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The effect of Mach number on the growth of unstable disturbances in a boundary layer undergoing
a strong interaction with an impinging oblique shock wave is studied by direct numerical simulation
and linear stability theory �LST�. To reduce the number of independent parameters, test cases are
arranged so that both the interaction location Reynolds number �based on the distance from the plate
leading edge to the shock impingement location for a corresponding inviscid flow� and the
separation bubble length Reynolds number are held fixed. Small-amplitude disturbances are
introduced via both white-noise and harmonic forcing and, after verification that the disturbances are
convective in nature, linear growth rates are extracted from the simulations for comparison with
parallel flow LST and solutions of the parabolized stability equations �PSE�. At Mach 2.0, the
oblique modes are dominant and consistent results are obtained from simulation and theory. At
Mach 4.5 and Mach 6.85, the linear Navier-Stokes results show large reductions in disturbance
energy at the point where the shock impinges on the top of the separated shear layer. The most
unstable second mode has only weak growth over the bubble region, which instead shows
significant growth of streamwise structures. The two higher Mach number cases are not well
predicted by parallel flow LST, which gives frequencies and spanwise wavenumbers that are
significantly different from the simulations. The PSE approach leads to good qualitative predictions
of the dominant frequency and wavenumber at Mach 2.0 and 4.5, but suffers from reduced accuracy
in the region immediately after the shock impingement. Three-dimensional Navier-Stokes
simulations are used to demonstrate that at finite amplitudes the flow structures undergo a nonlinear
breakdown to turbulence. This breakdown is enhanced when the oblique-mode disturbances are
supplemented with unstable Mack modes. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2720831�

I. INTRODUCTION

Shock/boundary-layer interaction �SBLI� phenomena are
common occurrences in transonic, supersonic, and hyper-
sonic flows. They often result in boundary-layer separation,
which can result in reduced performance �e.g., in engine in-
lets�, increased drag �e.g., on airfoils and other aerodynamic
surfaces� and, especially in the hypersonic case, enhanced
surface heating. Consequently, these flow phenomena have
been investigated extensively, for a variety of geometric con-
figurations and over a broad range of Mach numbers and
Reynolds numbers. Several comprehensive reviews of the
work have been published �Adamson and Messiter,1 Delery,2

Dolling,3 Knight et al.4�.
Although SBLI occurs in various geometries, a simple

configuration that has often been studied and includes all of
the relevant physical features is that of an oblique shock
wave impinging on a flat plate over which a boundary layer
is developing. In principle, if the plate is wide enough, the
resultant flow field will be essentially two dimensional �2D�
in nature. Figure 1 gives a schematic of such a configuration.

The Mach number upstream of the interaction is denoted by
M1, and regions �1�, �2�, and �3� refer to the flow upstream of
the impinging shock after the initial shock and after the re-
flected shock, respectively. The impinging shock angle is de-
noted by �1 and the strength of the interaction is character-
ized by the overall pressure ratio p3 / p1, which is governed
by M1 and �1. As the shock wave impinges on the boundary
layer, the latter at first thickens due to the imposed adverse
pressure gradient. If the impinging shock is sufficiently
strong, the boundary layer will separate and then later reat-
tach, forming a closed separation bubble. The separation and
reattachment points are denoted by xs and xr in Fig. 1, and
the length of the bubble is defined as LB=xr−xs. During the
interaction, further compression and expansion waves are
created, caused by the deflection of the inviscid flow field
resulting from the boundary layer separation. The compres-
sion waves may merge to form additional shocks, typically
near the separation and reattachment regions.

Most previous studies in SBLI have been concerned with
fully developed turbulent boundary layers. One aspect of
SBLI that is receiving significant attention currently is the
influence of boundary-layer transition. Boundary-layer tran-
sition itself is a process that, despite extensive study over
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many years, is not yet fully understood. It is generally ac-
cepted that, at a sufficiently high Reynolds number, distur-
bances �either inherent in the flow or created by some exter-
nal means� become unstable and provoke transition from
laminar to turbulent flow in the boundary layer. However, in
addition to the Reynolds number, many other factors also
influence this process, including the level of acoustic free-
stream turbulence, wall roughness, wall temperature, and the
Mach number of the flow �see Saric et al.,5 Ma and Zhong6�.

Results from linear stability analysis �LSA� of compress-
ible flows are reported in detail in Mack7 for attached bound-
ary layers. At low Mach numbers ��0.3�, the Tollmien-
Schlichting �first mode� waves are the most unstable
disturbances beyond a critical Reynolds number. As the
Mach number increases, additional “Mack” modes �second
mode, third mode, etc.� of instability appear, and at high
Mach numbers these are the most unstable disturbances.
Flow stability results in SBLI at M1=4.8, focusing on the
second-mode instabilities, are reported in Pagella et al.8 for a
flat plate boundary layer and at M1=5.373 in Balakumar et
al.9 for a compression corner flow.

The parabolized stability equations �PSE; see Herbert,10

Hein et al.11� approach improves on the en method �Arnal
and Casalis,12 Stock13� by including nonparallel terms and
allowing for the streamwise evolution of disturbance shape
functions. The method is applicable to convectively unstable
flow but, although widely used for transition prediction on
wings, it does not appear to have been applied to SBLI until
now.

Direct numerical simulation �DNS� has been applied ex-
tensively to study transition in low-speed flows �e.g., Kleiser
and Zang14� and a few applications have been made to SBLI
flows. Pagella et al.8 created a 2D SBLI by impinging an
oblique shock wave on a flat plate boundary layer at a Mach
number of 4.8. In this work, the response of the initially
laminar boundary layer to artificially introduced small-
amplitude disturbances was investigated and the results com-
pared well with those of linear stability theory. This work
was later extended to the case of a 2D compression ramp
flow, also at Mach 4.8 �Pagella et al.15�, showing that, when
the impinging shock and the shock created by the compres-
sion ramp have the same strength, the characteristics of SBLI
were identical �validating the so-called free interaction con-
cept originated by Chapman et al.16�. This latter work also
demonstrated that the response to small-amplitude distur-
bances was practically identical. Compression corner flows
at M1=5.373 were also considered by Balakumar et al.,9 who

showed that the second-mode disturbances were not signifi-
cantly amplified over the separation bubble. In a later study
of the same compression corner flow, Zhao and Balakumar17

showed that a �0,2� mode arising from nonlinear interactions
led to an oblique type of breakdown. Nonlinear disturbances
and breakdown to turbulence in a flat plate boundary layer
with an impinging shock were considered by Teramoto18 us-
ing large-eddy simulation at Mach 2.0. At a high pressure
ratio �p3 / p1=1.91�, it was found that transition occurred
even at zero free-stream turbulence level. This indicates the
presence of absolute instability of the laminar base flow, al-
though the resolutions used were not sufficient to achieve
grid-independent results.

