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Various bonded sheath cable systems are investigated 

with the inclusion of the protective device. Development of 

equivalent electrical circuit models are presented. 

A selection of results is presented on the response of the 

protective device on different systems and for various load 

currents. 

The results indicate that the model provides a reasonable 

representation of the device. 

The cable system transient response using travelling-wave 

method is considered. 

Modal analysis and Z-transform technique are thus adapted in 

the cross-bonded cable system transient analysis. 



ACKNOWLEDGMENTS 

The author would like to thank his project supervisor. 

Dr. A. E. DAVIES, for his helpful suggestion and 

encouragement during the course of this investigation. 

The author would like also to thank Mr. GEOFF YATES, from 

Pirelli General for his kind discussion. 

Acknowledgment are also offered to my wife, for her support 

throughout the course, and thanks to all my collegues in the 

Electrical Engineering Department. 



SYMBOLS 

The following symbols have been used throughout the thesis 

V,I Voltage and current variables 

M Mutual inductance 

i^ Current in the non-linear inductance 

Voltage accross the non-linear inductance 

Es The induced EMF in the sheath 

Rs,Ls resistance and inductance of the sheath 

L non-linear inductance of the device 

L' differential inductance 

^ flux linkage (chapter 2 and 3) 

Lo inductance of the conductor 

Rs resistance of the ground path 

t identifies time step 

At step interval 

w angular frequency 

r radius 

p resistivity 

E permittivity 

y permeability 

s spacing between conductors 

B magnetic flux density 

H magnetic field intensity 

J current density 

v,i vectors of voltage and current variables 

CifCz modal transformation matrices 

Z surge impedance matrix 



X matrix of propagation coeffients 

F matrix of forward impulse responses 

C connection matrix in the sheath earthing 

G conductance matrix in the sheath earthing 

Rg sheath earthing resistance 

z Z-transform parameter 

m ratio of wave transit time to step interval 

Y shunt-admittance 

T rotation matrix 

subscripts 

l,m,k,j identify node sets at the sheath disc 

e identifies earth-return path 

l,2,3,s identify variables in the sheaths 

a,b,c identify variables in a,b,c phases 

superscripts 

c,s identify core and sheath variables 

p identifies phase-variable vectors and matrices 
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O N E 

INTRODOCTION 

As more underground cables are employed for transmission 

and distribution purposes, cable systems require that 

consideration is given to transienst overvoltages caused by 

lighting, switching surges and faults. 

In cables systems, the mutual coupling between the cables 

create sheath losses which limit the loading capacity of the 

system. These losses are generated by the flow of currents 

in the cable sheaths caused by the induced voltages. As the 

sheaths have an insulation over them, for corrossive 

protection, arrangements have to be made to earth the sheath 

at various points along its length. Several methods of 

bonding have been used over the past years. For short cable 

circuits, the three sheaths may be bonded and earthed at 

only one point along the cable route [1]. Variations of this 

method were used where the cable is earthed at the 

terminations and at one point along its length, usually the 

centre. The voltages induced in the cable sheath with normal 

operating conditions are not dangerous for the cable plastic 

jacket, because it is designed to withstand these voltages. 

However when overvoltages due to lighting impulses and 

switching surges are propagated along the cable, it may be 

punctured [1] and [2]. 

Arround 1960, cross-bonding of the sheaths was introduced to 



reduce the sheath losses [2] and [3]. However, cross-bonding 

introduces discontiniuties along the sheaths. While the 

arrangement elimitates the circulating currents and losses 

under balanced conditions, it does not prevent relatively 

large potentials from being present across the insulating 

joints. The method requires the use ofan insulator to 

isolate the sheaths from each other at the joints. The 

overvoltages which can arise across this insulation can 

result in a flashover of the insulation. Because of the 

magnitude of the overvoltages applied to the joints, it is 

recommended that cross-bonded systems should be protected 

with sheath voltage limiters. Problems can arise in 

providing satisfactory insulating joints, bonding apparatus 

and bonding connections. Under unsymmetrical conditions high 

sheath voltages can occur in the absence of special 

protective devices. These sheath voltage limiters are 

normally non-linear resistors installed at the bonding 

points which operate in the high resistance region under 

normal conditions thus limit the sheath currents and in the 

low resistance region under abnormal conditions. Thus 

overvoltages are limited on the cable metallic sheath to 

value lower than the jacket dielectric strength. 

These devices must fulfill the following requirements: 

(i) Withstand without thermal instability the voltage 

induced in the sheath by the conductor nominal current. 

(ii) Withstand the power frequency voltage induced on the 

sheath by short circuit current in the cable conductor due 

to faults. This voltage depends mainly on the short circuit 

current value and the cable lengths. 



(iii) Limit the induced voltages between sheath and ground 

in case of overvoltages in the system in order to avoid the 

puncture of the jacket. 

(iv) Withstand switching surges superposed onto a power 

frequency voltage induced on the sheath when a fault occur 

on the overhead line near the cable termination. The 

switching surge is due to the interaction between cable 

capacitance and the inductance of short overhead line. 

Problems with the metal oxide type of device have been 

experienced which have frequently tended them inoperable. If 

the energy absorbed exceeds its normal operating rating, the 

device is liable to be damaged (the temperature rises to a 

point where thermal runaway takes place). 

This work is concerned with investigating a possible 

alternative device which consists of a high permeability 

hollow tube placed around the bonding lead. Such a device 

would have the same effect under normal and fault conditions 

as the metal oxide device. That is high impedance under 

normal conditions and low impedance under fault conditions, 

but has the advantage that under surge conditions would have 

zero impedance (except for the small capacitance between 

hollow tube and the bonding lead). In addition the problems 

associated with the dissipation of energy under fault 

conditions would be eliminated. 

Overvoltages in transmission and distribution systems cannot 

be avoided. A detailed knowledge of this subject is 
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necessary for economic design of equipment in the system and 

for safe system operation. Overvoltages can be limited by 

special measures which should take into consideration the 

fact that they depend also on the characteristics of the 

equipment used, the system configuration and the manner of 

operation of the system. 

In addition to steady state studies, transient voltages in 

cable systems have already been the subject of considerable 

investigation. Besides the use of simple equivalent circuit 

[1] and [21], to preduct these overvoltages, the application 

of symmetrical component techniques by Rhodes and Wright 

[4], Fourier transform techniques [5] and [7], together with 

field measurements [9] have been used. In all these 

techniques the method of solution is often tedious and 

requires excessive computing time. 

Suitable models for representing the non-linear inductance 

of the device for inclusion in bonded sheath cable network 

are developed in chapter two. Computer simulation of voltage 

and current waveforms - for various cable schemes are 

presented under full and fault load currents. 

Chapter three concentrates on the non-linear volt/ampere 

characteristics of protection units. These protection units 

are made up of tubes of ferreous materials as described 

before. Their function is to reduce to safe values the surge 

voltages. Chapter three also includes the finite element 

field analysis of the non-linear iron tube arrangement to 



determine for various load currents the resulting induced 

emfs. 

Computed results obtained from the analysis of chapter two 

are presented in chapter four. To confirm the validity of 

the computed results, tests were conducted on cables fitted 

with the device (iron hollow tube). A comparison of computed 

and experimental results shows reasonable agreement. 

Chapter five concerns the evaluation of the parameters of 

the cable system and the cable system transient response 

using travelling-wave methods in which the effects of 

frequency dependent parameters are taken into account. Cable 

system behaviour is modelled in terms of forward and 

backward response functions. Relatively simple formula are 

derived so that both response may be included in a general 

purpose computer program without difficulty. 

Model analysis and Z-transform techniques are thus developed 

in chapter five. This technique was initially reported by 

Humpage [9]. The method is frequency dependent and is very 

accurate. The developement of electromagnetic transient 

analysis methods will bring together the frequency domain 

and the time domain non-linearities. The parameters of the 

cables are not constant, but vary with frequency, hence the 

frequency dependence of cable parameters has significant 

effects on both the wave shape and the peak voltages of some 

switching surges. Therefore the use of frequency domain 

formulation methods for the analysis of cable systems is the 



best approach. Moreover it facilitates non-linear elements. 

The aim of chapter five is to illustrate how the 

Z-transform technique is applied to provide the base for a 

faster accurate computer method in electromagnetic transient 

analysis. It is mainly concerned with the transformation of 

the characteristics from the frequency domain to the time 

domain via the intermediate step using Z-transform. 

Chapter six is devoted to the application of the Z-transform 

technique developed in chapter five, to a practical cable 

network, consisting of one cross-bonded section. The 

transient dependence of the parameters of the system, 

together with the non-linear operation of tlie protective 

device are both included in the application. The results 

obtained from the above analysis are presented and discussed 

in chapter seven. 
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C H A P T E R T W O 

ANALYSIS OF BONDED SYSTEMS 

It is necessary to simulate the time dependent relationship 

of current and voltage for the core, sheath and the device 

(iron tube), for different cable systems as described in the 

preceeding sections. The system is first examined on a 

single-phase basis in order to determine the system 

conditions and configurations which lead to the most severe 

conditions being produced. The results obtained then provide 

a basis for studying the three-phase representation. The 

complete systems, are rather complex, and so, the 

investigation of the device performance is carried out by 

using a much simplified representation of the systems. 

2.1 Single conductor in a metallic pipe. 

Lead or aluminium sheath are commonly used for 

single-conductor cables. These pipes are situated in the 

magnetic field of the conductor currents and therefore, 

voltages will be induced in the sheaths which will give rise 

to the flow of induced currents. In this example it is 

assumed that the conductor current I(t) is returned to the 

generator by the ground loop or by a second conductor so far 

removed from the sheath that its magnetic field may be 

ignored. When the cable sheath is grounded at both 

terminations as in fig.2.1, the induced emf Eg then drives a 

circulating current is(t) along the sheath, which returned 

through the ground circuit. The longitudinally induced emf 



Is 

Fig.2.1 Single conductor in a metallic pipe. 

in the sheath is given by: 

Eg, = M dl(t) 

dt 

M is the mutual inductance between the conductor and the 

sheath which is given by: 

M - 21(-1 + ln21 - ln((ro+ ri)/2)) 

where 

1 is the length of the cable 

ro and r ± are the inner and outer sheath radius 

respectively. 

It is possible to deduce a simple expression to determine 

iei(t) resulting from full-load current in the conductor as 

follows: 

0 = Ra i*(t) + (L + La)dis(t) + M dl(t) 2.1 

dt dt 

L is the non-linear inductance of the device (iron tube). 



Rs is the resistance of the sheath. 

La is the the self-inductance of the sheath, on the 

assumption of uniform current distribution. La is equal to 

the mutual inductance between the conductor and the sheath. 

2.1.1 Numerical solution. 

As the B/H characteristic for the device is 

non-linear, the differrential inductance require a numerical 

solution. The backward difference method of numerical 

integration was adopted. By solving equation 2.1, the 

current flowing through the sheath is: 

ia(t) = -M[I(t)-I(t-At)] + <L + La) ie(t-At) 2.2 

Rs At + L + La 

and the voltage drop across the iron tube is given by: 

[ ia(t) - ia(t - At)] 2.3 

At 

2.1.2 Fault condition. 

Considering a fault occuring at the far end of the 

cable, the system of Fig.2.1 may be represented by a simple 

equivalent circuit model as shown in Fig.2.2. 



- 1 0 -

Fig.2.2 Equivalent circuit of the system. 

The phase-to-earth fault is assumed to occur at the remote 

end of the cable near the load, and it is simulated by 

injecting a 50Hz current wave of high value in the core. The 

cable data used in the study is given in section 2.1.3. 

The equation for the circuit of Fig.2.2 is: 

Ra i=(t) + (L + La)dia(t) + M dl(t) + Rei(t) = 0 2.4 

d t d t 

where i(t) = is(t) + I(t) 

and Re is the resistance of the ground loop. 

The numerical solution for current which flows in the sheath 

is: 

ia(t) = -M[I(t)-I(t-At)] + (L + La) i«(t-^±)- R*I(t) 

(Rs + R=)At + L + L= 

The waveforms of voltage and current of the device for 

normal and fault conditons are shown in Fig.4.4 and 4.5. 
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2.1.3 System data. 

The system data considered for this chapter consisted 

of: 

- A source current of 1600 Amps for normal load and 5 KA for 

a fault. 

- Rah= 37.3 ufi/m 

- r = 35.15 mm conductor radius 

- ro = 57.1 mm under sheath radius 

- r^ = 64.45 mm over sheath radius 

- d = 0.5 m spacing between cables 

2 . 2 Single-phase system. 

The first step in the calculation is to obtain an 

expression for the voltage-drop along the sheath. This 

voltage-drop will be made up of two parts, one due to the 

simple d.c resistance of the sheath, and the other due to 

the combined inductive effects of the core and sheath 

currents. This combined inductive effect is made up of the 

self-inductance of the sheath considered and three mutual 

inductance effects due to the two core currents and the 

remaining sheath current. The coefficients of self and 

mutual induction depend only on the dimensions of the cables 

and their configuration and can readly be calculated. Thus 

an expression for the voltage-drop along the sheath can be 

deduced in terms of the sheath and core currents, the 

dimension of the cables and geometry of their 

arrangement.The system studied of single-phase form as shown 

in Fig.2.3. 



-12-

X2 

yf 

Vr 

/ / / / / 

Fig. 2.3 Single-phase cable system. 

The voltage-drop in the sheaths are as the following 

expressions indicate for sheaths noted 1 and 2 respectively: 

AVi = Reii(t) + Leidia (t) + Maidia (t) + 

M.idl_ (t) + Mbidia (t) dt dt 

dt dt 2.6 

^^2 = Raizft) + Lszdiz (t) + Miadii (t) + 

Mbzdla (t) + M^adl* (t) dt dt 

dt dt 2.7 

However the sheaths are earthed at both ends, so ^^2= 0 

and we have: I^(t) = -Ib(t) 

and also: ii(t) = -izft) 

So equations 2.6 and 2.7 reduce to: 

0 = Ra ii(t) + (La- M21) dii(t) + (M.i- M^i) dl.(t) 

dt dt 2 .8 
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2.2.1 Numerical solution. 

Using the backward difference method of the numerical 

integration we obtain an expression for the current in the 

sheath as follows; 

ii (t) -(ML Mbi)[I(t)-I(t-At)] + (La - Mzi) ii(t-At) 

R_ At + L= - Mzi 2.9 

with 

ia(t) = -ii{t) 

If we consider the sum of the current at the bonding and 

earthing point on Fig 2.3 ,point A ,it will be: 

ii(t) + iaft) + i^ft) = 0 2.10 

it yields to i^ft) = 0, which means that no current flows 

through the non-linear inductance L to earth. 

2.2.2 Fault condition. 

A single-phase-to-earth fault is considered at the end 

of the cable. The returning fault current will divide so as 

to return partly as a current through the sheath and partly 

as an earth current, so that the system of Fig.2.3 may be 

represented by the equivalent circuit as shown in Fig.2.4. 

current 

source 

Rc L. R, L 

fault 

current 

source 

Fig.2.4 Electrical equivalent circuit for phase to 

ground fault. 
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From the equivalent electric circuit of Fig.2.4, the 

equations for loops number one and two are given by: 

Rs(2.i(t)- i^ft))* L=( 2.dl(t) - dl^Xt)) + M.idl(t) = 0 

dt dt dt 2.11 

-Rsi(t)+(Rs+ R=)i^Xt) + R=I(t) -Lsdl(t) +(L + Ls)dl^(t)= 0 

dt dt 2.12 

with i(t) = ii(t) + i^ft) 

and i=(t) = I(t) + i^ft) 

If we multiply equation 2.12 by 2 and add it to equation 

2.11 and rearrange it, we obtain: 

i^ft) = -M[I(t)-I(t-^t)] + (2L + L=) i^(t-^t)-2REI(t)^t 

(Ra + 2Re)^t + 2L + La 2.13 

Equation 2.13 defines the current in the non-linear 

inductance in terms of current of the source and past 

histories of the elements of the system. 

