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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING AND APPLIED SCIENCE 

ELECTRICAL ENGINEERING 

Master of Philosophy 

IMPROVEMENTS IN EDDY-CURRENT CALCULATION FOR POWER APPARATUS 

by Nigel Brooks 

The solution of eddy-current problems is important in many areas 

of engineering design, these areas include motor and generator 

design, induction furnace design and the design of nuclear fusion 

reactors. The equation which describes a power frequency (ie 

displacement current may be ignored) eddy-current field is the 

diffusion equation. 

The computer calculation of electromagnetic fields relies on 

approximate numerical methods such as the finite difference method, 

the finite element method and the boundary element method. An 

approximate method for calculating eddy-currents using variational 

principles is presented, this method may be used as the basis for a 

finite element solution technique. The development of the method is 

given showing the connection with analytical mechanics and the 

variational treatment of electrostatic and magnetostatic systems. 

The particular variational treatment which is used leads to a 

calculation scheme which gives dual bounds for global parameters (eg. 

inductance, resistance) in eddy-current problems. The advantages of 

a dual bound calculation scheme are explained and it is shown that a 

dual bound calculation scheme leads to a more efficient use of 

computing resources than an unbounded calculation scheme. 

A practical example of the value of solving eddy-current problems 

is presented in Chapter 7. In this example an eddy-current probe is 

used to detect the temperature of an insulated conductor. A brief 

description of the international eddy-current workshops organised by 

Argonne National Laboratory U.S.A. is given in Chapter 8. 



List of Principal Symbols 

A magnetic vector potential 

B magnetic flux density 

D electric flux density 

E electric field strength 

F force 

H magnetic field strength 

I electric current 

J electric current density 

Jj Bessel function of first kind and order unity 

Q electric charge 

P power 

R resistance 

Rh resistivity 

X reactance 

a acceleration 

m mass 

t time 

Cq permittivity of free space 

Uq permeability of free space 

relative permeability 

P volume charge density 

o surface charge density, conductivity 

0 electric scalar potential 

u angular frequency 

A eddy-current skin depth 

4" electric flux 

<> integration throughout a volume 

[] integration over a surface 

H* complex conjugate of H 



INTRODUCTION 

If the quantity of magnetic flux linking a closed path is 

changing with respect to time, then an electromotive force will be 

generated around the closed path. This is in accordance with 

Faraday's law. A current will flow in the closed path if it is 

completely within a conducting medium. Currents of this type are 

called eddy-currents. In accordance with Lenz's law the 

eddy-currents oppose the change in magnetic flux linkage which causes 

them. 

Eddy-currents may be beneficial or harmful, several 

situations are given below where eddy-currents are used for a 

specific purpose. 

(a) When a conductor moves through a static magnetic field 

eddy-currents are induced in the conductor, these eddy-

currents drive a magnetic reaction field. The magnetic 

reaction field interacts with the inducing field resulting 

in a force which opposes the motion of the conductor. This 

effect can be employed in an eddy-current brake. 

(b) When a conductor is placed in an alternating magnetic field, 

eddy-currents are induced in the conductor, these eddy-

currents cause a resistive power loss which can be used to 

heat the conductor. This effect can be employed in an 

induction furnace. 

(c) When a conductor is placed in an alternating magnetic field, 

eddy-currents are induced in the conductor, these eddy-



currents cause a magnetic reaction field which can be 

measured. Measurement of the reaction field can determine 

the geometry of the conductor (eg. crack detection) or the 

conductivity of the conductor. 

The examples above show the beneficial use of eddy-currents. 

Two examples are given below where eddy-currents are harmful. 

(a) When an alternating current is flowing through a conductor 

it produces an alternating magnetic field inside the 

conductor, this alternating magnetic field produces eddy-

currents inside the conductor. This results in a skin 

effect where the current, due to its own magnetic field, 

tends to flow near the surface of the conductor. This is 

harmful because it increases the power loss in the 

conductor. 

(b) When an alternating magnetic flux is passing through an iron 

core (as in a transformer), eddy-currents will flow in the 

core, causing losses. These losses may be reduced by using 

a laminated core. 

The examples given above show the beneficial and harmful 

effects of eddy-currents. Eddy-currents exist in a wide variety of 

electrical equipment (e.g. induction motors, wave guides, transformer 

tanks). The accurate calculation of eddy-currents is important in 

order to determine; the localised heat loss, magnetic reaction field 

and forces resulting from the inducing and reaction field. 



In order to calculate the distribution of eddy-currents in a 

conductor the diffusion equation (equation 1.14) must be applied to 

the problem. The accurate, analytical solution of this equation is 

only possible for problems with a simple geometry. For problems with 

a more complex geometry an approximate solution of the diffusion 

equation must be obtained by numerical methods. The accuracy of a 

numerical method depends on the efficiency of the method and the size 

of the computer used. 

The aim of this thesis is to investigate improved methods 

for the calculation of eddy-currents in electrical power apparatus. 

In particular a method based on the study of energy [1.2], is 

considered. Computational work has been carried out to evaluate this 

approach to eddy-current problems. The formulation of the above 

method is considered as is the formulation of methods described by 

Ferrari [3], Penman and Fraser [4] and Rutherford Laboratory [5]. 

The application of eddy-current calculation to a particular 

problem is described in Chapter 7. The reaction field of eddy-

currents is used to measure the conductivity of a metal object, hence 

its temperature. The experimental results obtained are compared with 

an analytical solution to the problem. 

1.1 Time Varying Currents and Fields in Conductors 

The analysis given below follows the analysis presented by 

Hammond [6] . How does a current distribute itself throughout the 

volume of a conductor? This question represents the starting point 

in any study of eddy-currents. To begin to answer this question the 



behaviour of electric charge in conductors is considered. The 

equation of continuity of charge and current is illustrated by Fig. 

1.1. The equation is; 

I ii - - ^ 
i = l 

at 
( 1 . 1 ) 

In terms of current and charge density 

(1 J . ds 
I? 

( 1 . 2 ) 

at a point equation (1.2) may be written as below: 

div J = 0 
O L 

(1.3) 

From Gauss's theorem we have 

0 D . ds (1.4) 

which at a point may be written 

div D = p (1.5) 

Using Ohm's law J = oE and the constitutive relation D = GqE 

then equations (1.3) and (1.5) may be combined to give: 

^ le 
^0 ' at 

( 1 . 6 ) 

this differential equation has the solution: 

P = PnG (1.7) 



A typical conductivity for a metal is 10^ siemens and Cg is 

the order of hence the exponential time constant is of the 

order 10"'® sec. Hence, from equations (1.3) and (1.7) we can see 

that because the charge diffuses very rapidly to the conductor 

surface 

div J = 0 (1.8) 

This argument that div J = 0 is preparatory work for the 

discussion of eddy-current behaviour, the argument from this point 

will aim directly at the mathematical formulation for describing the 

behaviour of eddy-currents. 

Consider the full m.m.f. equations 

HH' 
H . dl = I - ^ (1.9) 

i OT-

which for a point relationship becomes 

an 
Curl H = i + — (1.10) 

0 L 

At an angular frequency w the magnitude of the two terms J 

and 3D/3t have vastly different orders of magnitude (at power 

frequencies) 

J 
r;r = ^ 10^® at power frequencies 
30 

at 



l\'e can. therefore, adopt the simpler magnetostati c 

expression: 

I H . dl = I (1..11) 

which at a point becomes 

CurlH = J (1.12) 

this is consistent with equation (1.8) since the divergence of a curl 

is zero. When this equation is combined with Faraday's law 

33 
Curl E = -

Ohm's Law J = oE and the constitutive relation B = UgU^H it is 

possible to eliminate E, H and B to obtain; 

aj 

at 
curl curl J = -ouqUj., (1.13) 

Using the vector identity curl curlJ = grad div J - v^J and noting 

that div^ = 0. 

3J 
we obtain v^J = (1.14) 

Similarly it can be shown that the form of the equation is 

the same if instead of J we write E, H or B, The equation is called 

the diffusion equation (This is because the diffusion of heat through 

matter is governed by the same form of equation). 



1•2 Present Approaches to the Solution of Eddy-Current Problems 

The requirement to predict eddy-current behaviour has 

existed for a long time. The various approaches which have been 

adopted are listed below. 

Analytical methods 

These methods form the foundation of the mathematical study 

of eddy-currents. Their use however, depends on the geometry of the 

problem being relatively simple and the existence of a suitable 

co-ordinate system. Stoll [7] discusses the analytical solution of 

several problems such as; eddy-currents in a long rectangular bar. 

and current distributions in rectangular and T-shaped conductors in 

slots. Tegopoulos and Kriezis [8] present an extensive collection of 

analytical results. 

Finite difference methods 

Finite difference schemes replace the original differential 

equation by a finite difference equation relating the value of the 

field component at a point to the value of neighbouring points in 

space. This results in a set of simultaneous equations which must be 

solved. The use of finite difference methods in eddy current 

problems is demonstrated by Stoll [7] . 

Finite element method 

The starting point of this method is the minimisation of the 

variation integral, or functional, for the solution of a partial 



differential equation with given boundary conditions. The variation 

integral is the integral of a function, normally the local energy 

content. The first variation of the variation integral is zero about 

the correct solution to the problem. The evaluation and minimisation 

of the variation integral are carried out by splitting the air, 

conductor and iron regions into finite elements. This results in a 

set of simultaneous equations which must be solved. Trial or shape 

functions can be used as in the Galerkin method, the minimisation is 

then carried out with respect to the coefficients of these weighting 

functions. One of the main advantages of finite element methods is 

that the subdivision of the region can be graded to give small 

elements where it is anticipated that the field is varying rapidly, 

and larger elements elsewhere. A considerable amount of finite 

element literature exists and an introduction is provided by 

Silvester and Ferrari [9]. 

1.3 Links Between the Study of Mechanics and the Study of 

Electromagnetism 

Force and Energy are defined by Newton's study of mass, 

length and time. Mechanical energy and heat were shown to be 

equivalent by Joule. The definition of the volt as "The potential 

difference between two points such that one joule of work is done if 

a coulomb of charge is moved from one point to the other" and the 

ampere as "That constant current which if maintained in two straight 

parallel conductors, of infinite length and negligible circular 

cross-section and placed one metre apart in a vacuum, would produce 

in each of them a force of 2 x 10"^ newtons per metre length" show 

how the study of electricity relies on the ideas of force and energy. 