In the present study, we revisit the case of a shock wave
impinging on a flat plate with a 2D laminar base flow. Like
Pagella et al.,8 we initially examine the response of the lami-
nar boundary layer to artificially introduced small-amplitude
disturbances. On the other hand, we investigate the charac-
teristics of SBLI and the boundary layer response over a
range of upstream Mach numbers �M1=2.0, 4.5, and 6.85�,
but keeping the impingement location Reynolds number con-
stant. Because of the potentially large number of parameters
that could influence the flow fields simulated, we examine
the case of adiabatic flows with, additionally, a fixed Rey-
nolds number based on the separation bubble length �i.e.,
ReLB

�. This, we feel, is the most logical procedure to isolate
the effects of Mach number changes. Three-dimensional
�3D� simulations use either white-noise forcing, such that the
unstable modes could emerge naturally, or harmonic forcing
at fixed frequencies and spanwise wavenumbers derived
from LSA.

The paper includes a description of the overall method-
ology and the numerical techniques employed in this study.
After some code validation cases are briefly described, the
results of 2D simulations of the undisturbed SBLI flow field
are presented. A local linear stability analysis is used to iden-
tify the most unstable modes in terms of frequency and span-
wise wavenumber. From these we derive the appropriate
computational domains for the subsequent three-dimensional
simulations. The response of the boundary-layer disturbances
is, where appropriate, compared with the results of linear
stability theory, bearing in mind that the disturbances intro-
duced are sufficiently weak for a linear response to be ex-
pected. Where differences in the results are identified, these
are discussed in detail. The paper continues with a discussion
of the effects of the nonparallel flow and Mach number

FIG. 1. Schematic view of an oblique shock wave im-
pinging on a flat plate boundary layer.
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variation on the propensity of the separated boundary layer
to undergo transition as a result of SBLI. Finally, 3D Navier-
Stokes simulations using finite-amplitude disturbances are
described. These were carried out to demonstrate the feasi-
bility of the early-stage nonlinear breakdown and transition
onset over the separation bubble.

II. NUMERICAL METHOD AND VALIDATIONS

A. Governing equations and discretization

The dimensionless 3D Navier-Stokes equations that gov-
ern the unsteady, compressible flows in Cartesian coordinates
are written for density �, velocity components ui, pressure p,
and total energy E as

��
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where the viscous stress tensor is given in terms of the vis-
cosity � by

�ij = �� �uj

�xi
+

�ui

�xj
−

2

3
�ij

�uk

�xk
� . �4�

The temperature T is given by

T = ��� − 1�M1
2�E

�
−

1

2
uiui� . �5�

The ideal gas equation of state can be written as

p = �� − 1��E −
1

2
�uiui� =

1

�M1
2�T . �6�

The dimensionless parameters governing the flow are the
Reynolds number Re=�r

*ur
*Lr

* /�r
*, the upstream Mach num-

ber M1=ur
* /��R*Tr

* �where R* is the specific gas constant�,
the ratio of specific heats �=1.4, and the Prandtl number
Pr=�r

*cp
* /k*, which is set to 0.72. The variation of the dy-

namic viscosity with temperature is accounted for by Suth-
erland’s law ��=T3/2�1+c� / �T+c�, with c=110.4/288�.
These parameters apply to undissociated air. In these expres-
sions, the subscript “r” denotes a reference value and an
asterisk represents dimensional variables. Further reference
quantities will be discussed in Sec. IV.

This set of governing equations is solved using a stable
high-order scheme. An “entropy splitting” approach is used
to split the Euler terms into conservative and nonconserva-
tive parts. This method was originally proposed by Gerritsen
and Olsson19 and later applied by Yee et al.20 and Sandham
et al.21 All the spatial discretizations are carried out using a
fourth-order central-difference scheme, while the time inte-
gration uses a third-order Runge-Kutta method. A stable
boundary scheme of Carpenter et al.,22 along with a Laplac-

ian formulation of the viscous and heat conduction terms, is
used to prevent any odd-even decoupling associated with
central-difference schemes. An artificial compression method
variant of a standard total variation diminishing �TVD� fam-
ily is used to capture flow discontinuities such as shock
waves. The TVD filter is applied at the end of each full time
step in the form of an additional numerical flux term �F� as

Fj+1/2 = Rj+1/2	 j+1/2
 j+1/2, �7�

where R is the right eigenvector matrix of the flux Jacobian
from the Euler equations and 	 is defined by the TVD
scheme of Yee et al.,20 
 is the Ducros et al.23 sensor, which
is defined as


 =
�� · V�2

�� · V�2 + ��� � V��2 + �
, �8�

where V is the velocity vector and � is machine zero.

B. Inflow and boundary conditions

The velocity and temperature profiles of a compressible
laminar boundary layer are prescribed at the inlet plane of
the computational domain. They are generated by a self-
similar solution of the compressible laminar boundary-layer
equations with given Mach number and wall temperature
conditions �see White24�. With these inflow conditions super-
imposed, viscous interaction at the leading edge of the plate
can be neglected and the region �1� �see Fig. 1� is regarded as
being identical to the free-stream condition.

At the outlet plane, a characteristic-based boundary con-
dition is used in order to minimize any reflected waves. A
no-slip wall condition with temperature equal to the adia-
batic wall temperature at the inlet plane is applied at the
lower boundary. At the upper surface of the computational
domain, the free-stream quantities are applied in front of the
oblique impinging shock wave, while downstream of the im-
pinging shock location the upper boundary condition was
given, initially, by applying the exact shock jump properties
corresponding to a particular wedge angle. During the simu-
lation, an integral formulation of a characteristic boundary
condition is used at the upper surface. This formulation al-
lows the specification of a reference condition, which is then
superimposed with a time-accurate integration of all outgo-
ing characteristics, computed using information within the
computational domain. This allows the postshock conditions
to be specified while also allowing outgoing waves to pass
smoothly through the boundary without significant reflec-
tions.