The voltages across the device can be written as a function 

of the current thus: 

V^ft) = L_[ i^ft) - irXt - At) ] 2.14 

At 

Equation 2.13 and 2.14 define the current and voltage of the 

iron tube in the event of a fault condition (i.e 

phase-to-earth). Their waveforms are shown in Fig.4.13 to 

Fig.4.15. 
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2.3 Three-phase system. 

The extension of the single phase results presented 

above to the case of 3-phase system is not easily 

accomplished analytically. In order to determine how 

applicable the results are, the 3-phase system shown in 

Fig.2.5 is chosen for the simulation. Since the sheaths are 

bonded at both ends, and it is assumed that the sheath bonds 

are at the same potential, we obtain the general solution. 

AVi = AVa = AVs = 0 

+ iz + ia = 0 

I. + lb + Ic = 0 

Rsii"*" -̂'sdi3.+ Ldii^+ M2idi2+ Msidia' 
dt dt dt dt 

MLidI_+ Mbidlk^ M=idlc 
dt dt dt 

2.15 

^ Rsiz"^ Lsdî -i- Ldix,-*- Mxadix-^- M32di3+Ma2dl^+ M^zdlc 2.16 
dt dt dt dt dt dt dt 

0 = Rsi3+ Lsdi3+ LdiL+ M23di2+ Mi3dii+ML.3dI*+ Mbadlb* M=3dl= 2.17 
dt dt dt dt dt dt dt 

I, 

/ / / / / 

l2 

1 3 
\ 

i%. 

fV 

77777" 

load 

Fig.2.5 3-phase system. 
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From equation 2.16, replacing I_+ 1= by -I* and since ii+ 

i_,+ ±3= 0, hence 1^= 0 which means that no current is 

leaving the sheath, giving: 

0 = Raia + Ls.pia + Mi2.p(ii+ ia) + (Mb2+ 2.18 

where p = d 
^ dt 

rearranging and replacing i]_+ is by -ia gives: 

0 = Rsia + (La- Miai.pia + (M^a- 2.19 

iaft) = - M_=)[I(t)-I(t-At)] + (L= - izft-At) 

R_ At + Ls - Mi2 2.20 

Adding equations 2.15 and 2.16 together gives: 

Rs(ii^ i 2) is) i 2) 

(M31+ M32) .^ia + Mai2 ) Mb2 ) 

= 0 2.21 

replacing ii+ ia by -is and I_+ by -1= gives: 

i3(t) = - M=i)[I(t)-I(t-At)] + (L= - M31) i^(t-At) 

R. lAt + Ls - M31 2.22 

and 

ii= -(i2+ is) 2.23 

The values of the inductance coeffients required in the 

above calculations can be obtained in terms of the geometry 

of the spacing as follows: 
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Lc - (1/2 + 2. ln(l/b) .lo-^ H/m 

Ls = 

Mbi = 

[2.1nl/d 

Mxz~ M23. 

4- J_ d* -& 

- Ma.2 = 

se^ 

Mz JJL -

-t- 2c\ 

Mito = 

lnd).10-7 H/m 

(2.1n(l/Si2).lO-7 H/m 

MC2 = M32 = M23 = Mb3 = Mzc- M3b = (2.ln(1/8=3).10-7 H/m 

Ma, 3 -M3.= = Mxc = Ml3 = M31 = (2.1n(l/(Si2+ Sas! )).10 -7 H/m 

MLi = Mzb = Mb2 = M3C = M3C = (2.1n(l/d+l- 2c%lnd/c) .lO-^H/m 

<ZZZZ2#f/ 

Fig.2.6 Arrangement of cables in flat spacing 

1 is the distance of cores a, b and c from the neutral wire. 

The neutral is taken as a fictitious conductor which 

completes the circuit of each phase, so that we have three 

closed circuits for the cores and three for the sheaths. 

When the current are balanced the magnetic effect of the 

conductor is zero, since there is then no residual current. 
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2.3.1 Fault condition. 

Under a fault condition the system of Fig.2.5 will be 

represented by the simple equivalent circuit as shown in 

fig.2.7. The fault is occuring at the end of the cable 

between phase "a" and the ground. The same as for the single 

phase system, the fault current will return partly in the 

sheath and partly in the earth. 

L R< L 

fault 

curren 

source 

Fig.2.7 Equivalent circuit of 3-phase system under 

fault condition 

The equations for the loops number 1,2 and 3 are; 

R.(i + ii) + L..f(i + ii) + M.pl = 0 2.24 

Rs( iz ~ ii) + Ls.p( iz - ii) - 0 2.25 

Reie - Rs iz - Ls.^is + L.^ir, = 0 2.26 
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replacing ix by i - iz - ix. in equation 2.24 and 2.25 gives: 

Rs(2.i - ±2 -ii.) + Ls.^(2.i - iz - it.) + = 0 2.27 

Rs(-i + 2.i2 -irJ + Ls«^(~i + Z.ig ~ ir.) = 0 2.28 

Adding equation 2.27 to 2 times equation 2.28 gives: 

R=(3.i2 + irJ + L=.f( 3.1= + i^) + = 0 2.29 

Adding equaton 2.29 and 2.26 gives: 

(Rs + S.Rgii^ + 3.R=I + (L= + 3.L).^iL + = 0 2.30 

or 

i (t) = -M[I(t)-I(t-&t)] + (3L + L=) i^(t-6t)-3REI(t)&t 

(Re + 3R=)^t + 3L + Ls 2.31 

Equation 2.31 defines the current which flows through the 

device during the fault. From this the voltage across it is 

obtained and their waveforms are shown in Fig.4.16 and 

Fig.17. 

2.4 Effect of the computation step length of time. 

The choice of the number of steps per cycle for a 

step-by-step solution is of great significance and the 

choice of an adequate step length in the numerical solution 

is very important. An inadequate step will produce errors 

and difficulties in achieving the steady state solution. The 

^^degree/step, or 720 steps/cycle was considered adequate in 

both accuracy and computer time. 
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2.5 Comparison check of A / i curve. 

A comparison check was made to ensure that the 

computer program does not run into numerical instability 

with the function describing the A / i curve when working up 

and down the curve. This check consisted of comparing two 

distinct methods of determining the flux for a given value 

of current. 

From the equation: 

V = dX = dA.di = L.di 2.32 

dt di dt dt 

the flux at a given instant is equal to the initial flux 

plus a incremental flux value. 

\(t) = A(0) = \(0) + Lj\i 2.33 

where L = d)\ is the incremental inductance 

di 

also from equation 

Aii + AaTanhfAsi) 2.34 

A comparison between equation 2.33 and 2.34 was made for 

given value of current and because of the small time step 

used the computer program indicated that it was within a 

specified tolerance (e.g. 10%). 

2 . 6 Initial conditions. 

the initial conditions must be set before the 

calculation process can be started. The conditions are: 

It was assumed that the system had not been energized 
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before. Therefore, the past histories of the voltage and 

current are set to zero. 

2.7 Computer programs. 

All the programs developed in this investigation were 

written in Fortran 77 language for the IBM 3090 computer at 

the University of Southampton. 

Two different programs were developed for each system. 

UU - The main program, which calculates the voltage and 

current on the protective device. The program starts reading 

all the data and setting all the initial conditions. To 

compute the differential inductance, a check on current is 

made via ^yi relationship using forward predictor method. 

Subsequently, the inductance is computed and the circuit 

equations are solved. Finally, the present value of current 

is stored for the next run and the loop is repeated for the 

next time interval until the number of steps required is 

reached. 

(ii) - Plot program, which plots the transient and steady 

state of currents and voltages. This program makes use of 

the Gino-F Library available at the computer centre of 

Southampton University. 

2.8 Summary. 

In this chapter, a model system to study the transient 

and steady state conditions of the different cable systems 

including the non-linear inductance of the device (iron 

tube) has been presented. The different systems were 

represented by simple equivalent circuit model. The forward 
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predictor method was utilized to estimate a value of current 

at each time step of the numerical solution. A comparison 

check of ^/i curve on the methods of determining the flux 

was made. The backward difference method was adopted to 

solve the non-linear differential equations. 
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SIMULATION OF CABLE-SHEATR-PROTECTION UNIT 

In a study of the effects of induced voltages on sheath 

cables, a literature search revealed that there is not a 

good device which would limit all overvoltages without spark 

gaps, unless a device has a steep front V-I non-linear 

characteristic (metal oxid arrester). One device which gave 

this non-linear effect was a sphere gap with resistor in 

series. 

An alternative device was chosen to give a similar 

characteristic which consisted of: a tube in iron with a 

conductor inside it (bonding lead), separated by a snail air 

gap. 

To show the field behavior, a detailed field analysis on the 

two-dimensional core and tube is performed. The analysis 

adopts the existing finite-element Newton-Raphson numerical 

techniques, but takes into full account the field dependent 

non-linear characteristic of soft iron. 

3.1 The study model. 

Fig.3.1 shows the two-dimensional, core-air-tube, used 

in this study. The copper core carries the various load 

currents and has a relative permeability of 1. The magnetic 

property of the iron-tube is assumed to be isotropic. 
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a = 1. h-crf) 

b= 6 cm 

iron Tube 

Fig.3.1 The two-dimensional model. 

Furthermore, its B-H characteristic is single-valued and is 

shown in Fig.3.2. 

U X ) 
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0.0000̂ 000 3080.ga 10000.0 15000,0 
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Fig.3.2 The B-H characteristic of the iron tube 
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3.2 Field solutions and results. 

The mathematical details of the finite-element 

Newton-Raphson method for determining the field will not be 

discussed here because they are standard and in our study we 

have used a package available in the department. 

Fig.3.3 shows the region of interest, subdiveded into 576 

elements. 

Fig.3.4 shows how B in the iron tube varies as a function of 

the position X along the axis. And Fig.3.5 shows that H 

increases in the copper conductor and then decreases to 

approximatly zero at the out surface of the iron tube. And 

it was noticed also that B increases with increasing J. 
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:>'i/y\Ajv\/-#v 

4.806 

-6 .006 ' 

m m 

t 
- 3 . 0 0 0 

ELEMM-INE SYMM̂XY SOLM*AT 
^#6 Kfcm) 

Fig.3.3 Two-dimensional finite element mesh 
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Fig.3.5 H versus x in the iron, 
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The magnitude of the current density, J is assumed to be 

uniformly distributed in the the conductor and is set at 

19.735 A/m^ in one case. This is equivalent to 100 Amps 

flowing in the conductor. Our objective here is to examine 

how B, vary as a function of J in the iron tube. This is 

done for various J, which means various load currents and 

various thickness of the iron tube, to determine a suitable 

device with a reasonable diameter. 

Table 3.1 a load current of 100 A through a conductor of 2" 

diameter. 

Size of the iron tube 

outer diameter in cm 

voltage drop across the iron tube 

12 19 V/m 

13 22 V/m 

20 40.5 V/m 

30 6 5 V/m 

40 88.6 V/m 

46 102 V/m 

Table 3.2 a load current of 100 A through a conductor of 

(1/2)" diameter. 

Size of the iron tube voltage drop across the iron tube 

10 cm 26.2V/m 



Table 3.3 a load current of 100 A through various size of 

conductors. The diameter of the iron tube is 12 cm. 

conductor size voltage drop across the iron tube 

in inch 

2" 19 VVm 

1" 27.5 V/m 

(1 /2) " 31.76 V/m 

Table 3.4 a load current 1000 A through a conductor of 2" 

diameter. 

Size of the iron tube voltage drop across the iron tube 

12 cm 23.5 V/m 

These tables show the variations of the voltage drops across 

the iron tube as a function of its thickness. For a 

conductor diameter of 2" and a tube size of 12 cm diameter, 

with load currents of 100 A and 1000 A, Table 3.1 and 3.4 

show that the voltage drop increases slightly from 19 V/m to 

23.5 V/m. This indicates that the tube is operating in the 

saturation region. The voltage drop of 100 V can be achieved 

by a tube of 46 cm of diameter and a length of 1 m or by a 

tube of 20 cm of diameter and a length of 2.5 m. A big size 

of tube is not very practical so we have choosen the tube of 

12 cm diameter and a length of approximatly 5 m which can 



.oq. 

drop 100 V and can be put easly between the cable 

cross-bonding point and the link box. 

A/i curve. 

Given the magnetic curve B = f(H) of a particular 

material, it is possible to calculate X/i curve knowing 

particular dimensions of the equipment^ 

The magnetic flux density can be expressed as: 

B - _X_ 3.1 

N.a 

Where \ is the instantaneous flux linkage, N is the number 

of turns and a is the sectional area of core. Alternatively, 

the magnetic field intensity H can be written as a function 

of current as follows. 

N . i 

H = 3.2 

J. 

Mhere N is the numbers of turns, i is the current and 1 is 

the length of the magnetic path. 

From equation 3.1, 3.2 and knowing the B/H relationship, it 

is possible to write. 

A = N.a./( N.i ) 3.3 

1 

Equation 3.3 defines the ^^i curve in the terms of equipment 

dimensions. 

3.4 B/H Relationship. 

When working with ferromagnetic materials, the 
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relation between the magnetic flux density B and the 

magnetic field H is of considerable importance. Such a 

relationship is non-linear and is considered in this work as 

a non-linear single-valued relationship. A convenient 

expression to describe the B/H curve is 

B — A . H + A • T a n A 3 » H 3-4 

where TanhA^.H converge to 1 rapidly and the term A^.H 

covers the upper region of the curve. Ai, Az, As are 

constants for a given magnetic path of the core material. 

When the field intensity approaches infinity the B/H curve 

is a straight line and the slope of the B/H characteristic 

is equal to Ai. This can be shown taking the derivative of 

equation 3.4 with respect to the magnetic field intensity H 

as follows. 

B' = dB = Ai+ A2.[4.A3Exp(2.A3.H)/(Exp(2.A3.H) + 1)=] 3. 

dH 

where 

when H 

B = Ai = slope 

This can be visualized from Fig.3.6. 

When the magnetic field intensity H increases to certain 

values, the expression Tanh A3H tends to one and the B/H 

curve is equal to: 

B = Ai.H + Az 3.6 

and the straight line equation 3.6 cuts the B axis at B 

equal to Bo (see Fig.3.6) and for flux density equal to Bo, 

the magnetic field intensity H is equal to zero. As a result 



equation 3.4 can be re-written as follows: 

B ^ B'.H + Bo.Tanh A^.H 3.7 

To determine the value of a point has to be taken on 

part of the curve below the knee-point. Let this point be b 

(see Fig.3.6), from which the ordinates are and Hb. By 

substituting and into equation 3.5, the value As is 

given by: 

Bb " B'.Hb+ Bo.Tanh As.Hb 

and Aa = Tanh-i( B^^ B'.Hk)/B O 

or As = (2.Hb)-i.ln(Bo+ B^- B'.HU)/(Bo- B^- B'.H^) 

3.5 v/i characteristic of the device 

By varying the level of the current flowing in the 

sheath,a test was carried out to achieve the v/i 

characteristic of the device. The v/i characteristic is 

shown in Fig.3.7. The v/i characteristic shows that above 

the knee point, for slight changes in voltage there is a 

large change in the value of current. Therefore, the device 

offers some useful advantages in limiting the overvoltages. 
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Fig.3.6 B/H Relationship, 
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3.6 DifferenLial inductance. 

As the B/H characteristic is non-linear,the 

differential equation 2.1 requires a numerical solution. The 

differential inductance is function of the current, 

therefore at each time step i must be solved. A X/i 

relationship based on the B/H curve for the material can be 

derived from which the differential inductance can be 

obtained by a forward predictor method. From equation 3.3 

and 3.4, the flux linkage can be expressed as: 

^ — A1 N^.a i A^.N.&.T&nh A 3 * N i. 3.9 

I i 

or 

^ A J. - X A^2«T&nh A 3 3 - 1 

where 

A1i - Aj N .a , A22 — Az.N.a and 

I 

A 3 3 - A 3 . N 

Alternatively, the differential inductance can be defined as 

L' = d\ 3.10 

di 

and equation 3.10 defines the differential inductance as a 

function of the B/H characteristic. 