Hence, it can be seen that our inheritance in the physical 

sciences is one where force and energy are cornerstones of the entire 

building. It is not surprising, therefore, that a study of 

electromagnetism which centres on energy will lead to useful results. 

In mechanics the idea that the energy of a system can 

determine its equilibrium or motion is embodied in analytical 

mechanics (Chapter 2). This approach involving the principles and 

mathematics of variations can be applied to the study of 

electromagnetism. This is the approach which is investigated in this 

thesis and one aspect of this method in particular is considered -

the method of dual bounds. 

1.4 The Advantages of a Dual Bound Method 

What advantage is to be gained by using a dual bound method? 

This question must be answered by defining what is meant by a bounded 

solution and then explaining the use of a dual bound system, 

1.4.1 Bounded solution 

Any numerical method (eg. finite difference, finite element) 

provides an approximate solution for local parameters (eg. potential, 

field) and global parameters (eg. inductance, resistance). A typical 

method is the Rayleigh-Ritz method which is described below. 



When considering the stationary value of the integral 

I = 

,b 

f(x, Yi- Vz ••• ym)dx (1.15) 

a 

If the values of y are expressed as below: 

n 

y = I a^ Fr(x) (1-16) 

r=l 

then the value of I is stationary if 

— — = 0 (r = 1, 2, ... n) (1.1~) 
3ap 

The application of equation (1.17) results in a set of 

simultaneous linear equations which must be solved. The accuracy of 

the approximate solution depends mainly upon the number of indepedent 

variables and hence the number of simultaneous equations which must 

be solved. Ideally an infinite number of independent variables would 

be preferred, however, this would produce an infinite number of 

simultaneous linear equations which must be solved. The goal is to 

obtain a solution of known accuracy with the minimum number of 

independent variables. 

A bounded solution is one in which the approximate solution 

is always geater than, or always less than the actual solution. If 

two bounded solutions, one which is known to be greater than the 

actual solution and one which is known to be less than the actual 

solution, can be found then it is possible to state with certainty 

that the actual solution lies between two error limits. The use of 

bounded solutions in analytical mechanics is shown in Chapter 2 and 

the use of bounded solutions in the study of electromagnetism is 

discussed in Chapters 3 to 6. 

10 
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1.4.2 Dual bound methods 

A method of solution which provides both an upper and a 

lower bound for a parameter by alternative formulation of the problem 

being considered is termed a dual bound method. 

1.5 Dual Bounds and Simplified Solution Techniques 

The idea of dual bound calculations are used in some of the 

simplest and most elegant solution techniques. An example is given 

here which is due to Maxwell [10]. 

Consider a resistive sheet of uniform thickness as shown in 

Fig. 1.2(a). 

At the left hand side the electrode voltage is v^ at the 

right hand side the electrode voltage is 0, the resistance of the 

sheet is R. If infinitely thin insulating strips are placed in the 

sheet as shown in Fig. 1.2(b) then the conducting path is divided 

into tubes. Unless the insulating strips are placed along original 

electric field lines the resistance of the sheet will increase giving 

upper bound R+ (If the insulating strips are placed along original 

electric field lines the resistance will be unchanged). If 

infinitely thin infinitely conducting strips are placed in the sheet 

as shown in Fig. 1.2(c) then the conducting path is sliced. Unless 

the conducting strips are placed along the original equipotentials 

the resistance of the sheet will decrease giving a lower bound R_ (If 

the conducting strips are placed along the original equipotential 

11 



lines the resistance will be unchanged). 

Hence if a sheet of unknown resistance can be divided into 

tubes and slices of known resistance then R_ and R_ (dual bounds) can 

be found. 

Similar schemes are given by Hammond et. al. [11] for 

electrostatic systems and Hammond and Zhan [12] for magnetostatic 

systems. 

12 



2. ANALYTICAL MECHANICS 

Ever since the time of Sir Isaac Newton (1642-1727) the 

science of mechanics has developed along two maif) lines. Following 

the terminology of Lanczos [13] these two lines may be called 

vectorial mechanics and analytical mechanics. 

Vectorial mechanics starts directly from Newton's laws of 

motion. It aims at recognising all the forces which are acting on 

any given particle. The motion of the particle is then uniquely 

determined by the known forces acting on it at any instant. 

On the other hand analytical mechanics bases the entire 

study of equilibrium and motion on two fundamental scalar quantities 

the kinetic energy and the work function, the latter frequently 

replaceble by the potential energy. 

A full account of analytical mechanics is given by Lanczos 

[13] . This chapter is devoted to those aspects of analytical 

mechanics which will be developed later for the study of eddy-current 

systems. By way of introduction to the subject the principle of 

virtual work is discussed and then the principle of least action is 

presented by means of an example. 

2 .1 Virtual Work 

The first variational principle encountered in mechanics is 

the principle of virtual work. It controls the equilibrium of a 

mechanical system and is fundamental for the later development of 

13 



analytical mechanics. 

When considering a static mechanical system by vectorial 

mechanics it is usual to say that a particle is in equilibrium if the 

resulting force acting on the particle is zero. 

When considering the same system using analytical mechanics 

the following procedure is used. Given the external forces F^, 

.... Fjj act at points P, , ... P^ of the system. The virtual 

displacements of these points will be denoted by ... GR^. 

These arbitrary, infinitesimal, virtual displacements must obey the 

given constraints. The principle of virtual work asserts that:- The 

given mechanical system will be in equilibrium if and only if the 

total virtual work of all the impressed forces vanishes. The total 

virtual work is 6w and the principle of virtual work is expressed by 

equation (2.1). 

6w = Fi6Ri -r F26R3 ... + F^GRn (2.1) 

In order to apply this result to dynamics use is made of 

D'Alembert's principle. This replaces Newton's second law. 

F = ma 

by F - ma = 0 

where -ma is called the force of inertia. This enables dynamics to 

be treated in the same manner as statics. Equation (2.1) can now be 

enlarged as shown below: 

14 



= Z F-[6R^ - E mjaiGRi 

where Fj represents the given external forces and 5Rj the 

corresponding virtual displacements. 

hence 6w = E[(Fj - mja^) . 6R^] (2.2) 

and at equilibrium 6w = 0. 

Further development of this argument [18] shows that 

D'Alembert's principle leads to Hamilton's principle which is 

discussed in the next section. 

2.2 Principle of Least Action 

Consider an uncharged particle moving in three dimensional 

space near the earth's surface. Using analytical mechanics it is 

possible to determine the motion of this particle by considering its 

kinetic energy and its potential energy. 

Consider a particle at a point Pj and time tj with known 

velocity at that time. Some time in the future the particle is at a 

point Pg. If a tentative path is assigned for the particle between 

Pj and then conservation of energy will uniquely determine the 

motion along that path. 

The time integral of the kinetic energy, extended over the 

entire motion from Pj to P^, can be calculated. This time integral 

multiplied by 2 is called action. Different tentative paths can be 

15 



tried and each one will have a value of action associated with it. 

There must exist one definite path for which the action assumes a 

minimum value. The principle of least action asserts that this 

particular path is the actual path of motion. 

This principle can clearly be used to obtain a bounded 

solution to the problem described above. If an approximate solution 

is obtained whose path is different from the actual path of motion, 

then the action associated with this path will be greater than the 

action associated with the actual path of the particle. Hence if any 

approximate path is chosen and its action calculated, this value of 

the action will provide an upper bound for the actual value of the 

action. 

The principle of least action may be extended by use of a 

modified action integral to include systems in which the law of 

conservation of energy does not apply. This important extension is 

known as Hamilton's principle. The modified action used in 

Hamilton's principle is the time-integral of the difference between 

the kinetic and potential energies. 

2.3 The Fundamental Process of the Calculus of Variations 

The mathematical problem of minimising an integral was 

considered by Lagrange who developed a special branch of calculus 

called "calculus of variations" in order to solve the problem. The 

calculus of variations investigates the change in the value of an 

integral caused by infinitesimal variations, as is explained below:-

16 



Consider an integral of the type: 

,b 

I = F(y,y',x)dx (where y' = ^ ) 

a 

A solution of the form y = F(x) is required which will give 

a stationary value for I. In order to prove the existence of a 

stationary value the integral must be evaluated for a slightly 

modified function y = F(x), and it must be shown that the rate of 

change of the integral due to the change in the function becomes 

zero. 

let F(x) = F(x) 4- e ^(x) 

where <i>(x) is some arbitrary new function (which must be 

continuous and differentiable) 

e is used to modify F(x) by arbitrarily small amounts, for 

this purpose e tends to zero. 

The values of the modified function F(x) and the original 

functions Fix) can be compared at a certain definite point x. The 

difference between F(x) and F(x) is called the "variation" of the 

function F(x) and is denoted by 6y 

6y = F(x) - F(x) = e<t>(x) 

The variation of a function is characterised by two 

fundamental features. It is an infinitesimal change, since the 

parameter e descreases towards zero. It is also a virtual change, 

this mean:--, that it may be; made in any arbitrary manner. 

It is in the nature of the process of variation that only 

the dependent function y should be varied while tlie variation of .\ 

17 



serves no useful purpose. Hence it is agreed that 6x = 0. 

The two limiting ordinates F(a) and F{b) are given and can 

not be varied, hence: 

[6F(x)]x=a = 0 

[6F(x)]x=b ^ 0 

When the above conditions are met the variation may be 

described as a variation between limits. 

If, in equation (2.1), y is replaced by y - 6y then 

F(y,y',x) will be replaced by F(y-5y, (y-6y) ,x). The evaluation of 

F will contain the following terms. 

F1 {y. y' , X) + F 2 (y, y' . X) 6y -r F j {y, y' , x) (6y) ̂  

f higher order terms. 

In this case the first variation of F which is termed 6F 

will be Fzty.y ,x)6y. 

The second variation of F which is termed 6^F will be 

F](y,y X) (6y)Z. 

It can be shown that 

61 I 6F dx ant! 6 1 C/Fdx, 

18 



These two terms 61 and 6^1 provide vital information when it 

is necessary to find a minimum or maximum value of I. In order for 

the value of I to be stationary the condition 61 = 0 must be 

satisfied. In order for the stationary value of I to correspond to a 

minimum 6^1 > o must be satisfied. In order for the stationary value 

of I to correspond to a maximum 6^1 < o must be satisfied. 