C. Code validations

Sandham et al.25 have demonstrated the capability of the
above described numerical method for flows containing
shock waves and some preliminary 2D results of the present
oblique SBLI flow have been presented in Krishnan et al.26

The code has been developed specifically to investigate
transitional/turbulent boundary-layer phenomena by direct
numerical simulation �DNS�. For 2D simulations, the solu-
tion is advanced in time until there are negligible �less than
1%� changes in the flow properties of primary interest, such
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as the separation bubble length and the skin friction coeffi-
cient. When the solution has converged the maximum re-
sidual amplitude is well below those of the forcing perturba-
tion. For 3D simulations, disturbances are added to the wall
boundary condition upstream of the separation location and
the simulation is then continued in a time-accurate manner.
Two validation tests were conducted, one for a steady 2D
shock impingement at M1=2.0 and the other for the growth
of small-amplitude disturbances in a flat plate supersonic
boundary layer at M1=1.6 without the shock impingement.

The first test case considers the experimental flow con-
ditions of Hakkinen et al.,27 which were simulated numeri-
cally by Katzer28 and Wasistho,29 respectively, providing a
2D SBLI benchmark for the simulations presented in this
paper. The simulations have supersonic inflow at M1=2.0
and Rex=2.96�105 based on the distance from the
boundary-layer origin to the shock impingement location in
the absence of a boundary layer, which is equivalent to
Re�1

* =950 based on the inflow boundary-layer displacement
thickness �1

*. A baseline computational domain of 400�115
�based on �1

*� with a grid of 151�128 points is used, com-
parable to that adopted by Katzer28 and Wasistho.29 The
overall shock pressure ratio is p3 / p1=1.4, corresponding to a
shock angle of �1=32.58° at M1=2.0. Figure 2 gives a com-
parison of cf =2�w /�1U1

2, with �w=�w�du /dy�w and pw / p1

from the current simulation with previous computational and
experimental results. A close agreement with previous inves-
tigations is obtained. The experiments give a shorter bubble
and higher cf, which may be due to three-dimensional effects
in the experiment due to the presence of side walls, as dis-
cussed by Wasistho.29 The second test case involves the com-
putation of the growth of small-amplitude Tollmien-
Schlichting waves in a flat plate supersonic boundary layer at

M1=1.6 and Reynolds number Re�1
* =438.802 based on the

inflow boundary-layer displacement thickness. These condi-
tions are identical to those considered by Sandberg.30 A
small-amplitude disturbance �Adist=0.0002� was considered
in the simulation. The growth of disturbance amplitude rate
�ln�A /Adist�� and the distributions of the amplitude were ob-
tained by a Fourier analysis of the flow variables over two
disturbance periods. Figure 3 shows the growth and decay of
the maximum amplitude of streamwise disturbances u� at
various Rex locations. The present results compare well with
the linear Navier-Stokes solution of Sandberg.30 Figure 4
gives the comparisons of the disturbance amplitude of three
mode shapes �� ,u� ,T� at a location of Rex=700 plotted
against 
, which is defined as 
=yRe/Rex, where Re=105 is
the free-stream Reynolds number; these also agreed well
with linear Navier-Stokes solution. These two validations
imply that the present code is capable of accurately comput-
ing both the 2D separated SBLI flow and the evolution of
small-amplitude disturbances in supersonic boundary-layer
flows.

FIG. 2. Comparison of simulation results with experimental data and theory
at M1=2.0 and Re�1

* =950. �a� Distribution of the skin friction, cf. �b� Dis-
tribution of the wall pressure, pw / p1.

FIG. 3. Comparison of disturbance amplifications along the streamwise di-
rection: Solid line: present simulation �DNS�; symbol: Sandberg �Ref. 30�
�linear Navier-Stokes solution�.

FIG. 4. Comparison of the disturbance amplitude of three mode shapes
�� ,u� ,T� at a streamwise location of Rex=700. Solid line: present simula-
tion �DNS�; symbol: Sandberg �Ref. 30� �linear Navier-Stokes solution�.
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III. SELECTION OF PHYSICAL AND COMPUTATIONAL
PARAMETERS

The intention of the present study is to compare the
growth of small-amplitude disturbances in SBLI at different
Mach numbers. As far as possible, we wish to remove the
influence of other parameters, such as the Reynolds number
and the length of the interaction region. To achieve this we
consider a series of cases with a fixed interaction location
Reynolds number. This Reynolds number is based on the
distance from the origin of the boundary layer �i.e., the flat
plate leading edge� to the point where the shock wave would
impinge, in the absence of a boundary layer, denoted as Rexi.
Additionally, we impose a condition that the Reynolds num-
ber based on laminar bubble length is a constant �denoted as
ReLB

�. This condition is set since it is known that the transi-
tion length Reynolds number in low-speed separation
bubbles is approximately constant �Weibust et al.31�. Any
changes in disturbance growth factor can then be attributed
to Mach number effects rather than difference in length of
the separation zone. Additionally, we take the wall to be
adiabatic for all cases to remove the influence of heat transfer
to the wall surface.

It was shown in Krishnan et al.26 that it is possible to
collapse the results for 2D simulations with different bubble
lengths using an extended scaling law LB=4.4P / �1+0.1P�,
where P is a pressure parameter defined as P= �p3− pinc� / p1

and pinc from Katzer28 is the pressure in region �3� for incipi-
ent separation. Using this previous work as a guide, simula-
tion parameters were chosen as Rexi=3�105 and ReLB

=2
�105 for the three Mach numbers considered here.

Figure 5 shows the variation of ReLB
with pressure ratio

p3 / p1. This can be used to set the pressure ratio at each Mach
number to reach the chosen ReLB

. Table I shows parameters
for a series of 2D simulations designed to confirm that the
numerical resolution is suitable. In each case, the computa-
tional box starts at Rex=50 000 based on distance from the
boundary-layer origin. For convenience, we use a simulation
coordinate x measured from the inflow boundary, such that
Rex=U1x /�1+50 000. The reference length for the simula-
tions is the inflow displacement thickness ��1

*�. Computa-
tional box sizes are Lx and Ly in the streamwise and wall-
normal directions, respectively, and the number of grid
points in these directions are Nx and Ny, respectively.

Table II shows results from the simulations. The separa-
tion and reattachment points are denoted as xs and xr, respec-
tively; the bubble height hb is measured from the wall to the
maximum height of the separation streamline. The final col-
umn shows that the bubble length Reynolds numbers are
converged to within 1.1% of the target value of ReLB

=2
�105 for the fine grid cases 2, 4, and 6.