It has been shown here a way to model the magnetic 

non-linearity of the iron tube. An expression of the B/H 

characteristic was presented from which the differential 

inductance can be calculated for each time step of the 

numerical solution. 
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3.7 Forward predictor method. 

To calculate the variable is(t) of the previous 

equations, it is necessary to re-calculate at each time step 

the non-linear inductance L. To set the differential 

inductance, it is necessary to estimate the value of ia(t) 

for the next time step. The forward predictor method 

estimates the value of is(t) at half the step interval from 

time at t. Considering Fig,3.7 at time equal to t and below 

saturation condition, the differential inductance is defined 

by: 

dX 

di 

by assuming: 

- at time t the component current is equal to i^ 

and 

- at time t - At the component current is equal to i* 

the current at time t + At can be defined by 

i(t + At) = ib + (ib - i&) 3.11 

by forward predictor method equation 3.11 is given by 

i(t + iAt) = ib + &(ib - ia) 3.12 

Equation 3.12 estimates the value of i(t) at half the step 

interval from time at t. 

After saturation, the X/i curve is a straight line and the 

equation which represente the ^^i relationship impose the 
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following conditions: 

if ift+zAt) < Is. then L' dX. 

d i 

if i(t + |At) > then L' = Li 

Summarizing, at each time step the currents are predicted 

and the predicted values are utilized via X / i curve to 

calculate the differential inductances. 

0 -u u /.(fc+dt) 

Fig.3.3 X / i relationship, 



37-

3.8 Summary 

In this chapter, the results of the finite-element 

method for determining the field are presented. The study 

model is presented as well as its B/H characteristic. The 

X/i relationship is formulated as a function of the 

dimensions of the equipment. An expression to describe the 

B/H relationship from which the differential inductance can 

he derived is presented. The v/i experimental characteristic 

of the device is recorded. To estimate the value of the 

current for the next time step in the numerical solution the 

forward predictor method is presented. 



38-

F O U R 

EXPERIMENT AND RESULTS 

The computed results of the analysis of the systems 

described in chapter two are presented. To valid the 

computed results, some experiments were carried out at the 

laboratory on the cable system shown in Fig.4.1. Theoretical 

and experimental results are also presented and compared. 

4.1 Single conductor in a metallic sheath. 

Fig.4.2 shows the current and voltage waveforms for 

the system of Fig.2.1, when operating under normal load 

current of 1600 A. The voltage across the device is slightly 

distorted and is about 100 V. The current shows its typical 

peaky form and is nearly 200 A. The device is operating at 

the knee point. However, Fig.4.3 shows the current and 

voltage waveforms when the system is carrying a load current 

of 5.0 KA. During the period when the device is operating in 

the high saturation region, the current reaches its peak 

value of about 3 KA and the voltage is highly distorted (50V 

fundamental with a superposed 280 V peak). At the instant of 

time when the device is out of saturation which means a 

small current flows in it, the instantaneous voltage is 

maximum of about 330 V peak. The resistance of the return 

path is assumed to be zero. 

4.1.1 Fault condition 

In the event of a fault at the far end of the cable 
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(fig.2.2), the fault current is assumed to return to the 

source by the earth which has a resistance Ra= 0.050. In 

Fig.4.4 the current and voltage waveforms are shown, for a 

load current of 5.0 KA, their peaks are respectively 3.5 KA 

and 380 V. When the flux is below the knee point, the 

voltage is sinusoidal with a maximum of 60 V. When high load 

current is carried by the conductor( GO KA, Fig.4.5),the 

current is slightly distorted and reaches a peak value of 50 

KA. The voltage is almost sinusoidal (60 V peak value), 

exB^&t for peaks which occur for a very short time. 

4.2 Single-phase system 

Part of the current which returns to the generator 

(fig.2.4), is assumed to return by a ground resistance R== 

0.05&. The magnitude of the voltage depends on the impedance 

of the earth return path, and the size of the fault current 

which can be seen in Fig.4.6 to Fig.4.8. A transient current 

and voltage occur before they reach their steady state 

waveforms. For a load current of 1600 A, the voltage across 

the device is 80 V and the current is 100 A. For a load 

current of 5 KA, the voltage starts to be distorted and the 

current reaches a peak value of nearly 4 KA. For heavy 

current of 60 KA, the voltage is slightly peaky (1.5 KV) and 

the current reaches 50 KA. Which means that when the flux 

density exceeds the saturation level the inductance changes 

from a high value to a very low value and initiates high 

current to flow. This current is symmetrical but shows its 

typical peaks since the flux is still operating in the 

saturation region. 
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4.3 Three-phase system 

The current and voltage waveforms for the three-phase 

system in the event of a fault condition { Fig.2.7 ), are 

shown in Fig.4.9 and Fig.4.10. It can be seen, that after 

reaching the steady state, the voltage across the device is 

80 V and the current 100 A for a load current of 1600 A. For 

a load current of 5 KA the voltage across the device is 

nearly 230 V peak and the current is approximatly 3.7 KA, 

this shows that the device is well above saturation. 

4.4 Description of the tests rig. 

Fig.4.1 shows the arrangement adopted for all the 

tests. The cable core was coupled to ac transformer 240/10V 

and 10 KVA, by means of the variac R (240/0--270V), a 

variable voltage could be applied to the cable, resulting in 

various loading currents. The scale model cable was a low 

voltage cable used just to demonstrate the principle, 

therefore its sheath current rating was nearly equal to the 

load current. Bonding leads were connected to the ends of 

the cable sheath which go through the protective device and 

to earth. In this way the voltage across the device and the 

current through it can be read on the oscillogram connected 

across these ends. the variable current supplyed by ac 

transformer varies from 0--1000A. The length of the cable 

was approximatly 40m and the distance separating the cable 

sheaths was d=0.5m. The frequency of the alternating supply 

throughout the tests was 50 Hz. Tests were conducted for 

various currents in the main conductor, to obtain the 
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complete volt/ampere of the device when operating below and 

above saturation. 

Fig.4.1 Tests rig. 

4.5 Cable system data 

Rc = 54.8 wO/m 

R.h = 60 wO/m 

r = 14.0 mm conductor raduis 

ro = 16.3 mm under sheath raduis 

r^ = 18.0 mm over sheath raduis 

d = 0.5 m spacing between cables 

overall diameter = 41.5 mm 

4.6 Computed and experimental results of the test rig. 

The computed results for the test rig system shown in 

Fig.4.1 are presented in Fig.4.11 to Fig.4.13 for various 



load currents. The system has a length of about 40m, so that 

the induced voltage on the sheath is very small. For the 

load currents of 250 A, 420 A and 600 A, the voltages 

obtained across the device are 2.7V, 4.6V and 6.2V 

respectively and the current are 100 A, 250 A and 400 A. The 

current waveforms show their typical peaky forms and the 

voltages increase its distortion as the flux increases above 

saturation. These computed results are in good concordance 

with the experimental ones presented in fig.4.15 to fig.4.17 

(see table 4.1). The slight difference in the waveform 

shapes between the experimental and computed results is due 

to the characteristic /i of the device which was 

approximated by the numerical method. 

In Fig.4.14 to Fig.4.17 experimentals results of recorded 

signals on the oscillogram are reported, for different load 

current I carried by the cable system. For comparison and 

conclusion purposes, signals were recorded for the system 

with and without the device, although the figures show how 

the current in the sheath has been reduced with the presence 

of the device. The change of the current around the knee 

point causes a sharpening of the waveforms of the voltage 

accross the device. 

Table 4.1 The peak values of the current and voltage on the 

device for various load currents. 

load current computed results experimental results 

250A 2.7V lOOA 2.6V 68A 

420A 4.6V 250A 4.2V 210A 

600A 6.2V 400A 5.5V 350A 
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Fig.4.2 Computed current and voltage waveforms, 

on the device for the system of fig.2.1 
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Fig.4.5 Computed current and voltage waveforms, 

on the device for the system of fig.2.1 
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Fig. 4.6 Computed current and voltage waveforms, 

on the device for the single-phase 
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Fig.4.7 Computed current and voltage waveforms, 

on the device for the single-phase 

system represented in fig.2.4. 
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Fig.4.8 Computed current and voltage waveforms, 

on the device for the single-phase 

system represented in fig.2.4. 
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Fig. 4.10 Computed current and voltage waveforms 

on the device for the three-phase 

system represented in fig.2.7. 
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Fig.4.11 Computed current and voltage waveforms, 

on the device for the system of fig.4.1. 
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Fig.4.12 Computed current and voltage waveforms, 

on the device for the system of fig.4.1. 
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Fig.4.13 Computed current and voltage waveforms, 

on the device for the system of fig.4.1. 
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Fig.4.14 Experimental current and voltage waveforms, 

on the sheath for the system of fig.4.1. 

•a: with the device b: without device 
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Fig.4.15 Experimental current and voltage waveforms, 

on the sheath for the system of fig.4.1. 

a: with the device b: without device 
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Fig. 4.16 Experimental current and voltage waveforms 

on the sheath for the system of fig. 4.1. 

a: with the device b: without device 
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on the sheath for the system of fig.4.1. 

a: with the device b: without device 



-59-

EVALUATION OF THE CABLE SYSTEM PARAMETERS 

This chapter describes a general formulation of 

impedances and admittances of single-core coaxial cables. 

The method of transient analysis proposed here is based on 

the theory of wave propagation in multiconductor system, and 

therefore, takes into account all the metallic conductors in 

the system as well as the ground itself. The method of 

analysis may be interpreted in terns of natural modes of 

propagation. The characteristics of these modes, as a 

function of frequency are given for a representative cable 

system. 

The Z-transform technique which is mainly concerned with the 

transformation of the cable characteristics from the 

frequency domain to the time domain is illustrated. 

5 .1 Current and voltage; relations on a transmission system. 

The basic equations that describe the behaviour of a 

multiconductor transmission system are as follows: 

dV^^Xft) = -ZP(t) 5.1 

dx 

and 

dlf(x,t) = -YF(t) VP(X,t) 

dx 
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where and are column matrices representing 

the phase voltage and current at a point x at the instant t 

along the system, and and Y^^t) are square matrices 

representing the series impedance and shunt admittance 

matrices per unit length respectively. 

These equations are transformed into the frequency domain as 

dV^ (x,w) = -ZB(w) IP(x,w) 5.3 

dx 

and 

dl^ (x,w) = -Ye(w) VP(x,w) 5.4 

dx 

or simply as 

dvp = -Z^ie 

and 

dx 

die = -Y^VF 

dx 

Differentiating equations 5.3 and 5.4 with respect to x and 

substituting one in the other give: 

d^ye (x,w) = ZP(w)YP(w) VP(x,w) = P(w)Ve(x,w) 

dx = 

and 

d^IP (x,w) = YF(w) Z=^w) IFXx,w) = P^(w) IP(x,w) 

dx = 

for P(w) = ze(w) YF(w) 

and P^(w) = YP(w) Z^fw) 
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ZP(w) and Y^^w) are always symetrical, so that the product 

of Z^^w) Y=^w) leads to the transpose of Y=^w) Z^^w). 

Modal and actual variables are related by 

V^(WfX) = Cx(w) V(w) 5.7 

I^(w,x) = CaCw) I(w) 5.8 

Using these transform relationships in equations 5.5 and 5.6 

give: 

d^V (x,w) = A^(w) V(x,w) 5.9 

and 

dx" 

d^i (x,w) = At(w) I(x,w) 5.10 

dx^ 

where X^(w) = Ci(w) P(w) Ci(w) 

and = C^^w) P(w) Catw) 

Elements of A^(w) are eigenvalues of P(w) and as the 

eigenvalues of P(w) are those of its transpose, A^(w), 

Ci(w) and Czfw) are matrices of eigenvectors of P(w) and 

Pt(w) respectively. 

Solving equations 5.9 and 5.10 as ordinary differential 

equations in x, results in equations: 

V(w,x) = Exp(- (w,x))A(w) + Exp( (w,x))B(w) 5.11 

Z(w)i(w,x) = Exp(- (w,x))A(w) - Exp( (w,x))B(w) 5.12 

A(w) and B(w) are to be found from the boundary conditions. 



Z(w) is a matrix of modal surge impedances 

z(w) = cl(w) zr(w) Cafw) 

and Z(W) = 2(W) 

5.2 Cables parameters. 

The electrical characteristics [10] of a cable system 

are defined completely by the two basic parameters shunt 

admittance and series impedance, both per unit length. 

5.2.1 Shunt admittance. 

Consider the basic cable system shown schematically in 

Fig.5.1. The cable system constists of an inner conductor, 

radius r^ , resistivity ^ , conductor dielectric with 

permitivity E ̂  , sheath inner and outer raduis r2 and r3 and 

resistivity p , sheath dielectric with permitivity Ez, and 

outer raduis r^, and earth-return path with resistivity 

The shunt admittance submatrix of the i^^ cable has the 

dimension 2x2 and is: 

Y, -Y, 

-Y, 

where Yi = g^ + jw2nE/ln(r2/ri ) 

Ya = gz + iw2nE^ln(ra/r3 ) 

5.13 

5.14 

w ;ith gi and gz are the leakage conductances across the inner 



and outer insulations (but in our study they will be 

neglccted). 

The admittance matrix Y is assembled from the N submatrices 

Yi which are along the diagonal. The soil acts as an 

electrostatic shield between cables and hence off diagonal 

submatrices are zero. 

Y, -Y, n 0 0 0 

Yj 0 0 -Y, 4 0 0 0 0 

0 Yz 0 = 0 0 Y, -Y, 0 0 

0 0 Y3 0 0 -Y, VY;, 0 0 

0 0 n 0 - I j 

0 0 0 0 -

5.2.2 Series impedance. 

The submatrices are assembled along the diagonal of 

the Z matrix in the same order as for the shunt admittance 

matrix. 

Ẑ, Z, 

Z3 Z* 

where = z, + Z&+ 2,+ Z5+ Zg+ z^- 2z^ 

Z2 = Z + Z;+ z? 

Z3 = Zg* Zg+ Z7- Z4 
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These expressions simplify at low frequencies, when Z 

sheath-inner = Z sheath-outer = z* = Ra=, and z* disappears 

from the expressions. 

These seven component impedances for the cable shown in 

Fig.5.1 are obtained as described: 

Fig.5.1 Basic configuration. 

Zi, the internal impedance of the inner conductor is given 

by 

= {pa.m/27rrx ) . coth ( 0 . 777mrx ) + 0 . 356^^/nri Q /m 

where m = (jwy/^i) 

za, the impedance due to the time varying magnetic field in 

the inner insulation: 

Zz = ( jwy/271) In { r^/ri) Q. /m 

Zs, the inner sheath internal impedance. This imped ance is 
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calculated from the voltage drop on the inner surface of the 

sheath per unit current which returns via the inner 

conductor. 

Z3 = (02m/2nr2).coth(mA) - ^^/2nr2(r2+ ra ) 0/m 

where A =r3 - r^ 

Za, the sheath mutual impedance is given by 

Za = (^2m/n(r2 + r3))cosech(mA) A/m 

Zs, the outer sheath internal impedance is given by: 

Z5= ^zm.cothfmA) + 02/2nr3(r2+r3) 0/m 

Zg, the impedance due to the time varying flux in the outer 

insulation. 

ZG= (iww/2n).ln(ra/r3) 0/m 

Z7, the self impedance of the earth-return path. 

z?= (iww/2n)(-ln(&mra/2) + 1/2 -4mh/3 ) A/m 

K =1.781 Euler's constant 

h=the depth 
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The Z matrix takes the form 

Z. Z,J 

Zi, Z « 

Z3, ^1/ Z . 

and Z 4 

The off diagonal are not zero, but take account of the 

mutual inductance between cables. 