2.4 Euler-Lagrange Equation 

When problems of motion are formulated in terms of 

analytical mechanics an integral of the type given below is often 

required to be minimised 

r t ; 
I t L(q,q,t)dt (2.3) 

• c) Cf 
where q = q(t) , q = 

L is the Lagrangian function and is generally some function 

of position and velocity in configuration space, and the time t 

(configuration space is described in ref. 14). 

Using the calculus of variations Lanczos [15] shows that a 

stationary value of Ij is obtained if the following differential 

equation is satisfied. 

This equation is usually called the Euler-Lagrange differential 

equation. 

19 



Lanczos also shows that the problem of minimising the 

integral given below: 

rtz 
L(qi Qn: Qi- t)dt (2.5) 

t, 

is equivalent to solving the system of simultaneous equations. 

-J- = 0 (i = 1, 2, ... n) (2.6) 
dt 3qi aqi 

2.5 Canonical Equations of Hamilton 

The Lagrangian function L is given below 

L = L (q 1 . q̂ i J q i ... q^ j t) (^ . 7) 

This function may be transformed by the introduction of new 

variables pj 

Pi = 4 - (2.8) 
^ aqi 

where pĵ  represents momentum in configuration space. 

The Hamiltonian function H is defined below 

H = I p^qi - L (2.9) 
i=l 

By using equation (2.8) to express q^ in terms of p^ H may 

then be written: 

20 



H — H((J J .... I PI .... P]I' ^) 

The Lagrangian function and the Hamiltonian function form 

the two systems of equations given below, which can be identified as 

Legendre's dual transformation [16]. 

2 PiQi ~ L (2.10) 

H — H(g^ ... (Jpj; pj ... p^; t) (2.11) 

L = I PiQi - H (2.13) 

L = L(qj . . . Qii: Qi . . . qji: t) (2.14) 

Using the results of Legendre's dual transformation the 

following equations can be obtained. 

^L- ^ (2.15) 
aqi aqi 

and 

^ ( 2 . 1 6 ) 
aqi at 

equations (2.8), (2.12), (2.15) and (2.16) lead to tlu; canonical 

equations of Hamilton: 

21 



Qi 
aH 

3Pi 
[ 2 . 1 8 ) 

These equations are entirely equivalent to the original 

Euler-Lagrange equations. 

2.6 Duality 

Hammond [17] introduces an original extension to the study 

of analytical mechanics, this extension allows problems to be 

formulated in a manner which gives upper and lower bounds to the 

correct solution. 

Consider a new Lagrangian function. 

L' = L' (Pi ... Pn! Pi ••• Pn: t) (2.19) 

Then similar treatment to that presented above leads to 

L' = I (-qiPi) - H. 
i = l 

from which it can be seen that 

L' " -1 (QiPi - P<3i) " L 

this leads to 

( 2 . 2 0 ) 

( 2 . 2 1 ) 

I.dt = L dt + rpiqi 

t, 

( 2 . 2 2 ) 



l' is said to be the dual of L 

It is noted that the difference between L and L must be 

integrable, the minus sign in equation (2.20) facilitates this and 

the operators d/dt and -d/dt are said to be adjoint. 

Hammond [17] goes on to show that at the correct solution 

613= 0 when L' is substituted for L, and that substitution of L' for 

L changes the sign of the second variation. Hence if an approximate 

solution for L leads to an upper bound for I a. and approximate 

solution for L will lead to a lower bound for Ij. 



STATIC FIELDS 

The aim of this thesis is to use the methods and results of 

analytical mechanics in order to find an improved method for 

calculating global parameters in eddy-current systems. Analytical 

mechanics involves the integration of a function over a time 

interval. In seeking to apply the method to eddy-current systems 

distributed in space it is necessary to integrate through a specified 

volume. In order to see how the methods and results of analytical 

mechanics have been applied to distributed field problems static 

fields will be considered first. This discussion of static fields is 

based on work by Hammond [1], Hammond and Penman [19], Hammond et. 

al. [11] and Hammond and Zhan [12]. 

3.1 Electrostatics 

In an electrostatic system the field quantities are the 

charge density p, the electric flux density D, the electric field 

strength E and the scalar potential o. These quantities are related 

by the two equations given below: 

V . ^ = p (3.1) 

and -Vo = E (3.2) 

equation (3.2) incorporates the statement that curl E_ = 0. the 

constitutive field equation is D - cF. 
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In Chapter 2 it was shown that two systems, one a function 

of co-ordinates and velocity, the other a function of momentum and 

its time derivative, could be expected to have opposite signs for 

their second variations. This leads to dual bounds when used as the 

basis for a calculation scheme. The relationship between the two 

systems is shown below: 

Co-ordinate 

d 
dt 

Velocity Momentum 

<D 
d 
dt 

Force 

The two systems are L and L (section 2.6). .4n important 

feature of the two systems is their adjointness. The operators d/dt 

and -d/dt are said to be adjoint this is because 

^ " d? 

This allows the difference between the two systems to be integrated 

(see section 2.6). 

To fit electrostatics into this framework the field 

quantities p.D.E and o must be described as generalised co-ordinate, 

generalised velocity, generalised momentum and generalised force. 

Tlie operators between the co-ordinate and velocity and between the 

momentum and force musC be adjoint;. 

The system adopted which it' given lie low if. app]: cable for 

non-re 1 a t i V i L i c three u iniens lonal space. 
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Co-ordinate Velocity Momentum 

-V 

Force 

The operators -v and v. are adjoint because 

V (aA) = a V . A A . va (3.3) 

and this allows the difference between the two systems L and L to be 

integrated. 

In analytical mechanics the quantities which characterise 

the system are the kinetic energy and the potential energy. In 

electrostatics the quantities which characterise the system are the 

field energy (E.D/2 integrated throughout the system space) and the 

assembly work (p6/2 integrated throughout the system space). 

3.1.1 System equilibrium 

In analytical mechanics equilibrium is described by the 

principle of virtual work. In an electrostatic system a variational 

principle corresponding to the principle of virtual work can be 

written as 

:(p - divD), 66> = 0 (3.4) 
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Where the brackets <> indicate integration through the region of 

interest. Equation (3.4) states that an equilibrium condition is 

reached where p = divD for a particular potential distribution, the 

condition that ^ = -vo is implied. The equation can be integrated 

and expressed as the variation of a scalar energy functional W(o). 

If the charge density p is given an assigned distribution p and the 

surface charge density o is assigned, then the scalar energy 

functional Wi(o) is given by equation (3.5). 

6W1(o) = 6 <p,o> + [o,o] - - <e|Vo|Z> = 0 (3.5) 

The dual variational principle is obtained by varying the flux 

density D. This is done by the introduction of curl sources this 

allows the condition p = Div D to be maintained. 

<(Vo - E), 6D> = 0 (3.6) 

Equation (3.6) can be integrated and expressed as the 

variation of a scalar energy functional W(D). If the same 

specification of p and 5 are used as in equation (3.5). then the 

scalar energy functional (D) is given by equation (3.7) 

6 Wj(D) = 6 
• 

7 < — ^ = 0 (3.' 

It can be seen that the second variation of Wj(o) is 

negative and the second variation of Wj(D) is positive. Hence, the 

dual system provides a second variation of opposite sign to the 

second variation of the original system. 



An alternative system specification is to specify the 

potential o where p 0 and o z 0. This alternative specification 

can be used with the equilibrium statement for the original system 

(equation 3.4) to obtain W^lo). The alternative specification can 

also be used with the equilibrium statement for the dual system 

(equation 3.6) to obtain W2(D).6Wz(o) and 5W2(D) are given below:-

6^2(o] = 6 <e|Vo|Z> = 0 (3.8) 

6W,(D) = 6 
- — 2 

<p,o> + [o o] - - < — = 0 (3.9) 

Hence It can be seen that the dual system provides a second 

variation of opposite sign to the second variation of the original 

system. 

3.1.2 Physical features 

In the preceeding sub-section we found two equations 

describing the equilibrium of an electrostatic system. The use of 

two different system specifications for each of the equilibrium 

equations has given rise to four variational principles. 

Consider first the equilibrium equation (3.4). This 

equation allows the divergence of the field in the volume to be 

varied. However. if the system specification used for equation (3.5) 
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is examined it is noticed that o is free to vary at the surface, this 

causes a potential step at the surface corresponding to a double 

layer or curl source at the surface. If the alternative surface 

specification (0 = 0 where p 0, o ^ 0) is used there is no curl 

source at the surface. 

Now consider the equilibrium equation (3.6). This equation 

allows the curl of the field in the volume to be varied. If the 

system specification used for equation (3.o) is applied then only the 

curl of the field is varied. However, if the surface specification 

(0 = 0 where p * 0, o * 0) is used then both curl and divergence 

sources are allowed to vary. 

It can be seen from the above discussion that when both the 

curl and divergence sources are allowed to vary this results in a 

variational principle with maximum energy at equilibrium. When only 

one type of source is allowed to vary this results in a variational 

principle with minimum energy at equilibrium. This is because the 

variation of both curl and divergence sources occurs when the first 

variation of the assembly work is non-zero. 

3.1.2. Practical calculation schemes 

Hammond et. al. [11] explains how the above analysis may be 

used to obtain dual bounds for the capacitance of a system. They 

show that any potential map produces an upper bound of capacitance 

and any flux map produces a lower bound. This dual bound beliaviour 

is then exploited in an efficient calculation scheme for calculating 
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the capacitance of a system. 

3 • 2 Magnetostatlcs 

The magnetostatic field can be treated in a similar manner 

to the electrostatic field. The field quantities are the current 

density J, the magnetic field strength H, and the magnetic vector 

potential A. These quantities are related by the equations given 

below. 

V X H = J (3.10) 

and V . B = 0 (S.li: 

This equation allows the use of a vector potential where 

8 = V X A 

The constitutive field equation is: 

B = uH ; . 1 2 

These equations fit into the framework described in section 

3.1 in the following manner. 

Co-ordinate •Momentum Momentum Force 

Vx Vx 

3 0 



The operator Vx is self-adjoint because 

V . (FxG) = G . (VxFl - I .(Z X G) 

This allows the difference between the two systems L and l ' to be 

integrated. 

In a magnetostatic system a variational principle 

corresponding to a principle of virtual work can be written as: 

<(J - curlH), 6A> = 0 (3.13) 

The dual variational principle is obtained by varying the 

magnetic field strength H. 

<(B - curlA), ^H> = 0 . (3.14) 

Examination of equations (3.13) and (3.14) leads to a 

bounded solution technique for calculating the inductance of a 

magnetostatic system [12]. 
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4_. EDDY-CURRENT CALCULATION BY OTHER AUTHORS 

In Chapter 3 of this thesis the analogy between analytical 

mechanics and static electric and magnetic fields has been examined. 