Figure 6 shows contours of density superimposed with
streamlines and compares the interaction pattern for different
Mach numbers. In each case, the incident oblique shock is
reflected as an expansion fan and directs the flow towards the
wall, leading to reattachment of the separating flow and the
creation of a closed separation bubble. The separation bubble
is found to be asymmetric, particularly at the higher Mach
numbers �M1=4.5 and M1=6.85�, and is displaced towards
the upstream side. In addition, the bubble aspect ratio �ratio
of bubble height to length� gets larger as the Mach number
increases, although the bubble size itself is reducing.

IV. LOCAL LINEAR STABILITY ANALYSIS
OF THE 2D BASE FLOWS

Small-amplitude disturbances in parallel compressible
shear flows are governed by the compressible Orr-
Sommerfeld equation, which assumes the form of distur-
bances as

� = �̂�y�exp�i��x + �z − �t�� , �9�

where �= �� ,u ,v ,w ,T�T, �, and � are wavenumbers in the
streamwise and spanwise directions, respectively, and � is a
frequency. The Orr-Sommerfeld system of equations may be
written in a compact form as

TABLE I. Computational domain and grids for 2D simulations at given Mach number �M1� and shock strength
�p3 / p1�, corresponding to ReLB

	2�105.

Case M1 Re�1
* �Lx ,Ly� /�1

* �Nx ,Ny� �1 p3 / p1 Tw

1 2.0 732.63 �680, 30� �385, 129� 33.075° 1.480 1.68

2 2.0 732.63 �680, 30� �513, 193� 33.075° 1.480 1.68

3 4.5 1899.70 �260, 15.118� �257, 129� 16.200° 2.667 4.40

4 4.5 1899.70 �260, 15.118� �385, 193� 16.200° 2.667 4.40

5 6.85 3455.00 �150, 15.125� �257, 129� 11.800° 4.121 8.83

6 6.85 3455.00 �150, 15.125� �385, 193� 11.800° 4.121 8.83

FIG. 5. Influence of Mach number M1 and shock pressure ratio p3 / p1 on the
separation bubble length.
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L�̂ = �K�̂ , �10�

where the matrix L depends on the base flow ��̄ , ū ,0 ,0 , T̄�,
and the wavenumbers � and �. The matrix K only depends
on the base flow. A temporal stability problem is defined by
fixing � and � and finding � from the eigenvalues of K−1L.
A spatial stability problem is defined by fixing � and � and
iterating on � until Eq. �10� is satisfied.

In compressible flows, the instability is classified as in-
flectional if a generalized inflection point

d

dy
��

dū

dy
� = 0 �11�

is present. For the shock impingement case at M1=2.0, M1

=4.5, and M1=6.85, Fig. 7 shows the variation of the y lo-
cation of the generalized inflection point, denoted as yi, nor-
malized with the maximum value �yi,max, given in the figure
caption� in the separation bubbles and plotted against Rex. As
previously noted, the location of the maximum bubble height
�the apex of the bubble� moves forwards as M1 increases,
while the inflection point becomes closer to the wall. The
latter is consistent with the reduction in bubble height indi-
cated in Table II. Near the apex of the bubble, the inflection
points follow an approximately linear variation with stream-
wise distance x, increasing over the front and decreasing
over the rear of the bubble. Curvatures of these lines may be
measured by a parameter C given by

C =
UR

�dū/dy�i

d2yi

dx2 , �12�

where UR is a reference velocity, here taken as the inflow
free-stream velocity. The parameter C is effectively the vor-
ticity thickness of the shear layer divided by the radius of
curvature of the yi�x� curve. Typical values range from C
	0.004 ahead of the bubble at M1=2.0 to C	0.015 at M1

=6.85. Curvatures at and after reattachment are smaller.
Compared to the effect of curvature on mixing layers seen by
Zhuang32 �for example, a variation of 10% in growth rate for
equivalent values of C	0.05�, the curvatures seen here ap-
pear to be small. Only at the apex of the bubble, where
curvatures become O�1�, does the curvature appear to be

significant. Note that the sign of the curvature is destabiliz-
ing near the separation point and near reattachment, but sta-
bilizing at the apex of the bubble.

To show the linear stability characteristics, we consider a
location halfway between the separation point and the apex
of the bubble. Since the shear layer thickness varies rela-
tively slowly with x, these locations are representative of the
mean profiles found throughout the bubble region. Stability
diagrams from viscous temporal stability analysis are shown
in Figs. 8�a�–8�c� for the three Mach numbers, with contours
of the imaginary part of the growth rate �i as a function of
streamwise wavenumber � and spanwise wavenumber �. At
M1=2.0 there is a single peak, located near �� ,��
= �0.13,0.18�; i.e., the most unstable mode is an oblique first
mode. At this peak, the phase speed is cph=�r /�=0.54 and
the wave angle is �=tanh−1�� /��=53°. A simple estimate of
a density weighted convection velocity �Papamoschou and
Roshko33� gives Uc=�Tw / �1+�Tw�=0.56, in good agree-
ment with the disturbance phase speed, while the simple for-
mula of Sandham and Reynolds34 for plane mixing layers
�Mc cos �=0.6� leads to a wave angle estimate of �=46°
�with Mc= �Ue−Uc� /ae=0.89�, a reasonable estimate of the
angle of the most unstable mode.

At M1=4.5 �Fig. 8�b��, the oblique first mode of insta-
bility has a peak at �� ,��= �0.14,0.37� �corresponding to a
wave angle of �=68°�. This mode still exists at M1=6.85,
peaking at �� ,��= �0.15,0.60� with a wave angle of �=76°.
The simple estimations for oblique modes give Uc=0.68
�compared to cph=0.72� at M1=4.5 and Uc=0.75 �compared
to cph=0.86� at M1=6.85. The wave angles are estimated as
65° at M1=4.5 and 69° at M1=6.85 �Fig. 8�c��. These simple
estimations thus remain useful for the oblique mode up to the
highest Mach numbers studied.

At M1=4.5 and M1=6.85, the stability diagrams include
additional Mack modes �second mode, third mode, etc.� of
instability. Previous examples for shock-induced separation
bubbles were shown in Pagella et al.9,16 at M1=4.8; the
present results are consistent with those findings. At M1

=4.5 the most unstable mode is the second mode, with a
growth rate of �i=0.026 at �� ,��= �0.41,0.0� and a phase
speed of cph=0.82. The Mack modes are most unstable in 2D
and propagate with supersonic speed relative to the wall. A
weaker third mode can be seen towards the right of the plot
at �� ,��= �0.97,0.0�. At M1=6.85 �see Fig. 8�c��, the second

TABLE II. Grid convergence study for 2D simulations illustrating the separation bubble length �xs ,xr�, the
location of the bubble apex and the bubble length Reynolds number ReLB

.