The impedances may be calculated from Pollaczek's 

formulas. The mutual impedance Z^i between the i^^and 

i^^^ables is given by : 

Zj^ = (iwu/2n)(-ln(#mSji/2) +1/2 -2ml/3 ) &/m. 

where distance between the i^^and j^^^ables. 

1 the sum of the depths of the i^^^nd j^^^ables 

The developed form of Z will be : 

Z, Z3 Z „ Z,^ Za 

% z „ z,v Z,S Z,) 

Z&, Zi, Z, ^3 Z i ) 

Z i , ZA. Z j z^ Zz3 Zi3 

Z3, Z3, ^32/ Z, Z j 

Zj, Z3I Zj l , Z j i Z3 Z%, 
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The matrix products ZY and (ZY)^possess only three distinct 

eigenvalues, and therefore three distinct propagation 

constants : 

A 1 - X 3 - X S - •/ Y X i z J_ ~ Z 2 ) 
A 2 - A 4 - / Y 2 ( Z 2 "" Z 3 ) 

/Yzf Z2+2Z3) 

So we define three distinct modes: 

mode 1 is the coaxial mode 

mode 2 is the inter-sheath mode 

mode 0 is the zero-sequence sheath mode 

To diagonalise the matrix products, the modal transformation 

matrices is constructed so that each column vector is an 

eigenvector of the corresponding eigenvalue. 

The matrices that satisfy this condition are: 

1 2/3 0 -1/3 0 1/3 

0 2/3 0 -1/3 0 1/3 

0 -1/3 1 2/3 0 1/3 

0 -1/3 0 2/3 0 1/3 

0 -1/3 0 -1/3 1 1/3 

0 -1/3 0 -1/3 0 1/3 

(CV ) 
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c: 

1 -1 0 0 0 0 

0 1 0 0 0 1 

0 0 1 — 1 0 0 

0 0 0 1 0 -1 

0 0 0 0 1 ~ 1 

0 1 0 1 0 1 

The characteristic modal impedance matrix may be obtained by 

means of: 

It takes the form: 

2," 0 0 0 0 0 

0 2Z;: 0 zr 0 0 

0 0 zr 0 0 0 

0 zr 0 2z;: 0 0 

0 0 0 0 zr 0 

0 0 0 0 0 3Z 

where 

Zx- \x/^xi Z 2 = Zo= Xs/^2 

Z is a nondiagonal matrix because there is a mutual coupling 

between the intersheath modes owing to the fact that 

The characteristic modal impedances are complex and 

frequency dependent. These impedances for minor section of 

length l=500m are computed for different frequencies and 

they are shown in fig.5.2. 
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!i! 

'"' l|)!ii|l ' f/yyd/ !|!! I 

50 r̂e<juencj X lÔj 

Fig.5.2 Modulus of surge impedance functions, 

5.3 Forward impulse response function. 

Solving the second-order modal equations leads 

directly to the surge impedance function and to the forward 

impulse response. 

For a transmission system of length 1 , the matrix of 

forward impulse response is: 

Fi(w) = Exp(-A(w)l) 

The variation with frequency of the modulus of the impulse 

response for the cable system considered is shown in 

Fig.5.3. 
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5 10 15 20 25 30 35 40 45 50 
frequency (rad/sec) 

Fig.5.3 Forward impulse response. 

a : sheath zero mode. 

b : responses for the 3 coaxial modes and the 2 

inter-sheath modes. 

5.4 Wave transit times. 

The matrix of propagation coefficients can be 

separated into real and imaginary parts: 

X (w) =a(w) -t- j3(w) 

Wave transit times are given by : 0(w)l/w 

The constant wave transit times for the three modes for our 
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cable system are given below: 

To - 44 ys 

Ti = 3.14 US 

Ts = 18.84 vs 

5.5 Equation systems in the frequency domain. 

Combining equation 5.11 and 5.12 lead to the 

frequency-domain equation system. For a minor section 

between node set k and j we can write: 

Vk(w) - Zkj(w)ik^(w) = Fkj(w) ( Vj(w) + Zkd(w)ijk(w) ) 

Vj(w) - z^j(w)ij^Xw) = Fk^(w) ( v^Xw) + Zkj(w)ikj(w) ) 

Zkj(w) is the matrix of core and sheath surge impedances. 

F^j(w) is the matrix of forward impulse responses. 

The frequency-dependence of modal impulse responses are 

confined in the sheath zero mode while the core and sheath 

responses are taken constant. For the surge impedance only 

the sheath zero mode is frequency-dependence and the 

remaining modes are represented by a constant. 

5.6 Equations in the Z-plane. 

Expressing in the Z-plane, the cable system equations 

become: 

Vk(z) - Zkj(z)ikd(z) = Fkj(z) ( Vj(z) + Zkj(z)idk(z) ) 

Vj(z) - z^j(z)ij^Xz) = Fkitz) ( Vk(z) + Zkj(z)ik3(z) ) 
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If A t is the sampling interval in the time-domain, the 

Z-transform from the F-domain to the Z-domain is defined by 

the expression: 

z = exp(iwAt) 

The form of the mode 1 forward impulse response is then: 

Fi(w) = exp(-jwTi) 

Setting = m^/^t where nu is an integer gives: 

Fi(z) = 

Similar for mode 2 : 

Fztz) = z-™= 

where = mzAt 

For the sheath-zero mode forward impulse response : 

Fo(w) = expf-jwTo) Fn^(w) 

where To= moAt , using this gives: 

Fo(z) = z-™°F»o(z) 

At is chosen to be: 

At = 3.14 us 

so that mi= 1 

m2= 6 

ni o ~ 1 "4 

and note that F^itw) and F^ztw) are considered to be unity. 

To form Fn^(z) we use the multi-product rational-function 
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form: 

F-o(z) = A m 1 + akZ'^+ bkZ' 

but we use N = 2 the simplest form with a good accuracy: 

Fno(z) = Xifl+XsZ-i+XsZ-S) 

(l+X4Z-i+XsZ"2)(l+X6Z-i+X7Z-3) 

where x^, Xa, x? are unknown coefficients. 

Consider the least square function: 

Q(X) = [ |Fno(zi)|- |Fto(zi)| ]2 

where X = ( Xi, x^, x7) 

|F^^(zi) I is the discrete value at Z = obtained from the 

numerical points of |Fio(w) |. 

Therefore the unknown coefficients X are found to make Q(X) 

close to zero by the Quasi-Newton minimization procedure. 

This minimization procedure can be done by calling the NAG 

Fortran Library Routine E04FDF available at the computer 

center at Southapton University. 

The expression can only be stable if the pole and zero 

locations of the formulation lie within the unit circle in 

the z-plane. The stability criterion is achieved. 

From the above considerations, a program is developed to 

formulated the Z-domain expression. It is found that: 
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F»o(z) = Yi(l+Y=Z-i+Y^Z-2) 

(l+YaZ-i+YsZ-z+YeZ-s+YTZ-*) 

with: 

Yi= 0.0797 

Y2= 0.1212 

Y3= 0.8783 

Y4= -2.1015 

Y5= 1.5352 

YG= -0.464 

Y7= 0.0497 

And the results for Z(z) are as follows: 

Zi(z) = 15.7 0 

Zsfz) = 10.85 0 

Zo(z) = Zo(l+XiZ-i+X2Z-2) 

(I+X3Z-1+X4Z-2+X5Z-3+X6Z-4) 

with 

Zo = 26.8 0 

Xi = -0.3392 

X2 = -0.3968 

X3 = -0.4351 

X4 = -0.3557 

X5 = 0.0004 

X G - 0.01234 

It is helpful to simplify the equations 5.15 and 5.16 by 



defining the forward characteristics as: 

F_(w) = V_(w) + Z(w)i.(w) 5.19 

Fr(w) = Vr(w) + Z(w)ir(w) 5.20 

and the backward characteristics as: 

B_(w) = V_(w) - Z(w)i.(w) 5.21 

Br(w) = Vr(w) - Z(w)ir(w) 5.22 

Expressing equations 5.15 and 5.16 in terms of the above 

characteristics, it yields: 

B.(w) = Fi(w) Fr(w) 5.23 

Br(w) = Fi(w) F_(w) 5.24 

Equations 5.23 and 5.24 are the basic equations for later 

analysis. 

The equations 5.19 to 5.24 can be transformed to Z-plane 

directly: 

F_(z) = V_(z) + Z(z)i.(z) 5.25 

Fr(z) = Vr(z) + Z(z)ir(z) 5.26 

B.(z) = V_(z) - Z(z)i.(z) 5.27 

Br(z) = Vr(z) - Z(z)ir(z) 5.28 

B_(z) = Fi(z) Fr(z) 5.29 

Br(z) = Fi(z) F_(z) 5.30 

The cable characteristic in Z-plane is described by 

equations 5.25 to 5.30, they are in the form for inverse 

transformation. 
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5.7 Inversion to the time domain. 

The final step of the formulation is the return from 

the Z-plane to the time domain by inverse Z-transform 

operation. Taking inverse Z-transform of equation 5.25 to 

5.30, it gives the following recursive relationships: 

F_(n) = V_(n) + Z(n)i_(n) 5.31 

FrXn) = Vr(n) + Z(n)ir(z) 5.32 

B.(n) = V_(n) - Z(n)i.(n) 5.33 

Br(n) = Vr(n) - Z(n)ij-(n) 5.34 

B_(n) = Fr(n-l) 5.35 

Br(n) = F_(n-1) 5.36 

Eliminating Ba from the sets of equations of 5.33 and 5.35 

gives: 

Vs(n) - Ziis(n) = Vsp(n-p) 5.37 

where Vsp(n-p) is the previous step-values for p equal to 

mi, Mz and mo for each mode respectively. 

Similary for the sets equations 5.34 and 5.36 gives: 

Vr(n) - Ziir(n) = Vrp(n-p) 5.38 
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S I 

TRANSIENT ANALYSIS OF CROSS-BONDED CABLE SYSTEMS 

There is considerable literature [4 to 13] on the 

analysis of cross-bonded cable systems. It was 

found that computation time becomes a major problem. This 

chapter, is concerned with the development of a more 

efficient, fast and accurate method of analysing 

cross-bonded systems by digital computer. The Z-transform 

[19] is adopted in the cross-bonded cable analysis because 

it has the principal advantage of linking the frequency 

domain and the time domain. This is important because cable 

parameters, are frequency dependent. 

6.1 Z-plane formulation for minor section of cable. 

Typical sheath transpositions and connections for a 

part of high-voltage cable system are shown in Fig.6.1. 

Applying the sets of equations 5.37 and 5.38 to the minor 

section between node sets k and j gives: 

Vk(n) - Ziikj (n) = V^^(n-p) 6.1 

Vjfn) - Ziijk (n) = Vjp(n-p) 6.2 

For a minor section of the system, the boundary conditions 

which have to be evaluated are those of sheath 

transpositions, sheath earthing and sheath voltage limiters 

operation. 
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Fig.6.1 Cross-bonded cable system of three minor sections. 

6.2 cable specifications. 

The 1500m cross-bonding system of the Kirke-Searing 

type is used. The system consists of one major section, 

comprised of three indentical cables laid in trefoil 

formation below a depth of Im and they have a separation of 

0.5m. The sheaths are solidly bonded and directly earthed at 

both ends through 0.075 ohm ground resistances. The 

remaining data is summarized in table 6.1. 

Table 4.1cable dimensions. 

Core diameter 

Sheath inner diameter 

Sheath outer diameter 

Resistivity of core 

Resistivity of sheath 

Permittivity of core insulation 

Permittivity of sheath insulation 

Earth resistivity 

70.30 mm 

114.2 0 mm 

129.80 mm 

1.7x10-* Om 

2.1x10-7 Qm 

3 . 5 X € o 

4 . 0x6o 

50 Am 
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6.3 Sheath transpositions. 

On either side of the transposition point k, we have 

the sets of equations: 

V. (n) - Ziiki (n) = Vkip(n-p) 6.3 

V (n) Z, i 1 J-kcj (n) = Vk3p(n-p) 

Phase voltages and currents vectors are: 

6.4 

[VP(n)] V.(n), V.(n), Vb(n), V^fn), V=(n), vl(n) 

[ie^n)]^ = i.(n), i_(n), ib(n), i^tn), i=(n), (n) 

modal and actual variables are inter related by: 

Ve(n) = CiV (n) V(n) = CiV* (n) 

i=Xn) = Czi (n) i(n) = Cai^ (n) 

using equations 6.3 and 6.4 gives the phase variables sets 

Ve^^(n) - Z%it^(n) V k JL p (n-p) 6.5 

V=^j(n) - zli^^ (n) = V&jg(n-p) 6 . 6 

where 

Zf= CiZiC: 

Vkip(n-p) 

V&jp(n-p) 

CiV^ie (n-p) 

CiVkip(n-p) 

The transposition matrix T is: 

1 0 0 0 0 0 

0 0 0 1 0 0 

0 0 1 0 0 0 

T=: 0 0 0 0 0 1 

0 0 0 0 1 0 

0 1 0 0 0 0 
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so that: 

vCi(n) = T vCj(n) 

iki(n) =-T itj(n) 

Pre-multiplying equation 6.6 by T and replacing itj(n) by 

-T"^i^a(n) gives: 

Vki(n) + Ztiki (n) = TVkjp(n-p) 6.7 

where 

TZiT-

Eliminating iCi(n) from equations 6.5 and 6.7 gives 

vCi(n)=[U+Z^[Ze]-i] -i[Zt [Ze] -iV^^p(n-p)+TV^3p(n-p)] 6 

knowing Vki(n) all other variables at the cross-bonding 

point can be found: 

iLi(n) =[Ze]-i[Vki(n-p) - V&ie(n-p)] 6.9 

Vkd(n) = T-iv2^(n) 

ikj(n) = -T-iiti(n) 

and modal variables: 

Vki(n) = Cr^vCifn) 

Vkj(n) = CriV&j(n) 

ii«i ( n ) = Cj_^i£;a{n) 

ii< j ( n ) = C^^i^j(n) 

And similarly, for the second transposition point, at node 

set j all the variables of the first transposition point 

with subscripts kl and kj are changed to jk and jm 

respectively and equations for both transposition points are 



obtained. 

6.4 Sheath earthing. 
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Fig.6.2 Sheath earthing at both ends 

We define a connection matrix C which is 

ac as be bs cc cs 

ac 1 0 0 0 0 0 

be 0 0 1 0 0 0 

cc 0 0 0 0 1 0 

e 0 1 0 1 0 1 

these reduced the order vectors: 

V=(n) 

Ve(n) = Ct 

V_(n) 

V°(n) 

Vpr(n) = 

V_(n) 
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iF^(n) = 

i°(n) 

with this notations: 

VP(n) = CtVe^(n) 

C ie(n) = i=^(n) 

replacing V®" (n) and i^{n) by V^^(n) and i=^(n) in equation 

6.9 gives: 

ie^(n) = YprVP^(n) - iip(n-p) 6.10 

where = C[ZP]-iCt 

and 

iigXn-p) = C[Ze]-^ V^ipfn-p) 

For the common sheath earth return path: 

V.(n) = Rgi=(n) 

Defining matrix G by: 

0 0 0 0 

0 0 0 0 

G = 0 0 0 0 

0 0 0 1/Re 

which gives 

G ver(n) 

i=(n) 

Adding equations 6.10 and 6.11 gives: 

6.11 
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i°(n) 

0 

= [Ypr + G] Ve^(n) - iip(n-p) 

we use the partitions: 

6.12 

Yer+ G = 

Yii Y12 

Y = i Y2 2 

and iip(n-p) = 

i=ip (n-p) 

(n-p) 

with these partitions equation 6.12 gives: 

i°(n) = YiiV°(n) + YisV^fn) - iip(n-p) 

0 = Y2iV=(n) + YaaV^tn) - i^p(n-p) 

6.13 

6.14 

On eliminating from these equations the sheath voltage at 

the earth point (n) gives: 

i°(n) = YxiV"='(n) + i°(n-p) 6.15 

where 

and 

Yii.- Yix Y12Y22Y21 

i=(n-p) = Yi2Y^^i=ip(n-p) - i=ip(n-p) 

From eqation 6.14 we obtain V^(n): 

V_(n) = Y22[-Y2iV=(n) + i=ip(n-p)] 

Vector V^^(n) is then available from : 

6.16 
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[Vpr(n)]^= [V°(n)]^, V=(n) 

and the original vector of core and sheath: 

VF(n) = CtVe^(n) 

and the vector currents i'^(n) is obtained from equation 4.9. 