This has led to the development of an efficient calculation scheme 

for global parameters in statics fields. The calculation scheme 

establishes upper and lower bounds for the global parameters. This 

enables error bounds to be stated for the correct solution. 

It is expected that this analogy can be extended to systems 

containing eddy-currents, leading to an efficient calculation scheme 

for global parameters in eddy-current systems. The study of 

eddy-current systems by this method is discussed in Chapter 5. 

The problem of obtaining approximate solutions for 

eddy-current systems has been discussed by many other authors. In 

this chapter the work of three of these authors is considered. This 

is done for the following reasons. Firstly to determine what has 

already been achieved. Secondly to investigate the differences 

between the methods used by these authors and the method based on the 

analogy between analytical mechanics and eddy-current systems. 

Work by Ferrari [3] is discussed in section 4.1. Work by 

Penman and Fraser [4] is discussed in section 4.2. Work carried out 

at the Rutherford Appleton Laboratories [5] is discussed in section 

4.3. 



4.1 Complementary Variational Formulation for Eddy-Current 

Problems Using the Field Variables E and H Directly 

This section investigates work done by Ferrari [3]. Ferrari 

introduces a variational analysis using H or E as the variable. Two 

functionals are introduced for an eddy-current system, one a function 

of H the other a function of E. The first variation of each of these 

functionals is said to be zero at the correct solution to the 

problem, provided that the correct boundary conditions have been 

applied. Ferrari describes the two functionals as complementary. 

However, he states that no attempt has been made to establish that 

the complementary approaches described would yield upper and lower 

bounds for any solution parameter. 

Ferrari's work is of interest to the present author because 

the functionals he uses are similar (though different in one vital 

aspect) to the functionals yielded by the analogy of eddy-current 

systems and analytical mechanics. (Chapter 5). 

At low frequencies (using -the pre-Maxwel1 equations) the two 

complementary functionals introduced by Ferrari are: 

(a) F;̂  = <(VxH), (VxH)> f j uwo <H.H> (4.1) 

(b) Fr = <(9xEI. (7xE)> . + <E,E> (4.2) 
& — — JUWO 

Where H and E are phasor representations of periodic 

s j inu--.o j da ] f unc t .1 ons . 

The rema indc;- of this section is devoted to a study of 

functionals. in particular the functional Ff[ since the inherent 
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symmetry of the two functionals Fpj and Fg can be seen. The 

investigation of will try to answer the following questions: What 

is the physical significance of the function? What is the first 

variation of the functional? What is the second variation of the 

functional? 

4.1.1 Physical significance of the functional 

Ferrari does not discuss the physical significance of the 

functional F^. He is satisfied with calculating the first variation 

of Fy and considering if the functional is stationary at the correct 

solution to the problem. The present author considers that this 

approach discards some information which may be useful when 

considering the worth of a particular functional. The reason for 

this is explained below. 

The functionals which have been developed for mechanics, 

electrostatics and magnetostatics have all been closely related to 

the energy of the system. In the frequency domain this would lead 

one to expect a functional which was closely related to the power of 

the system. Hence it is expected that in a sinusoidal eddy-current 

system the functional used would represent the real and reactive 

power used by the system. The functional Fy does not represent the 

real and reactive power in an eddy-current system. This is because 

when using a phasor representation of fields in a distributed system, 

or of currents and voltages in a circuit, the real and reactive power 

can only be calculated by use of complex conjugate quantities. This 

is explained by Yorke [20]. For tliis reason the present au.thor 

cannot be entirely satisfied with the functional Ffj. 
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4.1.2 The first variation of the functional 

Despite the reservations given above, the functional Fy will 

provide a method for the approximate solution of eddy-current 

problems if its first variation is zero about the correct solution to 

the problem. The first variation of Fy is calculated below: 

= <{VxH), (VxH)> - jucjo <H.H> (4.1) 

The phasor H may be written H = H ^ JH , and the 

functional F^ may be expressed in terms of the components of H. 

F Y = < ( V X H ' ) , (VXH" )> - <{VxH )(VxH )> -R 2j<{VxH ) (VxH )> 

+ juwo (<H',H'> - <H".H"> 2j<H',H">) (4.3) 

The first variation is 

= 2 < ( V X H ' ) 6 ( V X H ' ) > - 2 < ( V X H ) 6 ( V X H )> 

f 2 j < V x H ' ) 6 ( V X H " ) > + 2 J < ( V x H ) 6 ( V x H )> 

fjuwo(2<H/,6H >-2<H .6H >+2j<H 5H >+2j<H 6H >) (4.4) 

Using the vector identity v . ( F x G ) = C . v x F - F . V x G and 

Gauss's theorem some of the terms from equation (4.-4) .T.ai be 

as shown below: 

< I VxH ' ) . 6 ( VxH ) > : \ xH . 6H > - [ ( VxH ) x6H . n ] ( i . o 1 
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<(VxK ).6(Vx}I )> = <VxVxH .6H >-[(Vxn )x6n . n] (-3-6) 

••-TIVXH' ) .6(VXH" )> = <VxVxH .6H >-[(VxH ) x5H .n] (-3.7) 

<(VXH" ) ,6(VXH' )> = <VxVxH .5H >--[(VxH )x5H .n] (4.8) 

If the surface values of H are held constant then surface 

terms In equation (4.5) to (4.8) are all zero. Hence, using 

equations (4.5) to (4.8) with specified surface values of H, equation 

(4.4) can be rewritten as shown below. 

6Ft^ = 2<VXVXH" ,6H'>-2<VXVXH" ,6H">t2j<VxVxH' ,6H > 

+ 2 j < V x V x H " , 6 H ' > + j u w o ( 2 < H ' , 6 H >-2<H ,6H > 

+ 2 j < H " , 6 H ' > + 2 j < H ' , 6 H " > ) (4.9) 

Equation (4.9) can be rearranged to give the coefficients of 5H and 

5H" , it is these coefficients which determine whether the functional 

Fjj is stationary about the correct solution to the eddy-current 

problem. 

6FH=2<6H' , (VXVXH'-Y£JOH"+J (VxVxH -UCJOH ))> 

^2<6H ,(-VxVxH -uwoH ^j(VxVxH -uwoH )> (4.10) 

The functional has a stationary value at the correct 

solution of the eddy-current problem if the coefficients of 6H and 
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6H . in equation (4.10), are zero when the diffusion equation (the 

mathematical description of the behaviour of eddy-current systems) is 

satisfied. The phasor component solution of the diffusion equation 

is : 

V X V X H - u'-ooU = 0 (4.11) 

and V X V X H + uwoH = 0 (4.12) 

The application of equations (4.11) and (4.12) to the first 

variation of the functional Ffj (equation 4.10) leads to the result 

that the coefficient of and the coefficient of 6H are both zero. 

This result means that the functional has a stationary value at 

the correct solution to the eddy-current problem. (Fpi is complex and 

both the real and imaginary components of Fy have stationary values 

at the correct solution.) Hence the functional Fy will provide a 

method for the approximate solution of eddy-current problems. This 

fact is exploited by Ferrari [3]. 

4.1.3 The second variation of the functional 

The existence of a stationary value for the functional Fy at 

the correct solution to the eddy-current problem is not sufficient to 

lead to a bounded solution technique for Fjj. This requires that the 

second variation of F^ be either positive definite or negative 

definite at the stationary value. The second variation of the 

functional Fy is: 
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5^FrT=<5(VxH' ) 6 ( V X H ' ) > - < 6 ( V X H " ) , 5 ( V X H " )>-2TT£jo<5H , 6 H > 

-j{uwo(<6H' . 6 H ' > - < 6 H " .6H"> ) ^-2<6(VXH" I . 6 ( V X H ' )>) (4. 13) 

Examination of equation ( 4 . 1 3 ) reveals that the second 

variation of Fy is neither positive definite nor negative definite. 

4• 2 Complementary Variational Formulation for Finite Element 
Calculation of Eddy-Current Problems 

This section investigates work done by Penman and Fraser 

[4]. Penman and Fraser introduce a variational analysis using A or H 

as the variable. The treatment considers two dimensional systems 

(Penman and Fraser do not say whether their analysis is suitable for 

three dimensional systems) with sinusoidal excitation. Two 

functionals are introduced for an eddy-current system, one a function 

of A. the other a functional of H. The first variation of each of 

these functionals is said to be zero at the correct solution to the 

problem, provided that the correct boundary conditions have been 

applied. Penman and Fraser describe their two functionals as 

complementary. 

Starting with the eddy-current equation expressed in terms 

of the magnetic vector potential 

V X V X A ^ jwouA = J (4.14) 

where A = 0^ ^ 0^ - (.4'+j.A")k 

and J = 0_i ^ Oj + J k 
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An analysis of equation (4.14) is presented by Penman and 

Frser which leads to two functionals and Fy 

F_4 = <VxA' ,VxA > - <VxA ,7xA >-<woA" ,A >-<J,A'> 

^ t <I-r" , h " > - — <VXH" , V XH ' > t — <J,VxH"> 
^ ^ WO wo 

Penman and Fraser claim that by comparison with results for 

static fields [21] that the functionals F^ and Fy provide bounds to 

the exact solution. 

The present author has considered the functionals F^ and Fy 

in a similar manner to the discussion of the functionals presented by 

Ferrari (section 4.1). The following questions have been asked 

What is the physical significance of the functionals? Is the first 

variation of the functionals equal to zero at the correct solution to 

the problem? What is the second variation of the functionals? The 

answers to these questions are discussed below. 

Penman and Fraser do not discuss the physical significance 

of the functionals F_4 and Fy. The functionals do not represent 

complex power (sub-section 4.1.1) and do not appear to have physical 

significance. The first variation of the functionals F^ and F^ is 

zero about the correct solution to the eddy-current problem. This 

fact means that if the functionals F^ and Fpj are used as the basis of 

a calculation scheme they will lead to an approximate solution of the 

eddy-current problem. The second variation of the functionals F^ and 

Fy are neither positive definite or negative definite. 

39 



In conclusion it is the present author's opinion that the 

Junctionals and Fy may be used as the basis of a calculation 

scheme for obtaining an approximate solution to eddy-current 

problems, but this solution will not guarantee bounds for the global 

parameters of the eddy-current system. 