Case M1 ximp xs xr �hb ,xb� ReLB

1 2.0 341.24 192.94 460.44 �8.78, 326.64� 195 978

2 2.0 341.24 191.98 463.17 �8.70, 327.04� 198 681

3 4.5 131.76 64.97 168.72 �4.57, 115.73� 197 094

4 4.5 131.76 64.83 169.30 �4.60, 116.08� 198 462

5 6.85 72.40 33.31 91.38 �2.92, 59.58� 200 678

6 6.85 72.40 33.33 91.68 �2.95, 59.84� 202 268
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and third modes have comparable maximum growth rates. A
much weaker fourth mode can be seen at the right-hand edge
of the plot. In contrast to the oblique modes, the locations of
the most unstable Mack modes vary along the length of the
bubble. This is due to the basic physical mechanism of the
Mack mode instability, which involves a resonance of acous-
tic waves located between the critical layer and the wall.

Anticipating that the local height of the bubble will be an
important parameter, we plot �yi against Rex in Fig. 9 for the
most unstable Mack modes �the second mode at M1=4.5 and
the second and third modes at M1=6.85�. The variation of
�yi along the bubble is only of the order ±10%, whereas yi

varies by a factor of roughly three �Fig. 7�. This means that
particular Mack modes are only unstable over short distances

FIG. 6. Density contours show the separation bubble length, shape and location with superimposed streamlines for different Mach numbers: M1=2.0 �top�;
M1=4.5 �middle�; M1=6.85 �bottom�.
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along the bubble length, with reduced overall growth rates.
This will be further quantified in Sec. VI.

V. SIMULATION OF 3D FLOWS WITH SMALL
AMPLITUDE DISTURBANCES

The linear stability results of the previous section were
used as a guide to fix the spanwise box size Lz such that the
most unstable modes are contained within the computational
domain. The dimensions Lx and Ly are the same as in the 2D
simulations detailed in Table I. The laminar base flow is
perturbed by injecting low momentum fluid with zero net
mass flow through the plate surface for which a vertical ve-
locity is specified as vinj�x , t�=A�, where A is the amplitude
and � is a random number �uniformly distributed on
�−0.5,0.5� and independently generated at each x, z, and t
within the forcing strip� giving white-noise forcing in space
�x and z� and time �t�. The injection starts at xst and ends at
xen and spans the whole width of the computational domain.
Table III shows computational parameters for two values of
A for each Mach number �cases 7–12�.

The amplitude A has been chosen such that the response
of boundary layer is still within the linear growth region.
Figure 10 shows root-mean-square �RMS� values for the
three velocity components for the two different amplitudes of
white-noise forcing given in Table III. In each case, the RMS
values �fluctuations are computed relative to the local
spanwise-averaged values to remove the influence of small
changes in the base flow� have been divided by A to scale the
amplitude out of the problem. Note that the amplitude of the
forcing perturbation for M1=4.5 and M1=6.85 is an order of
magnitude larger than that for M1=2, but collapse of the
lines �low A� with the symbols �high A� demonstrates the
linearity of results. The curves have a peak near the forcing
location of Rex	100 000. Downstream these disturbances
grow up to the apex of the bubble. For the two higher Mach
numbers in particular, there is a sharp drop in the RMS
streamwise velocity at the apex of the bubble �Rex

	�2.6–2.8��105�. This is followed by renewed growth over
the rear portion of the bubble and reduced growth rates after

the reattachment. Drops in disturbance energy at the shock
impingement location have also been seen in Teramoto.18

Several other important points can be made in the con-
text of Fig. 10. First, we note that all cases gave time-
invariant statistics; i.e., the flow is demonstrated to be con-
vectively unstable. This is important because the bubbles
contain significant amounts of reverse flow and it is believed
that bubbles with higher pressure ratio �e.g., for M1=2.0 and
p3 / p1=1.91; see Teramoto18� can sustain transition to turbu-

FIG. 7. Streamwise variation of the location of the generalized inflection
point, plotted as yi /yi,max �where yi,max=10.59, 6.34, and 4.25 for M1=2.0,
4.5, and 6.85, respectively� in the separation bubbles.

FIG. 8. Contours of temporal growth rate �i at �a� M1=2.0, �b� M1=4.5,
and �c� M1=6.85. Contours start from 0.002 and continue upwards with
steps of 0.002 in all cases. The dark color corresponds to higher values.
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lence without appearance of upstream turbulence. Second,
we note that the growth curves for different velocity compo-
nents show different streamwise variations. This indicates
that there are significant nonparallel effects present and that
the locally parallel flow assumption of the LSA described in
the previous section may not be justified.

Figure 11 shows isosurfaces of vertical vorticity �y,
which effectively illustrates the 3D flow structures. The M1

=2.0 results appear to be in good agreement with the most
unstable modes from the previous linear stability analysis.
The dominant spanwise mode corresponds to �=0.196,
which compares reasonably well with the most unstable ob-
lique mode from the LSA, which was �=0.18 �Fig. 8�a��.
Both the M1=4.5 and M1=6.85 cases �Figs. 8�b� and 8�c��
show predominately streamwise structures. Such streamwise
structures, for example on compression ramp experiments
�see Simeonides and Haase37�, are often attributed to a
Görtler mechanism based on streamwise curvature. How-
ever, we do not observe a strong correlation between the
disturbance growth rate and the streamwise curvature given
by Eq. �12�.

Figure 12 gives the RMS values of kinetic energy in
terms of an n-factor defined as n=ln�e�x� /e�xs�� with e�x�

=max��1
2ui�ui��x�� and ui�=ui− 
ui�, where 
ui� denotes the

spanwise averaging. The values at Rexs
=1.5�105 are taken

as reference data. At M1=2.0 the n-factor increases up to
values 6–7 during the separation and after the reattachment.
By contrast, at M1=4.5 and M1=6.85, the growth of
the n-factor is relatively small and finally reaches a value
around 2.