6 .5 Sheath voltage limiters. 

When sheath voltage limiters at points of sheath 

transpositions are connected, the non-linear characteristics 

of devices are to be superimposed on the constraints of 

sheath transpositions. 

Sheath voltages either side of a transposition point are 

related by: 

V^^(n) = TV^^(n) 6.17 

We therefore replace the previous equation relating sheath 

currents by: 

iLi(n) = TiCr(n) + Ni^(n) 6.18 

where N = diag (0,1,0,1,0,1), 

i.(n) is the vector of current flowing in the 

devices. 

The device consists of a resistor R, a capacitor C and a 

non-linear inductance L in parallel as shown in Fig.6.4. The 

explicit form of these matrices are: 

R = diag (0,R,0,R,0,R) 

L = diag (0,Lx,0,Ij2,0,L3) 

C = diag (0,C,0,C,0,C) 
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R 

Fig.6.4 Equivalent circuit of the device (sheath 

voltage limiter). 

therefore the vector of currents flowing jLn each branch of 

the device are defined as follows: 

ii(t) = Vki(t)/R 

izft) = ̂  Vki(t) + i 2(t-At) 
L 

isft) = _c/Vki(t) - Vk^(t-At)) 
At 

So the vector i^{n) is equal to the sum of the previous 

vectors: 

ia(n) = ii(n) + i^tn) + iatn) 

or 

i.(n) = (1/R + At +_CJVki(n) + iafn-l) -_^Vki(n-l) 6.19 
L At At 

Equations 6.17 to 6.19 together with equations 6.3 and 6.4, 

give the complete set of equations for the connection points 

of the devices. 

The core and sheath voltages are obtained by combining all 
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these equations together to give: 

vC^(n)=[U+ Z^[Ze] + ZtN(l/R+ AtL-i+ ,1^C)N] 
5t 

[Zt[ZP]-ivCip(n-p)+TvCje(n-p) -ZtN(i2(n-l)-l.C.N.vLi(n-l))] 
At 

6 . 2 0 

And similarly, for the second transposition point all the 

equations of the first were repeated. 

6.6 Open and loaded circuit. 

If the cable end is on open-circuit, core currents in 

equation 6.12 are set to zero so that: 

Va^^fn) = [Ypr+G]-ii4e(n-p) 6.21 

Va^ln) 

where 

V=4(n) 

If the cable end is loaded with resistances Ri and as 

shown in Fig.6.5, equations 6.13 and 6.14 are used, together 

with the core voltages which are: 

V4=(n) = [ Ri + Rz ]i4=(n) 6.22 

The explicit form of R^ and Ra are: 

R, 

R 0 0 

0 R 0 

0 0 R 

and B. 

R R R 

R R R 

R R R 
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Fig.6.5 The load resistors 

Replacing the core currents in equation 6.13 by 

ij=(n) = [ + Rz ]V4=(n) 6.23 

gives: 

[Ri+Ral-iVffn) = YiiVf(n) + - i^p(n-p) 6.24 

0 = + YzaV.afn) - i^e(n-p) 6.25 

Substituting the value of V.^fn) from equation 6.25 in 

equation 6.24 gives the core voltages: 

V=(n) = [ [ R i + R a Y x 2 Y 2 2 i l p ( n - p ) -i^p(n-p)] 6.26 

and the sheath voltages from equation 6.25 is: 

V^a(n) = Yzzf-YziVa^tn) + i&gXn-p)] 6.27 

Core and sheath voltages and currents at the open-circuited 

or loaded end of the cable are obtained to complete the 

solution. 

To test the system under fault condition, a short circuit 

was made in taking one element of the matrix Rx and a row of 

Rz equal to zero which means phase-to-earth fault. Or two 

elements of R equal to zero is the phase-to-phase fault. 
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RESULTS OF COMPUTER SIMULATION FOR CROSS BONDED SYSTEM 

7.1 Introduction• 

The diagram and data of the cable system considered 

are presented in Fig.6.1 and section 6.2 respectively of 

chapter six. The switching mode considered is that, only 

core "a" is energised in the multiconductor cable system. 

This asymmetry in the energising mode is one which allows 

the freqency dependencies in the earth mode to be tested. To 

examine sheath-voltage solutions three non-linear inductance 

are installed at both the first and second cross-bonding 

points. The computer program which gives the transient 

results of a cross-bonded system using Z-transform has been 

tested for many cases, but only a selection of results is 

presented. 

7.2 Core voltages at the receiving-end. 

The receiving-end voltages waveform on the energised 

core "a" and the unenergised core "b" and "c" are shown in 

Fig.7.1. There is an initial step occuring after about 9ws, 

This delay is determined by the travel time for the cable. 

The receiving-end peak voltage amplitude is approximatly 270 

KV which is 1.8 time the sending-end voltage. It is the 

coaxial mode which is responsible for the initial 

receiving-end voltage. The coaxial mode, which travels 

faster than the two remaining modes, therefore arrives at 

the receiving-end first, and reflects on the two other cores 
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"a" and "b". This appears as negative and positive steps at 

the receiving-end of these two cores as seen in Fig.7.1. It 

shows the travelling waves during the first 6xlO-*secs, 

which will attenuate progressively, until the steady state 

conditions are reached. 

7.3 Sheath voltages across the devices. 

Without the device in circuit surges voltages as high 

as about 40 KV are produced on the cable sheaths to earth 

(Fig.7.2). The results demonstrate also how the travelling 

wave phenomena is reflected in the sheaths. The transient 

sheath-voltage waveforms of the three cables for the first 

cross-bonding point, with the connection of the non-linear 

inductance device in circuit is shown in Fig.7.4. The 

travelling wave in the presence of the device damps quickly 

(SxlO'^secs), followed by a dynamic period and finally 

steady state. 

7.4 Voltages across the insulating joints. 

The voltages across the insulating joints at the first 

cross-bonding point without and with the device in circuit 

are presented in Fig.7.3 and Fig. 7.5. These voltages are the 

most severe in the cable system. Mith the device in circuit 

the maximum peak value of voltage was reduced from about 80 

KV to about 25 KV and the travelling period is damped very 

quickly. The current flowing in the devices for the first 

cross-point are shown in Fig.7.6. It reaches a peak value of 

about 7 KA, then damps rapidly to a very small value. 



90-

7.5 Sheath voltages at the second cross-bonding point. 

Fig.7.7 shows the sheath voltage at the second 

cross-bonding point. At the second cross-bonding point the 

voltage profile is similar to that of the first 

cross-bonding point with slightly reduced peak values. 

7.6 Loaded system. 

Fig.7.8 shows the sheath voltages at the first 

cross-bonding point when the system is loaded. As the 

voltages induced in the sheaths are proportional to the load 

current in the conductor, the greater the load current is , 

the greater the sheath voltage is recorded on the sheath. 

Comparing Fig.7.8 and Fig.7.2 when the system is unloaded, 

we can see that the voltage peaks vary form -18 KV to 11 KV 

for the unloaded system and for the loaded system they vary 

from -28 KV to 18 KV. At the time t=20xl0-*sec the values of 

the voltages for the loaded and unloaded systems are 5 KV 

and 2 KV respectively. 

7. 7 Faulted system. 

For the phase-to-phase fault considered, between the 

phases "a" and "b",the surge overvoltages tend to arise 

within the two faulted cables and sheaths, the remaining 

conductor experiences relatively lower induced sheath 

voltage (Fig.7.9). The fault considered is the switching of 

the 3-phases on a faulted system and the voltage across the 

insulating joints as well as the current through the devices 

at the first cross-bonding point are shown in Fig.7.10 and 

Fig.7.11. At the instant just after the switching, the 
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voltages across the device to earth reach a peak value of 

about 50 KV on phase "a" and about 40 KV on phase "b" 

however the current is very low. When the short circuit 

between the two phases persists the currents increase to 

high values ( 330 KA peak on phase "a" and 210 KA peak on 

phase "b"), but the voltages decrease to very small values. 

It shows that the device is operating in the high saturation 

region,a large current is flowing in the device, but the 

voltage across it is kept low which is the object of the 

device. 

7.G Sensitivity of the parameters of the device. 

The parameters of the device are very sensitive. The 

results presented are obtained with C=3.0xl0~® F. Increasing 

the value of C it will reduce the voltage across the device 

until a short circuit to earth can be made. The value of the 

resistance R was taken equal to 10000, which has a negliable 

effect on the system. L is the non-linear inductance of the 

device and its effect depends on its dimension. 
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DISCUSSION AND CONCLDSION 

Overvoltages in transmission and distribution systems 

cannot be avoided. A detailed knowledge of this subject was 

necessary for economic design of equipment in the system and 

for safe operation. With the advent and introduction of EHV 

and UHV power systems it has became apparent that the 

construction costs of network and station material depend to 

a large degree on the overvoltages to be expected. 

Overvoltages are often symptoms of complex phenomena which 

occur in the system for various reasons. 

Nobody will deny the necessity for providing power 

transmission network with protection against overvoltages. 

Starting from the simple spark gaps, we notice that over the 

years continuous improvements have been made in response to 

ever increasing demands. An intermediate stage is the surge 

arrester with plate gaps, still used today in medium-voltage 

network. The application of magnetic blast, which forms the 

basis of arresters in EHV networks, represents the most 

efficient solution at present. 

The electrical utility companies and the electrical industry 

have been entrusted with the task of ensuring that networks 

and installations are as safe as possible. So far as 

overvoltages are concerned, this requirement was satisfied 

during the first half of the twentieth century. Up to the 

present the only device that has been able to perform the 
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rapid succession of swibching operations is the 

with spark gap and nonlinear resistors connected in series. 

This investigation has been concerned with modelling the 

non-linear device connected to the sheath of a cable system, 

to determine its steady state and transient performances in 

the cable system under different load conditions. A 

mathematical model of the device and the cable system was 

formulated. The very simplified, but nevertheless effective, 

method of analysis presented in chapter two is based on the 

fact the conductor and sheath are considered as the primary 

and secondary of a transformer, and consequently can be 

represented by a simple equivalent circuit. This is valid 

for most cases of interest, and it shown that each cable 

system is approximated by an equivalent circuit. The method 

of analysis is relatively simple to compute. 

The next stage of the work involves the representation of 

the non-linear device for simulation on the digital 

computer. Given the physical dimensions of the device and 

the B/H curve of the material, ^^/i^ relationship was 

determined. Initially, the )fVi^ curve of the device was 

pesented by a piece-wise linear approximation but because of 

the nature of the curve, the equations ran into numerical 

instability at the change-over-point. To reduce this problem 

a curve fitting technique was used to obtain an analytical 

expression for the characteristic so that any derivation 

from the curve around the knee point resulting in numerical 

instability would be corrected. 
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Based on the mathematical model presented, a computer 

program was developed to calculate the voltage and current 

across and through the device. Numerical steady state 

analysis of the cable including the device show that the 

choice of an adequate step length was essential for stable 

numerical solution. Satisfactory steady state results were 

obtained using ^^elect. step length. The implementation of the 

analysis on the digital computer have proved to be 

successful from a consideration of the results obtained. 

The work done in chapter five an six is an extension of the 

rotation matrix method previously applied for analysing the 

transient performance of cross-bonded systems. A brief 

resume of the method reveals that the method of analysis 

involves a detailed representation of the cross-bonded 

system, and that the most accurate formulation of the system 

equations has been used. When analysing the cross-bonded 

system by the modal analysis and Z-transform technique, the 

a-priori requirement is to evaluate eigenvalues and 

eigenvectors over a range of frequencies. The cable system 

used in this investigation consists of one major 

cross-bonded section, the sheaths are earthed at both ends 

through a common resistor, the devices being installed at 

the cross-bonding points and each device is represented by 

a resistor, a capacitor and a non-linear inductance in 

parallel. The full representation of the system was 

accommodated in the computer program to investigate the 

performance of the non-linear device. 
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Three considerations enter into the device choice. First, it 

should in principle be chosen such that in the current range 

of the interest for the device applications, the 

nonlinearity of the characteristic should be maximum. 

Second, the diameter and length of the device determine the 

voltage protective level, finally there is a limit to the 

maximum diameter and length that can be used in practice. 

There, as for the determination of the field, a process of 

optimization was necessary- The results of this optimization 

depends of course on the exact application considered 

(system load current, length of the transmission system, 

etc...). This results in an equivalent circuit for device as 

shown in Fig.6.4. The capacitance of the device depends only 

on the gap between the iron tube and the bonding lead. The 

resistive part, represents losses in the iron tube. The 

non-linear inductance L is given by the volt/ampere 

It can be concluded from the results obtained that the 

mathematical model of the device gives a reasonable 

representation. Some form of non-linear inductance would 

evidently form a satisfactory protective device. The 

requirements of such a non-linear inductance have not yet 

been completely defined. It is known that it must be capable 

of limiting the current in the sheath as a result of the 

fault. It must be capable of reducing the overvoltage on the 

sheath to a low value as possible. Protective non-linear 

inductances are less expensive than the protective devices 
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installed in the present day; also they would make for a 

much simpler installation. It might, for instance, be found 

practicable to bury a protective non-linear inductance 

alongside each joint. Their simplicity and stability imply 

very good performance in service and it is to be expected 

that they will come into wider use in future. 

It is hoped that the results not only give an indication to 

the general behaviour of the device in a cable network, but 

also form a basis for comparison in future work. A detailed 

investigation on the material which the protective device is 

made up, can be done in the future to determine the best 

protection device. 
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A P P E N D I X ISTo _ 1 

INTEGRATION METHODS 

To solve the non-linear differential equations in our 

study, a number of integration methods were studied. Some of 

them are more accurate than others. 

Central difference. 

Using the differential equation: 

V(t) = L di(t) A.1.1 

dt 

integrating equation A.1.1 from t- t to t. 

t 

A. 1 

/ 

V(t)dt = L I di(t) 

't-At it-At 

By applying the central difference method to equation A.1.2 

gives: 

i(t) = At V(t) + At V(t-At) + i(t-At) A.1.3 

2.L 2.L 

Fig.A.1.1 shows the method graphically: 

lit-At) xrfcj 

'ig.A.l.l Central difference method. 
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The central difference method was found that is not 

numerical stable. 

Forward difference method. 

Applying the forward difference method to equation 

A . 1. 2 obtains: 

i(t) = V(t-At) + i(t-At) A.1.4 

L 

this method is reffered to in Fig.A.1.2. 

>Ctb-At) yC{b) 

Fig.A.1.2 Forward difference method. 

Backward difference method 

Applying the backward difference method to equation 

A.1.2 gives: 

i(t) = ^ V(t) 4 i(t-At) A.1.5 

L 

Fig.A.1.3 shows the method graphically. 
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l(b-6tj Ut) 

Fig.A.1.3 Backward difference method. 

Runqe Kutta. 