4.3 Weighted Residual Finite-Element Calculation 

This section describes the program theory used for the PE2D 

program [5]. The program has been developed at the Rutherford 

Appleton Laboratories. The approximate calculation methods described 

in sections 4.1 and 4.2 both use variational techniques. Another 

approach to the approximate solution of eddy-current problems is to 

use the method of weighted residuals. This method obtains an 

approximate solution for the diffusion equation without the need for 

a functional. The PE2D program uses the method of weighted residuals 

to solve two dimensional linear eddy-current problems. The solution 

is carried out using the magnetic vector potential. 

4.3.1 Weighted residuals 

The starting point for this method is the differential 

equation which governs the system under consideration. This equation 

can be expressed as below: 

Lu = G 
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L is a differential operator 

u is an unknown potential 

G is a known quantity. 

If o is an approximate solution for u then a residual 

function e can be described 

e = Lo - G 

The residual function (e) can be multiplied by a weighting 

function and then integrated over the region of the problem. When 

the integral of the weighted residual is equal to zero an approximate 

solution has been obtained. The weighting function may be chosen at 

will, however, a particular choice of weighting function called the 

Galerkin method is considered to lead to the most accurate solution 

[22]. The Galerkin method is used by PE2D. 

The method of weighted residuals does not use a functional, 

so the question of boundedness by considering the functional does not 

arise. The method is discussed in order to illustrate the existence 

of an alternative approach to the approximate solution of 

eddy-current problems. 

All Comparison of Methods 

Each of the three methods, for the approximate solution of 

sinusoidal steady-state eddy-current problems, discussed in this 

chapter leads to a similar type of calculation scheme. For a 

particular finite element sub-division with n degrees of freedom each 
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of the methods discussed requires the inversion of an n by n matrix 

in order to solve the n simultaneous equations generated by the 

method. Hence the methods are approximately equally useful. The 

choice of E. H or A as the most appropriate solution parameter 

depends upon the type of eddy-current problem under consideration and 

the boundary conditions which must be applied. 

The three methods described all obtain an approximate 

solution to the eddy-current problem. Control of the first variation 

of a functional is sufficient for this purpose. However, none of the 

methods described control and second variation of the functional, it 

is the second variation of the functional which determines whether or 

not an approximate solution will bound the real solution. Also none 

of the methods described consider the physical meaning of the 

functionals which they use, and because of this fact these 

functionals are inappropriate for discussing bounded solutions for 

global parameters in eddy-current systems. A solution method which 

uses a functional with physical meaning, and controls the first and 

second variations of this function is given in Chapter 5. The 

advantages of a bounded solution technique are discussed in section 

1.4. 
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^ DUAL BOUNDS FOR EDDY-CURRENT SYSTEMS 

In Chapter 3 static electric and magnetic fields were 

analysed by methods analogous to those used in analytical mechanics. 

This analysis led directly to a bounded solution technique for global 

parameters in static systems. The analogy is now extended to include 

time-harmonic eddy-current systems. A variational principle is 

established which leads to functionals representing the real and 

reactive power of the system. Analysis of this variational principle 

leads to a bounded solution technique for the resistance and 

inductance of an eddy-current system. 

5.1 Governing Equation 

The governing equation for eddy-current systems is the 

diffusion equation 

3H 
v x v x H = -fjLO (5.1) 

ot 

This equation is not self adjoint due to the - a / a t operator 

on the right hand side. This problem can be overcome by considering 

the physical aspects of the problem, this approach is suggested by 

Hammond [23]. The system has magnetic energy varying with time and 

It also has dissipation varying with time. A dissipative system 

requires sources of energy before its equilibrium can be discussed. 

The sources of energy must match the dissipation exactly. This is 

achieved by using an adjoint eddy-current system with negative 

conductivity. Such a system is described by equation (5.1a). 
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V X V X Hg = -a(-o) — — (5.1a) 
at 

in the time domain this is equivalent to a negative time sequence 

with Ha = H and aHg/at = -3H/3t. In phasor notation equations (5.1) 

and (5.1a) may be written 

V X V X H = -jwMoH (5.2) 

and V X V X = jwnoH^ (5.3) 

where H = (H'+JH )eJ"^ and HG = (H -JH )e"J"^ 

5.2 Principle of Virtual Power 

For a time harmonic eddy-current system equations (5.2) and 

(5.3) can be used to give a principle of virtual power, similar to 

the principle of virtual work 

<V X V X H + jwoH, = 0 (5.4) 

= > < ( V X V X H ' " )+j (VxVxH +£JMOH') , 6(H'-jH )> = 0 (5.5) 

5.3 Boundary Conditions 

Before investigating the principle of virtual power given in 

section 5.2 it is necessary to consider the type of systems to which 

it will be applied. Two specifications are possible, firstly the 

system may be described by a fixed current. This is equivalent to 
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specifying the surface values of H (for example H is fixed and 

H"=0). A system specified in this manner will have the real and 

reactive power given by equation (5.6) 

[ExH*.n] 
P = ^ = - 2 (5.6) 

j* represents the complex conjugate of J. 

Since the total current is fixed an equivalent series circuit may be 

described with resistance R and reactance X the real and reactive 

power in this circuit is given by equation (5.7). 

P = ^ I* (R 4 jX) (5 7) 

A similar system of equations can be developed if the second 

specification is adopted, the specification of an applied voltage. 

This is equivalent to specifying the value of E at the surface (E). 

A system specified in this manner would have real and reactive power 

given by equation (5.8) 

[ExH*.n] 
P = % <E,E"'> + 1̂ — <B.B*> = - (5.8) 

Since the applied voltage is fixed an equivalent parallel circuit may 

be described with resistance: R and reactance X. 

reactive power in this circuit is given by equation (5.9) 

I ' 'J 
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5.4 Development of Power Functionals 

Using the principle of virtual power (equation 5.5) and the 

boundary condition H fixed, H equal 0, four power functionals can 

be developed which lead to upper and lower bounds for the equivalent 

circuit parameters R and X in section 5.3. 

The principle of virtual power can be divided into two 

variational principles by specifying part of the system. If equation 

(5.10) is enforced throughout the problem then the variational 

statement is given by equation (5.11) 

V X V X H" -R WHO H' = 0 (5.10) 

<(V X V X H' - wwo H"), 6(H' - jH")> = 0 (5.11) 

If equation (5.12) is enforced throughout the problem then 

the variational statement is given by equation (5.13). 

V X V X H - î uo ̂  = 0 (5.12) 

j<(v X V X H" + wuo H'), 6(H' - jH")> = 0 (5.13) 

5.4.1 Integration of the variational principles 

The variational principles (5.11) and (5.13) have real and 

imaginary parts, those can be integrated separately. 
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The real part of equation (5.11) is given by equation (5.14) 

<(v X V X H' - couoH ), 5H'> = 0 (5.14) 

<V X V X H , 6H > — > — 0 

since v x v x H = -w^o H (equation o.lO) 

= » < V X V X H ' , 6 H ' > - ^ < H , V x V x 6 H > = 0 

=» <V X H', V X 6H'> + <V X H", V X 6H'> = 0 

4- <V X H' , 6(V X H' )> - <V X H" , 5(V X H")> = 0 

^ 6(FI(H)) = 0 

<(V X H) , (V X H" )> 

where Fi(H) = % 

Hence the correct solution Fi(H) = !2<J,J*> = oI^R/2 (using 

eqns. 56 and 5.7). The first variation of Fj(H) is zero at the 

correct solution and the second variation is positive definite. This 

means that Fj(H) is a minimum a equilibrium and leads to an upper 

bound for R if H does not represent the correct solution to the 

eddy-current problem. The imaginary part of equation (5.11) is given 

by equation (5.15) 

<(V X V X H' - WUOH" ) , 5H"> = 0 (5.15) 

=» <V X V X H , 6H > - wuo<H . 6H > = 0 
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=» <V X 11 ' . V X 6H > - wuo<H . 5H > = 0 

4- <H .V X V X 6H"> 7 [h' X (VX6H") . n] -wuo<!l . 6}1 > - 0 

Since v x v x ^ = -wuoj! (Gcjuation o.lO) 

^ [H" X (Vx6H ).n] -wwo<H ,6H > -«uo<H , 6H > = 0 

4. 5(F,(H)) = 0 

F,(H) = -Iin[(VxH)xH*.n]- ̂  

Hence at the correct solution (using eqns. 5.6 and 5.7) 

F,(H) = -Im [oExH*.n] - ^ 

The first variation of Fz(H) is zero at the correct solution, the 

second variation of F^(H) is negative definite. This means that 

Fg(H) is a maximum at equilibrium and leads to a lower bound for X if 

H is not the correct solution to the eddy-current problem. 

The second variational principle is given by equation 

(5.13). The real part of equation (5.13) is given by equation 

(5.16) . 

- <(v X V X H + wfjtoH ) , 6H > = 0 (5.16) 

= » - < V x V x H , 6J{> - tJno<H , 6 H > = 0 

Since v x v x H' = W^OH (equation 5.12) 
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= ^ - < V x V x H . 6 H > - < H . V x V x 6 H > = 0 

- <VXH",VX6H"> - <VXH',VX6H'> - [(VX6H' )XH' .n] = 0 

=» - [6{VXH')XH' .n] - <VXH' , 6(VXH' )> - <VxH . 6(VxH )> = 0 

=» 6(F,(H) ) = 0 

<VxH, VXH'^> 

=> F,(H) = - Re[(VxH) x H*.n] - ; 

Hence at the correct solution FgtH) = - Re[oExH .n] - 1/2 <J,J > -

oI^R/2 (using eqns. 5.6 and 5.7). The first variation of FjCH) is 

zero at the correct solution and the second variation of F^(PI) is 

negative definite. This means that is a maximum at equilibrium 

and leads to a lower bound for R if H does not represent the correct 

solution to the eddy-current problem. 

The imaginary part of equation (5.13) is given by equation 

Jo.17) 

<(V X V X H + wuoH ), 6H > = 0 (0.17) 

^ < V x V x H , 6 H > - » wuo<H , 6H > = 0 

a <V X H . V X OH > -)• wuo<fI , 5H > = 0 
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Since v x v x H wnoll (equation 5.12) 

lo <H . 6H > + wi(o<H . > ••= 0 

=> 6(F*(H) ) = 0 

FJH) = ̂  <H.HS 

Hence at the correct solution = wuo/2 <H, H > = oI^X/2 (using 

eqns. 5.6 and 5.7). The first variation of F^fH) is zero at the 

correct solution and the second variation of F«,(H) is positive 

definite. This means that F^fH) is a minimum at equilibrium and 

leads to an upper bound for R if H does not represent the correct 

solution to the eddy-current problem. 