The preceding simulations have demonstrated that un-
stable modes emerge naturally from the white-noise forcing,
with characteristic flow structures for all Mach numbers. For
comparison with linear stability theory, it is helpful to run
additional calculations with fixed frequency and spanwise
wavenumber combinations, where a vertical wall velocity is
specified as vinj�z , t�=A sin��t�cos��z� over the disturbance
strip. These forcing parameters were determined with refer-
ence to the earlier white-noise simulations and associated
stability calculations, which are reported in the next section.
Four additional simulations �cases 13–16 in Table III� are
considered. In each case only one spanwise wavelength is
used �in addition, the amplitude is reduced to �10−6 for
M1=2.0 simulations to retain linear growth of the distur-
bances�. Two simulations use the same grid resolution as
those of cases 7–12, while the remaining two include 50%
more grid points in all three directions so that any grid de-
pendency of the results can be addressed.

Figure 13 gives a comparison of the RMS kinetic energy
variations along the streamwise direction for these simula-
tions. Qualitatively, the results are similar to the earlier simu-
lations, indicating that the most unstable modes can emerge
rapidly from white-noise forcing. The grid refinement study
shows that sufficient grid points have been used. In particu-
lar, it should be noted that the large drop in disturbance am-
plitude at the location where the shock impinges on the top
of the separation bubble at M1=4.5 is not sensitive to the
grid. Figure 14 shows isosurfaces of vertical vorticity �y,
illustrating the 3D flow structures. The oblique mode with
�� ,��= �0.056,0.196� simulated at M1=2.0 produces a criss-
cross pattern, consistent with the superposition of two equal
and opposite oblique instability waves. At M1=4.5, oblique
mode forcing with �� ,��= �0.014,0.95� shows predomi-
nately longitudinal streamwise structures, as seen in the
white-noise-forced cases. This confirms that traveling insta-

TABLE III. Computational domain and grids for 3D simulations with small-amplitude disturbances of white-
noise forcing �cases 7–12� and oblique mode forcing �cases 13–16�.

Case M1 �Lx ,Ly ,Lz� /�1
* �Nx ,Ny ,Nz� A �xst ,xen�

7 2.0 �680, 30, 64� �513, 129, 65� 0.001 �51.86, 59.64�
8 2.0 �680, 30, 64� �513, 129, 65� 0.002 �51.86, 59.64�
9 4.5 �260, 15.118, 32� �257, 129, 65� 0.01 �20, 23�
10 4.5 �260, 15.118, 32� �257, 129, 65� 0.02 �20, 23�
11 6.85 �150, 15.125, 32� �257, 129, 65� 0.01 �11, 12.65�
12 6.85 �150, 15.125, 32� �257, 129, 65� 0.02 �11, 12.65�
13 2.0 �680, 30, 32� �513, 129, 33� 0.000 001 �51.86, 59.64�
14 2.0 �680, 30, 32� �769, 193, 49� 0.000 001 �51.86, 59.64�
15 4.5 �260, 15.118, 6.6� �257, 129, 13� 0.001 �20, 23�
16 4.5 �260, 15.118, 6.6� �385, 193, 19� 0.001 �20, 23�

FIG. 9. Streamwise variation of the quantity �yi for the most important
Mack modes �second and third modes� at M1=4.5 and M1=6.85.
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bility waves at low frequency are capable of producing the
streamwise structures seen in the earlier white-noise forcing
simulation.

VI. GROWTH „n-FACTOR… PREDICTIONS
AND DISCUSSION OF NONPARALLEL EFFECTS

Linear stability predictions of disturbance growth are ob-
tained via the n-factor calculated as

FIG. 10. Normalized turbulence intensity from simulations with two differ-
ent amplitudes of white-noise disturbances, showing the linear growth of the
disturbances. �a� M1=2.0; �b� M1=4.5; �c� M1=6.85.

FIG. 11. Isosurfaces of vertical vorticity �y show the near-wall streamwise
structures at three Mach numbers �M1=2.0, 4.5, and 6.85�. Dark color: �y

=−10−5; light color: �y = +10−5.

FIG. 12. Simulated growth n-factors measured by the RMS kinetic energy
for three Mach numbers from small amplitude disturbances of white-noise
forcing.
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n = − 

xs

x

�idx , �13�

where xs is the separation location, preferred here to the
lower branch, to allow comparisons with the simulations of
the previous section. Spatial stability theory is carried out to
determine � for combinations of �� ,��. The combinations
that lead to the greatest n are deemed the most dangerous
disturbances.

Figure 15 shows n-factor predictions based on stability

theory. For consistency with the earlier DNS results, we have
limited the possible values of � to those that are supported
on the periodic computational domains employed in the pre-
vious section. At M1=2.0, �� ,��= �0.056,0.196� gives the
highest overall n-factor for inviscid stability theory. The ef-
fect of viscosity is shown by the second curve plotted for
M1=2.0 on Fig. 15, with growth rates and n-factors reduced
by around 10%. Even with the viscous effects, the overall
growth rates are still above the linear Navier-Stokes compu-
tations of the previous section �cf. Fig. 12�; quantitative com-
parisons will be made after we have considered nonparallel
effects. Figure 15 also shows the growth rates for the most
unstable oblique modes at M1=4.5 and M1=6.85. The most
dangerous modes are oblique modes �� ,��= �0.245,0.58� at
M1=4.5 and �� ,��= �0.127,0.48� at M1=6.85, respectively.
Overall growth rates lead to n-factors of less than 2, and are
even lower when viscous effects are included.

The amplification of the second mode is strongly depen-
dent on frequency and the most unstable frequency varies as
the local bubble height varies. This leads to low overall
growth factors of the second mode along separation bubbles,

FIG. 13. Simulated RMS kinetic energy �normalized with amplitude� for
M1=2.0 and M1=4.5 from small-amplitude disturbances of oblique mode
forcing.

FIG. 14. Isosurfaces of vertical vorticity �y show the near-wall streamwise
structures from oblique-mode forcing DNS: �y = ±10−5 for M1=2.0 and
�y = ±10−3 for M1=4.5; dark color for negative value and light color for
positive value.

FIG. 15. Growth n-factors illustrating the effects of Mach number and
viscosity.