From equation A.1.1, the following equation can be 

written: 

^ i ( t ) = VXtJ A. 1.6 

dt L 

this method consists of computing: 

Ki= At. V(t) 

L 

K2= At.(V(t) + i.Ki) 

L 

K3= At.(V(t) + i.Ks) 

L 

K^= A t . ( V ( t ) + KB) 

L 

then the runge Kutta's formula is: 

i ( t + A t ) = 4 r . ( K i + 2.K2+ 2.K3+ K4.) + i ( t ) 

It was found that central, forward and backward difference 

have the advantage of being represented by a simple 

equivalent circuit. 
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A g g E I S r D X X K T o -

BASE pu. SYSTEM 

MVAb = 100 KVA 

Vb = 100 V 

lb = 1000 A 

Afa = Vfe/wt, = 2. Wb-turn 

Tfa = 0.02 sec 

Wfa = 1/Tfa = 5 0 rad/sec 

Ffa = Wb/2% = 7.95775 Hz 

Lb = Vb. Tb/Ik = 0.002 H 

Zb = Vb/Ib = 0.1 n 
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A E ' F ' E I S r P I X ISTo - 3 

QiK * it * * * * * * ± * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

c 
C THIS PROGRAM INVESTIGATE THE Z-TRANSFORM TRANSIENT 

C ANALYSIS IN HIGH-VOLTAGE CABLE INCLUDING THE NON-LINEAR 

C DEVICE USED AS SURGE ARRESTER AT THE CROSS-BONDING JOINTS 

C 

Q* ********************************************************* * 

c 
PROGRAM ZTRANS 

INTEGER M,N,P,I,J,MI 

REAL l21,l32,l4,l21C,I12C,l23C,l23,l32C,l34C,l34rIlP,Ll,L2, 

+ L3,L4,L5,L6,IS1,IS2,IS3,IS4,IS5,IS6,IGX,IGX2,LT,LT2, 

+ I4P,IC4P,IS4P,I12 

PARAMETER (IFREQ=50,PI=3.14159,DELT=3.14E-06) 

PARAMETER (Xl=-0.3392,X2=-0.3968,X3=-0.4351,X4=-0.3557, 

+ X5=0.0004,X6=0.01234,Y1=0.0797,Y2=0.00966, 

+ Y3=-0.07,Y4=-2.1015,Y5=l.5352,Y6=-0.464, 

+ Y7=0.0497,20=80.4,21=15.50,22=10.85) 

DIMENSION C1(6,),C11(6,6),C2(6,6),C22(6,6),ZL(6,6), 

+ ZLP(6,6),T1(6,6),T11(6,6),T1ZLP(6,6),ZT(6,6),D(6,6), 

+ H(6,6),HI(6,6),Q(6,6),C11Q(6,6),T1C1(6,6),X(6,6), 

+ C11HI(6,6),Y(6,6),ZLI(6,6),V(6,1),VP(6,1),ZV(6,1), 

+ C1ZL(6,6),ZLPI(6,6),ZTZLPI(6,6),I12(6,1) 

+ VP21(6,1),VP23(6,1),XVP21(6,1),YVP23(6,1),V21(6,1), 

+ 2V21(6,1),I21(6,1),VP32(6,1),VP34(6,1),XVP32(6,1), 

+ YVP34(6,1),V32(6,1),ZV32(6,1),I32(6,1),VP4(6,1), 

+ V4(6,1),2V4(6,1),I4(6,1),WRSPCE(20),G1(6,6), 

+ V21C(6,1),I12C(6,1),I23C(6,1),I23(6,1),V23C(6,1), 

+ V34C(6,1),I34C(6,1),V23(6,1),V32C(6,1),I32C(6,1),V34(6,1), 

+ I34(6,1),V4C(3,1),G2(6,6),I1P(4,1),2VE(4,6),G(4,4), 

+ C2LPI(4,6),CT(6,4),YPR(4,4),YPRG(4,4),YPGI(4,4),XX(4,6), 

+ XXC1(4,6),V4C1(6,1),I21C(6,1),C(4,6) 

DIMENSION SU(6,6),W(6,6),BB(6,6),ZTW(6,6),LT(6,6), 

+ 2TWL(6,6),ZTWLW(6,6),LT2(6,6),ZTWL2(6,6),ZZ(6,1), 

+ ZTWW(6,6),VV2(6,1),ZZ2(6,1),ZTIG2(6,1),IGX2(6,1),VVV(6,1), 

+ ZTIG(6,1),IGX(6,1),I4P(6,1),IC4P(3,1),RRI(3,3),RRY(3,3), 
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+ RRYI(3,3),Y11(3,3),Y12(3,1),Y21(1,3),YY12(3,1),YY121(3,3), 

+ YY11(3,3),SI4P(3,1),P4I(3,1),CNT(6,6),CNT2(6,6), 

+ V21CX(6,1),V32CX(6,1),CVX(G,1),CVX2(6,1),VIX(6,1), 

+ VIX2(6,1),RR(3,3),R1(3,3),RR1(3,3) 

REAL V1AC(0:59),V1BC(0:59),V1CC(0:59),VE1(0:59),IL1(-1:59), 

+ V11(-1:59),V12(-6:59),V13(-1:59),IL2(-1:59),IL3(-1:59), 

+ V14(-6:59),V15(-1:59),V16(-18:59),IL4(-1:59), 

+ Vl(-l:59),V2(-l:59),V3(-l:59)rIL5(-l:59),IL6(-l:59), 

+ V1P(-14:45),V21P(-14:45),V23P(-14:45),V32P(-14:45), 

+ V34P(-14:45),V4P(-14:45),Bl(-5:58),B21(-5:58), 

B23(-5:58),B32(-5:58),B34(-5:58),B4(-5:58),V121(-1:59), 

+ V221(-6:59),V321(-1:59),V421(-6:59),V521(-1:59), 

+ V621(-18:59),I112(-1:59), 

+ 1212(-6:59),1312(-1:59),1412(-6:59),1512(-1:59), 

+ l612(-l6:59),FRl(-l:58),FR2(-6:53),FR3(-l:58),FR4(-6:53), 

+ FR5(-l:58),FR0(-18:45),FSl(-l:58),FS2(-6:53), 

+ FS3(-1:58),FS4(-6:53),FS5(-1:58),FS0(-18:45), 

1121(-1:59),1221(-6:59),1321(-1:59),1421(-6:59), 

1521(-1:59),1621(-16:59) 

REAL V123(-l:59),V223(-6:59),V323(-l:59),V423(-6:59), 

V523(-l:59),V623(-18:59),I123(-l:59),l223(-6:59), 

+ 1323(-1:59),1423(-6:59),1523(-1:59),1623(-16:59), 

+ V132(-l:59),V232(-6:59),V332(-l:59),V432(-6:59), 

+ V532(-l;59),V632(-18:59),I132(-l:59),l232(-6:59), 

+ I332(-1:59),I432(-6:59),I532(-1:59),1632(-16:59), 

+ V134(-l:59),V234(-6:59),V334(-l:59),V434(-6:59), 

+ V534(-l:59),V634(-18:59),I134(-l:59),l234(-6:59), 

+ I334(-1:59),I434(-6:59),I534(-1:59),I634(-16:59), 

+ V41(-1:59),V42(-6:59),V43(-1:59),V44(-6:59),V45(-1:59) 

REAL I41(-l:59),l42(-6:59),l43(-l:59),l44(-6:59), 

+ 145(-1:59),I46(-16:59),V4AC(0:59),V4AS(0:59), 

+ V4BC(0:59),V4CC(0:59),V46(-18:59), 

+ KS1(-1:58),KS2(-6:53),KS3(-1:58),KS4(-6:53),KS5(-1:58), 

KS0(-18:45),KRl(-l:58),KR2(-6:53),KR3(-l:58),KR4(-6:53), 

+ KR5(-l:58),KR0(-18:45),VE4(0:59),TSl(-l:58),TS2(-6:53), 

+ TS3(-1:58),TS4(-6:53),TS5(-1:58),TS0(-18:45),TR1(-1:58), 

+ TR2(-6:53),TR3(-1:58),TR4(-6:53),TR5(-1:58),TR0(-18:45) 

C INITIALIZATION 
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DATA FS0/64*0.0/,FR0/64*0.0/,FRl/60*0.0/,FR2/60*0.0/, 

FR3/60*0.0/,FR4/60*0.0/,FR5/6n*0.0/,FSl/60*0.0/, 

+ FS2/60*0.0/,FS3/60*0.0/,FS4/60*0.0/,FS5/60*0.0/r 

+ VlAC/60*0.0/,VlBC/60*0.0/,VlCC/60*0.0/,VEl/60*0.0/, 

+ V11/61*0.0/,V12/66*0.0/, 

+ Vl3/61*0.0/,V14/66*0.0/,Vl5/61*0.0/,Vl6/78*0.0/, 

+ V121/61*0.0/,V221/66*0.0/,V321/61*0.0/,V421/66*0.0/, 

+ V521/61*0.0/,V621/78*0.0/, 

+ 1112/61*0.0/,1212/66*0.0/,1312/61*0.0/, 

+ 1412/66*0.0/,1512/61*0.0/,1612/76*0.0/, 

+ 1121/61*0.0/,1221/66*0.0/,1321/61*0.0/, 

+ 1421/66*0.0/,1521/61*0.0/,1621/76*0.0/ 

DATA V123/61*0.0/,V223/66*0.0/,V323/61*0.0/,V423/66*0.0/, 

+ V523/61*0.0/,V623/78*0.0/,1123/61*0.0/,1223/66*0.0/, 

+ 1323/61*0.0/,1423/66*0.0/,1523/61*0.0/,1623/76*0.0/, 

+ V132/61*0.0/,V232/66*0.0/,V332/61*0.0/,V432/66*0.0/, 

+ V532/61*0.0/,V632/78*0.0/,1132/61*0.0/,1232/66*0.0/, 

+ 1332/61*0.0/,1432/66*0.0/,1532/61*0.0/,1632/76*0.0/, 

+ V134/61*0.0/,V234/66*0.0/,V334/61*0.0/,V434/66*0.0/, 

+ V534/61*0.0/,V634/78*0.0/,1134/61*0.0/,1234/66*0.0/, 

+ 1334/61*0.0/,1434/66*0.0/,1534/61*0.0/,1634/76*0.0/ 

DATA V42/66*0.0/,V43/61*0.0/,V44/66*0.0/,V45/61*0.0/, 

V46/78*0.0/,141/61*0.0/,142/66*0.0/,143/61*0.0/, 

+ 144/66*0.0/,145/61*0.0/,146/76*0.0/,VE4/60*0.0/, 

+ V4AC/60*0.0/,V4AS/60*0.0/,V4BC/60*0.0/,V41/61*0.0/, 

+ V4CC/60*0.0/,VlP/60*0.0/,V2lP/60*0.0/,V23P/60*0.0/, 

+ V34P/60*0.0/,V4P/60*0.0/,Bl/64*0.0/,821/64*0.0/, 

+ B23/64*0.0/,B32/64*0.0/,B34/64*0.0/,B4/64*0.0/, 

+ KSl/60*0.0/,KS2/60*0.0/,KS3/60*0.0/,KS4/60*0.0/, 

+ KS0/64*0.0/,KRl/60*0.0/,KR2/60*0.0/,KR3/60*0.0/, 

+ KR4/60*0.0/,KR0/64*0.0/,TRl/60*0.0/,TR2/60*0.0/, 

+ TR3/60*0.0/,TR4/60*0.0/,TR5/60*0.0/,TR0/64*0.0/, 

+ TS1/60*0.0/,TS2/60*0.0/,TS3/60*0.0/,TS4/60*0.0/, 

+ TS5/60*0.0/,KR5/60*0.0/,V32P/60*0.0/,KS5/60*0.0/, 

+ TS0/64*0.0/,Vl/61*0.0/,V2/61*0.0/,V3/61*0.0/ 

K = 0 

ICON=0 

N = 6 
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C-

IA = 6 

IUNIT=6 

IFAIL=1 

P = 1 

M = 6 

MI = 4 

C READ THE PARAMETERS OF CABLE AND DO ALL THE MATRICES 

C OPERATIONS 

READ(5,*)((C2(I,J),J=1,N),I=1,N) 

READ(5,*)((C1(I,J),J=1,N),I=1,N) 

READ(5,*)((ZL(I,J),J=1,M),I=1,M) 

DO 110 1=1,N 

DO 110 J=1,N 

G1(I,J)=C1(I,J) 

G2(I,J)=C2(I,J) 

110 CONTINUE 

C 

CALL MAT(M,M,M,C1,ZL,C1ZL) 

CALL F01AAF(C2,IA,N,C22,IUNIT,WRSPCE,IFAIL) 

CALL MAT(M,M,M,C1ZL,C22,ZLP) 

READ(3,*)((T1(I,J),J=1,M),I=1,M) 

READ(3,*)((T11(I,J),J=1,M),I=1,M) 

CALL MAT(M,M,M,T1,ZLP,T1ZLP) 

CALL MAT(M,M,M,T1ZLP,T11,ZT) 

DO 1 1=1,N 

DO 1 J=1,N 

BB(I,J)=ZT(I,J) 

CALL F01AAF(ZLP,IA,N,ZLPI,IUNIT,WRSPCE,IFAIL) 

CALL MAT(M,M,M,ZT,ZLPI,ZTZLPI) 

READ(5,*)((U(I,J),J=1,M),I=1,M) 

CALL ADD(M,M,U,ZTZLPI,SU) 

READ(5,*)((W(I,J),J=1,M),I=1,M) 

CALL MAT(M,M,M,BB,W,ZTW) 

CALL F01AAF(C1,IA,N,C11,IUNIT,WRSPCE,IFAIL) 

CALL MAT(M,M,M,T1,G1,T1C1) 

CALL F01AAF(ZL,IA,N,ZLI,IUNIT,WRSPCE,IFAIL) 
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c 
c SHEATHS EARTHING 

C 

READ(2,*)((C(I,J),J=1,M),I=1,MI) 

READ(2,*)((CT(I,J),J=1,MI),I=1,M) 

READ(2,*)((G(I,J),J=1,MI),I=1,MI) 

CALL MAT(MI,M,MfC,ZLPI,CZLPI) 

CALL MAT<MI,M,MI,CZLPI,CT,YPR) 

CALL ADD(MI,MI,YPR,G,YPRG) 

CALL F01AAF(YPRG,4,4,YPGI,4,WRSPCE,IFAIL) 

CALL MAT(MI,MI,M,YPGI,CZLPI,XX) 

CALL MAT(4,6,6,XX,G1,XXC1) 

CALL MAT(4,6,6,CZLPI,G1,ZVE) 

Y211=YPRG(4,1) 

Y212=YPRG(4,2) 

Y213=YPRG(4,3) 

Y44=YPRG(4,4) 

DO 777 1=1,3 

Y12(I,1)=YPRG(I,4) 

Y21(1,I)=YPRG(4,I) 

YY12(I,1)=Y12(I,1)/Y44 

DO 777 J=l,3 

777 Y11(I,J)=YPRG(I,J) 

CALL MAT(3,1,3,YY12,Y21,YY121) 

CALL SUB(3,3,Y11,YY121,YY11) 

C 

C THE LOAD RESISTORS 

C 

READ(5,*)((RR(I,J),J=1,3),1=1,3) 

READ(5,*)((R1(I,J),J=1,3),I=1,3) 

CALL ADD(3,3,RR,R1,RR1) 

CALL P01AAF(RR1,3,3,RRI,3,WRSPCE,IFAIL) 

CALL SUB(3,3,RRI,YY11,RRY) 

CALL F01AAF(RRY,3,3,RRYI,3,WRSPCE,IFAIL) 

C 

c NONLINEAR INDUCTANCE 

C 

READ(2,*) R,CAP,L1,L2,L3,L4,L5,L6 
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DO 71 1=1,6 

V2lCX(I,l)=n.O 

71 V32CX(I,1)=0.0 

SAT=0.250 

C 

C DEFINE THE INPUT 

C 

10000 CONTINUE 

DO 1000 N=IC0N,59 

T=(N+60*K)*DELT 

RAD=2*PI*IFREQ*(N+60*K)*DELT 

A=RAD+PI/2 

B=RAD-5*PI/6 

D=RAD-PI/6 

V1(N)=150*SIN(A) 

V2(N)=150*SIN(B) 

V3(N)=150*SIN(D) 

C FIND THE VARIABLES 

FS1(N-1)=V11(N-1)+Z1*I112(N-1) 

FS2(N-6)=V12(N-6)+Z2*(2*1212(N-6)+1412(N-6)) 