5.5 Discussion of the Functionals 

The functionals F^(H), Fg(H). FgfH) and F^(H) have all been 

developed for the surface specification h' known and H =0 for those 

parts of the surface where . n ] . A similar set of functionals 

can be developed for the surface specification E known and E =0. 

The functionals F,(H) and F^(H) require the volume specification 

V X V X H" = -wuojl' and give bounds R_ and X_. The functionals 

FaCH) and F^fH) require the volume specification v x v x H = wuoH 

and give bounds R_ and In chapter 6 an example is given in which 

the functionals Fj(H), F^IH), FjlH) and F^fEJ are used to obtain 

upper and lower bounds for the equivalent circuit parameters R and X. 
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5 • 6 Discussion of the Method 

The method described by sections 5.1 to 5.5 is similar to a 

method described by Hunimond and Penman [2]. A brief oul.lii;e of pcirt 

of that method is given below. 

For time-harmonic eddy-current systems an adjoint system 

H* = j. specified. The variation is restricted by the 

condition v x H = J or the condition v x E = Usincj the 

condition v x H = J and specified surface H the functional \ is 

developed which represents the real and reactive power in the system. 

At the correct solution to the eddy-current problem the 

first variation of Y is shown to be given by equation (5.19). 

6Y=uw<H ,6fl >-^w<H ,6PI > - •̂  <2 ' ^ ^ o ^ (5.19) 

Hammond and Penman explain that 6Y=0 because the variation is carried 

out on the power of the combined double system srid > snd 

the phase angle at a particular place is not varied. 

However, since }£ and ^ can be varied independently this 

reasoning does not appear to be strong enough. The real part of 6Y 

can be made equal to zero at the correct solution to the eddy-current 

problem by enforcing the condition v x v x H = -wwoH and the 

surface condition ^ = 0 . The imaginary part of 5Y can be made equal 

to zero at the correct solution to the eddy-current problem by 
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enforcing the condition v x v x h' = wuoH" and the surface condition 

H" = 0. These facts demonstrate the similarity between the method 

described by Hammond and Penman and the method described in sections 

5.1 to 5.5. 
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6. PROBLEM SOLVING 

Tlie functionals developed in Chapter 5 are used to provide a 

bounded solution for global parameters in an eddy-current system. 

The system chosen is a large flat conductor. The geometry is shown 

in Fig. 6. 

The conductor is considered to be infinite in the x and z 

directions. The analytical solution for the impedance per unit in 

the X and z directions is given by 

R+jX = 
2oA 

r 2 b 2b 2b 2b' 

slnh A f sin A . slnh A - sin A 

cosh 
2b _ 
A 

cos 
2b 
A 

+ J 
cosh 

2b 
A 

2b 
cos — 

A J 

( 6 . 1 ) 

where A = •/2/nou is the eddy-current skin depth. 

6 . 1 Bounded Solution 

A total current of I per unit width is specified the current 

being in the z direction, by symmetry the magentlc field at the top 

surface is -1/2 and the magnetic field at the bottom surface Is 1/2. 

At the centre of the conductor the magnetic field is zero. This 

symmetry means that odd functions should be used to describe the 

magnetic field within the conductor. For the functions Fi(H) and 

FZFH) the specification of H" IS chosen as 

H" = f PiyS + 7iy 

53 



and since 

V X V X }J --{1)110 H 

^ rjua H = 20«,y' - 6/3, y 

at the top surface 

h" = - 1/2 H" = 0 

hence yjb 0 

and 20o:jb" + 6/3jb = ojua 1/2 

Using these definitions the system has one degree of 

freedom, the free variable is chosen to be For a value of b = A 

the values resistance and inductance are calculated from the 

functionals F^CH) and FzfH) and plotted in Figs. 6.2 and 6.3 for 

different values of The resistances have been normalized to the 

d.c. resistance Rq = l/2ob and the d.c. inductance Lq = Ugb/e. The 

behaviour of the functionals is clearly seen in these diagrams and it 

is clear that any value of <Xj will produce an upper bound for the 

resistance and a lower bound for the inductance. 

For the functionals F^CH) and F^{H) the specification of H' 

is chosen as 

H = + PzyS t y^y 
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and since v x v x H = wuaH 

uuoH = 20«2y^ f 

at the top surface H = -1/2 H = 0 

hence -f ^ y^b = -1/2 

and ^Ocgb- ^ = 0 

Using these definitions the system has one degree of 

freedom, the free variable is chosen to be cĉ . For a value of b = A 

the values of resistance and inductance are calculated from the 

functionals F^fH) and F^(H) and plotted in Figs. 6.4 and 6.5 for 

different values of . The resistance and inductance have been 

normalized to their respective d.c. values. Again the behaviour of 

the functionals is clearly seen in these diagrams and it is clear 

that any value of will produce a lower bound for the resistance 

and an upper bound for the inductance. 

6.1.1 Discussion of results 

The results for the large flat conductor demonstrate the 

bounds provided by the functions Fi(H). F^fHI. F^IH) and F^fH). The 

functionals can be used to provide bounded solutions either by 

guessing the fern: of solution for II or by using the Ray] e J gh-Ri t.~ 

variational method to obtain an approximate aoluHion for H. If Chr 

Ray] eigh-Ritz nif.'Lhod is used the following accuracy is obtained for 

the boiuids for b-&. 
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= 1.000136R = 1.0000007L 

R_ = 0.9999915R L_ = 0.9999904L 

where R and L represent the analytical solution given by equation 

( 6 . 1 ) . 
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7, PRACTICAL WORK 

A practical project was carriod out at tlie Cf;nti ci.l 

electricity Generating Board, Central Engineering Reasearch 

Laboratories. The project was undertaken to demonstrate the 

interaction between the solution of eddy-current systems and the 

design of practical equipment. 

7.1 Introduction to the Project 

Many methods of temperature measurement exist. Those in 

common use today include: mercury-in-glass thermometer, platinum 

resistance thermometer, thermocouples and pyrometers. The particular 

interest of this work is the measurement of the temperature of an 

unseen and inaccessible conductor (such as a conductor which is 

covered with electrical insulation) . 

The techniques mentioned above are not suitable for this 

problem. The approach, suggested by Sutton [24] is to consider the 

disturbance of an alternating magnetic field due to the presence of 

the conductor. For a fixed geometry and frequency this is a function 

of the resistivity, and hence temperature, of the conductor. The 

geometry considered is that of a circular exciting coil with its axis 

perpendicular to a semi-infinite conductor (Fig. 7.2). This problem 

has an analytical solution which is given by Hammond [25]. 

The techniques used for measurement and data analysis are 

discussed, and results are presented which seem to indicate that 

further development would lead to a useful practical instrument. 
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Instruments using similar principles to determine distance aliodd^ 

e.Nist - however the problem of resistivity measurement is much more 

difficult as the changes in signal are smaller and the signal 

requires splitting into in-phase and quadrature components. 

7• 2 Analytical Solution 

7.2.1 Description of the problem 

A circular excitation coil carrying an alternating current 

generates an alternating magnetic field. If a circular pick-up coil 

is located on the same axis and in the same plane as the excitation 

coil, then the voltage output from the pick-up coil can be measured. 

The physical arrangement is shown in Fig. 7.1. 

If a semi-infinite conductor is placed adjacent to the coils 

(Fig. 7.2) eddy-currents will be induced in the conductor. The 

magnetic field of the eddy-currents will alter the voltage output 

from the pick-up coil. In this chapter the change in magnetic vector 

potential A at the pick-up coil, due to the presence of the 

conductor, is calculated. The magnetic vector potential at the 

pick-up coil is proportional to the voltage output from the pick-up 

coil. 

7.2.2 Coil in free space 

The magnetic vector potential A1 at the pick-up coil, due to 

the excitation coil in free space, is given by equation (7.1). The 

coordinate system is the cylindrical (r, e, z) system, the origin 

beinr chosen at the centre of the coils. Because of the symmetry of 
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tlu=' probU^ni the only component of A is Ag and tlie ;5uffix can be 

dropped. 

A1 
u u I 
0 r 

J1 (k )J J [ — 1 dk 
LA J 

(7.1) 

where I = current in the excitation coil 

a = radius of the excitation coil 

c = radius of the pick-up coil 

k = variable 

J1 = BesseJ function of the first kind and order unity 

7.2.3 Coil adjacent to semi-infinite conductor 

The magnetic vector potential .42 at the pick-up coil due to 

the excitation coil and the semi-infinite conductor (Fig. 7.2) is: 

A2 = f] e (kwr^(kZ+jpZ)%) 
dk 

(7.2) 

where p = •2/A 

A = skin depth 

b = distance of coils from the surface of the conductor 

7.2.4 Change in magnetic field caused by the presence of the 
semi-infinite conductor 

The difference Ap between A2 and A1 is caused by eddy-

currents in the semi-infinite conductor. 
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AD 

u u I 
o r 

•(k/u -(kZ+jpZ)K 

{kMp+(k^ + jp^ )'̂  
e-2kb/a 4% 

(7.3) 

7.2.5 Determination of phase and quadrature components of An 

The following analysis determines the components of Ap which 

are in-phase with and in phase-quadrature with the current in the 

excitation coil. 

The components of equation (7.3) are all real apart from the 

terra given below: 

h = 
(bUy-(kZ+jpZ)% 

(bur+(kZ+jpZ)% 
(7.4) 

It is necessary to express h in the form a+jb where a and b are real 

numbers. This is achieved as follows: 

j|tan-i g P tail .2 I 
(kZ+jpZ)* = [(k4+p4)% e (by Euler's Identities) 

i[ tan" ,2| 
(k*+p*)% e" (by De Moivre's Theorem) 

y cos X + jy sin x (7.5) 

where y = (k*+p*)K and x - %^tan 
Lk^ 

The substitution of equation (7.5) into equation (7.4) gives 
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h = 
kWp-y cos X ^ jy sin x 

kw.+y cos X - jy sin x 
(7.6) 

Further analysis of equation (7.6) leads to 

h = 
(kw^)Z-y2 

(knp) ̂ -2(kMr.)y cos x+y" 
" J 

-2kn^y sin x 

(kur)Zf2(kwr)y cos x*y' 

(7.7) 

This expression allows .AQ to be written in the form 

Ag = Aj) phase + j.4g quadrature. 

