote the mxm matrix of I's; and

e_ will denote the mxl vector of I's,



"for gveryrhlng rBere a reason and a rime for 
every matter under heaven..."

Ecclesiastes 3:1

CHAPTER 2

Multivariate Time Series Models

2.0 Introduction

A comprehensive review of multivariate time series models is 
beyond the scope of this thesis. We restrict ourselves to only the 
results needed in subsequent chapters, and in general present these 
results in as brief a way as possible. A more detailed description may 
be found in for example, Harvey(1981), Fuller!1976) and Hannan!1970).

2.1 The ARMA Model

We begin by defining the models of interest, which are multi­
variate generalizations of the univariate models made popular by Box and 
Jenkins!1976). We will denote by {X+} a vector time series of 
stochastic variables for t=..,-l,0,l,...

Definition 2.1
A mxl vector time series {c^} is said to be an m-dimensional 

white-noise process if the are independently and identically 
distributed with mean 0, and non-singular covariance matrix I,

Definition 2.2
A mxl vector time series {v_} is said to be a multivariate

autoregressive moving-average process of dimension m and order (p,q) if 
it may be written:

Yt " ^^Yt_i -pYt-p 01 ^-t-q

where are mxm constant matrices.



$pfO , ,and {c^} is an m-dimensional white-noise process.
We will denote this type of process by ARMA^(P.q) and note that we may 
rewrite it as:

where

0(B) = + 0qBl

(2.1.1)
(2.1.2)

(2.1.3)
and B is the backshift operator:

b'SXj . .

Definition 2.3
An ARMA^(p,0) process is said to be an autoregressive process of 

order p and dimesion m. We will denote this by AR^(p).

Definition 2.4
A moving-average process of dimension m and order g is an

ARMA^(0,q) process. We may write this as MA^(q).

An important property of time series is that of stationarity:-

Definition 2.5
A s tochastic process{Y^} is weakly (or second-order) stationary if

and

i) E[Y^] = M

ii) Cov(Y^Y'^_^)
t-...,—1,0,1

Pi. ; k-..,-1,0,1,
where ]4 and P^ are independent of t.

Lemma 2.6
A necessary and sufficient condition for an ARMAm(p,q) process to

be (weakly) stationary is that the roots of:
|$dz'^)| =0 ,

lie inside the unit circle.
Proof

e.g. Hannan(1970) page 14.

If we have a nonstationary vector process we may transform the 
data. For example, as in the univariate case, we could difference the 
data:-



Withwhere B is the mxm matrix difference operator 
obvious notation we may then proceed to define the ARIMA^(p,d,q) 
process. However differencing has to be applied with great care, if at 
all, especially when handling multivariate time series. This fact has 
been noted by among others Hillmer and Tiao(1979), Tiao and Box(1981) 
and in more detail by LutkepohK1982). Tjdstheim and PaulsenC1982) 
suggest using the concept of, "Almost Non-Stationary" (ANS). Since such 
transformations are available we will without loss of generality assume 
stationarity.

Definition 2.7
If an ARMA^(p,q) process may be written as an infinite auto- 

regressive process it is said to be invertible.

Lemma 2.8
A necessary and sufficient condition for an ABMA^^p,q) process to 

be invertible is that the roots of:
|G(z"^)|=0 ,

lie inside the unit circle.
Proof

e.g. Hannan(1970).

In our definitions we have not included a term to represent the 
mean of the series. There are two ways of incorporating it into the 
model. Consider the series {v^} and let

[t = (2.1.4)

where follows an ARMA^/p,q) process. Then v^ also follows an 
ARMA^^P,q) process, with mean E[v^].
Alternatively we may include the mean in the model

$IB)v^ = ^ + G(B)c^, (2.1.5)

where in general E[v^]f^.
Some packages assume this latter form of model, unless the series was 
first differenced.



Another extension to the ARMA^^p,q) model is the seasonal model. 
These models are required because data often comes in the form of, for 
example, monthly or quarterly figures, A seasonal AR^(p) model, with 
seasonality s and autoregressive component P may be written as

(2.1.6)

where is a polynomial of degree P in

One may expand the left hand side of (2.1.6) into one polynomial in B of 
order sP+p, i.e. as an AR^(sP+p) model, but where some of the resulting 
*' matrices will be zero. Consequently we will without loss of 
generality consider only non-seasonal models.