FIG. 16. Growth n-factors for the Mack modes ��=0.0� of different fre-
quencies at M1=4.5. Note the low overall growth factors, despite the high
localized growth rates.
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as was seen in the study of compression corner flow by Bala-
kumar et al.9 Figure 16 shows the growth of the n-factors for
the second mode at frequencies �=0.3 and �=0.4 for M1

=4.5. The high frequency case is most unstable at locations
approximately halfway between the separation point �Rex

	2.0�105� and the bubble apex and halfway between the
bubble apex and reattachment �Rex	3.3�105�. The n-factor
plot shows high growth rates in these regions, with a plateau
where this particular frequency is close to neutral; i.e., near
the apex of the bubble. The lower frequency case shows
most growth towards the center of the bubble. In both cases
the overall growth n-factors are very small �corresponding to
only a factor of 10 growth in amplitude� even though the
second modes are locally the most unstable modes.

Nonparallel effects are important in the current problem
and simulations have therefore been made using the parabo-
lized stability equations �see Herbert,10 Hein et al.11�. The
equation set in this case is given by

M
d�̂

dx
= ��K − L − L���̂ . �14�

The L and K matrices are the same as in Eq. �10�. The
matrix M multiplies streamwise derivatives of the stability
variables �̂, while L� contains nonparallel terms. The system
is derived by neglecting terms of order Re−2 and assuming
that v̄ is O�Re−1�. The latter assumption is not strictly satis-
fied here since v fluctuations �v�� are about a tenth of the
free-stream velocity, but the inclusion of higher order non-
parallel terms did not significantly change the results. A start-
ing distribution for �̂ at some prescribed x is given from
parallel flow stability theory and the solution is then marched
downstream. At each step the wavenumber is adjusted to
maintain the norm


 ûi
†�ûi

�x
= 0, �15�

where “†” denotes a complex conjugate. Growth factors are
computed using integrated kinetic energy, including the
growth contained in � as well as the growth contained in ûi.
In the current applications, the smallest stable streamwise
step size is taken to minimize truncation errors. Improved
results were obtained when we neglected the streamwise
pressure gradient, as suggested in Herbert.10 However, the
PSE calculations discussed here remain sensitive to the nu-
merical scheme; this is believed to be because the separation
bubbles are close to the boundary of absolute instability,
where the PSE becomes invalid. These effects will become
more severe with increasing Mach number, thus we consider
the effectiveness of the PSE only at the two lower Mach
numbers M1=2.0 and M1=4.5.

Figure 17 compares the results of the DNS with the PSE
at M1=2.0. Note that the disturbance growth predicted by the
DNS with harmonic forcing is slightly larger than that pre-
dicted with white-noise forcing �Fig. 12�, as expected. It can
be seen that the PSE accounts for the spatial development of
the base flow but leads to reduced growth rates compared to
the DNS. The discrepancy may be due to the fact that trun-
cation errors can be significant in PSE, but step sizes cannot

be reduced due to stability considerations. To provide a bet-
ter estimate we apply a Richardson extrapolation to PSE re-
sults obtained on two different grids �with sizes two and four
times the DNS grid spacing�, bringing an improved PSE es-
timate �shown with the dashed line on the graph� into much
closer agreement with the Navier-Stokes solution. It is im-
portant to note that the PSE approach is capable of predicting
the small dip in growth of the n-factor at Rex=2.85�105,
which results from the reduction in the streamwise RMS at
that location �see Fig. 10�.

The reduction of disturbance energy close to the shock
impingement at the apex of the bubble becomes much more
pronounced at the higher Mach numbers. The linear en

method �Fig. 15� was incapable of predicting this. The PSE
at M1=4.5 for the most unstable frequencies of linear theory
led to damped disturbances, indicating a very strong effect of
the nonparallel terms. The parameters were varied until a
maximum overall growth rate was obtained for �=0.014 and
�=0.95. A comparison of the resulting PSE prediction with

FIG. 17. Growth n-factors for the most amplified oblique first-mode distur-
bances at M1=2.0 ��=0.056, �=0.196�, comparing DNS with PSE.

FIG. 18. Growth n-factors for the most amplified oblique first mode distur-
bances at M1=4.5 ��=0.014, �=0.95�, comparing DNS with PSE.
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the DNS is shown in Fig. 18, also including the results of a
Richardson extrapolation applied in the same way as at M1

=2.0. Again, the n-factors predicted by the DNS with har-
monic forcing are slightly larger than those predicted with
white-noise forcing �Fig. 12�. Agreement between the PSE
and DNS curves is good over the front half of the bubble and
the PSE is capable of predicting the dip in disturbance am-
plitude at the bubble apex. However, the method underpre-
dicts the growth rates during the recovery region after the
shock impingement; this is probably caused by the relatively
large step sizes that had to be adopted for stability reasons.
Qualitatively, the PSE is successful and the spanwise wave-
number for the oblique mode with the highest growth rate is
�=0.95 �corresponding to a wavelength of 6.6�, which
matches well with the DNS results �Fig. 11�b� exhibits span-
wise wavelengths of the order of 5–8�. In addition, the fre-
quency from the PSE prediction ��=0.014� is low, which is
in qualitative agreement with the long quasi-streamwise
structures seen in the white-noise-forced DNS.

VII. EARLY STAGE OF NONLINEAR BREAKDOWN
TO TURBULENCE

In the previous sections, we studied the linear growth of
small-amplitude disturbances by using DNS, LST, and PSE.
Some previous investigations �e.g., Rai and Moin,35 Piroz-
zoli et al.,36 Teramoto18� suggested that at low Mach number
�M1=2.0� the shock-wave/boundary-layer interaction will
undergo an oblique breakdown and finally transition to tur-
bulence. As this study confirms that the two high Mach num-
bers M1=4.5 and M1=6.85 have very similar linear growth
rate, the final breakdown process is likely to be similar.
Hence, in this section we focus on the discussion of the early
stage of nonlinear breakdown of disturbances and transition
to turbulence in the Mach 4.5 flow.

Comparing to the 3D simulation case 10 described in
Sec. V, the present three-dimensional simulation uses a com-
putational box with the same dimensions in the streamwise
and the wall normal directions, but a smaller spanwise width
equal to 8�1

*. This width should be sufficiently wide for one
wavelength of the dominant response �as seen in Fig. 11�b��.
A grid of 257�129�17 �Nx�Ny �Nz� was chosen with a
corresponding ��x+ ,�y1

+ ,�z+�= �22.0,1.0,11.0�, respec-
tively, close to a fully resolved DNS. The most unstable fre-
quencies and the wavenumbers obtained from the LST/PSE
analysis are used to force the nonlinear breakdown and tran-
sition in the flow. These disturbances are introduced up-
stream of the separation bubble by a localized blowing/
suction strip at the wall surface via the wall-normal velocity
disturbance �v�� as

v� = A exp�− 0.125�x − 25.0�2�sin��t�cos��z�

+ 2% random noise, �16�

where A is the amplitude, � is the spanwise wavenumber,
and � is the frequency of the disturbance. For the oblique
mode disturbance, �=0.014 and �=0.95 were used �since
they are the most unstable disturbances at this Mach num-
ber�. In the case of the second-mode disturbance, �=0.3 and
�=0 were taken.