Substituting equation (7.7) into equation (7.3) gives: 

^Dphase 
e-2kb/a j^(k)Ji 

kc" 

La J 

(k%y)Z-yZ 

(kwp) ̂ +2kiui<y cos x-y' 
dk 

[7.8) 

^Dquad 
"o"r^ e-2kb/a j^(k)jj 

fkcl 
-2ka^y sin x 1 

(kMp)^"2kupy cos x+y 
dk 

(7.9) 

These values represent the changes in the amplitudes of the 

in-phase and quadrature components of magnetic vector potential at 

the pick-up coil, caused by the eddy currents in the conductor. The 

magnetic vector potential at the coil is proportional to the voltage 

output from the pick-up coil. 
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7 . 3 Experimental Work 

The expcrimenta] work ck-scribcHl in tlii:-; section uses tlie 

same arrangement of coils and conductor as shown in Fig. 7.1 and Fig. 

7.2. The experimental work is designed to accurately detect tlic; 

change in the voltage output from the pick-up coil due to the 

presence of a semi-infinite conductor. This change in voltage can 

then be compared with the analytical solution for .AQ . and this 

comparison enables the value of the resistivity of the conductor to 

be obtained. 

7.3.1 Arrangement of the coils 

The physical arrangement of the excitation and pick-up coils 

is designed to be equivalent to the theoretical coil arrangements in 

Fig. 7.1 and Fig. 7.2. However, since the measurement required is 

the difference in voltage output from the pick-up coil due to the 

presence of the conductor, the experiment has been designed to 

measure this directly. Two pairs of "identical" coils are used; the 

two excitation coils are connected in series and the two pick-up 

coils are connected in series opposite (Fig. 7.3). This arrangement 

gives zero output voltage in free space. Fine mechanical adjustment 

is used in order to obtain the above condition. 

A conductor is then placed adjacent to one set of coils, the 

other set of coils are still effectively in free space. The voltage 

signal obtained is proportional to Ap. The remote coils are 

effectively in free space if 1/a > 5 (where 1 is the distance 

between two sets of coils in Fig. 7.3) this is due to the term 

g-2kb/a equation (7.8) and equation (7.9). 
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7.3.2 Experimental arrangement 

The experimental arrangement is shown in Fig. 7.4. 

The voltage output from the coil arrangement is fed into the 

precision lock-in amplifier. This allows the signal to be resolved 

into two components. The output from the precision lock-in amplifier 

is fed into a digital multimeter to enable more accurate readings to 

be taken. The precision lock-in amplifier works in the manner 

described below. 

The input signal is multiplied by an internally generated 

square wave, this gives a measure of the signal which is in-phase 

with a preset reference (Fig. 7.5). By shifting the phase of the 

square wave by 90° a measure of the signal which is in phase 

quadrature with the reference is obtained (Fig. 7.6). The reference 

phase is the phase of the voltage induced in the pick-up coils when 

the coil arrangement is in free space. 

The target conductor is an approximation to the 

semi-infinite conductor in Fig. 7.2. The approximation is good is 

the thickness of the conductor is greater than four skin depths and 

the distance from the axis of the coil arrangement is greater than 

eight times the radius of the excitation coil. (These figures are 

based on the analytical solution given by Hammond [25] and attested 

by varying the size of the; target in the experiment). 

Readings of tlie output voltage from the coi 1-arrangement are 

required when the target is at different tempera turers. Henct;. tlie 

GC 



thermal stability of the target conductor is important. A large 

tar%ct has greater tliermal stability, this enables readings to be 

taken at constant temperature but means that more heat must be 

supplied to change the temperature of the target conductor. 

7.3.3 Calibration of equipment 

The coils within the coil arrangement are positioned to give 

a zero output when they are in free space. When a conducting target 

is moved towards one end of the coil arrangement an output voltage 

(V) from the pick-up coils is obtained. For a particular coil 

arrangement at a fixed operating frequency the measured in-phase and 

quadrature components of the output voltage are related to the 

in-phase and quadrature components of .4̂  (sub-section 7.2.5) by a 

scaling factor. 

7.4 Data Analysis 

The data obtained from the experiment Is the phase (P) and 

quadrature (Q) signal from the pick-up coil. From experimental 

measurements It was found that (|P| - |Q|) Is mainly sensitive to the 

distance of the coll arrangement from the target irrespective of the 

target resistivity. The phase of the signal (tan~^ (Q/P)) is 

governed both by the resistivity of the target and by the distance of 

the coil arrangement from the target. 

The measured voltages P and Q are compared with the 

theoretical values AQ phase and AQ quad given by equations (7.8) and 

(7.9). The following steps are therefore used in the computer 
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program once the scale factor has been determined (sub-section 

7.3.3). 

(1) Generate a table of Agphase + •'̂ Dquad-

(2) Compare (P-Q) with (A^phase + ^Dquad) order to determine 

the distance of the coil arrangement from the target. 

(3) Use information about P/Q to determine the resistivity (by 

comparing . 

Aophase A^guad are calculated using the "Data Generation" 

program. The comparison with the P and Q values is carried out by 

the "Electromagnetic Thermometer" Program. The programs operate on a 

Tektronix 4042A computer. 

7.4.1 Data generation program 

This program calculates values of A^phase -"̂ Dquad by 

evaluating the integrals in equations (7.8) and (7.9). The Bessel 

functions in the integrands are evaluated using polynomial series 

given by Abromowit;: and Stegun [26]. The integrands are evaluated at 

steps of k = 0.005 (over the range k = 0 to 10) and then integrated 

using Simpson's rule (at values of k greater than 10 the values of 

the integrands are negligible due to the terms e'^kb/a |,i equations 

(7.8) and (7.9)). 

The values of AQphase ^Dquad calculated for the 

foil OK i ng range of var i ab1es: 
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Operating frequency (Fr) 

Drive coil radius (A) 

Pick-up coil radius (R) 

Min. and Max. distance of coils from the target (Bl, B2) 

Min. and max. resistivity of target (Rhl, Rh2), 

The program generates and stores on tape values of Agphase ^Dquad 

for 

B = Bl to B2 step 0.1mm 

Rh = Rhl to Rh2 step 0.25 {E-8 Ohm m) 

It also computes and stores values of Agphage ^Dquad 

B = Bl 

Rh = Rhl to Rh2 step 0.03 (E-8 Ohm m) 

Both sets of data are written onto tape file 'N" which is specified 

by the user. 

7.4.2. Electromagnetic thermometer program 

This program reads from tape the data generated by the data 

generation program and computes -Apphase " ^Dquad ADphaasfr^-'^Dquad 

and places these values in three tables (Fig. 7.7). The three tables 

are organised in this way to make use of the; fact tliat 
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Dphase 

Dguad. 

evaluated at Rh = pi, distance = Dg 

Dphase 

^Dquad 
evaluated at Rh = P^, distance = Dg 

is virtually independent of the distance Dg. This enables less 

storage space to be used for a given accuracy. 

Before the program can be used as a thermometer it requires 

calibration, which as mentioned in sub-section 7.3.3., is achieved by 

input of values of P and Q at known temperature (the determination of 

the scale factor is described in sub-section 7.4.3). Once the scale 

factor has been calculated from the calibration data, values of P and 

Q at unknown temperature may be input and the temperature of the 

target will be calculated by the program and displayed on the screen. 

The program takes the following steps:-

1. Inputs P and Q (measured values) 

2. Defines PPQ = (P + Q) * scale factor 

3. Sets Rh = 1.75 R-8 Ohm m 

4. Estimates the distance Dg at which PPQ = A^phase + 

^Dquad (using linear interpolation between discrete 

points in Table 1, Fig. 7.7) 

5. Calculates the value: 
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Lu = 

A 
Dphase 

Dguad 

evaluated at distance = 81 
resistivity = Rhl 

" Dphase 

^Dquad 
evaluated at Rh distance = Dg 

resistivity = Rhl 

(using linear interpolation between discrete points (in 

Table 2, Fig. 7.7) 

6. Estimates Rh by finding the value of Rh at which 

fA 
Lu = 

Dphase 

•^Dquad 

evaluated at distance = B1 (using linear interpolation 

between discrete points in Table 3, Fig. 7.7) 

With the newly calculated approximation for p repeat 

steps 4 to 7 until the iterations converge (this 

usually takes about 6 iterations). 

7.4.3 Scale factors 

The scale factor is obtained by using experimental 

measurements at known resistivity. The program guesses a scale 

factor, then compares the value of obtained by performing steps 

4-7 with the known value of Rh. A correction is made to the sale 

factor and this process is repeated until the correct scale factor is 

found. 

68 



7 . 5 Results 

Fjg. 7.S sJiuu-y i! ̂ .̂ raph of results over tiie tomyeratiirc range 

33-47'C for a copper target. These results were obtained at a 

frequency of lOkHz. the coils were 12mm from the target, the coil 

dimensions were radius of pick-up 5.5mm, radius of excitation coil 

5mm and the pick-up and exciting coil each had 20 turns. 

Using the same experimental arrangement experiments were 

carried out over a wider temperature range which give the following 

results. 

Temperature Rise (by thermocouple) ,= 92.3°C 

Temperature Rise (by P and Q measurement) = 89.3'C. 

7. 6 Discussion of Future Work 

Practical 

The practical measurement of the Phase and Quadrature 

Components of the signal from the pick-up coil present the greatest 

challenge. Problems include stability of the Lock-in Amplifier and 

the temperature control of the exciting and pick-up coils. 

The stability of the Lock-in Amplifier has two main 

considerations, these are: 

(1) It is preferential to make the ratio P/Q as close to 

unity as possible. This requires a lower frequency (@ 
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10 kHz P/Q = 17, @ 10 kHz P/Q = 5, @ 100 Hz P/Q = 1). 

(2) It is preferential to increase the signal strength from 

the pick-up coil. This requires a higher frequency 

since the signal strength is proportional to frequency. 

Aternatively the signal strength could be increased by 

using more turns on the pick-up coil. 

It is considered that the second consideration has more room 

for improvement and in future equipment a lower frequency may be 

prefered. 

The effect of temperature on the coils and coil former 

requires further investigation into the use of materials whose 

physical properties are not sensitive to temperature. The thermal 

stability of the sensing coil arrangement could be improved by use of 

materials with low temperature expansion coefficients. 