Before considering the practicalities of the ARMA model we need to 
know the conditions under which the model is identified. Here we are 
addressing identification in the economic sense of parameter redundancy, 
as opposed to the identification stage of fitting an AEMA^^p,q) process, 
which will be discussed in section 2.2 . It has been shown by Hannan 
(1969) that an AEMA^^p,q) process is identified if the following 
conditions hold:- 
Conditions 2.9

-m

ii) The roots of igdz"^)l=0, and |0(z"^)i=O must lie within the 

unit circle, (i.e. the model must be both stationary and 
invertible.)

iii) X(4i -0L)=O if and only if X=0. i.e. the matrix— —p —4 — — — —p —4
full rank.

Box and Jenkins!1976) consider their application of ARMA models as 
consisting of four stages

i) Identification - before estimating any parameters of the
model we must first obtain estimates of the order p,d,q.

ii) Estimation - estimation of the parameters themselves.

iii) Diagnostic Checks - test the goodness of fit for the 
estimated model.



iv) Forecasting - use model to estimate future values.

We now consider each of these stages in turn. For the later models we 
develop we will primarily be interested in i) and iv); much of what we 
require in estimation and diagnostic checking being determined by the 
computer software that we have had access to.

2.2 Identification

The process of identification consists of examining the data and 
comparing their properties to those of ARMA models of various orders. 
This is usually done by considering a variety of summary statistics 
which are estimates of some function of the time series. The simplest 
of these is the autocorrelation funtion.

Definition 2.10
The k^^ process autocovariance function matrix of a time series

{Zt} is

where r(k) =

and Y^- Ely^] ; k-....-1,0,1,.., .

As a function of k the TTk), k=...,-l,0,l,... are known as the auto- 
covariance fun^ion (ACVF).

From this we may define the correlation in two ways:-

Definition 2.11
The k^^ process autocorrelation matrices P(k) and the matrix 

normalized crosscovariance 0(k) are defined by:-

i) P(k) = {p.. (k)}, ij

where p.,(k) = y.,(k)ij iJ
yii(0)y..(0)



ii) ft(k)={u^j(k)},

=r(k)r(0)"^.

As a function of k P(k) and ft(k) are known as the autocorrelation
funtion (ACF) and, the matrix normalized crosscovariance function (MNC)

We note that if we let A = dg(y (0),(0y(0)), then we may—mxm 11 22 mm
express P(k) as :• P(k)=A ^^^r(k)A

In practice P(k) is the most commonly used, since as shown below 
it can be used to identify a MA^(q) process. However ^(k) is employed 
by for example Hosking(1980a) in residual diagnostic checking and by 
Tjdstheim and Paulsen(1982) for identification.

The parameters of an ARMA^(p,q) process are related to the ACVF:-

Lemma 2.12
For a stationary invertible ARMA^(p,q) process.

then

$(B)v^ = 0(B)G^ ,— —t — —t
$(z)r(z)*'(z"^) - 0(z)Z0'(z"^),

where
00

r(z) = z r(i)z-
i=-'»

$(z) and 0(z) are defined by (2.1.2) and (2.1.3), and Z is the error
covariance matrix of

Proof
See e.g. Hosking(1980a)

Corollarv 2.12.1
For an AR^(p) p rocess :■

0
z *\r(j-i) - z' ZT-

j > 0, (Yule-Walker equations) 
j - 0, 
j < 0.

Corollary 2.12.2 (Yule-Walker equations)
For an ARMA^(p,q) process

Z ^tr(j-i) = 0 if j > q.
i^

10



Corollary 2.12.3

For an MA (q) processm

r(j)

q
E e.IGK .1—1-Ji=0
0

iji ^ q, 

111 > q.

The consequences of this lemma and its corollaries are that the ACVF, 
the ACF, and functions of them may be used to identify p and q for a 
stationary time series. In order to do this we first require some 
estimates of r(k), P(k), and 0(k); k=...,-1,0,1,... .

Definition 2.13
The sample autocovariance function matrix C = {c^j(k)} is 

given by:-

1 n

where

C(k) - - y: VU-
t=l

" %t- ^t'

1 n

t=l
and we assume that Y,.....Y . are sampled from a time series. As a-1 ^
function of k, C(k) is the sample autocovariance function.

Definition 2.14
The k^^ process sample autocorrelation matrices Rfk) = {r..(k)} 

of a time series {;t=l,...,n} are:-

r\ (k) =
tf^^ti^t-k.j

n ^ n ^

C, Ak)

y c. (0)c..l0)' 11 11
thAnd k process sample matrix normalized crosscovariance matrices are:-

S(k) = C(k)C(0)"^.

11






























































































































































































































































































































































































































































































































