Figure 19�a� plots the isosurfaces of second invariant
��= ��ui /�xj���uj /�xi�� at a value of −0.0006, showing the
evolution of an oblique first-mode disturbance �A=0.1, �
=0.014, �=0.95� over the separation bubble and after the
reattachment. In comparison to the simulation with small-
amplitude white-noise disturbances �see Fig. 11�b��, the
finite-amplitude oblique disturbance triggers stronger station-
ary streamwise structures by the oblique mode interaction.
An enhanced lift-up of the near-wall fluid in between these
streamwise structures induces strong shear layers away from
the wall. The roll-up of these shear layers further produces
spanwise structures in the flow, which can be identified from
Fig. 19�a� near the outflow boundary. Simulation with A
=0.1 of the second-mode disturbance ��=0.3, �=0.0� by
itself shows spanwise structures in the flow but no sign of
transition onset �see Fig. 19�b��. Very weak streamwise vor-
tices were observed in this flow due to the small-amplitude
random disturbances �as in case 10 described in Sec. V�.
These nonlinear calculations confirm the smaller growth
rates of the second-mode disturbances with n-factors be-
tween 2 and 3.

A combination of a finite-amplitude �A=0.1� oblique-
mode disturbance ��=0.014, �=0.95� with a small-
amplitude �A=0.02� second-mode disturbance ��=0.3, �
=0.0� is found to be effective in advancing the transition
onset. Figure 19�c� shows that the streamwise structures ex-
perience an earlier breakdown for Rex�400 000, compared

FIG. 19. Isosurfaces of second invariant of the velocity gradient tensor
��=−0.0006� showing the coherent structures in the flow. �a� Oblique first
mode with A=0.1, �b� second mode with A=0.1, �c� oblique first mode with
A=0.1+second mode with A=0.02, and �d� oblique first mode with A
=0.1+second mode with A=0.1.
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to Rex�500 000 for the oblique-mode-alone disturbance
�see Fig. 19�a��. A final simulation was performed with equal
�A=0.1� amplitudes of the oblique first mode and the second
mode. Immediately downstream of the disturbance strip, a
hairpin vortex structure was generated, which develops
smaller structures upstream of the shock impingement loca-
tion. However, towards the reattachment and beyond this lo-
cation the breakdown ceases and there is a re-emergence of
the second mode, with spanwise-coherent structures �see Fig.
19�d��. The final breakdown in this case occurs via a break-
down of hairpin-shaped structures for Rex�450 000.

Simulations at M1=6.85 have also been carried out using
10% oblique mode ��=0.014, �=0.62� disturbance, 2%
second-mode ��=0.4, �=0.0� disturbance, and 2% random
noise. Results show energetic streamwise structures; how-
ever, there is no breakdown to turbulence within the present
computational domain �Rex	5.5�105 at the exit�.

VIII. CONCLUSIONS

The two-dimensional Navier-Stokes simulations of an
oblique shock wave impinging on a flat plate laminar bound-
ary layer were carried out at three Mach numbers of M1

=2.0, M1=4.5, and M1=6.85. The results illustrated the ex-
pected features for this type of shock-wave/boundary-layer
interaction; namely, the separation and subsequent reattach-
ment of the boundary layer, and the consequent formation of
additional compression and shock waves. Comparisons of
surface pressure and skin friction distributions with those of
previous numerical simulations by other workers at M1

=2.0 show almost identical results.
A parametric study of the effect of the impinging shock

strength was carried out at the Mach numbers described
above in order to set up baseline flow conditions for subse-
quent three-dimensional simulations in which the linear
growth of artificially introduced small-amplitude distur-
bances was explored. The instabilities were initially seeded
with white noise so as to include many frequency and span-
wise wavenumber combinations. At M1=2.0, the emergent
structures have frequencies and wavenumbers close to those
predicted from parallel flow linear stability theory. Further
simulations were carried out for fixed frequency and span-
wise wavenumber and the PSE approach was demonstrated
to give a close match to the disturbance envelope from the
Navier-Stokes calculations.

At M1=4.5 and M1=6.85, the picture was very different.
The parallel flow linear stability theory could not predict the
large reductions in disturbance kinetic energy near the apex
of the bubble. The inclusion of nonparallel effects in the
PSE, together with the disturbance-evolution formulation
was capable of predicting quantitatively the disturbance
growth over the front of the bubble and qualitatively cap-
tured the extinction process at the apex of the bubble, where
the shear-layer curvature is convex �stabilizing� and very
large. Downstream of the bubble apex, there is a poor corre-
lation between shear layer curvature and disturbance insta-
bility. Thus, although nonparallel effects are extremely im-
portant, it seems that for these flows they should not be
parametrized with a single curvature parameter �in contrast

to the Görtler problem�. The structures that form at the
higher Mach numbers are predominantly streamwise in na-
ture, with spanwise wavenumbers in close agreement with
the most amplified modes from the PSE. By contrast, the
parallel flow linear stability predictions lead to erroneous
estimates of the most unstable frequency and spanwise wave-
number and are unable to predict the reductions of distur-
bance kinetic energy at the apex of the bubble.

Overall the observations suggest that parallel flow stabil-
ity results are of only limited use for high Mach number
shock/boundary-layer interactions. The PSE approach was
capable of producing useful estimations for these flows, but
for any higher interaction strengths the basic instability
mechanism is known to change from convective to absolute
in nature, violating the assumptions of the PSE.

Finally, 3D Navier-Stokes simulations using finite-
amplitude disturbances show that the strength of the stream-
wise structures produced by the oblique-mode disturbances
dominates the early-stage of final breakdown process in the
shock-wave/boundary-layer interaction at Mach 4.5. The ad-
ditional unstable second-mode disturbances are found to en-
hance the nonlinear breakdown of laminar transition to tur-
bulence. This breakdown has not been observed when the
same disturbances were introduced for a Mach 6.85 flow,
indicating that it is relatively more resistant to transition.
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