Programs 

Analysis of the accuracy of the programs should be assessed 

more completely. This may lead to a reduction in the matrix size 

required for a particular range of distances from the target and of 

the target resistivity. The programs could be run on a 

microprocessor based instrument for greater practical convenience. 
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7 . 7 Discussion of Practical Work 

Using the laboratory equipment described and a distance of 

12mm between the colls and- the target conductor, it has proved 

possible to measure temperature rises in a copper slab of up to 90°C 

with an error of less than 3°C. This is considered well within the 

permissible error for useful measurement techniques. The computer 

programs which have been written may be used as design tools to 

develop a microprocessor based instrument. 

This practical project has demonstrated the interaction 

between the computation of approximate solutions to eddy-current 

problems and the design and use of practical equipment. 
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8^ INTERNATIONAL ELECTROMAGNETIC WORKSHOP 

A meeting Kas held at tl^ 1985 COXPLMAG Conference to 

discuss the potential for initiating a series of international 

workshops on electromagnetics. The meeting was organised bi Aigonne 

National Laboratory. U.S.A. This meeting led to a series of 

international electromagnetic workshops with the ;̂ )al of showing the 

effectiveness of numerical techniques and associated computer codes 

in solving electromagnetic field problems, and gaining confidence in 

their predictions. In order to achieve this goal six test problems 

were selected and participants were invited to solve these problems 

and submit results for comparison and discussion. To achieve some 

degree of standardisation the discretisation of the problem was 

specified as iMBll as the problem itself. The problems chosen 

either an analytical result, a set of experimental data from 

experiments carried out at Bath University or experimental data from 

the FELIX program (Fusion ELfctromagnetic Induction experiments) 

which is being carried out at the Argonne National Laboratory. 

The FELIX program is designed to study the effect of 

eddy-currents in electrically conducting components of a fusion 

reactor. Changes in the magnetic field inside a fusion reactor in 

either normal operation or off-normal events, produce eddy currents 

with accompanying forces, torques, and voltages. A quantitive 

understanding of these electromagnetic effects is vital to the design 

of a fusion reactor. This new application for eddy-current analysis 

has provided the spur for the International Electromagnetic 

Workshops. 
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The FELIX facility includes [29] 

(a) A solenoid magnet producing fields up to IT. 

(b) A dlpole magnet surrounding the solenoid and producing 

fields up to 0.5T perpendicular to the solenoid field. 

(c) A switching circuit capable of discharging the dipole field 

with a time constant as low as 10ms. 

(d) A cylindrical experimental volume within the fields of the 

two magnets of dimensions 1.2m axially by 0.9m diameter. 

(e) A non-conducting test-piece support frame centred on a 

support tube perpendicular to both magnetic fields and 

providing, through phosphor bronze leaf springs, restoring 

torques of up to 9kNm/rad. 

(f) Instrumentation suitable for measuring currents, magnetic 

fields, angular displacements, temperatures and stresses. 

(g) Computerised data acquisition with provision for recording 

values at 2048 times on as many as 30 data channels. 

The six problems under consideration by the international 

electromagnetic workshops are described in reference [31]. A brief 

description of each of the problems is given below. 
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(a ) The Bath Cube 

This experiment was carried out at Bath University the 

results were published in 1981 [28]. Four identical aluminium cubes 

are symmetrically situated and enclosed within a laminated iron box 

under a laminated iron pole. A sinusoidal MMF of 100 + jO A turns at 

a frequency of 50Hz is applied between the pole and the box. The 

problem Is to calculate the magnitude and phase of the magnetic field 

at various locations. The geometry is shown in Fig. 8.1. 

Experimental measurements were taken along the line z = 2mm 

x = 70mm using a Hall probe (active area 2 x 4.75mm) to measure the 

flux density and a search coil (3.2mm diameter) to measure the phase. 

The problem set by the International Electromagnetic Workshop is to 

compute the magnitude and phase of the magnetic flux density along 

the line z = 2mm x = 70mm. 

(b ) Bath Plate 

The geometry of this problem Is shown In Fig. 8.2 and 8.3. 

The problem consists of a conducting "ladder' with a current carrying 

coil above. The coil can have two positions (Fig. 8.3). The 

problem is to calculate the fields and eddy-currents flowing around 

the limbs of the ladder. For the purposes of comparison the 

following results are to be presented. The magnitude and phase of 

the z directed magnetic flux density along the line AB, (0.5mm above 

the top surface of the conducting ladder) with the driving coil at 

the two positions shown in Fig. 8.4 for the two frequencies 50Hz and 

200Hz. Global quantities such as the total flux flowing through the 

two holes in the ladder, and the total current flowing through the 

74 



central limb are also to be calculated. 

(c ) Infinitely Long Cylinder In a Sinusoidal Field 

This problem (Fig. 8.4) consists of an infinitely long 

hollow alluminium cylinder placed in a uniform magnetic field. The 

magnetic field is perpendicular to the axis of the cylinder and 

varies sinusoidally with time. The problem is to calculate the 

induced eddy currents in the aluminium and the magnetic field inside 

and outside the cylinder. Global quantities such as power, losses 

stored energy, and forces are also to be calculated. 

(d ) The FELIX Long and Short Cylinder Experiments 

These problems consist of hollow aluminium cylinders (Figs. 

8.5 and 8.6) placed in uniform magnetic field. One cylinder is used 

for each experiment. The magnetic field is perpendicular to the axis 

of the cylinder and it decays exponentially with time. The problem 

is to calculate the induced eddy-currents in the aluminium and the 

magnetic field both inside and outside the cylinder at various axial 

positions and at various times. Global quantities such as power 

losses, stored energy, forces etc. should also be calculated. 

(e ) The FELIX Brick Experiment 

A rectangular aluminium brick with a rectangular hole 

through it Fig. 8.7 is placed in a uniform magnetic field. The 

magnetic field is perpendicular to the faces with the hole, and 

decays exponentially with time. The problem is to calculate the 

total circulating current and the magnetic field at various 
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positions. Global quantities such as power should also be 

calculated. 

(f) Sphere in a Uniform Mafxnetic Field 

This problem consists of a hollow sphere in a uniform 

sinusoidally varying magnetic field. THw problem has am analytical 

solution [30] and it is to be used for the comparison of computer 

codes. The solution consists of the calculation of the magnetic 

fields and eddy-currents, as well as global quantities such as losses 

and stored energy. 

Regional workshops have already been held and the first 

international workshop is in /kymst 1987 at Graz In Austria. These 

workshops provide the first opportunity for a systematic comparison 

of the results obtained from different eddy-current computer codes 

and provide cooperation between workers in the field, leading to an 

interchange of ideas. 
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FUTURE WORK 

The development of numerical methods for the approximate 

solution of eddy-current problems is essential in order to satisfy a 

large number of the existing engineering application requirements. 

This is because analytical solutions are only possible for problems 

Kith a high degree of symmetry and for materials with linear (or step 

function) magnetic properties [7, 8]. Numerical methods have been 

developed which will obtain an approximate solution to a much wider 

range of problems [27]. However, there are still many problems 

without a satisfactory solution. The greatest progress has been made 

for steady-state alternating current solutions for linear materials, 

but there is still much work to be done validating the results 

produced by computer codes which try to solve this type of problem. 

Areas which require even more work in the future are transient 

problems, non-linear problems, hysteresis effects and coupled thermal 

fields. 

Validation of results is a severe problem when developing 

algorithms to solve problems for which no analytical solution exists. 

In order to overcome this problem a series of international workshops 

have been organised by the Argonne National Laboratory, U.S.A. These 

workshops consider several benchmark problems, these are problems for 

which experimental data already exists (eg. Bath Cube experiment 

[28]) or is being obtained as part of the FELIX program [29] (Fusion 

ELectromagnetic Induction experiments). The FELIX experiments are 

sponsored by the U.S. Department of Energy, they are designed to 

consider the effects of changes in magnetic field on the conducting 

components of a nuclear fusion reactor. 
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The interest in numerical methods for the solution of 

eddy-current problems is very great and it is clear that any 

improvement in the efficiency of computation schemes is very 

desirable. One possible way of improving the efficiency of computer 

calculation, and at the same time providing error limits for the 

solution of global parameters in eddy-current systems is the use of 

dual bounded solution techniques. A dual bounded solution technique 

for global parameters in steady-state alternating current 

eddy-current systems is given in Chapter 5. However, this solution 

technique is limited to conducting regions with particular types of 

boundary conditions. Further work is required to determine whether 

the method can be extended to include problems with both conducting 

and non-conducting regions. Further work is also required to extend 

the method to transient problems. 

The advantages of a dual bound system are two-fold, firstly 

error bounds are established for the correct solution, this removes 

the need for the rather unsatisfactory system of increasing the 

number of degrees of freedom in a numerical solution and noting the 

change in the approximate solution yielded. Secondly a solution 

technique may be used which involves specifying a trial solution and 

then modifying this trial solution in such a way as to increase the 

lower bound of the solution or decrease the upper bound. A solution 

obtained in this manner does not require the solution of simultaneous 

equations which is one of the limiting factors in other approximate 

solution techniques. 



10. CONCLUSION 

The study of global parameters in eddy-current systems is of 

importance to the design of electrical power apparatus. These global 

parameters represent the equilibrium condition for a sinusoidal 

steady state system. The analysis of eddy-current systems and their 

behaviour at equilibrium can be treated in a manner analogous to the 

variational treatment of mechanics as used in analytical mechanics. 

A treatment of eddy-current systems by the above method has been 

shown to lead to a dual bounded solution for the global parameters 

(resistance inductance) in some eddy-current systems. The advantages 

of a dual bounded calculation scheme are discussed in section 1.4. 

The method which has been developed is limited to conductors 

for which the magnetic field strength at each point on the surface is 

in phase with the total current in the conductor. The extension of 

the method to include regions of non-conducting material could be the 

subject of further study. 
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Fig. 7.5 Measurement of in-phase component 

v(b; l: 

Fig. 7.6 Measurement of phase quadrature component 
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Table 1 (A^ . + 
phase ^quad^ Table 3 (Aj^phase'^^quad^ 

Distance 
from target 
(in O.lmm 
steps) 

P>1 

Rhl Resistivity (0.25 E-8 Ohm m steps) 
Rh2 

Si 

Resistivity = Rhl 

Table 2 C^phase'^'^Dquad^ 

Distance = 
B1 

Rhl 
Resistivity (0.03 E-8 Ohm m steps) 

Rh2 

Fig. 7.7 Data tables 
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Fig. 7.8 Results of temperature measurement test 
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