FS3(N-1)=V13(N-1)+21*1312(N-1) 

FS4(N-6)=V14(N-6)+Z2*(2*l412(N-6)+l212(N-6)) 

FS5(N-1)=V15(N-1)+21*1512(N-1) 

FS0(N-14)=V16(N-14)+X3*V16(N-15)+X4*V16(N-16)+X5*V16(N-17) 

+ +X6*V16(N-18)+20*1612(N-14)+Z0*X1*I612(N-15) 

+ +Z0*X2*I612(N-16)-X3*FS0(N-15)-X4*FS0(N-16) 

+ -X5*FS0(N-17)-X6*FS0(N-18) 

FR1(N-1)=V121(N-1)+Z1*I121(N-1) 

FR2(N-6)=V221(N-6)+22*(2*1221(N-6)+1421(N-6)) 

FR3(N-1)=V321(N-1)+21*1321(N-1) 

FR4(N-6)=V421(N-6)+Z2*(2*1421(N-6)+1221(N-6)) 

FR5(N-1)=V521(N-1)+Z1*I521(N-1) 

FR0(N-14)=V621(N-14)+X3*V621(N-15)+X4*V621(N-16) 

+ +X5*V621(N-17)+X6*V621(N-18)+Z0*I621(N-14) 

+ +Z0*X1*I621(N-15)+Z0*X2*I621(N-16)-X3*FR0(N-15) 

+ -X4*FR0(N-16)-X5*FR0(N-17)-X6*FR0(N-18) 

KS1(N-1)=V123(N-1)+Z1*I123(N-1) 

KS2(N-6)=V223(N-6)+Z2*(2*1223(N-6)+1423(N-6)) 
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KS3(N-1)=V323(N-1)+Z1*I323(N-1) 

KS4(N-6)-V423(N-6)+Z2*(2*I423(N-6)+l223(N-6)) 

KS5(N-1)=V523(K-1)+Z1*I523(N-1) 

KS0(N-14)=V623(N-14)+X3*V623(N-15)+X4*V623(N-16) 

+ +X6*V623(N-18)+Z0*I623(N-14)+Z0*X1*I623(N-15) 

+ +Z0*X2*I623(N-16)-X3*KS0(N-15)-X4*KS0(N-16) 

+ -X5*KS0(N-17)-X6*KS0(N-18)+X5*V623(N-17) 

KR1(N-1)=V132(N-1)+Z1*I132(N-1) 

KR2(N-6)=V232(N-6)+Z2*(2*1232(N-6)+1432(N-6)) 

KR3(N-1)=V332(N-1)+Z1*I332(N-1) 

KR4(N-6)=V432(N-6)+Z2*(2*1432(N-6)+1232(N-6)) 

KR5(N-1)=V532(N-1)+Z1*I532(K-1) 

KR0(N-14)=V632(N-14)+X3*V632(N-15)+X4*V632(N-16) 

+ +X6*V632(N-18)+Z0*l632(N-14)+zn*Xl*l632(N-15) 

+Z0*X2*I632(N-16)-X3*KR0(N-15)-X4*KR0(N-16) 

+ -X5*KR0(N-17)-X6*KR0(N-18)+X5*V632(N-17) 

TS1(N-1)=V134(N-1)+Z1*I134(N-1) 

TS2(N-6)=V234(N-6)+Z2*(2*l234(N-6)+1434(N-6)) 

TS3(N-1)=V334(N-1)+Z1*I334(N-1) 

TS4(N-6)=V434(N-6)+Z2*(2*l434(N-6)+l234(N-6)) 

TS5(N-1)=V534(N-1)+Z1*I534(N-1) 

TS0(N-14)=V634(N-14)+X3*V634(N-15)+X4*V634(N-16) 

+ +X5*V634(N-17)+X6*V634(N-18)+Z0*I634(N-14) 

+ +Z0*X1*I634(N-15)+Z0*X2*I634(N-16)-X3*TS0(N-15) 

+ -X4*TS0(N-16)-X5*TS0(N-17)-X6*TS0(N-18) 

TR1(N-1)=V41(N-1)+Z1*I41(N-1) 

TR2(N-6)=V42(N-6)+Z2*(2*142(N-6)+I44(N-6)) 

TR3(N-1)=V43(N-1)+Z1*I43(N-1) 

TR4(N-6)=V44(N-6)+Z2*(2*I44(N-6)+I42(N-6)) 

TR5(N-1)=V45(N-1)+Z1*I45(N-1) 

TR0(N-14)=V46(N-14)+X3*V46(N-15)+X4*V46(N-16)"X5*V46(N-17) 

+ +X6*V46(N-18)+Z0*I46(N-14)+Z0*X1*I46(N-15) 

+ +Z0*X2*I46(N-16)-X3*TR0(N-15)-X4*TR0(N-16) 

+ -X5*TR0(N-17)-X6*TR0(N-18) 

Bl(N-l)=Vl6(N-l)+X3*Vl6(N-2)+X4*V16(N-3)+X5*V16(N-4) 

+ +X6*Vl6(N-5)-Z0*l612(N-l)-Z0*Xl*l612(N-2)-Z0*X2*l612(N-3) 
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+ -X3*Bl(K-2)-X4*Bl(N-3)-X5*Bl(N-4)-X6*Bl(N-5) 

B21(N-l)^V621(N-l)+X3*V62l(N-2)+X4*V621(N-3)+X5*V62l(N-4) 

^ +X6*VG21(N-5)-Z0*l621(N-l)-Z0*Xl*l621(N-2)-Z0*X2*I621(N-3) 

+ -X3*B21(N-2)-X4*B21(N-3)-X5*B21(N-4)-X6*B21(N-5) 

B23(N-l)=V623(N-l)+X3*V623(N-2)+X4*V623(N-3)+X5*V623(N-4) 

+ +X6*V623(N-5)-ZO*l623(N-l)-ZO*Xl*I623(N-2)-ZO*X2*l623(N-3) 

+ -X3*B23(N-2)-X4*B23(N-3)-X5*B23(N-4)-X6*B23(N-5) 

B32(N-l)=V632(N-l)+X3*V632(N-2)+X4*V632(N-3)+X5*V632(N-4) 

+ +X6*V632(N-5)-Z0*l632(N-l)-Z0*Xl*l632(N-2)-Z0*X2*l632(N-3) 

+ -X3*B32(N-2)-X4*B32(N-3)-X5*B32(N-4)-X6*B32(N-5) 

B34(N-l)=V634(N-l)+X3*V634(N-2)+X4*V634(N-3)+X5*V634(N-4) 

+ +X6*V634(N-5)-Z0*I634(N-l)-Z0*Xl*l634(N-2)-Z0*X2*l634(N-3) 

-X3*B34(N-2)-X4*B34(N-3)-X5*B34(N-4)-X6*B34(N-5) 

B4(N-l)=V46(N-l)+X3*V46(N-2)+X4*V46(N-3)+X5*V46(N-4) 

+X6*V46(N-5)-Z0*l46(N-l)-Z0*Xl*l46(N-2)-Z0*X2*l46(N-3) 

-X3*B4(N-2)-X4*B4(N-3)-X5*B4(N-4)-X6*B4(N-5) 

VlP(N-14)=-X3*Vl6(N-l)-X4*Vl6(N-2)-X5*Vl6(N-3) 

-X6*Vl6(N-4)+Z0*Xl*l612(N-l)+Z0*X2*l6l2(N-2) 

+(X3-Y4)*Bl(N-l)+(X4-Y5)*Bl(N-2)+(X5-Y6)*Bl(N-3) 

+(X6-Y7)*Bl(N-4)+Yl*FR0(N-14)+Y2*FR0(N-15)+Y3*FR0(N-16) 

V2lP(N-14)=-X3*V621(N-l)-X4*V621(N-2)-X5*V621(N-3) 

+ -X6*V621(N-4)+Z0*Xl*l621(N-l)+Z0*X2*l621(N-2) 

+ +(X3-Y4)*B21(N-l)+(X4-Y5)*B21(N-2)+(X5-Y6)*B21(N-3) 

+ +(X6-Y7)*B21(N-4)+Yl*FS0(N-14)+Y2*FS0(N-15) 

+ +Y3*FS0(N-16) 

V23P(N-14)=-X3*V623(N-l)-X4*V623(N-2)-X5*V623(N-3) 

+ -X6*V623(N-4)+Z0*Xl*l623(N-l)+Z0*X2*l623(N-2) 

+ +(X3-Y4)*B23(N-l)+(X4-Y5)*B23(N-2)+(X5-Y6)*B23(N-3) 

^ +(X6-Y7)*B23(N-4)+Yl*KR0(N-14)+Y2*KR0(N-15) 

+ +Y3*KR0(N-16) 

V32P(N-14)=-X3*V632(N-l)-X4*V632(N-2)-X5*V632(N-3) 

-X6*V632(N-4)+Z0*Xl*l632(N-l)+Z0*X2*I632(N-2) 

- ^(X3-Y4)*B32(N-l)+(X4-Y5)*B32(N-2)+(X5-Y6)*B32(N-3) 

+ +(X6-Y7)*B32(N-4)+Yl*KS0(N-14)+Y2*KS0(N-15) 

+ +Y3*KS0(N-16) 

V34P(N-14)=-X3*V634(N-l)-X4*V634(N-2)-X5*V634(N-3) 

+ -X6*V634(N-4)+Z0*Xl*l634(N-l)+Z0*X2*l634(N-2) 
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+ +(X3-Y4)*B34(N-l)+(X4-Y5)*B34(N-2)+(X5-Y6)*B34(N-3) 

+ +(X6-Y7)*B34(N-4)+Yl*TR0(N-14)-Y2*TR0(N-15) 

+ +Y3*TR0(N-16) 

V4P(N-14)=-X3*V46(N-l)-X4*V46(N-2)-X5*V46(N-3) 

+ -X6*V46(N-4)+Z0*Xl*l46(N-l)+Z0*X2*l46(N-2) 

+ +(X3-Y4)*B4(N-l)+(X4-Y5)*B4(N-2)+(X5-Y6)*B4(N-3) 

+ +(X6-Y7)*B4(N-4)+Yl*TS0(N-14)+Y2*TS0(N-15)+Y3*TS0(N-16) 

C START THE CALCULATION OF VOLTAGES AND CURRENTS 

C FOR EACH SECTION OF THE CABLE 

c 
C FIRST SECTION 

C 

c 

V1AC(N)=V1(N) 

V1BC(N)=0 

V1CC(N)=0 

VP(1,1)=FR1(N-1) 

VP(2,l)=FR2(N-6) 

VP(3,1)=FR3(N-1) 

VP(4,l)=FR4(N-6) 

VP(5,1)=FR5(N-1) 

VP(6,1)=V1P(N-14) 

CALL MAT(4,6,1,ZVE,VP,I1P) 

VE1(N)=(-Y211*V1AC(N)-Y212*V1BC(N)-Y213*V1CC(N) 

+ +I1P(4,1))/Y44 

C WRITE(6,*) VEl(N) 

V11(N)=V1AC(N)-VE1(N) 

V12(N)=0.0 

V13(N)=V1BC(N)-VE1(N) 

V14(N)=0.0 

V15(N)=V1CC(N)-VE1(N) 

V16(N)=3*VE1(N) 

V(1,1)=V11(N) 

V(2,1)=V12(N) 

V(3,1)=V13(N) 

V(4,1)=V14(N) 
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V(5,1)=V15(N) 

V(G,1)^V16(N) 

CALL SUB(M,P,V,VP,ZV) 

CALL MAT(M,M,P,ZLI,ZV,I12) 

1112(N)=112(1,1) 

1212(N)=112(2,1) 

1312(N)=112(3,1) 

1412(N)=112(4,1) 

I512(N)=I12(5,1) 

1612(N)=112(6,1) 

CALL MAT(M,M,P,G2,I12,I12C) 

VP21(1,1)=FS1(N-1) 

VP21(2,l)=FS2(N-6) 

VP21(3,1)=FS3(N-1) 

VP21(4,l)=FS4(N-6) 

VP21(5,1)=FS5(N-1) 

VP21(6,1)=V21P(N-14) 

VP23(1,1)=KR1(N-1) 

VP23(2,l)=KR2(N-6) 

VP23(3,1)=KR3(N-1) 

VP23(4,l)=KR4(N-6) 

VP23(5,1)=KR5(N-1) 

VP23(6,1)=V23P(N-14) 

IGX(1,1)=0 

IGX(2,1)=IL1(N-1) 

IGX(3,1)=0 

IGX(4,1)=IL2(N-1) 

IGX(5,1)=0 

IGX(6,1)=IL3(N-1) 

DO 2 1=1,6 

DO 2 J=l,6 

LT(I,J)=0 

CNT(I,J)=0.0 

LT(2,2)=DELT/L1+CAP/DELT+1.0/R 

LT(4,4)=DELT/L2+CAP/DELT+1.0/R 

LT(6,6)=DELT/L3+CAP/DELT+1.0/R 

CNT(2,2)=CAP/DELT 
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CNT(4,4)=CAP/DELT 

CNT(6,G)=CAP/DELT 

CALL MAT(6,6,6,ZTW,LT,ZTWL) 

CALL MAT(6,6,6,ZTWL,W,ZTWLW) 

CALL ADD(6,6,SU,ZTWLW,H) 

CALL F01AAF(H,6,6,HI,6,WRSPCE,IFAIL) 

CALL MAT(6,6,6,HI,ZTZLPI,Q) 

CALL MAT(6,6,6,C11,G,C11Q) 

CALL MAT(6,6,6,C11Q,G1,X) 

CALL MAT(6,6,6,C11,HI,C11HI) 

CALL MAT(6,6,6,C11HI,T1C1,Y) 

CALL MAT(6,6,1,CNT,V21CX,CVX) 

CALL SUB(6,1,IGX,CVX,VIX) 

CALL MAT(6,6,1,ZTW,VIX,ZTIG) 

CALL MAT(6,6,1,C11HI,ZTIG,ZZ) 

CALL MAT(M,M,P,X,VP21,XVP21) 

CALL MAT(M,M,P,Y,VP23,YVP23) 

CALL ADD(M,P,XVP21,YVP23,VVV) 

CALL SUB(6,1,VVV,ZZ,V21) 

V121(N)=V21(1,1) 

V221(N)=V21(2,1) 

V321(N)=V21(3,1) 

V421(N)=V21(4,1) 

V521(N)=V21(5,1) 

V621(N)=V21(6,1) 

CALL MAT(M,M,P,G1,V21,V21C) 

IL1(N)=(DELT/L1)*V21C(2,1)+IL1(N-1) 

IL2(N)=(DELT/L2)*V21C(4,1)+IL2(N-1) 

IL3(N)=(DELT/L3)*V21C(6,1)+IL3(N-1) 

IR1(N)=V21C(2,1)/R 

IR2(N)=V21C(4,1)/R 

IR3(N)=V21V(6,1)/R 

IC1(N)=(CAP/DELT)*(V21C(2,1)-V21CX(2,1)) 

IC2(N)=(CAP/DELT)*(V21C(4,1)-V21CX(4,1)) 

IC3(N)=(CAP/DELT)*(V21C(6,1)-V21CX(6,1)) 

IA1(N)=IL1(N)+IR1(N)+IC1(N) 
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IA2(N)=IL2(N)+IR2(N)+IC2(N) 

IA3(N)=IL3(N)+IR3(N)+IC3(N) 

DET1=IL1(N)-IL1(N-1) 

IS1=ABS(IL1(N)+0.5*DET1) 

IF(ISl.GE.SAT) GO TO 21 

Ll=4.0E-5+0.01395*EXP(0.02144*181)/(EXP(0.02144*IS1)+1)**2 

GO TO 31 

21 Ll=4.0E-5 

31 DET2=IL2(N)-IL2(N-1) 

IS2=ABS(IL2(N)+0.5*DET2) 

IF(IS2.GE.SAT) GO TO 22 

L2=4.0E-5+0.01395*EXP(0.02144*152)/(EXP(0.02144*182)+l)**2 

GO TO 32 

22 L2=4.0E-5 

32 DET3=IL3(N)-IL3(N-1) 

IS3=AB8(IL3(N)+0.5*DET3) 

IF(IS3.GE.8AT) GO TO 23 

L3=4.OE-5+0.01395*EXP(0.02144*183)/(EXP(0.02144*183)+l)**2 

GO TO 998 

23 L3=4.0E-5 

C 

998 CALL SUB(M,P,V21,VP21,ZV21) 

CALL MAT(M,M,P,ZLI,ZV21,I21) 

1121(N)=121(1,1) 

1221(N)=121(2,1) 

I321(N)=I21(3,1) 

1421(N)=121(4,1) 

I521(N)=I21(5,1) 

1621(N)=121(6,1) 

CALL MAT(M,M,P,G2,I21,I21C) 

DO 51 1=1,6 

51 V21CX(I,1)=V21C(I,1) 
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C SECTION TWO 

C 

V23C(1,1)=V21C(1,1) 

V23C(2,1)=V21C(6,1) 

V23C(3,1)=V21C(3,1) 

V23C(4,1)=V21C(2,1) 

V23C(5,1)=V21C(5,1) 

V23C(6,1)=V21C(4,1) 

C 

I23C(1,1)=-I21C(1,1) 

I23C(2,1)=-I21C(6,1)-IL3(N) 

I23C(3,1)=-I21C(3,1) 

I23C(4,1)=-I21C(2,1)-IL1(N) 

I23C(5,l)=-l2lC(5rl) 

I23C(6,1)=-I21C(4,1)-IL2(N) 

CALL MAT(M,M,P,C22,I23C,I23) 

1123(N)=123(1,1) 

1223(N)=123(2,1) 

1323(N)=123(3,1) 

1423(N)=123(4,1) 

1523(N)=123(5,1) 

1623(N)=123(6,1) 

CALL MAT(M,M,P,C11,V23C,V23) 

V123(N)=V23(1,1) 

V223(N)=V23(2,1) 

V323(N)-V23(3,1) 

V423(N)=V23(4,1) 

V523(N)=V23(5,1) 

V623(N)=V23(6,1) 

C 

VP32(1,1)=KS1(N-1) 

VP32(2,l)=KS2(N-6) 

VP32(3,1)=KS3(N-1) 

VP32(4,l)=KS4(N-6) 

VP32(5,1)=KS5(N-1) 

VP32(6,1)=V32P(N-14) 

VP34(1,1)=TR1(N-1) 
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VP34(2,l)=TR2(N-6) 

VP34(3,1)=TR3(N-1) 

VP34(4,l)=TR4(N-6) 

VP34(5,1)=TR5(N-1) 

VP34(6,1)=V34P(N-14) 

IGX2(1,1)=0 

IGX2(2,1)=IL4(N-1) 

IGX2(3,1)=0 

IGX2(4,1)=IL5(N-1) 

IGX2(5,l)-0 

IGX2(6,1)=IL6(N-1) 

DO 61 1=1,6 

DO 61 J=l,6 

LT2(I,J)=0 

61 CNT2(I,J)=0.0 

LT2(2,2)=DELT/L4+CAP/DELT+1.0/R 

LT2(4,4)=DELT/L5+CAP/DELT+1.0/R 

LT2(6,6)=DELT/L6+CAP/DELT+1.0/R 

CNT2(2,2)=CAP/DELT 

CNT2(4,4)=CAP/DELT 

CNT2(6,6)=CAP/DELT 

CALL MAT(6,6,6,ZTW,LT2,ZTWL2) 

CALL MAT(6,6,6,ZTWL2,W,ZTWM) 

CALL ADD(6,6,SU,ZTWW,H) 

CALL F01AAF(H,6,6,HI,6,WRSPCE,IFAIL) 

CALL MAT(6,6,6,HI,ZTZLPI,Q) 

CALL MAT(6,6,6,C11,Q,C11Q) 

CALL MAT(6,6,6,C11Q,G1,X) 

CALL MAT(6,6,6,C11,HI,C11HI) 

CALL MAT(6,6,6,C11HI,T1C1,Y) 

CALL MAT(6,6,1,CNT2,V32CX,CVX2) 

CALL SUB(6,1,IGX2,CVX2,VIX2) 

CALL MAT(6,6,1,ZTW,VIX2,ZTIG2) 

CALL MAT(6,6,1,C11HI,ZTIG2,ZZ2) 

CALL MAT(M,M,P,X,VP32,XVP32) 

CALL MAT(M,M,P,Y,VP34,YVP34) 

CALL ADD(M,P,XVP32,YVP34,VV2) 

CALL SUB(6,1,VV2,ZZ2,V32) 
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C 

V132(N)=V32(1,1) 

V232(N)=V32(2,1) 

V332(N)=V32(3,1) 

V432(N)=V32(4,1) 

V532(N)=V32(5,1) 

V632(N)=V32(6,1) 

CALL MAT(M,M,P,G1,V32,V32C) 

IL4(N)=(DELT/L4)*V32C(2,1)+IL4(N-1) 

IL5(N)=(DELT/L5)*V32C(4,1)+IL5(N-1) 

IL6(N)=(DELT/L6)*V32C(6,1)+IL6(N-1) 

IR4(N)=V32C(2,1)/R 

IR5(N)=V32C(4,1)/R 

IR6(N)=V32C(6,1)/R 

IC4(N)=(CAP/DELT)*(V32C(2,1)-V32CX(2,1)) 

IC5(N)=(CAP/DELT)*(V32C(4,1)-V32CX(4,1)) 

TC6(N)=(CAP/DELT)*(V32C(6,1)-V32CX(6,1)) 

IA4(N)=IL4(N)+IR4(N)+IC4(N) 

IA5(N)=IL5(N)+IR5(N)+IC5(N) 

IA6(N)=IL6(N)+IR6(N)+IC6(N) 

DET4=IL4(N)-IL4(N-1) 

IS4=ABS(IL4(N)+0.5*DET4) 

IF(IS4.GE.SAT) GOTO 25 

L4=4.0E-5+0.01395*EXP(0.02144*184)/(EXP(0.02144*134)+l)**2 

GOTO 35 

25 L4=4.0E-5 

35 DET5=IL5(N)-IL5(N-1) 

IS5=ABS(IL5(N)+0.5*DET5) 

IF(IS5.GE.SAT) GOTO 26 

L5=4.0E-5+0.01395*EXP(0.02144*155)/(EXP(0.02144*IS5)+1)**2 

GOTO 36 

26 L5=4.0E-5 

36 DET6=IL6(N)-IL6(N-1) 

IS6=ABS(IL6(N)+0.5*DET6) 

IF(IS6.GE.SAT) GOTO 27 

L6=4.0E-5+0.01395*EXP(0.02144*156)/(EXP(0.02144*156)+1)**2 

GOTO 102 

27 L6=4.OE-5 



130-

c 
102 CONTINUE 

CALL SUB(M,P,V32,VP32,ZV32) 

CALL MAT(M,M,P,ZLI,ZV32,I32) 

I132(N)=I32(1,1) 

1232(N)=132(2,1) 

1332(N)=132(3,1) 

1432(N)=132(4,1) 

1532(K)=132(5,1) 

1632(N)=132(6,1) 

CALL MAT(M,M,P,G2,I32,I32C) 

DO 81 1=1,6 

81 V32CX(I,1)=V32C(I,1) 

c 
c SECTION THREE -

C 

V34C(1,1)=V32C(1,1) 

V34C(2,1)=V32C(6,1) 

V34C(3,1)=V32C(3,1) 

V34C(4,1)=V32C(2,1) 

V34C(5,1)=V32C(5,1) 

V34C(6,1)=V32C(4,1) 

I34C(1,1)=-I32C(1,1) 

I34C(2,1)=-I32C(6,1)-IL6(N) 

I34C(3,1)=-I32C(3,1) 

I34C(4,1)=-I32C(2,1)-IL4(N) 

I34C(5,1)=-I32C(5,1) 

I34C(6,1)=-I32C(4,1)-IL5(N) 

CALL MAT(M,M,P,C11,V34C,V34) 

V134(N)=V34(1,1) 

V234(N)=V34(2,1) 

V334(N)=V34(3,1) 

V434(N)=V34(4,1) 

V534(N)=V34(5,1) 

V634(N)=V34(6,1) 

CALL MAT(M,M,P,C22,I34C,I34) 
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1134(N)=134(1,1) 

1234(N)=134(2,1) 

I334(N)=I34(3,1) 

1434(N)=134(4,1) 

1534(N)=134(5,1) 

I634(N)=134(6,1) 

C 

VP4(1,1)=TS1(N-1) 

VP4(2,l)=TS2(N-6) 

VP4(3,1)=TS3(N-1) 

VP4(4,l)=TS4(N-6) 

VP4(5,1)=TS5(N-1) 

VP4(6,1)=V4P(N-14) 

CALL MAT(4,6,1,ZVE,VP4,I4P) 

IS4P=I4P(4,1) 

DO 235 1=1,3 

IC4P(I,1)=I4P(I,1) 

235 SI4P(I,1)=IS4P*YY12(I,1) 

CALL SUB(3,1,SI4P,IC4P,P4I) 

CALL MAT(3,3,1,RRYI,P4I,V4C) 

V4C1(1,1)=V4C(1,1) 

V4C1(2,1)=0 

V4C1(3,1)=V4C(2,1) 

V4C1(4,1)=0 

V4C1(5,1)=V4C(3,1) 

V4Cl(6,l)=0 

CALL MAT(M,M,P,C11,V4C1,V4) 

V41(N)=V4(1,1) 

V42(N)=V4(2,1) 

V43(N)=V4(3,1) 

V44(N)=V4(4,1) 

V45(N)=V4(5,1) 

V46(N)=V4(6,1) 

CALL SUB(M,P,V4,VP4,ZV4) 

CALL MAT(M,M,P,ZLI,ZV4,14) 

141(N)=14(1,1) 

142(N)=14(2,1) 

143(N)=14(3,1) 
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I44(N)=I4(4,1) 

145(N)=14(5,1) 

146(N)=14(6,1) 

V4AC(N)=V4C(1,1) 

V4BC(N)=V4C(2,1) 

V4CC(N)=V4C(3,1) 

V4AS(N)=0 

VE4(N)=V4AS(N) 

WRITE(6,100) T,V21C(2,1) 

100 F0RMAT(E11.4,2X,E11.4) 

1000 CONTINUE 

C 

c **SHIFT THE STATES**-

C 

V11(-1)=V11(59) 

V13(-1)=V13(59) 

V15(-1)=V15(59) 

V121(-1)=V121(59) 

V321(-1)=V321(59) 

V521(-1)=V521(59) 

V123(-1)=V123(59) 

V323(-1)=V323(59) 

V523(-1)=V523(59) 

V132(-1)=V132(59) 

V332(-1)=V332(59) 

V532(-1)=V532(59) 

V134(-1)=V134(59) 

V334(-1)=V334(59) 

V534(-1)=V534(59) 

V41(-1)=V41(59) 

V43(-1)=V43(59) 

V45(-1)=V45(59) 

1112(-1)=1112(59) 

1312(-1)=1312(59) 

1512(-1)=1512(59) 

1121(-1)=1121(59) 

1321(-1)=1321(59) 

1521(-1)=1521(59) 
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1123(-1)=1123(59) 

1323(-1)^1323(59) 

1523(-1)^1523(59) 

I132(-1)=I132(59) 

I332(-l)=1332(59) 

I532(-1)=I532(59) 

I134(-l)=1134(59) 

1334(-1)=1334(59) 

1534(-1)=1534(59) 

141(-1)=141(59) 

143(-1)=143(59) 

145(-1)=145(59) 

IL1(-1)=IL1(59) 

IL2(-1)=IL2(59) 

IL3(-1)=IL3(59) 

IL4(-1)=IL4(59) 

IL5(-1)=IL5(59) 

IL6(-1)=IL6(59) 

DO 200 1=0,5 

V12(I-6)=Vl2(I+54) 

V14(I-6)=Vl4(I+54) 

V221(1-6)=V221(1+54) 

V421(1-6)=V421(1+54) 

V223(1-6)=V223(1+54) 

V423(1-6)=V423(1+54) 

V232(I-6)=V232(I+54) 

V432(I-6)=V432(I+54) 

V234(1-6)=V234(1+54) 

V434(I-6)=V434(I+54) 

V42(1-6)=V42(1+54) 

V44(I-6)=V44(I+54) 

1212(1-6)=1212(1+54) 

1412(1-6)=1412(1+54) 

1221(1-6)=1221(1+54) 

1421(1-6)=1421(1+54) 

1223(1-6)=1223(1+54) 

1423(1-6)=1423(1+54) 

1232(1-6)=1232(1+54) 
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1432(1-6)=1432(1454) 

1234(1-6)=1234(14 54) 

1434(1-6)=1434(1-54) 

142(1-6)=142(1+54) 

144(1-6)=144(1+54) 

200 CONTINUE 

DO 300 1=0,17 

V16(1-18)=V16(1+42) 

V621(1-18)=V621(1+42) 

V623(1-18)=V623(1+42) 

V632(1-18)=V632(1+42) 

V634(1-18)=V634(1+42) 

V46(1-18)=V46(1+42) 

300 CONTINUE 

DO 400 1=0,15 

1612(1-16)=1612(1+44) 

1621(1-16)=1621(1+44) 

1623(1-16)=1623(1+44) 

1632(1-16)=1632(1+44) 

1634(1-16)=1634(1+44) 

146(1-16)=146(1+44) 

400 CONTINUE 

DO 500 1=0,3 

FSO(1-18)=FSO(1+42) 

FRO(1-18)=FRO(1+42) 

KSO(1-18)=KSO(1+42) 

KRO(1-18)=KRO(1+42) 

TSO(1-18)=TSO(1+42) 

TR0(I-18)=TR0(I+42) 

500 CONTINUE 

DO 600 1=0,3 

Bl(I-5)=Bl(I+55) 

B21(1-5)=B21(1+55) 

B23(1-5)=B23(1+55) 

B32(1-5)=B32(1+55) 

B34(I-5)=B34(I+55) 

B4(1-5)=B4(1+55) 

600 CONTINUE 
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C 

IF(K.EO.IO) THEN 

GOTO 2000 

ELSE 

K = K + 1 

GOTO 10000 

ENDIF 

2000 CONTINUE 

STOP 

END 

C 

C **SUBROUTINES**-

C 

C 

C THIS SUBROUTINE DOES THE PRODUCT 

C 

c 
SUBROUTINE MAT(M,N,P,A,B,SUM) 

INTEGER M,N,P 

DIMENSION A(M,N),B(N,P),SUM(M,P) 

DO 97 J=1,P 

DO 99 1=1,M 

S = 0.0 

DO 98 IJ=1,N 

S=S+A(I,IJ)*B(IJ,J) 

98 CONTINUE 

SUM(I,J)=S 

99 CONTINUE 

97 CONTINUE 

RETURN 

END 

C 

C 

C THIS SUBROUTINE DOES THE SUM [A]+[B] 

C 

c 
SUBROUTINE ADD(M,P,A,B,CUM) 

INTEGER I,J,MrP 



-136-

DIMENSION A(M,P),B(M,P),CrM(M,P) 

no 90 1=1,M 

DO 92 J=1,P 

C=A(I,J)+B(I,J) 

CUM(I,J)=C 

92 CONTINUE 

90 CONTINUE 

RETURN 

END 

C 

C 

C THIS SUBROUTINE DOES THE SUBTRACTION [A]-[B] 
C 

c 
SUBROUTINE SUB(M,P,A,B,CUM) 

INTEGER M,P,I,J 

DIMENSION A(M,P),B(M,P),CUM(M,P) 

DO 93 J=1,P 

DO 94 1=1,M 

C=A(I,J)-B(I,J) 

CUM(I,J)=C 

94 CONTINUE 

93 CONTINUE 

RETURN 

END 


